WO2005119272A1 - Method and device for measuring the trajectories of objects of known geometry - Google Patents

Method and device for measuring the trajectories of objects of known geometry Download PDF

Info

Publication number
WO2005119272A1
WO2005119272A1 PCT/ES2005/000305 ES2005000305W WO2005119272A1 WO 2005119272 A1 WO2005119272 A1 WO 2005119272A1 ES 2005000305 W ES2005000305 W ES 2005000305W WO 2005119272 A1 WO2005119272 A1 WO 2005119272A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
interference
ball
sensor
mesh
Prior art date
Application number
PCT/ES2005/000305
Other languages
Spanish (es)
French (fr)
Inventor
Guillermo Peris Fajarnes
José Mariano DAHOUI OBON
Juan Manuel Sanchis Rico
Samuel MORILLAS GÓMEZ
Original Assignee
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Valencia filed Critical Universidad Politecnica De Valencia
Publication of WO2005119272A1 publication Critical patent/WO2005119272A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • A63B69/3658Means associated with the ball for indicating or measuring, e.g. speed, direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/68Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • A63B2024/0028Tracking the path of an object, e.g. a ball inside a soccer pitch
    • A63B2024/0034Tracking the path of an object, e.g. a ball inside a soccer pitch during flight
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • A63B2024/0037Tracking a path or terminating locations on a target surface or at impact on the ground
    • A63B2024/0043Systems for locating the point of impact on a specific surface
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/02Tennis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/18Baseball, rounders or similar games
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/20Cricket
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/32Golf
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0025Football
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0037Basketball
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0066Rugby; American football
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0095Volleyball
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2244/00Sports without balls
    • A63B2244/16Spear or javelin throwing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2244/00Sports without balls
    • A63B2244/17Hammer throwing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B63/00Targets or goals for ball games

Definitions

  • the invention relates to a method and a device for the detection and analysis of object paths with known geometry, which makes it possible to obtain the kinematic and / or geometric parameters of said object, increasing the accuracy of the measurement with respect to independently known systems. of the size or shape of the objects.
  • a set of sensor elements detect by interference the presence or absence of objects with known geometry, and the data from the sensors is recorded. When an object crosses the region of space between the receivers and the emission source, the system records the interference of each sensor, the moment and the duration. In this way, and through subsequent processing, data such as: geometry, speed, acceleration, spin are obtained
  • the invention has as one of its main applications the training of ball or ball sports such as football, basketball, tennis, handball, rugby and all those in which an object of known geometry is involved.
  • the invention falls within the technical sector of apparatus for measuring trajectories, having a direct application on launching and shooting ball or ball. Likewise, it also has a direct application on the recreational machine sector, especially in peripherals for consoles and home computers. In addition, it also has useful applications in sectors such as the military and aeronautics. BACKGROUND OF THE INVENTION
  • the systems for analyzing and measuring object trajectories are based, for the most part, on the analysis of information obtained from an image recording system or by using one or more specific sensors. Systems based on image processing require complex computer analysis and obtain their information after launch by processing a sequence of duly registered images. Sometimes, to simplify the processing of these images, the environment is interfered with by preparing and controlling the environment (sometimes limited to uses in closed studies, altering the background of the images, adjusting the environment, etc.) or by marking of the object (colored marks on the ball or ball).
  • the measurement of the trajectory be independent of the size of the object, on which it is necessary to take into account that the great majority of the systems of prediction of known trajectories based on sensors are They have developed thinking about its use for golf, where the object-speed radius ratio is very small. These systems are limited for ball sports, such as football or basketball, where the same ratio is markedly greater, which would cause large prediction errors in the case of being used. None of the known systems measure speeds from the reading of the dark time or the shutter of the sensors, nor from the lag time between the shutter of a group of sensors.
  • the method and the device object of the invention obtains the information from sensors, and not by image processing, and also does not require the installation of any sensor in the zero or initial position and also does not obtain the information as known techniques, but which does it from the time of lag in the shutter of the sensors and the time of shutter or eclipsed of these.
  • One of the main novelties of the invention against known techniques lies in the way of obtaining information about the movement of the object (s), which causes the subsequent processing and hardware to be completely different from those known.
  • the system records as useful information the time interval elapsed between the activation of each sensor, its time lag with respect to the first activated sensor.
  • the object interferes with several sensors at the same time, which allows the system to use the lags in the activation and deactivation between nearby sensors, to determine the movement parameters.
  • the device object of the invention can be installed using one or more grills of sensors and receivers.
  • spherical objects such as a soccer ball
  • the appearance of turbulence along the "flight" and the effect of other factors such as wind, atmospheric pressure, temperature and other factors, have an effect on and during the movement of the object.
  • the emitters and receivers are located leaving a space through which the objects to be measured must be passed, being able to place said emitters and receivers in a greater or lesser number and at a more or less close distance depending on the object and the precision that is want to get.
  • Objects can interfere with several nearby sensors at the same time, and the interference start, end and duration data are stored.
  • the system based on the interference data of the nearby sensors, reconstructs the movement of the object in that region of space and mathematically calculates the kinematic parameters of that evolution.
  • the invention allows to obtain, in the case of objects of known geometry, kinematic parameters, such as speed, direction, acceleration and spin (rotation on itself), having as one of its main applications its use for a sports training system in which a ball intervenes, and can also be used in other types of applications, such as those of the entertainment sector (recreational machines, computers, consoles, etc.).
  • kinematic parameters such as speed, direction, acceleration and spin (rotation on itself)
  • sports training system in which a ball intervenes
  • other types of applications such as those of the entertainment sector (recreational machines, computers, consoles, etc.).
  • one of the aspects of the invention relates to a method for measuring trajectories, speed, acceleration, direction and rotation of objects of known geometry, which comprises locating a group of sensors in a known spatial arrangement and passing the object of which it is desired to measure its trajectory by the proximity of said sensors so as to interfere with them, that is to say that said sensors can detect the presence of said object.
  • the time elapsed between the activation of the first and the rest of the interfered sensors is recorded, the lag between the activation of the different sensors and the sequence of the sensor activation.
  • trajectory including the speed of the object, acceleration, rotation axis of rotation and rotation of the axis of rotation of the object.
  • the sensors can be placed in an aligned manner and located in the same plane, in order to simplify the mathematical analysis of the data obtained.
  • the sensors can be positioned non-aligned in more than one parallel plane.
  • Each sensor may consist of a transmitter and a receiver facing each other, defining an intermediate region between them through which the object is passed transversely. You can also use sensors composed of a transmitter and a receiver forming the same unit, in which case the sensor is able to measure the distance to the object when it interferes with that sensor.
  • the method of the invention provides for the location of at least two groups of sensors in the same plane sharing their intermediate region, so that they define an interference mesh for the passage of the object.
  • Said interference mesh should be understood as an imaginary mesh of the interference lines in which each respective sensor can detect the presence of an object.
  • at least two interference meshes arranged parallel to each other can be generated in the method, in order to be able to calculate the spin of the object and increase the accuracy of the measurement since more information is obtained on the displacement of the object.
  • the spin and acceleration of the object can be calculated with a single mesh, recording the data of the moment of entry in the mesh "time of entry and lag time of activation between sensors”, and using the output data of the mesh “instant of recovery of the communication between sender and receiver of each sensor and offset between sensors", as if they were the data of a second mesh.
  • the information obtained from the interference of the sensors of each existing mesh is sent to programmable electronic media where it is recorded and processed digitally, to obtain the speed, acceleration, direction and rotation of the object.
  • the digital processing includes a mathematical analysis of the data obtained by the sensors and in which their location is considered, and in which a system of equations is raised and solved in a manner known to a person skilled in the art.
  • the components of the object's trajectory are measured from the data obtained from the sensors, measuring the moment and coordinate X, Y, and Z of the object at a minimum of 4 points on the surface of the object, provided when these points are not aligned with each other.
  • the determination of the parameters of movement of the object that crosses the mesh is based on prior knowledge of the geometry of the object.
  • a model of the movement of the object within (when passing through) the mesh is obtained, which translates into a system of equations that will be as complex as the mesh models and of the object.
  • Said system of equations is solved from the reading of the relative position of the interferences, their sequence, their time, and the variation of said readings in a first and a second mesh. In this way, knowing the interference times with the sensors, the speed of the object can be known by solving the system of equations.
  • the complexity of the mathematical model that describes the movement of the object within the mesh generates a system of simultaneous equations in which said model is translated, which can be solved by diverse procedures.
  • Another aspect of the invention relates to a device for measuring trajectories, speed, acceleration, direction and rotation of objects of known geometry, comprising at least one group of sensors located at known points, where each sensor is composed of a sender and receiver facing each other defining an intermediate region with each other for the passage of the object.
  • both the emitters and the receivers of the same group of sensors are located in the same plane.
  • Two groups of sensors can be arranged in the same plane sharing their intermediate region, so that they define an interference mesh for the transverse passage of the object.
  • the emitters and receivers of the same group of sensors are supported by a fixed frame in which they are located facing each other, with more than one frame arranged parallel to each other.
  • the interference mesh can have any configuration, either orthogonal or oblique, although an orthogonal mesh is preferred because of the simplicity of subsequent calculations.
  • the mesh allows to know the evolution of four known xyz points of space or in other words the evolution of an "eclipse"
  • the device of the invention has programmable electronic means comprising a module for storing the information related to the interference of the sensors, and a processing module for processing the information recorded in the storage module.
  • the sensors are electrically connected with said programmable electronic means, so that these means record the electrical signals from said sensors.
  • Figure 1 shows a sequence in perspective of a spherical object through the interference mesh created in a frame, Figure 3a just before entering the mesh, Figure 3b once its interference has begun and Figure 3c when the largest part of the object has already passed through the mesh.
  • Figure 2 shows the evolution of the interference of a spherical object on a mesh in consecutive moments.
  • Figure 2a in a perspective view
  • Figure 2b in a plan view.
  • Figure 3. shows in front elevation, in figure 3a a hexagonal frame with an orthogonal interference mesh, and in figure 3b a square frame with an oblique interference mesh.
  • Figure 4.- shows schematically the blocks that make up the device of the invention.
  • Figure 5 shows a flow chart of the operation of the invention.
  • Figure 6 shows a schematic representation of a practical application of the invention in a training equipment for shooting a soccer ball.
  • the arrow indicates the firing direction of the object.
  • Figure 7 shows a representation similar to that of the previous figure but applied to basketball training, and in which the racks are not arranged at the same height.
  • figure 1 the sequence of passage of an object of known geometry (1), in this case a sphere, through an orthogonal interference mesh (3) created in a frame (2) can be observed.
  • the interference mesh (3) is formed by a network of imaginary lines representative of the lines that connect a transmitter with its corresponding transmitter, belonging to the same sensor.
  • Figure 3a shows a hexagonal frame (2) in which an orthogonal interference mesh (3) is formed covering the entire internal area delimited by the frame (2).
  • the frame (2) of Figure 3b represents a four-sided frame (2) and an oblique mesh (3).
  • Each of the lines that is part of the interference mesh (3) corresponds to a sensor and goes from the emitter to the associated receiver.
  • the sensors are arranged in the same plane, the one corresponding to the frame, and how the emitters and receivers are aligned.
  • any other frame form may be possible within the present invention, such as any polygonal shape, circular or elliptical shapes, even tubular bodies in which the sensors are arranged at various points thereof and in various tangential planes to said tubular body.
  • the diagram of Figure 4 represents the modules that make up the device of the invention, which is constituted by a group of sensors (4) composed of a series of emitters (9) and receivers (10) that define a interference region (11) with each other. It can be seen in block 4 how each emitter (represented by an arrow) is faced with its corresponding receiver (represented by a rectangle).
  • the device also comprises a storage module (5) of the information obtained by the transmitters, a processing module (6) of the stored information, a user interface (7), and various accessories (8) such as a digital camera, visual or audible alarms (not shown) etc.
  • the modules (5-6) can be implemented by any type of programmable electronic medium (12), such as an FPGA or a PC personal computer.
  • the user interface (7) can be for example a screen of a computer in which the results obtained from the launch and / or the recording of the video camera intended to capture the movement of the player during the launch are presented.
  • the FPGA reprogrammable hardware device of reduced dimensions
  • the FPGA is programmed, either to collect the sensor data, to solve the system of equations that models the movement of the object in the mesh and to send the results to a PC or, simply, to collect the sensor data and send it to the PC leaving the task of solving the system of equations to the PC.
  • Figure 5 shows the operation process of the invention, which starts with the launch (16) of the object (1), and its interference (17) in the first sensor mesh.
  • the sequential phases that in turn make up this block 17 are the following: 17.1.- interference with the first sensor, start-up of the clock and identification of the first sensor. 17.2 .- interference with the second sensor, and storage of time since the first shutter and the sensor identification. 17.3.- interference with the third sensor, and storage of the time since obtaining the first, and identification of the sensor. 17.4.- interference with the fourth sensor and time storage since the first was obtained and the sensor identification. 17.5.- repeat the process until the last sensor.
  • a storage (18) of the coordinate and time matrix is performed in a temporary memory.
  • the direction and velocity components of the object (1) are then processed and calculated (19).
  • the process checks in the block (20) if there are more sensor meshes, and if so, repeats the phases described for the block (17) for each existing mesh. For each mesh, the direction and velocity components of the object are processed and calculated (22).
  • block (23) only the measurement result is presented in the block (24), or the measurement and video result of the launch is shown in the block (25).
  • an object (suppose a sphere) covers the first sensor, it marks the instant TOxy.
  • the sensors As the sphere enters the mesh, it seals more sensors, measuring the moment in which they are sealed.
  • the sensors again, are reactivated, until, finally, when it has finished crossing the mesh, all have regained their communication.
  • the mediation of the times of "darkness of each one of them” as well as the lag ie the delay in the instant of shutter of some with respect to others), is the information that is processed to find out the speed and angle of entry and exit. Since the object geometry must be known "a priori" that we are measuring, time differences allow us to calculate the velocity vector of the object.
  • the shutter object and must seal, several sensors when crossing the mesh, obtaining useful information from when the object intersects the first sensor, until it completely crosses the mesh.
  • the number of sensors and their separation are proportional to the size of the object to be measured, and must be designed so that the object to be measured interferes with a minimum of 2 sensors (however, the system must be manufactured so that the object to be measured interferes 4 or 5 sensors, therefore the separation of the sensors is the value of the Diameter / 5, or, in the case of objects such as a rugby ball the Minor Diameter / 5).
  • the system is able to obtain the kinematic parameters of the object. Therefore, it is not necessary that initial sensor at the launch point, used by other systems.
  • the mathematical model for the particular case of a spherical object raises a system of equations for each vector of sensors in the mesh. Once these systems are resolved, the values obtained are coupled so that the position of the object is obtained when crossing the mesh, as well as its velocity vector.
  • - "X" is the distance between the center of the spherical object and the plane of the mesh. ' ⁇ "represents the distance between the center of the spherical object and a plane perpendicular to the mesh that contains the beam of the first sensor cut by the object.”
  • H is the distance between the sensors. -" n n "is the number of the sensor that is activated - "r” is the radius of the sphere - "Ay nm " is the displacement of the center of the sphere on the axis and, in the time elapsed between the moment the object intersected the object "n” and the instant the object intersected the object m.
  • V x At 0l Jr 2 - [H (n x -n 0 ) + D + V and At - Vr 2 -Z) 2
  • the spherical object Since there are four unknowns (V x , V y , D yr), the spherical object must activate at least five sensors, which is achieved if the diameter of the object is greater than 5H. In the event that the object's radius is known, it would only be necessary for the object to intersect four sensors (object diameter greater than 4-H).
  • a second Maya located at a certain distance from the first is necessary, obtaining the spin from the positions and velocity vectors associated with the first and second Maya.
  • FIGs 6 and 7 it can be seen how two or more frames (2) are placed in parallel, that is to say, several interference meshes (3) can be arranged in parallel, either with the center of each frame (2) at the same height as the case of figure 6 or at different heights as the case of figure 7.
  • a soccer goal (13) has been represented and in figure 7 a basket of Basketball (14).
  • a player (15) in motion has been represented in both figures.
  • the object (1) can consist of any body with symmetry of
  • -revolution-Some-object-examples - (- 1 -) - that can be used in the present invention are: a soccer ball, a rugby ball, a basketball, a handball, a volleyball, a tennis ball, a cricket ball, a baseball, a golf ball, a projectile, a hammer, a javelin, or a sphere of any material and surface finish.
  • more than one object (1) could be passed at a time through the interference mesh
  • the use of interference meshes can be used, both to detect speeds of objects carried by the wind, or vibrations of fixed objects.
  • the use of interference meshes, in one or several rings, by throwing objects such as "cork spheres" would allow performing indirect measurements of aerodynamic or hydrodynamic effects. Therefore, in a preferred embodiment, the device can be part of a wind tunnel, in which case the object (1) is a vehicle, such as an airplane from which its vibrations can be detected when subjected to a current of wind.
  • the system can have direct applications in the measurement of object trajectories without the need for contact, for example firing speeds of any projectile.
  • canals or corridors could allow counting of moving elements, people, different types of animals such as chickens, fish etc.
  • the device can use any type of sensor that detects the presence or absence of interference, and can even be developed with digital vision systems.
  • optical sensors are used.
  • the response speed of the sensors directly affects the accuracy. The faster the object you want to detect or measure, the faster the interference sensors or the image acquisition speed (if done with a vision system).
  • the device of the invention is a portable and modular device, valid for interiors and exteriors and that can obtain the information from a single mesh, two meshes or more than two meshes, with the exception that the spin, or speed of rotation , requires a reading of a minimum of two meshes.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a method and device for the detection and analysis of the trajectories of objects of known geometry, which can be used to obtain the kinematic and/or geometric parameters of said object, thereby increasing the precision of the measurement in relation to hitherto-known systems regardless of the size and shape of the objects. According to the invention, a group of sensor elements detect the presence or absence of objects of known geometry by means of interference and the data from the sensors is recorded. When an object passes through the region of space between the receivers and the emitting source, the system records the interference of each sensor, as well as the moment and duration. In this way, and together with subsequent processing, the following data are obtained, namely: geometry, velocity, acceleration, spin (rotation and axis). One of the main applications of the invention is for ball sports training, such as for football, basketball, tennis, handball, rugby and any other sports involving the use of an object of known geometry.

Description

MÉTODO Y DISPOSITIVO PARA LA MEDICIÓN DE TRAYECTORIAS DE OBJETOS DE GEOMETRÍA CONOCIDA METHOD AND DEVICE FOR MEASURING TRAJECTORY OF KNOWN GEOMETRY OBJECTS
D E S C R I P C I Ó ND E S C R I P C I Ó N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La invención se refiere a un método y un dispositivo para la detección y análisis de trayectorias de objetos con geometría conocida, que posibilita la obtención de los parámetros cinemáticos y/o geométricos de dicho objeto, aumentando la precisión de la medida respecto a sistemas conocidos independientemente del tamaño o forma de los objetos. Un conjunto de elementos sensores detectan por interferencia la presencia o ausencia objetos con geometría conocida, y se registra los datos procedentes de los sensores. Cuando un objeto atraviesa la región del espacio entre los receptores y la fuente de emisión, el sistema registra la interferencia de cada sensor, el instante y la duración. De esta manera, y mediante el procesado posterior, se obtienen datos como: geometría, velocidad, aceleración, spinThe invention relates to a method and a device for the detection and analysis of object paths with known geometry, which makes it possible to obtain the kinematic and / or geometric parameters of said object, increasing the accuracy of the measurement with respect to independently known systems. of the size or shape of the objects. A set of sensor elements detect by interference the presence or absence of objects with known geometry, and the data from the sensors is recorded. When an object crosses the region of space between the receivers and the emission source, the system records the interference of each sensor, the moment and the duration. In this way, and through subsequent processing, data such as: geometry, speed, acceleration, spin are obtained
(rotación y eje), dirección y cualquiera derivado de los anteriores. La invención tiene como una de sus principales aplicaciones el entrenamiento de deportes de pelota o balón como fútbol, baloncesto, tenis, balonmano, rugby y todos aquellos en los que intervenga un objeto de geometría conocida.(rotation and axis), direction and any derivative of the above. The invention has as one of its main applications the training of ball or ball sports such as football, basketball, tennis, handball, rugby and all those in which an object of known geometry is involved.
La invención se encuadra en el sector técnico de aparatos para la medición de trayectorias, teniendo una aplicación directa sobre lanzamiento y tiro de pelota o balón. Así mismo, también tiene una aplicación directa sobre el sector de las máquinas recreativas, especialmente en periféricos para consolas y ordenadores domésticos. Además, también tiene aplicaciones de utilidad en sectores como el militar y el aeronáutico. ANTECEDENTES DE LA INVENCIÓN Los sistemas de análisis y medición de trayectorias de objetos se basan, en su mayor parte, en el análisis de la información obtenida a partir de un sistema de grabación de imágenes o bien mediante el uso de uno o varios sensores específicos. Los sistemas basados en el procesado de imagen exigen un análisis informático complejo y obtienen su información después del lanzamiento mediante el procesado de una secuencia de imágenes debidamente registradas. En ocasiones, para simplificar el procesado de dichas imágenes se interfiere con el entorno mediante la preparación y control del ambiente (limitándose en ocasiones a usos en estudios cerrados, alterando el fondo de las imágenes, ajusfando el ambiente etc.) o bien mediante el marcado del objeto (marcas de color en el balón o pelota).The invention falls within the technical sector of apparatus for measuring trajectories, having a direct application on launching and shooting ball or ball. Likewise, it also has a direct application on the recreational machine sector, especially in peripherals for consoles and home computers. In addition, it also has useful applications in sectors such as the military and aeronautics. BACKGROUND OF THE INVENTION The systems for analyzing and measuring object trajectories are based, for the most part, on the analysis of information obtained from an image recording system or by using one or more specific sensors. Systems based on image processing require complex computer analysis and obtain their information after launch by processing a sequence of duly registered images. Sometimes, to simplify the processing of these images, the environment is interfered with by preparing and controlling the environment (sometimes limited to uses in closed studies, altering the background of the images, adjusting the environment, etc.) or by marking of the object (colored marks on the ball or ball).
Por otro lado, existen numerosos sistemas que se basan en la medición en la información obtenida a partir de la interferencia del objeto entre un emisor y un receptor (sea este del tipo que sea, óptico, ultrasonidos, etc.), sin embargo todos estos sistemas obtienen la información mediante la medición del tiempo transcurrido desde una posición cero (de lanzamiento) hasta la interferencia con un segundo sensor. Además, la totalidad de los sistemas existentes limitan su campo de aplicación a objetos esféricos, no contemplando ninguno de ellos la posibilidad de analizar objetos con otras geometrías, como pueda ser un balón de rugby, una jabalina, una flecha o un martillo entre otros (todos ellos deportes olímpicos). Resulta deseable que la medición de la trayectoria sea independiente del tamaño del objeto, sobre lo que hay que tener en cuenta que la gran mayoría de los sistemas de predicción de trayectorias conocidos basados en sensores se han desarrollado pensando en su uso para el golf, donde la relación radio del objeto-velocidad es muy pequeña. Estos sistemas resultan limitados para deportes de balón, como puedan ser el fútbol o el baloncesto, donde la misma relación es notablemente mayor, lo que provocaría grandes errores de predicción en el caso de ser utilizados. Ninguno de los sistemas conocidos mide velocidades a partir de la lectura del tiempo de oscuridad o de obturación de los sensores, ni a partir del tiempo de desfase entre la obturación de un grupo de sensores.On the other hand, there are numerous systems that are based on the measurement in the information obtained from the interference of the object between a transmitter and a receiver (be it of the type that is, optical, ultrasound, etc.), however all these systems obtain the information by measuring the time elapsed from a zero (launch) position to interference with a second sensor. In addition, all existing systems limit their scope to spherical objects, none of them contemplating the possibility of analyzing objects with other geometries, such as a rugby ball, a javelin, an arrow or a hammer among others ( all of them olympic sports). It is desirable that the measurement of the trajectory be independent of the size of the object, on which it is necessary to take into account that the great majority of the systems of prediction of known trajectories based on sensors are They have developed thinking about its use for golf, where the object-speed radius ratio is very small. These systems are limited for ball sports, such as football or basketball, where the same ratio is markedly greater, which would cause large prediction errors in the case of being used. None of the known systems measure speeds from the reading of the dark time or the shutter of the sensors, nor from the lag time between the shutter of a group of sensors.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
El método y el dispositivo objeto de la invención obtiene la información a partir de sensores, y no por procesado de imagen, y además no exige la instalación de ningún sensor en la posición cero o inicial y tampoco obtiene la información como las técnicas conocidas, sino que lo hace a partir del tiempo de desfase en la obturación de los sensores y del tiempo de obturación o eclipsado de estos.The method and the device object of the invention obtains the information from sensors, and not by image processing, and also does not require the installation of any sensor in the zero or initial position and also does not obtain the information as known techniques, but which does it from the time of lag in the shutter of the sensors and the time of shutter or eclipsed of these.
Una de las principales novedades de la invención frente a las técnicas conocidas radica en la forma de obtener la información sobre el movimiento del o de los objetos, lo que origina que el procesado posterior y el hardware sean completamente distintos respecto a los conocidos. El sistema registra como información útil el intervalo de tiempo transcurrido entre la activación de cada sensor, su desfase de tiempo con respecto al primer sensor activado. El objeto interfiere a la vez varios sensores, lo que permite al sistema la utilización de los desfases en la activación y desactivación entre sensores próximos, para determinar los parámetros de movimiento.One of the main novelties of the invention against known techniques lies in the way of obtaining information about the movement of the object (s), which causes the subsequent processing and hardware to be completely different from those known. The system records as useful information the time interval elapsed between the activation of each sensor, its time lag with respect to the first activated sensor. The object interferes with several sensors at the same time, which allows the system to use the lags in the activation and deactivation between nearby sensors, to determine the movement parameters.
Esta novedosa forma de proceder permite aumentar la precisión de la medida con independencia del tamaño y forma del objeto que lo atraviesa, si bien en lo que se refiere al cálculo de trayectorias es necesario el conocimiento de algunos criterios de la geometría del cuerpo (p.ej: si es esférico o no, no siendo necesario conocer el tamaño del objeto).This novel way of proceeding makes it possible to increase the accuracy of the measurement regardless of the size and shape of the object that crosses it, although in regard to the calculation of trajectories it is necessary to know some criteria of the geometry of the body (p. ex: if it is spherical or not, not being necessary to know the size of the object).
Está independencia del tamaño resulta especialmente diferenciadora si tenemos en cuenta que la gran mayoría de los sistemas de predicción de trayectorias basados en sensores se han desarrollado pensando en su uso para el golf, donde la relación radio del objeto-velocidad es muy pequeña.This independence of size is especially differentiating if we take into account that the vast majority of sensor-based trajectory prediction systems have been developed thinking about their use for golf, where the object-velocity radius ratio is very small.
Otra característica fundamental de la invención que la diferencia de sistemas conocidos, es su carácter modular. En este sentido el dispositivo objeto de la invención puede instalarse usando una o varias parrillas de sensores y receptores. Cuanto mayor sea el número de parrillas que incluya el sistema, mayor será la información obtenida del disparo y de la evolución de este. Como se sabe, en objetos esféricos (como un balón de fútbol) la aparición de turbulencias a lo largo del "vuelo" y el efecto de otros factores como viento, presión atmosférica, temperatura y demás factores, tienen un efecto sobre y durante el movimiento del objeto.Another fundamental characteristic of the invention that the difference of known systems is its modular nature. In this sense, the device object of the invention can be installed using one or more grills of sensors and receivers. The greater the number of grills included in the system, the greater the information obtained from the shot and its evolution. As is known, in spherical objects (such as a soccer ball) the appearance of turbulence along the "flight" and the effect of other factors such as wind, atmospheric pressure, temperature and other factors, have an effect on and during the movement of the object.
Los emisores y receptores se ubican dejando un espacio a través del cual deben hacerse pasar los objetos a medir, pudiéndose colocar dichos emisores y receptores en un número mayor o menor y a una distancia más o menos cercana en función del objeto y de la precisión que se desee obtener.The emitters and receivers are located leaving a space through which the objects to be measured must be passed, being able to place said emitters and receivers in a greater or lesser number and at a more or less close distance depending on the object and the precision that is want to get.
Los objetos pueden interferir en varios sensores próximos a la vez, y se almacenan los datos de inicio de interferencia, final de la misma y duración. El sistema a partir de los datos de interferencia de los sensores próximos reconstruye el movimiento del objeto en esa región del espacio y calcula matemáticamente los parámetros cinemáticos propios de esa evolución.Objects can interfere with several nearby sensors at the same time, and the interference start, end and duration data are stored. The system, based on the interference data of the nearby sensors, reconstructs the movement of the object in that region of space and mathematically calculates the kinematic parameters of that evolution.
La invención permite obtener, en el caso de objetos de geometría conocida, parámetros cinemáticos, tales como velocidad, dirección, aceleración y espín (rotación sobre sí mismo), teniendo como una de sus principales aplicaciones su uso para un sistema de entrenamiento de deportes en los que intervenga un balón, pudiéndose emplear también en otro tipo de aplicaciones, como, por ejemplo, las propias del sector del entretenimiento (máquinas recreativas, ordenadores, consolas, etc.).The invention allows to obtain, in the case of objects of known geometry, kinematic parameters, such as speed, direction, acceleration and spin (rotation on itself), having as one of its main applications its use for a sports training system in which a ball intervenes, and can also be used in other types of applications, such as those of the entertainment sector (recreational machines, computers, consoles, etc.).
De este modo uno de los aspectos de la invención se refiere a un método para la medición de trayectorias, la velocidad, aceleración, dirección y rotación de objetos de geometría conocida, que comprende ubicar un grupo de sensores en una disposición espacial conocida y hacer pasar el objeto del que se desea medir su trayectoria por la proximidad de dichos sensores de modo que interfiera en los mismos, es decir de modo que dichos sensores puedan detectar la presencia de dicho objeto. Durante el desplazamiento del objeto se registra el tiempo transcurrido entre la activación del primero y del resto de los sensores interferidos, el desfase entre la activación de los distintos sensores y la secuencia de la activación de sensores.Thus one of the aspects of the invention relates to a method for measuring trajectories, speed, acceleration, direction and rotation of objects of known geometry, which comprises locating a group of sensors in a known spatial arrangement and passing the object of which it is desired to measure its trajectory by the proximity of said sensors so as to interfere with them, that is to say that said sensors can detect the presence of said object. During the movement of the object, the time elapsed between the activation of the first and the rest of the interfered sensors is recorded, the lag between the activation of the different sensors and the sequence of the sensor activation.
En la presente invención, el término trayectoria se emplea incluyendo la velocidad del objeto, aceleración, rotación eje de rotación y giro del eje de rotación del objeto.In the present invention, the term trajectory is used including the speed of the object, acceleration, rotation axis of rotation and rotation of the axis of rotation of the object.
Los sensores pueden situarse de manera alineada y ubicados en un mismo plano, con objeto de simplificar el análisis matemático de los datos obtenidos. Alternativamente los sensores pueden situarse de manera no-alineada en más de un plano paralelo.The sensors can be placed in an aligned manner and located in the same plane, in order to simplify the mathematical analysis of the data obtained. Alternatively the sensors can be positioned non-aligned in more than one parallel plane.
Cada sensor puede estar compuesto por un emisor y un receptor enfrentados, definiendo una región intermedia entre sí por la que se hace pasar transversalmente el objeto. También se pueden utilizar sensores compuestos por un emisor y en un receptor formando una misma unidad, en cuyo caso el sensor es capaz de medir la distancia al objeto cuando éste interfiere dicho sensor.Each sensor may consist of a transmitter and a receiver facing each other, defining an intermediate region between them through which the object is passed transversely. You can also use sensors composed of a transmitter and a receiver forming the same unit, in which case the sensor is able to measure the distance to the object when it interferes with that sensor.
El método de la invención prevé la ubicación de al menos dos grupos de sensores en un mismo plano compartiendo su región intermedia, de modo que definen una malla de interferencia para el paso del objeto. Dicha malla de interferencia, debe entenderse como una malla imaginaría de las líneas de interferencia en las que cada respectivo sensor puede detectar la presencia de un objeto. Alternativamente en el método se puede generar al menos dos mallas de interferencia dispuestas de forma paralela entre sí, con objeto de poder calcular el spín del objeto y aumentar la precisión de la medida ya que se obtiene más información del desplazamiento del objeto. Alternativamente, el spín y la aceleración del objeto se puede calcular con una sola malla, registrando los datos del instante de entrada en la malla "instante de entrada y tiempos de desfase de activación entre sensores", y utilizar los datos de salida de la malla "instante de recuperación de la comunicación entre emisor y receptor de cada sensor y desfase entre sensores", como si fuesen los datos de una segunda malla.The method of the invention provides for the location of at least two groups of sensors in the same plane sharing their intermediate region, so that they define an interference mesh for the passage of the object. Said interference mesh should be understood as an imaginary mesh of the interference lines in which each respective sensor can detect the presence of an object. Alternatively, at least two interference meshes arranged parallel to each other can be generated in the method, in order to be able to calculate the spin of the object and increase the accuracy of the measurement since more information is obtained on the displacement of the object. Alternatively, the spin and acceleration of the object can be calculated with a single mesh, recording the data of the moment of entry in the mesh "time of entry and lag time of activation between sensors", and using the output data of the mesh "instant of recovery of the communication between sender and receiver of each sensor and offset between sensors", as if they were the data of a second mesh.
La información obtenida de la interferencia de los sensores de cada malla existente, es enviada a medios electrónicos programables donde es registrada y procesada digitalmente, para obtener la velocidad, aceleración, dirección y rotación del objeto. El procesado digital incluye un análisis matemático de los datos obtenidos por los sensores y en el que se considera la ubicación de los mismos, y en el cual se plantea y se resuelve un sistema de ecuaciones de manera conocida por un experto en la materia. En el método se mide los componentes de la trayectoria del objeto a partir de los datos obtenidos de los sensores, midiendo el instante y la coordenada X, Y, y Z del objeto en un mínimo de 4 puntos de la superficie del objeto, siempre y cuando dichos puntos no estén alineados entre sí.The information obtained from the interference of the sensors of each existing mesh, is sent to programmable electronic media where it is recorded and processed digitally, to obtain the speed, acceleration, direction and rotation of the object. The digital processing includes a mathematical analysis of the data obtained by the sensors and in which their location is considered, and in which a system of equations is raised and solved in a manner known to a person skilled in the art. In the method, the components of the object's trajectory are measured from the data obtained from the sensors, measuring the moment and coordinate X, Y, and Z of the object at a minimum of 4 points on the surface of the object, provided when these points are not aligned with each other.
La determinación de los parámetros de movimiento del objeto que atraviesa la malla se basa en el conocimiento previo de la geometría del objeto.The determination of the parameters of movement of the object that crosses the mesh is based on prior knowledge of the geometry of the object.
Se debe disponer de un modelo matemático que describa la geometría del objeto del que se desee medir su trayectoria. De los datos de los tiempos de interferencia así como de las geometrías de la malla y del objeto se obtienen los datos necesarios para la obtención de los parámetros cinemáticos.You must have a mathematical model that describes the geometry of the object from which you want to measure its trajectory. From interference time data as well as the geometries of the mesh and the object, the necessary data for obtaining the kinematic parameters are obtained.
Usando los modelos del objeto y la malla de sensores se obtiene un modelo del movimiento del objeto dentro de (al atravesar) la malla, lo que se traduce en un sistema de ecuaciones que será tanto más complejo cómo lo sean los modelos de la malla y del objeto. Dicho sistema de ecuaciones se resuelve a partir de la lectura de la posición relativa de las interferencias, su secuencia, su tiempo, y la variación de dichas lecturas en una primera y una segunda malla. De ésta forma, conociendo los tiempos de interferencia con los sensores se puede conocer la velocidad del objeto resolviendo el sistema de ecuaciones.Using the object models and the sensor mesh, a model of the movement of the object within (when passing through) the mesh is obtained, which translates into a system of equations that will be as complex as the mesh models and of the object. Said system of equations is solved from the reading of the relative position of the interferences, their sequence, their time, and the variation of said readings in a first and a second mesh. In this way, knowing the interference times with the sensors, the speed of the object can be known by solving the system of equations.
La complejidad del modelo matemático que describe el movimiento del objeto dentro de la malla, genera un sistema de ecuaciones simultáneas en que se traduce dicho modelo, que pueden ser resueltos por procedimientos diversos.The complexity of the mathematical model that describes the movement of the object within the mesh, generates a system of simultaneous equations in which said model is translated, which can be solved by diverse procedures.
Entre ellos el uso de métodos numéricos iterativos de aproximación de la solución ha sido implementado y mostrado su eficacia. En general, es posible usar cualquier método numérico de aproximación iterativo capaz de resolver sistemas de ecuaciones simultáneas de grado mayor o igual que 2 (ésta restricción depende del modelo en cuestión), aunque es aconsejable que garantice la convergencia hacia la solución. Para objetos de geometría simple es suficiente el uso de métodos como el de punto fijo o Newton-Raphson.Among them the use of iterative numerical methods of approximation of the solution has been implemented and shown its effectiveness. In general, it is possible to use any numerical method of iterative approximation capable of solving systems of simultaneous equations of degree greater than or equal to 2 (this restriction depends on the model in question), although it is advisable to guarantee convergence towards the solution. For simple geometry objects, the use of methods such as fixed point or Newton-Raphson is sufficient.
Para la detección de los componentes principales es necesario el muestreo con una sola malla de interferencia, y se calcula el vector de velocidad y dirección. Los datos se pueden tomar de dos maneras, o bien se mide únicamente los instantes de entrada en la malla y los desfases de activación entre los sensores, o se mide los tiempos que se mantienen obturados los sensores. Alternativamente se puede hacer pasar a la vez más de un objeto con geometría conocida, interfiriendo los sensores. Otro aspecto de la invención se refiere a un dispositivo para la medición de trayectorias, la velocidad, aceleración, dirección y rotación de objetos de geometría conocida, que comprende al menos un grupo de sensores situados en puntos conocidos, donde cada sensor está compuesto por un emisor y un receptor enfrentados definiendo una región intermedia entre sí para el paso del objeto.For the detection of the main components, sampling with a single interference mesh is necessary, and the velocity and direction vector is calculated. The data can be taken in two ways, either the moments of entry into the mesh and the lags of activation between the sensors are measured only, or the times that the sensors remain sealed are measured. Alternatively, more than one object with known geometry can be passed at the same time, interfering with the sensors. Another aspect of the invention relates to a device for measuring trajectories, speed, acceleration, direction and rotation of objects of known geometry, comprising at least one group of sensors located at known points, where each sensor is composed of a sender and receiver facing each other defining an intermediate region with each other for the passage of the object.
Preferentemente, tanto los emisores como los receptores de un mismo grupo de sensores se ubican en un mismo plano. Dos grupos de sensores se pueden disponer en un mismo plano compartiendo su región intermedia, de modo que definan una malla de interferencia para el paso transversal del objeto. Los emisores y los receptores de un mismo grupo de sensores están soportados por un bastidor fijo en el que se sitúan de forma enfrentada, pudiéndose disponer de más de un bastidor dispuestos de forma paralela entre sí.Preferably, both the emitters and the receivers of the same group of sensors are located in the same plane. Two groups of sensors can be arranged in the same plane sharing their intermediate region, so that they define an interference mesh for the transverse passage of the object. The emitters and receivers of the same group of sensors are supported by a fixed frame in which they are located facing each other, with more than one frame arranged parallel to each other.
La malla de interferencia puede tener cualquier configuración, ya sea ortogonal u oblicua, aunque es preferida una malla ortogonal por la sencillez de los cálculos posteriores. La malla permite conocer la evolución de cuatro puntos xyz conocidos del espacio o dicho de otro modo de la evolución de un "eclipse"The interference mesh can have any configuration, either orthogonal or oblique, although an orthogonal mesh is preferred because of the simplicity of subsequent calculations. The mesh allows to know the evolution of four known xyz points of space or in other words the evolution of an "eclipse"
El dispositivo de la invención dispone de medios electrónicos programables que comprenden un módulo de almacenamiento de la información relativa a la interferencia de los sensores, y un módulo de procesado para tratar la información grabada en el módulo de almacenamiento. Los sensores están conectados eléctricamente con dichos medios electrónicos programables, de modo que estos medios registran las señales eléctricas procedentes de dichos sensores.The device of the invention has programmable electronic means comprising a module for storing the information related to the interference of the sensors, and a processing module for processing the information recorded in the storage module. The sensors are electrically connected with said programmable electronic means, so that these means record the electrical signals from said sensors.
DESCRIPCIÓN DE LOS DIBUJOS Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:DESCRIPTION OF THE DRAWINGS To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. For illustrative purposes and not limitation, the following has been represented:
La figura 1.- muestra una secuencia en perspectiva de un objeto esférico atravesando la malla de interferencia creada en un bastidor, la figura 3a justo antes de entrar en la malla, la figura 3b una vez iniciada su interferencia y la figura 3c cuando la mayor parte del objeto ya ha pasado por la malla.Figure 1 shows a sequence in perspective of a spherical object through the interference mesh created in a frame, Figure 3a just before entering the mesh, Figure 3b once its interference has begun and Figure 3c when the largest part of the object has already passed through the mesh.
La figura 2.- muestra la evolución de la interferencia de un objeto esférico sobre una malla en instantes consecutivos. La figura 2a en una vista en perspectiva y la figura 2b en una vista en planta.Figure 2 shows the evolution of the interference of a spherical object on a mesh in consecutive moments. Figure 2a in a perspective view and Figure 2b in a plan view.
La figura 3.- muestra en alzado frontal, en la figura 3a un bastidor hexagonal con una malla de interferencia ortogonal, y en la figura 3b un bastidor cuadrado con una malla de interferencia oblicua. La figura 4.- muestra una esquemáticamente los bloques que componen el dispositivo de la invención.Figure 3.- shows in front elevation, in figure 3a a hexagonal frame with an orthogonal interference mesh, and in figure 3b a square frame with an oblique interference mesh. Figure 4.- shows schematically the blocks that make up the device of the invention.
La figura 5.- muestra un organigrama de la operativa de la invención. La figura 6.- muestra una representación esquemática de una aplicación práctica de la invención en un equipo de entrenamiento de disparo de un balón de fútbol. La flecha indica la dirección de disparo del objeto.Figure 5 shows a flow chart of the operation of the invention. Figure 6 shows a schematic representation of a practical application of the invention in a training equipment for shooting a soccer ball. The arrow indicates the firing direction of the object.
La figura 7.- muestra una representación similar a la de la figura anterior pero aplicada al entrenamiento del baloncesto, y en el que los bastidores no están dispuestos a la misma altura. REALIZACIÓN PREFERENTE DE LA INVENCIÓNFigure 7 shows a representation similar to that of the previous figure but applied to basketball training, and in which the racks are not arranged at the same height. PREFERRED EMBODIMENT OF THE INVENTION
En la figura 1 puede observarse la secuencia de paso de un objeto de geometría conocida (1), en este caso una esfera, a través de una malla de interferencia (3) ortogonal creada en un bastidor (2). Se puede apreciar en esta figura que la malla de interferencia (3) está formada por un entramado de líneas imaginarias representativas de las líneas que unen un emisor con su correspondiente emisor, pertenecientes a un mismo sensor.In figure 1 the sequence of passage of an object of known geometry (1), in this case a sphere, through an orthogonal interference mesh (3) created in a frame (2) can be observed. It can be seen in this figure that the interference mesh (3) is formed by a network of imaginary lines representative of the lines that connect a transmitter with its corresponding transmitter, belonging to the same sensor.
La figura 3a muestra un bastidor (2) hexagonal en el que se forma una malla de interferencia (3) ortogonal que cubre todo el área interna delimitada por el bastidor (2). El bastidor (2) de la figura 3b representa un bastidor (2) de cuatro lados y una malla (3) oblicua. Cada una de las líneas que forma parte de la malla de interferencia (3) corresponde a un sensor y va desde el emisor al receptor asociado.Figure 3a shows a hexagonal frame (2) in which an orthogonal interference mesh (3) is formed covering the entire internal area delimited by the frame (2). The frame (2) of Figure 3b represents a four-sided frame (2) and an oblique mesh (3). Each of the lines that is part of the interference mesh (3) corresponds to a sensor and goes from the emitter to the associated receiver.
Se puede apreciar como los sensores se disponen en un mismo plano, el correspondiente al bastidor, y como los emisores y receptores se encuentran alineados. El experto en la materia entenderá que cualquier otra forma bastidor puede ser posible dentro de la presente invención, como por ejemplo cualquier forma poligonal, formas circulares o elípticas, incluso cuerpos tubulares en los que los sensores se dispongan en diversos puntos del mismo y en diversos planos tangenciales a dicho cuerpo tubular.It can be seen how the sensors are arranged in the same plane, the one corresponding to the frame, and how the emitters and receivers are aligned. The person skilled in the art will understand that any other frame form may be possible within the present invention, such as any polygonal shape, circular or elliptical shapes, even tubular bodies in which the sensors are arranged at various points thereof and in various tangential planes to said tubular body.
Lógicamente, las medidas del bastidor (2) así como la separación entre sensores es conocida. En concreto en esta realización preferente, cuando el objeto (1 ) es una esfera, la separación entre sensores de un mismo grupo es de 1/5 del diámetro de la esfera. Cuando el objeto es un elipsoide, la separación entre sensores de un mismo grupo es de 1/5 del diámetro menor del objeto. El diagrama de la figura 4 representa los módulos que componen el dispositivo de la invención, que está constituido por un grupo de sensores (4) compuestos por una serie de emisores (9) y unos receptores (10) que definen una región de interferencia (11) entre sí. Puede apreciarse en el bloque 4 como cada emisor (representado por una flecha) queda enfrentado con su correspondiente receptor (representado por un rectángulo). Disponiendo al menos dos grupos de sensores como el representado en el bloque 4 en un mismo plano, y haciendo que sus regiones de interferencia (11 ) coincidan, se genera una malla de interferenciaLogically, the measurements of the frame (2) as well as the separation between sensors is known. Specifically in this preferred embodiment, when the object (1) is a sphere, the separation between sensors of the same group is 1/5 of the diameter of the sphere. When the object is an ellipsoid, the separation between sensors of the same group is 1/5 of the smaller diameter of the object. The diagram of Figure 4 represents the modules that make up the device of the invention, which is constituted by a group of sensors (4) composed of a series of emitters (9) and receivers (10) that define a interference region (11) with each other. It can be seen in block 4 how each emitter (represented by an arrow) is faced with its corresponding receiver (represented by a rectangle). By arranging at least two groups of sensors as shown in block 4 in the same plane, and making their interference regions (11) coincide, an interference mesh is generated
(3).(3).
El dispositivo se comprende además un módulo de almacenamiento (5) de la información obtenida por los emisores, un módulo de procesado (6) de la información almacenada, un interfaz de usuario (7), y diversos accesorios (8) como puede ser una cámara digital, alarmas visuales o sonoras (no representados) etc. Los módulos (5-6) pueden implementarse mediante cualquier tipo de medio electrónico programable (12), como por ejemplo un FPGA o un ordenador personal PC. La interfaz de usuario (7) puede ser por ejemplo una pantalla de un ordenador en la que se presenta los resultados obtenidos del lanzamiento y/o la grabación de la cámara de video destinada a captar el movimiento del jugador durante el lanzamiento.The device also comprises a storage module (5) of the information obtained by the transmitters, a processing module (6) of the stored information, a user interface (7), and various accessories (8) such as a digital camera, visual or audible alarms (not shown) etc. The modules (5-6) can be implemented by any type of programmable electronic medium (12), such as an FPGA or a PC personal computer. The user interface (7) can be for example a screen of a computer in which the results obtained from the launch and / or the recording of the video camera intended to capture the movement of the player during the launch are presented.
La FPGA (dispositivo hardware reprogramable de dimensiones reducidas) se programa, bien para recoger los datos de los sensores, resolver el sistema de ecuaciones que modela el movimiento del objeto en la malla y enviar los resultados a un PC o bien, simplemente, para recoger los datos de los sensores y enviarlos al PC dejando en manos de éste la tarea de resolución del sistema de ecuaciones.The FPGA (reprogrammable hardware device of reduced dimensions) is programmed, either to collect the sensor data, to solve the system of equations that models the movement of the object in the mesh and to send the results to a PC or, simply, to collect the sensor data and send it to the PC leaving the task of solving the system of equations to the PC.
En la figura 5 se muestra el proceso de operación de la invención, que se inicia con el lanzamiento (16) del objeto (1 ), y su interferencia (17) en la primera malla de sensores. Las fases secuenciales que a su vez componen este bloque 17 son las siguientes: 17.1.- interferencia con el primer sensor, puesta en marcha del reloj e identificación del primer sensor. 17.2 .- interferencia con el segundo sensor, y almacenamiento del tiempo desde la obturación del primero y la identificación del sensor. 17.3.- interferencia con el tercer sensor, y almacenamiento del tiempo desde la obtuación del primero, e identificación del sensor. 17.4.- interferencia con el cuarto sensor y almacenamiento del tiempo desde la obtuación del primero y la identificación del sensor. 17.5.- repetir el proceso hasta el último sensor.Figure 5 shows the operation process of the invention, which starts with the launch (16) of the object (1), and its interference (17) in the first sensor mesh. The sequential phases that in turn make up this block 17 are the following: 17.1.- interference with the first sensor, start-up of the clock and identification of the first sensor. 17.2 .- interference with the second sensor, and storage of time since the first shutter and the sensor identification. 17.3.- interference with the third sensor, and storage of the time since obtaining the first, and identification of the sensor. 17.4.- interference with the fourth sensor and time storage since the first was obtained and the sensor identification. 17.5.- repeat the process until the last sensor.
Posteriormente a este registro de datos procedentes de los sensores, se realiza un almacenamiento (18) de la matriz de coordenadas y tiempos en una memoria temporal. A continuación se procesa y calcula (19) los componentes de dirección y velocidad del objeto (1 ). El proceso comprueba en el bloque (20) si existen más mallas de sensores, y en caso afirmativo repite las fases descritas para el bloque (17) para cada malla existente. Para cada malla se procesa y calcula (22) los componentes de dirección y velocidad del objeto. Finalmente en función de si el dispositivo dispone de un sistema de grabación de video, bloque (23), se presenta solamente el resultado de la medición en el bloque (24), o se muestra el resultado de la medición y video del lanzamiento en el bloque (25).Subsequent to this recording of data from the sensors, a storage (18) of the coordinate and time matrix is performed in a temporary memory. The direction and velocity components of the object (1) are then processed and calculated (19). The process checks in the block (20) if there are more sensor meshes, and if so, repeats the phases described for the block (17) for each existing mesh. For each mesh, the direction and velocity components of the object are processed and calculated (22). Finally, depending on whether the device has a video recording system, block (23), only the measurement result is presented in the block (24), or the measurement and video result of the launch is shown in the block (25).
El objeto (1) al atravesar una malla (3) de sensores, y a medida que atraviesa la malla, va "obturándolos". Cuando un objeto (supongamos una esfera) tapa el primer sensor, este marca el instante TOxy. A medida que la esfera va entrando en la malla, va obturando más sensores, midiéndose el instante en el que se van obturando. Cuando la esfera esta en la "fase de salida de la malla" los sensores, de nuevo, van volviéndose a activar, hasta que, finalmente, cuando ha acabado de atravesar la malla, todos han recuperado su comunicación. La mediación de los tiempos de "oscuridad de cada unos de ellos" así como del desfase (es decir el retraso en el instante de obturación de unos con respecto a otros), es la información que se procesa para averiguar la velocidad y ángulo de entrada y salida. Dado que se debe de conocer "a priori" la geometría del objeto que estamos midiendo, las diferencias de tiempo permiten calcular el vector velocidad del objeto.The object (1) when crossing a mesh (3) of sensors, and as it passes through the mesh, it is "chipping" them. When an object (suppose a sphere) covers the first sensor, it marks the instant TOxy. As the sphere enters the mesh, it seals more sensors, measuring the moment in which they are sealed. When the sphere is in the "exit phase of the mesh" the sensors, again, are reactivated, until, finally, when it has finished crossing the mesh, all have regained their communication. The mediation of the times of "darkness of each one of them" as well as the lag (ie the delay in the instant of shutter of some with respect to others), is the information that is processed to find out the speed and angle of entry and exit. Since the object geometry must be known "a priori" that we are measuring, time differences allow us to calculate the velocity vector of the object.
La instalación de una segunda malla, paralela a la anterior y cercana a esta, permite realizar una segunda lectura del vector velocidad, a partir de la cual, se obtiene, mediante aproximaciones matemáticas el SPIN o velocidad de giro del objeto.The installation of a second mesh, parallel to the previous one and close to it, allows a second reading of the velocity vector to be made, from which, the SPIN or speed of rotation of the object is obtained by mathematical approximations.
Además, en el sistema propuesto el objeto obtura, y debe obturar, varios sensores al atravesar la malla, obteniendo información útil desde que el objeto intersecta el primer sensor, hasta que atraviesa completamente la malla. El numero de sensores y su separación son proporcionales al tamaño del objeto que se desee medir, debiendo diseñarse de manera que el objeto a medir interfiera un mínimo de 2 sensores (no obstante, el sistema se debe fabricar de manera que el objeto a medir interfiera 4 o 5 sensores, por tanto la separación de los sensores es el valor del Diámetro/5, o, en el caso de objetos como un balón de rugby el Diámetro Menor/5).In addition, in the proposed system the shutter object, and must seal, several sensors when crossing the mesh, obtaining useful information from when the object intersects the first sensor, until it completely crosses the mesh. The number of sensors and their separation are proportional to the size of the object to be measured, and must be designed so that the object to be measured interferes with a minimum of 2 sensors (however, the system must be manufactured so that the object to be measured interferes 4 or 5 sensors, therefore the separation of the sensors is the value of the Diameter / 5, or, in the case of objects such as a rugby ball the Minor Diameter / 5).
A partir de la información de la localización de los sectores intersectados, así como de los "tiempos de oscuridad", mediante un complejo sistema de ecuaciones, el sistema es capaz de obtener los parámetros cinemáticos del objeto. Por tanto, no resulta necesario ese sensor inicial en el punto de lanzamiento, utilizado por otros sistemas. El modelo matemático para el caso particular de un objeto esférico, plantea un sistema de ecuaciones por cada vector de sensores de la malla. Una vez resueltos esos sistemas, se acoplan los valores obtenidos de modo que se obtiene la posición del objeto al atravesar la malla, así como su vector velocidad.From the information of the location of the intersected sectors, as well as the "dark times", through a complex system of equations, the system is able to obtain the kinematic parameters of the object. Therefore, it is not necessary that initial sensor at the launch point, used by other systems. The mathematical model for the particular case of a spherical object, raises a system of equations for each vector of sensors in the mesh. Once these systems are resolved, the values obtained are coupled so that the position of the object is obtained when crossing the mesh, as well as its velocity vector.
La trayectoria de la esfera al atravesar la malla esta completamente definida con el modelo siguiente: X0XD¿=r2 Xx 2 + [H(-n0) + D + Ay0l]2 = r2 X2 + [H(n2-n0) + D + Ay02]2 = r2 X3 2 + [H(n3-n0) + D + Ay03f = r2 X4 2 + [H(n4-n0) + D + Ay04]2 = r2 The trajectory of the sphere when crossing the mesh is completely defined with the following model: X 0 XD ¿ = r 2 X x 2 + [H ( -n 0 ) + D + Ay 0l ] 2 = r 2 X 2 + [H (n 2 -n 0 ) + D + Ay 02 ] 2 = r 2 X 3 2 + [H (n 3 -n 0 ) + D + Ay 03 f = r 2 X 4 2 + [H (n 4 -n 0 ) + D + Ay 04 ] 2 = r 2
Donde: - "X„" es la distancia entre el centro del objeto esférico y el plano de la malla. '©"representa la distancia entre el centro del objeto esférico y un plano perpendicular a la malla que contiene al haz del primer sensor cortado por el objeto. "H"es la distancia entre los sensores. - "nn" es el número del sensor que es activado - "r" es el radio de la esfera - " Aynm " es el desplazamiento del centro de la esfera en el eje y, en el tiempo transcurrido entre el instante que el objeto intersectó el objeto "n" y el instante en que el objeto intersectó el objeto m.Where: - "X" is the distance between the center of the spherical object and the plane of the mesh. '© "represents the distance between the center of the spherical object and a plane perpendicular to the mesh that contains the beam of the first sensor cut by the object." H "is the distance between the sensors. -" n n "is the number of the sensor that is activated - "r" is the radius of the sphere - "Ay nm " is the displacement of the center of the sphere on the axis and, in the time elapsed between the moment the object intersected the object "n" and the instant the object intersected the object m.
Escribiendo el modelo en función de las velocidades tenemos:Writing the model according to the speeds we have:
VxAt0l = Jr2-[H(nx-n0) + D + VyAt - Vr2-Z)2 V x At 0l = Jr 2 - [H (n x -n 0 ) + D + V and At - Vr 2 -Z) 2
VxAtQ2 = r2-[H(n2-n0) + D + VyAt02f - Vr2 -D2 VxAt03 = r2-[H(n3-n0) + D + VyAt03f - Vr2 -D2 VxAtM
Figure imgf000016_0001
V x At Q2 = r 2 - [H (n 2 -n 0 ) + D + V and At 02 f - Vr 2 -D 2 V x At 03 = r 2 - [H (n 3 -n 0 ) + D + V and At 03 f - Vr 2 -D 2 V x At M
Figure imgf000016_0001
Como las incógnitas son cuatro (Vx, Vy, D y r), hace falta que el objeto esférico active, al menos, cinco sensores, lo que se consigue si el diámetro del objeto es mayor a 5H. En el caso de que el radio del objeto sea conocido, solo haría falta que el objeto intersectara cuatro sensores (diámetro del objeto mayor a 4-H).Since there are four unknowns (V x , V y , D yr), the spherical object must activate at least five sensors, which is achieved if the diameter of the object is greater than 5H. In the event that the object's radius is known, it would only be necessary for the object to intersect four sensors (object diameter greater than 4-H).
Si tenemos en cuenta que también se pueden obtener ecuaciones de salida, podríamos reducir el número de sensores necesarios.If we take into account that output equations can also be obtained, we could reduce the number of sensors needed.
Para calcular el espín hace falta una segunda maya situada a una cierta distancia de la primera, obteniéndose el espín a partir de las posiciones y los vectores de velocidad asociados a la primera y a la segunda maya. En las figuras 6 y 7 se aprecia como se puede disponer de dos o más bastidores (2) situados de forma paralela, es decir se puede disponer de diversas mallas de interferencia (3) situadas de forma paralela, bien con el centro de cada bastidor (2) a la misma altura como el caso de la figura 6 o a distintas alturas como el caso de la figura 7. En la figura 6 se ha representado una portería de fútbol (13) y en la figura 7 se ha representado una canasta de baloncesto (14). Un jugador (15) en movimiento ha sido representado en ambas figuras.In order to calculate the spin, a second Maya located at a certain distance from the first is necessary, obtaining the spin from the positions and velocity vectors associated with the first and second Maya. In figures 6 and 7 it can be seen how two or more frames (2) are placed in parallel, that is to say, several interference meshes (3) can be arranged in parallel, either with the center of each frame (2) at the same height as the case of figure 6 or at different heights as the case of figure 7. In figure 6 a soccer goal (13) has been represented and in figure 7 a basket of Basketball (14). A player (15) in motion has been represented in both figures.
El objeto (1 ) puede consistir en cualquier cuerpo con simetría deThe object (1) can consist of any body with symmetry of
-revoluGión-Algunos-ejemplos-de-objeto-(-1-)-que-se-pueden emplear en la presente invención son: un balón de fútbol, un balón de rugby, un balón de baloncesto, un balón de balonmano, un balón de voleibol, una pelota de tenis, una pelota de criquet, una pelota de béisbol, una pelota de golf, un proyectil, un martillo, una jabalina, o una esfera de cualquier material y acabado superficial. Alternativamente se podría hacer pasar más de un objeto (1) a la vez a través de la malla de interferencia-revolution-Some-object-examples - (- 1 -) - that can be used in the present invention are: a soccer ball, a rugby ball, a basketball, a handball, a volleyball, a tennis ball, a cricket ball, a baseball, a golf ball, a projectile, a hammer, a javelin, or a sphere of any material and surface finish. Alternatively, more than one object (1) could be passed at a time through the interference mesh
En túneles de viento, la utilización de mallas de interferencia puede ser utilizada, tanto para detectar velocidades de objetos arrastrados por el viento, o vibraciones de objetos fijados. El uso de mallas de interferencia, en uno o varios anillos, mediante el lanzamiento de objetos como "esferas de corcho" permitirían la realización de mediciones indirectas de efectos aerodinámicos o hidrodinámicos. Por lo tanto, en una realización preferente, el dispositivo puede formar parte de un túnel de viento, en cuyo caso el objeto (1 ) es un vehículo, tal y como un avión del que se puede detectar sus vibraciones cuando está sometido a una corriente de viento.In wind tunnels, the use of interference meshes can be used, both to detect speeds of objects carried by the wind, or vibrations of fixed objects. The use of interference meshes, in one or several rings, by throwing objects such as "cork spheres" would allow performing indirect measurements of aerodynamic or hydrodynamic effects. Therefore, in a preferred embodiment, the device can be part of a wind tunnel, in which case the object (1) is a vehicle, such as an airplane from which its vibrations can be detected when subjected to a current of wind.
En el caso de aplicaciones a balística, dado que se trata de objetos de geometría conocida, el sistema puede tener aplicaciones directas en la medición de trayectorias de objetos sin necesidad de que exista contacto, por ejemplo velocidades de disparo de cualquier proyectil.In the case of ballistic applications, since they are objects of known geometry, the system can have direct applications in the measurement of object trajectories without the need for contact, for example firing speeds of any projectile.
También, su utilización en canales o en pasillos podría permitir el conteo de elementos móviles, personas, diferentes tipos de animales como pollos, peces etc.Also, its use in canals or corridors could allow counting of moving elements, people, different types of animals such as chickens, fish etc.
El dispositivo puede utilizar cualquier tipo de sensor que detecte presencia o ausencia de una interferencia, pudiendo incluso realizarse el desarrollo con sistemas digitales de visión. Preferentemente se emplean sensores ópticos. La velocidad de respuesta de los sensores afecta directamente a la precisión. En cuanto más veloz es el objeto que se desee detectar o medir, más rápidos deben ser los sensores de interferencia o la velocidad de adquisición de imágenes (si se realiza con un sistema de visión).The device can use any type of sensor that detects the presence or absence of interference, and can even be developed with digital vision systems. Preferably optical sensors are used. The response speed of the sensors directly affects the accuracy. The faster the object you want to detect or measure, the faster the interference sensors or the image acquisition speed (if done with a vision system).
El dispositivo de la invención es un equipo portátil y modular, valido para interiores y exteriores y que puede obtener la información a partir de una sola malla, dos mallas o más de dos mallas, con la salvedad de que el espin, o velocidad de giro, exige una lectura de un mínimo de dos mallas.The device of the invention is a portable and modular device, valid for interiors and exteriors and that can obtain the information from a single mesh, two meshes or more than two meshes, with the exception that the spin, or speed of rotation , requires a reading of a minimum of two meshes.
A la vista de esta descripción y juego de figuras, el experto en la materia podrá entender que las realizaciones de la invención que se han descrito pueden ser combinadas de múltiples maneras dentro del objeto de la invención. La invención ha sido descrita según algunas realizaciones preferentes de la misma, pero para el experto en la materia resultará evidente que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes sin salir del objeto de la invención reivindicada. In view of this description and set of figures, the person skilled in the art will be able to understand that the embodiments of the invention that have been described can be combined in multiple ways within the scope of the invention. The invention has been described according to some preferred embodiments thereof, but it will be apparent to the person skilled in the art that multiple variations can be introduced in said preferred embodiments without departing from the object of the claimed invention.

Claims

R E I V I N D I C A C I O N E S
1.- Método para la medición de trayectorias, la velocidad, aceleración, dirección y rotación de objetos de geometría conocida, caracterizado porque comprende ubicar un grupo de sensores en una disposición conocida y hacer pasar el objeto del que se desea medir su trayectoria por la proximidad de dichos sensores de modo que interfiera en los mismos, registrándose el tiempo transcurrido entre la activación y desactivación de cada sensor interferido, el desfase entre la activación de los distintos sensores y la secuencia de la activación de sensores.1.- Method for measuring trajectories, speed, acceleration, direction and rotation of objects of known geometry, characterized in that it comprises locating a group of sensors in a known arrangement and passing the object of which it is desired to measure its trajectory through the proximity of said sensors so as to interfere with them, recording the time elapsed between the activation and deactivation of each interfered sensor, the lag between the activation of the different sensors and the sequence of the sensor activation.
2.- Método según la reivindicación 1 caracterizado porque los sensores se sitúan de manera alineada y ubicados en un mismo plano. 2. Method according to claim 1 characterized in that the sensors are positioned aligned and located in the same plane.
3.- Método según la reivindicación 1 caracterizado porque los sensores se sitúan de manera no-alineada en más de un plano.3. Method according to claim 1 characterized in that the sensors are positioned non-aligned in more than one plane.
4.- Método según cualquiera de las reivindicaciones anteriores caracterizado porque cada sensor está compuesto por un emisor y un receptor y porque dicho emisor y receptor se sitúan enfrentados y definiendo una región intermedia entre sí, y porque el objeto se hace pasar transversalmente por dicha región intermedia.4. Method according to any of the preceding claims characterized in that each sensor is composed of a transmitter and a receiver and that said transmitter and receiver are facing each other and defining an intermediate region between each other, and because the object is passed transversely through said region intermediate.
5.- Método según cualquiera de las reivindicaciones 1 a 3 caracterizado porque cada sensor está compuesto por un emisor y en un receptor formando una misma unidad, y porque el sensor mide la distancia al objeto cuando éste interfiere dicho sensor.5. Method according to any of claims 1 to 3 characterized in that each sensor is composed of a transmitter and a receiver forming the same unit, and that the sensor measures the distance to the object when it interferes with said sensor.
6.- Método según cualquiera de las reivindicaciones 1 , 2, 4 o 5 caracterizado porque se ubica al menos dos grupos de sensores en un mismo plano compartiendo su región intermedia, de modo que definen una malla de interferencia para el paso del objeto. 6. Method according to any of claims 1, 2, 4 or 5 characterized in that at least two groups of sensors are located in the same plane sharing their intermediate region, so that they define an interference mesh for the passage of the object.
7.- Método según la reivindicación 6 caracterizado porque se genera al menos dos mallas de interferencia dispuestas de forma paralela entre sí. 7. Method according to claim 6, characterized in that at least two interference meshes are arranged parallel to each other.
8.- Método según cualquiera de las reivindicaciones 6 o 7 caracterizado porque se genera una malla de interferencia ortogonal.8. Method according to any of claims 6 or 7 characterized in that an orthogonal interference mesh is generated.
9.- Método según cualquiera de las reivindicaciones 6 o 7 caracterizado porque se genera una malla de interferencia oblicua.9. Method according to any of claims 6 or 7 characterized in that an oblique interference mesh is generated.
10.- Método según cualquiera de las reivindicaciones anteriores caracterizado porque se hace interferir el objeto en al menos cuatro sensores a la vez. 10. Method according to any of the preceding claims characterized in that the object is interfered with at least four sensors at the same time.
11.- Método según cualquiera de las reivindicaciones anteriores caracterizado porque la información obtenida de la interferencia de los sensores de cada malla existente, se registra en medios electrónicos programables donde es procesada digitalmente, para obtener la velocidad, aceleración, dirección y rotación del objeto.11. Method according to any of the preceding claims characterized in that the information obtained from the interference of the sensors of each existing mesh, is recorded in programmable electronic media where it is digitally processed, to obtain the speed, acceleration, direction and rotation of the object.
12.- Método según la reivindicación 11 caracterizado porque el resultado de dicho proceso digital, es enviado a un medio de presentación gráfica.12. Method according to claim 11, characterized in that the result of said digital process is sent to a graphic presentation medium.
13.- Método según cualquiera de las reivindicaciones anteriores caracterizado porque que mide las componentes de la trayectoria de un objeto de geometría conocida, a partir de los datos obtenidos por un conjunto de sensores que midan el instante y la coordenada X, Y, y Z del objeto en un mínimo de 4 puntos de la superficie del objeto, siempre y cuando dichos puntos no estén alineados entre sí.13. Method according to any of the preceding claims characterized in that it measures the components of the trajectory of an object of known geometry, from the data obtained by a set of sensors that measure the moment and the coordinate X, Y, and Z of the object in a minimum of 4 points of the surface of the object, as long as these points are not aligned with each other.
14.- Método según cualquiera de las reivindicaciones anteriores caracterizado porque el objeto es un cuerpo con simetría de revolución. 14. Method according to any of the preceding claims characterized in that the object is a body with symmetry of revolution.
15.- Método según cualquiera de las reivindicaciones anteriores caracterizado porque el objeto se selecciona entre, un balón de fútbol, un balón de rugby, un balón de baloncesto, un balón de balonmano, un balón de voleibol, una pelota de tenis, una pelota de criquet, una pelota de béisbol, una pelota de golf, un proyectil, un martillo, una jabalina, o una esfera de cualquier material y acabado superficial.15. Method according to any of the preceding claims characterized in that the object is selected from, a soccer ball, a rugby ball, a basketball, a handball, a volleyball, a tennis ball, a ball of cricket, a baseball, a golf ball, a projectile, a hammer, a javelin, or a sphere of any material and surface finish.
16.- Método según cualquiera de las reivindicaciones anteriores caracterizado porque se hace pasar más de un objeto a la vez interfiriendo los sensores.16. Method according to any of the preceding claims characterized in that more than one object is passed at the same time interfering with the sensors.
17.- Dispositivo para la medición de trayectorias, la velocidad, aceleración, dirección y rotación de objetos de geometría conocida, caracterizado porque comprende al menos un grupo de sensores situados en puntos conocidos, donde cada sensor está compuesto por un emisor y un receptor, los cuales están enfrentados definiendo una región intermedia entre sí para el paso del objeto.17.- Device for measuring trajectories, speed, acceleration, direction and rotation of objects of known geometry, characterized in that it comprises at least one group of sensors located at known points, where each sensor is composed of a transmitter and a receiver, which are facing defining an intermediate region with each other for the passage of the object.
18.- Dispositivo según la reivindicación 17 caracterizado porque tanto los emisores como los receptores de un mismo grupo de sensores se ubican en un mismo plano.18. Device according to claim 17 characterized in that both the emitters and the receivers of the same group of sensors are located in the same plane.
19.- Dispositivo según las reivindicaciones 17 o 18 caracterizado porque comprende al menos dos grupos de sensores en un mismo plano compartiendo su región intermedia, de modo que definen una malla de interferencia para el paso transversal del objeto.19. Device according to claims 17 or 18 characterized in that it comprises at least two groups of sensors in the same plane sharing their intermediate region, so that they define an interference mesh for the transverse passage of the object.
20.- Dispositivo según la reivindicación 19 caracterizado porque la malla de interferencia es ortogonal u oblicua.20. Device according to claim 19 characterized in that the interference mesh is orthogonal or oblique.
21.- Dispositivo según cualquiera de las reivindicaciones 17 a 20 caracterizado porque comprende un bastidor y porque los emisores y los receptores de un mismo grupo de sensores están soportados por dicho bastidor en el que se sitúan de forma enfrentada.21. Device according to any of claims 17 to 20 characterized in that it comprises a frame and because the emitters and the receivers of the same group of sensors are supported by said frame in which they are located facing each other.
22.- Dispositivo según la reivindicación 21 caracterizado porque la forma del bastidor es poligonal, o circular, o elipsoide.22. Device according to claim 21 characterized in that the shape of the frame is polygonal, or circular, or ellipsoid.
23.- Dispositivo según la reivindicación 21 o 22 caracterizado porque el bastidor dispone de al menos dos pares de lados paralelos y porque los emisores y receptores de un mismo grupo de sensores se dispone en lados paralelos.23. Device according to claim 21 or 22, characterized in that the frame has at least two pairs of parallel sides and that the emitters and receivers of the same group of sensors are arranged on parallel sides.
24.- Dispositivo según cualquiera de las reivindicaciones 21 a 23 caracterizado porque comprende al menos dos bastidores y dispuestos de forma paralela entre sí. 24. Device according to any of claims 21 to 23, characterized in that it comprises at least two frames and arranged parallel to each other.
25.- Dispositivo según la reivindicación 24 caracterizado porque el centro de cada bastidor se encuentra a la misma altura.25. Device according to claim 24, characterized in that the center of each frame is at the same height.
26.- Dispositivo según la reivindicación 24 caracterizado porque el centro de cada bastidor se encuentran a la distinta altura.26.- Device according to claim 24 characterized in that the center of each frame is at different height.
27.- Dispositivo según la reivindicación 17 caracterizado porque comprende un bastidor de forma tubular y porque los emisores y los receptores de un mismo grupo de sensores están soportados por dicho bastidor en el que se sitúan de forma enfrentada entre sí, y porque los sensores se disponen de más de un plano ortogonal al bastidor.27. Device according to claim 17, characterized in that it comprises a tubular frame and that the emitters and receivers of the same group of sensors are supported by said frame in which they face each other, and because the sensors are They have more than one plane orthogonal to the frame.
28.- Dispositivo según cualquiera de las reivindicaciones 17 a 27 caracterizado porque dispone de medios electrónicos programables que comprenden un módulo de almacenamiento de la información relativa a la interferencia de los sensores, y un módulo de procesado para tratar la información grabada en el módulo de almacenamiento, y porque los sensores están conectados eléctricamente con dichos medios electrónicos programables de modo que estos medios registran las señales eléctricas procedentes de dichos sensores.28. Device according to any of claims 17 to 27 characterized in that it has programmable electronic means comprising a module for storing the information related to the interference of the sensors, and a processing module for processing the information recorded in the module of storage, and because the sensors are electrically connected with said programmable electronic means so that these means record the electrical signals coming from said sensors.
29.- Dispositivo según la reivindicación 28 caracterizado porque forma parte de un equipo de entrenamiento de lanzamiento de un balón por parte de un jugador, y porque dispone de al menos una cámara de video para captar el movimiento del jugador al lanzar el balón.29. Device according to claim 28 characterized in that it is part of a training equipment for throwing a ball by a player, and because it has at least one video camera to capture the movement of the player when throwing the ball.
30.- Dispositivo según la reivindicación 28 caracterizado porque forma parte de un túnel de viento y porque el objeto es un vehículo.30. Device according to claim 28 characterized in that it is part of a wind tunnel and that the object is a vehicle.
31.- Dispositivo según la reivindicación 29 o 30 caracterizado porque dispone de al menos un inferfaz de usuario para la presentación de los resultados obtenidos del módulo de procesado, y de la grabación captada por la cámara de video.31. Device according to claim 29 or 30, characterized in that it has at least one user interface for the presentation of the results obtained from the processing module, and the recording captured by the video camera.
32.- Dispositivo según cualquiera de las reivindicaciones 33 a 34 caracterizado porque los sensores son sensores ópticos. 32.- Device according to any of claims 33 to 34 characterized in that the sensors are optical sensors.
33.- Dispositivo según cualquiera de las reivindicaciones 19 a 32 caracterizado porque el objeto es un cuerpo con simetría de revolución.33. Device according to any of claims 19 to 32 characterized in that the object is a body with revolution symmetry.
34.- Dispositivo según cualquiera de las reivindicaciones 19 a 33 caracterizado porque el objeto se selecciona entre un balón de fútbol, un balón de rugby, un balón de baloncesto, un balón de balonmano, un balón de voleibol, una pelota de tenis, una pelota de criquet, una pelota de béisbol, una pelota de golf, un proyectil, un martillo, una jabalina, o una esfera de cualquier material y acabado superficial. 34. Device according to any of claims 19 to 33 characterized in that the object is selected from a soccer ball, a rugby ball, a basketball, a handball, a volleyball, a tennis ball, a cricket ball, a baseball, a golf ball, a projectile, a hammer, a javelin, or a sphere of any material and surface finish.
35.- Dispositivo según cualquiera de las reivindicaciones 19 a 34 caracterizado porque cuando el objeto es una esfera, la separación entre sensores de un mismo grupo es de 1/5 del diámetro de la esfera. 35. Device according to any of claims 19 to 34 characterized in that when the object is a sphere, the separation between sensors of the same group is 1/5 of the diameter of the sphere.
36.- Dispositivo según cualquiera de las reivindicaciones 19 a 34 caracterizado porque cuando el objeto es un elipsoide, la separación entre sensores de un mismo grupo es de 1/5 del diámetro menor del objeto. 36. Device according to any of claims 19 to 34 characterized in that when the object is an ellipsoid, the separation between sensors of the same group is 1/5 of the smaller diameter of the object.
PCT/ES2005/000305 2004-05-28 2005-05-27 Method and device for measuring the trajectories of objects of known geometry WO2005119272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200401392 2004-05-28
ES200401392A ES2264324B1 (en) 2004-05-28 2004-05-28 METHOD AND DEVICE FOR MEASURING TRAJECTORY OF KNOWN GEOMETRY OBJECTS.

Publications (1)

Publication Number Publication Date
WO2005119272A1 true WO2005119272A1 (en) 2005-12-15

Family

ID=35463028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000305 WO2005119272A1 (en) 2004-05-28 2005-05-27 Method and device for measuring the trajectories of objects of known geometry

Country Status (2)

Country Link
ES (1) ES2264324B1 (en)
WO (1) WO2005119272A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010063A3 (en) * 2005-07-20 2007-03-29 Serra Jorge Bayo Device for checking and assessing sports-related actions
EP2091618A1 (en) * 2006-12-15 2009-08-26 Doo-Hyun You System for measuring dynamic information of golf ball for screen golf
US7946960B2 (en) 2007-02-05 2011-05-24 Smartsports, Inc. System and method for predicting athletic ability
CN102784471A (en) * 2012-07-26 2012-11-21 宋雅伟 Over-net ball speed tester for net separating competitive items
CN110314359A (en) * 2019-06-04 2019-10-11 五邑大学 A kind of tennis speed measuring device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727069A (en) * 1971-07-21 1973-04-10 Litton Systems Inc Target measurement system for precise projectile location
US4272189A (en) * 1979-08-16 1981-06-09 The United States Of America As Represented By The Secretary Of The Navy Electro-optical projectile analyzer
WO1987005688A1 (en) * 1986-03-15 1987-09-24 David Fenton Fenner Dart scorer
US4814986A (en) * 1987-04-28 1989-03-21 Spielman Daniel A Device for monitoring relative point of impact of an object in flight proximal a reference line on a surface
US4896533A (en) * 1988-09-30 1990-01-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Miniaturization of flight deflection measurement system
US5393974A (en) * 1993-03-06 1995-02-28 Jee; Sung N. Method and apparatus for detecting the motion variation of a projectile
US5988645A (en) * 1994-04-08 1999-11-23 Downing; Dennis L. Moving object monitoring system
US6302802B1 (en) * 1999-06-24 2001-10-16 Focaltron Corporation Methods and apparatus for a portable golf training system with an optical sensor net
US6322455B1 (en) * 1999-09-10 2001-11-27 Mark Benjamin Howey Interactive golf driving range facility

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727069A (en) * 1971-07-21 1973-04-10 Litton Systems Inc Target measurement system for precise projectile location
US4272189A (en) * 1979-08-16 1981-06-09 The United States Of America As Represented By The Secretary Of The Navy Electro-optical projectile analyzer
WO1987005688A1 (en) * 1986-03-15 1987-09-24 David Fenton Fenner Dart scorer
US4814986A (en) * 1987-04-28 1989-03-21 Spielman Daniel A Device for monitoring relative point of impact of an object in flight proximal a reference line on a surface
US4896533A (en) * 1988-09-30 1990-01-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Miniaturization of flight deflection measurement system
US5393974A (en) * 1993-03-06 1995-02-28 Jee; Sung N. Method and apparatus for detecting the motion variation of a projectile
US5988645A (en) * 1994-04-08 1999-11-23 Downing; Dennis L. Moving object monitoring system
US6302802B1 (en) * 1999-06-24 2001-10-16 Focaltron Corporation Methods and apparatus for a portable golf training system with an optical sensor net
US6322455B1 (en) * 1999-09-10 2001-11-27 Mark Benjamin Howey Interactive golf driving range facility

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010063A3 (en) * 2005-07-20 2007-03-29 Serra Jorge Bayo Device for checking and assessing sports-related actions
EP2091618A1 (en) * 2006-12-15 2009-08-26 Doo-Hyun You System for measuring dynamic information of golf ball for screen golf
EP2091618A4 (en) * 2006-12-15 2010-06-23 Family Golf Co Ltd System for measuring dynamic information of golf ball for screen golf
US7946960B2 (en) 2007-02-05 2011-05-24 Smartsports, Inc. System and method for predicting athletic ability
US8308615B2 (en) 2007-02-05 2012-11-13 Smartsports, Inc. System and method for predicting athletic ability
CN102784471A (en) * 2012-07-26 2012-11-21 宋雅伟 Over-net ball speed tester for net separating competitive items
CN110314359A (en) * 2019-06-04 2019-10-11 五邑大学 A kind of tennis speed measuring device

Also Published As

Publication number Publication date
ES2264324A1 (en) 2006-12-16
ES2264324B1 (en) 2007-11-16

Similar Documents

Publication Publication Date Title
CA2118000C (en) Sports simulator
JP3187748B2 (en) Golf ball motion measurement method
EP1810723A1 (en) Data processing system and golf diagnosis apparatus
KR101385326B1 (en) Method and system for photographing object in movement with camera, and based on taken images therefor, obtaining actual movement trace of same object
KR102033703B1 (en) An assembly comprising a radar and an imaging element
WO2005119272A1 (en) Method and device for measuring the trajectories of objects of known geometry
US20160059120A1 (en) Method of using motion states of a control device for control of a system
US20220233942A1 (en) Method and system of replicating ball trajectories using an automated ball throwing machine
GB2429173A (en) Ball launch monitoring system
CN107918397A (en) The autonomous camera system of unmanned plane mobile image kept with target following and shooting angle
CN108021145A (en) The autonomous camera system of unmanned plane mobile image kept with target following and shooting angle
JP2000019186A (en) Rotational movement measuring method for golf ball
CN108226562B (en) Apparatus and method for measuring flight data of flying object and recording medium
US11850498B2 (en) Kinematic analysis of user form
JP2020500489A (en) Camera system and method for photographing a golf game
CN204695344U (en) A kind of device indicating movements and induction type spheroid
WO2008052605A1 (en) Data processing system and golf diagnosis apparatus
KR102144764B1 (en) Method and system for in/out determination in sport court
US11896882B2 (en) Extended reality system for training and evaluation
US11083951B2 (en) Ball spin rate measurement system and method
US11752414B2 (en) System and method for tracking a projectile
KR102483484B1 (en) Method, system, and non-transitory computer-readable recording medium for measuring physical quantities associated with a golf club
KR102582362B1 (en) floor golf simulation system using two cameras
EP3757592B1 (en) Method for determining a direction of a spin axis of a rotating apparatus
Birbach et al. Tracking of ball trajectories with a free moving camera-inertial sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase