WO2005119206A1 - Method and device for controlling photo-excitation q value of vibrator - Google Patents

Method and device for controlling photo-excitation q value of vibrator Download PDF

Info

Publication number
WO2005119206A1
WO2005119206A1 PCT/JP2005/010128 JP2005010128W WO2005119206A1 WO 2005119206 A1 WO2005119206 A1 WO 2005119206A1 JP 2005010128 W JP2005010128 W JP 2005010128W WO 2005119206 A1 WO2005119206 A1 WO 2005119206A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
vibrator
excitation
value
speed
Prior art date
Application number
PCT/JP2005/010128
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Kawakatsu
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2006514125A priority Critical patent/JPWO2005119206A1/en
Publication of WO2005119206A1 publication Critical patent/WO2005119206A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment
    • G01Q30/14Liquid environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means

Definitions

  • the present invention relates to a method and an apparatus for controlling the Q value of light excitation of a vibrator, and more particularly to a method and apparatus for controlling the Q value of light excitation of a vibrator in a liquid.
  • the present inventor has proposed a laser Doppler interferometer having an optical excitation function for a sample and an excitation method of a cantilever (see Patent Document 1 below).
  • Patent Document 1 JP 2003-114182 A
  • Non-Patent Literature 1 Enhanced imaging oi DNA via active quality factor control, "A. DL L. Humphris, A. N. Round, M. J. Miles, Surface Science, 491, 468-472, 2001.
  • the cantilever (vibrator) is a problem in the measurement using the dynamic characteristics of the cantilever, in which the Q value is greatly attenuated due to viscosity in a liquid compared to vacuum and air.
  • the conventional Q value control does not directly measure the speed, there is no true speed term feedback, and there is a problem that the Q value cannot be increased to some extent.
  • the present invention cancels the attenuation term by directly measuring the speed and feeding back the attenuation of the Q value to the excitation signal by controlling the optical excitation Q value of the vibrator.
  • Another object of the present invention is to provide a method and an apparatus for controlling the Q value of optical excitation of a vibrator capable of improving sensitivity.
  • a method of controlling the Q value of the oscillator by optical excitation in which the Q value of the oscillator is controlled by feeding back the speed of the oscillator in the liquid directly measured by velocity measurement to the optical excitation device during optical excitation. It is characterized by apparently increasing the sensitivity as a vibrator.
  • the vibrator is irradiated with excitation light and measurement light, and return light of the measurement light of the vibrator is detected. And measuring the speed of the vibrator in the liquid.
  • the vibrator is irradiated with excitation light and measurement light, and return light of the measurement light of the vibrator is detected.
  • the velocity and the velocity directly measured by measuring the position and velocity of the vibrator in the liquid are characterized.
  • a vibrator arranged in a liquid, a light-emitting / incident section for emitting and emitting excitation light and measurement light applied to the vibrator, A speed at which the Q value of the vibrator is apparently increased based on a supply portion of the excitation light and the measurement light to the incident portion and a return light of the measurement light from the light output / incident portion, and the speed of the vibrator is directly detected. And a degree detector.
  • the speed detector is a heterodyne laser Doppler interferometer, and a bandpass filter and a phase shift circuit are provided on the output side of the speed detector. An amplifier is connected in series, and a feed knock is applied to the pump light supply section.
  • a vibrator arranged in a liquid, a light-emitting / incident part for emitting and emitting excitation light and measurement light applied to the vibrator,
  • the Q value of the vibrator is apparently increased based on the supply section of the excitation light and the measurement light to the incidence section and the return light of the measurement light from the light exit / incidence section, and the position and speed of the vibrator are detected. It is characterized by comprising a position / velocity detecting unit.
  • the position / velocity detecting unit is a heterodyne laser Doppler interferometer, and a band-pass filter is provided on the output side of the position / velocity detecting unit. And a phase shift circuit and an amplifier are connected in series, and the feedback is provided to the pumping light supply unit.
  • a heterodyne laser Doppler interferometer a superheterodyne circuit is connected to the heterodyne laser Doppler interferometer, and a feed knock is supplied to the excitation light supply unit.
  • the position / velocity detecting section comprises a heterodyne laser Doppler interferometer, and a superheterodyne circuit is connected to the heterodyne laser Doppler interferometer. Then, feedback is provided to the excitation light supply section.
  • the optical excitation Q-value control device is characterized in that a phase shift circuit whose frequency characteristic is flat near the resonance frequency by feedback is used.
  • FIG. 1 is an overall configuration diagram of an embodiment of the present invention.
  • FIG. 2 is a schematic view of a cantilever (vibrator) showing an embodiment of the present invention.
  • FIG. 3 is a vibration characteristic diagram (part 1) of a cantilever using a Q value control according to the present invention.
  • FIG. 4 is a vibration characteristic diagram of a cantilever using the Q value control of the present invention in which the vertical axis in FIG.
  • FIG. 5 is a vibration characteristic diagram (2) of the cantilever using the Q value control of the present invention shown in FIG. 3.
  • FIG. 6 is a diagram showing a comparison of vibration characteristics of a cantilever in ethanol and water.
  • FIG. 7 is a diagram showing vibration characteristics of a cantilever when a force is applied without performing Q value control according to the present invention.
  • FIG. 8 is a diagram of a phase shift circuit having a flat frequency characteristic in the vicinity of the resonance frequency due to the feedback of the present invention.
  • FIG. 9 is a frequency characteristic diagram of a phase shift circuit having a flat frequency characteristic near the resonance frequency shown in FIG.
  • FIG. 10 is a vibration characteristic diagram (part 1) of the cantilever in the case where the phase shift circuit shown in FIG. 8 is used as the phase shift circuit in the apparatus of the present invention shown in FIG.
  • FIG. 11 is a vibration characteristic diagram (part 2) of the cantilever when the phase shift circuit shown in FIG. 8 is used as the phase shift circuit in the apparatus of the present invention shown in FIG. 1.
  • FIG. 12 is a diagram showing a change in vibration characteristics when a self-generated molecular film is generated on the cantilever in the control of the vibration characteristics of the cantilever using the Q value control applied to the present invention.
  • FIG. 13 is a partial configuration diagram of a system showing another embodiment of the present invention.
  • the optical excitation Q-value control device a vibrator placed in a liquid, a light output / incident part for transmitting and receiving excitation light and measurement light applied to the vibrator, The Q value of the vibrator is apparently increased based on the supply section of the excitation light and the measurement light to the incident section and the return light of the measurement light from the light output / incident section, and the position and speed of the vibrator are detected. Position 'speed A degree detection unit. In addition, a phase shift circuit having a flat frequency characteristic near the resonance frequency by feedback is provided. Therefore, the Q value of the vibrator can be controlled, which can contribute to the improvement of the sensitivity of the vibrator sensor.
  • the velocity can be directly measured by the heterodyne laser Doppler meter, it is possible to measure the position and obtain the derivative thereof electrically, thereby obtaining a device that is more resistant to noise than a device that obtains the speed signal. it can.
  • the frequency of the heterodyne measurement and the vibration frequency are set to be greatly different, and interference between measurement and excitation is extremely small. High and high Q values can be realized by controlling the Q value.
  • FIG. 1 is an overall system configuration diagram showing an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a cantilever (vibrator) portion thereof.
  • 1 is a liquid container
  • 2 is a sample in the liquid container 1
  • 3 is a cover glass
  • 4 is a cantilever (vibrator)
  • 5 is an excitation laser device (LD)
  • 6 is an excitation laser device 5
  • Excitation light ( ⁇ 780 nm)
  • 7 is the first PBS (Volarising beam splitter)
  • 8 is the second PBS
  • 9 is the light input / output section (sensor head) [phase plate and Objective lens (not shown)]
  • 12 is the optical fiber that propagates the measurement light 11
  • 13 is connected to the optical fiber 12, and irradiates the measurement light 11
  • a heterodyne laser Doppler interferometer that receives the return light of the measurement light 11 from the force cantilever 4 and measures the position and / or velocity of the cantilever 14 is a heterodyne laser Doppler interferometer. Van connected to 13 output side Pasu
  • the excitation light 10 emitted from the excitation laser device (LD) 5 is applied to the cantilever 4 via the optical fiber 6 ⁇ the first PBS 7 ⁇ the second PBS 8 ⁇ the light exit / incident section 9 and The measurement light 11 is also irradiated on the cantilever 4. Then, the cantilever 4 is optically excited, and the return light of the measurement light 11 returns to the light entrance / exit portion 9 ⁇ the second PBS 8 ⁇ the optical fiber 12 ⁇ the heterodyne laser Doppler interferometer 13 and the heterodyne laser Doppler interferometer 13 Then, the position and / or speed of the cantilever 4 is measured by a difference signal between the measurement light 11 and the return light of the measurement light.
  • the output from the heterodyne laser Doppler interferometer 13 is input to the servo analyzer 18 and the heterodyne laser Doppler interferometer 13 ⁇ bandpass filter 14 ⁇ phase shift circuit 15 ⁇ amplifier 16 ⁇ adder 17 ⁇ pump laser 1 This is fed back to the device (LD) 5.
  • the Q value of the vibrator is apparently increased by feeding back the speed of the vibrator in a liquid to the light excitation device in the light excitation. It is characterized by increasing the sensitivity as a function.
  • the present invention also relates to an optically-excited Q-value control device, comprising: a vibrator disposed in a liquid; and a light output / incident section for transmitting and receiving excitation light and measurement light applied to the vibrator.
  • the Q value of the vibrator is apparently increased based on the supply section of the excitation light and the measurement light to the light exit / incident section and the return light of the measurement light from the light exit / incident section, and the speed of the vibrator is increased.
  • a speed detecting unit for detecting the speed.
  • the oscillator is irradiated with excitation light and measurement light, the return light of the measurement light from the oscillator is detected, and the speed of the oscillator in the liquid is measured.
  • the speed can be directly measured by a heterodyne laser Doppler interferometer, the position can be measured, and its derivative can be obtained electrically to obtain a device that is more resistant to noise than a device that obtains a speed signal. .
  • it can be applied to a highly integrated cantilever array and can be used for optical scanning. Further, the liquid vibration is small, that is, noise can be reduced.
  • the resonance frequency was 69 kHz, and the other conditions used were a 10x objective lens (olympus, no IR correction, for air / vacuum), and a heterodyne laser Doppler interferometer capable of measuring up to 100 MHz.
  • the LD current as an excitation laser device is 51.8 mA.
  • FIG. 3 is a vibration characteristic diagram (No. 1) of the cantilever using the Q value control of the present invention.
  • the horizontal axis represents frequency (kHz), and the vertical axis represents amplitude (nm).
  • the speed signal gain is changed while measuring.
  • the phase difference ⁇ between the input and output of the phase shift circuit 15 is fixed at 90 degrees.
  • curve a has Q value control (the present invention: gain 6)
  • curve b has Q value control (the present invention: gain 4)
  • curve c has Q value control (the present invention: gain). 2)
  • Curve d is without Q value control. As is clear from this figure, the Q value was improved by the Q value control of the present invention.
  • FIG. 4 is a vibration characteristic diagram of a cantilever using the Q value control of the present invention, in which the vertical axis of FIG. 3 is logarithmicly displayed, and a second-order mode appears.
  • FIG. 5 is a vibration characteristic diagram (part 2) of the cantilever using the Q value control of the present invention shown in FIG.
  • curve a has Q value control (invention: gain 7)
  • curve b has Q value control (invention: gain 5)
  • curve c has Q value control (invention: gain 4)
  • Curve d has Q value control (invention: gain 3)
  • curve e has no Q value control.
  • FIG. 6 is a diagram showing a comparison of vibration characteristics of cantilevers in ethanol and water.
  • curve a shows the case of water
  • curve b shows the case of ethanol.
  • FIG. 8 is a diagram of a phase shift circuit having flat frequency characteristics in the vicinity of the resonance frequency due to the feedback of the present invention. Note that this phase shift circuit corresponds to the phase shift circuit 15 in FIG.
  • a 21-bit input signal a 22-bit CdS—LED sensor, 23, 24, 26, 29, 30, 31 are amplifiers (op-amps), 25 and 27 are comparators, and 28 is a multiplier. (Multiplier), 32 is a transistor, 33 is an output signal, V is -10V, V is + 10V.
  • FIG. 9 shows the result of obtaining a flat phase shift characteristic by the phase shift circuit shown in FIG.
  • A is a line showing the flat phase shift characteristic output by the phase shift circuit of the present invention
  • B is a line showing the phase shift characteristic output by the conventional phase shift circuit (having no feedback function). is there.
  • phase shift circuit of the present invention it is important to be able to obtain a flat gain (dB) regardless of the frequency.
  • FIG. 10 is a vibration characteristic diagram (part 1) of the cantilever when the phase shift circuit shown in FIG. 8 is used as the phase shift circuit in the apparatus of the present invention shown in FIG.
  • the force with Q value of 2 is obtained in C.
  • the Q value is 620 in D, and unintended oscillation occurs. Do not arise Is shown.
  • FIG. 11 is a vibration characteristic diagram (part 2) of the cantilever when the phase shift circuit shown in FIG. 8 is used as the phase shift circuit in the apparatus of the present invention shown in FIG. It can be seen that the phase changes sharply at the resonance frequency because the apparent Q value is increased. In other words, it indicates that the detection of fields and masses by the cantilever can be realized with high sensitivity.
  • FIG. 12 is a diagram showing a change in vibration characteristics when a self-generated molecular film is generated on the cantilever in the vibration characteristic control of the cantilever using the Q value control according to the present invention.
  • E (corresponding to D in Fig. 10) is the characteristic when the cantilever vibrates in pure water using the Q-value control
  • F and G are trace amounts of self-generated molecules using the Q-value control. This shows that the cantilever vibrates in a mixed state, indicating that the cantilever using the Q value control is sensitive to the adsorption of self-generated molecules. Estimates show that mass detection on the order of fg to pg is realized.
  • the Q value control can be applied to a large number of vibrators immersed in a liquid by optical scanning.
  • the Q-value control method of the vibrator optical excitation is adapted to the vibration control of one or many cantilevers immersed in liquid, and a high-resolution scanning force microscope can be realized.
  • FIG. 13 is a partial configuration diagram of a system showing another embodiment of the present invention. That is, a part of the system in Fig. 1 is modified.
  • reference numeral 40 denotes a superheterodyne circuit.
  • This superheterodyne circuit 40 includes a local oscillator 41, mixers (frequency mixers) 42 and 45, and a bandpass filter 4
  • the local oscillator 41 has only the frequency f output from the servo analyzer 18.
  • the output frequency of the heterodyne laser Doppler interferometer 13 is
  • the speed detecting section is constituted by the heterodyne laser Doppler interferometer 13, and the superheterodyne circuit 40 is connected to the heterodyne laser Doppler interferometer 13. Then, a feedback is provided to an excitation laser device (LD) 5 (see FIG. 1) which is a pump light supply unit.
  • LD excitation laser device
  • the position / velocity detecting unit comprises a heterodyne laser Doppler interferometer 13, and a superheterodyne circuit 40 is connected to the heterodyne laser Doppler interferometer 13. Then, feedback is provided to the pump laser device (LD) 5 (see Fig. 1), which is the pump light supply unit.
  • LD pump laser device
  • a conventional phase shift circuit having no feedback function can be used as the phase shift circuit 44.
  • the velocity can be directly measured by the heterodyne laser Doppler meter, the position is measured, and its derivative is obtained electrically to obtain a signal that is more resistant to noise than a device that obtains the velocity signal.
  • it can be applied to a highly integrated cantilever array, and can perform optical scanning.
  • liquid vibration is small, that is, noise can be reduced.
  • the feedback of the velocity term and the position term to the vibrator excited by the light enables the Q value control of the vibrator. Excitation of the target, vibration detection, and Q-value control are possible simply by irradiating light, which can contribute to improving the sensitivity of the vibrator-type sensor.
  • Q value control can be applied to a large number of transducers immersed in a liquid, for example, to measure a large number of points in a cell.
  • phase shift circuit having a flat frequency characteristic near the resonance frequency enables high Q value control without oscillation.
  • the method and apparatus for controlling the Q value of light excitation of an oscillator according to the present invention can be used for material identification, nanobiomechanics, and drug discovery by combining with a scanning microscope.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

There are provided a method and a device for controlling the photo-excitation Q value capable of improving sensitivity by feeding back the speed measured by a speed meter to an excitation signal by the vibrator photo-excitation Q value control, thereby canceling the attenuation term. The photo-excitation Q value control device includes a vibrator (4) arranged in a liquid, the excitation light (10) and measurement light (11) applied to the vibrator (4) and a light input/output unit (9) for inputting/outputting the excitation light (10) and the measurement light (11) of the vibrator (4), a supply unit for supplying the excitation light and the measurement light to the light input/output unit (9), and a position/speed detection unit for apparently increasing the Q value of the vibrator according to the return light of the measurement light from the light input/output unit (9) and detecting the position and speed of the vibrator.

Description

明 細 書  Specification
振動子の光励振 Q値コントロール方法および装置  Optical excitation of oscillator Q value control method and device
技術分野  Technical field
[0001] 本発明は、振動子の光励振 Q値コントロール方法および装置に係り、特に、液体中 における振動子の光励振 Q値コントロール方法および装置に関するものである。 背景技術  The present invention relates to a method and an apparatus for controlling the Q value of light excitation of a vibrator, and more particularly to a method and apparatus for controlling the Q value of light excitation of a vibrator in a liquid. Background art
[0002] 従来から、ピエゾ素子を励振装置に用い、振動子の位置項を移相もしくは微分して 得られた速度項と位置項を適切な位相差でフィードバックすることによって振動子の 見かけの Q値を改善する技術があった。  [0002] Conventionally, by using a piezo element as an excitation device and feeding back a velocity term and a position term obtained by phase-shifting or differentiating the position term of an oscillator with an appropriate phase difference, an apparent Q of the oscillator is obtained. There was a technique to improve the value.
[0003] また、液の外に磁場コイルを設け、液中のシリコン等のカンチレバーに磁性体を塗 布して、励振を行わせる励振装置が開示されている(下記非特許文献 1参照)。また、 光で液中の振動子を振動させる技術があった。  [0003] Also, there is disclosed an excitation device in which a magnetic field coil is provided outside a liquid, and a magnetic substance is applied to a cantilever such as silicon in the liquid to perform excitation (see Non-Patent Document 1 below). There is also a technique for vibrating a vibrator in a liquid with light.
[0004] 更に、本願発明者によって、試料の光励振機能を有するレーザードップラー干渉 計並びにカンチレバーの励振方法が提案されて!、る(下記特許文献 1参照)。  [0004] Furthermore, the present inventor has proposed a laser Doppler interferometer having an optical excitation function for a sample and an excitation method of a cantilever (see Patent Document 1 below).
特許文献 1:特開 2003— 114182号公報  Patent Document 1: JP 2003-114182 A
非特干文献 1: Enhanced imaging oi DNA via active quality factor c ontrol", A. D. L. Humphris, A. N. Round, M. J. Miles, Surface Science , 491, 468-472, 2001.  Non-Patent Literature 1: Enhanced imaging oi DNA via active quality factor control, "A. DL L. Humphris, A. N. Round, M. J. Miles, Surface Science, 491, 468-472, 2001.
発明の開示  Disclosure of the invention
[0005] カンチレバー(振動子)は、液体中では、真空 ·空気中に比べて粘性による Q値の 減衰が大きぐカンチレバーの動的特性を用いた計測において問題になっている。ま た、従来の Q値コントロールでは速度を直接計測していないため、真の速度項帰還 になっておらず、 Q値をある程度以上にできないことが問題となっている。  [0005] The cantilever (vibrator) is a problem in the measurement using the dynamic characteristics of the cantilever, in which the Q value is greatly attenuated due to viscosity in a liquid compared to vacuum and air. In addition, since the conventional Q value control does not directly measure the speed, there is no true speed term feedback, and there is a problem that the Q value cannot be increased to some extent.
[0006] 本発明は、上記状況に鑑みて、速度を直接計測し、振動子の光励振 Q値コントロー ルによって、 Q値の減衰分を励起信号にフィードバックすることにより、減衰項をキヤ ンセルし、感度向上を図ることができる振動子の光励振 Q値コントロール方法および 装置を提供することを目的とする。 [0007] 本発明は、上記目的を達成するために、 [0006] In view of the above situation, the present invention cancels the attenuation term by directly measuring the speed and feeding back the attenuation of the Q value to the excitation signal by controlling the optical excitation Q value of the vibrator. Another object of the present invention is to provide a method and an apparatus for controlling the Q value of optical excitation of a vibrator capable of improving sensitivity. [0007] In order to achieve the above object, the present invention provides:
〔1〕振動子の光励振 Q値コントロール方法であって、光励振において、速度計測に より直接計測された液体中の振動子の速度を光励起装置にフィードバックすることに よって振動子の Q値を見かけ上高め、この振動子としての感度を高めることを特徴と する。  [1] A method of controlling the Q value of the oscillator by optical excitation, in which the Q value of the oscillator is controlled by feeding back the speed of the oscillator in the liquid directly measured by velocity measurement to the optical excitation device during optical excitation. It is characterized by apparently increasing the sensitivity as a vibrator.
[0008] 〔2〕上記〔1〕記載の振動子の光励振 Q値コントロール方法にぉ 、て、前記振動子 に励起光および計測光を照射し、この振動子の計測光の戻り光を検出し、液体中の 振動子の速度を計測することを特徴とする。  [2] According to the method of controlling the optical excitation Q value of the vibrator according to the above [1], the vibrator is irradiated with excitation light and measurement light, and return light of the measurement light of the vibrator is detected. And measuring the speed of the vibrator in the liquid.
[0009] 〔3〕振動子の光励振 Q値コントロール方法において、光励振において、液体中の振 動子の位置と速度計測により直接計測された速度を光励起装置にフィードバックする ことによって振動子の Q値を見かけ上高め、この振動子としての感度を高めることを 特徴とする。  [3] Optical excitation of oscillator In the Q value control method, in optical excitation, the speed directly measured by measuring the position and velocity of the oscillator in a liquid is fed back to the optical excitation device, The value is apparently increased, and the sensitivity as this oscillator is enhanced.
[0010] 〔4〕上記〔1〕記載の振動子の光励振 Q値コントロール方法にぉ 、て、前記振動子 に励起光および計測光を照射し、この振動子の計測光の戻り光を検出し、液体中の 振動子の位置と速度計測により直接計測された速度を計測することを特徴とする。  [4] According to the method of controlling the optical excitation Q value of the vibrator according to the above [1], the vibrator is irradiated with excitation light and measurement light, and return light of the measurement light of the vibrator is detected. In addition, the velocity and the velocity directly measured by measuring the position and velocity of the vibrator in the liquid are characterized.
[0011] 〔5〕上記〔1〕又は〔3〕記載の振動子の光励振 Q値コントロール方法において、前記 液体が水であることを特徴とする。  [5] The method for controlling the Q value of light excitation of a vibrator according to the above [1] or [3], wherein the liquid is water.
[0012] 〔6〕上記〔1〕又は〔3〕記載の振動子の光励振 Q値コントロール方法において、前記 液体がエタノールであることを特徴とする。  [6] The method of controlling the Q value of light excitation of a vibrator according to the above [1] or [3], wherein the liquid is ethanol.
[0013] 〔7〕上記〔1〕又は〔3〕記載の振動子の光励振 Q値コントロール方法において、光走 查により、液に浸した多数の振動子に Q値コントロールを適用することを特徴とする。  [7] The method of controlling the Q value of light excitation of a vibrator according to the above [1] or [3], wherein the Q value control is applied to a large number of vibrators immersed in a liquid by optical scanning. And
[0014] 〔8〕上記〔7〕記載の振動子の光励振 Q値コントロール方法において、液に浸した 細胞中の多数の点の計測を行うことを特徴とする。  [8] The method for controlling the Q value of light excitation of a vibrator according to the above [7], wherein a number of points in a cell immersed in a liquid are measured.
[0015] 〔9〕光励振 Q値コントロール装置において、液体中に配置される振動子と、この振 動子に照射される励起光および計測光を出入射する光出入射部と、この光出入射 部への励起光および計測光の供給部と、前記光出入射部からの計測光の戻り光に 基づいて前記振動子の Q値を見かけ上高め、前記振動子の速度を直接検出する速 度検出部とを具備することを特徴とする。 [0016] 〔10〕上記〔9〕記載の光励振 Q値コントロール装置において、前記速度検出部は、 ヘテロダインレーザードップラー干渉計力 なり、前記速度検出部の出力側にバンド パスフィルタと移相回路とアンプとを直列接続して、前記励起光の供給部にフィード ノ ックすることを特徴とする。 [9] Optical Excitation In the Q-value control device, a vibrator arranged in a liquid, a light-emitting / incident section for emitting and emitting excitation light and measurement light applied to the vibrator, A speed at which the Q value of the vibrator is apparently increased based on a supply portion of the excitation light and the measurement light to the incident portion and a return light of the measurement light from the light output / incident portion, and the speed of the vibrator is directly detected. And a degree detector. [10] In the optical excitation Q-value control device according to the above [9], the speed detector is a heterodyne laser Doppler interferometer, and a bandpass filter and a phase shift circuit are provided on the output side of the speed detector. An amplifier is connected in series, and a feed knock is applied to the pump light supply section.
[0017] 〔11〕光励振 Q値コントロール装置において、液体中に配置される振動子と、この振 動子に照射される励起光および計測光を出入射する光出入射部と、この光出入射 部への励起光および計測光の供給部と、前記光出入射部からの計測光の戻り光に 基づいて前記振動子の Q値を見かけ上高め、前記振動子の位置と速度を検出する 位置 ·速度検出部とを具備することを特徴とする。 [11] Optical Excitation In the Q-value control device, a vibrator arranged in a liquid, a light-emitting / incident part for emitting and emitting excitation light and measurement light applied to the vibrator, The Q value of the vibrator is apparently increased based on the supply section of the excitation light and the measurement light to the incidence section and the return light of the measurement light from the light exit / incidence section, and the position and speed of the vibrator are detected. It is characterized by comprising a position / velocity detecting unit.
[0018] 〔12〕上記〔11〕記載の光励振 Q値コントロール装置において、前記位置 ·速度検出 部は、ヘテロダインレーザードップラー干渉計力 なり、前記位置'速度検出部の出 力側にバンドパスフィルタと移相回路とアンプとを直列接続して、前記励起光の供給 部にフィードバックすることを特徴とする。 [12] In the optical excitation Q value control device according to the above [11], the position / velocity detecting unit is a heterodyne laser Doppler interferometer, and a band-pass filter is provided on the output side of the position / velocity detecting unit. And a phase shift circuit and an amplifier are connected in series, and the feedback is provided to the pumping light supply unit.
[0019] 〔13〕上記〔11〕記載の光励振 Q値コントロール装置において、前記速度検出部は[13] In the optical excitation Q value control device according to the above [11], the speed detection unit
、ヘテロダインレーザードップラー干渉計からなり、このへテロダインレーザードップラ 一干渉計にスーパーヘテロダイン回路を接続して、前記励起光の供給部にフィード ノ ックすることを特徴とする。 And a heterodyne laser Doppler interferometer, a superheterodyne circuit is connected to the heterodyne laser Doppler interferometer, and a feed knock is supplied to the excitation light supply unit.
[0020] 〔14〕上記〔11〕記載の光励振 Q値コントロール装置において、前記位置 ·速度検出 部は、ヘテロダインレーザードップラー干渉計からなり、このへテロダインレーザードッ ブラー干渉計にスーパーヘテロダイン回路を接続して、前記励起光の供給部にフィ ードバックすることを特徴とする。 [14] In the optical excitation Q-factor control device according to the above [11], the position / velocity detecting section comprises a heterodyne laser Doppler interferometer, and a superheterodyne circuit is connected to the heterodyne laser Doppler interferometer. Then, feedback is provided to the excitation light supply section.
[0021] 〔15〕上記〔9〕記載の光励振 Q値コントロール装置において、帰還により周波数特 性が共振周波数近傍で平坦な移相回路を用いることを特徴とする。  [15] The optical excitation Q-value control device according to the above [9] is characterized in that a phase shift circuit whose frequency characteristic is flat near the resonance frequency by feedback is used.
[0022] 〔16〕上記〔9〕記載の光励振 Q値コントロール装置において、前記移相回路が CdS と LEDセルを用いた帰還方式であることを特徴とする。 [16] The optical excitation Q value control device according to the above [9], wherein the phase shift circuit is of a feedback type using CdS and LED cells.
[0023] 〔17〕上記〔9〕記載の光励振 Q値コントロール装置において、この装置が走査型力 顕微鏡のカンチレバーの振動特性を制御することを特徴とする。 [17] The optical excitation Q value control device according to the above [9], characterized in that the device controls the vibration characteristics of the cantilever of the scanning force microscope.
図面の簡単な説明 [0024] [図 1]本発明の実施例を示すシステム全体構成図である。 Brief Description of Drawings FIG. 1 is an overall configuration diagram of an embodiment of the present invention.
[図 2]本発明の実施例を示すカンチレバー (振動子)部分の模式図である。  FIG. 2 is a schematic view of a cantilever (vibrator) showing an embodiment of the present invention.
[図 3]本発明にかかる Q値コントロールを用いたカンチレバーの振動特性図(その 1) である。  FIG. 3 is a vibration characteristic diagram (part 1) of a cantilever using a Q value control according to the present invention.
[図 4]図 3の縦軸を対数表示とした本発明の Q値コントロールを用いたカンチレバーの 振動特性図である。  FIG. 4 is a vibration characteristic diagram of a cantilever using the Q value control of the present invention in which the vertical axis in FIG.
[図 5]図 3に示す本発明の Q値コントロールを用いたカンチレバーの振動特性図(そ の 2)である。  5 is a vibration characteristic diagram (2) of the cantilever using the Q value control of the present invention shown in FIG. 3.
[図 6]エタノールと水中でのカンチレバーの振動特性の比較を示す図である。  FIG. 6 is a diagram showing a comparison of vibration characteristics of a cantilever in ethanol and water.
[図 7]本発明の Q値コントロールを行わな力つた場合のカンチレバーの振動特性を示 す図である。  FIG. 7 is a diagram showing vibration characteristics of a cantilever when a force is applied without performing Q value control according to the present invention.
[図 8]本発明の帰還により共振周波数近傍で周波数特性が平坦な移相回路の図で ある。  FIG. 8 is a diagram of a phase shift circuit having a flat frequency characteristic in the vicinity of the resonance frequency due to the feedback of the present invention.
[図 9]図 8に示した共振周波数近傍で平坦な周波数特性を有する移相回路の周波数 特性図である。  FIG. 9 is a frequency characteristic diagram of a phase shift circuit having a flat frequency characteristic near the resonance frequency shown in FIG.
[図 10]図 1に示す本発明の装置において、移相回路として図 8に示す移相回路を用 V、た場合のカンチレバーの振動特性図(その 1)である。  10 is a vibration characteristic diagram (part 1) of the cantilever in the case where the phase shift circuit shown in FIG. 8 is used as the phase shift circuit in the apparatus of the present invention shown in FIG.
[図 11]図 1に示す本発明の装置において、移相回路として図 8に示す移相回路を用 いた場合のカンチレバーの振動特性図(その 2)である。  FIG. 11 is a vibration characteristic diagram (part 2) of the cantilever when the phase shift circuit shown in FIG. 8 is used as the phase shift circuit in the apparatus of the present invention shown in FIG. 1.
[図 12]本発明に力かる Q値コントロールを用いたカンチレバーの振動特性制御にお いて、自己生成分子膜をカンチレバー上に生成させた時の振動特性の変化を示す 図である。  FIG. 12 is a diagram showing a change in vibration characteristics when a self-generated molecular film is generated on the cantilever in the control of the vibration characteristics of the cantilever using the Q value control applied to the present invention.
[図 13]本発明の他の実施例を示すシステムの部分構成図である。  FIG. 13 is a partial configuration diagram of a system showing another embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 光励振 Q値コントロール装置にお!、て、液体中に配置される振動子と、この振動子 に照射される励起光および計測光を出入射する光出入射部と、この光出入射部への 励起光および計測光の供給部と、前記光出入射部からの計測光の戻り光に基づい て前記振動子の Q値を見かけ上高め、前記振動子の位置と速度を検出する位置'速 度検出部とを具備する。また、帰還により共振周波数近傍で平坦な周波数特性を有 する移相回路を具備する。よって、振動子の Q値コントロールが可能となり、振動子型 センサの感度向上に寄与することができる。 [0025] In the optical excitation Q-value control device, a vibrator placed in a liquid, a light output / incident part for transmitting and receiving excitation light and measurement light applied to the vibrator, The Q value of the vibrator is apparently increased based on the supply section of the excitation light and the measurement light to the incident section and the return light of the measurement light from the light output / incident section, and the position and speed of the vibrator are detected. Position 'speed A degree detection unit. In addition, a phase shift circuit having a flat frequency characteristic near the resonance frequency by feedback is provided. Therefore, the Q value of the vibrator can be controlled, which can contribute to the improvement of the sensitivity of the vibrator sensor.
[0026] また、ヘテロダインレーザードップラー計により速度を直接計測することができるの で、位置を計測し、その微分を電気的に求めて、速度信号を得る装置よりもノイズに 強いものを得ることができる。また、ヘテロダインレーザードップラー計により速度を求 めているため、ヘテロダイン計測の周波数と振動周波数を大きく異なるものに設定し 、計測と励振の混信が極めて少なぐ帰還ゲインを大きくしても発振の生じない、 Q値 コントロールによる高 、Q値の実現が可能である。 [0026] Furthermore, since the velocity can be directly measured by the heterodyne laser Doppler meter, it is possible to measure the position and obtain the derivative thereof electrically, thereby obtaining a device that is more resistant to noise than a device that obtains the speed signal. it can. In addition, since the speed is obtained by the heterodyne laser Doppler meter, the frequency of the heterodyne measurement and the vibration frequency are set to be greatly different, and interference between measurement and excitation is extremely small. High and high Q values can be realized by controlling the Q value.
実施例  Example
[0027] 以下、本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
[0028] 図 1は本発明の実施例を示すシステム全体構成図、図 2はそのカンチレバー (振動 子)部分の模式図である。  FIG. 1 is an overall system configuration diagram showing an embodiment of the present invention, and FIG. 2 is a schematic diagram of a cantilever (vibrator) portion thereof.
[0029] この図において、 1は液体容器、 2は液体容器 1中の試料、 3はカバーガラス、 4は カンチレバー(振動子)、 5は励起レーザー装置 (LD)、 6は励起レーザー装置 5から 励起光(λ = 780nm) 10を伝搬する光ファイノく、 7は第 1の PBS (ボラライジングビー ムスプリッタ)、 8は第 2の PBS、 9は光出入射部(センサヘッド)〔位相板および対物レ ンズ(図示なし)を含む〕、 11は計測光(ぇ= 63211111)、 12はその計測光 11を伝搬す る光ファイバ、 13はその光ファイバ 12に接続され、計測光 11を照射するとともに、力 ンチレバー 4からの計測光 11の戻り光を受信し、それらの光の差信号力 カンチレバ 一 4の位置および又は速度を計測するへテロダインレーザードップラー干渉計、 14 はへテロダインレーザードップラー干渉計 13の出力側に接続されるバンドパスフィル タ (f  [0029] In this figure, 1 is a liquid container, 2 is a sample in the liquid container 1, 3 is a cover glass, 4 is a cantilever (vibrator), 5 is an excitation laser device (LD), 6 is an excitation laser device 5 Excitation light (λ = 780 nm) An optical fin that propagates 10, 7 is the first PBS (Volarising beam splitter), 8 is the second PBS, 9 is the light input / output section (sensor head) [phase plate and Objective lens (not shown)], 11 is the measurement light (ぇ = 63211111), 12 is the optical fiber that propagates the measurement light 11, 13 is connected to the optical fiber 12, and irradiates the measurement light 11 A heterodyne laser Doppler interferometer that receives the return light of the measurement light 11 from the force cantilever 4 and measures the position and / or velocity of the cantilever 14 is a heterodyne laser Doppler interferometer. Van connected to 13 output side Pasufiru data (f
c  c
= lkHz, 1ΜΗζ)、 15はバンドパスフィルタ 14に接続される移相回路(phase shif t circuit)、 16は移相回路 15に接続されるアンプ、 17は励起レーザー装置 5に接 続されるとともに、アンプ 16に接続される加算器、 18は加算器 17の出力側に接続さ れるとともに、ヘテロダインレーザードップラー干渉計 13の出力側に接続されるサー ボ'アナライザーである。なお、図 2に示したように、カンチレバーの異なった位置に 励起光と計測光を照射することにより、精度の高い計測を行うことができるが、励起光 と計測光を束ねてカンチレバーの同じ箇所に照射するようにしてもょ 、。そのように励 起光と計測光を束ねた場合には、特に多数のカンチレバーが配置されるような場合 の光走査を容易に行うことができる利点がある。 = lkHz, 1ΜΗζ), 15 is a phase shift circuit connected to the band-pass filter 14, 16 is an amplifier connected to the phase shift circuit 15, 17 is connected to the pump laser device 5 and An adder connected to the amplifier 16 is connected to the output side of the adder 17 and a servo analyzer connected to the output side of the heterodyne laser Doppler interferometer 13. Note that, as shown in Fig. 2, By irradiating the excitation light and the measurement light, highly accurate measurement can be performed. However, the excitation light and the measurement light may be bundled and applied to the same portion of the cantilever. When the excitation light and the measurement light are bundled in this way, there is an advantage that light scanning can be easily performed, particularly when a large number of cantilevers are arranged.
[0030] そこで、励起レーザー装置 (LD) 5から照射された励起光 10が、光ファイバ 6→第 1 の PBS7→第 2の PBS8→光出入射部 9を介してカンチレバー 4に照射されるとともに 、計測光 11もカンチレバー 4に照射される。すると、カンチレバー 4は光励振され、そ の計測光 11の戻り光が光出入射部 9→第 2の PBS8→光ファイバ 12→へテロダイン レーザードップラー干渉計 13へと返り、ヘテロダインレーザードップラー干渉計 13で は、計測光 11とその計測光の戻り光との差信号によって、カンチレバー 4の位置およ び又は速度を計測する。ヘテロダインレーザードップラー干渉計 13からの出力はサ 一ボ'アナライザー 18へと入力されるとともに、ヘテロダインレーザードップラー干渉 計 13→バンドパスフィルタ 14→移相回路 15→アンプ 16→加算器 17→励起レーザ 一装置(LD) 5へとフィードバックされる。  [0030] Therefore, the excitation light 10 emitted from the excitation laser device (LD) 5 is applied to the cantilever 4 via the optical fiber 6 → the first PBS 7 → the second PBS 8 → the light exit / incident section 9 and The measurement light 11 is also irradiated on the cantilever 4. Then, the cantilever 4 is optically excited, and the return light of the measurement light 11 returns to the light entrance / exit portion 9 → the second PBS 8 → the optical fiber 12 → the heterodyne laser Doppler interferometer 13 and the heterodyne laser Doppler interferometer 13 Then, the position and / or speed of the cantilever 4 is measured by a difference signal between the measurement light 11 and the return light of the measurement light. The output from the heterodyne laser Doppler interferometer 13 is input to the servo analyzer 18 and the heterodyne laser Doppler interferometer 13 → bandpass filter 14 → phase shift circuit 15 → amplifier 16 → adder 17 → pump laser 1 This is fed back to the device (LD) 5.
[0031] 本発明は、振動子の光励振 Q値コントロール方法において、光励振において、液 体中の振動子の速度を光励起装置にフィードバックすることによって振動子の Q値を 見かけ上高め、振動子としての感度を高めることを特徴とする。  According to the present invention, in the method of controlling the Q value of light excitation of a vibrator, the Q value of the vibrator is apparently increased by feeding back the speed of the vibrator in a liquid to the light excitation device in the light excitation. It is characterized by increasing the sensitivity as a function.
[0032] また、本発明は、光励振 Q値コントロール装置であって、液体中に配置される振動 子と、この振動子に照射される励起光および計測光を出入射する光出入射部と、こ の光出入射部への励起光および計測光の供給部と、この光出入射部からの計測光 の戻り光に基づいて前記振動子の Q値を見かけ上高め、前記振動子の速度を検出 する速度検出部とを具備する。  [0032] The present invention also relates to an optically-excited Q-value control device, comprising: a vibrator disposed in a liquid; and a light output / incident section for transmitting and receiving excitation light and measurement light applied to the vibrator. The Q value of the vibrator is apparently increased based on the supply section of the excitation light and the measurement light to the light exit / incident section and the return light of the measurement light from the light exit / incident section, and the speed of the vibrator is increased. And a speed detecting unit for detecting the speed.
[0033] さらに、前記振動子に励起光および計測光を照射し、この振動子の計測光の戻り 光を検出し、液体中の振動子の速度を計測する。特に、ヘテロダインレーザードッブ ラー干渉計により速度を直接計測することができるので、位置を計測し、その微分を 電気的に求めて、速度信号を得る装置よりもノイズに強いものを得ることができる。ま た、高集積のカンチレバーアレーに適用可能であり、光走査化が可能である。また、 液振が少な 、、つまりノイズを少なくすることができる。 [0034] また、振動子 (微小カンチレバー)の光励振にお!、て、位置項と速度項をそれぞれ 帰還することによって、振動子の置かれた環境による減衰項を打ち消し、振動子の Q 値を見かけ上変えることができる。 Further, the oscillator is irradiated with excitation light and measurement light, the return light of the measurement light from the oscillator is detected, and the speed of the oscillator in the liquid is measured. In particular, since the speed can be directly measured by a heterodyne laser Doppler interferometer, the position can be measured, and its derivative can be obtained electrically to obtain a device that is more resistant to noise than a device that obtains a speed signal. . Also, it can be applied to a highly integrated cantilever array and can be used for optical scanning. Further, the liquid vibration is small, that is, noise can be reduced. [0034] Also, in the optical excitation of the vibrator (small cantilever), by returning the position term and the velocity term respectively, the damping term due to the environment in which the vibrator is placed is canceled, and the Q value of the vibrator is returned. Can be changed in appearance.
[0035] 実験では、振動子として巿販のコンタクトモード用カンチレバー(長さ 1= 100 μ m、 幅 = 20 111、厚さ t=0. 8 m)を用いた。共振周波数は 69kHzであり、その他の 条件は、対物レンズは 10倍 (ォリンパス、 IR補正なし、対空気'真空用)、ヘテロダイ ンレーザードップラー干渉計は 100MHzまで計測可能なものを使用した。励起レー ザ一装置としての LD電流は 51. 8mAである。  In the experiment, a commercially available contact mode cantilever (length 1 = 100 μm, width = 20111, thickness t = 0.08 m) was used as a vibrator. The resonance frequency was 69 kHz, and the other conditions used were a 10x objective lens (olympus, no IR correction, for air / vacuum), and a heterodyne laser Doppler interferometer capable of measuring up to 100 MHz. The LD current as an excitation laser device is 51.8 mA.
[0036] 図 3は本発明の Q値コントロールを用いたカンチレバーの振動特性図(その 1)であ り、この図 3において、横軸は周波数 (kHz)、縦軸は振幅 (nm)を示している。ここで は、水中光励振を行っており、カンチレバーはォリンパスコンタクトモード用カンチレ バー幅 20 μ m、長さ 100 μ m、厚さ 0. 8 m、真空中の共振周波数は 78kHzであり 、フィードバックする速度信号のゲインを変えて測定している。移相回路 15の入出力 間の位相差 Δ φは 90度に固定している。  FIG. 3 is a vibration characteristic diagram (No. 1) of the cantilever using the Q value control of the present invention. In FIG. 3, the horizontal axis represents frequency (kHz), and the vertical axis represents amplitude (nm). ing. Here, underwater optical excitation is performed, and the cantilever for the Olympus contact mode cantilever width 20 μm, length 100 μm, thickness 0.8 m, resonance frequency in vacuum is 78 kHz, feedback The speed signal gain is changed while measuring. The phase difference Δφ between the input and output of the phase shift circuit 15 is fixed at 90 degrees.
[0037] この図において、曲線 aは Q値コントロールあり(本発明:ゲイン 6)、曲線 bは Q値コ ントロールあり(本発明:ゲイン 4)、曲線 cは Q値コントロールあり(本発明:ゲイン 2)、 曲線 dは Q値コントロールなしである。この図より明らかなように、本発明の Q値コント口 ールによって Q値が向上した。  In this figure, curve a has Q value control (the present invention: gain 6), curve b has Q value control (the present invention: gain 4), and curve c has Q value control (the present invention: gain). 2), Curve d is without Q value control. As is clear from this figure, the Q value was improved by the Q value control of the present invention.
[0038] 図 4は図 3の縦軸を対数表示とした本発明の Q値コントロールを用いたカンチレバ 一の振動特性図であり、 2次モードが現れた。  FIG. 4 is a vibration characteristic diagram of a cantilever using the Q value control of the present invention, in which the vertical axis of FIG. 3 is logarithmicly displayed, and a second-order mode appears.
[0039] 図 5は図 3に示す本発明の Q値コントロールを用いたカンチレバーの振動特性図( その 2)である。この図において、曲線 aは Q値コントロールあり(本発明:ゲイン 7)、曲 線 bは Q値コントロールあり(本発明:ゲイン 5)、曲線 cは Q値コントロールあり(本発明 :ゲイン 4)、曲線 dは Q値コントロールあり(本発明:ゲイン 3)、曲線 eは Q値コントロー ルなしである。  FIG. 5 is a vibration characteristic diagram (part 2) of the cantilever using the Q value control of the present invention shown in FIG. In this figure, curve a has Q value control (invention: gain 7), curve b has Q value control (invention: gain 5), curve c has Q value control (invention: gain 4), Curve d has Q value control (invention: gain 3), and curve e has no Q value control.
[0040] この図から明らかなように、本発明においては、 Q値コントロールによって Q値を向 上させることができる。また、ゲインが大きくなるにしたがって、 Q値を大きくすることが できることが明ら力となった。 [0041] 図 6はエタノールと水中でのカンチレバーの振動特性の比較を示す図である。この 図において、曲線 aは水、曲線 bはエタノールの場合を示している。 [0040] As is apparent from this figure, in the present invention, the Q value can be improved by the Q value control. Also, it became clear that the Q value could be increased as the gain increased. FIG. 6 is a diagram showing a comparison of vibration characteristics of cantilevers in ethanol and water. In this figure, curve a shows the case of water and curve b shows the case of ethanol.
[0042] この図では図 3、図 4と同じ条件でエタノール中の測定を試みた力 自励に入った。  [0042] In this figure, the force that tried to measure in ethanol under the same conditions as in Figs.
エタノールの方が水より粘性が低ぐ自励しゃすいためだと思われる。  It is thought that ethanol is self-excited because it is less viscous than water.
[0043] この図から明らかなように、粘性の低いエタノールの方は、共振周波数が高い方に シフトしている。  As is apparent from this figure, ethanol having a lower viscosity is shifted to a higher resonance frequency.
[0044] また、本発明の Q値コントロールを行わな力つた場合の結果を示す図 7に比べて、 粘性の違いによる共振周波数のシフト量の差が小さくなつている。これは、 Q値コント ロールによって減衰率が見かけ上小さくなつたことに起因する。なお、図 7において、 aは水、 bはエタノール、 cは水とエタノールが 1: 1の溶液である。  Further, as compared with FIG. 7 showing the result when the Q value control of the present invention is not performed, the difference in the shift amount of the resonance frequency due to the difference in the viscosity is smaller. This is due to the fact that the attenuation factor was apparently reduced by the Q factor control. In FIG. 7, a is water, b is ethanol, and c is a 1: 1 solution of water and ethanol.
[0045] 図 8は、本発明の帰還により共振周波数近傍で周波数特性が平坦な移相回路の 図である。なお、この移相回路は、図 1における移相回路 15に対応している。  FIG. 8 is a diagram of a phase shift circuit having flat frequency characteristics in the vicinity of the resonance frequency due to the feedback of the present invention. Note that this phase shift circuit corresponds to the phase shift circuit 15 in FIG.
[0046] この図にお ヽて、 21ίま入力信号、 22ίま CdS— LEDセノレ、 23, 24, 26, 29, 30, 3 1は増幅器 (オペアンプ)、 25, 27は比較器、 28は乗算器 (マルチプライアー)、 32 はトランジスタ、 33は出力信号、 V は— 10V、 V は + 10Vである。  [0046] In this figure, a 21-bit input signal, a 22-bit CdS—LED sensor, 23, 24, 26, 29, 30, 31 are amplifiers (op-amps), 25 and 27 are comparators, and 28 is a multiplier. (Multiplier), 32 is a transistor, 33 is an output signal, V is -10V, V is + 10V.
EE CC  EE CC
[0047] ここでは、バンドパスフィルタ 14 (図 1参照)から入力された入力信号 21はアンプ 16  Here, the input signal 21 input from the bandpass filter 14 (see FIG. 1) is
(図 1参照)へと出力されるが、両者の移相関係が、周波数に依らず平坦になるように 、 CdS— LEDセル 22による帰還によって実現されて!、る。  (See FIG. 1), but the phase shift relationship between the two is realized by the feedback by the CdS—LED cell 22 so that the phase shift is flat regardless of the frequency.
[0048] 図 9は、図 8に示す移相回路によって平坦な移相特性が得られている結果を示して いる。図 9において、 Aが本発明の移相回路によって出力される平坦な移相特性を 示す線、 Bが従来の移相回路 (フィードバック機能を有しない)によって出力される移 相特性を示す線である。  FIG. 9 shows the result of obtaining a flat phase shift characteristic by the phase shift circuit shown in FIG. In FIG. 9, A is a line showing the flat phase shift characteristic output by the phase shift circuit of the present invention, and B is a line showing the phase shift characteristic output by the conventional phase shift circuit (having no feedback function). is there.
[0049] この図に示すように、本発明による移相回路によれば、周波数に依らず平坦なゲイ ン(dB)を得ることができることが分力ゝる。  [0049] As shown in this figure, according to the phase shift circuit of the present invention, it is important to be able to obtain a flat gain (dB) regardless of the frequency.
[0050] 図 10は、図 1に示す本発明の装置において、移相回路として図 8に示す移相回路 を用いた場合のカンチレバーの振動特性図(その 1)である。本発明による光励振 Q コントロールを行っていない場合 Cでは Q値が 2である力 本発明による光励振 Qコン トロールを行った場合 Dでは Q値が 620となっており、かつ、意図しない発振が生じな いことが示されている。 FIG. 10 is a vibration characteristic diagram (part 1) of the cantilever when the phase shift circuit shown in FIG. 8 is used as the phase shift circuit in the apparatus of the present invention shown in FIG. When the optical excitation Q control according to the present invention is not performed, the force with Q value of 2 is obtained in C. When the optical excitation Q control is performed according to the present invention, the Q value is 620 in D, and unintended oscillation occurs. Do not arise Is shown.
[0051] 図 11は、図 1に示す本発明の装置において、移相回路として図 8に示す移相回路 を用いた場合のカンチレバーの振動特性図(その 2)である。見かけの Q値が高めら れているため、共振周波数において、急激に位相が変化していることが分かる。つま り、位相や周波数の変化力 カンチレバーによる場や質量の検出が高感度で実現で さることを示している。  FIG. 11 is a vibration characteristic diagram (part 2) of the cantilever when the phase shift circuit shown in FIG. 8 is used as the phase shift circuit in the apparatus of the present invention shown in FIG. It can be seen that the phase changes sharply at the resonance frequency because the apparent Q value is increased. In other words, it indicates that the detection of fields and masses by the cantilever can be realized with high sensitivity.
[0052] 図 12は、本発明に力かる Q値コントロールを用いたカンチレバーの振動特性制御 において、自己生成分子膜をカンチレバー上に生成させた時の振動特性の変化を 示す図である。図 12において、 E (図 10における Dに対応)は Q値コントロールを用 いてカンチレバーが純水中で振動する場合の特性、 F, Gは Q値コントロールを用い て微量の自己生成分子を純水に混ぜた状態中でカンチレバーが振動する場合の特 性を示しており、このこと力ら、 Q値コントロールを用いたカンチレバーは、敏感に自 己生成分子の吸着を検出していることが分かる。概算で、 fgから pgオーダーの質量 検出が実現されて 、ることが分かる。  FIG. 12 is a diagram showing a change in vibration characteristics when a self-generated molecular film is generated on the cantilever in the vibration characteristic control of the cantilever using the Q value control according to the present invention. In Fig. 12, E (corresponding to D in Fig. 10) is the characteristic when the cantilever vibrates in pure water using the Q-value control, and F and G are trace amounts of self-generated molecules using the Q-value control. This shows that the cantilever vibrates in a mixed state, indicating that the cantilever using the Q value control is sensitive to the adsorption of self-generated molecules. Estimates show that mass detection on the order of fg to pg is realized.
[0053] また、振動子の光励振 Q値コントロール方法において、光走査により、液に浸した 多数の振動子に Q値コントロールを適用することができる。  In the method of controlling the Q value of light excitation of a vibrator, the Q value control can be applied to a large number of vibrators immersed in a liquid by optical scanning.
[0054] さらに、振動子の光励振 Q値コントロール方法において、液に浸した多数の振動子 に Q値コントロールを適用できるので、液に浸した細胞中の多数の点の計測を行うこ とができる。さらに、振動子の光励振 Q値コントロール方法を液に浸した一個もしくは 多数のカンチレバーの振動制御に適応し、高分解能の走査型力顕微鏡が実現でき る。  [0054] Furthermore, in the method of controlling the Q value of light excitation of a vibrator, since Q value control can be applied to a large number of vibrators immersed in a liquid, it is possible to measure a large number of points in cells immersed in the liquid. it can. Furthermore, the Q-value control method of the vibrator optical excitation is adapted to the vibration control of one or many cantilevers immersed in liquid, and a high-resolution scanning force microscope can be realized.
[0055] 図 13は本発明の他の実施例を示すシステムの部分構成図である。すなわち、図 1 のシステムの一部を変更して ヽる。  FIG. 13 is a partial configuration diagram of a system showing another embodiment of the present invention. That is, a part of the system in Fig. 1 is modified.
[0056] 図 13に示すように、 40はスーパーヘテロダイン回路であり、このスーパーヘテロダ イン回路 40は、局部発振器 41、ミキサ (周波数混合器) 42, 45、バンドパスフィルタ 4As shown in FIG. 13, reference numeral 40 denotes a superheterodyne circuit. This superheterodyne circuit 40 includes a local oscillator 41, mixers (frequency mixers) 42 and 45, and a bandpass filter 4
3、移相回路 (フィードバック機能なし) 44からなる。 3, consisting of 44 phase shift circuits (no feedback function).
[0057] ここで、局部発振器 41は、サーボ 'アナライザー 18の出力する周波数 f よ だけ Here, the local oscillator 41 has only the frequency f output from the servo analyzer 18.
1 0 低い、又は周波数 f より高い f を出力する。ヘテロダインレーザードップラー干渉計 13の出力周波数は、1 0 low or frequency f Output a higher f. The output frequency of the heterodyne laser Doppler interferometer 13 is
2 2
サーボ 'アナライザー 18の出力する周波数 f  Servo 'frequency output from analyzer 18 f
1  1
と等しい。本発明では、周波数 f 自体が変化するので、上記した局部発振器 41の条  Is equal to In the present invention, since the frequency f itself changes, the condition of the local oscillator 41 described above is satisfied.
1  1
件を満足するためには、周波数 f +f  Frequency f + f
1 0  Ten
または f -f を発生する。  Or generate f -f.
1 0  Ten
[0058] このように、本発明の光励振 Q値コントロール装置において、速度検出部は、ヘテロ ダインレーザードップラー干渉計 13からなり、このへテロダインレーザードップラー干 渉計 13にスーパーヘテロダイン回路 40を接続して、励起光の供給部である励起レ 一ザ一装置 (LD) 5 (図 1参照)にフィードバックするように構成して 、る。  As described above, in the optical excitation Q-factor control device of the present invention, the speed detecting section is constituted by the heterodyne laser Doppler interferometer 13, and the superheterodyne circuit 40 is connected to the heterodyne laser Doppler interferometer 13. Then, a feedback is provided to an excitation laser device (LD) 5 (see FIG. 1) which is a pump light supply unit.
[0059] また、本発明の光励振 Q値コントロール装置において、位置 ·速度検出部は、へテ 口ダインレーザードップラー干渉計 13からなり、このへテロダインレーザードップラー 干渉計 13にスーパーヘテロダイン回路 40を接続して、励起光の供給部である励起 レーザー装置 (LD) 5 (図 1参照)にフィードバックするようにしている。このように構成 した場合には、移相回路 44はフィードバック機能を有しない従来の移相回路を用い ることがでさる。  [0059] In the optical excitation Q value control device of the present invention, the position / velocity detecting unit comprises a heterodyne laser Doppler interferometer 13, and a superheterodyne circuit 40 is connected to the heterodyne laser Doppler interferometer 13. Then, feedback is provided to the pump laser device (LD) 5 (see Fig. 1), which is the pump light supply unit. In such a configuration, a conventional phase shift circuit having no feedback function can be used as the phase shift circuit 44.
[0060] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種 々の変形が可能であり、これらを本発明の範囲から排除するものではない。  [0060] The present invention is not limited to the above-described embodiments, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0061] 本発明によれば、以下のような効果を奏することができる。 According to the present invention, the following effects can be obtained.
[0062] (1)光励振では、変位や速度を検出する光検出計と組み合わせることによって、光 を当てるだけで振動子や振動子アレーをセンサに用いることが可能となる。さらに、 Q 値コントロールによって、物質検出の感度や、走査型プローブ顕微鏡のカンチレバー に用いた場合の像の改善が得られる。つまり、従来の、ピエゾ素子対カンチレバ一一 個、という組合せに規制されない展開力 光励振に Q値コントロールを導入することで 期待できる。  [0062] (1) In optical excitation, by combining with a photodetector that detects displacement or velocity, it is possible to use a transducer or transducer array as a sensor simply by irradiating light. In addition, Q-control can improve the sensitivity of substance detection and improve the image when used on a scanning probe microscope cantilever. In other words, it can be expected that Q-value control will be introduced into the conventional excitation force that is not restricted by the combination of the piezo element and one cantilever.
[0063] (2)ヘテロダインレーザードップラー計により速度を直接計測することができるので 、位置を計測し、その微分を電気的に求めて、速度信号を得る装置よりもノイズに強 いものを得ることができる。また、高集積のカンチレバーアレーに適用可能であり、光 走査化が可能である。また、液振が少ない、つまりノイズを少なくすることができる。 [0064] (3)光で励振される振動子に対して同様の速度項と位置項の帰還を行うことにより、 振動子の Q値コントロールを可能とする。光を当てるだけでターゲットの励振、振動検 出、 Q値コントロールが可能となり、振動子型センサの感度向上に寄与することができ る。 [0063] (2) Since the velocity can be directly measured by the heterodyne laser Doppler meter, the position is measured, and its derivative is obtained electrically to obtain a signal that is more resistant to noise than a device that obtains the velocity signal. Can be. In addition, it can be applied to a highly integrated cantilever array, and can perform optical scanning. In addition, liquid vibration is small, that is, noise can be reduced. (3) The feedback of the velocity term and the position term to the vibrator excited by the light enables the Q value control of the vibrator. Excitation of the target, vibration detection, and Q-value control are possible simply by irradiating light, which can contribute to improving the sensitivity of the vibrator-type sensor.
[0065] (4)従来技術のように、磁性体をシリコン等のカンチレバーに塗布する必要がない ため、より高い Q値が期待できる。  (4) Unlike the prior art, it is not necessary to apply a magnetic substance to a cantilever such as silicon, so a higher Q value can be expected.
[0066] (5)光走査により、液に浸した多数の振動子に Q値コントロールを適用し、例えば、 細胞中の多数の点の計測を行うことができる。 (5) By optical scanning, Q value control can be applied to a large number of transducers immersed in a liquid, for example, to measure a large number of points in a cell.
[0067] (6)ヘテロダインレーザードップラー計により直接速度を計測しているため、ヘテロ ダイン法のキャリア周波数と振動周波数を大きく異なるものとすることができ、発振の 生じない、高い Q値制御が可能となる。 [0067] (6) Since the velocity is directly measured by the heterodyne laser Doppler meter, the carrier frequency and the oscillation frequency of the heterodyne method can be greatly different, and high Q value control without oscillation can be performed. It becomes.
[0068] (7)帰還により共振周波数近傍に平坦な周波数特性を有する移相回路により、発 振の生じない、高い Q値制御が可能となる。 (7) By the feedback, a phase shift circuit having a flat frequency characteristic near the resonance frequency enables high Q value control without oscillation.
産業上の利用可能性  Industrial applicability
[0069] 本発明の振動子の光励振 Q値コントロール方法および装置は、走査型顕微鏡と組 み合わせることにより、物質同定やナノバイオメカ-タス、創薬へ利用することができ る。 [0069] The method and apparatus for controlling the Q value of light excitation of an oscillator according to the present invention can be used for material identification, nanobiomechanics, and drug discovery by combining with a scanning microscope.

Claims

請求の範囲 The scope of the claims
[1] 光励振において、速度計測により直接計測された液体中の振動子の速度を光励起 装置にフィードバックすることによって振動子の Q値を見かけ上高め、該振動子として の感度を高めることを特徴とする振動子の光励振 Q値コントロール方法。  [1] In optical excitation, the Q value of the oscillator is apparently increased by feeding back the speed of the oscillator in the liquid directly measured by the speed measurement to the optical excitation device, and the sensitivity as the oscillator is enhanced. Oscillator light excitation Q-value control method.
[2] 請求項 1記載の振動子の光励振 Q値コントロール方法において、前記振動子に励 起光および計測光を照射し、該振動子の計測光の戻り光を検出し、液体中の振動子 の速度を計測することを特徴とする振動子の光励振 Q値コントロール方法。 [2] The method for controlling the optical excitation of a vibrator according to claim 1, wherein the vibrator is irradiated with excitation light and measurement light, and the return light of the measurement light of the vibrator is detected, whereby vibration in the liquid is detected. A method of controlling the Q value of optical excitation of a vibrator, which measures the speed of the vibrator.
[3] 光励振において、液体中の振動子の位置と速度計測により直接計測された速度を 光励起装置にフィードバックすることによって振動子の Q値を見かけ上高め、該振動 子としての感度を高めることを特徴とする振動子の光励振 Q値コントロール方法。 [3] In optical excitation, by increasing the Q value of the vibrator apparently by feeding back the velocity directly measured by measuring the position and velocity of the vibrator in the liquid to the optical excitation device, and increasing the sensitivity of the vibrator A method of controlling the Q value of light excitation of a vibrator.
[4] 請求項 1記載の振動子の光励振 Q値コントロール方法において、前記振動子に励 起光および計測光を照射し、該振動子の計測光の戻り光を検出し、液体中の振動子 の位置と速度計測により直接計測された速度を計測することを特徴とする振動子の 光励振 Q値コントロール方法。 [4] The method for controlling the optical excitation of a vibrator according to claim 1, wherein the vibrator is irradiated with excitation light and measurement light, and the return light of the measurement light of the vibrator is detected, and the vibration in the liquid is detected. A method of controlling the Q value of optical excitation of a vibrator, characterized by measuring the speed directly measured by measuring the position and speed of the vibrator.
[5] 請求項 1又は 3記載の振動子の光励振 Q値コントロール方法において、前記液体 が水であることを特徴とする振動子の光励振 Q値コントロール方法。 [5] The method for controlling the optical excitation Q value of a vibrator according to claim 1 or 3, wherein the liquid is water.
[6] 請求項 1又は 3記載の振動子の光励振 Q値コントロール方法において、前記液体 がエタノールであることを特徴とする振動子の光励振 Q値コントロール方法。 6. The method according to claim 1, wherein the liquid is ethanol. 4. The method according to claim 1, wherein the liquid is ethanol.
[7] 請求項 1又は 3記載の振動子の光励振 Q値コントロール方法において、光走査によ り、液に浸した多数の振動子に Q値コントロールを適用することを特徴とする振動子 の光励振 Q値コントロール方法。  [7] The method for controlling the Q value of an oscillator according to claim 1 or 3, wherein the Q value control is applied to a number of oscillators immersed in a liquid by optical scanning. Optical excitation Q value control method.
[8] 請求項 7記載の振動子の光励振 Q値コントロール方法において、液に浸した細胞 中の多数の点の計測を行うことを特徴とする振動子の光励振 Q値コントロール方法。  [8] The method for controlling the Q value of light excitation of a vibrator according to the method for controlling the Q value of light excitation of a vibrator according to claim 7, wherein a large number of points in cells immersed in the liquid are measured.
[9] (a)液体中に配置される振動子と、  [9] (a) a vibrator arranged in a liquid,
(b)該振動子に照射される励起光および計測光を出入射する光出入射部と、 (b) a light entrance / exit section for entering / exiting excitation light and measurement light applied to the vibrator,
(c)該光出入射部への励起光および計測光の供給部と、 (c) a supply unit for excitation light and measurement light to the light entrance / exit unit,
(d)前記光出入射部力 の計測光の戻り光に基づいて前記振動子の Q値を見かけ 上高め、前記振動子の速度を直接検出する速度検出部とを具備することを特徴とす る光励振 Q値コントロール装置。 (d) a speed detecting unit for directly detecting the speed of the vibrator by apparently increasing the Q value of the vibrator based on the return light of the measuring light of the light output / incident portion force. Light excitation Q value control device.
[10] 請求項 9記載の光励振 Q値コントロール装置において、前記速度検出部は、ヘテロ ダインレーザードップラー干渉計力もなり、前記速度検出部の出力側にバンドパスフ ィルタと移相回路とアンプとを直列接続して、前記励起光の供給部にフィードバック することを特徴とする光励振 Q値コントロール装置。 [10] The optical excitation Q-factor control device according to claim 9, wherein the speed detecting unit is also a heterodyne laser Doppler interferometer, and a band-pass filter, a phase shift circuit, and an amplifier are connected in series on the output side of the speed detecting unit. An optical excitation Q value control device, wherein the optical excitation Q value control device is connected to feed back to the excitation light supply unit.
[11] (a)液体中に配置される振動子と、 [11] (a) a vibrator arranged in a liquid,
(b)該振動子に照射される励起光および計測光を出入射する光出入射部と、 (b) a light entrance / exit section for entering / exiting excitation light and measurement light applied to the vibrator,
(c)該光出入射部への励起光および計測光の供給部と、 (c) a supply unit for excitation light and measurement light to the light entrance / exit unit,
(d)前記光出入射部力 の計測光の戻り光に基づいて前記振動子の Q値を見かけ 上高め、前記振動子の位置と速度を検出する位置'速度検出部とを具備することを 特徴とする光励振 Q値コントロール装置。  (d) a position / speed detector for apparently increasing the Q value of the vibrator based on the return light of the measurement light of the light output / incident force and detecting the position and speed of the vibrator. Optical excitation Q value control device.
[12] 請求項 11記載の光励振 Q値コントロール装置において、前記位置'速度検出部は 、ヘテロダインレーザードップラー干渉計力 なり、前記位置'速度検出部の出力側 にバンドパスフィルタと移相回路とアンプとを直列接続して、前記励起光の供給部に フィードバックすることを特徴とする光励振 Q値コントロール装置。  12. The optical excitation Q-value control device according to claim 11, wherein the position 'speed detector is a heterodyne laser Doppler interferometer, and a bandpass filter and a phase shift circuit are provided on an output side of the position' speed detector. An optical excitation Q value control device, wherein an amplifier is connected in series and feedback is provided to the excitation light supply unit.
[13] 請求項 11記載の光励振 Q値コントロール装置において、前記速度検出部は、ヘテロ ダインレーザードップラー干渉計力 なり、該ヘテロダインレーザードップラー干渉計 にスーパーヘテロダイン回路を接続して、前記励起光の供給部にフィードバックする ことを特徴とする光励振 Q値コントロール装置。 13. The optical excitation Q-value control device according to claim 11, wherein the speed detection unit is a heterodyne laser Doppler interferometer, and a superheterodyne circuit is connected to the heterodyne laser Doppler interferometer to output the excitation light. Optical excitation Q value control device characterized by feeding back to the supply unit.
[14] 請求項 11記載の光励振 Q値コントロール装置において、前記位置'速度検出部は[14] The optical excitation Q value control device according to claim 11, wherein the position / speed detection unit is
、ヘテロダインレーザードップラー干渉計からなり、該ヘテロダインレーザードップラー 干渉計にスーパーヘテロダイン回路を接続して、前記励起光の供給部にフィードバ ックすることを特徴とする光励振 Q値コントロール装置。 And a heterodyne laser Doppler interferometer, wherein a superheterodyne circuit is connected to the heterodyne laser Doppler interferometer to feed back the excitation light supply section.
[15] 請求項 9記載の光励振 Q値コントロール装置において、帰還により周波数特性が共 振周波数近傍で平坦な移相回路を用いることを特徴とする光励振 Q値コントロール 装置。 15. The optically-excited Q-factor control device according to claim 9, wherein a flat phase shift circuit having a frequency characteristic near the resonance frequency is used by feedback.
[16] 請求項 9記載の光励振 Q値コントロール装置において、前記移相回路が CdSと LE Dセルを用いた帰還方式であることを特徴とする光励振 Q値コントロール装置。 請求項 9記載の光励振 Q値コントロール装置において、該装置が走査型力顕微鏡 のカンチレバーの振動特性を制御することを特徴とする光励振 Q値コントロール装置 16. The optically-excited Q-value control device according to claim 9, wherein the phase shift circuit is of a feedback type using CdS and LED cells. 10. The optical excitation Q-value control device according to claim 9, wherein the device controls a vibration characteristic of a cantilever of the scanning force microscope.
PCT/JP2005/010128 2004-06-02 2005-06-02 Method and device for controlling photo-excitation q value of vibrator WO2005119206A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006514125A JPWO2005119206A1 (en) 2004-06-02 2005-06-02 Method and apparatus for controlling optical excitation Q value of vibrator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-164833 2004-06-02
JP2004164833 2004-06-02

Publications (1)

Publication Number Publication Date
WO2005119206A1 true WO2005119206A1 (en) 2005-12-15

Family

ID=35463011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010128 WO2005119206A1 (en) 2004-06-02 2005-06-02 Method and device for controlling photo-excitation q value of vibrator

Country Status (2)

Country Link
JP (1) JPWO2005119206A1 (en)
WO (1) WO2005119206A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017760A1 (en) * 1995-11-09 1997-05-15 Takeshi Ikeda Tuning control system
JP2003264326A (en) * 2002-03-08 2003-09-19 Japan Science & Technology Corp Molecular integrated circuit element and manufacturing method therefor
US20040093935A1 (en) * 2002-09-17 2004-05-20 Takehiro Yamaoka Scanning probe microscope and operation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2647815B2 (en) * 1995-08-18 1997-08-27 工業技術院長 Frequency measurement method of laser displacement meter / laser vibrometer
JPH09101109A (en) * 1995-10-02 1997-04-15 Hide Hosoe Laser interference length measuring device
JP4076792B2 (en) * 2001-06-19 2008-04-16 独立行政法人科学技術振興機構 Cantilever array, manufacturing method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017760A1 (en) * 1995-11-09 1997-05-15 Takeshi Ikeda Tuning control system
JP2003264326A (en) * 2002-03-08 2003-09-19 Japan Science & Technology Corp Molecular integrated circuit element and manufacturing method therefor
US20040093935A1 (en) * 2002-09-17 2004-05-20 Takehiro Yamaoka Scanning probe microscope and operation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GROSCH G ET AL: "Hybrid Fiber-optic/MIcromechanical Frecuency Encoding Displacement Sensor.", SENSORS AND ACTUATORS A., vol. A23, no. 1-3, April 1990 (1990-04-01), pages 1128 - 1131, XP000355805 *
KAWAMASA H ET AL: "Nano Shindoshi to 100 Man Probe no Sosa Gatakari Kenbikyo.", 1 March 2004 (2004-03-01), pages 15, XP002994445 *
NAKAZAWA T ET AL: "Ekichu ni okeru Cantilever Hikari Gekishin.", 28 March 2004 (2004-03-28), pages 738, XP002994444 *

Also Published As

Publication number Publication date
JPWO2005119206A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP2730673B2 (en) Method and apparatus for measuring physical properties using cantilever for introducing ultrasonic waves
US5719324A (en) Microcantilever sensor
KR100783341B1 (en) Cantilever array, method of manufacturing the array, and scanning probe microscope, sliding device of guide and rotating mechanism, sensor, homodyne laser interferometer, and laser doppler interferometer with specimen light excitation function, using the array, and cantilever
US5445008A (en) Microbar sensor
US8850867B2 (en) Photoacoustic sensor and method for the production and use thereof
JP2014518395A (en) Mechanical detection of Raman resonance
JP2005331509A (en) Method and device for measuring object by variable natural oscillation cantilever
JP4244347B2 (en) A device for measuring sample characteristics using a heterodyne laser Doppler interferometer with sample excitation function
WO2007072706A1 (en) Scan type probe microscope
JP3764917B2 (en) High frequency micro vibration measurement device
WO2005119206A1 (en) Method and device for controlling photo-excitation q value of vibrator
JP2006098386A (en) Method of sensing scattered light, polarization modulator, and scanning probe microscope
JP2010185772A (en) Sensor element and sensor device including the same
KR100849874B1 (en) Nanogap series substance capturing, detecting, and identifying method and device
KR101101988B1 (en) Near scanning photoacoustic apparatus
KR101118474B1 (en) Apparatus for detecting bio contents using optical coherence
JP2003121423A (en) Laser ultrasonic inspection device and laser ultrasonic inspection method
Sone et al. Pico-gram mass deviation detected by resonance frequency shift of AFM cantilever
Martinussen et al. Heterodyne interferometry for high sensitivity absolute amplitude vibrational measurements
US11402405B2 (en) Frequency tracking for subsurface atomic force microscopy
JPH07174767A (en) Scanning type probe microscope
Jóźwiak et al. The spring constant calibration of the piezoresistive cantilever based biosensor
US20070140905A1 (en) Nanogap series substance capturing, detecting and identifying method and device
Bosco et al. High-throughput readout system for cantilever-based sensing of explosive compounds
JPH09318637A (en) Scanning probe microscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006514125

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase