WO2005111229A1 - Substrate for enzymatic activity detection and method of detecting enzymatic activity therewith - Google Patents

Substrate for enzymatic activity detection and method of detecting enzymatic activity therewith Download PDF

Info

Publication number
WO2005111229A1
WO2005111229A1 PCT/JP2005/001258 JP2005001258W WO2005111229A1 WO 2005111229 A1 WO2005111229 A1 WO 2005111229A1 JP 2005001258 W JP2005001258 W JP 2005001258W WO 2005111229 A1 WO2005111229 A1 WO 2005111229A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
compound
fluorescent group
enzyme
enzyme activity
Prior art date
Application number
PCT/JP2005/001258
Other languages
French (fr)
Japanese (ja)
Inventor
Norikazu Nishino
Tamaki Kato
Original Assignee
Kitakyushu Foundation For The Advancement Of Industry, Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004144191A external-priority patent/JP2004357706A/en
Application filed by Kitakyushu Foundation For The Advancement Of Industry, Science And Technology filed Critical Kitakyushu Foundation For The Advancement Of Industry, Science And Technology
Publication of WO2005111229A1 publication Critical patent/WO2005111229A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A substrate for enzymatic activity detection capable of detecting any enzymatic activity only by measuring the fluorescence intensity, etc. of substrate with the use of any change of fluorescence intensity, etc. as an index and excelling in operability, which substrate for enzymatic activity detection enables detection of enzymatic activity even when the amount of analyte solution is minute and does not need formation of cells for analyte solution incorporation, etc. to thereby attain striking enhancement of the integrity of detection part. There is provided a substrate for enzymatic activity detection, comprising a substrate, a first fluorescent group directly bonded to the substrate or bonded to the substrate via a first compound having its one end fixed to the substrate, and a second compound linked with the first fluorescent group by means of a peptide bond cleaved by enzymes.

Description

明 細 書  Specification
酵素活性検出用基板及びそれを用いた酵素活性の検出方法  Substrate for detecting enzyme activity and method for detecting enzyme activity using the same
技術分野  Technical field
[0001] 本発明は、酵素活性を検出する酵素活性検出用基板及びそれを用いた酵素活性 の検出方法に関するものである。  The present invention relates to a substrate for detecting an enzyme activity for detecting an enzyme activity and a method for detecting an enzyme activity using the same.
背景技術  Background art
[0002] 近年、病理学的診断などの医学的分野やプロテオーム解析等の研究的分野の発 展に伴って、複数の酵素の活性を検出する必要性が生じており、酵素の活性を吸収 光、蛍光等を用いて溶液中で測定する技術が種々研究されている。  [0002] In recent years, with the development of medical fields such as pathological diagnosis and research fields such as proteome analysis, it has become necessary to detect the activity of a plurality of enzymes. Various techniques for measuring in a solution using fluorescence or the like have been studied.
例えば、(特許文献 1)には、「タンパク質分解酵素の 1種であるカスパーゼが特異的 に切断する基質ペプチドの両端を、蛍光共鳴エネルギー移動が起こる蛍光基で修 飾した蛍光プローブ」が記載されている。  For example, (Patent Document 1) describes "a fluorescent probe in which both ends of a substrate peptide cleaved specifically by caspase, which is one of proteolytic enzymes, are modified with a fluorescent group that undergoes fluorescence resonance energy transfer." ing.
特許文献 1 :特開 2000 - 316598号公報  Patent Document 1: JP-A-2000-316598
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力 ながら上記従来の技術においては、以下のような課題を有していた。 [0003] However, the above-mentioned conventional technology has the following problems.
(1) (特許文献 1)に開示の技術は、溶液中に入れた蛍光プローブの基質ペプチドが 酵素によって切断された結果、基質ペプチドの両端の蛍光基が蛍光共鳴エネルギ 一を起こし蛍光波長や蛍光強度が変化するので、これを測定することによって酵素 活性を検出するものである。酵素活性の測定としては、蛍光測定用マイクロプレート に形成された開口部を有するセルに検体溶液を注入し、プレートリーダ上で蛍光を 同時並行測定することにより高速測定を行う方法がある。この方法に用レ、る蛍光測定 用マイクロプレートのセルの開口部の開口面積は、溶液を注入できるだけの十分な 大きさに形成する必要がある。近年の医学的分野や研究的分野の発展に伴って、研 究効率等を高めるために複数の酵素の活性を可能な限り高速で、かつ少量のサン プノレで測定する必要性が増しており、蛍光測定用マイクロプレートのセルサイズを可 能な限り小さくするとともにセルの数を増やす必要性が増している。し力 ながら、原 理的に検体溶液のセルサイズに限界があり、現行では 96穴等のミリメートルサイズの セルを有するマイクロプレート上での測定が可能であるにすぎないという課題を有し ていた。 (1) The technique disclosed in (Patent Document 1) is that, as a result of the substrate peptide of a fluorescent probe placed in a solution being cleaved by an enzyme, the fluorescent groups at both ends of the substrate peptide generate fluorescence resonance energy, and the fluorescence wavelength and fluorescence Since the intensity changes, the enzyme activity is detected by measuring the intensity. As a method for measuring enzyme activity, there is a method in which a sample solution is injected into a cell having an opening formed in a microplate for fluorescence measurement, and high-speed measurement is performed by simultaneously measuring fluorescence on a plate reader. In this method, the opening area of the opening of the cell of the fluorescence measurement microplate needs to be formed large enough to inject the solution. With the development of medical and research fields in recent years, the need to measure the activities of multiple enzymes as quickly as possible and with a small amount of sample to increase research efficiency has increased. There is an increasing need to reduce the cell size of the microplate for fluorescence measurement as much as possible and increase the number of cells. Hara There is a limit to the cell size of the sample solution physically, and at present, there is a problem that the measurement can only be performed on a microplate having cells of a millimeter size such as 96 holes.
(2)そのため、蛍光測定を行う際にはマイクロプレートの交換に時間を要し、測定効 率を高めることができず測定に時間を要するという課題を有していた。  (2) Therefore, when performing the fluorescence measurement, it takes time to replace the microplate, and there is a problem that the measurement efficiency cannot be increased and the measurement requires time.
[0004] 本発明は上記従来の課題を解決するもので、蛍光強度等の変化を指標として基板 の蛍光強度等を測定するだけで酵素活性を検出することができ操作性に優れ、また 、微量の検体溶液でも酵素活性の検出を行うことができるとともに検体溶液を注入す るセル等を形成する必要がなく検出部の集積度を飛躍的に高めることができる酵素 活性検出用基板を提供することを目的とする。 [0004] The present invention solves the above-mentioned conventional problems, and it is possible to detect enzyme activity only by measuring the fluorescence intensity or the like of a substrate using a change in the fluorescence intensity or the like as an index. To provide a substrate for enzyme activity detection that can detect enzyme activity even with a sample solution of (1) and can dramatically increase the degree of integration of the detection section without forming a cell or the like into which the sample solution is injected. With the goal.
また、本発明は、微量の検体溶液でも酵素活性の検出を行うことができ、また検出感 度を高くできるとともに測定時間を短縮化することができ作業性を高め測定効率を高 めることができ、さらに種類の異なるペプチド等の各々に蛍光基が結合した酵素活性 検出用基板を用いることで複数の酵素を含む検体溶液の酵素活性を短時間で測定 できる酵素活性の検出方法を提供することを目的とする。  In addition, the present invention can detect enzyme activity even in a small amount of a sample solution, can increase the detection sensitivity, can shorten the measurement time, can improve workability, and increase the measurement efficiency. Provided is a method for detecting an enzyme activity, wherein the enzyme activity of a sample solution containing a plurality of enzymes can be measured in a short time by using an enzyme activity detection substrate in which a fluorescent group is bonded to each of different types of peptides and the like. With the goal.
課題を解決するための手段  Means for solving the problem
[0005] 上記従来の課題を解決するために本発明の酵素活性検出用基板及びそれを用い た酵素活性の検出方法は、以下の構成を有している。 [0005] In order to solve the above-mentioned conventional problems, a substrate for enzyme activity detection and a method for detecting enzyme activity using the same according to the present invention have the following configurations.
本発明の請求項 1に記載の酵素活性検出用基板は、基板と、前記基板に直接結 合した、又は、前記基板に一端が固定化された第 1化合物を介して前記基板に結合 した第 1蛍光基と、前記第 1蛍光基と酵素によって切断されるペプチド結合で結合し た第 2化合物と、を備えた構成を有している。  The substrate for enzyme activity detection according to claim 1 of the present invention comprises a substrate and a substrate directly bound to the substrate, or bound to the substrate via a first compound having one end fixed to the substrate. It has a configuration comprising: one fluorescent group; and a second compound bonded to the first fluorescent group with a peptide bond that is cleaved by an enzyme.
この構成により、以下のような作用が得られる。  With this configuration, the following operation is obtained.
(1)基板に結合した第 1蛍光基と、第 1蛍光基に酵素によって切断されるペプチド結 合で結合した第 2ィ匕合物とを備えているので、酵素と反応させてペプチド結合の切断 が起こると第 2化合物が遊離される。第 2化合物が遊離した第 1蛍光基の蛍光波長又 は所定の波長における蛍光強度は第 2化合物とペプチド結合した第 1蛍光基とは異 なるので、蛍光強度等の変化を指標として酵素活性を検出することができる。 (2)基板に蛍光基が結合しているので、酵素を含む極微量の検体溶液を接触させ基 板の蛍光強度等を測定するだけで酵素活性を検出することができ、酵素活性を検出 できる検出部の集積度を飛躍的に高めることができる。 (1) Since the first fluorescent group bonded to the substrate and the second fluorescent compound bonded to the first fluorescent group by a peptide bond that is cleaved by an enzyme, the first fluorescent group is reacted with the enzyme to form a peptide bond. Upon cleavage, the second compound is released. Since the fluorescence wavelength of the first fluorescent group from which the second compound has been released or the fluorescence intensity at a predetermined wavelength is different from that of the first fluorescent group in which the second compound is peptide-bonded, the enzyme activity is determined based on the change in the fluorescence intensity or the like. Can be detected. (2) Since a fluorescent group is bonded to the substrate, the enzyme activity can be detected simply by contacting a very small amount of a sample solution containing the enzyme and measuring the fluorescence intensity of the substrate, and the enzyme activity can be detected. The degree of integration of the detection unit can be dramatically increased.
(3)酵素を含む極微量の検体溶液を接触させるだけで酵素活性を検出することがで きるので、測定の際に多量の検体溶液を必要とせず、微量の検体溶液でも酵素活性 の検出を行うことができる。  (3) Enzyme activity can be detected simply by contacting a very small amount of sample solution containing the enzyme, so that a large amount of sample solution is not required for measurement, and enzyme activity can be detected even with a small amount of sample solution. It can be carried out.
[0006] ここで、基板としては、ペプチド結合を形成するための縮合反応に用いられるクロ口 ホノレム,ジクロロメタン等のハロゲン化炭化水素類、酢酸ェチル等のエステル類、 N, N—ジメチルホルムアミド,ジメチルスルホキシド等の極性有機溶媒、ジォキサン,テト ラヒドロフラン等のエーテル類、メタノーノレ,エタノール等のアルコール類、ピリジン等 の溶媒に不溶性の合成樹脂 (ポリスチレン等)製やガラス製等で平板状や球面等の 湾曲面状等に形成されたものが用いられる。ミモートブス社製ランタンシリーズ (登録 商標)等の市販の固相有機合成用担体も用いることができる。  [0006] Here, the substrate may be a chlorinated honolem, a halogenated hydrocarbon such as dichloromethane, an ester such as ethyl acetate, N, N-dimethylformamide, or dimethyl used in a condensation reaction for forming a peptide bond. Polar organic solvents such as sulfoxide, ethers such as dioxane and tetrahydrofuran, alcohols such as methanol and ethanol, and synthetic resins (polystyrene, etc.) insoluble in solvents such as pyridine, glass, etc. A sheet formed in a plane or the like is used. A commercially available carrier for solid phase organic synthesis such as Lantern Series (registered trademark) manufactured by Mimotobus Inc. can also be used.
[0007] 第 1化合物や第 2化合物としては、アミノ酸、 2個以上のアミノ酸がペプチド結合した ペプチド等が用いられる。  [0007] As the first compound and the second compound, amino acids, peptides in which two or more amino acids are peptide-bonded, and the like are used.
第 1化合物や第 2化合物は、 C末端のアミノ酸を基板上に固定しペプチドを C末端か ら伸長してレ、く固相法等の通常のペプチド合成法を用いて合成することができる。ま た、 目的とするアミノ酸配列の C末端側から N末端側へ逐次伸長していく逐次伸長法 や、複数の短いペプチド断片を合成しペプチド断片間のカップリングにより伸長させ る断片縮合法等を用いることができる。また、ペプチド合成機を用いて 9一フルォレニ ルメチルォキシカルボニル(Fmoc)アミノ酸や t_ブチルォキシカルボニル(Boc)アミ ノ酸等を導入して合成することもできる。さらに、プロテアーゼを用いてペプチド結合 を生成したり、遺伝子工学を利用して合成することもできる。  The first compound and the second compound can be synthesized by immobilizing a C-terminal amino acid on a substrate and extending the peptide from the C-terminus using a conventional peptide synthesis method such as a solid phase method. In addition, a sequential extension method in which the target amino acid sequence is sequentially extended from the C-terminal side to the N-terminal side, and a fragment condensation method in which a plurality of short peptide fragments are synthesized and extended by coupling between the peptide fragments, etc. Can be used. Alternatively, the peptide can be synthesized using a peptide synthesizer by introducing 91-fluorenylmethyloxycarbonyl (Fmoc) amino acid, t_butyloxycarbonyl (Boc) amino acid, or the like. Furthermore, peptide bonds can be produced using a protease, or can be synthesized using genetic engineering.
[0008] 第 1化合物や第 2化合物においてペプチド結合を形成するための縮合方法として は、公知の方法を用いることができ、例えば、アジド法、酸クロライド法、酸無水物法、 混合酸無水物法、 DCC法、 DCC_アディティブ法、活性エステル法、カルボニルジ イミダゾール法、酸化還元法、ウッドワード試薬 Kを用いる方法等が用いられる。 縮合反応を行う前に、公知の手段により、アミノ酸やペプチド中の反応に関与しな レ、カルボキシノレ基,アミノ基等を保護したり、また反応に関与するカルボキシノレ基,了 ミノ基を活性化することもできる。 [0008] As a condensation method for forming a peptide bond in the first compound or the second compound, a known method can be used, for example, an azide method, an acid chloride method, an acid anhydride method, a mixed acid anhydride. Method, DCC method, DCC_additive method, active ester method, carbonyldiimidazole method, redox method, method using Woodward reagent K, and the like. Before conducting the condensation reaction, do not participate in the reaction in amino acids or peptides by known means. It can protect carboxyl groups, amino groups, etc., and can also activate carboxynole groups and amino groups involved in the reaction.
[0009] 第 1化合物としては、酵素によって切断されないアミド結合,エステル結合,エーテ ル結合,チォエーテル結合,ウレタン結合等によって基板と結合し、検体溶液内の酵 素で切断されないようなアミノ酸やアミノ酸配列のペプチド等の化合物が用いられる。 第 1化合物が酵素によって切断されないようにすることにより、第 1化合物を介して基 板に結合した第 1蛍光基が酵素の作用によって基板から遊離し、蛍光強度等に変化 が生じた第 1蛍光基が検体溶液内を漂うのを防止するためである。  [0009] The first compound may be an amino acid or an amino acid sequence which is bound to the substrate by an amide bond, an ester bond, an ether bond, a thioether bond, a urethane bond or the like which is not cleaved by the enzyme, and which is not cleaved by the enzyme in the sample solution. A compound such as a peptide is used. By preventing the first compound from being cleaved by the enzyme, the first fluorescent group bound to the substrate via the first compound is released from the substrate by the action of the enzyme, and the first fluorescence having a change in fluorescence intensity or the like occurs. This is to prevent the group from drifting in the sample solution.
[0010] 第 1蛍光基としては、第 1蛍光基と第 2化合物とのペプチド結合が酵素によって切断 される前後において、蛍光波長や蛍光強度に変化が生じるものが用いられる。特に、 第 2ィヒ合物とペプチド結合したときは特定波長領域において非蛍光物質であり、ぺ プチド結合が切断されて第 2ィヒ合物が遊離したときに該特定波長領域において蛍光 を発する蛍光基、例えば、 4 メチルクマリル 7_アミド(MCA)、 7—ァミノ _4_カルボ キシメチルクマリン(ACC)、 p—二トロア二リド、 α—ナフチルアミド、 α—ナフチルエス テル等が好適に用いられる。  [0010] As the first fluorescent group, those whose fluorescence wavelength or fluorescence intensity changes before and after the peptide bond between the first fluorescent group and the second compound is cleaved by the enzyme are used. In particular, when a peptide bond with the second compound is a non-fluorescent substance in a specific wavelength region, it emits fluorescence in the specific wavelength region when the peptide bond is cleaved to release the second compound. Fluorescent groups, for example, 4-methylcumaryl 7_amide (MCA), 7-amino_4_carboxymethylcoumarin (ACC), p-nitroalilide, α-naphthylamide, α-naphthyl ester and the like are preferably used.
第 1蛍光基と結合する第 2ィ匕合物のアミノ酸は、酵素によって C末端側のペプチド 結合が選択的に切断されるものが用いられる。これにより、第 1蛍光基と結合していた 第 2化合物を遊離させて第 1蛍光基の特定波長領域における蛍光強度を変化させる ことができるからである。  As the amino acid of the second conjugate which binds to the first fluorescent group, an amino acid in which the peptide bond at the C-terminal side is selectively cleaved by the enzyme is used. Thereby, the second compound bonded to the first fluorescent group can be released to change the fluorescence intensity of the first fluorescent group in a specific wavelength region.
また、第 2化合物を所定の長さ(例えば 15 Α程度)以上のペプチド鎖で形成するこ とにより、個々のアミノ酸に対する基質特異性が高くなぐむしろ比較的長いペプチド 鎖を切断作用に必要とするエラスターゼ等の酵素の検出もできるようにすることがで き、検出できる酵素の種類を増やすことができる。  In addition, by forming the second compound with a peptide chain having a predetermined length (for example, about 15 mm) or more, a relatively long peptide chain is required for the cleavage action, rather than having high substrate specificity for each amino acid. Enzymes such as elastase can also be detected, and the types of enzymes that can be detected can be increased.
[0011] 酵素としては、トリプシン,キモトリブシン, トロンビン,プラスミン,カリクレイン,ゥロキ ナーゼ,エラスターゼ等のセリンプロテアーゼ、ペプシン,カテブシン D, レニン,キモ シン等のァスパラギン酸プロテアーゼ、カルボキシぺプチダーゼ A, B,コラゲナーゼ ,サーモリシン等のメタ口プロテアーゼ、カテブシン B, H, L,カルパイン等のシスティ ンプロテアーゼ等の内部のペプチド結合を切断するエンドぺプチダーゼ、血液凝固 系プロテアーゼ、捕体系プロテアーゼ、ホルモンプロセシング酵素等が用いられる。 [0011] Examples of enzymes include serine proteases such as trypsin, chymotrypsin, thrombin, plasmin, kallikrein, perokinase, and elastase; aspartic proteases such as pepsin, cathepsin D, renin, and chymosin; Endopeptidase that cleaves internal peptide bonds of meta-oral proteases such as thermolysin and cystine proteases such as cathepsin B, H, L, and calpain; blood coagulation A system protease, a capture system protease, a hormone processing enzyme and the like are used.
[0012] 本発明の請求項 2に記載の酵素活性検出用基板は、基板と、前記基板に一端が固 定化された第 3化合物の側鎖に導入され前記第 3化合物を介して前記基板に結合し た、又は、第 4化合物と結合し前記基板に直接結合した第 2蛍光基と、前記第 3化合 物又は前記第 4化合物と酵素によって切断されるペプチド結合で結合した第 5化合 物と、前記第 5化合物に結合し前記第 2蛍光基と蛍光共鳴エネルギー移動がみられ る第 3蛍光基と、を備えた構成を有している。  [0012] The substrate for enzyme activity detection according to claim 2 of the present invention comprises a substrate, and the substrate is introduced into the side chain of a third compound having one end fixed to the substrate, via the third compound. Or a fifth compound bound to the third compound or a peptide bond that is cleaved by the enzyme with the third compound or the second fluorescent group bound to the substrate and bound directly to the substrate. And a third fluorescent group that binds to the fifth compound and has the second fluorescent group and fluorescence resonance energy transfer.
この構成により、請求項 1に記載の作用に加え、以下のような作用が得られる。  With this configuration, the following operation is obtained in addition to the operation described in claim 1.
(1)第 3化合物又は第 4化合物と結合し基板に結合した第 2蛍光基と、第 3化合物又 は第 4化合物と酵素によって切断されるペプチド結合で結合した第 5ィヒ合物と、第 5 化合物に結合し第 2蛍光基と蛍光共鳴エネルギー移動がみられる第 3蛍光基と、を 備えているので、酵素によってペプチド結合が切断されると第 2蛍光基と第 3蛍光基 との距離が離れることにより蛍光共鳴エネルギー移動が起こらなくなり、第 2蛍光基( 又は第 3蛍光基)からの蛍光スペクトルから第 3蛍光基 (又は第 2蛍光基)からの蛍光 スペクトルへのスペクトル変化を酵素活性の測定指標にすることができ、これにより、 蛍光強度等の変化を指標として酵素活性を検出することができる。  (1) a second fluorescent group bound to the substrate by binding to the third or fourth compound, a fifth compound bound to the third or fourth compound by a peptide bond that is cleaved by an enzyme, Since it has a second fluorescent group that binds to the fifth compound and a third fluorescent group that exhibits fluorescence resonance energy transfer, when the peptide bond is cleaved by the enzyme, the second fluorescent group and the third fluorescent group are dissociated. As the distance increases, the fluorescence resonance energy transfer does not occur, and the enzyme changes the spectrum from the fluorescence spectrum from the second fluorescent group (or the third fluorescent group) to the fluorescent spectrum from the third fluorescent group (or the second fluorescent group). It can be used as an activity measurement index, whereby the enzyme activity can be detected using changes in fluorescence intensity or the like as an index.
(2)第 2蛍光基と第 3蛍光基を選択することにより、第 2蛍光基の蛍光波長を可視部 領域に設定することが可能になるので、市販の CCDカメラ等の可視光検出装置を用 レ、て測定することが可能になり汎用性に優れる。  (2) By selecting the second fluorescent group and the third fluorescent group, it becomes possible to set the fluorescent wavelength of the second fluorescent group in the visible region, so that a visible light detection device such as a commercially available CCD camera can be used. It can be used for measurement and has excellent versatility.
(3)第 5ィ匕合物を所定の長さ(例えば 15 A程度)以上のペプチド鎖で形成することに より、個々のアミノ酸に対する基質特異性が高くなぐむしろ比較的長いペプチド鎖を 切断作用に必要とするエラスターゼ等の酵素の検出もできるようにすることができ、検 出できる酵素の種類を増やすことができるとともに検出感度を高めることができる。  (3) By forming the fifth conjugate with a peptide chain having a predetermined length (for example, about 15 A) or more, a relatively long peptide chain having a high substrate specificity for each amino acid is cleaved. In addition, it is possible to detect enzymes such as elastase, which are required for the detection, and it is possible to increase the types of enzymes that can be detected and to increase the detection sensitivity.
[0013] ここで、蛍光共鳴エネルギー移動とは、ある 2つの蛍光化合物が距離的に近い位置 に存在するとき、その 2つの蛍光化合物のうちの一方(ドナーという)の蛍光スぺクトノレ と他方(ァクセプターという)の励起スペクトルとが重なりをもつ場合、ドナーの励起波 長のエネルギーを当てると本来観察されるはずのドナーの蛍光が減衰し、代わりにァ クセプターの蛍光が観察される現象をレ、う。 [0014] ここで、第 2蛍光基や第 3蛍光基としては、蛍光共鳴エネルギー移動が起こるドナー とァクセプターの組合せを用いることができる。例えば、第 2蛍光基(又は第 3蛍光基) の蛍光波長と重なる波長域に吸収帯をもつ原子団である第 3蛍光基(又は第 2蛍光 基)等が用いられる。具体的には、(7—メトキシクマリン一 4_ィル)ァセチル(M〇Ac) ,アントラニロイルベンジル(ABz) , N—メチルアントラニル酸(Nma)等とジニトロフエ ニル(Dnp)の組合せ、 Dabsylと EDANS (5— (2'_アミノエチル)ァミノナフタレン _1—ス ルホン酸)の組合せ、トリプトファン (Trp)と 5—ジメチルァミノ— 1—ナフタレンスルホン 酸(Dns)の組合せ、カルボキシジクロ口フルォレセイン(CDCF)とカルボキシメチル ローダミン(CTMR)の組合せ、カルボキシジクロ口フルォレセイン(CDCF)とカルボ キシ X—ローダミン(CXR)の組合せ、ルシファーイエロー(LY)とカルボキシメチルロ ーダミン(CTMR)の組合せ等が用いられる。 [0013] Here, the fluorescence resonance energy transfer means that when two fluorescent compounds are present at a position close to each other in distance, the fluorescent spectrum of one of the two fluorescent compounds (called a donor) and the other (the donor) If the excitation spectrum overlaps with the excitation spectrum of the donor, the energy of the excitation wavelength of the donor is applied, and the fluorescence of the donor that should be observed is attenuated, and the fluorescence of the axceptor is observed instead. U. Here, as the second fluorescent group and the third fluorescent group, a combination of a donor and an acceptor in which fluorescence resonance energy transfer occurs can be used. For example, a third fluorescent group (or a second fluorescent group) which is an atomic group having an absorption band in a wavelength range overlapping with the fluorescent wavelength of the second fluorescent group (or the third fluorescent group) or the like is used. Specifically, a combination of dinitrophenyl (Dnp) with (7-methoxycoumarin-1-yl) acetyl (M〇Ac), anthraniloylbenzyl (ABz), N-methylanthranilic acid (Nma), etc. And EDANS (5- (2'_aminoethyl) aminonaphthalene_1-sulfonic acid), tryptophan (Trp) and 5-dimethylamino-1-naphthalenesulfonic acid (Dns), carboxydichlorofluorescein (CDCF) ) And carboxymethyl rhodamine (CTMR), a combination of carboxydichlorofluorescein (CDCF) and carboxy X-rhodamine (CXR), a combination of lucifer yellow (LY) and carboxymethyl rhodamine (CTMR), and the like.
これらのドナーゃァクセプターのいずれが第 2蛍光基になっても第 3蛍光基になって も構わない。第 2蛍光基にスぺ外ル変化が生じれば酵素活性の測定指標にすること ができるからである。  Any of these donor receptors may be the second fluorescent group or the third fluorescent group. This is because if the second fluorescent group undergoes an outer change, it can be used as an indicator for measuring the enzyme activity.
[0015] なお、第 2蛍光基が基板に直接結合する場合は、第 2蛍光基は、複数の反応点を 有するトリブトファン (Trp)等が用いられ、第 4蛍光基は、それと蛍光共鳴エネルギー 移動が起こる 5—ジメチルァミノ— 1_ナフタレンスルホン酸(Dns)等が用いられる。第 2 蛍光基は、基板及び第 4化合物と結合する必要があるからである。  [0015] When the second fluorescent group is directly bonded to the substrate, tributophan (Trp) or the like having a plurality of reaction points is used as the second fluorescent group, and the fourth fluorescent group is combined with the fluorescent resonance energy transfer. For example, 5-dimethylamino-1-naphthalenesulfonic acid (Dns) is used. This is because the second fluorescent group needs to bind to the substrate and the fourth compound.
[0016] 第 3化合物や第 4化合物としては、請求項 1で説明した第 1化合物と同様のものな ので、説明を省略する。また、第 5化合物としては、請求項 1で説明した第 2化合物と 同様のものなので、説明を省略する。  [0016] The third compound and the fourth compound are the same as the first compound described in claim 1, and thus the description is omitted. Further, the fifth compound is the same as the second compound described in claim 1, and the description is omitted.
[0017] なお、第 3化合物又は第 4化合物と第 5化合物に各々結合した第 2蛍光基と第 3蛍 光基の結合部間の長さは、 100A以下であることが望ましい。第 2蛍光基と第 3蛍光 基との結合部間の距離が長くなるにつれ蛍光共鳴エネルギー移動が小さくなり蛍光 強度等の変化が小さくなる傾向がみられ、 100Aより長くなるとこの傾向が著しく蛍光 強度の変化が著しく小さくなり感度が低下するからである。  [0017] It is desirable that the length between the bonding portions of the second fluorescent group and the third fluorescent group bonded to the third compound or the fourth compound and the fifth compound, respectively, is 100A or less. As the distance between the bond between the second fluorescent group and the third fluorescent group increases, the fluorescence resonance energy transfer tends to decrease and the change in the fluorescence intensity and the like tends to decrease. Is extremely small, and the sensitivity is lowered.
[0018] 本発明の請求項 3に記載の酵素活性検出用基板は、基板と、前記基板に一端が 固定化された第 6化合物と、前記第 6化合物に導入された第 4蛍光基と、前記第 4蛍 光基に結合した第 7化合物と、前記第 7化合物と酵素によって切断されるペプチド結 合で結合した第 8化合物と、前記第 8化合物に結合し前記第 4蛍光基と蛍光共鳴ェ ネルギー移動がみられる第 5蛍光基と、を備えた構成を有してレ、る。 [0018] The substrate for enzyme activity detection according to claim 3 of the present invention comprises a substrate, a sixth compound having one end immobilized on the substrate, and a fourth fluorescent group introduced into the sixth compound. The fourth firefly The seventh compound bound to the photogroup, the eighth compound bound to the seventh compound by a peptide bond cleaved by an enzyme, and the fourth fluorescent group bound to the eighth compound and fluorescence resonance energy transfer. And a fifth fluorescent group to be observed.
この構成によって、請求項 1又は請求項 2に記載の作用にカ卩え、以下のような作用 が得られる。  With this configuration, the following effects can be obtained by replacing the functions described in claim 1 or 2 with the functions described above.
(1)第 6化合物を所定の長さのペプチド等で形成することにより、基板と酵素作用点( 第 7化合物と第 8化合物との間のペプチド結合)との距離を適正化して、基板の影響 を受けずに酵素を作用させることができ酵素活性をより正確に検出することができ検 出感度を高め、さらに、個々のアミノ酸に対する基質特異性が高くなぐむしろ比較的 長いペプチド鎖を切断作用に必要とするエラスターゼ等の酵素の検出もできるように することができ、検出できる酵素の種類を増やすことができる。  (1) By forming the sixth compound with a peptide or the like of a predetermined length, the distance between the substrate and the enzyme action point (peptide bond between the seventh and eighth compounds) is optimized, Enzyme can be allowed to act without being affected, enzyme activity can be detected more accurately, and detection sensitivity can be increased.In addition, it has the ability to cleave relatively long peptide chains, which does not have high substrate specificity for individual amino acids It is also possible to detect enzymes such as elastase, which are required for the above, and it is possible to increase the types of enzymes that can be detected.
[0019] ここで、第 4蛍光基としては、複数の反応点を有し、第 6化合物の側鎖や末端等に導 入されるトリブトファン (Trp)等が用いられ、第 5蛍光基としては、トリブトファン等と蛍 光共鳴エネルギー移動が起こる 5—ジメチルァミノ _1_ナフタレンスルホン酸(Dns)等 が用いられる。第 4蛍光基は、第 6化合物及び第 7化合物と結合する複数の反応点 が必要だからである。 [0019] Here, as the fourth fluorescent group, tributophan (Trp) or the like having a plurality of reaction points and introduced into a side chain, a terminal, or the like of the sixth compound is used. For example, 5-dimethylamino_1_naphthalenesulfonic acid (Dns), which causes fluorescence resonance energy transfer with tributophan, is used. This is because the fourth fluorescent group requires a plurality of reaction points that bind to the sixth compound and the seventh compound.
[0020] 第 6ィ匕合物としては、請求項 1で説明した第 1化合物と同様のものなので、説明を省 略する。また、第 7化合物、第 8化合物としては、請求項 1で説明した第 2化合物と同 様のものなので説明を省略する。  [0020] The sixth compound is the same as the first compound described in claim 1, and therefore the description is omitted. Further, the seventh and eighth compounds are the same as the second compound described in claim 1, and thus the description is omitted.
[0021] なお、第 7化合物と第 8化合物に各々結合した第 4蛍光基と第 5蛍光基の結合部間 の長さは、請求項 3で説明したのと同様に 100 A以下であることが望ましい。  [0021] The length between the bonding portions of the fourth fluorescent group and the fifth fluorescent group bonded to the seventh compound and the eighth compound, respectively, should be 100 A or less as described in claim 3. Is desirable.
[0022] 本発明の請求項 4に記載の発明は、請求項 2又は 3に記載の酵素活性検出用基板 であって、前記第 5化合物又は前記第 8化合物が、前記第 4化合物又は前記第 7ィ匕 合物と前記酵素によって切断されるペプチド結合で結合しているのに代えて、前記 第 4化合物が前記第 2蛍光基と前記酵素によって切断されるペプチド結合で結合し ている、又は、前記第 7化合物が前記第 4蛍光基と前記酵素によって切断されるぺプ チド結合で結合してレ、る構成を有してレ、る。  [0022] The invention according to claim 4 of the present invention is the substrate for detecting an enzyme activity according to claim 2 or 3, wherein the fifth compound or the eighth compound is the fourth compound or the second compound. The fourth compound is bonded to the second fluorescent group with a peptide bond cleaved by the enzyme, instead of being bonded to the conjugate by a peptide bond cleaved by the enzyme; or The seventh compound has a structure in which the seventh compound is bonded to the fourth fluorescent group by a peptide bond cleaved by the enzyme.
この構成によって、請求項 2又は 3で得られる作用に加え、以下のような作用が得ら れる。 With this configuration, in addition to the function obtained in claim 2 or 3, the following function can be obtained. It is.
(1)第 4化合物又は第 7化合物が第 2蛍光基又は第 4蛍光基と酵素によって切断され るペプチド結合で結合してレ、るので、第 4化合物と第 5化合物等は検体溶液内の酵 素で切断されないようなアミノ酸で配列させることができ設計の自由度を高めることが できる。  (1) Since the fourth compound or the seventh compound is bonded to the second fluorescent group or the fourth fluorescent group by a peptide bond that is cleaved by an enzyme, the fourth compound and the fifth compound are not included in the sample solution. Sequences can be made with amino acids that are not cleaved by the enzyme, and the degree of design freedom can be increased.
[0023] ここで、第 2蛍光基と結合する第 4化合物のアミノ酸や第 4蛍光基と結合する第 7ィ匕 合物のアミノ酸は、酵素によって C末端側のペプチド結合が選択的に切断されるもの カ^レ、られる。これにより、第 2蛍光基や第 4蛍光基と結合していた第 4化合物や第 7 化合物を酵素によって切断して遊離させ、第 5化合物に結合した第 3蛍光基と第 2蛍 光基、第 8化合物に結合した第 5蛍光基と第 4蛍光基との間で蛍光共鳴エネルギー 移動が起こらなレ、ようにして、第 2蛍光基や第 4蛍光基の蛍光強度等を変化させるこ とができる。  Here, the amino acid of the fourth compound that binds to the second fluorescent group and the amino acid of the seventh compound that binds to the fourth fluorescent group are selectively cleaved at the C-terminal peptide bond by the enzyme. Things can be done. As a result, the fourth and seventh compounds bound to the second and fourth fluorescent groups are cleaved by the enzyme and released, and the third and second fluorescent groups bound to the fifth compound, The fluorescence intensity of the second and fourth fluorescent groups is changed in such a manner that no fluorescence resonance energy transfer occurs between the fifth and fourth fluorescent groups bound to the eighth compound. Can be.
[0024] 本発明の請求項 5に記載の発明は、請求項 1乃至 4の内いずれか 1に記載の酵素 活性検出用基板であって、前記第 2化合物、前記第 5化合物、前記第 8化合物の末 端基、及び/又は、前記第 3化合物の側鎖に導入された前記第 2蛍光基が、ァセチ ル化された構成を有してレ、る。  The invention according to claim 5 of the present invention is the substrate for detecting enzyme activity according to any one of claims 1 to 4, wherein the second compound, the fifth compound, and the eighth The second fluorescent group introduced into the terminal group of the compound and / or the side chain of the third compound has an acetylated structure.
この構成により、請求項 1乃至 4の内いずれか 1で得られる作用に加え、以下のよう な作用が得られる。  With this configuration, the following operation is obtained in addition to the operation obtained in any one of claims 1 to 4.
(1)第 2化合物、第 5化合物等の末端基や、第 3化合物の側鎖に導入された第 2蛍光 基がァセチルイ匕されているので、 N末端のペプチド結合に作用するアミノぺプチダー ゼ等のェキソぺプチダーゼの活性を著しく低下させることができ、検体溶液中にこれ らの酵素が含まれている場合でも基質特異性の高いエンドべプチダーゼ等の酵素活 性を正確に検出することができる。  (1) Since the terminal groups of the second compound and the fifth compound and the second fluorescent group introduced into the side chain of the third compound are acetylated, aminopeptidase acting on the N-terminal peptide bond Can significantly reduce the activity of exo-peptidases such as endopeptidase, etc., even if these enzymes are contained in the sample solution. it can.
[0025] ここで、第 2化合物又は第 3化合物のペプチドの末端基や第 3化合物の側鎖に導入 されたトリブトファン等の第 2蛍光基の N末端等をァセチル化するァセチルイ匕剤として は、酢酸無水物, N—ヒドロキシスクシンイミドアセテート等を用いることができる。  [0025] Here, as an acetyl ligating agent for acetylating the N-terminal of the second fluorescent group such as the terminal group of the peptide of the second compound or the third compound or the tributophan introduced into the side chain of the third compound, etc. Acetic anhydride, N-hydroxysuccinimide acetate and the like can be used.
[0026] 本発明の請求項 6に記載の酵素活性の検出方法は、請求項 1乃至 5の内のいずれ 力、 1に記載の酵素活性検出用基板に酵素を含む検体溶液を接触させ反応させるェ 程と、前記酵素活性検出用基板の蛍光測定を行う工程と、を備えた構成を有してい る。 [0026] In the method for detecting an enzyme activity according to claim 6 of the present invention, the substrate for enzyme activity detection according to any one of claims 1 to 5 is contacted with a sample solution containing an enzyme to cause a reaction. The And a step of measuring the fluorescence of the substrate for enzyme activity detection.
この構成により、以下のような作用が得られる。  With this configuration, the following operation is obtained.
(1)酵素を含む極微量の検体溶液を基板に接触させた後、基板の蛍光強度等を測 定するだけで酵素活性を検出することができるので、測定時間を短縮化することがで き作業性を高め測定効率を高めることができる。  (1) After contacting a very small amount of a sample solution containing an enzyme with a substrate, the enzyme activity can be detected simply by measuring the fluorescence intensity or the like of the substrate, so that the measurement time can be reduced. Workability can be increased and measurement efficiency can be increased.
(2)酵素を含む極微量の検体溶液を接触させるだけで酵素活性を検出することがで きるので、測定の際に多量の検体溶液を必要とせず、微量の検体溶液でも酵素活性 の検出を行うことができる。  (2) Enzyme activity can be detected only by contacting a very small amount of a sample solution containing an enzyme.Therefore, a large amount of sample solution is not required for measurement, and enzyme activity can be detected even with a very small amount of sample solution. It can be carried out.
(3)蛍光測定によって酵素活性を検出するので、検出感度と測定精度を高めること ができる。  (3) Since the enzyme activity is detected by fluorescence measurement, detection sensitivity and measurement accuracy can be improved.
(4)種類の異なるペプチド等の各々に蛍光基が結合した酵素活性検出用基板を用 レ、、イメージセンサ等で広範囲の画像解析を行うことにより、複数の酵素を含む検体 溶液の酵素活性を短時間で網羅的に測定し解析することができ測定効率を飛躍的 に高めることができる。  (4) By using a substrate for detecting enzyme activity in which a fluorescent group is bonded to each of different types of peptides, etc., and performing a wide range of image analysis with an image sensor, etc., the enzyme activity of a sample solution containing multiple enzymes can be determined. Measurement and analysis can be performed comprehensively in a short time, and measurement efficiency can be dramatically improved.
[0027] ここで、酵素を含む検体溶液としては、酵素が活性を発現するような pHに調整され たものが用いられる。この pH調整剤としては、 Tris_HCl, Hepes— K〇H等の緩衝 剤を反応バッファ一として添加することができる。また、酵素活性の発現に必要な塩 類や活性保護剤を添加することもできる。  Here, as the sample solution containing the enzyme, a solution adjusted to a pH at which the enzyme exhibits activity is used. As this pH adjuster, a buffer such as Tris_HCl, Hepes-K〇H or the like can be added as a reaction buffer. In addition, salts required for the expression of the enzyme activity and an activity protecting agent can be added.
発明の効果  The invention's effect
[0028] 以上のように、本発明の酵素活性検出用基板及びそれを用いた酵素活性の検出 方法によれば、以下のような有利な効果が得られる。  [0028] As described above, according to the enzyme activity detection substrate and the enzyme activity detection method using the same of the present invention, the following advantageous effects can be obtained.
請求項 1に記載の発明によれば、  According to the invention described in claim 1,
(1)第 2化合物が遊離した第 1蛍光基の蛍光波長又は所定の波長における蛍光強 度は第 2化合物とペプチド結合した第 1蛍光基とは異なるので、蛍光強度等の変化を 指標として酵素活性を検出することができる汎用性に優れた酵素活性検出用基板を 提供すること力 Sできる。  (1) Since the fluorescent wavelength of the first fluorescent group from which the second compound has been released or the fluorescent intensity at a predetermined wavelength is different from that of the first fluorescent group in which the second compound is peptide-bonded, the enzyme is determined using the change in the fluorescent intensity as an index It is possible to provide a substrate for detecting enzyme activity which is excellent in versatility and capable of detecting an activity.
(2)基板に蛍光基が結合しているので、酵素を含む極微量の検体溶液を接触させ基 板の蛍光強度等を測定するだけで酵素活性を検出することができ、検出部の集積度 を飛躍的に高めることができ、検体溶液を注入するためのセル等を形成することなく 第 1蛍光基を結合させただけの平板状等で、例えば縦 2cm横 3cmの大きさの基板上 に 10000個以上の検出部を有する蛍光測定用マイクロプレートを実現することがで きる。 (2) Since a fluorescent group is bonded to the substrate, contact a trace amount of sample solution containing Enzyme activity can be detected simply by measuring the fluorescence intensity of the plate, etc., and the degree of integration of the detection section can be dramatically increased.The first fluorescence can be obtained without forming a cell or the like for injecting the sample solution. It is possible to realize a fluorescence measurement microplate having 10,000 or more detection units on a substrate having a size of 2 cm in length and 3 cm in width, for example, in a flat plate shape or the like having only groups bonded thereto.
(3)酵素を含む極微量の検体溶液を接触させるだけで酵素活性を検出することがで きるので、測定の際に多量の検体溶液を必要とせず、微量の検体溶液でも酵素活性 の検出を行うことができ操作性に優れた酵素活性検出用基板を提供することができ る。  (3) Enzyme activity can be detected simply by contacting a very small amount of sample solution containing the enzyme, so that a large amount of sample solution is not required for measurement, and enzyme activity can be detected even with a small amount of sample solution. It is possible to provide a substrate for enzyme activity detection which can be performed and has excellent operability.
[0029] 請求項 2に記載の発明によれば、請求項 1の効果に加え、  [0029] According to the invention described in claim 2, in addition to the effect of claim 1,
(1)酵素によってペプチド結合が切断されると第 2蛍光基と第 3蛍光基との距離が離 れることにより蛍光共鳴エネルギー移動が起こらなくなり、第 2蛍光基 (又は第 3蛍光 基)からの蛍光スペクトルから第 3蛍光基(又は第 2蛍光基)からの蛍光スペクトルへの スぺ外ル変化を酵素活性の測定指標にすることができ、これにより、蛍光強度等の 変化を指標として酵素活性を検出することができる汎用性に優れた酵素活性検出用 基板を提供することができる。  (1) When the peptide bond is cleaved by the enzyme, the distance between the second fluorescent group and the third fluorescent group is increased, so that the fluorescence resonance energy transfer does not occur, and the transfer from the second fluorescent group (or the third fluorescent group) occurs. The change in the spectrum from the fluorescence spectrum to the fluorescence spectrum from the third fluorescent group (or the second fluorescent group) can be used as an indicator of the enzyme activity. A substrate for enzyme activity detection which is excellent in versatility and can be detected.
(2)第 2蛍光基と第 3蛍光基を選択することにより、第 2蛍光基の蛍光波長を可視部 領域に設定することが可能になるので、市販の CCDカメラ等の可視光検出装置を用 レ、て測定することが可能になり汎用性に優れた酵素活性検出用基板を提供すること ができる。  (2) By selecting the second fluorescent group and the third fluorescent group, it becomes possible to set the fluorescent wavelength of the second fluorescent group in the visible region, so that a visible light detection device such as a commercially available CCD camera can be used. This makes it possible to provide a substrate for detecting enzyme activity which is excellent in versatility.
(3)第 5ィ匕合物を所定の長さ(例えば 15 A程度)以上のペプチド鎖で形成することに より、個々のアミノ酸に対する基質特異性が高くなぐむしろ比較的長いペプチド鎖を 切断作用に必要とするエラスターゼ等の酵素の検出もできるようにすることができ、検 出できる酵素の種類を増やすことができるとともに検出感度を高めることができる酵素 活性検出用基板を提供することができる。  (3) By forming the fifth conjugate with a peptide chain having a predetermined length (for example, about 15 A) or more, a relatively long peptide chain having a high substrate specificity for each amino acid is cleaved. In addition, it is possible to provide an enzyme activity detection substrate that can detect enzymes such as elastase, which is required for the above, and can increase the types of enzymes that can be detected and can increase the detection sensitivity.
[0030] 請求項 3の発明によれば、請求項 1又は 2の効果に加え、  [0030] According to the invention of claim 3, in addition to the effect of claim 1 or 2,
(1)基板と酵素作用点との距離を適正化して、基板の影響を受けずに酵素を作用さ せることができ酵素活性をより正確に検出することができ検出感度を高め、さらに、個 々のアミノ酸に対する基質特異性が高くなぐむしろ比較的長いペプチド鎖を切断作 用に必要とするエラスターゼ等の酵素の検出もできるようにすることができ、検出でき る酵素の種類を増やすことができる酵素活性検出用基板を提供することができる。 (1) By optimizing the distance between the substrate and the enzyme action point, the enzyme can act without being affected by the substrate, the enzyme activity can be detected more accurately, and the detection sensitivity can be increased. Rather than having high substrate specificity for each amino acid, it is also possible to detect enzymes such as elastase that require a relatively long peptide chain for cleavage, thereby increasing the types of enzymes that can be detected. A substrate for detecting enzyme activity can be provided.
[0031] 請求項 4に記載の発明によれば、請求項 2又は 3の効果に加え、  According to the invention described in claim 4, in addition to the effect of claim 2 or 3,
(1)第 4化合物と第 5ィヒ合物等は酵素特異性を有さないように配列させることができ 設計の自由度を高めることができる酵素活性検出用基板を提供することができる。  (1) It is possible to provide a substrate for detecting enzyme activity, in which the fourth compound and the fifth compound can be arranged so as not to have enzyme specificity and the degree of freedom in design can be increased.
[0032] 請求項 5に記載の発明によれば、請求項 1乃至 4の内いずれか 1の効果に加え、  [0032] According to the invention described in claim 5, in addition to the effect of any one of claims 1 to 4,
(1) N末端のペプチド結合に作用するアミノぺプチダーゼ等のェキソぺプチダーゼ の活性を著しく低下させることができ、検体溶液中にこれらの酵素が含まれている場 合でも基質特異性の高いエンドべプチダーゼ等の酵素活性を正確に検出することが できる検出精度に優れた酵素活性検出用基板を提供することができる。  (1) The activity of exopeptidases such as aminopeptidase that acts on the N-terminal peptide bond can be significantly reduced, and even if these enzymes are contained in the sample solution, an endo-substrate with high substrate specificity can be used. It is possible to provide a substrate for detecting an enzyme activity, which is capable of accurately detecting the activity of an enzyme such as a peptidase and has excellent detection accuracy.
[0033] 請求項 6に記載の発明によれば、  [0033] According to the invention described in claim 6,
(1)酵素を含む極微量の検体溶液を基板に接触させた後、基板の蛍光強度等を測 定するだけで酵素活性を検出することができるので、測定時間を短縮化することがで き作業性を高め測定効率を高めることができる酵素活性の検出方法を提供すること ができる。  (1) After contacting a very small amount of a sample solution containing an enzyme with a substrate, the enzyme activity can be detected simply by measuring the fluorescence intensity or the like of the substrate, so that the measurement time can be reduced. It is possible to provide a method for detecting an enzyme activity that can enhance workability and enhance measurement efficiency.
(2)酵素を含む極微量の検体溶液を接触させるだけで酵素活性を検出することがで きるので、測定の際に多量の検体溶液を必要とせず、微量の検体溶液でも酵素活性 の検出を行うことができる酵素活性の検出方法を提供することができる。  (2) Enzyme activity can be detected only by contacting a very small amount of a sample solution containing an enzyme.Therefore, a large amount of sample solution is not required for measurement, and enzyme activity can be detected even with a very small amount of sample solution. A method for detecting enzyme activity that can be performed can be provided.
(3)蛍光測定によって酵素活性を検出するので、検出感度の高い酵素活性の検出 方法を提供することができる。  (3) Since the enzyme activity is detected by fluorescence measurement, a method for detecting the enzyme activity with high detection sensitivity can be provided.
(4)種類の異なるペプチド等の各々に蛍光基が結合した酵素活性検出用基板を用 レ、、イメージセンサ等で広範囲の画像解析を行うことにより、複数の酵素を含む検体 溶液の酵素活性を短時間で網羅的に測定し解析することができ測定効率を飛躍的 に高めることができる酵素活性の検出方法を提供することができる。  (4) By using a substrate for detecting enzyme activity in which a fluorescent group is bonded to each of different types of peptides, etc., and performing a wide range of image analysis with an image sensor, etc., the enzyme activity of a sample solution containing multiple enzymes can be determined. It is possible to provide a method for detecting an enzyme activity, which can comprehensively measure and analyze in a short time and can dramatically improve the measurement efficiency.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]実施の形態 1における酵素活性検出用基板の酵素活性検出原理を示す模式 図 [図 2]実施の形態 2における酵素活性検出用基板の酵素活性検出原理を示す模式 図 FIG. 1 is a schematic diagram showing the principle of detecting enzyme activity of a substrate for detecting enzyme activity in Embodiment 1. FIG. 2 is a schematic view showing the principle of detecting enzyme activity of a substrate for detecting enzyme activity in Embodiment 2.
[図 3]実施の形態 3における酵素活性検出用基板の模式図  FIG. 3 is a schematic diagram of a substrate for detecting enzyme activity in Embodiment 3.
[図 4]実施の形態 4における酵素活性検出用基板の模式図  FIG. 4 is a schematic diagram of an enzyme activity detection substrate according to a fourth embodiment.
符号の説明  Explanation of symbols
[0035] 1 , 10, 20, 30 酵素活性検出用基板 [0035] 1, 10, 20, 30 Enzyme activity detection substrate
2 基板  2 Board
3, 6 第 1蛍光基  3, 6 First fluorescent group
4 第 2化合物  4 Second compound
5 酵素  5 enzymes
11 第 3化合物  11 Third compound
12, 15 第 2蛍光基  12, 15 Second fluorescent group
13 第 5化合物  13 Fifth compound
14 第 3蛍光基  14 Third fluorescent group
21 第 4化合物  21 4th compound
31 第 6化合物  31 6th compound
32 第 4蛍光基  32 4th fluorescent group
33 第 7化合物  33 7th compound
34 第 8化合物  34 8th compound
35 第 5蛍光基  35 Fifth fluorescent group
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(実施の形態 1)  (Embodiment 1)
図 1は本発明の実施の形態 1における酵素活性検出用基板の酵素活性検出原理 を示す模式図である。  FIG. 1 is a schematic diagram showing the principle of detecting enzyme activity of the substrate for detecting enzyme activity according to Embodiment 1 of the present invention.
図中、 1は実施の形態 1における酵素活性検出用基板、 2はハロゲンィ匕炭化水素類 ,エステル類等の溶媒に不溶性の合成樹脂 (ポリスチレン等)製やガラス製等で平板 状や球面等の湾曲面状等に形成された基板、 3は基板 2にペプチド結合等で直接結 合し後述する第 2化合物 4とのペプチド結合が後述する酵素 5によって切断される前 後において、蛍光波長や蛍光強度に変化が生じる蛍光基の 1種である 4一メチルクマ リル- 7-アミド(MCA)等の第 1蛍光基、 4は第 1蛍光基 3と後述する酵素 5によって 切断されるペプチド結合で結合したアミノ酸,ペプチド等の第 2化合物、 5は第 1蛍光 基 3と第 2ィ匕合物 4とのペプチド結合を選択的に切断するセリンプロテアーゼ等の基 質特異性を有する酵素、 6は酵素 5によって選択的に第 2ィヒ合物 4が遊離されたこと により蛍光波長等が変化した第 1蛍光基である。 In the figure, 1 is a substrate for detecting the enzyme activity in Embodiment 1, 2 is a synthetic resin (polystyrene or the like) insoluble in solvents such as halogenated hydrocarbons and esters, glass, etc. Substrate 3 formed into a curved surface, etc., 3 is directly connected to substrate 2 by peptide bonds, etc. Before and after the peptide bond with the second compound 4 described below is cleaved by the enzyme 5 described below, one of the fluorescent groups that changes in the fluorescence wavelength and the fluorescence intensity, ie, 4-methylcoumaryl-7-amide ( (MCA) or the like, 4 is a second compound such as an amino acid or a peptide linked to the first fluorescent group 3 by a peptide bond cleaved by an enzyme 5 described below, and 5 is the first fluorescent group 3 and the second fluorescent group. An enzyme having a substrate specificity such as a serine protease that selectively cleaves a peptide bond with the conjugate 4, and 6 is a fluorescent wavelength due to the selective release of the second compound 4 by the enzyme 5. Is the changed first fluorescent group.
[0037] 以上のように構成された酵素活性検出用基板 1は、アミノ酸の C末端を基板 2上に 固定しペプチドを C末端力 伸長してレ、く固相法等の通常のペプチド合成法、 目的と するアミノ酸配列の C末端側から N末端側へ逐次伸長していく逐次伸長法、複数の 短いペプチド断片を合成しペプチド断片間のカップリングにより伸長させる断片縮合 法、ペプチド合成機を用いて Fmoc法、 Boc法等を導入して合成する方法等を用い て合成すること力できる。  [0037] The substrate 1 for enzyme activity detection configured as described above is prepared by fixing a C-terminal of an amino acid on the substrate 2 and elongating the peptide at the C-terminal, using a conventional peptide synthesis method such as a solid phase method. Using a sequential extension method in which the desired amino acid sequence is sequentially extended from the C-terminal side to the N-terminal side, a fragment condensation method in which multiple short peptide fragments are synthesized and extended by coupling between peptide fragments, and a peptide synthesizer. It can be synthesized using a method such as Fmoc method, Boc method, etc.
[0038] 以上のように構成された実施の形態 1の酵素活性検出用基板について、以下その 酵素活性の検出原理を説明する。  The principle of detecting the enzyme activity of the substrate for enzyme activity detection of Embodiment 1 configured as described above will be described below.
図 1 (a)に示す酵素活性検出用基板 1の 4一メチルクマリル一 7-アミド (MCA)等の第 1蛍光基 3は特定波長領域において非蛍光物質であり蛍光を示さない。この酵素活 性検出用基板 1に酵素 5を含む検体溶液を接触させ反応させると、基質特異性を有 するセリンプロテアーゼ等の酵素 5は、第 1蛍光基 3と第 2化合物 4との間のペプチド 結合を選択的に切断する(図 1 (b)参照)。  The first fluorescent group 3 such as 4-methylcoumaryl-17-amide (MCA) of the enzyme activity detection substrate 1 shown in FIG. 1 (a) is a non-fluorescent substance and does not show fluorescence in a specific wavelength region. When a sample solution containing the enzyme 5 is brought into contact with the enzyme activity detection substrate 1 and allowed to react, the enzyme 5 such as a serine protease having substrate specificity is formed between the first fluorescent group 3 and the second compound 4. It selectively cleaves peptide bonds (see Figure 1 (b)).
第 2ィ匕合物 4が遊離した第 1蛍光基 6は 7-アミノーメチルクマリン (AMC)等の蛍光物 質となり、蛍光波長又は該特定波長領域における蛍光強度は、第 2化合物 4とぺプ チド結合した第 1蛍光基 3とは異なるので、蛍光強度等の変化を指標として酵素活性 を検出することができる(図 1 (c)参照)。  The first fluorescent group 6 from which the second conjugated product 4 is released becomes a fluorescent substance such as 7-amino-methyl coumarin (AMC), and the fluorescent wavelength or the fluorescent intensity in the specific wavelength region is the same as that of the second compound 4. Since it is different from the peptide-bonded first fluorescent group 3, the enzyme activity can be detected using the change in fluorescence intensity or the like as an index (see FIG. 1 (c)).
[0039] 以上のように、実施の形態 1における酵素活性検出用基板は構成されているので、 以下のような作用が得られる。 As described above, since the enzyme activity detecting substrate according to Embodiment 1 is configured, the following effects can be obtained.
(1)基板に蛍光基が結合しているので、これを検出部として酵素を含む極微量の検 体溶液を接触させ所定時間後における基板の蛍光強度等を測定するだけで、酵素 の作用を受けて修飾された分子の数に相当する蛍光強度等の変化を指標として酵 素の量や酵素の種類等による酵素活性を検出することができ、基板に検体溶液を注 入するセル等を形成する必要がなく検出部を微小化できるので、基板において検出 部の集積度を飛躍的に高めることができる。 (1) Since a fluorescent group is bonded to the substrate, only a very small amount of a sample solution containing the enzyme is brought into contact with the substrate as a detection unit, and the fluorescence intensity of the substrate after a predetermined time is measured. A cell into which a sample solution is injected onto a substrate can detect enzyme activity depending on the amount of enzyme, the type of enzyme, etc., using the change in fluorescence intensity or the like corresponding to the number of molecules modified by the action of the enzyme as an index. Since the detection unit can be miniaturized without the necessity of forming such elements, the degree of integration of the detection unit on the substrate can be dramatically increased.
(2)酵素を含む極微量の検体溶液を接触させるだけで酵素活性を検出することがで きるので、測定の際に多量の検体溶液を必要とせず、微量の検体溶液でも酵素活性 の検出を行うことができる。  (2) Enzyme activity can be detected only by contacting a very small amount of a sample solution containing an enzyme.Therefore, a large amount of sample solution is not required for measurement, and enzyme activity can be detected even with a very small amount of sample solution. It can be carried out.
[0040] なお、本実施の形態においては、第 1蛍光基 3が基板 2に直接結合された場合に ついて説明したが、基板 2に結合したアミノ酸,ペプチド等の第 1化合物に第 1蛍光 基 3を結合させ、第 1蛍光基 3を第 1化合物を介して基板 2に結合させる場合もある。 この場合も、実施の形態 1で説明したのと同様に、第 1蛍光基 3には酵素 5によって切 断されるペプチド結合で第 2化合物 4を結合させる。これにより、基板 2と酵素作用点 (第 1蛍光基 3と第 2化合物 4との間のペプチド結合)との距離を適正化して、基板の 影響を受けずに酵素を作用させることができ酵素活性をより正確に検出することがで きるという作用が得られる。なお、この場合、第 1化合物は検体溶液内の酵素で切断 されないような配列のペプチド等で合成する。第 1化合物が酵素によって切断されな レ、ようにすることにより、第 1化合物を介して基板 2に結合した第 1蛍光基 3が酵素の 作用によって基板から遊離し、酵素を接触させた前後において蛍光強度等に変化が 生じた第 1蛍光基 3が検体溶液内を漂い、第 1蛍光基 3の基板 2への結合箇所と、そ の箇所における蛍光強度等の変化との関係が不明確になるのを防止するためである 。これにより、 1枚の基板上に種類の異なるアミノ酸配列を有するペプチド等を複数箇 所に結合させた酵素活性検出用基板に検体溶液を接触させれば、基板の蛍光強度 等を測定するだけで酵素の種類によって異なる蛍光強度等のパターンが得られ、ァ ミノ酸配列によって特徴付けられる酵素活性を検出することができる。  In this embodiment, the case where the first fluorescent group 3 is directly bonded to the substrate 2 has been described. However, the first compound such as an amino acid or a peptide bonded to the substrate 2 has the first fluorescent group 3 attached thereto. In some cases, the first fluorescent group 3 is bonded to the substrate 2 via the first compound. Also in this case, the second compound 4 is bound to the first fluorescent group 3 by a peptide bond cleaved by the enzyme 5, as described in the first embodiment. This makes it possible to optimize the distance between the substrate 2 and the enzyme action point (the peptide bond between the first fluorescent group 3 and the second compound 4), thereby allowing the enzyme to act without being affected by the substrate. The effect is obtained that the activity can be detected more accurately. In this case, the first compound is synthesized with a peptide or the like having a sequence that is not cleaved by the enzyme in the sample solution. By preventing the first compound from being cleaved by the enzyme, the first fluorescent group 3 bonded to the substrate 2 via the first compound is released from the substrate by the action of the enzyme, and before and after contacting the enzyme. The first fluorescent group 3 in which the fluorescence intensity or the like has changed drifts in the sample solution, and the relationship between the binding location of the first fluorescent group 3 to the substrate 2 and the change in the fluorescence intensity or the like at that location is unclear. This is to prevent the As a result, if the sample solution is brought into contact with a substrate for enzyme activity detection in which peptides having different types of amino acid sequences are bound to a plurality of sites on a single substrate, the fluorescence intensity of the substrate can be simply measured. Patterns such as fluorescence intensity that differ depending on the type of enzyme are obtained, and enzyme activity characterized by the amino acid sequence can be detected.
[0041] (実施の形態 2)  (Embodiment 2)
図 2は本発明の実施の形態 2における酵素活性検出用基板の酵素活性検出原理 を示す模式図である。なお、実施の形態 1と同様のものは、同じ符号を付して説明を 省略する。 図中、 10は実施の形態 2における酵素活性検出用基板、 11は基板 2に一端が固 定化されたアミノ酸,ペプチド等の第 3化合物、 12は第 3ィ匕合物 11の側鎖に導入さ れ後述する第 3蛍光基 14と蛍光共鳴エネルギー移動がみられる(7—メトキシクマリン _4_ィル)ァセチル(M〇Ac) ,トリプトファン (Trp)等の第 2蛍光基、 13は第 3化合物 11と酵素 5によって切断されるペプチド結合で結合したアミノ酸,ペプチド等の第 5化 合物、 14は第 5化合物 13に結合したジニトロフヱニル(Dnp), 5—ジメチルァミノ— 1— ナフタレンスルホン酸 (Dns)等の第 3蛍光基である。第 2蛍光基 12と第 3蛍光基 14 は互いに蛍光共鳴エネルギー移動がみられる距離( 100 A以下)で結合してレ、る。 1 5は第 3蛍光基 14が結合した第 5ィ匕合物 13が酵素 5によって選択的に遊離されたこ とにより蛍光波長等が変化した第 2蛍光基である。 FIG. 2 is a schematic diagram illustrating the principle of detecting enzyme activity of the substrate for detecting enzyme activity according to Embodiment 2 of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the figure, reference numeral 10 denotes a substrate for detecting an enzyme activity in Embodiment 2, 11 denotes a third compound such as an amino acid or peptide having one end immobilized on the substrate 2, and 12 denotes a side chain of the third conjugate 11. Introduced third fluorescent group 14 described below and fluorescence resonance energy transfer can be seen. Second fluorescent groups such as (7-methoxycoumarin_4_yl) acetyl (M〇Ac) and tryptophan (Trp), and 13 is the third fluorescent group Fifth compound such as amino acid and peptide linked by compound 11 and peptide bond cleaved by enzyme 5, and 14 is dinitrophenyl (Dnp), 5-dimethylamino-1-naphthalenesulfonic acid (Dns ) Is a third fluorescent group. The second fluorescent group 12 and the third fluorescent group 14 are bonded to each other at a distance (100 A or less) at which fluorescence resonance energy transfer is observed. Reference numeral 15 denotes a second fluorescent group whose fluorescence wavelength and the like have been changed by the selective release of the fifth conjugate 13 to which the third fluorescent group 14 is bonded by the enzyme 5.
[0042] 以上のように構成された実施の形態 2の酵素活性検出用基板について、以下その 酵素活性の検出原理を説明する。 The principle of detecting the enzyme activity of the substrate for enzyme activity detection of Embodiment 2 configured as described above will be described below.
図 2 (a)に示す酵素活性検出用基板 10の第 2蛍光基 12と第 3蛍光基 14は互いに蛍 光共鳴エネルギー移動がみられる距離で結合しているので、第 2蛍光基 12の蛍光ス ベクトルと第 3蛍光基 14の励起スペクトルとが重なりをもち、第 2蛍光基 12の励起波 長のエネルギーを当てると本来観察されるはずの第 2蛍光基 12の蛍光が減衰し、代 わりに第 3蛍光基 14の蛍光が観察される。  Since the second fluorescent group 12 and the third fluorescent group 14 of the enzyme activity detection substrate 10 shown in FIG. 2A are bonded to each other at a distance where fluorescence resonance energy transfer can be seen, the fluorescence of the second fluorescent group 12 The vector and the excitation spectrum of the third fluorescent group 14 overlap, and when the energy of the excitation wavelength of the second fluorescent group 12 is applied, the fluorescence of the second fluorescent group 12 that should be observed is attenuated, and The fluorescence of the third fluorescent group 14 is observed.
酵素活性検出用基板 10に酵素 5を含む検体溶液を接触させ反応させると、基質特 異性を有する酵素 5は、第 3化合物 11と第 5化合物 13との間のペプチド結合を切断 する(図 2 (b)参照)。  When a sample solution containing the enzyme 5 is brought into contact with the substrate 10 for enzyme activity detection and allowed to react, the enzyme 5 having substrate specificity cleaves the peptide bond between the third compound 11 and the fifth compound 13 (FIG. 2). (b)).
第 3蛍光基 14が結合した第 5ィヒ合物 13が遊離すると、第 3蛍光基 14と第 2蛍光基 12 との間で蛍光共鳴エネルギー移動がみられなくなるので、第 2蛍光基 12の励起波長 のエネルギーを当てると本来観察されるはずの第 2蛍光基 12の蛍光波長が観察され るようになり、酵素 5の反応前の蛍光波長とは異なるため、蛍光強度等の変化を指標 として酵素活性を検出することができる(図 2 (c)参照)。  When the fifth fluorescent compound 13 to which the third fluorescent group 14 is bonded is released, no fluorescence resonance energy transfer is observed between the third fluorescent group 14 and the second fluorescent group 12, so that the second fluorescent group 12 When the energy of the excitation wavelength is applied, the fluorescence wavelength of the second fluorescent group 12, which should have been observed, is observed, and is different from the fluorescence wavelength before the reaction of the enzyme 5. Enzyme activity can be detected (see Fig. 2 (c)).
[0043] 以上のように実施の形態 2における酵素活性検出用基板は構成されているので、 実施の形態 1に記載の作用にカ卩え、以下のような作用が得られる。 As described above, since the substrate for detecting an enzyme activity in the second embodiment is configured, the following operations can be obtained by adding the functions described in the first embodiment.
(1)第 2蛍光基と第 3蛍光基を選択することにより、第 2蛍光基の蛍光波長を可視部 領域に設定することが可能になるので、市販の CCDカメラ等の可視光検出装置を用 レ、て測定することが可能になり汎用性に優れる。 (1) By selecting the second fluorescent group and the third fluorescent group, the fluorescent wavelength of the second fluorescent group is Since it is possible to set the area, it is possible to use a visible light detection device such as a commercially available CCD camera to perform measurement, which is excellent in versatility.
(2)第 5ィ匕合物を所定の長さ(例えば 15 A程度)以上のペプチド鎖で形成することに より、個々のアミノ酸に対する基質特異性が高くなぐむしろ比較的長いペプチド鎖を 切断作用に必要とするエラスターゼ等の酵素の検出もできるようにすることができ、検 出できる酵素の種類を増やすことができるとともに検出感度を高めることができる。  (2) By forming the fifth conjugate with a peptide chain having a predetermined length (for example, about 15 A) or more, a relatively long peptide chain having a high substrate specificity for each amino acid is cleaved. In addition, it is possible to detect enzymes such as elastase, which are required for the detection, and it is possible to increase the types of enzymes that can be detected and to increase the detection sensitivity.
[0044] (実施の形態 3)  (Embodiment 3)
図 3は本発明の実施の形態 3における酵素活性検出用基板の模式図である。なお 、実施の形態 2と同様のものは、同じ符号を付して説明を省略する。  FIG. 3 is a schematic view of a substrate for detecting enzyme activity according to Embodiment 3 of the present invention. Note that the same components as those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
図中、 20は実施の形態 3における酵素活性検出用基板、 21は基板 2と直接結合 する複数の反応点を有するトリブトファン (Τι·ρ)等の第 2蛍光基 12が側鎖若しくは末 端等に導入されたアミノ酸,ペプチド等の第 4化合物である。第 5化合物 13は第 4ィ匕 合物 21と酵素によって切断されるペプチド結合で結合している。  In the figure, reference numeral 20 denotes a substrate for detecting an enzyme activity in Embodiment 3, and reference numeral 21 denotes a side chain or terminal of a second fluorescent group 12 such as tributophan (Τιρ) having a plurality of reaction points directly bonded to the substrate 2. This is the fourth compound such as amino acids and peptides introduced into the product. The fifth compound 13 is bonded to the fourth compound 21 by a peptide bond that is cleaved by the enzyme.
実施の形態 3における酵素活性検出用基板が実施の形態 2と異なる点は、基板 2と 直接結合した第 2蛍光基 12が、第 4化合物 21と結合している点である。  The difference between the substrate for enzyme activity detection in the third embodiment and the second embodiment is that the second fluorescent group 12 directly bonded to the substrate 2 is bonded to the fourth compound 21.
以上のように構成された実施の形態 3の酵素活性検出用基板における酵素活性の 検出原理は、実施の形態 2で説明したものと同様のものなので、説明を省略する。  The principle of detecting the enzyme activity on the enzyme activity detecting substrate according to the third embodiment configured as described above is the same as that described in the second embodiment, and a description thereof will be omitted.
[0045] 以上のように実施の形態 3における酵素活性検出用基板は構成されているので、 実施の形態 2に記載の作用にカ卩え、基板に第 2蛍光基を固定した後、通常のぺプチ ド合成法を用いて第 4化合物や第 5ィ匕合物を伸長させていくだけで合成できるので、 酵素活性検出用基板の合成の操作性に優れるとともに製品得率を高めることができ るという作用が得られる。  [0045] As described above, the substrate for detecting enzyme activity in Embodiment 3 is configured. Therefore, after the operation described in Embodiment 2 is performed and the second fluorescent group is immobilized on the substrate, the normal operation is performed. It can be synthesized simply by elongating the fourth compound or the fifth compound using the peptide synthesis method, so that the operability of synthesizing the substrate for enzyme activity detection is excellent and the product yield can be increased. Is obtained.
[0046] なお、本実施の形態においては、第 5ィ匕合物 13が第 4化合物 21と酵素によって切 断されるペプチド結合で結合している場合について説明したが、第 5化合物 13と第 4 化合物 21は酵素によって切断されないアミノ酸配列にして、第 2蛍光基 12と第 4ィ匕 合物 21とが、酵素によって切断されるペプチド結合で結合するようにする場合もある 。これにより、第 4化合物や第 5ィヒ合物を構成するアミノ酸の配列の自由度を高め設 計を容易にすることができるという作用が得られる。 [0047] (実施の形態 4) In the present embodiment, the case where the fifth compound 13 is bonded to the fourth compound 21 by a peptide bond that is cleaved by an enzyme has been described. 4 In some cases, the compound 21 may have an amino acid sequence that is not cleaved by an enzyme, so that the second fluorescent group 12 and the fourth conjugate 21 are bound by a peptide bond that is cleaved by the enzyme. As a result, an effect is obtained that the degree of freedom of the amino acid sequence constituting the fourth compound and the fifth compound can be increased and the design can be facilitated. (Embodiment 4)
図 4は本発明の実施の形態 4における酵素活性検出用基板の模式図である。なお 、実施の形態 1と同様のものは、同じ符号を付して説明を省略する。  FIG. 4 is a schematic view of a substrate for detecting an enzyme activity according to Embodiment 4 of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
図中、 30は実施の形態 4における酵素活性検出用基板、 31は一端が基板 2と結合 したアミノ酸,ペプチド等の第 6化合物、 32はひとつの反応点が第 6ィ匕合物 31と結合 したトリブトファン (Τι·ρ)等の第 4蛍光基、 33は第 4蛍光基 32の別の反応点が結合し たアミノ酸,ペプチド等の第 7化合物、 34は第 7ィ匕合物 33と酵素によって切断される ペプチド結合で結合したアミノ酸,ペプチド等の第 8化合物、 35は第 8ィ匕合物 34と結 合し第 4蛍光基 32と蛍光共鳴エネルギー移動がみられる 5—ジメチルアミノー 1一ナフ タレンスルホン酸 (Dns)等の第 5蛍光基である。  In the figure, 30 is a substrate for detecting enzyme activity in Embodiment 4, 31 is a sixth compound such as an amino acid or peptide having one end bonded to the substrate 2, and 32 is one reaction site bonded to the sixth conjugate 31. A fourth fluorescent group such as tributophan (Τι · ρ), 33 is a seventh compound such as an amino acid or a peptide to which another reactive site of the fourth fluorescent group 32 is bonded, and 34 is a seventh fluorescent compound 33 and an enzyme. The eighth compound 35, such as an amino acid or a peptide, bound by a peptide bond is bound by the eighth bond 34, and fluorescence resonance energy transfer is observed with the fourth fluorescent group 32. 5-Dimethylamino-1 It is a fifth fluorescent group such as naphthalenesulfonic acid (Dns).
以上のように構成された実施の形態 4の酵素活性検出用基板における酵素活性の 検出原理は、実施の形態 2で説明したものと同様のものなので、説明を省略する。  The principle of detecting the enzyme activity in the enzyme activity detecting substrate according to the fourth embodiment configured as described above is the same as that described in the second embodiment, and a description thereof will be omitted.
[0048] 以上のように実施の形態 4における酵素活性検出用基板は構成されているので、 実施の形態 2に記載の作用にカ卩え、以下のような作用が得られる。  [0048] As described above, the substrate for detecting an enzyme activity in Embodiment 4 is configured, and thus the following operation is obtained by adding the function described in Embodiment 2 to the substrate.
(1)第 6化合物 31を所定の長さのペプチド等で形成することにより、基板 2と酵素作 用点 (第 7ィ匕合物 33と第 8ィ匕合物 34との間のペプチド結合)との距離を適正化して、 基板 2の影響を受けずに酵素を作用させることができ酵素活性をより正確に検出する ことができ検出感度を高め、さらに、個々のアミノ酸に対する基質特異性が高くなぐ むしろ比較的長いペプチド鎖を切断作用に必要とするエラスターゼ等の酵素の検出 もできるようにすることができ、検出できる酵素の種類を増やすことができる。  (1) By forming the sixth compound 31 with a peptide or the like having a predetermined length, the substrate 2 and the enzyme action point (the peptide bond between the seventh and eighth conjugates 33 and 34) ), The enzyme can act without being affected by the substrate 2, the enzyme activity can be detected more accurately, the detection sensitivity can be increased, and the substrate specificity for each amino acid can be improved. It is also possible to detect enzymes such as elastase that require a relatively long peptide chain for the cleavage action, which can increase the number of detectable enzymes.
[0049] なお、本実施の形態においては、第 8ィ匕合物 34が第 7ィ匕合物 33と酵素によって切 断されるペプチド結合で結合している場合について説明したが、第 8化合物 34と第 7 化合物 33は酵素によって切断されないアミノ酸配列にして、第 4蛍光基 32と第 7ィ匕 合物 33とが、酵素によって切断されるペプチド結合で結合するようにする場合もある 。これにより、第 7ィヒ合物や第 8ィヒ合物を構成するアミノ酸の配列の自由度を高め設 計を容易にすることができるという作用が得られる。  [0049] In the present embodiment, the case where the eighth conjugated product 34 is bonded to the seventh conjugated product 33 by a peptide bond that is cleaved by an enzyme has been described. In some cases, the 34th compound and the seventh compound 33 have an amino acid sequence that is not cleaved by the enzyme, so that the fourth fluorescent group 32 and the seventh compound 33 are bound by a peptide bond cleaved by the enzyme. As a result, an effect is obtained that the degree of freedom of the amino acid sequence constituting the seventh compound and the eighth compound can be increased and the design can be facilitated.
実施例  Example
[0050] 以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に 限定されるものではない。 Hereinafter, the present invention will be described specifically with reference to Examples. The present invention is not limited to these examples. It is not limited.
本実施例で説明するアミノ酸、ペプチド、保護基、溶媒等は、当該技術分野で慣用さ れている略号又は IUPAC-IUBの命名委員会で採用された略号を使用している。例 えば、以下の略号を使用している。 Ala:ァラニン、 Pro:プロリン、 Lys:リジン、 Phe:フエ 二ルァラニン、 Aca:アミノカプロン酸、 Ac:ァセチル、 ACC: 7—ァミノ— 4—カルボキシメ チルクマリン、 Boc:t_ブチルォキシカルボニル、 Lys(Boc):側鎖 t-ブチルォキシカル ボニル保護リジン、 DCC:ジシクロへキシルカルボジイミド、 DCM:ジクロロメタン、 DIEA:N,N_ジイソプロピルェチルァミン、 DMF:N,N_ジメチノレホノレムアミド、 Et〇H:ェ タノ一ノレ、 Fmoc :9—フルォレニルメチルォキシカルボニル、 HATU:o_(7—ァザベン ゾトリァゾーノレ— 1—ィル)_1, 1, 3, 3—テトラメチルゥロニゥムへキサフルォロホスフエ ート、 HBTU:o_ (ベンゾトリァゾーノレ一 1—ィル)_1, 1, 3, 3—テトラメチルゥロニゥムへ キサフルォロホスフェート、 HOAt: 1—ヒドロキシ—7—ァゾベンゾトリァゾール、 H〇Bt: 1 —ヒドロキシベンゾトリァゾール、 TFA:トリフルォロ酢酸、 TYp:トリプトファン、 Dns:5—ジ メチルアミノー 1一ナフタレンスルホン酸。 Amino acids, peptides, protecting groups, solvents, and the like described in this example use abbreviations commonly used in the art or abbreviations adopted by the IUPAC-IUB naming committee. For example, the following abbreviations are used. Ala: Alanine, Pro: Proline, Lys: Lysine, Phe: Phenylalanine, Aca: Aminocaproic acid, Ac: Acetyl, ACC: 7-Amino-4-carboxymethylcoumarin, Boc: t_Butyloxycarbonyl, Lys ( Boc): Side-chain t-butyloxycarbonyl-protected lysine, DCC: Dicyclohexylcarbodiimide, DCM: Dichloromethane, DIEA: N, N_diisopropylethylamine, DMF: N, N_Dimethinolehonolemamide, Et〇H : Ethanomono, Fmoc: 9-Fluorenylmethyloxycarbonyl, HATU: o_ (7-azabenzotriazonole-1-yl) _1,1,3,3-tetramethylperoniumhexaflu Olophosphate, HBTU: o_ (benzotriazono-1-yl) _1,1,3,3-tetramethylperonidium oxafluorophosphate, HOAt: 1-hydroxy-7— Hazobenzotriazole, H〇Bt: 1 —Hide Alkoxy benzotriazoles § tetrazole, TFA: Torifuruoro acetate, TYp: tryptophan, Dns: 5-di-methylamino-1 one naphthalenesulfonic acid.
(実施例 1) (Example 1)
実施例 1では、酵素活性検出用基板としてのぺプチジル蛍光基結合球状基板を合 成して酵素の活性測定を行った。以下、その方法について説明する。 In Example 1, the activity of the enzyme was measured by synthesizing a peptidyl fluorescent group-bonded spherical substrate as a substrate for detecting the enzyme activity. Hereinafter, the method will be described.
<ぺプチジル蛍光基結合球状基板の合成 > <Synthesis of spherical substrate bonded with peptidyl fluorescent group>
基板としては球状の市販の NH -PEGA-resin (渡辺化学工業製)を用いた。固相合成 As the substrate, a spherical commercially available NH-PEGA-resin (manufactured by Watanabe Chemical Industry) was used. Solid phase synthesis
2  2
用ベッセルを垂直に固定し、 NH -PEGA-resin(0.05 mmol/g, 0.5 g)を入れてコックを Fix the vessel vertically, add NH-PEGA-resin (0.05 mmol / g, 0.5 g) and turn on the cock.
2  2
開いた状態で DMF(10 ml)を流し溶媒を置換した。次いで、ベッセルのコックを閉じ、 Fmoc-Aca-OH (0.13 mmol, 44 mg), HBTU(0.13 mmol, 48 mg), DIEA(0.13 mmol, 0.022ml)を DMF(2 ml)に溶解させてカ卩え、ー晚反応させた。反応後、コックを開き DMF(10 ml)およびメタノール (10 ml)で洗浄し、 Fmoc- Aca_PEGA resinを得た。 次に、ベッセル中の Fmoc- Aca- PEGA resin(0.05 mmol/g, 0.5 g)に、コックを開いた 状態で DMF(10 ml)を流し、溶媒置換および洗浄を行った。コックを閉じて 20%ピベリジ ン/ DMFを入れ、 30分反応させ、脱 Fmocを行った。その後、コックを開いて 20%ピぺ リジン ZDMFを除去し、次いで DMF(10 ml)を用いて洗浄した。次に、コックを閉じた 状態で Fmoc-Aca-OH(3 eq), HATU(3 eq), HOAt(3eq), DIEA(5eq)を DMF(2 ml)に溶 解させて加え、 3時間反応させた。その後コックを開け、 DMF(10 ml),メタノール (10 ml)を用いて洗浄し、基板 (PEGA resin)に第 1化合物 (Aca-Aca_)が結合した DMF (10 ml) was flowed in the open state to replace the solvent. Next, close the vessel cock and dissolve Fmoc-Aca-OH (0.13 mmol, 44 mg), HBTU (0.13 mmol, 48 mg), and DIEA (0.13 mmol, 0.022 ml) in DMF (2 ml). Well, I made a reaction. After the reaction, the cock was opened and washed with DMF (10 ml) and methanol (10 ml) to obtain Fmoc-Aca_PEGA resin. Next, DMF (10 ml) was flown into the Fmoc-Aca-PEGA resin (0.05 mmol / g, 0.5 g) in the vessel with the cock open, and solvent replacement and washing were performed. The cock was closed, 20% piberidine / DMF was added, and the mixture was reacted for 30 minutes to remove Fmoc. Thereafter, the cock was opened to remove 20% pyridine ZDMF, and then washed with DMF (10 ml). Then I closed the cock In this state, Fmoc-Aca-OH (3 eq), HATU (3 eq), HOAt (3 eq), and DIEA (5 eq) were dissolved in DMF (2 ml), added, and reacted for 3 hours. Then, open the cock, wash with DMF (10 ml) and methanol (10 ml), and the first compound (Aca-Aca_) was bound to the substrate (PEGA resin).
Fmoc-Aca-Aca-PEGA resinを得 7こ。 Fmoc-Aca-Aca-PEGA resin was obtained.
次に、 20%ピぺリジン ZDCM (1 mL)を用いて 30分撹拌して Fmoc基の除去を行った 。 DCM(1 ml)で 3回、 DMF (1 ml)で 1回洗浄した後、 DMF 1 mlに溶解させた  Next, the mixture was stirred with 20% piperidine ZDCM (1 mL) for 30 minutes to remove the Fmoc group. After washing three times with DCM (1 ml) and once with DMF (1 ml), it was dissolved in 1 ml of DMF
Fmoc-Lys(Boc)-ACC-OH (36 mg, 54 mmol), DCC (11 mg, 54 mmol), HOBt - H〇Fmoc-Lys (Boc) -ACC-OH (36 mg, 54 mmol), DCC (11 mg, 54 mmol), HOBt-H〇
(8.3 mg, 54 mmol)を加え 24時間反応させた。反応終了後、 DMF (1 ml)で 2回、 DCM(8.3 mg, 54 mmol) was added and reacted for 24 hours. After the reaction is complete, add 2x DMF (1 ml)
(1 ml)で 2回、 EtOH (1 ml)で 2回、 DCM (1 ml)で 2回洗浄した後、減圧下乾燥させて 第 1蛍光基 (ACC)が第 1化合物 (Aca-Aca-)に結合した (1 ml) twice, twice with EtOH (1 ml), and twice with DCM (1 ml), and dried under reduced pressure to allow the first fluorescent group (ACC) to bind to the first compound (Aca-Aca- )
Fmoc-Lys(Boc)-ACC-Aca-Aca- PEGA resinを得た。 Fmoc-Lys (Boc) -ACC-Aca-Aca-PEGA resin was obtained.
その後、 DMF (1 ml)で 1回洗浄し、 DIEA (32 ml, 183 mmol)および無水酢酸 (8.5 ml, 90 mmol)を DMF (1 ml)に希釈して加え 1時間撹拌させた。その後、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回洗浄を行い、未反応物のァセチル化を行った。  Thereafter, the resultant was washed once with DMF (1 ml), DIEA (32 ml, 183 mmol) and acetic anhydride (8.5 ml, 90 mmol) were diluted in DMF (1 ml), and the mixture was stirred for 1 hour. Thereafter, washing was performed three times with DMF (1 ml) and three times with DCM (1 ml), and the unreacted material was acetylated.
次いで、 20%ピぺリジン/ DCM (1 ml)を用いて 30分撹拌して Fmoc基の除去を行つ た。その後、 DCM(1 ml)で 3回、 DMF (1 ml)洗浄を行った後、 Fmoc- Pro- OH (18 mg, Next, the mixture was stirred with 20% piperidine / DCM (1 ml) for 30 minutes to remove the Fmoc group. After washing with DCM (1 ml) three times with DMF (1 ml), Fmoc-Pro-OH (18 mg,
54mmol), HATU (20 mg, 54 mmol), HOAt (7 mg, 54 mmol), DIEA (16 ml, 90 mmol) を DMF (1 ml)に溶解させて加え 1時間反応させた。その後、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回洗浄し Fmoc- Pro- Lys(Boc)- ACC- Aca- Aca- PEGA resinを得た。 54 mmol), HATU (20 mg, 54 mmol), HOAt (7 mg, 54 mmol) and DIEA (16 ml, 90 mmol) were dissolved in DMF (1 ml) and reacted for 1 hour. Then, it was washed three times with DMF (1 ml) and three times with DCM (1 ml) to obtain Fmoc-Pro-Lys (Boc) -ACC-Aca-Aca-PEGA resin.
以下、 Fmoc- Pro- Lys(Boc)-ACC-Aca-Aca- PEGA resinに Fmoc- Ala- OHを用いて 同様の操作を繰り返しペプチドを伸長し、第 1蛍光基 (ACC)に第 2化合物(  Hereinafter, the same operation is repeated by using Fmoc-Ala-OH on Fmoc-Pro-Lys (Boc) -ACC-Aca-Aca-PEGA resin to extend the peptide, and the second compound (ACC) is added to the first fluorescent group (ACC).
Ala-Ala-Pro-Lys)が結合した Ala- Ala- Pro-Lys(Boc)- ACC_Aca- Aca- PEGA resinを 得た。その後、コックを閉じて DIEA (2.5 mmol, 0.435 ml),無水酢酸 (1.25 mmol, 0.117 ml)を DMF(2 ml)に希釈して加え 1時間反応させて第 2ィ匕合物の末端基がァセチルイ匕 された Ac_Ala_Ala_Pro-Lys(Boc)-ACC-Aca_Aca_PEGA resinを得た。 Ala-Ala-Pro-Lys (Boc) -ACC_Aca-Aca-PEGA resin to which Ala-Ala-Pro-Lys was bound was obtained. After that, close the cock and dilute DIEA (2.5 mmol, 0.435 ml) and acetic anhydride (1.25 mmol, 0.117 ml) in DMF (2 ml), add them, and allow them to react for 1 hour. Acesila-Ala_Ala_Pro-Lys (Boc) -ACC-Aca_Aca_PEGA resin was obtained.
べッセノレに Ac-Ala-Ala-Pro_Lys(Boc)-ACC-Aca-Aca-PEGA resin(0.05 mmol, 0.5 mg)を入れ、コックを開いた状態で DCM(10 ml)を流し溶媒を置換した後、コックを閉 じて 25%TFA/DCM(2 ml)を入れ、 30分反応させ、脱 Bocを行った後、 DCM(10 ml),H O (10 ml)を用いて洗浄し、 目的とする実施例 1のぺプチジル蛍光基結合球状基板After adding Ac-Ala-Ala-Pro_Lys (Boc) -ACC-Aca-Aca-PEGA resin (0.05 mmol, 0.5 mg) to the vessel, DCM (10 ml) was poured with the cock open, and the solvent was replaced. Then, close the cock, add 25% TFA / DCM (2 ml), react for 30 minutes, remove Boc, then add DCM (10 ml), H After washing with O (10 ml), the desired peptidyl fluorescent group-bonded spherical substrate of Example 1
(Ac-Ala-Ala-Pro-Lys-ACC-Aca-Aca-PEGA resin)を得た。 (Ac-Ala-Ala-Pro-Lys-ACC-Aca-Aca-PEGA resin) was obtained.
[0052] <酵素活性の測定 > <Measurement of enzyme activity>
96ゥエルの蛍光測定用マイクロプレートのゥエル A— Dに、実施例 1の酵素活性検 出用基板としてのぺプチジノレ蛍光基結合球状基板  Peptidinole fluorescent-group-bound spherical substrate as enzyme activity detection substrate of Example 1
Ac-Ala-Ala-Pro-Lys-ACC-Aca-Aca-PEGA resinと以下の溶液を入れ、実験開始 時の蛍光値と 30分後の蛍光値との差を測定した。蛍光値は、 WALLAC ARVOTM SX 1420マルチラベルカウンタ(パーキンエルマ一製)を用いて励起波長 370nm、 蛍光波長 460nmで測定した。  Ac-Ala-Ala-Pro-Lys-ACC-Aca-Aca-PEGA resin and the following solution were added, and the difference between the fluorescence value at the start of the experiment and the fluorescence value after 30 minutes was measured. Fluorescence values were measured using a WALLAC ARVOTM SX 1420 multilabel counter (manufactured by PerkinElmer) at an excitation wavelength of 370 nm and an emission wavelength of 460 nm.
A: Ac-Ala- Ala-Pro-Lys-ACC-Aca-Aca-PEGA resin (wet) 5 mg、 20 mM Tris HC1 buffer(pH 7.2, 100 mM NaCl, 50 mM CaCl )240 μ 1、トリプシン (1 mg/1 ml)から 10 μ ΐ A: Ac-Ala-Ala-Pro-Lys-ACC-Aca-Aca-PEGA resin (wet) 5 mg, 20 mM Tris HC1 buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl 2) 240 μl, trypsin (1 mg / 1 ml) to 10 μΐ
Β: Ac-Ala- Ala-Pro-Lys-ACC-Aca-Aca-PEGA resin (wet) 5 mg、 20 mM Tris HC1 buffer(pH 7.2, 100 mM NaCl, 50 mM CaCl )240 μ 1、キモトリブシン (1 mg/1 ml)からΒ: Ac-Ala-Ala-Pro-Lys-ACC-Aca-Aca-PEGA resin (wet) 5 mg, 20 mM Tris HC1 buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl) 240 μ1, chymotrypsin (1 mg / 1 ml)
10 μ \ 10 μ \
C :Ac- Ala- Ala- Pro- Lys- ACC-Aca- Aca- PEGA resin (wet) 5 mg、 20 mM Tris HC1 buffer(pH 7.2, 100 mM NaCl, 50 mM CaCl )250 μ 1  C: Ac-Ala-Ala-Pro-Lys-ACC-Aca-Aca-PEGA resin (wet) 5 mg, 20 mM Tris HC1 buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl) 250 μ1
D : 20 mM Tris HC1 buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl )250 μ 1,  D: 20 mM Tris HC1 buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl) 250 μ1,
なお、ゥエル Aとゥエル Bとの異なる点は酵素の種類であり、ゥエル A (又はゥエル B) とゥエル Cとの異なる点は酵素の有無であり、ゥエル A (又はゥエル B, C)とゥヱル Dと の異なる点は酵素活性検出用基板の有無である。  The difference between Gael A and Gael B is the type of enzyme. The difference between Gael A (or Gael B) and Gael C is the presence or absence of the enzyme, and Gael A (or Gael B, C) and Gael. The difference from D is the presence or absence of a substrate for enzyme activity detection.
各ゥエルについて実験開始時の蛍光値と 30分後の蛍光値との差を (表 1)に示す。  The difference between the fluorescence value at the start of the experiment and the fluorescence value after 30 minutes for each well is shown in (Table 1).
[0053] [表 1]
Figure imgf000022_0001
[0053] [Table 1]
Figure imgf000022_0001
(表 1)のゥエル A, Bとゥエル Cの蛍光値を比較して、実施例 1の酵素活性検出用基 板は、トリプシンが存在するゥエル Aでは約 315倍、キモトリブシンが存在するゥエル B では約 10倍異なることが確認された。これにより、実施例 1の酵素活性検出用基板は 酵素の量や酵素の種類等による酵素活性の検出が可能であることが示された。また 、ゥエル Aとゥエル Bの蛍光値を比較して、実施例 1の酵素活性検出用基板は、トリプ シンの場合の蛍光値がキモトリブシンの場合の蛍光値と比較して約 30倍以上大きい こと力 S確認された。これは、実施例 1の酵素活性検出用基板の第 1蛍光基と結合する 第 2ィ匕合物のアミノ酸力 Sリジンであり、トリプシンは主にリジンの C末端側のペプチド結 合を選択的に切断する特異性を有していることから発現したものであると推察される。 一方、キモトリブシンは主に芳香族アミノ酸残基の C末端側のペプチド結合を選択的 に切断する特異性を有しているため、反応前後の蛍光値の変化が小さかったと推察 される。 Comparing the fluorescence values of the wells A and B in Table 1 and the well C, the enzyme activity detection substrate of Example 1 was about 315-fold in the well A with trypsin and in the well B with chymotrypsin. It was confirmed that the difference was about 10 times. As a result, the substrate for enzyme activity detection of Example 1 It was shown that the enzyme activity can be detected based on the amount of the enzyme and the type of the enzyme. Further, comparing the fluorescence values of the wells A and B, the enzyme activity detection substrate of Example 1 shows that the fluorescence value of trypsin is about 30 times larger than that of chymotrypsin. Force S confirmed. This is the amino acid force S-lysine of the second conjugate which binds to the first fluorescent group of the substrate for enzyme activity detection of Example 1, and trypsin mainly selectively binds the peptide bond at the C-terminal side of lysine. It is presumed that the gene was expressed because of its specificity for cleavage. On the other hand, chymotrypsin mainly has the specificity of selectively cleaving the peptide bond at the C-terminal side of the aromatic amino acid residue, so it is presumed that the change in the fluorescence value before and after the reaction was small.
これにより、実施例 1の酵素活性検出用基板は酵素によって特異性を有するため、 活性を有する酵素の定性分析が可能であることが示された。また、同一の種類の酵 素活性検出用基板に同一種類の酵素を含有する検体溶液を接触させ所定時間後 における蛍光値を測定すれば、蛍光値の変化は酵素の作用を受けて修飾された分 子の数に対応するので、酵素の定量分析が可能であると推察された。 This indicates that the enzyme activity detection substrate of Example 1 has specificity depending on the enzyme, and that qualitative analysis of the enzyme having activity is possible. When a sample solution containing the same type of enzyme was brought into contact with the same type of enzyme activity detection substrate and the fluorescence value was measured after a predetermined time, the change in the fluorescence value was modified by the action of the enzyme. It was speculated that quantitative analysis of the enzyme was possible because it corresponds to the number of molecules.
(実施例 2) (Example 2)
実施例 2では、酵素活性検出用基板としてのぺプチジル蛍光基結合平面基板を合 成して酵素の活性測定を行った。以下、その方法について説明する。 In Example 2, an enzyme activity was measured by synthesizing a peptidyl fluorescent group-bonded flat substrate as a substrate for enzyme activity detection. Hereinafter, the method will be described.
<ぺプチジル蛍光基結合平面基板の合成 > <Synthesis of planar substrate bonded with peptidyl fluorescent group>
基板としては、ペプチド合成用多板状合成樹脂製担体 (ミモートブス社製ランタンシリ ーズ (登録商標) )を 1プレートだけ切り離し平面状とした合成樹脂製担体を用いた。 スクリュー管に基板としての lantern 1個(ミモートプス社 D_series,導入率 18 mmol / 個)を入れ、 20%ピぺリジン ZDCM (1 mL)を用いて 30分撹拌し Fmoc基の除去を行 つた。 DCM (1 ml)で 3回、 DMF (1 ml)で洗浄した後、 Fmoc_Aca-〇H (19 mg 54 mmol ), DCC (17 mg 81 mmol), HOBt - H〇 (8 mg 54 mmol)を DMF (1 ml)に溶解させて加 As a substrate, a carrier made of a multi-plate synthetic resin for peptide synthesis (lanthanum series (registered trademark) manufactured by Mimotobus Co., Ltd.) was cut off by only one plate and made into a planar shape. One lantern as a substrate (D-series manufactured by Mimotops Co., introduction rate 18 mmol / unit) was placed in a screw tube, and the mixture was stirred with 20% piperidine ZDCM (1 mL) for 30 minutes to remove the Fmoc group. After washing three times with DCM (1 ml) and DMF (1 ml), Fmoc_Aca-〇H (19 mg 54 mmol), DCC (17 mg 81 mmol), HOBt-H〇 (8 mg 54 mmol) (1 ml) and add
2  2
え 24時間反応させた。反応終了後、 DMF (1 ml)で 2回、 DCM (1 ml)で 2回、 Et〇H (1 ml)で 2回、 DCM (1 ml)で 2回洗浄した後、減圧下乾燥させて Fmoc_Aca_lanternを得 た。 The reaction was performed for 24 hours. After the reaction is completed, wash twice with DMF (1 ml), twice with DCM (1 ml), twice with EtH (1 ml) and twice with DCM (1 ml), and dried under reduced pressure. I got Fmoc_Aca_lantern.
次に、 20%ピぺリジン ZDCM (1 ml)を用いて 30分撹拌して Fmoc基の除去を行った 。その後、 DCM(1 ml)で 3回、 DMF (1 ml)洗浄を行った後、 Fmoc-Aca-OH (19 mg, 54mmol), HATU (20 mg, 54 mmol), HOAt (7 mg, 54 mmol), DIEA (16 ml, 90 mmol) を DMF (1 ml)に溶解させて加え 1時間反応させた。その後、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回洗浄し、基板 (lantern)に第 1化合物 (Aca-Aca)の一端が固定化した Pmoc_Aca_Aca_lantern 得/こ。 Next, the mixture was stirred with 20% piperidine ZDCM (1 ml) for 30 minutes to remove the Fmoc group. . After washing with DCM (1 ml) three times with DMF (1 ml), Fmoc-Aca-OH (19 mg, 54 mmol), HATU (20 mg, 54 mmol), HOAt (7 mg, 54 mmol) ), DIEA (16 ml, 90 mmol) was dissolved in DMF (1 ml) and reacted for 1 hour. Then, the plate was washed three times with DMF (1 ml) and three times with DCM (1 ml), and Pmoc_Aca_Aca_lantern having one end of the first compound (Aca-Aca) immobilized on a substrate (lantern) was obtained.
次いで、 20%ピぺリジン ZDCM (1 mL)を用いて 30分撹拌して Fmoc基の除去を行つ た。 DCM(1 ml)で 3回、 DMF (1 ml)で 1回洗浄して lanternを膨潤させ、 DMF 1 mlに溶 角军させた Fmoc-Lys(Boc)— ACC— OH (36 mg, 54 mmol), DCC (11 mg, 54 mmol), HOBt - H O (8.3 mg, 54 mmol)を加え 24時間反応させた。反応終了後、 DMF (1 ml) で 2回、 DCM (1 ml)で 2回、 EtOH (1 ml)で 2回、 DCM (1 ml)で 2回洗浄した後、減圧 下乾燥させて第 1化合物 (Aca-Aca)に第 1蛍光基 (ACC)が結合した Next, the mixture was stirred with 20% piperidine ZDCM (1 mL) for 30 minutes to remove the Fmoc group. The lantern was swollen by washing three times with DCM (1 ml) and once with DMF (1 ml), and Fmoc-Lys (Boc) -ACC-OH (36 mg, 54 mmol) dissolved in 1 ml of DMF was dissolved. ), DCC (11 mg, 54 mmol) and HOBt-HO (8.3 mg, 54 mmol) were added and allowed to react for 24 hours. After the reaction is completed, wash twice with DMF (1 ml), twice with DCM (1 ml), twice with EtOH (1 ml), and twice with DCM (1 ml), and then dried under reduced pressure for the first time. Compound (Aca-Aca) bound to the first fluorescent group (ACC)
Pmoc_Lys(Bocノ— Aしし _Aca_Aca_lanternを得た。 Pmoc_Lys (Boc-A _Aca_Aca_lantern was obtained.
その後、 DMF (1 ml)で 1回洗浄し、 DIEA (32 ml, 183 mmol)および無水酢酸 (8.5 ml, 90 mmol)を DMF (1 ml)に希釈して加え 1時間撹拌させた。その後、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回洗浄を行い、未反応物のァセチル化を行った。  Thereafter, the resultant was washed once with DMF (1 ml), DIEA (32 ml, 183 mmol) and acetic anhydride (8.5 ml, 90 mmol) were diluted in DMF (1 ml), and the mixture was stirred for 1 hour. Thereafter, washing was performed three times with DMF (1 ml) and three times with DCM (1 ml), and the unreacted material was acetylated.
次に、 20%ピぺリジン/ DCM (1 ml)を用いて 30分撹拌して Fmoc基の除去を行った 。その後、 DCM(1 ml)で 3回、 DMF (1 ml)洗浄を行った後、 Fmoc- Pro-OH (18 mg, 54mmol), HATU (20 mg, 54 mmol), HOAt (7 mg, 54 mmol), DIEA (16 ml, 90 mmol) を DMF (1 ml)に溶解させて加え 1時間反応させた。その後、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回洗浄し Fmoc- Pro- Lys(Boc)- ACC-Aca-Aca- lanternを得た。  Next, the mixture was stirred with 20% piperidine / DCM (1 ml) for 30 minutes to remove the Fmoc group. After washing with DCM (1 ml) three times with DMF (1 ml), Fmoc-Pro-OH (18 mg, 54 mmol), HATU (20 mg, 54 mmol), HOAt (7 mg, 54 mmol) ), DIEA (16 ml, 90 mmol) was dissolved in DMF (1 ml) and reacted for 1 hour. Thereafter, the resultant was washed three times with DMF (1 ml) and three times with DCM (1 ml) to obtain Fmoc-Pro-Lys (Boc) -ACC-Aca-Aca-lantern.
以下、 Fmoc- Pro- Lys(Boc)-ACC-Aca- Aca- lanternに Fmoc- Ala- OHを用いて同様 の操作を 2回繰り返してペプチドを伸長させ、第 1蛍光基 (ACC)に第 2化合物( Ala-Ala-Pro-Lys)が結合した Fmoc-Ala_Ala_Pro-Lys(Boc)_ACC—Aca_Aca— lantern を得た。  The same procedure was repeated twice with Fmoc-Ala-OH on Fmoc-Pro-Lys (Boc) -ACC-Aca-Aca-lantern to extend the peptide, and the second fluorescent group (ACC) Fmoc-Ala_Ala_Pro-Lys (Boc) _ACC-Aca_Aca-lantern to which the compound (Ala-Ala-Pro-Lys) was bound was obtained.
その後、 20%ピぺリジン ZDCM (1 ml)を用いて 30分撹拌して Fmoc基の除去を行つ た。その後、 DCM(1 ml)で 3回、 DMF (1 ml)洗浄を行った後、 DMF (1 mL)、 DIEA 32 ml (183 mmol)および無水酢酸 8.5 ml(90 mmol)を DMF (1 mL)に希釈して加え、 1時 間撹拌させた。その後、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回 lanternを洗浄し、 25% TFA/DCMを用いて 30分反応させて Boc基の除去を行った。その後、 DCM(1 ml)で 3回、 H 0 (1 ml)で 5回、 DCM(1 ml)で 3回洗浄し、減圧乾燥を行い、第 2化合物(Thereafter, the mixture was stirred with 20% piperidine ZDCM (1 ml) for 30 minutes to remove the Fmoc group. Then, after washing with DMF (1 ml) three times with DCM (1 ml), DMF (1 mL), DIEA 32 ml (183 mmol) and acetic anhydride 8.5 ml (90 mmol) were added to DMF (1 mL). , And stirred for 1 hour. Then, wash the lantern 3 times with DMF (1 ml) and 3 times with DCM (1 ml), 25% The reaction was carried out using TFA / DCM for 30 minutes to remove the Boc group. Then, it is washed three times with DCM (1 ml), five times with H 0 (1 ml), three times with DCM (1 ml), dried under reduced pressure, and dried under reduced pressure.
Ala-Ala-Pro-Lys)の末端基がァセチル化された Ala-Ala-Pro-Lys) terminal group was acetylated
Ac-Ala-Ala-Pro-Lys(Boc)-ACC-Aca-Aca- lanternを得た。  Ac-Ala-Ala-Pro-Lys (Boc) -ACC-Aca-Aca-lantern was obtained.
25%TFA/DCM(lml)を用いて Lys側鎖の Boc基を除去し、 目的とする実施例 2の酵素 活性検出用基板 (Ac- Ala- Ala- Pro-Lys- ACC_Aca- Aca_lantern)を得た。  The Boc group of the Lys side chain was removed using 25% TFA / DCM (lml) to obtain the desired substrate for detecting the enzyme activity (Ac-Ala-Ala-Pro-Lys-ACC_Aca-Aca_lantern) of Example 2. Was.
[0057] <酵素活性の測定 > <Measurement of enzyme activity>
実施例 2の酵素活性検出用基板に、 20 mM Tris HC1 buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl )を 100 μ \,メタノール 100 μ \,トリプシン(1 mg/1 ml)を 50 μ 1加  On the substrate for enzyme activity detection of Example 2, 100 μl of 20 mM Tris HC1 buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl), 100 μl of methanol, and 50 μl of trypsin (1 mg / 1 ml) were added. Addition
2  2
え、反応前と反応後の蛍光値を測定した。蛍光値は、 WALLAC ARVOTM SX 1420 マルチラベルカウンタ(パーキンエルマ一製)を用いて励起波長 370nm、蛍光波長 4 60nmで測定した。  The fluorescence values before and after the reaction were measured. The fluorescence value was measured at an excitation wavelength of 370 nm and a fluorescence wavelength of 460 nm using a WALLAC ARVOTM SX 1420 multilabel counter (manufactured by PerkinElmer).
その結果、初期蛍光値は 39000、 18時間反応後の蛍光値は 145000であり、蛍光値が 約 4倍変化することが確認された。これにより、基板として lanternを用いた実施例 2の 酵素活性検出用基板においても、活性を有する酵素の検出が可能であることが示さ れた。  As a result, the initial fluorescence value was 39,000, the fluorescence value after 18 hours of reaction was 145,000, and it was confirmed that the fluorescence value changed about 4-fold. As a result, it was shown that the enzyme having activity can be detected also in the enzyme activity detecting substrate of Example 2 using lantern as the substrate.
[0058] (実施例 3) (Example 3)
実施例 3では、酵素活性検出用基板としてのぺプチジル蛍光基結合平面基板を合 成して酵素の活性測定を行った。以下、その方法について説明する。  In Example 3, an enzyme activity was measured by synthesizing a peptidyl fluorescent group-bonded flat substrate as a substrate for detecting enzyme activity. Hereinafter, the method will be described.
<ぺプチジル蛍光基結合平面基板の合成 >  <Synthesis of planar substrate bonded with peptidyl fluorescent group>
基板としては、ペプチド合成用多板状合成樹脂製担体 (ミモートブス社製ランタンシリ ーズ (登録商標) )を 1プレートだけ切り離し平面状とした合成樹脂製担体を用いた。 スクリュー管に基板としての lantern 1個(ミモートプス社 D_series,導入率 18 mmol / 個)を入れ、 20%ピぺリジン / DCM (1 mL)を用いて 30分撹拌し Fmoc基を切り出した 。 DCM洗浄 (1 mi x 3)後、 DMF (1 ml X I)で lanternを膨潤させ DMF 1 mlに溶解さ せた Fmoc— Aca— OH 20.0 mg (56.6 mmol), DCC 17.5 mg (84.5 mmol), HOBt - H〇 As a substrate, a carrier made of a multi-plate synthetic resin for peptide synthesis (lanthanum series (registered trademark) manufactured by Mimotobus Co., Ltd.) was cut off by only one plate and made into a planar shape. One lantern as a substrate (D_series, introduced by Mimotops Co., 18 mmol / unit) was placed in a screw tube, and the mixture was stirred with 20% piperidine / DCM (1 mL) for 30 minutes to cut out the Fmoc group. After washing with DCM (1 mix x 3), lantern was swollen with DMF (1 ml XI) and dissolved in 1 ml of DMF Fmoc-Aca-OH 20.0 mg (56.6 mmol), DCC 17.5 mg (84.5 mmol), HOBt -H〇
8.8 mg (57.5 mmol)を加え 23時間撹拌した。 DMF (1 ml X 2), DCM (1 ml X 2), DCM I EtOH = 1 : 1 (1 mi x 2), EtOH (1 ml X 2), DCM (1 ml X I),ジェチルエーテル (1 ml X 1)で樹脂を洗浄した後乾燥させ、 Fmoc-Aca-lanternを得た。 8.8 mg (57.5 mmol) was added and the mixture was stirred for 23 hours. DMF (1 ml X 2), DCM (1 ml X 2), DCM I EtOH = 1: 1 (1 mix 2), EtOH (1 ml X 2), DCM (1 ml XI), getyl ether (1 ml After washing the resin in X1) and drying, Fmoc-Aca-lantern was obtained.
20%ピぺリジン/ DCM (1 mL)を用いて 30分撹拌して Fmoc基を切り出し DCM洗浄 (1 mi x 3)した後、 DMF 1 mlに溶角军させた Fmoc— Aca— OH 23.0mg (65.1mmol), HATU 21.6 mg (56.8 mmol), HO At 8.1 mg (59.5 mmol), DIEA 15.7 ml (90.2 mmol)を加え 1時間撹拌させた。 DMF (1 mi x 3), DCM (1 ml X 3)で洗浄し基板(lantern)に第 1化 合物(Aca-Aca)の一端が固定化した Fmoc-Aca-Aca- lanternを得た。次いで、 20%ピ ペリジン ZDCM (1 mL)を用いて 30分撹拌して Fmoc基を除去し、 DCM洗浄(1 mi x 3)を行って H-Aca-Aca-lanternを得た。  The mixture was stirred for 30 minutes using 20% piperidine / DCM (1 mL) to cut out the Fmoc group, washed with DCM (1 mix 3), and dissolved in 1 ml of DMF. Fmoc—Aca—OH 23.0 mg (65.1 mmol), 21.6 mg (56.8 mmol) of HATU, 8.1 mg (59.5 mmol) of HO At, and 15.7 ml (90.2 mmol) of DIEA were added and stirred for 1 hour. After washing with DMF (1 mix 3) and DCM (1 ml X 3), Fmoc-Aca-Aca-lantern having one end of the first compound (Aca-Aca) immobilized on a substrate (lantern) was obtained. Then, the mixture was stirred with 20% piperidine ZDCM (1 mL) for 30 minutes to remove the Fmoc group, and washed with DCM (1 mix 3) to obtain H-Aca-Aca-lantern.
[0059] 次レ、で、 DMF 1 mlに溶解させた Fmoc- Phe- ACC- OH (33.4 mg 56.7 mmol)、 DCC 12.5 mg (60.6 mmol), HOBt - H O 8.9 mg (58.0 mmol)を加え 22時間撹拌した。 DMF[0059] Next, Fmoc-Phe-ACC-OH (33.4 mg 56.7 mmol), DCC 12.5 mg (60.6 mmol), HOBt-HO 8.9 mg (58.0 mmol) dissolved in 1 ml of DMF were added for 22 hours. Stirred. DMF
(1 mi x 2), DCM (1 ml X 2), DCM I EtOH = 1 : 1 (1 ml X 2), EtOH (1 ml X 2), DCM (1 ml X I),ジェチルエーテル (1 mi x 1)で洗浄後、乾燥させ第 1化合物 (Aca-Aca)に第 1蛍光基(ACC)が結合した Fmoc-Phe-ACC-Aca-Aca-Lanternを得た。 (1 mix x 2), DCM (1 ml X 2), DCM I EtOH = 1: 1 (1 ml X 2), EtOH (1 ml X 2), DCM (1 ml XI), getyl ether (1 mi After washing with x1), it was dried to obtain Fmoc-Phe-ACC-Aca-Aca-Lantern in which the first fluorescent group (ACC) was bonded to the first compound (Aca-Aca).
次に、 20%ピぺリジン/ DCM (1 mL)を用いて 30分撹拌して Fmoc基を除去し、 DCM 洗浄(1 mi x 3)した。次いで、 DMF 1 mlに溶解させた Fmoc-Pro-OH 24.7mg (73.2 mmol), HATU 21.4 mg (56.2 mmol), HOAt 8.2 mg (60.2 mmol), DIEA 15.7 ml (90.2 mmol)を加え 1時間撹拌させた後、 DMF (1 ml X 3), DCM (1 ml X 3)で洗浄し  Next, the mixture was stirred with 20% piperidine / DCM (1 mL) for 30 minutes to remove the Fmoc group, and washed with DCM (1 mix 3). Next, 24.7 mg (73.2 mmol) of Fmoc-Pro-OH dissolved in 1 ml of DMF, 21.4 mg (56.2 mmol) of HATU, 8.2 mg (60.2 mmol) of HOAt, and 15.7 ml (90.2 mmol) of DIEA were added and stirred for 1 hour. After washing, wash with DMF (1 ml X 3) and DCM (1 ml X 3).
Fmoc_Pro_Phe_ACし _Aca_Aca_lantern 得た。  Fmoc_Pro_Phe_AC then _Aca_Aca_lantern got.
以下、これと同様の操作を行って Fmoc-Ala-OHを 2回導入し、第 1蛍光基 (ACC)に 第 2化合物(Ala-Ala-Pro-Phe)が結合した  Hereinafter, the same operation was performed to introduce Fmoc-Ala-OH twice, and the second compound (Ala-Ala-Pro-Phe) was bound to the first fluorescent group (ACC).
Fmoc_Ala_Ala_Pro_Phe_Aし C_Aca_Aca_lanternを守た。  Fmoc_Ala_Ala_Pro_Phe_A followed C_Aca_Aca_lantern.
その後、 20%ピぺリジン ZDCM (1 mL)を用いて 30分撹拌して Fmoc基を除去し、 DCM洗浄 (1 mi x 3)後、 DMF (1 mL)、 DIEA 32 ml (183 mmol)および無水酢酸 8.5 ml(90 mmol)を加え、 1時間撹拌させた。その後、 DMF (1 ml X 3), DCM (1 ml X 3)で 洗浄を行い、第 2化合物 (Ala_Ala_Pro-Phe)の末端基をァセチル化して、 目的とする 実施例 3の酵素活性検出用基板としてのぺプチジル蛍光基結合平面基板  Then, the mixture was stirred with 20% piperidine ZDCM (1 mL) for 30 minutes to remove the Fmoc group, washed with DCM (1 mix 3), DMF (1 mL), DIEA 32 ml (183 mmol) and 8.5 ml (90 mmol) of acetic anhydride was added and stirred for 1 hour. After that, washing is performed with DMF (1 ml X 3) and DCM (1 ml X 3), the terminal group of the second compound (Ala_Ala_Pro-Phe) is acetylated, and the target substrate for enzyme activity detection of Example 3 is prepared. Peptidyl Fluorescent Group Bonded Flat Substrate
Ac_Ala-Ala-Pro_Phe_ACC_Aca_Aca_lantemを得た。  Ac_Ala-Ala-Pro_Phe_ACC_Aca_Aca_lantem was obtained.
[0060] <酵素活性の測定 > 蛍光測定用マイクロプレートのゥエル A, Cに実施例 2の酵素活性検出用基板(導 入率 2 μ mol/基板)を、ゥエル B, Dに実施例 3の酵素活性検出用基板(導入率 2 μ mol/基板)を入れ、各々に 20 mM Tris HC1 buffer ( H 7.2, 100 mM NaCl, 50 mM CaCl )を 100 μ \,メタノール 100 μ 1を加え、さらに以下の酵素 50 μ gを加えて反応さ<Measurement of enzyme activity> The substrates for detecting the enzyme activity of Example 2 (introduction rate 2 μmol / substrate) were placed in the wells A and C of the microplate for fluorescence measurement, and the substrates for detecting the enzyme activity in Example 3 (introduction rate 2 μmol / substrate), add 100 μl of 20 mM Tris HC1 buffer (H 7.2, 100 mM NaCl, 50 mM CaCl), 100 μl of methanol, and add 50 μg of the following enzyme to each. Sa
2 2
せた。  I let you.
A:キモトリブシン  A: Chymotrypsin
B :キモトリブシン  B: Chymotrypsin
C :トリプシン  C: trypsin
D :トリプシン  D: trypsin
測定は、 WALLAC ARVOTM SX 1420マルチラベルカウンタ(パーキンエルマ一製) を用いて励起波長 370nm、蛍光波長 460nmで、酵素を加える前の蛍光値と酵素を 加えてから 30分後の蛍光値とを測定し、その差を求めた。  The measurement was performed using a WALLAC ARVOTM SX 1420 multilabel counter (PerkinElmer) to measure the fluorescence value before adding the enzyme and the fluorescence value 30 minutes after adding the enzyme at an excitation wavelength of 370 nm and an emission wavelength of 460 nm. And asked for the difference.
各ゥエルにおける算出された蛍光値の差を (表 2)に示す。  The difference between the calculated fluorescence values in each well is shown in (Table 2).
[表 2]
Figure imgf000027_0001
[Table 2]
Figure imgf000027_0001
[0062] (表 2)によれば、キモトリブシンに対しては、第 1蛍光基と結合する第 2化合物のアミ ノ酸が芳香族アミノ酸の 1種のフエ二ルァラニンである実施例 3の酵素活性検出用基 板で大きな蛍光値の変化が確認された。また、トリプシンに対しては、第 1蛍光基と結 合する第 2化合物のアミノ酸力 Sリジンである実施例 2の酵素活性検出用基板で大きな 蛍光値の変化が確認された。これらの変化の差は、キモトリブシンは主に芳香族アミ ノ酸残基の C末端側のペプチド結合を選択的に切断する特異性を有しており、トリプ シンは主にリジンの C末端側のペプチド結合を選択的に切断する特異性を有してい ることから発現したものであると推察される。 [0062] According to (Table 2), with respect to chymotrypsin, the enzyme activity of Example 3 in which the amino acid of the second compound bonded to the first fluorescent group is one kind of aromatic amino acid phenylalanine A large change in the fluorescence value was confirmed on the detection substrate. Also, with respect to trypsin, a large change in the fluorescence value was confirmed on the enzyme activity detection substrate of Example 2 in which the amino acid strength S-lysine of the second compound binding to the first fluorescent group was used. The difference between these changes is that chymotrypsin has the specificity of selectively cleaving peptide bonds mainly at the C-terminal side of aromatic amino acid residues, and trypsin is mainly at the C-terminal side of lysine. It is presumed that it was expressed because it has the specificity of selectively cleaving peptide bonds.
これにより、第 1蛍光基と結合する第 2ィヒ合物のアミノ酸の種類を変えることにより、酵 素の種類に対する活性検出能を変えられることが明らかになった。  As a result, it became clear that the ability to detect the activity with respect to the type of enzyme can be changed by changing the type of amino acid of the second compound that binds to the first fluorescent group.
[0063] (実施例 4) 実施例 4では、酵素活性検出用基板としてのぺプチジル蛍光基結合平面基板を合 成して酵素の活性測定を行った。以下、その方法について説明する。 (Example 4) In Example 4, the activity of the enzyme was measured by synthesizing a peptidyl fluorescent group-bonded flat substrate as a substrate for detecting the enzyme activity. Hereinafter, the method will be described.
<ぺプチジル蛍光基結合平面基板の合成 > <Synthesis of planar substrate bonded with peptidyl fluorescent group>
基板としては、ペプチド合成用多板状合成樹脂製担体 (ミモートブス社製ランタンシリ ーズ (登録商標) )を 1プレートだけ切り離し平面状とした合成樹脂製担体を用いた。 スクリュー管に基板としての lantern 1個(ミモートプス社 D_series,導入率 18 μ mol I 個)を入れ、 20%ピぺリジン ZDCM (1 ml)を用いて 30分撹拌し Fmoc基の除去を行つ た。 DCM (1 ml)で 3回、 DMF (1 ml)で 2回洗浄した後、 Fmoc- Aca_OH ( 19 mg, 54 μ mol) , DCC (17 mg, 81 μ mol), HOBt - H〇 (8 mg,54 mmol)を DMF (1 ml)に溶解させ As a substrate, a carrier made of a multi-plate synthetic resin for peptide synthesis (lanthanum series (registered trademark) manufactured by Mimotobus Co., Ltd.) was cut off by only one plate and made into a planar shape. One lantern (D_series, Mimotops Co., 18 μmol I) was used as the substrate in the screw tube, and the mixture was stirred with 20% piperidine ZDCM (1 ml) for 30 minutes to remove the Fmoc group. . After washing 3 times with DCM (1 ml) and 2 times with DMF (1 ml), Fmoc-Aca_OH (19 mg, 54 μmol), DCC (17 mg, 81 μmol), HOBt-H〇 (8 mg , 54 mmol) in DMF (1 ml).
2  2
て加え 24時間反応させた。反応終了後、 DMF (1 ml)で 2回、 DCM (1 ml)で 2回、 EtOH (1 ml)で 2回、 DCM (1 ml)で 2回洗浄した後、減圧下乾燥させて And reacted for 24 hours. After completion of the reaction, wash twice with DMF (1 ml), twice with DCM (1 ml), twice with EtOH (1 ml), and twice with DCM (1 ml), and dried under reduced pressure.
Fmoc-Aca-lanternをネ守た。 Defended Fmoc-Aca-lantern.
次に、 20%ピぺリジン/ DCM (1 ml)を用いて 30分撹拌して Fmoc基の除去を行った 。その後、 DCM(1 ml)で 3回、 DMF (1 ml)で 2回洗浄を行った後、 Fmoc-Aca-OH (19 mg, 54 μ mol), HATU (20 mg, 54 μ mol), HO At (7 mg, 54 μ mol), DIEA (16 μ \, 90 β mol)を DMF (1 ml)に溶解させて加え 1時間反応させた。その後、 DMF (1ml)で 3回、 DCM (1ml)で 3回洗浄し Fmoc-Aca-Aca-lanternを得た。  Next, the mixture was stirred with 20% piperidine / DCM (1 ml) for 30 minutes to remove the Fmoc group. After washing 3 times with DCM (1 ml) and 2 times with DMF (1 ml), Fmoc-Aca-OH (19 mg, 54 μmol), HATU (20 mg, 54 μmol), HO At (7 mg, 54 μmol) and DIEA (16 μ \, 90 βmol) were dissolved in DMF (1 ml), and the mixture was reacted for 1 hour. Then, it was washed three times with DMF (1 ml) and three times with DCM (1 ml) to obtain Fmoc-Aca-Aca-lantern.
次いで、 20%ピぺリジン/ DCM (lml)を用いて 30分撹拌して Fmoc基の除去を行った 。 DCM(lml)で 3回、 DMF (lml)で 1回洗浄して lanternを膨潤させ、 DMF 1 mlに溶解さ せた Fmoc— Lys(Ac— TYp(Boc)- )- OH (38 mg, 54 mmol), DCC (11 mg, 54 mmol), HOBf H O (8.3 mg, 54 mmol)を加え 24時間反応させた。反応終了後、 DMF (1 ml) Then, the mixture was stirred with 20% piperidine / DCM (1 ml) for 30 minutes to remove the Fmoc group. The lantern was swollen by washing three times with DCM (lml) and once with DMF (lml), and Fmoc-Lys (Ac-TYp (Boc)-)-OH (38 mg, 54 mmol), DCC (11 mg, 54 mmol) and HOBf HO (8.3 mg, 54 mmol) were added and reacted for 24 hours. After the reaction, DMF (1 ml)
2  2
で 2回、 DCM (1 ml)で 2回、 EtOH (1 ml)で 2回、 DCM (1 ml)で 2回洗浄した後、減圧 下乾燥させて(- Lys- Aca- Aca- )の側鎖に (Ac-TYp(Boc)- )が導入された , Twice with DCM (1 ml), twice with EtOH (1 ml) and twice with DCM (1 ml), and then dried under reduced pressure (-Lys-Aca-Aca-) (Ac-TYp (Boc)-) was introduced into the chain
Fmoc_Lys(Ac— rrp(Boc)—ノ一Aca— Aca_lantern 得 7こ。 Fmoc_Lys (Ac—rrp (Boc) —Noichi Aca—Aca_lantern
次に、 20%ピぺリジン ZDCM (1 ml)を用いて 30分撹拌して Fmoc基の除去を行った 。その後、 DCM(1 ml)で 3回、 DMF (1 ml)で 2回洗浄を行った後、  Next, the mixture was stirred with 20% piperidine ZDCM (1 ml) for 30 minutes to remove the Fmoc group. Then, after washing 3 times with DCM (1 ml) and 2 times with DMF (1 ml),
Fmoc-Lys(Boc)-OH (25 mg, 54 μ mol), HATU (20 mg, 54 μ mol), HO At (7 mg, 54 μ mol), DIEA (16 μ 1, 90 μ mol)を DMF (1 ml)に溶解させて加え 1時間反応させた。その 後、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回洗浄し Fmoc-Lys (Boc) -OH (25 mg, 54 μmol), HATU (20 mg, 54 μmol), HO At (7 mg, 54 μmol), DIEA (16 μ1, 90 μmol) in DMF (1 ml), and the mixture was reacted for 1 hour. That Then, wash three times with DMF (1 ml) and three times with DCM (1 ml).
Fmoc-Lys(Boc)_Lys(Ac_Trp(Boc)-)-Aca_Aca_lanternを得た。  Fmoc-Lys (Boc) _Lys (Ac_Trp (Boc)-)-Aca_Aca_lantern was obtained.
以下、 Fmoc-Lys(Boc)-Lys(Ac-Trp(Boc)-)-Aca-Aca-lanternに Fmoc_Pro_OH、 Fmoc-Ala-OHを導入する実施例 3と同様の操作を繰り返してペプチドを伸長させ、 更に Dns_Clを反応させることにより  Hereinafter, Fmoc_Pro_OH and Fmoc-Ala-OH are introduced into Fmoc-Lys (Boc) -Lys (Ac-Trp (Boc)-)-Aca-Aca-lantern to extend the peptide by repeating the same operation as in Example 3. By further reacting Dns_Cl
Dns_Ala_Ala_Pro_Lys(Boc)_Lys(Ac_Trp(Boc)_)_Aca_Aca_ lanternをネ守た。  Dns_Ala_Ala_Pro_Lys (Boc) _Lys (Ac_Trp (Boc) _) _ Aca_Aca_lantern.
次いで、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回 lanternを洗浄し、 25% TFA/DCMを 用いて 30分反応させて Boc基の除去を行った。その後、 DCM(1 ml)で 3回、 H〇(1 ml)で 5回、 DCM(1 ml)で 3回洗浄し、減圧乾燥を行い、第 3化合物と第 5化合物とが 結合した(Ala-Ala-Pro_Lys-Lys-Aca-Aca)の側鎖に第 2蛍光基としての Trpと、末端 に第 3蛍光基としての Dnsとを備えた目的とする実施例 4の酵素活性検出用基板 Dns-Ala-Ala-Pro-Lys-Lys(Ac-l rp—ノ一 Aca— Aca— lantern 得 7こ。  Next, the lantern was washed three times with DMF (1 ml) and three times with DCM (1 ml), and reacted with 25% TFA / DCM for 30 minutes to remove the Boc group. Then, the mixture was washed three times with DCM (1 ml), five times with H〇 (1 ml), and three times with DCM (1 ml), and dried under reduced pressure to allow the third and fifth compounds to bind (Ala -Ala-Pro_Lys-Lys-Aca-Aca) provided with Trp as a second fluorescent group in the side chain and Dns as a third fluorescent group at the end Dns for enzyme activity detection of Example 4 of interest -Ala-Ala-Pro-Lys-Lys (Ac-l rp—no Aca— Aca—lantern obtained.
[0065] <酵素活性の測定 > <Measurement of enzyme activity>
実施例 4の酵素活性検出用基板に、 20 mM Tris - HCl buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl )を 100 μ \,メタノール 100 β \,トリプシン(1 mg/1 ml)を 50 μ 1加  20 μm of 20 mM Tris-HCl buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl 2), 100 μl of methanol 100 β \, 50 μl of trypsin (1 mg / 1 ml) were added to the substrate for detecting the enzyme activity of Example 4. 1
2  2
え、反応前と反応後の蛍光値を測定した。蛍光値は、 FP-6600蛍光分光光度計( Jasco製)を用いて励起波長 280 nm、蛍光波長 350 nmで測定した。  The fluorescence values before and after the reaction were measured. The fluorescence value was measured using an FP-6600 fluorescence spectrophotometer (manufactured by Jasco) at an excitation wavelength of 280 nm and a fluorescence wavelength of 350 nm.
その結果、初期蛍光値は 37、 18時間反応後の蛍光値は 567であり、蛍光値が約 15 倍変化することが確認された。これにより、実施例 4の酵素活性検出用基板において も、活性を有する酵素の検出が可能であることが示された。  As a result, the initial fluorescence value was 37, the fluorescence value after 18 hours of reaction was 567, and it was confirmed that the fluorescence value changed about 15 times. Thus, it was shown that the enzyme having activity can be detected also in the enzyme activity detection substrate of Example 4.
[0066] (実施例 5) (Example 5)
実施例 4と同様にして、スクリュー管に基板としての lantern 1個(ミモートプス社 D- series,導入率 18 μ mol I個)を入れ、ピぺリジン/ DCMを用いて Fmoc基の除去 を行った後、 DCM、 DMFで洗浄して lanternを膨潤させ、 DMFに溶解させた  In the same manner as in Example 4, one lantern (D-series, introduction rate: 18 μmol I) as a substrate was placed in a screw tube, and the Fmoc group was removed using piperidine / DCM. After washing with DCM and DMF, the lantern was swollen and dissolved in DMF
Fmoc-TYp(Boc)- OH、 DCC、 HOBt - H Oを加え反応させた。反応終了後、 DMF、 Fmoc-TYp (Boc) -OH, DCC and HOBt-HO were added and reacted. After the reaction is completed, DMF,
DCM 、 EtOHで洗浄し減圧下乾燥させて、基板(lantern)に (Fmoc- TYp(Boc)-)が結 合した Fmoc-Trp(Boc)- lanternを得た。 After washing with DCM and EtOH and drying under reduced pressure, Fmoc-Trp (Boc) -lantern having (Fmoc-TYp (Boc)-) bonded to the substrate (lantern) was obtained.
次に、ピぺリジン ZDCMを用いて Fmoc基の除去を行レ、、 DCM、 DMFで洗浄した後 、 Fmoc-Lys(Boc)_OH、 HATL;、 HOAt、 DIEAを DMFに溶解させて加え反応させた。 その後、 DMF DCMで洗浄し Fmoc-Lys(Boc)-TYp(Boc)-lanternを得た。 Next, the Fmoc group was removed using piperidine ZDCM, and washed with DCM and DMF. , Fmoc-Lys (Boc) _OH, HATL ;, HOAt and DIEA were dissolved in DMF and reacted. Then, it was washed with DMF DCM to obtain Fmoc-Lys (Boc) -TYp (Boc) -lantern.
以下、 Fmoc_Lys(Boc)_Trp(Boc广 lanternに Fmoc_Pro_uH、 Fmoc_Ala_OHを ¾入 する実施例 3と同様の操作を繰り返してペプチドを伸長させ、更に Dns-Clを反応させ ることにより Dns-Ala-Ala-Pro— Lys(Boc)_T卬 (Boc)-lanternを得た。  Hereinafter, Fmoc_Lys (Boc) _Trp (the same procedure as in Example 3 in which Fmoc_Pro_uH and Fmoc_Ala_OH are introduced into Boc lantern) is repeated to elongate the peptide, and Dns-Cl is further reacted to obtain Dns-Ala-Ala- Pro—Lys (Boc) _T 卬 (Boc) -lantern was obtained.
次いで、 DMF、 DCMで lanternを洗浄し、 TFAZDCMを反応させて Boc基の除去を 行った。その後、 DCM、 H 0、 DCMで洗浄し、減圧乾燥を行い、第 4化合物と第 5ィ匕  Next, the lantern was washed with DMF and DCM, and reacted with TFAZDCM to remove the Boc group. After that, the resultant was washed with DCM, H0, and DCM, and dried under reduced pressure.
2  2
合物とが結合した (Ala_Ala_Pro-Lys)の末端に第 2蛍光基としての Trpと、末端に第 3 蛍光基としての Dnsとを備えた目的とする実施例 5の酵素活性検出用基板 The substrate for enzyme activity detection of Example 5 which is provided with Trp as a second fluorescent group at the terminal of (Ala_Ala_Pro-Lys) to which the compound is bound and Dns at the terminal as a third fluorescent group
Dns_Ala_Ala_Pro_Lys_ i'rp_ nternをネ守た。 Dns_Ala_Ala_Pro_Lys_i'rp_ntern
実施例 5の酵素活性検出用基板の酵素活性検出能を実施例 4と同様にして測定し たところ、実施例 5の酵素活性検出用基板においても、実施例 4とほぼ同様の検出能 が確認された。これにより、実施例 5の酵素活性検出用基板においても、活性を有す る酵素の検出が可能であることが示され、反応点を複数有するトリブトファン等の蛍光 基を用いることにより、基板に結合させるペプチド等のアミノ酸配列の設計の自由度 をより高めることができることが明らかになった。 When the enzyme activity detection ability of the substrate for enzyme activity detection of Example 5 was measured in the same manner as in Example 4, the detection ability of the substrate for enzyme activity detection of Example 5 was almost the same as that of Example 4. Was done. This indicates that the enzyme having activity can be detected also in the enzyme activity detection substrate of Example 5, and the substrate is bound to the substrate by using a fluorescent group such as tributophan having a plurality of reaction points. It has been clarified that the degree of freedom in designing an amino acid sequence of a peptide or the like can be further increased.
(実施例 6)  (Example 6)
スクリュー管に基板としての lantern 1個(ミモートプス社 D_series,導入率 18 μ mol I 個)を入れ、実施例 4と同様の操作によって、基板に Fmoc-Aca-OHを導入し、  One lantern as substrate (Mimotops D_series, introduction rate 18 μmol I) was placed in the screw tube, and Fmoc-Aca-OH was introduced into the substrate by the same operation as in Example 4.
Fmoc_Aca_Aca_lantern 得/こ。 Fmoc_Aca_Aca_lantern Get / Get.
次いで、ピぺリジン/ DCMを用いて Fmoc基を除去し、 DCM、 DMFで洗浄して lantern を膨潤させ、 DMFに溶解させた Fmoc- TYp(Boc)- OH、 DCC、 HOBt - H Oを加え反応 Then, remove the Fmoc group using piperidine / DCM, wash with DCM and DMF to swell the lantern, and add Fmoc-TYp (Boc) -OH, DCC and HOBt-HO dissolved in DMF.
2  2
させ、基板(lantern)に第 6化合物(Aca_ Aca)が結合した Fmoc- Trp(Boc)_Aca_ Aca_lanternをネ守た。 Then, Fmoc-Trp (Boc) _Aca_Aca_lantern in which the sixth compound (Aca_Aca) was bound to the substrate (lantern) was protected.
以下、 Fmoc- Lys(Boc)_OH、 Fmoc- Pro_OH、 Fmoc_Ala- OHを導入する実施例 3と 同様の操作を繰り返してペプチドを伸長させ、更に Dns-Clを反応させることにより Dns -Ala-Ala-Pro-Lys Boc^-l rp Bocy-Aca-Aca-lanterr^^Tr^  Hereinafter, Fmoc-Lys (Boc) _OH, Fmoc-Pro_OH, and Fmoc_Ala-OH were introduced to extend the peptide by repeating the same operation as in Example 3, and further reacted with Dns-Cl to obtain Dns-Ala-Ala-OH. Pro-Lys Boc ^ -l rp Bocy-Aca-Aca-lanterr ^^ Tr ^
次いで、 DMF、 DCMで洗浄し、 TFAZDCMを用いて Boc基の除去を行った後、 DCM、 H 0、 DCMで洗浄し、減圧乾燥を行い、第 7ィ匕合物と第 8ィ匕合物とが結合したThen, after washing with DMF and DCM and removing the Boc group using TFAZDCM, Washed with DCM, H0, DCM, dried under reduced pressure, and the seventh and eighth conjugates were combined.
2 2
(Ala-Ala-Pro-Lys-)が第 4蛍光基としての T卬に結合し、末端に第 5蛍光基としての Dnsが結合した実施例 6の酵素活性検出用基板  (Ala-Ala-Pro-Lys-) bound to T 卬 as the fourth fluorescent group and Dns as the fifth fluorescent group bound to the terminal
Dns-Ala-Ala-Pro- Lys-Ί rp-Aca-Aca_lanternをネ守た。 Dns-Ala-Ala-Pro-Lys-Ί rp-Aca-Aca_lantern.
実施例 6の酵素活性検出用基板の酵素活性検出能を実施例 4と同様にして測定し たところ、実施例 6の酵素活性検出用基板においても、実施例 4とほぼ同様の検出能 が確認された。これにより、実施例 6の酵素活性検出用基板においても、活性を有す る酵素の検出が可能であることが示され、反応点を複数有するトリブトファン等の蛍光 基を用いることにより、基板に結合させるペプチド等のアミノ酸配列の設計の自由度 をより高めることができることが明らかになった。 When the enzyme activity detection ability of the enzyme activity detection substrate of Example 6 was measured in the same manner as in Example 4, almost the same detection ability as that of Example 4 was confirmed on the enzyme activity detection substrate of Example 6. Was done. This shows that the enzyme having activity can be detected also in the enzyme activity detection substrate of Example 6, and the substrate is bound to the substrate by using a fluorescent group such as tributophan having a plurality of reaction points. It has been clarified that the degree of freedom in designing an amino acid sequence of a peptide or the like can be further increased.
(実施例 7)  (Example 7)
実施例 7では、酵素活性検出用基板としてのぺプチジル蛍光基結合平面基板を合 成して酵素の活性測定を行った。以下、その方法について説明する。 In Example 7, the activity of the enzyme was measured by synthesizing a peptidyl fluorescent group-bonded flat substrate as a substrate for detecting the enzyme activity. Hereinafter, the method will be described.
<ぺプチジル蛍光基結合平面基板の合成 > <Synthesis of planar substrate bonded with peptidyl fluorescent group>
基板としては、ペプチド合成用多板状合成樹脂製担体 (ミモートブス社製ランタンシリ ーズ (登録商標) )を 1プレートだけ切り離し平面状とした合成樹脂製担体を用いた。 スクリュー管に基板としての lantern 1個(ミモートプス社 D_series,導入率 18 μ mol I 個)を入れ、 20%ピぺリジン/ DCM (1 mL)を用いて 30分撹拌し Fmoc基の除去を行 つた。 DCM (1 ml)で 3回、 DMF (1 ml)で洗浄した後、 Fmoc-Aca-OH (19 mg, 54 /i mol) , DCC (17 mg, 81 μ πιο1), HOBt - H O (8 mg,54 /i mol)を DMF (1 ml)に溶解させ As a substrate, a carrier made of a multi-plate synthetic resin for peptide synthesis (lanthanum series (registered trademark) manufactured by Mimotobus Co., Ltd.) was cut off by only one plate and made into a planar shape. One lantern as a substrate (D-series manufactured by Mimotops, 18 μmol I introduction rate) was placed in a screw tube, and the mixture was stirred with 20% piperidine / DCM (1 mL) for 30 minutes to remove the Fmoc group. . After washing three times with DCM (1 ml) and DMF (1 ml), Fmoc-Aca-OH (19 mg, 54 / i mol), DCC (17 mg, 81 μππο1), HOBt-HO (8 mg , 54 / i mol) in DMF (1 ml)
2  2
て加え 24時間反応させた。反応終了後、 DMF (1 ml)で 2回、 DCM (1 ml)で 2回、 EtOH (1 ml)で 2回、 DCM (1 ml)で 2回洗浄した後、減圧下乾燥させて And reacted for 24 hours. After completion of the reaction, wash twice with DMF (1 ml), twice with DCM (1 ml), twice with EtOH (1 ml), and twice with DCM (1 ml), and dried under reduced pressure.
Fmoc-Aca-lanternをネ守た。 Defended Fmoc-Aca-lantern.
次に、 20%ピぺリジン ZDCM (1 ml)を用いて 30分撹拌して Fmoc基の除去を行った 。その後、 DCM(1 ml)で 3回、 DMF (1 ml)で 2回洗浄を行った後、 Fmoc_Aca_OH (19 mg, 54 μ mol), HATU (20 mg, 54 μ mol), HO At (7 mg, 54 μ mol), DIEA (16 μ \, 90 μ mol)を DMF (1 ml)に溶解させて加え 1時間反応させた。その後、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回洗浄し Fmoc- Aca-Aca- lanternを得た。 [0069] 次いで、 20%ピぺリジン/ DCM (1 mL)を用いて 30分撹拌して Fmoc基の除去を行つ た。 DCM(1 ml)で 3回、 DMF (1 ml)で 1回洗浄して lanternを膨潤させ、 DMF 1 mlに溶 解させた Fmoc- Lys(Ac— TYp(Boc)— )- OH (38 mg, 54 μ mol), DCC (11 mg, 54 μ mol), HOBt - H O (8.3 mg, 54 μ mol)をカロえ 24時間反応させた。反応終了後、 DMF (1 ml) で 2回、 DCM (1 ml)で 2回、 EtOH (1 ml)で 2回、 DCM (1 ml)で 2回洗浄した後、減圧 下乾燥させて Fmoc-Lys(Ac-TYp(Boc)- )- Aca_ Aca-lanternを得た。 Next, the mixture was stirred with 20% piperidine ZDCM (1 ml) for 30 minutes to remove the Fmoc group. After washing 3 times with DCM (1 ml) and 2 times with DMF (1 ml), Fmoc_Aca_OH (19 mg, 54 μmol), HATU (20 mg, 54 μmol), HO At (7 mg , 54 μmol) and DIEA (16 μ \, 90 μmol) were dissolved in DMF (1 ml) and reacted for 1 hour. Then, it was washed three times with DMF (1 ml) and three times with DCM (1 ml) to obtain Fmoc-Aca-Aca-lantern. Next, the mixture was stirred with 20% piperidine / DCM (1 mL) for 30 minutes to remove the Fmoc group. The lantern was swollen by washing three times with DCM (1 ml) and once with DMF (1 ml), and Fmoc-Lys (Ac--TYp (Boc)-)-OH (38 mg) dissolved in 1 ml of DMF , 54 μmol), DCC (11 mg, 54 μmol), and HOBt-HO (8.3 mg, 54 μmol) were reacted for 24 hours. After the reaction is completed, wash twice with DMF (1 ml), twice with DCM (1 ml), twice with EtOH (1 ml), and twice with DCM (1 ml), and then dried under reduced pressure to remove Fmoc- Lys (Ac-TYp (Boc)-)-Aca_Aca-lantern was obtained.
次に、 20%ピぺリジン ZDCM (1 ml)を用いて 30分撹拌して Fmoc基の除去を行った 。その後、 DCM(1 ml)で 3回、 DMF (1 ml)で 2回洗浄を行った後、 Fmoc_Phe-〇H (21 mg, 54 μ mol), HATU (20mg, 54 μ mol), HOAt (7 mg, 54 μ mol), DIEA (16 μ \, 90 μ mol)を DMF (1 ml)に溶解させて加え 1時間反応させた。その後、 DMF (1 ml)で 3回、 DCM (1 ml)で 3回洗浄し Fmoc_Phe_Lys(Ac_Trp(Boc)-)-Aca-Aca-lanternを得た。  Next, the mixture was stirred with 20% piperidine ZDCM (1 ml) for 30 minutes to remove the Fmoc group. Then, after washing three times with DCM (1 ml) and twice with DMF (1 ml), Fmoc_Phe-〇H (21 mg, 54 μmol), HATU (20 mg, 54 μmol), HOAt (7 mg, 54 μmol) and DIEA (16 μ \, 90 μmol) were dissolved in DMF (1 ml), and the mixture was reacted for 1 hour. Thereafter, the resultant was washed three times with DMF (1 ml) and three times with DCM (1 ml) to obtain Fmoc_Phe_Lys (Ac_Trp (Boc)-)-Aca-Aca-lantern.
¾ Fmoc-Phe-Lys(Ac-Trp(Boc)-)-Aca-Aca-ianternに moc-Pro— OH、 Fmoc-Ala-OHを導入する実施例 3と同様の操作を繰り返してペプチドを伸長させ、 更に Dns-Clを反応させることにより  M Introduction of moc-Pro-OH and Fmoc-Ala-OH into Fmoc-Phe-Lys (Ac-Trp (Boc)-)-Aca-Aca-iantern And by further reacting with Dns-Cl
Dns_Ala_Ala_Pro_Pne_Lys(Ac_Trp(Boc)_ノ一 Aca_Aca_ lantern 得/こ。  Dns_Ala_Ala_Pro_Pne_Lys (Ac_Trp (Boc) _ ノ 一 Aca_Aca_lantern
DMF (1 ml)で 3回、 DCM (1 ml)で 3回 lanternを洗浄し、 25% TFA/DCMを用いて 3 0分反応させて Boc基の除去を行った。その後、 DCM(1 ml)で 3回、 H 0 (1 ml)で 5回 The lantern was washed three times with DMF (1 ml) and three times with DCM (1 ml), and reacted with 25% TFA / DCM for 30 minutes to remove the Boc group. Then 3 times with DCM (1 ml) and 5 times with H 0 (1 ml)
、 DCM(1 ml)で 3回洗浄し、減圧乾燥を行い、第 3ィ匕合物と第 5ィ匕合物とが結合した( Ala-Ala-Pro-Phe-Lys-Aca-Aca)の側鎖に第 2蛍光基としての TYpと、末端に第 3蛍 光基としての Dnsとを備えた目的とする実施例 7の酵素活性検出用基板 After washing three times with DCM (1 ml) and drying under reduced pressure, the third compound and the fifth compound were combined (Ala-Ala-Pro-Phe-Lys-Aca-Aca). The substrate for enzyme activity detection of Example 7 having TYp as a second fluorescent group on the side chain and Dns as a third fluorescent group at the end.
Dns_Ala_Ala_Pro_Pne_Lys(Ac_Trp_)_Aca_Aca_ lanternを守た。  Dns_Ala_Ala_Pro_Pne_Lys (Ac_Trp _) _ Aca_Aca_lantern was protected.
[0070] <酵素活性の測定 > <Measurement of enzyme activity>
蛍光測定用マイクロプレートにゥエルを 4つ (A— D)準備し、ゥエル A, Cに実施例 4 の酵素活性検出用基板(導入率 2 x molZ基板)を、ゥエル B, Dに実施例 7の酵素活 性検出用基板(導入率 2 μ mol/基板)を入れ、各々に 20 mM Tris HC1 buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl )を 100 μ 1,メタノール 100 μ 1を加え、さらに以下の  Prepare four wells (A-D) in the fluorescence measurement microplate, use the enzyme activity detection substrate of Example 4 (introduction rate 2 x molZ substrate) in wells A and C, and use Example 7 in wells B and D. Of the enzyme activity detection substrate (introduction rate 2 μmol / substrate), add 100 μl of 20 mM Tris HC1 buffer (pH 7.2, 100 mM NaCl, 50 mM CaCl) and 100 μl of methanol to each. Further below
2  2
酵素 50 μ gをカ卩えて反応させた。  The enzyme was reacted with 50 µg of enzyme.
A:キモトリブシン B :キモトリブシン A: Chymotrypsin B: Chymotrypsin
C :トリプシン  C: trypsin
D :トリプシン  D: trypsin
蛍光値は、 FP-6600蛍光分光光度計 (Jasco製)を用いて励起波長 280nm、蛍光波 長 350nmで、酵素をカ卩える前の蛍光値と酵素をカ卩えてから 20分後の蛍光値とを測 定し、その差を求めた。  Fluorescence values were obtained using an FP-6600 fluorescence spectrophotometer (manufactured by Jasco) at an excitation wavelength of 280 nm and a fluorescence wavelength of 350 nm. The fluorescence value before the enzyme was removed and the fluorescence value 20 minutes after the enzyme was removed. And the difference was determined.
各ゥエルにおける算出された蛍光値の差を (表 3)に示す。  The difference between the calculated fluorescence values in each well is shown in (Table 3).
[0071] [表 3]
Figure imgf000033_0001
[Table 3]
Figure imgf000033_0001
[0072] (表 3)によれば、キモトリブシンに対しては、結合した第 3化合物と第 5化合物に、芳 香族アミノ酸の 1種のフエ二ルァラニンを有する実施例 7の酵素活性検出用基板で大 きな蛍光値の変化が確認された。また、トリプシンに対しては、結合した第 3化合物と 第 5化合物にリジンを有する実施例 4の酵素活性検出用基板で大きな蛍光値の変化 が確認された。これらの変化の差は、実施例 3において推察したのと同様に、キモトリ プシンは主に芳香族アミノ酸残基の C末端側のペプチド結合を選択的に切断する特 異性を有しており、トリプシンは主にリジンの C末端側のペプチド結合を選択的に切 断する特異性を有していることから発現したものであると推察される。 According to (Table 3), for chymotrypsin, the substrate for enzyme activity detection of Example 7 in which the third compound and the fifth compound bound to each other had one kind of aromatic amino acid phenylalanine A large change in the fluorescence value was confirmed. Also, with respect to trypsin, a large change in the fluorescence value was confirmed on the enzyme activity detection substrate of Example 4 having lysine in the bound third and fifth compounds. The difference between these changes is that chymotrypsin mainly has the characteristic of selectively cleaving the peptide bond at the C-terminal side of the aromatic amino acid residue, as inferred in Example 3. Is presumed to be expressed mainly because it has the specificity of selectively cleaving the peptide bond at the C-terminal side of lysine.
これにより、蛍光基が結合したペプチド等のアミノ酸配列の種類を変えることにより、 酵素の種類に対する活性検出能を変えられることが明らかになった。本実施例では キモトリブシンやトリプシンのように配列中のアミノ酸残基 1つの違いで結果が変化す る例を示したが、蛍光エネルギー移動が起こる範囲内で可能なかぎり、検出する酵素 に対応するために配列全長にわたって自由にアミノ酸配列を設計することができるの で、アミノ酸配列の設計によって無限の基質特異性を発現させ、多種多様な酵素の 検出が可能な酵素活性検出用基板が得られることが明らかになった。  As a result, it became clear that the ability to detect the activity for the type of enzyme can be changed by changing the type of the amino acid sequence of the peptide or the like to which the fluorescent group is bound. In this example, an example was shown in which the result changes depending on a single amino acid residue in the sequence, such as chymotrypsin or trypsin. Since the amino acid sequence can be freely designed over the entire length of the sequence, it is possible to obtain an enzyme activity detection substrate that can express infinite substrate specificity and detect a wide variety of enzymes by designing the amino acid sequence. It was revealed.
産業上の利用可能性  Industrial applicability
[0073] 本発明は、酵素活性を検出する酵素活性検出用基板及びそれを用いた酵素活性 の検出方法に関し、蛍光強度等の変化を指標として基板の蛍光強度等を測定する だけで酵素活性を検出することができ操作性に優れ、また、微量の検体溶液でも酵 素活性の検出を行うことができるとともに検体溶液を注入するゥエル等を形成する必 要がなく検出部の集積度を飛躍的に高めることができる酵素活性検出用基板を提供 することができ、微量の検体溶液でも酵素活性の検出を行うことができ、また検出感 度を高くできるとともに測定時間を短縮化することができ作業性を高め測定効率を高 めることができ、さらに種類の異なるペプチド等の各々に蛍光基が結合した酵素活性 検出用基板を用いることで複数の酵素を含む検体溶液の酵素活性を短時間で測定 できる酵素活性の検出方法を提供することができる。 The present invention relates to a substrate for detecting an enzyme activity for detecting an enzyme activity, and an enzyme activity using the same. With regard to the detection method, the enzyme activity can be detected simply by measuring the fluorescence intensity of the substrate using the change in the fluorescence intensity etc. as an index, and the operability is excellent, and the enzyme activity is detected even with a small amount of sample solution. It is possible to provide a substrate for detecting enzyme activity, which can greatly increase the degree of integration of the detection section without having to form a well for injecting a sample solution and the like. Detection, the detection sensitivity can be increased, the measurement time can be shortened, the workability can be improved and the measurement efficiency can be increased. By using the enzyme activity detection substrate to which the enzyme is bound, it is possible to provide an enzyme activity detection method that can measure the enzyme activity of a sample solution containing a plurality of enzymes in a short time.

Claims

請求の範囲 The scope of the claims
[1] 基板と、前記基板に直接結合した、又は、前記基板に一端が固定化された第 1ィ匕 合物を介して前記基板に結合した第 1蛍光基と、前記第 1蛍光基と酵素によって切 断されるペプチド結合で結合した第 2化合物と、を備えてレ、ることを特徴とする酵素 活性検出用基板。  [1] A substrate, a first fluorescent group directly bonded to the substrate, or bonded to the substrate via a first conjugate having one end fixed to the substrate, and the first fluorescent group. A substrate for detecting enzyme activity, comprising: a second compound bound by a peptide bond that is cleaved by an enzyme.
[2] 基板と、前記基板に一端が固定化された第 3化合物の側鎖に導入され前記第 3ィ匕 合物を介して前記基板に結合した、又は、第 4化合物と結合し前記基板に直接結合 した第 2蛍光基と、前記第 3化合物又は前記第 4化合物と酵素によって切断されるべ プチド結合で結合した第 5化合物と、前記第 5化合物に結合し前記第 2蛍光基と蛍光 共鳴エネルギー移動がみられる第 3蛍光基と、を備えてレ、ることを特徴とする酵素活 性検出用基板。  [2] The substrate, which is introduced into a side chain of a third compound having one end immobilized on the substrate and bonded to the substrate via the third compound, or bonded to a fourth compound and bonded to the substrate. A second fluorescent group directly bonded to the third compound, a fifth compound bonded to the third compound or the fourth compound by a peptide bond that is cleaved by an enzyme, and a second fluorescent group bonded to the fifth compound. A substrate for enzyme activity detection, comprising: a third fluorescent group that exhibits resonance energy transfer.
[3] 基板と、前記基板に一端が固定化された第 6化合物と、前記第 6化合物に導入され た第 4蛍光基と、前記第 4蛍光基に結合した第 7化合物と、前記第 7化合物と酵素に よって切断されるペプチド結合で結合した第 8化合物と、前記第 8化合物に結合し前 記第 4蛍光基と蛍光共鳴エネルギー移動がみられる第 5蛍光基と、を備えていること を特徴とする酵素活性検出用基板。  [3] a substrate, a sixth compound having one end immobilized on the substrate, a fourth fluorescent group introduced into the sixth compound, a seventh compound bonded to the fourth fluorescent group, An eighth compound bonded to the compound by a peptide bond that is cleaved by an enzyme; and a fifth fluorescent group bonded to the eighth compound and having the fourth fluorescent group and fluorescence resonance energy transfer observed. A substrate for detecting enzyme activity.
[4] 前記第 5化合物又は前記第 8化合物が、前記第 4化合物又は前記第 7化合物と前 記酵素によって切断されるペプチド結合で結合しているのに代えて、前記第 4化合 物が前記第 2蛍光基と前記酵素によって切断されるペプチド結合で結合している、又 は、前記第 7化合物が前記第 4蛍光基と前記酵素によって切断されるペプチド結合 で結合していることを特徴とする請求項 2又は 3に記載の酵素活性検出用基板。  [4] Instead of the fifth compound or the eighth compound being linked to the fourth compound or the seventh compound by a peptide bond that is cleaved by the enzyme, the fourth compound is Wherein the second fluorescent group is bound by a peptide bond cleaved by the enzyme, or the seventh compound is bound to the fourth fluorescent group by a peptide bond cleaved by the enzyme. 4. The substrate for detecting an enzyme activity according to claim 2 or 3, wherein
[5] 前記第 2化合物、前記第 5化合物、前記第 8化合物の末端基、及び/又は、前記 第 3化合物の側鎖に導入された前記第 2蛍光基が、ァセチル化されていることを特徴 とする請求項 1乃至 4の内いずれか 1に記載の酵素活性検出用基板。  [5] The terminal group of the second compound, the fifth compound, the eighth compound, and / or the second fluorescent group introduced into a side chain of the third compound is acetylated. The substrate for detecting an enzyme activity according to any one of claims 1 to 4, characterized in that:
[6] 請求項 1乃至 5の内のいずれか 1に記載の酵素活性検出用基板に酵素を含む検 体溶液を接触させ反応させる工程と、前記酵素活性検出用基板の蛍光測定を行うェ 程と、を備えていることを特徴とする酵素活性の検出方法。  [6] A step of contacting an enzyme-containing sample solution with the substrate for enzyme activity detection according to any one of claims 1 to 5 to cause a reaction, and performing a fluorescence measurement of the substrate for enzyme activity detection. And a method for detecting enzyme activity.
PCT/JP2005/001258 2004-05-13 2005-01-28 Substrate for enzymatic activity detection and method of detecting enzymatic activity therewith WO2005111229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-144191 2004-05-13
JP2004144191A JP2004357706A (en) 2003-05-13 2004-05-13 Substrate for detection of enzymic activity and method for detecting enzymic activity using the same

Publications (1)

Publication Number Publication Date
WO2005111229A1 true WO2005111229A1 (en) 2005-11-24

Family

ID=35394168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001258 WO2005111229A1 (en) 2004-05-13 2005-01-28 Substrate for enzymatic activity detection and method of detecting enzymatic activity therewith

Country Status (1)

Country Link
WO (1) WO2005111229A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246280A (en) * 1988-06-20 1990-02-15 Becton Dickinson & Co Instrument for increasing fluorescence and reaction speed and use method thereof
JP2003503013A (en) * 1999-05-05 2003-01-28 オーロラ バイオサイエンシズ コーポレーション Optical probes and assays
JP2004504854A (en) * 2000-05-03 2004-02-19 エクスプレッシブ コンストラクツ,インコーポレイテッド Bacterial contamination detection device and method of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246280A (en) * 1988-06-20 1990-02-15 Becton Dickinson & Co Instrument for increasing fluorescence and reaction speed and use method thereof
JP2003503013A (en) * 1999-05-05 2003-01-28 オーロラ バイオサイエンシズ コーポレーション Optical probes and assays
JP2004504854A (en) * 2000-05-03 2004-02-19 エクスプレッシブ コンストラクツ,インコーポレイテッド Bacterial contamination detection device and method of use

Similar Documents

Publication Publication Date Title
Liu et al. Peptide-based biosensors
Flierman et al. Non-hydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets
JP3771262B2 (en) Compositions for the detection of proteases in biological samples and methods of use thereof
Thongyoo et al. Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides
US6680178B2 (en) Profiling of protease specificity using combinatorial fluorogenic substrate libraries
AU745148B2 (en) Compositions for the detection of enzyme activity in biological samples and methods of use thereof
US9376706B2 (en) Protease detection
JP4912362B2 (en) Peptide-immobilized substrate and target protein measurement method using the same
AU2008221036B2 (en) Imaging probes
Hauske et al. Selectivity profiling of DegP substrates and inhibitors
KR20050034642A (en) Peptide compounds and their use as protease substrates
Ternon et al. Dendrimers and combinatorial chemistry—tools for fluorescent enhancement in protease assays
JP5337960B2 (en) Method for measuring histone deacetylase activity
JPWO2005071056A1 (en) Biochip and method for testing functionality of sample solution using the same
WO2005111229A1 (en) Substrate for enzymatic activity detection and method of detecting enzymatic activity therewith
JP2004357706A (en) Substrate for detection of enzymic activity and method for detecting enzymic activity using the same
JPH10313896A (en) New synthetic substrate for measurement of activity having chromophore of fluorophore to matrix metalloprotease
CN102985825B (en) A kind of bioanalysis reagent and using method thereof
Beythien et al. A solid phase linker strategy for the direct synthesis of EDANS-labelled peptide substrates
Yoo et al. New strategy to design fluorescent substrates of carboxypeptidases using a combination of dansylated peptides and albumin
Kassem et al. To rink or not to rink amide link, that is the question to address for more economical and environmentally sound solid-phase peptide synthesis
Wysocka et al. Pegylated fluorescent peptides as substrates of proteolytic enzymes
Anjuère et al. Water-soluble macromolecular fluorogenic substrates for assaying proteinases: determination of pancreatic elastase activity
Sato Development of Novel Doubly Labelled Peptide Probes with Identical Fluorophores for Protease Activity Measurement
Rosa-Bauza Development of tools for studying protease activity and specificity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase