WO2005108647A1 - Porous metal foil with carrier foil and process for producing the same - Google Patents

Porous metal foil with carrier foil and process for producing the same Download PDF

Info

Publication number
WO2005108647A1
WO2005108647A1 PCT/JP2005/008195 JP2005008195W WO2005108647A1 WO 2005108647 A1 WO2005108647 A1 WO 2005108647A1 JP 2005008195 W JP2005008195 W JP 2005008195W WO 2005108647 A1 WO2005108647 A1 WO 2005108647A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
metal foil
carrier foil
porous metal
carrier
Prior art date
Application number
PCT/JP2005/008195
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiki Sakaguchi
Hitohiko Honda
Kiyotaka Yasuda
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2005108647A1 publication Critical patent/WO2005108647A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Porous metal foil with carrier foil and method for producing the same are Porous metal foil with carrier foil and method for producing the same
  • the present invention relates to a porous metal foil with a carrier foil and a method for producing the same.
  • the present invention also relates to a method for producing a negative electrode for a non-aqueous electrolyte secondary battery.
  • Porous metal foils are widely used, for example, as current collectors for batteries and as carriers for catalysts.
  • the method for producing this kind of porous metal foil includes, for example, (a) forming an insulating film of a desired shape on the electrode surface and applying electrolytic plating thereon, so that a portion corresponding to the film is applied to the electrode; A method for producing a porous metal foil in such a way that prayer does not occur, (b) a method for sintering a fibrous or granular metal into a porous sintered body, and (c) a method for producing a metal by rolling or electrolytic plating. After the foil is manufactured, there is a method of punching and punching holes.
  • a method for producing a porous metal foil by electrolytic plating for example, a metal substrate to be electrodeposited is roughened by sandblasting, chemical etching, electrolytic etching, machining, or the like. Roughly spray the insulating paint on the rough surface, or provide an insulating coating or oxide film on the entire surface, and remove the coating such as wire brush and puff partially and incompletely.
  • a method of producing a metal foil by applying electrolytic plating later is known (see Patent Document 1). By peeling the obtained metal foil from the substrate, a porous body can be obtained.
  • the electrode plate surface is subjected to hydrophobic treatment by adsorption of a carboxylic acid having a hydrophobic group, coupling using a higher alcohol salt and a metal, or coating of fluorinated titanium, and the like.
  • a method of producing a metal foil by performing electrolytic plating is known (see Patent Document 2). In this method, hydrogen bubbles generated on the electrode plate surface during electroplating remain on the electrode plate surface, so that contact with the electrolyte becomes insufficient and electrodeposition does not occur at that portion. We are using.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 50-141540
  • Patent Document 2 JP-A-5-23760 [0006] With any of the above techniques, the metal foil obtained thereby is porous, but it is not easy to increase the strength. Also, it is not easy to improve the efficiency of electrodeposition by applying an insulating substance to the electrode surface. Furthermore, in the technique described in Patent Document 1, it is essential to roughen the electrode surface, and therefore, a roughening treatment of the electrode is required prior to electroplating, which complicates the manufacturing process. In addition, since the metal foil is thin and stiff, it is not easy to handle and process it alone.
  • an object of the present invention is to provide a porous metal foil and a method for producing the same, which can solve the above-mentioned various disadvantages of the related art.
  • the present invention has a porous metal foil layer formed by electrolytic plating on a conductive carrier foil, and further includes a bonding interface layer formed between the two by using a conductive polymer.
  • the object has been achieved by providing a porous metal foil with a carrier foil, characterized in that the metal foil has a carrier foil.
  • the present invention is also a method for producing the porous metal foil with a carrier foil
  • a method for producing a porous metal foil with a carrier foil comprising applying a coating liquid containing the conductive polymer to one surface of the carrier foil, and forming the metal foil thereon by electrolysis.
  • the present invention is obtained by peeling the porous metal foil from the porous metal foil with a carrier foil, and the conductive polymer is attached to one surface of the porous metal foil layer.
  • the present invention provides a porous metal foil characterized by the following.
  • the negative electrode for a non-aqueous electrolyte secondary battery comprising the porous metal foil with a carrier foil, and a porous metal foil obtained by peeling the porous metal foil. It is intended to provide a non-aqueous electrolyte secondary battery comprising a negative electrode.
  • the present invention includes a pair of current collecting surface layers whose surfaces are in contact with the electrolytic solution, and an active material layer containing active material particles having a high ability to form a lithium compound interposed between the surface layers.
  • a coating solution containing a conductive polymer is applied to one surface of the carrier foil, and a metal material having a low ability to form a lithium compound is electroplated thereon to form one current-collecting surface layer.
  • a conductive slurry containing particles of an active material is applied on the surface layer for power application to form an active material layer, and a metal material having a low ability to form a lithium compound is electrolytically deposited on the active material layer to form an active material layer.
  • FIGS. 1 (a) to 1 (d) are process diagrams showing a method for producing a porous metal foil of the present invention.
  • FIG. 2 is a schematic diagram showing a structure of a negative electrode for a non-aqueous electrolyte secondary battery provided with the metal foil of the present invention.
  • FIG. 3 (a) and FIG. 3 (b) are diagrams showing charging characteristics of the negative electrode obtained in Example 1.
  • FIG. 4 (a) and FIG. 4 (b) are diagrams showing charging characteristics of the negative electrode obtained in Comparative Example 1.
  • FIG. 5 is a scanning electron micrograph of the surface state of the first metal foil in the negative electrode obtained in Example 2.
  • the porous metal foil with a carrier foil of the present invention has a three-layer structure having a porous metal foil layer on the carrier foil and a bonding interface layer between the two.
  • the bonding interface layer is in direct contact with each of the carrier foil and the porous metal foil layer (hereinafter simply referred to as metal foil or porous metal foil).
  • the metal foil is formed by electrolytic plating.
  • the metal foil is porous with many micropores.
  • the metal foil has both a fine hole penetrating the metal foil in the thickness direction and a fine hole closing in the middle.
  • the micropores referred to in the present invention mean micropores penetrating the metal foil in the thickness direction. However, this does not exclude a metal foil having micropores closed in the present invention. Also, it does not mean that such a metal foil is preferable.
  • the thickness of the metal foil is not particularly limited, and an appropriate thickness is selected depending on the specific use.
  • it is used as an electrode material for a non-aqueous electrolyte secondary battery shown in FIG.
  • the thickness is 2 to 20 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the metal foil can be composed of various metal materials.
  • a metal foil containing at least one metal of Cu, Ni, Co, Fe, Cr, Sn, Zn, In, Ag and Au can be used. That is, it is possible to constitute a simple substance of these metals, an alloy of two or more of these metals, or a metal foil containing other elements in addition to them.
  • Cu, Ni, Co, Fe, Cr, and Au force must also be composed. Low reactivity with lithium Force is also preferred.
  • the carrier foil is used as a support for producing a porous metal foil.
  • the produced porous metal foil is supported before use or during processing, and is used to improve the handleability of the metal foil.
  • the carrier foil has such a strength that no swelling or the like occurs in the manufacturing process of the metal foil and in the processing and transporting processes after the manufacturing! /, Prefer to,. Therefore, the carrier foil preferably has a thickness of about 10 to 50 ⁇ m.
  • a conductive foil is used as the carrier foil.
  • the carrier foil need not be made of metal as long as it has conductivity.
  • using a metal carrier foil has the advantage that the carrier foil can be melted and made and recycled after the production of the porous metal foil.
  • the carrier foil is composed of at least one metal selected from the group consisting of Cu, Ni, Co, Fe, Cr, Sn, Zn, In, Ag, Au, Al and Ti. , Prefer to,.
  • the carrier foil for example, foils manufactured by various methods such as a rolled foil and an electrolytic foil can be used without any particular limitation.
  • the present invention does not necessarily require that the surface of the carrier foil is roughened.
  • the surface of the carrier foil has a certain degree of unevenness from the viewpoint of controlling the pore diameter ⁇ existence density of the fine pores.
  • Each surface of the rolled foil is smooth due to the manufacturing method.
  • the electrolytic foil has a rough surface on one side and a smooth surface on the other side. The rough surface is a deposition surface when producing an electrolytic foil.
  • the rough surface of the electrolytic foil If is used as an electrodeposition surface, the labor for separately performing a roughening treatment on the carrier foil can be omitted, which is convenient.
  • its surface roughness Ra should be 0.05 to 5 m, particularly 0.2 to 0.8 / zm, and should have a desired diameter and existing density. It is preferable because holes can be easily formed.
  • a bonding interface layer of both foils is interposed.
  • the bonding interface layer is formed by applying and drying a coating solution containing a conductive polymer.
  • the bonding interface layer is used for forming desired micropores in the metal foil and for imparting desired strength and flexibility to the metal foil after peeling from the carrier foil.
  • the carrier foil is an electrolytic foil, it is preferable that, of the surface of the carrier foil, a surface in contact with a bonding interface is a deposition surface when the electrolytic foil is manufactured.
  • the conductive polymer constituting the bonding interface layer a conventionally known polymer whose type is not particularly limited can be used.
  • a conventionally known polymer whose type is not particularly limited can be used.
  • PVDf polypyridene-fluoride
  • PEO polyethylene oxide
  • PAN polyacryl-tolyl
  • PMMA polymethyl methacrylate
  • the conductive polymer which is not related to the specific use of the porous metal foil is preferably a fluorine-containing conductive polymer. This is because the fluorine-containing polymer has high thermal and chemical stability and excellent mechanical strength.
  • poly (pyridene fluoride) which is a fluorine-containing polymer having lithium ion conductivity.
  • the bonding interface layer formed using the conductive polymer may be present continuously over the entire area between the carrier foil and the porous metal foil with a thickness sufficient to completely separate the carrier foil and the porous metal foil. . Or it may exist discontinuously between both foils.
  • the amount of the conductive polymer in the bonding interface layer is determined from the viewpoint of forming desired micropores in the porous metal foil and imparting desired strength and flexibility to the porous metal foil after peeling from the carrier foil. The appropriate amount is determined.
  • the metal foil may be peeled off the carrier foil after a predetermined application to the metal foil is completed. Or for metal foil The metal foil and carrier foil may be peeled off immediately before performing the predetermined processing. As a result, the thickness is thin and the stiffness is weak, and the handling and properties of the metal foil are remarkably improved.
  • the porous metal foil with the carrier foil of the present embodiment has a peeled porous metal foil on one surface of which a conductive polymer derived from a bonding interface layer is adhered. This adhesion imparts the desired strength and flexibility to the metal foil.
  • the conductive polymer may be continuously coated over the entire surface of the porous metal foil, or may be discontinuously coated in an island shape. According to the study of the present inventors, it has been found that the strength and flexibility of the metal foil can be improved only by the conductive polymer covering one surface of the porous metal foil discontinuously in an island shape.
  • a carrier foil 1 is prepared as shown in FIG.
  • the carrier foil 1 is also an electrolytic foil, as shown in the figure, the carrier foil 1 has a rough surface la on one side and a smooth surface lb on the other side. Of these surfaces, it is preferable to use the rough surface la as the electrodeposition surface for the reason described above.
  • a release agent is applied to one surface of the carrier foil 1 to perform a release treatment.
  • the release agent is preferably applied to the rough surface la of the carrier foil 1.
  • the release agent is used to successfully release the metal foil from the carrier foil 1 in a release step described later.
  • the peeling treatment is performed by, for example, a chrome plating treatment, a nickel plating treatment, a lead plating treatment, a chromate treatment, or the like.
  • a release treatment using a release agent made of an organic compound can also be performed.
  • the organic compound it is particularly preferable to use a nitrogen-containing compound or a sulfur-containing compound.
  • nitrogen-containing conjugates examples include benzotriazole (BTA), carboxybenzotriazole (CBTA), tolyltriazole ( ⁇ ), ⁇ ′, N′-bis (benzotriazolylmethyl) urea (BTD-U) And triazole-based compounds such as 3-amino-1H-1,2,4-triazole ( ⁇ ).
  • the sulfur-containing compound examples include mercaptobenzothiazole ( ⁇ ), thiocyanuric acid (TCA), and 2-benzimidazolthiol (BIT).
  • the releasability depends on the concentration of the release agent and the amount applied. Can control.
  • the step of applying the release agent is performed only in order to successfully release the metal foil from the carrier foil 1 in the release step described below. Therefore, even if this step is omitted, a metal foil having fine holes can be formed.
  • a coating liquid containing a conductive polymer is applied and dried to form a coating film 2.
  • the surface to which the coating liquid is applied may be subjected to a release treatment with a release agent.
  • the coating liquid is formed by dissolving a conductive polymer in a volatile organic solvent.
  • a conductive polymer in a volatile organic solvent.
  • N-methylpyrrolidinone can be used as the organic solvent.
  • the coating liquid is applied to the rough surface la of the carrier foil 1, so that it is likely to accumulate in the concave portions on the rough surface la.
  • the thickness of the coating film 2 becomes uneven. That is, the thickness of the coating film corresponding to the concave portion of the rough surface is large, and the thickness of the coating film corresponding to the convex portion is small.
  • a large number of fine holes are formed as shown in FIG. 1 (c) by utilizing the unevenness of the thickness of the coating film 2.
  • the mechanism by which the porous metal foil is formed on the carrier foil 1 is considered as follows.
  • the carrier foil 1 on which the coating film 2 is formed is subjected to an electrolytic plating process, and a metal foil 3 is formed on the coating film 2 as shown in FIG.
  • the conductive polymer that forms the coating has electronic conductivity, though not as much as metal. Therefore, the coating 2 has different electron conductivity depending on its thickness.
  • Micropores 4 are formed. In other words, the portion where the electrodeposition rate is low, in other words, the thickness of the coating film 2 and the portion tend to become the micropores 4.
  • the fineness can also be controlled by the concentration of the conductive polymer contained in the coating liquid.
  • the pore diameter of hole 4 divided by the existing density can be controlled. For example, when the concentration of the conductive polymer is low, the pore size tends to decrease, and the existing density also tends to decrease. Conversely, when the concentration of the conductive polymer is high, the pore size tends to increase.
  • the concentration of the conductive polymer in the coating liquid is not only a dominant factor of the pore diameter of the micropores / existence density, but also a dominant factor of the strength and flexibility of the obtained metal foil. Also. For example, as the concentration of the conductive polymer increases, the strength / flexibility of the obtained metal foil tends to increase. From these various viewpoints, the concentration of the conductive polymer in the coating liquid is preferably 0.05 to 5% by weight, particularly preferably 1 to 3% by weight.
  • the fine holes 4 are drawn so as to correspond to the thick portions of the coating film 2.
  • the plating bath and the plating conditions for forming the metal foil 3 are appropriately selected according to the constituent material of the metal foil.
  • a Watt bath or a sulfamic acid bath having the following composition can be used as a plating bath.
  • the bath temperature is preferably about 40 to 70 ° C, and the current density is preferably about 0.5 to 20 AZdm2!
  • the metal foil 3 is manufactured by the above-described method, it is easy to freely control the hole diameter ⁇ existing density of the fine holes 4. In addition, it is easy to freely control the strength and flexibility of the metal foil.
  • the metal foil is always deposited on a new surface, that is, on the surface of the carrier foil which is replaced at each production. As a result, the state of the surface can always be kept constant, so that it is possible to precisely control the pore diameter / existence density, strength and flexibility.
  • the surface on which the metal foil is electrodeposited is always the same surface, that is, the peripheral surface of the drum force sword body, so that the state of the surface changes with time.
  • the metal foil 3 obtained in this manner has a force depending on manufacturing conditions, preferably 0.01 to 200.
  • the metal foil 3 having the micropores 4 in this range is used, for example, as a material for an electrode of a nonaqueous electrolyte secondary battery shown in FIG. 2 described later, the flow of the nonaqueous electrolyte can be maintained while maintaining the strength of the metal foil 3. Can be sufficiently secured. Further, it is possible to effectively prevent the active material from falling off due to the absorption and desorption of lithium.
  • micropores 4 having the above diameter, connexion and the site of the metal foil 3 throat Mitechi, in an area of 1cm 2 LOOOO pieces, in particular 500 to 8000 pieces, especially 1000 It is preferred to be present at a density of ⁇ 6000.
  • the method for measuring the pore diameter ⁇ existing density of the micropores 4 will be described in Examples described later.
  • the metal foil in the porous metal foil with a carrier foil obtained by the above method is subjected to a desired process in a state of being adhered to the carrier foil.
  • the metal foil 3 may be peeled off from the carrier foil 1 and subjected to desired processing.
  • the metal foil thus obtained is used, for example, as a material for an electrode of a battery, a carrier for a catalyst in various chemical reactions, and a filter for gas or liquid.
  • it is suitably used as a material for electrodes for non-aqueous electrolyte secondary batteries, particularly as a material for negative electrodes.
  • FIG. 2 schematically shows the structure of a negative electrode 6 for a non-aqueous electrolyte secondary battery including a metal foil obtained by peeling from a porous metal foil with a carrier foil manufactured according to the present invention. ing.
  • the negative electrode 6 is configured such that an active material layer 5 containing particles 7 of a negative electrode active material is sandwiched between a pair of metal foils 3a and 3b. Many fine holes are formed in each of the metal foils 3a and 3b. The method for forming the fine holes will be described later. According to the negative electrode 6, the flow path of the electrolyte is sufficiently ensured through the many fine holes formed in the metal foils 3 a and 3 b, so that the capacity of the nonaqueous electrolyte secondary battery is increased.
  • the negative electrode 6 shown in FIG. 2 has an advantage that the active material layer needs to be formed only on one surface of the metal foil. This also contributes to the improvement of the energy density described later.
  • the material forming the metal foils 3a and 3b penetrates over the entire area of the active material layer 5 in the thickness direction. It is preferable that the active material particles 7 exist in the permeated material. As a result, the adhesion between the active material layer 5 and the metal foils 3a and 3b becomes strong, and the active material is further prevented from falling off. In addition, since the conductive material is ensured between the metal foils 3a and 3b and the active material through the material penetrated into the active material layer 5, an electrically isolated active material is generated. The generation of an electrically isolated active material deep in the layer 5 is effectively prevented, and the current collecting function is maintained.
  • the life of the negative electrode can be prolonged. This is particularly advantageous when a material such as a silicon-based material, which is a semiconductor and has poor electron conductivity, is used as the active material.
  • the material constituting the metal foils 3a and 3b existing in the active material layer 5 penetrates the active material layer 5 in the thickness direction.
  • the metal foils 3a and 3b are electrically conducted through the material, and the electron conductivity of the entire negative electrode 6 is further increased. That is, the negative electrode 6 has a current collecting function as a whole of the negative electrode.
  • the fact that the material constituting the metal foils 3a and 3b penetrates over the entire area in the thickness direction of the active material layer 5 and the two metal foils are connected to each other can be determined by electron microscope mapping using the material as a measurement target. .
  • the active material is activated by the anchor effect.
  • the material constituting the metal foils 3a and 3b enter the micropores so as not to completely fill the micropores, from the viewpoint of ensuring the flow of the electrolytic solution. A preferred method for permeating the material constituting the metal foils 3a and 3b into the active material layer will be described later.
  • the active material layer 5 is sandwiched between the pair of metal foils 3a and 3b, so that particles of the active material are absorbed and desorbed by lithium. Even after repeated expansion and contraction, it is difficult to fall off the negative electrode 2. Further, the adhesion between the active material layer 5 and the metal foils 3a and 3b is improved by the above-described anchor effect. As a result, the cycle characteristics are improved. Since the metal foils 3a and 3b have a small thickness, the energy density per unit volume and unit weight can be increased.
  • the negative electrode active material for example, particles of an alloy containing Si or Sn, which are high-capacity active materials, are preferably used.
  • the average particle diameter D of the active material particles is 0.1 to 30 / ⁇ , which is preferable.
  • the active material layer 5 containing such active material particles has a thickness of 10 to 80 ⁇ m, preferably 20 to 50 ⁇ m. By doing so, the capacity and the energy density of the battery can be increased.
  • the negative electrode 6 shown in FIG. 2 can be manufactured by using the above-described method for manufacturing a porous metal foil with a carrier foil. For example, first carry out the method shown in Fig. 1 (a) to 1 (c). A porous metal foil with a metal foil is manufactured. This is used as one metal foil 3a. Next, the active material layer 5 is formed on the metal foil 3a in a state where the metal foil 3a is not peeled off by the carrier foil force. The active material layer 5 is formed by applying a paste containing, for example, particles of an active material or particles of a conductive material.
  • a carbonaceous material for example, acetylene bran having an average particle diameter D
  • H is applied in a thickness of 0.001 to m. This operation is for forming a large number of fine holes in the other metal foil 3b.
  • the constituent material of the metal foil is electrodeposited by electrolysis to form the other metal foil 3b.
  • the plating solution penetrates into the active material layer 5 and reaches the interface between the active material layer 5 and the metal foil 3a, under which the electrolytic plating is performed.
  • the inside of the active material layer 5 (mouth) the outer surface side of the active material layer 5 (that is, the surface in contact with the plating liquid, and (c) the inner surface side of the active material layer 5 (that is, the metal)
  • the metal material is deposited on the surface facing the foil 3a).
  • the metal foil 3b is formed, and the material constituting the metal foil 3b penetrates the entire active material layer 5 in the thickness direction to reach the metal foil 3a. Part of it enters a part of the fine hole of the metal foil 3a.
  • the metal foil 3a manufactured first is also peeled off the carrier foil. Thereby, the negative electrode 6 shown in FIG. 2 is obtained.
  • the negative electrode 6 thus obtained has substantially the same electrode characteristics on each surface. That is, each of the metal foils 3a and 3b has substantially the same size and the same density of micropores.
  • the conductive polymer is adhered to the outer surface of the metal foil 3a.
  • the negative electrode 6 is used together with a known positive electrode, a separator, and a non-aqueous electrolyte to form a non-aqueous electrolyte secondary battery.
  • the positive electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to prepare a positive electrode mixture, applying the mixture to a current collector, drying the mixture, rolling, pressing, and Obtained by cutting and punching.
  • the positive electrode active material a conventionally known positive electrode active material such as a lithium nickel composite oxide, a lithium manganese composite oxide, a lithium cobalt composite oxide, and the like are used.
  • the separator a synthetic resin nonwoven fabric, a polyethylene or polypropylene porous film, or the like is preferably used.
  • the non-aqueous electrolyte is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • lithium salts include LiCIO, Li A1C1, LiPF, LiAsF, LiSbF, LiSCN, LiCl, LiBr ⁇ Lil, LiCF SO, LiC F
  • the copper carrier foil (thickness: 35 ⁇ m) obtained by the electrolysis was acid-washed at room temperature for 30 seconds. Subsequently, pure water washing was performed at room temperature for 30 seconds. Next, the carrier foil was immersed in a 3.5 g Zl CBTA solution kept at 40 ° C for 30 seconds. Thereby, a peeling treatment was performed. After the peeling treatment, the solution strength was also raised, and the substrate was washed with pure water for 15 seconds.
  • the carrier foil was immersed in a Watt bath having the following bath composition to perform electroplating. Thereby, a first metal foil having a nickel strength was formed on the coating film.
  • the current density was 5 AZdm 2 , the bath temperature was 50 ° C, and the pH was 5.
  • a nickel electrode was used for the anode.
  • the power supply used was a DC power supply.
  • the metal foil was formed to a thickness of 5 m. After lifting from the plating bath, the substrate was washed with pure water for 30 seconds and dried in the air. Thus, a porous metal foil with a carrier foil was obtained.
  • a slurry containing particles of the negative electrode active material was applied on a metal foil so as to have a film thickness to form an active material layer.
  • the composition of the slurry is as follows: active material: Ni powder: a
  • a carbonaceous material (acetylene black) having an average particle diameter D force of S40 nm is included.
  • One coat was applied to a thickness of 0.5 m. Subsequently, electrolytic plating was performed on this coating film under the same electrolytic conditions as described above to form a second metal foil having a nickel strength. Metal foil was formed to a thickness of 3 ⁇ m.
  • the first metal foil and the carrier foil were peeled off to obtain a negative electrode for a non-aqueous electrolyte secondary battery in which an active material layer was sandwiched between a pair of metal foils.
  • the negative electrode had polyvinylidene fluoride adhered to the outer surface of the first metal foil.
  • Example 2 instead of the watt bath used in Example 1, an H 2 SO 3 / CuSO-based plating bath was used.
  • First and second metal foils having copper strength were formed.
  • the composition of the plating bath is CuSO power 3 ⁇ 450gZl
  • the H SO was 70 gZl. Current density was 5AZdm 2. Other than this, the same as in Example 1
  • the copper carrier foil (thickness: 35 ⁇ m) obtained by the electrolysis was acid-washed at room temperature for 30 seconds. Subsequently, pure water washing was performed at room temperature for 30 seconds. Next, the carrier foil was subjected to a peeling treatment in the same manner as in Example 1. Next, the carrier foil was immersed in a watt bath having the same bath composition as in Example 1 to perform electroplating to form a first metal foil made of nickel color.
  • the electrolysis conditions were the same as in Example 1.
  • a slurry containing particles of the negative electrode active material was applied on the first metal foil to a thickness of 15 / zm to form an active material layer. The same active material and slurry as in Example 1 were used.
  • Electrolytic plating was performed on the active material layer under the same conditions as in Example 1 to form a second metal foil made of nickel copper.
  • the metal foil was formed to a thickness of 3 m.
  • the first metal foil and the carrier foil were peeled off to obtain a negative electrode for a non-aqueous electrolyte secondary battery in which an active material layer was sandwiched between a pair of metal foils.
  • LiPF as non-aqueous electrolyte
  • a non-aqueous electrolyte secondary battery was fabricated by a conventional method using a mixed solution of Z-ethylene carbonate and getyl carbonate (1: 1 volume ratio). Using this battery, evaluation was performed under charging conditions of 0.2 mA and a voltage range of 0 to 2.8 V.
  • the photograph was subjected to image analysis to determine the diameter and density of the micropores.
  • the negative electrode of Example 1 had a sufficient capacity on both the carrier foil peeling side and the coated side. It can be seen that is obtained. This means that in the negative electrode of Example 1, the electrolyte was sufficiently supplied to the active material layer through the first and second metal foils. On the other hand, in the negative electrode of Comparative Example 1, it was found that sufficient capacity was obtained on both the carrier foil peeling side and the coating-coated side, and it was not found. This means that in the negative electrode of Comparative Example 1, the electrolyte was sufficiently supplied to the active material layer through the first and second metal foils.
  • the first metal foil (metal foil manufactured according to the manufacturing method of the present invention) obtained in Example 1 has fine pores. It can be seen that it has the same tensile strength as the first metal foil obtained in Comparative Example 1 having no micropores of the same thickness. High tensile strength is also obtained for the first metal foil obtained in Example 2.
  • FIG. 5 shows a scanning electron micrograph of the surface state of the first metal foil in the negative electrode obtained in Example 2. As is clear from this photographic power, it can be seen that many fine holes are formed in the first metal foil.
  • the metal foil is thin and has low stiffness and is not easy to handle. Since the metal foil is attached to the carrier foil, the handleability of the metal foil is good. become. In particular, since the metal foil is porous, it has low strength and is easily broken, but according to the present invention, such inconvenience is unlikely to occur. In addition, the porous metal foil from which the carrier foil has also been peeled has high strength and high flexibility since the conductive polymer is attached to one surface thereof. Further, according to the method for producing a porous metal foil with a carrier foil of the present invention, the diameter of the micropores formed in the metal foil divided by the existing density can be freely controlled.
  • the negative electrode manufactured by the manufacturing method of the present invention since the flow path of the electrolyte is sufficiently ensured, the capacity of the nonaqueous electrolyte secondary battery is increased, and the active material absorbs and desorbs lithium. The loss of electrode force due to storage is effectively prevented, and the cycle characteristics are improved.

Abstract

A porous metal foil with carrier foil characterized by having a porous metal foil layer disposed by electroplating on a conductive carrier foil and further having interposed therebetween a junction interface layer of conductive polymer. The conductive polymer is preferably a lithium-ion-conducting polymer. Further, a fluorinated conductive polymer is preferred. Especially, a polyvinylidene fluoride is preferred. Preferably, the carrier foil is an electrolytic foil, and with respect to surfaces of the carrier foil, one in contact with the junction interface layer is a deposition surface at the production of the electrolytic foil.

Description

明 細 書  Specification
キャリア箔付き多孔質金属箔及びその製造方法  Porous metal foil with carrier foil and method for producing the same
技術分野  Technical field
[0001] 本発明は、キャリア箔付き多孔質金属箔及びその製造方法に関する。また本発明 は非水電解液二次電池用負極の製造方法に関する。  The present invention relates to a porous metal foil with a carrier foil and a method for producing the same. The present invention also relates to a method for producing a negative electrode for a non-aqueous electrolyte secondary battery.
背景技術  Background art
[0002] 多孔性金属箔は例えば電池の集電体ゃ触媒の担体等として広く用いられて 、る。  [0002] Porous metal foils are widely used, for example, as current collectors for batteries and as carriers for catalysts.
この種の多孔性金属箔の製造方法には、例えば (a)電極表面に所望形状の絶縁性 被膜を形成しておきその上に電解めつきを施すことで、該被膜に対応する部位に電 祈が生じな 、ようにして多孔性金属箔を製造する方法、 (b)繊維状又は粒状の金属 を焼結して多孔性焼結体とする方法、(c)圧延や電解めつきによって金属箔を製造し た後、これを打ち抜き処理して孔をあける方法などがある。  The method for producing this kind of porous metal foil includes, for example, (a) forming an insulating film of a desired shape on the electrode surface and applying electrolytic plating thereon, so that a portion corresponding to the film is applied to the electrode; A method for producing a porous metal foil in such a way that prayer does not occur, (b) a method for sintering a fibrous or granular metal into a porous sintered body, and (c) a method for producing a metal by rolling or electrolytic plating. After the foil is manufactured, there is a method of punching and punching holes.
[0003] これら各種方法のうち、電解めつきによって多孔性金属箔を製造する方法としては 、例えば金属製の被電着基体を、サンドブラスト、化学エッチング、電解エッチング、 機械加工等によって粗化処理し、その粗ィ匕面に絶縁塗料を粗く吹き付けるか、又は 全面に絶縁性の塗膜若しくは酸化膜を設け、 Iき続きワイヤブラシやパフ等の被膜 を部分的に且つ不完全に取り除き、然る後に電解めつきを施して金属箔を製造する 方法が知られている (特許文献 1参照)。得られた金属箔を基体から剥離することで、 多孔体を得ることができる。 [0003] Among these various methods, as a method for producing a porous metal foil by electrolytic plating, for example, a metal substrate to be electrodeposited is roughened by sandblasting, chemical etching, electrolytic etching, machining, or the like. Roughly spray the insulating paint on the rough surface, or provide an insulating coating or oxide film on the entire surface, and remove the coating such as wire brush and puff partially and incompletely. A method of producing a metal foil by applying electrolytic plating later is known (see Patent Document 1). By peeling the obtained metal foil from the substrate, a porous body can be obtained.
[0004] 別法として、疎水性基を有するカルボン酸の吸着、高級アルコール塩と金属とを用 いたカップリング、又はフッ化工チレンのコーティングなどによって電極板面に疎水処 理を施し、その上に電解めつきを行い、金属箔を製造する方法が知られている(特許 文献 2参照)。この方法では、電解めつき時に電極板面上で発生する水素の気泡が 電極板面上に残ることで電解液との接触が不十分になり、その部分には電着が起こ らないことを利用している。  [0004] Alternatively, the electrode plate surface is subjected to hydrophobic treatment by adsorption of a carboxylic acid having a hydrophobic group, coupling using a higher alcohol salt and a metal, or coating of fluorinated titanium, and the like. A method of producing a metal foil by performing electrolytic plating is known (see Patent Document 2). In this method, hydrogen bubbles generated on the electrode plate surface during electroplating remain on the electrode plate surface, so that contact with the electrolyte becomes insufficient and electrodeposition does not occur at that portion. We are using.
[0005] 特許文献 1:特開昭 50— 141540号公報  [0005] Patent Document 1: Japanese Patent Application Laid-Open No. 50-141540
特許文献 2:特開平 5 - 23760号公報 [0006] し力し前述の何れの技術とも、それによつて得られる金属箔は、多孔性であるがゆ えに強度を高めることが容易でない。また、電極表面に絶縁性の物質を塗布すること 力 電析の効率を向上させることが容易でない。更に、特許文献 1記載の技術にお いては電極表面を粗ィ匕することが必須であることから、電解めつきに先立ち電極の粗 化処理が必要となり製造工程が煩雑ィ匕する。その上、金属箔は薄くコシが弱いことか ら、これを単独で加工、搬送等するには取り扱い性が良くない。 Patent Document 2: JP-A-5-23760 [0006] With any of the above techniques, the metal foil obtained thereby is porous, but it is not easy to increase the strength. Also, it is not easy to improve the efficiency of electrodeposition by applying an insulating substance to the electrode surface. Furthermore, in the technique described in Patent Document 1, it is essential to roughen the electrode surface, and therefore, a roughening treatment of the electrode is required prior to electroplating, which complicates the manufacturing process. In addition, since the metal foil is thin and stiff, it is not easy to handle and process it alone.
発明の開示  Disclosure of the invention
[0007] 従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る多孔 質金属箔及びその製造方法を提供することにある。  [0007] Accordingly, an object of the present invention is to provide a porous metal foil and a method for producing the same, which can solve the above-mentioned various disadvantages of the related art.
[0008] 本発明は、導電性を有するキャリア箔上に、電解めつきにより形成された多孔質金 属箔層を有し、更に両者間に導電性ポリマーを用いて形成された接合界面層を有し ていることを特徴とするキャリア箔付き多孔質金属箔を提供することにより前記目的を 達成したものである。 [0008] The present invention has a porous metal foil layer formed by electrolytic plating on a conductive carrier foil, and further includes a bonding interface layer formed between the two by using a conductive polymer. The object has been achieved by providing a porous metal foil with a carrier foil, characterized in that the metal foil has a carrier foil.
[0009] また本発明は、前記キャリア箔付き多孔質金属箔の製造方法であって、  [0009] The present invention is also a method for producing the porous metal foil with a carrier foil,
前記導電性ポリマーを含む塗工液を前記キャリア箔の一面に塗工し、その上に電 解めつきによって前記金属箔を形成することを特徴とするキャリア箔付き多孔質金属 箔の製造方法を提供するものである。  A method for producing a porous metal foil with a carrier foil, comprising applying a coating liquid containing the conductive polymer to one surface of the carrier foil, and forming the metal foil thereon by electrolysis. To provide.
[0010] また本発明は、前記キャリア箔付き多孔質金属箔から該多孔質金属箔を剥離する ことで得られ、且つ該多孔質金属箔層の一面に前記導電性ポリマーが付着している ことを特徴とする多孔質金属箔を提供するものである。また、前記キャリア箔付き多孔 質金属箔カゝら該多孔質金属箔を剥離することで得られた多孔質金属箔を備えてなる ことを特徴とする非水電解液二次電池用負極及び該負極を備えてなることを特徴と する非水電解液二次電池を提供するものである。 [0010] Further, the present invention is obtained by peeling the porous metal foil from the porous metal foil with a carrier foil, and the conductive polymer is attached to one surface of the porous metal foil layer. The present invention provides a porous metal foil characterized by the following. Further, the negative electrode for a non-aqueous electrolyte secondary battery, comprising the porous metal foil with a carrier foil, and a porous metal foil obtained by peeling the porous metal foil. It is intended to provide a non-aqueous electrolyte secondary battery comprising a negative electrode.
[0011] 更に本発明は、表面が電解液と接する一対の集電用表面層と、該表面層間に介在 されたリチウム化合物の形成能の高い活物質の粒子を含む活物質層とを備えている 非水電解液二次電池用負極の製造方法であって、  Further, the present invention includes a pair of current collecting surface layers whose surfaces are in contact with the electrolytic solution, and an active material layer containing active material particles having a high ability to form a lithium compound interposed between the surface layers. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery,
導電性ポリマーを含む塗工液をキャリア箔の一面に塗工し、その上にリチウム化合 物の形成能の低い金属材料を電解めつきして一方の集電用表面層を形成し、該集 電用表面層の上に活物質の粒子を含む導電性スラリーを塗布して活物質層を形成 し、該活物質層の上にリチウム化合物の形成能の低い金属材料を電解めつきして他 方の集電用表面層を形成し、然る後、前記キャリア箔を前記一方の集電用表面層か ら剥離分離することを特徴とする非水電解液二次電池用負極の製造方法を提供する ものである。 A coating solution containing a conductive polymer is applied to one surface of the carrier foil, and a metal material having a low ability to form a lithium compound is electroplated thereon to form one current-collecting surface layer. A conductive slurry containing particles of an active material is applied on the surface layer for power application to form an active material layer, and a metal material having a low ability to form a lithium compound is electrolytically deposited on the active material layer to form an active material layer. Forming a current collecting surface layer, and then separating and separating the carrier foil from the one current collecting surface layer, a method for producing a negative electrode for a non-aqueous electrolyte secondary battery, To provide.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1 (a)ないし図 1 (d)は、本発明の多孔質金属箔の製造方法を示す工程図で ある。  [FIG. 1] FIGS. 1 (a) to 1 (d) are process diagrams showing a method for producing a porous metal foil of the present invention.
[図 2]図 2は、本発明の金属箔を備えてなる非水電解液二次電池用負極の構造を示 す模式図である。  FIG. 2 is a schematic diagram showing a structure of a negative electrode for a non-aqueous electrolyte secondary battery provided with the metal foil of the present invention.
[図 3]図 3 (a)及び図 3 (b)は、実施例 1で得られた負極の充電特性を示す図である。  FIG. 3 (a) and FIG. 3 (b) are diagrams showing charging characteristics of the negative electrode obtained in Example 1.
[図 4]図 4 (a)及び図 4 (b)は、比較例 1で得られた負極の充電特性を示す図である。  FIG. 4 (a) and FIG. 4 (b) are diagrams showing charging characteristics of the negative electrode obtained in Comparative Example 1.
[図 5]図 5は、実施例 2で得られた負極における第 1の金属箔の表面状態の走査型電 子顕微鏡写真である。  FIG. 5 is a scanning electron micrograph of the surface state of the first metal foil in the negative electrode obtained in Example 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下本発明を、その好ましい実施形態に基づき説明する。先ず本発明のキャリア箔 付き多孔質金属箔について説明する。本実施形態のキャリア箔付き多孔質金属箔は 、キャリア箔上に多孔質金属箔層を有し、更に両者間に接合界面層を有している 3層 構造のものである。接合界面層は、キャリア箔及び多孔質金属箔層(以下、単に金属 箔又は多孔質金属箔と 、う)のそれぞれに直接接触して 、る。  Hereinafter, the present invention will be described based on preferred embodiments. First, the porous metal foil with a carrier foil of the present invention will be described. The porous metal foil with a carrier foil of the present embodiment has a three-layer structure having a porous metal foil layer on the carrier foil and a bonding interface layer between the two. The bonding interface layer is in direct contact with each of the carrier foil and the porous metal foil layer (hereinafter simply referred to as metal foil or porous metal foil).
[0014] 金属箔は電解めつきによって形成されている。金属箔は微細孔を多数有する多孔 質のものである。金属箔には、これをその厚み方向に貫通する微細孔及び途中で閉 塞している微細孔の両方が存在している。両者のうち、本発明にいう微細孔とは金属 箔を厚み方向に貫通する微細孔を意味する。しかしこのことは、本発明において、途 中で閉塞している微細孔が存在する金属箔を排除するものではない。またそのような 金属箔が好ましくな 、と 、うことを意味するものでもな 、。  [0014] The metal foil is formed by electrolytic plating. The metal foil is porous with many micropores. The metal foil has both a fine hole penetrating the metal foil in the thickness direction and a fine hole closing in the middle. Of these, the micropores referred to in the present invention mean micropores penetrating the metal foil in the thickness direction. However, this does not exclude a metal foil having micropores closed in the present invention. Also, it does not mean that such a metal foil is preferable.
[0015] 金属箔の厚みに特に制限はなぐその具体的な用途に応じて適切な厚みが選択さ れる。例えば、後述する図 2に示す非水電解液二次電池用の電極用材料として用い る場合には、機械的強度の確保や、微細孔の容易な形成、エネルギー密度の向上、 非水電解液の円滑な流通等の点から、好ましくは 1〜: LOO /z mとし、更に好ましくは 2 〜20 μ m、一層好ましくは 3〜 10 μ mとする。 [0015] The thickness of the metal foil is not particularly limited, and an appropriate thickness is selected depending on the specific use. For example, it is used as an electrode material for a non-aqueous electrolyte secondary battery shown in FIG. From the viewpoint of securing mechanical strength, easy formation of micropores, improvement of energy density, smooth distribution of non-aqueous electrolyte, etc., preferably 1 to: LOO / zm, more preferably The thickness is 2 to 20 μm, more preferably 3 to 10 μm.
[0016] 金属箔は各種金属材料から構成され得る。例えば Cu、 Ni、 Co、 Fe、 Cr、 Sn、 Zn、 In、 Ag及び Auのうちの少なくとも 1種類の金属を含む金属箔とすることができる。つ まり、これらの金属の単体若しくはこれらの金属の二種以上の合金又はこれらにカロえ て他の元素を含む材料力 金属箔を構成することができる。後述する図 2に示す非 水電解液二次電池の電極用材料として金属箔を用いる場合には、 Cu、 Ni、 Co、 Fe 、 Cr、 Au力も構成すること力 リチウムとの反応性が低い点力も好ましい。  [0016] The metal foil can be composed of various metal materials. For example, a metal foil containing at least one metal of Cu, Ni, Co, Fe, Cr, Sn, Zn, In, Ag and Au can be used. That is, it is possible to constitute a simple substance of these metals, an alloy of two or more of these metals, or a metal foil containing other elements in addition to them. When metal foil is used as the electrode material of the non-aqueous electrolyte secondary battery shown in Fig. 2 described below, Cu, Ni, Co, Fe, Cr, and Au force must also be composed. Low reactivity with lithium Force is also preferred.
[0017] キャリア箔は、多孔質金属箔を製造するための支持体として用いられるものである。  [0017] The carrier foil is used as a support for producing a porous metal foil.
また製造された多孔質金属箔をその使用の前まで、或いは加工の最中に支持して おき、該金属箔の取り扱い性を向上させるために用いられるものである。これらの観 点から、キャリア箔は、金属箔の製造工程において及び製造後の加工'搬送工程等 にお ヽてョレ等が生じな 、ような強度を有して!/、ることが好ま 、。従ってキャリア箔 は、その厚みが 10〜50 μ m程度であることが好ましい。  Further, the produced porous metal foil is supported before use or during processing, and is used to improve the handleability of the metal foil. From these viewpoints, the carrier foil has such a strength that no swelling or the like occurs in the manufacturing process of the metal foil and in the processing and transporting processes after the manufacturing! /, Prefer to,. Therefore, the carrier foil preferably has a thickness of about 10 to 50 μm.
[0018] 後述する製造方法に鑑みて、キャリア箔としては導電性を有するものを用いる。この 場合、導電性を有していれば、キャリア箔は金属製でなくてもよい。しかし金属製のキ ャリア箔を用いることで、多孔質金属箔の製造後にキャリア箔を溶解'製箔してリサイ クルできるという利点がある。金属製のキャリア箔を用いる場合、 Cu、 Ni、 Co、 Fe、 C r、 Sn、 Zn、 In、 Ag、 Au、 Al及び Tiのうちの少なくとも 1種類の金属を含んでキャリア 箔が構成されて 、ることが好まし 、。  [0018] In view of the manufacturing method described later, a conductive foil is used as the carrier foil. In this case, the carrier foil need not be made of metal as long as it has conductivity. However, using a metal carrier foil has the advantage that the carrier foil can be melted and made and recycled after the production of the porous metal foil. When using a metal carrier foil, the carrier foil is composed of at least one metal selected from the group consisting of Cu, Ni, Co, Fe, Cr, Sn, Zn, In, Ag, Au, Al and Ti. , Prefer to,.
[0019] キャリア箔としては、例えば圧延箔ゃ電解箔などの各種方法によって製造された箔 を特に制限なく用いることができる。従来の多孔質金属箔の製造方法と異なり、本発 明においてはキャリア箔の表面が粗ィ匕されていることを必ずしも要しない。しかし、微 細孔の孔径ゃ存在密度をコントロールする観点から、キャリア箔の表面は、或る程度 凹凸形状になっていることが好ましい。圧延箔は、その製造方法に起因して各面が 平滑になっている。これに対して電解箔は一面が粗面であり、他面が平滑面になつ ている。粗面は、電解箔を製造する際の析出面である。そこで、電解箔における粗面 を電析面として利用すれば、別途キャリア箔に粗化処理をする手間が省けるので簡 便である。力かる粗面を電析面として利用する場合、その表面粗さ Raは 0. 05〜5 m、特に 0. 2〜0. 8 /z mであることが、所望の径及び存在密度を有する微細孔を容 易に形成し得る点から好ま 、。 As the carrier foil, for example, foils manufactured by various methods such as a rolled foil and an electrolytic foil can be used without any particular limitation. Unlike the conventional method for manufacturing a porous metal foil, the present invention does not necessarily require that the surface of the carrier foil is roughened. However, it is preferable that the surface of the carrier foil has a certain degree of unevenness from the viewpoint of controlling the pore diameter ゃ existence density of the fine pores. Each surface of the rolled foil is smooth due to the manufacturing method. On the other hand, the electrolytic foil has a rough surface on one side and a smooth surface on the other side. The rough surface is a deposition surface when producing an electrolytic foil. Therefore, the rough surface of the electrolytic foil If is used as an electrodeposition surface, the labor for separately performing a roughening treatment on the carrier foil can be omitted, which is convenient. When using a roughened surface as an electrodeposited surface, its surface roughness Ra should be 0.05 to 5 m, particularly 0.2 to 0.8 / zm, and should have a desired diameter and existing density. It is preferable because holes can be easily formed.
[0020] キャリア箔と多孔質金属箔との間には、両箔の接合界面層が介在している。接合界 面層は、導電性ポリマーを含む塗工液を塗布し乾燥させて形成されたものである。接 合界面層は、金属箔に所望の微細孔を形成する目的、及びキャリア箔から剥離後の 金属箔に所望の強度及びフレキシビリティを付与するために用いられるものである。 キャリア箔が電解箔カ なる場合、該キャリア箔の表面のうち、接合界面と接する面が 、該電解箔を製造する際の析出面となることが好ましい。  [0020] Between the carrier foil and the porous metal foil, a bonding interface layer of both foils is interposed. The bonding interface layer is formed by applying and drying a coating solution containing a conductive polymer. The bonding interface layer is used for forming desired micropores in the metal foil and for imparting desired strength and flexibility to the metal foil after peeling from the carrier foil. When the carrier foil is an electrolytic foil, it is preferable that, of the surface of the carrier foil, a surface in contact with a bonding interface is a deposition surface when the electrolytic foil is manufactured.
[0021] 接合界面層を構成する導電性ポリマーとしては、その種類に特に制限はなぐ従来 公知のものを用いることができる。例えばポリフッ化ピリ-デン(PVDf)、ポリエチレン ォキシド(PEO)、ポリアクリル-トリル(PAN)及びポリメチルメタタリレート(PMMA) 等が挙げられる。特に、多孔質金属箔を非水電解液二次電池用の負極材料として用 いる場合には、導電性ポリマーとしてリチウムイオン伝導性ポリマーを用いることが好 ましい。また、多孔質金属箔の具体的な用途に関係なぐ導電性ポリマーはフッ素含 有の導電性ポリマーであることが好ましい。フッ素含有ポリマーは、熱的及び化学的 安定性が高ぐ機械的強度に優れているからである。これらのことを考慮すると、リチ ゥムイオン伝導性を有するフッ素含有ポリマーであるポリフッ化ピリ-デンを用いること が特に好ましい。  [0021] As the conductive polymer constituting the bonding interface layer, a conventionally known polymer whose type is not particularly limited can be used. For example, polypyridene-fluoride (PVDf), polyethylene oxide (PEO), polyacryl-tolyl (PAN), polymethyl methacrylate (PMMA) and the like can be mentioned. In particular, when a porous metal foil is used as a negative electrode material for a non-aqueous electrolyte secondary battery, a lithium ion conductive polymer is preferably used as the conductive polymer. Further, the conductive polymer which is not related to the specific use of the porous metal foil is preferably a fluorine-containing conductive polymer. This is because the fluorine-containing polymer has high thermal and chemical stability and excellent mechanical strength. Considering these facts, it is particularly preferable to use poly (pyridene fluoride), which is a fluorine-containing polymer having lithium ion conductivity.
[0022] 導電性ポリマーを用いて形成された接合界面層は、キャリア箔と多孔質金属箔とを 完全に離間させるに足る厚みをもって両箔間の全域に亘り連続的に存在していても よい。或いは両箔間に不連続に存在していてもよい。接合界面層における導電性ポ リマーの量は、多孔質金属箔に所望の微細孔を形成する観点、及びキャリア箔から 剥離後の多孔質金属箔に所望の強度やフレキシビリティを付与する観点から、適切 な量が決定される。  [0022] The bonding interface layer formed using the conductive polymer may be present continuously over the entire area between the carrier foil and the porous metal foil with a thickness sufficient to completely separate the carrier foil and the porous metal foil. . Or it may exist discontinuously between both foils. The amount of the conductive polymer in the bonding interface layer is determined from the viewpoint of forming desired micropores in the porous metal foil and imparting desired strength and flexibility to the porous metal foil after peeling from the carrier foil. The appropriate amount is determined.
[0023] 本実施形態のキャリア箔付き多孔質金属箔においては、金属箔に対して所定の加 ェが完了した後に金属箔をキャリア箔力 剥離すればよい。或いは、金属箔に対して 所定の加工を施す直前に金属箔をキャリア箔カも剥離すればよい。これによつて、そ の厚さが薄くコシの弱 、金属箔の取り扱 、性が格段に向上する。 [0023] In the porous metal foil with a carrier foil of the present embodiment, the metal foil may be peeled off the carrier foil after a predetermined application to the metal foil is completed. Or for metal foil The metal foil and carrier foil may be peeled off immediately before performing the predetermined processing. As a result, the thickness is thin and the stiffness is weak, and the handling and properties of the metal foil are remarkably improved.
[0024] 本実施形態のキャリア箔付き多孔質金属箔力 剥離された多孔質金属箔は、その 一面に接合界面層に由来する導電性ポリマーが付着している。この付着によって金 属箔には所望の強度とフレキシビリティが付与される。導電性ポリマーは、多孔質金 属箔の一面の全域を連続的に被覆していてもよぐ或いは不連続に島状に被覆して いてもよい。本発明者らの検討によれば、導電性ポリマーが多孔質金属箔の一面を 不連続に島状に被覆しているだけでも、金属箔の強度及びフレキシビリティが向上す ることが判明した。特に注目すべきことは、多孔質金属箔の孔が導電性ポリマーで閉 塞されていても、該金属箔を非水電解液二次電池用負極材料として用いた場合に、 リチウムイオン伝導性が発現することである。  The porous metal foil with the carrier foil of the present embodiment has a peeled porous metal foil on one surface of which a conductive polymer derived from a bonding interface layer is adhered. This adhesion imparts the desired strength and flexibility to the metal foil. The conductive polymer may be continuously coated over the entire surface of the porous metal foil, or may be discontinuously coated in an island shape. According to the study of the present inventors, it has been found that the strength and flexibility of the metal foil can be improved only by the conductive polymer covering one surface of the porous metal foil discontinuously in an island shape. Particularly noteworthy is that even when the pores of the porous metal foil are closed with a conductive polymer, when the metal foil is used as a negative electrode material for a non-aqueous electrolyte secondary battery, the lithium ion conductivity is reduced. Expression.
[0025] 次に本発明のキャリア箔付き金属箔の製造方法にっ 、て図 1 (a)な 、し図 1 (d)を 参照しながら説明する。先ず図 1 (a)に示すようにキャリア箔 1を用意する。キャリア箔 1が電解箔カもなる場合には、同図に示すように、キャリア箔 1はその一面が粗面 la であり、他面が平滑面 lbになっている。これらの面のうち、粗面 laを電析面として利 用することが先に述べた理由により好ましい。  Next, a method for producing a metal foil with a carrier foil according to the present invention will be described with reference to FIGS. 1 (a) and 1 (d). First, a carrier foil 1 is prepared as shown in FIG. When the carrier foil 1 is also an electrolytic foil, as shown in the figure, the carrier foil 1 has a rough surface la on one side and a smooth surface lb on the other side. Of these surfaces, it is preferable to use the rough surface la as the electrodeposition surface for the reason described above.
[0026] 次に、キャリア箔 1の一面に剥離剤を施して剥離処理行う。前述した理由から、剥離 剤はキャリア箔 1における粗面 laに施すことが好ましい。剥離剤は、後述する剥離ェ 程において、キャリア箔 1から金属箔を首尾良く剥離するために用いられる。剥離処 理は、例えばクロムめつき処理、ニッケルめっき処理、鉛めつき処理、クロメート処理 等によって行われる。また有機化合物からなる剥離剤を用いた剥離処理を行うことも できる。有機化合物としては、特に窒素含有化合物又は硫黄含有化合物を用いるこ とが好ましい。窒素含有ィ匕合物としては、例えばべンゾトリアゾール (BTA)、カルボ キシベンゾトリアゾール(CBTA)、トリルトリァゾール(ΤΤΑ)、 Ν', N'—ビス(ベンゾト リアゾリルメチル)ユリア(BTD— U)及び 3—ァミノ— 1H— 1, 2, 4—トリァゾール (Α ΤΑ)などのトリァゾール系化合物が好ましく用いられる。硫黄含有化合物としては、メ ルカプトべンゾチアゾール(ΜΒΤ)、チオシァヌル酸(TCA)及び 2—ベンズイミダゾ 一ルチオール (BIT)などが挙げられる。剥離性は、剥離剤の濃度や塗布量によって 制御できる。剥離剤を施す工程は、あくまでも、後述する剥離工程において、キャリア 箔 1から金属箔を首尾良く剥離するために行われるものである。従って、この工程を 省いても微細孔を有する金属箔を形成することができる。 Next, a release agent is applied to one surface of the carrier foil 1 to perform a release treatment. For the reasons described above, the release agent is preferably applied to the rough surface la of the carrier foil 1. The release agent is used to successfully release the metal foil from the carrier foil 1 in a release step described later. The peeling treatment is performed by, for example, a chrome plating treatment, a nickel plating treatment, a lead plating treatment, a chromate treatment, or the like. Further, a release treatment using a release agent made of an organic compound can also be performed. As the organic compound, it is particularly preferable to use a nitrogen-containing compound or a sulfur-containing compound. Examples of nitrogen-containing conjugates include benzotriazole (BTA), carboxybenzotriazole (CBTA), tolyltriazole (ΤΤΑ), Ν ′, N′-bis (benzotriazolylmethyl) urea (BTD-U) And triazole-based compounds such as 3-amino-1H-1,2,4-triazole (Α). Examples of the sulfur-containing compound include mercaptobenzothiazole (ΜΒΤ), thiocyanuric acid (TCA), and 2-benzimidazolthiol (BIT). The releasability depends on the concentration of the release agent and the amount applied. Can control. The step of applying the release agent is performed only in order to successfully release the metal foil from the carrier foil 1 in the release step described below. Therefore, even if this step is omitted, a metal foil having fine holes can be formed.
[0027] 次に図 1 (b)に示すように、剥離剤(図示せず)を施した上に、導電性ポリマーを含 む塗工液を塗布し乾燥させて塗膜 2を形成する。或いは、塗工液を塗布した後に該 塗工液の塗布面を剥離剤によって剥離処理してもよい。塗工液は、導電性ポリマー が揮発性の有機溶媒に溶解してなるものである。有機溶媒としては、導電性ポリマー として例えばポリフッ化ビ-リデンを用いる場合には、 N—メチルピロリジノンなどを用 いることができる。図 1 (b)に示すように、塗工液はキャリア箔 1の粗面 laに塗工される ので、該粗面 laにおける凹部に溜まりやすくなる。この状態で溶媒が揮発すると、塗 膜 2の厚みは不均一になる。つまり粗面の凹部に対応する塗膜の厚みは大きぐ凸 部に対応する塗膜の厚みは小さくなる。本発明においては、塗膜 2の厚みの不均一 性を利用して図 1 (c)に示すように多数の微細孔を形成している。  Next, as shown in FIG. 1 (b), after a release agent (not shown) is applied, a coating liquid containing a conductive polymer is applied and dried to form a coating film 2. Alternatively, after applying the coating liquid, the surface to which the coating liquid is applied may be subjected to a release treatment with a release agent. The coating liquid is formed by dissolving a conductive polymer in a volatile organic solvent. When, for example, polyvinylidene fluoride is used as the conductive polymer, N-methylpyrrolidinone can be used as the organic solvent. As shown in FIG. 1 (b), the coating liquid is applied to the rough surface la of the carrier foil 1, so that it is likely to accumulate in the concave portions on the rough surface la. If the solvent evaporates in this state, the thickness of the coating film 2 becomes uneven. That is, the thickness of the coating film corresponding to the concave portion of the rough surface is large, and the thickness of the coating film corresponding to the convex portion is small. In the present invention, a large number of fine holes are formed as shown in FIG. 1 (c) by utilizing the unevenness of the thickness of the coating film 2.
[0028] 本発明において、キャリア箔 1上に多孔質金属箔が形成されるメカニズムは次のよう に考えられる。塗膜 2が形成されたキャリア箔 1は電解めつき処理に付されて、図 l (c )に示すように塗膜 2上に金属箔 3が形成される。塗膜を構成する導電性ポリマーは、 金属ほどではないが電子伝導性を有する。従って塗膜 2はその厚みに応じて電子伝 導性が異なる。その結果導電性ポリマーを含む塗膜 2の上に電解めつきによって金 属を析出させると、電子伝導性に応じて電析速度に差が生じ、その電析速度の差に よって金属箔 3に微細孔 4が形成される。つまり、電析速度の小さい部分、換言すれ ば塗膜 2の厚 、部分が微細孔 4になりやす 、。  [0028] In the present invention, the mechanism by which the porous metal foil is formed on the carrier foil 1 is considered as follows. The carrier foil 1 on which the coating film 2 is formed is subjected to an electrolytic plating process, and a metal foil 3 is formed on the coating film 2 as shown in FIG. The conductive polymer that forms the coating has electronic conductivity, though not as much as metal. Therefore, the coating 2 has different electron conductivity depending on its thickness. As a result, when a metal is deposited by electroplating on the coating film 2 containing the conductive polymer, a difference occurs in the deposition rate depending on the electron conductivity, and the difference in the deposition rate causes the metal foil 3 to be deposited on the metal foil 3. Micropores 4 are formed. In other words, the portion where the electrodeposition rate is low, in other words, the thickness of the coating film 2 and the portion tend to become the micropores 4.
[0029] 粗面 laの表面粗さ Raによって微細孔 4の孔径ゃ存在密度をコントロールできること は先に述べた通りである力 これに加えて塗工液に含まれる導電性ポリマーの濃度 によっても微細孔 4の孔径ゃ存在密度をコントロールできる。例えば導電性ポリマー の濃度が薄い場合には孔径は小さくなる傾向にあり、存在密度も小さくなる傾向にあ る。逆に、導電性ポリマーの濃度が濃い場合には孔径は大きくなる傾向にある。  [0029] As described above, it is possible to control the pore diameter ゃ existence density by the surface roughness Ra of the rough surface la as described above. In addition to this force, the fineness can also be controlled by the concentration of the conductive polymer contained in the coating liquid. The pore diameter of hole 4 divided by the existing density can be controlled. For example, when the concentration of the conductive polymer is low, the pore size tends to decrease, and the existing density also tends to decrease. Conversely, when the concentration of the conductive polymer is high, the pore size tends to increase.
[0030] 塗工液における導電性ポリマーの濃度は、微細孔の孔径ゃ存在密度の支配的な 要因になることに加えて、得られる金属箔の強度やフレキシビリティの支配的な要因 にもなる。例えば導電性ポリマーの濃度が濃くなると、得られる金属箔の強度ゃフレ キシピリティが向上する傾向にある。これら各種の観点から、塗工液における導電性 ポリマーの濃度は 0. 05〜5重量%、特に 1〜3重量%であることが好ましい。 [0030] The concentration of the conductive polymer in the coating liquid is not only a dominant factor of the pore diameter of the micropores / existence density, but also a dominant factor of the strength and flexibility of the obtained metal foil. Also. For example, as the concentration of the conductive polymer increases, the strength / flexibility of the obtained metal foil tends to increase. From these various viewpoints, the concentration of the conductive polymer in the coating liquid is preferably 0.05 to 5% by weight, particularly preferably 1 to 3% by weight.
[0031] なお図 1 (c)においては、塗膜 2の厚い部分に対応して微細孔 4が形成されている ように描かれている。しかし、これは本発明の製造方法における微細孔 4の形成のメ 力-ズムを説明するための便宜的なものであり、必ずしも塗膜 2の厚い部分に対応し て微細孔 4が形成されている訳ではない。金属箔 3を形成するためのめっき浴やめつ き条件は、金属箔の構成材料に応じて適切に選択される。例えば金属箔 3を N ゝら 構成する場合には、めっき浴として以下の組成を有するワット浴やスルフアミン酸浴を 用いることができる。これらのめっき浴を用いる場合の浴温は 40〜70°C程度であり、 電流密度は 0. 5〜20AZdm2程度であることが好まし!/、。 In FIG. 1C, the fine holes 4 are drawn so as to correspond to the thick portions of the coating film 2. However, this is only for the purpose of explaining the mechanism of the formation of the fine holes 4 in the manufacturing method of the present invention, and the fine holes 4 are not necessarily formed corresponding to the thick portion of the coating film 2. Not necessarily. The plating bath and the plating conditions for forming the metal foil 3 are appropriately selected according to the constituent material of the metal foil. For example, when the metal foil 3 is composed of N, a Watt bath or a sulfamic acid bath having the following composition can be used as a plating bath. When these plating baths are used, the bath temperature is preferably about 40 to 70 ° C, and the current density is preferably about 0.5 to 20 AZdm2!
•NiSO · 6Η O 150〜300gZl  NiSO6Η O 150 ~ 300gZl
•N  • N
•H • H
Figure imgf000010_0001
Figure imgf000010_0001
[0032] 以上の方法によって金属箔 3を製造すれば、微細孔 4の孔径ゃ存在密度を自在に 制御することが容易である。その上、金属箔の強度やフレキシビリティも自在に制御 することが容易である。し力も本発明では、常に新しい面、即ち製造の度ごとに取り替 えられるキャリア箔の表面に金属箔が電析される。これによつて当該面の状態を常に 一定に保てるので、孔径ゃ存在密度、強度やフレキシビリティの制御を精密に行うこ とができる。従来の電解箔の製造方法では、金属箔が電析される面が常に同じ面、 即ちドラム力ソード体の周面なので、当該面の状態が時間と共に変化してしまうという 不都合があった。  If the metal foil 3 is manufactured by the above-described method, it is easy to freely control the hole diameter ゃ existing density of the fine holes 4. In addition, it is easy to freely control the strength and flexibility of the metal foil. In the present invention, the metal foil is always deposited on a new surface, that is, on the surface of the carrier foil which is replaced at each production. As a result, the state of the surface can always be kept constant, so that it is possible to precisely control the pore diameter / existence density, strength and flexibility. In the conventional method for producing an electrolytic foil, the surface on which the metal foil is electrodeposited is always the same surface, that is, the peripheral surface of the drum force sword body, so that the state of the surface changes with time.
[0033] このようにして得られた金属箔 3には、製造条件にもよる力 好ましくは 0. 01-200  [0033] The metal foil 3 obtained in this manner has a force depending on manufacturing conditions, preferably 0.01 to 200.
/z m、更に好ましくは 0. 05〜50 /ζ πι、一層好ましくは 0. l〜10 /z mの微細孔 4が多 数形成されている。この範囲の微細孔 4を有する金属箔 3を、例えば後述する図 2に 示す非水電解液二次電池の電極用材料として用いると、金属箔 3の強度を保ちつつ 、非水電解液の流通を十分に確保することができる。また、リチウムの吸脱蔵に起因 する活物質の脱落を効果的に防止することができる。 [0034] 同様の理由により、前記の直径を有する微細孔 4は、金属箔 3のどの部位をとつて みてち、 1cm2の面積内に 5〜: LOOOO個、特に 500〜8000個、とりわけ 1000〜600 0個の存在密度で存在して 、ることが好ま 、。微細孔 4の孔径ゃ存在密度の測定 方法は、後述する実施例において説明する。 / zm, more preferably 0.05 to 50 / ζπι, and still more preferably 0.1 to 10 / zm. When the metal foil 3 having the micropores 4 in this range is used, for example, as a material for an electrode of a nonaqueous electrolyte secondary battery shown in FIG. 2 described later, the flow of the nonaqueous electrolyte can be maintained while maintaining the strength of the metal foil 3. Can be sufficiently secured. Further, it is possible to effectively prevent the active material from falling off due to the absorption and desorption of lithium. The [0034] For similar reasons, 5 micropores 4 having the above diameter, connexion and the site of the metal foil 3 throat Mitechi, in an area of 1cm 2: LOOOO pieces, in particular 500 to 8000 pieces, especially 1000 It is preferred to be present at a density of ~ 6000. The method for measuring the pore diameter ゃ existing density of the micropores 4 will be described in Examples described later.
[0035] 以上の方法によって得られたキャリア箔付き多孔質金属箔における金属箔は、キヤ リア箔に付着した状態で所望の加工が施される。また場合によっては、図 1 (d)に示 すように、キャリア箔 1から金属箔 3を剥離して所望の加工を施してもよい。このように して得られた金属箔は、例えば電池の電極用材料、種々の化学反応における触媒 の担体、気体や液体のフィルタ一等として用いられる。特に、非水電解液二次電池 用の電極用材料、とりわけ負極用材料として好適に用いられる。図 2には本発明に従 い製造されたキャリア箔付き多孔質金属箔から剥離して得られた金属箔を備えてなる 非水電解液二次電池用負極 6の構造が模式的に示されている。負極 6は負極活物 質の粒子 7を含む活物質層 5が、一対の金属箔 3a, 3b間に挟持されて構成されてい る。各金属箔 3a, 3bには多数の微細孔が形成されている。微細孔の形成方法につ いては後述する。この負極 6によれば、金属箔 3a, 3bに形成された多数の微細孔を 通じて電解液の流通経路が十分に確保されることから、非水電解液二次電池の容量 が高まる。厚膜の集電体を備えた従来の負極では、集電体を通じて電解液を活物質 層に供給することは不可能であった。そのため、負極の両面を電極反応に利用した い場合には、集電体の各面に活物質層を形成せざるを得な力つた。これに対して図 2に示す負極 6では、金属箔の一面にのみ活物質層を形成すればよいという利点が ある。このことは、後述するエネルギー密度の向上にも寄与している。  [0035] The metal foil in the porous metal foil with a carrier foil obtained by the above method is subjected to a desired process in a state of being adhered to the carrier foil. In some cases, as shown in FIG. 1 (d), the metal foil 3 may be peeled off from the carrier foil 1 and subjected to desired processing. The metal foil thus obtained is used, for example, as a material for an electrode of a battery, a carrier for a catalyst in various chemical reactions, and a filter for gas or liquid. In particular, it is suitably used as a material for electrodes for non-aqueous electrolyte secondary batteries, particularly as a material for negative electrodes. FIG. 2 schematically shows the structure of a negative electrode 6 for a non-aqueous electrolyte secondary battery including a metal foil obtained by peeling from a porous metal foil with a carrier foil manufactured according to the present invention. ing. The negative electrode 6 is configured such that an active material layer 5 containing particles 7 of a negative electrode active material is sandwiched between a pair of metal foils 3a and 3b. Many fine holes are formed in each of the metal foils 3a and 3b. The method for forming the fine holes will be described later. According to the negative electrode 6, the flow path of the electrolyte is sufficiently ensured through the many fine holes formed in the metal foils 3 a and 3 b, so that the capacity of the nonaqueous electrolyte secondary battery is increased. In a conventional negative electrode having a thick-film current collector, it was impossible to supply an electrolytic solution to the active material layer through the current collector. Therefore, when it was desired to use both surfaces of the negative electrode for the electrode reaction, it was necessary to form an active material layer on each surface of the current collector. On the other hand, the negative electrode 6 shown in FIG. 2 has an advantage that the active material layer needs to be formed only on one surface of the metal foil. This also contributes to the improvement of the energy density described later.
[0036] 図 2に示す負極 6においては、金属箔 3a, 3bを構成する材料が活物質層 5の厚み 方向全域に亘つて浸透して ヽることが好ま Uヽ。そして浸透した該材料中に活物質の 粒子 7が存在していることが好ましい。これによつて、活物質層 5と金属箔 3a, 3bとの 密着性が強固なものとなり、活物質の脱落が一層防止される。また活物質層 5中に浸 透した前記材料を通じて金属箔 3a, 3bと活物質との間に電子伝導性が確保されるの で、電気的に孤立した活物質が生成すること、特に活物質層 5の深部に電気的に孤 立した活物質が生成することが効果的に防止され、集電機能が保たれる。その結果 、負極としての機能低下が抑えられる。更に負極の長寿命化も図られる。このことは、 活物質として半導体であり電子導電性の乏し 、材料、例えばシリコン系材料を用いる 場合に特に有利である。 In the negative electrode 6 shown in FIG. 2, it is preferable that the material forming the metal foils 3a and 3b penetrates over the entire area of the active material layer 5 in the thickness direction. It is preferable that the active material particles 7 exist in the permeated material. As a result, the adhesion between the active material layer 5 and the metal foils 3a and 3b becomes strong, and the active material is further prevented from falling off. In addition, since the conductive material is ensured between the metal foils 3a and 3b and the active material through the material penetrated into the active material layer 5, an electrically isolated active material is generated. The generation of an electrically isolated active material deep in the layer 5 is effectively prevented, and the current collecting function is maintained. as a result In addition, a decrease in the function as the negative electrode is suppressed. Further, the life of the negative electrode can be prolonged. This is particularly advantageous when a material such as a silicon-based material, which is a semiconductor and has poor electron conductivity, is used as the active material.
[0037] 活物質層 5に存在する金属箔 3a, 3bを構成する材料は、活物質層 5をその厚み方 向に貫いていることが好ましい。それによつて金属箔 3a, 3bは前記材料を通じて電 気的に導通することになり、負極 6全体としての電子伝導性が一層高くなる。つまり負 極 6は、負極全体が一体として集電機能を有する。金属箔 3a, 3bを構成する材料が 活物質層 5の厚み方向全域に亘つて浸透して両金属箔同士がつながつていることは 、該材料を測定対象とした電子顕微鏡マッピングによって求めることができる。更に、 金属箔 3a, 3bのうちの少なくとも一方(図 2においては金属箔 3a)における微細孔の 一部に、金属箔 3a, 3bを構成する材料が進入していると、アンカー効果によって活 物質層 5と金属箔との密着性が強固なものとなるので好ましい。この場合、金属箔 3a , 3bを構成する材料は、微細孔を完全に埋めないように該微細孔へ進入しているこ とが、電解液の流通を確保する点カゝら好ましい。金属箔 3a, 3bを構成する材料を、 活物質層中に浸透させるための好ま 、方法は後述する。  It is preferable that the material constituting the metal foils 3a and 3b existing in the active material layer 5 penetrates the active material layer 5 in the thickness direction. As a result, the metal foils 3a and 3b are electrically conducted through the material, and the electron conductivity of the entire negative electrode 6 is further increased. That is, the negative electrode 6 has a current collecting function as a whole of the negative electrode. The fact that the material constituting the metal foils 3a and 3b penetrates over the entire area in the thickness direction of the active material layer 5 and the two metal foils are connected to each other can be determined by electron microscope mapping using the material as a measurement target. . Furthermore, when a material constituting the metal foils 3a, 3b enters at least a part of the fine holes in at least one of the metal foils 3a, 3b (the metal foil 3a in FIG. 2), the active material is activated by the anchor effect. This is preferable because the adhesion between the layer 5 and the metal foil becomes strong. In this case, it is preferable that the material constituting the metal foils 3a and 3b enter the micropores so as not to completely fill the micropores, from the viewpoint of ensuring the flow of the electrolytic solution. A preferred method for permeating the material constituting the metal foils 3a and 3b into the active material layer will be described later.
[0038] また図 2に示す負極 6においては、活物質層 5は、一対の金属箔 3a, 3b間に挟持さ れて 、るので、リチウムの吸脱蔵に起因して活物質の粒子が膨張収縮を繰り返しても 負極 2から脱落しづらくなる。更に、前述したアンカー効果で、活物質層 5と金属箔 3a , 3bとの密着性が良好になる。これらの結果、サイクル特性が向上する。し力も、金属 箔 3a, 3bはその厚さが薄いので、単位体積当たり及び単位重量当たりのエネルギー 密度を高くすることができる。  Further, in the negative electrode 6 shown in FIG. 2, the active material layer 5 is sandwiched between the pair of metal foils 3a and 3b, so that particles of the active material are absorbed and desorbed by lithium. Even after repeated expansion and contraction, it is difficult to fall off the negative electrode 2. Further, the adhesion between the active material layer 5 and the metal foils 3a and 3b is improved by the above-described anchor effect. As a result, the cycle characteristics are improved. Since the metal foils 3a and 3b have a small thickness, the energy density per unit volume and unit weight can be increased.
[0039] 負極活物質としては、例えば容量の高い活物質である Siや Snを含有する合金の 粒子が好適に用いられる。活物質粒子の平均粒径 D は 0. 1〜30 /ζ πιであり、好ま  As the negative electrode active material, for example, particles of an alloy containing Si or Sn, which are high-capacity active materials, are preferably used. The average particle diameter D of the active material particles is 0.1 to 30 / ζπι, which is preferable.
50  50
しくは 0. 5〜5 /ζ πιである。このような活物質の粒子を含む活物質層 5はその厚みが 1 0〜80 μ mであり、好ましくは 20〜50 μ mである。このようにすることで、電池を高容 量化、高エネルギー密度化することができる。  Or 0.5 to 5 / ζπι. The active material layer 5 containing such active material particles has a thickness of 10 to 80 μm, preferably 20 to 50 μm. By doing so, the capacity and the energy density of the battery can be increased.
[0040] 図 2に示す負極 6は、先に述べたキャリア箔付き多孔質金属箔の製造方法を利用し て製造することができる。例えば、まず図 1 (a)ないし図 1 (c)に示す方法に従いキヤリ ァ箔付き多孔質金属箔を製造する。これを一方の金属箔 3aとして利用する。次に、 金属箔 3aをキャリア箔力 剥離しない状態で、金属箔 3a上に活物質層 5を形成する 。活物質層 5は、例えば活物質の粒子や導電性材料の粒子を含むペーストを塗布す ることで形成される。 The negative electrode 6 shown in FIG. 2 can be manufactured by using the above-described method for manufacturing a porous metal foil with a carrier foil. For example, first carry out the method shown in Fig. 1 (a) to 1 (c). A porous metal foil with a metal foil is manufactured. This is used as one metal foil 3a. Next, the active material layer 5 is formed on the metal foil 3a in a state where the metal foil 3a is not peeled off by the carrier foil force. The active material layer 5 is formed by applying a paste containing, for example, particles of an active material or particles of a conductive material.
[0041] 活物質層 5上に、平均粒径 D 力^〜 200nmの炭素質材料(例えばアセチレンブラ  [0041] On the active material layer 5, a carbonaceous material (for example, acetylene bran) having an average particle diameter D
50  50
ック)を含む塗工液を 0. 001〜: mの厚さで塗布する。この操作は、他方の金属箔 3bに多数の微細孔を形成するためのものである。その上に、金属箔の構成材料を電 解めつきによって電析させて他方の金属箔 3bを形成する。この場合、めっき液が活 物質層 5内に浸入して、活物質層 5と金属箔 3aとの界面にまで達し、その状態下に 電解めつきが行われる。その結果、(ィ)活物質層 5の内部、(口)活物質層 5の外面側 (即ちめつき液と接して 、る面側)及び (ハ)活物質層 5の内面側(即ち金属箔 3aと対 向している面側)において金属材料が析出する。これにより金属箔 3bが形成されると 共に金属箔 3bを構成する材料が活物質層 5の厚み方向全域に亘つて浸透して金属 箔 3aにまで達する。その一部は金属箔 3aの微細孔の一部に進入する。最後に、初 めに製造した金属箔 3aをキャリア箔カも剥離する。これによつて図 2に示す負極 6が 得られる。このようにして得られた負極 6は、各面における電極特性がほぼ同等なも のとなる。即ち、各金属箔 3a, 3bは微細孔の大きさやその存在密度がほぼ同等なも のとなつている。  H) is applied in a thickness of 0.001 to m. This operation is for forming a large number of fine holes in the other metal foil 3b. On top of that, the constituent material of the metal foil is electrodeposited by electrolysis to form the other metal foil 3b. In this case, the plating solution penetrates into the active material layer 5 and reaches the interface between the active material layer 5 and the metal foil 3a, under which the electrolytic plating is performed. As a result, (a) the inside of the active material layer 5, (mouth) the outer surface side of the active material layer 5 (that is, the surface in contact with the plating liquid, and (c) the inner surface side of the active material layer 5 (that is, the metal) The metal material is deposited on the surface facing the foil 3a). As a result, the metal foil 3b is formed, and the material constituting the metal foil 3b penetrates the entire active material layer 5 in the thickness direction to reach the metal foil 3a. Part of it enters a part of the fine hole of the metal foil 3a. Finally, the metal foil 3a manufactured first is also peeled off the carrier foil. Thereby, the negative electrode 6 shown in FIG. 2 is obtained. The negative electrode 6 thus obtained has substantially the same electrode characteristics on each surface. That is, each of the metal foils 3a and 3b has substantially the same size and the same density of micropores.
[0042] このようにして得られた負極 6においては、金属箔 3aの外面に導電性ポリマーが付 着した状態になっている。負極 6は、公知の正極、セパレータ、非水系電解液と共に 用いられて非水電解液二次電池となされる。正極は、正極活物質並びに必要により 導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗 布、乾燥した後、ロール圧延、プレスし、さらに裁断、打ち抜きすることにより得られる 。正極活物質としては、リチウムニッケル複合酸ィ匕物、リチウムマンガン複合酸ィ匕物、 リチウムコバルト複合酸ィ匕物等の従来公知の正極活物質が用いられる。セパレータと しては、合成樹脂製不織布、ポリエチレン又はポリプロピレン多孔質フィルム等が好 ましく用いられる。非水電解液は、リチウム二次電池の場合、支持電解質であるリチウ ム塩を有機溶媒に溶解した溶液からなる。リチウム塩としては、例えば、 LiCIO、 Li A1C1、 LiPF、 LiAsF、 LiSbF、 LiSCN、 LiCl、 LiBrゝ Lil、 LiCF SO、 LiC F[0042] In the negative electrode 6 thus obtained, the conductive polymer is adhered to the outer surface of the metal foil 3a. The negative electrode 6 is used together with a known positive electrode, a separator, and a non-aqueous electrolyte to form a non-aqueous electrolyte secondary battery. The positive electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to prepare a positive electrode mixture, applying the mixture to a current collector, drying the mixture, rolling, pressing, and Obtained by cutting and punching. As the positive electrode active material, a conventionally known positive electrode active material such as a lithium nickel composite oxide, a lithium manganese composite oxide, a lithium cobalt composite oxide, and the like are used. As the separator, a synthetic resin nonwoven fabric, a polyethylene or polypropylene porous film, or the like is preferably used. In the case of a lithium secondary battery, the non-aqueous electrolyte is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent. Examples of lithium salts include LiCIO, Li A1C1, LiPF, LiAsF, LiSbF, LiSCN, LiCl, LiBr ゝ Lil, LiCF SO, LiC F
4 6 6 6 3 3 4 94 6 6 6 3 3 4 9
SO等が例示される。 SO etc. are illustrated.
3  Three
実施例  Example
[0043] 以下実施例により本発明を更に詳細に説明する。し力しながら本発明の範囲はか 力る実施例に制限されるものではな 、。  Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to the working examples.
[0044] 〔実施例 1〕  Example 1
電解によって得られた銅製のキャリア箔 (厚さ 35 μ m)を室温で 30秒間酸洗浄した 。引き続き室温で 30秒間純水洗浄した。次いで、 40°Cに保った状態の 3. 5gZlの C BTA溶液中に、キャリア箔を 30秒間浸漬した。これにより剥離処理を行った。剥離処 理後、溶液力も引き上げて 15秒間純水洗浄した。  The copper carrier foil (thickness: 35 μm) obtained by the electrolysis was acid-washed at room temperature for 30 seconds. Subsequently, pure water washing was performed at room temperature for 30 seconds. Next, the carrier foil was immersed in a 3.5 g Zl CBTA solution kept at 40 ° C for 30 seconds. Thereby, a peeling treatment was performed. After the peeling treatment, the solution strength was also raised, and the substrate was washed with pure water for 15 seconds.
[0045] キャリア箔の粗面(表面粗さ Ra=0. 5 ^ m)に、ポリフッ化ビ-リデンを N—メチルビ ロリジノンに溶解した濃度 2. 5重量%の塗工液を塗布した。溶媒が揮発して塗膜が 形成された後、以下の浴組成を有するワット浴にキャリア箔を浸漬させて電解めつき を行った。これによつてニッケル力もなる第 1の金属箔を塗膜上に形成した。電流密 度は 5AZdm2、浴温は 50°C、 pHは 5であった。陽極にはニッケル電極を用いた。電 源は直流電源を用いた。金属箔は 5 mの厚さに形成した。めっき浴から引き上げた 後、 30秒間純水洗浄して大気中で乾燥させた。このようにしてキャリア箔付き多孔質 金属箔を得た。 [0045] A coating solution having a concentration of 2.5% by weight in which polyvinylidene fluoride was dissolved in N-methyl virolidinone was applied to a rough surface (surface roughness Ra = 0.5 ^ m) of the carrier foil. After the solvent was volatilized and the coating film was formed, the carrier foil was immersed in a Watt bath having the following bath composition to perform electroplating. Thereby, a first metal foil having a nickel strength was formed on the coating film. The current density was 5 AZdm 2 , the bath temperature was 50 ° C, and the pH was 5. A nickel electrode was used for the anode. The power supply used was a DC power supply. The metal foil was formed to a thickness of 5 m. After lifting from the plating bath, the substrate was washed with pure water for 30 seconds and dried in the air. Thus, a porous metal foil with a carrier foil was obtained.
Figure imgf000014_0001
Figure imgf000014_0001
[0046] 次に、金属箔上に負極活物質の粒子を含むスラリーを膜厚 になるように塗 布し活物質層を形成した。活物質粒子は Si80wt%— Ni20wt%の組成を有する合 金であり、平均粒径は D = 1. 5 mであった。スラリーの組成は、活物質: Ni粉:ァ  Next, a slurry containing particles of the negative electrode active material was applied on a metal foil so as to have a film thickness to form an active material layer. The active material particles were an alloy with a composition of Si80wt% -Ni20wt%, and the average particle size was D = 1.5 m. The composition of the slurry is as follows: active material: Ni powder: a
50  50
セチレンブラック:ポリフッ化ビ-リデン = 60 : 34 : 1 : 5であった。  Cethylene black: polyvinylidene fluoride = 60: 34: 1: 5.
[0047] 活物質層上に、平均粒径 D 力 S40nmの炭素質材料 (アセチレンブラック)を含むぺ [0047] On the active material layer, a carbonaceous material (acetylene black) having an average particle diameter D force of S40 nm is included.
50  50
一ストを膜厚 0. 5 mになるように塗布した。引き続き、この塗膜上に、前述した電解 条件と同条件で電解めつきを行いニッケル力もなる第 2の金属箔を形成した。金属箔 は 3 μ mの厚さに形成した。 One coat was applied to a thickness of 0.5 m. Subsequently, electrolytic plating was performed on this coating film under the same electrolytic conditions as described above to form a second metal foil having a nickel strength. Metal foil Was formed to a thickness of 3 μm.
[0048] 最後に、第 1の金属箔とキャリア箔とを剥離して、一対の金属箔間に活物質層が挟 持されてなる非水電解液二次電池用負極を得た。 NMR及び IRによる定性分析の結 果、この負極は、第 1の金属箔の外面にポリフッ化ビ-リデンが付着していることが確 f*i¾ れ 。 [0048] Finally, the first metal foil and the carrier foil were peeled off to obtain a negative electrode for a non-aqueous electrolyte secondary battery in which an active material layer was sandwiched between a pair of metal foils. As a result of qualitative analysis by NMR and IR, it was confirmed that the negative electrode had polyvinylidene fluoride adhered to the outer surface of the first metal foil.
[0049] 〔実施例 2〕  Example 2
実施例 1において用いたワット浴に代えて、 H SO /CuSO系のめっき浴を用いて  Instead of the watt bath used in Example 1, an H 2 SO 3 / CuSO-based plating bath was used.
2 4 4  2 4 4
銅力もなる第 1及び第 2の金属箔を形成した。めっき浴の組成は、 CuSO力 ¾50gZl  First and second metal foils having copper strength were formed. The composition of the plating bath is CuSO power ¾50gZl
4 Four
、 H SOが 70gZlであった。電流密度は 5AZdm2とした。これ以外は実施例 1と同The H SO was 70 gZl. Current density was 5AZdm 2. Other than this, the same as in Example 1
2 4 twenty four
様にして非水電解液二次電池用負極を得た。  Thus, a negative electrode for a non-aqueous electrolyte secondary battery was obtained.
[0050] 〔比較例 1〕  [Comparative Example 1]
電解によって得られた銅製のキャリア箔 (厚さ 35 μ m)を室温で 30秒間酸洗浄した 。引き続き室温で 30秒間純水洗浄した。次いでキャリア箔を実施例 1と同様に剥離 処理した。次に実施例 1と同様の浴組成を有するワット浴にキャリア箔を浸漬させて 電解めつきを行いニッケルカゝらなる第 1の金属箔を形成した。電解条件は実施例 1と 同様とした。第 1の金属箔上に負極活物質の粒子を含むスラリーを膜厚 15 /z mにな るように塗布し活物質層を形成した。活物質及びスラリーは実施例 1と同様のものを 用いた。活物質層上に、実施例 1と同条件で電解めつきを行いニッケルカゝらなる第 2 の金属箔を形成した。金属箔は 3 mの厚さに形成した。最後に、第 1の金属箔とキ ャリア箔とを剥離して、一対の金属箔間に活物質層が挟持されてなる非水電解液二 次電池用負極を得た。  The copper carrier foil (thickness: 35 μm) obtained by the electrolysis was acid-washed at room temperature for 30 seconds. Subsequently, pure water washing was performed at room temperature for 30 seconds. Next, the carrier foil was subjected to a peeling treatment in the same manner as in Example 1. Next, the carrier foil was immersed in a watt bath having the same bath composition as in Example 1 to perform electroplating to form a first metal foil made of nickel color. The electrolysis conditions were the same as in Example 1. A slurry containing particles of the negative electrode active material was applied on the first metal foil to a thickness of 15 / zm to form an active material layer. The same active material and slurry as in Example 1 were used. Electrolytic plating was performed on the active material layer under the same conditions as in Example 1 to form a second metal foil made of nickel copper. The metal foil was formed to a thickness of 3 m. Finally, the first metal foil and the carrier foil were peeled off to obtain a negative electrode for a non-aqueous electrolyte secondary battery in which an active material layer was sandwiched between a pair of metal foils.
[0051] 〔性能評価〕  [Performance evaluation]
実施例 1及び比較例 1で得られた負極にっ ヽて以下の方法で充電特性を評価した 。その結果を図 3 (a)及び (b)並びに図 4 (a)及び (b)に示す。図 3 (a)及び図 4 (a)は キャリア箔から剥離した金属箔側 (第 1の金属箔側)の充電特性を示し、図 3 (b)及び 図 4 (b)は被覆めつき側 (第 2の金属箔側)の充電特性を示す。また、実施例 1及び 2 並びに比較例 1で製造された第 1の金属箔の微細孔の直径及び存在密度を以下の 方法で測定した。更に抗張力を測定した。その結果を以下の表 1に示す。 [0052] 〔充電特性の評価方法〕 The charging characteristics of the negative electrodes obtained in Example 1 and Comparative Example 1 were evaluated by the following methods. The results are shown in FIGS. 3 (a) and (b) and FIGS. 4 (a) and (b). Figures 3 (a) and 4 (a) show the charging characteristics of the metal foil side (first metal foil side) peeled from the carrier foil, and Figures 3 (b) and 4 (b) show the charging characteristics. 7 shows the charging characteristics of the (second metal foil side). Further, the diameters and the densities of the fine holes of the first metal foils manufactured in Examples 1 and 2 and Comparative Example 1 were measured by the following methods. Further, the tensile strength was measured. The results are shown in Table 1 below. [Method of Evaluating Charging Characteristics]
対極として金属リチウムを用い、また作用極として実施例及び比較例で得られた電 極を用い、両極を、セパレータを介して対向させた。非水電解液として LiPF  Metal lithium was used as a counter electrode, the electrodes obtained in Examples and Comparative Examples were used as working electrodes, and both electrodes were opposed to each other with a separator interposed therebetween. LiPF as non-aqueous electrolyte
6 Zェチ レンカーボネートとジェチルカーボネートとの混合溶液(1: 1容量比)を用い、通常の 方法によって非水電解液二次電池を作製した。この電池を用い、充電条件 0. 2mA 電圧範囲 0〜2. 8Vにて評価を行った。  6 A non-aqueous electrolyte secondary battery was fabricated by a conventional method using a mixed solution of Z-ethylene carbonate and getyl carbonate (1: 1 volume ratio). Using this battery, evaluation was performed under charging conditions of 0.2 mA and a voltage range of 0 to 2.8 V.
[0053] 〔微細孔の直径及び存在密度の測定方法〕 [Method of Measuring Diameter and Existence Density of Micropores]
暗室にて金属箔の裏側から光を透過させ、その状態下に金属箔の写真を撮影した Light was transmitted from the back side of the metal foil in the dark room, and a picture of the metal foil was taken under that condition
。その写真を画像解析することにより微細孔の直径及び存在密度を求めた。 . The photograph was subjected to image analysis to determine the diameter and density of the micropores.
[0054] [表 1] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0055] 図 3 (a)及び (b)並びに図 4 (a)及び (b)に示す結果から明らかなように、実施例 1の 負極ではキャリア箔剥離側及び被覆めつき側ともに十分な容量が得られていることが 判る。このことは、実施例 1の負極では第 1及び第 2の金属箔を通じて電解液が活物 質層に十分に供給されて 、ることを意味して 、る。これに対して比較例 1の負極では 、キャリア箔剥離側及び被覆めつき側ともに十分な容量が得られて 、な 、ことが判る 。このことは、比較例 1の負極では第 1及び第 2の金属箔を通じて電解液が活物質層 に十分に供給されて 、な 、ことを意味して 、る。 As is clear from the results shown in FIGS. 3 (a) and 3 (b) and FIGS. 4 (a) and 4 (b), the negative electrode of Example 1 had a sufficient capacity on both the carrier foil peeling side and the coated side. It can be seen that is obtained. This means that in the negative electrode of Example 1, the electrolyte was sufficiently supplied to the active material layer through the first and second metal foils. On the other hand, in the negative electrode of Comparative Example 1, it was found that sufficient capacity was obtained on both the carrier foil peeling side and the coating-coated side, and it was not found. This means that in the negative electrode of Comparative Example 1, the electrolyte was sufficiently supplied to the active material layer through the first and second metal foils.
[0056] また表 1に示す結果力も明らかなように、実施例 1で得られた第 1の金属箔 (本発明 の製造方法に従い製造された金属箔)は、微細孔を有するにもかかわらず、同じ厚 みの微細孔を有しない比較例 1で得られた第 1の金属箔と同程度の抗張力を有する ことが判る。実施例 2で得られた第 1の金属箔についても高い抗張力が得られている [0057] 図 5には、実施例 2で得られた負極における第 1の金属箔の表面状態の走査型電 子顕微鏡写真が示されている。この写真力も明らかなように、第 1の金属箔には多数 の微細孔が形成されて 、ることが判る。 As is clear from the results shown in Table 1, the first metal foil (metal foil manufactured according to the manufacturing method of the present invention) obtained in Example 1 has fine pores. It can be seen that it has the same tensile strength as the first metal foil obtained in Comparative Example 1 having no micropores of the same thickness. High tensile strength is also obtained for the first metal foil obtained in Example 2. FIG. 5 shows a scanning electron micrograph of the surface state of the first metal foil in the negative electrode obtained in Example 2. As is clear from this photographic power, it can be seen that many fine holes are formed in the first metal foil.
産業上の利用可能性  Industrial applicability
[0058] 以上、詳述した通り、本発明によれば、薄くてコシが弱ぐ取り扱い性が良好でない 金属箔が、キャリア箔に付着した状態になっているので、金属箔の取り扱い性が良好 になる。特に該金属箔は多孔質のものであるから、強度が低く破れやすいが、本発 明によればそのような不都合が起こりにくい。また、キャリア箔カも剥離された多孔質 金属箔は、その一面に導電性ポリマーが付着していることから、高強度で且つフレキ シビリティに富んだものとなる。また本発明のキャリア箔付き多孔質金属箔の製造方 法によれば、金属箔に形成される微細孔の孔径ゃ存在密度を自在に制御することが できる。更に、本発明の製造方法によって製造された負極は、電解液の流通経路が 十分に確保されることから、非水電解液二次電池の容量が高まり、また活物質がリチ ゥムを吸脱蔵することに起因して電極力 脱落することが効果的に防止され、サイク ル特性が向上する。 [0058] As described in detail above, according to the present invention, the metal foil is thin and has low stiffness and is not easy to handle. Since the metal foil is attached to the carrier foil, the handleability of the metal foil is good. become. In particular, since the metal foil is porous, it has low strength and is easily broken, but according to the present invention, such inconvenience is unlikely to occur. In addition, the porous metal foil from which the carrier foil has also been peeled has high strength and high flexibility since the conductive polymer is attached to one surface thereof. Further, according to the method for producing a porous metal foil with a carrier foil of the present invention, the diameter of the micropores formed in the metal foil divided by the existing density can be freely controlled. Further, in the negative electrode manufactured by the manufacturing method of the present invention, since the flow path of the electrolyte is sufficiently ensured, the capacity of the nonaqueous electrolyte secondary battery is increased, and the active material absorbs and desorbs lithium. The loss of electrode force due to storage is effectively prevented, and the cycle characteristics are improved.

Claims

請求の範囲 The scope of the claims
[I] 導電性を有するキャリア箔上に、電解めつきにより形成された多孔質金属箔層を有 し、更に両者間に導電性ポリマーを用いて形成された接合界面層を有していることを 特徴とするキャリア箔付き多孔質金属箔。  [I] A porous metal foil layer formed by electroplating on a conductive carrier foil, and a bonding interface layer formed using a conductive polymer between the two. A porous metal foil with a carrier foil.
[2] 前記導電性ポリマーがリチウムイオン伝導性ポリマーである請求の範囲第 1項記載 のキャリア箔付き多孔質金属箔。  [2] The porous metal foil with a carrier foil according to claim 1, wherein the conductive polymer is a lithium ion conductive polymer.
[3] 前記導電性ポリマーがフッ素含有導電性ポリマーである請求の範囲第 2項記載の キャリア箔付き多孔質金属箔。 3. The porous metal foil with a carrier foil according to claim 2, wherein the conductive polymer is a fluorine-containing conductive polymer.
[4] 前記導電性ポリマーがポリフッ化ビ-リデンである請求の範囲第 3項記載のキャリア 箔付き多孔質金属箔。 4. The porous metal foil with a carrier foil according to claim 3, wherein the conductive polymer is polyvinylidene fluoride.
[5] 前記キャリア箔が電解箔であり、該キャリア箔の表面のうち、前記接合界面層と接す る面が該電解箔を製造する際の析出面である請求の範囲第 1項記載のキャリア箔付 き多孔質金属箔。  5. The carrier foil according to claim 1, wherein the carrier foil is an electrolytic foil, and a surface of the carrier foil that contacts the bonding interface layer is a deposition surface when the electrolytic foil is manufactured. Porous metal foil with carrier foil.
[6] 前記キャリア箔の表面のうち、前記接合界面層と接する面の表面粗さ Raが 0. 05〜 5 IX mである請求の範囲第 5項記載のキャリア箔付き多孔質金属箔。  6. The porous metal foil with a carrier foil according to claim 5, wherein a surface roughness Ra of a surface of the carrier foil that contacts the bonding interface layer is 0.05 to 5 IX m.
[7] 前記金属箔が、 Cu、 Ni、 Co、 Fe、 Cr、 Sn、 Zn、 In、 Ag及び Auのうちの少なくとも [7] The metal foil is at least one of Cu, Ni, Co, Fe, Cr, Sn, Zn, In, Ag and Au.
1種類の金属を含んで構成されている請求の範囲第 1項記載のキャリア箔付き多孔 質金属箔。 2. The porous metal foil with a carrier foil according to claim 1, comprising one kind of metal.
[8] 前記キャリア箔が、 Cu、 Ni、 Co、 Fe、 Cr、 Sn、 Zn、 In、 Ag、 Au、 Al及び Tiのうち の少なくとも 1種類の金属を含んで構成されている請求の範囲第 1項記載のキャリア 箔付き多孔質金属箔。  [8] The method according to claim 8, wherein the carrier foil is configured to include at least one metal selected from the group consisting of Cu, Ni, Co, Fe, Cr, Sn, Zn, In, Ag, Au, Al and Ti. The porous metal foil with the carrier foil according to item 1.
[9] 請求の範囲第 1項記載のキャリア箔付き多孔質金属箔から前記多孔質金属箔層を 剥離することで得られ、且つ該多孔質金属箔層の一面に前記導電性ポリマーが付着 して 、ることを特徴とする多孔質金属箔。  [9] The porous polymer foil obtained by peeling the porous metal foil layer from the porous metal foil with a carrier foil according to claim 1, wherein the conductive polymer adheres to one surface of the porous metal foil layer. And a porous metal foil.
[10] 請求の範囲第 1項記載のキャリア箔付き多孔質金属箔から前記多孔質金属箔層を 剥離することで得られた多孔質金属箔を備えてなることを特徴とする非水電解液二 次電池用負極。 [10] A non-aqueous electrolyte comprising a porous metal foil obtained by peeling the porous metal foil layer from the porous metal foil with a carrier foil according to claim 1. Negative electrode for secondary batteries.
[II] 請求の範囲第 10項記載の非水電解液二次電池用負極を備えてなることを特徴と する非水電解液二次電池。 [II] A negative electrode for a non-aqueous electrolyte secondary battery according to claim 10 is provided. Non-aqueous electrolyte secondary battery.
[12] 請求の範囲第 1項記載のキャリア箔付き多孔質金属箔の製造方法であって、 前記導電性ポリマーを含む塗工液を前記キャリア箔の一面に塗工し、その上に電 解めつきによって前記金属箔層を形成することを特徴とするキャリア箔付き多孔質金 属箔の製造方法。  [12] The method for producing a porous metal foil with a carrier foil according to claim 1, wherein a coating liquid containing the conductive polymer is applied to one surface of the carrier foil, and an electrolytic solution is applied thereon. A method for producing a porous metal foil with a carrier foil, wherein the metal foil layer is formed by plating.
[13] 前記塗工液を塗布するに先立ち、前記キャリア箔における塗工液の塗布面を剥離 剤によって剥離処理しておくか、又は前記塗工液を塗布した後に該塗工液の塗布面 を剥離剤によって剥離処理しておく請求の範囲第 12項記載の製造方法。  [13] Prior to applying the coating liquid, the coating surface of the carrier foil to which the coating liquid is applied is subjected to a release treatment with a release agent, or the application surface of the coating liquid after applying the coating liquid. 13. The production method according to claim 12, wherein said is subjected to a release treatment with a release agent.
[14] 前記剥離剤が窒素含有ィ匕合物又は硫黄含有ィ匕合物力もなる請求の範囲第 13項 記載の製造方法。  14. The production method according to claim 13, wherein the release agent has a nitrogen-containing compound or a sulfur-containing compound.
[15] 前記キャリア箔はその一面が粗面であり、他面が平滑面である電解金属箔力 なり 、その粗面上に前記塗工液を塗布する請求の範囲第 12項記載の製造方法。  15. The manufacturing method according to claim 12, wherein the carrier foil has a rough surface on one side and an electrolytic metal foil having a smooth surface on the other side, and the coating liquid is applied on the rough surface. .
[16] 前記粗面の表面粗さ Raが 0. 05〜5 μ mである請求の範囲第 15項記載の製造方 法。  16. The production method according to claim 15, wherein the surface roughness Ra of the rough surface is 0.05 to 5 μm.
[17] 前記金属箔が、 Cu、 Ni、 Co、 Fe、 Cr、 Sn、 Zn、 In、 Ag及び Auのうちの少なくとも 1種類の金属を含んで構成されている請求の範囲第 12項記載の製造方法。  17. The method according to claim 12, wherein the metal foil includes at least one metal selected from the group consisting of Cu, Ni, Co, Fe, Cr, Sn, Zn, In, Ag, and Au. Production method.
[18] 前記キャリア箔が、 Cu、 Ni、 Co、 Fe、 Cr、 Sn、 Zn、 In、 Ag、 Au、 Al及び Tiのうち の少なくとも 1種類の金属を含んで構成されている請求の範囲第 12項記載の製造方 法。  [18] The method according to claim 18, wherein the carrier foil comprises at least one metal selected from the group consisting of Cu, Ni, Co, Fe, Cr, Sn, Zn, In, Ag, Au, Al and Ti. The production method described in paragraph 12.
[19] 表面が電解液と接する一対の集電用表面層と、該表面層間に介在されたリチウム 化合物の形成能の高い活物質の粒子を含む活物質層とを備えている非水電解液二 次電池用負極の製造方法であって、  [19] A non-aqueous electrolytic solution comprising a pair of current collecting surface layers whose surfaces are in contact with the electrolytic solution, and an active material layer containing active material particles having a high ability to form a lithium compound interposed between the surface layers. A method for producing a negative electrode for a secondary battery, comprising:
導電性ポリマーを含む塗工液をキャリア箔の一面に塗工し、その上にリチウム化合 物の形成能の低い金属材料を電解めつきして一方の集電用表面層を形成し、該集 電用表面層の上に活物質の粒子を含む導電性スラリーを塗布して活物質層を形成 し、該活物質層の上にリチウム化合物の形成能の低い金属材料を電解めつきして他 方の集電用表面層を形成し、然る後、前記キャリア箔を前記一方の集電用表面層か ら剥離分離することを特徴とする非水電解液二次電池用負極の製造方法。  A coating solution containing a conductive polymer is applied to one surface of the carrier foil, and a metal material having a low ability to form a lithium compound is electroplated thereon to form one current-collecting surface layer. A conductive slurry containing particles of an active material is applied on the surface layer for power application to form an active material layer, and a metal material having a low ability to form a lithium compound is electrolytically deposited on the active material layer to form an active material layer. Forming a current collecting surface layer, and then separating and separating the carrier foil from the one current collecting surface layer.
PCT/JP2005/008195 2004-05-06 2005-04-28 Porous metal foil with carrier foil and process for producing the same WO2005108647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004137824A JP4298578B2 (en) 2004-05-06 2004-05-06 Porous metal foil with carrier foil and method for producing the same
JP2004-137824 2004-05-06

Publications (1)

Publication Number Publication Date
WO2005108647A1 true WO2005108647A1 (en) 2005-11-17

Family

ID=35320252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008195 WO2005108647A1 (en) 2004-05-06 2005-04-28 Porous metal foil with carrier foil and process for producing the same

Country Status (2)

Country Link
JP (1) JP4298578B2 (en)
WO (1) WO2005108647A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637385A (en) * 2017-05-18 2019-12-31 富士胶片株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery, and positive electrode for secondary battery
CN113036086A (en) * 2019-12-24 2021-06-25 广州方邦电子股份有限公司 Preparation method of battery pole piece, battery pole piece and lithium battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY161424A (en) 2009-12-04 2017-04-14 Mitsui Mining & Smelting Co Porous metal foil and production method therefor
CN102820451A (en) * 2012-07-23 2012-12-12 深圳市海太阳实业有限公司 Negative electrode pole piece and preparation method thereof, and lithium ion battery and preparation method thereof
WO2022138295A1 (en) * 2020-12-25 2022-06-30 Tdk株式会社 Multilayer body, negative electrode collector for lithium ion secondary batteries, and negative electrode for lithium ion secondary batteries

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106644A (en) * 1977-03-02 1978-09-16 Toppan Printing Co Ltd Preparation of relief metal foil
JPH08225986A (en) * 1995-02-22 1996-09-03 Achilles Corp Electrodeposition method and device therefor
JPH0945334A (en) * 1995-07-26 1997-02-14 Katayama Tokushu Kogyo Kk Base material for lithium secondary battery plate, electrode plate using this base material and secondary battery using this electrode plate
JP2001256968A (en) * 2000-03-13 2001-09-21 Mitsui Mining & Smelting Co Ltd Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2004139768A (en) * 2002-10-16 2004-05-13 Hitachi Maxell Ltd Porous thin film electrode and lithium secondary battery using this as negative electrode
JP2005129264A (en) * 2003-10-21 2005-05-19 Mitsui Mining & Smelting Co Ltd Porous metallic foil and its manufacturing method
JP2005197217A (en) * 2003-12-10 2005-07-21 Mitsui Mining & Smelting Co Ltd Anode for non-aqueous electrolytic solution secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106644A (en) * 1977-03-02 1978-09-16 Toppan Printing Co Ltd Preparation of relief metal foil
JPH08225986A (en) * 1995-02-22 1996-09-03 Achilles Corp Electrodeposition method and device therefor
JPH0945334A (en) * 1995-07-26 1997-02-14 Katayama Tokushu Kogyo Kk Base material for lithium secondary battery plate, electrode plate using this base material and secondary battery using this electrode plate
JP2001256968A (en) * 2000-03-13 2001-09-21 Mitsui Mining & Smelting Co Ltd Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2004139768A (en) * 2002-10-16 2004-05-13 Hitachi Maxell Ltd Porous thin film electrode and lithium secondary battery using this as negative electrode
JP2005129264A (en) * 2003-10-21 2005-05-19 Mitsui Mining & Smelting Co Ltd Porous metallic foil and its manufacturing method
JP2005197217A (en) * 2003-12-10 2005-07-21 Mitsui Mining & Smelting Co Ltd Anode for non-aqueous electrolytic solution secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637385A (en) * 2017-05-18 2019-12-31 富士胶片株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery, and positive electrode for secondary battery
CN113036086A (en) * 2019-12-24 2021-06-25 广州方邦电子股份有限公司 Preparation method of battery pole piece, battery pole piece and lithium battery

Also Published As

Publication number Publication date
JP2005320562A (en) 2005-11-17
JP4298578B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP3799049B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
US7838154B2 (en) Negative electrode for nonaqueous secondary battery
TWI310994B (en) Negative electrode for nonaqueous secondary battery
RU2336603C2 (en) Secondary storage battery electrode, method of its production and secondary storage battery
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2006100794A1 (en) Negative electrode for rechargeable battery with nonaqueous electrolyte
WO2005108647A1 (en) Porous metal foil with carrier foil and process for producing the same
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
CN100514716C (en) Negative electrode for nonaqueous secondary battery
WO2005057692A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
TWI359525B (en) Electrode for secondary battery, process of produc
JP4746328B2 (en) Anode for non-aqueous electrolyte secondary battery
JP4763995B2 (en) Nonaqueous electrolyte secondary battery electrode
JP2005129264A (en) Porous metallic foil and its manufacturing method
JP3906342B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2008181739A (en) Positive electrode for non-aqueous electrolyte secondary battery
JP2006228512A (en) Anode for nonaqueous electrolyte secondary battery
JP4829483B2 (en) Method for producing electroless plating
WO2005112149A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2006134891A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JP2006147316A (en) Anode for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase