WO2005110637A1 - Fabrication de tuyaux a plusieurs parois - Google Patents

Fabrication de tuyaux a plusieurs parois Download PDF

Info

Publication number
WO2005110637A1
WO2005110637A1 PCT/GB2005/001773 GB2005001773W WO2005110637A1 WO 2005110637 A1 WO2005110637 A1 WO 2005110637A1 GB 2005001773 W GB2005001773 W GB 2005001773W WO 2005110637 A1 WO2005110637 A1 WO 2005110637A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pipes
bending
outer pipe
straight
Prior art date
Application number
PCT/GB2005/001773
Other languages
English (en)
Inventor
Graeme John Collie
Original Assignee
Fmc Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fmc Technologies, Inc. filed Critical Fmc Technologies, Inc.
Publication of WO2005110637A1 publication Critical patent/WO2005110637A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/154Making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/151Making tubes with multiple passages

Definitions

  • the present invention relates to a method for manufacturing lined and multi-walled pipes and tubes, and to novel pipes which may be manufactured by that method.
  • pipes need to convey corrosive, erosive, extreme temperature/pressure or otherwise aggressive fluids. This often means that the pipe must be made from expensive materials. It is therefore known to use a double-walled or lined pipe where an inner pipe is made of a special material to protect against the fluid.
  • the composite pipe so formed can also have inbuilt residual stresses which help to increase its bursting strength. Since the outer pipe or pipes are made to withstand internal pressures the innermost pipe can be made very thin and therefore inexpensive.
  • the inner pipes can be press-fitted into the outer pipes but, more commonly, are initially of a lesser diameter and expanded into contact with the outer pipe after insertion in it, by passing a suitable expansion tool or mandrel through the inner pipe.
  • German laid open patent application No. 39 27 989 discloses a method for manufacturing a double-walled pipe where a straight inner pipe is inserted into a straight outer pipe and bending the combination in at least one place with a mechanical bender.
  • the inner pipe is press-fitted or pulled into the outer pipe as an interference fit, before bending.
  • a mandrel is inserted into the inner pipe for support.
  • the object of the present invention is to provide a simpler and more cost-efficient method of manufacturing a lined or double- or multi-walled pipe or tube that can be bent into different shapes.
  • the process enables thin-walled pipes to be used as the inner pipes and eliminates the problems of creating local stresses or deformities of the pipe during the bending process.
  • a method for manufacturing a lined or multi-walled pipe comprises the steps of: providing a first straight pipe and a second straight pipe; inserting the second straight pipe into the first straight pipe, and bending the first straight pipe and the inserted second straight pipe, characterised by the step of: expanding the second pipe into contact with the first pipe.
  • the invention provides a method for manufacturing a lined or multi-walled pipe comprising the steps of: forming a first pipe around a second pipe which has previously been bent to a desired shape, characterised by the step of: expanding the second pipe into contact with the first pipe.
  • More than one second pipe may be provided within the first pipe.
  • the invention may provide a pipe bundle for conveying a plurality of separate fluid flows, comprising an outer pipe and a plurality of generally parallel inner pipes received within the outer pipe and in pre-stressed contact with the outer pipe.
  • the invention may provide a pipe bundle for conveying a plurality of separate fluid flows, comprising an outer pipe and a plurality of generally parallel inner pipes received within the outer pipe, in which transverse cross sections of inner pipes have adjacent wall parts extending generally parallel to each other.
  • Fig. 1 shows a standard thick-walled pipe
  • Fig. 2 shows the first step of a process embodying the invention where an inner pipe is inserted into the outer pipe;
  • Fig. 3 shows a second step of the process
  • Fig. 4 shows a third step of the process
  • Fig. 5 shows a fourth and final step of the process
  • Fig. 6 shows an assembly of an outer pipe and multiple nested inner pipes prior to processing in accordance with a second embodiment of the invention
  • figs. 7 and 8 show an assembly of an outer pipe and multiple parallel inner pipes- prior to processing in accordance with a second embodiment of the invention.
  • the pipe 1 shown in the figures is a relatively thick-walled pipe made e.g. from iron, carbon steel or standard stainless steel.
  • the pipe can be rolled, welded or made in any standard pipe manufacturing process.
  • the minimum thickness of the pipe must be designed to withstand the intended internal pressure and should conform to accepted industry standards for its pressure class. It is also possible to make the pipe from plastic, such as PVC, PTFE or other plastic material, as long as it can be made to withstand intended internal pressure.
  • the pipe can also be formed from composite materials, such as glass or carbon fibre filament wound or otherwise reinforced plastics, if necessary formed (laid up) with the required bends prior to curing.
  • a second pipe 2 is inserted into pipe 1.
  • Pipe 2 is made from a material that is corrosion resistant or resistant to chemicals or otherwise compatible with the properties of the fluid that will be conveyed through the resultant pipe.
  • the combination is now bent into its final shape as shown in Fig. 3.
  • the shape may be any two- or three-dimensionally bent shape fit for the purpose.
  • the bending may be done in a conventional way by placing the pipe between rollers 3, 4, 5 and 6 and applying pressure at points 7 to 12 such that the pipe is bent into its final shape. Heat may also be applied during the bending process. This reduces the forces required for bending, eliminates potential problems of work-hardening of the outer pipe and provides a post-work heat treatment so minimizing undesired residual stresses.
  • the inner pipe 2 will also be bent at certain points in the process. During this stage the inner pipe may just be held loosely in position, taking no special care except to keep the inner pipe inside the outer pipe.
  • the inner pipe may likewise be pre-bent, with e.g. a sectional, temporary, internal former placed around the bent inner pipe for subsequent layup of the outer pipe.
  • the temporary former can be removed if necessary, e.g. by dissolution, melting or breaking it up.
  • pressure is applied to the inner pipe interior to expand the inner pipe mio engagement with the inner wall of the outer pipe. This is done by attaching pressure fittings to each end of the inner pipe and pressurising to expand the pipe beyond yield, so generating plastic deformation. Preferably the pressure is then increased to cause temporary elastic deformation of the outer pipe.
  • the degree of expansion of the two pipes must be such that the outer pipe remains within its elastic limit.
  • the outer pipe recovers elastically so as to remain in continual contact with the inner pipe. Particularly if the yield stress of the outer pipe is higher than that of the inner pipe, residual compressive hoop stress can be left in the inner pipe as a result of the outer pipe's elastic recovery.
  • the inner pipe is therefore in pre-stressed contact with the outer pipe. This may increase the bursting resistance of the finished assembly, and helps to maintain a good joint between the inner and outer pipes.
  • the inner pipe OD is preferably kept as close as possible to the outer pipe ID as is allowed by the pipe geometry.
  • the material of the inner pipe is preferably ductile, such as copper or annealed Inconel 625. However other materials are also suitable, depending for example on the properties of the fluid to be conveyed by the pipe in service.
  • the inner pipe can be expanded to a tight fit within the outer pipe before bending.
  • the flanges may be manufactured entirely from a corrosion resistant alloy, or from e.g. carbon steel overlaid with a corrosion resistant alloy.
  • vent holes at critical points, which will typically be at the apex of the bends, or perhaps along the bend inside radius, depending upon the configuration adopted by the inner pipe prior to and during expansion.
  • the holes can later be capped by a weld or plug.
  • the inner pipe can be filled with sand or like relatively incompressible material which binds together or resists flow under pressure, or a removable flexible internal support such as a bending spring or springs can be used during bending.
  • a support if hollow can be left in place during the expansion step, after which it will be easier to recover from inside the now larger diameter inner pipe.
  • the pipe annulus could for example be filled (particularly at or near the regions to be bent) with a semi-rigid, preferably open-celled, plastics foam, such as PU foam, which is later removed using a suitable solvent.
  • Other temporary centering supports which are later removable e.g. by dissolving, melting, breaking or burning will be readily apparent.
  • an HNBR or other elastomeric "sleeve" can be located between the OD of the inner pipe and ID of the outer pipe.
  • the elastomer can also be fitted to the inner pipe or the outer pipe can be lined with the elastomer before inserting the inner pipe.
  • the size and material characteristics of the elastomer can be selected in order that the trapped elastomer provides a pressure tight barrier should the inner pipe leak in operation.
  • one of the pipes can be coated with a material such as an adhesive that will cure during bonding, or a setting or non-setting mastic, to ensure a leak-tight end product.
  • the pipes may be heat treated after the expansion step, to promote fusion between the inner and outer pipes, as disclosed in US4784311, with or without an interposed layer of brazing material.
  • Fig. 6 shows a cross-section through an outer pipe 1 and plural nested pipes 2a,.2b which can be successively or simultaneously expanded into firm or pre-stressed contact with the outer pipe 1, using substantially the same methods and variants as discussed above in relation to Figs. 1 to 5.
  • the intermediate pipe 2a may also be metallurgically more compatible with each of the pipes 1, 2b than these are with each other, permitting more effective diffusion bonding, or reducing electrolytic corrosion effects.
  • the material of pipe 2a may additionally or alternatively have a lower melting point than those of the other pipes, to serve as a brazing layer to bond the pipes together on heating.
  • Fig. 7 shows an arrangement in which two inner pipes 2c, 2d extend parallel to one another inside an outer pipe 1, as may be useful for conveying multiple separate fluids in a pipe bundle.
  • the pipes 2c, 2d are separated from each other by a stiffening member or wall 16 and together the inner pipes and stiffening wall are initially a clearance or sliding fit within the outer pipe 1.
  • the wall 16 is stiff in comparison to the walls of the inner pipes 2c, 2d, so that it is not subjected to any significant plastic deformation when the inner pipes 2c, 2d are expanded into contact with it and the inner surface of the outer pipe 1 using pressurised fluid in the manner described above.
  • Expansion preferably takes place in a controlled way, with the larger inner pipe 2c interior being pressurised first, sufficient to hold the stiffening wall 16 in place against the inside of the outer pipe 1 and to fully expand the inner pipe 2c.
  • the fluid pressure in the inner pipe 2c is maintained whilst the smaller inner pipe 2c is next also expanded into contact with the outer pipe 1 and stiffening wall 16.
  • the pressure in both inner pipes may then be increased substantially equally and simultaneously so as to elastically deform the outer pipe 1 and lock in a compressive pre-stress on the inner pipes 2c, 2d and stiffening wall 16, on release of the internal pressure.
  • the wall 16 is stiff compared to the walls of the inner pipes 2c, 2d and serves to control and even out expansion of the inner pipes, it is nevertheless relatively flexible in comparison to the overall pipe assembly and so does not hinder the bending operations. This is particularly so if the inner pipes 2c, 2d and wall 16, optionally together with the outer pipe 1, are twisted around the axis of the outer pipe, so that the stiffening wall 16 presents its minimum second moment of cross-sectional area to the local bending direction (i.e. the major plane of the wall 16 lies substantially perpendicular to the bend radius). The transverse section of the wall 16 also remains relatively flat during the bending operation, so that the cross-sections of the expanded inner pipes 2c, 2d maintain their proper shapes.
  • the unexpanded cross-sections of the inner pipes 2c, 2d are generally D-shaped so as to follow the contours of the adjacent interior wall of the outer pipe 1 and of the adjacent surfaces of the stiffening wall 16.
  • dissimilar (e.g. oval, trapezoidal or even circular) inner pipe cross sections can be used.
  • the inner pipes 2, 2a, 2b, 2c, 2d may be provided with one or more longitudinally extending pleats, concavities or the like which straighten out on internal pressurisation of the pipes, to aid their expansion.
  • the embodiment shown in Fig. 8 is generally similar in structure and in its expansion and bending operations to the embodiment shown in Fig. 7.
  • Three parallel inner pipes 2e, 2f, 2g and two intervening stiffening walls 16a, 16b are received within an outer pipe 1.
  • the cross-section of outer pipe 1 is oval rather than circular and if necessary is orientated (twisted) to the local bending radius direction together with the stiffening walls 16a, 16b to provide the lowest overall second moment of cross sectional area, or to minimise the second moments of cross sectional area of the stiffening walls 16a, 16b alone, as desired.
  • the middle inner pipe 2f is pressurised and expanded first, followed by the other inner pipes 2e, 2g, and then all three inner pipes together to elastically deform the outer pipe 1.
  • inner pipes can be readily accommodated, including parallel and nested inner pipes within the same outer pipe.
  • stiffening walls are shown as separate members in Figs. 7 and 8, they could be combined with the inner pipes 2c - 2e, e.g. as a thicker wall of these pipes that does not yield as the remainder of the pipe is hydraulicalfy expanded. Where the inner pipes are provided with expansion pleats, concavities, etc., stiffening walls may not be necessary.
  • the pipe assemblies with generally parallel inner pipes may be provided with end flanges having the appropriate number and configuration of flow apertures, for use with an appropriately configured sealing gasket or gaskets. Pipe bundles as shown for example in Figs.
  • pipe as used throughout this specification, including the claims, is to be broadly construed and includes any hollow elongate member, including members whose cross secLi ⁇ nal areas and/or cross sectional shapes vary along their lengths.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

Cette invention concerne un procédé qui sert à fabriquer un tuyau à plusieurs parois et qui consiste à cet effet à introduire un second tuyau (2) dans un premier tuyau (1), à couder le second tuyau et à produire l'expansion du premier tuyau pour qu'il vienne en contact avec le second tuyau. Cette invention concerne également des faisceaux de tuyaux destiné à transporter plusieurs flux de fluides séparés.
PCT/GB2005/001773 2004-05-14 2005-05-10 Fabrication de tuyaux a plusieurs parois WO2005110637A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0410828A GB2413976A (en) 2004-05-14 2004-05-14 Manufacture of pipes
GB0410828.8 2004-05-14

Publications (1)

Publication Number Publication Date
WO2005110637A1 true WO2005110637A1 (fr) 2005-11-24

Family

ID=32527083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2005/001773 WO2005110637A1 (fr) 2004-05-14 2005-05-10 Fabrication de tuyaux a plusieurs parois

Country Status (2)

Country Link
GB (1) GB2413976A (fr)
WO (1) WO2005110637A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064293A1 (fr) 2009-11-26 2011-06-03 Dalmine S.P.A. Procédé de cintrage de tubes chemisés

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010007501B4 (de) * 2010-02-11 2021-07-15 Eberspächer Exhaust Technology GmbH & Co. KG Rohrstabilisierungsvorrichtung und Biegeverfahren unter Verwendung der Rohrstabilisierungsvorrichtung
CN105344762B (zh) * 2015-11-27 2018-02-06 中船重工西安东仪科工集团有限公司 一种薄壁钢管的立体成型工装及成型方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435904A (en) * 1945-06-13 1948-02-10 Taylor Forge & Pipe Works Method of producing lined pipe bends
US2722733A (en) * 1950-11-08 1955-11-08 Cleaver Brooks Co Method of making heat exchanger tube
US4377894A (en) * 1980-03-21 1983-03-29 Kawasaki Jukogyo Kabushiki Kaisha Method of lining inner wall surfaces of hollow articles
WO1997034101A1 (fr) * 1996-03-12 1997-09-18 Coflexip Stena Offshore Limited Ameliorations relatives a un tuyau bimetallique double
JPH1034246A (ja) * 1996-07-26 1998-02-10 Aisin Seiki Co Ltd 曲がり多層管の製造装置および製造方法
WO1999064180A1 (fr) * 1998-06-05 1999-12-16 Fabricom Procede permettant de cintrer un tuyau double et, notamment, un tuyau bimetallique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4019196A1 (de) * 1990-06-15 1991-12-19 Ruppert Hans Peter Verfahren zum verbiegen verformbarer bzw. verbiegbarer rohre und vorrichtung zu seiner durchfuehrung
DE4019899C1 (fr) * 1990-06-22 1991-12-19 Benteler Ag, 4790 Paderborn, De
ZA9295B (en) * 1991-01-11 1992-10-28 Scambia Ind Dev Ag Process for the production of a double-walled pipe section and apparatus for carrying out such a process
US5170557A (en) * 1991-05-01 1992-12-15 Benteler Industries, Inc. Method of forming a double wall, air gap exhaust duct component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435904A (en) * 1945-06-13 1948-02-10 Taylor Forge & Pipe Works Method of producing lined pipe bends
US2722733A (en) * 1950-11-08 1955-11-08 Cleaver Brooks Co Method of making heat exchanger tube
US4377894A (en) * 1980-03-21 1983-03-29 Kawasaki Jukogyo Kabushiki Kaisha Method of lining inner wall surfaces of hollow articles
WO1997034101A1 (fr) * 1996-03-12 1997-09-18 Coflexip Stena Offshore Limited Ameliorations relatives a un tuyau bimetallique double
JPH1034246A (ja) * 1996-07-26 1998-02-10 Aisin Seiki Co Ltd 曲がり多層管の製造装置および製造方法
WO1999064180A1 (fr) * 1998-06-05 1999-12-16 Fabricom Procede permettant de cintrer un tuyau double et, notamment, un tuyau bimetallique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 06 30 April 1998 (1998-04-30) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064293A1 (fr) 2009-11-26 2011-06-03 Dalmine S.P.A. Procédé de cintrage de tubes chemisés

Also Published As

Publication number Publication date
GB2413976A (en) 2005-11-16
GB0410828D0 (en) 2004-06-16

Similar Documents

Publication Publication Date Title
EP1448328B1 (fr) Procede d'hydroformage d'articles et articles ainsi formes
EP1769181B1 (fr) Amelioration concernant des corps tubulaires et procedes de fabrication correspondants
US20070132228A1 (en) Production of clad pipes
DE102008019354B4 (de) Verfahren zum Zusammenfügen von Rohren
US6079095A (en) Forming a flange on a tubular member lined with a thermoplastic liner
US20170113257A1 (en) Method for producing a large multilayer pipe
US4538337A (en) Method of mechanically prestressing a tubular apparatus
JP6744500B2 (ja) 加工硬化溶接及びそのための方法
EP3389919B1 (fr) Méthode de raccordement et ensemble de raccordement tubulaire permettant d'améliorer le comportement à la fatigue de colonnes montantes métalliques
WO2005110637A1 (fr) Fabrication de tuyaux a plusieurs parois
BR112017012082B1 (pt) método para produzir tubo rígido revestido mecanicamente e junta de tubo rígido de tubo revestido mecanicamente
US10267440B2 (en) Apparatus and method for strengthening welded-lap joints for steel pipeline
JPH11290939A (ja) 長尺二重金属管の製造方法
AU725395B2 (en) Method and device for connecting a flexible pipe
CA1334297C (fr) Systeme de revetement des tubulures de puits
EP0728976B1 (fr) Améliorations dans, ou concernant, les raccords de tuyaux
JPH0334412B2 (fr)
EP2450609A1 (fr) Ensemble de connexion et corps tubulaire doté de celui-ci
AU2004240689A1 (en) Production of clad pipes
JPS5838618A (ja) 内管端部を補強した二重管の製造方法
JP2001001082A (ja) 金属管接合体の製造方法
JPH0857534A (ja) 異なる熱膨張率を持つ異種金属多重管の製造方法
MXPA06002190A (en) Expandable tubulars for use in geologic structures, methods for expanding tubulars, and methods of manufacturing expandable tubulars
JP2005329654A (ja) フッ素樹脂製配管用膨張継手の製造方法
JP2003004166A (ja) インサーション管およびその製造方法ならびに施工方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase