WO2005119032A1 - Engine, vehicle provided with such an engine, and a connecting element between a first and a second element of an engine - Google Patents

Engine, vehicle provided with such an engine, and a connecting element between a first and a second element of an engine Download PDF

Info

Publication number
WO2005119032A1
WO2005119032A1 PCT/SE2005/000664 SE2005000664W WO2005119032A1 WO 2005119032 A1 WO2005119032 A1 WO 2005119032A1 SE 2005000664 W SE2005000664 W SE 2005000664W WO 2005119032 A1 WO2005119032 A1 WO 2005119032A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
engine according
connecting element
exhaust duct
fastened
Prior art date
Application number
PCT/SE2005/000664
Other languages
French (fr)
Inventor
Bertil JÖNSSON
Original Assignee
Volvo Aero Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volvo Aero Corporation filed Critical Volvo Aero Corporation
Priority to EP05745005A priority Critical patent/EP1756407A1/en
Publication of WO2005119032A1 publication Critical patent/WO2005119032A1/en
Priority to US11/555,815 priority patent/US20070059160A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • F01D25/145Thermally insulated casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation

Definitions

  • An engine vehicle comprising said engine, and means for connecting a first and a second element in said engine
  • the present invention relates to an engine, comprising a first element, a second element, an exhaust duct which extends from the first element into the second element, a connecting element which connects the first element to the second element and delimitates the exhaust duct at the transition between the first and second elements, said connecting element being flexible to allow relative movements between the first and the second element.
  • the invention also relates to a vehicle provided with such an engine, said engine being situated with the second element vertically above or below the first element and under a floor of the vehicle.
  • the invention relates to a connecting element for absorbing thermal movements between a first element and a second element connected to it, whereby an exhaust duct extends from the first element into the second element.
  • the field of the invention comprises in particular engines for vehicles, particularly load-carrying vehicles, e.g. trucks or buses, although other applications are also conceivable.
  • the first and second elements are exhaust duct constituent elements in or close to the engine of a vehicle.
  • the invention relates to such elements in cases where thermal effects arising for example from exhaust gases flowing through the elements concerned cause relative movements between the elements as a result of their differing thermal expansion.
  • the elements may be separately suspended relative to, or fastened to, one and the same frame and thereby be to some extent positionally fixed relative to one another.
  • a connecting element provided at the transition between the elements therefore needs to be both flexible and sealing with respect to the exhaust gases which may be expected to flow through the elements concerned.
  • the invention applies in particular to engines where a gas turbine is arranged in or forms part of the first element, and where a heat exchanger is arranged in or forms part of the second element, exhaust gases from the gas turbine being led away from it via the exhaust duct.
  • the heat exchanger is preferably a stationary heat exchanger in which heat exchange takes place between exhaust gases and combustion air which is supplied to the gas turbine.
  • the first element may take the form of a housing which surrounds the gas turbine
  • the second element may take the form of a housing which surrounds or forms part of the heat exchanger.
  • the connecting element comprises preferably a so-called compensator, preferably of the type called fabric compensator and which comprises a flexible fabric which either in itself or by being coated with suitable material can be substantially gas-tight.
  • the second element which surrounds or forms part of the heat exchanger, is thermally insulated outside
  • the first element the gas turbine housing
  • recuperators for gas turbines are generally so designed that their outer casing assumes a temperature close to that of the hot gas. Insulation is applied on the outside of the recuperator to reduce temperature effects on the surroundings. This means that the temperature of the outer casing and connection flange on the inlet portion of the gas side may vary from cold start to maximum operating temperatures up to 700 °C.
  • the outer housing parts of the actual engine i.e. those of the gas turbine, are insulated inside to make it possible to use conventional nodular iron housings or, in certain cases, aluminium housings. In such cases endeavours are made to ensure that the temperature of the outer housing is relatively low, preferably below 150 °C.
  • connection which can absorb the relative movements which occur between the parts as a result of thermal expansion.
  • the connection also needs to be gas-tight. In most cases this can be achieved by some kind of fabric compensator or metal bellows, which usually has a preferably axial extent.
  • fabric compensator or metal bellows which usually has a preferably axial extent.
  • the object of the present invention is to provide an engine of the kind mentioned in the introduction, with a compact design, in particular with an overall height as low as possible, whereby the first and second elements are for example disposed vertically above/below one another and whereby the engine is situated under a floor or the like of the vehicle in which it is installed.
  • a further object of the invention is to propose a connecting element between a first element, which advantageously surrounds or forms part of a combustion engine, preferably a gas turbine, and a second element, which preferably surrounds or forms part of a heat exchanger connected to the first element, the connecting element being intended to facilitate a compact engine design and be of simple construction and advantageous to produce from the cost point of view.
  • the connecting element forms a ring whose fastening to the first element is offset radially relative to its fastening to the second element.
  • Ring-shaped in this context means not only a ring shape with circular inner and outer peripheries, but also other geometries which may be applicable, depending on, for example, the geometry of the recuperator.
  • a preferred ring shape with respect to the shape of the second element, since the latter takes the form of a so-called recuperator, as will be described below, is therefore substantially rectangular or square inner and outer peripheries. This is a substantial difference from the tubular bellows used by the state of the art as flexible connecting element, and requires significantly less space.
  • the connecting element has bulk in a radial direction relative to the exhaust duct rather than in an axial direction from the first element towards the second element, the elements can be placed closer together in the exhaust flow direction while maintaining the possibility of absorbing thermally related movements between the elements concerned.
  • the connecting element has preferably an inner periphery at which it is fastened to the first element, and an outer periphery at which it is fastened to the second element.
  • the inner periphery of the connecting element may be said to face towards said exhaust duct and its outer periphery may be said to face towards the second element.
  • the second element extends radially externally relative to the exhaust duct in the region where it is adjacent to the connecting element, and the connecting element is a flexible connecting element which extends in a radial direction outwards from the duct towards the second element.
  • the connecting element preferably takes the form of a flexible disc with a thickness which is substantially less than its extent in its propagation plane. Flexibility of the connecting element in the exhaust duct direction is thus promoted.
  • the disc constituted by the connecting element propagates preferably transversely to the longitudinal direction of the exhaust duct at the transition between the first and second elements.
  • the second element has preferably, in the region where it is fastened to the compensator, an inside circumference which is substantially larger than the circumference of the exhaust duct at corresponding cross-sections.
  • the first element takes preferably the form of a relatively thin-walled pipe in the region in which it emerges into the second element, whereby the inside circumference of the second element in said region is larger than the outside circumference of the first element, and also conceivably overlap the latter in the exhaust duct direction.
  • the invention comprises thermal insulation applied externally to the first element and internally to the second element in said region and protecting the connecting element from the actual exhaust duct and the hot gas which may be expected to flow through it.
  • the invention comprises a gas turbine disposed in or forming part of the first element, a heat exchanger disposed in or forming part of the second element, and exhaust gases from the gas turbine being led away from it via the exhaust duct.
  • Fig. 1 is a cutaway schematic diagram of part of an engine according to the invention, with a connecting element according to the invention between a first and a second element of the engine,
  • Fig. 2 is a cross-section of part of a connecting element according to the invention
  • Fig. 3 is a cross-section of an alternative embodiment of a connecting element according to Fig.2, and
  • Fig. 4 is a view from above of a connecting element according to the invention.
  • Fig. 1 shows schematically a part of an engine 1 according to the invention.
  • the engine 1 is a gas turbine engine and comprises a recuperator 2 and an engine housing 3, i.e. a housing which surrounds the gas turbine of the engine. Exhaust gases are led from the engine housing 3 to the recuperator via an exhaust duct 4.
  • the engine housing 3 is an example of a first exhaust duct constituent element
  • the recuperator 2 is an example of a second exhaust duct constituent element.
  • the engine housing 3 and the recuperator 2 are normally suspended in a frame (not represented in detail) in such a way that they are to some extent positionally fixed and need a flexible connection to absorb thermally induced relative movements.
  • the second element here the recuperator 2
  • the engine may comprise one or more compressors, intermediate coolers and further components which may normally form part of a gas turbine engine.
  • the recuperator 2 is provided externally with thermal insulation 7, which means that the temperature of the recuperator plates closest to the exhaust duct will vary between the ambient temperature and exhaust temperatures which may be about 700 °C.
  • the first element, here the engine housing 3, is provided with thermal insulation 8 on the inside to make it possible to use engine housing material of lower heat resistance, e.g. aluminium or nodular iron.
  • the temperature of the engine housing walls may thus vary between ambient temperature and about 150 °C. Thermal expansion will result in relative movements between the recuperator 2 and the engine housing 3.
  • a compensator 9 is arranged between and is connected to the engine housing 3 and the recuperator 2.
  • the compensator 9 constitutes a flexible connecting element between the recuperator 2 and the engine housing 3 in that it is arranged to allow axial movements of the recuperator 2 towards and away from the engine housing 3.
  • the recuperator plate in the region where it is intended to be fastened to the compensator 9 is wider, i.e. it has an inside circumference which is greater, than the portion of the engine housing 3 to which the compensator 9 is intended to be fastened.
  • the recuperator extends radially externally relative to and at a distance from the portion of the engine housing 3 to which the compensator 9 is fastened.
  • the compensator 9 extends mainly radially, i.e.
  • its radial component is greater than its axial component in one or more vectors which describe its extent from the engine housing 3 to the recuperator 2 and relative to the exhaust flow direction (denoted by an arrow in Fig. 2) or the exhaust duct 4. It thus constitutes a disc or cone, with a cone angle which is preferably greater than 90° and, still more preferably, greater than 140° and, most preferably of all, close to 180°, i.e. a largely flat disc, in order to have as little bulk as possible in an axial direction.
  • the compensator 9 takes the form of a flexible disc or plate, or a brim extending round the outlet of the engine housing 3. In the version depicted in Fig. 2, it is fastened by bolts 10 to a flange 11 which starts from the engine housing 3, and by bolts 12 to an end of the recuperator 2 which is situated radially externally relative to the flange 11.
  • the compensator 9 is provided with means 5, 6 for fastening to the engine housing and the recuperator respectively, the means 6 for fastening to the recuperator being disposed radially externally relative to the means 5 for fastening to the engine housing, said means taking the form of holes to accommodate the bolts 10 and 12 respectively.
  • the radially inner bolted connection constituted by the first-named bolts 10, and the radially outer bolt connection constituted by the latter bolts 12, are largely situated in the same radial plane and therefore contribute only to a small extent to the amount of distance between the recuperator 2 and the engine housing 3.
  • the flange LI is made of thin sheet metal and is bent back towards the engine housing 3 in the region radially outside the region in which it is fastened to the engine housing 3. The overall height is thus further reduced.
  • Fig. 3 shows an alternative version in which the compensator 9 is fastened directly to the engine housing 3 without any intermediate flange. This is a possible solution if the engine housing 3 exhibits low enough temperatures as to be sustained by the compensator material.
  • a thermally insulating cushion 13 is arranged between the engine housing 3 and the recuperator 2 to protect and thermally insulate the compensator 9 from the exhaust gases in the exhaust duct 4.
  • a first annular guide plate 14 for guiding the exhaust gases past the compensator 9 is fastened to the engine housing 3, and a second annular guide plate 15 for guiding the exhaust gases past the compensator 9 is fastened to the recuperator 2.
  • the guide plates 14, 15 together constitute the portion of the exhaust duct 4 which extends from the engine housing 3 to the recuperator 2 in the region where the compensator 9 is arranged radially externally relative to them.
  • the guide plate 14 fastened to the engine housing 3 extends, in the region where it overlaps the second guide plate 15, radially within the latter with a clearance which allows for thermal movements arising from the sometimes great differences in temperature of the components to which they are fastened.
  • the contact surface of the guide plate 14 relative to the engine housing 3 needs to be minimised in order to minimise heat conduction from the guide plate 14 to the engine housing 3.
  • the compensator 9 further comprises seal means 16 for sealing it relative to the engine housing 3 or the recuperator 2.
  • the seal means 16 take the form in this case of a string of seal material, preferably Teflon or some other suitable material such as silicone rubber, which is applied between the compensator 9 and the component the recuperator 2 and the engine housing 3 respectively, to which the compensator is fastened.
  • first element comprises a housing for a gas turbine and the second element comprises a recuperator are not limited to such an application but may with advantage occur in other applications where the first and second elements constitute quite different exhaust duct constituent components of an engine.

Abstract

An engine comprising a first element (3), a second element (2), an exhaust duct (4) which extends from the first element (3) into the second element, a connecting element (9) which connects the first element (3) to the second element (2) and delimitates the exhaust duct (4) at the transition between the first and second elements (3, 2), said connecting element (9) being flexible to allow relative movements between the first and the second elements (3, 2). The connecting element (9) constitutes a ring whose fastening to the first element (3) is offset radially relative to its fastening to the second element (2).

Description

An engine, vehicle comprising said engine, and means for connecting a first and a second element in said engine
TECHNICAL FIELD
The present invention relates to an engine, comprising a first element, a second element, an exhaust duct which extends from the first element into the second element, a connecting element which connects the first element to the second element and delimitates the exhaust duct at the transition between the first and second elements, said connecting element being flexible to allow relative movements between the first and the second element.
The invention also relates to a vehicle provided with such an engine, said engine being situated with the second element vertically above or below the first element and under a floor of the vehicle.
In addition, the invention relates to a connecting element for absorbing thermal movements between a first element and a second element connected to it, whereby an exhaust duct extends from the first element into the second element.
The field of the invention comprises in particular engines for vehicles, particularly load-carrying vehicles, e.g. trucks or buses, although other applications are also conceivable.
The first and second elements are exhaust duct constituent elements in or close to the engine of a vehicle. In particular, the invention relates to such elements in cases where thermal effects arising for example from exhaust gases flowing through the elements concerned cause relative movements between the elements as a result of their differing thermal expansion. The elements may be separately suspended relative to, or fastened to, one and the same frame and thereby be to some extent positionally fixed relative to one another. A connecting element provided at the transition between the elements therefore needs to be both flexible and sealing with respect to the exhaust gases which may be expected to flow through the elements concerned.
The invention applies in particular to engines where a gas turbine is arranged in or forms part of the first element, and where a heat exchanger is arranged in or forms part of the second element, exhaust gases from the gas turbine being led away from it via the exhaust duct. The heat exchanger is preferably a stationary heat exchanger in which heat exchange takes place between exhaust gases and combustion air which is supplied to the gas turbine. In such cases the first element may take the form of a housing which surrounds the gas turbine, while the second element may take the form of a housing which surrounds or forms part of the heat exchanger.
The connecting element comprises preferably a so-called compensator, preferably of the type called fabric compensator and which comprises a flexible fabric which either in itself or by being coated with suitable material can be substantially gas-tight. It may be mentioned in this context that the second element, which surrounds or forms part of the heat exchanger, is thermally insulated outside, whereas the first element, the gas turbine housing, is thermally insulated inside, which means that a substantial temperature difference may occur between these components, resulting in relative movements between the elements.
BACKGROUND TO THE INVENTION
In the development of modern vehicles there is a constant need to reduce the space required for the engine. In vehicles where the engine is situated under the floor, there is a need to reduce the engine's height requirement to a minimum. Heat exchangers, so-called recuperators, for gas turbines are generally so designed that their outer casing assumes a temperature close to that of the hot gas. Insulation is applied on the outside of the recuperator to reduce temperature effects on the surroundings. This means that the temperature of the outer casing and connection flange on the inlet portion of the gas side may vary from cold start to maximum operating temperatures up to 700 °C.
In contrast, the outer housing parts of the actual engine, i.e. those of the gas turbine, are insulated inside to make it possible to use conventional nodular iron housings or, in certain cases, aluminium housings. In such cases endeavours are made to ensure that the temperature of the outer housing is relatively low, preferably below 150 °C.
Connecting the outlet housing of the engine/gas turbine to a recuperator therefore requires a connection which can absorb the relative movements which occur between the parts as a result of thermal expansion. The connection also needs to be gas-tight. In most cases this can be achieved by some kind of fabric compensator or metal bellows, which usually has a preferably axial extent. For an automotive gas turbine, however, it is necessary for considerations of space to try to minimise the distance between the recuperator and the engine. The state of the art could be improved in this respect.
OB ECTS OF THE INVENTION
The object of the present invention is to provide an engine of the kind mentioned in the introduction, with a compact design, in particular with an overall height as low as possible, whereby the first and second elements are for example disposed vertically above/below one another and whereby the engine is situated under a floor or the like of the vehicle in which it is installed.
A further object of the invention is to propose a connecting element between a first element, which advantageously surrounds or forms part of a combustion engine, preferably a gas turbine, and a second element, which preferably surrounds or forms part of a heat exchanger connected to the first element, the connecting element being intended to facilitate a compact engine design and be of simple construction and advantageous to produce from the cost point of view.
SUMMARY OF THE INVENTION
The object of the present invention is achieved with the engine mentioned in the introduction, characterised in that the connecting element forms a ring whose fastening to the first element is offset radially relative to its fastening to the second element. Ring-shaped in this context means not only a ring shape with circular inner and outer peripheries, but also other geometries which may be applicable, depending on, for example, the geometry of the recuperator. A preferred ring shape with respect to the shape of the second element, since the latter takes the form of a so-called recuperator, as will be described below, is therefore substantially rectangular or square inner and outer peripheries. This is a substantial difference from the tubular bellows used by the state of the art as flexible connecting element, and requires significantly less space.
As the connecting element has bulk in a radial direction relative to the exhaust duct rather than in an axial direction from the first element towards the second element, the elements can be placed closer together in the exhaust flow direction while maintaining the possibility of absorbing thermally related movements between the elements concerned.
The connecting element has preferably an inner periphery at which it is fastened to the first element, and an outer periphery at which it is fastened to the second element. The inner periphery of the connecting element may be said to face towards said exhaust duct and its outer periphery may be said to face towards the second element. In other words, the second element extends radially externally relative to the exhaust duct in the region where it is adjacent to the connecting element, and the connecting element is a flexible connecting element which extends in a radial direction outwards from the duct towards the second element. The connecting element preferably takes the form of a flexible disc with a thickness which is substantially less than its extent in its propagation plane. Flexibility of the connecting element in the exhaust duct direction is thus promoted.
The disc constituted by the connecting element propagates preferably transversely to the longitudinal direction of the exhaust duct at the transition between the first and second elements.
The second element has preferably, in the region where it is fastened to the compensator, an inside circumference which is substantially larger than the circumference of the exhaust duct at corresponding cross-sections. The first element takes preferably the form of a relatively thin-walled pipe in the region in which it emerges into the second element, whereby the inside circumference of the second element in said region is larger than the outside circumference of the first element, and also conceivably overlap the latter in the exhaust duct direction. The invention comprises thermal insulation applied externally to the first element and internally to the second element in said region and protecting the connecting element from the actual exhaust duct and the hot gas which may be expected to flow through it.
The invention comprises a gas turbine disposed in or forming part of the first element, a heat exchanger disposed in or forming part of the second element, and exhaust gases from the gas turbine being led away from it via the exhaust duct.
Further features and advantages of the invention are indicated by the following detailed description and the attached claims.
BRIEF DESCRIPTION OF THE DRAWINGS The invention is described below by way of examples with reference to the attached drawings, in which: Fig. 1 is a cutaway schematic diagram of part of an engine according to the invention, with a connecting element according to the invention between a first and a second element of the engine,
Fig. 2 is a cross-section of part of a connecting element according to the invention,
Fig. 3 is a cross-section of an alternative embodiment of a connecting element according to Fig.2, and
Fig. 4 is a view from above of a connecting element according to the invention.
DETAILED DESCRIPTION OF THE INVENTION
Fig. 1 shows schematically a part of an engine 1 according to the invention. The engine 1 is a gas turbine engine and comprises a recuperator 2 and an engine housing 3, i.e. a housing which surrounds the gas turbine of the engine. Exhaust gases are led from the engine housing 3 to the recuperator via an exhaust duct 4. In accordance with the invention, the engine housing 3 is an example of a first exhaust duct constituent element and the recuperator 2 is an example of a second exhaust duct constituent element. The engine housing 3 and the recuperator 2 are normally suspended in a frame (not represented in detail) in such a way that they are to some extent positionally fixed and need a flexible connection to absorb thermally induced relative movements.
The second element, here the recuperator 2, takes the form of a stationary heat exchanger (unlike movable, e.g. rotating, heat exchangers) in which heat exchange takes place between the hot exhaust gases supplied to the recuperator 2 from the engine housing 3 and combustion air delivered via the recuperator 2 to a combustion chamber (not showed). It should be noted that the engine may comprise one or more compressors, intermediate coolers and further components which may normally form part of a gas turbine engine.
As may be seen in Fig. 2, the recuperator 2 is provided externally with thermal insulation 7, which means that the temperature of the recuperator plates closest to the exhaust duct will vary between the ambient temperature and exhaust temperatures which may be about 700 °C. The first element, here the engine housing 3, is provided with thermal insulation 8 on the inside to make it possible to use engine housing material of lower heat resistance, e.g. aluminium or nodular iron. The temperature of the engine housing walls may thus vary between ambient temperature and about 150 °C. Thermal expansion will result in relative movements between the recuperator 2 and the engine housing 3. To absorb these movements, a compensator 9 is arranged between and is connected to the engine housing 3 and the recuperator 2.
The compensator 9 constitutes a flexible connecting element between the recuperator 2 and the engine housing 3 in that it is arranged to allow axial movements of the recuperator 2 towards and away from the engine housing 3. To make a compact design possible whereby the distance between the recuperator 2 and the engine housing 3 is as small as possible, the recuperator plate in the region where it is intended to be fastened to the compensator 9, is wider, i.e. it has an inside circumference which is greater, than the portion of the engine housing 3 to which the compensator 9 is intended to be fastened. Preferably, the recuperator extends radially externally relative to and at a distance from the portion of the engine housing 3 to which the compensator 9 is fastened. The compensator 9 extends mainly radially, i.e. its radial component is greater than its axial component in one or more vectors which describe its extent from the engine housing 3 to the recuperator 2 and relative to the exhaust flow direction (denoted by an arrow in Fig. 2) or the exhaust duct 4. It thus constitutes a disc or cone, with a cone angle which is preferably greater than 90° and, still more preferably, greater than 140° and, most preferably of all, close to 180°, i.e. a largely flat disc, in order to have as little bulk as possible in an axial direction.
The compensator 9 takes the form of a flexible disc or plate, or a brim extending round the outlet of the engine housing 3. In the version depicted in Fig. 2, it is fastened by bolts 10 to a flange 11 which starts from the engine housing 3, and by bolts 12 to an end of the recuperator 2 which is situated radially externally relative to the flange 11. As may be seen in Fig.4, the compensator 9 is provided with means 5, 6 for fastening to the engine housing and the recuperator respectively, the means 6 for fastening to the recuperator being disposed radially externally relative to the means 5 for fastening to the engine housing, said means taking the form of holes to accommodate the bolts 10 and 12 respectively. The radially inner bolted connection constituted by the first-named bolts 10, and the radially outer bolt connection constituted by the latter bolts 12, are largely situated in the same radial plane and therefore contribute only to a small extent to the amount of distance between the recuperator 2 and the engine housing 3. The flange LI is made of thin sheet metal and is bent back towards the engine housing 3 in the region radially outside the region in which it is fastened to the engine housing 3. The overall height is thus further reduced.
Fig. 3 shows an alternative version in which the compensator 9 is fastened directly to the engine housing 3 without any intermediate flange. This is a possible solution if the engine housing 3 exhibits low enough temperatures as to be sustained by the compensator material.
Reverting in particular to Fig. 2, a thermally insulating cushion 13 is arranged between the engine housing 3 and the recuperator 2 to protect and thermally insulate the compensator 9 from the exhaust gases in the exhaust duct 4.
A first annular guide plate 14 for guiding the exhaust gases past the compensator 9 is fastened to the engine housing 3, and a second annular guide plate 15 for guiding the exhaust gases past the compensator 9 is fastened to the recuperator 2. The guide plates 14, 15 together constitute the portion of the exhaust duct 4 which extends from the engine housing 3 to the recuperator 2 in the region where the compensator 9 is arranged radially externally relative to them.
The guide plate 14 fastened to the engine housing 3, and the guide plate 15 fastened to the recuperator 2, overlap one another in the longitudinal direction of the exhaust duct 4. The first and second guide plates 14 and 15 respectively together overlap and protect the thermally insulating cushion 13 from the exhaust gases in the exhaust duct. The guide plate 14 fastened to the engine housing 3 extends, in the region where it overlaps the second guide plate 15, radially within the latter with a clearance which allows for thermal movements arising from the sometimes great differences in temperature of the components to which they are fastened. The contact surface of the guide plate 14 relative to the engine housing 3 needs to be minimised in order to minimise heat conduction from the guide plate 14 to the engine housing 3.
The compensator 9 further comprises seal means 16 for sealing it relative to the engine housing 3 or the recuperator 2. The seal means 16 take the form in this case of a string of seal material, preferably Teflon or some other suitable material such as silicone rubber, which is applied between the compensator 9 and the component the recuperator 2 and the engine housing 3 respectively, to which the compensator is fastened.
It should be noted that a number of alternative embodiments of the invention would be obvious to a person skilled in the art. The features indicated above for the example where the first element comprises a housing for a gas turbine and the second element comprises a recuperator are not limited to such an application but may with advantage occur in other applications where the first and second elements constitute quite different exhaust duct constituent components of an engine.

Claims

1. An engine comprising a first element (3), a second element (2), an exhaust duct (4) which extends from the first element (3) into the second element, a connecting element (9) which connects the first element (3) to the second element (2) and delimitates the exhaust duct (4) at the transition between the first and second elements (3, 2), said connecting element (9) being flexible to allow relative movements between the first and the second elements (3, 2), characterised in that the connecting element (9) constitutes a ring whose fastening to the first element (3) is offset radially relative to its fastening to the second element (2).
2. An engine according to claim 1, characterised in that the connecting element (9) has an inner periphery at which it is fastened to the first element, and an outer periphery at which it is fastened to the second element.
3. An engine according to claim 1 or 2, characterised in that the connecting element (9) takes the form of a flexible disc with a thickness which is substantially smaller than its extent in its propagation plane.
4. An engine according to claim 3, characterised in that the disc constituted by the connecting element (9) propagates transversely to the longitudinal direction of the exhaust duct (4) at the transition between the first and second elements (3, 2).
5. An engine according to any one of claims 1-4, characterised in that the second element (2) has, in the region where it is fastened to the connecting element (9), an inside circumference which is substantially greater than the circumference of the exhaust duct (4) at corresponding cross-sections.
6. An engine according to any one of claims 1-5, characterised in that a thermally insulating cushion (13) is arranged between the first element (3) and the second element (2) to protect and thermally insulate the connecting element (9) from gas flowing through the exhaust duct (4).
7. An engine according to any one of claims 1-6, characterised in that a guide plate (14) for guiding exhaust gases internally past and at a distance from the connecting element (9) is fastened to the first element (3).
8. An engine according to any one of claims 1-7, characterised in that a guide plate (15) for guiding exhaust gases internally past and at a distance from the connecting element (9) is fastened to the second element (2).
9. An engine according to claims 7 and 8, characterised in that the guide plate (14) fastened to the first element (3), and the guide plate (15) fastened to the second element (2), overlap one another in the exhaust flow direction.
10. An engine according to claim 6 and any one of claims 7-9, characterised in that the thermally insulating cushion (13) is overlapped by at least one guide plate (14 or 15) and is protected by same from the exhaust gases in the exhaust duct (4).
11. An engine according to any one of claims 1-10, characterised in that a gas turbine is arranged in or forms part of the first element, and that a heat exchanger is arranged in or forms part of the second element, and that exhaust gases from the gas turbine are led away from it via the exhaust duct (4).
12. An engine according to claim 11, characterised in that the heat exchanger is a stationary heat exchanger in which heat exchange takes place between exhaust gases and combustion air which is supplied to the gas turbine.
13. A vehicle provided with an engine according to any one of claims 1-12, characterised in that the engine is situated with the second element (2) vertically above or below the first element (3) and under a floor of the vehicle.
14. A connecting element for absorbingjiermal movements between a first element (3) and a second element (2) of an engine, whereby an exhaust duct (4) extends from the first element (3) into the second element (2), characterised in having the form of a flexible disc with a thickness which is significantly smaller than its extent in its propagation plane.
15. A connecting element according to claim 14, characterised in that it is provided with means (5, 6) for fastening to the first element (3) and the second element (2) respectively and that the means for fastening to the second element (2) is arranged radially externally relative to the means for fastening to the first element (3).
PCT/SE2005/000664 2004-06-04 2005-05-04 Engine, vehicle provided with such an engine, and a connecting element between a first and a second element of an engine WO2005119032A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05745005A EP1756407A1 (en) 2004-06-04 2005-05-04 Engine, vehicle provided with such an engine, and a connecting element between a first and a second element of an engine
US11/555,815 US20070059160A1 (en) 2004-06-04 2006-11-02 Engine, vehicle provided with such an engine, and a connecting element between a first and a second element of an engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0401500-4 2004-06-04
SE0401500A SE527649C2 (en) 2004-06-04 2004-06-04 An engine, a vehicle equipped with such an engine, and a connecting element between a first and a second element of an engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/555,815 Continuation US20070059160A1 (en) 2004-06-04 2006-11-02 Engine, vehicle provided with such an engine, and a connecting element between a first and a second element of an engine

Publications (1)

Publication Number Publication Date
WO2005119032A1 true WO2005119032A1 (en) 2005-12-15

Family

ID=32653586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2005/000664 WO2005119032A1 (en) 2004-06-04 2005-05-04 Engine, vehicle provided with such an engine, and a connecting element between a first and a second element of an engine

Country Status (4)

Country Link
US (1) US20070059160A1 (en)
EP (1) EP1756407A1 (en)
SE (1) SE527649C2 (en)
WO (1) WO2005119032A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1220671B (en) * 1963-02-15 1966-07-07 Escher Wyss Ag Housing for gas or steam turbines
US3968834A (en) * 1975-02-07 1976-07-13 Caterpillar Tractor Co. Heat exchanger mounting for a turbine engine
US4030288A (en) * 1975-11-10 1977-06-21 Caterpillar Tractor Co. Modular gas turbine engine assembly
EP0118051A2 (en) * 1983-03-04 1984-09-12 BBC Brown Boveri AG Connection between the hot and cold parts of an uncooled turbo charger
US4534700A (en) * 1983-01-18 1985-08-13 Bbc Brown, Boveri & Company, Limited Externally mounted exhaust-gas turbocharger with uncooled gas duct
SE519323C2 (en) * 2001-06-28 2003-02-11 Volvo Aero Ab Modular gas turbine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184797A (en) * 1977-10-17 1980-01-22 General Electric Company Liquid-cooled turbine rotor
US4668164A (en) * 1984-12-21 1987-05-26 United Technologies Corporation Coolable stator assembly for a gas turbine engine
US4815928A (en) * 1985-05-06 1989-03-28 General Electric Company Blade cooling
JPS62182444A (en) * 1986-02-07 1987-08-10 Hitachi Ltd Method and device for controlling cooling air for gas turbine
US4821522A (en) * 1987-07-02 1989-04-18 United Technologies Corporation Sealing and cooling arrangement for combustor vane interface
GB9304994D0 (en) * 1993-03-11 1993-04-28 Rolls Royce Plc Improvements in or relating to gas turbine engines
GB2354290B (en) * 1999-09-18 2004-02-25 Rolls Royce Plc A cooling air flow control device for a gas turbine engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1220671B (en) * 1963-02-15 1966-07-07 Escher Wyss Ag Housing for gas or steam turbines
US3968834A (en) * 1975-02-07 1976-07-13 Caterpillar Tractor Co. Heat exchanger mounting for a turbine engine
US4030288A (en) * 1975-11-10 1977-06-21 Caterpillar Tractor Co. Modular gas turbine engine assembly
US4534700A (en) * 1983-01-18 1985-08-13 Bbc Brown, Boveri & Company, Limited Externally mounted exhaust-gas turbocharger with uncooled gas duct
EP0118051A2 (en) * 1983-03-04 1984-09-12 BBC Brown Boveri AG Connection between the hot and cold parts of an uncooled turbo charger
SE519323C2 (en) * 2001-06-28 2003-02-11 Volvo Aero Ab Modular gas turbine

Also Published As

Publication number Publication date
SE527649C2 (en) 2006-05-02
US20070059160A1 (en) 2007-03-15
SE0401500D0 (en) 2004-06-04
EP1756407A1 (en) 2007-02-28
SE0401500L (en) 2005-12-05

Similar Documents

Publication Publication Date Title
US5408828A (en) Integral cast diffuser for a catalytic converter
US7198459B2 (en) Casing arrangement for a turbocharger of an internal combustion engine
US7284771B2 (en) Exhaust gas bellows expansion joint
US6604358B2 (en) Exhaust manifold
US10001142B2 (en) Turbine casing of an exhaust-gas turbocharger
US9151208B2 (en) Exhaust manifold of an internal combustion engine
US6523343B2 (en) Air gap insulated exhaust manifold assembly for an internal combustion engine and a method of making same
JP2013532788A (en) Exhaust heat recovery device with bypass This application is a priority of US utility model application No. 13 / 166,834 filed on June 23, 2011 and US provisional application No. 61 / filed on July 22, 2010. Claims 366,730 benefits. All the above disclosures are hereby incorporated by reference.
JP2012515295A (en) Connection arrangement of turbine housing and bearing housing and exhaust turbocharger
US20120087785A1 (en) Multi-stage turbocharger arrangement
JPS5831036Y2 (en) Internally insulated bellows structure
US11105295B2 (en) Cylinder head with connected exhaust manifold of an internal combustion engine
US6554321B1 (en) Decoupling sleeve for mounting in a motor vehicle exaust pipe
US4205527A (en) Exhaust manifold
US11231047B2 (en) Turbocharger
CN112577341A (en) Casting shell type EGR cooler
US3819208A (en) Insulated exhaust pipe connection
KR920007667B1 (en) Exhaust gas line for a super charged multi-cylinder pistion internal combustion engine
US4807436A (en) Arrangement for the mounting of exhaust gas lines
US4373326A (en) Ceramic duct system for turbine engine
US20070059160A1 (en) Engine, vehicle provided with such an engine, and a connecting element between a first and a second element of an engine
US20050091984A1 (en) Heat shield for gas turbine engine
JPS6161037B2 (en)
US20050097886A1 (en) Air gap-insulated exhaust manifold for internal combustion engines
JP4179193B2 (en) Exhaust heat recovery device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005745005

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11555815

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005745005

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11555815

Country of ref document: US