WO2005121733A1 - Roulement capteur de deformations comprenant quatre jauges de contraintes - Google Patents

Roulement capteur de deformations comprenant quatre jauges de contraintes Download PDF

Info

Publication number
WO2005121733A1
WO2005121733A1 PCT/FR2005/001108 FR2005001108W WO2005121733A1 WO 2005121733 A1 WO2005121733 A1 WO 2005121733A1 FR 2005001108 W FR2005001108 W FR 2005001108W WO 2005121733 A1 WO2005121733 A1 WO 2005121733A1
Authority
WO
WIPO (PCT)
Prior art keywords
gauges
bearing according
amplitude
sin
raceway
Prior art date
Application number
PCT/FR2005/001108
Other languages
English (en)
Inventor
Christophe Duret
Olivier Blanchin
Original Assignee
S.N.R. Roulements
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.N.R. Roulements filed Critical S.N.R. Roulements
Priority to BRPI0509832-7A priority Critical patent/BRPI0509832A/pt
Priority to JP2007512260A priority patent/JP4847444B2/ja
Priority to EP05769733A priority patent/EP1743151B1/fr
Priority to US11/579,112 priority patent/US7650802B2/en
Publication of WO2005121733A1 publication Critical patent/WO2005121733A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors

Definitions

  • the invention relates to a bearing comprising a fixed ring, a rotating ring and at least one row of rolling bodies arranged in a raceway which is formed between said rings so as to allow their relative rotation.
  • the fixed ring being integral with the chassis of said vehicle and the wheel being associated with the rotating ring.
  • the fixed ring which is the first connecting member between the wheel and the chassis, is in particular used as a support for determining the forces which are exerted at the interface between the wheel and the roadway when the vehicle is moving.
  • the forces can be determined by measuring the deformations of the fixed ring which are induced by the passage of the rolling bodies. Indeed, the amplitude of these deformations is representative of the forces to be determined.
  • the deformation signal depends on the speed of rotation.
  • the quality of the measurement at low speed is insufficient and the determination is only available after measurement of the deformations induced by the passage of at least two successive rolling bodies.
  • the invention aims in particular to remedy this problem by proposing a bearing comprising a system for determining the amplitude of the deformations of the fixed ring, said system being arranged to carry out a spatial interpolation of the deformation signal so as to have, at all instant and independently of the speed of rotation, a measurement of the deformations and donG-allow the determination of the forces.
  • the invention provides a bearing comprising a fixed ring, a rotating ring and at least one row of rolling bodies arranged in a raceway which is formed between said rings so as to allow their relative rotation, said rolling bodies being equally distributed in the raceway with an angular difference ⁇ , said bearing comprising at least one system for determining the amplitude A of pseudo-sinusoidal deformations of an area of the fixed ring which are induced during rotation, the system for determining including:
  • strain gauges each delivering a signal as a function of the deformation undergone by said gauge, said gauges being equally distributed over said;
  • Figures 1 to 3 are perspective views of respectively three embodiments c i bearing showing the gauges of four systems for determining the amplitude of the pseudo sinusoidal deformations, said gauges being respectively arranged on an area of the fixed ring;
  • Figure 4 is a foneti ⁇ rational representation e u first embodiment of a determination system according to the invention;
  • FIG. 5 and 6 are functional representations of a second embodiment of a determination system according to the invention.
  • FIG. 7 is a schematic representation, on the fixed ring of the bearing of Figure 1, of a particular positioning of the gauges relative to the angular distance between the rolling bodies;
  • Figure 8 is a representation similar to Figure 7 showing the distances between the gauges and the raceway.
  • the invention relates to a bearing comprising a fixed ring 1, a rotating ring and at least one row of rolling bodies 2 arranged in a raceway 3 which is formed between said rings so as to allow the relative rotation of said rings.
  • the fixed ring 1 is intended to be associated with a fixed structure and the rotating ring is intended to be associated with a rotating member.
  • the bearing is a motor vehicle wheel bearing, the fixed structure being the chassis of said vehicle and the rotating member being the wheel.
  • such a wheel bearing comprising two rows of balls 2 which are arranged coaxially in a raceway 3 provided respectively between the fixed outer ring 1 and the rotating inner ring.
  • the fixed ring 1 is provided with means-of-fixing-to the chassis-which-are-formed of a flange 4 comprising four radial projections 5 in which an axial hole 6 is made to allow fixing by screwing.
  • the balls 2 are equally distributed in the raceway 3 with a linear angular deviation ⁇ which is also called the spatial period.
  • the distance between the balls 2 is maintained by placing them in a cage.
  • the invention aims to allow the determination of the amplitude of the deformations of at least one zone 7 of the fixed ring 1, so as to be able to deduce therefrom the forces which apply to the interface between the wheel and the road on which said wheel turns.
  • the passage of the balls 2 in the raceway 3 induces compression and relaxation of the fixed ring 1.
  • the fixed ring 1 is subjected to periodic deformation which can be approximated by a sinusoid .
  • pseudo sinusoidal deformations we will speak of pseudo sinusoidal deformations to designate the deformations of the fixed ring 1 Ibrs of the rotation.
  • the pseudo sinusoidal deformation is characterized by an amplitude which depends on the loads undergone by the bearing and therefore on the forces which apply to the interface, and a frequency which is proportional to the speed of rotation of the rotating ring as well as to the number balls 2.
  • the bearing comprises at least one system for determining the amplitude A of the pseudo sinusoidal deformations of a zone 7 of the fixed ring 1 which are induced during rotation, said system comprising four strain gauges 8.
  • the gauges 8 are each capable of delivering a signal which is a function of the deformation which it undergoes. As shown in Figures 1 to 3, the gauges 8 are equally distributed over the area 7 along a line which extends in the general direction of rotation.
  • the determination system further comprises a device 9 for measuring four signals Vj which are respectively a function of the temporal variations of the signal emitted by each gauge 8 during rotation, said device being able to form, by combination of the four signals Vj, two signals respectively SIN and COS of the same angle and the same amplitude, said amplitude being a function of A.
  • the calculation of the amplitude being carried out independently of the speed of rotation, one in particular is freed from the problems of delay or quality which are inherent in a temporal determination of the deformations.
  • a first and a second embodiment of a determination system according to the invention are respectively described, in which the gauges 8 are based on resistive elements, in particular piezoresistive or magnetostrictive, of so as to each present an electrical resistance Ri which varies as a function of the deformations undergone by said gauge 8.
  • the gauges 8 may comprise either a block of several resistors which are combined to obtain an averaged resistance value which is representative of the value resistance at the position of the block or a single resistance.
  • the measuring device 9 comprises a current loop assembly between the four gauges 8.
  • the assembly further comprises four differential amplifiers 11 with adjustable gains G f .
  • the measuring device 9 can further comprise a signal filtering stage, not shown.
  • the measuring device 9 therefore delivers the signals from the amplifiers 11:
  • V G, x (R 0l + AR sin ( ⁇ t)) i
  • V 2 G 2 x (R 02 + AR 2 sin ( ⁇ t + ⁇ ))
  • V 3 G 3 x (R Q3 + 3 sin (û > t + 2 ⁇ ))
  • i 4 G 4 x (tf 04 + 4 sin (ûtf + 3 ⁇ )) i
  • V 3 -V ⁇ [(G 3 R 03 - G 4 R 04 ) + G 3 3 sin ( ⁇ t + 2 ⁇ ) - G 4 4 sin ( ⁇ t + 3 ⁇ )] xi (2)
  • V 3 -V [GAR [sin ( ⁇ t + 2 ⁇ ) - sin ( ⁇ yt + 3 ⁇ )]] xi (4)
  • the measuring device 9 comprises two stages of differential amplifiers 11, the first stage being analogous to that of the first embodiment of FIG. 4, and is therefore arranged to deliver the signals Vi - V 2 and V 3 - V 4 according to the relations (3) and (4) mentioned above, but also similarly lessignaux-V ⁇ - V 3 e Vzr— VrCvoir- figure 6).
  • the second stage comprises two differential amplifiers 11 shown respectively in FIGS. 5 and 6 for the sake of clarity, so as to deliver the signals:
  • V [(V ⁇ - V 3 ) - (V 4 - V 2 )]
  • V [-4G ⁇ R sin (ç?) X cos (-) x cos ( ⁇ t + -)] i
  • At least one differential amplifier 11 of the second stage has an adjustable gain.
  • the gain of the amplifier 11 forming the signal U can be adjusted to
  • the second stage of the measurement device 9 comprises an amplifier 11 in accordance with FIG. 5 and a second amplifiers 11 arranged to deliver the signal 2 (V 2 - V 3 ).
  • V 2 (V 2 - V 3 )
  • V ⁇ (G, i? 01 + (A + 3a) sm ( ⁇ t)) i
  • V 2 (G 2 R 02 + (A +) sin ( ⁇ t + ⁇ )) i
  • V 3 (G 3 R Q3 + (A- a) sm ( ⁇ t + 2 ⁇ )) i
  • V ⁇ (G ⁇ R n ⁇ + (A - 3a) sin ( ⁇ t + 3 ⁇ ) ia being the linear variation of the amplitude A to be measured.
  • V [-2V 2 (A cos ( ⁇ t + -) + a cos ( ⁇ t + -))] i
  • COS 2 is equal to 2 ⁇ J2 ⁇ I + - xi. A d Consequently, a development limited to the first order (a "A) gives us
  • ⁇ R 2 k ⁇ Ri with k> 1 because Ri is further from the raceway than R 2 and therefore the signal from the deformation of Ri will be less important than that from R 2 .
  • the conditions of gain values and of rest values of the resistors are defined so as to be able to obtain the amplitude A.
  • the arrangement of the bearing shown in which the gauges 8 are arranged on a substrate 12 which is fixed to the deformation zone 7 of the fixed ring 1 is described.
  • the substrate 12 is rigidly fixed to the fixed ring-1 for example by gluing or welding, so that it also has the function of transmitting the deformations between the fixed ring 1 and the gauges 8.
  • gauges 8 described above are based on resistive elements
  • other gauges 8 for example sensors chosen from surface acoustic wave sensors and magnetic field sensors, can be used in the context of the invention provided that they deliver a signal depending on a deformation.
  • the magnetic field sensors can be based on sensitive elements of the magnetoresistance, giant magnetoresistance, Hall effect, magnetoresistance with tunnel effect, magnetostrictive layers.
  • the gauges 8 are screen printed in a thick layer on the substrate 12, for example ceramic.
  • a hybrid circuit type technology makes it possible to integrate the measurement device 9 and the calculation device 10 on the substrate 12 (see embodiment of FIG. 2).
  • screen printing allows a good adjustment of the value of the resistances as well as a good sensitivity to deformations, while ensuring a precise positioning of the resistors on the substrate 12.
  • the deformation zone 7 is machined so as to be substantially flat and to extend above the two rows of balls 2.
  • the gauges 8 are not equidistant from the raceway 3, so that the amplitude of the measured deformation is a function of the gauge 8 considered (see Figures 7 and 8).
  • the gauges 8 can be fixed directly to the surface of the gasket of the fixed ring 1, for example the gauges 8 can be of the film weft type, which makes it possible to equalize construction all the distances between the gauges 8 and the raceway 3.
  • the gauges 8 of two determination systems are integrated on the same substrate 12 so, in the vicinity of each raceway 3, that at least one determination system is provided for determining the amplitude of the deformations of zone 7.
  • the gauges 8 are arranged on the outer periphery of the fixed ring 1, substantially facing each of the raceways 3 so as to increase the intensity of the signals to be measured.
  • the substrate 12 carrying the gauges 8 makes it possible to determine the amplitude of the deformations induced respectively by essentially a row of balls 2, and this in the same axial plane.
  • the bearing can comprise at least three (eight in the embodiment shown in FIG. 1: four visible and four arranged symmetrically at the rear of the bearing) systems for determining the amplitude of the deformations of a zone 7 of the ring respectively fixed 1, said systems being connected or intended to be connected to a computer capable of calculating, as a function of the determined amplitudes, the forces applied during rotation on the fixed ring 1 and / or on an element integral with the ring rotating.
  • a computer is described in document FR-2 839 553 from the applicant.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

L'invention concerne un roulement comprenant au moins un système de détermination de l'amplitude A des déformations pseudo sinusoïdales d'une zone (7) de la bague fixe (1) induites lors de la rotation, ledit système comprenant quatre jauges de contraintes (8), un dispositif de mesure de quatre signaux Vi fonction respectivement des variations temporelles du signal émis par chaque jauge (8), ledit dispositif étant apte à former deux signaux respectivement SIN et COS de même angle et de même amplitude, et un dispositif de calcul de l'amplitude A des déformations de la zone (7) en fonction du temps, ledit dispositif étant agencé pour calculer l'expression SIN2 + COS2 de sorte à en déduire l'amplitude A.

Description

ROULEMENT CAPTEUR DE DEFORMATIONS COMPRENANT QUATRE JAUGES DE CONTRAINTES
L'invention concerne un roulement comprenant une bague fixe, une bague tournante et au moins une rangée de corps roulants disposés dans un chemin de roulement qui est formé entre lesdites bagues de sorte à permettre leur rotation relative.
Elle s'applique typiquement à des roulements de roue de véhicule automobile, la bague fixe étant solidaire du châssis dudit véhicule et la roue étant associée à la bague tournante.
Lorsque l'on souhaite connaître les efforts qui s'appliquent à l'interface entre la roue et la chaussée sur laquelle ladite roue tourne, il est connu de mesurer lesdits efforts au niveau du pneu ou au niveau du châssis. Toutefois, la mesure au niveau du pneu pose des problèmes importants de transmission du signal entre le référentiel tournant du pneu et un référentiel fixe de calcul, ledit référentiel tournant devant, en outre, être positionné en permanence par rapport audit référentiel fixe de sorte à pouvoir réaliser les calculs. Concernant la mesure au niveau du châssis, elle est rendue difficile par la répartition des efforts entre les différents organes qui relient la roue audit châssis.
Par conséquent, comme proposé dans les documents FR-2 839 553 et FR-2 812 356, la bague fixe, qui est le premier organe de liaison entre la roue et le châssis, est notamment utilisée en tant que support pour la détermination des efforts qui s'exercent à l'interface entre la roue et la chaussée lors des déplacements du véhicule.
En particulier, la détermination des efforts peut être réalisée par mesure des déformations de la bague fixe qui sont induites par le passage des corps roulants. En effet, l'amplitude de ces déformations est représentative des efforts à déterminer.
L'un des problèmes qui se pose avec une telle stratégie de détermination des efforts est que le signal de déformation dépend de la vitesse de rotation. En particulier, la qualité de la mesure à faible vitesse est insuffisante et la détermination n'est disponible qu'après mesure des déformations induites par le passage d'au moins deux corps roulants successifs.
Par conséquent, ce problème est d'autant plus critique que la mesure d'efforts doit être réalisée en temps réel ou avec un minimum de retard, tel que cela est nécessaire pour les systèmes de contrôle de la dynamique du véhicule comme par exemple l'ABS ou l'ESP.
L'invention vise notamment à remédier à ce problème en proposant un roulement comprenant un système de détermination de l'amplitude des déformations de la bague fixe, ledit système étant agencé pour réaliser une interpolation spatiale du signal de déformation de sorte à avoir, à tout instant et indépendamment de la vitesse de rotation, une mesure des déformations et donG-permettre la détermination des efforts.
A cet effet, l'invention propose un roulement comprenant une bague fixe, une bague tournante et au moins une rangée de corps roulants disposés dans un chemin de roulement qui est formé entre lesdites bagues de sorte à permettre leur rotation relative, lesdits corps roulants étant équirépartis dans le chemin de roulement avec un écart angulaire λ, ledit roulement comprenant au moins un système de détermination de l'amplitude A des déformations pseudo sinusoïdales d'une zone de la bague fixe qui sont induites lors de la rotation, le système de détermination comprenant :
- quatre jauges de contraintes, délivrant chacune un signal fonction de la déformation subie par ladite jauge, lesdites jauges étant équiréparties sur ladite ;
- un dispositif de mesure de quatre signaux Vj qui sont fonction respectivement des variations temporelles du signal émis par chaque jauge lors de la rotation, ledit dispositif étant apte à former, par combinaison des quatre signaux Vj, deux signaux respectivement SIN et COS de même angle et de même amplitude, ladite amplitude étant fonction de A ; - un dispositif de calcul de l'amplitude A des déformations de la zone en fonction du temps, ledit dispositif étant agencé pour calculer l'expression SIN2 + COS2 de sorte à en déduire l'amplitude A.
D'autres objets et avantages de l'invention apparaîtront au cours de la description qui suit, faite en référence aux dessins annexés, dans lesquels :
- les figures 1 à 3 sont des vues en perspective de respectivement trois modes de réalisation c i roulement montrant les jauges de quatre systèmes de détermination de l'amplitude des déformations pseudo sinusoïdales, lesdites jauges étant respectivement disposées sur une zone de la bague fixe ; la figure 4 est une représentation fonetiθ rnelle e u premier mode de réalisation d'un système de détermination selon l'invention ;
- les figures 5 et 6 sont des représentations fonctionnelles d'un deuxième mode de réalisation d'un système de détermination selon l'invention ;
- la figure 7 est une représentation schématique, sur la bague fixe du roulement de la figure 1 , d'un positionnement particulier des jauges par rapport à l'écart angulaire entre les corps roulants ;
- la figure 8 est une représentation analogue à la figure 7 montrant les distances entre les jauges et le chemin de roulement.
L'invention concerne un roulement comprenant une bague fixe 1 , une bague tournante et au moins une rangée de corps roulants 2 disposés dans un chemin de roulement 3 qui est formé entre lesdites bagues de sorte à permettre la rotation relative desdites bagues.
La bague fixe 1 est destinée à être associée à une structure fixe et la bague tournante est destinée à être associée à un organe tournant. Dans une application particulière le roulement est un roulement de roue de véhicule automobile, la structure fixe étant le châssis dudit véhicule et l'organe tournant étant la roue.
En relation avec les figures 1 à 3, on décrit un tel roulement de roue comprenant deux rangées de billes 2 qui sont disposées coaxialement dans respectivement un chemin de roulement 3 prévu entre la bague extérieure fixe 1 et la bague intérieure tournante. Par ailleurs, la bague fixe 1 est pourvue de moyens-de-fixation-au Ghâssis-qui-sont-formés d'une bride 4 comprenant quatre saillies radiales 5 dans lesquelles un trou axial 6 est réalisé pour permettre la fixation par vissage.
Comme représenté sur les figures 7 et 8, les billes 2 sont équiréparties dans le chemin de roulement 3 avec un écart ang rlaire λ qui est également appelé période spatiale. Selon une réalisation connue, l'écart entre les billes 2 est maintenu en disposant celles-ci dans une cage.
L'invention vise à permettre la détermination de l'amplitude des déformations d'au moins une zone 7 de la bague fixe 1, de sorte à pouvoir en déduire les efforts qui s'appliquent à l'interface entre la roue et la chaussée sur laquelle ladite roue tourne.
En effet, le passage des billes 2 dans le chemin de roulement 3 induit une compression et une relaxation de la bague fixe 1. Ainsi, lors de la rotation, la bague fixe 1 est soumise à une déformation périodique qui peut être approximée par une sinusoïde. Dans la suite de la description, on parlera de déformations pseudo sinusoïdales pour désigner les déformations de la bague fixe 1 Ibrs de la rotation.
La déformation pseudo sinusoïdale est caractérisée par une amplitude qui dépend des charges subies par le roulement et donc des efforts qui s'appliquent à l'interface, et une fréquence qui est proportionnelle à la vitesse de rotation de la bague tournante ainsi qu'au nombre de billes 2. Bien que la description soit réalisée en relation avec un roulement de roue comprenant deux rangées de billes 2 pour lesquelles on détermine indépendamment l'amplitude des déformations, celle-ci est directement transposable par l'homme du métier à un autre type de roulement et/ou dans une autre application dans laquelle on souhaiterait déterminer l'amplitude des déformations pseudo sinusoïdales d'au moins une zone 7 de la bague fixe 1.
Selon l'inventionτ le roulement comprend au moins un système de détermination de l'amplitude A des déformations pseudo sinusoïdales d'une zone 7 de la bague fixe 1 qui sont induites lors de la rotation, ledit système comprenant quatre jauges de contraintes 8.
Les jauges 8 sont chacune apte à délivrer un signal fonction de la déformation qu'elle subit. Comme représenté sur les figures 1 à 3, les jauges 8 sont équiréparties sur la zone 7 selon une ligne qui s'étend dans la direction générale de la rotation.
Le système de détermination comprend en outre un dispositif de mesure 9 de quatre signaux Vj qui sont fonction respectivement des variations temporelles du signal émis par chaque jauge 8 lors de la rotation, ledit dispositif étant apte à former, par combinaison des quatre signaux Vj, deux signaux respectivement SIN et COS de même angle et de même amplitude, ladite amplitude étant fonction de A.
A partir de ces deux signaux SIN et COS, on est capable, par l'intermédiaire d'un dispositif de calcul 10 formé par exemple d'un processeur, de déduire l'amplitude A en calculant l'expression SIN2 + COS2.
Ainsi, le calcul de l'amplitude étant réalisé indépendamment de la vitesse de rotation, on s'affranchit notamment des problèmes de retard ou de qualité qui sont inhérents à une détermination temporelle des déformations. En relation avec les figures 4 à 6, on décrit respectivement un premier et un deuxième modes de réalisation d'un système de détermination selon l'invention, dans lequel les jauges 8 sont à base d'éléments résistifs, notamment piézorésistifs ou magnétostrictifs, de sorte à présenter chacune une résistance électrique Ri qui varie en fonction des déformations subies par ladite jauge 8. En particulier, les jauges 8 peuvent comprendre soit un bloc de plusieurs résistances qui sont combinées pour obtenir une valeur de résistance moyennée qui est représentative de la valeur de la résistance au niveau de la position du bloc soit une seule résistance.
Selon les deux modes de réalisation représentés, le dispositif de mesure 9 comprend un montage en boucle de courant entre les quatre jauges 8. Le montage comprend en outre quatre amplificateurs différentiels 11 à gains réglables Gf. Par ailleurs, le dispositif de mesure 9 peut comprendre en outre un étage de filtrage des signaux non représenté.
Le dispositif de mesure 9 délivre donc en sortie des amplificateurs 11 , les signaux :
V = G, x (R0l + AR sin(ωt))i V2 = G2 x (R02 + AR2 sin(ωt + φ))i V3 = G3 x (RQ3 + 3 sin(û>t + 2φ))i 4 = G4 x (tf04 + 4 sin(ûtf + 3φ))i
Roi étant les valeurs au repos des résistances Rj, ΔRi les variations de résistances des jauges 8, ω=2π/T (T étant la période temporelle), φ le déphasage spatial entre les jauges 8, i le courant dans la boucle.
Le caractère sinusoïdal (par rapport au temps) de la fonction échantillonnée est destiné à simplifier les calculs qui suivent, mais n'est pas limitatif. Cette hypothèse revient à supposer que le roulement tourne à vitesse constante (ω constante). Selon le mode de réalisation représenté sur la figure 4, le dispositif de mesure 9 comprend en outre un étage d'amplificateurs différentiels 11 agencés pour faire les différences : Vx-V2= [(Gj -oi - G2?o2) + G, , sin(ûjt) - G2AR2 sin(ωt + φ)]χ i (1 )
V3-VΛ = [(G3R03 - G4R04) + G3 3 sin(ωt + 2φ) - G4 4 sin(ωt + 3φ)]x i (2)
En ajustant les gains Gj de sorte que : G1 = G2 = G3 = G4 = G, en fixant les valeurs au repos des résistances de sorte que : R01 = R02 = R03 = 04 , et en supposant que ΔR1 = ΔR2 = ΔR3 = ΔR4 = ΔR, les différences (1) et (2) deviennent : Vx-V2= [GΔi.[sin(ωt) - sin(û?t + φ)]]χ i (3)
V3-V = [GAR[sin(ωt + 2φ) - sin(<yt + 3φ)]]x i (4)
En particulier, l'égalité des ΔRj peut être obtenue dans le cas où les jauges 8 sont équidistantes du chemin de roulement.
Dans le cas particulier où φ = π/2, c'est-à-dire lorsque les jauges 8 sont espacées d'une distance égale à λ/4, les différences (3) et (4) s'écrivent :
Vx - V2 = [A/2G cos(ωt + π 14)Jx i V3-Vi= [V2G sin(û?t +
Figure imgf000009_0001
i
Par conséquent, dans ce cas particulier, le dispositif de mesure 9 représenté sur la figure 4 permet d'obtenir directement des signaux COS = V1 - V2 et SIN=V3-V4.
Ainsi, en calculant l'expression SIN2 + COS2 on obtient J2GΔR xi2, ce qui permet, en sortie du dispositif de calcul 10, d'obtenir en fonction du temps l'amplitude A qui est fonction de ΔR. En relation avec les figures 5 et 6, on décrit un dispositif de mesure 9 qui permet d'obtenir des signaux SIN et COS quelle que soit la valeur du déphasage spatial φ entre les jauges 8.
Pour ce faire, le dispositif de mesure 9 comprend deux étages d'amplificateurs différentiels 11 , le premier étage étant analogue à celui du premier mode de réalisation de la figure 4, et est donc agencé pour délivrer les signaux Vi - V2 et V3 - V4 selon les relations (3) et (4) mentionnées ci-dessus, mais également de façon-analogue lessignaux-Vι — V3 e Vzr— VrCvoir- figure 6).
Le deuxième étage comprend deux amplificateurs différentiels 11 représentés respectivement sur les figures 5 et 6 par souci de clarté, de sorte à délivrer les signaux :
V = [(Vι - V3) - (V4 - V2)]
Soit à partir des relations (3) et (4) :
U - E-4GΔR sin(ζ3) x sin(— )x sm(ω - — )]r
V = [-4GΔR sin(ç?) x cos(— ) x cos(ωt + —)]i
Nous avons donc U = SIN et V = COS, de sorte que, comme exposé ci-dessus, nous pouvons obtenir l'amplitude A qui est fonction de ΔR en calculant l'expression SIN2 + COS2 dans le dispositif de calcul 10.
Notons que dans le cas où φ est différent de π/2, l'amplitude des signaux U et V est différente. Pour égaliser ces amplitudes, on peut prévoir qu'au moins un amplificateur différentiel 11 du deuxième étage présente un gain ajustable. En particulier, le gain de l'amplificateur 11 formant le signal U peut être ajusté à
cos( )/sin( ) . 2 2 En variante du mode de réalisation représenté sur les figures 5 et 6, le deuxième étage du dispositif de mesure 9 comprend un amplificateur 11 conformément à la figure 5 et un deuxième amplificateurs 11 agencé pour délivrer le signal 2(V2 - V3). Ainsi, les signaux délivrés par le dispositif de mesure 9 sont : U = [(Vι - V2) - (V3 - V4)] ; et
V = 2(V2 - V3)
Cette variante est particulièrement- adaptée-pour le cas où l'amplitude des signaux Vj ne peut pas être considérée comme identique, c'est-à-dire que les jauges 8 ne détectent pas une sinusoïde de même amplitude A. En supposant une distribution de charge linéaire entre les quatre jauges 8, les signaux Vj s'écrivent :
VΛ = (G,i?01 + (A + 3a)sm(ωt))i V2 = (G2R02 + (A + )sin(ωt + φ))i V3 = (G3RQ3 + (A- a)sm(ωt + 2φ))i VΛ = (GΛR + (A - 3a)sin(ωt + 3φ )i a étant la variation linéaire de l'amplitude A à mesurer.
En supposant que φ = π/2 pour simplifier les calculs, bien que la solution selon cette variante soit également applicable à une valeur de φ quelconque, on obtient : ι — 3τt TC
U = [2ΛI2 (-A sin(ωt + — ) + a sin(ωt + —))]i ι — 3τv 71
V = [-2V 2 (A cos(ωt + — ) + a cos(ωt + —))]i
Nous avons donc U = SIN et V = COS et la racine carrée de l'expression SIN2 +
COS2 est égale à 2<J2Â I + - x i . Ad Par conséquent, un développement limité au premier ordre (a«A) nous donne
2J2Aχ i et donc l'amplitude A qui est celle induite au centre de la zone de répartition des jauges 8.
Sur les figures 7 et 8 sont représentées des jauges 8 qui sont espacées d'une distance égale à λ/4, lesdites jauges étant par ailleurs disposées sur une zone 7 de déformation sensiblement plane. Comme représenté sur la figure 8, les jauges 8 sont centrées sur ladite zone de sorte à être espacées du chemin de roulement d'une distance respectivement di, d2, d3, d4l avec di = d et d2 = d3.
Selon cette implantation particulière des jauges 8, nous pouvons écrire la relation :
ΔR2 = k ΔRi avec k > 1 car Ri est plus loin du chemin de roulement que R2 et donc le signal issu de la déformation de Ri sera moins important que celui issu de R2.
Et, en raison de la symétrie dans l'implantation des jauges 8 sur la zone 7 de déformation, nous avons : ΔR3 = k ΔR4 = ΔR2 = k ΔR!
Par ailleurs, les gains sont ajustés de sorte que G1ΔR1 = G2ΔR2 = G3ΔR3 = G4ΔR .
Par conséquent, avec la relation précédente, nous avons : Gi = kG2 = G4 = kG3
Dans cette implantation particulière, les valeurs au repos des résistances doivent donc être telles que :
Figure imgf000012_0001
Par conséquent, dans l'implantation des jauges 8 selon les figures 7 et 8, les conditions de valeurs de gain et de valeurs au repos des résistances sont définies de sorte à pouvoir obtenir l'amplitude A.
Dans le cas général où les jauges 8 sont implantées sur la périphérie cylindrique de la bague extérieure 1 , les distances jauge 8 - chemin de roulement 3 sont toutes égales de sorte que nous avons k = 1. Par conséquent, dans ce cas, les gains sont égaux et les valeurs au repos des résistances doivent l'être aussi.
En relation avec les figures 1 et 2, on décrit l'agencement du roulement représenté dans lequel les jauges 8 sont disposées sur un substrat 12 qui est fixé sur la zone de déformation 7 de la bague fixe 1. Le substrat 12 est rigidement fixé à la bague fixe-l par exemple par collage ou soudage, de sorte qu'il a également pour fonction de transmettre les déformations entre la bague fixe 1 et les jauges 8.
Bien que les jauges 8 décrites ci-dessus soient à base d'éléments résistifs, d'autres jauges 8, par exemple des capteurs choisis parmi les capteurs à ondes acoustiques de surface et les capteurs de champ magnétique, peuvent être utilisées dans le cadre de l'invention à condition qu'elles délivrent un signal fonction d'une déformation. En particulier, les capteurs de champ magnétique peuvent être basés sur des éléments sensibles de type magnétorésistance, magnétorésistance géante, effet Hall, magnétorésistance à effet tunnel, couches magnétostrictives.
Dans le mode de réalisation représenté, les jauges 8 sont sérigraphiées en couche épaisse sur le substrat 12, par exemple en céramique. En particulier, une technologie de type circuit hybride permet d'intégrer le dispositif de mesure 9 et le dispositif de calcul 10 sur le substrat 12 (voir mode de réalisation de la figure 2). En outre, la sérigraphie permet un bon ajustage de la valeur des résistances ainsi qu'une bonne sensibilité aux déformations, tout en assurant un positionnement précis des résistances sur le substrat 12. La zone de déformation 7 est usinée de sorte à être sensiblement plane et à s'étendre au dessus des deux rangées de billes 2. Dans cette réalisation, les jauges 8 ne sont pas à équidistance du chemin de roulement 3, de sorte que l'amplitude de la déformation mesurée est fonction de la jauge 8 considérée (voir figures 7 et 8).
Selon le mode de réalisation représenté sur la figure 3, on peut prévoir que les jauges 8 soient fixées directement sur la surface Gourbe de la bague fixe 1, par exemple les jauges 8 peuvent être de type trames pelliculaires, ce qui permet d'égaliser de construction toutes les distances entre les jauges 8 et le chemin de roulement 3.
Dans la réalisation représentée sur les figuFes 1 et 2, les jauges 8 de deux systèmes de détermination sont intégrées sur le même substrat 12 de sorte, au voisinage de chaque chemin de roulement 3, qu'au moins un système de détermination soit prévu pour déterminer l'amplitude des déformations de la zone 7.
En particulier, les jauges 8 sont disposées sur la périphérie extérieure de la bague fixe 1, sensiblement en regard de chacun des chemins de roulement 3 de sorte à augmenter l'intensité des signaux à mesurer. Ainsi, le substrat 12 portant les jauges 8 permet de déterminer l'amplitude des déformations induites respectivement par essentiellement une rangée de billes 2, et ce dans un même plan axial.
Le roulement peut comprendre au moins trois (huit dans le mode de réalisation représenté sur la figure 1 : quatre visibles et quatre disposés symétriquement à l'arrière du roulement) systèmes de détermination de l'amplitude des déformations de respectivement une zone 7 de la bague fixe 1 , lesdits systèmes étant connectés ou destinés à être connectés à un calculateur apte à calculer, en fonction des amplitudes déterminées, les efforts appliqués lors de la rotation sur la bague fixe 1 et/ou sur un élément solidaire de la bague tournante. En particulier, un tel calculateur est décrit dans le document FR-2 839 553 issu de la demanderesse.

Claims

REVENDICATIONS
1. Roulement comprenant une bague fixe (1), une bague tournante et au moins une rangée de corps roulants (2) disposés dans un chemin de roulement (3) qui est formé entre lesdites bagues de sorte à permettre leur rotation relative, lesdits corps roulants (2) étant équirépartis dans le chemin de roulement (3) avec un écart angulaire λ, ledit roulement comprenant au moins un système de détermination de l'amplitude A des déformations pseudo sinusoïdales d'une zone (7) de la bague fixe (1) qui sont induites lors de la rotation, ledit roulement étant caractérisé en ce que le système de détermination comprend :
- quatre jauges de contraintes (8), délivrant chacune un signal fonction de la déformation subie par ladite jauge, lesdites jauges étant équiréparties sur ladite zone ;
- un dispositif de mesure (9) de quatre signaux Vj qui sont fonction respectivement des variations temporelles du signal émis par chaque jauge (8) lors de la rotation, ledit dispositif étant apte à former, par combinaison des quatre signaux V, deux signaux respectivement SIN et COS de même angle et de même amplitude, ladite amplitude étant fonction de A ;
- un dispositif de calcul (10) de l'amplitude A des déformations de la zone (7) en fonction du temps, ledit dispositif étant agencé pour calculer l'expression SIN2 + COS2 de sorte à en déduire l'amplitude A.
2. Roulement selon la revendication 1 , dans lequel les jauges (8) sont à base d'éléments résistifs de sorte à présenter chacune une résistance électrique Ri qui varie en fonction des déformations subies par ladite jauge.
3. Roulement selon la revendication 2, caractérisé en ce que le dispositif de mesure (9) comprend un montage en boucle de courant entre les quatre jauges (8), ledit montage comprenant quatre amplificateurs différentiels (11) à gain réglable G|.
4. Roulement selon la revendication 3, caractérisé en ce que les jauges (8) sont espacées d'une distance égale à λ/4.
5. Roulement selon la revendication 4, caractérisé en ce que le dispositif de mesure (9) comprend en outre un étage d'amplificateurs différentiels (11) agencés pour faire les différences Vi - V2 = COS et V3 - V = SIN.
6. Roulement selon la revendication 3 ou 4, caractérisé en ce que le dispositif de mesure (9) comprend en outre deux-étages- d^mplificateurs différentiels (11), le premier étant agencé pour faire les différences Vi - V2, V3 - V , Vi - V3, et V4 - V2, le deuxième étant agencé pour faire les différences [(Vι - V2) - (V3 - V4)] = SIN et [(Vi - V3) - (V4 - V2)] = COS.
7. Roulement selon la revendication 3 ou 4, caractérisé en ce que le dispositif de mesure (9) comprend en outre deux étages d'amplificateurs différentiels (11), le premier étant agencé pour faire les différences Vi - V2, V3 - V4, le deuxième étant agencé pour faire les différences [(Vi - V2) - (V3 - V4)] = SIN et 2(V2 - V3) = COS.
8. Roulement selon la revendication 6 ou 7, caractérisé en ce qu'au moins un amplificateur différentiel (11) du deuxième étage présente un gain ajustable.
9. Roulement selon l'une quelconque des revendications 2 à 8, caractérisé en ce que les jauges (8) présentent des résistances au repos R0i qui sont égales.
10. Roulement selon l'une quelconque des revendications 2 à 8, caractérisé en ce que la zone (7) de déformation est usinée de sorte à être sensiblement plane, lesdites jauges étant centrées sur ladite zone de sorte à être, deux à deux, à équidistance du chemin de roulement (3), les jauges (8) présentant des résistances au repos Roi telles que R02 = kRoi, R03 = kRo4 et R03 = Ro2-
11. Roulement selon la revendication 1 , caractérisé en ce que les jauges (8) sont ou comprennent des capteurs choisis parmi les capteurs à ondes acoustiques de surface et les capteurs magnétiques.
12. Roulement selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que les jauges (8) sont disposées sur un substrat (12) qui est fixé sur la zone (7) de déformation de la bague fixe (1).
13. Roulement selon la revendication 12, caractérisé en ce que les jauges (8) sont sérigraphiées en couche épaisse sur le substrat (12).
14. Roulement selon la revendication 12 ou 13, caractérisé en ce que le dispositif de mesure (9) et le dispositif de calcul (10) sont intégrés sur le substrat (1-2).
15. Roulement selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comprend au moins trois systèmes de détermination de l'amplitude des déformations de respectivement une zone (7) de la bague fixe (1).
16. Roulement selon la revendication 15, caractérisé en ce que les systèmes de détermination sont connectés ou destinés à être connectés à un calculateur apte à calculer, en fonction des amplitudes déterminées, les efforts appliqués lors de la rotation sur la bague fixe (1) et/ou sur un élément solidaire de la bague tournante.
17. Roulement selon l'une quelconque des revendications 1 à 16, caractérisé en ce que les jauges (8) sont disposées sur la zone (7) selon une ligne qui s'étend dans la direction générale de la rotation.
18. Roulement selon l'une quelconque des revendications 1 à 17, caractérisé en ce que les jauges (8) sont disposées au voisinage d'un chemin de roulement (3).
19. Roulement selon la revendication 18, caractérisé en ce que les jauges (8) sont disposées sur la périphérie extérieure de la bague fixe (1), sensiblement en regard du chemin de roulement (3).
20. Roulement selon la revendication 18 ou 19, caractérisé en ce qu'il comprend deux rangées de corps roulants (2) disposés dans respectivement un chemin de roulement (3), dans lequel, au voisinage de chaque chemin de roulement (3), au moins un système de détermination est prévu pour déterminer l'amplitude des déformations d'une zone (7)
PCT/FR2005/001108 2004-05-04 2005-05-03 Roulement capteur de deformations comprenant quatre jauges de contraintes WO2005121733A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0509832-7A BRPI0509832A (pt) 2004-05-04 2005-05-03 rolamento
JP2007512260A JP4847444B2 (ja) 2004-05-04 2005-05-03 4つの歪みゲージを有する変形検知ベアリング
EP05769733A EP1743151B1 (fr) 2004-05-04 2005-05-03 Roulement capteur de deformations comprenant quatre jauges de contraintes
US11/579,112 US7650802B2 (en) 2004-05-04 2005-05-03 Deformation-sensing bearing having four strain gauges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0404768A FR2869981B1 (fr) 2004-05-04 2004-05-04 Roulement capteur de deformations comprenant quatre jauges de contraintes
FR0404768 2004-05-04

Publications (1)

Publication Number Publication Date
WO2005121733A1 true WO2005121733A1 (fr) 2005-12-22

Family

ID=34944970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/001108 WO2005121733A1 (fr) 2004-05-04 2005-05-03 Roulement capteur de deformations comprenant quatre jauges de contraintes

Country Status (8)

Country Link
US (1) US7650802B2 (fr)
EP (1) EP1743151B1 (fr)
JP (1) JP4847444B2 (fr)
KR (1) KR20070007957A (fr)
CN (1) CN100565149C (fr)
BR (1) BRPI0509832A (fr)
FR (1) FR2869981B1 (fr)
WO (1) WO2005121733A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175644A (ja) * 2007-01-17 2008-07-31 Ntn Corp センサ付車輪用軸受
JP2008175275A (ja) * 2007-01-17 2008-07-31 Ntn Corp センサ付車輪用軸受
EP2107260A1 (fr) * 2008-04-03 2009-10-07 SNR Roulements Palier à roulement comprenant au moins une zone instrumentée délimitée axialement et délivrant un signal représentatif des déformations de cette zone
FR2929674A1 (fr) * 2008-04-03 2009-10-09 Snr Roulements Soc Par Actions Palier a roulememnt comprenant au moins une zone instrumentee en deformation qui est orientee.
FR2932542A1 (fr) * 2008-06-12 2009-12-18 Roulements Soc Nouvelle Procede d'estimation d'au moins un etat de fonctionnement d'un palier a roulement
FR3001508A1 (fr) * 2013-01-28 2014-08-01 Ntn Snr Roulements Palier a roulement et montage d’un tel palier dans le logement d’une structure
IT202100018638A1 (it) * 2021-07-15 2023-01-15 Skf Ab Unità mozzo ruota sensorizzata per veicoli

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927419B1 (fr) 2008-02-08 2010-06-11 Roulements Soc Nouvelle Procede d'estimation des composantes du torseur d'efforts s'appliquant sur un palier
FR2927678B1 (fr) * 2008-02-14 2010-06-11 Roulements Soc Nouvelle Palier a roulement a rigidite differentielle des zones instrumentees en deformation
FR2927996B1 (fr) * 2008-02-22 2011-09-02 Roulements Soc Nouvelle Systeme de mesure des deformations par mise en compression elastique d'une jauge
US8766720B2 (en) * 2012-06-29 2014-07-01 Siemens Energy, Inc. Hybrid load differential amplifier operable in a high temperature environment of a turbine engine
FR2938468B1 (fr) 2008-11-18 2011-09-23 Renault Sas Dispositif de detection d'une crevaison lente ou d'un sous-gonflage d'un pneumatique et procede correspondant
TWI403720B (zh) * 2009-05-11 2013-08-01 Ind Tech Res Inst 彈力及位移量量測裝置與方法
DE102010024808A1 (de) * 2010-06-23 2011-12-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Piezoresistiver Kraftsensor
DE102011103848A1 (de) * 2011-05-27 2012-11-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sensoreinrichtung
US9464703B2 (en) * 2013-07-17 2016-10-11 National Chung Cheng University Ball screw capable of sensing preload
WO2015090479A1 (fr) * 2013-12-20 2015-06-25 Aktiebolaget Skf Système de détermination de charge d'un palier d'élément roulant
GB2531258A (en) * 2014-10-13 2016-04-20 Skf Ab Method and data processing device for detecting a load distribution in a roller bearing
CN104455017A (zh) * 2014-12-23 2015-03-25 中国矿业大学(北京) 一种圆周径向力加载轴承座
GB2542422A (en) * 2015-09-21 2017-03-22 Skf Ab Bearing including at least two strain sensor probes
EP3501961A1 (fr) * 2017-12-20 2019-06-26 Specialized Bicycle Components, Inc. Systèmes, procédés et dispositifs de détection de couple de pédalage de bicyclette
DE102019200780A1 (de) * 2019-01-23 2020-07-23 Robert Bosch Gmbh Führungswagen für eine Streckenführung, Streckenführung mit dem Führungswagen, und Verfahren zur Ermittlung einer Last des Führungswagens
IT202000020608A1 (it) 2020-08-28 2022-02-28 Skf Ab Unità mozzo ruota sensorizzata per veicoli, sistema e metodo associati per rilevamento dei carichi finali su ruota
US11820168B2 (en) 2020-09-28 2023-11-21 Aktiebolaget Skf Wheel hub assembly with internal load sensors
IT202000024982A1 (it) * 2020-10-22 2022-04-22 Skf Ab Gruppo mozzo di ruota con sensori esterni posizionati per evitare interferenza

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203319A (en) * 1977-10-17 1980-05-20 Lechler Gerhard B Apparatus for measuring bearing forces
US4705969A (en) * 1986-09-19 1987-11-10 National Semiconductor Corporation High accuracy tachometer circuit
DE10041093A1 (de) * 2000-08-22 2002-03-14 Bosch Gmbh Robert Sensoranordnung in einem Wälzlager und Verfahren zur Auswertung des Ausgangssignals der Sensoranordnung
US20020062694A1 (en) * 2000-04-10 2002-05-30 Fag Oem Und Handel Ag Rolling bearing with sensing unit which can be remotely interrogated
EP1221589A2 (fr) * 2001-01-04 2002-07-10 Robert Bosch Gmbh Roulement à capteur d'informations pour détecter des grandeurs physiques
US20020194927A1 (en) * 2001-06-13 2002-12-26 National Aerospace Laboratory Of Japan Bearing load measuring system using double-cylinder type cartridge
US20030145651A1 (en) * 2001-02-02 2003-08-07 Fag Automobiltechnik Ag Wheel bearing for measuring the contact forces between tire and road

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140849A (en) * 1990-07-30 1992-08-25 Agency Of Industrial Science And Technology Rolling bearing with a sensor unit
JP3588499B2 (ja) * 1995-04-13 2004-11-10 多摩川精機株式会社 巻線型回転検出器の故障検出方法及び装置
US6490935B1 (en) * 1999-09-28 2002-12-10 The Timken Company System for monitoring the operating conditions of a bearing
KR100445049B1 (ko) * 2000-04-10 2004-08-21 팀켄 컴퍼니 하중 탐지용 센서를 구비한 베어링 조립체
DE10136438A1 (de) * 2000-08-22 2002-03-07 Bosch Gmbh Robert Sensoranordnung in einem Wälzlager und Verfahren zur Auswertung des Sensorsignals
FR2893106B1 (fr) * 2005-11-09 2008-01-04 Snr Roulements Sa Roulement capteur de deformations comprenant au moins trois jauges de contrainte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203319A (en) * 1977-10-17 1980-05-20 Lechler Gerhard B Apparatus for measuring bearing forces
US4705969A (en) * 1986-09-19 1987-11-10 National Semiconductor Corporation High accuracy tachometer circuit
US20020062694A1 (en) * 2000-04-10 2002-05-30 Fag Oem Und Handel Ag Rolling bearing with sensing unit which can be remotely interrogated
DE10041093A1 (de) * 2000-08-22 2002-03-14 Bosch Gmbh Robert Sensoranordnung in einem Wälzlager und Verfahren zur Auswertung des Ausgangssignals der Sensoranordnung
EP1221589A2 (fr) * 2001-01-04 2002-07-10 Robert Bosch Gmbh Roulement à capteur d'informations pour détecter des grandeurs physiques
US20030145651A1 (en) * 2001-02-02 2003-08-07 Fag Automobiltechnik Ag Wheel bearing for measuring the contact forces between tire and road
US20020194927A1 (en) * 2001-06-13 2002-12-26 National Aerospace Laboratory Of Japan Bearing load measuring system using double-cylinder type cartridge

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175644A (ja) * 2007-01-17 2008-07-31 Ntn Corp センサ付車輪用軸受
JP2008175275A (ja) * 2007-01-17 2008-07-31 Ntn Corp センサ付車輪用軸受
EP2107260A1 (fr) * 2008-04-03 2009-10-07 SNR Roulements Palier à roulement comprenant au moins une zone instrumentée délimitée axialement et délivrant un signal représentatif des déformations de cette zone
FR2929670A1 (fr) * 2008-04-03 2009-10-09 Snr Roulements Soc Par Actions Palier a roulement comprenant au moins une zone instrumentee en deformation qui est delimitee axialement.
FR2929674A1 (fr) * 2008-04-03 2009-10-09 Snr Roulements Soc Par Actions Palier a roulememnt comprenant au moins une zone instrumentee en deformation qui est orientee.
FR2932542A1 (fr) * 2008-06-12 2009-12-18 Roulements Soc Nouvelle Procede d'estimation d'au moins un etat de fonctionnement d'un palier a roulement
FR3001508A1 (fr) * 2013-01-28 2014-08-01 Ntn Snr Roulements Palier a roulement et montage d’un tel palier dans le logement d’une structure
IT202100018638A1 (it) * 2021-07-15 2023-01-15 Skf Ab Unità mozzo ruota sensorizzata per veicoli
US11865863B2 (en) 2021-07-15 2024-01-09 Aktiebolaget Skf Sensorized hub bearing unit for vehicles

Also Published As

Publication number Publication date
BRPI0509832A (pt) 2007-10-16
CN1969172A (zh) 2007-05-23
FR2869981A1 (fr) 2005-11-11
FR2869981B1 (fr) 2006-07-21
EP1743151A1 (fr) 2007-01-17
US20080095483A1 (en) 2008-04-24
CN100565149C (zh) 2009-12-02
JP4847444B2 (ja) 2011-12-28
EP1743151B1 (fr) 2012-12-12
US7650802B2 (en) 2010-01-26
KR20070007957A (ko) 2007-01-16
JP2007536546A (ja) 2007-12-13

Similar Documents

Publication Publication Date Title
EP1743151B1 (fr) Roulement capteur de deformations comprenant quatre jauges de contraintes
EP1946059B1 (fr) Roulement capteur de deformations comprenant au moins trois jauges de contrainte
EP1825223B1 (fr) Capteur de position a boucle de courant et roulement equipe d&#39;un tel capteur
EP1424226A2 (fr) Butée de suspension de véhicule composée d&#39;un roulement avec un capteur de rotation pour mesurer les efforts verticaux
EP1239274B1 (fr) Dispositif de mesure analogique d&#39;un couple de torsion, colonne de direction et module le comprenant
EP1202035A1 (fr) Dispositif de mesure d&#39;un couple de torsion et module le comprenant
WO2005121730A1 (fr) Roulement capteur de deformations comprenant au moins trois jauges d&#39;echantillonnage d&#39;une transformee de fourier discrete
WO2005121731A1 (fr) Roulement capteur de deformations comprenant deux jauges de contraintes
EP1176409A1 (fr) Roulement comprenant au moins une zone de déformation elastique et ensemble de freinage le comprenant
WO2009077074A1 (fr) Dispositif de mesure de position angulaire
FR2862382A1 (fr) Systeme capteur de couple absolu de torsion et module le comprenant
EP1882907B1 (fr) Procédé de détermination de deux signaux en quadrature
EP1424227B1 (fr) Butée de suspension instrumentée en déformation pour mésurer les efforts
EP1849631A1 (fr) Procédé de détermination d&#39;une condition de roulage par analye fréquentielle de la rotation de la butée de suspension
EP1743153B1 (fr) Procede et systeme de determination de deformations au moyen d&#34;au moins deux jauges
EP1875184A2 (fr) Dispositif et procede de mesure de couple de torsion
EP2107260B1 (fr) Palier à roulement comprenant au moins une zone instrumentée délimitée axialement et délivrant un signal représentatif des déformations de cette zone
EP1403621B1 (fr) Capteur d&#39;angle absolu
FR2932542A1 (fr) Procede d&#39;estimation d&#39;au moins un etat de fonctionnement d&#39;un palier a roulement
EP1882905A1 (fr) Capteur comprenant des zones sensibles délivrant des signaux d&#39;amplitude différenciée
FR3142248A1 (fr) Procédé de détermination de la position angulaire d’un arbre de véhicule automobile
FR3003957A1 (fr) Capteur de detection d’un champ magnetique periodique
FR2929674A1 (fr) Palier a roulememnt comprenant au moins une zone instrumentee en deformation qui est orientee.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005769733

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007512260

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067025558

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580019366.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067025558

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005769733

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11579112

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0509832

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 11579112

Country of ref document: US