WO2005109399A1 - 音声合成装置および方法 - Google Patents

音声合成装置および方法 Download PDF

Info

Publication number
WO2005109399A1
WO2005109399A1 PCT/JP2005/006489 JP2005006489W WO2005109399A1 WO 2005109399 A1 WO2005109399 A1 WO 2005109399A1 JP 2005006489 W JP2005006489 W JP 2005006489W WO 2005109399 A1 WO2005109399 A1 WO 2005109399A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
speech
voice
voice quality
information
Prior art date
Application number
PCT/JP2005/006489
Other languages
English (en)
French (fr)
Inventor
Yoshifumi Hirose
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2005800150686A priority Critical patent/CN1954361B/zh
Priority to US11/579,899 priority patent/US7912719B2/en
Priority to JP2006512928A priority patent/JP3913770B2/ja
Publication of WO2005109399A1 publication Critical patent/WO2005109399A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • G10L13/02Methods for producing synthetic speech; Speech synthesisers
    • G10L13/033Voice editing, e.g. manipulating the voice of the synthesiser
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • G10L13/06Elementary speech units used in speech synthesisers; Concatenation rules
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/003Changing voice quality, e.g. pitch or formants
    • G10L21/007Changing voice quality, e.g. pitch or formants characterised by the process used
    • G10L21/013Adapting to target pitch
    • G10L2021/0135Voice conversion or morphing

Definitions

  • the present invention relates to a speech synthesizer, and more particularly to a speech synthesizer capable of reproducing a voice quality specified by an editor and continuously changing the voice quality when the voice quality is continuously changed.
  • FIG. 9 is a configuration diagram of a conventional voice quality variable speech synthesizer described in Patent Document 1.
  • the conventional voice quality variable speech synthesizer includes a text input unit 1, a voice conversion parameter input unit 2, a unit storage unit 3, a unit selection unit 4, a voice quality conversion unit 5, and a waveform synthesis unit 6. ing.
  • the text input unit 1 is a processing unit that receives phoneme information indicating the content of a word to be subjected to speech synthesis and prosody information indicating the accent / inflection of the entire utterance from the outside and outputs it to the unit selection unit 4. is there.
  • Voice conversion parameter input unit 2 is a processing unit that receives input of conversion parameters necessary for conversion to a voice quality desired by the editor.
  • the segment storage unit 3 is a storage unit that stores speech segments for various sounds.
  • the unit selection unit 4 is a processing unit that selects a speech unit that best matches the phoneme information and the prosody information output from the text input unit 1 from the unit storage unit 3.
  • Voice conversion section 5 uses the conversion parameter input from voice conversion parameter input section 2 to convert the speech segment selected by segment selection section 4 into a voice quality desired by the editor. It is.
  • the waveform synthesizing unit 6 is a processing unit that synthesizes a voice waveform from the speech unit whose voice quality has been converted by the voice quality converting unit 5.
  • the voice quality conversion unit 5 is selected by the unit selection unit 4 using the voice conversion parameters input by the voice quality parameter input unit 2.
  • the voice quality conversion unit 5 is selected by the unit selection unit 4 using the voice conversion parameters input by the voice quality parameter input unit 2.
  • a plurality of speech unit databases are prepared for each voice quality, and a speech unit database that best matches the input voice quality is selected and used, thereby performing voice synthesis with variable voice quality.
  • the method is also known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-66982 (Pages 1-10, FIG. 1)
  • the voice quality desired by the editor is significantly different from the voice quality of a standard voice quality (neutral voice quality) stored in the voice segment storage unit 3.
  • a standard voice quality neutral voice quality
  • the voice unit selected by the voice quality conversion unit 5 Needs to be very greatly deformed. Therefore, when the synthesized sound is generated by the waveform synthesizing unit 6, there is a problem that the sound quality is remarkably deteriorated.
  • the present invention has been made in order to solve the above-described problems, and has as its first object to provide a speech synthesis apparatus in which sound quality does not significantly decrease when a synthesized sound is generated.
  • a speech synthesis device is a speech synthesis device that synthesizes speech having a desired voice quality, and stores a plurality of voice segments of voice quality.
  • a segment storage unit a target segment information generation unit that generates speech segment information corresponding to the linguistic information based on the linguistic information including the phoneme information, and a speech unit corresponding to the speech unit information.
  • Unit selection means for selecting from the speech unit storage means, and Voice quality specifying means for receiving voice quality specification, voice quality converting means for converting the speech unit selected by the voice segment selecting means into a voice unit having the voice quality received by the voice quality specifying means, and voice quality converting means
  • a distortion determination unit that determines distortion of the converted speech unit converted by the first unit; and a target unit information generation unit when the converted speech unit is determined to be distorted by the distortion determination unit.
  • Target unit information correcting means for correcting the speech unit information generated by the above to speech unit information corresponding to the speech unit converted by the voice quality converting unit, and the unit selecting means comprises: When the speech unit information is modified by the target unit information modification unit, a speech unit corresponding to the modified speech unit information is selected from the speech unit storage unit.
  • the distortion determination means determines the distortion of the speech unit whose voice quality has been converted. If the distortion is large, the target unit information modification means modifies the speech unit information and selects the unit. The means further selects a speech unit corresponding to the modified speech unit information. For this reason, the voice quality conversion means can perform voice quality conversion based on a speech unit close to the voice quality specified by the voice quality specification means. For this reason, it is possible to provide a voice synthesizing apparatus that does not significantly lower the sound quality when a synthesized voice is generated.
  • the speech unit storage means stores speech units of a plurality of voice qualities, and performs voice quality conversion based on any one of the speech units. For this reason, even if the editor continuously changes the voice quality using the voice quality specifying means, the voice quality of the synthesized sound can be continuously changed.
  • the voice quality conversion means further converts a voice unit corresponding to the corrected voice unit information into a voice unit having a voice quality received by the voice quality designation means.
  • the conversion to the speech unit having the voice quality accepted by the voice quality specifying unit is performed again based on the reselected speech unit. Therefore, the voice quality of the synthesized speech can be continuously changed by repeating the reselection and reconversion of the speech unit. In addition, since the voice quality is continuously changed, the voice quality can be largely changed without deteriorating the sound quality.
  • the target segment information correcting unit is further modified by the voice quality converting unit when modifying the speech unit information generated by the target unit information generating unit.
  • the vocal tract feature of the corrected speech unit is added to the modified speech unit information.
  • the unit selection means can select a speech unit closer to the specified voice quality, and the sound quality is less reduced. In addition, it is possible to generate a synthesized sound close to the specified voice quality.
  • the distortion determination means determines the distortion based on the connectivity between adjacent speech units.
  • Distortion is determined based on the connectivity between adjacent speech units. For this reason, a synthesized sound can be obtained smoothly when reproduced.
  • the distortion judging means is further configured to calculate the voice unit force selected by the unit selecting unit based on a transformation rate of the voice unit converted by the voice quality converting unit into a voice unit. Distortion is determined.
  • the distortion is determined based on the deformation ratio of the speech unit before and after the conversion. For this reason, voice conversion is performed based on the speech unit closest to the target voice quality. Therefore, a synthesized sound can be generated with a small decrease in sound quality.
  • the unit selecting unit performs the correction only on the range in which the distortion is detected by the distortion determining unit.
  • the speech unit corresponding to the speech unit information is selected from the speech unit storage means.
  • the speech unit storage means includes basic speech unit storage means for storing speech units of standard voice quality, and a plurality of voice qualities different from the speech units of standard voice quality.
  • Voice unit for storing speech units of the speech unit.
  • the unit selection unit stores a speech unit corresponding to the speech unit information generated by the target unit information generation unit.
  • Basic speech unit selection means for selecting from the basic speech unit storage means, and a speech unit corresponding to the speech unit information corrected by the target unit information correcting means, Voice storage unit selection means for selecting voice quality unit selection means.
  • the speech unit selected for the first time is always a speech unit of standard voice quality. Therefore, the first speech unit selection can be performed at high speed. Also, convergence is fast even when synthetic voices of various voice qualities are generated. Therefore, a synthesized sound can be obtained at high speed.
  • standard speech units are always used as starting points for subsequent speech conversion and selection of speech units. For this reason, it is possible to generate a synthesized sound with a high degree of accuracy at which a voice that is not intended by the editor is likely to be synthesized.
  • the present invention can be realized as a voice synthesizing method having the characteristic means included in the voice synthesizing apparatus as a step, which can be realized as a voice synthesizing apparatus having such characteristic means.
  • it can be realized as a program that causes a computer to function as a means included in the speech synthesizer. It goes without saying that such a program can be distributed via a recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet.
  • the quality of the synthesized speech is degraded by reselecting the speech unit according to the distortion of the speech unit at the time of voice quality conversion. Can be converted to a continuous and wide range of voice quality desired by the user.
  • FIG. 1 is a configuration diagram of voice quality variable speech synthesis according to Embodiment 1 of the present invention.
  • FIG. 2 is a general configuration diagram of a segment selection unit.
  • FIG. 3 is a diagram showing an example of a voice quality designation unit.
  • FIG. 4 is an explanatory diagram of a range specification of a distortion determination unit.
  • FIG. 5 is a flowchart of a process executed by the voice quality variable speech synthesizer.
  • FIG. 6 is an explanatory diagram of a voice quality conversion process in a voice quality space.
  • FIG. 7 is a configuration diagram of voice quality variable speech synthesis according to Embodiment 2 of the present invention.
  • FIG. 8 is an explanatory diagram at the time of speech unit reselection.
  • FIG. 9 is a configuration diagram of a conventional voice quality variable speech synthesizer.
  • FIG. 1 is a configuration diagram of a voice quality variable speech synthesizer according to Embodiment 1 of the present invention.
  • the voice quality variable speech synthesizer 100 is a device that synthesizes speech having a voice quality desired by an editor, and includes a text analysis unit 101, a target unit information generation unit 102, a unit database 103, a unit selection It includes a unit 104, a voice quality specifying unit 105, a voice quality conversion unit 106, a waveform generation unit 107, a distortion determination unit 108, and a target segment information correction unit 109.
  • Text analysis unit 101 linguistically analyzes a text input from the outside, and outputs morphological information and phoneme information. Based on the linguistic information including the phoneme information analyzed by the text analysis unit 101, the target segment information generation unit 102 Generate speech unit information such as length and power.
  • the segment database 103 stores speech segments obtained by labeling previously recorded speech in units of phonemes or the like.
  • the unit selection unit 104 selects an optimum speech unit from the unit database 103 based on the target speech unit information generated by the target unit information generation unit 102.
  • the voice quality designation unit 105 receives designation of the voice quality of the synthesized sound desired by the editor.
  • the voice conversion unit 106 converts the speech unit selected by the unit selection unit 104 so as to match the voice quality of the synthesized sound specified by the voice quality specification unit 105.
  • Waveform generation section 107 generates a speech waveform from the speech unit sequence converted by voice quality conversion section 106, and outputs a synthesized sound.
  • the distortion determination unit 108 determines the distortion of the speech unit whose voice quality has been converted by the voice quality conversion unit 106.
  • the target segment information correcting unit 109 is a unit used by the unit selection unit 104 to select a unit when the distortion of the speech unit determined by the distortion determination unit 108 exceeds a predetermined threshold.
  • the voice segment conversion unit 106 corrects the speech segment information to convert the speech segment information into speech segment information.
  • the target segment information generation unit 102 predicts prosodic information of the input text based on the linguistic information sent from the text analysis unit 101.
  • the prosody information includes at least the duration time, the fundamental frequency, and the power information for each phoneme unit.
  • the duration time, the fundamental frequency, and the power information may be predicted for each mora unit or each syllable unit.
  • the target segment information generation unit 102 may perform any type of prediction. For example, the prediction may be performed by a method based on quantification type I.
  • the segment database 103 stores speech segments recorded in advance.
  • the storage format may be a method of storing the waveform itself, or a method of storing the sound source information and the vocal tract information separately. Further, the speech units to be stored are not limited to waveforms, and resynthesizable analysis parameters may be stored.
  • the segment database 103 stores, for each segment unit, a feature used when selecting a segment that is stored in addition to a speech segment alone.
  • Units are phonemes, syllables, and models. , Morphemes, words, etc., but are not particularly limited.
  • information such as a phoneme environment before and after a speech unit, a fundamental frequency, a duration time, and power are stored as basic features.
  • the detailed features include a formant pattern, a cepstrum pattern, a temporal pattern of a fundamental frequency, and a temporal pattern of power, which are features of the spectrum of a speech unit.
  • the unit selection unit 104 selects an optimal speech unit sequence from the unit database 103 based on the information generated by the target unit information generation unit 102. Although the specific configuration of the segment selection unit 104 is not specified, an example configuration is shown in FIG.
  • the unit selection unit 104 includes a unit candidate extraction unit 301, a search unit 302, and a cost calculation unit 303.
  • the unit candidate extraction unit 301 has a possibility of selecting from the speech database 103 by using items (for example, phonemes) related to phonemes from the speech unit information generated by the target unit information generation unit 102. This is a processing unit that extracts a certain candidate.
  • the search unit 302 is a processing unit that determines a speech unit sequence that minimizes the cost by the cost calculation unit 303 from the unit candidates extracted by the unit candidate extraction unit 301.
  • the cost calculation unit 303 calculates a distance between the unit candidate and the speech unit information generated by the target unit information generation unit 102, and a target cost calculation unit 304.
  • a connection cost calculator 304 for evaluating the connectivity at the time of connection is provided.
  • the search unit 302 searches for a speech unit sequence that minimizes a cost function represented by the sum of the target cost and the connection cost, and is similar to the target speech unit information, and Makes it possible to obtain a smooth synthesized sound.
  • the voice quality designation unit 105 receives designation of voice quality of a desired synthesized sound by the editor. Although there is no particular limitation on the specific specification method, an example is shown in FIG.
  • the voice quality specifying unit 105 is configured by a GUI (Graphical User Interface).
  • Basic axes that can be changed as voice quality of synthesized sounds (e.g., age, gender, emotion ), And the control value of each basic axis is specified by the position of the slider. There is no particular limitation on the number of basic axes.
  • the voice conversion unit 106 converts the speech unit sequence selected by the unit selection unit 104 so as to match the voice quality specified by the voice specification unit 105.
  • the method of conversion is not particularly limited.
  • a voice quality conversion method may be used by expanding and contracting the formant frequency.
  • the waveform generation unit 107 synthesizes the speech unit sequence converted by the voice quality conversion unit 106, and synthesizes a voice waveform.
  • the synthesis method is not particularly limited. For example, if the speech segment stored in the segment database 103 is a speech waveform, it may be synthesized by a waveform connection method. Alternatively, when the information stored in the segment database is sound source wave information and vocal tract information, resynthesis may be performed as a source filter model.
  • the distortion determination unit 108 compares the speech unit selected by the unit search unit 104 with the speech unit whose voice quality has been converted by the voice quality conversion unit 106, and determines a speech unit by deformation of the voice quality conversion unit 106. Is calculated.
  • the range for determining the distortion may be any of phonemes, syllables, mora, morphemes, words, phrases, accent phrases, exhalation paragraphs, and whole sentences.
  • the method of calculating distortion is not particularly limited, but is broadly classified into a method of calculating based on distortion at a connection boundary between speech units and a method of calculating based on the deformation rate of the speech unit. Specific examples are shown below.
  • the distortion is determined based on the cepstrum distance representing the spectrum shape at the unit connection point. That is, the cepstrum distance between the last frame of the segment before the connection point and the top frame of the segment after the connection point is calculated.
  • the distortion is determined based on the continuity of the formants at the element connection points. That is, the distance is calculated based on the difference of each form frequency between the last frame of the segment before the connection point and the first frame of the segment after the connection point.
  • the distortion is determined based on the continuity of the fundamental frequency at the element connection point. That is, the difference between the fundamental frequency of the last frame of the segment before the connection point and the fundamental frequency of the first frame of the segment after the connection point is calculated.
  • the distortion is determined based on the continuity of the power at the element connection point. That is, the difference between the power of the last frame of the segment before the connection point and the power of the first frame of the segment after the connection point is calculated.
  • the voice quality converting unit 106 When the voice unit selected by the voice unit selecting unit 104 is deformed by the deformation of the voice quality converting unit 106 and the voice quality specified by the voice quality specifying unit 105 is significantly different from that at the time of selection, the voice quality changes.
  • the volume increases, and when synthesized by the waveform generation unit 107, the quality of speech, particularly intelligibility, is reduced. Therefore, the speech unit selected by the unit selection unit 104 and the speech unit converted by the voice quality conversion unit 106 are compared, and distortion is determined based on the amount of change. For example, it can be determined by the following method. 2.1 cepstrum distance
  • the distortion is determined by the cepstrum distance between the speech unit before voice conversion and the speech unit after voice conversion.
  • the distortion is determined based on the distance based on the difference of the formant frequencies between the speech unit before voice conversion and the speech unit after voice conversion.
  • the distortion is determined based on the difference between the average values of the fundamental frequencies of the speech unit before voice conversion and the speech unit after voice conversion. Alternatively, the distortion is determined based on the difference between the time patterns of the fundamental frequency.
  • the distortion is determined based on the difference between the average values of the powers of the speech unit before and after the voice conversion. Alternatively, the distortion is determined based on the difference between the power time patterns.
  • the distortion determination unit 108 determines whether the speech unit is To reselect.
  • the distortion is calculated by combining the above methods, and when the distortion is larger than a predetermined threshold, the distortion determination unit 108 includes the unit selection unit 104 and the target unit information correction unit 10. You may instruct 9 to reselect speech unit information.
  • the target unit information correction unit 109 corrects the speech unit determined to be distorted by the distortion determination unit 108.
  • the target segment information generated by the target segment information generation unit 102 is corrected.
  • the operation of the distortion determination unit 108 with respect to the text “All realities have been twisted toward yourself” in FIG. 4 will be described.
  • the phoneme sequence is shown along the horizontal axis.
  • "" In the phoneme series indicates an accent position.
  • "Z" indicates an accent phrase boundary, and "," indicates a pause.
  • the vertical axis indicates the degree of distortion! / Of the speech unit calculated by the distortion determination unit 108.
  • the calculation of the degree of distortion is performed for each phoneme.
  • the distortion determination is performed in units of any of phonemes, syllables, mora, morphemes, words, phrases, accent phrases, phrases, exhalation paragraphs, and whole sentences.
  • the distortion in the range is determined by the maximum distortion degree included in the range or the average of the distortion degrees included in the range.
  • the accent phrase "to myself (jibuNnoho-e)" is set as the range of judgment, and the maximum value of the degree of distortion of the phoneme included in the range exceeds a predetermined threshold.
  • the accent phrase is determined to be distorted.
  • the target segment information correcting unit 109 corrects the target segment information in the corresponding range.
  • the fundamental frequency, duration, and power of the speech unit are used as new speech unit information.
  • the formant pattern / cepstrum pattern which is the vocal tract information of the converted speech unit, is newly added as speech unit information so that the converted voice quality can be reproduced by the voice quality conversion unit 106.
  • a time pattern of power fundamental wave time pattern / power pattern as sound source wave information that can be obtained only by the converted vocal tract information may be added to the speech unit information.
  • the target segment information generation unit 102 determines target speech unit information such as the phoneme environment, fundamental frequency, duration, and power of each phoneme based on the analysis result of the text analysis unit 101. For example, as phoneme segment information for the beginning of the sentence “a”, the phoneme environment is ““ a + sh ”( ⁇ indicates that the preceding phoneme is the beginning of the sentence, and“ + sh ”indicates that the succeeding phoneme is , the basic frequency is 120 Hz, the duration is 60 ms, and the power is 200.
  • the unit selection unit 104 selects a speech unit optimal for the target unit information output from the target unit information generation unit 102 from the unit database 103.
  • the unit candidate extraction unit 301 extracts, from the speech database 103, a speech unit that matches the phoneme environment of the speech unit information as a candidate for unit selection.
  • the search unit 302 determines, using a Viterbi algorithm or the like, a unit candidate whose cost value is minimized by the unit candidate power cost calculation unit 303 extracted by the unit candidate extraction unit 301.
  • the cost calculator 303 includes the target cost calculator 304 and the connection cost calculator 305 as described above.
  • the target cost calculation unit 304 compares the “a” of the speech unit information described above with candidate speech unit information, for example, and calculates the degree of coincidence.
  • connection cost calculation unit 305 evaluates the connectivity when two adjacent speech units, in the above example, two speech units “a” and “sh” are connected, and outputs the connection cost value. I do.
  • the evaluation can be made based on the cepstrum distance between the end of “a” and the start of “sh”.
  • the editor specifies a desired voice quality using the GUI of voice quality specifying section 105 as shown in FIG.
  • the age is slightly closer to the elderly, the gender is closer to the female, and the character is slightly darker.
  • Voice conversion section 106 converts the voice quality of the speech unit into the voice quality specified using voice quality specifying section 105.
  • the voice quality of the voice segment selected by the voice segment selecting unit 104 at the time of initial selection is significantly different from the voice quality specified by the voice quality specifying unit 105, the voice quality is corrected by the voice quality converting unit 106.
  • the amount of change in the speech unit becomes large, and even if the voice quality is the desired voice quality, the quality of the synthesized sound, for example, the intelligibility, is significantly deteriorated. Therefore, the distortion determination unit 108 determines, for example, the connectivity between “a” and “sh”, the speech unit “a” selected by the speech unit database, and the speech unit after the speech quality conversion by the voice quality conversion unit 106.
  • the voice quality designation unit 105 If the sound quality of synthesized speech is expected to be degraded due to the deformation rate of the segment of “a” (for example, the cepstrum distance between the segments), it is specified by the voice quality designation unit 105 from the segment database 103. Re-select the best speech unit for the current voice quality. Note that the method of determining distortion is not limited to this method.
  • the target segment information correcting unit 109 determines that the speech unit information of the speech unit “a” after the modification is, for example, a fundamental frequency of 110 Hz, a duration of 85 ms, and a power of 300. Change as follows. Also, a cepstrum coefficient representing the vocal tract feature of the speech unit “a” after the voice quality conversion and a formant trajectory are newly added. This makes it possible to consider voice quality information that cannot be estimated from the input text when selecting a unit.
  • the unit selection unit 104 reselects an optimal speech unit sequence from the unit database 103 based on the speech unit information corrected by the target unit information correction unit 109.
  • the voice quality of the speech unit at the time of reselection can be similar to the voice quality of the speech unit before the selection. It is possible. Therefore, when the desired voice quality is edited step by step using the GUI as shown in FIG. 3, a voice quality segment close to the voice quality of the synthesized voice of the specified voice quality can be selected. Therefore, it is possible to perform editing while continuously changing the voice quality, and it is possible to edit synthesized sounds that match the intuition of the editor.
  • the target cost calculation unit 304 calculates the target cost in consideration of the consistency of the vocal tract features that were not considered in the initial selection. Specifically, a cepstrum distance or a formant distance between the target segment “a” and the segment candidate “a” is calculated. This makes it possible to select a speech unit that is similar to the current voice quality and has a small amount of deformation and high sound quality.
  • voice quality specifying section 105 can be used even when the editor successively changes the voice quality of the synthesized sound.
  • the voice quality conversion unit 106 can always perform voice quality conversion based on the optimal voice unit. For this reason, it is possible to perform voice quality variable voice synthesis with high sound quality and a large variation in voice quality!
  • FIG. 5 is a flowchart of a process executed by the voice quality variable speech synthesizer 100.
  • the text analysis unit 101 linguistically analyzes the input text (Sl).
  • the target segment information generation unit 102 generates speech unit information such as the fundamental frequency and the duration of each speech unit based on the linguistic information analyzed by the text analysis unit 101 (S2).
  • the unit selection unit 104 best matches the speech unit information generated in the unit information generation process (S2).
  • a matching speech unit sequence is selected from the unit database 103 (S3).
  • the editor has a voice quality designating unit that also has GUI capability.
  • the voice quality conversion unit 106 converts the voice quality of the voice unit sequence selected in the voice unit sequence selection process (S3) based on the specified information (S4).
  • the distortion determination unit 108 determines whether or not the speech unit sequence subjected to voice conversion in the voice conversion process (S4) is distorted (S5). Specifically, distortion is calculated for the speech unit sequence by any of the methods described above, and if the distortion is larger than a predetermined threshold, it is determined that the speech unit sequence is distorted! /.
  • the target unit information correction unit 109 transmits the speech unit information generated by the target unit information generation unit 102. Is modified to speech unit information that matches the current voice quality (S6).
  • the segment selection unit 104 targets speech unit information corrected in the unit information correction process (S6) as a target, and reselects a speech unit from the unit database 103 (S7).
  • the waveform generation unit 107 synthesizes a voice using the selected voice unit (S8).
  • the editor listens to the synthesized speech and determines whether or not the voice quality is desired (S9). If the voice quality is the desired one (YES in S9), the process ends. If the voice quality is not the desired voice quality (NO in S9), the process returns to voice quality conversion processing (S4).
  • Voice quality conversion processing (S4) power By repeating the processing up to the voice quality judgment processing (S9), the editor can synthesize a voice having a desired voice quality.
  • FIG. 5 shows an operation in the case where the editor desires a synthetic sound of "masculine and bright voice quality" for the text "I have twisted all the realities toward myself.” This will be described according to the flowchart shown in FIG.
  • the text analysis unit 101 performs morphological analysis, reading determination, phrase determination, dependency analysis, and the like.
  • the target segment information generation unit 102 generates features of each phoneme such as a phoneme environment, a fundamental frequency, a duration time, and power for each of the phonemes " & ","&", and the like ( S2 ) o
  • the segment selection unit 104 selects an optimal speech segment sequence from the segment database 103 based on the speech segment information generated in the segment information generation processing (S2) (S3).
  • the editor specifies the target voice quality using the voice quality specifying unit 105 as shown in FIG. For example, suppose that the gender axis is moved to the male side and the personality axis is moved to the bright side. Then, the voice conversion unit 106 converts the voice quality of the speech unit sequence based on the voice quality specifying unit 105 (S4).
  • Distortion determination section 108 determines whether or not the speech unit sequence subjected to voice conversion in voice conversion processing (S4) is distorted (S5). For example, when the distortion determination unit 108 detects a distortion as shown in FIG. 4 (YES in S5), the process proceeds to a speech unit information correction process (S6). Alternatively, as shown in FIG. 4, when the strain has a force exceeding a predetermined threshold (NO in S5), the process proceeds to the waveform generation process (S8).
  • the target unit information correction unit 109 extracts the speech unit information of the speech unit converted in the voice quality conversion process (S4), and outputs the speech unit information. Modify. In the example of FIG. 4, “to myself”, which is an accent phrase whose distortion exceeds the threshold value, is specified as the reselection range, and the speech unit information is corrected.
  • the unit selection unit 104 reselects the speech unit sequence that best matches the target unit information corrected by the speech unit information modification process (S6) from the unit database 103 (S7). After that, the waveform generation unit 107 generates a speech waveform from the speech unit sequence subjected to the voice quality conversion.
  • the editor listens to the generated voice waveform and determines whether or not the power has the target voice quality (S9). If the power is not the target voice quality (NO in S9), for example, if you want to make it a more masculine voice, the process transitions to voice quality conversion processing (S4), and the editor The sex axis of the voice quality designation unit 105 is further shifted to the male side.
  • FIG. 6 shows an image diagram of the effect of the present invention.
  • Figure 6 shows the voice quality space.
  • the voice quality 701 indicates the voice quality of the unit sequence selected at the time of the initial selection.
  • Range 702 is voice quality 701 This indicates a range of voice quality that can be converted into voice quality without distortion being detected by the distortion determination unit 108 based on the speech unit corresponding to the voice segment. If the editor specifies voice quality 703 using voice quality specifying section 105, distortion is detected by distortion determination section 108. For this reason, the unit selection unit 104 reselects a speech unit sequence close to the voice quality 703 from the unit database 103. Thus, a speech unit sequence having a voice quality 704 close to voice quality 703 can be selected.
  • the range in which the voice quality can be converted without detecting the distortion by the distortion determination unit 108 is within the range 705. For this reason, by further converting the voice quality based on the speech unit sequence of voice quality 704, it becomes possible to perform voice quality conversion to voice quality 706, which was previously unable to perform voice quality conversion without distortion. In this way, by designating the voice quality specified by the voice quality specifying unit 105 step by step, it becomes possible for the editor to synthesize the voice of the desired voice quality.
  • the target unit information correcting unit 109 corrects the speech unit information
  • the unit selecting unit 104 By reselecting a speech unit, a speech unit matching the voice quality specified by the voice quality specifying unit 105 can be reselected by the unit database 103.
  • voice quality space shown in FIG. 6 when the editor desires to synthesize voice of voice quality 703, voice conversion from the voice unit sequence of voice quality 701 initially selected to voice quality 703 is performed. Therefore, the voice quality conversion from the voice unit sequence of the voice quality 704 closest to the voice quality 703 to the voice quality 703 is performed.
  • voice quality conversion is always performed based on the optimal speech unit sequence, it is possible to perform speech synthesis with good sound quality without distortion.
  • the voice unit sequence power of a completely different voice quality may be converted to the re-specified voice quality, even though the voice quality is close to the voice quality before the re-designation in the voice quality space. For this reason, the voice of the voice quality desired by the editor may not be obtained at all.
  • the speech unit sequence used for voice quality conversion may be distorted. If not, it is the same as the speech unit sequence used for the previous voice quality conversion. For this reason, the voice quality of the synthesized sound can be continuously changed. In addition, since the voice quality is continuously changed, the voice quality can be largely changed without deteriorating the sound quality.
  • FIG. 7 is a configuration diagram of a voice quality variable speech synthesizer according to Embodiment 2 of the present invention. 7, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • variable voice quality speech synthesizer 200 shown in FIG. 7 differs from the variable voice quality speech synthesizer 100 shown in FIG. 1 in that a basic voice segment database 201 and a voice voice segment database 202 are used instead of the voice segment database 103. Is used.
  • the basic segment database 201 is a storage unit for storing speech segments for synthesizing a neutral voice when no voice is designated by the voice designation unit 105.
  • the first embodiment is characterized in that the voice segment database 202 is configured to store speech segments having a rich voice quality parameter that can synthesize the voice quality specified by the voice quality specifying unit 105. And different.
  • the selection of the first speech segment for the input text is performed based on the speech segment information generated by the target segment information generation unit 102.
  • the segment selection unit 104 selects an optimal speech segment.
  • the voice quality conversion unit 106 converts the voice quality of the speech unit to the voice quality specified by the voice quality specification unit 105, so that the distortion determination unit 108 detects distortion, and the target unit information correction unit 109 performs voice processing.
  • the unit information is corrected and the unit selection unit 104 reselects a speech unit, the speech unit sequence optimal from the voice unit database 202 is selected again for the corrected speech unit information.
  • the unit selection unit 104 uses only the voice unit having the neutral voice quality. Speech segments are selected only from the basic segment database composed of, so that the time required for segment search can be shortened, and it is possible to generate a synthesized speech with a -eutranal voice quality with high accuracy .
  • variable voice quality speech synthesizer according to the present invention has been described based on the embodiment, but the present invention is not limited to this embodiment.
  • a voice quality variable speech synthesizer 800 may be configured by providing a unit holding unit 801 in the voice quality variable speech synthesizer 200 shown in FIG.
  • the unit holding unit 801 holds the identifier of the unit series selected by the unit selection unit 104.
  • the segment selection unit 104 reselects from the segment database 103 based on the speech unit information corrected by the target unit information correction unit 109, the speech unit is distorted by the distortion determination unit 108. Reselect only the range that was determined to be That is, the unit selection unit 104 selects the speech unit in the range determined not to be distorted at the time of the previous unit selection using the identifier held by the unit holding unit 801. It may be configured to use the same element as the element.
  • segment holding unit 801 may hold a segment itself that is not an identifier.
  • the range of reselection may be any of phonemes, syllables, morphemes, words, phrases, accent phrases, exhalation paragraphs, and whole sentences.
  • the voice quality variable speech synthesizer according to the present invention has a function of performing voice conversion without deteriorating the voice quality of the synthesized sound even when the voice quality of the synthesized voice is greatly changed. (4) It is useful as a speech synthesizer or the like that generates a response voice of a voice interaction system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Machine Translation (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Telephone Function (AREA)

Abstract

 合成音を生成した際に音質が著しく低下することのない音声合成装置は、目標素片情報生成部(102)と、素片データベース(103)と、素片選択部(104)と声質指定部(105)と、声質変換部(106)と、歪み判定部(108)と、目標素片情報修正部(109)とを備え、声質変換部(106)により変換された音声素片が歪み判定部(108)により歪んでいると判断された場合には、目標素片情報修正部(109)が、目標素片情報生成部(102)で生成された音声素片情報を変換後の声質の音声素片情報に修正し、素片選択部(104)が音声素片を再選択する。このことにより、合成音の音質を劣化させることなく、声質指定部(105)により指定された声質の合成音を生成することが可能となる。

Description

明 細 書
音声合成装置および方法
技術分野
[0001] 本発明は、音声合成装置に関し、特に、編集者が指定する声質を再現でき、かつ 連続的に声質を変化させた場合に声質が連続的に変化する音声合成装置に関する 背景技術
[0002] 従来、音声を合成し、合成音の声質を変更することが可能な音声合成システムとし て、素片選択部により選択された音声素片に対して入力された声質に合うように声質 を変換するシステムが提案されている(例えば、特許文献 1参照)。
[0003] 図 9は、特許文献 1に記載された従来の声質可変音声合成装置の構成図である。
従来の声質可変音声合成装置は、テキスト入力部 1と、声質変換パラメータ入力部 2 と、素片記憶部 3と、素片選択部 4と、声質変換部 5と、波形合成部 6とを備えている。
[0004] テキスト入力部 1は、音声合成を行ないたい言葉の内容を示す音素情報とァクセン トゃ発話全体の抑揚を示す韻律情報とを外部より受付け、素片選択部 4に出力する 処理部である。
[0005] 声質変換パラメータ入力部 2は、編集者が所望する声質への変換に必要な変換パ ラメータの入力を受付ける処理部である。素片記憶部 3は各種音声に対する音声素 片を記憶する記憶部である。素片選択部 4はテキスト入力部 1より出力される音素情 報および韻律情報に最も合致する音声素片を素片記憶部 3から選択する処理部で ある。
[0006] 声質変換部 5は、声質変換パラメータ入力部 2より入力された変換パラメータを用い て、素片選択部 4により選択された音声素片を、編集者が所望する声質へ変換する 処理部である。波形合成部 6は、声質変換部 5により声質変換された音声素片より音 声波形を合成する処理部である。
[0007] このように、従来の声質可変音声合成装置では、声質変換部 5が、声質変換パラメ ータ入力部 2で入力された音声変換パラメータを用いて、素片選択部 4で選択された 音声素片を変換することにより編集者が所望する声質の合成音を得ることができる。
[0008] この他にも、声質ごとに音声素片データベースを複数用意し、入力された声質に最 も合致する音声素片データベースを選択して使用することにより、声質可変な音声合 成を行う方法も知られて ヽる。
特許文献 1:特開 2003 - 66982号公報 (第 1— 10頁、図 1)
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、前者の声質可変音声合成装置においては、編集者が所望する声質 は素片記憶部 3に記憶されている標準的な声質 (ニュートラルな声質)の音声素片の 声質と大きく異なることがある。このように、素片記憶部 3より選択された音声素片の声 質が声質変換パラメータ入力部 2により指定された声質と大きく異なる場合には、声 質変換部 5により選択された音声素片を非常に大きく変形する必要が生じる。このた め、波形合成部 6により合成音を生成した際に音質が著しく低下するという課題を有 している。
[0010] 一方、後者の方法にお!、ては、声質変換は、音声素片データベースを切り替えるこ とにより行なわれている。し力しながら、音声素片データベースの個数は有限個数で ある。このため、声質変換は離散的なものになってしまい、連続的に声質を変化させ ることができな 、と!/、う課題を有して 、る。
[0011] 本発明は、上述の課題を解決するためになされたもので、合成音を生成した際に 音質が著しく低下することのない音声合成装置を提供することを第 1の目的とする。
[0012] また、合成音の声質を連続的に変化させることができる音声合成装置を提供するこ とを第 2の目的とする。
課題を解決するための手段
[0013] 前記従来の課題を解決するために、本発明に係る音声合成装置は、所望の声質を 有する音声を合成する音声合成装置であって、複数の声質の音声素片を記憶する 音声素片記憶手段と、音素情報を含む言語情報に基づいて、当該言語情報に対応 する音声素片情報を生成する目標素片情報生成手段と、前記音声素片情報に対応 する音声素片を、前記音声素片記憶手段から選択する素片選択手段と、合成音の 声質の指定を受付ける声質指定手段と、前記素片選択手段により選択された音声素 片を、前記声質指定手段により受付けられた声質を有する音声素片に変換する声質 変換手段と、前記声質変換手段により変換された変換後の音声素片の歪みを判定 する歪み判定手段と、前記歪み判定手段により変換後の音声素片が歪んでいると判 断された場合に、前記目標素片情報生成手段により生成された音声素片情報を前 記声質変換手段により変換された音声素片に対応する音声素片情報に修正する目 標素片情報修正手段とを備え、前記素片選択手段は、前記目標素片情報修正手段 より音声素片情報が修正された場合には、修正後の音声素片情報に対応する音声 素片を前記音声素片記憶手段から選択することを特徴とする。
[0014] 歪み判定手段が、声質が変換された音声素片の歪みを判定し、歪みが大き!/、場合 には、目標素片情報修正手段が音声素片情報を修正し、素片選択手段が修正後の 音声素片情報に対応する音声素片をさらに選択している。このため、声質変換手段 は、声質指定手段で指定される声質に近い音声素片を元にして、声質変換を行なう ことができる。このため、合成音を生成した際に音質が著しく低下することのない音声 合成装置を提供することができる。また、音声素片記憶手段は複数の声質の音声素 片を記憶しており、そのうちのいずれかの音声素片に基づいて声質変換が行なわれ る。このため、編集者が声質指定手段を用いて連続的に声質を変化させたとしても、 合成音の声質を連続的に変化させることができる。
[0015] 好ましくは、前記声質変換手段は、さらに、前記修正後の音声素片情報に対応す る音声素片を、前記声質指定手段により受付けられた声質を有する音声素片に変換 することを特徴とする。
[0016] この構成によると、再選択後の音声素片に基づいて、声質指定手段により受け付け られた声質を有する音声素片への変換が再度行われる。このため、音声素片の再選 択および再変換を繰り返すことにより、合成音の声質を連続的に変化させることがで きる。また、このように、連続的に声質を変化させているため、音質を劣化させることな ぐ声質を大きく変化させることができる。
[0017] 好ましくは、前記目標素片情報修正手段は、さらに、前記目標素片情報生成手段 により生成された音声素片情報を修正する際に、前記声質変換手段により変換され た音声素片の声道特徴を修正後の音声素片情報に加えることを特徴とする。
[0018] 声道特徴を新たに修正後の音声素片情報に加えることにより、素片選択手段は、 指定された声質により近い音声素片を選択することができ、より音質の低下が少なぐ かつ指定された声質に近い合成音を生成することができる。
[0019] さらに好ましくは、前記歪み判定手段は、隣接する音声素片間の接続性に基づい て歪みを判定することを特徴とする。
[0020] 隣接する音声素片間の接続性により歪みを判定している。このため、再生した際に 滑らかに合成音を得ることができる。
[0021] さらに好ましくは、前記歪み判定手段は、前記素片選択手段により選択された音声 素片力も前記声質変換手段により変換された変換後の音声素片への変形率に基づ V、て歪みを判定することを特徴とする。
[0022] 変換前と変換後との音声素片の変形率により歪みを判定している。このため、目標 とする声質に最も近い音声素片に基づいて声質変換が行なわれる。よって、音質の 低下が少な 、合成音を生成することができる。
[0023] さらに好ましくは、前記素片選択手段は、前記目標素片情報修正手段より音声素 片情報が修正された場合には、前記歪み判定手段において歪みを検出した範囲の みについて、修正後の音声素片情報に対応する音声素片を前記音声素片記憶手 段から選択することを特徴とする。
[0024] 歪みを検出した範囲のみを再変換の対象としている。このため、音声合成を高速に 行なうことができる。また、歪んでいない部分までをも変換の対象としてしまうと、指定 された声質とは異なる合成音が得られる場合があるが、この構成ではそのようなことは 起こらず、高精度の合成音を得ることができる。
[0025] さらに好ましくは、前記音声素片記憶手段は、標準的な声質の音声素片を記憶す る基本音声素片記憶手段と、前記標準的な声質の音声素片とは異なる複数の声質 の音声素片を記憶する声質音声素片記憶手段とを有し、前記素片選択手段は、前 記目標素片情報生成手段により生成された音声素片情報に対応する音声素片を、 前記基本音声素片記憶手段から選択する基本素片選択手段と、前記目標素片情報 修正手段により修正された音声素片情報に対応する音声素片を、前記声質音声素 片記憶手段力 選択する声質素片選択手段とを有することを特徴とする。
[0026] 1回目に選択される音声素片は常に標準的な声質の音声素片である。このため、 1 回目の音声素片の選択を高速に行なうことができる。また、種々の声質の合成音を 生成した場合であっても、収束が速い。このため、高速に合成音を得ることができる。 さらに、必ず標準的な音声素片を出発点として、その後の音声変換および音声素片 の選択を行なっている。このため、編集者が意図しないような音声が合成されるおそ れがなぐ高精度に合成音を生成することができる。
[0027] なお、本発明は、このような特徴的な手段を有する音声合成装置として実現するこ とができるだけでなぐ音声合成装置に含まれる特徴的な手段をステップとする音声 合成方法として実現したり、音声合成装置に含まれる手段としてコンピュータを機能 させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、 C D- ROM (Compact Disc-Read Only Memory)等の記録媒体やインターネット等の 通信ネットワークを介して流通させることができるのは言うまでもない。
発明の効果
[0028] 本発明の音声合成装置によれば、声質変換時の音声素片の歪みに応じて、音声 素片を素片データベース力 再選択することにより、合成音の品質を劣化させること なぐ編集者が所望する連続的でかつ広い範囲の声質に変換することができる。 図面の簡単な説明
[0029] [図 1]図 1は、本発明の実施の形態 1における声質可変音声合成の構成図である。
[図 2]図 2は、素片選択部の一般的な構成図である。
[図 3]図 3は、声質指定部の一例を示す図である。
[図 4]図 4は、歪み判定部の範囲指定の説明図である。
[図 5]図 5は、声質可変音声合成装置の実行する処理のフローチャートである。
[図 6]図 6は、声質空間における声質変換過程の説明図である。
[図 7]図 7は、本発明の実施の形態 2における声質可変音声合成の構成図である。
[図 8]図 8は、音声素片再選択時の説明図である。
[図 9]図 9は、従来の声質可変音声合成装置の構成図である。
符号の説明 101 テキスト解析部
102 目標素片情報生成部
103 素片データベース
104 素片選択部
105 声質指定部
106 声質変換部
107 波形生成部
108 歪み判定部
109 目標素片情報修正部
201 基本素片データベース
202 声質素片データベース
301 素片候補抽出部
302 探索部
303 コスト計算部
304 目標コスト計算部
305 接続コスト計算部
801 素片保持部
発明を実施するための最良の形態
[0031] 以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態 1)
図 1は、本発明の実施の形態 1における声質可変音声合成装置の構成図である。 声質可変音声合成装置 100は、編集者が所望する声質を有する音声を合成する装 置であり、テキスト解析部 101と、目標素片情報生成部 102と、素片データベース 10 3と、素片選択部 104と、声質指定部 105と、声質変換部 106と、波形生成部 107と、 歪み判定部 108と、目標素片情報修正部 109とを備えている。
[0032] テキスト解析部 101は、外部より入力されるテキストを言語的に解析し、形態素情報 や音素情報を出力する。目標素片情報生成部 102は、テキスト解析部 101により解 析された音素情報を含む言語情報に基づいて、音韻環境、基本周波数、継続時間 長、パワーなどの音声素片情報を生成する。素片データベース 103は、予め収録さ れた音声を音素などの単位でラベリングした音声素片を記憶する。
[0033] 素片選択部 104は、目標素片情報生成部 102により生成された目標の音声素片 情報に基づいて、素片データベース 103から最適な音声素片を選択する。声質指定 部 105は、編集者が所望する合成音の声質を指定を受付ける。声質変換部 106は、 声質指定部 105により指定された合成音の声質に合致するように素片選択部 104に より選択された音声素片を変換する。
[0034] 波形生成部 107は、声質変換部 106で変換された後の音声素片系列から音声波 形を生成し、合成音を出力する。歪み判定部 108は、声質変換部 106により声質を 変換された音声素片の歪みを判定する。
[0035] 目標素片情報修正部 109は、歪み判定部 108により判定された音声素片の歪みが 所定の閾値を超えた場合に、素片選択部 104が素片選択の際に使用する目標素片 の情報を声質変換部 106が変換した後の音声素片の情報に修正する。
[0036] 次に各部の動作について説明する。
<目標素片情報生成部 102>
目標素片情報生成部 102は、テキスト解析部 101から送られる言語情報をもとに、 入力されたテキストの韻律情報を予測する。ここで、韻律情報は少なくとも音素単位 ごとの継続時間長、基本周波数、パワー情報を含むものである。また、音素単位以外 でも、モーラ単位や音節単位ごとに継続時間長、基本周波数、パワー情報を予測す るようにしても良い。目標素片情報生成部 102は、どのような方式の予測を行っても 良い。例えば、数量化 I類による方法で、予測を行うようにすればよい。
[0037] <素片データベース 103 >
素片データベース 103は、予め収録された音声の素片を記憶する。記憶する形式 としては、波形そのものを記憶する方法であっても良いし、音源波情報と声道情報と に分けてそれぞれを記憶する方法であっても良い。また、記憶する音声素片は波形 に限られず、再合成可能な分析パラメータを記憶するようにしても良い。
[0038] 素片データベース 103には、音声素片だけではなぐ記憶されている素片を選択す る際に使用する特徴が素片単位毎に記憶される。素片単位としては音素や音節、モ ーラ、形態素、単語などがあるが、特に限定するものではない。
[0039] 素片選択時に使用する特徴としては、基本特徴として、音声素片の前後の音韻環 境、基本周波数、継続時間長、パワーなどの情報を記憶する。
[0040] また、詳細特徴として、音声素片のスペクトルの特徴であるフォルマントのパターン や、ケプストラムのパターン、基本周波数の時間的パターン、パワーの時間的パター ンなどがある。
[0041] <素片選択部 104 >
素片選択部 104は、目標素片情報生成部 102により生成された情報に基づき素片 データベース 103より最適な音声素片系列を選択する。素片選択部 104の具体的構 成については特定するものではないが、その一例の構成を図 2に示す。
[0042] 図 1に登場する部分については、その説明を省略する。素片選択部 104は、素片 候補抽出部 301と、探索部 302と、コスト計算部 303とを備えている。
[0043] 素片候補抽出部 301は、目標素片情報生成部 102により生成された音声素片情 報の中から音韻に関係する項目(例えば音素など)により音声データベース 103より 選択の可能性がある候補を抽出する処理部である。探索部 302は、素片候補抽出 部 301が抽出した素片候補の中からコスト計算部 303によるコストが最小になる音声 素片系列を決定する処理部である。
[0044] コスト計算部 303は、素片候補と目標素片情報生成部 102により生成された音声素 片情報との距離を計算する目標コスト計算部 304と、 2つの素片候補を時間的に接 続する時の接続性を評価する接続コスト計算部 304とを備えている。
[0045] これら目標コストと接続コストとの和で表されるコスト関数を最小にする音声素片系 列を探索部 302により探索することにより、目標とする音声素片情報に類似し、かつ 接続が滑らかな合成音を得ることが可能となる。
[0046] <声質指定部 105 >
声質指定部 105は、編集者による所望の合成音の声質を指定を受付ける。指定の 具体的指定方法については特に限定するものではないが、その一例を図 3に示す。
[0047] 例えば、図 3に示すように声質指定部 105を GUI (Graphical User Interface) により構成する。合成音の声質として変更可能な基本軸 (例えば、年齢、性別、感情 など)に対してスライダーを設け、そのスライダーの位置により各基本軸の制御値を指 定する。基本軸の数には特に制限はない。
[0048] <声質変換部 106 >
声質変換部 106は、声質指定部 105により指定された声質に合うように、素片選択 部 104により選択された音声素片系列を変換する。変換の方法は特に限定するもの ではない。
[0049] LPC (Linear Predictive Coefficient)分析による音声合成手法の場合には LPC係 数を声質変換ベクトルにより移動させることにより異なる声質の合成音を得る方法が ある。例えば声質 Aの LPC係数と声質 Bの LPC係数との差分により、移動ベクトルを 作成し、その移動ベクトルによって LPC係数を変換することによって声質変換を実現 している。
またはフォルマント周波数を伸縮することにより、声質変換する方法であってもよい
[0050] <波形生成部 107 >
波形生成部 107は、声質変換部 106により変換された音声素片系列を合成し、音 声波形を合成する。合成方法は特に限定するものではない。例えば、素片データべ ース 103が記憶する音声素片が音声波形の場合は波形接続法により合成すればよ V、。または素片データベースが記憶する情報が音源波情報と声道情報とである場合 は、ソースフィルタモデルとして再合成すればよい。
[0051] <歪み判定部 108 >
歪み判定部 108は素片探索部 104により選択された音声素片と、声質変換部 106 により声質を変換された後の音声素片とを比較し、声質変換部 106の変形による音 声素片の歪みを算出する。歪みを判定する際の範囲は、音素、音節、モーラ、形態 素、単語、文節、アクセント句、呼気段落、全文のいずれでも良い。
[0052] 歪みの計算方法は特に限定されるものではないが、音声素片の接続境界での歪 みにより計算する方法と、音声素片の変形率により計算する方法とに大別される。そ の具体例を以下に示す。
1.接続境界の連続性による判定 音声素片の接続境界付近では、声質変換部 106の変形により歪みが大きくなる。こ のような現象は声質変換部 106の声質変換を音声素片ごとに独立して行った場合に は顕著に表れる。この歪みにより波形生成部 107により合成音を合成した場合に素 片接続点付近で音質が劣化する。そのため、この素片接続点での歪みを判定する。 判定方法としては例えば、以下の方法がある。
1. 1ケプストラム距離
素片接続点におけるスペクトルの形状をあらわすケプストラム距離により歪みを判定 する。すなわち、接続点の前方素片の最終フレームと接続点の後方素片の先頭フレ ームとのケプストラム距離を算出する。
1. 2フォルマント距離
素片接続点におけるフォルマントの連続性により歪みを判定する。すなわち、接続 点の前方素片の最終フレームと、接続点の後方素片の先頭フレームとの各フオルマ ント周波数の差分を基に距離を算出する。
1. 3 ピッチの連続性
素片接続点における基本周波数の連続性により歪みを判定する。すなわち、接続 点の前方素片の最終フレームの基本周波数と、接続点の後方素片の先頭フレーム の基本周波数との差分を算出する。
1. 4パワーの連続性
素片接続点におけるパワーの連続性により歪みを判定する。すなわち、接続点の 前方素片の最終フレームのパワーと、接続点の後方素片の先頭フレームのパワーと の差分を算出する。
2.素片変形率による判定
声質変換部 106の変形により、素片選択部 104で選択された音声素片を変形した 際に、声質指定部 105により指定された声質が選択時と大きく異なった場合には、声 質の変化量が大きくなり、波形生成部 107で合成した際に、音声の品質とくに明瞭度 が低下する。そこで、素片選択部 104で選択した音声素片と、声質変換部 106で変 換した音声素片とを比較して、その変化量に基づいて歪みを判定する。例えば、以 下の方法で判定することが出来る。 2. 1ケプストラム距離
声質変換前の音声素片と声質変換後の音声素片とのケプストラム距離により歪み を判定する。
2. 2フォルマント距離
声質変換前の音声素片と声質変換後の音声素片とのフォルマント周波数の差分に 基づく距離により歪みを判定する。
2. 3基本周波数の変形率
声質変換前の音声素片と声質変換後の音声素片との基本周波数の平均値の差分 により歪みを判定する。または、基本周波数の時間パターンの差分により歪みを判定 する。
2. 4パワーの変形率
声質変換前の音声素片と声質変換後の音声素片とのパワーの平均値の差分によ り歪みを判定する。または、パワーの時間パターンの差分により歪みを判定する。
[0053] 以上のいずれかの方法により算出された歪みが所定の閾値よりも大きい場合には、 歪み判定部 108は、素片選択部 104と、目標素片情報修正部 109とに音声素片の 再選択を指示する。
[0054] なお、上記の方法を組み合わせることにより歪みを算出し、該歪みが所定の閾値よ りも大きい場合は、歪み判定部 108は、素片選択部 104と、目標素片情報修正部 10 9とに音声素片情報の再選択を指示するようにしてもょ ヽ。
[0055] <目標素片情報修正部 109 >
歪み判定部 108により音声素片が歪んでいると判定された場合には、目標素片情 報修正部 109は、歪み判定部 108により歪んでいると判断された音声素片を修正す るために、目標素片情報生成部 102によって生成された目標素片情報を修正する。
[0056] 例えば、図 4の「あらゆる現実を全て自分の方へねじ曲げたのだ。」というテキストに 対する歪み判定部 108の動作について説明する。図 4に示すグラフにおいて、横軸 方向に音素系列を示している。音素系列中の"' "はアクセント位置を示している。ここ で、 "Z"は、アクセント句境界を示し、 ","はポーズを示す。縦軸は、歪み判定部 108 にお 、て計算された音声素片の歪みの度合!/、を示して 、る。 [0057] 歪み度の算出は音素毎に行なわれる。また、歪み判定は、音素、音節、モーラ、形 態素、単語、文節、アクセント句、フレーズ、呼気段落および全文のいずれかの範囲 を単位として行なわれる。歪み判定の範囲が音素よりも広い場合は、範囲に含まれる 最大の歪み度、または範囲に含まれる歪み度の平均により当該範囲の歪みが判定さ れる。図 4の例では、例えば、「自分の方へ (jibuNnoho-e)」というアクセント句を判定 の範囲とし、範囲内に含まれる音素の歪み度の最大値が所定の閾値を越えているた め、該アクセント句を歪んでいると判断している。この場合には、目標素片情報修正 部 109は、該当の範囲の目標素片情報を修正する。
[0058] 具体的には、声質変換部 106により変換された音声素片から、その音声素片の基 本周波数、継続時間長、パワーを新たな音声素片情報として使用する。
[0059] また、声質変換部 106により、変換された声質が再現できるように、変換後の音声 素片の声道情報であるフォルマントパターンゃケプストラムパターンを新たに音声素 片情報として追加するようにしても良 ヽ。
[0060] さらに、変換後の声道情報だけでなぐ音源波情報としての基本周波数の時間バタ ーンゃパワーの時間パターンを音声素片情報に追加するようにしても良い。
[0061] このように、第 1回目の素片選択では設定できな力つた声質に関する音声素片情報 を設定することにより、現在設定している声質に近い音声素片を再選択時に指定す ることが可能になる。
[0062] 次に実際に動作する時の様子を入力テキストとして「明日の天気は晴れです。」と入 力された場合の動作例を用いて説明する。テキスト解析部 101は言語的な解析を行 なう。その結果として、例えば「ashitanoZteNkiwaZharedesu.」というような音素 系列を出力する。(スラッシュ記号はアクセント句の区切りを表す。 )
[0063] 目標素片情報生成部 102は、テキスト解析部 101の解析結果をもとに各音素の音 韻環境、基本周波数、継続時間、パワーなどの目標となる音声素片情報を決定する 。例えば、文頭の「a」についての音声素片情報としては、音韻環境は「" a + sh」 ( Γ は、前の音素が文頭であることを示し、「 + sh」は、後の音素が shであることを示 す。)であり、基本周波数は 120Hzであり、継続時間は 60msであり、パワーは 200で あると 、うような情報を出力する。 [0064] 素片選択部 104は目標素片情報生成部 102により出力される目標素片情報に最 適な音声素片を素片データベース 103より選択する。具体的には素片候補抽出部 3 01が音声データベース 103より、音声素片情報の音韻環境が適合する音声素片を 素片選択の候補として抽出する。探索部 302は素片候補抽出部 301が抽出した素 片候補力 コスト計算部 303によるコスト値が最小になる素片候補をビタビアルゴリズ ムなどを用いて決定する。コスト計算部 303は、上述のように目標コスト計算部 304と 接続コスト計算部 305からなる。目標コスト計算部 304は、例えば、前述の音声素片 情報の「a」と、候補の音声素片情報を比較して、一致度を計算する。例えば、候補素 片の音声素片情報が音韻情報が「" a+k」、基本周波数が 110Hz、継続時間が 5 Oms、パワーが 200である場合、各音声素片情報についてその一致度を計算しそれ ぞれの一致度を統合した数値を目標コスト値として出力する。接続コスト計算部 305 は、隣接する 2つの音声素片、前述の例では、「a」と「sh」の 2つの音声素片を接続し た際の接続性を評価し、接続コスト値として出力する。評価方法としては、例えば「a」 の終端部と「sh」の始端部とのケプストラム距離で評価することができる。
[0065] 編集者は、図 3に示されるような声質指定部 105の GUIを用いて、所望の声質の指 定を行なう。ここでは、年齢がやや老人に近ぐ性別が女性に近ぐ性格がやや暗ぐ 機嫌はほぼ普通である声質を指定して 、る。
[0066] 声質変換部 106は、声質指定部 105を用いて指定された声質に音声素片の声質 を変換する。
[0067] このとき、初期選択時に素片選択部 104により選択された音声素片の声質と、声質 指定部 105により指定された声質とが大きく異なる場合には、声質変換部 106により 修正される音声素片の変化量が大きくなり、声質が所望の声質であっても、合成音の 品質、例えば明瞭度などが著しく劣化してしまう。そこで、歪み判定部 108は、例えば 「a」と「sh」の接続性や、素片データベース力 選択された音声素片「a」と、声質変換 部 106により声質変換された後の音声素片「a」の素片の変形率 (例えば素片間のケ プストラム距離)によって、合成音の音質劣化が予想される場合には、素片データべ ース 103より声質指定部 105により指定されている現在の声質に最適な音声素片を 再選択することを行う。なお、歪みの判定方法は、この方法には限られない。 [0068] 再選択を行う際には、目標素片情報修正部 109が、修正後の音声素片「a」の音声 素片情報、例えば基本周波数は 110Hz、継続時間は 85ms、パワーは 300というよう に変更する。また、声質変換後の音声素片「a」の声道特徴を表すケプストラム係数や 、フォルマント軌跡を新たに追加する。これにより、入力テキストからは推定不可能な 声質の情報を素片選択時に考慮することが可能となる。
[0069] 素片選択部 104は目標素片情報修正部 109により修正された音声素片情報に基 づき素片データベース 103から最適な音声素片系列を再選択する。
[0070] このように歪みを検出した素片のみ再選択を行うことにより、再選択を行ったときの 音声素片の声質は選択を行う以前の音声素片の声質に近いものを得ることが可能で ある。したがって、図 3のような GUIを用いて段階的に所望の声質を編集している際 には、前記指定した声質の合成音の声質に近い声質の素片を選択できる。したがつ て、声質を連続的に変化させた編集を行うことが可能となり、編集者の直感にあった 合成音を編集することが可能となる。
[0071] この時、目標コスト計算部 304は初期選択の時には考慮しな力つた、声道特徴の一 致度も考慮して目標コストを算出する。具体的には、目標素片「a」と素片候補「a」との 間のケプストラム距離またはフォルマント距離を算出する。これにより、現在の声質に 類似し、かつ、変形量が少なく音質の高い音声素片を選択することが可能になる。
[0072] 以上のように、声質変換部 106での変化量が小さい音声素片を再選択することによ り、声質指定部 105により、編集者が合成音の声質を逐次変更した場合にも、常に最 適な音声素片に基づいて声質変換部 106が声質変換を行うことができる。このため、 高音質で、かつ声質の変化の幅が大き!、声質可変音声合成が可能となる。
[0073] 次に、編集者が所望の声質の音声を合成する際に声質可変音声合成装置 100に おいて実行される処理について説明する。図 5は、声質可変音声合成装置 100の実 行する処理のフローチャートである。
[0074] テキスト解析部 101は、入力されたテキストを言語的に解析する(Sl)。目標素片情 報生成部 102は、テキスト解析部 101において解析された言語情報をもとに、各音声 素片の基本周波数や継続時間長といった音声素片情報を生成する (S2)。
[0075] 素片選択部 104は、素片情報生成処理 (S2)で生成された音声素片情報に最も合 致する音声素片系列を素片データベース 103から選択する(S3)。
[0076] 次に、編集者が図 3に示すような GUI力もなる声質指定部
105により、声質を指定すると、声質変換部 106は、指定された情報に基づいて、音 声素片系列選択処理 (S3)で選択された音声素片系列の声質を変換する(S4)。
[0077] 歪み判定部 108は、声質変換処理 (S4)において声質変換された音声素片系列が 歪んでいる力否かを判断する(S5)。具体的には、上述したいずれかの方法により音 声素片系列に歪みを計算し、当該ひずみが所定の閾値よりも大きければ、音声素片 系列が歪んで!/、ると判断する。
[0078] 音声素片系列が歪んで!/、ると判断した場合には (S5で YES)、目標素片情報修正 部 109は、目標素片情報生成部 102で生成された音声素片情報を、現在の声質に あわせた音声素片情報に修正する(S6)。次に、素片選択部 104は、素片情報修正 処理 (S6)において修正された音声素片情報を目標とし、素片データベース 103から 音声素片を再選択する (S7)。
[0079] 歪みがないと判断された場合 (S5で NO)、または音声素片が再選択された後(S7
)、波形生成部 107は、選択された音声素片により音声を合成する(S8)。
[0080] 編集者は、合成音声を聴取し、所望の声質であるかどうかを判断する (S9)。所望 の声質である場合には(S9で YES)、処理を終了する。所望の声質でなかった場合 には(S9で NO)、声質変換処理 (S4)に戻る。
[0081] 声質変換処理 (S4)力 声質判断処理 (S9)までを繰り返すことにより、編集者は所 望の声質の音声を合成することが可能となる。
[0082] 次に、編集者が「あらゆる現実を全て自分の方へねじ曲げたのだ。」というテキストに 対する「男性的で明るい声質」の合成音を所望した場合の動作について、図 5に示し たフローチャートに従い説明する。
[0083] テキスト解析部 101は形態素解析、読みの決定、文節の決定、係り受け解析などを
?丁なつ (siノ。その結果、「arayu ru/genjitsuo,su bete/jibuNno/ho— e'nejimageta nodajと 、う音素系列が得られる。
[0084] 目標素片情報生成部 102は、各音素「&」 」,「&」 」などそれぞれに対して、音韻 環境や基本周波数、継続時間長、パワーなどといった各音素の特徴を生成する(S2 ) o
[0085] 素片選択部 104は、素片情報生成処理 (S2)で生成された音声素片情報に基づい て素片データベース 103から最適な音声素片系列を選択する(S3)。
[0086] 編集者が、図 3に示すような声質指定部 105を用いて目標の声質を指定する。例え ば、性別の軸を男性側に移動させ、性格の軸を明るい側に移動させたとする。すると 、声質変換部 106は、声質指定部 105に基づいて音声素片系列の声質を変換する( S4)。
[0087] 歪み判定部 108は、声質変換処理 (S4)において声質変換された音声素片系列が 歪んでいる力否かを判断する(S5)。例えば、歪み判定部 108において、図 4に示す ように歪みが検出された場合には(S5で YES)、音声素片情報修正処理 (S6)へ遷 移する。または、図 4に示すように歪みが所定の閾値を超えな力つた場合には(S5で NO)、波形生成処理 (S8)へ遷移する。
[0088] 音声素片情報修正処理 (S6)では、目標素片情報修正部 109が、声質変換処理( S4)において声質変換された音声素片の音声素片情報を抽出し、音声素片情報を 修正する。図 4の例では、歪みが閾値を超えたアクセント句である「自分の方へ」が再 選択の範囲として指定され、音声素片情報が修正される。
[0089] 素片選択部 104は、音声素片情報修正処理 (S6)により修正された目標素片情報 に最も合致する音声素片系列を、素片データベース 103から再選択する(S7)。その 後、波形生成部 107は、声質変換された音声素片系列から音声波形を生成する。
[0090] 編集者は、生成された音声波形を聴取し、目標の声質になっている力否かを判断 する(S9)。目標の声質になっていな力つた場合 (S9で NO)、例えば、「もう少し男性 的な声」にしたい場合は、声質変換処理 (S4)に遷移し、編集者が、図 3に示すような 声質指定部 105の性別軸をさらに男性側にずらす。
[0091] 以上の声質変換処理 (S4)から声質判断処理 (S9)までを繰り返すことにより、編集 者が所望する「男性的で明るい声質」の合成音を、合成音の品質を劣化させることな ぐかつ連続的な声質変化で徐々に変換することが可能となる。
[0092] 図 6は、本発明における効果のイメージ図を示す。図 6は声質空間を表している。声 質 701は、初期選択時に選択された素片系列の声質を示す。範囲 702は、声質 701 に対応する音声素片をもとに歪み判定部 108により歪みが検出されずに声質変換で きる声質の範囲を示す。仮に、編集者が声質指定部 105を用いて声質 703を指定し た場合には、歪み判定部 108により歪みが検出される。このため、素片選択部 104は 、声質 703に近い音声素片系列を素片データベース 103より再選択する。これにより 、声質 703に近い声質 704を持つ音声素片系列を選択することができる。また、声質 704を有する音声素片系列力も歪み判定部 108により歪みを検出せずに声質を変 換できる範囲は範囲 705の内部である。このため、さらに声質 704の音声素片系列を もとに声質を変換することにより、従来歪みなく声質変換できな力 た声質 706の声 質へ声質変換を行うことが可能になる。このように、声質指定部 105により指定する声 質を段階的に指定していくことにより、編集者が所望する声質の音声を合成すること が可能になる。
[0093] 力かる構成によれば、歪み判定部 108で所定の閾値以上の歪みを検出した場合に は、目標素片情報修正部 109により音声素片情報を修正し、素片選択部 104により 音声素片を再選択することにより、声質指定部 105により指定されている声質に合つ た音声素片を素片データベース 103により再選択することができる。このため、例え ば、図 6に示す声質空間において、編集者が声質 703の音声の合成を所望した場合 には、初期選択された声質 701の音声素片系列から声質 703への声質変換が行わ れるのではなぐ声質 703に最も近い声質 704の音声素片系列から声質 703への声 質変換が行われることになる。このように、常に最適な音声素片系列に基づいて声質 変換が行われるため、歪みがなく音質が良好な音声合成を行うことができる。
[0094] また、編集者が声質指定部 105を用いて所望する声質を指定しなおした場合には 、図 5のフローチャートにおいて、音声素片の初期選択処理 (S3)力 処理が再開さ れるのではなぐ声質変換処理 (S4)から処理が再開される。このため、例えば、図 6 の声質空間において編集者が所望する声質を声質 703から声質 706に指定しなお した場合には、再度、声質 701の音声素片系列力もの声質変換が行われるのではな ぐ声質 703への声質変換時に用いられた声質 704の音声素片系列に基づいて、声 質変換が行われる。仮に、音声素片の初期選択処理 (S3)から処理が再開されるも のとすると、編集者が所望する声質を徐々に指定しなおす場合に、指定しなおされ た声質が指定しなおされる前の声質と声質空間上で近いにも関わらず、全く異なつ た声質の音声素片系列力 指定しなおされた声質への声質変換が行われる場合が ある。このため、編集者が所望する声質の音声がな力なか得られない場合がある。し かし、本実施の形態の手法によると、声質が指定しなおされた場合であっても、声質 変換に用いられる音声素片系列は、声質変換後の音声素片系列が歪みを起こすこ とがなければ、その前の声質変換に用いられた音声素片系列と同じである。このため 、合成音の声質を連続的に変化させることができる。また、このように、連続的に声質 を変化させているため、音質を劣化させることなぐ声質を大きく変化させることができ る。
[0095] (実施の形態 2)
図 7は、本発明の実施の形態 2における声質可変音声合成装置の構成図である。 図 7において、図 1と同じ構成要素については同じ符号を用い、説明を省略する。
[0096] 図 7に示される声質可変音声合成装置 200は、図 1に示される声質可変音声合成 装置 100と異なり、素片データベース 103の代わりに、基本素片データベース 201お よび声質素片データベース 202を用いたものである。
[0097] 基本素片データベース 201は、声質指定部 105により如何なる声質をも指定されな 力つた場合のニュートラルな声質を合成する為の音声素片を記憶する記憶部である
。声質素片データベース 202は声質指定部 105により指定された声質を合成するこ とが可能な豊富な声質のノリエ一ショがある音声素片を記憶するように構成している 点が実施の形態 1と異なる。
[0098] 本実施の形態では、入力されたテキストに対する最初の音声素片の選択は、目標 素片情報生成部 102が生成する音声素片情報に基づいて基本素片データベース 2
01より素片選択部 104が最適な音声素片を選択する。
[0099] 声質指定部 105により指定された声質に声質変換部 106が音声素片の声質を変 換することにより、歪み判定部 108が歪みを検出し、目標素片情報修正部 109が音 声素片情報を修正して、素片選択部 104が音声素片を再選択する場合には、声質 素片データベース 202より修正された音声素片情報に最適な音声素片系列を再選 択する。 [0100] 力かる構成によれば、声質指定部 105により声質を指定される前の-ユートラルな 声質の合成音を生成する際には、素片選択部 104はニュートラルな声質の音声素片 のみから構成される基本素片データベースのみから音声素片を選択するため、素片 探索に必要な時間を短縮することができ、かつ精度良く-ユートラルの声質の合成音 を生成することが可能となる。
[0101] 以上、本発明に係る声質可変音声合成装置について、実施の形態に基づいて説 明したが、本発明は、この実施の形態に限定されるものではない。
[0102] 例えば、図 8に示すように、図 7に示した声質可変音声合成装置 200に素片保持部 801を設け、声質可変音声合成装置 800を構成してもよい。素片保持部 801は、素 片選択部 104が選択した素片系列の識別子を保持する。目標素片情報修正部 109 により修正された音声素片情報に基づいて、素片選択部 104が素片データベース 1 03から再選択を行う際には、歪み判定部 108により、音声素片が歪んでいると判断さ れた範囲のみを再選択する。すなわち、素片選択部 104は、歪んでいないと判断さ れた範囲の音声素片については、素片保持部 801により保持されている識別子を用 いて前回の素片選択の際に選択された素片と同一の素片を使用するように構成して も良い。
[0103] なお、素片保持部 801は識別子ではなぐ素片そのものを保持しても良い。
また、再選択の範囲は、音素、音節、形態素、単語、文節、アクセント句、呼気段落 、全文のいずれでも良い。
産業上の利用可能性
[0104] 本発明にかかる声質可変音声合成装置は、合成音の声質を大きく変化させた場合 にお 、ても合成音の音質を低下させずに声質変換を行う機能を有し、エンターティメ ントゃ音声対話システムの応答音声を生成する音声合成装置等として有用である。

Claims

請求の範囲
[1] 所望の声質を有する音声を合成する音声合成装置であって、
複数の声質の音声素片を記憶する音声素片記憶手段と、
音素情報を含む言語情報に基づ!/、て、当該言語情報に対応する音声素片情報を 生成する目標素片情報生成手段と、
前記音声素片情報に対応する音声素片を、前記音声素片記憶手段から選択する 素片選択手段と、
合成音の声質の指定を受付ける声質指定手段と、
前記素片選択手段により選択された音声素片を、前記声質指定手段により受付け られた声質を有する音声素片に変換する声質変換手段と、
前記声質変換手段により変換された変換後の音声素片の歪みを判定する歪み判 定手段と、
前記歪み判定手段により変換後の音声素片が歪んでいると判断された場合に、前 記目標素片情報生成手段により生成された音声素片情報を前記声質変換手段によ り変換された音声素片に対応する音声素片情報に修正する目標素片情報修正手段 とを備え、
前記素片選択手段は、前記目標素片情報修正手段より音声素片情報が修正され た場合には、修正後の音声素片情報に対応する音声素片を前記音声素片記憶手 段から選択する
ことを特徴とする音声合成装置。
[2] 前記声質変換手段は、さらに、前記修正後の音声素片情報に対応する音声素片 を、前記声質指定手段により受付けられた声質を有する音声素片に変換する ことを特徴とする請求項 1に記載の音声合成装置。
[3] 前記目標素片情報修正手段は、さらに、前記目標素片情報生成手段により生成さ れた音声素片情報を修正する際に、前記声質変換手段により変換された音声素片 の声道特徴を修正後の音声素片情報に加える
ことを特徴とする請求項 1に記載の音声合成装置。
[4] 前記声道特徴は、前記声質変換手段により変換された音声素片のケプストラム係 数またはケプトラム係数の時間パターンである
ことを特徴とする請求項 3に記載の音声合成装置。
[5] 前記声道特徴は、前記声質変換手段により変換された音声素片のフォルマント周 波数またはフォルマント周波数の時間パターンである
ことを特徴とする請求項 3に記載の音声合成装置。
[6] 前記歪み判定手段は、隣接する音声素片間の接続性に基づ 、て歪みを判定する ことを特徴とする請求項 1に記載の音声合成装置。
[7] 前記歪み判定手段は、隣接する音声素片間のケプストラム距離、隣接する音声素 片間のフォルマント周波数の距離、隣接する音声素片間の基本周波数の差分、また は隣接する音声素片間のパワーの差分に基づいて歪みを判定する
ことを特徴とする請求項 6に記載の音声合成装置。
[8] 前記歪み判定手段は、前記素片選択手段により選択された音声素片から前記声 質変換手段により変換された変換後の音声素片への変形率に基づいて歪みを判定 する
ことを特徴とする請求項 1に記載の音声合成装置。
[9] 前記歪み判定手段は、前記素片選択手段により選択された音声素片と前記変換 後の音声素片との間のケプストラム距離、前記素片選択手段により選択された音声 素片と前記変換後の音声素片との間のフォルマント周波数の距離、前記素片選択手 段により選択された音声素片と前記変換後の音声素片との間の基本周波数の差分、 または前記素片選択手段により選択された音声素片と前記変換後の音声素片との 間のパワーの差分に基づ 、て歪みを判定する
ことを特徴とする請求項 8に記載の音声合成装置。
[10] 前記歪み判定手段は、音素、音節、モーラ、形態素、単語、文節、アクセント句、フ レーズ、呼気段落および全文の ヽずれかを単位として歪みを判定する
ことを特徴とする請求項 1に記載の音声合成装置。
[11] 前記素片選択手段は、前記目標素片情報修正手段より音声素片情報が修正され た場合には、前記歪み判定手段において歪みを検出した範囲のみについて、修正 後の音声素片情報に対応する音声素片を前記音声素片記憶手段から選択する ことを特徴とする請求項 1に記載の音声合成装置。
[12] さらに、前記素片選択手段により選択された音声素片の識別子を保持する素片保 持手段を備え、
前記素片選択手段は、前記歪み判定手段において歪みが検出されな力つた範囲 の音声素片については、前記素片保持手段に保持された前記識別子に基づいて前 記音声素片を選択する
ことを特徴とする請求項 11に記載の音声合成装置。
[13] 前記音声素片記憶手段は、
標準的な声質の音声素片を記憶する基本音声素片記憶手段と、
前記標準的な声質の音声素片とは異なる複数の声質の音声素片を記憶する声質 音声素片記憶手段とを有し、
前記素片選択手段は、
前記目標素片情報生成手段により生成された音声素片情報に対応する音声素片 を、前記基本音声素片記憶手段から選択する基本素片選択手段と、
前記目標素片情報修正手段により修正された音声素片情報に対応する音声素片 を、前記声質音声素片記憶手段から選択する声質素片選択手段とを有する ことを特徴とする請求項 1に記載の音声合成装置。
[14] 複数の声質の音声素片を記憶する音声素片記憶手段を備える音声合成装置にお ける音声合成方法であって、
音素情報を含む言語情報に基づ!、て、当該言語情報に対応する音声素片情報を 生成する目標素片情報生成ステップと、
前記音声素片情報に対応する音声素片を、前記音声素片記憶手段から選択する 素片選択ステップと、
合成音の声質の指定を受付ける声質指定ステップと、
前記素片選択ステップにお 、て選択された音声素片を、前記声質指定ステップに おいて受付けられた声質を有する音声素片に変換する声質変換ステップと、 前記声質変換ステップにおいて変換された変換後の音声素片の歪みを判定する 歪み判定ステップと、 前記歪み判定手段において変換後の音声素片が歪んでいると判断された場合に、 前記目標素片情報生成ステップにお!、て生成された音声素片情報を前記声質変換 ステップにおいて変換された音声素片に対応する音声素片情報に修正する目標素 片情報修正ステップとを含み、
前記素片選択ステップでは、前記目標素片情報修正ステップにお 、て音声素片情 報が修正された場合には、修正後の音声素片情報に対応する音声素片を前記音声 素片記憶手段から選択する
ことを特徴とする音声合成方法。
コンピュータを音声合成装置として機能させるためのプログラムであって、 前記コンピュータは、複数の声質の音声素片を記憶する音声素片記憶手段を備え 前記プログラムは、
音素情報を含む言語情報に基づ!、て、当該言語情報に対応する音声素片情報を 生成する目標素片情報生成手段と、
前記音声素片情報に対応する音声素片を、前記音声素片記憶手段から選択する 素片選択手段と、
合成音の声質の指定を受付ける声質指定手段と、
前記素片選択手段により選択された音声素片を、前記声質指定手段により受付け られた声質を有する音声素片に変換する声質変換手段と、
前記声質変換手段により変換された変換後の音声素片の歪みを判定する歪み判 定手段と、
前記歪み判定手段により変換後の音声素片が歪んでいると判断された場合に、前 記目標素片情報生成手段により生成された音声素片情報を前記声質変換手段によ り変換された音声素片に対応する音声素片情報に修正する目標素片情報修正手段 としてコンピュータを機能させ、
前記素片選択手段は、前記目標素片情報修正手段より音声素片情報が修正され た場合には、修正後の音声素片情報に対応する音声素片を前記音声素片記憶手 段から選択する ことを特徴とするプログラム。
コンピュータが実行するプログラムを記録したコンピュータ読取可能な記録媒体で あって、
前記コンピュータは、複数の声質の音声素片を記憶する音声素片記憶手段を備え 前記プログラムは、
音素情報を含む言語情報に基づ!、て、当該言語情報に対応する音声素片情報を 生成する目標素片情報生成手段と、
前記音声素片情報に対応する音声素片を、前記音声素片記憶手段から選択する 素片選択手段と、
合成音の声質の指定を受付ける声質指定手段と、
前記素片選択手段により選択された音声素片を、前記声質指定手段により受付け られた声質を有する音声素片に変換する声質変換手段と、
前記声質変換手段により変換された変換後の音声素片の歪みを判定する歪み判 定手段と、
前記歪み判定手段により変換後の音声素片が歪んでいると判断された場合に、前 記目標素片情報生成手段により生成された音声素片情報を前記声質変換手段によ り変換された音声素片に対応する音声素片情報に修正する目標素片情報修正手段 としてコンピュータを機能させ、
前記素片選択手段は、前記目標素片情報修正手段より音声素片情報が修正され た場合には、修正後の音声素片情報に対応する音声素片を前記音声素片記憶手 段から選択する
ことを特徴とするコンピュータ読取可能な記録媒体。
PCT/JP2005/006489 2004-05-11 2005-04-01 音声合成装置および方法 WO2005109399A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800150686A CN1954361B (zh) 2004-05-11 2005-04-01 声音合成装置和方法
US11/579,899 US7912719B2 (en) 2004-05-11 2005-04-01 Speech synthesis device and speech synthesis method for changing a voice characteristic
JP2006512928A JP3913770B2 (ja) 2004-05-11 2005-04-01 音声合成装置および方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004141551 2004-05-11
JP2004-141551 2004-05-11

Publications (1)

Publication Number Publication Date
WO2005109399A1 true WO2005109399A1 (ja) 2005-11-17

Family

ID=35320429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006489 WO2005109399A1 (ja) 2004-05-11 2005-04-01 音声合成装置および方法

Country Status (4)

Country Link
US (1) US7912719B2 (ja)
JP (1) JP3913770B2 (ja)
CN (1) CN1954361B (ja)
WO (1) WO2005109399A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026565A (ja) * 2006-07-20 2008-02-07 Fujitsu Ltd ピッチ変換方法及び装置
JP2008046636A (ja) * 2006-08-14 2008-02-28 Pentax Corp アクセント句マッチング事前選択を用いた日本語音声合成方法及びシステム
JP2010032978A (ja) * 2008-07-31 2010-02-12 Hitachi Ltd 音声メッセージ作成装置及び方法
JP2012103668A (ja) * 2010-11-08 2012-05-31 Voiceware Co Ltd 使用者の候補合成単位選択による音声合成方法およびシステム(VoiceSynthesizingMethodandSystemBasedonUserDirectedCandidate−UnitSelection)
JP2015152630A (ja) * 2014-02-10 2015-08-24 株式会社東芝 音声合成辞書生成装置、音声合成辞書生成方法およびプログラム
JP2018041116A (ja) * 2017-12-18 2018-03-15 株式会社東芝 音声合成装置、音声合成方法およびプログラム

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8073157B2 (en) * 2003-08-27 2011-12-06 Sony Computer Entertainment Inc. Methods and apparatus for targeted sound detection and characterization
US8947347B2 (en) 2003-08-27 2015-02-03 Sony Computer Entertainment Inc. Controlling actions in a video game unit
US7809145B2 (en) * 2006-05-04 2010-10-05 Sony Computer Entertainment Inc. Ultra small microphone array
US7783061B2 (en) 2003-08-27 2010-08-24 Sony Computer Entertainment Inc. Methods and apparatus for the targeted sound detection
US8160269B2 (en) 2003-08-27 2012-04-17 Sony Computer Entertainment Inc. Methods and apparatuses for adjusting a listening area for capturing sounds
US9174119B2 (en) 2002-07-27 2015-11-03 Sony Computer Entertainement America, LLC Controller for providing inputs to control execution of a program when inputs are combined
US8139793B2 (en) 2003-08-27 2012-03-20 Sony Computer Entertainment Inc. Methods and apparatus for capturing audio signals based on a visual image
US8233642B2 (en) 2003-08-27 2012-07-31 Sony Computer Entertainment Inc. Methods and apparatuses for capturing an audio signal based on a location of the signal
US7803050B2 (en) 2002-07-27 2010-09-28 Sony Computer Entertainment Inc. Tracking device with sound emitter for use in obtaining information for controlling game program execution
US8600753B1 (en) * 2005-12-30 2013-12-03 At&T Intellectual Property Ii, L.P. Method and apparatus for combining text to speech and recorded prompts
CN101213589B (zh) * 2006-01-12 2011-04-27 松下电器产业株式会社 对象声音分析装置和对象声音分析方法
CN101004911B (zh) * 2006-01-17 2012-06-27 纽昂斯通讯公司 用于生成频率弯曲函数及进行频率弯曲的方法和装置
GB2443027B (en) * 2006-10-19 2009-04-01 Sony Comp Entertainment Europe Apparatus and method of audio processing
US20080120115A1 (en) * 2006-11-16 2008-05-22 Xiao Dong Mao Methods and apparatuses for dynamically adjusting an audio signal based on a parameter
CN101578659B (zh) * 2007-05-14 2012-01-18 松下电器产业株式会社 音质转换装置及音质转换方法
JP5238205B2 (ja) * 2007-09-07 2013-07-17 ニュアンス コミュニケーションズ,インコーポレイテッド 音声合成システム、プログラム及び方法
US8150695B1 (en) * 2009-06-18 2012-04-03 Amazon Technologies, Inc. Presentation of written works based on character identities and attributes
JP5331901B2 (ja) * 2009-12-21 2013-10-30 富士通株式会社 音声制御装置
US20130030789A1 (en) * 2011-07-29 2013-01-31 Reginald Dalce Universal Language Translator
CN106297765B (zh) * 2015-06-04 2019-10-18 科大讯飞股份有限公司 语音合成方法及系统
US10319364B2 (en) 2017-05-18 2019-06-11 Telepathy Labs, Inc. Artificial intelligence-based text-to-speech system and method
US10535344B2 (en) * 2017-06-08 2020-01-14 Microsoft Technology Licensing, Llc Conversational system user experience
CN108053696A (zh) * 2018-01-04 2018-05-18 广州阿里巴巴文学信息技术有限公司 一种根据阅读内容进行声音播放的方法、装置和终端设备
US10981073B2 (en) * 2018-10-22 2021-04-20 Disney Enterprises, Inc. Localized and standalone semi-randomized character conversations
US11062691B2 (en) * 2019-05-13 2021-07-13 International Business Machines Corporation Voice transformation allowance determination and representation
CN110136687B (zh) * 2019-05-20 2021-06-15 深圳市数字星河科技有限公司 一种基于语音训练克隆口音及声韵方法
CN110503991B (zh) * 2019-08-07 2022-03-18 Oppo广东移动通信有限公司 语音播报方法、装置、电子设备及存储介质
CN110795593A (zh) * 2019-10-12 2020-02-14 百度在线网络技术(北京)有限公司 语音包的推荐方法、装置、电子设备和存储介质
KR20210057569A (ko) * 2019-11-12 2021-05-21 엘지전자 주식회사 음성 신호를 처리하는 방법 및 이를 적용한 장치
CN112133278B (zh) * 2020-11-20 2021-02-05 成都启英泰伦科技有限公司 一种个性化语音合成模型网络训练及个性化语音合成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07319495A (ja) * 1994-05-26 1995-12-08 N T T Data Tsushin Kk 音声合成装置のための合成単位データ生成方式及び方法
JPH08248994A (ja) * 1995-03-10 1996-09-27 Atr Onsei Honyaku Tsushin Kenkyusho:Kk 声質変換音声合成装置
JPH0990970A (ja) * 1995-09-20 1997-04-04 Atr Onsei Honyaku Tsushin Kenkyusho:Kk 音声合成装置
JPH1097267A (ja) * 1996-09-24 1998-04-14 Hitachi Ltd 声質変換方法および装置
JPH1185194A (ja) * 1997-09-04 1999-03-30 Atr Onsei Honyaku Tsushin Kenkyusho:Kk 声質変換音声合成装置
JP2003157100A (ja) * 2001-11-22 2003-05-30 Nippon Telegr & Teleph Corp <Ntt> 音声通信方法及び装置、並びに音声通信プログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2770747B2 (ja) * 1994-08-18 1998-07-02 日本電気株式会社 音声合成装置
US6226614B1 (en) * 1997-05-21 2001-05-01 Nippon Telegraph And Telephone Corporation Method and apparatus for editing/creating synthetic speech message and recording medium with the method recorded thereon
JP3667950B2 (ja) * 1997-09-16 2005-07-06 株式会社東芝 ピッチパターン生成方法
US6363342B2 (en) * 1998-12-18 2002-03-26 Matsushita Electric Industrial Co., Ltd. System for developing word-pronunciation pairs
WO2000058943A1 (fr) * 1999-03-25 2000-10-05 Matsushita Electric Industrial Co., Ltd. Systeme et procede de synthese de la parole
US20030028380A1 (en) * 2000-02-02 2003-02-06 Freeland Warwick Peter Speech system
US7412422B2 (en) * 2000-03-23 2008-08-12 Dekel Shiloh Method and system for securing user identities and creating virtual users to enhance privacy on a communication network
JP2001282278A (ja) 2000-03-31 2001-10-12 Canon Inc 音声情報処理装置及びその方法と記憶媒体
AU2001255787A1 (en) * 2000-05-01 2001-11-12 Lifef/X Networks, Inc. Virtual representatives for use as communications tools
JP2003029774A (ja) 2001-07-19 2003-01-31 Matsushita Electric Ind Co Ltd 音声波形辞書配信システム、音声波形辞書作成装置、及び音声合成端末装置
US6829581B2 (en) * 2001-07-31 2004-12-07 Matsushita Electric Industrial Co., Ltd. Method for prosody generation by unit selection from an imitation speech database
JP4408596B2 (ja) 2001-08-30 2010-02-03 シャープ株式会社 音声合成装置、声質変換装置、音声合成方法、声質変換方法、音声合成処理プログラム、声質変換処理プログラム、および、プログラム記録媒体
JP2004053833A (ja) 2002-07-18 2004-02-19 Sharp Corp 音声合成装置、音声合成方法、音声合成プログラム、および、プログラム記録媒体
US20040098266A1 (en) * 2002-11-14 2004-05-20 International Business Machines Corporation Personal speech font
US8005677B2 (en) * 2003-05-09 2011-08-23 Cisco Technology, Inc. Source-dependent text-to-speech system
US7640160B2 (en) * 2005-08-05 2009-12-29 Voicebox Technologies, Inc. Systems and methods for responding to natural language speech utterance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07319495A (ja) * 1994-05-26 1995-12-08 N T T Data Tsushin Kk 音声合成装置のための合成単位データ生成方式及び方法
JPH08248994A (ja) * 1995-03-10 1996-09-27 Atr Onsei Honyaku Tsushin Kenkyusho:Kk 声質変換音声合成装置
JPH0990970A (ja) * 1995-09-20 1997-04-04 Atr Onsei Honyaku Tsushin Kenkyusho:Kk 音声合成装置
JPH1097267A (ja) * 1996-09-24 1998-04-14 Hitachi Ltd 声質変換方法および装置
JPH1185194A (ja) * 1997-09-04 1999-03-30 Atr Onsei Honyaku Tsushin Kenkyusho:Kk 声質変換音声合成装置
JP2003157100A (ja) * 2001-11-22 2003-05-30 Nippon Telegr & Teleph Corp <Ntt> 音声通信方法及び装置、並びに音声通信プログラム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026565A (ja) * 2006-07-20 2008-02-07 Fujitsu Ltd ピッチ変換方法及び装置
JP4757130B2 (ja) * 2006-07-20 2011-08-24 富士通株式会社 ピッチ変換方法及び装置
JP2008046636A (ja) * 2006-08-14 2008-02-28 Pentax Corp アクセント句マッチング事前選択を用いた日本語音声合成方法及びシステム
JP2010032978A (ja) * 2008-07-31 2010-02-12 Hitachi Ltd 音声メッセージ作成装置及び方法
JP2012103668A (ja) * 2010-11-08 2012-05-31 Voiceware Co Ltd 使用者の候補合成単位選択による音声合成方法およびシステム(VoiceSynthesizingMethodandSystemBasedonUserDirectedCandidate−UnitSelection)
JP2015152630A (ja) * 2014-02-10 2015-08-24 株式会社東芝 音声合成辞書生成装置、音声合成辞書生成方法およびプログラム
JP2018041116A (ja) * 2017-12-18 2018-03-15 株式会社東芝 音声合成装置、音声合成方法およびプログラム

Also Published As

Publication number Publication date
CN1954361A (zh) 2007-04-25
JPWO2005109399A1 (ja) 2007-08-02
US7912719B2 (en) 2011-03-22
CN1954361B (zh) 2010-11-03
US20070233489A1 (en) 2007-10-04
JP3913770B2 (ja) 2007-05-09

Similar Documents

Publication Publication Date Title
JP3913770B2 (ja) 音声合成装置および方法
JP4025355B2 (ja) 音声合成装置及び音声合成方法
US11763797B2 (en) Text-to-speech (TTS) processing
JP2007249212A (ja) テキスト音声合成のための方法、コンピュータプログラム及びプロセッサ
US20040030555A1 (en) System and method for concatenating acoustic contours for speech synthesis
JPH031200A (ja) 規則型音声合成装置
JP2006276528A (ja) 音声合成装置及びその方法
JPWO2006134736A1 (ja) 音声合成装置、音声合成方法およびプログラム
JPH0632020B2 (ja) 音声合成方法および装置
JP2623586B2 (ja) 音声合成におけるピッチ制御方式
JP4639932B2 (ja) 音声合成装置
US8478595B2 (en) Fundamental frequency pattern generation apparatus and fundamental frequency pattern generation method
JP2003337592A (ja) 音声合成方法及び音声合成装置及び音声合成プログラム
JP2014062970A (ja) 音声合成方法、装置、及びプログラム
JP5874639B2 (ja) 音声合成装置、音声合成方法及び音声合成プログラム
JP2004109535A (ja) 音声合成方法、音声合成装置および音声合成プログラム
WO2008056604A1 (fr) Système de collecte de son, procédé de collecte de son et programme de traitement de collecte
JP4684770B2 (ja) 韻律生成装置及び音声合成装置
JP5387410B2 (ja) 音声合成装置、音声合成方法および音声合成プログラム
JPH1195796A (ja) 音声合成方法
JP4454780B2 (ja) 音声情報処理装置とその方法と記憶媒体
JP2006084854A (ja) 音声合成装置、音声合成方法および音声合成プログラム
JP2000310996A (ja) 音声合成装置および音韻継続時間長の制御方法
JPH11249676A (ja) 音声合成装置
JP3437472B2 (ja) 音声合成方法とその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512928

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11579899

Country of ref document: US

Ref document number: 2007233489

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580015068.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11579899

Country of ref document: US