WO2005122888A1 - Oedema detection - Google Patents
Oedema detection Download PDFInfo
- Publication number
- WO2005122888A1 WO2005122888A1 PCT/AU2005/000876 AU2005000876W WO2005122888A1 WO 2005122888 A1 WO2005122888 A1 WO 2005122888A1 AU 2005000876 W AU2005000876 W AU 2005000876W WO 2005122888 A1 WO2005122888 A1 WO 2005122888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- determining
- index
- tissue oedema
- impedance
- oedema
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0537—Measuring body composition by impedance, e.g. tissue hydration or fat content
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4869—Determining body composition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4869—Determining body composition
- A61B5/4875—Hydration status, fluid retention of the body
- A61B5/4878—Evaluating oedema
Definitions
- the present invention relates to a method and apparatus for detecting tissue oedema, and in particular, to a method and - apparatus for detecting tissue oedema using impedance measurements.
- Lymphoedema is a condition characterised by excess protein and oedema in the tissues as a result of reduced lymphatic transport capacity and/or reduced tissue proteolytic capacity in the presence of a normal lymphatic load. Acquired, or secondary lymphoedema, is caused by damaged or blocked lymphatic vessels. "The commonest inciting events are surgery and/or radiotherapy. However, onset of lymphoedema is unpredictable and may develop within days of its cause or at any time during a period of many years after that cause.
- WO00/79255 describes a method of detection of oedema by measuring bioelectrical impedance at two different anatomical regions in the same subject at a single low frequency alternating current. The two measurements are analysed to obtain an indication of the presence of tissue oedema by comparing with data obtained from a normal population.
- the present invention provides a method of detecting tissue oedema in a subject, the method including, in a processing system: a) determining a measured impedance for first and second body segments; b) for each body segment, and using the measured impedance, determining an index indicative of a ratio of the extra-cellular to intra-cellular fluid; c) determining an index ratio based on the index for the first and second body segments; d) determining the presence, absence or degree of tissue oedema based on the index ratio.
- the method includes, in the processing system: a) comparing the index ratio to at least one reference; and, b) determining the presence, absence or degree of tissue oedema based on the results of the comparison.
- the reference includes at least one of: a) a predetermined threshold; b) a tolerance determined from a normal population; and, c) a predetermined range.
- the reference includes an index ratio previously determined for the subject.
- the previously determined index ratio is determined prior to the subject undergoing at least one of: a) surgery; and, b) treatment.
- first and second body segments are different types of body segment.
- first and second body segments are limbs.
- first body segment is' a leg and the second body segment is an arm.
- the method includes, in the processing system: a) determining a plurality of measured impedances for each body segment, eadi measured impedance being measured at a corresponding measurement frequency; and, b) determining the index ratio based on the plurality of measured impedances.
- the method includes, in the processing system: a) determining values for parameters Ro and R ⁇ from the measured impedance values; and, b) calculating the index (I) using the equation: r _ °° R 0 — i? « where: Ro is the resistance at zero frequency; and, Rco is the resistance at infinite frequency.
- the method includes, in the processing system, determining the parameter values using the equation: where: Z is the measured impedance at angular frequency ⁇ , ⁇ is a time constant, and ⁇ has a value between 0 and 1; and
- the method includes, in the processing system: a) determining the impedance of each body segment at four discrete frequencies; and, b) determining values for the parameters by solving the equation using four simultaneous equations.
- the method includes, in the processing system, determining the parameter values by: a) determining an impedance locus using the measured impedance values; and, b) using the impedance locus to determine the parameter values.
- the method includes, in the computer system, displaying an indication of at least one of: a) the parameter values; b) the ratio of extra-cellular to intra-cellular fluid; and, c) an indication of the at least one of the presence, absence or degree of tissue oedema in the subject.
- the present invention provides apparatus for detecting tissue oedema in a subject, the apparatus including a processing system for: a) determining a measured impedance for first and second body segments; b) for each body segment, and using the measured impedance, determining an index indicative of a ratio of the extra-cellular to intra-cellular fluid; c) determining an index ratio based on the" index for the first and second body segments; d) determining the presence, absence or degree of tissue oedema based on the index ratio.
- the apparatus includes: a) a current supply for generating an alternating current at each of a plurality of frequencies; b) at least two supply electrodes for applying the generated alternating current to a subject; c) at least two measurement electrodes for detecting a voltage across the subject; and, d) a sensor coupled to the measurement electrodes for determining the voltage, the sensor being coupled to the processing system to thereby allow the processing system to determine the measured impedances.
- the apparatus is adapted to perform the method of the first broad form of the invention.
- the present invention provides a method of diagnosing tissue oedema in a body region, the method including: a) applying an alternating current signal at four or more discrete frequencies; b) measuring an impedance at each frequency; c) solving the equation: /?n — 7?
- Z R ⁇ + ⁇ — - to obtain parameters R 0 , Roo, ⁇ and ⁇ , l + (j ⁇ y- a
- Z is the measured impedance at angular frequency ⁇
- Ro is the resistance at zero frequency
- Roo is the resistance at infinite frequency
- ⁇ is a time constant
- ⁇ has a value between 0 and 1 ; and d) using one or more of the parameters Ro, R ⁇ , ⁇ and ⁇ to diagnose tissue oedema in the body region.
- the method includes diagnosing tissue oedema by determining the presence, absence or degree of tissue oedema.
- the method includes: a) determining the impedance at four discrete frequencies; and, b) determining values for the parameters by solving the equation using four simultaneous equations.
- the method includes: a) determining values of one or more of the parameters Ro, R ⁇ , ⁇ and ⁇ for first and second body regions; b) comparing the results from the first body region with the results from the second body region to obtain an indication of the presence of tissue oedema.
- the method includes: a) comparing the parameters -R 0 and Rco for each body region; and, b) indicating tissue oedema if the difference is outside a tolerance determined from a normal population.
- the method includes indicating tissue oedema by displaying the indication as a position on a scale.
- the method is a method according to the first broad form of the invention.
- the current supply includes a proximal electrode and distal electrode in electrical connection with a power source.
- the monitor includes a first connection and second connection for location on or near the anatomical region.
- the monitor includes display means to display the signals indicative of bioimpedance.
- the processing system is suitably programmed to perform analysis of data to provide an indication of the presence of tissue oedema.
- the apparatus is adapted to perform the method of the third broad forai of the invention.
- the method includes: a) measuring of R R e is made prior to an event likely to cause oedema; and, b) comparing to a measurement of Ri/R e made after the event.
- the method is a method according to the first or third broad forms of the invention.
- the apparatus is adapted to perform the method of the fifth broad form of the invention.
- FIG. 1 is a schematic of an example of a theoretical equivalent circuit for biological tissue
- Figure 2 is an example, of a locus of impedance known as a Cole-Cole plot
- Figure 3 is a schematic of an example of a single channel bioimpedance apparatus
- Figure 4 is a schematic of an example of a dual channel bioimpedance apparatus; and, Figure 5 is a flow chart of an example of a process for evaluating tissue oedema.
- Figure 1 is an example of an equivalent circuit that effectively models the electrical behaviour of biological tissue.
- the equivalent circuit has two branches that represent current flow through extracellular fluid and intracellular fluid.
- the extracellular component of biological impedance is represented by R e and the intracellular component is represented by Ri.
- Capacitance of the cell membrane in the intracellular path is represented by C.
- ⁇ has a value between 0 and 1 and can be thought of as an indicator of the deviation of a real system from the ideal model.
- Equation (2) has four, unknowns, R 0 , R ⁇ , ⁇ and ⁇ .
- the values of these unknowns can be determined by taking measurements at four ⁇ discrete frequencies, and solving four simultaneous equations. Any of the established methods such as matrix inversion or numerical iteration can be used to solve the equations for the unknown values.
- the second measurements may be taken in a paired unaffected body region.
- a first measurement may be made at a location on the left leg and a second measurement made at the same location on the right leg of the same patient where the right leg is unaffected by tissue oedema.
- tissue oedema tissue oedema
- the second measurement at a dissimilar body region.
- the first reading may be taken on a leg, and a second reading may be taken on an arm.
- the analysis of these readings will necessarily involve some different considerations.
- a wide range of dissimilar anatomical structures may be used for these measurements, such as a leg and the chest wall.
- This form of the method is of particular use where two paired anatomical sites are both affected by tissue oedema. The comparison of readings taken in two such affected sites will be distorted and will not produce a reliable indicator of tissue oedema.
- the method may be applied to two or more measurements on the same anatomical region of a subject where those readings are separated in time. For example, a series of readings may be taken on a single limb prior to and subsequent to surgery with a known risk of lymphoedema as a side effect. Analysis of any two or more readings may indicate the early stage of developing lymphoedema and thereby provide a distinct advantage in that the prognosis may be greatly improved by early and aggressive therapeutic intervention. This technique may also be used to monitor the progress of oedema with comparison made between measurements of an affected site.
- a correcting factor may be required.
- a correcting factor may be established by surveying a population of clinically unaffected subjects:
- This approach has particular application to monitoring oedema overtime as a plot of the index against time can disclose the onset and rate of advance of oedema.
- FIG. 3 there is shown a schematic of an apparatus for measuring impedance, including an oscillator 20, divider 21 and filter 22 connected in series to produce alternating current at a number of discrete frequencies when connected to a power, source (not shown).
- the alternating current passes through cable 23 to electrode 24 through intervening tissue (not shown) to electrode 25, which is connected to a reference 26 via cable 27.
- Monitoring electrodes 28, 29 are in connection with bioimpedance measuring meter 30 via cables 31, 32. Signals from bioimpedance measuring meter 30 are passed to analogue/digital converter 33, which is in signal connection with data storing unit 34, which retains the digitised reading of bioimpedance.
- the applied signal is suitably derived from a constant current source to ensure that the generated current does not exceed the Australian Standard of a maximum of 32V and a maximum current of lOO ⁇ A at 10 kHz.
- the current limit increases to an upper threshold of 1mA at 1000kHz.
- the applied signal could be derived from a constant voltage source rather than a constant current source providing a mechanism is provided to maintain the safety standard.
- a first reading of bioelectrical impedance is taken from a first anatomical region of a subject and stored in data storing unit 34.
- the processor 35 calculates the values R 0 , R ⁇ , ⁇ and ⁇ by solving the equation (2) and transfers the result to second data storing unit 36.
- the values may also be presented on display 37.
- the processor may also calculate an indicator of oedema, such as the R;/R e index, and display this on a scale with a movable indicator.
- an indicator of oedema such as the R;/R e index
- There may also be a simple series of lights which, when illuminated, indicate any one of "unaffected”, “possibly affected” or "affected”.
- the display may be any other suitable form of indicator.
- a two- channel bioimpedance meter as shown in Figure 4.
- current is passed between the electrodes 24, 25 on, for example, one arm 47 and between the electrodes 24A, 25 A on the opposite arm 48. This can be achieved either sequentially, for example through the use of multiplexing, or simultaneously.
- Monitoring electrodes 28, 29 on the first arm 47 measure bioelectrical impedance while monitoring electrodes 28A, 29A measure bioelectrical impedance on the opposite arm 48.
- a measuring meter 30 has two channels for simultaneously monitoring signals provided from the monitoring electrodes 28, 29; 28 A; 29 A.
- the signals are passed through an analogue/digital converter 33 and then analysed by processor 35. The results are stored in memory 36 and shown on display 37.
- the processor 35 operates to analyse the impedance signals and use this to provide an evaluation of the presence, absence or degree of tissue oedema. This is typically performed in accordance with applications software provided in the memory. It will be appreciated from this that the processor 35, the memory 36 and the display 37 may typically be formed from a processing system, such as a computer system, computer server, desktop computer, lap-top, specialised hardware, or the like.
- the impedance at first and second body segments are measured using the apparatus shown in Figure 4.
- the body segments are different body segments and may include for example an arm and a leg.
- the processor 35 determines values of Ro and Roo for each body segment. This can be achieved using a number of mechanisms. For example, given that there are four unknown parameters Ro, R ⁇ , ⁇ , ⁇ , the equation (2) can be used to determine four simultaneous equations, which can then be solved using appropriate mathematical techniques. Alternatively, the measured impedance values can be plotted to derive an arc similar to that shown in Figure 2, which then further allows the values of Ro and R ⁇ to be detennined. Alternative techniques may also be used.
- the values of Ro and R ⁇ are used to determine an index / for each body segment.
- the index is based on the ratio of the extracellular to intracellular fluid and is therefore calculated using equation (3).
- an index ratio IR based on a ratio of the first body segment index /; to second body segment index 7 2 is calculated, with this being used in evaluating the presence, absence or degree of oedema.
- the index ratio should have a value in the region of 1.
- minor variations in tissue will occur between different body segments, and this can be accounted for in one of two ways.
- the index ratio IR can be compared to a predetermined range.
- the range is used to account for variations between body segments that are not attributable to tissue oedema. It will therefore be appreciated that the range is therefore typically set to take into account the difference in index ratio IR between different body portions in a number of different subjects. This range can therefore be set based on data collected from a number of healthy subjects. . In any event, if the index ratio IR falls outside the predetermined range, then this is used by the processor 35 to determine that tissue oedema is present in one of the body segments at step 650.
- an assessment of the value of the index ratio IR can be used in assessing the degree of tissue oedema.
- a number of value ranges can be defined, with each range corresponding to a different degree of oedema.
- the processor 35 determines within which range the index ratio IR falls, and uses this to generate an indication of the likely degree of tissue oedema.
- index ratio IR will also depend on the body segments that have been selected and accordingly, in general a different range will be selected for the comparison depending on the body segments under consideration.
- the index ratio IR can be used to indicate in which body segment the oedema is present, and this can be based on whether the index ratio IR is greater than or less than 1.
- the index ratio IR may. also depend on a number of factors, such as the subject's age, weight, sex and height, and again a respective range can be selected based on these factors. However, to avoid the need for an assessment of such factors, an alternative process of longitudinal analysis can be performed.
- the processor 35 can compare the index ratio IR to previously determined index ratios IR prev measured for the same subject, on the same body segments.
- the previously determined index ratios IR prev are preferably determined prior to the onset of oedema but this is not essential.
- the processor 35 assesses whether the current index ratio IR value is different to the previous index ratio IR prev . If there is change in the value, then the direction in change in value can indicate either increasing or decreasing levels of tissue oedema, with the magnitude of the change being used to indicate a degree of change at step 650.
- the display 37 is used to display an indication of one or more of: • one or more index ratios • one or more indexes; and, • the presence, absence or degree of tissue oedema.
- the above-described methodology provides two different methods of determining the onset for oedema. This can be achieved either by performing a longitudinal analysis in which the index ratio IR is compared to previously determined index ratios IR prev Alternatively the index ratio IR can be compared to one or more absolute index ratio ranges.
- the measured index ratio IR can then be used to form the reference value of the index ratio IR prev , allowing subsequent measurements to be compared thereto.
- this allows variation in tissue properties between different body portions to be taken into account when assessing the presence, absence or degree of tissue oedema, and accordingly, this allows the onset of bilateral oedema to be detected. This is in contrast to previous techniques, in which like body segments are compared. In this case, if impedance measurements of a limb, such as a leg, are compared to measurements from the other corresponding limb, then in the event that oedema is present in both limbs, the impedance measurements will be similar, and will not therefore indicate that oedema is present.
- the values of Ro and R ⁇ can be determined in any one of a number of ways. However, in general it is preferred to be able to determine the values in real-time to thereby vastly enhance the oedema assessment process. In particular, this allows measurements to be made of the patient, with the processor 35 generating an indication of the degree of tissue oedema in real-time.
- the method may also be used in comparing a reading from one anatomical region with a separate unpaired region. For example, a reading taken on central localised oedema (eg: ascites) may be referenced against a nonoedematous structure such as a limb.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Power Engineering (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES05750150T ES2751995T3 (en) | 2004-06-18 | 2005-06-17 | Detection of edema |
AU2005253647A AU2005253647B2 (en) | 2004-06-18 | 2005-06-17 | Oedema detection |
JP2007515741A JP4848369B2 (en) | 2004-06-18 | 2005-06-17 | Apparatus and method for operating edema detection |
EP05750150.4A EP1765161B1 (en) | 2004-06-18 | 2005-06-17 | Oedema detection |
CA2578106A CA2578106C (en) | 2004-06-18 | 2005-06-17 | Oedema detection |
US11/629,832 US8744564B2 (en) | 2004-06-18 | 2005-06-17 | Oedema detection |
US14/136,463 US9149235B2 (en) | 2004-06-18 | 2013-12-20 | Oedema detection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2004903314A AU2004903314A0 (en) | 2004-06-18 | A bioimpedance method and device for indicating tissue oedema | |
AU2004903314 | 2004-06-18 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/629,832 A-371-Of-International US8744564B2 (en) | 2004-06-18 | 2005-06-17 | Oedema detection |
US14/136,463 Continuation US9149235B2 (en) | 2004-06-18 | 2013-12-20 | Oedema detection |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005122888A1 true WO2005122888A1 (en) | 2005-12-29 |
Family
ID=35509393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2005/000876 WO2005122888A1 (en) | 2004-06-18 | 2005-06-17 | Oedema detection |
Country Status (6)
Country | Link |
---|---|
US (2) | US8744564B2 (en) |
EP (1) | EP1765161B1 (en) |
JP (1) | JP4848369B2 (en) |
CA (1) | CA2578106C (en) |
ES (1) | ES2751995T3 (en) |
WO (1) | WO2005122888A1 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007002992A1 (en) * | 2005-07-01 | 2007-01-11 | Impedance Cardiology Systems Inc. | Pulmonary monitoring system |
WO2007041783A1 (en) * | 2005-10-11 | 2007-04-19 | Impedance Cardiology Systems, Inc. | Hydration status monitoring |
WO2008128281A1 (en) * | 2007-04-20 | 2008-10-30 | Impedimed Limited | Monitoring system and probe |
WO2009100491A1 (en) * | 2008-02-15 | 2009-08-20 | Impedimed Limited | Analysing impedance measurements |
WO2010051600A1 (en) * | 2008-11-10 | 2010-05-14 | Impedimed Limited | Fluid indicator |
WO2011050393A1 (en) | 2009-10-26 | 2011-05-05 | Impedimed Limited | Fluid level indicator determination |
WO2011126951A1 (en) * | 2010-04-05 | 2011-10-13 | Corventis, Inc. | Method and apparatus for personalized physiologic parameters |
US8068906B2 (en) | 2004-06-21 | 2011-11-29 | Aorora Technologies Pty Ltd | Cardiac monitoring system |
WO2012000017A1 (en) | 2010-07-02 | 2012-01-05 | Impedimed Limited | Tissue indicator determination |
US8103337B2 (en) | 2004-11-26 | 2012-01-24 | Impedimed Limited | Weighted gradient method and system for diagnosing disease |
AU2006301927B2 (en) * | 2005-10-11 | 2012-05-17 | Impedimed Limited | Hydration status monitoring |
US8233974B2 (en) | 1999-06-22 | 2012-07-31 | Impedimed Limited | Method and device for measuring tissue oedema |
WO2012103576A1 (en) | 2011-02-03 | 2012-08-09 | Impedimed Limited | Tissue mass indicator determination |
US8700121B2 (en) | 2011-12-14 | 2014-04-15 | Intersection Medical, Inc. | Devices for determining the relative spatial change in subsurface resistivities across frequencies in tissue |
JP2014087712A (en) * | 2007-05-14 | 2014-05-15 | Impedimed Ltd | Impedance analyzing method and analyzing device using indicator |
US8823490B2 (en) | 2008-12-15 | 2014-09-02 | Corventis, Inc. | Patient monitoring systems and methods |
US8836345B2 (en) | 2007-11-05 | 2014-09-16 | Impedimed Limited | Impedance determination |
US9149235B2 (en) | 2004-06-18 | 2015-10-06 | Impedimed Limited | Oedema detection |
US9392947B2 (en) | 2008-02-15 | 2016-07-19 | Impedimed Limited | Blood flow assessment of venous insufficiency |
US9504406B2 (en) | 2006-11-30 | 2016-11-29 | Impedimed Limited | Measurement apparatus |
US9585593B2 (en) | 2009-11-18 | 2017-03-07 | Chung Shing Fan | Signal distribution for patient-electrode measurements |
US9615766B2 (en) | 2008-11-28 | 2017-04-11 | Impedimed Limited | Impedance measurement process |
US10327665B2 (en) | 2005-07-01 | 2019-06-25 | Impedimed Limited | Monitoring system |
US11542747B2 (en) | 2018-07-04 | 2023-01-03 | Saint-Gobain Glass France | Covering element for bus bar |
US11660013B2 (en) | 2005-07-01 | 2023-05-30 | Impedimed Limited | Monitoring system |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8099250B2 (en) | 2005-08-02 | 2012-01-17 | Impedimed Limited | Impedance parameter values |
US8761870B2 (en) | 2006-05-30 | 2014-06-24 | Impedimed Limited | Impedance measurements |
JP5400618B2 (en) | 2007-01-15 | 2014-01-29 | インぺディメッド リミテッド | Monitoring system |
WO2008119166A1 (en) | 2007-03-30 | 2008-10-09 | Z-Tech (Canada) Inc. | Active guarding for reduction of resistive and capactive signal loading with adjustable control of compensation level |
AU2008286194B2 (en) | 2007-08-09 | 2014-05-15 | Impedimed Limited | Impedance measurement process |
KR20100123839A (en) * | 2008-01-22 | 2010-11-25 | 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 | Method and device for monitoring breast feeding |
EP2247238B1 (en) * | 2008-01-29 | 2013-10-23 | St. Jude Medical AB | Mplantable medical device (imd) for monitoring permeability status of cell membranes. |
US8374690B2 (en) * | 2009-03-10 | 2013-02-12 | Ari Licensing | Apparatus for determining health of an individual |
CA2782953A1 (en) * | 2009-12-21 | 2011-06-30 | Impedimed Limited | Analysing impedance measurements |
JP5469571B2 (en) * | 2010-09-14 | 2014-04-16 | 学校法人北里研究所 | Biological electrical impedance tomography measuring device |
JP2013150790A (en) * | 2011-12-28 | 2013-08-08 | Tanita Corp | Condition information processing apparatus, program for the condition information processing apparatus, and method for processing the condition information |
JP5953490B2 (en) * | 2012-05-10 | 2016-07-20 | 株式会社タニタ | Edema evaluation device |
JP2015038425A (en) * | 2013-05-24 | 2015-02-26 | 直之 御法川 | Device for measuring abnormality degree of epithelial cell |
CN103340626B (en) * | 2013-07-19 | 2015-06-03 | 东南大学 | Device for evaluating human body four-limb edema based on biological impedance and use method thereof |
US10004408B2 (en) | 2014-12-03 | 2018-06-26 | Rethink Medical, Inc. | Methods and systems for detecting physiology for monitoring cardiac health |
WO2017008118A1 (en) * | 2015-07-16 | 2017-01-19 | Impedimed Limited | Fluid level determination |
GB2542114B (en) * | 2015-09-03 | 2018-06-27 | Heartfelt Tech Limited | Method and apparatus for determining volumetric data of a predetermined anatomical feature |
RU2615732C1 (en) * | 2015-12-10 | 2017-04-07 | Общество С Ограниченной Ответственностью "Хилби" | Method for lack of water determination in body |
AU2017220382B2 (en) * | 2016-02-16 | 2022-04-07 | Impedimed Limited | Heart failure indicator |
TWI598073B (en) * | 2016-12-15 | 2017-09-11 | 財團法人工業技術研究院 | Physiological signal measuring method and physiological signal measuring device |
CN109890273B (en) * | 2017-02-03 | 2022-10-11 | 布鲁恩生物有限责任公司 | Measurement of edema |
JP7436455B2 (en) * | 2019-03-28 | 2024-02-21 | テルモ株式会社 | Measuring device, measuring system and determination method |
IT201900016184A1 (en) * | 2019-09-12 | 2021-03-12 | Innuvatech S R L | MULTIFREQUENCY BIOIMPEDENZIOMETER |
CN115243757A (en) * | 2020-03-12 | 2022-10-25 | 泰尔茂株式会社 | Medical instrument |
JP2023530283A (en) * | 2020-06-12 | 2023-07-14 | テルモ株式会社 | Edema detection |
US11911170B2 (en) | 2021-09-13 | 2024-02-27 | Christopher J. Rourk | Deep brain sensing and stimulation probe |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6151523A (en) * | 1997-03-06 | 2000-11-21 | Nte S.A. | Apparatus and procedure for measuring volumes and global and segmental corporal composition in human beings |
US20010020138A1 (en) * | 2000-01-21 | 2001-09-06 | Tanita Corporation | Method for measuring the degree of edema and apparatus using the same |
US20020161311A1 (en) * | 1999-06-22 | 2002-10-31 | The University Of Queensland | Method and device for measuring tissue oedema |
US6496725B2 (en) * | 1999-12-28 | 2002-12-17 | Tanita Corporation | Apparatus for determining degree of restoration of diseased part |
US6643543B2 (en) * | 2000-08-01 | 2003-11-04 | Tanita Corporation | Body water amount condition judging apparatus by multi-frequency bioelectric impedance measurement |
Family Cites Families (302)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2638958A (en) * | 1952-02-15 | 1953-05-19 | Butler Manufacturing Co | Corrugation crimping device |
FR1344459A (en) * | 1962-10-18 | 1963-11-29 | Method and apparatus for the electrical study of living organisms | |
US4314563A (en) * | 1970-09-24 | 1982-02-09 | The United States Of America As Represented By The Administrator Of The Veterans Administration | Apparatus for measuring relative changes in blood volume in a portion of an animal body to detect a venous occlusion |
IT991982B (en) | 1972-07-24 | 1975-08-30 | Medical Plstic Inc | IMPROVEMENT IN ELECTRODES FOR THE DETECTION OF BIOELECTRIC SIGNALS |
US3868165A (en) | 1972-11-28 | 1975-02-25 | Donald I Gonser | Clamp for a passive electrode |
US3871359A (en) * | 1973-06-25 | 1975-03-18 | Interscience Technology Corp | Impedance measuring system |
US3851641A (en) | 1973-11-29 | 1974-12-03 | J Toole | Method and apparatus for determining internal impedance of animal body part |
US3996924A (en) * | 1974-06-19 | 1976-12-14 | Wheeler H Brownell | Occlusive impedance phlebograph and method therefor |
US4008712A (en) * | 1975-11-14 | 1977-02-22 | J. M. Richards Laboratories | Method for monitoring body characteristics |
US4034854A (en) * | 1976-07-16 | 1977-07-12 | M I Systems, Inc. | Electrode package |
US4121575A (en) | 1976-10-05 | 1978-10-24 | Harold Mills | Devices for rapid placement and recording of ECG precordial leads in patients |
US4184486A (en) * | 1977-08-11 | 1980-01-22 | Radelkis Elektrokemiai Muszergyarto Szovetkezet | Diagnostic method and sensor device for detecting lesions in body tissues |
US4458694A (en) * | 1977-11-02 | 1984-07-10 | Yeda Research & Development Co., Ltd. | Apparatus and method for detection of tumors in tissue |
IL53286A (en) | 1977-11-02 | 1980-01-31 | Yeda Res & Dev | Apparatus and method for detection of tumors in tissue |
US4233987A (en) | 1978-08-18 | 1980-11-18 | Alfred Feingold | Curvilinear electrocardiograph electrode strip |
DE2912349A1 (en) | 1979-03-29 | 1980-10-16 | Liebisch Geb | Detector system for human skin moisture content - has scanning head with two contact electrodes attached to skin under specified pressure |
US4365634A (en) | 1979-12-06 | 1982-12-28 | C. R. Bard, Inc. | Medical electrode construction |
US4353372A (en) | 1980-02-11 | 1982-10-12 | Bunker Ramo Corporation | Medical cable set and electrode therefor |
FR2486386A1 (en) | 1980-07-09 | 1982-01-15 | Argamakoff Alexis | Thermographic and impedance measurer for cancer scanning - has single electrode or matrix supplying temp. and impedance signals |
US4407300A (en) | 1980-07-14 | 1983-10-04 | Davis Robert E | Potentiometric diagnosis of cancer in vivo |
JPS5772627A (en) * | 1980-10-21 | 1982-05-07 | Tokyo Shibaura Electric Co | Apparatus for detecting abnormal cell |
US4942880A (en) * | 1981-01-28 | 1990-07-24 | Ceske Vysoke Uceni Technicke V Praze | Method for non-invasive electric diagnosis and therapy in hemodialysis and general medicine |
US4407288B1 (en) | 1981-02-18 | 2000-09-19 | Mieczyslaw Mirowski | Implantable heart stimulator and stimulation method |
IL62861A (en) | 1981-05-13 | 1988-01-31 | Yeda Res & Dev | Method and apparatus for carrying out electric tomography |
CA1196691A (en) | 1982-01-12 | 1985-11-12 | Bradley Fry | Reconstruction system and methods for impedance imaging |
SE455043B (en) | 1982-04-22 | 1988-06-20 | Karolinska Inst | DEVICE FOR MONITORING THE LIQUID BALANCE OF THE HUMAN BODY BY MEASURING THE IMPEDANCE OF THE BODY |
US4617939A (en) | 1982-04-30 | 1986-10-21 | The University Of Sheffield | Tomography |
US4450527A (en) * | 1982-06-29 | 1984-05-22 | Bomed Medical Mfg. Ltd. | Noninvasive continuous cardiac output monitor |
GB2126732B (en) * | 1982-09-02 | 1986-01-15 | British Telecomm | Impedance measurement in 4-wire to 2-wire converters |
GB2131558B (en) | 1982-11-05 | 1986-03-05 | Walter Farrer | Measuring potential difference |
US4557271A (en) | 1983-05-11 | 1985-12-10 | Stoller Kenneth P | Method and apparatus for detecting body illness, dysfunction, disease and/or pathology |
US4468832A (en) | 1983-06-24 | 1984-09-04 | Libman Broom Company | Refill sponge mop assembly |
US4583549A (en) * | 1984-05-30 | 1986-04-22 | Samir Manoli | ECG electrode pad |
US4646754A (en) * | 1985-02-19 | 1987-03-03 | Seale Joseph B | Non-invasive determination of mechanical characteristics in the body |
US4688580A (en) * | 1985-07-11 | 1987-08-25 | The Johns Hopkins University | Non-invasive electromagnetic technique for monitoring bone healing and bone fracture localization |
US4686477A (en) * | 1985-09-30 | 1987-08-11 | Mobil Oil Corporation | Multiple frequency electric excitation method and identifying complex lithologies of subsurface formations |
US4763660A (en) * | 1985-12-10 | 1988-08-16 | Cherne Industries, Inc. | Flexible and disposable electrode belt device |
US4899758A (en) | 1986-01-31 | 1990-02-13 | Regents Of The University Of Minnesota | Method and apparatus for monitoring and diagnosing hypertension and congestive heart failure |
EP0249823B1 (en) | 1986-06-16 | 1991-12-18 | Pacesetter AB | Device for the control of a heart pacer using impedance measurement at body tissues |
JPH0674103B2 (en) | 1986-07-25 | 1994-09-21 | 株式会社ピーエフユー | Paper feeder |
JPH0436809Y2 (en) | 1986-12-24 | 1992-08-31 | ||
WO1988007392A1 (en) | 1987-03-26 | 1988-10-06 | Intrinsic Ag | Signal control process, electric treatment device and electrode system |
US4832608A (en) | 1987-05-22 | 1989-05-23 | Cherne Medical, Inc. | Electrode belt adapter |
CN1024161C (en) * | 1987-09-05 | 1994-04-13 | 哈尔滨工业大学 | Method and apparatus for detecting and processing impedance blood flow map |
US4911175A (en) * | 1987-09-17 | 1990-03-27 | Diana Twyman | Method for measuring total body cell mass and total extracellular mass by bioelectrical resistance and reactance |
US4928690A (en) | 1988-04-25 | 1990-05-29 | Lifecor, Inc. | Portable device for sensing cardiac function and automatically delivering electrical therapy |
US5078134A (en) | 1988-04-25 | 1992-01-07 | Lifecor, Inc. | Portable device for sensing cardiac function and automatically delivering electrical therapy |
US4895163A (en) * | 1988-05-24 | 1990-01-23 | Bio Analogics, Inc. | System for body impedance data acquisition |
US4951682A (en) * | 1988-06-22 | 1990-08-28 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
DE3821575A1 (en) | 1988-06-25 | 1989-12-28 | Philips Patentverwaltung | ARRANGEMENT FOR APPROXIMATELY DETERMINING THE REPLACEMENT CIRCUIT OF AN ELECTRICAL OR. ELECTRONIC COMPONENTS AT HIGH FREQUENCIES |
US4952928A (en) | 1988-08-29 | 1990-08-28 | B. I. Incorporated | Adaptable electronic monitoring and identification system |
US4955383A (en) | 1988-12-22 | 1990-09-11 | Biofield Corporation | Discriminant function analysis method and apparatus for disease diagnosis and screening |
US4981141A (en) | 1989-02-15 | 1991-01-01 | Jacob Segalowitz | Wireless electrocardiographic monitoring system |
US5511553A (en) | 1989-02-15 | 1996-04-30 | Segalowitz; Jacob | Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously |
US4905705A (en) | 1989-03-03 | 1990-03-06 | Research Triangle Institute | Impedance cardiometer |
IL91193A (en) | 1989-08-02 | 1996-01-19 | Yeda Res & Dev | Tumor detection system |
US5086781A (en) | 1989-11-14 | 1992-02-11 | Bookspan Mark A | Bioelectric apparatus for monitoring body fluid compartments |
GB9013177D0 (en) * | 1990-06-13 | 1990-08-01 | Brown Brian H | Real-time imaging, etc. |
US5063937A (en) | 1990-09-12 | 1991-11-12 | Wright State University | Multiple frequency bio-impedance measurement system |
US5199432A (en) | 1990-10-30 | 1993-04-06 | American Home Products Corporation | Fetal electrode product for use in monitoring fetal heart rate |
DE4100568A1 (en) | 1991-01-11 | 1992-07-16 | Fehling Guido | DEVICE FOR MONITORING A PATIENT FOR REPELLATION REACTIONS OF AN IMPLANTED ORGAN |
US5280429A (en) * | 1991-04-30 | 1994-01-18 | Xitron Technologies | Method and apparatus for displaying multi-frequency bio-impedance |
US5197479A (en) * | 1991-05-13 | 1993-03-30 | Mortara Instrument | Automatic electrode channel impedance measurement system for egg monitor |
US5588429A (en) | 1991-07-09 | 1996-12-31 | Rensselaer Polytechnic Institute | Process for producing optimal current patterns for electrical impedance tomography |
US5544662A (en) * | 1991-07-09 | 1996-08-13 | Rensselaer Polytechnic Institute | High-speed electric tomography |
GB9116215D0 (en) | 1991-07-26 | 1991-09-11 | Nat Res Dev | Electrical impedance tomography |
US5309917A (en) | 1991-09-12 | 1994-05-10 | Drexel University | System and method of impedance cardiography and heartbeat determination |
GB2260416B (en) | 1991-10-10 | 1995-07-26 | Smiths Industries Plc | Resistance monitors |
US5305192A (en) | 1991-11-01 | 1994-04-19 | Linear Technology Corporation | Switching regulator circuit using magnetic flux-sensing |
US5415164A (en) * | 1991-11-04 | 1995-05-16 | Biofield Corp. | Apparatus and method for screening and diagnosing trauma or disease in body tissues |
US5282840A (en) | 1992-03-26 | 1994-02-01 | Medtronic, Inc. | Multiple frequency impedance measurement system |
IL102300A (en) | 1992-06-24 | 1996-07-23 | N I Medical Ltd | Non-invasive system for determining of the main cardiorespiratory parameters of the human body |
US5372141A (en) | 1992-07-01 | 1994-12-13 | Body Composition Analyzers, Inc. | Body composition analyzer |
GB9214818D0 (en) | 1992-07-13 | 1992-08-26 | Hertford Medical Limited | Ambulatory heart monitoring apparatus |
GB9222888D0 (en) * | 1992-10-30 | 1992-12-16 | British Tech Group | Tomography |
ZA948393B (en) | 1993-11-01 | 1995-06-26 | Polartechnics Ltd | Method and apparatus for tissue type recognition |
JP3759606B2 (en) | 1994-03-11 | 2006-03-29 | ビーティージー・インターナショナル・リミテッド | Electrical impedance tomography |
RU2112416C1 (en) | 1994-05-10 | 1998-06-10 | Научно-исследовательский институт вычислительной техники | Method for checking of tissue or organ condition after operation and device for its realization |
AU1328595A (en) | 1994-06-20 | 1996-01-15 | Auckland Uniservices Limited | Brain damage monitor |
US5704355A (en) * | 1994-07-01 | 1998-01-06 | Bridges; Jack E. | Non-invasive system for breast cancer detection |
US5505209A (en) | 1994-07-07 | 1996-04-09 | Reining International, Ltd. | Impedance cardiograph apparatus and method |
US6560480B1 (en) * | 1994-10-24 | 2003-05-06 | Transscan Medical Ltd. | Localization of anomalies in tissue and guidance of invasive tools based on impedance imaging |
US5810742A (en) | 1994-10-24 | 1998-09-22 | Transcan Research & Development Co., Ltd. | Tissue characterization based on impedance images and on impedance measurements |
JPH10512462A (en) | 1994-10-24 | 1998-12-02 | トランススキャン・リサーチ・アンド・ディベロプメント・カンパニー・リミテッド | Impedance imaging device and multi-element probe |
US5562607A (en) | 1995-01-18 | 1996-10-08 | Alza Corporation | Electrotransport device having reusable controller power saver |
EP0814700A1 (en) | 1995-03-14 | 1998-01-07 | Vnus Medical Technologies, Inc. | Venous pump efficiency test system and method |
US5503157A (en) * | 1995-03-17 | 1996-04-02 | Sramek; Bohumir | System for detection of electrical bioimpedance signals |
DE19514698C1 (en) | 1995-04-13 | 1996-12-12 | Siemens Ag | Procedure for taking a distance measurement |
US5557242A (en) | 1995-05-22 | 1996-09-17 | Motorola, Inc. | Method and apparatus for dielectric absorption compensation |
US5919142A (en) * | 1995-06-22 | 1999-07-06 | Btg International Limited | Electrical impedance tomography method and apparatus |
JP3492038B2 (en) | 1995-08-17 | 2004-02-03 | 積水化学工業株式会社 | Body fat measurement device |
NL1001282C2 (en) * | 1995-09-26 | 1997-03-28 | A J Van Liebergen Holding B V | Stroke volume determination device for a human heart. |
US5813404A (en) | 1995-10-20 | 1998-09-29 | Aspect Medical Systems, Inc. | Electrode connector system |
US5807272A (en) | 1995-10-31 | 1998-09-15 | Worcester Polytechnic Institute | Impedance spectroscopy system for ischemia monitoring and detection |
GB9524968D0 (en) * | 1995-12-06 | 1996-02-07 | Brown Brian H | Impedance pneumography |
US6011992A (en) * | 1996-05-09 | 2000-01-04 | Church Of Spirtual Technology | System for measuring and indicating changes in the resistance of a living body |
FR2748928A1 (en) | 1996-05-23 | 1997-11-28 | Jabourian Artin Pascal | Portable electronic cardiac rhythm detector |
US6101413A (en) | 1996-06-04 | 2000-08-08 | Survivalink Corporation | Circuit detectable pediatric defibrillation electrodes |
JPH10185A (en) * | 1996-06-17 | 1998-01-06 | Sekisui Chem Co Ltd | Diagnosing device for failure in body fluid |
JP3636826B2 (en) | 1996-07-01 | 2005-04-06 | 積水化学工業株式会社 | Bioelectrical impedance measuring device |
JPH1014899A (en) | 1996-07-05 | 1998-01-20 | Sekisui Chem Co Ltd | Method and device for presumption of body composition |
US5732710A (en) * | 1996-08-09 | 1998-03-31 | R.S. Medical Monitoring Ltd. | Method and device for stable impedance plethysmography |
US5749369A (en) | 1996-08-09 | 1998-05-12 | R.S. Medical Monitoring Ltd. | Method and device for stable impedance plethysmography |
US5759159A (en) | 1996-09-25 | 1998-06-02 | Ormco Corporation | Method and apparatus for apical detection with complex impedance measurement |
CA2191285A1 (en) | 1996-11-26 | 1998-05-26 | Philip Maurice Church | Electrode arrangement for electrical impedance tomography system |
RU2127075C1 (en) * | 1996-12-11 | 1999-03-10 | Корженевский Александр Владимирович | Method for producing tomographic image of body and electrical-impedance tomographic scanner |
US5876353A (en) | 1997-01-31 | 1999-03-02 | Medtronic, Inc. | Impedance monitor for discerning edema through evaluation of respiratory rate |
JP3162315B2 (en) | 1997-02-17 | 2001-04-25 | 平和電子工業株式会社 | Physiological balance test determination device and low frequency treatment device |
ES2142219B1 (en) * | 1997-03-06 | 2000-11-16 | Nte Sa | PROCEDURE TO DETERMINE THE COMPOSITION AND QUALITY OF MEAT NATURAL SUBSTANCES. |
US6248083B1 (en) | 1997-03-25 | 2001-06-19 | Radi Medical Systems Ab | Device for pressure measurements |
US5788643A (en) * | 1997-04-22 | 1998-08-04 | Zymed Medical Instrumentation, Inc. | Process for monitoring patients with chronic congestive heart failure |
FI972067A0 (en) | 1997-05-14 | 1997-05-14 | Tiit Koeoebi | Apparaturer ocffaranden Foer utvaendig maetning av physiologiska parametar |
US7628761B2 (en) | 1997-07-01 | 2009-12-08 | Neurometrix, Inc. | Apparatus and method for performing nerve conduction studies with localization of evoked responses |
JPH1170090A (en) | 1997-08-29 | 1999-03-16 | Sekisui Chem Co Ltd | Bioelectricity impedance measuring device |
US6018677A (en) * | 1997-11-25 | 2000-01-25 | Tectrix Fitness Equipment, Inc. | Heart rate monitor and method |
US6125297A (en) | 1998-02-06 | 2000-09-26 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Body fluids monitor |
US6006125A (en) | 1998-02-12 | 1999-12-21 | Unilead International Inc. | Universal electrocardiogram sensor positioning device and method |
US6585649B1 (en) | 1998-05-02 | 2003-07-01 | John D. Mendlein | Methods and devices for improving ultrasonic measurements using multiple angle interrogation |
US6173003B1 (en) * | 1998-03-26 | 2001-01-09 | Visteon Global Technologies, Inc. | Dither noise source with notched frequency spectrum |
US6354996B1 (en) * | 1998-04-15 | 2002-03-12 | Braun Gmbh | Body composition analyzer with trend display |
US6122544A (en) | 1998-05-01 | 2000-09-19 | Organ; Leslie William | Electrical impedance method and apparatus for detecting and diagnosing diseases |
CA2231038C (en) | 1998-05-05 | 2005-12-13 | Leslie W. Organ | Electrical impedance method and apparatus for detecting and diagnosing diseases |
US5994956A (en) | 1998-05-06 | 1999-11-30 | Concorso; James A. | Inductive-capacitive feedback compensation for amplifier systems |
BR9911866A (en) | 1998-07-06 | 2002-01-29 | Aleksander Pastor | Apparatus for evaluating skin impedance variations |
JP3778330B2 (en) | 1998-10-01 | 2006-05-24 | 株式会社デンソー | Health care equipment |
US6845264B1 (en) * | 1998-10-08 | 2005-01-18 | Victor Skladnev | Apparatus for recognizing tissue types |
US6228022B1 (en) * | 1998-10-28 | 2001-05-08 | Sdgi Holdings, Inc. | Methods and instruments for spinal surgery |
JP4025438B2 (en) | 1998-11-10 | 2007-12-19 | 積水化学工業株式会社 | Body composition estimation device |
US6142949A (en) | 1998-11-24 | 2000-11-07 | Ortivus Ab | Lead protection and identification system |
DE60018262T2 (en) | 1999-01-05 | 2006-01-12 | Kaiku Ltd. | A method of generating an impedance spectrum characteristic of a body substance sample |
CA2259738C (en) * | 1999-01-20 | 2012-10-16 | Certicom Corp. | A resilient cryptographic scheme |
US6317628B1 (en) * | 1999-01-25 | 2001-11-13 | Cardiac Pacemakers, Inc. | Cardiac rhythm management system with painless defribillation lead impedance measurement |
US6233473B1 (en) * | 1999-02-16 | 2001-05-15 | Hologic, Inc. | Determining body composition using fan beam dual-energy x-ray absorptiometry |
US6497659B1 (en) | 1999-04-09 | 2002-12-24 | Spacelabs Medical, Inc. | System for identifying a cable transmitting a signal from a sensor to an electronic instrument |
KR100333166B1 (en) * | 1999-07-29 | 2002-04-18 | 차기철 | Useful Apparatus and Method for Analyzing Body Composition Based on Bioelectrical Impedance |
JP3907353B2 (en) * | 1999-08-26 | 2007-04-18 | 株式会社タニタ | Bioimpedance measurement device |
JP2001070273A (en) * | 1999-09-03 | 2001-03-21 | Tanita Corp | Method for measuring of biological electric impedance and body composition measuring device |
JP4064028B2 (en) | 2000-01-05 | 2008-03-19 | 株式会社タニタ | Physical fatigue assessment device |
US6292690B1 (en) | 2000-01-12 | 2001-09-18 | Measurement Specialities Inc. | Apparatus and method for measuring bioelectric impedance |
JP2001204707A (en) | 2000-01-31 | 2001-07-31 | Sekisui Chem Co Ltd | Electrical characteristic-measuring instrument |
AU2001231265A1 (en) | 2000-01-31 | 2001-08-07 | Justin D. Pearlman | Multivariate cardiac monitor |
JP4454092B2 (en) | 2000-02-15 | 2010-04-21 | 大和製衡株式会社 | Body fat mass measuring device |
US7499745B2 (en) | 2000-02-28 | 2009-03-03 | Barbara Ann Karmanos Cancer Institute | Multidimensional bioelectrical tissue analyzer |
GB0005247D0 (en) | 2000-03-03 | 2000-04-26 | Btg Int Ltd | Electrical impedance method for differentiating tissue types |
JP2001245866A (en) | 2000-03-07 | 2001-09-11 | Sekisui Chem Co Ltd | Electric characteristic measuring device |
SE0000778D0 (en) | 2000-03-09 | 2000-03-09 | Siemens Elema Ab | Interface unit for an electrophyssiological measurement system |
US6714814B2 (en) * | 2000-03-30 | 2004-03-30 | Tanita Corporation | Bioelectrical impedance measuring apparatus |
JP4401529B2 (en) | 2000-04-10 | 2010-01-20 | パナソニック株式会社 | Laminate voltage measuring device |
WO2001078005A2 (en) * | 2000-04-11 | 2001-10-18 | Cornell Research Foundation, Inc. | System and method for three-dimensional image rendering and analysis |
US6441747B1 (en) * | 2000-04-18 | 2002-08-27 | Motorola, Inc. | Wireless system protocol for telemetry monitoring |
US20060070623A1 (en) | 2000-04-20 | 2006-04-06 | Wilkinson Malcolm H | Method and apparatus for determining a bodily characteristic or condition |
US6496721B1 (en) * | 2000-04-28 | 2002-12-17 | Cardiac Pacemakers, Inc. | Automatic input impedance balancing for electrocardiogram (ECG) sensing applications |
JP2001321352A (en) | 2000-05-16 | 2001-11-20 | Sekisui Chem Co Ltd | Electric characteristic measuring device |
WO2001087154A1 (en) * | 2000-05-18 | 2001-11-22 | Nuvasive, Inc. | Tissue discrimination and applications in medical procedures |
WO2001089379A1 (en) * | 2000-05-21 | 2001-11-29 | Transscan Medical Ltd. | Apparatus for impedance imaging coupled with another modality |
IL163684A0 (en) * | 2000-05-31 | 2005-12-18 | Given Imaging Ltd | Measurement of electrical characteristics of tissue |
JP3792489B2 (en) * | 2000-06-30 | 2006-07-05 | 株式会社タニタ | Bioimpedance measurement device |
US6964140B2 (en) * | 2000-07-03 | 2005-11-15 | Walker Steven H | Structural metal member for use in a roof truss or a floor joist |
US6569160B1 (en) * | 2000-07-07 | 2003-05-27 | Biosense, Inc. | System and method for detecting electrode-tissue contact |
JP2004505658A (en) | 2000-08-03 | 2004-02-26 | シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド | An electrocardiogram system for synthesizing leads and forming a measure of accuracy. |
JP2002057651A (en) * | 2000-08-11 | 2002-02-22 | Advantest Corp | Physical quantity indicator for multiplex signals, method therefor, recording medium |
US7228170B2 (en) * | 2000-08-14 | 2007-06-05 | Renal Research Institute, Llc | Device and method for monitoring and controlling physiologic parameters of a dialysis patient using segmental bioimpedance |
US7801598B2 (en) * | 2000-08-14 | 2010-09-21 | Fresenius Medical Care Holdings, Inc. | Device and method for the determination of dry weight by continuous measurement of resistance and calculation of circumference in a body segment using segmental bioimpedance analysis |
AU2002239360A1 (en) | 2000-11-28 | 2002-06-11 | Allez Physionix Limited | Systems and methods for making non-invasive physiological assessments |
US7022077B2 (en) | 2000-11-28 | 2006-04-04 | Allez Physionix Ltd. | Systems and methods for making noninvasive assessments of cardiac tissue and parameters |
AU2002218496A1 (en) | 2000-11-29 | 2002-06-11 | Art Haven 9 Co., Ltd. | Method and device for measuring body compositions |
US6768921B2 (en) | 2000-12-28 | 2004-07-27 | Z-Tech (Canada) Inc. | Electrical impedance method and apparatus for detecting and diagnosing diseases |
JP3947651B2 (en) | 2000-12-28 | 2007-07-25 | 株式会社タニタ | Postpartum support device |
DE10100569A1 (en) * | 2001-01-09 | 2002-07-11 | Koninkl Philips Electronics Nv | Driver circuit for display device |
US6841389B2 (en) | 2001-02-05 | 2005-01-11 | Glucosens, Inc. | Method of determining concentration of glucose in blood |
ITBO20010110A1 (en) | 2001-03-01 | 2002-09-01 | Tre Esse Progettazione Biomedi | PROCEDURE AND IMPLANTABLE DEVICE FOR THE INTRA-PULMONARY MEASUREMENT OF PHYSICAL PROPERTIES OF THE PULMONARY FABRIC DEPENDENT ON ITS DENSIT |
US7657292B2 (en) | 2001-03-16 | 2010-02-02 | Nellcor Puritan Bennett Llc | Method for evaluating extracellular water concentration in tissue |
US8135448B2 (en) | 2001-03-16 | 2012-03-13 | Nellcor Puritan Bennett Llc | Systems and methods to assess one or more body fluid metrics |
US6631292B1 (en) | 2001-03-23 | 2003-10-07 | Rjl Systems, Inc. | Bio-electrical impedance analyzer |
US6931605B2 (en) | 2001-03-28 | 2005-08-16 | Council Of Scientific & Industrial Research | Simulated circuit layout for low voltage, low paper and high performance type II current conveyor |
US6511438B2 (en) | 2001-04-03 | 2003-01-28 | Osypka Medical Gmbh | Apparatus and method for determining an approximation of the stroke volume and the cardiac output of the heart |
JP2002330938A (en) | 2001-05-10 | 2002-11-19 | Inax Corp | Toilet seat cover device with body fat meter |
JPWO2002094096A1 (en) | 2001-05-22 | 2004-09-02 | バンブーカンパニー有限会社 | Diagnostic device for neuromusculoskeletal system and method of using the same |
KR20040047754A (en) * | 2001-06-13 | 2004-06-05 | 컴퓨메딕스 리미티드 | Methods and apparatus for monitoring consciousness |
AUPR571801A0 (en) * | 2001-06-15 | 2001-07-12 | Polartechnics Limited | Apparatus for tissue type recognition using multiple measurement techniques |
US6870109B1 (en) * | 2001-06-29 | 2005-03-22 | Cadwell Industries, Inc. | System and device for reducing signal interference in patient monitoring systems |
US7044911B2 (en) * | 2001-06-29 | 2006-05-16 | Philometron, Inc. | Gateway platform for biological monitoring and delivery of therapeutic compounds |
US7933642B2 (en) | 2001-07-17 | 2011-04-26 | Rud Istvan | Wireless ECG system |
US6625487B2 (en) | 2001-07-17 | 2003-09-23 | Koninklijke Philips Electronics N.V. | Bioelectrical impedance ECG measurement and defibrillator implementing same |
WO2004002301A2 (en) | 2001-07-17 | 2004-01-08 | Gmp Wireless Medicine, Inc. | Wireless ecg system |
JP3792547B2 (en) * | 2001-07-19 | 2006-07-05 | 株式会社タニタ | Biometric device |
US6595927B2 (en) | 2001-07-23 | 2003-07-22 | Medtronic, Inc. | Method and system for diagnosing and administering therapy of pulmonary congestion |
EP1622502A2 (en) | 2001-07-26 | 2006-02-08 | Medrad, Inc. | Detection of fluids in tissue |
US7191000B2 (en) | 2001-07-31 | 2007-03-13 | Cardiac Pacemakers, Inc. | Cardiac rhythm management system for edema |
US20050137480A1 (en) * | 2001-10-01 | 2005-06-23 | Eckhard Alt | Remote control of implantable device through medical implant communication service band |
US6623312B2 (en) | 2001-10-04 | 2003-09-23 | Unilead International | Precordial electrocardiogram electrode connector |
US20050101875A1 (en) * | 2001-10-04 | 2005-05-12 | Right Corporation | Non-invasive body composition monitor, system and method |
JP2003116803A (en) | 2001-10-12 | 2003-04-22 | Sekisui Chem Co Ltd | Electric characteristic measuring system |
JP3947379B2 (en) | 2001-10-12 | 2007-07-18 | 積水化学工業株式会社 | Electrical property measuring device |
DE10151650A1 (en) | 2001-10-17 | 2003-05-08 | Univ Eberhard Karls | Electrode arrangement for electrical stimulation of biological material and multi-electrode array for use in such |
DE60128838T2 (en) * | 2001-12-12 | 2008-12-04 | Fresenius Medical Care Deutschland Gmbh | DETERMINATION OF THE HYDRATION OF A PATIENT |
JP2003230547A (en) | 2002-02-12 | 2003-08-19 | Yamato Scale Co Ltd | Health managing device |
JP3943955B2 (en) | 2002-02-25 | 2007-07-11 | 株式会社タニタ | Deep vein thrombosis determination device |
US6887239B2 (en) | 2002-04-17 | 2005-05-03 | Sontra Medical Inc. | Preparation for transmission and reception of electrical signals |
JP3089347U (en) * | 2002-04-17 | 2002-10-25 | 船井電機株式会社 | Remote control for TV with body fat measurement function |
US7630759B2 (en) | 2002-05-20 | 2009-12-08 | Epi-Sci, Llc | Method and system for detecting electrophysiological changes in pre-cancerous and cancerous breast tissue and epithelium |
US6922586B2 (en) * | 2002-05-20 | 2005-07-26 | Richard J. Davies | Method and system for detecting electrophysiological changes in pre-cancerous and cancerous tissue |
US6780182B2 (en) * | 2002-05-23 | 2004-08-24 | Adiana, Inc. | Catheter placement detection system and operator interface |
AU2003238754A1 (en) | 2002-06-19 | 2004-01-06 | Brainz Instruments Limited | Artefact removal during eeg recordings |
WO2004006660A1 (en) | 2002-06-26 | 2004-01-22 | Capamo Aps | Apparatus for the registration of weight |
US7096061B2 (en) | 2002-07-03 | 2006-08-22 | Tel-Aviv University Future Technology Development L.P. | Apparatus for monitoring CHF patients using bio-impedance technique |
DE10232018B4 (en) * | 2002-07-16 | 2008-05-21 | Dräger Medical AG & Co. KG | Method and device for determining the correlation of signals of an electrical impedance tomograph |
JP3806734B2 (en) | 2002-07-26 | 2006-08-09 | 独立行政法人農業・食品産業技術総合研究機構 | Programmable general-purpose modules and measurement systems using them |
US20040019292A1 (en) * | 2002-07-29 | 2004-01-29 | Drinan Darrel Dean | Method and apparatus for bioelectric impedance based identification of subjects |
US7085598B2 (en) | 2002-08-23 | 2006-08-01 | Nihon Kohden Corporation | Biological electrode and connector for the same |
US7840247B2 (en) | 2002-09-16 | 2010-11-23 | Imatx, Inc. | Methods of predicting musculoskeletal disease |
WO2004026136A1 (en) | 2002-09-17 | 2004-04-01 | Beth Israel Deaconess Medical Center, Inc. | Radio frequency impedance mapping |
US7783345B2 (en) | 2002-10-07 | 2010-08-24 | Cnsystems Medizintechnik Gmbh | Impedance-based measuring method for hemodynamic parameters |
AU2002951925A0 (en) | 2002-10-09 | 2002-10-24 | Queensland University Of Technology | An Impedence Cardiography Device |
US20060122523A1 (en) * | 2002-10-17 | 2006-06-08 | Giorgio Bonmassar | Arrangement and method for detecting abnormalities and inconsistencies in a body |
US20040092801A1 (en) | 2002-11-13 | 2004-05-13 | Budimir Drakulic | System for, and method of, acquiring physiological signals of a patient |
WO2004047635A1 (en) | 2002-11-22 | 2004-06-10 | Impedimed Pty Ltd | Multifrequency bioimpedance determination |
US7313434B2 (en) | 2002-11-25 | 2007-12-25 | Regents Of The University Of Minnesota | Impedance monitoring for detecting pulmonary edema and thoracic congestion |
EP1571996A1 (en) * | 2002-11-27 | 2005-09-14 | Z-Tech (Canada) Inc. | Bioimpedance measurement using controller-switched current injection and multiplexer selected electrode connection |
AU2003286054A1 (en) | 2002-11-29 | 2004-06-23 | Z-Tech (Canada) Inc. | Improved breast electrode array and method of analysis for detecting and diagnosing diseases |
GB0228375D0 (en) | 2002-12-05 | 2003-01-08 | Innovation And Entpr Off Of | Wound mapping |
EE04767B1 (en) * | 2002-12-06 | 2007-02-15 | Tallinna Tehnika�likool | Method and apparatus for measuring electrical bio-impedance |
US20040167423A1 (en) * | 2002-12-20 | 2004-08-26 | Luana Pillon | RXc graph and RXc Z-score graph methods |
DE60309559T2 (en) | 2003-01-09 | 2007-08-23 | Ge Healthcare Finland Oy | Shielding arrangement for ECG connection wires |
JP3907595B2 (en) | 2003-02-25 | 2007-04-18 | 株式会社タニタ | Vein extensibility evaluation index measuring device |
US20060264775A1 (en) | 2003-03-14 | 2006-11-23 | Mills Gary N | Methods of and apparatus for determining fluid volume presence in mammalian tissue |
EP1517140A3 (en) | 2003-03-19 | 2005-04-06 | TF Instruments GmbH | Method and device for diagnostic investigation of biological samples |
US7945318B2 (en) * | 2003-03-20 | 2011-05-17 | Smithmarks, Inc. | Peripheral impedance plethysmography electrode and system with detection of electrode spacing |
US8045770B2 (en) | 2003-03-24 | 2011-10-25 | Cornell Research Foundation, Inc. | System and method for three-dimensional image rendering and analysis |
JP2006525099A (en) | 2003-05-02 | 2006-11-09 | ザ ジョンズ ホプキンス ユニバーシティ | Device, system and method for bioimpedance measurement of cervical tissue and method for diagnosis and treatment of human cervix |
JP2004329412A (en) | 2003-05-02 | 2004-11-25 | Tanita Corp | Body composition measuring instrument |
US20040236202A1 (en) | 2003-05-22 | 2004-11-25 | Burton Steven Angell | Expandable strap for use in electrical impedance tomography |
JP4943841B2 (en) | 2003-06-20 | 2012-05-30 | メタキュアー リミティド | Gastrointestinal methods and devices for use in treating disorders |
EP1648297A4 (en) | 2003-07-31 | 2009-06-10 | Dst Delta Segments Technology | Noninvasive multi-channel monitoring of hemodynamic parameters |
JP5449647B2 (en) * | 2003-08-20 | 2014-03-19 | フィロメトロン,インコーポレイティド | Hydration monitoring |
CN101926647B (en) * | 2003-09-12 | 2013-06-05 | 肾脏研究所有限公司 | Bioimpedance methods and apparatus |
JP4600916B2 (en) * | 2003-11-07 | 2010-12-22 | 株式会社タニタ | Shielded cable and bioelectrical impedance value or biological composition information acquisition device using shielded cable |
WO2005051194A1 (en) | 2003-11-26 | 2005-06-09 | Biospace Co. Ltd | Apparatus and method for measuring segmental body fat using bioelectrical impedance |
US20050113704A1 (en) | 2003-11-26 | 2005-05-26 | Lawson Corey J. | Patient monitoring system that incorporates memory into patient parameter cables |
US7184821B2 (en) | 2003-12-03 | 2007-02-27 | Regents Of The University Of Minnesota | Monitoring thoracic fluid changes |
KR20050072990A (en) * | 2004-01-08 | 2005-07-13 | 황인덕 | Electrical impedance measuring apparatus |
CA2555807A1 (en) | 2004-02-12 | 2005-08-25 | Biopeak Corporation | Non-invasive method and apparatus for determining a physiological parameter |
JP2005253840A (en) | 2004-03-15 | 2005-09-22 | Tanita Corp | Skin condition estimating device |
US20050261743A1 (en) | 2004-05-19 | 2005-11-24 | Kroll Mark W | System and method for automated fluid monitoring |
WO2005122888A1 (en) | 2004-06-18 | 2005-12-29 | The University Of Queensland | Oedema detection |
US8068906B2 (en) | 2004-06-21 | 2011-11-29 | Aorora Technologies Pty Ltd | Cardiac monitoring system |
EP1768552A4 (en) | 2004-06-21 | 2009-06-03 | Aorora Technologies Pty Ltd | Cardiac monitoring system |
US7206630B1 (en) | 2004-06-29 | 2007-04-17 | Cleveland Medical Devices, Inc | Electrode patch and wireless physiological measurement system and method |
JP4578187B2 (en) | 2004-08-31 | 2010-11-10 | 株式会社タニタ | Body composition meter with judgment function for children |
US9820658B2 (en) | 2006-06-30 | 2017-11-21 | Bao Q. Tran | Systems and methods for providing interoperability among healthcare devices |
US20060252670A1 (en) | 2004-10-14 | 2006-11-09 | Intercept Pharmaceuticals Inc. | Method of reducing drug-induced adverse side effects in a patient |
US20060085048A1 (en) * | 2004-10-20 | 2006-04-20 | Nervonix, Inc. | Algorithms for an active electrode, bioimpedance-based tissue discrimination system |
WO2006044868A1 (en) * | 2004-10-20 | 2006-04-27 | Nervonix, Inc. | An active electrode, bio-impedance based, tissue discrimination system and methods and use |
US7660617B2 (en) * | 2004-11-13 | 2010-02-09 | The Boeing Company | Electrical impedance tomography using a virtual short measurement technique |
US20060111652A1 (en) | 2004-11-22 | 2006-05-25 | Mcleod Kenneth J | Method for enhancing blood and lymph flow in the extremities |
US20080188757A1 (en) | 2005-02-21 | 2008-08-07 | Ave Eugenio Garza Sada #2501 Sur, Col. Tecnologic | Optoelectronic Device For The Detection Of Uterine Cancer, Comprising A Self-Positioning Attachment |
US7242169B2 (en) | 2005-03-01 | 2007-07-10 | Apple Inc. | Method and apparatus for voltage compensation for parasitic impedance |
WO2006096080A1 (en) | 2005-03-09 | 2006-09-14 | Ramil Faritovich Musin | Method and device microcalorimetrically measuring a tissue local metabolism speed, intracellular tissue water content, blood biochemical component concentration and a cardio-vascular system tension |
JP4645266B2 (en) | 2005-03-30 | 2011-03-09 | オムロンヘルスケア株式会社 | Body fat measuring device |
US20060224079A1 (en) | 2005-03-31 | 2006-10-05 | Washchuk Bohdan O | Edema monitoring system and method utilizing an implantable medical device |
GB2426824A (en) | 2005-06-03 | 2006-12-06 | Sheffield Teaching Hospitals | Body tissue impedance measuring probe with wireless transmitter |
GB0511289D0 (en) | 2005-06-03 | 2005-07-13 | Sheffield Teaching Hospitals | Method and probe for measuring the impedance of human or animal body tissue |
GB0511323D0 (en) | 2005-06-03 | 2005-07-13 | Sheffield Teaching Hospitals | Apparatus for measuring tissue sample electrical impedance |
EP1898782B1 (en) | 2005-07-01 | 2016-04-06 | Impedimed Limited | Monitoring system |
CA2613524C (en) | 2005-07-01 | 2015-12-29 | Impedance Cardiology Systems Inc. | Pulmonary monitoring system |
EP1898784B1 (en) | 2005-07-01 | 2016-05-18 | Impedimed Limited | Method and apparatus for performing impedance measurements |
EP1909642A1 (en) | 2005-07-20 | 2008-04-16 | Impedance Cardiology Systems Inc. | Index determination |
JP5165841B2 (en) | 2005-08-09 | 2013-03-21 | フクダ電子株式会社 | Waterproof bioelectrode |
EP1754441B1 (en) | 2005-08-17 | 2008-01-09 | Osypka Medical GmbH | Method and apparatus for digital demodulation in the measurement of electrical bioimpedance or bioadmittance |
US9724012B2 (en) * | 2005-10-11 | 2017-08-08 | Impedimed Limited | Hydration status monitoring |
US7733224B2 (en) | 2006-06-30 | 2010-06-08 | Bao Tran | Mesh network personal emergency response appliance |
CN100423688C (en) | 2005-10-19 | 2008-10-08 | 深圳迈瑞生物医疗电子股份有限公司 | Method and apparatus for inhibiting power frequency common-mode interference |
AT502921B1 (en) | 2005-10-21 | 2012-01-15 | Falko Dr Skrabal | DEVICE FOR MEASURING HEART AND VESSEL FUNCTION (FUNCTION) AND BODY SPACES (SPACES) BY MEANS OF IMPEDANCE MEASUREMENT |
US8108047B2 (en) | 2005-11-08 | 2012-01-31 | Newlife Sciences Llc | Device and method for the treatment of pain with electrical energy |
WO2007105996A1 (en) | 2006-03-15 | 2007-09-20 | St. Jude Medical Ab | Method and implantable medical device for assessing a degree of pulmonary edema of a patient. |
JP5069878B2 (en) | 2006-07-19 | 2012-11-07 | フクダ電子株式会社 | Vein inspection device |
US8725245B2 (en) | 2006-08-14 | 2014-05-13 | Kimberly-Clark Worldwide, Inc. | Resonant coil for measuring specimen condition |
EP2070378B1 (en) | 2006-09-25 | 2010-11-24 | St. Jude Medical AB | Medical device comprising an impedance measurement means to measure visceral fat. |
US20080091114A1 (en) | 2006-10-11 | 2008-04-17 | Pacesetter, Inc. | Techniques for Correlating Thoracic Impedance with Physiological Status |
CA2668326C (en) | 2006-11-03 | 2014-02-18 | T.F.H. Publications, Inc. | Nutritional supplement |
AU2007327573B2 (en) | 2006-11-30 | 2013-07-18 | Impedimed Limited | Measurement apparatus |
US7391257B1 (en) | 2007-01-31 | 2008-06-24 | Medtronic, Inc. | Chopper-stabilized instrumentation amplifier for impedance measurement |
EP2124740B1 (en) | 2007-03-05 | 2019-05-29 | Wisys Technology Foundation, Inc. | System for detecting both pre-cancerous and cancerous tissues |
US20080221411A1 (en) | 2007-03-09 | 2008-09-11 | Nellcor Puritan Bennett Llc | System and method for tissue hydration estimation |
WO2008119166A1 (en) | 2007-03-30 | 2008-10-09 | Z-Tech (Canada) Inc. | Active guarding for reduction of resistive and capactive signal loading with adjustable control of compensation level |
US20090318778A1 (en) | 2007-04-30 | 2009-12-24 | Clifford Dacso | Non-invasive monitoring of physiological measurements in a distributed health care environment |
WO2008133897A1 (en) | 2007-04-30 | 2008-11-06 | Dacso Clifford C | Non-invasive monitoring of physiological measurements in a distributed health care environment |
ES2555964T3 (en) | 2007-05-14 | 2016-01-11 | Impedimed Limited | Indicator |
GB0710949D0 (en) | 2007-06-07 | 2007-07-18 | Univ Montfort | A method for analysing the structure of an electrically conductive object |
CA2697381A1 (en) | 2007-08-23 | 2009-02-26 | Bioness, Inc. | System for transmitting electrical current to a bodily tissue |
US8116841B2 (en) | 2007-09-14 | 2012-02-14 | Corventis, Inc. | Adherent device with multiple physiological sensors |
EP2200499B1 (en) | 2007-09-14 | 2019-05-01 | Medtronic Monitoring, Inc. | Multi-sensor patient monitor to detect impending cardiac decompensation |
US20090076350A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Data Collection in a Multi-Sensor Patient Monitor |
WO2009036316A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Energy management, tracking and security for adherent patient monitor |
US9204449B2 (en) | 2008-01-22 | 2015-12-01 | Alcatel Lucent | Method of assigning an idle state access terminal to a carrier in a multiple carrier wireless communication system based on load on control channel resources |
AU2009214826B2 (en) | 2008-02-15 | 2014-12-18 | Impedimed Limited | Analysing impedance measurements |
AU2008207672B2 (en) | 2008-02-15 | 2013-10-31 | Impedimed Limited | Impedance Analysis |
US20090264776A1 (en) | 2008-04-17 | 2009-10-22 | Terence Vardy | Measurement of physiological characteristics |
DE102008039844A1 (en) | 2008-08-27 | 2010-03-04 | Fresenius Medical Care Deutschland Gmbh | Probe with at least two electrodes for impedance measurement, arrangement and method for this purpose |
WO2011022068A1 (en) | 2009-08-21 | 2011-02-24 | Rutkove Seward B | A hand-held device for electrical impedance myography |
JP5643829B2 (en) | 2009-10-26 | 2014-12-17 | インぺディメッド リミテッドImpedimed Limited | Method and apparatus for use in impedance measurement analysis |
CA2782953A1 (en) | 2009-12-21 | 2011-06-30 | Impedimed Limited | Analysing impedance measurements |
-
2005
- 2005-06-17 WO PCT/AU2005/000876 patent/WO2005122888A1/en active Application Filing
- 2005-06-17 CA CA2578106A patent/CA2578106C/en active Active
- 2005-06-17 EP EP05750150.4A patent/EP1765161B1/en active Active
- 2005-06-17 JP JP2007515741A patent/JP4848369B2/en active Active
- 2005-06-17 US US11/629,832 patent/US8744564B2/en active Active
- 2005-06-17 ES ES05750150T patent/ES2751995T3/en active Active
-
2013
- 2013-12-20 US US14/136,463 patent/US9149235B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6151523A (en) * | 1997-03-06 | 2000-11-21 | Nte S.A. | Apparatus and procedure for measuring volumes and global and segmental corporal composition in human beings |
US20020161311A1 (en) * | 1999-06-22 | 2002-10-31 | The University Of Queensland | Method and device for measuring tissue oedema |
US6496725B2 (en) * | 1999-12-28 | 2002-12-17 | Tanita Corporation | Apparatus for determining degree of restoration of diseased part |
US20010020138A1 (en) * | 2000-01-21 | 2001-09-06 | Tanita Corporation | Method for measuring the degree of edema and apparatus using the same |
US6643543B2 (en) * | 2000-08-01 | 2003-11-04 | Tanita Corporation | Body water amount condition judging apparatus by multi-frequency bioelectric impedance measurement |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8233974B2 (en) | 1999-06-22 | 2012-07-31 | Impedimed Limited | Method and device for measuring tissue oedema |
US9149235B2 (en) | 2004-06-18 | 2015-10-06 | Impedimed Limited | Oedema detection |
US8068906B2 (en) | 2004-06-21 | 2011-11-29 | Aorora Technologies Pty Ltd | Cardiac monitoring system |
US8509886B2 (en) | 2004-06-21 | 2013-08-13 | Aorora Technologies Pty Ltd | Cardiac monitoring system |
US8103337B2 (en) | 2004-11-26 | 2012-01-24 | Impedimed Limited | Weighted gradient method and system for diagnosing disease |
US11660013B2 (en) | 2005-07-01 | 2023-05-30 | Impedimed Limited | Monitoring system |
US10327665B2 (en) | 2005-07-01 | 2019-06-25 | Impedimed Limited | Monitoring system |
WO2007002992A1 (en) * | 2005-07-01 | 2007-01-11 | Impedance Cardiology Systems Inc. | Pulmonary monitoring system |
US11737678B2 (en) | 2005-07-01 | 2023-08-29 | Impedimed Limited | Monitoring system |
US8781551B2 (en) | 2005-07-01 | 2014-07-15 | Impedimed Limited | Apparatus for connecting impedance measurement apparatus to an electrode |
US9724012B2 (en) | 2005-10-11 | 2017-08-08 | Impedimed Limited | Hydration status monitoring |
US11612332B2 (en) | 2005-10-11 | 2023-03-28 | Impedimed Limited | Hydration status monitoring |
AU2006301927B2 (en) * | 2005-10-11 | 2012-05-17 | Impedimed Limited | Hydration status monitoring |
WO2007041783A1 (en) * | 2005-10-11 | 2007-04-19 | Impedance Cardiology Systems, Inc. | Hydration status monitoring |
US9504406B2 (en) | 2006-11-30 | 2016-11-29 | Impedimed Limited | Measurement apparatus |
WO2008128281A1 (en) * | 2007-04-20 | 2008-10-30 | Impedimed Limited | Monitoring system and probe |
US10307074B2 (en) | 2007-04-20 | 2019-06-04 | Impedimed Limited | Monitoring system and probe |
JP2014087712A (en) * | 2007-05-14 | 2014-05-15 | Impedimed Ltd | Impedance analyzing method and analyzing device using indicator |
US8836345B2 (en) | 2007-11-05 | 2014-09-16 | Impedimed Limited | Impedance determination |
US9392947B2 (en) | 2008-02-15 | 2016-07-19 | Impedimed Limited | Blood flow assessment of venous insufficiency |
WO2009100491A1 (en) * | 2008-02-15 | 2009-08-20 | Impedimed Limited | Analysing impedance measurements |
WO2010051600A1 (en) * | 2008-11-10 | 2010-05-14 | Impedimed Limited | Fluid indicator |
AU2009311270B2 (en) * | 2008-11-10 | 2014-10-30 | Impedimed Limited | Fluid indicator |
US9615766B2 (en) | 2008-11-28 | 2017-04-11 | Impedimed Limited | Impedance measurement process |
US8823490B2 (en) | 2008-12-15 | 2014-09-02 | Corventis, Inc. | Patient monitoring systems and methods |
US9445719B2 (en) | 2008-12-15 | 2016-09-20 | Medtronic Monitoring, Inc. | Patient monitoring systems and methods |
US9615767B2 (en) | 2009-10-26 | 2017-04-11 | Impedimed Limited | Fluid level indicator determination |
WO2011050393A1 (en) | 2009-10-26 | 2011-05-05 | Impedimed Limited | Fluid level indicator determination |
US9585593B2 (en) | 2009-11-18 | 2017-03-07 | Chung Shing Fan | Signal distribution for patient-electrode measurements |
WO2011126951A1 (en) * | 2010-04-05 | 2011-10-13 | Corventis, Inc. | Method and apparatus for personalized physiologic parameters |
US9173615B2 (en) | 2010-04-05 | 2015-11-03 | Medtronic Monitoring, Inc. | Method and apparatus for personalized physiologic parameters |
CN102946800A (en) * | 2010-04-05 | 2013-02-27 | 科文迪斯有限公司 | Method and apparatus for personalized physiologic parameters |
CN102946800B (en) * | 2010-04-05 | 2016-06-15 | 科文迪斯有限公司 | Method and apparatus for personalized physiologic parameters |
US8965498B2 (en) | 2010-04-05 | 2015-02-24 | Corventis, Inc. | Method and apparatus for personalized physiologic parameters |
WO2012000017A1 (en) | 2010-07-02 | 2012-01-05 | Impedimed Limited | Tissue indicator determination |
EP2670301A1 (en) * | 2011-02-03 | 2013-12-11 | Impedimed Limited | Tissue mass indicator determination |
WO2012103576A1 (en) | 2011-02-03 | 2012-08-09 | Impedimed Limited | Tissue mass indicator determination |
EP2670301A4 (en) * | 2011-02-03 | 2014-07-02 | Impedimed Ltd | Tissue mass indicator determination |
US9149225B2 (en) | 2011-12-14 | 2015-10-06 | Intesection Medical, Inc. | Methods for determining the relative spatial change in subsurface resistivities across frequencies in tissue |
US8700121B2 (en) | 2011-12-14 | 2014-04-15 | Intersection Medical, Inc. | Devices for determining the relative spatial change in subsurface resistivities across frequencies in tissue |
US11542747B2 (en) | 2018-07-04 | 2023-01-03 | Saint-Gobain Glass France | Covering element for bus bar |
Also Published As
Publication number | Publication date |
---|---|
ES2751995T3 (en) | 2020-04-02 |
EP1765161A1 (en) | 2007-03-28 |
EP1765161A4 (en) | 2009-09-02 |
CA2578106A1 (en) | 2005-12-29 |
US8744564B2 (en) | 2014-06-03 |
US20080319336A1 (en) | 2008-12-25 |
JP2008502382A (en) | 2008-01-31 |
US9149235B2 (en) | 2015-10-06 |
JP4848369B2 (en) | 2011-12-28 |
CA2578106C (en) | 2015-09-01 |
US20140107522A1 (en) | 2014-04-17 |
EP1765161B1 (en) | 2019-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9149235B2 (en) | Oedema detection | |
US8233974B2 (en) | Method and device for measuring tissue oedema | |
AU2010312305B2 (en) | Fluid level indicator determination | |
GB2304414A (en) | System for body impedance data acquisition utilizing segmental impedance and multiple frequency impedance measurement | |
US20160317063A1 (en) | Tissue mass indicator determination | |
AU2019348188B2 (en) | Evaluating impedance measurements | |
Piccoli et al. | Equivalence of information from single frequency v. bioimpedance spectroscopy in bodybuilders | |
AU2005253647B2 (en) | Oedema detection | |
Dai et al. | Blood impedance characterization from pulsatile measurements | |
AU2011274290B2 (en) | Tissue indicator determination | |
AU769439B2 (en) | A method and device for measuring tissue oedema | |
AU2014202075B2 (en) | Fluid level indicator determination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005253647 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007515741 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2578106 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005750150 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2005253647 Country of ref document: AU Date of ref document: 20050617 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005253647 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005750150 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11629832 Country of ref document: US |