WO2005111464A1 - Cylinder type rotary power transmission device - Google Patents

Cylinder type rotary power transmission device Download PDF

Info

Publication number
WO2005111464A1
WO2005111464A1 PCT/JP2005/009490 JP2005009490W WO2005111464A1 WO 2005111464 A1 WO2005111464 A1 WO 2005111464A1 JP 2005009490 W JP2005009490 W JP 2005009490W WO 2005111464 A1 WO2005111464 A1 WO 2005111464A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
cylinder
transmission device
force
type rotary
Prior art date
Application number
PCT/JP2005/009490
Other languages
French (fr)
Japanese (ja)
Inventor
Young Saeng Kim
Kengo Hiruta
Tadahito Yamanouchi
Original Assignee
Hiruta Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005130322A external-priority patent/JP2005330963A/en
Application filed by Hiruta Corporation filed Critical Hiruta Corporation
Publication of WO2005111464A1 publication Critical patent/WO2005111464A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/08Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft with ratchet and pawl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/047Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft with rack and pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/04Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack
    • F16H19/043Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack for converting reciprocating movement in a continuous rotary movement or vice versa, e.g. by opposite racks engaging intermittently for a part of the stroke

Definitions

  • the present invention relates to a cylinder-type rotary power transmission device that efficiently converts a force from a linear motion to a rotational motion and vice versa and converts the rotational motion into a linear motion, and develops the most efficient transmission method without reducing the generated inertial force. It is. Background art
  • the most popular conventional driving methods are the reciprocating engine and the rotary engine that use a common crank.
  • the conventional rotary engine has a triangular rotor that receives the internal explosive power. This shape cannot be used at the most efficient 90 degrees when the rotor is subjected to explosive power, and requires a fairly high level of technology to achieve perfect sealing at the time of manufacture. In addition, it is difficult to always maintain the sealing performance in the best condition.
  • conventional reciprocating engines with cranks consist of four processes: explosion (expansion), exhaust, intake, and compression, and convert the explosive power into rotational motion.
  • the conventional reciprocating engine is a crank mechanism, so even if the object that transmits power has inertial force, it works as a neutral or brake except for the expansion (explosion) process, and the loss is enormous. Is also big.
  • turbines and rotary engines that do not kill the inertial force have an expansion force of 90 degrees, and are not affected by the blades or the rotor in the shape of a rice ball, and have poor airtightness.
  • the present invention for achieving the above object is as follows.
  • the cylinder-type rotary power transmission device is basically based on the principle of rack and pinion, and adds a new power transmission mechanism to efficiently convert linear motion into rotary motion and rotary motion into linear motion. It is composed of a mechanism.
  • the first invention consists of a cylinder with a built-in piston and a rack gear attached to a biston opening that connects to a biston. A pair of the two cylinders, and a pair of the two cylinders in the same manner as above, and a pair of two cylinders for alternately sucking high-pressure fluid into the cylinder and reciprocating the piston; And a power transmission mechanism that rotates in synchronism with each other.
  • a switching valve is provided in a supply path for supplying high-pressure fluid to two pairs of two cylinders, and an operation path of the high-pressure fluid is established by operation of the switching valve. It is good to configure to switch.
  • the power transmission mechanism of the cylinder type rotary power transmission device which is the first aspect of the present invention, is configured such that three intermediate bidirectional rotary gears always matching with the four rack gears and one rack gear are used.
  • the rack gear is composed of a one-way transmission clutch bearing that converts the reciprocating linear motion of the rack gear into only one direction of rotation, and a power shaft that transmits the rotational force to the load, so that the power transmission can be continuously supplied.
  • the cylinder type rotary power transmission device which is the second invention configuration, includes a center part of a piston that reciprocates linearly in a cylinder, and a certain range inside a hole (upper and lower surfaces) penetrated in an opal shape.
  • a pinion gear with a tooth profile formed within a certain angle range is connected to the drive shaft to protrude and form the tooth profile of the rack gear, and the rack gear inside the biston is connected with the forward and backward linear motion of the biston.
  • the surface is smoothly switched by a rotary cam mechanism so that the pinion gear can rotate continuously in one direction.
  • the present invention can easily convert a force from a linear motion to a rotary motion and vice versa, and can supply a stable power to a load by the most efficient power transmission method without reducing generated inertia force. Demonstrate the excellent effect that can be.
  • FIG. 1 is an explanatory diagram for describing Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of FIG. 1 for explaining Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory diagram for explaining Embodiment 2 of the present invention.
  • FIGS. 1 and 2 do not show Embodiment 1 of the present invention, wherein 1 is a first cylinder, and a first piston 11 is built in the first cylinder. Is connected to the first bistro rod 1 1 ′.
  • Reference numeral 21 denotes a first rack gear fixed to the first piston rod 11 ', and teeth on the side surface of the first rack gear correspond to a first bidirectional rotary gear 41 of a power transmission mechanism described later. I have.
  • reference numeral 2 denotes a second cylinder.
  • a second piston 12 is built in the second cylinder, and a second piston rod 12 ′ is connected to the second piston 12.
  • Reference numeral 22 denotes a second rack gear fixed to the second piston port 12 ', and teeth on the side surface of the second rack gear 1 are first and second bidirectional rotary gears of a power transmission mechanism described later. 4 1 and 4 2 respectively.
  • reference numeral 3 denotes a third cylinder, and a third piston 13 is built in the third cylinder.
  • a third piston rod 13 is connected to the third piston 13.
  • Reference numeral 23 denotes a third rack gear fixed to the third piston rod 13 ', and teeth on the side surface of the third rack gear 1 have second and third bidirectional rotating gears 4 2 of a power transmission mechanism described later. , 4 and 3 respectively.
  • reference numeral 4 denotes a fourth cylinder, and a fourth piston 14 is built in the fourth cylinder, and a fourth piston port 14 ′ is connected to the fourth piston 14.
  • Reference numeral 24 denotes a fourth rack gear fixed to the fourth biston rod 14, and the teeth on the side surface of the fourth rack gear correspond to a third bidirectional rotary gear 43 of a power transmission mechanism described later.
  • the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder containing the piston constitute a two-cylinder two-pair type.
  • reference numeral 51 denotes a first intake valve provided in a first cylinder 1
  • 51 ′ denotes a first exhaust valve
  • 52 denotes a second intake valve provided in a second cylinder 2
  • 52 denotes a second exhaust valve.
  • 5 3 is the third system
  • the third intake valve provided in the cylinder 13 is a third exhaust valve
  • 54 is a fourth intake valve provided in the fourth cylinder 4
  • 5 4 ′ is a fourth exhaust valve, which switches a fluid described later.
  • a fluid switching valve 7 is connected to each of the pipes by a pipe
  • a valve switching rod is provided at an end of each of the above-mentioned bis ports
  • a valve switching mechanism 8 is provided at a head portion of each of the cylinders. The switching valve is actuated in conjunction with the reciprocating movement of the piston rod to switch between the intake valve and the exhaust valve.
  • each cylinder is provided with an intake valve and an exhaust valve separately, a mechanism for switching between intake and exhaust with one valve may be used.
  • reference numeral 7 denotes a fluid switching valve, which has eight ports, and is connected to an intake valve and an exhaust valve provided in each cylinder by pipes.
  • the first port of the fluid switching valve 7 is connected to the first intake valve 51
  • the second port is connected to the first exhaust valve 51 ′
  • the third port is connected to the second intake valve 52
  • the fourth port To the second exhaust valve 52 ', the fifth port to the third intake valve 53, the sixth port to the third exhaust valve 53', and the seventh port to the fourth intake valve 54.
  • the eighth port is connected to the fourth exhaust valve 54 ′ by a pipe, and the high-pressure fluid (for example, steam, compressed air, etc.) stored in the pressure source 9 is supplied to the main suction port of the fluid switching valve 7. After being supplied, the distribution path can be switched to each of the ports by interlocking with the valve switching mechanism 8 described above.
  • reference numeral 41 denotes a first bidirectional rotary gear of the power transmission mechanism, which is rotatably supported on a shaft 4 1 ′.
  • the first bidirectional rotary gear 41 includes the first rack gear 21 and the second rack gear 21. 22 respectively, and rotates clockwise and counterclockwise following the movement of the first and second rack gears.
  • Reference numeral 42 denotes a second bi-directional rotary gear, which is rotatably supported on a shaft 4 2 ′.
  • the second bi-directional rotary gear 42 is attached to the teeth on the side surfaces of the second rack gear 122 and the third rack gear 123.
  • the two rack gears follow each other and rotate clockwise and counterclockwise following the movement of the second and third rack gears.
  • Reference numeral 43 denotes a third bidirectional rotary gear, which is rotatably supported on a shaft 4 3 ′.
  • the third bidirectional rotary gear 43 is provided on the teeth on the side surfaces of the third rack gear 123 and the fourth rack gear 124. They rotate in clockwise and counterclockwise directions following the movements of the third and fourth rack gears.
  • the gears 41, 42 and 43 are arranged in the middle of the first, second, third and fourth rack gears 21, 22, 23 and 24, respectively.
  • a power transmission that transmits the linear motion force of the piston generated in each cylinder efficiently and evenly to a clutch bearing described later by interlocking the reciprocating linear motion with each of the rack gears. It plays an important role in the mechanism.
  • reference numeral 31 denotes a first clutch bearing of a power transmission mechanism, which is a clutch bearing which is rotatably supported by a power shaft 5 and transmits rotational force only in one direction.
  • the first clutch bearing 31 includes the first clutch bearing 31.
  • 3 2 is a second clutch bearing, which is rotatably supported by the power shaft 5 and is combined with the teeth of the second rack gear 1 2 3.
  • 3 3 is a third clutch bearing. , Which is supported by the power shaft 5 and is in mesh with the teeth of the third rack gear 23.
  • Reference numeral 34 denotes a fourth clutch bearing, which is supported by the power shaft 5 and is connected to the fourth rack gear 24.
  • the clutch bearings convert the reciprocating linear motion of each of the rack gears into one-way rotation, and convert the linear motion force of bistons generated in each of the aforementioned cylinders into rotational power. Transmitted to the power shaft 5 and shown If unusual example supplied to a load such as an electrical generator and the like.
  • reference numeral 6 denotes a flywheel, which is provided on the power shaft 5, and supplies inertial force to the above-mentioned rotational power to supply stable rotational power to a load such as a generator (not shown). Basically, since the inertia force is easily applied to the device itself and does not kill the generated inertia force, stable rotational power can be supplied even without a flywheel.
  • the operation by the fluid switching valve 7 and the valve switching mechanism 8 causes the first intake valve 51 of the first cylinder 1 and the third intake valve 53 of the third cylinder 3 to open, and the pressure source 9 High pressure fluid
  • the directional rotation is transmitted to the first clutch bearing 31 and the third clutch bearing 33, and the rotational power is transmitted from the power shaft 5 to a load (not shown).
  • the second rack gear 122 becomes a bi-directional rotating gear 41 which is combined with the first rack gear 21 and a bi-directional rotating gear 41 which is combined with the third rack gear 123.
  • rotary gear 4 first rack gear one 2 1 depending on the rotation of the two and the third rack gear one 2 3 motion, and the fourth rack gear one 2 4, the third rack gear one 2 3 and ⁇ Tsu and are bidirectional Due to the rotation of the rotary gear 43, opposite to the movement of the third rack gear 123, it moves linearly upward (in the direction of the arrow) in FIG.
  • the one-way transmission of the second clutch bearing 32 and the fourth clutch bearing 34 is opposite to the rotation of the first clutch bearing 31 and the third clutch bearing 33, so that the first clutch bearing 31 and the third clutch bearing 33 rotate idly and transmit power. Accordingly, the second piston 12 connected to the second rack gear 122 and the fourth piston 14 connected to the fourth rack gear 124 move upward, respectively.
  • the fluid switching mechanism 8 reacts to the movement of the valve switching port provided in the second piston rod 12 and the valve switching rod provided in the fourth piston rod 14 ′, and The second exhaust valve 5 2 ′ of the second cylinder 2 and the fourth exhaust valve 5 4 ′ of the fourth cylinder 4 are opened to fill the second cylinder chamber 6 2 and the fourth cylinder chamber 64.
  • Fluid passes through the pipe and passes through the fluid switching valve 7. It is discharged to the outside from the discharge port. Then, the first intake valve 51 of the first cylinder 1 and the third intake valve 53 of the third cylinder 3 are closed by the operation of the valve switching mechanism 8, and the second exhaust of the second cylinder 1 The valve 52 'and the fourth exhaust valve 54' of the fourth cylinder are also closed, and the high-pressure fluid path of the fluid switching valve 7 is switched in conjunction with it. In other words, the path is switched to the reverse path, and the high-pressure fluid is conducted.
  • the first intake valve 51 of the first cylinder 1 and the third intake valve 53 of the third cylinder 3 are closed by the operation of the valve switching mechanism 8, and the second exhaust of the second cylinder 1
  • the valve 52 'and the fourth exhaust valve 54' of the fourth cylinder are also closed, and the high-pressure fluid path of the fluid switching valve 7 is switched in conjunction with it. In other words, the path is switched to the reverse path, and the high-pressure fluid is conducted.
  • the second intake valve 52 of the second cylinder 2 and the fourth intake valve 54 of the fourth cylinder 14 shown in FIG. 1 are opened, and the high-pressure fluid (eg, steam, air) of the pressure source 9 is opened. , Oil, etc.) are supplied through pipes to the second cylinder chamber 62 and the fourth cylinder chamber 64, respectively, so that the second piston 12 and the fourth piston 14 are supplied by the high-pressure fluid. Is pushed downward (in the direction opposite to the arrow) in FIG. 1 and moves downward. Accordingly, when the second and fourth pistons 12 and 14 are pushed downward, they are connected to the second rack gear 122 and fourth piston 14 connected to the second piston 12.
  • the high-pressure fluid eg, steam, air
  • the fourth rack gear 124 moves linearly downward, and the first bidirectional rotary gear 41 and the second bidirectional rotary gear of the power transmission mechanism that matches the rack gears 222, 24. 42, the third bidirectional rotating gear 43 rotates counterclockwise and clockwise, respectively, to evenly transmit the transmission force of the rack gears 222 and 224 to the next gear.
  • the power is transmitted to the second clutch bearing 32 and the fourth clutch pairing 34 of the one-way rotation transmission, which is a force transmission mechanism, and the rotational power is transmitted from the power shaft 5 to a load (not shown).
  • the first rack gear 21 is moved by the rotation of the bi-directional rotating gear 41 of the power transmission mechanism which is combined with the second rack gear 22 and the movement of the second rack gear 22
  • the third rack gear 123 is the rotation of the bi-directional rotating gear 42 matching the second rack gear 122 and the bidirectional rotating gear 43 matching the fourth rack gear 124.
  • the movements of the second rack gear 122 and the fourth rack gear 124 they move linearly upward (in the direction opposite to the arrow) in FIG.
  • the first clutch bearing 31 and the third clutch bearing 33 which are one-way transmission, rotate in the opposite direction to the second clutch bearing 32 and the fourth clutch bearing 34, so that the first clutch bearing 31 and the third clutch bearing 34 rotate idle and transmit power. Therefore, the first piston 11 connected to the first rack gear 21 and the third piston 13 connected to the third rack gear 23 move upward, respectively. And at the same time, reacts to the movement of the valve switching rod provided in the first piston rod 11 'and the valve switching rod provided in the third piston port 13 by the fluid switching mechanism. 8, the first exhaust valve 51 of the first cylinder 1 and the third exhaust valve 53 'of the third cylinder 3 are opened, and the first cylinder chamber 61 and the third cylinder chamber 63 are filled.
  • Fluid eg, steam, air, oil, etc.
  • Fluid passes through a pipe and the fluid switching valve 7 It is discharged to the outside than as the discharge port. Thereafter, the first exhaust valve 51 'and the third exhaust valve 53' are closed by the operation of the valve switching mechanism 8, and a series of operations is completed, and the operation returns to the above, and the operation is repeated.
  • the high-pressure fluid of the pressure source 9 switches the fluid switching valve 7 by operating the valve switching rod and the valve switching mechanism 8 that interlock with the movement of the piston to operate the biston in an interlocking manner.
  • the kinetic force was transmitted to the load by using a rack gear, bidirectional rotating gears, and a one-way clutch bearing to convert to rotational power.
  • Such a configuration is basically a power transmission system in which a single rack gear, a two-way rotating gear, and a one-way transmission clutch bearing are matched with each other.
  • the discontinuity of the gear that occurs when switching between the forward and backward paths of the biston occurs every time, even if only slightly, and unnecessary vibration occurs. I was most concerned about damaging it, but the discontinuous time could be eliminated by connecting the rack gear with a bidirectional rotating gear.
  • the basic power transmission method described above is the same, and as a more compact structure, the biston shape is formed in the center of the biston 71 as shown in FIG.
  • the gear teeth 73 and 74 protrude inside the hole (upper and lower surfaces in the figure), and the center of the cylinder 70 is inserted into the center of the cylinder 70 so as to intersect the hole 72 vertically.
  • 8 is arranged, and a toothed shape 76 protrudes from a fixed angle range that is fixed to the driving shaft 78 and rotates together with the rack gears 73, 74 at the center of the piston 71 so as to match.
  • a rotating cam 77 is arranged, and a toothed shape 76 protrudes from a fixed angle range that is fixed to the driving shaft 78 and rotates together with the rack gears 73, 74 at the center of the piston 71 so as to match.
  • a rotating cam 77 is arranged, and a toothed shape 76 protrudes from a fixed angle range that is fixed to
  • the piston 71 alternately sucks and discharges a pressurized fluid (for example, steam, air, oil, etc.) from the outside to both ends of the cylinder 70, and reciprocates around the driving shaft 78 under the pressure.
  • a pressurized fluid for example, steam, air, oil, etc.
  • the reciprocating linear lotus is converted into a continuous rotary motion by a pinion gear 75 corresponding to the rack gears 73, 74, and the rotary power is transmitted to a driving shaft 78, for example, a generator (not shown).
  • a driving shaft 78 for example, a generator (not shown).
  • the rotational motion of the drive shaft 78 is connected by a pinion gear 75, and the rotational motion is converted to reciprocal linear motion by the rack gears 73, 74, and the rotational power is supplied to the load as a linear motion force.
  • the angle range) is the range in which the pinion gear 75 can move from the drive shaft 78 left and right (reciprocating) by half a turn (half the circumference of the pinion gear).
  • the rotating cam 77 is fixed to the drive shaft 78 together with the pinion gear 75, and the tooth shape of the pinion gear ⁇ 6 is located at the end of the movement range of the rack gears 73, 74 of the piston 71.
  • the part When the part is approaching, it absorbs the impact of the tooth form 76 of the pinion gear and smooth movement
  • This is a mechanism that switches the surfaces of the rack gears 73 and 74 by switching the surfaces (upper and lower surfaces in the figure), and the pinion gears 75 continuously rotate in the negative direction.
  • the pinion gear 75 is idled on both sides of the central part 7 of the flat shape 7 2 according to the rotational force 77, and the protruding tooth form of the pinion gear 75 However, there is no tooth profile on the surface to make it easier to switch the mating surface of the piston 71 with the rack gears 73, 74 (upper and lower surfaces in the figure).
  • Such a configuration is characterized in that the number of main components such as the number of cylinders, pistons, and rack gears can be reduced by half compared to the first embodiment, and the device itself can be configured compactly.
  • the cylinder type power transmission system of the present invention is the most efficient and always transmits power because the part that receives the expansion (explosion) of a conventional reciprocating engine or rotary engine is the cylinder. It is excellent in that the directional rotating gear, one-way transmission clutch bearing, and pinion gear are combined and always receive at 90 degrees (at right angles).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Actuator (AREA)
  • Transmission Devices (AREA)

Abstract

[PROBLEMS] To provide a cylinder type rotary power transmission device capable of efficiently converting a force from a linear motion to a rotating motion or from a rotating motion to a linear motion and transmitting the force at the highest efficiency without diminishing an inertia force generated in the conversion. [MEANS FOR SOLVING PROBLEMS] This cylinder type rotary power transmission device comprises three two-way rotary gears basically formed of a rack and pinion utilizing inertia force and always meshing with an intermediate part between two pairs of two cylinders incorporating pistons and a rack gear and a one-way transmission clutch bearing. The mechanism receives an explosive force (expansion force) at an angle of 90° (right angle) with the highest efficiency in place of a boiled rice ball type rotor of a conventional rotary engine, the crank mechanism of a reciprocating engine sets a transmission force to a neutral or produces braking phenomenon to diminish the inertia force in those strokes other than an explosion stroke, and the piston cylinder eliminating the deteriorated airtightness of the rotary engine and its turbine is completely sealed airtight. Thus, the power transmission device can convert the explosive force (expansion force) to the power under the best conditions.

Description

明細書 シリンダータイプロータリ一動力伝達装置 技術分野  Description Cylinder type rotary power transmission
本発明は、 力を効率良く直線運動から回転運動、 又回転運動から直線運動に変換 し、 発生した慣性力を減殺せず最も効率の良い伝達方法で開発したシリンダータイプ ロータリ一動力伝達装置に関するものである。 背景技術  The present invention relates to a cylinder-type rotary power transmission device that efficiently converts a force from a linear motion to a rotational motion and vice versa and converts the rotational motion into a linear motion, and develops the most efficient transmission method without reducing the generated inertial force. It is. Background art
従来の駆動方式で最もポピュラーな方法としては、 一般的なクランクに依るレシ プロエンジンとロータリ一エンジンが普遍的であり、 先ず従来のロータリ一エンジン は、 内部の爆発力を受けるローターが三角形のおむすび形をしており、 この形は爆発 力をローターが受ける場合は、 最も効率の良い 9 0度では受けられず、 しかも製作時 は完全なシール性を得るには、 相当高度の技術を必要とすると共に、 常に最上の状態 でシール性を維持する事は困難である。 更に従来のクランク付きレシプロエンジンで は、 爆発 (膨張)、 排気、 吸気、 圧縮の 4工程から成り立ち爆発力を回転運動に変換 しているが、 最も効率良く爆発力が回転体に伝えているのは、 ピス トンロッドが 4 5 度位から 9 0度に掛る場合で、 この時がビストンの速さも最高で最も力が高効率に回 転体に伝えられている時であり、 その他の工程では、 毎回中立又はブレーキとして接 続された被回転体の慣性をも減少させている。 このブレーキ力は 4サイクル毎に被回 転体に十分な慣性が付く前から働くので効率性は甚だしく減少されている。 発明の開示  The most popular conventional driving methods are the reciprocating engine and the rotary engine that use a common crank.First, the conventional rotary engine has a triangular rotor that receives the internal explosive power. This shape cannot be used at the most efficient 90 degrees when the rotor is subjected to explosive power, and requires a fairly high level of technology to achieve perfect sealing at the time of manufacture. In addition, it is difficult to always maintain the sealing performance in the best condition. Furthermore, conventional reciprocating engines with cranks consist of four processes: explosion (expansion), exhaust, intake, and compression, and convert the explosive power into rotational motion. Is the case where the piston rod extends from about 45 degrees to 90 degrees, and this is the time when the speed of the piston is the highest and the power is most efficiently transmitted to the rotating body.In other processes, The inertia of the rotating body connected as neutral or brake every time is also reduced. This braking force is applied every four cycles before the rotating body has sufficient inertia, so the efficiency is greatly reduced. Disclosure of the invention
発明が解決しようとする課題  Problems to be solved by the invention
前記の様に従来のレシプロエンジンは、 クランク機構の為、 動力を伝える被対象 物が慣性力を持つものであっても、 膨張 (爆発) 工程以外は中立又はブレーキとして 働きロスが膨大であり振動も大きい。 又慣性力を殺さないタービン及ぴロータリーェ ンジンは、膨張力を 9 0度で羽根、又はおむすび状のローターが受けず気密性も悪い。 これらの問題点を改良し、 慣性力を殺さずクランクの無い気密性の良いシリンダータ ィプでありながら動力の伝達率としては、 タービン、 ロータリーエンジンの欠陥を無 く し、 力を効率良く直線運動から回転運動、 又回転運動から直線運動に変換し、 発生 した慣性力を減殺せず最も効率の良い伝達方法で開発したシリンダータイプロータリ 一動力伝達装置を提供する事を目的とする。 As described above, the conventional reciprocating engine is a crank mechanism, so even if the object that transmits power has inertial force, it works as a neutral or brake except for the expansion (explosion) process, and the loss is enormous. Is also big. In addition, turbines and rotary engines that do not kill the inertial force have an expansion force of 90 degrees, and are not affected by the blades or the rotor in the shape of a rice ball, and have poor airtightness. These problems have been ameliorated, and despite the cylinder type that does not kill the inertia force and has no crank and good airtightness, the power transmission rate eliminates the defects of the turbine and rotary engine, and the power is efficiently straightened. It is an object of the present invention to provide a cylinder type rotary one power transmission device developed by a most efficient transmission method without converting generated motion into rotary motion, and from rotary motion into linear motion, without reducing generated inertia force.
課題を解決するための手段  Means for solving the problem
前述した目的を達成する為の本発明は次の様である。 本発明に依るシリンダータ ィプロータリー動力伝達装置は、 基本的にラックアンドピニオンの原理を基本にし、 新しい動力伝達機構を付加し効率良く直線運動を回転運動に又回転運動を直線運動へ 変換する機構で構成したものである。 一つ目の発明構成として.は、 ピス トンを内蔵し たシリンダ一とビス トンと連結するビス トン口ッ ドに取付けたラックギア一でシリン ダ一部を構成し、 同様にもう 1組のシリンダーを構成し、 この 2シリンダーを 1対と し、 更に前記と同様に 2シリンダー 1対を構成し、 前記シリンダーに高圧流体を交互 に吸入し、 前記ピストンを往復動させる 2シリンダー 2対と、 前記のラックギア一と がそれぞれ嚙合って回転する動力伝達機構とで構成されている。  The present invention for achieving the above object is as follows. The cylinder-type rotary power transmission device according to the present invention is basically based on the principle of rack and pinion, and adds a new power transmission mechanism to efficiently convert linear motion into rotary motion and rotary motion into linear motion. It is composed of a mechanism. The first invention consists of a cylinder with a built-in piston and a rack gear attached to a biston opening that connects to a biston. A pair of the two cylinders, and a pair of the two cylinders in the same manner as above, and a pair of two cylinders for alternately sucking high-pressure fluid into the cylinder and reciprocating the piston; And a power transmission mechanism that rotates in synchronism with each other.
前記一つ目の発明構成であるシリンダータイプロータリー動力伝達装置において、 2シリンダー 2対に高圧流体を供給する供給経路に切替弁を具備し、 この切替弁の作 動に依り高圧流体の導通路を切り替える様に構成すると良い。  In the cylinder type rotary power transmission device according to the first aspect of the invention, a switching valve is provided in a supply path for supplying high-pressure fluid to two pairs of two cylinders, and an operation path of the high-pressure fluid is established by operation of the switching valve. It is good to configure to switch.
又、 前記一つ目の発明構成であるシリンダータイプロータリー動力伝達装置の動 力伝達機構を、前記 4個のラックギア一と常に嚙合う中間の 3個の双方向回転歯車と、 ラックギア一と嚙合いラックギア一の往復直線運動を 1方向の回転のみに変換する一 方向伝達クラッチベアリングと、 回転力を負荷に伝導する動力軸とで構成し、 動力伝 達を連続的に供給出来る事が好ましい。  Further, the power transmission mechanism of the cylinder type rotary power transmission device, which is the first aspect of the present invention, is configured such that three intermediate bidirectional rotary gears always matching with the four rack gears and one rack gear are used. It is preferable that the rack gear is composed of a one-way transmission clutch bearing that converts the reciprocating linear motion of the rack gear into only one direction of rotation, and a power shaft that transmits the rotational force to the load, so that the power transmission can be continuously supplied.
更に、 二つ目の発明構成であるシリンダータイプロータリー動力伝達装置として は、 シリンダー内を往復直線運動するピス トン中央部に、 オーパル形状に貫通させた 穴の内側 (上下面) の一定範囲内にラックギア一の歯形を突出形成し、 それに嚙合う 様に一定角度範囲内に歯形を形成したピニオンギア一を動軸に連結し、 ビストンの往 復直線運動に伴いビス トン内部のラックギア一の嚙合い面を回転カムの機構に依り滑 らかに切替繫ぎピ二オンギア一が一方向に連続回転出来る様に構成されている。 発明の効果 Furthermore, the cylinder type rotary power transmission device, which is the second invention configuration, includes a center part of a piston that reciprocates linearly in a cylinder, and a certain range inside a hole (upper and lower surfaces) penetrated in an opal shape. A pinion gear with a tooth profile formed within a certain angle range is connected to the drive shaft to protrude and form the tooth profile of the rack gear, and the rack gear inside the biston is connected with the forward and backward linear motion of the biston. The surface is smoothly switched by a rotary cam mechanism so that the pinion gear can rotate continuously in one direction. The invention's effect
本発明は、 力を直線運動から回転運動に、 又回転運動から直線運動に容易に変換 出来、 発生した慣性力を減殺せず最も効率の良い動力伝達方法で安定した動力を負荷 に供給する事が出来る優れた効果を発揮する。  The present invention can easily convert a force from a linear motion to a rotary motion and vice versa, and can supply a stable power to a load by the most efficient power transmission method without reducing generated inertia force. Demonstrate the excellent effect that can be.
図面の簡単な説明  Brief Description of Drawings
図 1は本発明の実施形態 1を説明する為の説明図である。  FIG. 1 is an explanatory diagram for describing Embodiment 1 of the present invention.
図 2は本発明の実施形態 1を説明する為の図 1の断面図である。  FIG. 2 is a cross-sectional view of FIG. 1 for explaining Embodiment 1 of the present invention.
図 3は本発明の実施形態 2を説明する為の説明図である。  FIG. 3 is an explanatory diagram for explaining Embodiment 2 of the present invention.
符号の説明  Explanation of symbols
1 第 1シリンダー  1 First cylinder
2 第 2シリンダー  2 Second cylinder
3 第 3シリンダー  3 Third cylinder
4 第 4シリンダー  4 4th cylinder
5 動力軸  5 Power shaft
6 フライホイ一ノレ  6 Fly Hoi
7 流体切替弁  7 Fluid switching valve
8 弁切替機構  8 Valve switching mechanism
9 圧力源  9 Pressure source
1 1 第 1 ビス トン  1 1 First biston
1 1, 第 1 ピス トンロッ K  1 1, 1st Piston Lo K
1 2 第 2 ピス トン  1 2 2nd piston
1 2 ' 第 2 ビス トンロッ  1 2 '2nd screw
1 3 第 3 ピス トン  1 3 3rd piston
1 3 , 第 3 ビス トンロッ ド、  1 3, 3rd bis Thong rod,
1 4 第 4 ピス トン  1 4 4th piston
1 4 ' 第 4 ピス トンロッ K  1 4 '4th Pis Thong Lo K
2 1 第 1ラックギア一  2 1 1st rack gear
2 2 第 2ラックギア一  2 2 2nd rack gear
2 3 第 3ラックギア一 第 4ラックギア一 2 3 3rd rack gear 4th rack gear
第 1クラッチベアリング (- -方向伝達) 第 2クラッチベアリング (一 '方向伝達) 第 3クラッチベアリング (- -方向伝達) 第 4クラッチ ァリング (- -方向伝達) 第 1双方向回転歯車  1st clutch bearing (--direction transmission) 2nd clutch bearing (1 'direction transmission) 3rd clutch bearing (--direction transmission) 4th clutch bearing (--direction transmission) 1st bidirectional rotary gear
, 軸 , Axis
第 2双方向回転歯車 2nd bidirectional rotating gear
' 軸 '' Axis
第 3双方向回転歯車 3rd bidirectional rotating gear
' 軸 '' Axis
第 1吸気弁  1st intake valve
' 第 1排気弁 '' 1st exhaust valve
第 2吸気弁 2nd intake valve
' 第 2排気弁 '' 2nd exhaust valve
第 3吸気弁 Third intake valve
' 第 3排気弁 '' 3rd exhaust valve
第 4吸気弁 4th intake valve
' 第 4排気弁 '' 4th exhaust valve
第 1シリンダ -室  1st cylinder-chamber
第 2シリンダ、 -室  2nd cylinder, -chamber
第 3シリンダ -室 .  Third cylinder-chamber.
第 4シリ ンダ -室  4th cylinder -Room
シリンダー  cylinder
ビス トン  Biston
オーバル形状  Oval shape
ラックギア一  Rack gear one
ラックギア一  Rack gear one
ピニオンギア 7 6 ピニオンギア一歯形 Pinion gear 7 6 1-pinion gear
7 7 回転カム 7 7 Rotating cam
7 8 動軸 7 8 Moving shaft
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を実施形態に依り詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to embodiments.
図 1及ぴ図 2は本発明の実施形態 1を示ずもので、 1は第 1シリンダーで、 該第 1シリンダー内には第 1 ピス トン 1 1が内蔵され、 該第 1 ピス トン 1 1には第 1ビス トンロッ ド 1 1 'が連結されている。 2 1は前記第 1 ピス トンロッ ド 1 1 'に固定され た第 1ラックギア一で、 該第 1ラックギア一の側面の歯は後述する動力伝達機構の第 1双方向回転歯車 4 1と嚙合っている。  FIGS. 1 and 2 do not show Embodiment 1 of the present invention, wherein 1 is a first cylinder, and a first piston 11 is built in the first cylinder. Is connected to the first bistro rod 1 1 ′. Reference numeral 21 denotes a first rack gear fixed to the first piston rod 11 ', and teeth on the side surface of the first rack gear correspond to a first bidirectional rotary gear 41 of a power transmission mechanism described later. I have.
図 1において 2は第 2シリンダ一で、 該第 2シリンダー内には第 2ピストン 1 2 が内蔵され、 該第 2ピス トン 1 2には第 2ピス トンロッ ド 1 2 'が連結されている。 2 2は前記第 2ビス トン口ッ ド 1 2 'に固定された第 2ラックギア一で、 該第 2ラッ クギア一の側面の歯は後述する動力伝達機構の第 1、 第 2双方向回転歯車 4 1、 4 2 とそれぞれ嚙合っている。  In FIG. 1, reference numeral 2 denotes a second cylinder. A second piston 12 is built in the second cylinder, and a second piston rod 12 ′ is connected to the second piston 12. Reference numeral 22 denotes a second rack gear fixed to the second piston port 12 ', and teeth on the side surface of the second rack gear 1 are first and second bidirectional rotary gears of a power transmission mechanism described later. 4 1 and 4 2 respectively.
図 1において 3は第 3シリンダ一で、 該第 3シリンダー内には第 3ピストン 1 3 が内蔵され、 該第 3ピス トン 1 3には第 3ピス トンロッ ド 1 3,が連結されている。 2 3は前記第 3ピス トンロッ ド 1 3 'に固定された第 3ラックギア一で、 該第 3ラッ クギア一の側面の歯は後述する動力伝達機構の第 2、 第 3双方向回転歯車 4 2、 4 3 とそれぞれ嚙合つている。  In FIG. 1, reference numeral 3 denotes a third cylinder, and a third piston 13 is built in the third cylinder. A third piston rod 13 is connected to the third piston 13. Reference numeral 23 denotes a third rack gear fixed to the third piston rod 13 ', and teeth on the side surface of the third rack gear 1 have second and third bidirectional rotating gears 4 2 of a power transmission mechanism described later. , 4 and 3 respectively.
図 1において 4は第 4シリンダ一で、 該第 4シリ ンダー内には第 4ピス トン 1 4 が内蔵され、 該第 4ピス トン 1 4には第 4ビス トン口ッ ド 1 4 'が連結されている。 2 4は前記第 4ビストンロッ ド 1 4,に固定された第 4ラックギア一で、 該第 4ラッ クギア一の側面の歯は後述する動力伝達機構の第 3双方向回転歯車 4 3と嚙合ってい る。  In FIG. 1, reference numeral 4 denotes a fourth cylinder, and a fourth piston 14 is built in the fourth cylinder, and a fourth piston port 14 ′ is connected to the fourth piston 14. Have been. Reference numeral 24 denotes a fourth rack gear fixed to the fourth biston rod 14, and the teeth on the side surface of the fourth rack gear correspond to a third bidirectional rotary gear 43 of a power transmission mechanism described later. You.
前記ピス トンを内蔵した第 1シリ ンダー、 第 2シリンダー、 第 3シリンダー、 第 .4シリンダ一とで 2シリンダー 2対型を構成している。  The first cylinder, the second cylinder, the third cylinder, and the fourth cylinder containing the piston constitute a two-cylinder two-pair type.
図 1において 5 1は第 1シリンダー 1に具備した第 1吸気弁、 5 1 'は第 1排気弁、 5 2は第 2シリンダー 2に具備した第 2吸気弁、 5 2,は第 2排気弁、 5 3は第 3シ リンダ一 3に具備した第 3吸気弁、 5 3,は第 3排気弁、 5 4は第 4シリンダー 4に 具備した第 4吸気弁、 5 4 'は第 4排気弁で、 後述する流体を切替える流体切替え弁 7とそれぞれパイプで結合されており、 前記の各ビス トン口ッドの端部に各々弁切替 ロッドを具備し、 前記の各シリ ンダーのヘッド部に弁切替機構 8を具備し、 該ピス ト ンロッドの往復運動と連動して切替え弁を作動し、 前記各々の吸気弁、 排気弁の切替 えを行なう機構になっている。 In FIG. 1, reference numeral 51 denotes a first intake valve provided in a first cylinder 1, 51 ′ denotes a first exhaust valve, 52 denotes a second intake valve provided in a second cylinder 2, and 52 denotes a second exhaust valve. 5 3 is the third system The third intake valve provided in the cylinder 13, 53 is a third exhaust valve, 54 is a fourth intake valve provided in the fourth cylinder 4, and 5 4 ′ is a fourth exhaust valve, which switches a fluid described later. A fluid switching valve 7 is connected to each of the pipes by a pipe, a valve switching rod is provided at an end of each of the above-mentioned bis ports, and a valve switching mechanism 8 is provided at a head portion of each of the cylinders. The switching valve is actuated in conjunction with the reciprocating movement of the piston rod to switch between the intake valve and the exhaust valve.
尚、前記各シリンダ一には吸気弁と排気弁を別々に具備したが、 1つの弁で吸気、 排気を切替える機構にしても良い。  Although each cylinder is provided with an intake valve and an exhaust valve separately, a mechanism for switching between intake and exhaust with one valve may be used.
図 1において 7は流体切替弁で、 8つのポートを有し、 前記の各シリンダーに具 備した吸気弁、 排気弁とそれぞれパイプで結合されている。 該流体切替弁 7の第 1の ポートは第 1吸気弁 5 1に、 第 2のポートは第 1排気弁 5 1 'に、 第 3のポートは第 2吸気弁 5 2に、 第 4のポーとは第 2排気弁 5 2 'に、 第 5のポートは第 3吸気弁 5 3に、 第 6のポートは第 3排気弁 5 3 'に、 第 7のポートは第 4吸気弁 5 4に、 第 8 のポートは第 4排気弁 5 4 'にそれぞれパイプで結合され、 圧力源 9に蓄えられた高 圧流体 (例えば水蒸気、 圧縮空気等) は、 該流体切替え弁 7の主吸入ポートに供給さ れた後、前述の弁切替機構 8との連動に依り前記各ポートへ分配経路を切替えられる。  In FIG. 1, reference numeral 7 denotes a fluid switching valve, which has eight ports, and is connected to an intake valve and an exhaust valve provided in each cylinder by pipes. The first port of the fluid switching valve 7 is connected to the first intake valve 51, the second port is connected to the first exhaust valve 51 ′, the third port is connected to the second intake valve 52, and the fourth port To the second exhaust valve 52 ', the fifth port to the third intake valve 53, the sixth port to the third exhaust valve 53', and the seventh port to the fourth intake valve 54. The eighth port is connected to the fourth exhaust valve 54 ′ by a pipe, and the high-pressure fluid (for example, steam, compressed air, etc.) stored in the pressure source 9 is supplied to the main suction port of the fluid switching valve 7. After being supplied, the distribution path can be switched to each of the ports by interlocking with the valve switching mechanism 8 described above.
図 1において 4 1は動力伝達機構の第 1双方向回転歯車で、 軸 4 1 'に軸支され、 該第 1双方向回転歯車 4 1は、 前記第 1ラックギア一 2 1と第 2ラックギア一 2 2の 側面の歯にそれぞれ嚙合っており、 該第 1、 第 2のラックギア一の動きに追従して時 計方向、 反時計方向に回転する。 4 2は第 2双方向回転歯車で、 軸 4 2 'に軸支され、 該第 2双方向回転歯車 4 2は、 前記第 2ラックギア一 2 2と第 3ラックギア一 2 3の 側面の歯にそれぞれ嚼合っており、 該第 2、 第 3のラックギア一の動きに追従して時 計方向、 反時計方向に回転する。 4 3は第 3双方向回転歯車で、 軸 4 3 'に軸支され、 該第 3双方向回転歯車 4 3は、 前記第 3ラックギア一 2 3と第 4ラックギア一 2 4の 側面の歯にそれぞれ嚙合っており、 該第 3、 第 4のラックギア一の動きに追従して時 計方向、 反時計方向に回転する。 該第 1, 2, 3双方向回転.歯車 4 1、 4 2, 4 3は、 前記第 1、 2, 3, 4ラックギア一 2 1, 2 2, 2 3、 2 4の中間にそれぞれ配置し、 前記各ラックギア一と嚙合い往復直線運動を連動させ、 各シリンダー内で発生するピ ス トンの直線運動力を効率良く均等に後述するクラッチベアリングへ伝達する動力伝 達機構の重要な働きをする。 In FIG. 1, reference numeral 41 denotes a first bidirectional rotary gear of the power transmission mechanism, which is rotatably supported on a shaft 4 1 ′. The first bidirectional rotary gear 41 includes the first rack gear 21 and the second rack gear 21. 22 respectively, and rotates clockwise and counterclockwise following the movement of the first and second rack gears. Reference numeral 42 denotes a second bi-directional rotary gear, which is rotatably supported on a shaft 4 2 ′. The second bi-directional rotary gear 42 is attached to the teeth on the side surfaces of the second rack gear 122 and the third rack gear 123. The two rack gears follow each other and rotate clockwise and counterclockwise following the movement of the second and third rack gears. Reference numeral 43 denotes a third bidirectional rotary gear, which is rotatably supported on a shaft 4 3 ′. The third bidirectional rotary gear 43 is provided on the teeth on the side surfaces of the third rack gear 123 and the fourth rack gear 124. They rotate in clockwise and counterclockwise directions following the movements of the third and fourth rack gears. The first, second and third two-way rotations. The gears 41, 42 and 43 are arranged in the middle of the first, second, third and fourth rack gears 21, 22, 23 and 24, respectively. A power transmission that transmits the linear motion force of the piston generated in each cylinder efficiently and evenly to a clutch bearing described later by interlocking the reciprocating linear motion with each of the rack gears. It plays an important role in the mechanism.
図 1において 3 1は動力伝達機構の第 1 クラツチベアリングで、 動力軸 5に軸支 され、 一方向のみ回転力を伝達するクラッチベアリングであり、 該第 1クラッチベア リング 3 1は、 前記第 1ラックギア一 2 1の歯と嚙合っており、 3 2は第 2クラッチ ベアリングで、動力軸 5に軸支され、前記第 2ラックギア一 2 2の歯と嚙合つており、 3 3は第 3 クラッチベアリングで、 動力軸 5に軸支され、 前記第 3 ラックギア一 2 3の歯と嚙合っており、 3 4は第 4クラッチベアリングで、 動力軸 5に軸支され、 前 記第 4 ラックギア一 2 4の歯と嚙合っており、 前記各クラッチベアリングは、 前記 各ラックギア一の往復直線運動を一方向回転に変換し、 前述の各シリンダー内で発生 するビス トンの直線運動力を回転動力に変換し前記動力軸 5に伝達し、 図示しない例 えば発電機等の負荷に供給する。  In FIG. 1, reference numeral 31 denotes a first clutch bearing of a power transmission mechanism, which is a clutch bearing which is rotatably supported by a power shaft 5 and transmits rotational force only in one direction. The first clutch bearing 31 includes the first clutch bearing 31. 3 2 is a second clutch bearing, which is rotatably supported by the power shaft 5 and is combined with the teeth of the second rack gear 1 2 3. 3 3 is a third clutch bearing. , Which is supported by the power shaft 5 and is in mesh with the teeth of the third rack gear 23. Reference numeral 34 denotes a fourth clutch bearing, which is supported by the power shaft 5 and is connected to the fourth rack gear 24. The clutch bearings convert the reciprocating linear motion of each of the rack gears into one-way rotation, and convert the linear motion force of bistons generated in each of the aforementioned cylinders into rotational power. Transmitted to the power shaft 5 and shown If unusual example supplied to a load such as an electrical generator and the like.
図 1において 6はフライホイールで、 前記動力軸 5に具備され、 前述の回転動力 に慣性力を持たせ安定した回転動力を図示しない例えば発電機等の負荷に供給する。 基本的には、 装置自体に慣性力が付き易く発生した慣性力を殺がない機構な為、 フラ ィホイールは無くても安定した回転動力を供給出来る。  In FIG. 1, reference numeral 6 denotes a flywheel, which is provided on the power shaft 5, and supplies inertial force to the above-mentioned rotational power to supply stable rotational power to a load such as a generator (not shown). Basically, since the inertia force is easily applied to the device itself and does not kill the generated inertia force, stable rotational power can be supplied even without a flywheel.
次に動作に付いて説明する。  Next, the operation will be described.
図 1に示すように流体切替弁 7と弁切替機構 8に依る操作で、 第 1 シリンダー 1 の第 1吸気弁 5 1と第 3シリンダー 3の第 3吸気弁 5 3が開き、 圧力源 9の高圧流体 As shown in FIG. 1, the operation by the fluid switching valve 7 and the valve switching mechanism 8 causes the first intake valve 51 of the first cylinder 1 and the third intake valve 53 of the third cylinder 3 to open, and the pressure source 9 High pressure fluid
(例えば水蒸気、 空気、 油等) がパイプを通って第 1シリンダー室 6 1と第 3シリン ダ一室 6 3にそれぞれ供給されると、 該高圧流体に依り第 1 ピス トン 1 1と第 3 ビス トン 1 3は、 図 1において下方向 (矢印方向) に押されて、 下方向に移動する。 従い、 該第 1 ピス トン 1 1と第 3 ピス トン 1 3が下方向へ押されると、 第 1 ピス トン 1 1に 連結されている第 1ラックギア一 2 1と第 3 ピス トン 1 3に連結されている第 3ラッ クギア一 2 3は、 下方向へ直線移動し、 該ラックギア一 2 1、 2 3と嚙合っている動 力伝達機構の第 1双方向回転歯車 4 1、 第 2双方向回転歯車 4 2、 第 3双方向回転歯 車 4 3は、 反時計方向、 時計方向にそれぞれ回転し、 該ラックギア一 2 1, 2 3の伝 達力を均等に次の動力伝達機構である一方向回転伝達の第 1クラツチべァリング 3 1 と第 3クラッチベアリング 3 3へ伝達され、 その回転動力を動力軸 5から図示しない 負荷へ伝達する。 前述の動きに伴って、 第 2ラックギア一 2 2は、 第 1ラックギア一 2 1と嚙合つ ている動力伝達機構の双方向回転歯車 4 1と第 3ラックギア一 2 3と嚙合っている双 方向回転歯車 4 2の回転に依り第 1ラックギア一 2 1と第 3ラックギア一2 3の動き とは反対に、 また第 4ラックギア一 2 4は、 第 3ラックギア一 2 3と嚙合っている双 方向回転歯車 4 3の回転に依り第 3ラックギア一 2 3の動きとは反対に、 図 1におい て上方向 (矢印方向) にそれぞれ直線移動する。 (この時、 一方向伝達の第 2クラッ チベアリング 3 2と第 4クラッチベアリング 3 4は、 前記第 1クラッチベアリング 3 1 と第 3 クラツチベアリング 3 3とは反対に逆回転する為空回りし動力伝達はな い。) 従い、 該第 2ラックギア一 2 2と連結されている第2ピストン 1 2と該第 4ラ ックギア一 2 4と連結されている第 4ピス トン 1 4は、 それぞれ上方向へ押され、 同 時に、 第 2 ピス トンロッド 1 2,に具備された弁切替口ッドと第 4 ピス トンロッド 1 4 'に具備された弁切替ロ ッ ドの動きに反応し、 流体切替機構 8に依る操作で、 第 2 シリンダー 2の第 2排気弁 5 2 'と第 4シリンダー 4の第 4排気弁 5 4 'が開き、 第 2 シリンダー室 6 2と第 4シリンダー室 6 4に充填されている流体 (例えば水蒸気、 空 気、 油等) がパイプを経由し流体切替弁 7を通り排出ポートより外へ排出される。 そ の後、 弁切替機構 8に依る操作で、 第 1 シリンダー 1の第 1吸気弁 5 1と第 3シリン ダー 3の第 3吸気弁 5 3が閉められ、 また第 2シリンダ一の第 2排気弁 5 2 'と第 4 シリンダ一の第 4排気弁 5 4 'も閉められ、 連動して流体切替弁 7の高圧流体経路も 切替えられる。 即ち前述とは逆の経路へ切替え高圧流体を導通させる様になる。 When water (eg, steam, air, oil, etc.) is supplied to the first cylinder chamber 61 and the third cylinder chamber 63 through pipes, the first piston 11 and the third cylinder 11 The button 13 is pushed downward (arrow direction) in FIG. 1 and moves downward. Accordingly, when the first piston 11 and the third piston 13 are pushed downward, the first rack gear 21 connected to the first piston 11 is connected to the third piston 13. The third rack gear 23 moves linearly downward, and the first bidirectional rotary gear 41 of the power transmission mechanism that matches the rack gears 21 23 The rotary gear 42 and the third bidirectional rotary wheel 43 rotate counterclockwise and clockwise, respectively, and transmit the transmission force of the rack gears 21 and 23 equally to the next power transmission mechanism. The directional rotation is transmitted to the first clutch bearing 31 and the third clutch bearing 33, and the rotational power is transmitted from the power shaft 5 to a load (not shown). Along with the above-described movement, the second rack gear 122 becomes a bi-directional rotating gear 41 which is combined with the first rack gear 21 and a bi-directional rotating gear 41 which is combined with the third rack gear 123. contrary rotary gear 4 first rack gear one 2 1 depending on the rotation of the two and the third rack gear one 2 3 motion, and the fourth rack gear one 2 4, the third rack gear one 2 3 and嚙合Tsu and are bidirectional Due to the rotation of the rotary gear 43, opposite to the movement of the third rack gear 123, it moves linearly upward (in the direction of the arrow) in FIG. (At this time, the one-way transmission of the second clutch bearing 32 and the fourth clutch bearing 34 is opposite to the rotation of the first clutch bearing 31 and the third clutch bearing 33, so that the first clutch bearing 31 and the third clutch bearing 33 rotate idly and transmit power. Accordingly, the second piston 12 connected to the second rack gear 122 and the fourth piston 14 connected to the fourth rack gear 124 move upward, respectively. At the same time, the fluid switching mechanism 8 reacts to the movement of the valve switching port provided in the second piston rod 12 and the valve switching rod provided in the fourth piston rod 14 ′, and The second exhaust valve 5 2 ′ of the second cylinder 2 and the fourth exhaust valve 5 4 ′ of the fourth cylinder 4 are opened to fill the second cylinder chamber 6 2 and the fourth cylinder chamber 64. Fluid (eg, steam, air, oil, etc.) passes through the pipe and passes through the fluid switching valve 7. It is discharged to the outside from the discharge port. Then, the first intake valve 51 of the first cylinder 1 and the third intake valve 53 of the third cylinder 3 are closed by the operation of the valve switching mechanism 8, and the second exhaust of the second cylinder 1 The valve 52 'and the fourth exhaust valve 54' of the fourth cylinder are also closed, and the high-pressure fluid path of the fluid switching valve 7 is switched in conjunction with it. In other words, the path is switched to the reverse path, and the high-pressure fluid is conducted.
高圧流体経路が切替わると、 図 1に示す第 2シリンダー 2の第 2吸気弁 5 2と第 4シリンダ一 4の第 4吸気弁 5 4が開き、圧力源 9の高圧流体 (例えば水蒸気、空気、 油等) がパイプを通って第 2シリンダ一室 6 2と第 4シリンダ一室 6 4にそれぞれ供 給されると、 該高圧流体に依り第 2ピス トン 1 2と第 4ピス トン 1 4は、 図 1におい て下方向 (反矢印方向) に押されて、 下方向に移動する。 従い、 該第 2 ピス トン 1 2 と第 4ピス トン 1 4が下方向へ押されると、 第 2ピス トン 1 2に連結されている第 2 ラックギア一 2 2と第 4ピス トン 1 4に連結されている第 4ラックギア一 2 4は、 下 方向へ直線移動し、 該ラックギア一 2 2、 2 4と嚙合っている動力伝達機構の第 1双 方向回転歯車 4 1、 第 2双方向回転歯車 4 2、 第 3双方向回転歯車 4 3は、 反 計方 向、 時計方向にそれぞれ回転し、 該ラックギア一 2 2 , 2 4の伝達力を均等に次の動 力伝達機構である一方向回転伝達の第 2クラッチベアリング 3 2と第4クラッチペア リング 3 4へ伝達され、 その回転動力を動力軸 5から図示しない負荷へ伝達する。 When the high-pressure fluid path is switched, the second intake valve 52 of the second cylinder 2 and the fourth intake valve 54 of the fourth cylinder 14 shown in FIG. 1 are opened, and the high-pressure fluid (eg, steam, air) of the pressure source 9 is opened. , Oil, etc.) are supplied through pipes to the second cylinder chamber 62 and the fourth cylinder chamber 64, respectively, so that the second piston 12 and the fourth piston 14 are supplied by the high-pressure fluid. Is pushed downward (in the direction opposite to the arrow) in FIG. 1 and moves downward. Accordingly, when the second and fourth pistons 12 and 14 are pushed downward, they are connected to the second rack gear 122 and fourth piston 14 connected to the second piston 12. The fourth rack gear 124 moves linearly downward, and the first bidirectional rotary gear 41 and the second bidirectional rotary gear of the power transmission mechanism that matches the rack gears 222, 24. 42, the third bidirectional rotating gear 43 rotates counterclockwise and clockwise, respectively, to evenly transmit the transmission force of the rack gears 222 and 224 to the next gear. The power is transmitted to the second clutch bearing 32 and the fourth clutch pairing 34 of the one-way rotation transmission, which is a force transmission mechanism, and the rotational power is transmitted from the power shaft 5 to a load (not shown).
前述の動きに伴って、 第 1ラックギア一 2 1は、.第 2ラックギア一 2 2と嚙合つ ている動力伝達機構の双方向回転歯車 4 1の回転に依り第 2ラックギア一 2 2の動き とは反対に、 また第 3ラックギア一 2 3は、 第2ラックギア一 2 2と嚙合っている双 方向回転歯車 4 2と第 4ラックギア一 2 4と嚙合っている双方向回転歯車 4 3の回転 に依り第 2ラックギア一 2 2と第 4ラックギア一 2 4の動きとは反対に、 図 1におい て上方向 (反矢印方向) にそれぞれ直線移動する。 (この時、 一方向伝達の第 1クラ ツチベアリング 3 1と第 3クラッチベアリング 3 3は、 前記第 2クラッチベアリング 3 2と第 4クラッチベアリング 3 4とは反対に逆回転する為空回り し動力伝達はな い。) 従い、 該第 1ラックギア一 2 1 と連結されている第 1 ピス トン 1 1と該第 3ラ ックギア一 2 3と連結されている第 3 ピス トン 1 3は、 それぞれ上方向へ押され、 同 時に、 第 1 ピス トンロッ ド 1 1 'に具備された弁切替ロッドと第 3 ピス トン口ッ ド 1 3,に具備された弁切替ロッ ドの動きに反応し、 流体切替機構 8に依る操作で、 第 1 シリンダー 1の第 1排気弁 5 1,と第 3シリンダー 3の第 3排気弁 5 3 'が開き、 第 1 シリンダー室 6 1と第 3シリンダー室 6 3に充填されている流体 (例えば水蒸気、 空 気、 油等) がパイプを経由し流体切替弁 7を通り排出ポートより外へ排出される。 そ の後、 弁切替機構 8に依る操作で、 前記第 1排気弁 5 1 'と第 3排気弁 5 3 'が閉めら れ一連の動作は終了し、 前述へ戻り動作は繰り返される。 Along with the above-mentioned movement, the first rack gear 21 is moved by the rotation of the bi-directional rotating gear 41 of the power transmission mechanism which is combined with the second rack gear 22 and the movement of the second rack gear 22 The opposite is true, and the third rack gear 123 is the rotation of the bi-directional rotating gear 42 matching the second rack gear 122 and the bidirectional rotating gear 43 matching the fourth rack gear 124. In contrast to the movements of the second rack gear 122 and the fourth rack gear 124, they move linearly upward (in the direction opposite to the arrow) in FIG. (At this time, the first clutch bearing 31 and the third clutch bearing 33, which are one-way transmission, rotate in the opposite direction to the second clutch bearing 32 and the fourth clutch bearing 34, so that the first clutch bearing 31 and the third clutch bearing 34 rotate idle and transmit power. Therefore, the first piston 11 connected to the first rack gear 21 and the third piston 13 connected to the third rack gear 23 move upward, respectively. And at the same time, reacts to the movement of the valve switching rod provided in the first piston rod 11 'and the valve switching rod provided in the third piston port 13 by the fluid switching mechanism. 8, the first exhaust valve 51 of the first cylinder 1 and the third exhaust valve 53 'of the third cylinder 3 are opened, and the first cylinder chamber 61 and the third cylinder chamber 63 are filled. Fluid (eg, steam, air, oil, etc.) passes through a pipe and the fluid switching valve 7 It is discharged to the outside than as the discharge port. Thereafter, the first exhaust valve 51 'and the third exhaust valve 53' are closed by the operation of the valve switching mechanism 8, and a series of operations is completed, and the operation returns to the above, and the operation is repeated.
上記実施形態 1では、 圧力源 9の高圧流体が、 流体切替弁 7をピス トンの動きに 連動する弁切替ロッドと弁切替機構 8の操作で切替えてビス トンを連動的に作動させ、 その直線運動力をラックギア一、 双方向回転歯車と一方向伝達のクラツチベアリング とで回転動力に替えて負荷へ伝達した。  In the first embodiment, the high-pressure fluid of the pressure source 9 switches the fluid switching valve 7 by operating the valve switching rod and the valve switching mechanism 8 that interlock with the movement of the piston to operate the biston in an interlocking manner. The kinetic force was transmitted to the load by using a rack gear, bidirectional rotating gears, and a one-way clutch bearing to convert to rotational power.
この様な構成は、 直線運動力を回転動力に変換するのみでなく、 反対に回転動力 を動力伝達機構に依り直線動力に替えて負荷へ伝達する事が出来る。  With such a configuration, not only can the linear motion force be converted to rotational power, but also the rotational power can be transmitted to the load instead of linear power by a power transmission mechanism.
この様な構成は、 基本的にはラックギア一、 双方向回転歯車、 一方向伝達クラッ チベアリングがお互いのギア一部に嚙合っている動力伝達方式である。 この方式の場 合、 ビス トンの往路と復路の切替え時に発生する歯車の不連続時間がたとえわずかと 言えども毎回発生し不要な振動が発生する事は、 これらが衝撃荷重となって材料を損 傷させる事を最も懸念していたが、 ラックギア一を双方向回転歯車で接続させる事に 依り不連続時間を解消する事が出来た。 Such a configuration is basically a power transmission system in which a single rack gear, a two-way rotating gear, and a one-way transmission clutch bearing are matched with each other. In this method, the discontinuity of the gear that occurs when switching between the forward and backward paths of the biston occurs every time, even if only slightly, and unnecessary vibration occurs. I was most concerned about damaging it, but the discontinuous time could be eliminated by connecting the rack gear with a bidirectional rotating gear.
この様な構成は、 例えば負荷の作動に大きな力を必要とする時には、 流体切替弁 7の切替がビストンの動きに連動する為、 間欠的になり安定した回転力を負荷に供給 出来ない場合がある。 従って、 例えば大きい負荷を必要とする時には、 弁切替ロッ ド とリ ミッ トスィツチ等を組合わせ、 弁切替口ッドがリ ミ ッ トスィツチを操作した瞬間 に流体切替弁 7が瞬時に切替わる様に構成する事で、 動力伝達機構をスムーズに回転 し、 安定した力の回転力を負荷へ供給する事が出来る。  In such a configuration, for example, when a large force is required for the operation of the load, the switching of the fluid switching valve 7 is interlocked with the movement of the piston, so that intermittent and stable rotational force cannot be supplied to the load. is there. Therefore, for example, when a large load is required, a valve switching rod and a limit switch are combined so that the fluid switching valve 7 switches instantaneously when the valve switching port operates the limit switch. With this configuration, the power transmission mechanism rotates smoothly, and a stable torque can be supplied to the load.
次に実施形態 2として、 前述の基本的な動力伝達方法を同じく し、 更にコンパク トな構造として、 ビス トン形状を図 3に示す様にビス トン 7 1の中央部分にオーパル 形状 7 2の穴を貫通させ、 その穴の内側 (図示では上下面) にラックギア一 7 3, 7 4の歯形を突出形成し、 その穴 7 2に垂直に交差する様にシリンダー 7 0の中心部に 動軸 7 8を配置し、 またピス トン 7 1中央部のラックギア一 7 3, 7 4と嚙合うよう に、 動軸 7 8に固定され共に回転する一定角度範囲に歯形 7 6を突出形成したピ-ォ ンギア一 7 5と回転カム 7 7とで構成されている。 ピス トン 7 1は、 シリンダー 7 0 の両端部に外部より圧力流体 (例えば水蒸気、 空気、 油等) を交互に吸入、 排出を行 い、 その圧力を受けて動軸 7 8を中心にして往復直線運動を始める。 その往復直線蓮 動は、 ラックギア一 7 3, 7 4に嚙合っているピニオンギア一 7 5で連続回転運動へ 変換し、 その回転動力を動軸 7 8に伝達し、 図示しない例えば発電機等の負荷へ供給 するものである。 又反対に動軸 7 8の回転運動を、 ピニオンギア一 7 5で繋ぎその回 転運動をラックギア一 7 3 , 7 4で往復直線運動へ変換し、 その回転動力を直線運動 力に負荷へ供給出来る形態とした。  Next, as a second embodiment, the basic power transmission method described above is the same, and as a more compact structure, the biston shape is formed in the center of the biston 71 as shown in FIG. The gear teeth 73 and 74 protrude inside the hole (upper and lower surfaces in the figure), and the center of the cylinder 70 is inserted into the center of the cylinder 70 so as to intersect the hole 72 vertically. 8 is arranged, and a toothed shape 76 protrudes from a fixed angle range that is fixed to the driving shaft 78 and rotates together with the rack gears 73, 74 at the center of the piston 71 so as to match. And a rotating cam 77. The piston 71 alternately sucks and discharges a pressurized fluid (for example, steam, air, oil, etc.) from the outside to both ends of the cylinder 70, and reciprocates around the driving shaft 78 under the pressure. Start linear motion. The reciprocating linear lotus is converted into a continuous rotary motion by a pinion gear 75 corresponding to the rack gears 73, 74, and the rotary power is transmitted to a driving shaft 78, for example, a generator (not shown). To supply the load. Conversely, the rotational motion of the drive shaft 78 is connected by a pinion gear 75, and the rotational motion is converted to reciprocal linear motion by the rack gears 73, 74, and the rotational power is supplied to the load as a linear motion force. A form that can be used.
前記ピス トン 7 1中央部 (図示では上下面) に設けたラックギア一 7 3, 7 4の 歯形突出形成範囲、 及ぴそれに嚙合う前記ピニオンギア一 7 5の歯形突出形成 7 6の 範囲 (一定角度範囲) は、 ピニオンギア一 7 5が動軸 7 8より左右 (往復) それぞれ 半回転づっ (ピユオンギア一の半円周分) 移動出来る距離範囲とする。  The range of tooth profile formation of the rack gears 73 and 74 provided at the center of the piston 71 (upper and lower surfaces in the figure), and the range of tooth profile formation 76 of the pinion gear 75 corresponding to the range (constant) The angle range) is the range in which the pinion gear 75 can move from the drive shaft 78 left and right (reciprocating) by half a turn (half the circumference of the pinion gear).
前記回転カム 7 7は、 ピニオンギア一 7 5と共に動軸 7 8に固定され、 ピス トン 7 1のラックギア一 7 3, 7 4の移動範囲末端部分にピニオンギア一の歯形 Ί 6の两 側末端部分が差し掛かった時、 ピニオンギア一の歯形 7 6の衝撃を緩衝し滑らかな動 きでラックギア一 7 3, 7 4の嚙合いを面を (図示では上下面) 切替え繋ぎ、 ピニォ ンギア一 7 5がー方向に連続回転をさせる機構である。 尚ビス トン 7 1中央部分のォ 一バル形状 7 2の両側端部は、 ピニオンギア一 7 5が回転力ム 7 7の対応に依り空回 り し、 ピニオンギア一 7 5の突出歯形 7 6がピス トン 7 1のラックギア一 7 3, 7 4 との嚙合い面を (図示では上下面) 切替わりし易くする為、 表面には歯形が形成され ていない。 The rotating cam 77 is fixed to the drive shaft 78 together with the pinion gear 75, and the tooth shape of the pinion gear Ί 6 is located at the end of the movement range of the rack gears 73, 74 of the piston 71. When the part is approaching, it absorbs the impact of the tooth form 76 of the pinion gear and smooth movement This is a mechanism that switches the surfaces of the rack gears 73 and 74 by switching the surfaces (upper and lower surfaces in the figure), and the pinion gears 75 continuously rotate in the negative direction. Note that the pinion gear 75 is idled on both sides of the central part 7 of the flat shape 7 2 according to the rotational force 77, and the protruding tooth form of the pinion gear 75 However, there is no tooth profile on the surface to make it easier to switch the mating surface of the piston 71 with the rack gears 73, 74 (upper and lower surfaces in the figure).
この様な構成は、 前述の実施形態 1に比べシリンダー本数、 ピス トン、 ラックギ ァ一等主要部品点数を半減する事が出来、 装置その物もコンパク トに構成出来る特徴 がある。  Such a configuration is characterized in that the number of main components such as the number of cylinders, pistons, and rack gears can be reduced by half compared to the first embodiment, and the device itself can be configured compactly.
産業上の利用可能性  Industrial applicability
以上の様な本発明の形態に依れば、 従来のクランク付レシプロエンジンとロータ リ一エンジンを慣性力の点から考察すると、 本発明の動力伝達方式であれば機械的な 損失以外は、 被回転体が慣性を持つ性格の物であれば、 機械的、 物理的損失以外は一 旦慣性が付くと、 前記損失で失われたロスを補うだけで良いので、 燃費の向上は著し いものがある。 この慣性力を殺がないという意味では、 直線運動を回転運動に、 回転 運動を直線運動に変換する場合の双方にはまるものである。 更に本発明のシリンダ 一タイプの動力伝達方式は、 従来のレシプロエンジン又はロータリ一エンジンで言う 膨張 (爆発) を受ける部分がシリンダーである為、 最も効率が良く力の伝達も常にラ ックギア一、 双方向回転歯車、 一方向伝達クラッチベアリング、 ピニオンギア一が嚙 合っており常に 9 0度で受けている (直角に受ける) 点が優れている。  According to the above-described embodiment of the present invention, considering a conventional reciprocating engine with a crank and a rotary engine in terms of inertia force, if the power transmission system of the present invention is used, except for the mechanical loss, it will be difficult If the rotating body has a characteristic of inertia, except for mechanical and physical losses, once inertia is added, it is only necessary to compensate for the loss lost by the loss, so the fuel efficiency is remarkably improved. There is. In the sense that this inertial force is not killed, it applies to both cases where linear motion is converted into rotary motion and rotary motion is converted into linear motion. Furthermore, the cylinder type power transmission system of the present invention is the most efficient and always transmits power because the part that receives the expansion (explosion) of a conventional reciprocating engine or rotary engine is the cylinder. It is excellent in that the directional rotating gear, one-way transmission clutch bearing, and pinion gear are combined and always receive at 90 degrees (at right angles).
その他、 本発明の利点としては、 従来の技術を利用し製造が簡単である事、 シリ ンダータイプの為、 従来のレシプロエンジンに使用したバルブ等、 他の機構はそのま ま利用できる事、 外燃機関のエンジンとして蒸気等も使用して発電が出来る事、 2サ ィクルにも 4サイクルにも適用が出来、 しかも燃料直接噴射方式も取れる事から、 効 率の向上のみでなく、 マルチ燃料、つまりガソリン以外の軽油、灯油、 アルコール(植 物バイオマスを使用したメタノール等) の各種燃科に対応可能である。 これらの性格 を総合すると、 ビス トン運動を効率良く回転運動に変換すると共に慣性を持つ発電機 を回す事も効率良く出来るので、 一例としてハイブリッドカ一やポンプ等には最適の 仕組みと言える。  Other advantages of the present invention are that it is easy to manufacture using conventional technology, and because it is a cylinder type, other mechanisms such as valves used in conventional reciprocating engines can be used as is. It is possible to generate electricity using steam, etc. as the engine of a fuel engine, and it can be applied to two or four cycles, and it can also use a direct fuel injection system. In other words, it can be used for various fuels other than gasoline, such as light oil, kerosene, and alcohol (methanol using plant biomass). When these characteristics are combined, it is possible to efficiently convert biston motion into rotational motion and to rotate a generator with inertia efficiently, so it can be said that this is an optimal mechanism for a hybrid car or pump as an example.

Claims

請求の範囲 The scope of the claims
1. ビス トンを內蔵したシリ ンダ一とピス トンと連結するビス トン口ッ ドに取付けた ラックギア一でシリンダ一部を構成し、 同様にもう 1組のシリンダーを構成し、 この 2シリンダーを 1対とし、 更に前記と同様に 2シリンダー 1対を構成し、 前 記シリンダ一に高圧流体を交互に吸入し、 前記ビストンを往復動させる 2シリン ダー 2対と、 前記のラックギア一とがそれぞれ嚙合って回転する動力伝達機構と で構成されているシリンダータイプロータリー動力伝達装置。 1. A cylinder part is composed of a cylinder containing bistons and a rack gear attached to the biston opening to connect with the piston. Similarly, another pair of cylinders is composed. One pair, and two cylinders, one pair in the same manner as above, and two pairs of two cylinders, which alternately suck high-pressure fluid into the cylinder and reciprocate the biston, and the rack gear, respectively. A cylinder-type rotary power transmission device consisting of a power transmission mechanism that rotates in parallel.
2.前記 2シリンダー 2対に高圧流体を供給する供給経路に切替弁 (8 方弁又は 4 方 弁を 2 組) を具備し、 この切替弁の作動に依り高圧流体の導通路を切り替える様 に構成した請求項 1に記載のシリンダータイプロータリー動力伝達装置。 2. A switching valve (two sets of 8-way valves or 4-way valves) is provided in the supply path for supplying high-pressure fluid to the two pairs of 2 cylinders, and the high-pressure fluid conduction path is switched by the operation of this switching valve. 2. The cylinder type rotary power transmission device according to claim 1, wherein the cylinder type rotary power transmission device is configured.
3.前記動力伝達機構を、 前記 4本のラックギア一と常に嚙合う中聞の 3個の双方向 回転歯車と、 ラックギア一と嚙合いラックギア一の往復直線運動を 1方向の回転 のみに変換する一方向伝達クラツチベアリングと、 回転を伝導する動力軸とで構 成し、 直線運動を回転運動に又回転運動を直線運動に変換しその動力伝達力を連 続的に負荷へ供給出来る請求項 1に記載のシリンダータイプロータリ一動力伝達 装置。 3. The power transmission mechanism converts the reciprocating linear motion of the three rack gears and the three reciprocating linear motions of the rack gears that are always engaged with the four rack gears into rotation in only one direction. It comprises a one-way transmission clutch bearing and a power shaft that transmits rotation, and can convert linear motion into rotary motion and convert rotary motion into linear motion, and continuously supply the power transmission force to the load. 4. A cylinder type rotary power transmission device according to item 1.
4. シリンダー内を往復直線運動するビス トン中央部に、 オーパル形状に貫通させた 穴の内側 (上下面) の一定範囲内にラックギア一の歯形を突出形成し、 それに嚙 合う様に一定角度範囲内に歯形を形成したピニオンギア一を動軸に連結し、 ビス トンの往復直線運動に伴いビス トン内部のラックギア一の嚙合い面を回転カムの 機構に依り滑らかに切替繋ぎピニオンギア一が一方向に連続回転出来る様に構成 し、 直線運動を回転運動に又回転運動を直線運へ変換しその動力を負荷へ供給す るシリンダータイプロータリ一動力伝達装置。 4. At the center of the biston that reciprocates linearly in the cylinder, a tooth profile of the rack gear is formed to project within a certain range inside (upper and lower surfaces) of the hole penetrated in an opal shape, and a certain angle range to match it A pinion gear with a tooth profile formed inside is connected to the drive shaft. A cylinder-type rotary power transmission device that is constructed so that it can rotate continuously in one direction, converts linear motion to rotary motion, and converts rotary motion to linear motion, and supplies the power to the load.
5.前記動力伝達機構にクランク機構を具備せず、 装置自体に慣性力が付き易い機構 で安定した動力伝達を負荷へ供給出来る請求項 1、 2、 3、 4に記載のシリンダ 一タイプロータリ一動力伝達装置。 5. A mechanism in which the power transmission mechanism does not have a crank mechanism, and the device itself tends to have inertial force The cylinder-one type rotary-one power transmission device according to claim 1, 2, 3, or 4, which can supply a stable power transmission to a load.
6.動力発生機構をシリンダー、 ピストン機構にしている為、 従来のロータリーェン ジンのローター部に比べて、 動力伝達が常に 9 0度 (垂直) で前記動力伝達機構 へ最も効率の良い繋がりを特徴にした請求項 1、 2、 3、 4に記載のシリンダー タイプロータリー動力伝達装置。 6. Since the power generation mechanism is a cylinder and piston mechanism, the power transmission is always 90 degrees (vertical) and the most efficient connection to the power transmission mechanism compared to the rotor part of the conventional rotary engine. The cylinder type rotary power transmission device according to claim 1, 2, 3, or 4, characterized in that:
7.従来の原動装置であるクランク機構に依るレシプロエンジン、 又ロータリーェン ジンに比べても部品点数が少なくコンパク トな構造で、 しかも振動が少ない点を 特徴にした請求項 1、 2、 3、 4に記載のシリンダータイプロータリー動力伝達 装置。 7. Claims 1, 2, and 3 characterized in that the number of parts is smaller than that of a reciprocating engine and a rotary engine that use a crank mechanism, which is a conventional driving device, and the structure is compact, and vibration is small. 4. The cylinder type rotary power transmission device according to 4.
8.動力伝達装置の構造が簡単で、 しかも従来のレシプロエンジン等に使用した部品、 機構がそのまま応用利用出来るので、 2サイクル、 4サイクルにも適用出来、 し かも燃料直接噴射方式も採用できる事から、 ガソリン、 軽油、 灯油、 アルコール 等の各種燃料に対応可能な請求項 1、 2、 3、 4に記載のシリンダータイプロー タリー動力伝達装置。 8.Since the structure of the power transmission device is simple, and the parts and mechanisms used in the conventional reciprocating engine can be applied as they are, they can be applied to two or four cycles, and the direct fuel injection method can be adopted. 5. The cylinder type rotary power transmission device according to claim 1, 2, 3, or 4, which is applicable to various fuels such as gasoline, light oil, kerosene, and alcohol.
9.前記、 請求項 1、 2、 3、 4に記載の動力伝達装置を繋ぎ合せて、 より大きい原 動力を供給する事が可能なシリンダータイプロータリ一動力伝達装置。 9. A cylinder type rotary power transmission device capable of supplying a larger motive power by connecting the power transmission devices according to claim 1, 2, 3, and 4.
10.タービン機構と異なりシリンダータイプを基本構造にした、 低圧流体また低燃 費でも十分安定した動力伝達を可能にした請求項 1、 2、 3、 4に記載のシリンダ 一タイプロータリ一動力伝達装置。 10. The cylinder-type rotary power transmission device according to claim 1, 2, 3, or 4, wherein the cylinder type has a basic structure different from the turbine mechanism, and enables sufficiently stable power transmission even with low-pressure fluid and low fuel consumption. .
PCT/JP2005/009490 2004-05-19 2005-05-18 Cylinder type rotary power transmission device WO2005111464A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2004-0035762 2004-05-19
KR1020040035762 2004-05-19
JP2005130322A JP2005330963A (en) 2004-05-19 2005-04-01 Cylinder type rotary power transmission device
JP2005-130322 2005-04-01

Publications (1)

Publication Number Publication Date
WO2005111464A1 true WO2005111464A1 (en) 2005-11-24

Family

ID=35394241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009490 WO2005111464A1 (en) 2004-05-19 2005-05-18 Cylinder type rotary power transmission device

Country Status (1)

Country Link
WO (1) WO2005111464A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927138A1 (en) * 2008-02-04 2009-08-07 Jean Claude Bennarosh DEVICE FOR CONVERTING MOTION BETWEEN TRANSLATION AND ROTATION
WO2014012152A1 (en) * 2012-07-19 2014-01-23 Dns Project, Jsc Internal combustion engine
WO2016004860A1 (en) * 2014-07-10 2016-01-14 孙书伟 Two-stroke gear shaft engine for power device
WO2016110072A1 (en) * 2015-01-08 2016-07-14 武汉富国发动机科技有限公司 Internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146154U (en) * 1982-11-11 1983-10-01 松岡 一二 motion conversion device
US5528946A (en) * 1994-05-06 1996-06-25 Yadegar; Iraj Apparatus for conversion of reciprocating motion to rotary motion and vise versa
JPH09324844A (en) * 1996-06-03 1997-12-16 Chuichi Suzuki Device for making linear driving of connecting rod under utilization of free wheel
JP2000120823A (en) * 1998-10-13 2000-04-28 Chuichi Suzuki Device for converting rectilinear motion into rotary drive by using columnar rack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146154U (en) * 1982-11-11 1983-10-01 松岡 一二 motion conversion device
US5528946A (en) * 1994-05-06 1996-06-25 Yadegar; Iraj Apparatus for conversion of reciprocating motion to rotary motion and vise versa
JPH09324844A (en) * 1996-06-03 1997-12-16 Chuichi Suzuki Device for making linear driving of connecting rod under utilization of free wheel
JP2000120823A (en) * 1998-10-13 2000-04-28 Chuichi Suzuki Device for converting rectilinear motion into rotary drive by using columnar rack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927138A1 (en) * 2008-02-04 2009-08-07 Jean Claude Bennarosh DEVICE FOR CONVERTING MOTION BETWEEN TRANSLATION AND ROTATION
FR2927137A1 (en) * 2008-02-04 2009-08-07 Jean Claude Bennarosh Movement converting device for piston heat engine, has complementary units cooperated for ensuring deceleration of translation movement of transmission element to define stop position and to start inverse translation movement of element
WO2014012152A1 (en) * 2012-07-19 2014-01-23 Dns Project, Jsc Internal combustion engine
WO2016004860A1 (en) * 2014-07-10 2016-01-14 孙书伟 Two-stroke gear shaft engine for power device
WO2016110072A1 (en) * 2015-01-08 2016-07-14 武汉富国发动机科技有限公司 Internal combustion engine

Similar Documents

Publication Publication Date Title
JP2005330963A (en) Cylinder type rotary power transmission device
KR101134649B1 (en) Power transferring device and hybrid system using the same
US20060225690A1 (en) Selective leverage technique and devices
WO2009146626A1 (en) Multi-energy direct axis mixed power engine
US7926462B2 (en) Kinetic energy generation device
WO2013086947A1 (en) Reciprocating rotary engine
CN102418601B (en) High-speed free piston linear generator
WO2005111464A1 (en) Cylinder type rotary power transmission device
CN102434213B (en) Power conversion device
KR20110097198A (en) Power transmission assembly for improve on fuel efficiency of four cycle internal combustion engine
KR101336131B1 (en) Power transmission for an internal-combustion engine
AU2005201319A1 (en) An Improved Rotary Piston Machine, suitable for a wide range of environmentally friendly fuels
CN212898716U (en) Ring cylinder engine and multi-cylinder engine
RU159483U1 (en) "NORMAS" INTERNAL COMBUSTION ENGINE. OPTION - XB - 89
CN203239447U (en) Annular engine
CN202914138U (en) Gas power machine
CN113250819A (en) Device for transmitting power by using straight rod piston seven-wheel transmission mechanism and application thereof
WO2007056897A1 (en) Arrangement to generate energy and such method
WO2005111375A1 (en) Non-crank type reciprocal and rotary motion converter and engine with the same and compressor with the same
CN109268137A (en) Engine
CN103244263A (en) Annular engine
CA2504057C (en) Selective leverage technique and devices
WO2009143672A1 (en) A multi-circulation driving system of a linear, reciprocating and four-stroke engine
CN102244485A (en) Magnetic force machine with fluid transmission
CN200978713Y (en) Combined revolving cylinder engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase