WO2005117002A1 - Objective optical system, optical pickup device, and optical disc drive device - Google Patents

Objective optical system, optical pickup device, and optical disc drive device Download PDF

Info

Publication number
WO2005117002A1
WO2005117002A1 PCT/JP2005/008983 JP2005008983W WO2005117002A1 WO 2005117002 A1 WO2005117002 A1 WO 2005117002A1 JP 2005008983 W JP2005008983 W JP 2005008983W WO 2005117002 A1 WO2005117002 A1 WO 2005117002A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase structure
optical system
wavelength
aberration correction
light beam
Prior art date
Application number
PCT/JP2005/008983
Other languages
French (fr)
Japanese (ja)
Inventor
Tohru Kimura
Yuichi Atarashi
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2006513850A priority Critical patent/JP4483864B2/en
Publication of WO2005117002A1 publication Critical patent/WO2005117002A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to an objective optical system, an optical pickup device, and an optical disk drive device.
  • Patent Document 1 JP 2004-079146 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-298422
  • Patent Document 3 JP 2003-207714 A
  • Patent Literature 1 discloses a numerical example 7 in which a blue-violet laser beam generates second-order diffracted light and a red laser beam and an infrared laser beam generate first-order diffracted light on the surface of an objective lens.
  • the structure of this diffraction structure is used to correct the spherical aberration caused by the difference in the thickness of the protective layer between the high-density optical disk and the DVD.
  • the divergent light beam is applied to the objective lens during Z playback.
  • an objective lens that corrects spherical aberration caused by a difference in protective layer thickness between a high-density optical disc and a CD by being incident.
  • the spherical aberration caused by the difference in the protective layer thickness between the high-density optical disk and the DVD and the spherical aberration due to the difference in the protective layer thickness between the high-density optical disk and the CD are corrected by the action of the diffraction structure.
  • the diffraction efficiency of the third-order diffracted light of the blue-violet laser light beam and the diffraction efficiency of the second-order diffracted light of the infrared laser light beam are as low as about 70%, so that the recording / reproducing speed for optical discs can be increased. It is not possible to obtain good recording / reproducing characteristics due to the low S / N ratio of the detection signal from the photodetector, or to shorten the life of the laser light source due to the high voltage applied to the laser light source. There is a problem.
  • the objective lens of Numerical Example 7 of Patent Document 1 which corresponds to a case where both the diffraction efficiency of the diffracted light of the blue-violet laser beam and the diffraction efficiency of the diffracted light of the infrared laser beam are ensured, Since the diffraction angle of the diffracted light of the blue-violet laser beam and the diffraction angle of the diffracted light of the infrared laser beam almost coincide, the diffraction structure corrects the spherical aberration due to the difference in the thickness of the protective layer between the high-density optical disc and the CD. You can't.
  • the present invention has been made in view of the above-mentioned problems, and has a spherical aberration due to a difference in protective layer thickness between a high-density optical disc, a DVD, and a CD due to the action of a phase structure including a diffractive structure.
  • Is capable of satisfactorily correcting spherical aberration due to the difference in wavelength used between high-density optical discs, DVDs, and CDs, as well as a blue-violet wavelength region near 400 nm, a red wavelength region near 650 nm, and a blue wavelength region near 780 nm.
  • An objective optical system capable of obtaining high light use efficiency in any wavelength region including the infrared wavelength region, an optical pickup device using the objective optical system, and an optical disk drive device equipped with the optical pickup device The purpose is to provide.
  • the configuration according to item 1 is characterized in that the thickness t is determined by using the first wavelength emitted from the first light source;
  • An objective optical system used in an optical pickup device that records and / or reproduces information on an optical disc wherein the objective optical system includes a first aberration correction element, a second aberration correction element, (1) An objective lens for converging the first to third light beams passing through the aberration correction element and the second aberration correction element on the information recording surfaces of the first to third optical disks, respectively.
  • the first aberration correction element has a first phase structure made of a material having an Abbe number V1 at d-line that satisfies the following equation (1).
  • the second aberration correction element is made of a material whose Abbe number V 2 at d-line satisfies the following equation (2):
  • a second phase structure formed from the material.
  • the first phase structure and the second phase structure are made of a material having an Abbe number that satisfies the equations (1) and (2), the blue-violet laser light flux and the red laser light flux, which are difficult with the related art, are obtained. While maintaining high transmittance for any wavelength of the infrared laser beam, Mutual compatibility between high-density optical discs and DVDs and CDs can be realized.
  • the transmittance of the first phase structure for the third wavelength ⁇ 3 increases, but the transmittance of the first phase structure for the second wavelength ⁇ 2 increases.
  • the transmittance of the phase structure is reduced.
  • a material whose Abbe number is larger than the upper limit of the equation (1) is not realistic because the production becomes difficult.
  • the transmittance of the second phase structure for the second wavelength ⁇ 2 increases, but the transmittance of the second phase structure for the third wavelength ⁇ 3 increases. This is preferable because the transmittance of the two-phase structure is reduced.
  • the Abbe number is smaller than the lower limit of the equation (2), it is not practical because the material is difficult to manufacture.
  • a 0.85 mm objective lens and a protective layer thickness of 0.1 mm are used for a Blu-ray disc or NA 0.65 to 0.67 objective lens.
  • Optical disks that use a blue-violet laser light source such as HD DVDs with a diameter of 0.6 mm, are collectively called “high-density optical disks” and abbreviated as “HD”.
  • high-density optical disks such as HD DVDs with a diameter of 0.6 mm
  • a magneto-optical disc, an optical disc having a protective film with a thickness of several to several tens nm on the information recording surface, or an optical disc having a protective layer or a protective film of zero thickness Is included in the high-density optical disk are included in the high-density optical disk.
  • a DVD digital versatile disc
  • DVD-RM digital versatile disc
  • DVD-Video DVD-Audio
  • DVD-RAM DVD-R
  • DVD_RW DVD_RW
  • DV D + R DVD +
  • CD compact disc
  • the “objective lens” is a lens disposed at a position facing the optical disk in the optical pickup device, and emits the light flux emitted from the light source to the optical disk.
  • a condenser lens that has the function of collecting light on the information recording surface.
  • the “objective optical system” refers to the above-described condensing lens, a first aberration correction element that performs tracking and focusing by an actuator integrated with the converging lens, and a second condensing lens. Refers to an optical system composed of an aberration correction element.
  • phase structure has a plurality of steps in the optical axis direction
  • This is a general term for a structure that adds an optical path difference (phase difference) to a bundle.
  • the optical path difference added to the incident light beam by this step may be an integral multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • Specific examples of such a phase structure include a diffractive structure in which the steps are arranged at periodic intervals in the direction perpendicular to the optical axis, and a diffraction structure in which the steps are arranged at non-periodic intervals in the direction perpendicular to the optical axis.
  • An optical path difference providing structure (also referred to as a phase difference providing structure) is arranged.
  • the phase structure can have various cross-sectional shapes as schematically shown in FIGS. 7 (a) to 12 (b).
  • FIGS. 7 (a) and 7 (b) show the case where the shape is a sawtooth shape
  • FIGS. 8 (a) and 8 (b) show the case where the steps are all in the same direction
  • FIG. Figures a) and 9 (b) show the case where the direction of the step is stepwise, with the direction of the step being reversed in the middle.
  • FIGS. 10 (a) and 10 (b) show a step-shaped pattern 11 including a plurality of level surfaces 12 arranged concentrically, and a predetermined number of level surfaces (FIGS. 10 (a) and 10 (b)). In each case, the steps are shifted by the height corresponding to the number of levels (four steps in FIGS. 10 (a) and 10 (b)) every 5 levels in (b).
  • Figs. 7 (a) and 7 (b) show the case where the direction of each saw tooth is the same, and Figs. 10 (a) and 10 (b) show that the direction of each pattern having a stepped cross section is Although the same case is shown, as shown in FIGS. 11 (a) and 11 (b) and FIGS. 12 (a) and 12 (b), the phase inversion portion PR and the closer to the optical axis than the phase inversion portion PR There may be a sawtooth whose direction is opposite to the sawtooth on the side or a pattern whose direction is opposite to the pattern closer to the optical axis than the phase inversion portion PR.
  • FIGS. 11 (a) and 11 (b) and FIGS. 12 (a) and 12 (b) show the phase inversion portion PR and the closer to the optical axis than the phase inversion portion PR.
  • each structure is formed on a plane, but each structure may be formed on a spherical surface or an aspherical surface.
  • the force having a predetermined number of level faces is not limited to five.
  • FIG. 1 is a plan view of a principal part showing a configuration of an optical pickup device.
  • FIG. 2 is a side view showing an example of the configuration of the objective lens unit.
  • FIG. 3 is a side view showing an example of the configuration of the objective lens unit.
  • FIG. 4 is a side view showing an example of the configuration of the objective lens unit.
  • FIG. 5 is a side view showing an example of the configuration of the objective lens unit.
  • FIG. 6 is a side view showing an example of the configuration of the objective lens unit.
  • FIG. 7 is cross-sectional views (a) and (b) showing an example of a configuration of a phase structure.
  • FIG. 8 is cross-sectional views (a) and (b) showing an example of the configuration of a phase structure.
  • FIG. 9 is cross-sectional views (a) and (b) showing an example of a configuration of a phase structure.
  • FIG. 10 is cross-sectional views (a) and (b) showing an example of the configuration of a phase structure.
  • FIG. 11 is cross-sectional views (a) and (b) showing an example of the configuration of a phase structure.
  • FIG. 12 is cross-sectional views (a) and (b) showing an example of the configuration of a phase structure.
  • FIG. 13 is a side view showing an example of the configuration of the objective lens unit.
  • Item 2 is the objective optical system according to Item 1, wherein the first phase structure of the first aberration correction element has a refractive index n 1 at d-line represented by the following expression (3): Filling resin d
  • the second phase structure included in the second aberration correction element is formed of a resin whose refractive index n 2 at d-line satisfies the following expression (4).
  • a resin for an optical element has a refractive index n of 1.48 to d at d-line (587.6 nm).
  • both the first phase structure and the second phase structure are made of resin as in the configuration described in Item 2, the first phase structure and the second phase structure are made of a material having n that satisfies the equations (3) and (4). d
  • the configuration according to Item 3 is the objective optical system according to Item 1 or 2, wherein the first phase structure is a spherical aberration caused by a difference between the first and the second wavelengths or the first wavelength ⁇ and the first wavelength ⁇ . 2 wavelength
  • the first phase structure formed of the material satisfying the formula (1) or (3) formed in the first aberration correction element makes the high-density optical disc and DVD compatible with each other. In this way, while maintaining high transmittance for both the blue-violet laser beam and the red laser beam, the spherical aberration due to the difference between t and t, or the first wavelength ⁇ and the second wavelength ⁇ In the difference
  • the first phase structure may be a diffraction structure or an optical path difference providing structure.
  • the configuration described in Item 4 is the objective optical system according to Item 3, wherein the first phase structure does not diffract the first light beam and the third light beam but diffracts the second light beam.
  • the first phase structure is a diffractive structure that selectively diffracts only the second light beam as described in item 4, it is possible to independently control the aberration with respect to the second light beam, and to achieve high density. Good light-collecting characteristics are obtained for both optical disks and DVDs.
  • Item 5 is the objective optical system according to Item 4, wherein the first phase structure is a structure in which a pattern having a stepped cross section including an optical axis is arranged on a concentric circle. Therefore, for each predetermined number A of level surfaces, the level is shifted by a height corresponding to the number of levels corresponding to the number of level surfaces.
  • the optical path difference added by each step constituting each pattern slightly deviates from an integral multiple of the wavelength.
  • the wavefront having the local spherical aberration is interrupted at the position where the steps are shifted by the height corresponding to the number of power level planes at which local spherical aberration occurs, causing local spherical aberration.
  • the macroscopic wavefront becomes flat.
  • a diffraction structure having a property of selectively diffracting one of the first to third light beams is hereinafter referred to as a "wavelength selective diffraction structure”.
  • the number A of the predetermined level surfaces is any one of 4, 5, and 6, and The resulting optical path difference is twice the first wavelength I.
  • the required level Preferably, the number A is 5.
  • the principle of generation of diffracted light will be described for a wavelength-selective diffraction structure (first phase structure) that selectively diffracts the second light beam without diffracting the first light beam and the third light beam.
  • the first wavelength ⁇ is 405 nm, which is the recording / reproducing wavelength of the high-density optical disc HD
  • the second wavelength I is 655 nm, which is the recording / reproducing wavelength of the DVD
  • the third wavelength ⁇ is the recording / reproducing of the CD.
  • ⁇ (Ml) ⁇ ( ⁇ 1)-( ⁇ 1) (11)
  • ⁇ 1 depth in the optical axis direction of each step constituting each pattern of the first phase structure ⁇ : refractive index of the material forming the first phase structure with respect to the first wavelength;
  • refractive index of the material forming the first phase structure for the second wavelength ⁇ 2
  • third wavelength; refractive index of the material forming the first phase structure for 13
  • A Number of level surfaces formed in each pattern of the first phase structure
  • Ll, Ml, and N1 are optical path differences in wavelength units added to the first light flux, the second light flux, and the third light flux by each step formed in each pattern of the first phase structure.
  • L1 is 2
  • the optical path difference L1 added to the first light beam due to the step ⁇ 1 is twice the first wavelength; I, so that the first The wavefront of the light beam is exactly
  • connection is shifted by two wavelengths. Therefore, the first light beam is transmitted as it is at a transmittance of 100% without being subjected to diffraction by the first phase structure. Further, when the first phase structure is formed from a material whose Abbe number V 1 at the d-line satisfies the above equation (1), the step ⁇ The optical path difference Nl added to the third luminous flux by 1 is very close to one time of the third wavelength; I.
  • the wavefronts of the third luminous flux passing through the level surfaces that are in tangent to each other are connected by being shifted by one wavelength. Therefore, the third light beam is also transmitted as it is with almost 100% transmittance which is not affected by the diffraction effect by the first phase structure.
  • the optical path difference Ml applied to the second luminous flux by the step ⁇ 1 is about 1.2 times the second wavelength; I, so that the adjacent level surfaces
  • the wavefront of the passing second light beam is shifted by 1.2 wavelengths, but the actual wavefront shift is 0.2 wavelength excluding the shift of one wavefront that is optically in phase.
  • the above equation (12) is a conditional equation for increasing the diffraction efficiency of the first-order diffracted light of the second light flux, and the number of level surfaces A formed in each pattern is set so as to satisfy the equation (12). By determining the value, it is possible to sufficiently secure the diffraction efficiency of the first-order diffracted light of the second light flux.
  • the Abbe number V1 at the d-line is the above-mentioned (1)
  • the diffraction efficiency of the diffracted light of the second light beam depends only on the Abbe number V 1 at the d-line of the material from which the wavelength-selective diffraction structure is formed.
  • the refractive index n 1 has a relatively high degree of freedom.
  • the configuration according to Item 7 is the objective optical system according to Item 3, wherein the first phase structure generates first-order diffracted light when the first light beam enters, and When two light beams are incident, a / 3 1 (1 ⁇ 1) order diffracted light is generated.When the third light beam is incident, a ⁇ 1 ( ⁇ 1 ⁇ ⁇ 1) order diffracted light is generated. Diffraction structure.
  • the first phase structure has the diffraction characteristics described in Item 7 Let me good.
  • the diffraction structure having such diffraction characteristics has a saw-tooth shape or a step-like shape in cross section including the optical axis.
  • the cross-sectional shape including the optical axis has a sawtooth shape, the absolute value of the refractive power of the optical surface on which the first phase structure is formed and the absolute value of the diffraction power of the first phase structure are different from each other.
  • the case where the cross-sectional shape includes a step-like shape is a case where the signs of the refractive power of the optical surface on which the first phase structure is formed and the diffraction power of the first phase structure are opposite to each other and the absolute values are the same.
  • the diffraction order ct 1 of the first light beam be an even number.
  • the production wavelength ⁇ of the first phase structure should be longer than 1.
  • the configuration according to Item 9 is the objective optical system according to any one of Items 1 to 8, wherein the second phase structure includes a spherical aberration caused by a difference between t and t, or Wavelength; I and
  • the compatibility between the high-density optical disc and the CD is achieved by the second phase structure formed of the material satisfying the formula (2) or (4) formed on the second aberration correction element.
  • the second phase structure may be a diffraction structure or an optical path difference providing structure.
  • the configuration according to Item 10 is the objective optical system according to Item 9, wherein the second phase structure includes The diffraction structure diffracts the third light beam without diffracting the first light beam and the second light beam.
  • the second phase structure is a diffraction structure that selectively diffracts only the third light beam as described in item 10, it is possible to independently control the aberration of the third light beam, Good light-gathering characteristics are obtained for both high-density optical discs and CDs.
  • the second phase structure is a structure in which a pattern having a stepped cross section including an optical axis is arranged on a concentric circle.
  • the level is shifted by a height corresponding to the number of levels corresponding to the number of level surfaces.
  • the oscillation wavelength of the first light source can be changed in the same manner as the configuration described in Item 5. Tolerances for individual differences can be reduced.
  • the number B of the predetermined level surfaces is any one of 3 and 4, and an optical path difference caused by one step of the stairs is provided. Is seven times the first wavelength.
  • the second phase structure With the diffraction characteristics as described in item 10, and to provide three light beams High transmittance can be secured.
  • the second phase structure In order to ensure the highest transmittance for the three light beams, the second phase structure must be formed from a material whose Abbe number V 2 at d-line satisfies 25 ⁇ v 2 ⁇ 40.
  • the number B of the predetermined level surfaces is 3, and the second phase structure is the Abbe number V 2 at the d-line.
  • the number B of the specified level surface shall be 4 and d
  • the principle of diffracted light generation will be described for a wavelength-selective diffraction structure (second phase structure) that selectively diffracts the third light beam without diffracting the first light beam and the second light beam.
  • the first wavelength ⁇ is 405 nm, which is the recording / reproducing wavelength of the high-density optical disc HD
  • the second wavelength is 655 nm, which is the recording / reproducing wavelength of the DVD
  • the third wavelength ⁇ is the CD recording / reproducing.
  • the raw wavelength is 785 nm.
  • the first phase structure needs to satisfy the following equations (15) to (21).
  • ⁇ 2 ⁇ 2 ( ⁇ '- ⁇ ) / ⁇ (16)
  • ⁇ 2 ⁇ 2 ( ⁇ -1) / ⁇ (17)
  • ⁇ 2 Depth in the optical axis direction of each step constituting each pattern of the second phase structure ⁇ : Refractive index of the material on which the second phase structure is formed with respect to the first wavelength 1
  • refractive index of the material on which the second phase structure is formed for the third wavelength 3
  • L2, M2, and N2 are optical path differences in wavelength units added to the first light flux, the second light flux, and the third light flux by each step formed in each pattern of the second phase structure. If L2 is set to 7, the optical path difference L2 added to the first light beam due to the step ⁇ 2 is seven times the first wavelength I, so that the first light beam passing through adjacent level surfaces The wavefront is exactly 7
  • the connection is shifted by the wavelength. Therefore, the first light beam is transmitted as it is at a transmittance of 100% without being subjected to diffraction by the first phase structure.
  • the second phase structure is formed of a material having an Abbe number V 2 at d-line that satisfies the above equation (2), the step ⁇ d
  • the optical path difference M2 added to the second light beam by 2 is very close to four times the second wavelength; I.
  • the wavefronts of the second luminous flux passing through the level surfaces that are in contact with each other are connected by being shifted by four wavelengths. Therefore, the second light flux is also transmitted as it is with almost 100% transmittance, which is not affected by the diffraction effect by the second phase structure.
  • the optical path difference N2 applied to the third luminous flux by the step ⁇ 2 is about 3.3 times the third wavelength, so that the adjacent level surfaces are The wavefront of the third luminous flux passing therethrough is shifted by 3.3 wavelengths, but the actual wavefront shift excluding the wavefront shift of 3 wavelengths that are optically equiphase is 0.3 wavelength. .
  • the third light beam is diffracted in the first order with a high diffraction efficiency of 70-80% (first order diffraction).
  • the above equation (19) is a conditional equation for increasing the diffraction efficiency of the diffracted light of the third light flux, and the number B of the level surfaces formed in each pattern is determined so as to satisfy the equation (19). By making the determination, it is possible to sufficiently secure the diffraction efficiency of the first-order diffracted light of the third light flux.
  • the second phase structure is formed from a material whose Abbe number V 2 at the d-line satisfies 25 ⁇ v 2 ⁇ 40, the value of equation (12) is used.
  • the diffraction efficiency of the first-order diffracted light of the third light beam depends only on the Abbe number V 2 at the d-line of the material on which the wavelength-selective diffraction structure is formed, and dd
  • Depth in the optical axis direction of each step increases as the value of the refractive index n2 decreases.
  • Item 13 is the objective optical system according to Item 9, wherein the second phase structure generates second-order diffracted light when the first light beam enters, and When two light beams are incident, a diffracted light of order / 32 (2 ⁇ hi2) is generated, and when the third light beam is incident, a diffracted light of order ⁇ 2 ( ⁇ 2 ⁇ 2 ) is generated. Diffraction structure.
  • the second phase structure has the diffraction characteristics described in Item 13 You can do it.
  • the diffraction structure having such diffraction characteristics has a saw-tooth shape or a step-like shape in cross section including the optical axis.
  • the configuration described in Item 14 is the objective optical system according to Item 13, wherein the diffraction order ⁇ 2 is odd. Is a number.
  • the diffraction order 2 of the first light beam be an odd number.
  • magnification of the objective optical system for recording / reproducing information on the third optical disc is in the range of 0.2 to 0, the spherical aberration caused by the difference between t and t will be better.
  • the ability to rectify s can.
  • Patent Document 2 which corresponds to a case where the diffraction angle of the blue-violet laser beam and the diffraction angle of the infrared laser beam are made different by setting the diffraction order of the purple laser beam (first light beam) to an odd number.
  • the objective lens of Numerical Example 3 uses a relatively low-dispersion material having an Abbe number of about 55 at the d-line, so that the diffraction efficiency of both wavelengths is low.
  • a material having high dispersibility that satisfies the expression (2) is used as the material of the second phase structure. Therefore, even if the diffraction order of the violet laser light beam (first light beam) is an odd number, High diffraction efficiency for both wavelengths can be ensured.
  • the configuration described in Item 15 is the objective optical system according to any one of Items 1 to 14, wherein the first aberration correction element and the second aberration correction element are joined to each other.
  • the configuration described in Item 16 is the objective optical system according to any one of Items 1 to 14, wherein the first aberration correction element and the second aberration correction element are separated from each other.
  • the configuration according to Item 17 is the object optical system according to any one of Items 1 to 16, wherein at least one of the first aberration correction element and the second aberration correction element is the second aberration correction element. It has a three-phase structure.
  • the third phase structure As described in Item 17, by forming the third phase structure on one of the optical surfaces of the first aberration correction element and the second aberration correction element, light is condensed for each light beam of the objective optical system. The characteristics can be made better.
  • This third phase structure is a diffractive structure. Or an optical path difference providing structure.
  • the aberration corrected by the third phase structure may be, for example, chromatic aberration caused by a minute change in the first wavelength ⁇ 1, or spherical aberration caused by a change in the refractive index of the objective lens caused by a change in temperature. May be.
  • the detection of the focus signal and the tracking signal by the photodetector may be unstable due to the influence of the reflected light from the objective optical system.
  • any one of the first to third phase structures is formed on the optical surface closest to the laser light source. It ’s been a good thing,
  • the light reflected by the optical surface closest to the laser light source is diffracted, so that it is diffracted in a direction having a predetermined angle with respect to the optical axis.
  • reflected light can be prevented from entering the light receiving surface of the photodetector, and stable detection characteristics can be obtained.
  • the third phase structure includes a near-field generated in the objective optical system when the first wavelength ⁇ changes within ⁇ 5 nm.
  • switching from reproduction to recording is performed by providing the third phase structure with a function of suppressing the movement of the paraxial image point position in the wavelength region of the first wavelength ⁇ ⁇ 5 nm.
  • the focused spot does not become large and it is possible to always maintain a good focused state .
  • the configuration according to Item 19 is the objective optical system according to Item 17 or 18, wherein the third phase structure is used when the first wavelength ⁇ changes within ⁇ 5 nm. It has the function of suppressing the change in generated spherical aberration.
  • the oscillation wavelength of the first light source can be reduced.
  • the tolerance for individual differences can be relaxed, and the selection of the first light source is not required, so that the cost of the optical pickup device can be reduced.
  • the configuration of Item 20 is the objective optical system according to any one of Items 17 to 19, wherein the third phase structure suppresses a change in spherical aberration caused by a change in the refractive index of the objective optical system.
  • the increase in spherical aberration due to a change in the refractive index increases in proportion to the fourth power of the NA of the objective lens. Therefore, when the objective lens is made of a resin that has a large change in the refractive index due to a temperature change. It is necessary to take measures against the increase of strong spherical aberration.
  • the increase in spherical aberration due to temperature change may not be negligible. According to the configuration described in Item 20, it is possible to provide an objective optical system having a wide usable temperature range by correcting an increase in spherical aberration due to a strong temperature change by the third phase structure.
  • the configuration according to Item 21 is the objective optical system according to any one of Items 17 to 20, wherein the third phase structure is one of the first aberration correction element and the second aberration correction element. It is formed on either one.
  • the third phase structure is formed in the first aberration correction element, and the first wavelength ⁇ Of 10
  • the third phase structure is formed in the first aberration correction element, and the optical path difference added to the first light beam by the third phase structure is equal to the first wavelength. Designed to be 10 times
  • the optical path difference added to the second light flux is approximately six times the second wavelength ⁇
  • Item 23 is the objective optical system according to any one of Items 1 to 22, wherein the first phase structure and the second phase structure are both formed of resin.
  • any optical glass or optical resin can be applied as a material of the aberration correction element.
  • a material having a low viscosity in a molten state that is, Resins are suitable.
  • resin is lower cost and lighter than glass.
  • the driving force for performing the focus and tracking control of the optical pickup device during recording / reproducing of the optical disk may be reduced.
  • the first phase structure may be made of Zeonex (registered trademark) manufactured by Zeon Corporation or Abel (registered trademark) manufactured by Mitsui Chemicals, Inc.
  • the second phase structure that is preferably formed from a cyclic oleolefin-based resin represented by a mark) or the like is a fluorene-based polyester represented by an ultraviolet curable resin or a thermosetting resin, or OKP4 manufactured by Osaka Gas Chemical Company, etc.
  • a resin is used.
  • Item 24 is the objective optical system according to any one of items 1 to 23, wherein one of the first phase structure and the second phase structure is an ultraviolet curable resin. Or formed from a thermosetting resin.
  • the material thereof is described in Item 24.
  • Such an ultraviolet curable resin or a thermosetting resin is suitable for production.
  • a method of manufacturing the aberration correction element formed on the surface of the phase structure a method of forming the phase structure directly on a resin substrate or a glass substrate by repeating a process of photolithography and etching is used.
  • a mold (die) with a phase structure is manufactured, and an aberration correction element with a phase structure formed on the surface is obtained as a replica of the mold. So-called molding is suitable for mass production. ing.
  • a method of manufacturing a mold having a phase structure formed thereon a method of repeating a process of photolithography and etching to form a diffraction structure or a method of machining a diffraction structure with a precision lathe may be used.
  • Item 25 is the objective optical system according to Item 24, wherein the phase formed from an ultraviolet curable resin or a thermosetting resin among the first phase structure and the second phase structure.
  • the structure is the second phase structure.
  • a second phase structure having a small tolerance of several v is formed from an ultraviolet-curing resin or a thermosetting resin.
  • the configuration according to Item 26 is the objective optical system according to Item 24 or 25, wherein the first phase structure and the second phase structure are formed of an ultraviolet curable resin or a thermosetting resin.
  • the phase structure is formed on a glass substrate.
  • An ultraviolet curable resin or a thermosetting resin has relatively excellent adhesion to a glass substrate. Accordingly, the mold and the phase structure are separated from each other by forming the phase structure formed of the ultraviolet curable resin or the thermosetting resin on the glass substrate among the first phase structure and the second phase structure. Deformation of the phase structure during molding can be suppressed, and the occurrence of aberrations and a decrease in diffraction efficiency due to shape errors are reduced.
  • the structure according to Item 27 is the objective optical system according to any one of Items 1 to 26, wherein the objective lens corrects spherical aberration for a combination of the t and the first wavelength ⁇ . Is optimized.
  • the aspherical shape of the objective lens is determined so that spherical aberration correction is minimized with respect to the first wavelength ⁇ and the thickness tl of the protective layer of the first optical disc.
  • the focusing performance of the first wavelength ⁇ is determined by the objective lens. Therefore, as described in Item 27, the objective is set so that spherical aberration correction is minimized with respect to the first wavelength and the thickness tl of the first protective layer.
  • the objective lens has been optimized for spherical aberration correction with respect to the combination of the tl and the first wavelength” means that the objective lens and the first optical disc are protected by the first optical disc through the protective layer. It means that the wavefront aberration when the light beam is collected is 0.05 ⁇ RMS or less.
  • Item 29 is the objective optical system according to any one of Items 4 to 6, wherein the first phase structure has an action of diverging the second light flux.
  • the second phase structure has an action of diverging the third light flux.
  • the configuration according to Item 31 is the objective optical system according to Item 7 or 8, wherein the first phase structure is used in the objective optical system when the first wavelength ⁇ 1 changes in wavelength within ⁇ 5 nm. It has a function of suppressing the movement of the paraxial image point position that occurs.
  • Item 32 is the objective optical system according to any one of Items 1 to 31, wherein at least one of the first aberration correction element and the second aberration correction element is the first wavelength. It has a negative paraxial power with respect to ⁇ .
  • paraxial power (combined power of diffraction power and refraction power) for at least one of the first aberration correction element and the second aberration correction element with respect to the first wavelength ⁇ .
  • the design magnification of the objective lens is negative. Furthermore, spherical aberration correction is minimized with respect to the first wavelength and the thickness ti of the protective layer of the first optical disc.
  • the aspherical shape is determined.
  • the first to third light beams are all the first aberration correction element and the second aberration light.
  • the light enters the correction element in the form of a parallel light beam.
  • the first aberration correction element has an Abbe number V1 at d-line satisfying Expression (1) and a first phase structure.
  • the aberration correction element has the Abbe number V 2 at the d-line satisfying the expression (2) and the second phase structure d
  • the first aberration correction element has a refractive index n1 at d-line satisfying Expression (3) and a first phase structure.
  • the aberration correction element has a refractive index n 2 at d-line that satisfies equation (4) and a second phase structure
  • the configuration according to Item 36 is the objective optical system according to any one of Items 1 to 35, wherein the first aberration correction element has a positive paraxial power with respect to the first wavelength ⁇ .
  • the second error correction element has a negative paraxial power with respect to the first wavelength ⁇ .
  • the difference in dispersion between the first aberration correction element that is a positive lens and the second aberration correction element that is a negative lens is used.
  • the movement of the paraxial image point position can be suppressed, so even if a mode hop occurs due to a change in the output of the first light source when switching from playback to recording, the focused spot does not increase, and It is possible to maintain a good light-collecting state.
  • Item 37 is the objective optical system according to Item 36, wherein the first aberration correction element and the second aberration correction element are joined to each other, and the first aberration correction element and the second aberration It is characterized in that the joint surface of the correction element has a convex shape on the side of the second aberration correction element.
  • first aberration correction element and the second aberration correction element are joined to each other as described in Item 37.
  • Item 38 is the objective optical system according to Item 24, wherein the phase structure formed of an ultraviolet curable resin or a thermosetting resin among the first phase structure and the second phase structure.
  • a non-heat-reflection anti-reflection coat is formed on the surface of.
  • the heat resistance is relatively low, and the antireflection coat can be formed on the surface of the phase structure formed of the ultraviolet curable resin or the thermosetting resin.
  • the transmittance of the first aberration correction element and the second aberration correction element can be improved.
  • the configuration according to Item 39 is the objective optical system according to Item 23, wherein the first phase structure is formed of a cyclic oleolefin resin, and the second phase structure is formed of a fluorene-based polyester resin. ing.
  • the configuration according to Item 40 is the object optical system according to any one of Items 4 to 6, wherein the optical surface on which the first phase structure is formed has a first central region including an optical axis. And a first peripheral region surrounding the first central region, wherein the first phase structure is formed in the first central region.
  • the objective optical system according to the present invention has an aperture control corresponding to the light beam of the second wavelength ⁇ .
  • the configuration according to Item 41 is the objective optical system according to Item 40, wherein the first peripheral region has a small size. At least in part, a fourth phase structure for controlling the condensing position of the second light beam passing through this portion is formed, and the fourth phase structure converts the first light beam and the third light beam. This is a diffraction structure that diffracts the second light beam without diffraction.
  • the diffraction power for the second wavelength ⁇ of the first phase structure formed in the first central region and the second wavelength ⁇ of the fourth phase structure formed in the first peripheral region are provided.
  • the fourth phase structure By making the diffraction powers different from each other, it is possible to arbitrarily control the position at which the second light beam passing through the fourth phase structure is collected and the amount of spherical aberration. At this time, by designing the fourth phase structure so that the detection characteristic of the focus error signal of the second light beam by the photodetector is the best, the focusing characteristic of the objective optical system at the time of recording / reproducing information on / from the second optical disc is achieved. Can be improved.
  • the fourth phase structure is not necessarily formed in the second peripheral region. It is only necessary to control the condensing position of the second light beam and the amount of spherical aberration only in a portion that adversely affects the detection characteristic of the focus error signal. Therefore, it is not always necessary to form the fourth phase structure over the entire first peripheral region.This prevents the range in which the fourth phase structure is formed from being unnecessarily widened. 3 It is possible to improve the transmittance of the light beam.
  • the configuration according to Item 42 is the objective optical system according to any one of Items 10 to 12, wherein the optical surface on which the second phase structure is formed includes: a second central region including an optical axis; Divided into a second peripheral region surrounding the second central region, the second phase structure is formed in the second central region.
  • the second central area is an area corresponding to a numerical aperture ( ⁇ ) necessary for recording / reproducing information on / from the third optical disc, the difference between t and t
  • the spherical aberration caused by 3 13 is corrected only within the NA (second central area), and the area outside the NA (second
  • the luminous flux of the third wavelength ⁇ passing through the area outside the NA does not contribute to spot formation.
  • the configuration described in Item 43 is the objective optical system according to Item 42, wherein the second peripheral region has a small size. At least in part, a fifth phase structure for controlling the condensing position of the third light beam passing through this portion is formed, and the fifth phase structure converts the first light beam and the second light beam. It is a diffraction structure that diffracts the third light beam without diffraction.
  • the configuration described in Item 44 is characterized in that, in the objective optical system according to any one of Items 1 to 43, the back focus fB for the first wavelength and the back focus fB for the second wavelength ⁇ .
  • the difference from the back focus fB with respect to 2 1 1 3 is 0.2 mm or less.
  • the “back focus fB with respect to the i-th wavelength ⁇ ” is defined as the position on the optical axis of the objective optical system and the i-th optical disc when the i-th light beam is focused on the information recording surface of the i-th optical disc. Refers to the interval.
  • the configuration according to Item 45 is characterized in that, in the objective optical system according to Item 11 or 12, the ratio ⁇ / ⁇ power S25 of the minimum width ⁇ of the pattern of the second phase structure to the first wavelength ⁇ is equal to or more than S25.
  • the configuration according to Item 46 is the objective optical system according to any one of Items 1 to 45, wherein the first phase structure is formed on a surface of the first aberration correction element, and The phase structure is
  • both the first phase structure and the second phase structure are formed on a plane.
  • both the first phase structure and the second phase structure are formed on a plane.
  • the configuration according to Item 49 is the object optical system according to any one of Items 1 to 48, wherein the first aberration correction element and the second aberration correction element are relative to the objective lens. It is held by the holding member so that the general positional relationship is universal.
  • the configuration according to item 50 is characterized in that a first light source that emits a first light beam of a first wavelength ⁇ for recording and / or reproducing information on the first optical disc, and a second light source Writing information
  • a second light source that emits a second light beam of a second wavelength ⁇ (> ⁇ ) for recording and recording or reproduction
  • a third light source that emits a third light beam of (3 ⁇ ), and the objective optical according to any one of claims 1 to 49.
  • the first optical disk is used to record and Z or reproduce information on a first optical disk having a protective layer having a thickness of t, and has a protective layer having a thickness of t ( ⁇ t) using the second optical beam.
  • Item 50 an optical pickup device having the same effects as in any one of Items 1 to 49 can be obtained.
  • Item 51 is the optical disk drive device equipped with the optical pickup device according to item 50 and a moving device that moves the optical pickup device in a radial direction of the optical information recording medium.
  • an optical disk drive having the same effect as the item 50 can be obtained.
  • FIG. 1 is a diagram schematically showing a configuration of an optical pickup device PU capable of appropriately recording / reproducing information on any of a high-density optical disk HD, a DVD, and a CD.
  • the combination of the layer thickness and the numerical aperture is not limited to this.
  • the optical pickup device PU emits information when recording / reproducing information to / from the HD, emits a blue-violet laser beam (first light beam) of 405 nm, and emits information to the blue-violet semiconductor laser LD1 and DVD.
  • the first emission point EP1 which emits a 655 nm red laser beam (second beam) and emits light when recording / reproducing data, and emits 785 nm light when recording / reproducing information on CDs
  • Objective lens unit ⁇ U (objective optical system) composed of an objective lens OL with aspheric surfaces on both sides, 2-axis Actuator AC1, single-axis actuator AC2, first lens EXP1 with negative paraxial refractive power, second lens EXP2 with positive paraxial refractive power, and expander lens EXP, first polarized lens One splitter BS1, 2nd polarizing beam splitter BS2, 1st collimating lens C ⁇ L1, 2nd It is composed of a collimating lens C ⁇ L2, a third collimating lens C ⁇ L3, and a sensor lens SEN for adding astigmatism to the reflected light beams from the information recording surfaces RL1, RL2 and RL3.
  • a blue-violet SHG laser may be used in addition to the above-mentioned blue-violet
  • the optical pickup device PU when performing Z recording and reproducing of information for HD, as shown in Fig. 1, the light path is drawn by a solid line, and first, the blue-violet semiconductor laser LD1 is used. To emit light. The divergent light beam emitted from the blue-violet semiconductor laser LD1 is converted into a parallel light beam by the first collimator lens COL1, then reflected by the first polarizing beam splitter BS1, passes through the second polarizing beam splitter BS2, and After passing through the 1 lens EXP1 and the 2nd lens EXP2, the beam diameter is regulated by the aperture STO (not shown), and the luminous flux diameter is regulated by the objective lens unit OU on the information recording surface RL1 via the HD protective layer PL1. It is a spot that is formed. The objective lens unit OU performs focusing and tracking by a two-axis actuator AC1 arranged around it.
  • the reflected light flux modulated by the information pits on the information recording surface RL1 has passed through the objective lens unit OU, the second lens EXP2, the first lens EXP1, the second polarizing beam splitter BS2, and the first polarizing beam splitter BS1 again. Later, when the light passes through the third collimating lens COL3, it becomes a convergent light beam, and astigmatism is added by the sensor lens SEN, and converges on the light receiving surface of the photodetector PD. Then, it is possible to read information recorded in the HD using the output signal of the photodetector PD.
  • the light emitting point EP1 emits light.
  • the divergent light beam emitted from the light emitting point EP1 is converted into a parallel light beam by the second collimating lens COL2 and then reflected by the second polarizing beam splitter BS2, as indicated by the broken line in FIG.
  • the diameter is increased by passing through the first lens EXP1 and the second lens EXP2, and becomes a spot formed on the information recording surface RL2 by the objective lens unit OU via the DVD protective layer PL2.
  • the objective lens unit OU performs focusing and tracking by a two-axis actuator AC1 arranged around it.
  • the reflected luminous flux modulated by the information pits on the information recording surface RL2 is returned to the objective lens unit.
  • G OU, the second lens EXP2, the first lens EXP1, the second polarizing beam splitter BS2, and after passing through the first polarizing beam splitter BS1, pass through the third collimating lens COL3 to become a convergent light flux, which is not reflected by the sensor lens SEN.
  • Astigmatism is added and converges on the light receiving surface of the photodetector PD. Then, it is possible to read the information recorded on the DVD using the output signal of the photodetector PD.
  • the interval between the first lens EXP1 and the second lens EXP2 becomes narrower than when recording / reproducing information on the HD.
  • the first lens EXP1 is driven in the optical axis direction by the uniaxial actuator AC2
  • the light emitting point EP2 emits light.
  • the divergent luminous flux emitted from the light emitting point EP2 is converted into a loose divergent luminous flux by the second collimating lens COL2 as shown by the dashed line in FIG. 1, and then reflected by the second polarizing beam splitter BS2.
  • the spot formed on the information recording surface RL3 by the objective lens unit OU via the protective layer PL3 of the CD through the first lens EXP1 and the second lens EXP2 is expanded in diameter and converted into a divergent light beam by the objective lens unit OU.
  • the objective lens unit OU performs focusing and tracking by a two-axis actuator AC1 arranged around it.
  • the reflected light flux modulated by the information pits on the information recording surface RL2 again passes through the objective lens unit OU, the second lens EXP2, the first lens EXP1, the second polarization beam splitter BS2, and the first polarization beam splitter BS1. Later, when the light passes through the third collimating lens COL3, it becomes a convergent light beam, and astigmatism is added by the sensor lens SEN, and converges on the light receiving surface of the photodetector PD. Then, it is possible to read information recorded on the CD using the output signal of the photodetector PD.
  • the objective lens unit OU in the present embodiment has a first phase structure PS1 made of resin and a second phase structure PS2 made of resin, and is joined to each other. And the aspheric shape so that spherical aberration is minimized with respect to the first wavelength ⁇ and the thickness t of the HD protective layer PL1.
  • the glass objective lens ⁇ L is coaxially integrated through a lens frame B.
  • the first aberration correction element L1 and the second aberration correction element L2 are joined and fixed to one end of the cylindrical lens frame B while the objective lens OL is fitted and fixed to the other end. ,these It is configured to be coaxially integrated along the optical axis X.
  • the first aberration correction element L1 and the second aberration correction element L2 are manufactured by molding, and thereafter, the respective aberration correction elements are corrected.
  • a method of joining the elements may be used, or an ultraviolet curable resin is applied on one of the aberration correction elements manufactured by molding, and a phase structure is formed on the surface of the ultraviolet curable resin.
  • a method in which a phase structure is transferred by pressing a molded mold and irradiating ultraviolet rays is acceptable.
  • a thermosetting resin may be used instead of the ultraviolet curable resin.
  • both first phase structure PS1 and second phase structure PS2 are made of resin, but one of the aberration correction elements may be made of glass and the other may be made of resin.
  • the method of manufacturing the aberration correction element having a glass phase structure may be molding or a method of forming a diffraction structure by repeating photolithography and etching processes.
  • an aberration correcting element having a phase structure made of glass is manufactured by molding, in order to extend the life of the mold and improve the transferability of the diffractive structure, the viscosity in the molten state is small and the glass is made of glass. It is preferable to use a glass having a transition point Tg of 450 ° C. or less.
  • Examples of such a glass include “K-PG325” and “K-PG375” manufactured by Sumita Optical Glass Co., Ltd.
  • an aberration correction element having a resin phase structure is manufactured by molding, and thereafter, Alternatively, a method of bonding with an aberration correcting element having a glass phase structure may be used, or an ultraviolet curable resin may be applied on the aberration correcting element having a glass phase structure, and the ultraviolet curable resin may be bonded to the glass.
  • a method of transferring the phase structure by pressing a mold having a phase structure formed on the surface and irradiating the mold with ultraviolet light may be used.
  • a thermosetting resin may be used in place of the ultraviolet curable resin.
  • the objective lens OL is made of glass.
  • the present invention is not limited to this, and the objective lens OL may be made of resin.
  • the resin used for the objective lens ⁇ L is preferably a oleolefin resin.
  • a resin having an average particle diameter of 3 It is acceptable to use a material in which inorganic particles of Onm or less are dispersed.
  • inorganic particles with a refractive index change rate opposite to the sign of the refractive index change rate due to the temperature change of the base resin By mixing inorganic particles with a refractive index change rate opposite to the sign of the refractive index change rate due to the temperature change of the base resin, refraction due to temperature change is achieved while maintaining the moldability of the resin. Since a material having a small absolute value of the rate of change can be obtained, a change in spherical aberration due to a change in temperature of the objective lens ⁇ L can be reduced.
  • the refractive index n 2 is 1.638000.
  • a first phase structure PS1 is formed on the optical surface of the first aberration correction element L1 on the light source side, and a second phase structure PS2 is formed on the optical surface of the second aberration correction element L2 on the optical disk side. It is formed.
  • the first phase structure PS1 does not diffract the first light beam and the third light beam but diffracts the second light beam.
  • a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for every predetermined number of level surfaces (five level surfaces in this embodiment), the level is shifted by the height corresponding to the number of level surfaces (in this embodiment, Is shifted four steps).
  • optical path difference N1 added to the third light beam by the step ⁇ 1 is 1X ⁇ (in the present embodiment,
  • the third light beam is also not affected by the first phase structure PS1 at all.
  • the optical path difference Ml added to the second light beam by the step ⁇ 1 is 1.20 X ⁇ (this embodiment
  • the first phase structure PS1 selectively corrects the second light flux to correct spherical aberration caused by a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
  • the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%
  • the diffraction efficiency of the first-order diffracted light of the second light beam is 87.5%
  • the diffraction efficiency of the zero-order diffracted light (transmitted light) of the light beam is 100%
  • high diffraction efficiency is obtained for any light beam.
  • the second phase structure PS2 does not diffract the first light beam and the second light beam but diffracts the third light beam.
  • a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle.
  • the number of levels is shifted by the number of levels corresponding to the number of level planes for each predetermined number of level planes (four level planes in this embodiment). Is shifted three steps).
  • n is the refractive index of the second aberration correction element at the wavelength.
  • the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
  • the second phase structure PS2 selectively diffracts only the third luminous flux, thereby correcting spherical aberration caused by the difference between the thickness of the protective layer of ⁇ D and the thickness of the protective layer of CD.
  • the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light flux generated by the second phase structure PS1 is 100%, and the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 94.8. %, and The diffraction efficiency of the first-order diffracted light of the third light beam is 78.2%, and high diffraction efficiency is obtained for any light beam.
  • the first aberration correction element L1 is made of a material that satisfies the expression (1) or (3), and the HD and the DVD are mutually compatible by the first phase structure PS1.
  • the second aberration correction element L2 can be expressed by the equation (2) or (4).
  • the second phase structure PS2 ensures high transmissivity for both blue-violet laser light and infrared laser light by making the HD and CD compatible with each other. Become possible
  • the first phase structure PS1 is formed only within the numerical aperture NA2 of the DVD, the light flux passing through the area outside of NA2 becomes a flare component on the information recording surface RL2 of the DVD, Is automatically restricted.
  • the second phase structure PS2 is formed only within the numerical aperture NA3 of the CD, the luminous flux passing through the area outside NA3 becomes a flare component on the information recording surface RL3 of the CD, Is automatically restricted.
  • the spherical aberration of the spot formed on the HD information recording surface RL1 can be corrected.
  • the causes of spherical aberration that are corrected by adjusting the position of the negative lens EXP1 include, for example, wavelength variations due to manufacturing errors of the first light source LD1, changes in the refractive index and refractive index distribution of the objective lens system due to temperature changes, double-layer disks, This includes focus jumps between the information recording layers of a multi-layer disc such as a four-layer disc, and variations in thickness and thickness distribution due to manufacturing errors of the protective layer of a high-density optical disc.
  • a DVD / CD laser light source unit LU in which the first light emitting point EP1 and the second light emitting point EP2 are formed on one chip is used.
  • a laser light source unit for HD / DVDZCD in which the emission point for emitting a laser beam of wavelength 408 nm for HD is formed on the same chip.
  • a laser light source unit for HD / DVDZCD housed in one housing may be used.
  • the light source and the photodetector PD are arranged separately, but the present invention is not limited to this, and a laser light source module in which the light source and the photodetector are integrated is used. May be.
  • a force obtained by integrating the first aberration correction element L1 and the second aberration correction element L2 joined to each other and the objective lens ⁇ L via the lens frame B is joined to each other.
  • the first aberration correction element L1 and the second aberration correction element L2 and the objective lens ⁇ L are integrated, the first aberration correction element L1 and the second aberration correction element L2, and the object lens OL
  • the first aberration correction element L1 and the second aberration correction element bonded to each other may be used in addition to the method using the lens frame B as described above, as long as the relative positional relationship between them is kept unchanged. This is a method of fitting and fixing the respective flange portions of L2 and the objective lens OL.
  • phase control using a liquid crystal As a method for correcting the spherical aberration of the spot formed on the HD information recording surface RL1, in addition to the method of driving the lens in the optical axis direction as described above, a phase control using a liquid crystal is performed. An element may be used. Since a method for correcting spherical aberration by using such a phase control element is known, a detailed description thereof is omitted here.
  • the objective lens unit OU and the phase control element are integrated.
  • the first aberration correction element L1 and the second aberration correction element L2, which are joined to each other, and the objective lens OL are held so that the relative positional relationship between them does not change. Accordingly, it is possible to suppress the occurrence of aberration at the time of focusing / tracking, and to obtain good focusing characteristics or tracking characteristics.
  • the present embodiment is characterized in that in the objective lens unit OU, the first aberration correction element L1 and the second aberration correction element L2 are separated from each other.
  • the objective lens unit OU in the present embodiment is made of resin as schematically shown in FIG.
  • the first aberration correction element LI having the first phase structure PS1 of the first
  • the second aberration correction element L2 having the second phase structure PS2 made of resin
  • the first wavelength ⁇ the first wavelength
  • It has a configuration in which it is coaxially integrated via a glass objective lens OL lens frame B whose aspherical shape is designed so as to minimize spherical aberration.
  • the first aberration correction element L1 and the second aberration correction element L2 are fitted and fixed to one end of the cylindrical lens frame B with the first aberration correction element L1 and the second aberration correction element L2 separated from each other, and the objective lens OL is fitted and fixed to the other end.
  • they are coaxially integrated along the optical axis X.
  • Refractive index n 2 1.607000.
  • a first phase structure PS1 is formed on the optical surface on the light source side of the first aberration correction element L1, and a second phase structure PS2 is formed on the optical surface on the optical disk side of the second aberration correction element L2. It is formed.
  • the first phase structure PS1 does not diffract the first light beam and the third light beam, but diffracts the second light beam.
  • a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle.
  • n is the wavelength ⁇ (in the present embodiment,
  • This is the refractive index of the first aberration correction element L1 at (fly 405 nm).
  • the optical path difference L1 added to the first light beam by the first phase structure PS1 is 2X ⁇ , the first light beam is transmitted through the first phase structure PS1 without any action.
  • the first phase structure PS 1 selectively corrects the second light flux to correct spherical aberration caused by a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
  • the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%
  • the diffraction efficiency of the first-order diffracted light of the second light beam is 87.3%
  • the diffraction efficiency of the zero-order diffracted light (transmitted light) of the light beam is 99.2%
  • a high diffraction efficiency is obtained for any light beam.
  • the second phase structure PS2 diffracts the first to third light beams, and has a stepped cross section including the optical axis.
  • is the wavelength (e.g., 400 nm in this embodiment).
  • the seventh-order diffracted light of the first light beam has the maximum diffraction efficiency.
  • the optical path difference added to the second light beam when passing through the second phase structure PS2 is 3.94 ⁇ ⁇
  • the fourth-order diffracted light of the second light flux has the maximum diffraction efficiency.
  • optical path difference added to the third light beam when passing through the second phase structure PS2 is 3.25 ⁇ ⁇
  • the third-order diffracted light of the third light beam has the maximum diffraction efficiency.
  • the diffraction efficiency of the 7th-order diffracted light of the first light beam generated by the second phase structure PS2 is 96.0%
  • the diffraction efficiency of the 4th-order diffracted light of the second light beam is 99.0%
  • the diffraction efficiency of the third light beam is 39.0%.
  • the diffraction efficiency of the second-order diffracted light is 81.2%, and high diffraction efficiency is obtained for any light flux.
  • the paraxial diffraction power for the first wavelength of the second phase structure PS2 and the paraxial refraction power for the first wavelength of the optical surface on the light source side of the second aberration correction element L2 have opposite signs, and By making the values the same, the first aberration passing through the optical surface on the light source side of the second aberration correction element L2 The beam diameter of the light beam does not change.
  • the first aberration correction element L1 and the second aberration correction element L2 are separated from each other, and the third phase structure PS3 is connected to the first aberration correction element. It is characterized in that it is provided on the optical surface of L1 on the optical disk side.
  • the objective lens unit OU in the present embodiment includes a first aberration correction element L1 having a first phase structure PS1 made of resin, and a second phase structure PS2 made of resin. With respect to the second aberration correction element L2 and the first wavelength ⁇ and the thickness t of the HD protective layer PL1.
  • a glass objective lens whose aspherical shape is designed to minimize spherical aberration.
  • the first aberration correction element L1 and the second aberration correction element L2 are joined and fixed at one end of a cylindrical lens frame B, and the objective lens OL is fitted and fixed at the other end. Therefore, they are coaxially integrated along the optical axis X.
  • Refractive index n 2 1.607000.
  • a first phase structure PS1 is formed on the optical surface of the first aberration correction element L1 on the light source side, and a second phase structure PS2 is formed on the optical surface of the second aberration correction element L2 on the optical disk side.
  • the third phase structure PS3 is formed on the optical surface of the first aberration correction element L1 on the optical disk side.
  • the first phase structure PS1 does not diffract the first light beam and the third light beam, but diffracts the second light beam.
  • a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for every predetermined number of level surfaces (five level surfaces in this embodiment), the level is shifted by the height corresponding to the number of level surfaces (in this embodiment, Is shifted four steps).
  • the first phase structure PS1 does not diffract the first and third light beams, but diffracts the second light beam.
  • n is the wavelength ⁇ (in the present embodiment,
  • This is the refractive index of the first aberration correction element L1 at (fly 405 nm).
  • the optical path difference L1 added to the first light beam by the first phase structure PS1 is 2X ⁇ , the first light beam is transmitted through the first phase structure PS1 without any effect.
  • the first phase structure PS1 selectively corrects the second light flux to correct spherical aberration due to a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
  • the diffraction efficiency of the first-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%
  • the diffraction efficiency of the first-order diffracted light of the second light beam is 87.3%
  • the diffraction efficiency of the third light beam is
  • the diffraction efficiency of the zero-order diffracted light (transmitted light) is 99.2%, and a high diffraction efficiency is obtained for any light flux.
  • the second phase structure PS2 does not diffract the first light beam and the second light beam but diffracts the third light beam.
  • a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle.
  • the level is shifted by a height corresponding to the number of levels corresponding to the number of the level surfaces (in this embodiment, Is a two-stage shifted structure).
  • n is the refractive index of the second aberration correction element at the wavelength.
  • the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
  • phase difference obtained by subtracting an integral multiple of 2 ⁇ , which is the phase, is 2 ⁇ ⁇ 0.33.
  • the phase difference of the third light beam is exactly 3 ⁇ 2 ⁇ ⁇ 0.33 for one sawtooth.
  • the second phase structure PS2 selectively diffracts only the third light beam
  • the spherical aberration caused by the difference between the protective layer thickness of D and the protective layer thickness of CD is corrected.
  • the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light beam generated by the second phase structure PS1 is 1
  • the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 99.8%, and the diffraction efficiency of the first-order diffracted light of the third light flux is 66.6%, which is high for any light flux. Diffraction efficiency is obtained.
  • the third phase structure PS3 diffracts the first to third light beams, and has a stepped cross section including the optical axis. This third phase structure PS3 is used in response to small changes in the first wavelength.
  • the optical path difference added to the first light beam when passing through the third phase structure PS3 is 10.0 X ⁇ .
  • the 10th-order diffracted light of the first light beam has the highest diffraction efficiency.
  • optical path difference added to the second light beam when passing through the third phase structure PS3 is 5.97 ⁇ ⁇
  • the sixth-order diffracted light of the second light beam has the maximum diffraction efficiency.
  • optical path difference added to the third light beam when passing through the third phase structure PS3 is 4.95 ⁇ ⁇
  • the fifth-order diffracted light of the third light beam has the maximum diffraction efficiency.
  • the diffraction efficiency of the 10th-order diffracted light of the first light beam generated by the third phase structure PS3 is 100%
  • the diffraction efficiency of the 6th-order diffracted light of the second light beam is 99.7%
  • the fifth-order diffracted light of the third light beam is generated.
  • the paraxial diffraction power for the first wavelength of the third phase structure PS3 and the paraxial refraction power for the first wavelength of the optical surface of the first aberration correction element L1 on the optical disk side have opposite signs, and their absolute values are the same. By making the values the same, the light beam diameter of the first light beam passing through the optical surface of the first aberration correction element L1 on the optical disk side does not change.
  • the first aberration correction element L1 and the second aberration correction element L2 are configured to be separated from each other, and the second lens made of an ultraviolet curable resin is formed on the glass substrate GL. It is characterized in that the second aberration correcting element L2 is formed by forming the phase structure PS2, and the paraxial power of the first aberration correcting element L1 with respect to the first wavelength is negative.
  • the objective lens unit OU in the present embodiment includes a first aberration correction element L1 having a first phase structure PS1 made of resin, and a first aberration correction element L1 made of resin on a glass substrate GL.
  • the second aspherical correction element L2 having a configuration in which the two-phase structure PS2 is formed, and the aspheric shape thereof is minimized with respect to the first wavelength and the thickness t of the HD protective layer PL1 so that spherical aberration is minimized.
  • the designed glass objective lens ⁇ L is coaxially integrated via a lens frame B.
  • the first aberration correction element L1 and the second aberration correction element L2 are joined and fixed to one end of the cylindrical lens frame B, and the objective lens ⁇ L is fitted and fixed to the other end.
  • these are coaxially integrated along the optical axis X.
  • Refractive index n 2 1.60000.
  • the first phase structure PS1 does not diffract the first light beam and the third light beam, but diffracts the second light beam.
  • a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle.
  • the number of predetermined level planes (5 level planes in this embodiment) It has a structure in which the steps are shifted by a height corresponding to the number of steps corresponding to the number of faces (in this embodiment, a structure shifted by four steps).
  • the first phase structure PS1 does not diffract the first light beam and the third light beam but diffracts the second light beam, and a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle.
  • n is the wavelength ⁇ (in the present embodiment,
  • This is the refractive index of the first aberration correction element L1 at (fly 408 nm).
  • the optical path difference L1 added to the first light beam by the first phase structure PS1 is 2 X ⁇ , the first light beam is transmitted through the first phase structure PS1 without any action.
  • optical path difference N1 added to the third light flux by the step ⁇ 1 is 1 X ⁇ (in the present embodiment,
  • the third light beam is also not affected by the first phase structure PS1 at all.
  • the optical path difference Ml added to the second light beam by the step ⁇ 1 is 1.20 X
  • the first phase structure PS1 selectively corrects the second light flux to correct spherical aberration due to a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
  • the diffraction efficiency of the first-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%
  • the diffraction efficiency of the first-order diffracted light of the second light beam is 87.5%
  • the diffraction efficiency of the zero-order diffracted light (transmitted light) of the light beam is 100%
  • high diffraction efficiency is obtained for any light beam.
  • the second phase structure PS2 does not diffract the first light beam and the second light beam but diffracts the third light beam.
  • a pattern having a stepped cross section including the optical axis is arranged on a concentric circle.
  • the level is shifted by a height corresponding to the number of levels corresponding to the number of the level surfaces (in this embodiment, Is 2 (Shifted structure).
  • n is the refractive index of the second aberration correction element at wavelength
  • the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
  • the second phase structure PS2 corrects spherical aberration due to the difference between the thickness of the protective layer of D and the thickness of the protective layer of CD by selectively diffracting only the third light beam.
  • the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light flux generated by the second phase structure PS1 is 100%, and the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 95.8. %, and The diffraction efficiency of the first-order diffracted light of the third light beam is 77.5%, and high diffraction efficiency is obtained for any light beam.
  • the objective optical system OU of the present embodiment is arranged such that the first wavelength of the first aberration correction element L1;
  • the thickness t of the protective layer PL1 is 0.6 mm and the numerical aperture NA is 0.67.
  • the objective lens unit OU is characterized by the fact that the first aberration compensating element L1 and the second aberration compensating element L2 are joined together and the first phase structure PS1 is a diffraction structure with a saw-tooth cross section. Have.
  • the objective lens units OU in this embodiment are joined to each other, each having a first phase structure PS1 made of resin and a second phase structure SP2 made of resin.
  • the first aberration correction element L1 and the second aberration correction element L2 and the resin objective lens OL are coaxially integrated by fitting and fixing respective flange portions FL1 and FL2.
  • the first phase structure PS1 diffracts the first to third light beams, and has a sawtooth cross section including the optical axis.
  • the first phase structure PS1 has the first wavelength and the second wavelength ⁇ .
  • an eighth-order diffracted light of the first light flux, a fifth-order diffracted light of the second light flux, and a fourth-order diffracted light of the third light flux are generated.
  • the optical path difference added to the first light flux when passing through the first phase structure PS1 is 8.0 X ⁇ .
  • the fourth-order diffracted light of the third light beam has the maximum diffraction efficiency.
  • the diffraction efficiency of the 8th-order diffracted light of the first light beam generated by the first phase structure PS1 is 100%
  • the diffraction efficiency of the 5th-order diffracted light of the second light beam is 89.1%
  • the fourth-order diffracted light of the third light beam is generated.
  • the second phase structure PS2 diffracts the third light beam without diffracting the first light beam and the second light beam, and a pattern in which the cross section including the optical axis is stepped is arranged on a concentric circle.
  • the number of predetermined level planes (four level planes in this embodiment)
  • the structure is such that the steps are shifted by a height corresponding to the number of steps corresponding to the number of surfaces (in the present embodiment, a structure shifted three steps).
  • n is the refractive index of the second aberration correction element at wavelength
  • the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
  • phase difference obtained by subtracting an integral multiple of 2 ⁇ , which is the phase is 2 ⁇ 0.25.
  • the phase difference of the third light beam is exactly 4 X 2 ⁇ ⁇ 0.25 for one sawtooth.
  • the second phase structure PS2 selectively diffracts only the third light beam
  • the spherical aberration caused by the difference between the protective layer thickness of D and the protective layer thickness of CD is corrected.
  • the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 97.5%
  • the diffraction efficiency of the first-order diffracted light of the third light flux is 79.6%, which is high for any light flux. Diffraction efficiency is obtained.
  • the first aberration correction element L1 and the second aberration correction element L2 are joined, and the joint surface is convex toward the second aberration correction element L2. It is characterized in that a fifth phase structure PS5 is formed in a peripheral area PA (second peripheral area) of the optical surface on the light source side of the second aberration correction element L2.
  • the objective lens unit OU in the present embodiment has a first aberration correction element L1 having a first phase structure PS1 made of resin and a second phase structure made of resin.
  • a glass objective lens OL the aspherical shape of which is designed to minimize the surface aberration, is coaxially integrated via a lens frame B.
  • the first aberration correction element L1 and the second aberration correction element L2 are joined and fixed to one end of a cylindrical lens frame B, and the objective lens ⁇ L is fitted and fixed to the other end. Therefore, they are coaxially integrated along the optical axis X.
  • Refractive index n 2 1.630000.
  • a first phase structure PS1 is formed on the optical surface of the first aberration correction element L1 on the optical disk side, and a central area CA (second center area) of the optical surface of the second aberration correction element L2 on the light source side is provided.
  • the second phase structure PS2 is formed in the region (region), and the fifth phase structure PS5 is formed in the peripheral region PA (second peripheral region) surrounding the central region CA.
  • the first phase structure PS1 does not diffract the first light beam and the third light beam but diffracts the second light beam.
  • a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for every predetermined number of level surfaces (five level surfaces in this embodiment), the level is shifted by the height corresponding to the number of level surfaces (in this embodiment, Is shifted four steps).
  • the first phase structure PS1 does not diffract the first light beam and the third light beam but diffracts the second light beam.
  • a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle.
  • the optical path difference L1 added to the first light beam by the first phase structure PS1 is 2 ⁇ ⁇ , the first light beam is transmitted through the first phase structure PS1 without any action.
  • the first phase structure PS1 selectively corrects the second light flux to correct spherical aberration caused by a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
  • the diffraction efficiency of the first-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%
  • the diffraction efficiency of the first-order diffracted light of the second light beam is 87.3%
  • the diffraction efficiency of the zero-order diffracted light (transmitted light) of the light beam is 99.1%
  • a high diffraction efficiency is obtained for any light beam.
  • the second phase structure PS2 diffracts the third light beam without diffracting the first light beam and the second light beam, and a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle.
  • the number of levels is shifted by the number of levels corresponding to the number of level planes for each predetermined number of level planes (four level planes in this embodiment). Is shifted three steps).
  • n is the refractive index of the second aberration correction element at wavelength
  • the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
  • the optical path difference ⁇ 2 added to the third light beam by the step ⁇ 2 is 3.25 X ⁇
  • the second phase structure PS2 selectively corrects the third light flux to correct spherical aberration caused by a difference between the thickness of the protective layer of HD and the thickness of the protective layer of CD.
  • the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light flux generated by the second phase structure PS1 is 100%, and the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 88.8. %,
  • the diffraction efficiency of the first-order diffracted light of the third light beam is 81.0%, and high diffraction efficiency is obtained for any light beam.
  • the central area CA of the optical surface on the light source side of the second aberration correction element L2 is an area corresponding to the inside of the numerical aperture NA3, and the peripheral area PA is an area corresponding to the outside of the numerical aperture NA3.
  • a fifth phase structure PS5 which is a structure for controlling the condensing position of the third light beam passing through this area, is formed.
  • Fifth phase structure PS5 diffracts the third light beam without diffracting the first light beam and the second light beam, and has a concentric circle-shaped pattern with a stepped cross section including the optical axis.
  • the principle of diffracted light generation by the fifth-phase structure PS5 is the same as that of the second-phase structure PS2, and a detailed description is omitted here.
  • the third light beam passing through the peripheral area PA becomes a flare component having large spherical aberration, and this flare component is formed by the second phase structure PS2. Since the light is condensed so as to overlap on the condensing spot, there is a possibility that the focusing operation for the third light beam may be adversely affected.
  • the fourth phase structure PS4 has a function of converting the third light beam passing through the peripheral area PA into a flare component that is condensed on the under side (in a direction in which the condensing position approaches the objective lens unit ⁇ U). Good focus pull-in operation characteristics can be obtained for the third light flux.
  • the first wavelength in the wavelength region of I ⁇ 5 nm.
  • the focus spot does not increase even if a mode hop occurs due to a change in the output of the first light source when switching from playback to recording. It becomes possible.
  • Example 1 a specific numerical example (Example 1) of the objective lens unit ⁇ U shown in FIG. 2 will be described.
  • the first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are joined to each other, and the objective lens OL is a glass lens (HOYA LAC130) whose aspheric shape is designed to minimize spherical aberration with respect to the first wavelength and the thickness t of the HD protective layer PL1.
  • a good resin lens is a glass lens (HOYA LAC130) whose aspheric shape is designed to minimize spherical aberration with respect to the first wavelength and the thickness t of the HD protective layer PL1.
  • Table 1 1 1 2 shows the lens data of this example.
  • the optical path difference added to the incident light beam by the first phase structure PS1 and the second phase structure PS2 is represented by an optical path difference function.
  • the numerical aperture NA of HD is 0.85, and the numerical aperture NA of DVD in Examples 2 to 4, Example 7, and Example 8 described below, including this example. Is 0 ⁇ 65 and of the CD
  • the numerical aperture NA is 0.51.
  • the paraxial refraction power of the first aberration correction element L1 is set to be negative, and a divergent light beam is incident on the objective lens OL, so that DVDs and CDs having a thick protective layer can be used.
  • the working distance to this is sufficiently secured.
  • the objective optical system having the negative / positive configuration as in the present embodiment is advantageous in that the working distance for DVDs and CDs is ensured even when the focal length is reduced. Therefore, the objective optical system of this embodiment is most suitable for a slim type optical pickup device.
  • M is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
  • exponent of 10 (for example, 2. 5 X 10- 3), shall be expressed by using E (for example, 2. 5E- 3).
  • the optical surface on the light source side (first surface) of the first aberration correction element L1, the optical surface on the light source side (fourth surface) of the objective lens ⁇ L, and the optical surface on the optical disk side (fifth surface) are each non-uniform.
  • the aspheric surface is represented by an equation obtained by substituting the coefficients in the table into the following aspherical form equation. [Aspheric expression]
  • z Aspherical shape (distance along the optical axis from the plane tangent to the apex of the aspheric surface)
  • y Distance from the optical axis
  • first phase structure PS1 and the second phase structure PS2 are represented by an optical path difference added to the incident light beam by each phase structure.
  • Such an optical path difference is represented by an optical path difference function ⁇ (mm) obtained by substituting the coefficients in the table into an equation representing the following optical path difference function.
  • wavelength of the light beam incident on the diffraction structure
  • the paraxial power of the diffractive structure diffracted in a direction away from the optical axis is negative (a light beam incident as a parallel light beam on the first phase structure PS1 and the second phase structure PS2 diverges).
  • Direction a light beam incident as a parallel light beam on the first phase structure PS1 and the second phase structure PS2 diverges.
  • the paraxial power of the diffractive structure that diffracts in the direction approaching the optical axis is positive (the light beam entering the first phase structure PS1 and the second phase structure PS2 as a parallel light beam converges).
  • the first aberration correction element LI having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are spaced apart from each other.
  • ⁇ L is a glass lens (HOYA BACD5) whose aspheric shape is designed to minimize spherical aberration with respect to the first wavelength; I and the thickness t of the HD protective layer PL1.
  • r (mm) is the radius of curvature
  • d (mm) is the lens spacing
  • v is the Abbe number of the d-line lens, M, M,
  • M is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
  • the optical surface on the light source side (third surface) of the second aberration correction element L2, the optical surface on the light source side (fifth surface) of the objective lens ⁇ L, and the optical surface on the optical disk side (sixth surface) are each non-uniform.
  • the aspheric surface is represented by a mathematical expression obtained by substituting the coefficients in the table into the aspherical surface expression.
  • first phase structure PS1 and the second phase structure PS2 are represented by an optical path difference added to the incident light beam by each phase structure.
  • Such an optical path difference is represented by an optical path difference function ⁇ (mm) obtained by substituting the coefficients in Tables 2-1 and 2-2 into the expression representing the optical path difference function.
  • Example 3 a specific numerical example (Example 3) of the objective lens unit OU shown in FIG. 4 will be described.
  • the first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are spaced apart from each other.
  • the lens OL has the smallest spherical aberration with respect to the first wavelength 1 and the thickness t of the HD protective layer PL1.
  • the glass lens (HOYA BACD5) whose aspherical shape is designed, but may be a resin lens.
  • Lens data of the present example are shown in Tables 3-1 and 3-2. [0296] [sf £ _Table. 3-1]
  • M is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
  • the optical surface (second surface) of the first aberration correction element LI on the optical disk side, the optical surface of the objective lens OL on the light source side (fifth surface), and the optical surface of the optical disk side (sixth surface) are each aspherical.
  • This aspherical surface is represented by a mathematical expression obtained by substituting the coefficients in the table into the aspherical shape expression.
  • the first to third phase structures PS1 to PS3 are represented by optical path differences added to the incident light beam by the respective phase structures.
  • Such an optical path difference is represented by an optical path difference function ⁇ (mm) obtained by substituting the coefficients in Tables 3-1 and 3_2 into the equation representing the optical path difference function.
  • Example 4 a specific numerical example (Example 4) of the objective lens unit ⁇ U shown in FIG. 5 will be described.
  • the first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are spaced apart from each other.
  • the lens OL has the smallest spherical aberration with respect to the first wavelength and the thickness t of the HD protective layer PL1.
  • the glass lens (HOYA BACD5) whose aspherical shape is designed, but may be a resin lens.
  • the paraxial refraction power of the first aberration correction element L1 is set to be negative, and a divergent light beam is incident on the objective lens OL.
  • the working distance to this is sufficiently secured.
  • the objective optical system having the negative / positive configuration as in the present embodiment is advantageous in that the working distance for DVDs and CDs is ensured even when the focal length is reduced. Therefore, the objective optical system of this embodiment is most suitable for a slim type optical pickup device.
  • r (mm) is the radius of curvature
  • d (mm) is the lens spacing
  • the optical surface on the light source side (the fourth surface) of the first aberration correction element LI, the optical surface on the light source side (the sixth surface) of the objective lens ⁇ L, and the optical surface (the seventh surface) on the optical disk side are each non-uniform.
  • the aspheric surface is represented by a mathematical expression obtained by substituting the coefficients in the table into the aspherical surface expression.
  • the first phase structure PS1 and the second phase structure PS2 are represented by optical path differences added to the incident light beam by the respective phase structures.
  • Such an optical path difference is represented by an optical path difference function ⁇ (mm) obtained by substituting the coefficients in Table 4-1 2 into the equation representing the optical path difference function.
  • Example 5 a specific numerical example (Example 5) of the objective lens unit ⁇ U shown in FIG. 6 will be described.
  • the first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure PS2 have a configuration in which they are joined to each other. Is a resin lens.
  • the numerical aperture NA of HD is 0.67
  • the numerical aperture NA of DVD is 0.65
  • the numerical aperture NA of CD is 0.51. It is.
  • r (mm) is the radius of curvature
  • d (mm) is the lens spacing
  • M is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
  • optical surface (fourth surface) on the light source side and the optical surface (fifth surface) on the optical disk side of the objective lens OL are aspherical, respectively. It is expressed by a formula with the coefficients inside substituted.
  • the first phase structure PS1 and the second phase structure PS2 are represented by optical path differences added to the incident light beam by the respective phase structures.
  • Such an optical path difference is represented by an optical path difference function ⁇ (mm) obtained by substituting the coefficients in Table 5-15_2 into the expression representing the optical path difference function.
  • the objective lens unit OU of the present embodiment has the diffraction order of the diffracted light of each wavelength generated by the first phase structure PS1 of the objective lens unit ⁇ U shown in FIG. It is characterized in that the first-order diffracted light is the second-order diffracted light, the first-order diffracted light is the second light, and the first-order diffracted light is the third light.
  • the first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are joined to each other. It is a resin lens.
  • 111111) is the radius of curvature
  • (1 (111111) is the lens interval
  • 11 n is the lens interval
  • M is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
  • the optical surface (fourth surface) on the light source side and the optical surface (fifth surface) on the optical disk side of the objective lens ⁇ L are aspherical, respectively. It is represented by an equation with the coefficients in the table substituted.
  • first phase structure PS1 and the second phase structure PS2 are represented by the optical path difference added to the incident light beam by each phase structure.
  • Such an optical path difference is represented by an optical path difference function ⁇ (mm) obtained by substituting the coefficients in Tables 6-1 and 6_2 into the expression representing the optical path difference function.
  • the objective lens unit OU of the present embodiment is different from the objective lens unit OU shown in FIG. 3 in that the light flux incident surface and the light flux exit surface of the second aberration correction element L2 are replaced with each other. It has a configuration in which the correction element L2 is joined. Further, by passing through the second phase structure PS2, the fifth-order diffracted light of the first light beam, the third-order diffracted light of the second light beam, and the second-order diffracted light of the third light beam are generated.
  • Both the first phase structure PS1 and the second phase structure PS2 are made of resin, and the objective lens OL has a minimum spherical aberration with respect to the first wavelength and the thickness t of the HD protective layer PL1. So that non
  • HOYA BACD5 glass lens
  • Tables 7-1 and 7-2 show the lens data of this example.
  • r (mm) is the radius of curvature
  • d (mm) is the lens spacing
  • M is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD This is the diffraction order of the diffracted light used for recording / reproducing, and the diffraction order of the diffracted light used for recording / reproducing for CD.
  • optical surface of the second aberration correction element L2 on the optical disk side (third surface), the optical surface of the objective lens OL on the light source side (fourth surface), and the optical surface of the optical disk side (fifth surface) are each aspherical.
  • This aspherical surface is represented by a mathematical expression obtained by substituting the coefficients in the table into the aspherical shape expression.
  • first phase structure PS1 and the second phase structure PS2 are represented by the optical path difference added to the incident light beam by each phase structure.
  • optical path difference is expressed by the above equation representing the optical path difference function as shown in Table 7-
  • Example 8 a specific numerical example (Example 8) of the objective lens unit OU shown in FIG. 13 will be described.
  • the first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are joined to each other. And the first wavelength and the thickness t of the HD protective layer PL1 so that spherical aberration is minimized.
  • the glass lens (HOYA LAC130) is designed with the aspherical shape, it is also good as a resin lens.
  • Lens data of the present example are shown in Tables 8-1 and 8-2.
  • r (mm) is the radius of curvature
  • d (mm) is the lens interval
  • M is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
  • optical surface (fourth surface) on the light source side and the optical surface (fifth surface) on the optical disk side of the objective lens ⁇ L are aspherical, respectively. It is represented by an equation with the coefficients in the table substituted.
  • the first phase structure PS1, the second phase structure PS2, and the fourth phase structure PS4 are each a phase structure. It is represented by the optical path difference added to the incident light beam by the structure. Such an optical path difference is represented by an optical path difference function ⁇ (mm) obtained by substituting the coefficients shown in Table 7 into the equation representing the optical path difference function.
  • the central area CA (the area where the second phase structure PS2 is formed) is an area within ⁇ 2.33 mm
  • the peripheral area PA (the area where the fifth phase structure PS5 is formed) is an area outside ⁇ 2.33 mm.
  • Table 9 shows a list of numerical data in each of the above Examples. ⁇ in the table is HD, D
  • VD CD design wavelength (nm)
  • f is the focal length of the whole objective lens unit system of HD, DVD, CD (mm)
  • NA is the numerical aperture of HD
  • DVD CD
  • STO is the entrance pupil diameter of HD (mm) ).
  • a high-density optical disc and a DV The spherical aberration due to the difference in the protective layer thickness between D and CD, or the spherical aberration due to the difference in the wavelength used between the high-density optical disk and the DVD and CD can be corrected well, and the blue-violet wavelength region around 400 nm can be corrected.
  • An objective optical system capable of obtaining high light use efficiency in any of a red wavelength region near 650 nm and an infrared wavelength region near 780 nm, an optical pickup device using this objective optical system, and Thus, an optical disk drive device equipped with this optical pickup device can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Lenses (AREA)

Abstract

An objective optical system is used in an optical pickup device for recording and/or reproducing information by using a first light flux emitted from a first light source, a second light flux emitted from a second light source, and a third light flux emitted from a third light source. The objective optical system includes a first and a second aberration correction element and an objective lens for focusing the first to the third light flux which have passed through the first and the second aberration correction element onto the information recording surface of the first to the third optical disc. The first aberration correction element has a fist phase structure formed by a material having the Abbe constant νd1 on the d line satisfying 40 ≤ νd1 ≤ 80 while the second aberration correction element has a second phase structure formed by a material having the Abbe constant νd2 on the d line satisfying 20 ≤ νd2 < 40.

Description

明 細 書  Specification
対物光学系、光ピックアップ装置、及び光ディスクドライブ:  Objective optical system, optical pickup device, and optical disk drive:
技術分野  Technical field
[0001] 本発明は、対物光学系、光ピックアップ装置、及び光ディスクドライブ装置に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to an objective optical system, an optical pickup device, and an optical disk drive device.
[0002] 以前より、青紫色レーザ光源を使用することで記録密度を高めた高密度光ディスク 、 DVD (赤色レーザ光源を使用)、及び CD (赤外レーザ光源を使用)に対して互換 性を有する光ピックアップ装置及びこのような光ピックアップ装置に用いられる光学素 子が知られている(例えば、特許文献:!〜 3を参照)。  [0002] Compatible with high-density optical disks, DVDs (using a red laser light source), and CDs (using an infrared laser light source), whose recording density has been increased by using a blue-violet laser light source. BACKGROUND ART An optical pickup device and an optical element used for such an optical pickup device are known (for example, see Patent Documents:! To 3).
特許文献 1 :特開 2004— 079146号公報  Patent Document 1: JP 2004-079146 A
特許文献 2:特開 2002— 298422号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-298422
特許文献 3 :特開 2003— 207714号公報  Patent Document 3: JP 2003-207714 A
[0003] 特許文献 1の数値実施例 7には、対物レンズの表面上に、青紫色レーザ光束では 2 次回折光を発生させ、赤色レーザ光束と赤外レーザ光束では 1次回折光を発生させ るような回折構造を設けて、この回折構造の作用により、高密度光ディスクと DVDの 保護層厚みの差による球面収差を補正し、更に、 CDに対する情報の記録 Z再生時 には発散光束を対物レンズに入射させることで、高密度光ディスクと CDの保護層厚 さの違いによる球面収差を補正する対物レンズが開示されている。  [0003] Patent Literature 1 discloses a numerical example 7 in which a blue-violet laser beam generates second-order diffracted light and a red laser beam and an infrared laser beam generate first-order diffracted light on the surface of an objective lens. The structure of this diffraction structure is used to correct the spherical aberration caused by the difference in the thickness of the protective layer between the high-density optical disk and the DVD. Furthermore, when recording information on a CD, the divergent light beam is applied to the objective lens during Z playback. There is disclosed an objective lens that corrects spherical aberration caused by a difference in protective layer thickness between a high-density optical disc and a CD by being incident.
[0004] この対物レンズでは、何れの波長領域においても回折効率を高く確保できるものの 、 CDに対する情報の記録/再生時において、赤外レーザ光束の発散度合いが強く なりすぎて、対物レンズがトラッキングした際のコマ収差発生が大きくなりすぎるため、 CDに対して良好な記録/再生特性が得られない、とレ、う課題がある。  [0004] In this objective lens, although high diffraction efficiency can be ensured in any wavelength region, the degree of divergence of the infrared laser beam becomes too strong at the time of recording / reproducing information on a CD, and the objective lens tracks. In this case, there is a problem that good recording / reproducing characteristics cannot be obtained for a CD because the occurrence of coma aberration becomes too large.
[0005] また、特許文献 2の数値実施例 3には、対物レンズの表面上に、青紫色レーザ光束 では 3次回折光を発生させ、赤色レーザ光束と赤外レーザ光束では 2次回折光を発 生させるような回折構造を設けて、高密度光ディスクと DVDと CDの保護層厚さの違 いによる球面収差を補正した対物レンズが開示されている。 [0006] この対物レンズでは、回折構造の作用により、高密度光ディスクと DVDの保護層厚 みの差による球面収差、更には、高密度光ディスクと CDの保護層厚さの違いによる 球面収差が補正可能であるものの、青紫色レーザ光束の 3次回折光の回折効率と、 赤外レーザ光束の 2次回折光の回折効率が 70%程度と低いため、光ディスクに対す る記録/再生速度の高速化に対応出来ない、光検出器での検出信号の S/N比が 低いため良好な記録/再生特性が得られない、レーザ光源に印加する電圧が高くな るためレーザ光源の寿命が短くなる、とレ、う課題がある。 [0005] Further, in Numerical Example 3 of Patent Document 2, third-order diffracted light is generated by a blue-violet laser beam on the surface of an objective lens, and second-order diffracted light is generated by a red laser beam and an infrared laser beam. There is disclosed an objective lens which is provided with a diffractive structure for correcting spherical aberration due to a difference in the thickness of a protective layer between a high-density optical disk, a DVD and a CD. [0006] In this objective lens, the spherical aberration caused by the difference in the protective layer thickness between the high-density optical disk and the DVD and the spherical aberration due to the difference in the protective layer thickness between the high-density optical disk and the CD are corrected by the action of the diffraction structure. Although possible, the diffraction efficiency of the third-order diffracted light of the blue-violet laser light beam and the diffraction efficiency of the second-order diffracted light of the infrared laser light beam are as low as about 70%, so that the recording / reproducing speed for optical discs can be increased. It is not possible to obtain good recording / reproducing characteristics due to the low S / N ratio of the detection signal from the photodetector, or to shorten the life of the laser light source due to the high voltage applied to the laser light source. There is a problem.
[0007] 特許文献 1に記載の対物レンズにおいて、回折構造により高密度光ディスクと CD の保護層厚みの差による球面収差を補正できない理由、或いは、特許文献 2に記載 の対物レンズにおいて、青紫波長領域の 3次回折光の回折効率と、赤外波長領域の 2次回折光の回折効率が低くなつてしまう理由として、高密度光ディスクに使用する 青紫色レーザ光源の波長に対して、 CDに使用する赤外レーザ光源の波長が略 2倍 であるために、回折構造により発生する回折光の青紫色レーザ光束と赤外レーザ光 束とに対する球面収差補正効果と、回折光の回折効率が互いにトレードオフの関係 にあることが挙げられる。  [0007] In the objective lens described in Patent Document 1, it is impossible to correct the spherical aberration due to the difference in the thickness of the protective layer between the high-density optical disc and the CD due to the diffractive structure. The reason why the diffraction efficiency of the third-order diffracted light of the above and the diffraction efficiency of the second-order diffracted light in the infrared wavelength region is low is that the wavelength of the blue-violet laser light source used for high-density optical discs Since the wavelength of the laser light source is almost twice, the spherical aberration correction effect on the blue-violet laser beam and the infrared laser beam of the diffracted light generated by the diffractive structure and the diffraction efficiency of the diffracted light are in a trade-off relationship with each other. It is mentioned that there is.
[0008] 即ち、青紫色レーザ光束の回折光の回折効率と、赤外レーザ光束の回折光の回 折効率を共に高く確保した場合に相当する特許文献 1の数値実施例 7の対物レンズ では、青紫色レーザ光束の回折光の回折角と赤外レーザ光束の回折光の回折角と が略一致してしまうので、回折構造により高密度光ディスクと CDの保護層厚さの違い による球面収差を補正できないことになる。  [0008] That is, the objective lens of Numerical Example 7 of Patent Document 1, which corresponds to a case where both the diffraction efficiency of the diffracted light of the blue-violet laser beam and the diffraction efficiency of the diffracted light of the infrared laser beam are ensured, Since the diffraction angle of the diffracted light of the blue-violet laser beam and the diffraction angle of the diffracted light of the infrared laser beam almost coincide, the diffraction structure corrects the spherical aberration due to the difference in the thickness of the protective layer between the high-density optical disc and the CD. You can't.
[0009] 一方、青紫色レーザ光束の回折光の回折角と赤外レーザ光束の回折光の回折角 とに差を持たせた場合に相当する特許文献 2の数値実施例 3の対物レンズでは、青 紫色レーザ光束の回折光の回折効率と赤外レーザ光束の回折効率とが共に低くな つてしまうことになる。  On the other hand, in the objective lens of Numerical Example 3 of Patent Document 2, which corresponds to a case where the diffraction angle of the diffracted light of the blue-violet laser beam and the diffraction angle of the diffracted light of the infrared laser beam are made different, Both the diffraction efficiency of the diffracted light of the blue-violet laser beam and the diffraction efficiency of the infrared laser beam will be low.
[0010] 尚、特許文献 1及び 2に記載されている回折構造だけでなぐ特許文献 3に記載さ れているような位相補正器 (本明細書中では、光路差付与構造という)を使用する技 術においても、回折構造と同じように、光路差付与構造による青紫色レーザ光束と赤 外レーザ光束とに対する球面収差補正効果と、光路差付与構造の透過率は、互い にトレードオフの関係にある。 [0010] It should be noted that a phase corrector (hereinafter referred to as an optical path difference providing structure) described in Patent Document 3 is used instead of only the diffraction structures described in Patent Documents 1 and 2. In the technology as well, similarly to the diffraction structure, the spherical aberration correction effect on the blue-violet laser beam and the infrared laser beam by the optical path difference providing structure and the transmittance of the optical path difference providing structure are mutually different. There is a trade-off relationship.
発明の開示  Disclosure of the invention
[0011] 本発明は、上記の課題を鑑みてなされたものであり、回折構造を含む位相構造の 作用により、高密度光ディスクと DVDと CDとの保護層厚みの差による球面収差、或 レ、は、高密度光ディスクと DVDと CDとの使用波長の差による球面収差を良好に補 正すること力 Sできるとともに、 400nm近傍の青紫色波長領域と、 650nm近傍の赤色 波長領域と、 780nm近傍の赤外波長領域との何れの波長領域においても高い光利 用効率が得ることができる対物光学系、この対物光学系を使用した光ピックアップ装 置、及び、この光ピックアップ装置を搭載した光ディスクドライブ装置を提供することを 目的とする。  The present invention has been made in view of the above-mentioned problems, and has a spherical aberration due to a difference in protective layer thickness between a high-density optical disc, a DVD, and a CD due to the action of a phase structure including a diffractive structure. Is capable of satisfactorily correcting spherical aberration due to the difference in wavelength used between high-density optical discs, DVDs, and CDs, as well as a blue-violet wavelength region near 400 nm, a red wavelength region near 650 nm, and a blue wavelength region near 780 nm. An objective optical system capable of obtaining high light use efficiency in any wavelength region including the infrared wavelength region, an optical pickup device using the objective optical system, and an optical disk drive device equipped with the optical pickup device The purpose is to provide.
[0012] 項 1記載の構成は、第 1光源から射出される第 1波長; I の第 1光束を用いて厚さ t  [0012] The configuration according to item 1 is characterized in that the thickness t is determined by using the first wavelength emitted from the first light source;
1 1 の保護層を有する第 1光ディスクに対して情報の記録及び Z又は再生を行い、第 2 光源から射出される第 2波長; I ( > λ )の第 2光束を用いて厚さ t (≥t )の保護層  Performs recording and Z or reproduction of information on the first optical disc having the protective layer of 11 and a second wavelength emitted from the second light source; using a second light flux of I (> λ) to obtain a thickness t ( ≥t) protective layer
2 1 2 1  2 1 2 1
を有する第 2光ディスクに対して情報の記録及び Z又は再生を行い、第 3光源から射 出される第 3波長 λ ( > λ )の第 3光束を用いて厚さ t ( >t )の保護層を有する第 3  Recording and / or reproducing information on / from a second optical disk having a thickness t (> t) using a third light beam of a third wavelength λ (> λ) emitted from a third light source. Third with
3 2 3 2  3 2 3 2
光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置に用いられ る対物光学系であって、前記対物光学系は、第 1収差補正素子と、第 2収差補正素 子と、該第 1収差補正素子及び該第 2収差補正素子を通過した前記第 1光束乃至前 記第 3光束を、それぞれ、前記第 1光ディスク乃至前記第 3光ディスクの情報記録面 上に集光させるための対物レンズとから構成され、前記第 1収差補正素子は、 d線に おけるアッベ数 V 1が以下の(1)式を満たす材料から形成される第 1位相構造を有 d  An objective optical system used in an optical pickup device that records and / or reproduces information on an optical disc, wherein the objective optical system includes a first aberration correction element, a second aberration correction element, (1) An objective lens for converging the first to third light beams passing through the aberration correction element and the second aberration correction element on the information recording surfaces of the first to third optical disks, respectively. The first aberration correction element has a first phase structure made of a material having an Abbe number V1 at d-line that satisfies the following equation (1).
し、前記第 2収差補正素子は、 d線におけるアッベ数 V 2が以下の(2)式を満たす材 d  The second aberration correction element is made of a material whose Abbe number V 2 at d-line satisfies the following equation (2):
料から形成される第 2位相構造を有する。  A second phase structure formed from the material.
[0013] 40≤ V 1≤80 (1) [0013] 40≤ V 1≤80 (1)
d  d
20≤ V 2く 40 (2)  20≤ V 2 40 (2)
d  d
(1)式及び (2)式を満たすようなアッベ数を有する材料により第 1位相構造と第 2位 相構造を構成すると、従来技術では困難であった、青紫色レーザ光束と赤色レーザ 光束と赤外レーザ光束の何れの波長の光束に対しても高い透過率を維持しながら、 高密度光ディスクと DVDと CDとの間の相互互換を実現出来る。 When the first phase structure and the second phase structure are made of a material having an Abbe number that satisfies the equations (1) and (2), the blue-violet laser light flux and the red laser light flux, which are difficult with the related art, are obtained. While maintaining high transmittance for any wavelength of the infrared laser beam, Mutual compatibility between high-density optical discs and DVDs and CDs can be realized.
[0014] (1)式の下限を超えて第 1位相構造のアッベ数が小さくなると、第 3波長 λ 3に対す る第 1位相構造の透過率は高くなるが、第 2波長 λ 2に対する第 1位相構造の透過率 が低くなるため好ましくなレ、。一方、アッベ数が(1)式の上限を超えて大きい材料は 製造が困難になるため現実的ではない。  When the Abbe number of the first phase structure decreases below the lower limit of the equation (1), the transmittance of the first phase structure for the third wavelength λ 3 increases, but the transmittance of the first phase structure for the second wavelength λ 2 increases. (1) It is preferable because the transmittance of the phase structure is reduced. On the other hand, a material whose Abbe number is larger than the upper limit of the equation (1) is not realistic because the production becomes difficult.
[0015] また、 (2)式の上限を超えて第 1位相構造のアッベ数が大きくなると、第 2波長 λ 2 に対する第 2位相構造の透過率は高くなるが、第 3波長 λ 3に対する第 2位相構造の 透過率が低くなるため好ましくなレ、。一方、アッベ数が(2)式の下限を超えて小さレ、 材料は製造が困難になるため現実的ではない。  When the Abbe number of the first phase structure increases beyond the upper limit of the expression (2), the transmittance of the second phase structure for the second wavelength λ 2 increases, but the transmittance of the second phase structure for the third wavelength λ 3 increases. This is preferable because the transmittance of the two-phase structure is reduced. On the other hand, if the Abbe number is smaller than the lower limit of the equation (2), it is not practical because the material is difficult to manufacture.
[0016] 尚、本明細書においては、 ΝΑ0. 85の対物レンズを使用し保護層厚さが 0. lmm であるブルーレイディスクや、 NA0. 65乃至 0. 67の対物レンズを使用し保護層厚さ が 0. 6mmである HD DVDの如き、青紫色レーザ光源を使用する光ディスクを総称 して「高密度光ディスク」といい、「HD」で略記する。上述したブルーレイディスク HD DVD以外にも、光磁気ディスクや、情報記録面上に数〜数十 nm程度の厚さの保 護膜を有する光ディスクや、保護層或いは保護膜の厚さがゼロの光ディスクも高密度 光ディスクに含むものとする。  In this specification, a 0.85 mm objective lens and a protective layer thickness of 0.1 mm are used for a Blu-ray disc or NA 0.65 to 0.67 objective lens. Optical disks that use a blue-violet laser light source, such as HD DVDs with a diameter of 0.6 mm, are collectively called “high-density optical disks” and abbreviated as “HD”. In addition to the Blu-ray Disc HD DVD mentioned above, a magneto-optical disc, an optical disc having a protective film with a thickness of several to several tens nm on the information recording surface, or an optical disc having a protective layer or a protective film of zero thickness Is included in the high-density optical disk.
[0017] また、本明細書においては、 DVD (デジタルバーサタイルディスク)とは、 DVD— R 〇M、 DVD -Video, DVD-Audio, DVD -RAM, DVD-R, DVD_RW、 DV D + R、 DVD + RW等の DVD系列の光ディスクの総称であり、 CD (コンパクトデイス ク)とは、 CD-ROM, CD -Audio, CD-Video, CD-R, CD— RW等の CD系 列の光ディスクの総称である。  [0017] In this specification, a DVD (digital versatile disc) is a DVD-RM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD_RW, DV D + R, DVD + A generic term for DVD-type optical discs such as RW, and CD (compact disc) is a generic term for optical discs in the CD series such as CD-ROM, CD-Audio, CD-Video, CD-R, and CD-RW. It is.
[0018] また、本明細書にぉレ、て、「対物レンズ」とは、光ピックアップ装置にぉレ、て光デイス クに対向する位置に配置され、光源力 射出された光束を、光ディスクの情報記録面 上に集光する機能を有する集光レンズを指す。  Further, in the present specification, the “objective lens” is a lens disposed at a position facing the optical disk in the optical pickup device, and emits the light flux emitted from the light source to the optical disk. Refers to a condenser lens that has the function of collecting light on the information recording surface.
[0019] 更に、本明細書において、「対物光学系」とは、上述の集光レンズと、この集光レン ズと一体となってァクチユエータによりトラッキング及びフォーカシングを行う第 1収差 補正素子及び第 2収差補正素子とから構成される光学系を指す。  Further, in this specification, the “objective optical system” refers to the above-described condensing lens, a first aberration correction element that performs tracking and focusing by an actuator integrated with the converging lens, and a second condensing lens. Refers to an optical system composed of an aberration correction element.
[0020] また、本明細書において、「位相構造」とは、光軸方向の段差を複数有し、入射光 束に対して光路差 (位相差)を付加する構造の総称である。この段差により入射光束 に付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波 長の非整数倍であっても良い。このような位相構造の具体的な例としては、上記の段 差が光軸垂直方向に周期的な間隔をもって配置された回折構造や、上記の段差が 光軸垂直方向に非周期的な間隔をもって配置された光路差付与構造 (位相差付与 構造ともいう)である。 [0020] In this specification, the "phase structure" has a plurality of steps in the optical axis direction, This is a general term for a structure that adds an optical path difference (phase difference) to a bundle. The optical path difference added to the incident light beam by this step may be an integral multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam. Specific examples of such a phase structure include a diffractive structure in which the steps are arranged at periodic intervals in the direction perpendicular to the optical axis, and a diffraction structure in which the steps are arranged at non-periodic intervals in the direction perpendicular to the optical axis. An optical path difference providing structure (also referred to as a phase difference providing structure) is arranged.
[0021] 位相構造は図 7 (a)乃至 12 (b)に概略的に示すように様々な断面形状をとり得る。  The phase structure can have various cross-sectional shapes as schematically shown in FIGS. 7 (a) to 12 (b).
図 7 (a)、 7 (b)は鋸歯状である場合であり、図 8 (a)、 8 (b)は全ての段差が同じ方向 とされた階段状である場合であり、図 9 (a)、 9 (b)は段差の方向が途中で反対となる 階段状である場合である。図 10 (a)、 10 (b)は断面形状が複数のレベル面 12を含む 階段状とされたパターン 11を同心円状に配列し、所定のレベル面の個数(図 10 (a) 、 10 (b)では 5レベル面)毎に、そのレベル面数に対応した段数分(図 10 (a)、 10 (b )では 4段)の高さだけ段をシフトさせた場合である。  FIGS. 7 (a) and 7 (b) show the case where the shape is a sawtooth shape, and FIGS. 8 (a) and 8 (b) show the case where the steps are all in the same direction and FIG. Figures a) and 9 (b) show the case where the direction of the step is stepwise, with the direction of the step being reversed in the middle. FIGS. 10 (a) and 10 (b) show a step-shaped pattern 11 including a plurality of level surfaces 12 arranged concentrically, and a predetermined number of level surfaces (FIGS. 10 (a) and 10 (b)). In each case, the steps are shifted by the height corresponding to the number of levels (four steps in FIGS. 10 (a) and 10 (b)) every 5 levels in (b).
[0022] 図 7 (a)、 7 (b)では各鋸歯の向きが同一である場合を示し、図 10 (a)、 10 (b)では 断面形状が階段状とされた各パターンの向きが同一である場合を示したが、図 11 (a )、 11 (b)や図 12 (a)、 12 (b)のように、位相反転部分 PRや、位相反転部分 PRよりも 光軸に近い側にある鋸歯とは向きが反対の鋸歯や、位相反転部分 PRよりも光軸に 近い側にあるパターンとは向きが反対のパターンを含む場合もある。なお、図 7 (a)乃 至 12 (b)は、各構造を平面上に形成した場合を示した場合であるが、各構造は球面 上或いは非球面上に形成しても良い。また、 010 (a) , 10 (b)や 12 (a)、 12 (b)では 、所定のレベル面数を 5としている力 これに限られるものではない。  [0022] Figs. 7 (a) and 7 (b) show the case where the direction of each saw tooth is the same, and Figs. 10 (a) and 10 (b) show that the direction of each pattern having a stepped cross section is Although the same case is shown, as shown in FIGS. 11 (a) and 11 (b) and FIGS. 12 (a) and 12 (b), the phase inversion portion PR and the closer to the optical axis than the phase inversion portion PR There may be a sawtooth whose direction is opposite to the sawtooth on the side or a pattern whose direction is opposite to the pattern closer to the optical axis than the phase inversion portion PR. FIGS. 7 (a) to 12 (b) show the case where each structure is formed on a plane, but each structure may be formed on a spherical surface or an aspherical surface. In addition, in 010 (a), 10 (b), 12 (a), and 12 (b), the force having a predetermined number of level faces is not limited to five.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]光ピックアップ装置の構成を示す要部平面図である。  FIG. 1 is a plan view of a principal part showing a configuration of an optical pickup device.
[図 2]対物レンズユニットの構成の一例を示す側面図である。  FIG. 2 is a side view showing an example of the configuration of the objective lens unit.
[図 3]対物レンズユニットの構成の一例を示す側面図である。  FIG. 3 is a side view showing an example of the configuration of the objective lens unit.
[図 4]対物レンズユニットの構成の一例を示す側面図である。  FIG. 4 is a side view showing an example of the configuration of the objective lens unit.
[図 5]対物レンズユニットの構成の一例を示す側面図である。  FIG. 5 is a side view showing an example of the configuration of the objective lens unit.
[図 6]対物レンズユニットの構成の一例を示す側面図である。 [図 7]位相構造の構成の一例を示す断面図(a)、 (b)である。 FIG. 6 is a side view showing an example of the configuration of the objective lens unit. FIG. 7 is cross-sectional views (a) and (b) showing an example of a configuration of a phase structure.
[図 8]位相構造の構成の一例を示す断面図(a)、 (b)である。  FIG. 8 is cross-sectional views (a) and (b) showing an example of the configuration of a phase structure.
[図 9]位相構造の構成の一例を示す断面図(a)、 (b)である。  FIG. 9 is cross-sectional views (a) and (b) showing an example of a configuration of a phase structure.
[図 10]位相構造の構成の一例を示す断面図(a)、 (b)である。  FIG. 10 is cross-sectional views (a) and (b) showing an example of the configuration of a phase structure.
[図 11]位相構造の構成の一例を示す断面図(a)、 (b)である。  FIG. 11 is cross-sectional views (a) and (b) showing an example of the configuration of a phase structure.
[図 12]位相構造の構成の一例を示す断面図(a)、 (b)である。  FIG. 12 is cross-sectional views (a) and (b) showing an example of the configuration of a phase structure.
[図 13]対物レンズユニットの構成の一例を示す側面図である。  FIG. 13 is a side view showing an example of the configuration of the objective lens unit.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明の好ましい形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described.
[0025] 項 2記載の構成は、項 1に記載の対物光学系において、前記第 1収差補正素子が 有する前記第 1位相構造は、 d線における屈折率 n 1が以下の(3)式を満たす樹脂 d  Item 2 is the objective optical system according to Item 1, wherein the first phase structure of the first aberration correction element has a refractive index n 1 at d-line represented by the following expression (3): Filling resin d
から形成され、前記第 2収差補正素子が有する前記第 2位相構造は、 d線における屈 折率 n 2が以下の(4)式を満たす樹脂から形成される。  And the second phase structure included in the second aberration correction element is formed of a resin whose refractive index n 2 at d-line satisfies the following expression (4).
d  d
[0026] 1. 48≤n 1く 1 · 57 (3)  [0026] 1.48≤n 1 1 57 (3)
d  d
1. 57≤n 2≤1. 65 (4)  1.57≤n 2≤1.65 (4)
d  d
一般的に、光学素子用の樹脂は、 d線(587. 6nm)における屈折率 nが 1. 48乃至 d  Generally, a resin for an optical element has a refractive index n of 1.48 to d at d-line (587.6 nm).
1. 65の間に分布しており、 nが高くなる程分散が大きくなる(アッベ数が小さくなる) d  1. Distributed between 65, the higher the n, the greater the variance (the lower the Abbe number) d
傾向がある。従って、項 2に記載の構成のように、第 1位相構造と第 2位相構造をとも に樹脂製とする場合は、(3)式及び (4)式を満たすような nを有する材料により構成 d  Tend. Therefore, when both the first phase structure and the second phase structure are made of resin as in the configuration described in Item 2, the first phase structure and the second phase structure are made of a material having n that satisfies the equations (3) and (4). d
することで、項 1と同様の作用効果を達成できる。  By doing so, it is possible to achieve the same functions and effects as in item 1.
[0027] 項 3記載の構成は、項 1又は 2に記載の対物光学系において、前記第 1位相構造 は、前記 と前記 tの差に起因する球面収差、又は前記第 1波長 λ と前記第 2波長 [0027] The configuration according to Item 3 is the objective optical system according to Item 1 or 2, wherein the first phase structure is a spherical aberration caused by a difference between the first and the second wavelengths or the first wavelength λ and the first wavelength λ. 2 wavelength
1 2 1  1 2 1
λ の差に起因する球面収差を補正する。  Correct the spherical aberration caused by the difference of λ.
2  2
[0028] 項 3にあるように、第 1収差補正素子に形成した(1)式又は(3)式を満たす材料から 構成される第 1位相構造により、高密度光ディスクと DVDとの相互互換を取ることに より、青紫色レーザ光束と赤色レーザ光束の両方の光束に対して高い透過率を維持 しながら、 tと tの差に起因する球面収差、又は第 1波長 λ と第 2波長 λ の差に起  [0028] As described in item 3, the first phase structure formed of the material satisfying the formula (1) or (3) formed in the first aberration correction element makes the high-density optical disc and DVD compatible with each other. In this way, while maintaining high transmittance for both the blue-violet laser beam and the red laser beam, the spherical aberration due to the difference between t and t, or the first wavelength λ and the second wavelength λ In the difference
1 2 1 2 因する球面収差を補正することが可能となる。 [0029] 尚、第 1位相構造を、回折構造としても良いし光路差付与構造としても良い。 It becomes possible to correct spherical aberration caused by 1 2 1 2. The first phase structure may be a diffraction structure or an optical path difference providing structure.
[0030] 項 4記載の構成は、項 3に記載の対物光学系において、前記第 1位相構造は、前 記第 1光束及び前記第 3光束を回折せず、前記第 2光束を回折する回折構造である [0030] The configuration described in Item 4 is the objective optical system according to Item 3, wherein the first phase structure does not diffract the first light beam and the third light beam but diffracts the second light beam. Structure
[0031] 特に、第 1位相構造を項 4にあるような第 2光束のみを選択的に回折する回折構造 とすることで、第 2光束に対する収差を独立に制御することが可能となり、高密度光デ イスクと DVDの両方に対して良好な集光特性が得られる。 [0031] In particular, since the first phase structure is a diffractive structure that selectively diffracts only the second light beam as described in item 4, it is possible to independently control the aberration with respect to the second light beam, and to achieve high density. Good light-collecting characteristics are obtained for both optical disks and DVDs.
[0032] 項 5記載の構成は、項 4に記載の対物光学系において、前記第 1位相構造は、光 軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造であって 、所定のレベル面の個数 A毎に、そのレベル面数に対応した段数分の高さだけ段を シフトさせた構造である。  [0032] Item 5 is the objective optical system according to Item 4, wherein the first phase structure is a structure in which a pattern having a stepped cross section including an optical axis is arranged on a concentric circle. Therefore, for each predetermined number A of level surfaces, the level is shifted by a height corresponding to the number of levels corresponding to the number of level surfaces.
[0033] 具体的には、項 5にあるような構成とすることで、項 4にあるような回折特性を第 1位 相構造に持たせることが可能となる。  [0033] Specifically, by adopting the configuration as described in Item 5, it becomes possible to give the first phase structure the diffraction characteristics as described in Item 4.
[0034] また、第 1光源として設計波長からずれた光源を使用する場合には、各パターンを 構成する各々の段差により付加される光路差は、波長の整数倍から僅かにずれるた め、 1つのパターン内では局所的な球面収差が発生することになる力 レベル面数に 対応した段数分の高さだけ段がシフトされた部分で、局所的な球面収差を持つ波面 が途切れることになるので、巨視的な波面は平坦となる。このように、第 1位相構造を レベル面数に対応した段数分の高さだけ段をシフトさせた構造とすることで第 1光源 の発振波長の個体差に対する公差を緩和できる。  When a light source deviating from the design wavelength is used as the first light source, the optical path difference added by each step constituting each pattern slightly deviates from an integral multiple of the wavelength. In one pattern, the wavefront having the local spherical aberration is interrupted at the position where the steps are shifted by the height corresponding to the number of power level planes at which local spherical aberration occurs, causing local spherical aberration. The macroscopic wavefront becomes flat. In this manner, by making the first phase structure a structure in which the steps are shifted by a height corresponding to the number of steps corresponding to the number of level surfaces, the tolerance for the individual difference in the oscillation wavelength of the first light source can be reduced.
[0035] なお、本明細書においては、これ以降、第 1光束乃至第 3光束のうち、 1つの光束を 選択的に回折させる特性を有する回折構造を、「波長選択回折構造」とよぶ。 [0035] In this specification, a diffraction structure having a property of selectively diffracting one of the first to third light beams is hereinafter referred to as a "wavelength selective diffraction structure".
[0036] 項 6記載の構成は、項 5に記載の対物光学系において、前記所定のレベル面の個 数 Aは、 4、 5、 6の何れかであって、前記階段の 1つの段差により生じる光路差は前 記第 1波長 I の 2倍である。 [0036] In the configuration according to Item 6, in the objective optical system according to Item 5, the number A of the predetermined level surfaces is any one of 4, 5, and 6, and The resulting optical path difference is twice the first wavelength I.
1  1
[0037] より具体的には、項 6に記載のような構成とすることで、項 4にあるような回折特性を 第 1位相構造に持たせることが可能になるとともに、 3つの光束に対して高い透過率 が確保できる。 3つの光束に透過率を最も高く確保するためには、所定のレベル面の 個数 Aを 5とするのが好ましい。 [0037] More specifically, by adopting the configuration as described in the item 6, it becomes possible to give the first phase structure the diffraction characteristics as described in the item 4, and also to the three light beams High transmittance can be secured. In order to ensure the highest transmittance for the three luminous fluxes, the required level Preferably, the number A is 5.
[0038] ここで、第 1光束及び第 3光束を回折せず、第 2光束を選択的に回折させる波長選 択回折構造 (第 1位相構造)について、回折光発生の原理を説明する。以下の説明 では、第 1波長 λ を高密度光ディスク HDの記録'再生波長である 405nmとし、第 2 波長 I を DVDの記録'再生波長である 655nmとし、第 3波長 λ を CDの記録-再Here, the principle of generation of diffracted light will be described for a wavelength-selective diffraction structure (first phase structure) that selectively diffracts the second light beam without diffracting the first light beam and the third light beam. In the following description, the first wavelength λ is 405 nm, which is the recording / reproducing wavelength of the high-density optical disc HD, the second wavelength I is 655 nm, which is the recording / reproducing wavelength of the DVD, and the third wavelength λ is the recording / reproducing of the CD.
2 3 生波長である 785nmとする。ここで、第 1位相構造は以下の(8)式〜(13)式を満た す必要がある。 23 It is 785 nm, which is the raw wavelength. Here, the first phase structure needs to satisfy the following equations (8) to (13).
[0039] Ll = A l - (n ~ 1) / λ (8)
Figure imgf000010_0001
[0039] Ll = A l-(n ~ 1) / λ (8)
Figure imgf000010_0001
φ (Ml) =ΙΝΤ (Α·Μ1) - (Α·Μ1) (11)  φ (Ml) = ΙΝΤ (Α1)-(Α1) (11)
-0. 4< φ (Μ1) < 0. 4 (12)  -0.4 <4 (Μ1) <0.4 (12)
Ll = 2 (13)  Ll = 2 (13)
Α=4、 5、 6の何れか (14)  Α = 4, 5, or 6 (14)
ΙΝΤ (Χ) :Χに最も近い整数  ΙΝΤ (Χ): Integer closest to Χ
但し、  However,
Δ 1:第 1位相構造の前記各パターンを構成する各段差の光軸方向の深さ η :第 1波長; 1 1に対する第 1位相構造を形成する材料の屈折率  Δ1: depth in the optical axis direction of each step constituting each pattern of the first phase structure η: refractive index of the material forming the first phase structure with respect to the first wavelength;
11  11
η :第 2波長 λ 2に対する第 1位相構造を形成する材料の屈折率  η: refractive index of the material forming the first phase structure for the second wavelength λ 2
12  12
η :第 3波長; 1 3に対する第 1位相構造を形成する材料の屈折率  η: third wavelength; refractive index of the material forming the first phase structure for 13
13  13
A:第 1位相構造の各パターン内に形成されたレベル面の個数  A: Number of level surfaces formed in each pattern of the first phase structure
Ll、 Ml、 N1はそれぞれ、第 1位相構造の各パターン内に形成された各段差によ り第 1光束、第 2光束、及び第 3光束に対して付加される波長単位の光路差である。 L 1を 2とする場合には、段差 Δ 1により第 1光束に対して付加される光路差 L1は、第 1 波長; I の 2倍となるため、隣接するレベル面同士を通過する第 1光束の波面は丁度 Ll, Ml, and N1 are optical path differences in wavelength units added to the first light flux, the second light flux, and the third light flux by each step formed in each pattern of the first phase structure. . When L1 is 2, the optical path difference L1 added to the first light beam due to the step Δ1 is twice the first wavelength; I, so that the first The wavefront of the light beam is exactly
1 1
2波長分だけずれてつながる。従って、第 1光束は、第 1位相構造により回折作用をう けることなく、 100%の透過率でもってそのまま透過する。また、第 1位相構造を d線 におけるアッベ数 V 1が上述の(1)式を満たす材料から形成する場合には、段差 Δ 1により第 3光束に対して付加される光路差 Nlは、第 3波長; I の 1倍に極めて近くな The connection is shifted by two wavelengths. Therefore, the first light beam is transmitted as it is at a transmittance of 100% without being subjected to diffraction by the first phase structure. Further, when the first phase structure is formed from a material whose Abbe number V 1 at the d-line satisfies the above equation (1), the step Δ The optical path difference Nl added to the third luminous flux by 1 is very close to one time of the third wavelength; I.
3  Three
るので、 P 接するレベル面同士を通過する第 3光束の波面は 1波長分だけずれてつ ながる。従って、第 3光束も、第 1位相構造により回折作用をうけることなぐほぼ 100 %の透過率でもってそのまま透過する。一方、段差 Δ 1により第 2光束に対して付カロ される光路差 Mlは、第 2波長; I の約 1. 2倍になるので、隣接するレベル面同士を  Therefore, the wavefronts of the third luminous flux passing through the level surfaces that are in tangent to each other are connected by being shifted by one wavelength. Therefore, the third light beam is also transmitted as it is with almost 100% transmittance which is not affected by the diffraction effect by the first phase structure. On the other hand, the optical path difference Ml applied to the second luminous flux by the step Δ1 is about 1.2 times the second wavelength; I, so that the adjacent level surfaces
2  2
通過する第 2光束の波面は 1. 2波長分だけずれることになるが、光学的に等位相と なる 1波長分の波面のずれを除いた実質的な波面のずれは 0. 2波長である。ここで 、各パターンを 5つのレベル面により構成すると、各パターンの両端での波面のずれ は約 1波長( = 0. 2波長 X 5)になるため、第 2光束は約 87%の高い回折効率でもつ て 1次方向に回折する(1次回折)。上記の(12)式は、第 2光束の 1次回折光の回折 効率を高めるための条件式であり、(12)式を満足するように、各パターン内に形成さ れたレベル面の個数 Aを決定することで第 2光束の 1次回折光の回折効率を十分に 確保することが可能となる。第 1位相構造を d線におけるアッベ数 V 1が上述の(1)  The wavefront of the passing second light beam is shifted by 1.2 wavelengths, but the actual wavefront shift is 0.2 wavelength excluding the shift of one wavefront that is optically in phase. . Here, if each pattern is composed of five level planes, the deviation of the wavefront at both ends of each pattern is about 1 wavelength (= 0.2 wavelength X 5), so the second light flux is about 87% high diffraction Efficiency is diffracted in the first order (first order diffraction). The above equation (12) is a conditional equation for increasing the diffraction efficiency of the first-order diffracted light of the second light flux, and the number of level surfaces A formed in each pattern is set so as to satisfy the equation (12). By determining the value, it is possible to sufficiently secure the diffraction efficiency of the first-order diffracted light of the second light flux. The Abbe number V1 at the d-line is the above-mentioned (1)
d  d
式を満たす材料から形成する場合には、 A=4、 5、 6の何れでも(12)式を満たすこと が可能であるが、(12)式の値が 0に最も近いのは A= 5の場合であり、この時に第 2 光束の 1次回折光の回折効率は最も高くなる。  When formed from a material that satisfies the equation, it is possible to satisfy equation (12) with any of A = 4, 5, and 6, but the value of equation (12) is closest to 0 when A = 5 At this time, the diffraction efficiency of the first-order diffracted light of the second light flux becomes highest.
[0040] 尚、上記の波長選択回折構造において、第 2光束の回折光の回折効率は、波長選 択回折構造が形成される材料の d線におけるアッベ数 V 1にのみに依存し、 d線に In the above-described wavelength-selective diffraction structure, the diffraction efficiency of the diffracted light of the second light beam depends only on the Abbe number V 1 at the d-line of the material from which the wavelength-selective diffraction structure is formed. To
d  d
おける屈折率 n 1には依存しなレ、。従って、屈折率 n 1に関しては比較的自由度があ  Which does not depend on the refractive index n 1. Therefore, the refractive index n 1 has a relatively high degree of freedom.
d d  d d
るが、屈折率 n 1の値が小さくなるほど各段差の光軸方向の深さ dlが深くなり、階段 However, as the value of the refractive index n 1 decreases, the depth dl of each step in the optical axis direction increases,
d  d
形状を精度良く製造することが困難になるため、同じアッベ数 V 1を有する材料が複  Since it is difficult to manufacture the shape with high accuracy, materials having the same Abbe number V1
d  d
数ある場合には、 n 1が最も大きい材料を選択するのが好ましい。  If there are, it is preferable to select the material with the largest n1.
d  d
[0041] 項 7記載の構成は、項 3に記載の対物光学系において、前記第 1位相構造は、前 記第 1光束が入射した場合にはひ 1次の回折光を発生し、前記第 2光束が入射した 場合には /3 1 ( 1 < ひ 1)次の回折光を発生し、前記第 3光束が入射した場合には Ύ 1 ( Ύ 1≤ β 1)次の回折光を発生する回折構造である。 [0041] The configuration according to Item 7 is the objective optical system according to Item 3, wherein the first phase structure generates first-order diffracted light when the first light beam enters, and When two light beams are incident, a / 3 1 (1 <1) order diffracted light is generated.When the third light beam is incident, a Ύ 1 ( Ύ 1 ≤ β 1) order diffracted light is generated. Diffraction structure.
[0042] 第 1位相構造により、高密度光ディスクと DVDとの相互互換を取るためには、項 4 に記載の回折特性の他に、項 7にあるような回折特性を第 1位相構造に持たせても 良い。このような回折特性を持たせることにより、 3つの光束に対して高い透過率を確 保出来る。尚、このような回折特性を有する回折構造は、光軸を含む断面形状が鋸 歯型或いは階段型となる。光軸を含む断面形状が鋸歯型となる場合は、第 1位相構 造が形成された光学面の屈折パワーと第 1位相構造の回折パワーの絶対値が互い に異なる場合であり、光軸を含む断面形状が階段型となる場合は、第 1位相構造が 形成された光学面の屈折パワーと第 1位相構造の回折パワーの符号が互いに逆で、 かつ絶対値が互いに同じ場合である。 [0042] In order to make the high-density optical disk and DVD compatible with each other by the first phase structure, in addition to the diffraction characteristics described in Item 4, the first phase structure has the diffraction characteristics described in Item 7 Let me good. By providing such diffraction characteristics, a high transmittance can be secured for three light beams. The diffraction structure having such diffraction characteristics has a saw-tooth shape or a step-like shape in cross section including the optical axis. When the cross-sectional shape including the optical axis has a sawtooth shape, the absolute value of the refractive power of the optical surface on which the first phase structure is formed and the absolute value of the diffraction power of the first phase structure are different from each other. The case where the cross-sectional shape includes a step-like shape is a case where the signs of the refractive power of the optical surface on which the first phase structure is formed and the diffraction power of the first phase structure are opposite to each other and the absolute values are the same.
[0043] 項 8記載の構成は、項 7に記載の対物光学系において、前記回折次数 α 1は偶数 である。 [0043] In the configuration described in Item 8, in the objective optical system described in Item 7, the diffraction order α1 is an even number.
[0044] 特に、第 3光束の透過率を第 1位相構造で確保するためには、第 1光束の回折次 数 ct 1を偶数とすることが好ましい。具体的には、各波長の光束の回折次数の組合 せとして、 l, β ΐ , γ 1) = (2, 1, 1)、(8, 5, 4)の何れかの組合せを使用するの が好ましぐこれにより t ttの差に起因する球面収差、又は第 1波長え と第 2波長え  In particular, in order to ensure the transmittance of the third light beam by the first phase structure, it is preferable that the diffraction order ct 1 of the first light beam be an even number. Specifically, any combination of l, β ΐ, γ 1) = (2, 1, 1) and (8, 5, 4) is used as a combination of the diffraction orders of the luminous flux of each wavelength. Is preferred because of the spherical aberration due to the difference in t tt or the first and second wavelengths.
1 2 1  1 2 1
の差に起因する球面収差を良好に補正することが可能となる。尚、回折次数の組合 , It is possible to satisfactorily correct the spherical aberration caused by the difference between. The combination of diffraction orders
2 2
せとして(《1, β ΐ , γ 1) = (2, 1, 1)の組合せを使用する場合には第 1位相構造の 製造波長え を λ ΐより短い波長とするのが好ましぐ(α ΐ , 13 1 , γ 1) = (8, 5, 4)の  When using a combination of (<< 1, β ΐ, γ 1) = (2, 1, 1), it is preferable to set the production wavelength of the first phase structure to a wavelength shorter than λ (( α,, 13 1, γ 1) = (8, 5, 4)
Β  Β
組合せを使用する場合には第 1位相構造の製造波長 λ をえ 1より長い波長とするの  When using a combination, the production wavelength λ of the first phase structure should be longer than 1.
Β  Β
が好ましい。これにより各波長の光束の回折効率を高く確保できる。  Is preferred. Thereby, a high diffraction efficiency of the light beam of each wavelength can be secured.
[0045] 項 9記載の構成は、項 1乃至 8の何れか一項に記載の対物光学系において、前記 第 2位相構造は、前記 と前記 tの差に起因する球面収差、又は前記第 1波長; I と [0045] The configuration according to Item 9 is the objective optical system according to any one of Items 1 to 8, wherein the second phase structure includes a spherical aberration caused by a difference between t and t, or Wavelength; I and
1 3 1 前記第 2波長; I の差に起因する球面収差を補正する。  1 3 1 The spherical aberration caused by the difference of the second wavelength; I is corrected.
2  2
[0046] 項 9にあるように、第 2収差補正素子に形成した(2)式又は (4)式を満たす材料から 構成される第 2位相構造により、高密度光ディスクと CDとの相互互換を取ることにより 、青紫色レーザ光束と赤外レーザ光束の両方の光束に対して高い透過率を維持し ながら、 tと tの差に起因する球面収差、又は前記第 1波長 λ と前記第 2波長; I の  As described in item 9, the compatibility between the high-density optical disc and the CD is achieved by the second phase structure formed of the material satisfying the formula (2) or (4) formed on the second aberration correction element. By taking this, while maintaining a high transmittance for both the blue-violet laser light beam and the infrared laser light beam, spherical aberration caused by the difference between t and t, or the first wavelength λ and the second wavelength ; Of I
1 3 1 2 差に起因する球面収差を補正することが可能となる。  It is possible to correct spherical aberration caused by the difference.
[0047] 尚、第 2位相構造を、回折構造としても良いし光路差付与構造としても良い。 Note that the second phase structure may be a diffraction structure or an optical path difference providing structure.
[0048] 項 10記載の構成は、項 9に記載の対物光学系において、前記第 2位相構造は、前 記第 1光束及び前記第 2光束を回折せず、前記第 3光束を回折する回折構造である [0048] The configuration according to Item 10 is the objective optical system according to Item 9, wherein the second phase structure includes The diffraction structure diffracts the third light beam without diffracting the first light beam and the second light beam.
[0049] 特に、第 2位相構造を項 10にあるような第 3光束のみを選択的に回折する回折構 造とすることで、第 3光束に対する収差を独立に制御することが可能となり、高密度光 ディスクと CDの両方に対して良好な集光特性が得られる。 In particular, since the second phase structure is a diffraction structure that selectively diffracts only the third light beam as described in item 10, it is possible to independently control the aberration of the third light beam, Good light-gathering characteristics are obtained for both high-density optical discs and CDs.
[0050] 項 11記載の構成は、項 10に記載の対物光学系において、前記第 2位相構造は、 光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造であ つて、所定のレベル面の個数 B毎に、そのレベル面数に対応した段数分の高さだけ 段をシフトさせた構造である。 [0050] In the configuration according to item 11, in the objective optical system according to item 10, the second phase structure is a structure in which a pattern having a stepped cross section including an optical axis is arranged on a concentric circle. Thus, for each predetermined number B of level surfaces, the level is shifted by a height corresponding to the number of levels corresponding to the number of level surfaces.
[0051] 具体的には、項 11にあるような構成とすることで、項 10にあるような回折特性を第 2 位相構造に持たせることが可能となる。 [0051] Specifically, by adopting the configuration as described in the item 11, it becomes possible to give the second phase structure the diffraction characteristics as described in the item 10.
[0052] また、第 2位相構造をレベル面数に対応した段数分の高さだけ段をシフトさせた構 造とすることで、項 5記載の構成と同様に、第 1光源の発振波長の個体差に対する公 差を緩和できる。 [0052] Further, by making the second phase structure a structure in which the steps are shifted by a height corresponding to the number of levels corresponding to the number of level surfaces, the oscillation wavelength of the first light source can be changed in the same manner as the configuration described in Item 5. Tolerances for individual differences can be reduced.
[0053] 項 12記載の構成は、項 11に記載の対物光学系において、前記所定のレベル面の 個数 Bは、 3、 4の何れかであって、前記階段の 1つの段差により生じる光路差は前記 第 1波長え の 7倍である。  [0053] In the configuration according to Item 12, in the objective optical system according to Item 11, the number B of the predetermined level surfaces is any one of 3 and 4, and an optical path difference caused by one step of the stairs is provided. Is seven times the first wavelength.
1  1
[0054] より具体的には、項 12に記載のような構成とすることで、項 10にあるような回折特性 を第 2位相構造に持たせることが可能になるとともに、 3つの光束に対して高い透過 率が確保できる。 3つの光束に対する透過率を最も高く確保するためには、第 2位相 構造を d線におけるアッベ数 V 2が 25< v 2 < 40を満たす材料から形成する場合 d d  More specifically, by adopting the configuration as described in item 12, it becomes possible to provide the second phase structure with the diffraction characteristics as described in item 10, and to provide three light beams High transmittance can be secured. In order to ensure the highest transmittance for the three light beams, the second phase structure must be formed from a material whose Abbe number V 2 at d-line satisfies 25 <v 2 <40.
には、所定のレベル面の個数 Bを 3とし、第 2位相構造を d線におけるアッベ数 V 2が a The number B of the predetermined level surfaces is 3, and the second phase structure is the Abbe number V 2 at the d-line.
20≤ V 2≤ 25を満たす材料から形成する場合には、所定のレベル面の個数 Bを 4と d When forming from a material that satisfies 20≤ V 2≤ 25, the number B of the specified level surface shall be 4 and d
するのが好ましい。  Is preferred.
[0055] ここで、第 1光束及び第 2光束を回折せず、第 3光束を選択的に回折させる波長選 択回折構造 (第 2位相構造)について、回折光発生の原理を説明する。以下の説明 では、第 1波長 λ を高密度光ディスク HDの記録'再生波長である 405nmとし、第 2 波長え を DVDの記録'再生波長である 655nmとし、第 3波長 λ を CDの記録 '再 生波長である 785nmとする。ここで、第 1位相構造は以下の(15)式〜(21)式を満 たす必要がある。 Here, the principle of diffracted light generation will be described for a wavelength-selective diffraction structure (second phase structure) that selectively diffracts the third light beam without diffracting the first light beam and the second light beam. In the following description, the first wavelength λ is 405 nm, which is the recording / reproducing wavelength of the high-density optical disc HD, the second wavelength is 655 nm, which is the recording / reproducing wavelength of the DVD, and the third wavelength λ is the CD recording / reproducing. The raw wavelength is 785 nm. Here, the first phase structure needs to satisfy the following equations (15) to (21).
L2= Δ2· (n -1)/ λ (15)  L2 = Δ2 (n -1) / λ (15)
21 1  21 1
Μ2= Δ2· (η '-Ι)/ λ (16)  Μ2 = Δ2 (η '-Ι) / λ (16)
22 2  22 2
Ν2= Δ2· (η -1)/ λ (17)  Ν2 = Δ2 (η -1) / λ (17)
23 3  23 3
φ (Ν2) =ΙΝΤ(Β·Ν2) - (Β·Ν2) (18)  φ (Ν2) = ΙΝΤ (Β2)-(Β2) (18)
-0.4< φ (Ν2)<0.4 (19)  -0.4 <φ (Ν2) <0.4 (19)
L2 = 7 (20)  L2 = 7 (20)
Β = 3、4の何れか (21)  Β = either 3 or 4 (21)
ΙΝΤ(Χ) :Χに最も近い整数  ΙΝΤ (Χ): Integer closest to Χ
但し、 However,
Δ 2:第 2位相構造の前記各パターンを構成する各段差の光軸方向の深さ η :第 1波長え 1に対する第 2位相構造が形成された材料の屈折率  Δ2: Depth in the optical axis direction of each step constituting each pattern of the second phase structure η: Refractive index of the material on which the second phase structure is formed with respect to the first wavelength 1
21  twenty one
η :第 2波長え 2に対する第 2位相構造が形成された材料の屈折率  η: refractive index of the material on which the second phase structure is formed for the second wavelength 2
22  twenty two
η :第 3波長え 3に対する第 2位相構造が形成された材料の屈折率  η: refractive index of the material on which the second phase structure is formed for the third wavelength 3
23  twenty three
Β:第 2位相構造の各パターン内に形成されたレベル面の個数  Β: Number of level surfaces formed in each pattern of the second phase structure
L2、 M2、 N2はそれぞれ、第 2位相構造の各パターン内に形成された各段差により 第 1光束、第 2光束、及び第 3光束に対して付加される波長単位の光路差である。 L2 を 7とする場合には、段差 Δ 2により第 1光束に対して付加される光路差 L2は、第 1波 長 I の 7倍となるため、隣接するレベル面同士を通過する第 1光束の波面は丁度 7L2, M2, and N2 are optical path differences in wavelength units added to the first light flux, the second light flux, and the third light flux by each step formed in each pattern of the second phase structure. If L2 is set to 7, the optical path difference L2 added to the first light beam due to the step Δ2 is seven times the first wavelength I, so that the first light beam passing through adjacent level surfaces The wavefront is exactly 7
1 1
波長分だけずれてつながる。従って、第 1光束は、第 1位相構造により回折作用をう けることなく、 100%の透過率でもってそのまま透過する。また、第 2位相構造を d線 におけるアッベ数 V 2が上述の(2)式を満たす材料から形成する場合には、段差 Δ d The connection is shifted by the wavelength. Therefore, the first light beam is transmitted as it is at a transmittance of 100% without being subjected to diffraction by the first phase structure. When the second phase structure is formed of a material having an Abbe number V 2 at d-line that satisfies the above equation (2), the step Δ d
2により第 2光束に対して付加される光路差 M2は、第 2波長; I の 4倍に極めて近くな  The optical path difference M2 added to the second light beam by 2 is very close to four times the second wavelength; I.
2  2
るので、 P接するレベル面同士を通過する第 2光束の波面は 4波長分だけずれてつ ながる。従って、第 2光束も、第 2位相構造により回折作用をうけることなぐほぼ 100 %の透過率でもってそのまま透過する。一方、段差 Δ 2により第 3光束に対して付カロ される光路差 N2は、第 3波長え の約 3. 3倍になるので、隣接するレベル面同士を 通過する第 3光束の波面は 3. 3波長分だけずれることになるが、光学的に等位相と なる 3波長分の波面のずれを除いた実質的な波面のずれは 0. 3波長である。ここで 、各パターンを 3つ、又は 4つのレベル面により構成すると、各パターンの両端での波 面のずれは約 1波長( = 0. 3波長 X 3、又は、 = 0. 3波長 X 4)になるため、第 3光束 は 70〜80%の高い回折効率でもって 1次方向に回折する(1次回折)。上記の(19) 式は、第 3光束の回折光の回折効率を高めるための条件式であり、(19)式を満足す るように、各パターン内に形成されたレベル面の個数 Bを決定することで第 3光束の 1 次回折光の回折効率を十分に確保することが可能となる。第 2位相構造を d線におけ るアッベ数 V 2が 25 < v 2 < 40を満たす材料から形成する場合には、(12)式の値 Therefore, the wavefronts of the second luminous flux passing through the level surfaces that are in contact with each other are connected by being shifted by four wavelengths. Therefore, the second light flux is also transmitted as it is with almost 100% transmittance, which is not affected by the diffraction effect by the second phase structure. On the other hand, the optical path difference N2 applied to the third luminous flux by the step Δ2 is about 3.3 times the third wavelength, so that the adjacent level surfaces are The wavefront of the third luminous flux passing therethrough is shifted by 3.3 wavelengths, but the actual wavefront shift excluding the wavefront shift of 3 wavelengths that are optically equiphase is 0.3 wavelength. . Here, if each pattern is composed of three or four level planes, the shift of the wavefront at both ends of each pattern is about one wavelength (= 0.3 wavelength X 3 or = 0.3 wavelength X 4 ), The third light beam is diffracted in the first order with a high diffraction efficiency of 70-80% (first order diffraction). The above equation (19) is a conditional equation for increasing the diffraction efficiency of the diffracted light of the third light flux, and the number B of the level surfaces formed in each pattern is determined so as to satisfy the equation (19). By making the determination, it is possible to sufficiently secure the diffraction efficiency of the first-order diffracted light of the third light flux. When the second phase structure is formed from a material whose Abbe number V 2 at the d-line satisfies 25 <v 2 <40, the value of equation (12) is used.
d d  d d
力 SOに最も近いのは B = 3の場合であり、第 2位相構造を d線におけるアッベ数 V 2が  The force closest to SO is when B = 3, and the second phase structure is expressed by the Abbe number V 2 at the d-line.
d d
20≤ V 2≤ 25を満たす材料から形成する場合には、(12)式の値が 0に最も近いの d When forming from a material that satisfies 20≤V2≤25, the value of equation (12) is
は B =4の場合であり、この時に第 3光束の 1次回折光の回折効率は最も高くなる。  Is the case where B = 4, and at this time, the diffraction efficiency of the first-order diffracted light of the third light flux becomes highest.
[0057] 尚、上記の波長選択回折構造において、第 3光束の 1次回折光の回折効率は、波 長選択回折構造が形成される材料の d線におけるアッベ数 V 2にのみに依存し、 d d In the above-described wavelength-selective diffraction structure, the diffraction efficiency of the first-order diffracted light of the third light beam depends only on the Abbe number V 2 at the d-line of the material on which the wavelength-selective diffraction structure is formed, and dd
線における屈折率 n 2には依存しない。従って、屈折率 n 2に関しては比較的自由  It does not depend on the refractive index n 2 at the line. Therefore, the refractive index n 2 is relatively free
d d  d d
度があるが、屈折率 n 2の値が小さくなるほど各段差の光軸方向の深さ d2が深くなり  Depth in the optical axis direction of each step increases as the value of the refractive index n2 decreases.
d  d
、階段形状を精度良く製造することが困難になるため、同じアッベ数 V 2を有する材  Since it is difficult to manufacture stair shapes with high accuracy, materials having the same Abbe number V 2
d  d
料が複数ある場合には、 n 2が最も大きい材料を選択するのが好ましい。  When there are a plurality of materials, it is preferable to select the material having the largest n2.
d  d
[0058] 項 13記載の構成は、項 9に記載の対物光学系において、前記第 2位相構造は、前 記第 1光束が入射した場合にはひ 2次の回折光を発生し、前記第 2光束が入射した 場合には /3 2 ( 2 < ひ 2)次の回折光を発生し、前記第 3光束が入射した場合には Ύ 2 ( Ύ 2≤ β 2)次の回折光を発生する回折構造である。 Item 13 is the objective optical system according to Item 9, wherein the second phase structure generates second-order diffracted light when the first light beam enters, and When two light beams are incident, a diffracted light of order / 32 (2 < hi2) is generated, and when the third light beam is incident, a diffracted light of order Ύ2 ( Ύ2≤β2 ) is generated. Diffraction structure.
[0059] 第 2位相構造により、高密度光ディスクと CDとの相互互換を取るためには、項 10に 記載の回折特性の他に、項 13にあるような回折特性を第 2位相構造に持たせても良 レ、。このような回折特性を持たせることにより、 3つの光束に対して高い透過率を確保 出来る。尚、このような回折特性を有する回折構造は、光軸を含む断面形状が鋸歯 型或いは階段型となる。  [0059] In order to make the high-density optical disc and CD compatible with each other by the second phase structure, in addition to the diffraction characteristics described in Item 10, the second phase structure has the diffraction characteristics described in Item 13 You can do it. By providing such diffraction characteristics, high transmittance can be secured for three light beams. Note that the diffraction structure having such diffraction characteristics has a saw-tooth shape or a step-like shape in cross section including the optical axis.
[0060] 項 14記載の構成は、項 13に記載の対物光学系において、前記回折次数 α 2は奇 数である。 [0060] The configuration described in Item 14 is the objective optical system according to Item 13, wherein the diffraction order α2 is odd. Is a number.
[0061] 特に、第 3光束の透過率を第 2位相構造で確保するためには、第 1光束の回折次 数ひ 2を奇数とすることが好ましい。具体的には、各波長の光束の回折次数の組合 せとして、(ひ 2, β 2, γ 2) = (5, 3, 2)、(7, 4, 3)、(9, 5, 4)の何れ力の糸且合せを 使用するのが好ましぐこれにより t ttの差に起因する球面収差を補正することが可  [0061] In particular, in order to ensure the transmittance of the third light beam by the second phase structure, it is preferable that the diffraction order 2 of the first light beam be an odd number. Specifically, the combination of the diffraction orders of the luminous flux of each wavelength is (hi 2, β 2, γ 2) = (5, 3, 2), (7, 4, 3), (9, 5, 4). It is preferable to use any one of the two types of force. This makes it possible to correct spherical aberration caused by the difference in t tt.
1 3  13
能となる。更に、第 3光ディスクに対して情報の記録 ·再生を行う際の対物光学系の 倍率を一 0. 2から 0の範囲内とすると、より良好に tと tの差に起因する球面収差を  It works. Furthermore, if the magnification of the objective optical system for recording / reproducing information on the third optical disc is in the range of 0.2 to 0, the spherical aberration caused by the difference between t and t will be better.
1 3  13
ネ甫正すること力 sできる。  The ability to rectify s can.
[0062] 尚、上記の組合せの回折次数を各波長の光束に対して利用する場合には、第 2位 相構造の製造波長 λ をえ 1より短い波長とすると各波長の光束の回折効率を高く確  [0062] When the above-described combination of diffraction orders is used for a light beam of each wavelength, if the production wavelength λ of the second phase structure is set to a wavelength shorter than 1, the diffraction efficiency of the light beam of each wavelength is reduced. Highly certain
Β  Β
保できる。  Can be maintained.
[0063] 紫色レーザ光束 (第 1光束)の回折次数を奇数とすることで青紫色レーザ光束の回 折角と赤外レーザ光束の回折角とに差を持たせた場合に相当する特許文献 2の数 値実施例 3の対物レンズでは、 d線におけるアッベ数が 55程度の比較的低分散の材 料を使用しているため、両波長の光束の回折効率がともに低いが、本発明による対 物光学系では、第 2位相構造の材料として (2)式を満たすような高分散性を有する材 料を使用しているので、紫色レーザ光束 (第 1光束)の回折次数を奇数として場合で も両波長の光束の回折効率をともに高く確保できる。  [0063] Patent Document 2 which corresponds to a case where the diffraction angle of the blue-violet laser beam and the diffraction angle of the infrared laser beam are made different by setting the diffraction order of the purple laser beam (first light beam) to an odd number. The objective lens of Numerical Example 3 uses a relatively low-dispersion material having an Abbe number of about 55 at the d-line, so that the diffraction efficiency of both wavelengths is low. In the optical system, a material having high dispersibility that satisfies the expression (2) is used as the material of the second phase structure. Therefore, even if the diffraction order of the violet laser light beam (first light beam) is an odd number, High diffraction efficiency for both wavelengths can be ensured.
[0064] 項 15記載の構成は、項 1乃至 14の何れか一項に記載の対物光学系において、前 記第 1収差補正素子と前記第 2収差補正素子は、互いに接合されて成る。  The configuration described in Item 15 is the objective optical system according to any one of Items 1 to 14, wherein the first aberration correction element and the second aberration correction element are joined to each other.
[0065] 項 16記載の構成は、項 1乃至 14の何れか一項に記載の対物光学系において、前 記第 1収差補正素子と前記第 2収差補正素子は、互いに離間されて成る。  [0065] The configuration described in Item 16 is the objective optical system according to any one of Items 1 to 14, wherein the first aberration correction element and the second aberration correction element are separated from each other.
[0066] 項 17記載の構成は、項 1乃至 16の何れか一項に記載の対物光学系において、少 なくとも前記第 1収差補正素子と前記第 2収差補正素子の何れか一方は、第 3位相 構造を有する。  [0066] The configuration according to Item 17 is the object optical system according to any one of Items 1 to 16, wherein at least one of the first aberration correction element and the second aberration correction element is the second aberration correction element. It has a three-phase structure.
[0067] 項 17に記載のように第 3位相構造を前記第 1収差補正素子及び前記第 2収差補正 素子の何れかの光学面に形成することで、対物光学系のそれぞれの光束に対する 集光特性をより良好なものにすることができる。この第 3位相構造は回折構造であつ ても良いし、光路差付与構造であっても良い。また、第 3位相構造により補正する収 差は、例えば、第 1波長 λ 1の微小変化に伴う色収差であっても良いし、温度変化に 伴う対物レンズの屈折率変化により発生する球面収差であっても良い。 [0067] As described in Item 17, by forming the third phase structure on one of the optical surfaces of the first aberration correction element and the second aberration correction element, light is condensed for each light beam of the objective optical system. The characteristics can be made better. This third phase structure is a diffractive structure. Or an optical path difference providing structure. The aberration corrected by the third phase structure may be, for example, chromatic aberration caused by a minute change in the first wavelength λ1, or spherical aberration caused by a change in the refractive index of the objective lens caused by a change in temperature. May be.
[0068] また、光ピックアップ装置では、対物光学系からの反射光による影響で、光検出器 によるフォーカス信号やトラッキング信号の検出が不安定になる場合がある。  In the optical pickup device, the detection of the focus signal and the tracking signal by the photodetector may be unstable due to the influence of the reflected light from the objective optical system.
[0069] このような不具合を回避するためには、本発明における対物光学系において、最も レーザ光源側にある光学面上に、第 1乃至第 3位相構造のうち、何れかの位相構造 が形成されてレ、るのが好ましレ、。  [0069] In order to avoid such a problem, in the objective optical system of the present invention, any one of the first to third phase structures is formed on the optical surface closest to the laser light source. It ’s been a good thing,
[0070] これにより、最もレーザ光源側にある光学面による反射光は、回折作用を受けるた め、光軸とは所定の角度を持った方向に回折していく。この結果、反射光が光検出 器の受光面に入射することを防ぐことができ、安定した検出特性が得られる。  [0070] Thus, the light reflected by the optical surface closest to the laser light source is diffracted, so that it is diffracted in a direction having a predetermined angle with respect to the optical axis. As a result, reflected light can be prevented from entering the light receiving surface of the photodetector, and stable detection characteristics can be obtained.
[0071] 項 18記載の構成は、項 17に記載の対物光学系において、前記第 3位相構造は、 前記第 1波長 λ が ± 5nm以内で波長変化した際に前記対物光学系で発生する近  [0071] In the configuration according to Item 18, in the objective optical system according to Item 17, the third phase structure includes a near-field generated in the objective optical system when the first wavelength λ changes within ± 5 nm.
1  1
軸像点位置の移動を抑制する機能を有する。  It has a function of suppressing the movement of the axial image point position.
[0072] 項 18記載の構成によれば、第 3位相構造に第 1波長 λ ± 5nmの波長領域での近 軸像点位置の移動を抑制する機能を持たせることで、再生から記録に切り替える際 の第 1光源の出力の変化に伴って瞬時的に波長変化 (モードホップ)が起きた場合で も、集光スポットが大きくならず、常に良好な集光状態を維持することが可能となる。 According to the configuration of Item 18, switching from reproduction to recording is performed by providing the third phase structure with a function of suppressing the movement of the paraxial image point position in the wavelength region of the first wavelength λ ± 5 nm. In this case, even if the wavelength changes (mode hop) instantaneously due to the change in the output of the first light source, the focused spot does not become large and it is possible to always maintain a good focused state .
[0073] 項 19記載の構成は、項 17又は 18に記載の対物光学系において、前記第 3位相構 造は、前記第 1波長 λ が ± 5nm以内で波長変化した際に前記対物光学系で発生 する球面収差の変化を抑制する機能を有する。 [0073] The configuration according to Item 19 is the objective optical system according to Item 17 or 18, wherein the third phase structure is used when the first wavelength λ changes within ± 5 nm. It has the function of suppressing the change in generated spherical aberration.
[0074] 項 19記載の構成によれば、第 3位相構造に第 1波長 λ ± 5nmの波長領域での球 面収差の変化を抑制する機能を持たせることで、第 1光源の発振波長の個体差に対 する公差を緩和することが可能となり、第 1光源の選別が不要となるので、光ピックァ ップ装置の低コスト化を達成できる。 According to the configuration described in Item 19, by giving the third phase structure a function of suppressing a change in spherical aberration in the wavelength region of the first wavelength λ ± 5 nm, the oscillation wavelength of the first light source can be reduced. The tolerance for individual differences can be relaxed, and the selection of the first light source is not required, so that the cost of the optical pickup device can be reduced.
[0075] 項 20記載の構成は、項 17乃至 19の何れか一項に記載の対物光学系において、 前記第 3位相構造は、前記対物光学系の屈折率変化に起因する球面収差の変化を 抑制する機能を有する。 [0076] 周知のように、屈折率変化に伴う球面収差の増大は対物レンズの NAの 4乗に比例 して大きくなるため、対物レンズを温度変化に伴う屈折率変化が大きい樹脂製とする 場合は力かる球面収差の増大に対する対策が必須となる。また、 NAO. 85の対物レ ンズでは、樹脂と比べて温度変化に伴う屈折率変化が小さいガラス製であっても、温 度変化に伴う球面収差の増大が無視できない場合がある。項 20記載の構成によれ ば、力かる温度変化に伴う球面収差の増大を第 3位相構造により補正することで、使 用可能な温度範囲の広い対物光学系を提供することが可能となる。 [0075] The configuration of Item 20 is the objective optical system according to any one of Items 17 to 19, wherein the third phase structure suppresses a change in spherical aberration caused by a change in the refractive index of the objective optical system. Has the function of suppressing. As is well known, the increase in spherical aberration due to a change in the refractive index increases in proportion to the fourth power of the NA of the objective lens. Therefore, when the objective lens is made of a resin that has a large change in the refractive index due to a temperature change. It is necessary to take measures against the increase of strong spherical aberration. Also, in the NAO.85 objective lens, even if the refractive index change due to temperature change is smaller than that of resin, the increase in spherical aberration due to temperature change may not be negligible. According to the configuration described in Item 20, it is possible to provide an objective optical system having a wide usable temperature range by correcting an increase in spherical aberration due to a strong temperature change by the third phase structure.
[0077] 項 21記載の構成は、項 17乃至 20の何れか一項に記載の対物光学系において、 前記第 3位相構造は、前記第 1収差補正素子と前記第 2収差補正素子のうち、何れ か一方に形成される。  [0077] The configuration according to Item 21 is the objective optical system according to any one of Items 17 to 20, wherein the third phase structure is one of the first aberration correction element and the second aberration correction element. It is formed on either one.
[0078] 項 22記載の構成は、項 21に記載の対物光学系において、前記第 3位相構造は、 前記第 1収差補正素子に形成され、前記第 1光束に対して、前記第 1波長 λ の 10  [0078] In the configuration according to Item 22, in the objective optical system according to Item 21, the third phase structure is formed in the first aberration correction element, and the first wavelength λ Of 10
1 倍の光路差を付加させめる。  Adds 1x optical path difference.
[0079] 項 22に記載のように、第 3位相構造を第 1収差補正素子に形成し、この第 3位相構 造により第 1光束に対して付加される光路差が、第 1波長え の 10倍となるように設計  [0079] As described in Item 22, the third phase structure is formed in the first aberration correction element, and the optical path difference added to the first light beam by the third phase structure is equal to the first wavelength. Designed to be 10 times
1  1
しておくと、第 2光束に対して付加される光路差が第 2波長 λ の略 6倍、第 3光束に  In this case, the optical path difference added to the second light flux is approximately six times the second wavelength λ,
2  2
対して付加される光路差が第 3波長え の略 5倍となるため、何れの光束の回折光の  Since the added optical path difference is approximately five times the third wavelength, the diffracted light of
3  Three
透過率を十分高く確保することが可能である。  It is possible to ensure a sufficiently high transmittance.
項 23記載の構成は、項 1乃至 22の何れか一項に記載の対物光学系において、前記 第 1位相構造と前記第 2位相構造は、ともに樹脂から形成される。  Item 23 is the objective optical system according to any one of Items 1 to 22, wherein the first phase structure and the second phase structure are both formed of resin.
[0080] 収差補正素子の材料としては、あらゆる光学ガラスや光学樹脂が適用可能である 、微細な構造である位相構造を形状誤差少なく形成するためには、溶融状態での 粘性が小さい材料、つまり樹脂が適している。また樹脂は、ガラスに比べて低コストで 軽量である。特に、収差補正素子に樹脂を用いて軽量化すれば、光ディスクの記録 Ζ再生時における光ピックアップ装置のフォーカス、トラッキング制御を行う駆動力が 少なくてすむ。 [0080] As a material of the aberration correction element, any optical glass or optical resin can be applied. In order to form a fine phase structure with a small shape error, a material having a low viscosity in a molten state, that is, Resins are suitable. In addition, resin is lower cost and lighter than glass. In particular, if a resin is used for the aberration correction element to reduce the weight, the driving force for performing the focus and tracking control of the optical pickup device during recording / reproducing of the optical disk may be reduced.
[0081] 尚、第 1位相構造と第 2位相構造をともに樹脂から形成する場合には、第 1位相構 造を日本ゼオン社製のゼォネックス(登録商標)や三井化学社製のアベル (登録商 標)等に代表される環状ポレオレフイン系樹脂から形成するのが好ましぐ第 2位相構 造を紫外線硬化樹脂や熱硬化性樹脂、或いは大阪ガスケミカル社製の OKP4等に 代表されるフルオレン系ポリエステル樹脂を使用するのが好ましい。 [0081] When both the first phase structure and the second phase structure are formed of resin, the first phase structure may be made of Zeonex (registered trademark) manufactured by Zeon Corporation or Abel (registered trademark) manufactured by Mitsui Chemicals, Inc. The second phase structure that is preferably formed from a cyclic oleolefin-based resin represented by a mark) or the like is a fluorene-based polyester represented by an ultraviolet curable resin or a thermosetting resin, or OKP4 manufactured by Osaka Gas Chemical Company, etc. Preferably, a resin is used.
[0082] 項 24記載の構成は、項 1乃至 23の何れか一項に記載の対物光学系において、前 記第 1位相構造と前記第 2位相構造のうち、何れか一方は紫外線硬化性樹脂、又は 熱硬化性樹脂から形成される。  [0082] Item 24 is the objective optical system according to any one of items 1 to 23, wherein one of the first phase structure and the second phase structure is an ultraviolet curable resin. Or formed from a thermosetting resin.
[0083] 第 2位相構造を、樹脂基板やガラス基板上に形成した樹脂層の表面上にして所謂 ハイブリッド構造の第 2収差補正素子を作製する場合に、その材料としては、項 24に 記載のような紫外線硬化樹脂、又は熱硬化性樹脂が製造上適している。  In the case where the second phase structure is formed on the surface of a resin layer formed on a resin substrate or a glass substrate to produce a second aberration correction element having a so-called hybrid structure, the material thereof is described in Item 24. Such an ultraviolet curable resin or a thermosetting resin is suitable for production.
[0084] また、位相構造その表面上に形成した収差補正素子を作製する方法として、フォト リソグラフィとエッチングのプロセスを繰り返して、樹脂基板上やガラス基板上に直接 位相構造を形成する方法を用いてもょレ、が、位相構造を形成したモールド (金型)を 作製して、そのモールドのレプリカとして表面に位相構造が形成された収差補正素 子を得る、所謂モールド成形が大量生産には適している。尚、位相構造が形成され たモールドを作製する方法としては、フォトリソグラフィとエッチングのプロセスを繰り 返して回折構造を形成する方法でもよいし、精密旋盤により回折構造を機械加工す る方法でもよい。  As a method of manufacturing the aberration correction element formed on the surface of the phase structure, a method of forming the phase structure directly on a resin substrate or a glass substrate by repeating a process of photolithography and etching is used. In the meantime, a mold (die) with a phase structure is manufactured, and an aberration correction element with a phase structure formed on the surface is obtained as a replica of the mold. So-called molding is suitable for mass production. ing. In addition, as a method of manufacturing a mold having a phase structure formed thereon, a method of repeating a process of photolithography and etching to form a diffraction structure or a method of machining a diffraction structure with a precision lathe may be used.
[0085] 項 25記載の構成は、項 24に記載の対物光学系において、前記第 1位相構造と前 記第 2位相構造のうち、紫外線硬化性樹脂、又は熱硬化性樹脂から形成される位相 構造は、前記第 2位相構造である。  Item 25 is the objective optical system according to Item 24, wherein the phase formed from an ultraviolet curable resin or a thermosetting resin among the first phase structure and the second phase structure. The structure is the second phase structure.
[0086] 紫外線硬化性樹脂、又は熱硬化性樹脂は、その製造過程において d線におけるァ ッべ数 V を制御し最適なアッベ数 V を得るのが比較適容易である。従って、アッベ  [0086] For an ultraviolet curable resin or a thermosetting resin, it is relatively easy to control the Abbe number V at the d-line in the production process to obtain an optimal Abbe number V. Therefore, Abbe
d d  d d
数 v の許容幅が小さい第 2位相構造を紫外線硬化性樹脂、又は熱硬化性樹脂から d  A second phase structure having a small tolerance of several v is formed from an ultraviolet-curing resin or a thermosetting resin.
形成するのが好ましい。  Preferably, it is formed.
[0087] 項 26記載の構成は、項 24又は 25に記載の対物光学系において、前記第 1位相構 造と前記第 2位相構造のうち、紫外線硬化性樹脂、又は熱硬化性樹脂から形成され る位相構造はガラス基板上に形成される。  [0087] The configuration according to Item 26 is the objective optical system according to Item 24 or 25, wherein the first phase structure and the second phase structure are formed of an ultraviolet curable resin or a thermosetting resin. The phase structure is formed on a glass substrate.
[0088] 紫外線硬化性樹脂、又は熱硬化性樹脂は、ガラス基板との接着性に比較的優れる 。従がつて、第 1位相構造と第 2位相構造のうち、紫外線硬化性樹脂、又は熱硬化性 樹脂から形成される位相構造をガラス基板上に形成することで、金型と位相構造とを 離型する際の、位相構造の変形等を抑制することができ、形状誤差による収差発生 や回折効率低下が小さくなる。 [0088] An ultraviolet curable resin or a thermosetting resin has relatively excellent adhesion to a glass substrate. . Accordingly, the mold and the phase structure are separated from each other by forming the phase structure formed of the ultraviolet curable resin or the thermosetting resin on the glass substrate among the first phase structure and the second phase structure. Deformation of the phase structure during molding can be suppressed, and the occurrence of aberrations and a decrease in diffraction efficiency due to shape errors are reduced.
[0089] 項 27記載の構成は、項 1乃至 26の何れか一項に記載の対物光学系において、前 記対物レンズは、前記 tと前記第 1波長 λ との組合せに対して球面収差補正が最適 化される。  [0089] The structure according to Item 27 is the objective optical system according to any one of Items 1 to 26, wherein the objective lens corrects spherical aberration for a combination of the t and the first wavelength λ. Is optimized.
[0090] 対物レンズは、第 1波長 λ と第 1光ディスクの保護層の厚さ tlに対して球面収差補 正が最小となるように、その非球面形状が決定されているのが好ましい。本構成にお いては、第 1波長 λ の集光性能は対物レンズによって決まる。従って、項 27のように 、第 1波長え と第 1保護層の厚さ tlに対して球面収差補正が最小となるように、対物  It is preferable that the aspherical shape of the objective lens is determined so that spherical aberration correction is minimized with respect to the first wavelength λ and the thickness tl of the protective layer of the first optical disc. In this configuration, the focusing performance of the first wavelength λ is determined by the objective lens. Therefore, as described in Item 27, the objective is set so that spherical aberration correction is minimized with respect to the first wavelength and the thickness tl of the first protective layer.
1  1
レンズの非球面形状を決定しておくことで、最も厳しい波面精度が要求される第 1光 束の集光性能を出しやすくなる。ここで、「対物レンズは、前記 tlと前記第 1波長え と の組み合わせに対して球面収差補正が最適化された」とは、対物レンズと第 1光ディ スクの保護層を介して第 1光束を集光させた場合の波面収差が 0. 05 λ RMS以下 であることをいうものとする。  By determining the aspherical shape of the lens, it becomes easier to obtain the light-collecting performance of the first light beam that requires the strictest wavefront accuracy. Here, “the objective lens has been optimized for spherical aberration correction with respect to the combination of the tl and the first wavelength” means that the objective lens and the first optical disc are protected by the first optical disc through the protective layer. It means that the wavefront aberration when the light beam is collected is 0.05 λ RMS or less.
[0091] 項 28記載の構成は、項 1乃至 27の何れか一項に記載の対物光学系において、以 下の(5)式乃至(7)式を満たす。  [0091] The configuration described in Item 28 satisfies the following Expressions (5) to (7) in the objective optical system according to any one of Items 1 to 27.
[0092] 380nm< λ < 420nm (5)  [0092] 380 nm <λ <420 nm (5)
1. 5< λ / λ < 1. 7 (6)  1.5 <λ / λ <1.7 (6)
2 1  twenty one
1. 8< λ / λ < 2. 1 (7)  1.8 <λ / λ <2.1 (7)
3 1  3 1
項 29記載の構成は、項 4乃至 6の何れか一項に記載の対物光学系において、前 記第 1位相構造は、前記第 2光束を発散させる作用を有する。  Item 29 is the objective optical system according to any one of Items 4 to 6, wherein the first phase structure has an action of diverging the second light flux.
[0093] 第 1位相構造により、第 2光束を発散させることにより、第 2光ディスクに対して記録[0093] By diverging the second light beam by the first phase structure, recording is performed on the second optical disc.
Ζ再生を行う際の作動距離を十分に確保することが可能となる。 作 動 It is possible to secure a sufficient working distance when performing regeneration.
[0094] 項 30記載の構成は、項 10乃至 12の何れか一項に記載の対物光学系において、 前記第 2位相構造は、前記第 3光束を発散させる作用を有する。 [0094] In the configuration according to Item 30, in the objective optical system according to any one of Items 10 to 12, the second phase structure has an action of diverging the third light flux.
[0095] 第 2位相構造により、第 3光束を発散させることにより、第 3光ディスクに対して記録 z再生を行う際の作動距離を十分に確保することが可能となる。 [0095] By diverging the third light beam by the second phase structure, recording is performed on the third optical disc. z It is possible to secure a sufficient working distance when performing regeneration.
[0096] 尚、項 29及び 30記載の構成において、第 1位相構造 (又は、第 2位相構造)により 第 2光束 (又は、第 3光束)を発散させるとは、これら位相構造により入射光束に対し て付加される光路差を後述の [光路差関数]で表した場合に、回折次数 M、 2次の回 折面係数 Bにより— 2 ·Μ· Βで定義される回折構造の近軸パワーの符号が負である  [0096] In the configurations described in the paragraphs 29 and 30, "diverging the second light beam (or the third light beam) by the first phase structure (or the second phase structure)" means that the incident light beam is generated by these phase structures. The paraxial power of the diffractive structure defined by the diffraction order M and the second-order diffraction surface coefficient B when the optical path difference to be added is expressed by [optical path difference function] described later. The sign of is negative
2 2  twenty two
ことと同義である。  Synonymous with that.
[0097] 項 31記載の構成は、項 7又は 8に記載の対物光学系において、前記第 1位相構造 は、前記第 1波長 λ 1が ± 5nm以内で波長変化した際に前記対物光学系で発生す る近軸像点位置の移動を抑制する機能を有する。  [0097] The configuration according to Item 31 is the objective optical system according to Item 7 or 8, wherein the first phase structure is used in the objective optical system when the first wavelength λ1 changes in wavelength within ± 5 nm. It has a function of suppressing the movement of the paraxial image point position that occurs.
[0098] 光軸を含む断面形状が鋸歯型或いは階段型となる回折構造では、 t の差に起  [0098] In a diffraction structure in which the cross-sectional shape including the optical axis has a saw-tooth shape or a step-like shape, the difference in t
1 2 因する球面収差、又は第 1波長 λ と第 2波長 λ の差に起因する球面収差を補正す  1 Correct spherical aberration caused by 2 or the difference between the first wavelength λ and the second wavelength λ.
1 2  1 2
る機能のほかに、第 1波長え ± 5nmの波長領域での近軸像点位置の移動を抑制  In addition to the function, the movement of the paraxial image point in the first wavelength range of ± 5 nm is suppressed.
1  1
する機能も持たせることが可能である。項 31記載の構成によれば、再生から記録に 切り替える際の第 1光源の出力の変化に伴ってモードホップが起きた場合でも、集光 スポットが大きくならず、常に良好な集光状態を維持することが可能となる。  Function can be provided. According to the configuration described in Item 31, even if a mode hop occurs due to a change in the output of the first light source when switching from reproduction to recording, the focused spot does not become large and a good focused state is always maintained. It is possible to do.
[0099] 項 32記載の構成は、項 1乃至 31の何れか一項に記載の対物光学系において、前 記第 1収差補正素子と前記第 2収差補正素子の少なくとも一方は、前記第 1波長 λ に対して負の近軸パワーを有する。 [0099] Item 32 is the objective optical system according to any one of Items 1 to 31, wherein at least one of the first aberration correction element and the second aberration correction element is the first wavelength. It has a negative paraxial power with respect to λ.
[0100] 項 32記載のように、前記第 1収差補正素子及び前記第 2収差補正素子の少なくと も一方の第 1波長 λ に対する近軸パワー(回折パワーと屈折パワーとの合成パワー)  [0100] As described in Item 32, paraxial power (combined power of diffraction power and refraction power) for at least one of the first aberration correction element and the second aberration correction element with respect to the first wavelength λ.
1  1
を負とすると、光ディスクに対する記録/再生時の作動距離を大きく確保することが 可能となる。この場合、対物レンズの設計倍率は負であることが好ましぐ更には、第 1波長え と第 1光ディスクの保護層の厚さ tiに対して球面収差補正が最小となるよう If the value is negative, it is possible to secure a large working distance when recording / reproducing with respect to the optical disk. In this case, it is preferable that the design magnification of the objective lens is negative. Furthermore, spherical aberration correction is minimized with respect to the first wavelength and the thickness ti of the protective layer of the first optical disc.
1 1
に、その非球面形状が決定されているのがより好ましい。  More preferably, the aspherical shape is determined.
[0101] 項 33記載の構成は、項 1乃至 32の何れか一項に記載の対物光学系において、前 記第 1光束乃至前記第 3光束は全て前記第 1収差補正素子及び前記第 2収差補正 素子に対して平行光束の状態で入射する。  [0101] In the configuration according to Item 33, in the objective optical system according to any one of Items 1 to 32, the first to third light beams are all the first aberration correction element and the second aberration light. The light enters the correction element in the form of a parallel light beam.
[0102] 項 33に記載の構成によれば、対物光学系がトラッキング駆動した場合でも物点位 置が変化しないので、いずれの波長の光束に対しても良好なトラッキング特性が得ら れる。 [0102] According to the configuration described in Item 33, even when the objective optical system performs tracking driving, the object point Since the arrangement does not change, good tracking characteristics can be obtained for light beams of any wavelength.
[0103] 項 34記載の構成は、項 1に記載の対物光学系において、前記第 1収差補正素子 は、 d線におけるアッベ数 V 1が(1)式を満たすとともに第 1位相構造を有し、前記第 d  [0103] In the configuration according to Item 34, in the objective optical system according to Item 1, the first aberration correction element has an Abbe number V1 at d-line satisfying Expression (1) and a first phase structure. The said d
2収差補正素子は、 d線におけるアッベ数 V 2が(2)式を満たすとともに第 2位相構 d  (2) The aberration correction element has the Abbe number V 2 at the d-line satisfying the expression (2) and the second phase structure d
造を有する。  Has structure.
[0104] 項 35記載の構成は、項 2に記載の対物光学系において、前記第 1収差補正素子 は、 d線における屈折率 n 1が(3)式を満たすとともに第 1位相構造を有し、前記第 2 d  [0104] In the configuration according to Item 35, in the objective optical system according to Item 2, the first aberration correction element has a refractive index n1 at d-line satisfying Expression (3) and a first phase structure. The second d
収差補正素子は、 d線における屈折率 n 2が (4)式を満たすとともに第 2位相構造を d  The aberration correction element has a refractive index n 2 at d-line that satisfies equation (4) and a second phase structure
有する。  Have.
[0105] 項 36記載の構成は、項 1乃至 35の何れか一項に記載の対物光学系において、前 記第 1収差補正素子は前記第 1波長 λ に対して正の近軸パワーを有し、前記第 2収 差補正素子は前記第 1波長 λ に対して負の近軸パワーを有する。  [0105] The configuration according to Item 36 is the objective optical system according to any one of Items 1 to 35, wherein the first aberration correction element has a positive paraxial power with respect to the first wavelength λ. The second error correction element has a negative paraxial power with respect to the first wavelength λ.
[0106] 項 36記載の構成によれば、正レンズである第 1収差補正素子と負レンズである第 2 収差補正素子の分散の差を利用して、第 1波長 λ ± 5nmの波長領域での近軸像 点位置の移動を抑制することができるので、再生から記録に切り替える際の第 1光源 の出力の変化に伴ってモードホップが起きた場合でも、集光スポットが大きくならず、 常に良好な集光状態を維持することが可能となる。  According to the configuration described in Item 36, in the wavelength region of the first wavelength λ ± 5 nm, the difference in dispersion between the first aberration correction element that is a positive lens and the second aberration correction element that is a negative lens is used. The movement of the paraxial image point position can be suppressed, so even if a mode hop occurs due to a change in the output of the first light source when switching from playback to recording, the focused spot does not increase, and It is possible to maintain a good light-collecting state.
[0107] 項 37記載の構成は、項 36記載の対物光学系において、前記第 1収差補正素子と 前記第 2収差補正素子は互いに接合されて成り、前記第 1収差補正素子と前記第 2 収差補正素子の接合面は、前記第 2収差補正素子側に凸の形状を有することを特 長とする。  Item 37 is the objective optical system according to Item 36, wherein the first aberration correction element and the second aberration correction element are joined to each other, and the first aberration correction element and the second aberration It is characterized in that the joint surface of the correction element has a convex shape on the side of the second aberration correction element.
[0108] より良好に第 1波長; I ± 5nmの波長領域での近軸像点位置の移動を抑制するた  [0108] The movement of the paraxial image point position in the wavelength region of the first wavelength; I ± 5 nm is better suppressed.
1  1
めには、項 37に記載のように、第 1収差補正素子と第 2収差補正素子を互いに接合 する構成とするのが好ましレヽ。  In order to achieve this, it is preferable that the first aberration correction element and the second aberration correction element are joined to each other as described in Item 37.
[0109] 項 38記載の構成は、項 24記載の対物光学系において、前記第 1位相構造と前記 第 2位相構造のうち、紫外線硬化性樹脂、又は熱硬化性樹脂から形成された位相構 造の表面には、非加熱反射防止コートが形成されてレ、る。 [0110] 項 38記載の構成によれば、耐熱性が比較的低レ、紫外線硬化性樹脂や熱硬化性 樹脂から形成された位相構造の表面に反射防止コートを形成することが可能となる ので、第 1収差補正素子及び前記第 2収差補正素子の透過率を向上させることが可 能となる。 Item 38 is the objective optical system according to Item 24, wherein the phase structure formed of an ultraviolet curable resin or a thermosetting resin among the first phase structure and the second phase structure. A non-heat-reflection anti-reflection coat is formed on the surface of. [0110] According to the configuration described in Item 38, the heat resistance is relatively low, and the antireflection coat can be formed on the surface of the phase structure formed of the ultraviolet curable resin or the thermosetting resin. Thus, the transmittance of the first aberration correction element and the second aberration correction element can be improved.
[0111] 項 39記載の構成は、項 23記載の対物光学系において、前記第 1位相構造は、環 状ポレオレフイン系樹脂から形成され、前記第 2位相構造は、フルオレン系ポリエステ ル樹脂から形成されている。  [0111] The configuration according to Item 39 is the objective optical system according to Item 23, wherein the first phase structure is formed of a cyclic oleolefin resin, and the second phase structure is formed of a fluorene-based polyester resin. ing.
[0112] 項 39記載の構成によると、環状ポレオレフイン系樹脂から形成することで第 1位相 構造に対して低分散性を与えることができ、フルオレン系ポリエステル樹脂から形成 することで第 2位相構造に対して高分散性を与えることができるので、何れの波長の 光束に対しても高い透過率(回折効率)を確保することが可能となる。尚、環状ポレオ レフイン系樹脂として日本ゼオン社製のゼォネックス (登録商標)や三井化学社製の ァペル (登録商標)等を使用し、フルオレン系ポリエステル樹脂として大阪ガスケミカ ル社製の OKP4等を使用するのが好ましぐこれにより金型を用いた成形法によりそ れぞれの位相構造を製造することが可能となるので量産に適している。  [0112] According to the constitution of Item 39, by forming the resin from the cyclic oleolefin-based resin, low dispersibility can be given to the first phase structure, and by forming the material from the fluorene-based polyester resin, the second phase structure can be formed. On the other hand, high dispersibility can be provided, so that high transmittance (diffraction efficiency) can be ensured for light beams of any wavelength. In addition, ZEONEX (registered trademark) manufactured by Zeon Corporation or Apel (registered trademark) manufactured by Mitsui Chemicals, Inc. is used as the cyclic oleo-refin resin, and OKP4 manufactured by Osaka Gas Chemical Company is used as the fluorene-based polyester resin. This is suitable for mass production because each phase structure can be manufactured by a molding method using a mold.
[0113] 項 40記載の構成は、項 4乃至 6の何れか一項に記載の対物光学系において、前 記第 1位相構造が形成された光学面は、光軸を含む第 1中央領域と、該第 1中央領 域を囲む第 1周辺領域とに分割され、前記第 1位相構造は、前記第 1中央領域に形 成される。  [0113] The configuration according to Item 40 is the object optical system according to any one of Items 4 to 6, wherein the optical surface on which the first phase structure is formed has a first central region including an optical axis. And a first peripheral region surrounding the first central region, wherein the first phase structure is formed in the first central region.
[0114] 項 40に記載の構成によれば、第 1中央領域を第 2光ディスクに対して情報の記録 Z再生を行うのに必要な開口数 (NA )内に相当する領域とすることで、 tと tの差に  [0114] According to the configuration described in Item 40, by setting the first central area as an area corresponding to a numerical aperture (NA) required for recording and reproducing information Z on the second optical disc, the difference between t and t
2 1 2 起因する球面収差、又は第 1波長; I と第 2波長 λ の差に起因する球面収差を ΝΑ  2 1 2 spherical aberration due to the first wavelength or spherical aberration due to the difference between I and the second wavelength λ
1 2 2 内(第 1中央領域)だけで補正し、 ΝΑより外側の領域(第 1周辺領域)では力かる球  1 2 2 Correct only inside (first central area), で は Stronger sphere outside area (first peripheral area)
2  2
面収差が補正されないようにすることが可能となる。これにより、 ΝΑより外側の領域  It is possible to prevent the surface aberration from being corrected. As a result, the area outside ΝΑ
2  2
を通過する第 2波長 λ の光束をスポット形成に寄与しないフレア成分とすることがで  The luminous flux of the second wavelength λ that passes through the
2  2
きるので、本発明による対物光学系に対して、第 2波長 λ の光束に対応した開口制  Therefore, the objective optical system according to the present invention has an aperture control corresponding to the light beam of the second wavelength λ.
2  2
限機能を持たせることが可能となる。  Function can be provided.
[0115] 項 41記載の構成は、項 40に記載の対物光学系において、前記第 1周辺領域の少 なくとも一部には、この部分を通過する前記第 2光束の集光位置を制御するための 第 4位相構造が形成され、該第 4位相構造は、前記第 1光束及び前記第 3光束を回 折せず、前記第 2光束を回折する回折構造である。 [0115] The configuration according to Item 41 is the objective optical system according to Item 40, wherein the first peripheral region has a small size. At least in part, a fourth phase structure for controlling the condensing position of the second light beam passing through this portion is formed, and the fourth phase structure converts the first light beam and the third light beam. This is a diffraction structure that diffracts the second light beam without diffraction.
[0116] 項 41に記載の構成によれば、第 1中央領域に形成した第 1位相構造の第 2波長 λ に対する回折パワーと、第 1周辺領域に形成した第 4位相構造の第 2波長 λ に対[0116] According to the configuration described in Item 41, the diffraction power for the second wavelength λ of the first phase structure formed in the first central region and the second wavelength λ of the fourth phase structure formed in the first peripheral region are provided. To
2 2 する回折パワーを異ならしめることにより、第 4位相構造を通過する第 2光束が集光す る位置や球面収差量を任意に制御することができる。このとき、光検出器による第 2 光束のフォーカスエラー信号の検出特性が最良となるように第 4位相構造を設計する ことで、第 2光ディスクに対する情報の記録/再生時の対物光学系のフォーカシング 特性を向上させることが可能となる。 By making the diffraction powers different from each other, it is possible to arbitrarily control the position at which the second light beam passing through the fourth phase structure is collected and the amount of spherical aberration. At this time, by designing the fourth phase structure so that the detection characteristic of the focus error signal of the second light beam by the photodetector is the best, the focusing characteristic of the objective optical system at the time of recording / reproducing information on / from the second optical disc is achieved. Can be improved.
[0117] 尚、必ずしも、第 1周辺領域内全体で第 2光束の集光位置や球面収差量を制御す る必要はなぐ第 4位相構造が第 2周辺領域に形成されていないとした場合に、フォ 一カスエラー信号の検出特性に悪影響を及ぼす部分のみで第 2光束の集光位置や 球面収差量を制御すればよい。そのため、必ずしも、第 4位相構造を第 1周辺領域全 体に形成する必要はなぐこれにより、第 4位相構造が形成される範囲が不必要に広 くならずにすむので、第 1光束や第 3光束の透過率を向上させることが可能となる。  [0117] Note that it is not necessary to control the condensing position of the second light flux and the amount of spherical aberration in the entire first peripheral region, and the fourth phase structure is not necessarily formed in the second peripheral region. It is only necessary to control the condensing position of the second light beam and the amount of spherical aberration only in a portion that adversely affects the detection characteristic of the focus error signal. Therefore, it is not always necessary to form the fourth phase structure over the entire first peripheral region.This prevents the range in which the fourth phase structure is formed from being unnecessarily widened. 3 It is possible to improve the transmittance of the light beam.
[0118] 項 42記載の構成は、項 10乃至 12の何れか一項に記載の対物光学系において、 前記第 2位相構造が形成された光学面は、光軸を含む第 2中央領域と、該第 2中央 領域を囲む第 2周辺領域とに分割され、前記第 2位相構造は、前記第 2中央領域に 形成される。  [0118] The configuration according to Item 42 is the objective optical system according to any one of Items 10 to 12, wherein the optical surface on which the second phase structure is formed includes: a second central region including an optical axis; Divided into a second peripheral region surrounding the second central region, the second phase structure is formed in the second central region.
[0119] 項 42に記載の構成によれば、第 2中央領域を第 3光ディスクに対して情報の記録 Ζ再生を行うのに必要な開口数 (ΝΑ )内に相当する領域とすることで、 tと tの差に  [0119] According to the configuration described in Item 42, the second central area is an area corresponding to a numerical aperture (ΝΑ) necessary for recording / reproducing information on / from the third optical disc, the difference between t and t
3 1 3 起因する球面収差を NA内(第 2中央領域)だけで補正し、 NAより外側の領域 (第  The spherical aberration caused by 3 13 is corrected only within the NA (second central area), and the area outside the NA (second
3 3  3 3
2周辺領域)ではかかる球面収差が補正されないようにすることが可能となる。これに より、 NAより外側の領域を通過する第 3波長 λ の光束をスポット形成に寄与しない  In the (2 peripheral areas), it is possible to prevent such spherical aberration from being corrected. As a result, the luminous flux of the third wavelength λ passing through the area outside the NA does not contribute to spot formation.
3 3  3 3
フレア成分とすることができるので、本発明による対物光学系に対して、第 3波長; I  Since it can be a flare component, the third wavelength;
3 の光束に対応した開口制限機能を持たせることが可能となる。  It is possible to provide an aperture limiting function corresponding to the light flux of No. 3.
[0120] 項 43記載の構成は、項 42に記載の対物光学系において、前記第 2周辺領域の少 なくとも一部には、この部分を通過する前記第 3光束の集光位置を制御するための 第 5位相構造が形成され、該第 5位相構造は、前記第 1光束及び前記第 2光束を回 折せず、前記第 3光束を回折する回折構造である。 [0120] The configuration described in Item 43 is the objective optical system according to Item 42, wherein the second peripheral region has a small size. At least in part, a fifth phase structure for controlling the condensing position of the third light beam passing through this portion is formed, and the fifth phase structure converts the first light beam and the second light beam. It is a diffraction structure that diffracts the third light beam without diffraction.
[0121] 項 43に記載の構成によれば、項 41に記載の構成と同様に、第 5位相構造を通過 する第 3光束が集光する位置や球面収差量を任意に制御することができるので第 3 光ディスクに対する情報の記録 Z再生時の対物光学系のフォーカシング特性を向上 させることが可能となる。 [0121] According to the configuration described in Item 43, similarly to the configuration described in Item 41, it is possible to arbitrarily control the position where the third light flux passing through the fifth phase structure is collected and the amount of spherical aberration. Therefore, it is possible to improve the focusing characteristics of the objective optical system at the time of recording information on the third optical disc and reproducing Z information.
[0122] 項 44記載の構成は、項 1乃至 43の何れか一項に記載の対物光学系において、前 記第 1波長え に対するバックフォーカス fBと前記第 2波長 λ に対するバックフォー [0122] The configuration described in Item 44 is characterized in that, in the objective optical system according to any one of Items 1 to 43, the back focus fB for the first wavelength and the back focus fB for the second wavelength λ.
1 1 2  1 1 2
カス fBとの差と、前記第 1波長え に対するバックフォーカス fBと前記第 2波長 λ に  The difference between the scum fB and the back focus fB with respect to the first wavelength and the second wavelength λ
2 1 1 3 対するバックフォーカス fBとの差が何れも 0, 2mm以下である。  The difference from the back focus fB with respect to 2 1 1 3 is 0.2 mm or less.
3  Three
[0123] 項 44に記載の構成によれば、第 1光ディスク乃至第 3光ディスクに対する情報の記 録*再生時における作動距離の差が小さくなるので、対物光学系のフォーカシング用 のァクチユエータのストロークが小さくてすみ、ァクチユエータの小型化が実現できる 。尚、ここでいう「第 i波長 λに対するバックフォーカス fB」とは、第 i光ディスクの情報 記録面上に第 i光束が合焦した際の、対物光学系と第 i光ディスクとの光軸上の間隔 のことを指す。  [0123] According to the configuration described in Item 44, since the difference in the working distance at the time of recording / reproducing information on the first to third optical disks is reduced, the stroke of the focusing actuator of the objective optical system is reduced. As a result, the size of the actuator can be reduced. Here, the “back focus fB with respect to the i-th wavelength λ” is defined as the position on the optical axis of the objective optical system and the i-th optical disc when the i-th light beam is focused on the information recording surface of the i-th optical disc. Refers to the interval.
[0124] 項 45記載の構成は、項 11又は 12に記載の対物光学系において、前記第 2位相構 造の前記パターンの最小幅 Λ の前記第 1波長 λ に対する比 Λ / λ 力 S25以上で  [0124] The configuration according to Item 45 is characterized in that, in the objective optical system according to Item 11 or 12, the ratio 最小 / λ power S25 of the minimum width の of the pattern of the second phase structure to the first wavelength λ is equal to or more than S25.
Μ 1 M l  Μ 1 M l
ある。  is there.
[0125] 項 45に記載の構成によれば、第 1波長; I に対して第 2位相構造の前記パターンの  [0125] According to the configuration described in Item 45, the pattern of the second phase structure with respect to the first wavelength;
1  1
最小幅 Λ が十分に大きく確保されるので、第 1波長; I の回折効率のベクトル計算  Since the minimum width Λ is sufficiently large, the vector calculation of the diffraction efficiency of the first wavelength; I
M 1  M 1
値が高くなるとともに、第 2位相構造の形状誤差による回折効率低下が小さくなる。  As the value increases, the reduction in diffraction efficiency due to the shape error of the second phase structure decreases.
[0126] 項 46記載の構成は、項 1乃至 45の何れか一項に記載の対物光学系において、前 記第 1位相構造は、前記第 1収差補正素子の表面に形成され、前記第 2位相構造は[0126] The configuration according to Item 46 is the objective optical system according to any one of Items 1 to 45, wherein the first phase structure is formed on a surface of the first aberration correction element, and The phase structure is
、前記第 2収差補正素子の表面に形成されている。 Are formed on the surface of the second aberration correction element.
[0127] 項 46記載の構成によると、第 1位相構造と第 2位相構造はともに空気との界面に形 成されることになるので、第 1収差補正素子を透過した第 1光束の波面と、第 2収差補 正素子を透過した第 1光束の波面は、それぞれ透過率が高い状態となる。従って、 第 1光束用の干渉計により、それぞれの収差補正素子の波面収差評価を行うことが 可能であるので、それぞれの収差補正素子を製造する際の性能出しが容易になる。 [0127] According to the configuration described in Item 46, since both the first phase structure and the second phase structure are formed at the interface with the air, the wavefront of the first light beam transmitted through the first aberration correction element is , Second aberration compensation The wavefronts of the first light flux transmitted through the positive element are in a state of high transmittance. Therefore, it is possible to evaluate the wavefront aberration of each aberration correction element by the interferometer for the first light beam, and it is easy to obtain the performance when manufacturing each aberration correction element.
[0128] 項 47記載の構成は、項 5に記載の対物光学系において、前記第 1位相構造と前記 第 2位相構造は、何れも平面上に形成される。  [0128] In the configuration according to Item 47, in the objective optical system according to Item 5, both the first phase structure and the second phase structure are formed on a plane.
[0129] 項 48記載の構成は、項 11に記載の対物光学系において、前記第 1位相構造と前 記第 2位相構造は、何れも平面上に形成される。  [0129] In the structure according to Item 48, in the objective optical system according to Item 11, both the first phase structure and the second phase structure are formed on a plane.
[0130] 項 47および 48記載の構成によると、第 1位相構造や第 2位相構造の製造が容易に なる。  [0130] According to the configurations described in the paragraphs 47 and 48, the first phase structure and the second phase structure are easily manufactured.
[0131] 項 49記載の構成は、項 1乃至 48の何れか一項に記載の対物光学系において、前 記第 1収差補正素子及び前記第 2収差補正素子と、前記対物レンズとは、相対的な 位置関係が普遍となるように保持部材により保持されている。  [0131] The configuration according to Item 49 is the object optical system according to any one of Items 1 to 48, wherein the first aberration correction element and the second aberration correction element are relative to the objective lens. It is held by the holding member so that the general positional relationship is universal.
[0132] 項 49記載の構成によると、対物光学系がトラッキングした場合でも第 1収差補正素 子及び第 2収差補正素子と対物レンズの光軸がずれることがなレ、ので、コマ収差の 発生がなく良好なトラッキング特性が得られる。 [0132] According to the configuration described in Item 49, even when the objective optical system performs tracking, the optical axes of the first aberration correction element and the second aberration correction element and the objective lens do not deviate, so that coma occurs. And good tracking characteristics can be obtained.
[0133] 項 50記載の構成は、第 1光ディスクに対して情報の記録及び/又は再生を行うた めに第 1波長 λ の第 1光束を射出する第 1光源と、第 2光ディスクに対して情報の記 [0133] The configuration according to item 50 is characterized in that a first light source that emits a first light beam of a first wavelength λ for recording and / or reproducing information on the first optical disc, and a second light source Writing information
1  1
録及び Ζ又は再生を行うために第 2波長 λ ( > λ )の第 2光束を射出する第 2光源  A second light source that emits a second light beam of a second wavelength λ (> λ) for recording and recording or reproduction
2 1  twenty one
と、第 3光ディスクに対して情報の記録及び Ζ又は再生を行うために第 3波長; I ( >  And a third wavelength for recording and reading or reproducing information on the third optical disc; I (>
3 λ )の第 3光束を射出する第 3光源と、請求の範囲第 1乃至 49項に記載の対物光学 A third light source that emits a third light beam of (3λ), and the objective optical according to any one of claims 1 to 49.
2 2
系と、を備え、  And a system,
前記第 1光束を用いて厚さ tの保護層を有する第 1光ディスクに対して情報の記録 及び Z又は再生を行い、前記第 2光束を用いて厚さ t (≥t )の保護層を有する第 2  The first optical disk is used to record and Z or reproduce information on a first optical disk having a protective layer having a thickness of t, and has a protective layer having a thickness of t (≥t) using the second optical beam. No. 2
2 1  twenty one
光ディスクに対して情報の記録及び/又は再生を行レ、、前記第 3光束を用いて厚さ t ( >t )の保護層を有する第 3光ディスクに対して情報の記録及び/又は再生を行う Recording and / or reproducing information on / from the optical disc, and recording / reproducing information on / from the third optical disc having a protective layer having a thickness t (> t) using the third light flux.
3 2 3 2
光ピックアップ装置である。  An optical pickup device.
[0134] 項 50によれば、項 1乃至 49のいずれか一項と同様の効果を有する光ピックアップ 装置を得られる。 [0135] 項 51記載の構成は、項 50に記載の光ピックアップ装置、及び前記光ピックアップ 装置を前記光情報記録媒体の半径方向に移動させる移動装置を搭載した光デイス クドライブ装置である。 According to Item 50, an optical pickup device having the same effects as in any one of Items 1 to 49 can be obtained. [0135] Item 51 is the optical disk drive device equipped with the optical pickup device according to item 50 and a moving device that moves the optical pickup device in a radial direction of the optical information recording medium.
[0136] 項 51によれば、項 50と同様の効果を有する光ディスクドライブ装置を得られる。  According to the item 51, an optical disk drive having the same effect as the item 50 can be obtained.
[第 1の実施の形態]  [First Embodiment]
以下、本発明の第 1の実施の形態について図面を用いて説明する。まず、図 1を用 レ、て本発明の対物光学系及びこの対物光学系を用いた光ピックアップ装置について 説明する。  Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. First, the objective optical system of the present invention and an optical pickup device using this objective optical system will be described with reference to FIG.
[0137] 図 1は、高密度光ディスク HDと DVDと CDとの何れに対しても適切に情報の記録 /再生を行える光ピックアップ装置 PUの構成を概略的に示す図である。 HDの光学 的仕様は、第 1波長 λ =408nm、保護層 PL1の厚さ t =0. lmm、開口数 NA = 0. 85であり、 DVDの光学的仕様は、第 2波長 λ = 658nm、保護層 PL2の厚さ t  FIG. 1 is a diagram schematically showing a configuration of an optical pickup device PU capable of appropriately recording / reproducing information on any of a high-density optical disk HD, a DVD, and a CD. The optical specifications of HD are the first wavelength λ = 408 nm, the thickness t of the protective layer PL1 = 0.1 mm, and the numerical aperture NA = 0.85.The optical specifications of DVD are the second wavelength λ = 658 nm, Protection layer PL2 thickness t
2 2 twenty two
=0. 6mm、開口数 NA =0. 65であり、 CDの光学的仕様は、第 3波長 λ = 785η = 0.6 mm, numerical aperture NA = 0.65, and the optical specification of the CD is the third wavelength λ = 785η
2 3 m、保護層 PL3の厚さ t = 1. 2mm、開口数 NA =0. 50である。但し、波長、保護  23 m, protective layer PL3 thickness t = 1.2 mm, numerical aperture NA = 0.50. However, wavelength, protection
3 3  3 3
層の厚さ、及び開口数の組合せはこれに限られない。  The combination of the layer thickness and the numerical aperture is not limited to this.
[0138] 光ピックアップ装置 PUは、 HDに対して情報の記録/再生を行う場合に発光され 4 05nmの青紫色レーザ光束 (第 1光束)を射出する青紫色半導体レーザ LD1、 DVD に対して情報の記録/再生を行う場合に発光され 655nmの赤色レーザ光束(第 2光 束)を射出する第 1の発光点 EP1と、 CDに対して情報の記録/再生を行う場合に発 光され 785nmの赤外レーザ光束 (第 3光束)を射出する第 2の発光点 EP2とを一つ のチップ上に形成した DVD/CD用レーザ光源ユニット LU、 HDZDVD/CD共 用の光検出器 PD、第 1収差補正素子 Ll、第 2収差補正素子 L2と、第 1収差補正素 子 L1及び第 2収差補正素子 L2を透過したレーザ光束を情報記録面 RL1、 RL2、 R L3上に集光させる機能を有する両面が非球面とされた対物レンズ OLとから構成さ れた対物レンズユニット〇U (対物光学系)、 2軸ァクチユエータ AC1、 1軸ァクチユエ ータ AC2、近軸における屈折力が負である第 1レンズ EXP1と近軸における屈折力 が正である第 2レンズ EXP2と力 構成されたエキスパンダーレンズ EXP、第 1偏光ビ 一ムスプリッタ BS1、第 2偏光ビームスプリッタ BS2、第 1コリメートレンズ C〇L1、第 2 コリメートレンズ C〇L2、第 3コリメートレンズ C〇L3、情報記録面 RL1、 RL2及び RL 3からの反射光束に対して非点収差を付カ卩するためのセンサーレンズ SENと力 構 成されている。尚、 HD用の光源として、上述の青紫色半導体レーザ LD1の他に青 紫色 SHGレーザを使用することもできる。 [0138] The optical pickup device PU emits information when recording / reproducing information to / from the HD, emits a blue-violet laser beam (first light beam) of 405 nm, and emits information to the blue-violet semiconductor laser LD1 and DVD. The first emission point EP1, which emits a 655 nm red laser beam (second beam) and emits light when recording / reproducing data, and emits 785 nm light when recording / reproducing information on CDs A laser light source unit LU for DVD / CD, a photodetector PD for HDZDVD / CD, and a second light emitting point EP2 that emits an infrared laser beam (third beam) formed on one chip. It has a function of converging the laser beam transmitted through the first and second aberration correction elements L1 and L2 onto the information recording surfaces RL1, RL2 and R L3. Objective lens unit 〇U (objective optical system) composed of an objective lens OL with aspheric surfaces on both sides, 2-axis Actuator AC1, single-axis actuator AC2, first lens EXP1 with negative paraxial refractive power, second lens EXP2 with positive paraxial refractive power, and expander lens EXP, first polarized lens One splitter BS1, 2nd polarizing beam splitter BS2, 1st collimating lens C〇L1, 2nd It is composed of a collimating lens C〇L2, a third collimating lens C〇L3, and a sensor lens SEN for adding astigmatism to the reflected light beams from the information recording surfaces RL1, RL2 and RL3. . As a light source for HD, a blue-violet SHG laser may be used in addition to the above-mentioned blue-violet semiconductor laser LD1.
[0139] 光ピックアップ装置 PUにおいて、 HDに対して情報の記録 Z再生を行う場合には、 図 1におレ、て実線でその光線経路を描レ、たように、まず青紫色半導体レーザ LD1を 発光させる。青紫色半導体レーザ LD1から射出された発散光束は、第 1コリメ一トレ ンズ COL1により平行光束に変換された後、第 1偏光ビームスプリッタ BS1により反射 され、第 2偏光ビームスプリッタ BS2を通過し、第 1レンズ EXP1、第 2レンズ EXP2を 透過することにより拡径された後、図示しない絞り STOにより光束径が規制され、対 物レンズユニット OUによって HDの保護層 PL1を介して情報記録面 RL1上に形成さ れるスポットとなる。対物レンズユニット OUは、その周辺に配置された 2軸ァクチユエ ータ AC1によってフォーカシングゃトラッキングを行う。  [0139] In the optical pickup device PU, when performing Z recording and reproducing of information for HD, as shown in Fig. 1, the light path is drawn by a solid line, and first, the blue-violet semiconductor laser LD1 is used. To emit light. The divergent light beam emitted from the blue-violet semiconductor laser LD1 is converted into a parallel light beam by the first collimator lens COL1, then reflected by the first polarizing beam splitter BS1, passes through the second polarizing beam splitter BS2, and After passing through the 1 lens EXP1 and the 2nd lens EXP2, the beam diameter is regulated by the aperture STO (not shown), and the luminous flux diameter is regulated by the objective lens unit OU on the information recording surface RL1 via the HD protective layer PL1. It is a spot that is formed. The objective lens unit OU performs focusing and tracking by a two-axis actuator AC1 arranged around it.
[0140] 情報記録面 RL1で情報ピットにより変調された反射光束は、再び対物レンズュニッ ト OU、第 2レンズ EXP2、第 1レンズ EXP1、第 2偏光ビームスプリッタ BS2、第 1偏光 ビームスプリッタ BS1を透過した後、第 3コリメートレンズ COL3を通過する際に収斂 光束となり、センサーレンズ SENにより非点収差が付加され、光検出器 PDの受光面 上に収束する。そして、光検出器 PDの出力信号を用いて HDに記録された情報を読 み取ること力 Sできる。  [0140] The reflected light flux modulated by the information pits on the information recording surface RL1 has passed through the objective lens unit OU, the second lens EXP2, the first lens EXP1, the second polarizing beam splitter BS2, and the first polarizing beam splitter BS1 again. Later, when the light passes through the third collimating lens COL3, it becomes a convergent light beam, and astigmatism is added by the sensor lens SEN, and converges on the light receiving surface of the photodetector PD. Then, it is possible to read information recorded in the HD using the output signal of the photodetector PD.
[0141] また、光ピックアップ装置 PUにおいて、 DVDに対して情報の記録 Z再生を行う場 合には、発光点 EP1を発光させる。発光点 EP1から射出された発散光束は、図 1に おいて破線でその光線経路を描いたように、第 2コリメートレンズ COL2により平行光 束に変換された後、第 2偏光ビームスプリッタ BS2により反射され、第 1レンズ EXP1、 第 2レンズ EXP2を透過することにより拡径され、対物レンズユニット OUによって DV Dの保護層 PL2を介して情報記録面 RL2上に形成されるスポットとなる。対物レンズ ユニット OUは、その周辺に配置された 2軸ァクチユエータ AC1によってフォーカシン グゃトラッキングを行う。  [0141] In addition, in the case where information is recorded on and reproduced from a DVD in the optical pickup device PU, the light emitting point EP1 emits light. The divergent light beam emitted from the light emitting point EP1 is converted into a parallel light beam by the second collimating lens COL2 and then reflected by the second polarizing beam splitter BS2, as indicated by the broken line in FIG. Then, the diameter is increased by passing through the first lens EXP1 and the second lens EXP2, and becomes a spot formed on the information recording surface RL2 by the objective lens unit OU via the DVD protective layer PL2. The objective lens unit OU performs focusing and tracking by a two-axis actuator AC1 arranged around it.
[0142] 情報記録面 RL2で情報ピットにより変調された反射光束は、再び対物レンズュニッ ト OU、第 2レンズ EXP2、第 1レンズ EXP1、第 2偏光ビームスプリッタ BS2、第 1偏光 ビームスプリッタ BS1を透過した後、第 3コリメートレンズ COL3を通過する際に収斂 光束となり、センサーレンズ SENにより非点収差が付加され、光検出器 PDの受光面 上に収束する。そして、光検出器 PDの出力信号を用いて DVDに記録された情報を 読み取ること力 Sできる。 [0142] The reflected luminous flux modulated by the information pits on the information recording surface RL2 is returned to the objective lens unit. G OU, the second lens EXP2, the first lens EXP1, the second polarizing beam splitter BS2, and after passing through the first polarizing beam splitter BS1, pass through the third collimating lens COL3 to become a convergent light flux, which is not reflected by the sensor lens SEN. Astigmatism is added and converges on the light receiving surface of the photodetector PD. Then, it is possible to read the information recorded on the DVD using the output signal of the photodetector PD.
[0143] また、光ピックアップ装置 PUにおいて、 CDに対して情報の記録 Z再生を行う場合 には、第 1レンズ EXP1と第 2レンズ EXP2の間隔が HDに対する情報の記録/再生 時によりも狭くなるように、 1軸ァクチユエータ AC2により光軸方向に第 1レンズ EXP1 を駆動させた後、発光点 EP2を発光させる。発光点 EP2から射出された発散光束は 、図 1において一点鎖線でその光線経路を描いたように、第 2コリメートレンズ COL2 により緩い発散光束に変換された後、第 2偏光ビームスプリッタ BS2により反射され、 第 1レンズ EXP1、第 2レンズ EXP2を透過することにより拡径されるとともに発散光束 に変換され、対物レンズユニット OUによって CDの保護層 PL3を介して情報記録面 RL3上に形成されるスポットとなる。対物レンズユニット OUは、その周辺に配置され た 2軸ァクチユエータ AC1によってフォーカシングゃトラッキングを行う。  [0143] Further, in the case where information recording Z reproduction is performed on a CD in the optical pickup device PU, the interval between the first lens EXP1 and the second lens EXP2 becomes narrower than when recording / reproducing information on the HD. After the first lens EXP1 is driven in the optical axis direction by the uniaxial actuator AC2, the light emitting point EP2 emits light. The divergent luminous flux emitted from the light emitting point EP2 is converted into a loose divergent luminous flux by the second collimating lens COL2 as shown by the dashed line in FIG. 1, and then reflected by the second polarizing beam splitter BS2. The spot formed on the information recording surface RL3 by the objective lens unit OU via the protective layer PL3 of the CD through the first lens EXP1 and the second lens EXP2 is expanded in diameter and converted into a divergent light beam by the objective lens unit OU. Become. The objective lens unit OU performs focusing and tracking by a two-axis actuator AC1 arranged around it.
[0144] 情報記録面 RL2で情報ピットにより変調された反射光束は、再び対物レンズュニッ ト OU、第 2レンズ EXP2、第 1レンズ EXP1、第 2偏光ビームスプリッタ BS2、第 1偏光 ビームスプリッタ BS1を透過した後、第 3コリメートレンズ COL3を通過する際に収斂 光束となり、センサーレンズ SENにより非点収差が付加され、光検出器 PDの受光面 上に収束する。そして、光検出器 PDの出力信号を用いて CDに記録された情報を読 み取ること力 Sできる。  [0144] The reflected light flux modulated by the information pits on the information recording surface RL2 again passes through the objective lens unit OU, the second lens EXP2, the first lens EXP1, the second polarization beam splitter BS2, and the first polarization beam splitter BS1. Later, when the light passes through the third collimating lens COL3, it becomes a convergent light beam, and astigmatism is added by the sensor lens SEN, and converges on the light receiving surface of the photodetector PD. Then, it is possible to read information recorded on the CD using the output signal of the photodetector PD.
[0145] 本実施形態における対物レンズユニット OUは、図 2に概略的に示すように、それぞ れ樹脂製の第 1位相構造 PS1と樹脂製の第 2位相構造 PS2を有し、互いに接合され た第 1収差補正素子 L1及び樹脂製の第 2収差補正素子 L2と、第 1波長 λ と HDの 保護層 PL1の厚さ tとに対して球面収差が最小となるようにその非球面形状が設計  As schematically shown in FIG. 2, the objective lens unit OU in the present embodiment has a first phase structure PS1 made of resin and a second phase structure PS2 made of resin, and is joined to each other. And the aspheric shape so that spherical aberration is minimized with respect to the first wavelength λ and the thickness t of the HD protective layer PL1. Design
1  1
されたガラス製の対物レンズ〇Lが、鏡枠 Bを介して同軸で一体化された構成を有す る。具体的には、円筒状の鏡枠 Bの一端に第 1収差補正素子 L1と第 2収差補正素子 L2とを接合した状態で嵌合固定し、他端に対物レンズ OLを嵌合固定して、これらを 光軸 Xに沿って同軸に一体化した構成となっている。 The glass objective lens ΔL is coaxially integrated through a lens frame B. Specifically, the first aberration correction element L1 and the second aberration correction element L2 are joined and fixed to one end of the cylindrical lens frame B while the objective lens OL is fitted and fixed to the other end. ,these It is configured to be coaxially integrated along the optical axis X.
[0146] なお、第 1収差補正素子 L1と第 2収差補正素子 L2の製造方法としては、第 1収差 補正素子 L1と第 2収差補正素子 L2をモールド成形で製造し、その後、互いの収差 補正素子を接合する方法であっても良いし、あるいは、モールド成形で製造した何れ か一方の収差補正素子上に、紫外線硬化性樹脂を塗布し、この紫外線硬化性樹脂 の表面に位相構造が形成されたモールドを押し当て、紫外線を照射することにより位 相構造を転写する方法であっても良レ、。紫外線硬化性樹脂の代わりに熱硬化性樹 脂をしても良い。 [0146] As a method of manufacturing the first aberration correction element L1 and the second aberration correction element L2, the first aberration correction element L1 and the second aberration correction element L2 are manufactured by molding, and thereafter, the respective aberration correction elements are corrected. A method of joining the elements may be used, or an ultraviolet curable resin is applied on one of the aberration correction elements manufactured by molding, and a phase structure is formed on the surface of the ultraviolet curable resin. A method in which a phase structure is transferred by pressing a molded mold and irradiating ultraviolet rays is acceptable. A thermosetting resin may be used instead of the ultraviolet curable resin.
[0147] また、本実施の形態では、第 1位相構造 PS1と第 2位相構造 PS2をともに樹脂製と したが、何れか一方の収差補正素子をガラス製とし、もう一方を樹脂製としても良い。 ガラス製の位相構造を有する収差補正素子の製造方法としては、モールド成形であ つても良いし、フォトリソグラフィとエッチングのプロセスを繰り返して回折構造を形成 する方法であっても良い。ガラス製の位相構造を有する収差補正素子をモールド成 形により製造する場合には、モールドの寿命を延ばし、回折構造の転写性を向上さ せるために、溶融状態での粘性が小さぐ且つ、ガラス転移点 Tgが 450°C以下のガ ラスを使用するのが好ましい。このようがガラスとしては、例えば、株式会社住田光学 ガラス製の「K— PG325」や「K— PG375」がある。なお、樹脂製の位相構造を有す る収差補正素子とガラス製の位相構造を有する収差補正素子を接合する方法として は、樹脂製の位相構造を有する収差補正素子をモールド成形で製造し、その後、ガ ラス製の位相構造を有する収差補正素子と接合する方法であっても良いし、ガラス製 の位相構造を有する収差補正素子上に紫外線硬化性樹脂を塗布し、この紫外線硬 化性樹脂の表面に位相構造が形成されたモールドを押し当て、紫外線を照射するこ とにより位相構造を転写する方法であっても良い。紫外線硬化性樹脂の代わりに熱 硬化'性樹脂をしても良い。  [0147] Further, in the present embodiment, both first phase structure PS1 and second phase structure PS2 are made of resin, but one of the aberration correction elements may be made of glass and the other may be made of resin. . The method of manufacturing the aberration correction element having a glass phase structure may be molding or a method of forming a diffraction structure by repeating photolithography and etching processes. When an aberration correcting element having a phase structure made of glass is manufactured by molding, in order to extend the life of the mold and improve the transferability of the diffractive structure, the viscosity in the molten state is small and the glass is made of glass. It is preferable to use a glass having a transition point Tg of 450 ° C. or less. Examples of such a glass include “K-PG325” and “K-PG375” manufactured by Sumita Optical Glass Co., Ltd. In addition, as a method of joining the aberration correction element having a resin phase structure and the aberration correction element having a glass phase structure, an aberration correction element having a resin phase structure is manufactured by molding, and thereafter, Alternatively, a method of bonding with an aberration correcting element having a glass phase structure may be used, or an ultraviolet curable resin may be applied on the aberration correcting element having a glass phase structure, and the ultraviolet curable resin may be bonded to the glass. A method of transferring the phase structure by pressing a mold having a phase structure formed on the surface and irradiating the mold with ultraviolet light may be used. A thermosetting resin may be used in place of the ultraviolet curable resin.
[0148] また、本実施の形態では、対物レンズ OLをガラス製とした力 これに限らず、樹脂 製としても良い。この場合に対物レンズ〇Lに使用する樹脂として、ポレオレフイン系 の樹脂が好ましい。  In the present embodiment, the objective lens OL is made of glass. The present invention is not limited to this, and the objective lens OL may be made of resin. In this case, the resin used for the objective lens ΔL is preferably a oleolefin resin.
[0149] また、対物レンズ OLに使用する材料として、母体となる樹脂中に平均粒子直径が 3 Onm以下の無機粒子を分散させた材料を使用しても良レ、。母体となる樹脂の温度変 化に伴う屈折率変化率の符号とは逆符号の屈折率変化率をもつ無機粒子を混成す ることで、樹脂の成形性を有しながら、温度変化に伴う屈折率変化率の絶対値が小さ レヽ材料を得ることができるので、対物レンズ〇Lの温度変化に伴う球面収差変化を小 さいものとすることが可能となる。 [0149] Further, as a material used for the objective lens OL, a resin having an average particle diameter of 3 It is acceptable to use a material in which inorganic particles of Onm or less are dispersed. By mixing inorganic particles with a refractive index change rate opposite to the sign of the refractive index change rate due to the temperature change of the base resin, refraction due to temperature change is achieved while maintaining the moldability of the resin. Since a material having a small absolute value of the rate of change can be obtained, a change in spherical aberration due to a change in temperature of the objective lens ΔL can be reduced.
[0150] また、第 1位相構造は、 d線におけるアッベ数 V 1 = 56. 4、 d線における屈折率 n d dThe first phase structure has an Abbe number V 1 = 56.4 at the d-line and a refractive index n d d at the d-line
1 = 1. 509140であり、第 2位木目構造は、 ώ線におけるアッベ数 V 2 = 22. 8、 ώ線に d 1 = 1.509140, and the second-order grain structure is Abbe number V 2 = 22.8 at the ώ line, and d
おける屈折率 n 2 = 1. 638000である。  The refractive index n 2 is 1.638000.
d  d
[0151] また、第 1収差補正素子 L1の光源側の光学面には第 1位相構造 PS1が形成され ており、第 2収差補正素子 L2の光ディスク側の光学面には第 2位相構造 PS2が形成 されている。  [0151] A first phase structure PS1 is formed on the optical surface of the first aberration correction element L1 on the light source side, and a second phase structure PS2 is formed on the optical surface of the second aberration correction element L2 on the optical disk side. It is formed.
[0152] 第 1位相構造 PS1は第 1光束及び第 3光束を回折せず、第 2光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 5レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 4 段シフトさせた構造)となっている。  [0152] The first phase structure PS1 does not diffract the first light beam and the third light beam but diffracts the second light beam. A pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for every predetermined number of level surfaces (five level surfaces in this embodiment), the level is shifted by the height corresponding to the number of level surfaces (in this embodiment, Is shifted four steps).
[0153] 階段構造の各段差 Δ 1は、 Δ 1 = 2 · λ / (η— 1) = 1 · 557 μ mを満たす高さに  [0153] Each step Δ1 of the staircase structure has a height that satisfies Δ1 = 2 · λ / (η-1) = 1 · 557 µm
1 1  1 1
設定されている。ここで、 nは波長; I (本実施の形態では I =408nm)における第  Is set. Here, n is a wavelength; I (in this embodiment, I = 408 nm)
1 1 1  1 1 1
1収差補正素子 L1の屈折率である。  1 is the refractive index of the aberration correction element L1.
[0154] 段差 Δ 1により第 1光束に付加される光路差 L1は 2 X λ であるので、第 1光束は第 [0154] Since the optical path difference L1 added to the first light beam due to the step Δ1 is 2Xλ, the first light beam
1  1
1位相構造 PS1により何ら作用を受けずにそのまま透過する。  1-phase structure Transmitted without any effect by PS1.
[0155] また、段差 Δ 1により第 3光束に付加される光路差 N1は 1 X λ (本実施の形態では [0155] Further, the optical path difference N1 added to the third light beam by the step Δ1 is 1Xλ (in the present embodiment,
3  Three
λ = 785nm)であるので、第 3光束も第 1位相構造 PS1により何ら作用を受けずに λ = 785 nm), the third light beam is also not affected by the first phase structure PS1 at all.
3 Three
そのまま透過する。  Transmit as it is.
[0156] 一方、段差 Δ 1により第 2光束に付加される光路差 Mlは 1. 20 X λ (本実施の形  On the other hand, the optical path difference Ml added to the second light beam by the step Δ 1 is 1.20 X λ (this embodiment
2  2
態では λ = 658nm)であり、段差 Δ 1の前後のレベル面を通過する第 2光束の位相  Λ = 658 nm), and the phase of the second light flux passing through the level surface before and after the step Δ 1
2  2
差 (光学的に等位相となる 2 πの整数倍分を差し引いた位相差)は 2 π X O. 20となる 。 1つの鋸歯は 5分割されているため、鋸歯 1つ分ではちょうど第 2光束の位相差は 5 Χ 2 π X O. 20 = 2 πとなり、 1次回折光力発生する。 The difference (the phase difference obtained by subtracting an integral multiple of 2π that is optically equal in phase) is 2πXO.20. Since one saw tooth is divided into five, the phase difference of the second light beam is exactly 5 for one saw tooth. Χ 2 π X O. 20 = 2 π, and the first-order diffracted light power is generated.
[0157] このように、第 1位相構造 PS1は第 2光束のみを選択的に回折させることにより、 Η Dの保護層厚さと DVDの保護層厚さの違いによる球面収差を補正する。  As described above, the first phase structure PS1 selectively corrects the second light flux to correct spherical aberration caused by a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
[0158] 尚、第 1位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1 00%、第 2光束の 1次回折光の回折効率は 87. 5%、第 3光束の 0次回折光(透過光 )の回折効率は 100%であり、何れの光束に対しても高い回折効率を得ている。  [0158] The diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%, the diffraction efficiency of the first-order diffracted light of the second light beam is 87.5%, The diffraction efficiency of the zero-order diffracted light (transmitted light) of the light beam is 100%, and high diffraction efficiency is obtained for any light beam.
[0159] 第 2位相構造 PS2は第 1光束及び第 2光束を回折せず、第 3光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 4レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 3 段シフトさせた構造)となっている。  [0159] The second phase structure PS2 does not diffract the first light beam and the second light beam but diffracts the third light beam. A pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, the number of levels is shifted by the number of levels corresponding to the number of level planes for each predetermined number of level planes (four level planes in this embodiment). Is shifted three steps).
[0160] 階段構造の各段差 Δ 2は、 Δ 2 = 7 · λ / (η 1) =4· 144 μ mを満たす高さに  [0160] Each step difference Δ2 of the staircase structure has a height satisfying Δ2 = 7 · λ / (η 1) = 4 · 144 μm.
1 1  1 1
設定されている。ここで、 nは波長え における第 2収差補正素子の屈折率である。  Is set. Here, n is the refractive index of the second aberration correction element at the wavelength.
1 1  1 1
[0161] 段差 Δ 2により第 1光束に付加される光路差 L2は 7 Xえ であるので、第 1光束は第  [0161] Since the optical path difference L2 added to the first light beam by the step Δ2 is 7X, the first light beam is
1  1
2位相構造 PS2により何ら作用を受けずにそのまま透過する。  Two-phase structure Transmitted without any effect by PS2.
[0162] また、段差 Δ 2により第 2光束に付加される光路差 M2は 3· 97 X λ =4 Χ λ であ The optical path difference M2 added to the second light beam by the step Δ 2 is 3 · 97 X λ = 4Χλ.
2 2 るので、第 2光束も第 2位相構造 PS2によりほとんど作用を受けずにそのまま透過す る。  2 2, the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
[0163] 一方、段差 Δ 2によりにより第 3光束に付加される光路差 Ν2は 3. 28 X λ = 3. 25  On the other hand, the optical path difference Ν2 added to the third light beam by the step Δ 2 is 3.28 X λ = 3.25
3  Three
X λ であり、段差 Δ 2の前後のレベル面を通過する第 3光束の位相差 (光学的に等 X λ, the phase difference of the third light beam passing through the level surface before and after the step Δ 2 (optically equal
3 Three
位相となる 2 πの整数倍分を差し引いた位相差)は 2 π Χ 0. 25となる。 1つの鋸歯は 4分割されているため、鋸歯 1つ分ではちょうど第 3光束の位相差は 4 X 2 π Χ 0. 25 = 2 πとなり、 1次回折光が発生する。  The phase difference obtained by subtracting an integral multiple of 2π, which is the phase, is 2πΧ0.25. Since one saw tooth is divided into four, the phase difference of the third light beam is exactly 4 × 2πΧ0.25 = 2π for one saw tooth, and a first-order diffracted light is generated.
[0164] このように、第 2位相構造 PS2は第 3光束のみを選択的に回折させることにより、 Η Dの保護層厚さと CDの保護層厚さの違いによる球面収差を補正する。  As described above, the second phase structure PS2 selectively diffracts only the third luminous flux, thereby correcting spherical aberration caused by the difference between the thickness of the protective layer of ΗD and the thickness of the protective layer of CD.
[0165] 尚、第 2位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1 00%、第 2光束の 0次回折光(透過光)の回折効率は 94. 8%、第 3光束の 1次回折 光の回折効率は 78. 2%であり、何れの光束に対しても高い回折効率を得ている。 [0166] 以上説明したように、第 1収差補正素子 L1を(1)式又は(3)式を満たす材料力 構 成し、第 1位相構造 PS1により、 HDと DVDとの相互互換を取ることにより、青紫色レ 一ザ光束と赤色レーザ光束の両方の光束に対して高い透過率を確保することが可 能となり、更に、第 2収差補正素子 L2を(2)式又は (4)式を満たす材料から構成し、 第 2位相構造 PS2により、 HDと CDとの相互互換を取ることにより、青紫色レーザ光 束と赤外レーザ光束の両方の光束に対して高い透過率を確保することが可能となる [0165] The diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light flux generated by the second phase structure PS1 is 100%, and the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 94.8. %, The diffraction efficiency of the first-order diffracted light of the third light beam is 78.2%, and high diffraction efficiency is obtained for any light beam. [0166] As described above, the first aberration correction element L1 is made of a material that satisfies the expression (1) or (3), and the HD and the DVD are mutually compatible by the first phase structure PS1. As a result, it is possible to secure a high transmittance for both the blue-violet laser beam and the red laser beam, and furthermore, the second aberration correction element L2 can be expressed by the equation (2) or (4). The second phase structure PS2 ensures high transmissivity for both blue-violet laser light and infrared laser light by making the HD and CD compatible with each other. Become possible
[0167] また、第 1位相構造 PS1は、 DVDの開口数 NA2内にのみ形成されているので、 N A2より外側の領域を通過する光束は DVDの情報記録面 RL2上でフレア成分となり 、 DVDに対する開口制限が自動的に行われる構成となっている。 [0167] Also, since the first phase structure PS1 is formed only within the numerical aperture NA2 of the DVD, the light flux passing through the area outside of NA2 becomes a flare component on the information recording surface RL2 of the DVD, Is automatically restricted.
[0168] また、第 2位相構造 PS2は、 CDの開口数 NA3内にのみ形成されているので、 NA 3より外側の領域を通過する光束は CDの情報記録面 RL3上でフレア成分となり、 C Dに対する開口制限が自動的に行われる構成となっている。  [0168] Also, since the second phase structure PS2 is formed only within the numerical aperture NA3 of the CD, the luminous flux passing through the area outside NA3 becomes a flare component on the information recording surface RL3 of the CD, Is automatically restricted.
[0169] なお、ビームエキスパンダー EXPの負レンズ EXP1を 1軸ァクチユエータ UACによ り光軸方向に駆動させることで、 HDの情報記録面 RL1上に形成されたスポットの球 面収差を補正できる。負レンズ EXP1の位置調整により補正する球面収差の発生原 因は、例えば、第 1光源 LD1の製造誤差による波長ばらつき、温度変化に伴う対物 レンズ系の屈折率変化や屈折率分布、 2層ディスク、 4層ディスク等の多層ディスクの 情報記録層間のフォーカスジャンプ、高密度光ディスクの保護層の製造誤差による 厚みばらつきや厚み分布、等である。  By driving the negative lens EXP1 of the beam expander EXP in the optical axis direction by the uniaxial actuator UAC, the spherical aberration of the spot formed on the HD information recording surface RL1 can be corrected. The causes of spherical aberration that are corrected by adjusting the position of the negative lens EXP1 include, for example, wavelength variations due to manufacturing errors of the first light source LD1, changes in the refractive index and refractive index distribution of the objective lens system due to temperature changes, double-layer disks, This includes focus jumps between the information recording layers of a multi-layer disc such as a four-layer disc, and variations in thickness and thickness distribution due to manufacturing errors of the protective layer of a high-density optical disc.
[0170] なお、負レンズ EXP1の代わりに、第 1コリメートレンズ COL1を光軸方向に駆動さ せる構成としても、 HDの情報記録面 RL1上に形成されたスポットの球面収差を補正 できる。  [0170] Note that, instead of the negative lens EXP1, even if the first collimating lens COL1 is driven in the optical axis direction, the spherical aberration of the spot formed on the HD information recording surface RL1 can be corrected.
[0171] また、本実施の形態においては、第 1の発光点 EP1と第 2の発光点 EP2とを一つの チップ上に形成した DVD/CD用レーザ光源ユニット LUを用いることとした力 これ に限らず、更に HD用の波長 408nmのレーザ光束を射出する発光点も同一のチッ プ上に形成した HD/DVDZCD用レーザ光源ユニットを用いても良レ、。あるいは、 青紫色半導体レーザと赤色半導体レーザと赤外半導体レーザの 3つのレーザ光源を 1つの筐体内に納めた HD/DVDZCD用レーザ光源ユニットを用いても良い。 [0171] In the present embodiment, a DVD / CD laser light source unit LU in which the first light emitting point EP1 and the second light emitting point EP2 are formed on one chip is used. Not limited to this, it is also possible to use a laser light source unit for HD / DVDZCD in which the emission point for emitting a laser beam of wavelength 408 nm for HD is formed on the same chip. Alternatively, use three laser light sources, a blue-violet semiconductor laser, a red semiconductor laser, and an infrared semiconductor laser. A laser light source unit for HD / DVDZCD housed in one housing may be used.
[0172] また、本実施の形態においては、光源と光検出器 PDとを別体に配置する構成とし たが、これに限らず、光源と光検出器とを集積化したレーザ光源モジュールを用いて も良い。  [0172] Further, in the present embodiment, the light source and the photodetector PD are arranged separately, but the present invention is not limited to this, and a laser light source module in which the light source and the photodetector are integrated is used. May be.
[0173] また、本実施形態においては、互いに接合された第 1収差補正素子 L1及び第 2収 差補正素子 L2と、対物レンズ〇Lとを鏡枠 Bを介して一体化した力 互いに接合され た第 1収差補正素子 L1及び第 2収差補正素子 L2と、対物レンズ〇Lを一体化する場 合には、第 1収差補正素子 L1及び第 2収差補正素子 L2と、物レンズ OLとの、互い の相対的な位置関係が不変となるように保持されていればよぐ上述のように鏡枠 B を介する方法以外に、互いに接合された第 1収差補正素子 L1及び第 2収差補正素 子 L2と、対物レンズ OLとのそれぞれのフランジ部同士を嵌合固定する方法であって ちょい。  In the present embodiment, a force obtained by integrating the first aberration correction element L1 and the second aberration correction element L2 joined to each other and the objective lens ΔL via the lens frame B is joined to each other. In the case where the first aberration correction element L1 and the second aberration correction element L2 and the objective lens ΔL are integrated, the first aberration correction element L1 and the second aberration correction element L2, and the object lens OL The first aberration correction element L1 and the second aberration correction element bonded to each other may be used in addition to the method using the lens frame B as described above, as long as the relative positional relationship between them is kept unchanged. This is a method of fitting and fixing the respective flange portions of L2 and the objective lens OL.
[0174] また、 HDの情報記録面 RL1上に形成されたスポットの球面収差を補正する方法と して、上述のようにレンズを光軸方向に駆動させる方法以外に、液晶を利用した位相 制御素子を用いても良い。かかる位相制御素子により球面収差を補正する方法は公 知であるので、ここでは詳細な説明は割愛する。  [0174] As a method for correcting the spherical aberration of the spot formed on the HD information recording surface RL1, in addition to the method of driving the lens in the optical axis direction as described above, a phase control using a liquid crystal is performed. An element may be used. Since a method for correcting spherical aberration by using such a phase control element is known, a detailed description thereof is omitted here.
[0175] なお、球面収差補正時のトラッキング駆動で発生するコマ収差を抑制するためには 、対物レンズユニット OUと位相制御素子とを一体化する構成とするのが好ましい。  In order to suppress coma generated by tracking drive at the time of spherical aberration correction, it is preferable that the objective lens unit OU and the phase control element are integrated.
[0176] このように互いに接合された第 1収差補正素子 L1及び第 2収差補正素子 L2と、対 物レンズ OLとの、互いの相対的な位置関係が不変となるように保持されていることで 、フォーカシングゃトラッキングの際の収差の発生を抑制でき、良好なフォーカシング 特性、或いはトラッキング特性を得ることができる。  [0176] The first aberration correction element L1 and the second aberration correction element L2, which are joined to each other, and the objective lens OL are held so that the relative positional relationship between them does not change. Accordingly, it is possible to suppress the occurrence of aberration at the time of focusing / tracking, and to obtain good focusing characteristics or tracking characteristics.
[第 2の実施の形態]  [Second embodiment]
以下、本発明の第 2の実施の形態について図面を用いて説明するが、上記第 1の 実施の形態と同一の構成となる箇所については説明を省略する。  Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. However, description of portions having the same configuration as that of the first embodiment will be omitted.
[0177] 本実施の形態は、対物レンズユニット OUにおいて、第 1収差補正素子 L1と第 2収 差補正素子 L2とを離間して構成した点に特徴を有する。  [0177] The present embodiment is characterized in that in the objective lens unit OU, the first aberration correction element L1 and the second aberration correction element L2 are separated from each other.
[0178] 本実施形態における対物レンズユニット OUは、図 3に概略的に示すように、樹脂製 の第 1位相構造 PS1を有する第 1収差補正素子 LIと、樹脂製の第 2位相構造 PS2を 有する第 2収差補正素子 L2と、第 1波長 λ と HDの保護層 PL1の厚さ tとに対して [0178] The objective lens unit OU in the present embodiment is made of resin as schematically shown in FIG. The first aberration correction element LI having the first phase structure PS1 of the first, the second aberration correction element L2 having the second phase structure PS2 made of resin, the first wavelength λ, and the thickness t of the HD protective layer PL1. for
1 1  1 1
球面収差が最小となるようにその非球面形状が設計されたガラス製の対物レンズ OL 力 鏡枠 Bを介して同軸で一体化された構成を有する。具体的には、円筒状の鏡枠 Bの一端に第 1収差補正素子 L1と第 2収差補正素子 L2とを互いに離間させた状態 で嵌合固定し、他端に対物レンズ OLを嵌合固定して、これらを光軸 Xに沿って同軸 に一体化した構成となっている。  It has a configuration in which it is coaxially integrated via a glass objective lens OL lens frame B whose aspherical shape is designed so as to minimize spherical aberration. Specifically, the first aberration correction element L1 and the second aberration correction element L2 are fitted and fixed to one end of the cylindrical lens frame B with the first aberration correction element L1 and the second aberration correction element L2 separated from each other, and the objective lens OL is fitted and fixed to the other end. Thus, they are coaxially integrated along the optical axis X.
[0179] 第 1位相構造は、 d線におけるアッベ数 V 1 = 56. 4、 d線における屈折率 n 1 = 1 d d[0179] The first phase structure has an Abbe number at the d-line V 1 = 56.4, a refractive index at the d-line n 1 = 1 d d
. 509140であり、第 2位相構造は、 d線におけるアッベ数 V 2 = 27. 0、 d線におけ d 509140 and the second phase structure is the Abbe number at the d-line V 2 = 27.0, d at the d-line
る屈折率 n 2 = 1. 607000である。  Refractive index n 2 = 1.607000.
d  d
[0180] また、第 1収差補正素子 L1の光源側の光学面には第 1位相構造 PS1が形成され ており、第 2収差補正素子 L2の光ディスク側の光学面には第 2位相構造 PS2が形成 されている。  A first phase structure PS1 is formed on the optical surface on the light source side of the first aberration correction element L1, and a second phase structure PS2 is formed on the optical surface on the optical disk side of the second aberration correction element L2. It is formed.
[0181] 第 1位相構造 PS1は第 1光束及び第 3光束を回折せず、第 2光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 5レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 4 段シフトさせた構造)とを有し、階段構造の各段差 Δ 1は、 Δ ΐ = 2 · λ / (η _ 1) = 1. 544 z mを満たす高さに設定されている。ここで、 nは波長 λ (本実施の形態で  [0181] The first phase structure PS1 does not diffract the first light beam and the third light beam, but diffracts the second light beam. A pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for every predetermined number of level surfaces (five level surfaces in this embodiment), the level is shifted by the height corresponding to the number of level surfaces (in this embodiment, Is shifted four steps), and each step Δ 1 of the staircase structure is set to a height satisfying Δ Δ = 2 · λ / (η — 1) = 1.544 zm. Here, n is the wavelength λ (in the present embodiment,
1 1  1 1
はえ =405nm)における第 1収差補正素子 L1の屈折率である。  This is the refractive index of the first aberration correction element L1 at (fly = 405 nm).
[0182] 第 1位相構造 PS1により第 1光束に付加される光路差 L1は 2 X λ であるので、第 1 光束は第 1位相構造 PS1により何ら作用を受けずにそのまま透過する。 [0182] Since the optical path difference L1 added to the first light beam by the first phase structure PS1 is 2Xλ, the first light beam is transmitted through the first phase structure PS1 without any action.
[0183] また、段差 Δ 1により第 3光束に付加される光路差 N1は 0. 99 X λ = 1 Χ λ (本実 [0183] The optical path difference N1 added to the third light beam by the step Δ1 is 0.99 X λ = 1 λ λ (actual
3 3 施の形態では I = 785nm)であるので、第 3光束も第 1位相構造 PS1により何ら作  33 In the embodiment, I = 785 nm), so that the third light flux is not created by the first phase structure PS1.
3  Three
用を受けずにそのまま透過する。  Transmitted as it is without being used.
[0184] 一方、段差 Δ 1により第 2光束に付加される光路差 Mlは 1. 19 X λ = 1. 20 Χ λ On the other hand, the optical path difference Ml added to the second light beam by the step Δ 1 is 1.19 X λ = 1.20Χλ
2 2 twenty two
(本実施の形態では I =655nm)であり、段差 Δ 1の前後のレベル面を通過する第 (I = 655 nm in the present embodiment), and the second pass through the level surface before and after the step Δ1.
2  2
2光束の位相差 (光学的に等位相となる 2 πの整数倍分を差し引いた位相差)は 2 π X O. 20となる。 1つの鋸歯は 5分割されているため、鋸歯 1つ分ではちょうど第 2光束 の位相差は 5 Χ 2 π Χ 0. 20 = 2 πとなり、 1次回折光が発生する。 The phase difference between the two light beams (the phase difference obtained by subtracting an integer multiple of 2π, which is optically equiphase) is 2π X O. 20. Since one saw tooth is divided into five, the phase difference of the second light beam is exactly 5Χ2πΧ0.20 = 2π for one saw tooth, and a first-order diffracted light is generated.
[0185] このように、第 1位相構造 PS 1は第 2光束のみを選択的に回折させることにより、 Η Dの保護層厚さと DVDの保護層厚さの違いによる球面収差を補正する。  As described above, the first phase structure PS 1 selectively corrects the second light flux to correct spherical aberration caused by a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
[0186] 尚、第 1位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1 00%、第 2光束の 1次回折光の回折効率は 87. 3%、第 3光束の 0次回折光(透過光 )の回折効率は 99. 2%であり、何れの光束に対しても高い回折効率を得ている。  [0186] Note that the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%, the diffraction efficiency of the first-order diffracted light of the second light beam is 87.3%, The diffraction efficiency of the zero-order diffracted light (transmitted light) of the light beam is 99.2%, and a high diffraction efficiency is obtained for any light beam.
[0187] 第 2位相構造 PS2は第 1光束乃至第 3光束を回折するものであり、光軸を含む断面 形状が階段状となっている。  [0187] The second phase structure PS2 diffracts the first to third light beams, and has a stepped cross section including the optical axis.
[0188] 階段構造の各段差 Δ 2は、 Δ 1 = 7 · λ / (η λ 1) =4. 302 μ ΐηを満たす高さ  Each step Δ 2 of the staircase structure has a height that satisfies Δ 1 = 7 · λ / (η λ 1) = 4.302 μ ΐη
Β Β  Β Β
に設定されている。ここで、 ηえ は波長え (本実施の形態ではえ =400nm)にお  Is set to Here, η is the wavelength (e.g., 400 nm in this embodiment).
B B B  B B B
ける第 1収差補正素子 L1の屈折率 (本実施の形態では nえ = 1. 650875)である。  Is the refractive index of the first aberration correction element L1 (n = 1.650875 in the present embodiment).
B  B
[0189] 第 2位相構造 PS2を通過することで、第 1光束の 7次回折光、第 2光束の 4次回折 光、第 3光束の 3次回折光が発生する。  [0189] Passing through the second phase structure PS2, the 7th-order diffracted light of the first light beam, the 4th-order diffracted light of the second light beam, and the 3rd-order diffracted light of the third light beam are generated.
[0190] 第 2位相構造 PS2を通過する際に第 1光束に付加される光路差は 6. 89 Xえ = 7 [0190] The optical path difference added to the first light beam when passing through the second phase structure PS2 is 6.89 Xe = 7
1 One
X λ であり、第 1光束の 7次回折光が最大の回折効率を有する。 X λ, and the seventh-order diffracted light of the first light beam has the maximum diffraction efficiency.
1  1
[0191] また、第 2位相構造 PS2を通過する際に第 2光束に付加される光路差は 3. 94 Χ λ  [0191] The optical path difference added to the second light beam when passing through the second phase structure PS2 is 3.94 Χ λ
^4 Χ λ であり、第 2光束の 4次回折光が最大の回折効率を有する。  ^ 4 λ λ, and the fourth-order diffracted light of the second light flux has the maximum diffraction efficiency.
2 2  twenty two
[0192] また、第 2位相構造 PS2を通過する際に第 3光束に付加される光路差は 3. 25 Χ λ  [0192] Further, the optical path difference added to the third light beam when passing through the second phase structure PS2 is 3.25 λ λ
^ 3 Χ λ であり、第 3光束の 3次回折光が最大の回折効率を有する。  ^ 3 λλ, and the third-order diffracted light of the third light beam has the maximum diffraction efficiency.
3 3  3 3
[0193] これにより、 HDの保護層厚さと CDの保護層厚さの違いによる球面収差を補正する ようになつている。  [0193] Thus, spherical aberration caused by the difference between the thickness of the HD protective layer and the thickness of the CD protective layer is corrected.
[0194] 尚、第 2位相構造 PS2で発生する第 1光束の 7次回折光の回折効率は 96. 0%、 第 2光束の 4次回折光の回折効率は 99. 0%、第 3光束の 3次回折光の回折効率は 81. 2%であり、何れの光束に対しても高い回折効率を得ている。  [0194] The diffraction efficiency of the 7th-order diffracted light of the first light beam generated by the second phase structure PS2 is 96.0%, the diffraction efficiency of the 4th-order diffracted light of the second light beam is 99.0%, and the diffraction efficiency of the third light beam is 39.0%. The diffraction efficiency of the second-order diffracted light is 81.2%, and high diffraction efficiency is obtained for any light flux.
[0195] また、第 2位相構造 PS2の第 1波長に対する近軸回折パワーと、第 2収差補正素子 L2の光源側の光学面の第 1波長に対する近軸屈折パワーを逆符号とし、かつその 絶対値を同じとすることで、第 2収差補正素子 L2の光源側の光学面を通過する第 1 光束の光束径が変わらなレ、ようにしてレ、る。 [0195] Also, the paraxial diffraction power for the first wavelength of the second phase structure PS2 and the paraxial refraction power for the first wavelength of the optical surface on the light source side of the second aberration correction element L2 have opposite signs, and By making the values the same, the first aberration passing through the optical surface on the light source side of the second aberration correction element L2 The beam diameter of the light beam does not change.
[第 3の実施の形態]  [Third embodiment]
以下、本発明の第 3の実施の形態について図面を用いて説明するが、上記第 1の 実施の形態と同一の構成となる箇所については説明を省略する。  Hereinafter, a third embodiment of the present invention will be described with reference to the drawings, but the description of the same components as those in the first embodiment will be omitted.
[0196] 本実施の形態は、対物レンズユニット OUにおいて、第 1収差補正素子 L1と第 2収 差補正素子 L2とを離間して構成し、更に、第 3位相構造 PS3を第 1収差補正素子 L 1の光ディスク側の光学面に設けた点に特徴を有する。  [0196] In the present embodiment, in the objective lens unit OU, the first aberration correction element L1 and the second aberration correction element L2 are separated from each other, and the third phase structure PS3 is connected to the first aberration correction element. It is characterized in that it is provided on the optical surface of L1 on the optical disk side.
[0197] 本実施形態における対物レンズユニット OUは、図 4に概略的に示すように、樹脂製 の第 1位相構造 PS1を有する第 1収差補正素子 L1と、樹脂製の第 2位相構造 PS2を 有する第 2収差補正素子 L2と、第 1波長 λ と HDの保護層 PL1の厚さ tとに対して  As schematically shown in FIG. 4, the objective lens unit OU in the present embodiment includes a first aberration correction element L1 having a first phase structure PS1 made of resin, and a second phase structure PS2 made of resin. With respect to the second aberration correction element L2 and the first wavelength λ and the thickness t of the HD protective layer PL1.
1 1 球面収差が最小となるようにその非球面形状が設計されたガラス製の対物レンズ OL 力 鏡枠 Bを介して同軸で一体化された構成を有する。具体的には、円筒状の鏡枠 Bの一端に第 1収差補正素子 L1と第 2収差補正素子 L2とを接合した状態で嵌合固 定し、他端に対物レンズ OLを嵌合固定して、これらを光軸 Xに沿って同軸に一体化 した構成となっている。  1 1 A glass objective lens whose aspherical shape is designed to minimize spherical aberration. Specifically, the first aberration correction element L1 and the second aberration correction element L2 are joined and fixed at one end of a cylindrical lens frame B, and the objective lens OL is fitted and fixed at the other end. Therefore, they are coaxially integrated along the optical axis X.
[0198] また、第 1位相構造は、 d線におけるアッベ数 V 1 = 56. 4、 d線における屈折率 n d d The first phase structure has an Abbe number V 1 = 56.4 at the d-line and a refractive index n d d at the d-line
1 = 1. 509140であり、第 2位相構造は、 d線におけるアッベ数 V 2 = 27. 0、 d線に d 1 = 1.509140, and the second phase structure has an Abbe number V 2 = 27.0 at the d-line and d
おける屈折率 n 2 = 1. 607000である。  Refractive index n 2 = 1.607000.
d  d
[0199] また、第 1収差補正素子 L1の光源側の光学面には第 1位相構造 PS1が形成され ており、第 2収差補正素子 L2の光ディスク側の光学面には第 2位相構造 PS2が形成 されており、第 1収差補正素子 L1の光ディスク側の光学面には第 3位相構造 PS3が 形成されている。  [0199] A first phase structure PS1 is formed on the optical surface of the first aberration correction element L1 on the light source side, and a second phase structure PS2 is formed on the optical surface of the second aberration correction element L2 on the optical disk side. The third phase structure PS3 is formed on the optical surface of the first aberration correction element L1 on the optical disk side.
[0200] 第 1位相構造 PS1は第 1光束及び第 3光束を回折せず、第 2光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 5レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 4 段シフトさせた構造)となっている。  [0200] The first phase structure PS1 does not diffract the first light beam and the third light beam, but diffracts the second light beam. A pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for every predetermined number of level surfaces (five level surfaces in this embodiment), the level is shifted by the height corresponding to the number of level surfaces (in this embodiment, Is shifted four steps).
[0201] 第 1位相構造 PS1は第 1光束及び第 3光束を回折せず、第 2光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 5レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 4 段シフトさせた構造)とを有し、階段構造の各段差 Δ1は、 Δΐ = 2·λ /(η _1)= 1.544 zmを満たす高さに設定されている。ここで、 nは波長 λ (本実施の形態で [0201] The first phase structure PS1 does not diffract the first and third light beams, but diffracts the second light beam. There is a structure in which a pattern in which the cross-sectional shape including the optical axis is stepped is arranged concentrically, and the number of level planes is determined for each predetermined number of level planes (5 level planes in this embodiment). (In this embodiment, a structure in which the steps are shifted by four), and each step Δ1 of the staircase structure is represented by Δ · = 2 · λ / (η _1) = 1.544 zm. Here, n is the wavelength λ (in the present embodiment,
1 1  1 1
はえ =405nm)における第 1収差補正素子 L1の屈折率である。  This is the refractive index of the first aberration correction element L1 at (fly = 405 nm).
[0202] 第 1位相構造 PS1により第 1光束に付加される光路差 L1は 2X λ であるので、第 1 光束は第 1位相構造 PS1により何ら作用を受けずにそのまま透過する。 [0202] Since the optical path difference L1 added to the first light beam by the first phase structure PS1 is 2Xλ, the first light beam is transmitted through the first phase structure PS1 without any effect.
[0203] また、段差 Δ1により第 3光束に付加される光路差 N1は 0.99 Xえ =1 1 (本実 [0203] Also, the optical path difference N1 added to the third light beam due to the step Δ1 is 0.99 X = 1 = 1
3 3 施の形態ではえ =785nm)であるので、第 3光束も第 1位相構造 PS1により何ら作  (3 = 785 nm in the embodiment), so that the third light beam is not created by the first phase structure PS1.
3  Three
用を受けずにそのまま透過する。  Transmitted as it is without being used.
[0204] —方、段差 Δ1により第 2光束に付加される光路差 Mlは 1.19 Xえ =1.20X λ [0204] On the other hand, the optical path difference Ml added to the second light beam by the step Δ1 is 1.19 X = 1.20X λ
2 2 twenty two
(本実施の形態ではえ =655nm)であり、段差 Δ 1の前後のレベル面を通過する第 (In the present embodiment, 655 nm), and the first through the level surfaces before and after the step Δ 1
2  2
2光束の位相差 (光学的に等位相となる 2 πの整数倍分を差し引いた位相差)は 2 π Χ0. 20となる。 1つの鋸歯は 5分割されているため、鋸歯 1つ分ではちょうど第 2光束 の位相差は 5Χ2π Χ0. 20 = 2 πとなり、 1次回折光が発生する。  The phase difference between the two light beams (the phase difference obtained by subtracting an integer multiple of 2π, which is optically equiphase) is 2ππ0.20. Since one saw tooth is divided into five, the phase difference of the second light beam is exactly 5Χ2πΧ0.20 = 2π for one saw tooth, and a first-order diffracted light is generated.
[0205] このように、第 1位相構造 PS1は第 2光束のみを選択的に回折させることにより、 Η Dの保護層厚さと DVDの保護層厚さの違いによる球面収差を補正する。  [0205] As described above, the first phase structure PS1 selectively corrects the second light flux to correct spherical aberration due to a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
[0206] 尚、第 1位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1 00%、第 2光束の 1次回折光の回折効率は 87.3%、第 3光束の 0次回折光(透過光 )の回折効率は 99.2%であり、何れの光束に対しても高い回折効率を得ている。  The diffraction efficiency of the first-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%, the diffraction efficiency of the first-order diffracted light of the second light beam is 87.3%, and the diffraction efficiency of the third light beam is The diffraction efficiency of the zero-order diffracted light (transmitted light) is 99.2%, and a high diffraction efficiency is obtained for any light flux.
[0207] 第 2位相構造 PS2は第 1光束及び第 2光束を回折せず、第 3光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 3レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 2 段シフトさせた構造)となっている。  [0207] The second phase structure PS2 does not diffract the first light beam and the second light beam but diffracts the third light beam. A pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for each predetermined number of level surfaces (three-level surfaces in the present embodiment), the level is shifted by a height corresponding to the number of levels corresponding to the number of the level surfaces (in this embodiment, Is a two-stage shifted structure).
[0208] 階段構造の各段差 Δ2は、 Δ2 = 7· λ /(n _1)=4.371 zmを満たす高さに  [0208] Each step Δ2 of the staircase structure has a height that satisfies Δ2 = 7 · λ / (n_1) = 4.371 zm.
1 1  1 1
設定されている。ここで、 nは波長え における第 2収差補正素子の屈折率である。 [0209] 段差 Δ 2により第 1光束に付加される光路差 L2は 7 X λ であるので、第 1光束は第 Is set. Here, n is the refractive index of the second aberration correction element at the wavelength. [0209] Since the optical path difference L2 added to the first light beam by the step Δ2 is 7 X λ, the first light beam is
1  1
2位相構造 PS2により何ら作用を受けずにそのまま透過する。  Two-phase structure Transmitted without any effect by PS2.
[0210] また、段差 Δ 2により第 2光束に付加される光路差 Μ2は 4. 01 X λ =4 Χ λ であ [0210] Also, the optical path difference Μ2 added to the second light beam by the step Δ2 is 4.01 X λ = 4 Χ λ.
2 2 るので、第 2光束も第 2位相構造 PS2によりほとんど作用を受けずにそのまま透過す る。  2 2, the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
[0211] 一方、段差 Δ 2によりにより第 3光束に付加される光路差 Ν2は 3. 30 Χ λ = 3. 33  [0211] On the other hand, the optical path difference Ν2 added to the third light beam due to the step Δ2 is 3.30 33 λ = 3.33
3  Three
X λ であり、段差 Δ 2の前後のレベル面を通過する第 3光束の位相差 (光学的に等 X λ, the phase difference of the third light beam passing through the level surface before and after the step Δ 2 (optically equal
3 Three
位相となる 2 πの整数倍分を差し引いた位相差)は 2 π Χ 0. 33となる。 1つの鋸歯は The phase difference obtained by subtracting an integral multiple of 2π, which is the phase, is 2π Χ 0.33. One saw blade
3分割されているため、鋸歯 1つ分ではちょうど第 3光束の位相差は 3 Χ 2 π Χ 0. 33Since it is divided into three, the phase difference of the third light beam is exactly 3 歯 2 π Χ 0.33 for one sawtooth.
= 2 πとなり、 1次回折光が発生する。 = 2π, and the first-order diffracted light is generated.
[0212] このように、第 2位相構造 PS2は第 3光束のみを選択的に回折させることにより、 Η[0212] As described above, the second phase structure PS2 selectively diffracts only the third light beam, and
Dの保護層厚さと CDの保護層厚さの違いによる球面収差を補正する。 The spherical aberration caused by the difference between the protective layer thickness of D and the protective layer thickness of CD is corrected.
[0213] 尚、第 2位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1[0213] The diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light beam generated by the second phase structure PS1 is 1
00%、第 2光束の 0次回折光(透過光)の回折効率は 99. 8%、第 3光束の 1次回折 光の回折効率は 66. 6%であり、何れの光束に対しても高い回折効率を得ている。 The diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 99.8%, and the diffraction efficiency of the first-order diffracted light of the third light flux is 66.6%, which is high for any light flux. Diffraction efficiency is obtained.
[0214] 第 3位相構造 PS3は第 1光束乃至第 3光束を回折するものであり、光軸を含む断面 形状が階段状となっている。この第 3位相構造 PS3は、第 1波長え の微小変化に伴 [0214] The third phase structure PS3 diffracts the first to third light beams, and has a stepped cross section including the optical axis. This third phase structure PS3 is used in response to small changes in the first wavelength.
1  1
う近軸像点位置の移動と、球面収差の変化を抑制するための構造である。  This is a structure for suppressing the movement of the paraxial image point position and the change in spherical aberration.
[0215] 階段構造の各段差 Δ 3は、 Δ 1 = 10 · λ / (η - 1) = 7. 719 z mを満たす高さに [0215] Each step Δ 3 of the staircase structure is set to a height that satisfies Δ 1 = 10 · λ / (η-1) = 7.719 z m
1 1  1 1
設定されている。  Is set.
[0216] 第 3位相構造 PS3を通過することで、第 1光束の 10次回折光、第 2光束の 6次回折 光、第 3光束の 5次回折光が発生する。  [0216] By passing through the third phase structure PS3, the 10th-order diffracted light of the first light flux, the 6th-order diffracted light of the second light flux, and the 5th-order diffracted light of the third light flux are generated.
[0217] 第 3位相構造 PS3を通過する際に第 1光束に付加される光路差は 10. 0 X λ であ [0217] The optical path difference added to the first light beam when passing through the third phase structure PS3 is 10.0 X λ.
1 り、第 1光束の 10次回折光が最大の回折効率を有する。  The 10th-order diffracted light of the first light beam has the highest diffraction efficiency.
[0218] また、第 3位相構造 PS3を通過する際に第 2光束に付加される光路差は 5. 97 Χ λ  [0218] Further, the optical path difference added to the second light beam when passing through the third phase structure PS3 is 5.97 Χ λ
^ 6 Χ λ であり、第 2光束の 6次回折光が最大の回折効率を有する。  ^ 6 λλ, and the sixth-order diffracted light of the second light beam has the maximum diffraction efficiency.
2 2  twenty two
[0219] また、第 3位相構造 PS3を通過する際に第 3光束に付加される光路差は 4. 95 Χ λ  [0219] Further, the optical path difference added to the third light beam when passing through the third phase structure PS3 is 4.95 Χ λ
5 Χ λ であり、第 3光束の 5次回折光が最大の回折効率を有する。 [0220] 尚、第 3位相構造 PS3で発生する第 1光束の 10次回折光の回折効率は 100%、第 2光束の 6次回折光の回折効率は 99. 7%、第 3光束の 5次回折光の回折効率は 99 . 1%であり、何れの光束に対しても高い回折効率を得ている。 5Χλ, and the fifth-order diffracted light of the third light beam has the maximum diffraction efficiency. [0220] The diffraction efficiency of the 10th-order diffracted light of the first light beam generated by the third phase structure PS3 is 100%, the diffraction efficiency of the 6th-order diffracted light of the second light beam is 99.7%, and the fifth-order diffracted light of the third light beam is generated. Has a diffraction efficiency of 99.1%, and high diffraction efficiency is obtained for any light flux.
[0221] また、第 3位相構造 PS3の第 1波長に対する近軸回折パワーと、第 1収差補正素子 L1の光ディスク側の光学面の第 1波長に対する近軸屈折パワーを逆符号とし、かつ その絶対値を同じとすることで、第 1収差補正素子 L1の光ディスク側の光学面を通 過する第 1光束の光束径が変わらなレ、ようにしてレ、る。  [0221] Also, the paraxial diffraction power for the first wavelength of the third phase structure PS3 and the paraxial refraction power for the first wavelength of the optical surface of the first aberration correction element L1 on the optical disk side have opposite signs, and their absolute values are the same. By making the values the same, the light beam diameter of the first light beam passing through the optical surface of the first aberration correction element L1 on the optical disk side does not change.
[0222] [第 4の実施の形態]  [0222] [Fourth embodiment]
以下、本発明の第 4の実施の形態について図面を用いて説明するが、上記第 1の 実施の形態と同一の構成となる箇所については説明を省略する。  Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. However, description of portions having the same configuration as in the first embodiment will be omitted.
[0223] 本実施の形態は、対物レンズユニット OUにおいて、第 1収差補正素子 L1と第 2収 差補正素子 L2とを離間して構成し、ガラス基板 GL上に紫外線硬化性樹脂製の第 2 位相構造 PS2を形成することで第 2収差補正素子 L2を構成し、さらに、第 1収差補 正素子 L1の第 1波長え に対する近軸パワーを負とした点に特徴を有する。  In the present embodiment, in the objective lens unit OU, the first aberration correction element L1 and the second aberration correction element L2 are configured to be separated from each other, and the second lens made of an ultraviolet curable resin is formed on the glass substrate GL. It is characterized in that the second aberration correcting element L2 is formed by forming the phase structure PS2, and the paraxial power of the first aberration correcting element L1 with respect to the first wavelength is negative.
1  1
[0224] 本実施形態における対物レンズユニット OUは、図 5に概略的に示すように、樹脂製 の第 1位相構造 PS1を有する第 1収差補正素子 L1と、ガラス基板 GL上に樹脂製の 第 2位相構造 PS2が形成された構成を有する第 2収差補正素子 L2と、第 1波長え と HDの保護層 PL1の厚さ tとに対して球面収差が最小となるようにその非球面形状が  [0224] As schematically shown in Fig. 5, the objective lens unit OU in the present embodiment includes a first aberration correction element L1 having a first phase structure PS1 made of resin, and a first aberration correction element L1 made of resin on a glass substrate GL. The second aspherical correction element L2 having a configuration in which the two-phase structure PS2 is formed, and the aspheric shape thereof is minimized with respect to the first wavelength and the thickness t of the HD protective layer PL1 so that spherical aberration is minimized.
1  1
設計されたガラス製の対物レンズ〇Lが、鏡枠 Bを介して同軸で一体化された構成を 有する。具体的には、円筒状の鏡枠 Bの一端に第 1収差補正素子 L1と第 2収差補正 素子 L2とを接合した状態で嵌合固定し、他端に対物レンズ〇Lを嵌合固定して、これ らを光軸 Xに沿って同軸に一体化した構成となっている。  The designed glass objective lens ΔL is coaxially integrated via a lens frame B. Specifically, the first aberration correction element L1 and the second aberration correction element L2 are joined and fixed to one end of the cylindrical lens frame B, and the objective lens 〇L is fitted and fixed to the other end. Thus, these are coaxially integrated along the optical axis X.
[0225] また、第 1位相構造は、 d線におけるアッベ数 V 1 = 56. 4、 d線における屈折率 n d d[0225] Further, the first phase structure has an Abbe number V 1 = 56.4 at the d-line, a refractive index n d d at the d-line.
1 = 1. 509140であり、第 2位木目構造は、 ώ線におけるアッベ数 V 2 = 23. 0、 ώ線に d 1 = 1.509140, and the second-order grain structure is Abbe number V 2 = 23.0 on the ώ line, d
おける屈折率 n 2 = 1. 60000である。  Refractive index n 2 = 1.60000.
d  d
[0226] 第 1位相構造 PS1は第 1光束及び第 3光束を回折せず、第 2光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 5レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 4 段シフトさせた構造)となっている。 [0226] The first phase structure PS1 does not diffract the first light beam and the third light beam, but diffracts the second light beam. A pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. The number of predetermined level planes (5 level planes in this embodiment) It has a structure in which the steps are shifted by a height corresponding to the number of steps corresponding to the number of faces (in this embodiment, a structure shifted by four steps).
[0227] 第 1位相構造 PS1は第 1光束及び第 3光束を回折せず、第 2光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 5レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 4 段シフトさせた構造)とを有し、階段構造の各段差 Δ 1は、 Δ ΐ = 2 · λ / (η _ 1) = 1. 557 /i mを満たす高さに設定されている。ここで、 nは波長 λ (本実施の形態で [0227] The first phase structure PS1 does not diffract the first light beam and the third light beam but diffracts the second light beam, and a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for every predetermined number of level surfaces (five level surfaces in this embodiment), the level is shifted by the height corresponding to the number of level surfaces (in this embodiment, Is shifted four steps), and each step Δ 1 of the staircase structure is set to a height satisfying Δ Δ = 2 · λ / (η — 1) = 1.557 / im. Here, n is the wavelength λ (in the present embodiment,
1 1  1 1
はえ =408nm)における第 1収差補正素子 L1の屈折率である。  This is the refractive index of the first aberration correction element L1 at (fly = 408 nm).
[0228] 第 1位相構造 PS1により第 1光束に付加される光路差 L1は 2 X λ であるので、第 1 光束は第 1位相構造 PS1により何ら作用を受けずにそのまま透過する。 [0228] Since the optical path difference L1 added to the first light beam by the first phase structure PS1 is 2 X λ, the first light beam is transmitted through the first phase structure PS1 without any action.
[0229] また、段差 Δ 1により第 3光束に付加される光路差 N1は 1 X λ (本実施の形態では [0229] Further, the optical path difference N1 added to the third light flux by the step Δ1 is 1 X λ (in the present embodiment,
3  Three
λ = 785nm)であるので、第 3光束も第 1位相構造 PS1により何ら作用を受けずに λ = 785 nm), the third light beam is also not affected by the first phase structure PS1 at all.
3 Three
そのまま透過する。  Transmit as it is.
[0230] 一方、段差 Δ 1により第 2光束に付加される光路差 Mlは 1. 20 Xえ (本実施の形  [0230] On the other hand, the optical path difference Ml added to the second light beam by the step Δ1 is 1.20 X
2  2
態では λ = 658nm)であり、段差 Δ 1の前後のレベル面を通過する第 2光束の位相  Λ = 658 nm), and the phase of the second light flux passing through the level surface before and after the step Δ 1
2  2
差 (光学的に等位相となる 2 πの整数倍分を差し引いた位相差)は 2 π Χ 0. 20となる 。 1つの鋸歯は 5分割されているため、鋸歯 1つ分ではちょうど第 2光束の位相差は 5 Χ 2 π Χ 0. 20 = 2 πとなり、 1次回折光力発生する。  The difference (the phase difference obtained by subtracting an integral multiple of 2π that is optically equal in phase) is 2πΧ0.20. Since one saw tooth is divided into five, the phase difference of the second light beam is exactly 5 52πΧ0.20 = 2π for one saw tooth, and a first-order diffracted light power is generated.
[0231] このように、第 1位相構造 PS1は第 2光束のみを選択的に回折させることにより、 Η Dの保護層厚さと DVDの保護層厚さの違いによる球面収差を補正する。  As described above, the first phase structure PS1 selectively corrects the second light flux to correct spherical aberration due to a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
[0232] 尚、第 1位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1 00%、第 2光束の 1次回折光の回折効率は 87. 5%、第 3光束の 0次回折光(透過光 )の回折効率は 100%であり、何れの光束に対しても高い回折効率を得ている。  The diffraction efficiency of the first-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%, the diffraction efficiency of the first-order diffracted light of the second light beam is 87.5%, The diffraction efficiency of the zero-order diffracted light (transmitted light) of the light beam is 100%, and high diffraction efficiency is obtained for any light beam.
[0233] 第 2位相構造 PS2は第 1光束及び第 2光束を回折せず、第 3光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 3レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 2 段シフトさせた構造)となっている。 [0233] The second phase structure PS2 does not diffract the first light beam and the second light beam but diffracts the third light beam. A pattern having a stepped cross section including the optical axis is arranged on a concentric circle. In this structure, for each predetermined number of level surfaces (three-level surfaces in the present embodiment), the level is shifted by a height corresponding to the number of levels corresponding to the number of the level surfaces (in this embodiment, Is 2 (Shifted structure).
[0234] 階段構造の各段差 Δ 2は、 Δ 2 = 7 · λ / (η _ 1) =4. 410 z mを満たす高さに [0234] Each step difference Δ2 of the staircase structure has a height satisfying Δ2 = 7 · λ / (η _ 1) = 4.410 z m.
1 1  1 1
設定されている。ここで、 nは波長; I における第 2収差補正素子の屈折率である。  Is set. Here, n is the refractive index of the second aberration correction element at wavelength; I.
1 1  1 1
[0235] 段差 Δ 2により第 1光束に付加される光路差 L2は 7 X λ であるので、第 1光束は第  [0235] Since the optical path difference L2 added to the first light beam by the step Δ2 is 7Xλ, the first light beam is
1  1
2位相構造 PS2により何ら作用を受けずにそのまま透過する。  Two-phase structure Transmitted without any effect by PS2.
[0236] また、段差 Δ 2により第 2光束に付加される光路差 Μ2は 3. 97 Χ λ =4 Χ λ であ [0236] The optical path difference Μ2 added to the second light beam by the step Δ2 is 3.97 Χλ = 4Χλ.
2 2 るので、第 2光束も第 2位相構造 PS2によりほとんど作用を受けずにそのまま透過す る。  2 2, the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
[0237] 一方、段差 Δ 2によりにより第 3光束に付加される光路差 Ν2は 3. 28 Xえ = 3. 25  On the other hand, the optical path difference Ν2 added to the third light beam due to the step Δ 2 is 3.28 X = 3.25
3 Three
X λ であり、段差 Δ 2の前後のレベル面を通過する第 3光束の位相差 (光学的に等X λ, the phase difference of the third light beam passing through the level surface before and after the step Δ 2 (optically equal
3 Three
位相となる 2 πの整数倍分を差し引いた位相差)は 2 π Χ 0. 25となる。 1つの鋸歯は 4分割されているため、鋸歯 1つ分ではちょうど第 3光束の位相差は 4 X 2 π Χ 0. 25 = 2 πとなり、 1次回折光が発生する。  The phase difference obtained by subtracting an integral multiple of 2π, which is the phase, is 2πΧ0.25. Since one saw tooth is divided into four, the phase difference of the third light beam is exactly 4 × 2πΧ0.25 = 2π for one saw tooth, and a first-order diffracted light is generated.
[0238] このように、第 2位相構造 PS2は第 3光束のみを選択的に回折させることにより、 Η Dの保護層厚さと CDの保護層厚さの違いによる球面収差を補正する。  As described above, the second phase structure PS2 corrects spherical aberration due to the difference between the thickness of the protective layer of D and the thickness of the protective layer of CD by selectively diffracting only the third light beam.
[0239] 尚、第 2位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1 00%、第 2光束の 0次回折光(透過光)の回折効率は 95. 8%、第 3光束の 1次回折 光の回折効率は 77. 5%であり、何れの光束に対しても高い回折効率を得ている。  [0239] The diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light flux generated by the second phase structure PS1 is 100%, and the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 95.8. %, The diffraction efficiency of the first-order diffracted light of the third light beam is 77.5%, and high diffraction efficiency is obtained for any light beam.
[0240] また、本実施の形態の対物光学系 OUは、第 1収差補正素子 L1の第 1波長; I に  [0240] Further, the objective optical system OU of the present embodiment is arranged such that the first wavelength of the first aberration correction element L1;
1 対する近軸パワーを負となっており、対物レンズ OLに対して各波長の光束が発散光 束の状態で入射する構成を有する。これにより保護層が厚い CDに対する記録 Z再 生時の作動距離を十分に確保している。尚、対物レンズ〇Lの設計倍率は負とされて おり、この設計倍率は対物レンズ OLに入射する第 1光束の発散度に相当している。  It has a configuration in which the paraxial power for one is negative, and the luminous flux of each wavelength enters the objective lens OL in a divergent luminous flux state. This ensures a sufficient working distance when playing back recorded CDs on CDs with a thick protective layer. Note that the design magnification of the objective lens ΔL is negative, and this design magnification corresponds to the divergence of the first light beam incident on the objective lens OL.
[0241] [第 5の実施の形態]  [0241] [Fifth Embodiment]
以下、本発明の第 5の実施の形態について図面を用いて説明するが、上記第 1の 実施の形態と同一の構成となる箇所については説明を省略する。  Hereinafter, a fifth embodiment of the present invention will be described with reference to the drawings. However, description of portions having the same configuration as that of the first embodiment will be omitted.
[0242] 本実施の形態は、保護層 PL1の厚さ t =0. 6mm、開口数 NA =0. 67の規格の  [0242] In the present embodiment, the thickness t of the protective layer PL1 is 0.6 mm and the numerical aperture NA is 0.67.
1 1  1 1
高密度光ディスク HD (例えば、 HD DVD)と DVDと CDとに対して互換性を有する 対物レンズユニット OUであり、第 1収差補正素子 L1と第 2収差補正素子 L2とを接合 して構成し、第 1位相構造 PS1を断面形状が鋸歯形状である回折構造とした点に特 徴を有する。 Compatible with high-density optical discs HD (eg, HD DVD) and DVDs and CDs The objective lens unit OU is characterized by the fact that the first aberration compensating element L1 and the second aberration compensating element L2 are joined together and the first phase structure PS1 is a diffraction structure with a saw-tooth cross section. Have.
[0243] 本実施形態における対物レンズユニット OUは、図 6に概略的に示すように、それぞ れ樹脂製の第 1位相構造 PS1と樹脂製の第 2位相構造 SP2を有する、互いに接合さ れた第 1収差補正素子 L1及び第 2収差補正素子 L2と、樹脂製の対物レンズ OLが、 それぞれのフランジ部同士 FL1、 FL2を嵌合固定することで同軸で一体化された構 成を有する。  [0243] As schematically shown in Fig. 6, the objective lens units OU in this embodiment are joined to each other, each having a first phase structure PS1 made of resin and a second phase structure SP2 made of resin. In addition, the first aberration correction element L1 and the second aberration correction element L2 and the resin objective lens OL are coaxially integrated by fitting and fixing respective flange portions FL1 and FL2.
[0244] 第 1位相構造 PS1は第 1光束乃至第 3光束を回折するものであり、光軸を含む断面 形状が鋸歯状となっている。この第 1位相構造 PS1は、第 1波長え と第 2波長 λ の  The first phase structure PS1 diffracts the first to third light beams, and has a sawtooth cross section including the optical axis. The first phase structure PS1 has the first wavelength and the second wavelength λ.
1 2 差に起因する球面収差と、第 1波長 λ の微小変化に伴う近軸像点位置の移動を補 正するための構造である。  This is a structure for compensating for the spherical aberration caused by the 1 2 difference and the movement of the paraxial image point position due to the minute change of the first wavelength λ.
[0245] 第 1位相構造 PS1の各段差 Δ 1は、 Δ 1 = 8 · λ / (η 1) = 7. 042 x mを満たす 高さに設定されており(本実施の形態ではえ =407nm)、第 1位相構造 PS1を通過 Each step Δ 1 of the first phase structure PS 1 is set to a height that satisfies Δ 1 = 8 · λ / (η 1) = 7.042 xm (in the present embodiment, f = 407 nm) Passes through the first phase structure PS1
1  1
することで、第 1光束の 8次回折光、第 2光束の 5次回折光、第 3光束の 4次回折光が 発生する。  As a result, an eighth-order diffracted light of the first light flux, a fifth-order diffracted light of the second light flux, and a fourth-order diffracted light of the third light flux are generated.
[0246] 第 1位相構造 PS1を通過する際に第 1光束に付加される光路差は 8. 0 X λ であり  [0246] The optical path difference added to the first light flux when passing through the first phase structure PS1 is 8.0 X λ.
1 One
、第 1光束の 8次回折光が最大の回折効率を有し、第 1位相構造 PS1を通過する際 に第 2光束に付加される光路差は 4. 81 X λ = 5 Χ λ (本実施の形態では I = 65 The 8th-order diffracted light of the first light beam has the highest diffraction efficiency, and the optical path difference added to the second light beam when passing through the first phase structure PS1 is 4.81 X λ = 5 λ λ (this embodiment). In the form I = 65
2 2 2 2 2 2
5nm)であり、第 2光束の 5次回折光が最大の回折効率を有し、第 1位相構造 PS1を 通過する際に第 3光束に付加される光路差は 3. 99 X λ =4 Χ λ (本実施の形態 5nm), the fifth-order diffracted light of the second light beam has the highest diffraction efficiency, and the optical path difference added to the third light beam when passing through the first phase structure PS1 is 3.99 X λ = 4 λ λ (This embodiment
3 3  3 3
では λ = 785nm)であり、第 3光束の 4次回折光が最大の回折効率を有する。  Λ = 785 nm), and the fourth-order diffracted light of the third light beam has the maximum diffraction efficiency.
3  Three
[0247] 尚、第 1位相構造 PS1で発生する第 1光束の 8次回折光の回折効率は 100%、第 2 光束の 5次回折光の回折効率は 89. 1 %、第 3光束の 4次回折光の回折効率は 100 %であり、何れの光束に対しても高い回折効率を得ている。  [0247] Note that the diffraction efficiency of the 8th-order diffracted light of the first light beam generated by the first phase structure PS1 is 100%, the diffraction efficiency of the 5th-order diffracted light of the second light beam is 89.1%, and the fourth-order diffracted light of the third light beam is generated. Has a diffraction efficiency of 100%, and high diffraction efficiency is obtained for any light flux.
[0248] 第 2位相構造 PS2は第 1光束及び第 2光束を回折せず、第 3光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 4レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 3 段シフトさせた構造)となっている。 [0248] The second phase structure PS2 diffracts the third light beam without diffracting the first light beam and the second light beam, and a pattern in which the cross section including the optical axis is stepped is arranged on a concentric circle. The number of predetermined level planes (four level planes in this embodiment) The structure is such that the steps are shifted by a height corresponding to the number of steps corresponding to the number of surfaces (in the present embodiment, a structure shifted three steps).
[0249] 階段構造の各段差 Δ 2は、 Δ 2 = 7 · λ / (n _ 1) =4. 396 z mを満たす高さに [0249] Each step Δ 2 of the staircase structure has a height satisfying Δ 2 = 7 · λ / (n _ 1) = 4.396 z m
1 1  1 1
設定されている。ここで、 nは波長; I における第 2収差補正素子の屈折率である。  Is set. Here, n is the refractive index of the second aberration correction element at wavelength; I.
1 1  1 1
[0250] 段差 Δ 2により第 1光束に付加される光路差 L2は 7 X λ であるので、第 1光束は第  [0250] Since the optical path difference L2 added to the first light beam by the step Δ2 is 7Xλ, the first light beam is
1  1
2位相構造 PS2により何ら作用を受けずにそのまま透過する。  Two-phase structure Transmitted without any effect by PS2.
[0251] また、段差 Δ 2により第 2光束に付加される光路差 Μ2は 3. 98 X λ = 4 Χ λ であ [0251] Further, the optical path difference Μ2 added to the second light beam by the step Δ2 is 3.98 X λ = 4 Χ λ.
2 2 るので、第 2光束も第 2位相構造 PS2によりほとんど作用を受けずにそのまま透過す る。  2 2, the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
[0252] —方、段差 Δ 2によりにより第 3光束に付加される光路差 Ν2は 3. 27 Χ λ = 3. 25  [0252] On the other hand, the optical path difference Ν2 added to the third light beam by the step Δ 2 is 3.27 Χ λ = 3.25
3 Three
X λ であり、段差 Δ 2の前後のレベル面を通過する第 3光束の位相差 (光学的に等X λ, the phase difference of the third light beam passing through the level surface before and after the step Δ 2 (optically equal
2 2
位相となる 2 πの整数倍分を差し引いた位相差)は 2 π Χ 0. 25となる。 1つの鋸歯は The phase difference obtained by subtracting an integral multiple of 2π, which is the phase, is 2πΧ0.25. One saw blade
4分割されているため、鋸歯 1つ分ではちょうど第 3光束の位相差は 4 X 2 π Χ 0. 25Since it is divided into four, the phase difference of the third light beam is exactly 4 X 2 π Χ 0.25 for one sawtooth.
= 2 πとなり、 1次回折光が発生する。 = 2π, and the first-order diffracted light is generated.
[0253] このように、第 2位相構造 PS2は第 3光束のみを選択的に回折させることにより、 ΗAs described above, the second phase structure PS2 selectively diffracts only the third light beam, and
Dの保護層厚さと CDの保護層厚さの違いによる球面収差を補正する。 The spherical aberration caused by the difference between the protective layer thickness of D and the protective layer thickness of CD is corrected.
[0254] 尚、第 2位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1[0254] Note that the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light beam generated by the second phase structure PS1 is 1
00%、第 2光束の 0次回折光(透過光)の回折効率は 97. 5%、第 3光束の 1次回折 光の回折効率は 79. 6%であり、何れの光束に対しても高い回折効率を得ている。 The diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 97.5%, and the diffraction efficiency of the first-order diffracted light of the third light flux is 79.6%, which is high for any light flux. Diffraction efficiency is obtained.
[第 6の実施の形態]  [Sixth embodiment]
以下、本発明の第 6の実施の形態について図面を用いて説明するが、上記第 1の 実施の形態と同一の構成となる箇所については説明を省略する。  Hereinafter, the sixth embodiment of the present invention will be described with reference to the drawings, but the description of the same components as those in the first embodiment will be omitted.
[0255] 本実施の形態は、対物レンズユニット OUにおいて、第 1収差補正素子 L1と第 2収 差補正素子 L2とを接合して構成し、その接合面を第 2収差補正素子 L2側に凸形状 とし、更に、第 2収差補正素子 L2の光源側の光学面の周辺領域 PA (第 2周辺領域) に第 5位相構造 PS5を形成した点に特徴を有する。  In the present embodiment, in the objective lens unit OU, the first aberration correction element L1 and the second aberration correction element L2 are joined, and the joint surface is convex toward the second aberration correction element L2. It is characterized in that a fifth phase structure PS5 is formed in a peripheral area PA (second peripheral area) of the optical surface on the light source side of the second aberration correction element L2.
[0256] 本実施形態における対物レンズユニット OUは、図 13に概略的に示すように、樹脂 製の第 1位相構造 PS1を有する第 1収差補正素子 L1と、樹脂製の第 2位相構造を有 する第 2収差補正素子 L2と、第 1波長 λ と HDの保護層 PL1の厚さ tとに対して球 As schematically shown in FIG. 13, the objective lens unit OU in the present embodiment has a first aberration correction element L1 having a first phase structure PS1 made of resin and a second phase structure made of resin. The second wavelength correction element L2 and the first wavelength λ and the thickness t of the HD protective layer PL1.
1 1  1 1
面収差が最小となるようにその非球面形状が設計されたガラス製の対物レンズ OLが 、鏡枠 Bを介して同軸で一体化された構成を有する。具体的には、円筒状の鏡枠 B の一端に第 1収差補正素子 L1と第 2収差補正素子 L2とを接合した状態で嵌合固定 し、他端に対物レンズ〇Lを嵌合固定して、これらを光軸 Xに沿って同軸に一体化し た構成となっている。  A glass objective lens OL, the aspherical shape of which is designed to minimize the surface aberration, is coaxially integrated via a lens frame B. Specifically, the first aberration correction element L1 and the second aberration correction element L2 are joined and fixed to one end of a cylindrical lens frame B, and the objective lens 〇L is fitted and fixed to the other end. Therefore, they are coaxially integrated along the optical axis X.
[0257] また、第 1位相構造は、 d線におけるアッベ数 V 1 = 56、 d線における屈折率 n 1 = d d [0257] The first phase structure has an Abbe number V 1 = 56 at the d-line and a refractive index n 1 = d d at the d-line
1. 550000であり、第 2位相構造は、 d線におけるアッベ数 V 2 = 23. 0、 d線におけ d 1. 550000, and the second phase structure is based on the Abbe number at the d-line V 2 = 23.0, d at the d-line
る屈折率 n 2 = 1. 630000である。  Refractive index n 2 = 1.630000.
d  d
[0258] また、第 1収差補正素子 L1の光ディスク側の光学面には第 1位相構造 PS1が形成 されており、第 2収差補正素子 L2の光源側の光学面の中央領域 CA (第 2中央領域) には第 2位相構造 PS2が形成されており、中央領域 CAを囲む周辺領域 PA (第 2周 辺領域)には第 5位相構造 PS5が形成されている。  [0258] Also, a first phase structure PS1 is formed on the optical surface of the first aberration correction element L1 on the optical disk side, and a central area CA (second center area) of the optical surface of the second aberration correction element L2 on the light source side is provided. The second phase structure PS2 is formed in the region (region), and the fifth phase structure PS5 is formed in the peripheral region PA (second peripheral region) surrounding the central region CA.
[0259] 第 1位相構造 PS1は第 1光束及び第 3光束を回折せず、第 2光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 5レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 4 段シフトさせた構造)となっている。  [0259] The first phase structure PS1 does not diffract the first light beam and the third light beam but diffracts the second light beam. A pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for every predetermined number of level surfaces (five level surfaces in this embodiment), the level is shifted by the height corresponding to the number of level surfaces (in this embodiment, Is shifted four steps).
[0260] 第 1位相構造 PS1は第 1光束及び第 3光束を回折せず、第 2光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 5レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 4 段シフトさせた構造)とを有し、階段構造の各段差 Δ 1は、 Δ ΐ = 2 · λ / (η _ 1) = 1. 429を満たす高さに設定されている。ここで、 ηは波長 λ (本実施の形態では λ =405nm)における第 1収差補正素子 L1の屈折率である。  [0260] The first phase structure PS1 does not diffract the first light beam and the third light beam but diffracts the second light beam. A pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, for every predetermined number of level surfaces (five level surfaces in this embodiment), the level is shifted by the height corresponding to the number of level surfaces (in this embodiment, Is shifted four steps), and each step Δ 1 of the staircase structure is set to a height satisfying Δ Δ = 2 · λ / (η — 1) = 1.429. Here, η is the refractive index of the first aberration correction element L1 at the wavelength λ (λ = 405 nm in the present embodiment).
[0261] 第 1位相構造 PS1により第 1光束に付加される光路差 L1は 2 X λ であるので、第 1 光束は第 1位相構造 PS1により何ら作用を受けずにそのまま透過する。  Since the optical path difference L1 added to the first light beam by the first phase structure PS1 is 2 × λ, the first light beam is transmitted through the first phase structure PS1 without any action.
[0262] また、段差 Δ 1により第 3光束に付加される光路差 N1は 0. 99 Xえ = 1 1 (本実 施の形態では I = 785nm)であるので、第 3光束も第 1位相構造 PS1により何ら作 [0262] The optical path difference N1 added to the third light beam due to the step Δ1 is 0.99 X = 1 1 (actual (I = 785 nm in the embodiment), so that the third light flux is not created by the first phase structure PS1.
3  Three
用を受けずにそのまま透過する。  Transmitted as it is without being used.
[0263] 一方、段差 Δ 1により第 2光束に付加される光路差 Mlは 1. 19 X λ = 1. 20 Χ λ On the other hand, the optical path difference Ml added to the second light beam by the step Δ 1 is 1.19 X λ = 1.20Χλ
2 2 twenty two
(本実施の形態では I =655nm)であり、段差 Δ 1の前後のレベル面を通過する第 (I = 655 nm in the present embodiment), and the second pass through the level surface before and after the step Δ1.
2  2
2光束の位相差 (光学的に等位相となる 2 πの整数倍分を差し引いた位相差)は 2 π Χ 0. 20となる。 1つの鋸歯は 5分割されているため、鋸歯 1つ分ではちょうど第 2光束 の位相差は 5 Χ 2 π Χ 0. 20 = 2 πとなり、 1次回折光が発生する。  The phase difference between the two light beams (the phase difference obtained by subtracting an integer multiple of 2π, which is optically equal in phase), is 2π 200.20. Since one saw tooth is divided into five, the phase difference of the second light beam is exactly 5Χ2πΧ0.20 = 2π for one saw tooth, and a first-order diffracted light is generated.
[0264] このように、第 1位相構造 PS1は第 2光束のみを選択的に回折させることにより、 Η Dの保護層厚さと DVDの保護層厚さの違レ、による球面収差を補正する。  [0264] As described above, the first phase structure PS1 selectively corrects the second light flux to correct spherical aberration caused by a difference between the thickness of the protective layer of D and the thickness of the protective layer of DVD.
[0265] 尚、第 1位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1 00%、第 2光束の 1次回折光の回折効率は 87. 3%、第 3光束の 0次回折光(透過光 )の回折効率は 99. 1%であり、何れの光束に対しても高い回折効率を得ている。  The diffraction efficiency of the first-order diffracted light (transmitted light) of the first light beam generated by the first phase structure PS1 is 100%, the diffraction efficiency of the first-order diffracted light of the second light beam is 87.3%, The diffraction efficiency of the zero-order diffracted light (transmitted light) of the light beam is 99.1%, and a high diffraction efficiency is obtained for any light beam.
[0266] 第 2位相構造 PS2は第 1光束及び第 2光束を回折せず、第 3光束を回折するもので あり、光軸を含む断面形状が階段状とされたパターンが同心円上に配列された構造 であって、所定のレベル面(本実施の形態では 4レベル面)の個数毎に、そのレベル 面数に対応した段数分の高さだけ段をシフトさせた構造 (本実施の形態においては 3 段シフトさせた構造)となっている。  [0266] The second phase structure PS2 diffracts the third light beam without diffracting the first light beam and the second light beam, and a pattern in which the cross-sectional shape including the optical axis is stepped is arranged on a concentric circle. In this structure, the number of levels is shifted by the number of levels corresponding to the number of level planes for each predetermined number of level planes (four level planes in this embodiment). Is shifted three steps).
[0267] 階段構造の各段差 Δ 2は、 Δ 2 = 7 · λ / (n _ 1) =4. 159 z mを満たす高さに  [0267] Each step difference Δ2 of the staircase structure has a height satisfying Δ2 = 7 · λ / (n _ 1) = 4.159 z m
1 1  1 1
設定されている。ここで、 nは波長; I における第 2収差補正素子の屈折率である。  Is set. Here, n is the refractive index of the second aberration correction element at wavelength; I.
1 1  1 1
[0268] 段差 Δ 2により第 1光束に付加される光路差 L2は 7 X λ であるので、第 1光束は第  [0268] Since the optical path difference L2 added to the first light beam by the step Δ2 is 7Xλ, the first light beam
1  1
2位相構造 PS2により何ら作用を受けずにそのまま透過する。  Two-phase structure Transmitted without any effect by PS2.
[0269] また、段差 Δ 2により第 2光束に付加される光路差 Μ2は 3. 95 Χ λ =4 Χ λ であ [0269] Also, the optical path difference Μ2 added to the second light beam by the step Δ2 is 3.95 λ λ = 4 Χ λ.
2 2 るので、第 2光束も第 2位相構造 PS2によりほとんど作用を受けずにそのまま透過す る。  2 2, the second light beam is also transmitted through the second phase structure PS2 with almost no effect.
[0270] 一方、段差 Δ 2によりにより第 3光束に付加される光路差 Ν2は 3. 25 X λ であり、  On the other hand, the optical path difference Ν2 added to the third light beam by the step Δ 2 is 3.25 X λ,
3 段差 Δ 2の前後のレベル面を通過する第 3光束の位相差 (光学的に等位相となる 2 πの整数倍分を差し引いた位相差)は 2 π Χ 0. 25となる。 1つの鋸歯は 4分割されて いるため、鋸歯 1つ分ではちょうど第 3光束の位相差は 4 X 2 π Χ 0. 25 = 2 πとなり、 1次回折光が発生する。 The phase difference (the phase difference obtained by subtracting an integral multiple of 2π, which is an optically equal phase) of the third light beam passing through the level surface before and after the three steps Δ2 is 2πΧ0.25. Since one saw tooth is divided into four, the phase difference of the third light beam is exactly 4 X 2 π Χ 0.25 = 2 π for one saw tooth. First-order diffracted light is generated.
[0271] このように、第 2位相構造 PS2は第 3光束のみを選択的に回折させることにより、 H Dの保護層厚さと CDの保護層厚さの違いによる球面収差を補正する。  As described above, the second phase structure PS2 selectively corrects the third light flux to correct spherical aberration caused by a difference between the thickness of the protective layer of HD and the thickness of the protective layer of CD.
[0272] 尚、第 2位相構造 PS1で発生する第 1光束の 0次回折光 (透過光)の回折効率は 1 00%、第 2光束の 0次回折光(透過光)の回折効率は 88. 8%、第 3光束の 1次回折 光の回折効率は 81. 0%であり、何れの光束に対しても高い回折効率を得ている。  The diffraction efficiency of the 0th-order diffracted light (transmitted light) of the first light flux generated by the second phase structure PS1 is 100%, and the diffraction efficiency of the 0th-order diffracted light (transmitted light) of the second light flux is 88.8. %, The diffraction efficiency of the first-order diffracted light of the third light beam is 81.0%, and high diffraction efficiency is obtained for any light beam.
[0273] 第 2収差補正素子 L2の光源側の光学面の中央領域 CAは、開口数 NA3内に相当 する領域であり、周辺領域 PAは開口数 NA3より外側に相当する領域であって、周 辺領域 PAには、この領域を通過する第 3光束の集光位置を制御するための構造で ある第 5位相構造 PS5が形成されている。第 5位相構造 PS5は第 1光束及び第 2光 束を回折せず、第 3光束を回折するものであり、光軸を含む断面形状が階段状とされ たパターンが同心円上に配列された構造であって、所定のレベル面 (本実施の形態 では 4レベル面)の個数毎に、そのレベル面数に対応した段数分の高さだけ段をシフ トさせた構造 (本実施の形態においては 3段シフトさせた構造)となっている。第 5位 相構造 PS5による回折光発生の原理は第 2位相構造 PS2と同じであるのでここでは 詳細な説明は割愛する。  [0273] The central area CA of the optical surface on the light source side of the second aberration correction element L2 is an area corresponding to the inside of the numerical aperture NA3, and the peripheral area PA is an area corresponding to the outside of the numerical aperture NA3. In the side area PA, a fifth phase structure PS5, which is a structure for controlling the condensing position of the third light beam passing through this area, is formed. Fifth phase structure PS5 diffracts the third light beam without diffracting the first light beam and the second light beam, and has a concentric circle-shaped pattern with a stepped cross section including the optical axis. A structure in which, for each predetermined number of level surfaces (fourth level surface in this embodiment), the number of steps is shifted by the height corresponding to the number of level surfaces (in this embodiment, Three-stage shifted structure). The principle of diffracted light generation by the fifth-phase structure PS5 is the same as that of the second-phase structure PS2, and a detailed description is omitted here.
[0274] 第 5位相構造 PS5が形成されていない場合、周辺領域 PAを通過する第 3光束は 大きな球面収差を有するフレア成分となるが、このフレア成分は第 2位相構造 PS2に より形成される集光スポット上に重なるように集光するため、第 3光束に対するフォー カス引き込み動作に悪影響を及ぼす虞がある。第 4位相構造 PS4は、周辺領域 PA を通過する第 3光束をアンダー側 (集光位置が対物レンズユニット〇Uに近づく方向) に集光するフレア成分にさせる機能を有しており、これにより第 3光束に対して良好な フォーカス引き込み動作特性を得ることが可能となる。  [0274] When the fifth phase structure PS5 is not formed, the third light beam passing through the peripheral area PA becomes a flare component having large spherical aberration, and this flare component is formed by the second phase structure PS2. Since the light is condensed so as to overlap on the condensing spot, there is a possibility that the focusing operation for the third light beam may be adversely affected. The fourth phase structure PS4 has a function of converting the third light beam passing through the peripheral area PA into a flare component that is condensed on the under side (in a direction in which the condensing position approaches the objective lens unit 〇U). Good focus pull-in operation characteristics can be obtained for the third light flux.
[0275] また、第 1収差補正素子 L1と第 2収差補正素子 L2の接合面を第 2収差補正素子 L 2側に凸形状としたことで、第 1波長; I ± 5nmの波長領域での近軸像点位置の移動  [0275] Further, by forming the joint surface between the first aberration correction element L1 and the second aberration correction element L2 to be convex toward the second aberration correction element L2, the first wavelength; in the wavelength region of I ± 5 nm. Move paraxial image point
1  1
を抑制しているので、再生から記録に切り替える際の第 1光源の出力の変化に伴つ てモードホップが起きた場合でも、集光スポットが大きくならず、常に良好な集光状態 を維持することが可能となる。 実 s施例 The focus spot does not increase even if a mode hop occurs due to a change in the output of the first light source when switching from playback to recording. It becomes possible. Real example
[0276] 次に、図 2に示した対物レンズユニット〇Uの具体的な数値実施例(実施例 1)を例 示する。  Next, a specific numerical example (Example 1) of the objective lens unit ΔU shown in FIG. 2 will be described.
[0277] 樹脂製の第 1位 Is相構造 PS1を有する第 1収差補正素子 L1と樹脂製の第 2位相構 造を有する第 2収差補正素子 L2は互いに接合された構成を有し、対物レンズ OLは 、第 1波長え と HDの保護層 PL1の厚さ tとに対して球面収差が最小となるようにそ の非球面形状が設計されたガラスレンズ (HOYA社製 LAC130)であるが、樹脂レン ズとしても良レ、。  The first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are joined to each other, and the objective lens OL is a glass lens (HOYA LAC130) whose aspheric shape is designed to minimize spherical aberration with respect to the first wavelength and the thickness t of the HD protective layer PL1. A good resin lens.
[0278] 本実施例のレンズデータを表 1 1 1 2に示す。本数値実施例では、第 1位相構 造 PS1及び第 2位相構造 PS2により入射光束に付加される光路差を光路差関数で 表している。  Table 1 1 1 2 shows the lens data of this example. In this numerical example, the optical path difference added to the incident light beam by the first phase structure PS1 and the second phase structure PS2 is represented by an optical path difference function.
[0279] [表 1-1]  [0279] [Table 1-1]
Figure imgf000048_0001
Figure imgf000048_0001
[0280] [表 1-2] 【回折面係数】 [0280] [Table 1-2] [Diffraction surface coefficient]
Figure imgf000049_0001
Figure imgf000049_0001
[0281] 尚、本実施例を含めて、後述する実施例 2乃至実施例 4、実施例 7、実施例 8にお ける、 HDの開口数 NAは 0· 85であり、 DVDの開口数 NAは 0· 65であり、 CDの  [0281] The numerical aperture NA of HD is 0.85, and the numerical aperture NA of DVD in Examples 2 to 4, Example 7, and Example 8 described below, including this example. Is 0 · 65 and of the CD
1 2  1 2
開口数 NAは 0. 51である。  The numerical aperture NA is 0.51.
3  Three
[0282] 本実施例においては、第 1収差補正素子 L1の近軸屈折パワーを負とし、対物レン ズ OLに対して発散光束が入射する構成とすることで、保護層が厚い DVDや CDに 対する作動距離を十分に確保している。本実施例のような負'正構成の対物光学系 は、焦点距離が小さくなつた場合でも、 DVDや CDに対する作動距離の確保という点 で有利である。従って、本実施例の対物光学系は、スリムタイプの光ピックアップ装置 に最適である。  In the present embodiment, the paraxial refraction power of the first aberration correction element L1 is set to be negative, and a divergent light beam is incident on the objective lens OL, so that DVDs and CDs having a thick protective layer can be used. The working distance to this is sufficiently secured. The objective optical system having the negative / positive configuration as in the present embodiment is advantageous in that the working distance for DVDs and CDs is ensured even when the focal length is reduced. Therefore, the objective optical system of this embodiment is most suitable for a slim type optical pickup device.
[0283] 表 1 _ 1 1 _ 2において、! " (111111)は曲率半径、 d (mm)はレンズ間隔、 n n  [0283] In Table 1-1_1 1_2,! "(111111) is the radius of curvature, d (mm) is the lens spacing, n n
408 658 n は、それぞれ、第 1波長; I ( = 408nm)、第 2波長; I ( = 658nm)、第 3波長; I 408 658 n are the first wavelength; I (= 408 nm), the second wavelength; I (= 658 nm), the third wavelength; I
785 1 2 3785 1 2 3
( = 785nm)に対するレンズの屈折率、 v は d線のレンズのアッベ数、 M M (= 785 nm), the refractive index of the lens, v is the Abbe number of the d-line lens, M M
d HD DVD d HD DVD
M は、それぞれ、 HDに対する記録/再生に使用する回折光の回折次数、 DVDM is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
CD CD
に対する記録 Z再生に使用する回折光の回折次数、 CDに対する記録/再生に使 用する回折光の回折次数である。また、 10のべき乗数 (例えば 2. 5 X 10— 3)を、 E ( 例えば 2. 5E— 3)を用いて表すものとする。 This is the diffraction order of the diffracted light used for recording / reproducing, and the diffraction order of the diffracted light used for recording / reproducing for CD. Further, exponent of 10 (for example, 2. 5 X 10- 3), shall be expressed by using E (for example, 2. 5E- 3).
[0284] 第 1収差補正素子 L1の光源側の光学面(第 1面)、対物レンズ〇Lの光源側の光学 面(第 4面)、光ディスク側の光学面(第 5面)はそれぞれ非球面形状であり、この非球 面は、次の非球面形状式に表中の係数を代入した数式で表される。 [非球面表現式] [0284] The optical surface on the light source side (first surface) of the first aberration correction element L1, the optical surface on the light source side (fourth surface) of the objective lens ΔL, and the optical surface on the optical disk side (fifth surface) are each non-uniform. The aspheric surface is represented by an equation obtained by substituting the coefficients in the table into the following aspherical form equation. [Aspheric expression]
z= (y2/R)/[l+^{l-(K + l) (y/R)2}]+A y4+A y6 + A y8+A y10+A z = (y 2 / R) / [l + ^ {l- (K + l) (y / R) 2 }] + A y 4 + A y 6 + A y 8 + A y 10 + A
4 6 8 10 1 y 十 A v 十 A y 十 A y 十 A v  4 6 8 10 1 y tens A v tens A y tens A y tens A v
2 14 16 18 20  2 14 16 18 20
但し、 However,
z:非球面形状 (非球面の面頂点に接する平面から光軸に沿った方向の距離) y:光軸からの距離 z: Aspherical shape (distance along the optical axis from the plane tangent to the apex of the aspheric surface) y: Distance from the optical axis
R:曲率半径 R: radius of curvature
K:コーニック係数  K: conic coefficient
Α , Α , Α , Α , Α , A , Α , A , Α :非球面係数  ,, Α, Α, Α, Α, A, Α, A, Α: Aspheric coefficient
4 6 8 10 12 14 16 18 20  4 6 8 10 12 14 16 18 20
また、第 1位相構造 PS1及び第 2位相構造 PS2は、各位相構造により入射光束に 付加される光路差で表される。かかる光路差は、次の光路差関数を表す式に表中の 係数を代入した光路差関数 Φ (mm)で表される。  Further, the first phase structure PS1 and the second phase structure PS2 are represented by an optical path difference added to the incident light beam by each phase structure. Such an optical path difference is represented by an optical path difference function Φ (mm) obtained by substituting the coefficients in the table into an equation representing the following optical path difference function.
[光路差関数] [Optical path difference function]
φ =ΜΧ λ/λ X (B y2 + B y4 + B y6 + B v8 + B y10) φ = ΜΧ λ / λ X (B y 2 + By 4 + By 6 + B v 8 + By 10 )
B 2 4 6 8 10  B 2 4 6 8 10
但し、 However,
Φ:光路差関数  Φ: optical path difference function
λ:回折構造に入射する光束の波長 λ: wavelength of the light beam incident on the diffraction structure
λ :製造波長 λ: production wavelength
Β  Β
Μ:光ディスクに対する記録/再生に使用する回折光の回折次数  Μ: Diffraction order of diffracted light used for recording / reproducing on optical disc
y:光軸からの距離 y: distance from optical axis
B , B , B , B , B :回折面係数  B, B, B, B, B, B: Diffraction surface coefficient
2 4 6 8 10  2 4 6 8 10
尚、本明細書においては、光軸から離れる方向に回折させる回折構造の近軸パヮ 一を負(第 1位相構造 PS1及び第 2位相構造 PS2に対して平行光束の状態で入射 する光束が発散していく方向)とし、光軸に近づく方向に回折させる回折構造の近軸 パワーを正(第 1位相構造 PS1及び第 2位相構造 PS2に対して平行光束の状態で入 射する光束が収束してレ、く方向)としてレ、る。  In the present specification, the paraxial power of the diffractive structure diffracted in a direction away from the optical axis is negative (a light beam incident as a parallel light beam on the first phase structure PS1 and the second phase structure PS2 diverges). Direction), and the paraxial power of the diffractive structure that diffracts in the direction approaching the optical axis is positive (the light beam entering the first phase structure PS1 and the second phase structure PS2 as a parallel light beam converges).レ く 方向 方向 方向.
次に、図 3に示した対物レンズユニット〇Uの具体的な数値実施例(実施例 2)を例 示する。 [0286] 樹脂製の第 1位相構造 PS1を有する第 1収差補正素子 LIと樹脂製の第 2位相構 造を有する第 2収差補正素子 L2互いに離間して配置された構成を有し、対物レンズ 〇Lは、第 1波長; I と HDの保護層 PL1の厚さ tとに対して球面収差が最小となるよ うにその非球面形状が設計されたガラスレンズ (HOYA社製 BACD5)であるが、プ Next, a specific numerical example (Example 2) of the objective lens unit ΔU shown in FIG. 3 will be described. [0286] The first aberration correction element LI having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are spaced apart from each other. 〇L is a glass lens (HOYA BACD5) whose aspheric shape is designed to minimize spherical aberration with respect to the first wavelength; I and the thickness t of the HD protective layer PL1. ,
[0287] 本実施例のレンズデータを表 2- ― 2_ 2に示す。 [0287] Lens data of the present example are shown in Table 2--2_2.
[0288] [表 2-1] [0288] [Table 2-1]
Figure imgf000051_0001
Figure imgf000051_0003
Figure imgf000051_0002
Figure imgf000051_0001
Figure imgf000051_0003
Figure imgf000051_0002
[0289] [表 2-2] 【回折面係数】 [0289] [Table 2-2] [Diffraction surface coefficient]
Figure imgf000052_0001
Figure imgf000052_0001
[0290] 表 2— 1、 2— 2において、 r (mm)は曲率半径、 d (mm)はレンズ間隔、 n 、 n 、  [0290] In Tables 2-1 and 2-2, r (mm) is the radius of curvature, d (mm) is the lens spacing, n, n,
405 655 n は、それぞれ、第 1波長; I ( = 405nm)、第 2波長; I ( = 655nm)、第 3波長; I 405 655 n are the first wavelength; I (= 405 nm), the second wavelength; I (= 655 nm), the third wavelength; I
785 1 2 3785 1 2 3
( = 785nm)に対するレンズの屈折率、 v は d線のレンズのアッベ数、 M 、 M 、 (= 785nm), v is the Abbe number of the d-line lens, M, M,
d HD DVD d HD DVD
M は、それぞれ、 HDに対する記録/再生に使用する回折光の回折次数、 DVDM is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
CD CD
に対する記録 Z再生に使用する回折光の回折次数、 CDに対する記録 Z再生に使 用する回折光の回折次数である。  It is the diffraction order of the diffracted light used for recording Z reproduction for CD, and the diffraction order of the diffracted light used for recording Z reproduction for CD.
[0291] 第 2収差補正素子 L2の光源側の光学面(第 3面)、対物レンズ〇Lの光源側の光学 面(第 5面)、光ディスク側の光学面(第 6面)はそれぞれ非球面形状であり、この非球 面は、上記非球面形状式に表中の係数を代入した数式で表される。  [0291] The optical surface on the light source side (third surface) of the second aberration correction element L2, the optical surface on the light source side (fifth surface) of the objective lens ΔL, and the optical surface on the optical disk side (sixth surface) are each non-uniform. The aspheric surface is represented by a mathematical expression obtained by substituting the coefficients in the table into the aspherical surface expression.
[0292] また、第 1位相構造 PS1及び第 2位相構造 PS2は、各位相構造により入射光束に 付加される光路差で表される。かかる光路差は、上記光路差関数を表す式に表 2— 1、 2— 2中の係数を代入した光路差関数 φ (mm)で表される。  [0292] Further, the first phase structure PS1 and the second phase structure PS2 are represented by an optical path difference added to the incident light beam by each phase structure. Such an optical path difference is represented by an optical path difference function φ (mm) obtained by substituting the coefficients in Tables 2-1 and 2-2 into the expression representing the optical path difference function.
[0293] 次に、図 4に示した対物レンズユニット OUの具体的な数値実施例(実施例 3)を例 示する。  Next, a specific numerical example (Example 3) of the objective lens unit OU shown in FIG. 4 will be described.
[0294] 樹脂製の第 1位相構造 PS1を有する第 1収差補正素子 L1と樹脂製の第 2位相構 造を有する第 2収差補正素子 L2は互いに離間して配置された構成を有し、対物レン ズ OLは、第 1波長え 1と HDの保護層 PL1の厚さ tとに対して球面収差が最小となる  [0294] The first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are spaced apart from each other. The lens OL has the smallest spherical aberration with respect to the first wavelength 1 and the thickness t of the HD protective layer PL1.
1  1
ようにその非球面形状が設計されたガラスレンズ (HOYA社製 BACD5)であるが、 樹脂レンズとしても良い。  As described above, the glass lens (HOYA BACD5) whose aspherical shape is designed, but may be a resin lens.
[0295] 本実施例のレンズデータを表 3— 1、 3— 2に示す。 [0296] [sf£_表. 3- 1] [0295] Lens data of the present example are shown in Tables 3-1 and 3-2. [0296] [sf £ _Table. 3-1]
Figure imgf000053_0003
Figure imgf000053_0003
Figure imgf000053_0001
Figure imgf000053_0001
[0297] [表 3-2]  [0297] [Table 3-2]
【回折面係数】  [Diffraction surface coefficient]
Figure imgf000053_0002
Figure imgf000053_0002
[0298] 表 3— 1 3— 2において、! は曲率半径、 d (mm)はレンズ間隔、 n n [0298] In Table 3-1 3-2,! Is the radius of curvature, d (mm) is the lens spacing, n n
405 655 n は、それぞれ、第 1波長; I ( = 405nm)、第 2波長; I ( = 655nm)、第 3波長; I 405 655 n are the first wavelength; I (= 405 nm), the second wavelength; I (= 655 nm), the third wavelength; I
785 1 2 3785 1 2 3
( = 785nm)に対するレンズの屈折率、 v は d線のレンズのアッベ数、 M M (= 785 nm), the refractive index of the lens, v is the Abbe number of the d-line lens, M M
d HD DVD d HD DVD
M は、それぞれ、 HDに対する記録/再生に使用する回折光の回折次数、 DVDM is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
CD CD
に対する記録/再生に使用する回折光の回折次数、 CDに対する記録/再生に使 用する回折光の回折次数である。 [0299] 第 1収差補正素子 LIの光ディスク側の光学面(第 2面)、対物レンズ OLの光源側 の光学面 (第 5面)、光ディスク側の光学面 (第 6面)はそれぞれ非球面形状であり、こ の非球面は、上記非球面形状式に表中の係数を代入した数式で表される。 It is the diffraction order of the diffracted light used for recording / reproducing on CD, and the diffraction order of diffracted light used for recording / reproducing on CD. [0299] The optical surface (second surface) of the first aberration correction element LI on the optical disk side, the optical surface of the objective lens OL on the light source side (fifth surface), and the optical surface of the optical disk side (sixth surface) are each aspherical. This aspherical surface is represented by a mathematical expression obtained by substituting the coefficients in the table into the aspherical shape expression.
[0300] また、第 1位相構造 PS1乃至第 3位相構造 PS3は、各位相構造により入射光束に 付加される光路差で表される。かかる光路差は、上記光路差関数を表す式に表 3— 1、 3 _ 2中の係数を代入した光路差関数 φ (mm)で表される。  [0300] The first to third phase structures PS1 to PS3 are represented by optical path differences added to the incident light beam by the respective phase structures. Such an optical path difference is represented by an optical path difference function φ (mm) obtained by substituting the coefficients in Tables 3-1 and 3_2 into the equation representing the optical path difference function.
[0301] 次に、図 5に示した対物レンズユニット〇Uの具体的な数値実施例(実施例 4)を例 示する。  Next, a specific numerical example (Example 4) of the objective lens unit ΔU shown in FIG. 5 will be described.
[0302] 樹脂製の第 1位相構造 PS1を有する第 1収差補正素子 L1と樹脂製の第 2位相構 造を有する第 2収差補正素子 L2は互いに離間して配置された構成を有し、対物レン ズ OLは、第 1波長え と HDの保護層 PL1の厚さ tとに対して球面収差が最小となる  [0302] The first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are spaced apart from each other. The lens OL has the smallest spherical aberration with respect to the first wavelength and the thickness t of the HD protective layer PL1.
1 1  1 1
ようにその非球面形状が設計されたガラスレンズ (HOYA社製 BACD5)であるが、 樹脂レンズとしても良い。  As described above, the glass lens (HOYA BACD5) whose aspherical shape is designed, but may be a resin lens.
[0303] 本実施例においては、第 1収差補正素子 L1の近軸屈折パワーを負とし、対物レン ズ OLに対して発散光束が入射する構成とすることで、保護層が厚い DVDや CDに 対する作動距離を十分に確保している。本実施例のような負'正構成の対物光学系 は、焦点距離が小さくなつた場合でも、 DVDや CDに対する作動距離の確保という点 で有利である。従って、本実施例の対物光学系は、スリムタイプの光ピックアップ装置 に最適である。 [0303] In the present embodiment, the paraxial refraction power of the first aberration correction element L1 is set to be negative, and a divergent light beam is incident on the objective lens OL. The working distance to this is sufficiently secured. The objective optical system having the negative / positive configuration as in the present embodiment is advantageous in that the working distance for DVDs and CDs is ensured even when the focal length is reduced. Therefore, the objective optical system of this embodiment is most suitable for a slim type optical pickup device.
[0304] 本実施例のレンズデータを表 4一 1、 4一 2に示す。  [0304] The lens data of this example are shown in Tables 4-11 and 4-12.
[0305] [表 4-1]
Figure imgf000055_0001
Figure imgf000055_0003
[0305] [Table 4-1]
Figure imgf000055_0001
Figure imgf000055_0003
[表 4-2] [Table 4-2]
【回折面係数】 [Diffraction surface coefficient]
Figure imgf000055_0002
Figure imgf000055_0002
表 4— 1 4— 2において、 r (mm)は曲率半径、 d (mm)はレンズ間隔、 n n  In Table 4—1 4—2, r (mm) is the radius of curvature, d (mm) is the lens spacing, n n
408 658 n は、それぞれ、第 1波長; I ( = 408nm)、第 2波長; I ( = 658nm)、第 3波長; I 408 658 n are the first wavelength; I (= 408 nm), the second wavelength; I (= 658 nm), the third wavelength; I
785 1 2 785 1 2
( = 785nm)に対するレンズの屈折率、 v は d線のレンズのアッベ数、 M M d HD DVD (= 785 nm), v is the Abbe number of the d-line lens, M M d HD DVD
M は、それぞれ、 HDに対する記録/再生に使用する回折光の回折次数、 DVD に対する記録/再生に使用する回折光の回折次数、 CDに対する記録/再生に使 用する回折光の回折次数である。 [0308] 第 1収差補正素子 LIの光源側の光学面(第 4面)、対物レンズ〇Lの光源側の光学 面(第 6面)、光ディスク側の光学面(第 7面)はそれぞれ非球面形状であり、この非球 面は、上記非球面形状式に表中の係数を代入した数式で表される。 M is the diffraction order of the diffracted light used for recording / reproducing for HD, the diffraction order of the diffracted light used for recording / reproducing for DVD, and the diffraction order of the diffracted light used for recording / reproducing for CD, respectively. [0308] The optical surface on the light source side (the fourth surface) of the first aberration correction element LI, the optical surface on the light source side (the sixth surface) of the objective lens ΔL, and the optical surface (the seventh surface) on the optical disk side are each non-uniform. The aspheric surface is represented by a mathematical expression obtained by substituting the coefficients in the table into the aspherical surface expression.
[0309] また、第 1位相構造 PS1及び第 2位相構造 PS2は、各位相構造により入射光束に 付加される光路差で表される。かかる光路差は、上記光路差関数を表す式に表 4一 1 4_ 2中の係数を代入した光路差関数 φ (mm)で表される。  [0309] The first phase structure PS1 and the second phase structure PS2 are represented by optical path differences added to the incident light beam by the respective phase structures. Such an optical path difference is represented by an optical path difference function φ (mm) obtained by substituting the coefficients in Table 4-1 2 into the equation representing the optical path difference function.
[0310] 次に、図 6に示した対物レンズユニット〇Uの具体的な数値実施例(実施例 5)を例 示する。  Next, a specific numerical example (Example 5) of the objective lens unit ΔU shown in FIG. 6 will be described.
[0311] 樹脂製の第 1位相構造 PS1を有する第 1収差補正素子 L1と樹脂製の第 2位相構 造 PS2を有する第 2収差補正素子 L2は互いに接合された構成を有し、対物レンズ O Lは樹脂レンズである。  [0311] The first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure PS2 have a configuration in which they are joined to each other. Is a resin lens.
尚、本実施例を含めて、後述する実施例 6における、 HDの開口数 NAは 0. 67であ り、 DVDの開口数 NAは 0. 65であり、 CDの開口数 NAは 0· 51である。  Incidentally, in Example 6 to be described later, including this Example, the numerical aperture NA of HD is 0.67, the numerical aperture NA of DVD is 0.65, and the numerical aperture NA of CD is 0.51. It is.
2 3  twenty three
[0312] 本実施例のレンズデータを表 5— 1 5— 2に示す。  [0312] The lens data of this example is shown in Table 5-15-2.
[0313] [表 5-1] [0313] [Table 5-1]
Figure imgf000056_0001
[0314] [表 5-2]
Figure imgf000056_0001
[0314] [Table 5-2]
Figure imgf000057_0001
Figure imgf000057_0001
[0315] 表 5— 1 5— 2において、 r (mm)は曲率半径、 d (mm)はレンズ間隔、 n n [0315] In Table 5—1 5—2, r (mm) is the radius of curvature, d (mm) is the lens spacing, n n
407 655 n は、それぞれ、第 1波長え ( = 407nm)、第 2波長え ( = 655nm)、第 3波長え 407 655 n are the first wavelength (= 407 nm), the second wavelength (= 655 nm), and the third wavelength, respectively.
785 1 2 3785 1 2 3
( = 785nm)に対するレンズの屈折率、 v は d線のレンズのアッベ数、 M M (= 785 nm), the refractive index of the lens, v is the Abbe number of the d-line lens, M M
d HD DVD d HD DVD
M は、それぞれ、 HDに対する記録/再生に使用する回折光の回折次数、 DVDM is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
CD CD
に対する記録/再生に使用する回折光の回折次数、 CDに対する記録/再生に使 用する回折光の回折次数である。  It is the diffraction order of the diffracted light used for recording / reproducing on CD, and the diffraction order of diffracted light used for recording / reproducing on CD.
[0316] 対物レンズ OLの光源側の光学面(第 4面)、光ディスク側の光学面(第 5面)はそれ ぞれ非球面形状であり、この非球面は、上記非球面形状式に表中の係数を代入した 数式で表される。 [0316] The optical surface (fourth surface) on the light source side and the optical surface (fifth surface) on the optical disk side of the objective lens OL are aspherical, respectively. It is expressed by a formula with the coefficients inside substituted.
[0317] また、第 1位相構造 PS1及び第 2位相構造 PS2は、各位相構造により入射光束に 付加される光路差で表される。かかる光路差は、上記光路差関数を表す式に表 5— 1 5 _ 2中の係数を代入した光路差関数 φ (mm)で表される。  [0317] The first phase structure PS1 and the second phase structure PS2 are represented by optical path differences added to the incident light beam by the respective phase structures. Such an optical path difference is represented by an optical path difference function φ (mm) obtained by substituting the coefficients in Table 5-15_2 into the expression representing the optical path difference function.
[0318] 次に、図 6に示した対物レンズユニット〇Uの変形例である数値実施例(実施例 6) を例示する。本実施例の対物レンズユニット OUは、図 6に示した対物レンズユニット 〇Uの第 1位相構造 PS1で発生する各波長の光束の回折光の回折次数を、第 1光 束に対しては 2次回折光、第 2光束に対しては 1次回折光、第 3光束に対しては 1次 回折光、とした点に特徴を有する。  Next, a numerical example (Example 6) which is a modification of the objective lens unit ΔU shown in FIG. 6 will be described. The objective lens unit OU of the present embodiment has the diffraction order of the diffracted light of each wavelength generated by the first phase structure PS1 of the objective lens unit 〇U shown in FIG. It is characterized in that the first-order diffracted light is the second-order diffracted light, the first-order diffracted light is the second light, and the first-order diffracted light is the third light.
[0319] 樹脂製の第 1位相構造 PS1を有する第 1収差補正素子 L1と樹脂製の第 2位相構 造を有する第 2収差補正素子 L2は互いに接合された構成を有し、対物レンズ OLは 樹脂レンズである。  [0319] The first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are joined to each other. It is a resin lens.
[0320] 本実施例のレンズデータを表 6— 1 6— 2に示す。  [0320] The lens data of this example is shown in Table 6-1-6-2.
[0321] [表 6-1]
Figure imgf000058_0001
Figure imgf000058_0003
[0321] [Table 6-1]
Figure imgf000058_0001
Figure imgf000058_0003
[0322] [表 6-2]  [0322] [Table 6-2]
【回折面係数】  [Diffraction surface coefficient]
Figure imgf000058_0002
Figure imgf000058_0002
[0323] 表6— 1 6— 2にぉぃて、 111111)は曲率半径、(1(111111)はレンズ間隔、11 n  [0323] In Table 6-16-2, 111111) is the radius of curvature, (1 (111111) is the lens interval, 11 n
407 655 n は、それぞれ、第 1波長え ( = 407nm)、第 2波長え ( = 655nm)、第 3波長 λ 407 655 n are the first wavelength (= 407 nm), the second wavelength (= 655 nm), and the third wavelength λ, respectively.
785 1 2 785 1 2
( = 785nm)に対するレンズの屈折率、 v は d線のレンズのアッベ数、 M M  (= 785 nm), the refractive index of the lens, v is the Abbe number of the d-line lens, M M
d HD DVD d HD DVD
M は、それぞれ、 HDに対する記録/再生に使用する回折光の回折次数、 DVDM is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
CD CD
に対する記録/再生に使用する回折光の回折次数、 CDに対する記録 Z再生に使 用する回折光の回折次数である。 [0324] 対物レンズ〇Lの光源側の光学面(第 4面)、光ディスク側の光学面(第 5面)はそれ ぞれ非球面形状であり、この非球面は、上記非球面形状式に表中の係数を代入した 数式で表される。 It is the diffraction order of the diffracted light used for recording / reproducing for CD, and the diffraction order of the diffracted light used for reproducing Z for recording on CD. [0324] The optical surface (fourth surface) on the light source side and the optical surface (fifth surface) on the optical disk side of the objective lens 〇L are aspherical, respectively. It is represented by an equation with the coefficients in the table substituted.
[0325] また、第 1位相構造 PS1及び第 2位相構造 PS2は、各位相構造により入射光束に 付加される光路差で表される。かかる光路差は、上記光路差関数を表す式に表 6— 1、 6 _ 2中の係数を代入した光路差関数 φ (mm)で表される。  [0325] Further, the first phase structure PS1 and the second phase structure PS2 are represented by the optical path difference added to the incident light beam by each phase structure. Such an optical path difference is represented by an optical path difference function φ (mm) obtained by substituting the coefficients in Tables 6-1 and 6_2 into the expression representing the optical path difference function.
[0326] 次に、図 13に示した対物レンズユニット〇Uの変形例である数値実施例(実施例 7) を例示する。本実施例の対物レンズユニット OUは、図 3に示した対物レンズユニット OUの第 2収差補正素子 L2の光束入射面と光束射出面とを入れ替えて、第 1収差補 正素子 L1と第 2収差補正素子 L2とを接合させた構成を有する。また、第 2位相構造 PS2を通過することで、第 1光束の 5次回折光、第 2光束の 3次回折光、第 3光束の 2 次回折光が発生する。  Next, a numerical example (Embodiment 7) as a modification of the objective lens unit ΔU shown in FIG. 13 will be described. The objective lens unit OU of the present embodiment is different from the objective lens unit OU shown in FIG. 3 in that the light flux incident surface and the light flux exit surface of the second aberration correction element L2 are replaced with each other. It has a configuration in which the correction element L2 is joined. Further, by passing through the second phase structure PS2, the fifth-order diffracted light of the first light beam, the third-order diffracted light of the second light beam, and the second-order diffracted light of the third light beam are generated.
[0327] 第 1位相構造 PS1と第 2位相構造 PS2はともに樹脂製であり、対物レンズ OLは、第 1波長え と HDの保護層 PL1の厚さ tとに対して球面収差が最小となるようにその非 [0327] Both the first phase structure PS1 and the second phase structure PS2 are made of resin, and the objective lens OL has a minimum spherical aberration with respect to the first wavelength and the thickness t of the HD protective layer PL1. So that non
1 1 1 1
球面形状が設計されたガラスレンズ (HOYA社製 BACD5)であるが、プラスチックレ ンズとしても良い。  It is a glass lens (HOYA BACD5) designed with a spherical shape, but may be a plastic lens.
[0328] 本実施例のレンズデータを表 7— 1、 7— 2に示す。 [0328] Tables 7-1 and 7-2 show the lens data of this example.
[0329] [表 7-1] [0329] [Table 7-1]
Figure imgf000060_0001
Figure imgf000060_0001
[0330] [表 7-2]  [0330] [Table 7-2]
【回折面係数】  [Diffraction surface coefficient]
Figure imgf000060_0002
Figure imgf000060_0002
[0331] 表 7— 1 7— 2において、 r (mm)は曲率半径、 d (mm)はレンズ間隔、 n n [0331] In Table 7—1 7—2, r (mm) is the radius of curvature, d (mm) is the lens spacing, n n
405 655 n は、それぞれ、第 1波長え ( = 405nm)、第 2波長え ( = 655nm)、第 3波長え 405 655 n are the first wavelength (= 405 nm), the second wavelength (= 655 nm), and the third wavelength, respectively.
( = 785nm)に対するレンズの屈折率、 v は d線のレンズのアッベ数、 M (= 785 nm), the refractive index of the lens, v is the Abbe number of the d-line lens, M
HD DVD  HD DVD
M は、それぞれ、 HDに対する記録/再生に使用する回折光の回折次数、 DVD に対する記録 Z再生に使用する回折光の回折次数、 CDに対する記録/再生に使 用する回折光の回折次数である。 M is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD This is the diffraction order of the diffracted light used for recording / reproducing, and the diffraction order of the diffracted light used for recording / reproducing for CD.
[0332] 第 2収差補正素子 L2の光ディスク側の光学面(第 3面)、対物レンズ OLの光源側 の光学面 (第 4面)、光ディスク側の光学面 (第 5面)はそれぞれ非球面形状であり、こ の非球面は、上記非球面形状式に表中の係数を代入した数式で表される。 [0332] The optical surface of the second aberration correction element L2 on the optical disk side (third surface), the optical surface of the objective lens OL on the light source side (fourth surface), and the optical surface of the optical disk side (fifth surface) are each aspherical. This aspherical surface is represented by a mathematical expression obtained by substituting the coefficients in the table into the aspherical shape expression.
[0333] また、第 1位相構造 PS1及び第 2位相構造 PS2は、各位相構造により入射光束に 付加される光路差で表される。かかる光路差は、上記光路差関数を表す式に表 7—[0333] Further, the first phase structure PS1 and the second phase structure PS2 are represented by the optical path difference added to the incident light beam by each phase structure. Such an optical path difference is expressed by the above equation representing the optical path difference function as shown in Table 7-
1、 7— 2中の係数を代入した光路差関数 φ (mm)で表される。 It is represented by the optical path difference function φ (mm) with the coefficients in 1, 7-2 substituted.
[0334] 次に、図 13に示した対物レンズユニット OUの具体的な数値実施例(実施例 8)を例 示する。 Next, a specific numerical example (Example 8) of the objective lens unit OU shown in FIG. 13 will be described.
[0335] 樹脂製の第 1位相構造 PS1を有する第 1収差補正素子 L1と樹脂製の第 2位相構 造を有する第 2収差補正素子 L2は互いに接合された構成を有し、対物レンズ OLは 、第 1波長え と HDの保護層 PL1の厚さ tとに対して球面収差が最小となるようにそ  The first aberration correction element L1 having the first resin phase structure PS1 and the second aberration correction element L2 having the second resin phase structure have a configuration in which they are joined to each other. And the first wavelength and the thickness t of the HD protective layer PL1 so that spherical aberration is minimized.
1 1  1 1
の非球面形状が設計されたガラスレンズ (HOYA社製 LAC130)であるが、樹脂レン ズとしても良レ、。  Although the glass lens (HOYA LAC130) is designed with the aspherical shape, it is also good as a resin lens.
[0336] 本実施例のレンズデータを表 8— 1、 8— 2に示す。 [0336] Lens data of the present example are shown in Tables 8-1 and 8-2.
[0337] [表 8-1] [0337] [Table 8-1]
【i§】 [I§]
Figure imgf000062_0001
Figure imgf000062_0004
Figure imgf000062_0001
Figure imgf000062_0004
[0338] [表 8- 2]  [0338] [Table 8-2]
Figure imgf000062_0002
Figure imgf000062_0003
Figure imgf000062_0002
Figure imgf000062_0003
[0339] 表 8 - · 8— 2において、 r (mm)は曲率半径、 d (mm)はレンズ間隔、 n n [0339] In Table 8-· 8-2, r (mm) is the radius of curvature, d (mm) is the lens interval, n n
n は、それぞれ、第 1波長え ( = 405nm)、第 2波長え ( = 655nm)、第 3波長え n is the first wavelength (= 405 nm), the second wavelength (= 655 nm), and the third wavelength, respectively.
785 1 2 3785 1 2 3
( = 785nm)に対するレンズの屈折率、 v は d線のレンズのアッベ数、 M M 、 d HD DVD(= 785nm), the refractive index of the lens, v is the Abbe number of the d-line lens, MM, d HD DVD
M は、それぞれ、 HDに対する記録/再生に使用する回折光の回折次数、 DVDM is the diffraction order of the diffracted light used for recording / reproducing to HD, DVD
CD CD
に対する記録 Z再生に使用する回折光の回折次数、 CDに対する記録/再生に使 用する回折光の回折次数である。  This is the diffraction order of the diffracted light used for recording / reproducing, and the diffraction order of the diffracted light used for recording / reproducing for CD.
[0340] 対物レンズ〇Lの光源側の光学面(第 4面)、光ディスク側の光学面(第 5面)はそれ ぞれ非球面形状であり、この非球面は、上記非球面形状式に表中の係数を代入した 数式で表される。  The optical surface (fourth surface) on the light source side and the optical surface (fifth surface) on the optical disk side of the objective lens ΔL are aspherical, respectively. It is represented by an equation with the coefficients in the table substituted.
[0341] また、第 1位相構造 PS1、第 2位相構造 PS2、及び第 4位相構造 PS4は、各位相構 造により入射光束に付加される光路差で表される。かかる光路差は、上記光路差関 数を表す式に表 7中の係数を代入した光路差関数 φ (mm)で表される。 [0341] Also, the first phase structure PS1, the second phase structure PS2, and the fourth phase structure PS4 are each a phase structure. It is represented by the optical path difference added to the incident light beam by the structure. Such an optical path difference is represented by an optical path difference function φ (mm) obtained by substituting the coefficients shown in Table 7 into the equation representing the optical path difference function.
[0342] 尚、第 2収差補正素子 L2の光源側の光学面(第 1面)において、中央領域 CA (第 2 位相構造 PS2が形成された範囲)は φ 2. 33mm内の領域であり、周辺領域 PA (第 5位相構造 PS5が形成された範囲)は φ 2. 33mmより外側の領域である。  In the optical surface (first surface) on the light source side of the second aberration correction element L2, the central area CA (the area where the second phase structure PS2 is formed) is an area within φ2.33 mm, The peripheral area PA (the area where the fifth phase structure PS5 is formed) is an area outside φ2.33 mm.
[0343] 表 9に上記各実施例における数値データの一覧を示す。なお、表中の λは HD、 D [0343] Table 9 shows a list of numerical data in each of the above Examples. Λ in the table is HD, D
VD、 CDの設計波長(nm)、 fは HD、 DVD, CDの対物レンズユニット全系の焦点 距離(mm)、 NAは HD、 DVD, CDの開口数、 STOは HDの入射瞳径(mm)を示 す。 VD, CD design wavelength (nm), f is the focal length of the whole objective lens unit system of HD, DVD, CD (mm), NA is the numerical aperture of HD, DVD, CD, STO is the entrance pupil diameter of HD (mm) ).
[0344] [表 9] [0344] [Table 9]
Figure imgf000064_0001
Figure imgf000064_0001
産業上の利用可能性 Industrial applicability
本発明によれば、回折構造を含む位相構造の作用により、高密度光ディスクと DV Dと CDとの保護層厚みの差による球面収差、或いは、高密度光ディスクと DVDと C Dとの使用波長の差による球面収差を良好に補正することができるとともに、 400nm 近傍の青紫色波長領域と、 650nm近傍の赤色波長領域と、 780nm近傍の赤外波 長領域との何れの波長領域においても高い光利用効率が得ることができる対物光学 系、この対物光学系を使用した光ピックアップ装置、及び、この光ピックアップ装置を 搭載した光ディスクドライブ装置を得られる。 According to the present invention, a high-density optical disc and a DV The spherical aberration due to the difference in the protective layer thickness between D and CD, or the spherical aberration due to the difference in the wavelength used between the high-density optical disk and the DVD and CD can be corrected well, and the blue-violet wavelength region around 400 nm can be corrected. An objective optical system capable of obtaining high light use efficiency in any of a red wavelength region near 650 nm and an infrared wavelength region near 780 nm, an optical pickup device using this objective optical system, and Thus, an optical disk drive device equipped with this optical pickup device can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 第 1光源から射出される第 1波長え の第 1光束を用いて厚さ tの保護層を有する第  [1] Using a first light beam of a first wavelength emitted from a first light source and having a protective layer having a thickness t
1 1  1 1
1光ディスクに対して情報の記録及び/又は再生を行い、第 2光源から射出される第 2波長え ( > λ )の第 2光束を用いて厚さ t (≥t )の保護層を有する第 2光ディスク Recording and / or reproducing information from / to an optical disc, and using a second light flux of a second wavelength (> λ) emitted from a second light source, a second light beam having a protective layer having a thickness t (≥t). 2 optical disc
2 1 2 1 2 1 2 1
に対して情報の記録及び/又は再生を行い、第 3光源から射出される第 3波長え (  Record and / or reproduce information with respect to the third wavelength emitted from the third light source (
3 Three
> λ )の第 3光束を用いて厚さ t ( >t )の保護層を有する第 3光ディスクに対しで青> λ) for a third optical disc having a protective layer of thickness t (> t) using a third light flux
2 3 2 2 3 2
報の記録及び/又は再生を行う光ピックアップ装置に用いられる対物光学系であつ て、  Objective optical system used in an optical pickup device for recording and / or reproducing information,
前記対物光学系は、第 1収差補正素子と、第 2収差補正素子と、該第 1収差補正素 子及び該第 2収差補正素子を通過した前記第 1光束乃至前記第 3光束を、それぞれ 、前記第 1光ディスク乃至前記第 3光ディスクの情報記録面上に集光させるための対 物レンズと力 構成され、  The objective optical system includes a first aberration correction element, a second aberration correction element, and the first to third light beams that have passed through the first and second aberration correction elements. An objective lens for converging light on the information recording surfaces of the first to third optical disks;
前記第 1収差補正素子は、 d線におけるアッベ数 V 1が以下の(1)式を満たす材 d  The first aberration correction element is made of a material having an Abbe number V 1 at d-line that satisfies the following equation (1):
料から形成される第 1位相構造を有し、前記第 2収差補正素子は、 d線におけるアツ ベ数 V 2が以下の(2)式を満たす材料から形成される第 2位相構造を有する対物光 d  An objective having a second phase structure formed of a material having an Abbe number V 2 at d-line that satisfies the following expression (2): Light d
学系。  Academic.
40≤ V 1≤80 (1)  40≤ V 1≤80 (1)
d  d
20≤ V 2<40 (2)  20≤ V 2 <40 (2)
d  d
[2] 前記第 1収差補正素子が有する前記第 1位相構造は、 d線における屈折率 n 1が d 以下の(3)式を満たす樹脂から形成され、前記第 2収差補正素子が有する前記第 2 位相構造は、 d線における屈折率 n 2が以下の(4)式を満たす樹脂から形成される請 d  [2] The first phase structure included in the first aberration correction element is formed of a resin that satisfies the following formula (3), wherein a refractive index n 1 at d-line is d or less, and the first phase structure included in the second aberration correction element is The two-phase structure is formed from a resin whose refractive index n 2 at d-line satisfies the following formula (4).
求の範囲第 1項に記載の対物光学系。  2. The objective optical system according to claim 1, wherein
1. 48≤n 1 < 1. 57 (3)  1.48≤n 1 <1.57 (3)
d  d
1. 57≤n 2≤1. 65 (4)  1.57≤n 2≤1.65 (4)
d  d
[3] 前記第 1位相構造は、前記 と前記 tの差に起因する球面収差、又は前記第 1波  [3] The first phase structure may have a spherical aberration due to a difference between the and t, or the first wave.
1 2  1 2
長え と前記第 2波長 λ の差に起因する球面収差を補正する請求の範囲第 1項に記 Claim 1 to correct spherical aberration caused by the difference between the length and the second wavelength λ.
1 2 1 2
載の対物光学系。  Objective optical system.
[4] 前記第 1位相構造は、前記第 1光束及び前記第 3光束を回折せず、前記第 2光束 を回折する回折構造である請求の範囲第 3項に記載の対物光学系。 [4] The first phase structure does not diffract the first light beam and the third light beam, and does not diffract the second light beam. 4. The objective optical system according to claim 3, wherein the objective optical system is a diffraction structure that diffracts light.
[5] 前記第 1位相構造は、光軸を含む断面形状が階段状とされたパターンが同心円上 に配列された構造であって、所定のレベル面の個数 A毎に、そのレベル面数に対応 した段数分の高さだけ段をシフトさせた構造である請求の範囲第 4項に記載の対物 光学系。 [5] The first phase structure is a structure in which a pattern having a stepped cross section including an optical axis is arranged concentrically, and for each predetermined number A of level surfaces, the number of level surfaces is reduced. 5. The objective optical system according to claim 4, wherein the objective optical system has a structure in which the steps are shifted by a height corresponding to the number of steps.
[6] 前記所定のレベル面の個数 Aは、 4、 5、 6の何れかであって、前記階段の 1つの段 差により生じる光路差は前記第 1波長 λ の 2倍である請求の範囲第 5項に記載の対 物光学系。  [6] The number A of the predetermined level surfaces is any one of 4, 5, and 6, and an optical path difference caused by one step of the stairs is twice the first wavelength λ. An object optical system according to item 5.
[7] 前記第 1位相構造は、前記第 1光束が入射した場合には α 1次の回折光を発生し、 前記第 2光束が入射した場合には β 1 ( β 1 < α 1 )次の回折光を発生し、前記第 3光 束が入射した場合には γ 1 ( γ 1≤ iS 1 )次の回折光を発生する回折構造である請求 の範囲第 3項に記載の対物光学系。  [7] The first phase structure generates α 1 -order diffracted light when the first light beam enters, and β 1 (β 1 <α 1) order when the second light beam enters. The objective optical system according to claim 3, wherein the objective optical system is a diffractive structure that generates a diffracted light of the order γ1 (γ1 ≤ iS1) when the third light flux is incident. .
[8] 前記回折次数 a 1は偶数である請求の範囲第 7項に記載の対物光学系。 [8] The objective optical system according to claim 7, wherein the diffraction order a1 is an even number.
[9] 前記第 2位相構造は、前記 と前記 tの差に起因する球面収差、又は前記第 1波 [9] The second phase structure may include a spherical aberration due to a difference between the and t, or the first wave.
1 3  13
長え と前記第 2波長 λ の差に起因する球面収差を補正する請求の範囲第 1項に記 Claim 1 to correct spherical aberration caused by the difference between the length and the second wavelength λ.
1 3 13
載の対物光学系。  Objective optical system.
[10] 前記第 2位相構造は、前記第 1光束及び前記第 2光束を回折せず、前記第 3光束 を回折する回折構造である請求の範囲第 9項に記載の対物光学系。  10. The objective optical system according to claim 9, wherein the second phase structure is a diffraction structure that does not diffract the first light beam and the second light beam but diffracts the third light beam.
[11] 前記第 2位相構造は、光軸を含む断面形状が階段状とされたパターンが同心円上 に配列された構造であって、所定のレベル面の個数 Β毎に、そのレベル面数に対応 した段数分の高さだけ段をシフトさせた構造である請求の範囲第 10項に記載の対物 光学系。  [11] The second phase structure is a structure in which a pattern in which the cross-sectional shape including the optical axis is stepped is arranged concentrically. 11. The objective optical system according to claim 10, wherein the objective optical system has a structure in which the steps are shifted by a height corresponding to the number of steps.
[12] 前記所定のレベル面の個数 Βは、 3、 4の何れかであって、前記階段の 1つの段差 により生じる光路差は前記第 1波長 λ の 7倍である請求の範囲第 1 1項に記載の対 物光学系。  [12] The number of the predetermined level surfaces is any one of 3 and 4, and an optical path difference caused by one step of the stairs is 7 times the first wavelength λ. The object optical system described in the item.
[13] 前記第 2位相構造は、前記第 1光束が入射した場合には α 2次の回折光を発生し、 前記第 2光束が入射した場合には/ 3 2 ( /3 2く ひ 2)次の回折光を発生し、前記第 3光 束が入射した場合には γ 2 ( γ 2≤ β 2)次の回折光を発生する回折構造である請求 の範囲第 9項に記載の対物光学系。 [13] The second phase structure generates α 2nd-order diffracted light when the first light beam enters, and outputs / 32 (/ 3/2) when the second light beam enters. ) A diffractive structure that generates the next diffracted light and, when the third light beam enters, generates the γ 2 (γ 2 ≤ β 2) order diffracted light. Item 10. The objective optical system according to Item 9.
[14] 前記回折次数 α 2は奇数である請求の範囲第 13項に記載の対物光学系。 14. The objective optical system according to claim 13, wherein the diffraction order α 2 is an odd number.
[15] 前記第 1収差補正素子と前記第 2収差補正素子は、互いに接合されて成る請求の 範囲第 1項に記載の対物光学系。 15. The objective optical system according to claim 1, wherein the first aberration correction element and the second aberration correction element are joined to each other.
[16] 前記第 1収差補正素子と前記第 2収差補正素子は、互いに離間されて成る請求の 範囲第 1項に記載の対物光学系。 16. The objective optical system according to claim 1, wherein the first aberration correction element and the second aberration correction element are separated from each other.
[17] 少なくとも前記第 1収差補正素子と前記第 2収差補正素子の何れか一方は、第 3位 相構造を有する請求の範囲第 1項に記載の対物光学系。 17. The objective optical system according to claim 1, wherein at least one of the first aberration correction element and the second aberration correction element has a third phase structure.
[18] 前記第 3位相構造は、前記第 1波長え が ± 5nm以内で波長変化した際に前記対 [18] The third phase structure is configured such that, when the first wavelength is changed within ± 5 nm, the third phase structure is not used.
1  1
物光学系で発生する近軸像点位置の移動を抑制する機能を有する請求の範囲第 1 7項に記載の対物光学系。  18. The objective optical system according to claim 17, having a function of suppressing movement of a paraxial image point position generated in the object optical system.
[19] 前記第 3位相構造は、前記第 1波長え が ± 5nm以内で波長変化した際に前記対 [19] The third phase structure is configured such that when the wavelength of the first wavelength changes within ± 5 nm, the third phase structure changes the pair.
1  1
物光学系で発生する球面収差の変化を抑制する機能を有する請求の範囲第 17項 に記載の対物光学系。  18. The objective optical system according to claim 17, having a function of suppressing a change in spherical aberration generated in the object optical system.
[20] 前記第 3位相構造は、前記対物光学系の屈折率変化に起因する球面収差の変化 を抑制する機能を有する請求の範囲第 17項に記載の対物光学系。  20. The objective optical system according to claim 17, wherein the third phase structure has a function of suppressing a change in spherical aberration caused by a change in a refractive index of the objective optical system.
[21] 前記第 3位相構造は、前記第 1収差補正素子と前記第 2収差補正素子のうち、何 れか一方に形成された請求の範囲第 17項に記載の対物光学系。  21. The objective optical system according to claim 17, wherein the third phase structure is formed on one of the first aberration correction element and the second aberration correction element.
[22] 前記第 3位相構造は、前記第 1収差補正素子に形成され、前記第 1光束に対して、 前記第 1波長 λ の 10倍の光路差を付加させめる請求の範囲第 21項に記載の対物  22. The method according to claim 21, wherein the third phase structure is formed in the first aberration correction element, and adds an optical path difference of 10 times the first wavelength λ to the first light flux. Stated objective
1  1
光学系。  Optical system.
[23] 前記第 1位相構造と前記第 2位相構造は、ともに樹脂から形成される請求の範囲第 [23] The first phase structure and the second phase structure are both formed of resin.
1項に記載の対物光学系。 2. The objective optical system according to item 1.
[24] 前記第 1位相構造と前記第 2位相構造のうち、何れか一方は紫外線硬化性樹脂、 又は熱硬化性樹脂から形成される請求の範囲第 1項に記載の対物光学系。 24. The objective optical system according to claim 1, wherein one of the first phase structure and the second phase structure is formed of an ultraviolet curable resin or a thermosetting resin.
[25] 前記第 1位相構造と前記第 2位相構造のうち、紫外線硬化性樹脂、又は熱硬化性 樹脂から形成される位相構造は、前記第 2位相構造である請求の範囲第 24項に記 載の対物光学系。 25. The phase structure according to claim 24, wherein, of the first phase structure and the second phase structure, a phase structure formed of an ultraviolet curable resin or a thermosetting resin is the second phase structure. Objective optical system.
[26] 前記第 1位相構造と前記第 2位相構造のうち、紫外線硬化性樹脂、又は熱硬化性 樹脂から形成される位相構造はガラス基板上に形成される請求の範囲第 24項に記 載の対物光学系。 26. The phase structure according to claim 24, wherein, of the first phase structure and the second phase structure, a phase structure formed of an ultraviolet curable resin or a thermosetting resin is formed on a glass substrate. Objective optics.
[27] 前記対物レンズは、前記 tと前記第 1波長; I との組合せに対して球面収差補正が  [27] The objective lens has spherical aberration correction for a combination of the t and the first wavelength; I.
1 1  1 1
最適化された請求の範囲第 1項に記載の対物光学系。  The objective optical system according to claim 1, which is optimized.
[28] 以下の(5)式乃至(7)式を満たす請求の範囲第 1項に記載の対物光学系。  [28] The objective optical system according to claim 1, wherein the following formulas (5) to (7) are satisfied.
380謹く λ く 420腹 (5)  380 Happy λ Ku 420 Belly (5)
1. δ< λ / λ < 1. 7 (6)  1.δ <λ / λ <1.7 (6)
2 1  twenty one
1. 8< λ / λ < 2. 1 (7)  1.8 <λ / λ <2.1 (7)
3 1  3 1
[29] 前記第 1位相構造は、前記第 2光束を発散させる作用を有する請求の範囲第 4項 に記載の対物光学系。  29. The objective optical system according to claim 4, wherein the first phase structure has a function of diverging the second light flux.
[30] 前記第 2位相構造は、前記第 3光束を発散させる作用を有する請求の範囲第 10項 に記載の対物光学系。  30. The objective optical system according to claim 10, wherein the second phase structure has a function of diverging the third light flux.
[31] 前記第 1位相構造は、前記第 1波長え 1が ± 5nm以内で波長変化した際に前記対 物光学系で発生する近軸像点位置の移動を抑制する機能を有する請求の範囲第 7 項に記載の対物光学系。  [31] The first phase structure has a function of suppressing a movement of a paraxial image point position generated in the objective optical system when the first wavelength 1 changes in wavelength within ± 5 nm. Item 7. The objective optical system according to Item 7.
[32] 前記第 1収差補正素子と前記第 2収差補正素子の少なくとも一方は、前記第 1波長 λ に対して負の近軸パワーを有する請求の範囲第 1項に記載の対物光学系。  32. The objective optical system according to claim 1, wherein at least one of the first aberration correction element and the second aberration correction element has a negative paraxial power with respect to the first wavelength λ.
1  1
[33] 前記第 1光束乃至前記第 3光束は全て前記第 1収差補正素子と前記第 2収差補正 素子に対して平行光束の状態で入射する請求の範囲第 1項に記載の対物光学系。  33. The objective optical system according to claim 1, wherein all of the first to third light beams are incident on the first and second aberration correction elements as parallel light beams.
[34] 前記第 1収差補正素子は、 d線におけるアッベ数 V 1が(1)式を満たすとともに第 1 d [34] The first aberration correction element is configured such that the Abbe number V1 at the d-line satisfies Expression (1) and the first d
位相構造を有し、前記第 2収差補正素子は、 d線におけるアッベ数 V 2が(2)式を満 d  The second aberration correction element has a phase structure, and the Abbe number V 2 at d-line satisfies Expression (2).
たすとともに第 2位相構造を有する請求の範囲第 1項に記載の対物光学系。  2. The objective optical system according to claim 1, further comprising a second phase structure.
[35] 前記第 1収差補正素子は、 d線における屈折率 n 1が(3)式を満たすとともに第 1位 d [35] The first aberration-correcting element has a refractive index n1 at d-line satisfying the expression (3), and
相構造を有し、前記第 2収差補正素子は、 d線における屈折率 n 2が(4)式を満たす d  The second aberration correction element has a phase structure, and the refractive index n 2 at d-line satisfies the expression (4).
とともに第 2位相構造を有する請求の範囲第 2項に記載の対物光学系。  3. The objective optical system according to claim 2, further comprising a second phase structure.
[36] 前記第 1収差補正素子は前記第 1波長 λ に対して正の近軸パワーを有し、前記第 2収差補正素子は前記第 1波長 λ に対して負の近軸パワーを有する請求の範囲第 1項に記載の対物光学系。 [36] The first aberration correction element has a positive paraxial power with respect to the first wavelength λ, and the second aberration correction element has a negative paraxial power with respect to the first wavelength λ. Range of 2. The objective optical system according to item 1.
[37] 前記第 1収差補正素子と前記第 2収差補正素子は互いに接合されて成り、前記第[37] The first aberration correction element and the second aberration correction element are joined to each other,
1収差補正素子と前記第 2収差補正素子の接合面は、前記第 2収差補正素子側に 凸の形状を有することを特長とする請求の範囲第 36項に記載の対物光学系。 37. The objective optical system according to claim 36, wherein a joint surface between the first aberration correction element and the second aberration correction element has a shape that is convex toward the second aberration correction element.
[38] 前記第 1位相構造と前記第 2位相構造のうち、紫外線硬化性樹脂、又は熱硬化性 樹脂から形成された位相構造の表面には、非加熱反射防止コートが形成されている 請求の範囲第 24項に記載の対物光学系。 38. Among the first phase structure and the second phase structure, a non-heat-reflection preventing coat is formed on a surface of a phase structure formed of an ultraviolet curable resin or a thermosetting resin. Item 25. The objective optical system according to Item 24.
[39] 前記第 1位相構造は、環状ポレオレフイン系樹脂から形成され、前記第 2位相構造 は、フルオレン系ポリエステル樹脂から形成されている請求の範囲第 23項に記載の 対物光学系。 39. The objective optical system according to claim 23, wherein the first phase structure is formed of a cyclic oleolefin-based resin, and the second phase structure is formed of a fluorene-based polyester resin.
[40] 前記第 1位相構造が形成された光学面は、光軸を含む第 1中央領域と、該第 1中 央領域を囲む第 1周辺領域とに分割され、前記第 1位相構造は、前記第 1中央領域 に形成された請求の範囲第 4項に記載の対物光学系。  [40] The optical surface on which the first phase structure is formed is divided into a first central region including an optical axis and a first peripheral region surrounding the first central region. The objective optical system according to claim 4, wherein the objective optical system is formed in the first central region.
[41] 前記第 1周辺領域の少なくとも一部には、この部分を通過する前記第 2光束の集光 位置を制御するための第 4位相構造が形成され、該第 4位相構造は、前記第 1光束 及び前記第 3光束を回折せず、前記第 2光束を回折する回折構造である請求の範 囲第 40項に記載の対物光学系。 [41] In at least a part of the first peripheral region, a fourth phase structure for controlling a condensing position of the second light beam passing through this part is formed, and the fourth phase structure is formed by the fourth phase structure. 41. The objective optical system according to claim 40, wherein the objective optical system is a diffractive structure that diffracts the second light beam without diffracting the first light beam and the third light beam.
[42] 前記第 2位相構造が形成された光学面は、光軸を含む第 2中央領域と、該第 2中 央領域を囲む第 2周辺領域とに分割され、前記第 2位相構造は、前記第 2中央領域 に形成された請求の範囲第 10項に記載の対物光学系。 [42] The optical surface on which the second phase structure is formed is divided into a second central region including an optical axis and a second peripheral region surrounding the second central region. The objective optical system according to claim 10, wherein the objective optical system is formed in the second central region.
[43] 前記第 2周辺領域の少なくとも一部には、この部分を通過する前記第 3光束の集光 位置を制御するための第 5位相構造が形成され、該第 5位相構造は、前記第 1光束 及び前記第 2光束を回折せず、前記第 3光束を回折する回折構造である請求の範 囲第 42項に記載の対物光学系。 [43] In at least a part of the second peripheral region, a fifth phase structure for controlling a condensing position of the third light flux passing through this part is formed, and the fifth phase structure is formed by the fifth phase structure. 43. The objective optical system according to claim 42, wherein the objective optical system has a diffraction structure that diffracts the third light beam without diffracting the first light beam and the second light beam.
[44] 前記第 1波長; I に対するバックフォーカス fBと前記第 2波長; I に対するバックフ [44] The back focus fB for the first wavelength; I and the back focus for the second wavelength; I
1 1 2  1 1 2
オーカス fB との差と、前記第 1波長 λ に対するバックフォーカス fBと前記第 2波長  The difference between the cascade fB and the back focus fB with respect to the first wavelength λ and the second wavelength
2 1 1  2 1 1
λ に対するバックフォーカス fBとの差が何れも 0. 2mm以下である請求の範囲第 1 Claim 1 wherein any difference between the back focus fB and λ is 0.2 mm or less.
3 3 3 3
項に記載の対物光学系。 Item 4. The objective optical system according to Item 1.
[45] 前記第 2位相構造の前記パターンの最小幅 Λ の前記第 1波長; I に対する比 Λ [45] The ratio of the minimum width の of the pattern of the second phase structure to the first wavelength; I
Μ 1 Μ Μ 1 Μ
/ λ 力 25以上である請求の範囲第 11項に記載の対物光学系。 12. The objective optical system according to claim 11, wherein the / λ power is 25 or more.
1  1
[46] 前記第 1位相構造は前記第 1収差補正素子の表面に形成され、前記第 2位相構造 は前記第 2収差補正素子の表面に形成されている請求の範囲第 1項に記載の対物 光学系。  46. The objective according to claim 1, wherein the first phase structure is formed on a surface of the first aberration correction element, and the second phase structure is formed on a surface of the second aberration correction element. Optical system.
[47] 前記第 1位相構造と前記第 2位相構造は、何れも平面上に形成された請求の範囲 第 5項に記載の対物光学系。  47. The objective optical system according to claim 5, wherein both the first phase structure and the second phase structure are formed on a plane.
[48] 前記第 1位相構造と前記第 2位相構造は、何れも平面上に形成された請求の範囲 第 11項に記載の対物光学系。 48. The objective optical system according to claim 11, wherein both the first phase structure and the second phase structure are formed on a plane.
[49] 前記第 1収差補正素子及び前記第 2収差補正素子と、前記対物レンズとは、相対 的な位置関係が普遍となるように保持部材により保持されている請求の範囲第 1項に 記載の対物光学系。 49. The method according to claim 1, wherein the first aberration correction element and the second aberration correction element, and the objective lens are held by a holding member such that a relative positional relationship is universal. Objective optics.
[50] 厚 の保護層を有する第 1光ディスクに対して情報の記録及び/又は再生を行う  [50] Recording and / or reproducing information on / from the first optical disk having a thick protective layer
1  1
ために第 1波長 λ の第 1光束を射出する第 1光源と、  A first light source that emits a first light beam of a first wavelength λ
第 2光ディスクに対して情報の記録及び/又は再生を行うために第 2波長え ( > λ  In order to record and / or reproduce information on the second optical disc, a second wavelength (> λ
2 Two
)の第 2光束を射出する第 2光源と、 A second light source that emits a second light beam of
1  1
第 3光ディスクに対して情報の記録及び/又は再生を行うために第 3波長え ( > λ  In order to record and / or reproduce information on the third optical disc, the third wavelength (> λ
3 Three
)の第 3光束を射出する第 3光源と、 A third light source that emits a third light beam of
2  2
請求の範囲第 1項に記載の対物光学系と、を備え、  And the objective optical system according to claim 1,
前記第 1光束を用いて厚さ tの保護層を有する第 1光ディスクに対して情報の記録 及び Z又は再生を行い、前記第 2光束を用いて厚さ t (≥t )の保護層を有する第 2  The first optical disk is used to record and Z or reproduce information on a first optical disk having a protective layer having a thickness of t, and has a protective layer having a thickness of t (≥t) using the second optical beam. No. 2
2 1  twenty one
光ディスクに対して情報の記録及び/又は再生を行レ、、前記第 3光束を用いて厚さ t ( > t )の保護層を有する第 3光ディスクに対して情報の記録及び/又は再生を行う Recording and / or reproducing information on / from the optical disc, and recording / reproducing information on / from the third optical disc having a protective layer having a thickness t (> t) using the third light flux.
3 2 3 2
光ピックアップ装置。  Optical pickup device.
[51] 請求の範囲第 50項に記載の光ピックアップ装置、及び前記光ピックアップ装置を 前記光情報記録媒体の半径方向に移動させる移動装置を搭載した光ディスクドライ ブ装置。  [51] An optical disc drive device comprising the optical pickup device according to claim 50, and a moving device for moving the optical pickup device in a radial direction of the optical information recording medium.
PCT/JP2005/008983 2004-05-27 2005-05-17 Objective optical system, optical pickup device, and optical disc drive device WO2005117002A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513850A JP4483864B2 (en) 2004-05-27 2005-05-17 Objective optical system, optical pickup device, and optical disk drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004157921 2004-05-27
JP2004-157921 2004-05-27

Publications (1)

Publication Number Publication Date
WO2005117002A1 true WO2005117002A1 (en) 2005-12-08

Family

ID=35451098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008983 WO2005117002A1 (en) 2004-05-27 2005-05-17 Objective optical system, optical pickup device, and optical disc drive device

Country Status (2)

Country Link
JP (1) JP4483864B2 (en)
WO (1) WO2005117002A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041234A (en) * 2006-07-10 2008-02-21 Ricoh Co Ltd Optical pickup and optical information processing device
JP2008527593A (en) * 2005-01-11 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical scanning device
WO2008146675A1 (en) * 2007-05-31 2008-12-04 Konica Minolta Opto, Inc. Objective optical element for optical pickup device and optical pickup device
JP2008293629A (en) * 2007-04-26 2008-12-04 Ricoh Co Ltd Optical pickup and optical information processing device
JP2009070547A (en) * 2007-08-21 2009-04-02 Hoya Corp Objective optical system for optical information recording/reproducing device, and optical information recording/reproducing device
JP2010008809A (en) * 2008-06-27 2010-01-14 Canon Inc Optical system and optical equipment using the same
JP4745442B2 (en) * 2007-08-02 2011-08-10 パナソニック株式会社 Compound objective lens, diffraction element, optical head device, optical information device, objective lens driving method and control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209966A (en) * 2000-01-26 2001-08-03 Pioneer Electronic Corp Optical pickup
JP2004079146A (en) * 2001-10-12 2004-03-11 Konica Minolta Holdings Inc Optical pickup apparatus, objective lens, diffractive optical element, optical element, and recording / reproducing apparatus
JP2004138895A (en) * 2002-10-18 2004-05-13 Asahi Glass Co Ltd Optical head device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209966A (en) * 2000-01-26 2001-08-03 Pioneer Electronic Corp Optical pickup
JP2004079146A (en) * 2001-10-12 2004-03-11 Konica Minolta Holdings Inc Optical pickup apparatus, objective lens, diffractive optical element, optical element, and recording / reproducing apparatus
JP2004138895A (en) * 2002-10-18 2004-05-13 Asahi Glass Co Ltd Optical head device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527593A (en) * 2005-01-11 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical scanning device
JP2008041234A (en) * 2006-07-10 2008-02-21 Ricoh Co Ltd Optical pickup and optical information processing device
JP2008293629A (en) * 2007-04-26 2008-12-04 Ricoh Co Ltd Optical pickup and optical information processing device
WO2008146675A1 (en) * 2007-05-31 2008-12-04 Konica Minolta Opto, Inc. Objective optical element for optical pickup device and optical pickup device
JPWO2008146675A1 (en) * 2007-05-31 2010-08-19 コニカミノルタオプト株式会社 Objective optical element for optical pickup device and optical pickup device
CN101681645B (en) * 2007-05-31 2011-11-23 柯尼卡美能达精密光学株式会社 Objective optical element for optical pickup device and optical pickup device
JP4745442B2 (en) * 2007-08-02 2011-08-10 パナソニック株式会社 Compound objective lens, diffraction element, optical head device, optical information device, objective lens driving method and control device
JP2009070547A (en) * 2007-08-21 2009-04-02 Hoya Corp Objective optical system for optical information recording/reproducing device, and optical information recording/reproducing device
JP2010008809A (en) * 2008-06-27 2010-01-14 Canon Inc Optical system and optical equipment using the same

Also Published As

Publication number Publication date
JP4483864B2 (en) 2010-06-16
JPWO2005117002A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
TWI393132B (en) Optical element, aberration correcting element, light converging element, objective optical system, optical pickup device, and optical information recording reproducing device
JP5322040B2 (en) Objective lens, optical pickup device and recording / reproducing device
US7957231B2 (en) Optical pickup apparatus and objective optical element
JPWO2005101393A1 (en) Objective optical system for optical pickup device, optical pickup device, drive device for optical information recording medium, condensing lens, and optical path synthesis element
WO2010013616A1 (en) Objective lens and optical pickup device
JP2006012394A (en) Optical system, optical pickup device, and optical disk driving device
JPWO2005083694A1 (en) Objective optical system, optical pickup device, and optical information recording / reproducing device
JPWO2005074388A1 (en) Optical pickup device and optical information recording and / or reproducing device
JP4992103B2 (en) Objective optical system, optical pickup device, and optical information recording / reproducing device
WO2009154072A1 (en) Objective lens, optical pickup device, and optical disk drive
JP4483864B2 (en) Objective optical system, optical pickup device, and optical disk drive device
JP2006092720A (en) Objective optical device, optical pickup device, and optical disk driving device
JP4321217B2 (en) Optical element and optical pickup device
WO2005057565A1 (en) Diffraction optical element, object optical system, optical pickup device and optical information recording/reproducing device
WO2006115081A1 (en) Objective optical element for optical pickup device, optical element for optical pickup device, objective optical element unit for optical pickup device and optical pickup device
WO2005119668A1 (en) Objective lens and optical pickup
JP4400326B2 (en) Optical pickup optical system, optical pickup device, and optical disk drive device
JP4462108B2 (en) Objective optical system, optical pickup device, and optical disk drive device
JP4329031B2 (en) Optical pickup device
JP2009037719A (en) Optical pickup device and objective optical element
WO2010089933A1 (en) Objective lens and optical pickup device
JP4482830B2 (en) Optical pickup device, objective lens, diffractive optical element, optical element, and recording / reproducing apparatus
JPWO2009051019A1 (en) Optical pickup device, objective optical element for optical pickup device, and optical information recording / reproducing device
JP2006059517A (en) Compound optical device and optical pickup device
JP2007299530A (en) Objective lens, optical pickup device, and recording/reproducing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513850

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase