WO2005121030A1 - Integrated device for the decontamination of water and production of electrical power - Google Patents

Integrated device for the decontamination of water and production of electrical power Download PDF

Info

Publication number
WO2005121030A1
WO2005121030A1 PCT/ES2005/000318 ES2005000318W WO2005121030A1 WO 2005121030 A1 WO2005121030 A1 WO 2005121030A1 ES 2005000318 W ES2005000318 W ES 2005000318W WO 2005121030 A1 WO2005121030 A1 WO 2005121030A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
photocatalytic
photovoltaic panel
photocatalytic reactor
radiation
Prior art date
Application number
PCT/ES2005/000318
Other languages
Spanish (es)
French (fr)
Inventor
Julian Blanco Galvez
Rodriguez Sixto Malato
Cesar Octavio Pulgarin
Victor Manuel Sarria
Simeon Kenfack
Original Assignee
Centro De Investigaciones Energeticas Medioambientales Y Tecnologicas (C.I.E.M.A.T.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigaciones Energeticas Medioambientales Y Tecnologicas (C.I.E.M.A.T.) filed Critical Centro De Investigaciones Energeticas Medioambientales Y Tecnologicas (C.I.E.M.A.T.)
Priority to MXPA06014285A priority Critical patent/MXPA06014285A/en
Publication of WO2005121030A1 publication Critical patent/WO2005121030A1/en
Priority to EGNA2006001169 priority patent/EG24192A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to the realization of a new device that combines the decontamination and disinfection of water by photocatalysis, together with the capture of solar radiation for conversion into electricity by means of a photovoltaic panel.
  • the objective is to increase the useful life of the system of conversion of solar energy into electricity, reduce the space needed by both systems and achieve the energy autonomy of the photocatalytic system.
  • a change in the design of both the photocatalytic and photovoltaic systems is proposed. This change fundamentally affects the superimposed installation of both systems.
  • the field of application of the invention would be water treatment plants by solar photocatalysis that are located in places where there is no easy access to conventional electricity. This is common in developing countries and, in general, anywhere isolated and away from a power line.
  • Titanium dioxide is a solid and water insoluble substance that is characterized by having semiconductor characteristics.
  • suitable wavelength less than 400 nm
  • a change in its surface structure occurs.
  • Each photon generates an electron / hole pair on the surface of the oxide, so that the electron (of negative charge) migrates from the valence band of the oxide to the conduction band, leaving a positive charge gap on the surface.
  • Iron (ll) can regenerate iron (lll) by the effect of radiation, although the generation of iron (lll) is much slower than if this is done by the addition of hydrogen peroxide. This process is completely catalytic, although the amount of hydroxyl radicals generated is smaller. -radical hydroxyl.
  • Hydroxyl radicals are chemical species that can be generated from water in many different ways, but whose main characteristic is their high oxidizing power. This oxidizing power allows decomposing (up to carbon dioxide and inorganic salts) polluting organic molecules that are present in the water.
  • Solar photocatalytic technology can be defined as one that efficiently captures solar photons and introduces them into a suitable reactor to promote specific photocatalytic reactions.
  • the equipment that performs this function is called the solar collector.
  • the concentration factor (FC) of a solar collector is defined as the ratio between the opening area of the collector and the area of the absorber.
  • the opening area is the area that intercepts the radiation, and the area of the absorber, the area of the component that receives the solar radiation.
  • Non-concentrating systems which are static and have no solar tracking. They are generally flat-shaped plates oriented towards the equator with a specific inclination, depending on the geographical situation, to maximize solar collection. Its main advantage is its simplicity and low cost.
  • An example is the traditional domestic water heater.
  • the fluid must be directly exposed to solar radiation and, therefore, the reactor must be transparent to photons, mainly from the UV range. • The fluid must capture the maximum possible photons useful for the photocatalytic process, avoiding that none of them pass through it without being absorbed.
  • Reflective elements and / or concentrators must be optimized to reflect the appropriate wavelength radiation for the process.
  • document DE 28 47 433 describes a device for heating water that additionally uses the photoelectric effect.
  • Document JP11009965-A describes the arrangement of a photocatalyst on the outer surface of a hollow plastic sphere, forming a transparent photocatalytic layer.
  • the photocatalytic layer is superimposed on a photoelectric layer that can act as a photovoltaic cell.
  • These spheres can be suspended in water or air to achieve two simultaneous effects: fluid purification (water or air) and electricity production.
  • the coupling of both systems allows the use of photocatalytic reactors in isolated locations. Consequently, since a PV panel mainly converts visible solar light into electricity, that a PV panel is damaged by the high temperature reached on its surface and by the UV radiation that reaches it, than the water contained in a reactor Photocatalytic is transparent to visible radiation and that photocatalytic degradation makes use mainly of UV radiation (and therefore absorbs it), it is an objective of the present invention to have a photocatalytic-photovoltaic hybrid device so constructed and operated that the photocatalytic component is capable of filtering the UV radiation that damages the PV panel, that the photocatalytic component is capable of cooling the PV panel by means of the water contained therein and of decontaminating or disinfecting water by means of a photocatalytic process.
  • Description of the invention To achieve the proposed objective the photocatalytic reactor must be superimposed on the photovoltaic panel, both on the same support. This can be achieved by combining the following elements:
  • a photocatalytic reactor through which water can circulate, based on the superposition of two transparent panels, closed so that water circulates between them.
  • the space contained between the two panels will be divided into sections by means of open partitions at one end and arranged so that the water zigzags in its path.
  • the material from which the photocatalytic reactor panels must be made must be transparent to ultraviolet and visible solar radiation (300-800 nm). This can be achieved by borosilicate glass of low iron content or by a plastic material of similar characteristics Plexiglas type.
  • the arrangement of the photocatalytic reactor must be superimposed and in solidarity with the photovoltaic panel in order to cool the surface of the latter by means of the water flowing through it.
  • FIG. 2 shows, schematically, the behavior of the 3 components of solar radiation when affecting the integrated device.
  • Figure 3 shows, schematically, a plan view and the water path within the photocatalytic reactor.
  • Figure 4 shows a side view of the hybrid system object of the invention.
  • the numerical references correspond to the following parts and elements I. Solar radiation incident. 2. Photocatalytic reactor. 3. Photovoltaic panel. 4. Support structure. 5. Recirculation pump. 6. Water output from photocatalytic reactor. 7. Open partitions for water circulation in photocatalytic reactor. 8. Photocatalytic reactor water inlet. 9. Power supply to the pump from the photovoltaic panel. 10. Tilt angle of the entire system. II. Ultraviolet solar radiation 12. Visible solar radiation 13.
  • the integrated device object of the invention comprises a photocatalytic reactor (2), which has a flat shape and which is arranged on top of a photovoltaic panel (3), all placed on a support structure (4).
  • solar radiation (1) illuminates the photocatalytic reactor (2) and after passing through it, it affects the photovoltaic panel (3).
  • the solar radiation that reaches this photovoltaic panel is able to make it generate enough electricity to move a pump (5) that drives the water that passes through the photocatalytic reactor (2).
  • This pump is placed under the entire system to take advantage of the shadow it generates and increase its durability.
  • FIG 2 one of the main advantages related to this invention is schematically represented.
  • the solar radiation has three components, based on its wavelength, such as the ultraviolet component (11), the visible component (12) and the infrared component (13).
  • the superimposed arrangement ensures that only the visible component (12) falls on the photovoltaic panel (2), since the ultraviolet component (11) is absorbed by the catalyst disposed inside the photocatalytic reactor (2) and is responsible of water decontamination.
  • the infrared component (13) is absorbed by the water itself.
  • the titanium dioxide catalyst is suspended in the water before recirculating it in the photocatalytic reactor. Once the treatment, removed by sedimentation. If instead iron (II) or iron (III) is used, these would dissolve in the water after fixing a pH of 3 by adding acid.
  • the photocatalytic reactor (2) is superimposed on the photovoltaic panel (3), but all placed on a support structure (4) that allows the entire device to have an inclination angle ( 10) equal to the latitude of the place, so that the maximum annual average efficiency is achieved (if that inclination does not change) or the maximum efficiency at each moment (if that inclination is varied depending on the solar height).
  • the photocatalytic reactor (2) has partitions (7) made of the same transparent material as the upper and lower panels thereof.
  • Titanium dioxide or iron hydroxide could be removed by filtration. This would involve the installation of an additional pump, which also It could be powered by electricity generated in the photovoltaic panel, in order to drive the water to the pressure necessary to pass through the filter necessary for filtration.
  • another possibility would be to arrange the catalyst (be it titanium dioxide or iron) in an inert support such that it is not necessary to remove it from the water. This is a solution that could be made only if that support were transparent to visible radiation, so that the lighting of the photovoltaic panel was not prevented. This type of support has not been developed so far.
  • different elements that are necessary for the correct operation of the device of the invention have been described conventionally and well known.

Abstract

The invention relates to an integrated device for the decontamination of water and the production of electrical power. The inventive device consists of a photocatalytic/photovoltaic hybrid system comprising a photocatalytic reactor (2) which is made from a material that is transparent at least to visible radiation from the sun, which contains a photocatalyst of titanium dioxide, iron (II) or iron (III) and which is stacked on a photovoltaic panel (3), both the photocatalytic reactor and the photovoltaic panel being disposed on the same support (4) which can be inclined at a suitable angle (10) such as to make optical use of the incident radiation. The photocatalytic reactor (2) protects the photovoltaic panel (3) from solar infrared and ultraviolet radiation which are absorbed by the photocatalyst and the water respectively. Moreover, a recirculation pump (5), which is powered by the photovoltaic panel (3), ensures the flow of water through the photocatalytic reactor (2), which also cools the photovoltaic panel (3). The invention is particularly suitable for the treatment of water in remote locations.

Description

DISPOSITIVO INTEGRADO PARA DESCONTAMINACIÓN DE AGUA Y PRODUCCIÓN DE ENERGÍA ELÉCTRICA INTEGRATED DEVICE FOR WATER DECONTAMINATION AND ELECTRICAL ENERGY PRODUCTION
Objeto y campo de aplicación La presente invención se refiere a la realización de un nuevo dispositivo que simultanea la descontaminación y desinfección de aguas mediante fotocatálisis, junto a la captación de radiación solar para su conversión en electricidad mediante un panel fotovoltaico. El objetivo es aumentar la vida útil del sistema de conversión de energía solar en eléctrica, reducir el espacio que necesitan ambos sistemas y conseguir la autonomía energética del sistema fotocatalítico. Para ello se propone un cambio en el diseño, tanto del sistema fotocatalítico como del fotovoltaico. Este cambio afecta fundamentalmente a la instalación superpuesta de ambos sistemas. El campo de aplicación de la invención sería las plantas de tratamiento de aguas mediante fotocatálisis solar que se emplacen en lugares dónde no exista un fácil acceso a la electricidad convencional. Esto es habitual en países en vías de desarrollo y, de forma general, en cualquier lugar aislado y alejado de una línea eléctrica. Dado que cada vez es más prioritario el consumo de agua en perfectas condiciones sanitarias, mediante estos sistemas se pueden evitar los problemas relacionados con la falta de energía eléctrica necesaria para conseguirlo, además de aumentar apreciablemente la vida útil de los paneles fotovoltaicos encargados de generarla. A lo largo del documento se utilizarán los siguientes términos, con el significado que se describe: -fotocatalizador de dióxido de titanio. El dióxido de titanio es una sustancia sólida e insoluble en agua que se caracteriza por tener características semiconductoras. Al ser iluminado por fotones de radiación de longitud de onda adecuada (inferior a 400 nm) se produce un cambio en su estructura superficial. Cada fotón genera en la superficie del óxido un par electrón/hueco, de forma que el electrón (de carga negativa) migra de la banda de valencia del óxido a la banda de conducción, dejando un hueco de carga positiva en la superficie. En estas condiciones, si el dióxido de titanio iluminado está en contacto con agua, se generan radicales hidroxilo a partir de la interacción entre ésta y los huecos. -fotocatalizador de hierro (II). El hierro (II) disuelto en agua a pH = 3 y en contacto con peróxido de hidrógeno (agua oxigenada) genera hierro (III) y radicales hidroxilo. Si este sistema es iluminado mediante fotones de radiación de longitud de onda adecuada (inferior a 550 nm), el hierro(lll) vuelve a generar hierro (II) y más radicales hidroxilo. De forma que el sistema es catalítico (no hay consumo de hierro) con la única necesidad de adicionar peróxido de hidrógeno. -fotocatalizador de hierro (III). Si el hierro (III) disuelto en agua a pH =3 es iluminado mediante fotones de radiación de longitud de onda adecuada (inferior a 550 nm), el hierro(lll) genera hierro (II) y radicales hidroxilo. El hierro(ll) puede volver a generar hierro(lll) mediante el efecto de la radiación, aunque la generación de hierro(lll) es mucho más lenta que si esto mismo se hace mediante la adición de peróxido de hidrógeno. Este proceso es completamente catalítico, aunque la cantidad de radicales hidroxilo generada es menor. -radical hidroxilo. Los radicales hidroxilo son especies químicas que se pueden generar a partir de agua de muy diferentes formas, pero cuya principal característica es su elevado poder oxidante. Este poder oxidante permite descomponer (hasta dióxido de carbono y sales inorgánicas) moléculas orgánicas contaminantes que estén presentes en el agua. Este poder oxidante también permite inhibir crecimiento bacteriano en esa agua e incluso destruir esos microorganismos. Antecedentes de la invención En los últimos años, el uso de sistemas fotocatalíticos basados en el uso de dióxido de titanio o hierro (II) o hierro (III) que utilizan radiación solar para la degradación de compuestos no biodegradables en agua ha ido en aumento y se presenta como una tecnología muy prometedora. Además, la misma tecnología viene también usándose para desinfección de agua, como alternativa al ozono o al cloro. Estos sistemas utilizan la radiación solar (en particular la radiación ultravioleta) para provocar, en presencia de un catalizador, la descomposición de moléculas orgánicas como plaguicidas, colorantes, disolventes y otros contaminantes de muy diferente índole. De la misma forma, la reacción química provocada es capaz de inhibir el crecimiento bacteriano (o de otros microorganismos) e incluso provocar su destrucción. La tecnología fotocatalítica solar puede definirse como aquella que capta eficientemente los fotones solares y los introduce en un reactor adecuado para promover reacciones fotocatalíticas específicas. El equipo que realiza esta función se denomina colector solar. Tradicionalmente, los sistemas de colectores solares han sido clasificados en tres grandes grupos dependiendo del nivel de concentración que se puede alcanzar. El factor de concentración (FC) de un colector solar se define como la relación entre el área de apertura del colector y el área del absorbedor. El área de apertura es el área que intercepta la radiación, y el área del absorbedor, el área del componente que recibe la radiación solar. Estos tres grupos son los siguientes: • Sistemas no concentradores, que son estáticos y no tienen seguimiento solar. Generalmente son placas de forma plana orientadas hacia el ecuador con una inclinación específica, dependiendo de la situación geográfica, para maximizar la captación solar. Su principal ventaja es su simplicidad y bajo coste. Un ejemplo es el tradicional calentador de agua doméstico.Object and field of application The present invention relates to the realization of a new device that combines the decontamination and disinfection of water by photocatalysis, together with the capture of solar radiation for conversion into electricity by means of a photovoltaic panel. The objective is to increase the useful life of the system of conversion of solar energy into electricity, reduce the space needed by both systems and achieve the energy autonomy of the photocatalytic system. For this, a change in the design of both the photocatalytic and photovoltaic systems is proposed. This change fundamentally affects the superimposed installation of both systems. The field of application of the invention would be water treatment plants by solar photocatalysis that are located in places where there is no easy access to conventional electricity. This is common in developing countries and, in general, anywhere isolated and away from a power line. Since water consumption in perfect sanitary conditions is increasingly a priority, these systems can avoid problems related to the lack of electricity needed to achieve it, in addition to significantly increasing the life of the photovoltaic panels responsible for generating it. Throughout the document the following terms will be used, with the meaning described: - titanium dioxide photocatalyst. Titanium dioxide is a solid and water insoluble substance that is characterized by having semiconductor characteristics. When illuminated by radiation photons of suitable wavelength (less than 400 nm), a change in its surface structure occurs. Each photon generates an electron / hole pair on the surface of the oxide, so that the electron (of negative charge) migrates from the valence band of the oxide to the conduction band, leaving a positive charge gap on the surface. Under these conditions, if the illuminated titanium dioxide is in contact with water, hydroxyl radicals are generated from the interaction between it and the gaps. -photo iron catalyst (II). Iron (II) dissolved in water at pH = 3 and in contact with hydrogen peroxide (hydrogen peroxide) generates iron (III) and hydroxyl radicals. If this system is illuminated by radiation photons of adequate wavelength (less than 550 nm), iron (lll) regenerates iron (II) and more hydroxyl radicals. From so that the system is catalytic (there is no iron consumption) with the only need to add hydrogen peroxide. -photo iron catalyst (III). If the iron (III) dissolved in water at pH = 3 is illuminated by radiation photons of suitable wavelength (less than 550 nm), the iron (lll) generates iron (II) and hydroxyl radicals. Iron (ll) can regenerate iron (lll) by the effect of radiation, although the generation of iron (lll) is much slower than if this is done by the addition of hydrogen peroxide. This process is completely catalytic, although the amount of hydroxyl radicals generated is smaller. -radical hydroxyl. Hydroxyl radicals are chemical species that can be generated from water in many different ways, but whose main characteristic is their high oxidizing power. This oxidizing power allows decomposing (up to carbon dioxide and inorganic salts) polluting organic molecules that are present in the water. This oxidizing power also allows to inhibit bacterial growth in that water and even destroy those microorganisms. Background of the invention In recent years, the use of photocatalytic systems based on the use of titanium dioxide or iron (II) or iron (III) that use solar radiation for the degradation of non-biodegradable compounds in water has been increasing and It is presented as a very promising technology. In addition, the same technology has also been used for water disinfection, as an alternative to ozone or chlorine. These systems use solar radiation (in particular ultraviolet radiation) to cause, in the presence of a catalyst, the breakdown of organic molecules such as pesticides, dyes, solvents and other pollutants of a very different nature. In the same way, the chemical reaction caused is capable of inhibiting bacterial (or other microorganisms) growth and even causing its destruction. Solar photocatalytic technology can be defined as one that efficiently captures solar photons and introduces them into a suitable reactor to promote specific photocatalytic reactions. The equipment that performs this function is called the solar collector. Traditionally, solar collector systems have been classified into three large groups depending on the level of concentration that can be achieved. The concentration factor (FC) of a solar collector is defined as the ratio between the opening area of the collector and the area of the absorber. The opening area is the area that intercepts the radiation, and the area of the absorber, the area of the component that receives the solar radiation. These three groups are as follows: • Non-concentrating systems, which are static and have no solar tracking. They are generally flat-shaped plates oriented towards the equator with a specific inclination, depending on the geographical situation, to maximize solar collection. Its main advantage is its simplicity and low cost. An example is the traditional domestic water heater.
• Sistemas de media concentración, que concentran la luz solar entre 5 y 50 veces, por lo que requieren un sistema de seguimiento solar. Tienen una superficie reflectante que concentra la radiación en un receptor tubular situado en el foco de la parábola.• Medium concentration systems, which concentrate sunlight between 5 and 50 times, so they require a solar tracking system. They have a reflective surface that concentrates the radiation in a tubular receptor located in the focus of the parabola.
• Sistemas de alta concentración, que tienen un punto focal en lugar de un foco lineal y están basados en un paraboloide con seguimiento solar. Los valores típicos de concentración están en el rango de 100 a 1000 y se necesitan para ello elementos de alta precisión óptica. En este grupo se incluyen discos parabólicos, los sistemas de torre central y los hornos solares, que se usan fundamentalmente para la producción de energía a partir de la radiación solar concentrada. Los procesos fotocatalíticos utilizan el espectro ultravioleta UV (300 a 400 nm) de la luz solar. La tecnología necesaria para llevar a cabo aplicaciones de fotoquímica solar, en fase líquida, tiene mucho en común con la tecnología utilizada en aplicaciones térmicas.• High concentration systems, which have a focal point instead of a linear focus and are based on a paraboloid with solar tracking. Typical concentration values are in the range of 100 to 1000 and high precision optical elements are needed. This group includes parabolic discs, central tower systems and solar furnaces, which are used primarily for the production of energy from concentrated solar radiation. Photocatalytic processes use the UV ultraviolet spectrum (300 to 400 nm) of sunlight. The technology necessary to carry out applications of solar photochemistry, in liquid phase, has much in common with the technology used in thermal applications.
Esta es la razón por la que el diseño de sistemas y reactores fotoquímicos, en su fase inicial, se basó en diseños convencionales de colectores solares térmicos, como es el caso de los colectores cilindro-parabólicos. Sin embargo, existen también diferencias importantes entre los procesos térmicos y fotoquímicos, siendo las principales las siguientes:This is the reason why the design of photochemical systems and reactors, in its initial phase, was based on conventional designs of solar thermal collectors, as is the case of parabolic trough collectors. However, there are also important differences between thermal and photochemical processes, the main ones being the following:
• El fluido debe estar directamente expuesto a la radiación solar y, por lo tanto, el reactor debe ser transparente a los fotones, fundamentalmente del intervalo UV. • El fluido debe captar el máximo posible de los fotones útiles para el proceso fotocatalítico, evitando que ninguno de ellos lo atraviese sin ser absorbido.• The fluid must be directly exposed to solar radiation and, therefore, the reactor must be transparent to photons, mainly from the UV range. • The fluid must capture the maximum possible photons useful for the photocatalytic process, avoiding that none of them pass through it without being absorbed.
• Los elementos reflectantes y/o concentradores deben de estar optimizados para reflejar la radiación de longitud de onda adecuada para el proceso.• Reflective elements and / or concentrators must be optimized to reflect the appropriate wavelength radiation for the process.
• No se requiere aislamiento térmico dado que la temperatura no juega un papel significante en los procesos fotocatalíticos. Debido precisamente a este último punto, la tecnología asociada se ha basado desde un primer momento en dispositivos solares de media, baja o ninguna concentración solar. Los colectores estáticos sin concentración solar son, en principio, los más económicos ya que no tienen partes móviles o mecanismos de seguimiento. Sin embargo, son dispositivos menos eficientes a la hora de captar la luz solar, aunque su rendimiento no se ve reducido por factores asociados con la concentración y el seguimiento solar. Se han desarrollado y ensayado un gran número de reactores solares no concentradores para aplicaciones fotocatalíticas: reactores basados en una placa inclinada sobre la que cae lentamente el agua de proceso; otros consistentes en dos placas entre las cuales circula el flujo utilizando una pared de separación; tubulares, que constan de una serie de tubos de tamaño variable conectados en paralelo para hacer circular al flujo más rápido que en una superficie plana; sistemas consistentes en una especie de piscina con muy poca profundidad donde el agua que se quiere tratar es expuesta a la radiación solar, que pueden tener algún tipo de agitación o no. En el caso de colectores estáticos sin seguimiento, la captación anual de energía solar se maximiza cuando el ángulo de inclinación con respecto al suelo coincide con la latitud del lugar. Este análisis lleva automáticamente a considerar la posible conveniencia de sistemas estáticos para la implementación de procesos fotocatalíticos dado que la aparente pequeña desventaja en el rendimiento parece que podría ser fácilmente contrarrestada con el coste mucho más reducido de los sistemas estáticos. Sin embargo, existe también otro factor relevante a favor de los sistemas estáticos, como es el hecho de que éstos puedan aprovechar la radiación solar difusa, lo que no es factible con los colectores de concentración con seguimiento. Dado que la radiación difusa (aquella que tras interaccionar con las partículas de la atmósfera alcanza la superficie de la tierra con una dirección aleatoria) puede suponer un porcentaje importante del total de radiación UV útil para el proceso, su posible aprovechamiento es algo que se debe de tener en cuenta. El proceso fotovoltaico (PV) convierte la radiación solar en electricidad. El componente básico de un panel fotovoltaico es la célula fotovoltaica, que cuando se ilumina con radiación solar (fundamentalmente visible, 400-800 nm) produce electricidad.• Thermal insulation is not required since temperature does not play a significant role in photocatalytic processes. Due precisely to this last point, the associated technology has been based on solar devices of medium, low or no solar concentration from the outset. Static collectors without solar concentration are, in principle, the most economical since they have no moving parts or tracking mechanisms. However, they are less efficient devices when it comes to capturing sunlight, although their performance is not reduced by factors associated with concentration and solar tracking. They have developed and tested a large number of non-concentrating solar reactors for photocatalytic applications: reactors based on an inclined plate on which the process water slowly falls; others consisting of two plates between which the flow circulates using a separation wall; tubular, consisting of a series of variable sized tubes connected in parallel to circulate the flow faster than on a flat surface; systems consisting of a kind of shallow pool where the water to be treated is exposed to solar radiation, which may have some type of agitation or not. In the case of static collectors without monitoring, the annual solar energy collection is maximized when the angle of inclination with respect to the ground coincides with the latitude of the place. This analysis automatically leads us to consider the possible convenience of static systems for the implementation of photocatalytic processes since the apparent small performance disadvantage seems to be easily offset by the much lower cost of static systems. However, there is also another relevant factor in favor of static systems, such as the fact that they can take advantage of diffuse solar radiation, which is not feasible with tracked concentration collectors. Since diffuse radiation (that which, after interacting with the particles of the atmosphere, reaches the surface of the earth in a random direction) can be an important percentage of the total UV radiation useful for the process, its possible use is something that should be to take into account The photovoltaic (PV) process converts solar radiation into electricity. The basic component of a photovoltaic panel is the photovoltaic cell, which when illuminated with solar radiation (fundamentally visible, 400-800 nm) produces electricity.
Sin embargo, otros componentes del panel fotovoltaico (juntas, materiales protectores, etc.) absorben radiación de otras longitudes de onda y hacen que la temperatura del panel llegue hasta los 80°C, lo cual afecta de forma adversa a su rendimiento y lo deteriora. Normalmente, la eficiencia baja un 30% cuando la temperatura aumenta de 20 a 60°C. La utilización de la fotocatálisis en la depuración de agua esta descrita en diversos documentos, por ejemplo EP 634 363. El documento US 6,204,545 describe un dispositivo para el aprovechamiento conjunto de la fotocatálisis y la energía fotovoltaica para producir un efecto fotoeléctrico combinado. El documento DE 196 07 862 describe un semiconductor fotocatalitico que utiliza una fuente de luz ultravioleta (UV) para depurar corrientes gaseosas, en especial los gases de escape de motores de combustión interna. Por su parte, el documento DE 28 47 433 describe un dispositivo para calentar agua que utiliza adicionalmente el efecto fotoeléctrico. En resumen, algunas aplicaciones conocidas que combinan ambas técnicas están enfocadas a aprovechar el efecto conjunto, pero en ningún caso se refieren al uso que aquí se presenta. En el documento JP11009965-A se describe la disposición de un fotocatalizador en la superficie exterior de una esfera hueca de plástico, formando una capa fotocatalítica trasparente. A su vez, la capa fotocatalítica está superpuesta a una capa fotoeléctrica que puede actuar como célula fotovoltaica. Estas esferas (en el documento también se describen otras geometrías y formas diferentes) pueden ser suspendidas en agua o aire para conseguir dos efectos simultáneos: depuración del fluido (agua o aire) y producción de electricidad. Las diferencias fundamentales con el uso que aquí se presenta son varias: a) No se pretende en ningún momento la protección del dispositivo fotovoltaico con el dispositivo fotocatalítico. Ni mediante el filtrado de la radiación ultravioleta, ni mediante un efecto refrigerante. b) El elemento fotocatalítico-fotovoltaico está suspendido en el fluido a depurar, sin que éste este confinado en ningún fotoreactor. Se trata de agua o aire del medioambiente dónde se suspenden las "esferas" anteriormente comentadas. c) No se hace mención en ningún momento a su disposición formando parte de un fotoreactor solar, ni a utilizar loa electricidad producida para mover una bomba. En conclusión, ninguno de los dispositivos fotocatalíticos conocidos dispone de un sistema fotovoltaico acoplado a él de forma que aquel proteja a éste de los efectos dañinos provocados por fotones de determinadas longitudes de onda y de los aumentos de temperatura. Además, en el dispositivo de la invención el acoplamiento de ambos sistemas permite la utilización de reactores fotocatalíticos en emplazamientos aislados. En consecuencia, ya que un panel PV convierte principalmente luz visible solar en electricidad, que un panel PV es dañado por la elevada temperatura que se alcanza en su superficie y por la radiación UV que llega a la misma, que el agua contenida en un reactor fotocatalítico es trasparente a la radiación visible y que la degradación fotocatalítica hace uso principalmente de la radiación UV (y por lo tanto la absorbe), es un objetivo de la presente invención el disponer de un dispositivo híbrido fotocatalítico-fotovoltaico de tal forma construido y operado que el componente fotocatalítico sea capaz de filtrar la radiación UV que daña el panel PV, que el componente fotocatalítico sea capaz de refrigerar el panel PV mediante el agua contenida en él y de descontaminar o desinfectar agua mediante un proceso fotocatalítico. Es otro objetivo de la presente invención el disponer de dispositivo integrado fotocatalítico-fotovoltaico de tal forma construido y operado que produzca electricidad suficiente mediante el componente fotovoltaico que permita recircular el agua por el componente fotocatalítico, para su tratamiento. Descripción de la invención Para alcanzar el objetivo propuesto el reactor fotocatalítico debe estar superpuesto al panel fotovoltaico, ambos sobre un mismo soporte. Ello podrá conseguirse combinando los siguientes elementos:However, other components of the photovoltaic panel (joints, protective materials, etc.) absorb radiation of other wavelengths and cause the panel temperature to reach 80 ° C, which adversely affects its performance and deteriorates it . Normally, the efficiency drops by 30% when the temperature rises from 20 to 60 ° C. The use of photocatalysis in water purification is described in various documents, for example EP 634 363. Document US 6,204,545 describes a device for the joint use of photocatalysis and photovoltaic energy to produce a combined photoelectric effect. Document DE 196 07 862 describes a photocatalytic semiconductor that uses an ultraviolet (UV) light source to purify gaseous streams, especially the exhaust gases of internal combustion engines. For its part, document DE 28 47 433 describes a device for heating water that additionally uses the photoelectric effect. In summary, some known applications that combine both techniques are focused on taking advantage of the joint effect, but in no case do they refer to the use presented here. Document JP11009965-A describes the arrangement of a photocatalyst on the outer surface of a hollow plastic sphere, forming a transparent photocatalytic layer. In turn, the photocatalytic layer is superimposed on a photoelectric layer that can act as a photovoltaic cell. These spheres (other geometries and different shapes are also described in the document) can be suspended in water or air to achieve two simultaneous effects: fluid purification (water or air) and electricity production. The fundamental differences with the use presented here are several: a) The protection of the photovoltaic device with the photocatalytic device is not intended at any time. Neither by filtering ultraviolet radiation, nor by a cooling effect. b) The photocatalytic-photovoltaic element is suspended in the fluid to be purified, without it being confined to any photoreactor. It is water or air from the environment where the "spheres" mentioned above are suspended. c) There is no mention at any time available to you as part of a solar photoreactor, nor to use the electricity produced to move a pump. In conclusion, none of the known photocatalytic devices has a photovoltaic system coupled to it so that it protects it from the harmful effects caused by photons of certain wavelengths and temperature increases. In addition, in the device of the invention the coupling of both systems allows the use of photocatalytic reactors in isolated locations. Consequently, since a PV panel mainly converts visible solar light into electricity, that a PV panel is damaged by the high temperature reached on its surface and by the UV radiation that reaches it, than the water contained in a reactor Photocatalytic is transparent to visible radiation and that photocatalytic degradation makes use mainly of UV radiation (and therefore absorbs it), it is an objective of the present invention to have a photocatalytic-photovoltaic hybrid device so constructed and operated that the photocatalytic component is capable of filtering the UV radiation that damages the PV panel, that the photocatalytic component is capable of cooling the PV panel by means of the water contained therein and of decontaminating or disinfecting water by means of a photocatalytic process. It is another objective of the present invention to have an integrated photocatalytic-photovoltaic device so constructed and operated that it produces electricity sufficient by means of the photovoltaic component that allows water to be recirculated by the photocatalytic component, for its treatment. Description of the invention To achieve the proposed objective the photocatalytic reactor must be superimposed on the photovoltaic panel, both on the same support. This can be achieved by combining the following elements:
1. Un reactor fotocatalítico por el que pueda circular agua, basado en la superposición de dos paneles trasparentes, cerrados de forma que el agua circule entre ellos. Con el objetivo de conseguir una turbulencia suficiente, el espacio contenido entre ambos paneles se dividirá en secciones mediante tabiques abiertos en un extremo y dispuestos de forma que el agua zigzaguee en su recorrido.1. A photocatalytic reactor through which water can circulate, based on the superposition of two transparent panels, closed so that water circulates between them. In order to achieve sufficient turbulence, the space contained between the two panels will be divided into sections by means of open partitions at one end and arranged so that the water zigzags in its path.
2. El material del que deben estar hechos los paneles del reactor fotocatalítico debe ser trasparente a la radiación solar ultravioleta y visible (300-800 nm). Esto se puede conseguir mediante vidrio borosilicatado de bajo contenido en hierro o mediante un material plástico de similares características tipo Plexiglás.2. The material from which the photocatalytic reactor panels must be made must be transparent to ultraviolet and visible solar radiation (300-800 nm). This can be achieved by borosilicate glass of low iron content or by a plastic material of similar characteristics Plexiglas type.
3. La disposición del reactor fotocatalítico debe ser superpuesta y solidaria con el panel fotovoltaico con el objetivo de conseguir refrigerar la superficie de éste mediante el agua que circula por aquel.3. The arrangement of the photocatalytic reactor must be superimposed and in solidarity with the photovoltaic panel in order to cool the surface of the latter by means of the water flowing through it.
4. Todo lo anterior debe estar dispuesto sobre un soporte que esté inclinado los mismos grados que la latitud del emplazamiento con el objetivo de maximizar la eficiencia anual de captación de radiación solar mediante un colector plano. Un dispositivo como el descrito, debido a lo compacto de su diseño y a su reducido mantenimiento, presenta grandes ventajas en su utilización en lugares remotos o países en vías de desarrollo, donde puede asegurar el suministro de agua y electricidad en lugares alejados de las redes convencionales de distribución. Breve descripción de los dibujos Para completar la descripción que antecede y con objeto de ayudar a una mejor comprensión de las características de la invención, se va a realizar una descripción detallada de una realización preferida basándose en un juego de dibujos que se acompañan a esta memoria descriptiva y donde se ha representado lo siguiente: La figura 1 muestra un alzado esquemático del dispositivo integrado objeto de la invención. La figura 2 muestra, esquemáticamente, el comportamiento de los 3 componentes de la radiación solar al incidir sobre el dispositivo integrado. La figura 3 muestra, esquemáticamente, una vista en planta y el recorrido del agua dentro del reactor fotocatalítico. La figura 4 muestra una vista lateral del sistema híbrido objeto de la invención. En dichas figuras las referencias numéricas corresponden a las siguientes partes y elementos I . Radiación solar incidente. 2. Reactor fotocatalítico. 3. Panel fotovoltaico. 4. Estructura soporte. 5. Bomba de recirculación. 6. Salida de agua de reactor fotocatalítico. 7. Tabiques abiertos para circulación del agua en reactor fotocatalítico. 8. Entrada de agua de reactor fotocatalítico. 9. Alimentación eléctrica a la bomba procedente de panel fotovoltaico. 10. Ángulo de inclinación de todo el sistema. I I . Radiación solar ultravioleta 12. Radiación solar visible 13. Radiación solar infrarroja Descripción detallada de una realización preferida Como puede verse en la figura 1 , en general, el dispositivo integrado objeto de la invención comprende un reactor fotocatalítico (2), que tiene forma plana y que está dispuesto encima de un panel fotovoltaico (3), todo ello colocado sobre una estructura soporte (4). De esta forma, la radiación solar (1) ilumina el reactor fotocatalítico (2) y después de atravesarlo incide sobre el panel fotovoltaico (3). La radiación solar que llega a este panel fotovoltaico es capaz de hacer que éste genere electricidad suficiente para mover una bomba (5) que impulsa el agua que pasa a través del reactor fotocatalítico (2). Esta bomba está colocada debajo de todo el sistema para aprovecharse de la sombra que genera el mismo y aumentar su durabilidad. En la figura 2 se representa esquemáticamente una de las principales ventajas relacionadas con esta invención. En esta figura 2 se aprecia que sobre el reactor fotocatalítico (2) incide la radiación solar que tiene tres componentes, en atención a la longitud de onda de la misma, como son la componente ultravioleta (11 ), la componente visible (12) y la componente infrarroja (13). Mediante la disposición superpuesta se consigue que únicamente la componente visible (12) incida sobre el panel fototovoltaico (2), ya que la componente ultravioleta (11 ) es absorbida por el catalizador dispuesto en el interior del reactor fotocatalítico (2) y que es responsable de la descontaminación del agua. La componente infrarroja (13) es absorbida por el agua en sí misma. El catalizador de dióxido de titanio es suspendido en el agua antes de proceder a recircular ésta en el reactor fotocatalítico. Una vez finalizado el tratamiento, se retira mediante sedimentación. Si en cambio se utiliza hierro (II) o hierro (III), éstos se disolverían en el agua después de fijar en ésta un pH de 3 mediante la adición de ácido. En este caso, se retiraría después mediante el aumento del pH hasta su neutralización (pH = 7), lo cual provocaría la precipitación del hierro con hidróxido de hierro, sólido que también se puede retirar mediante sedimentación. En una realización preferida, que denominaremos de disposición inclinada, se dispone el reactor fotocatalítico (2) superpuesto al panel fotovoltaico (3), pero todo ello colocado sobre una estructura soporte (4) que permita que todo el dispositivo presente un ángulo de inclinación (10) igual a la latitud del lugar, de forma que se consiga la máxima eficiencia media anual (si esa inclinación no varía) o la máxima eficiencia en cada momento (si se varía esa inclinación en función de la altura solar). Haciendo referencia ahora a la figura 3, podemos observar que el reactor fotocatalítico (2) cuenta con unos tabiques (7) fabricados del mismo material trasparente que los paneles superior e inferior del mismo. Estos tabiques tiene como objetivo que el agua que entra en el reactor fotocatalítico (2) por la entrada de agua (8) y sale por la salida de agua (6), circule por el mismo siguiendo un camino zigzageante que permita mayores turbulencias, lo cual mejora el rendimiento de la reacción fotocatalítica. Además, de esta forma la circulación de agua es más homogénea y se garantiza la no acumulación de la misma en zonas muertas (fundamentalmente las esquinas). De la misma forma se garantiza también una mejor trasferencia de calor con el panel fotovoltaico (3) colocado debajo y, por tanto, una mejor refrigeración de éste. Serán evidentes para un experto en la materia una serie de alternativas de realización que permitan adaptar el diseño a las condiciones específicas técnicas y económicas de una realización concreta. Así, por ejemplo, en la construcción del panel inferior del reactor fotocatalítico (2) que está superpuesto y solidario al panel fotovoltaico (3), se puede utilizar vidrio convencional ya que a través de él únicamente debe pasar radiación visible. Pero esto siempre dependerá de la facilidad para componer el reactor fotocatalítico (2) combinando materiales diferentes. También respecto al reactor fotocatalítico (2), este puede estar formado por una serie de tubos (construidos con un material similar a los comentados anteriormente) y colocados encima del panel fotovoltaico (3) de forma paralela y cubriéndolo por completo. El agua circularía por ellos de una forma similar a la mostrada en la figura 3. Otro ejemplo podría ser el relacionado con el emplazamiento de la bomba (5) de recirculación, que no debe ser necesariamente debajo si ésta soporta correctamente la intemperie. También se podría manejar el catalizador de forma diferente. Se podría retirar el dióxido de titanio o el hidróxido de hierro mediante filtración. Esto supondría la instalación de una bomba adicional, que también podría ser alimentada mediante electricidad generada en el panel fotovoltaico, para poder impulsar el agua a la presión necesaria para atravesar el filtro necesario para la filtración. Además, otra posibilidad sería disponer el catalizador (sea dióxido de titanio o hierro) en un soporte inerte de forma que no fuera necesario retirarlo del agua. Esto es una solución que se podría realizar únicamente si ese soporte fuera trasparente a la radiación visible, de forma que no se impidiera la iluminación del panel fotovoltaico. Este tipo de soporte no ha sido desarrollado hasta ahora. Igualmente, y por motivos de claridad, no se han descrito diferentes elementos que siendo necesarios para el correcto funcionamiento del dispositivo de la invención son convencionales y sobradamente conocidos. Así, será preciso dotar al circuito de agua de una toma de agua a depurar y una salida de agua depurada hacia un recipiente de almacenamiento. Por lo mismo será preciso dotar al dispositivo de medios de almacenamiento eléctrico (por ejemplo baterías) si se desea disponer de electricidad en horas nocturnas. 4. All of the above must be arranged on a support that is tilted the same degrees as the latitude of the site in order to maximize the annual efficiency of solar radiation collection by means of a flat collector. A device like the one described, due to the compactness of its design and its reduced maintenance, has great advantages in its use in remote places or developing countries, where it can ensure the supply of water and electricity in places far from conventional networks of distribution. BRIEF DESCRIPTION OF THE DRAWINGS To complete the foregoing description and in order to help a better understanding of the features of the invention, a detailed description of a preferred embodiment will be made based on a set of drawings that are attached hereto. descriptive and where the following has been represented: Figure 1 shows a schematic elevation of the integrated device object of the invention. Figure 2 shows, schematically, the behavior of the 3 components of solar radiation when affecting the integrated device. Figure 3 shows, schematically, a plan view and the water path within the photocatalytic reactor. Figure 4 shows a side view of the hybrid system object of the invention. In these figures the numerical references correspond to the following parts and elements I. Solar radiation incident. 2. Photocatalytic reactor. 3. Photovoltaic panel. 4. Support structure. 5. Recirculation pump. 6. Water output from photocatalytic reactor. 7. Open partitions for water circulation in photocatalytic reactor. 8. Photocatalytic reactor water inlet. 9. Power supply to the pump from the photovoltaic panel. 10. Tilt angle of the entire system. II. Ultraviolet solar radiation 12. Visible solar radiation 13. Infrared solar radiation Detailed description of a preferred embodiment As can be seen in Figure 1, in general, the integrated device object of the invention comprises a photocatalytic reactor (2), which has a flat shape and which is arranged on top of a photovoltaic panel (3), all placed on a support structure (4). In this way, solar radiation (1) illuminates the photocatalytic reactor (2) and after passing through it, it affects the photovoltaic panel (3). The solar radiation that reaches this photovoltaic panel is able to make it generate enough electricity to move a pump (5) that drives the water that passes through the photocatalytic reactor (2). This pump is placed under the entire system to take advantage of the shadow it generates and increase its durability. In figure 2 one of the main advantages related to this invention is schematically represented. In this figure 2 it can be seen that on the photocatalytic reactor (2) the solar radiation has three components, based on its wavelength, such as the ultraviolet component (11), the visible component (12) and the infrared component (13). The superimposed arrangement ensures that only the visible component (12) falls on the photovoltaic panel (2), since the ultraviolet component (11) is absorbed by the catalyst disposed inside the photocatalytic reactor (2) and is responsible of water decontamination. The infrared component (13) is absorbed by the water itself. The titanium dioxide catalyst is suspended in the water before recirculating it in the photocatalytic reactor. Once the treatment, removed by sedimentation. If instead iron (II) or iron (III) is used, these would dissolve in the water after fixing a pH of 3 by adding acid. In this case, it would then be removed by increasing the pH until neutralization (pH = 7), which would cause the precipitation of iron with iron hydroxide, a solid that can also be removed by sedimentation. In a preferred embodiment, which we will call an inclined arrangement, the photocatalytic reactor (2) is superimposed on the photovoltaic panel (3), but all placed on a support structure (4) that allows the entire device to have an inclination angle ( 10) equal to the latitude of the place, so that the maximum annual average efficiency is achieved (if that inclination does not change) or the maximum efficiency at each moment (if that inclination is varied depending on the solar height). Referring now to Figure 3, we can see that the photocatalytic reactor (2) has partitions (7) made of the same transparent material as the upper and lower panels thereof. These partitions have the objective that the water that enters the photocatalytic reactor (2) through the water inlet (8) and out through the water outlet (6), circulates through it following a zigzagent path that allows greater turbulence, which improves the yield of the photocatalytic reaction. In addition, in this way the circulation of water is more homogeneous and the non-accumulation of it in dead areas is guaranteed (mainly the corners). In the same way, a better heat transfer is also guaranteed with the photovoltaic panel (3) placed underneath and, therefore, a better cooling of the latter. A series of alternative embodiments that allow adapting the design to the specific technical and economic conditions of a specific embodiment will be evident to a person skilled in the art. Thus, for example, in the construction of the lower panel of the photocatalytic reactor (2) that is superimposed and integral with the photovoltaic panel (3), conventional glass can be used since only visible radiation must pass through it. But this will always depend on the ease of composing the photocatalytic reactor (2) by combining different materials. Also with respect to the photocatalytic reactor (2), this can be formed by a series of tubes (constructed with a material similar to those mentioned above) and placed on top of the photovoltaic panel (3) in parallel and covering it completely. Water would circulate through them in a manner similar to that shown in Figure 3. Another example could be related to the location of the recirculation pump (5), which should not necessarily be below if it correctly supports the weather. The catalyst could also be handled differently. Titanium dioxide or iron hydroxide could be removed by filtration. This would involve the installation of an additional pump, which also It could be powered by electricity generated in the photovoltaic panel, in order to drive the water to the pressure necessary to pass through the filter necessary for filtration. In addition, another possibility would be to arrange the catalyst (be it titanium dioxide or iron) in an inert support such that it is not necessary to remove it from the water. This is a solution that could be made only if that support were transparent to visible radiation, so that the lighting of the photovoltaic panel was not prevented. This type of support has not been developed so far. Likewise, and for reasons of clarity, different elements that are necessary for the correct operation of the device of the invention have been described conventionally and well known. Thus, it will be necessary to provide the water circuit with a water outlet to be purified and an outlet of purified water to a storage container. For this reason it will be necessary to provide the device with electrical storage means (for example batteries) if it is desired to have electricity at night.

Claims

Reivindicaciones Claims
1. Dispositivo integrado para descontaminación de agua y producción de energía eléctrica comprendiendo; un reactor fotocatalítico (2) y un panel fotovoltaico (3), superpuesto el primero sobre el segundo para que el reactor fotocatalítico proteja al panel fotovoltaico y ambos solidarios de una estructura (4) susceptible de poder inclinarse con el ángulo (10) adecuado para aprovechar óptimamente la radiación incidente, una bomba de recirculación (5) cuya alimentación eléctrica es proporcionada por el panel fotovoltaico (3), y caracterizado por estar fabricado el reactor fotocatalítico (2) con un material trasparente al menos a la radiación visible proveniente del sol, e incorporar tabiques (7), abiertos en un extremo, dispuestos de forma que el agua zigzaguee en su recorrido.1. Integrated device for water decontamination and electric power production comprising; a photocatalytic reactor (2) and a photovoltaic panel (3), superimposed the first over the second so that the photocatalytic reactor protects the photovoltaic panel and both solidaries of a structure (4) capable of being able to tilt with the angle (10) suitable for take advantage of the incident radiation, a recirculation pump (5) whose power is provided by the photovoltaic panel (3), and characterized by being manufactured the photocatalytic reactor (2) with a material transparent at least to the visible radiation from the sun , and incorporate partitions (7), open at one end, arranged so that the water zigzags in its path.
2. Dispositivo integrado para descontaminación de agua y producción de energía eléctrica de acuerdo con la reivindicación 1 , caracterizado por utilizar dióxido de titanio o hierro (III) como fotocatalizadores en el reactor fotocatalítico (2). 2. Integrated device for water decontamination and electric energy production according to claim 1, characterized by using titanium dioxide or iron (III) as photocatalysts in the photocatalytic reactor (2).
PCT/ES2005/000318 2004-06-07 2005-06-03 Integrated device for the decontamination of water and production of electrical power WO2005121030A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MXPA06014285A MXPA06014285A (en) 2004-06-07 2005-06-03 Integrated device for the decontamination of water and production of electrical power.
EGNA2006001169 EG24192A (en) 2004-06-07 2006-12-06 Integrated device for the decontamination of water and production of electrical power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200401376A ES2245243B1 (en) 2004-06-07 2004-06-07 INTEGRATED DEVICE FOR WATER DECONTAMINATION AND ELECTRICAL ENERGY PRODUCTION.
ESP200401376 2004-06-07

Publications (1)

Publication Number Publication Date
WO2005121030A1 true WO2005121030A1 (en) 2005-12-22

Family

ID=35613890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000318 WO2005121030A1 (en) 2004-06-07 2005-06-03 Integrated device for the decontamination of water and production of electrical power

Country Status (5)

Country Link
EG (1) EG24192A (en)
ES (1) ES2245243B1 (en)
MA (1) MA28654B1 (en)
MX (1) MXPA06014285A (en)
WO (1) WO2005121030A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338837A1 (en) * 2009-12-23 2011-06-29 Roland Pöhnl Small-scale sewage system with photo-catalytic collector and domestic water system with such a small-scale sewage system
CN102859714A (en) * 2010-02-09 2013-01-02 西安大略大学 Hybrid Solar Energy Conversion System With Photocatalytic Disinfectant Layer
CN103028358A (en) * 2012-12-25 2013-04-10 同济大学 Photoelectric catalytic reactor based on titanium dioxide nanotube arrays
WO2015177196A1 (en) * 2014-05-22 2015-11-26 H1 Energy B.V. Photocatalyst
CN105129905A (en) * 2015-08-05 2015-12-09 浙江大学 Solar light-focusing frequency-division photocatalytic sewage processing method and system
CN105621527A (en) * 2014-11-07 2016-06-01 广东海川科技有限公司 Installation seat and ultraviolet disinfection equipment
US9394186B2 (en) 2009-11-06 2016-07-19 Universidad Del Valle Photo-catalysis process applied in eliminating recalcitrant compounds in industrial residual waters
WO2018167700A1 (en) * 2017-03-16 2018-09-20 Universidad De Guadalajara Photocatalytic system for the treatment of stillage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040386A1 (en) * 2015-08-27 2017-03-03 Solable Sas SOLAR WATER PURIFICATION SYSTEM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071440A (en) * 2001-09-03 2003-03-11 Ebara Corp Method and apparatus for cleaning water in river, lake, marsh, or the like
WO2004062795A1 (en) * 2003-01-08 2004-07-29 The Chinese University Of Hong Kong Optically transparent tio2 thin films on glass having anti-bacterial and anti-virus activities and method for preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119965A (en) * 1997-06-20 1999-01-19 Matsushita Electric Ind Co Ltd Hollow body, pollutant removal device and removal method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071440A (en) * 2001-09-03 2003-03-11 Ebara Corp Method and apparatus for cleaning water in river, lake, marsh, or the like
WO2004062795A1 (en) * 2003-01-08 2004-07-29 The Chinese University Of Hong Kong Optically transparent tio2 thin films on glass having anti-bacterial and anti-virus activities and method for preparing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394186B2 (en) 2009-11-06 2016-07-19 Universidad Del Valle Photo-catalysis process applied in eliminating recalcitrant compounds in industrial residual waters
EP2338837A1 (en) * 2009-12-23 2011-06-29 Roland Pöhnl Small-scale sewage system with photo-catalytic collector and domestic water system with such a small-scale sewage system
CN102859714A (en) * 2010-02-09 2013-01-02 西安大略大学 Hybrid Solar Energy Conversion System With Photocatalytic Disinfectant Layer
CN103028358A (en) * 2012-12-25 2013-04-10 同济大学 Photoelectric catalytic reactor based on titanium dioxide nanotube arrays
WO2015177196A1 (en) * 2014-05-22 2015-11-26 H1 Energy B.V. Photocatalyst
WO2015177216A1 (en) * 2014-05-22 2015-11-26 H1 Energy B.V. Energy conversion system
CN105621527A (en) * 2014-11-07 2016-06-01 广东海川科技有限公司 Installation seat and ultraviolet disinfection equipment
CN105129905A (en) * 2015-08-05 2015-12-09 浙江大学 Solar light-focusing frequency-division photocatalytic sewage processing method and system
WO2018167700A1 (en) * 2017-03-16 2018-09-20 Universidad De Guadalajara Photocatalytic system for the treatment of stillage

Also Published As

Publication number Publication date
MA28654B1 (en) 2007-06-01
MXPA06014285A (en) 2007-02-19
EG24192A (en) 2008-10-13
ES2245243B1 (en) 2006-11-16
ES2245243A1 (en) 2005-12-16

Similar Documents

Publication Publication Date Title
WO2005121030A1 (en) Integrated device for the decontamination of water and production of electrical power
Zhang et al. Application of solar energy in water treatment processes: A review
Rodrıguez et al. Engineering of solar photocatalytic collectors
ES2383786B2 (en) ENERGY GENERATION DEVICE FROM SOLAR HEAT.
US4210121A (en) Solar energy collection
CN101288839B (en) Light-transmitting tubular honeycomb type photocatalytic reactor
BRPI0708256A2 (en) greenhouse, greenhouse housing, filter device, lighting fixture, driving device, employment and input device
WO1997042452A1 (en) New liquid modulated lens for condensing solar energy
US5683589A (en) Photocatalytic reactor
CN103086495B (en) Multifunctional solar photocatalytic oxidation-membrane separation three-phase fluidized bed circulating reaction device
CN108529715B (en) Self-luminous artificial aquatic plant photocatalytic purification box
Yu et al. A novel solar PV/T driven air purification system based on heterogeneous photocatalytic reaction principles: a short review and preliminary investigation
CN107129005A (en) A kind of inner light source ball string data photocatalysis water quality purifying box
Chaúque et al. Development of solar water disinfection systems for large-scale public supply, state of the art, improvements and paths to the future–a systematic review
CA2929997A1 (en) Hollow optical fibre photo-catalytic reactor utilizing solar energy and uv rays
JP2010232531A (en) Photovoltaic power generator
Amsberry et al. Simple continuous-flow device for combined solar thermal pasteurization and solar disinfection for water sterilization
KR101208735B1 (en) Indoor type solar photovoltatic power generation apparatus having high efficiency
Pathak et al. Role of solar energy applications for environmental sustainability
WO2011055234A1 (en) Photocatalysis process applied in order to eliminate recalcitrant compounds from industrial wastewater
CN111943312A (en) Laminated double helical optical rotation catalytic purifier suitable for high-concentration wastewater
Maldonado Pérez et al. Solar lighting systems applied in photocatalysis to treat pollutants–A review
CN111009587B (en) Photovoltaic module for atmospheric environment restoration and power generation multiplexing
CN115028308A (en) Mixed impurity urban sewage environmental protection processing system
Osborn et al. Water Problems, Solar Solutions: Applications of Solar Thermal Energy to Water Technologies

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/014285

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase