WO2005117044A1 - 電解コンデンサ - Google Patents

電解コンデンサ Download PDF

Info

Publication number
WO2005117044A1
WO2005117044A1 PCT/JP2005/009861 JP2005009861W WO2005117044A1 WO 2005117044 A1 WO2005117044 A1 WO 2005117044A1 JP 2005009861 W JP2005009861 W JP 2005009861W WO 2005117044 A1 WO2005117044 A1 WO 2005117044A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
electrolytic capacitor
cathode
electric double
voltage
Prior art date
Application number
PCT/JP2005/009861
Other languages
English (en)
French (fr)
Inventor
Chojiro Kuriyama
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to JP2006513982A priority Critical patent/JPWO2005117044A1/ja
Priority to KR1020067025768A priority patent/KR100876702B1/ko
Priority to US11/628,174 priority patent/US20080291604A1/en
Publication of WO2005117044A1 publication Critical patent/WO2005117044A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/26Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrolytic capacitor.
  • Electric double-layer capacitors have been used as backup power supplies for portable electronic devices such as cellular phones. Electric double-layer capacitors are also used in power storage devices equipped with solar cells, power supplies for motors in so-called hybrid vehicles, and regenerative energy devices.
  • FIG. 7 shows an example of such an electric double layer capacitor.
  • This electric double layer capacitor X has an anode 91 and a cathode 92.
  • the anode 91 has a polarizable electrode 91a formed of activated carbon fine powder
  • the cathode 92 has a polarized electrode 92a formed of activated carbon fine powder.
  • An electrolytic solution 93 is filled between the polarizable electrodes 91a and 92a.
  • positive and negative ions are interposed at the interface between the electrolyte 93 and the polarizable electrodes 9 la and 92 a, more specifically, at the interface between the fine powder of activated carbon and the electrolyte 93.
  • the electric double layer capacitor X Since the distance between the positive and negative ions of the electric double layer generated at the polarizable electrodes 91a and 92a is extremely small, about one molecule, the electric double layer capacitor X has a capacitance per unit area of the electric double layer.
  • the surface area per unit volume of the electric double layer is increased by composing the polarizable electrodes 91a and 92a using activated carbon fine powder. It has the characteristic that capacity can be obtained. For this reason, in recent years, it has been used for the above-mentioned power supply and power storage purposes.
  • the stored energy of the capacitor, CV 2/2 (C: capacity, V: voltage) is represented by, some more stored energy magnitude at high voltage and high capacity.
  • the amount of storage per volume or weight (energy storage) It is desirable to increase the power supply voltage as much as possible while increasing the total stored energy by increasing the temperature.
  • the output current can be reduced, so the loss due to the internal resistance of the capacitor can be suppressed and the power supply efficiency can be reduced. This is important in that it can increase
  • the withstand voltage of the electric double layer generated in the polarizable electrodes 91a and 92a is about 1.0 to 1.2 V, respectively.
  • the voltage of each cell be as equal as possible, but the voltage between cells may be reduced due to variation in capacitance or the like. It greatly varies and it is not easy to make the voltage distribution of each cell uniform. For this reason, the electric double-layer capacitor may not be able to sufficiently meet the demand for a higher voltage that requires a large number of cells.
  • Patent Document 1 JP-A-2003-92234
  • the present invention has been conceived under the circumstances described above, and it is an object of the present invention to provide an electrolytic capacitor having a large capacity, a high voltage, and a large current. .
  • An electrolytic capacitor provided by the present invention is an electrolytic capacitor including an anode and a cathode, and an electrolytic solution interposed between the anode and the cathode, wherein the anode has a dielectric layer on its surface.
  • the capacitance in the electric double layer is larger than the capacitance in the dielectric layer.
  • the metal having the valve action is niobium, tantalum, or a compound thereof.
  • the polarizable member of the cathode is formed of activated carbon.
  • a partition is provided between the anode and the cathode so that the electrolyte can pass therethrough.
  • the case has a case divided into a plurality of compartments, and the above-mentioned anode, cathode and electrolyte are provided in each compartment of the case, and the anode and the cathode of the adjacent compartment are electrically connected. They are connected in series.
  • each compartment of the case is provided with the positive electrode, the cathode and the electrolytic solution, and the first conductive member of each anode is mutually connected.
  • the second conductive members of each cathode are electrically connected to each other.
  • a plurality of the anodes and the cathodes are provided, and a first conductive member of each anode is electrically connected to each other, and a second conductive member of each cathode is electrically connected to each other. It is connected.
  • the withstand voltage of the dielectric layer is greater than the withstand voltage of the electric double layer, and the voltage in the dielectric layer can be increased. Therefore, when the electrolytic capacitor is used for power supply, by increasing the withstand voltage of the dielectric layer, it is possible to appropriately cope with a higher voltage of the power supply.
  • the capacitance in the electric double layer is configured to be larger than the capacitance in the dielectric layer, the voltage applied to the electric double layer in the voltage applied during charging is reduced.
  • the electrostatic energy equivalent to the electrostatic energy stored in the dielectric layer can be stored in the electric double layer while keeping the withstand voltage of the electric double layer or less. Therefore, the withstand voltage of the entire electrolytic capacitor can be increased while keeping the voltage in the electric double layer at or below its withstand voltage.
  • the electrolytic capacitor of the present invention since the polarizable member is made of activated carbon, even when discharging the accumulated electrostatic energy with a large surface area of the cathode, the unit in the electric double layer can be released.
  • the output current as an electrolytic capacitor can be increased while reducing the current per area.
  • FIG. 1 is a cross-sectional view showing one example of an electrolytic capacitor according to the present invention.
  • FIG. 2 is an enlarged view of a main part of an example of the electrolytic capacitor according to the present invention.
  • FIG. 3 is an enlarged view of a main part of an example of the electrolytic capacitor according to the present invention.
  • FIG. 4 is a sectional view showing another example of the electrolytic capacitor according to the present invention.
  • FIG. 5 is a sectional view showing another example of the electrolytic capacitor according to the present invention.
  • FIG. 6 is a cross-sectional view showing another example of the electrolytic capacitor according to the present invention.
  • FIG. 7 is a cross-sectional view of a main part showing an example of a conventional electrolytic capacitor.
  • FIG. 1 to FIG. 3 show an example of the electrolytic capacitor according to the present invention.
  • the electrolytic capacitor A1 includes an anode 2, a cathode 3, an electrolytic solution 4, a partition wall 5, and a case 1 for housing these.
  • Case 1 is formed of an insulating resin, and has an anode 2 and a cathode 3 attached to both side walls.
  • the anode 2 includes a porous sintered body 21 of niobium as a metal having a valve action, and an anode wire 22 partially embedded in the porous sintered body 21.
  • the niobium porous sintered body is used as the anode 2 because the porous sintered body is subjected to a chemical conversion treatment to appropriately form an oxide film as a dielectric layer 23 described later.
  • the power is also possible.
  • the oxidation film can relatively increase the withstand voltage, and also has a force capable of easily increasing the voltage of the electrolytic capacitor A1.
  • the porous sintered body 21 is formed by bonding a large number of niobium fine particles 2 la. These niobium fine particles 21 a are electrically connected to the anode wire 22. On the surfaces of the niobium fine particles 21a and the anode wire 22, a dielectric layer 23 made of an oxide film such as niobium pentoxide is formed.
  • the anode 2 can be prepared, for example, as follows. First, a niobium fine powder is filled in a mold, and a pressing force is applied in a state where a part of the anode wire 22 is buried in the fine powder to form a niobium porous body. Is sintered to obtain a porous sintered body 21 of niobium. The porous sintered body 21 is immersed in a chemical solution such as a phosphoric acid aqueous solution, and an anodic oxidation treatment is performed by applying a DC current in this state. Then, a dielectric layer 23 is formed on the surface of the anode wire 22.
  • a chemical solution such as a phosphoric acid aqueous solution
  • the anode wire 22 is formed of niobium as in the case of the porous sintered body 21.
  • the anode wire 22 is electrically connected to an external connection terminal 7A (positive terminal) used for external connection of the electrolytic capacitor A1.
  • the cathode 3 has a polarizable electrode 31 and a collector electrode 32.
  • the polarizable electrode 31 is formed by kneading, for example, a fine powder 31 a of activated carbon together with a binder (not shown), and is joined to the collector electrode 32.
  • the conductivity of fine powder of activated carbon 31a In order to increase the carbon content, so-called carbon nano black may be added.
  • the activated carbon fine powder 3 la has a finely uneven surface, and has a larger surface area per unit volume than, for example, the porous sintered body 21 of niobium.
  • the cathode 3 is provided with the polarizable electrode 31 made of activated carbon is that the activated carbon has a larger surface area per unit volume than a porous sintered body made of, for example, zirconium or tantalum. This is because it is possible to increase the capacitance per unit area of the electric double layer generated in the above.
  • the electric double layer unlike a porous sintered body 21, which is charged by interposing a physically formed film such as a dielectric layer 23, the distance between positive and negative ions is different. (Corresponding to the thickness of the electric double layer) is about the size of a molecule. Therefore, the electric double layer has large ⁇ and ⁇ ⁇ characteristics in the capacitance per unit area.
  • the collector electrode 32 is joined to the polarizable electrode 31 by a conductive resin (not shown) or the like. This collector electrode 32 is electrically connected to an external connection terminal 7B (negative terminal) used for external connection of the electrolytic capacitor A1.
  • the electrolytic solution 4 is filled in the case 1 and impregnated in the porous sintered body 21 of the anode 2 and the polarizing electrode 31 of the cathode 3.
  • the electrolytic solution 4 for example, an aqueous solution of sulfuric acid can be used.
  • a positive charge is charged on the surface of the porous sintered body 21 and a negative charge is charged on the electrolyte 4 with the dielectric layer 23 interposed therebetween.
  • a power storage function is exhibited. That is, a capacitor is formed by the dielectric layer 23.
  • the above-described electric double layer is formed at the interface between the electrolytic solution 4 and the polarizable electrode 31, and the positive electric charge is charged on the electrolytic solution 4 side and the negative electric charge is charged on the polarizable electrode 31 side. Function is exhibited. That is, a capacitor is formed by the electric double layer.
  • the partition walls 5 are for preventing the porous sintered body 21 of the anode 2 and the polarizable electrode 31 of the cathode 3 from conducting due to improper contact or the like.
  • the partition wall 5 is formed of a plate of an insulating material having a plurality of pores, and is capable of passing the electrolyte 4.
  • the sealing resin 6 is provided so as to cover the upper opening of the case 1, and the electrolyte 4 leaks out, and the porous sintered body 21 and the polarizable electrode 31 serve as the electrolytic capacitor. This is for preventing the conductive members other than A1 from being unduly conductive.
  • the dielectric layer 23 has a smaller capacitance per unit area than the electric double layer, and thus has a higher withstand voltage than the electric double layer.
  • the voltage between the terminals 7a and 7b of the electrolytic capacitor A1 is the sum of the withstand voltage of the electric double layer of the cathode 3 and the withstand voltage of the dielectric layer 23 of the anode 2.
  • the voltage can be higher than that of an electric double layer capacitor using only
  • the electrolytic capacitor A1 alone is sufficient for the electrolytic capacitor A1. Higher voltage is possible.
  • the capacity per pellet is 30 KCV.
  • a dielectric layer of zF can be configured.
  • the polarized electrode 31 using activated carbon fine powder can form an electric double layer of, for example, 200,000 F or more.
  • the electrolytic capacitor A1 is formed using the dielectric layer 23 of 3000 ⁇ F and the polarizing electrode 31 capable of forming the electric double layer of 200,000 ⁇ F, for example.
  • power can be supplied at a voltage of 50 V or more.
  • the electrolytic capacitor A1 is composed of a conventional electric double layer capacitor. A smaller number of cells can be directly connected to the A desired high voltage can be realized by column connection.
  • the number of cells connected in series can be reduced, so that even if the voltage varies between cells, the voltage distribution of each cell can be relatively easily made uniform.
  • the capacitance per unit area of the electric double layer of the cathode 3 is larger than the capacitance per unit area of the dielectric layer 23 of the anode 2.
  • the voltage applied to the electric double layer of the cathode 3 is higher than the voltage applied to the dielectric layer 23 of the anode 2. Therefore, in the electrolytic capacitor A1, while the voltage applied to the electric double layer is smaller than the voltage applied to the dielectric layer 23, the dielectric constant between the electric double layer of the cathode 3 and the anode 2 is reduced. Almost the same electrostatic energy can be accumulated in the body layer 23.
  • a dielectric layer 23 having a relatively large surface area was formed using the porous sintered body 21 for the anode 2, and a polarizable electrode 31 using activated carbon fine powder was provided for the cathode 3 for comparison. Since the electric double layer having a large target surface area is formed, large capacitance can be achieved by increasing the capacitance at both electrodes.
  • FIG. 4 and FIG. 5 show another embodiment of the present invention.
  • the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment.
  • the electrolytic capacitor A2 shown in FIG. 4 is obtained by connecting a plurality of cells in series with the electrolytic capacitor A1 shown in FIG.
  • Case 1 is divided into three compartments la by two middle plates 11.
  • the electrolytic capacitor A1 shown in Fig. 1 is configured. That is, each compartment la is provided with one anode 2 and one cathode 3 and a partition wall 5 for insulating them.
  • Each compartment la is filled with the electrolyte 4.
  • the anode wire 22 of the anode 2 provided so as to sandwich the middle plate 11 and the collector electrode 32 of the cathode 3 are electrically connected.
  • the electrolytic capacitor A2 the plurality of anodes 2 and cathodes 3 are electrically connected in series.
  • the voltage of electrolytic capacitor A2 that is, the voltage between terminals 7A and 7B for external connection can be increased. Therefore, it is advantageous for responding to a higher voltage in power supply applications. It should be noted that the number of the above compartments la is not limited to three.
  • the electrolytic capacitor A3 shown in FIG. 5 includes a plurality of anodes 2 and cathodes 3, 3, and the plurality of anodes 2 are connected to each other and connected to a terminal 7A, and a plurality of cathodes 3, 3 'are connected to each other and to terminal 7B.
  • the two cathodes 3 are provided on both side walls of the case 1, and a plurality of anodes 2 and cathodes 3 'are alternately arranged between them.
  • the cathode 3 ′ is different from the cathode 3 in that polarizable electrodes 31 are formed on both sides of a collector electrode 32.
  • the three anode wires 22 and the four collector electrodes 32 are electrically connected to external connection terminals 7A and 7B, respectively.
  • each of the plurality of anodes 2 and cathodes 3, 3 is electrically connected in parallel.
  • the electrolytic capacitor A3 shown in Fig. 5 has substantially the same effect as that obtained by connecting cells composed of a plurality of electrolytic capacitors A1 in parallel.
  • the electrostatic energy stored in the electrolytic capacitor A3 can be increased, which is advantageous for coping with a large capacity in power supply applications.
  • a plurality of anode wires 22 are connected to terminal 7A, and a plurality of collector electrodes 32 are connected to terminal 7B. And sort each cell A configuration in which columns are connected may be used.
  • the electrolytic capacitor according to the present invention is not limited to the embodiment described above.
  • the specific configuration of each part of the electrolytic capacitor according to the present invention can be freely changed in various ways.
  • the material of the porous sintered body 21 is not limited to niobium.
  • metals having a valve action such as tantalum, or compounds such as oxides or nitrides of these valve action metals may be used. good.
  • the polarizing electrode 31 is preferably formed by using activated carbon for increasing the capacitance, but is not limited to this, and may be any material that can appropriately form the electric double layer.
  • the cathode 3 is not limited to the configuration including the polarizable electrode 31 and the collector electrode 32 as long as the configuration can form the electric double layer.
  • the electrolytic solution 4 is not limited to the sulfuric acid aqueous solution, and may be another aqueous solution or an organic electrolytic solution using an organic solvent.
  • a known electrolytic solution used for a wet aluminum electrolytic capacitor can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明の電解コンデンサ(A1)は、陽極(2)および陰極(3)と、陽極(2)と陰極(3)との間に介在する電解液(4)と、を備え、陽極(2)は、表面に誘電体層(23)としての酸化膜が形成された弁作用を有する金属の多孔質焼結体(21)と、この多孔質焼結体(21)を外部接続用の正端子(7A)に導通させる陽極ワイヤ(22)とからなり、陰極(3)は、電解液(4)との界面に電気二重層を生じさせる分極電極(31)と、この分極性部材(31)を外部接続用の負端子(7B)に導通させる集電極(32)とからなる。

Description

明 細 書
電解コンデンサ 技術分野
[0001] 本発明は、電解コンデンサに関する。
背景技術
[0002] 従来、たとえば携帯電話機などの携帯電子機器のバックアップ電源に、電気二重 層コンデンサが用いられている。電気二重層コンデンサは、太陽電池を備えた蓄電 デバイス、 V、わゆるハイブリッド自動車におけるモータ用電源または回生エネルギデ バイスなどにも用いられている。
[0003] 図 7は、このような電気二重層コンデンサの一例を示している。この電気二重層コン デンサ Xは、陽極 91および陰極 92を備えている。陽極 91は、活性炭の微粉末により 形成された分極性電極 91aを有し、陰極 92は、活性炭の微粉末により形成された分 極性電極 92aを有している。分極性電極 91a, 92aの間には、電解液 93が充填され ている。電気二重層コンデンサ Xにおいては、電解液 93と分極性電極 9 la, 92aとの 界面、より具体的には、活性炭の微粉末と電解液 93との界面に、その界面を挟んで 正負のイオンが分布する電気二重層が生じ、蓄電デバイスに利用される場合は、こ の電気二重層を利用して蓄電がなされ、電源に利用される場合は、この電気二重層 に蓄電された電荷が負荷に供給される。
[0004] 電気二重層コンデンサ Xは、分極性電極 91a, 92aに生じる電気二重層の正負のィ オン間の距離が一分子程度と極めて小さいので、その電気二重層の単位面積当たり の静電容量が大きぐしカゝも活性炭微粉末を用いて分極性電極 91a, 92aを構成す ることにより電気二重層の単位体積当たりの表面積を大きくしているので、小型であ つても比較的大きな静電容量が得られる特徴を有している。このため、近年、上述し た電源や蓄電の用途に用いられて 、る。
[0005] ところで、コンデンサの蓄積エネルギは、 CV2/2 (C :容量, V:電圧)で表され、高 電圧かつ高容量であるほど蓄積エネルギが大き 、。コンデンサをバックアップ電源な どの電源用に用いる場合は、体積当たり若しくは重量当たりの蓄電量 (エネルギー密 度)を大きくしてトータルの蓄積エネルギを大きくするとともに、可及的に供給電圧を 高くすることが望ましい。特に、コンデンサの高電圧化は、同一の電力を供給する場 合、供給電圧が高ければ、出力電流を小さくすることができるので、コンデンサの内 部抵抗などによるロスを抑制でき、電源供給の効率を高めることができる点で重要で ある。
[0006] しカゝしながら、電気二重層は耐電圧以上の電圧が印加されると、電気分解により電 解液中に気泡が生じ、キャパシタとして機能しなくなるので、電気二重層コンデンサ X 単体を耐電圧以上の電源として使用することはできず、そのような高電圧の電源に対 応するには、電気二重層コンデンサカゝらなるセルを所要数直列に接続して電気二重 層コンデンサを構成する必要がある。
[0007] たとえば、電解液 93として希硫酸水溶液が用いられた場合には、分極性電極 91a , 92aに生じる電気二重層の耐電圧は、それぞれ 1. 0〜1. 2V程度となるので、この 耐電圧以上の電圧に高電圧化するには、所要数の電気二重層コンデンサ力 なる セルを直列に接続する必要がある。
[0008] この場合、電気二重層コンデンサ Xの機能を適切に発揮させるためには、各セルの 電圧をできるだけ同じにすることが好ましいが、静電容量のばらつきなどにより、セル 間での電圧が大きくばらつき、各セルの電圧配分を均一にすることは容易でない。こ のため、電気二重層コンデンサでは、多数のセルを要する高電圧化の要請には十分 に応えられな 、場合があった。
[0009] 一方、タンタル電解コンデンサや酸化ニオブコンデンサなどの固体電解コンデンサ においては、近年、高 CV値を有する微粉末が開発され、これらの微粉末の焼結体を 用いて高容量ィ匕が図られている。し力しながら、微粉末の比表面積を大きくすること によって高 CVィ匕を図ると、逆に耐電圧が低くなるので、この種の高容量の固体電解 コンデンサでも高電圧化は困難となっている。
[0010] 高 CV値を有する微粉末を用いた電解コンデンサの高電圧化を図る方法として、例 えば湿式の電解コンデンサの陰極構造を採用することが考えられるが、この種の陰 極構造では大電流を流すことができないという問題が生じる。すなわち、従来の湿式 の電解コンデンサの陰極構造を採用すると、耐電圧は向上するが、大電流が流れる と、陰極の耐電圧を超えてしまい、コンデンサに流すことができる電流に対して一定 の制限が生じる。
[0011] 高電圧かつ高容量、より望ましくは大電流を流すことができるコンデンサが要望され る力 上記のように、従来の乾式コンデンサ及び湿式コンデンサの構造ではいずれも 実現することが困難であった。
[0012] 特許文献 1 :特開 2003— 92234号公報
発明の開示
[0013] 本発明は、上記した事情のもとで考え出されたものであって、大容量であり、かつ高 電圧化、大電流化が可能な電解コンデンサを提供することをその課題とする。
[0014] 本発明によって提供される電解コンデンサは、陽極および陰極と、上記陽極と陰極 との間に介在する電解液と、を備えた電解コンデンサであって、上記陽極は、表面に 誘電体層としての酸化膜が形成された弁作用を有する金属の多孔質焼結体と、この 多孔質焼結体を外部接続用の正端子に導通させる第 1の導電部材とからなり、上記 陰極は、上記電解液との界面に電気二重層を生じさせる分極性部材と、この分極性 部材を外部接続用の負端子に導通させる第 1の導電部材とからなることを特徴として いる。
[0015] 好ましくは、上記電気二重層における静電容量は、上記誘電体層における静電容 量よりも大きい。
[0016] 好ましくは、上記弁作用を有する金属は、ニオブ、タンタル、またはこれらの化合物 である。
[0017] 好ましくは、上記陰極の分極性部材は、活性炭により形成されている。
[0018] 好ましくは、上記陽極と上記陰極との間には、上記電解液を通過させることが可能 とされた隔壁が設けられて 、る。
[0019] 好ましくは、複数の分室に区切られたケースを有し、このケースの各分室に上記陽 極、陰極および電解液が設けられ、かつ、隣接する分室の陽極と陰極とが電気的に 直列に接続されている。
[0020] 好ましくは、複数の分室に区切られたケースを有し、このケースの各分室に上記陽 極、陰極および電解液が設けられ、かつ、各陽極の第 1の導電部材は同士が相互に 電気的に接続されるとともに、各陰極の第 2の導電部材は相互に電気的に接続され ている。
[0021] 好ましくは、上記陽極および陰極は、複数個設けられ、各陽極の第 1の導電部材は 相互に電気的に接続されるとともに、各陰極の第 2の導電部材は相互に電気的に接 続されている。
[0022] 本発明に係る電解コンデンサによれば、誘電体層の耐電圧は電気二重層の耐電 圧よりも大きぐし力もこの誘電体層における電圧を大きくすることが可能である。した がって、この電解コンデンサが電源供給に用いられる場合に、誘電体層の耐電圧を 大きくすることにより、その電源の高電圧化に適切に対応することができる。
[0023] また、電気二重層における静電容量が誘電体層における静電容量よりも大きくなる ように構成すれば、充電時に印加される電圧のうち、電気二重層の部分に印加され る電圧を当該電気二重層の耐電圧以下に抑えて、誘電体層に蓄えられる静電エネ ルギと同等の静電工ネルギを電気二重層に蓄えることができる。したがって、電気二 重層における電圧をその耐電圧以下としつつ、この電解コンデンサ全体の耐電圧を 大きくすることができる。
[0024] また、本発明に係る電解コンデンサによれば、分極性部材を活性炭によって構成し ているので、陰極の表面積が広ぐ蓄積した静電工ネルギを放出する際も、電気二重 層における単位面積あたりの電流を小さくしつつ、電解コンデンサとしての出力電流 を大きくすることができる。
図面の簡単な説明
[0025] [図 1]本発明に係る電解コンデンサの一例を示す断面図である。
[図 2]本発明に係る電解コンデンサの一例の要部拡大図である。
[図 3]本発明に係る電解コンデンサの一例の要部拡大図である。
[図 4]本発明に係る電解コンデンサの他の例を示す断面図である。
[図 5]本発明に係る電解コンデンサの他の例を示す断面図である。
[図 6]本発明に係る電解コンデンサの他の例を示す断面図である。
[図 7]従来の電解コンデンサの一例を示す要部断面図である。
発明を実施するための最良の形態 [0026] 以下、本発明の実施例につき、図面を参照して具体的に説明する。
[0027] 図 1〜図 3は、本発明に係る電解コンデンサの一例を示している。この電解コンデン サ A1は、図 1に示すように、陽極 2、陰極 3、電解液 4、隔壁 5、およびこれらを収容す るケース 1を備えている。
[0028] ケース 1は、絶縁性榭脂により形成されており、その両側壁に陽極 2および陰極 3が 付設されている。
[0029] 陽極 2は、弁作用を有する金属としてのニオブの多孔質焼結体 21と、この多孔質焼 結体 21に一部が埋設された陽極ワイヤ 22とを具備して 、る。陽極 2としてニオブの多 孔質焼結体を用いるのは、この多孔質焼結体に化成処理を施すことなどにより、後述 する誘電体層 23としての酸ィ匕膜を適切に形成することが可能だ力もである。また、こ の酸ィ匕膜は、その耐電圧を比較的大きくすることが可能で、電解コンデンサ A1を容 易に高電圧化することができる力もである。
[0030] 図 2に示すように、多孔質焼結体 21は、多数のニオブの微粒子体 2 laが結合させ られたものである。これらのニオブの微粒子体 21aは、陽極ワイヤ 22と導通している。 ニオブの微粒子体 21aおよび陽極ワイヤ 22の表面には、五酸化ニオブなどの酸ィ匕 膜からなる誘電体層 23が形成されている。
[0031] 陽極 2は、たとえば以下のようにして作成することができる。まず、ニオブの微粉末を 金型に充填し、この微粉末中に陽極ワイヤ 22の一部を埋設した状態でプレス力卩ェす ることによりニオブの多孔質体を作成し、この多孔質体を焼結してニオブの多孔質焼 結体 21を得る。この多孔質焼結体 21をリン酸水溶液などの化成液中に浸漬させ、こ の状態で直流電流を通電させて陽極酸化処理を行うことにより、多孔質焼結体 21の 内表面、外表面および陽極ワイヤ 22の表面に誘電体層 23を形成する。
[0032] 陽極ワイヤ 22は、多孔質焼結体 21と同様にニオブにより形成されている。この陽極 ワイヤ 22は、電解コンデンサ A1の外部接続に用いられる外部接続用の端子 7A (正 端子)に導通している。
[0033] 陰極 3は、分極性電極 31と集電極 32とを具備している。図 3に示すように、分極性 電極 31は、たとえば活性炭の微粉末 31aをバインダ(図示略)とともに混練して形成 されており、集電極 32に接合されている。なお、活性炭の微粉末 31aどうしの導通性 を高めるために、いわゆるカーボンナノブラックを添加しても良い。活性炭の微粉末 3 laは、その表面が微細な凹凸状となっており、たとえばニオブの多孔質焼結体 21と 比較して、単位体積当りの表面積が大きい。
[0034] 陰極 3に、活性炭からなる分極性電極 31を設けているのは、活性炭は、たとえば- ォブ、タンタルなどの多孔質焼結体と比べて単位体積当りの表面積が広ぐ陰極 3に 生じる電気二重層の単位面積あたりの静電容量を大きくすることができるからである。
[0035] 分極性電極 31と後述する電解液 4との界面に電圧が印加されると、この界面を挟 んで、分極性電極 31の表面に固定されて!/ヽる荷電イオンと分極性電極 31の表面に 接した電解液 4中のイオンとが分布された状態となり、いわゆる電気二重層が形成さ れる。
[0036] この電気二重層においては、たとえば多孔質焼結体 21のように、誘電体層 23など の物理的に形成された膜を介在させて帯電するものと異なり、正負のイオンどうしの 距離 (電気二重層の厚さに相当)がー分子程度の大きさとなる。したがって、電気二 重層では、単位面積当たりの静電容量が大き ヽと ヽぅ特性を有する。
[0037] 集電極 32は、導電性榭脂(図示略)などにより分極性電極 31と接合されている。こ の集電極 32は、この電解コンデンサ A1の外部接続に用いられる外部接続用の端子 7B (負端子)に導通している。
[0038] 電解液 4は、ケース 1内に充填されており、陽極 2の多孔質焼結体 21や陰極 3の分 極性電極 31内に含浸している。この電解液 4としては、たとえば硫酸水溶液を用いる ことができる。電解液 4と多孔質焼結体 21との界面においては、誘電体層 23を挟ん で、多孔質焼結体 21の表面に正電荷が、電解液 4に負電荷がそれぞれ帯電するこ とにより、蓄電機能が発揮される。すなわち、誘電体層 23によってコンデンサが形成 される。一方、電解液 4と分極性電極 31との界面においては、上述した電気二重層 が形成され、電解液 4側に正電荷が、分極性電極 31側に負電荷が帯電することによ り蓄電機能が発揮される。すなわち、電気二重層によってコンデンサが形成される。
[0039] 隔壁 5は、陽極 2の多孔質焼結体 21と陰極 3の分極性電極 31とが不当に接触する などして導通することを防止するためのものである。この隔壁 5は、複数の細孔を有す る絶縁性材料のプレートにより形成されており、電解液 4を通過させることが可能であ る。
[0040] 封止榭脂 6は、ケース 1の上方開口部を覆うように設けられており、電解液 4が漏れ ることや、多孔質焼結体 21や分極性電極 31が、この電解コンデンサ A1以外の導通 部材と不当に導通することなどを防止するためのものである。
[0041] 次に、電解コンデンサ A1の作用について説明する。
[0042] 誘電体層 23は、上述したように、電気二重層よりも単位面積当たりの静電容量が小 さいので、電気二重層と比較して耐電圧が高い。電解コンデンサ A1の端子 7aと端子 7bとの間の電圧は、陰極 3の電気二重層の耐電圧と陽極 2の誘電体層 23の耐電圧 とを加算したものとなるから、従来の電気二重層だけを利用した電気二重層コンデン サよりも電圧を高くすることができる。
[0043] したがって、従来の電気二重層コンデンサでは複数個の電気二重層コンデンサか らなるセルを直列接続して高電圧化を図る必要がある場合でも、電解コンデンサ A1 では電解コンデンサ A1単体によって十分な高電圧化が可能になる。
[0044] 例えば、 lOOKCVZgのニオブ粉末を用いた lcm2、 1mm厚の多孔質焼結体では 、 1ペレット当たりの容量は 30KCVとなるので、この焼結体を 100Vで化成処理する と、 3000 /z Fの誘電体層を構成することができる。一方、活性炭微粉末を用いた分 極性電極 31では、例えば 200, 000 F以上の電気二重層を形成することができる
[0045] したがって、 3000 μ Fの誘電体層 23と 200, 000 μ Fの電気二重層を形成可能な 分極性電極 31とを用 ヽて電界コンデンサ A1を作成すると、この電解コンデンサ A1 では、例えば誘電体層 23に 50Vが印加されるように、端子 7a, 7b間に電圧を印加 すると、陰極 3に生じる電気二重層には約 0. 75V( = 50-C1/ (C1 + C2) , C1は誘 電体層 23の容量、 C2は電気二重層の容量)の電圧が印加されることになり、電気二 重層を耐電圧 (約 1. 0V)以下に保持しながら、 50V以上の高電圧で充電することが でき、電源として利用する場合には 50V以上の電圧で電力供給が可能となる。
[0046] また、電解コンデンサ A1からなるセルを複数個、直列接続しなければ所望の高電 圧が得られない場合であっても、電解コンデンサ A1では、従来の電気二重層コンデ ンサカゝらなるセルを複数個、直列接続する場合に比して、より少ない個数のセルを直 列接続することにより所望の高電圧化を実現することができる。
[0047] 電解コンデンサ A1では、直列接続されるセルの個数を少なくできるので、セル間で 電圧がばらついたとしても、各セルの電圧配分の均一化を比較的容易に図ることが できる。
[0048] また、上述したように、陰極 3の電気二重層における単位面積当たりの静電容量は 、陽極 2の誘電体層 23における単位面積当たりの静電容量よりも大きい。このことは 、端子 7Aと端子 7Bとの間に電圧を印加した場合、陰極 3の電気二重層の部分に印 加される電圧は陽極 2の誘電体層 23の部分に印加される電圧よりも小さくなるという ことであるから、電解コンデンサ A1では、上記電気二重層に印加される電圧を、誘電 体層 23に印加される電圧よりも小さくしつつ、陰極 3の電気二重層と陽極 2の誘電体 層 23とに略同等の静電工ネルギを蓄積することができる。
[0049] したがって、電解コンデンサ A1では、上記電気二重層における電圧をその耐電圧 以下としつつ、陽極 2の誘電体層 23における高電圧化により、電源供給の高電圧化 に対応することが可能である。
[0050] また、陽極 2に多孔質焼結体 21を用いて比較的表面積の大きい誘電体層 23を形 成するとともに、陰極 3に活性炭の微粉末を用いた分極性電極 31を設けて比較的表 面積の大きい電気二重層を形成しているので、両電極での静電容量が大きぐ大容 量ィ匕が可能となっている。
[0051] そして、電界コンデンサ A1としては、大容量、高電圧のコンデンサが実現されるの で、高電圧供給用の電源として適用される場合は、同一の電力を供給するときは供 給電圧を高くして供給電流を小さくすると、電源の内部抵抗による損失を小さくするこ とができることから、電源供給の効率を高くすることができる。
[0052] また、電界コンデンサ A1の陽極 2及び陰極 3における単位面積当たりの電流量を 小さくすることができるので、比較的に大きな充電電流で蓄電が可能であるとともに、 大電流供給用の電源としても十分に適用することができる。
[0053] 図 4および図 5は、本発明の他の実施形態を示している。なお、これらの図におい て、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付し ている。 [0054] 図 4に示された電解コンデンサ A2は、図 1に示した電界コンデンサ A1をセルとして 複数個のセルを直列接続したものである。
[0055] ケース 1は、 2つの中板 11により 3つの分室 laに区切られている。各分室 laに図 1 に示した電界コンデンサ A1が構成されている。すなわち、各分室 laには、 1つずつ の陽極 2および陰極 3が付設され、これらを絶縁する隔壁 5が設けられている。各分 室 laには、電解液 4が充填されている。この実施形態においては、中板 11を挟むよ うに設けられた陽極 2の陽極ワイヤ 22と陰極 3の集電極 32とが導通されている。この ことにより、この電解コンデンサ A2においては、複数の陽極 2および陰極 3が電気的 に直列に接続されている。
[0056] このような実施形態によれば、この電解コンデンサ A2の電圧、つまり外部接続用の 端子 7A, 7B間の電圧を高くすることができる。したがって、電源供給用途などにおけ る高電圧化に対応するのに有利である。なお、上記分室 laの数は、 3つに限るもの ではない。
[0057] 図 5に示された電解コンデンサ A3は、複数の陽極 2および陰極 3, 3,を備えており 、複数の陽極 2は相互に接続されて端子 7Aに接続され、複数の陰極 3, 3'は相互に 接続されて端子 7Bに接続されている。 2つの陰極 3は、ケース 1の両側壁に付設され ており、これらの間に複数の陽極 2と陰極 3'とが交互に配置されている。陰極 3'は、 陰極 3と異なり、集電極 32の両側に分極性電極 31が形成されている。 3つの陽極ヮ ィャ 22と 4つの集電極 32とはそれぞれ外部接続用の端子 7A, 7Bに導通している。 このことにより、この電解コンデンサ A3においては、複数の陽極 2および陰極 3, 3,の それぞれが電気的に並列に接続されている。
[0058] 図 5に示された電解コンデンサ A3は、実質的に複数の電界コンデンサ A1からなる セルを並列接続したものと同一の効果を有する。
[0059] したがって、このような実施形態によれば、この電解コンデンサ A3に蓄電される静 電工ネルギを大きくすることができ、電源供給用途などにおける大容量ィ匕に対応する のに有利である。
[0060] なお、図 5の構成に代えて、図 6に示すように、図 4に示す構成において、複数の陽 極ワイヤ 22を端子 7Aに接続し、複数の集電極 32を端子 7Bに接続して各セルを並 列接続した構成としてもよい。
[0061] 本発明に係る電解コンデンサは、上述した実施形態に限定されるものではな 、。本 発明に係る電解コンデンサの各部の具体的な構成は、種々に設計変更自在である。
[0062] 多孔質焼結体 21の材料としては、ニオブに限定されず、たとえばタンタルなどの弁 作用を有する金属、またはこれらの弁作用金属の酸化物若しくは窒化物などの化合 物を用いても良い。
[0063] 分極性電極 31は、活性炭を用いて形成することが、静電容量を大きくするのに好ま しいが、これに限定されず、電気二重層を適切に形成可能な材料であれば良い。ま た、陰極 3についても、電気二重層を形成可能な構成であれば良ぐ分極性電極 31 と集電極 32を具備した構成に限定されるものではない。
[0064] 電解液 4は、硫酸水溶液に限定されず、これ以外の水溶液、あるいは有機溶媒が 用いられた有機電解液としてもよい。例えば、湿式アルミ電界コンデンサに使用され ている周知の電解液を使用することができる。

Claims

請求の範囲
[1] 陽極および陰極と、
上記陽極と陰極との間に介在する電解液と、
を備えた電解コンデンサであって、
上記陽極は、表面に誘電体層としての酸化膜が形成された弁作用を有する金属の 多孔質焼結体と、この多孔質焼結体を外部接続用の正端子に導通させる第 1の導電 部材とからなり、
上記陰極は、上記電解液との界面に電気二重層を生じさせる分極性部材と、この 分極性部材を外部接続用の負端子に導通させる第 2の導電部材とからなることを特 徴とする、電解コンデンサ。
[2] 上記電気二重層における静電容量は、上記誘電体層における静電容量よりも大き い、請求項 1に記載の電解コンデンサ。
[3] 上記弁作用を有する金属は、ニオブ、タンタル、またはこれらの化合物である、請求 項 1または 2に記載の電解コンデンサ。
[4] 上記陰極の分極性部材は、活性炭により形成されている、請求項 1または 2に記載 の電解コンデンサ。
[5] 上記陽極と上記陰極との間には、上記電解液を通過させることが可能とされた隔壁 が設けられている、請求項 1または 2に記載の電解コンデンサ。
[6] 複数の分室に区切られたケースを有し、このケースの各分室に上記陽極、陰極お よび電解液が設けられ、かつ、隣接する分室の陽極と陰極とが電気的に直列に接続 されている、請求項 1または 2に記載の電解コンデンサ。
[7] 複数の分室に区切られたケースを有し、このケースの各分室に上記陽極、陰極お よび電解液が設けられ、かつ、各陽極の第 1の導電部材は同士が相互に電気的に 接続されるとともに、各陰極の第 2の導電部材は相互に電気的に接続されている、請 求項 1または 2に記載の電解コンデンサ。
[8] 上記陽極および陰極は、複数個設けられ、各陽極の第 1の導電部材は相互に電気 的に接続されるとともに、各陰極の第 2の導電部材は相互に電気的に接続されてい る、請求項 1または 2に記載の電解コンデンサ。
PCT/JP2005/009861 2004-05-31 2005-05-30 電解コンデンサ WO2005117044A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006513982A JPWO2005117044A1 (ja) 2004-05-31 2005-05-30 電解コンデンサ
KR1020067025768A KR100876702B1 (ko) 2004-05-31 2005-05-30 전해 콘덴서
US11/628,174 US20080291604A1 (en) 2004-05-31 2005-05-30 Electrolytic Capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004160439 2004-05-31
JP2004-160439 2004-05-31

Publications (1)

Publication Number Publication Date
WO2005117044A1 true WO2005117044A1 (ja) 2005-12-08

Family

ID=35451120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009861 WO2005117044A1 (ja) 2004-05-31 2005-05-30 電解コンデンサ

Country Status (6)

Country Link
US (1) US20080291604A1 (ja)
JP (1) JPWO2005117044A1 (ja)
KR (1) KR100876702B1 (ja)
CN (1) CN1961392A (ja)
TW (1) TWI268525B (ja)
WO (1) WO2005117044A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119465A (ja) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp 電気二重層キャパシタ用電極およびこれを用いた電気二重層キャパシタ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2365496A4 (en) * 2008-12-01 2013-01-23 Panasonic Corp ELECTRODE SHEET FOR CAPACITOR, AND L ELECTROLYTIC CAPACITOR USING THE SAME
CN103021670A (zh) * 2012-12-25 2013-04-03 上海奥威科技开发有限公司 基于钽正极和活性炭负极的混合型超级电容器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326333A (ja) * 1992-05-26 1993-12-10 Matsushita Electric Ind Co Ltd 電解コンデンサ
JPH10312936A (ja) * 1997-05-01 1998-11-24 Wilson Greatbatch Ltd 密閉シールコンデンサー
JP2003522420A (ja) * 2000-02-03 2003-07-22 ケース ウェスタン リザーブ ユニバーシティ 金属粉末あるいは金属スポンジ粒子の薄層からの高電力コンデンサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2050062A (en) * 1929-11-14 1936-08-04 Ralph D Mershon Electrolytic condenser
US3346783A (en) * 1965-04-16 1967-10-10 Sprague Electric Co Assembly of solid electrolytic capacitors
US5369547A (en) * 1993-03-22 1994-11-29 The Evans Findings Co., Ltd. Capacitor
JP3065286B2 (ja) * 1997-09-24 2000-07-17 日本電気株式会社 固体電解コンデンサおよびその製造方法
US6088217A (en) * 1998-05-31 2000-07-11 Motorola, Inc. Capacitor
US6208502B1 (en) * 1998-07-06 2001-03-27 Aerovox, Inc. Non-symmetric capacitor
TW200419606A (en) * 2003-03-24 2004-10-01 Luxon Energy Devices Corp Supercapacitor and a module of the same
US6801424B1 (en) * 2003-05-30 2004-10-05 Medtronic, Inc. Electrolytic capacitor for use in an implantable medical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326333A (ja) * 1992-05-26 1993-12-10 Matsushita Electric Ind Co Ltd 電解コンデンサ
JPH10312936A (ja) * 1997-05-01 1998-11-24 Wilson Greatbatch Ltd 密閉シールコンデンサー
JP2003522420A (ja) * 2000-02-03 2003-07-22 ケース ウェスタン リザーブ ユニバーシティ 金属粉末あるいは金属スポンジ粒子の薄層からの高電力コンデンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119465A (ja) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp 電気二重層キャパシタ用電極およびこれを用いた電気二重層キャパシタ

Also Published As

Publication number Publication date
KR20070022721A (ko) 2007-02-27
KR100876702B1 (ko) 2008-12-31
TWI268525B (en) 2006-12-11
TW200609967A (en) 2006-03-16
CN1961392A (zh) 2007-05-09
US20080291604A1 (en) 2008-11-27
JPWO2005117044A1 (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
JP5085651B2 (ja) キャパシタ−バッテリー構造のハイブリッド型電極アセンブリー
US7589955B2 (en) Electric double layer capacitor and aggregation thereof
US10644324B2 (en) Electrode material and energy storage apparatus
CN108511199B (zh) 电化学器件
US9385539B2 (en) Surface-mediated cell-powered portable computing devices and methods of operating same
CN105321722A (zh) 电化学能量存储器件及其制造方法
KR101138548B1 (ko) 슈퍼 캐패시터 모듈
JP2002118036A (ja) 蓄電用電子部品および複合電極体
WO2005117044A1 (ja) 電解コンデンサ
KR101599711B1 (ko) 전기 이중층 소자
KR101035284B1 (ko) 출력 특성이 향상된 전극조립체 및 이를 포함하는 이차전지
WO2005076296A1 (ja) 電気化学デバイスおよび電極体
JP4627874B2 (ja) 電気二重層コンデンサ
KR101211667B1 (ko) 파우치형 슈퍼 커패시터 및 이의 제작 방법
KR101022308B1 (ko) 에너지 저장장치
JP2000315527A (ja) 非水電気化学キャパシタ
KR101791894B1 (ko) 전기 이중층 소자
JPH06275470A (ja) 電気2重層コンデンサ
JP2018518042A (ja) 電気二重層素子
KR20090124471A (ko) 적층형 전기 이중층 커패시터의 구조
JP2004047522A (ja) 電気二重層キャパシタ
KR101369738B1 (ko) 콘덴서용 전극구조체 및 상기 전극구조체를 포함하는 콘덴서
JP2001230163A (ja) 電気二重層コンデンサ
JP2000012407A (ja) 電気二重層コンデンサ
KR20100086742A (ko) 슈퍼커패시터 및 그 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580017382.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006513982

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11628174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067025768

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067025768

Country of ref document: KR

122 Ep: pct application non-entry in european phase