WO2005106525A1 - Wireless tag communication apparatus - Google Patents

Wireless tag communication apparatus Download PDF

Info

Publication number
WO2005106525A1
WO2005106525A1 PCT/JP2005/005513 JP2005005513W WO2005106525A1 WO 2005106525 A1 WO2005106525 A1 WO 2005106525A1 JP 2005005513 W JP2005005513 W JP 2005005513W WO 2005106525 A1 WO2005106525 A1 WO 2005106525A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless tag
wave
distance
interrogation
communication device
Prior art date
Application number
PCT/JP2005/005513
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Ohashi
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Priority to JP2006512733A priority Critical patent/JPWO2005106525A1/en
Publication of WO2005106525A1 publication Critical patent/WO2005106525A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/825Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted with exchange of information between interrogator and responder

Definitions

  • the present invention relates to an improvement in a wireless tag communication device that performs communication with a wireless tag that can write and read information wirelessly.
  • RFID Radio Frequency
  • This RFID system is capable of reading information stored in a wireless tag by communicating with the wireless tag communication device even when the wireless tag is dirty or invisible, is placed at a position, or is not visible. Because of this, practical applications are expected in various fields such as product management and inspection processes!
  • a wireless tag communication device which detects the relative movement speed of the wireless tag by communicating with the wireless tag.
  • the modulation back-skiutter system described in Patent Literature 1 is that.
  • a response wave in which the RFID tag power is also returned in response to an interrogation wave is received and converted into an I-phase signal and a Q-phase signal that are orthogonal to each other. Based on the signal, the presence / absence of the movement of the wireless tag, the extension, and the moving speed of the wireless tag with respect to the wireless tag communication device can be detected.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 136161
  • an object of the present invention is to provide a wireless tag communication device capable of detecting a distance from a wireless tag.
  • the gist of the present invention is a wireless tag communication device that performs non-contact information communication with a wireless tag in which predetermined information is stored.
  • Interrogation wave transmitter for transmitting a plurality of types of interrogation waves having different frequencies, and a plurality of types of reply waves returned from the wireless tag in response to the plurality of types of interrogation waves transmitted from the interrogation wave transmission unit
  • a reception demodulation unit that receives and demodulates the response wave, and a distance calculation unit that calculates a distance between the wireless tag based on a demodulation result of a plurality of types of response waves by the reception demodulation unit. It is a feature.
  • the interrogation wave transmitting unit for transmitting a plurality of types of interrogation waves each having a different frequency, and the interrogation wave according to the plurality of types of interrogation waves transmitted from the interrogation wave transmitting unit
  • a reception demodulation unit that receives and demodulates a plurality of types of response waves returned from the wireless tag, and calculates a distance between the wireless tag based on a demodulation result of the plurality of types of response waves by the reception and demodulation unit.
  • the distance between the wireless tag and the wireless tag can be suitably obtained by performing communication with the wireless tag. That is, it is possible to provide a wireless tag communication device capable of detecting a distance from the wireless tag.
  • the reception demodulation unit converts the response wave returned from the wireless tag into an I-phase signal and a Q-phase signal that are orthogonal to each other and performs orthogonal demodulation.
  • the distance between the wireless tag and the wireless tag can be suitably obtained in the wireless tag communication device including the demodulation circuit of the quadrature detection method.
  • the distance calculation unit calculates a distance between the wireless tag based on a ratio between the I-phase signal and the Q-phase signal in which both the wireless tag power and the response wave power to be returned are converted. It is calculated. With this configuration, it is possible to obtain the distance between the wireless tag and the wireless tag in a practical manner in the wireless tag communication device including the quadrature detection waveform demodulation circuit.
  • the radio communication apparatus further includes a main carrier phase control unit for distributing the main carrier of the interrogation wave, controlling the phase thereof, and supplying the main carrier to the reception demodulation unit.
  • the response wave returned from the tag carrier is subjected to homodyne demodulation based on the main carrier whose phase is controlled and supplied by the main carrier phase controller.
  • the interrogation wave transmitter transmits a first interrogation wave and a second interrogation wave having different frequencies
  • the reception / demodulation unit transmits the interrogation wave from the interrogation wave transmitter.
  • a first response wave and a second response wave returned in response to the wireless tag power in response to the transmitted first and second interrogation waves are received and demodulated, respectively.
  • the distance between the wireless tag and the wireless tag can be suitably obtained by the necessary and sufficient interrogation waves and response waves.
  • the frequencies of the first interrogation wave and the second interrogation wave are indivisible values. In this way, the distance to the wireless tag can be more preferably determined.
  • the distance calculation section includes a first distance candidate group obtained based on a demodulation result of the first response wave by the reception demodulation section, and a demodulation of the second response wave.
  • the second distance candidate group determined based on the result is compared with the second distance candidate group, and the smallest value among the values commonly included in the first distance candidate group and the second distance candidate group is compared with the wireless tag. It is calculated as the distance between them. In this way, the distance between the wireless tag and the wireless tag can be obtained in a practical manner.
  • the interrogation wave transmitting unit transmits the first interrogation wave and the second interrogation wave alternately. In this way, a necessary and sufficient interrogation wave can be transmitted with a simple configuration.
  • the interrogation wave transmitting unit transmits the plurality of types of interrogation waves simultaneously. In this way, the distance to the wireless tag can be obtained as quickly as possible.
  • the distance calculation unit calculates a distance from the wireless tag based on an intensity of a response wave returned from the wireless tag. In this way, the distance to the wireless tag can be more preferably obtained.
  • the distance calculation unit calculates a distance to the wireless tag based on a communicable distance to the wireless tag. In this way, the distance to the wireless tag can be more preferably obtained.
  • FIG. 1 is a diagram illustrating a configuration of a communication system to which the present invention is suitably applied.
  • FIG. 2 is a diagram illustrating an electrical configuration of a wireless tag communication device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a wireless tag circuit included in the wireless tag of FIG. 1.
  • FIG. 4 is a diagram exemplifying a subcarrier used for reply control by a control unit included in the wireless tag circuit of FIG. 3 and a code signal in which the subcarrier is encoded by a predetermined information signal.
  • FIG. 5 is a flowchart illustrating tag position detection control by a control unit of the wireless tag communication device in FIG. 2.
  • FIG. 6 is a flowchart illustrating tag position determination control from a candidate string in the control of FIG. 5.
  • FIG. 7 is a diagram illustrating the principle of tag position detection control by a control unit of the wireless tag communication device in FIG. 2.
  • FIG. 8 is a flowchart illustrating another example of tag position detection control by the control unit of the wireless tag communication device in FIG. 2.
  • FIG. 9 is a diagram illustrating an electrical configuration of a wireless tag communication device according to a second embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating tag position detection control by a control unit of the wireless tag communication device in FIG. 9.
  • FIG. 11 is a diagram illustrating a state in which different interrogation waves are simultaneously transmitted from the two wireless tag communication devices shown in FIG. 2 to the wireless tag.
  • FIG. 1 is a diagram illustrating a configuration of a communication system 10 to which the present invention is suitably applied.
  • the communication system 10 is a so-called RFID (Radio Frequency Identification) system including a wireless tag communication device 12 according to an embodiment of the present invention and one or more (single in FIG. 1) wireless tags 14.
  • the wireless tag communication device 12 functions as an interrogator of the RFID system, and the wireless tag 14 functions as a transponder. That is, when the interrogation wave F (transmission signal) is transmitted from the radio tag communication device 12 to the wireless tag 14, the radio tag 14 receiving the interrogation wave F converts the interrogation wave F into a predetermined information signal (data).
  • the interrogation wave F is modulated and returned as a response wave F (return signal) to the RFID tag communication device 12, whereby information communication between the RFID tag communication device 12 and the RFID tag 14 is performed. Is performed. D in FIG. 1 indicates the distance between the wireless tag communication device 12 and the wireless tag 14 (the distance between the antenna 24 of the wireless tag communication device 12 and the antenna 58 of the wireless tag 14).
  • FIG. 2 is a diagram illustrating the electrical configuration of the wireless tag communication device 12 of the present embodiment.
  • the wireless tag communication device 12 of the present embodiment includes a reference frequency generator 16 for generating the main carrier of the interrogation wave F, a reference wave generated by the reference frequency generator 16 and a control signal.
  • PLL Phase Locked Loop
  • VCO Voltage Controlled Oscillator
  • a transmission signal amplifying unit 24 for amplifying the transmission signal output from the main carrier modulation unit 22 based on a predetermined control signal TX-PWR, and a transmission signal amplifying unit.
  • the transmitter / receiver transmits the transmission signal output from 24 as an interrogation wave F to the wireless tag 14 that is the object of communication, and receives a response wave F in which the wireless tag 14 also returns a response to the interrogation wave F.
  • Antenna 26 and an I-phase signal converter 28 and Q that convert a received signal received by the antenna 26 into an I-phase signal and a Q-phase signal orthogonal to each other by two signals having a phase difference of ⁇ 2 radians.
  • the transmission signal output from the phase signal conversion unit 30 and the transmission signal amplification unit 24 is supplied to the antenna 26, and the reception signal received by the antenna 26 is converted into the I-phase signal conversion unit 28 and the Q-phase signal.
  • Supply to converter 30 Transmission / reception separation unit 32, an I-phase signal BPF (Band Pass Filter) 34 that extracts only signals in a predetermined frequency band from the I-phase signals output from the I-phase signal conversion unit 28, and the I-phase signal BPF34
  • An I-phase signal amplifying unit 36 that amplifies the I-phase signal output from the Q-phase signal conversion unit 30, and a Q-phase signal BPF38 that extracts only a signal of a predetermined frequency band from the Q-phase signal output from the Q-phase signal conversion unit 30.
  • the Q-phase signal amplifying section 40 amplifies the Q-phase signal output from the Q-phase signal BPF 38, and the I-phase signal and the Q-phase signal output from the I-phase signal amplifying section 36 and the Q-phase signal amplifying section 40. It is provided with an RSSI (Redeved Signal Strength Indicator) circuit 42 for detecting the strength and a control unit 44 for controlling the operation of the RFID tag communication device 12.
  • RSSI Redeved Signal Strength Indicator
  • the I-phase signal conversion unit 28, the Q-phase signal conversion unit 30, and the signal processing unit 54 described later correspond to a reception demodulation unit.
  • a circulator or a directional coupler is preferably used as the transmission / reception separating unit 32.
  • the control unit 44 includes a CPU, a ROM, a RAM, and the like, and is a so-called microcomputer that performs signal processing in accordance with a program pre-stored in the ROM while using a temporary storage function of the RAM.
  • the communication shown in Fig. 1 is based on the basic control of the transmission operation of the interrogation wave F to the tag 14 and the reception operation of the response wave F returned from the wireless tag 14 in response to the interrogation wave F.
  • the distance detection control for detecting the distance d from the target wireless tag 14 is executed.
  • a plurality of types of interrogation waves F having different frequencies are transmitted from the antenna 26 to the antenna 26.
  • An interrogation wave transmitter 50 for transmitting to the wireless tag 14 and the antenna 26 based on the I-phase signal and the Q-phase signal output from the I-phase signal amplifier 36 and the Q-phase signal amplifier 40, respectively.
  • a signal processing unit 52 that performs quadrature demodulation of the received signal and performs signal processing such as supplying a control signal TX-ASK to the main carrier modulation unit 22, and a plurality of types of response waves by the signal processing unit 52.
  • a distance calculator 54 for calculating a distance d from the wireless tag 14 based on the demodulation result of F is functionally included.
  • FIG. 3 is a block diagram illustrating a wireless tag circuit 56 included in the wireless tag 14.
  • the wireless tag 14 receives the interrogation wave F from the wireless tag communication device 12, and responds to the wireless tag communication device 12 in response to the interrogation wave F.
  • An antenna 58 for transmitting, an interrogation wave received by the antenna unit 58, a clock unit 60 for extracting a clock signal, generating a subcarrier, and supplying it to the control unit 66, and an interrogation received by the antenna 58
  • a power supply unit 62 for rectifying a part of the wave F to be an energy source, a modulation / demodulation unit 64 connected to the antenna 58 for modulating and demodulating a signal, and controlling operations of the wireless tag circuit 56.
  • control unit 66 controls the storage of the predetermined information in the memory unit 68 by communicating with the wireless tag generation device 12 and the Z-modulation of the interrogation wave F received by the antenna unit 58.
  • control unit 66 controls the storage of the predetermined information in the memory unit 68 by communicating with the wireless tag generation device 12 and the Z-modulation of the interrogation wave F received by the antenna unit 58.
  • basic control such as return control is performed, in which the signal is modulated and then reflected and returned from the antenna section 58 as a response wave F. .
  • FIG. 4 is a diagram exemplifying a subcarrier used for the reply control by the control unit 66 and a code signal in which the subcarrier is encoded by a predetermined information signal.
  • the clock unit 60 uses the part of the interrogation wave F rectified by the power supply unit 62 as an energy source, and A subcarrier is generated.
  • the control unit 66 analyzes the command frame, encodes the subcarrier based on the information signal stored in the memory unit 68 (primary modulation), and sends it to the variable Z demodulation unit 64. Is entered. For example, the data 1 shown in FIG.
  • the interrogation wave F received from the wireless tag communication device 12 is modulated (secondary modulated) based on the encoded signal by the modulation / demodulation unit 64, and the response wave F is received from the antenna 58 as the response wave F. Sent to wireless tag communication device 12.
  • the frequency of the sub-carrier is set in advance so as to be included in the pass bands of the I-phase signal BPF34 and the Q-phase signal BPF38.
  • FIG. 5 is a flowchart illustrating the tag position detection control by the control unit 44 of the wireless tag communication device 12, which is repeatedly executed at a predetermined cycle.
  • FIG. 6 is a flowchart illustrating the tag position determination control in the SB in FIG. 5.
  • step (hereinafter, step is omitted) SA 1 the frequency f of the main carrier generated by the VCO 20 is set to f by the PLL 18.
  • This frequency f c is 2 ⁇ , where ⁇ is the angular frequency of the main carrier.
  • SA2 after the main carrier is amplitude-modulated by the main carrier modulation unit 22 based on a predetermined control signal TX-ASK to be a transmission signal, based on the predetermined control signal TX-PWR, The signal is amplified by the transmission signal amplifying unit 24 and transmitted from the antenna 26 to the wireless tag 14 as an interrogation wave F.
  • This interrogation wave F is represented by the following equation (1), where the amplitude is ⁇ .
  • the response wave F returned from the wireless tag 14 in response to the interrogation wave F transmitted in SA2 is received by the antenna 26.
  • the response wave F is expressed by the following equation (2) in the data 1 shown in FIG.
  • is the angular frequency of the subcarrier
  • the subcarrier f is sincot.
  • B indicates the reflection efficiency and m indicates the degree of modulation.
  • m l, that is, modulation with a degree of modulation of 100% is performed.
  • the phase difference ⁇ between the interrogation wave F and the response wave F generated by the reciprocation of the radio wave in the communication between the wireless tag communication device 12 and the wireless tag 14 is calculated, and the tag position is calculated.
  • the candidate sequence d is determined.
  • the received signal R received by the antenna 26 is
  • the I-phase signal R is represented by the following equation (4), and the signal passing through the I-phase signal BPF34 and input to the control unit 44 is represented by the following equation (5).
  • the Q-phase signal R is expressed by the following equation (6), passes through the Q-phase signal BPF38, and
  • the control unit 44 calculates tan 0, which is the ratio between the I-phase signal R and the Q-phase signal R, according to the following equation (8).
  • a tag position candidate sequence d that is a candidate for the distance D between the tag and the wireless tag 14 is determined.
  • the frequency f e of the main carrier generated by the VCO 20 is set to f by the PLL 18 described above.
  • the frequency f set in SA1 is a value that cannot be divided by each other.
  • the main carrier is generated by the reference frequency generation section 16 and controlled to the frequency f set in SA 5, and based on a predetermined control signal TX-ASK,
  • the main carrier modulating unit 22 After being amplitude-modulated by the main carrier modulating unit 22 to be a transmission signal, it is amplified by the transmission signal amplifying unit 24 based on a predetermined control signal TX-PWR, and is interrogated from the antenna 26 as an interrogation wave F by the radio tag. Sent to 14.
  • the wireless tag 14 transmits the The returned response wave is received by the antenna 26.
  • the phase difference 0 generated by the reciprocation of the radio wave in the communication between the wireless tag communication device 12 and the wireless tag 14 is calculated by the same processing as SA4 described above, and the tag position candidate sequence d is calculated.
  • Expression forces d and d are calculated.
  • SB3 it is determined whether or not I d — d I is less than the predetermined value E. If the determination at SB3 is affirmative, at SB4, the distance between the wireless tag communication device 12 and the wireless tag 14 (the distance between the antenna 24 of the wireless tag communication device 12 and the antenna 58 of the wireless tag 14) is determined. After determining that D is d, this routine is terminated. If the determination of SB3 is denied, it is determined in SB5 whether n is S3. You.
  • SA1, SA2, SA5, and SA6 calculate the operation of the interrogation wave transmitting unit 50
  • SA3 and SA7 calculate the distance of the signal processing unit 52 (reception demodulation unit)
  • SA4, SA8, and SB calculate the distance. It corresponds to the operation of the unit 54, respectively.
  • SB3's judgment
  • FIG. 7 is a diagram illustrating the principle of the tag position detection control.
  • the distance calculation unit 54 performs a plurality of types of responses returned from the wireless tag 14 in response to the plurality of types of interrogation waves F.
  • the distance D from the wireless tag 14 is calculated based on the result of demodulation of the response wave ⁇ .
  • the response wave F returned from the wireless tag 14 In a mode in which the distance D between the wireless tag 14 and the signal R is calculated based on the ratio between the signal R and the Q-phase signal R, sq
  • the first interrogation wave having the frequency f and the second interrogation wave having the frequency f are generated by the interrogation wave transmitting section 50.
  • the first response wave and the second response wave transmitted alternately and returned from the wireless tag 14 according to the first and second interrogation waves are received and demodulated respectively.
  • the first distance candidate group (candidate sequence) d obtained by the distance calculation unit 54 based on the demodulation result of the first response wave, and the second distance candidate group d obtained based on the demodulation result of the second response wave Are compared with the first distance candidate group d and the second distance candidate group d.
  • FIG. 8 is a flowchart illustrating another example of the tag position detection control by the control unit 44 of the wireless tag communication device 12, which is repeatedly executed at a predetermined cycle. Note that, in this embodiment, as shown in FIG. 11, a first wireless tag communication device 12a for generating a main carrier having a frequency f and a frequency f which is a value that is indivisible from each other.
  • a second wireless tag communication device 12b for generating 12 main carriers is separately provided, and information is transmitted between the wireless tag communication devices 12a and 12b and the wireless tag 14, respectively.
  • the communication with the wireless tag 14 is calculated by the communication of the wireless tag and the control. Further, since the wireless tag communication devices 12a and 12b communicate with the same wireless tag 14, they are controlled so as to communicate at different timings. Alternatively, when communication is performed simultaneously, the content and timing are controlled so as to transmit the same interrogation wave only with a different frequency in order to perform communication with the same wireless tag 14.
  • the frequency f of the main carrier generated by the VCO 20 is set to f 1 and f 2 by the PLL 18 described above.
  • the main carrier having the frequency f generated in the device 12a is amplitude-modulated by the main carrier modulator 22 based on a predetermined control signal TX-ASK to be a transmission signal
  • the signal is amplified by the transmission signal amplifying unit 24 based on the fixed control signal TX-PWR, and is transmitted from the antenna 26 to the wireless tag 14 as an interrogation wave F.
  • the unmodulated main carrier of the frequency f increases the transmission signal.
  • the first interrogation wave having the frequency f1 and the second interrogation wave having the frequency f2 are transmitted simultaneously to the wireless tag 14.
  • SC3 corresponding to the operation of the signal processing unit 52, the first response wave returned from the wireless tag 14 in response to the first interrogation wave and the second interrogation wave transmitted in SC2, and A second response wave is received by the antenna 26.
  • the phase difference 0, ⁇ ⁇ generated by the reciprocation of the radio wave in the communication between the wireless tag communication device 12 and the wireless tag 14 is calculated, and the tag position candidate strings d, d are determined. Is determined.
  • the phase difference 0 is a value corresponding to the first interrogation wave of the frequency f.
  • the first distance candidate group d as shown in the following equation (13) is obtained. (The term of ⁇ ⁇ 2 is omitted).
  • the phase difference ⁇ is the frequency
  • Numeral 1 2 is selected such that the wavelengths 1 and ⁇ 2 satisfy the following formula (15) with respect to the communicable distance Da with the wireless tag 14. Further, the wavelength difference between the frequencies f 1 and f 2 illustrated in FIG. 7 is more than the distance error corresponding to the phase measurement error.
  • the interrogation wave transmitter 50 (SA1, SA2, SA5, SA6, SC1, and SC2) for transmitting a plurality of types of interrogation waves F having different frequencies
  • a reception demodulation unit for receiving and demodulating a plurality of types of response waves F returned from the wireless tag 14 in response to the plurality of types of interrogation waves F e transmitted from the interrogation wave transmitting unit 50.
  • a distance calculation unit 54 (SA4, SA8, SB, SC5 to SC10) for calculating a distance d between the wireless tag 14 and the wireless tag 14 by performing communication with the wireless tag 14.
  • the distance d from 14 can be suitably obtained. That is, it is possible to provide the wireless tag communication device 12 capable of detecting the distance from the wireless tag 14.
  • the signal processing unit 52 converts the response wave F returned from the wireless tag 14 into an I-phase signal R and a Q-phase signal R, which are orthogonal to each other, and performs orthogonal demodulation. r si sq
  • the distance from the wireless tag 14 can be suitably obtained in the wireless tag communication device 12 including the demodulation circuit of the quadrature detection method.
  • the distance calculation unit 54 determines the distance between the wireless tag 14 based on the ratio between the I-phase signal R and the Q-phase signal R, in which the response wave F returned from the wireless tag 14 is also converted. Calculate the distance d
  • the distance from the wireless tag 14 can be determined in a practical manner in the wireless tag communication device 12 including the orthogonal detection type demodulation circuit.
  • the interrogation wave transmitting section 50 transmits a first interrogation wave and a second interrogation wave having different frequencies
  • the signal processing section 52 transmits the interrogation wave from the interrogation wave transmission section 50. It is necessary to receive and demodulate the first response wave and the second response wave returned from the wireless tag 14 in response to the first and second interrogation waves received, respectively. Thus, a sufficient distance between the wireless tag 14 and the interrogation wave F and the response wave F can be suitably obtained.
  • the distance between the first interrogation wave and the second interrogation wave can be more preferably obtained.
  • the distance calculation unit 54 determines a first distance candidate group d obtained based on the demodulation result of the first response wave and a second distance candidate group d obtained based on the demodulation result of the second response wave.
  • the first distance candidate group d and the second distance candidate group d are compared with the second distance candidate group d.
  • the distance to the wireless tag 14 can be obtained in a practical manner. It can [0062] Further, since the interrogation wave transmitter 50 transmits the first interrogation wave and the second interrogation wave alternately, the interrogation wave transmitter 50 transmits a necessary and sufficient interrogation wave F with a simple configuration. be able to.
  • the interrogation wave transmitter 50 transmits the plurality of types of interrogation waves F at the same time, the distance D to the wireless tag 14 can be obtained as quickly as possible.
  • the distance calculation unit 54 calculates the distance D to the wireless tag 14 based on the intensity of the response wave F returned from the wireless tag 14, so that it is more preferable.
  • the distance d from the wireless tag 14 can be obtained.
  • the distance calculation unit 54 calculates the distance to the wireless tag 14 based on the communicable distance D to the wireless tag 14, the wireless tag 14 is more preferably used.
  • the distance D from the object 14 can be obtained.
  • FIG. 9 is a diagram illustrating an electrical configuration of a wireless tag communication device 70 according to a second embodiment of the present invention. As shown in FIG. 2, the wireless tag communication device 70 of the second embodiment distributes the main carrier of the interrogation wave F output from the reference frequency generation unit 16 and performs the distribution based on a predetermined phase control signal.
  • a phase shift circuit 72 for controlling the phase of the received signal; a reception demodulation unit 74 for homodyne demodulating the received signal received by the antenna 26 based on the phase-controlled main carrier supplied from the phase shift circuit 72; A demodulation signal BPF for extracting only a signal of a predetermined frequency band from the demodulation signal output from the reception demodulation unit 74; and a demodulation signal amplifying unit 78 for amplifying the demodulation signal output from the demodulation signal BPF. It is configured.
  • the RSSI 42 in the wireless tag communication device 70 detects the signal strength of the demodulated signal output from the demodulated signal amplifier 78.
  • the control unit 44 of the wireless tag communication device 70 of the second embodiment is functionally provided with a carrier phase control unit 80 for supplying a predetermined phase control signal to the phase circuit 72.
  • FIG. 10 illustrates tag position detection control by the control unit 44 of the wireless tag communication device 70. This flowchart is repeatedly executed at a predetermined cycle.
  • the frequency f of the main carrier generated by the reference frequency generator 16 is set to f by the PLL 18, and is fixed to the frequency f by the VCO 20.
  • the main carrier is generated by the reference frequency generation unit 16 and controlled to the frequency f set in SD1, and is controlled by the main carrier modulation unit 22 based on a predetermined control signal TX-ASK.
  • the signal is amplified by the transmission signal amplifying section 24 based on a predetermined control signal TX-PWR and transmitted from the antenna 26 to the wireless tag 14 as an interrogation wave F.
  • a response wave F returned from the wireless tag 14 in response to the wave F is received by the antenna 26, and is received by the reception demodulation unit 74 based on the phase-controlled main carrier supplied from the phase shift circuit 72. And is homodyne demodulated. Then, the RSSI 42 detects the signal strength RSSI of the demodulated signal output from the reception demodulation unit 74.
  • the demodulated signal output from the reception demodulation unit 74 is represented by the following equation (16), where l + msin cot is M.
  • SD5 it is determined whether or not the demodulated signal strength RSSI detected in SD4 is larger than the maximum value RSSI. If the judgment of SD5 is denied, the power to execute the processing below SD8 If the judgment of SD5 is affirmed, the RSSI Is made its maximum value RSSI.
  • SD7 after the phase control amount ⁇ is set to its maximum value ⁇ max max, in SD8, it is determined whether or not the force whose phase control amount ⁇ is 2 ⁇ or more. If the determination in SD8 is affirmative, in SD9, after the transmission of the interrogation wave F from the antenna 26 is stopped, if the determination in SD8 to terminate this routine is denied, In SD10, after the specified value ⁇ is added to the phase control amount ⁇ ,
  • the phase control amount ⁇ in the phase shift circuit 72 is set so that the demodulated signal strength RSSI is maximized, so that the wireless communication between the wireless tag communication device 12 and the wireless tag 14 for the first frequency f.
  • the candidate sequence ⁇ of the phase difference generated by the reciprocation of the radio wave in the communication between ⁇ is obtained as in the following equation (17).
  • a candidate sequence ⁇ of the phase difference is obtained as in the following equation (18).
  • N and n are obtained in the same manner as in the first embodiment, and the distance D from the wireless tag 14 is calculated.
  • SD1 and SD2 operate as the interrogation wave transmitter 50
  • SD4 operates as the signal processor 52
  • SD5 to SD8 and SD10 operate as the distance calculator 54 and the carrier phase controller 80. Each corresponds.
  • the phase shift circuit 72 and the main carrier phase for distributing the main carrier of the interrogation wave F and controlling the phase to supply the main carrier to the reception demodulator 74 are provided.
  • the reception / demodulation unit 74 includes a control unit 80 (SD5 to SD8, SD10) .
  • the reception / demodulation unit 74 converts the response wave F returned from the wireless tag 14 into a main carrier having a controlled phase supplied by the phase shift circuit 72. Since the homodyne demodulation is performed based on the above, the distance D between the RFID tag 14 and the RFID tag 14 in the RFID tag communication device 70 including the demodulation circuit of the homodyne detection method can be suitably obtained.
  • the distance calculation unit 54 is further preferable because it calculates the distance D between the wireless tag 14 and the wireless tag 14 based on the strength RSSI of the demodulated signal demodulated by the reception demodulation unit 74. The distance D from the wireless tag 14 can be obtained.
  • the interrogation wave transmitting unit 50, the signal processing unit 52, the distance calculating unit 54, the main carrier phase control unit 80, and the like are all controlled by the control unit 44. Forces provided as functions Each may be provided as an individual control device.
  • the distance calculation unit 54 is returned from the wireless tag 14 in response to the first and second interrogation waves transmitted from the interrogation wave transmission unit 50.
  • the distance dD with respect to the wireless tag 14 is detected based on the first response wave and the second response wave, three or more types having different frequencies transmitted from the interrogation wave transmitting unit 50 are used. Based on the same three or more response waves returned from the wireless tag 14 in response to the interrogation wave, the distance d to the wireless tag 14 may be detected. In this way, the distance D from the wireless tag 14 can be obtained more accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A wireless tag communication apparatus capable of determining a distance from a wireless tag. There are included a question wave transmitting part (50) that transmits a plurality of types of question waves (Fc) having their respective different frequencies; I-phase and Q-phase signal converting parts (28,30) that receive and demodulate a plurality of types of response waves (Fr) transmitted from a wireless tag (14) in reply to the plurality of types of question waves (Fc) transmitted from the question wave transmitting part (50); and a distance calculating part (54) that calculates a distance (d) from the wireless tag (14) based on a result of demodulations of the plurality of types of response waves (Fr) by the I-phase and Q-phase signal converting parts (28,30). Accordingly, the distance (d) from the wireless tag (14) can be appropriately determined by communicating with the wireless tag (14).

Description

明 細 書  Specification
無線タグ通信装置  Wireless tag communication device
技術分野  Technical field
[0001] 本発明は、無線にて情報の書き込みや読み出しができる無線タグとの間で通信を 行う無線タグ通信装置の改良に関する。  The present invention relates to an improvement in a wireless tag communication device that performs communication with a wireless tag that can write and read information wirelessly.
背景技術  Background art
[0002] 所定の情報が記憶された小型の無線タグ (応答器)から所定の無線タグ通信装置( 質問器)により非接触にて情報の読み出しを行う RFID (Radio Frequency  [0002] RFID (Radio Frequency) that reads information from a small wireless tag (transponder) storing predetermined information in a non-contact manner by a predetermined wireless tag communication device (interrogator)
Identification)システムが知られている。この RFIDシステムは、無線タグが汚れてい る場合や見えな 、位置に配置されて 、る場合であっても無線タグ通信装置との通信 によりその無線タグに記憶された情報を読み出すことが可能であることから、商品管 理ゃ検査工程等の様々な分野にぉ 、て実用が期待されて!、る。  Identification) systems are known. This RFID system is capable of reading information stored in a wireless tag by communicating with the wireless tag communication device even when the wireless tag is dirty or invisible, is placed at a position, or is not visible. Because of this, practical applications are expected in various fields such as product management and inspection processes!
[0003] ところで、上記無線タグとの間で通信を行うことによりその無線タグの相対移動速度 を検出する無線タグ通信装置が提案されている。例えば、特許文献 1に記載された 変調バックスキヤッタシステムがそれである。この技術によれば、質問波に応じて無線 タグ力も返信される応答波を受信して互いに直交する I相信号及び Q相信号に変換 した後、ドップラーシフトの原理によりそれら I相信号及び Q相信号に基づ 、て上記無 線タグの運動の有無、延 、ては無線タグ通信装置に対する移動速度を検出すること ができる。  [0003] By the way, a wireless tag communication device has been proposed which detects the relative movement speed of the wireless tag by communicating with the wireless tag. For example, the modulation back-skiutter system described in Patent Literature 1 is that. According to this technology, a response wave in which the RFID tag power is also returned in response to an interrogation wave is received and converted into an I-phase signal and a Q-phase signal that are orthogonal to each other. Based on the signal, the presence / absence of the movement of the wireless tag, the extension, and the moving speed of the wireless tag with respect to the wireless tag communication device can be detected.
[0004] 特許文献 1 :特開平 11 136161号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11 136161
[0005] しかし、前記従来の技術では、前記無線タグとの間で通信を行うことによりその無線 タグの前記無線タグ通信装置に対する移動速度は検出できるものの、その無線タグ との間の距離を検出することはできな力つた。特に、比較的近距離の RFID通信に関 して斯カる距離を求める技術はな力つた。すなわち、無線タグとの間の距離を検出し 得る無線タグ通信装置の開発が求められて!/、た。  [0005] However, in the conventional technique, although the moving speed of the wireless tag with respect to the wireless tag communication device can be detected by performing communication with the wireless tag, the distance between the wireless tag and the wireless tag is detected. I couldn't do it. In particular, techniques for finding such distances for relatively short distance RFID communication have been powerful. In other words, there has been a demand for the development of a wireless tag communication device capable of detecting the distance to the wireless tag!
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0006] 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、 無線タグとの間の距離を検出し得る無線タグ通信装置を提供することにある。 Problems the invention is trying to solve The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wireless tag communication device capable of detecting a distance from a wireless tag.
課題を解決するための手段  Means for solving the problem
[0007] 斯かる目的を達成するために、本発明の要旨とするところは、所定の情報が記憶さ れた無線タグとの間で非接触にて情報の通信を行う無線タグ通信装置であって、周 波数のそれぞれ異なる複数種類の質問波を送信するための質問波送信部と、その 質問波送信部から送信される複数種類の質問波に応じて前記無線タグから返信され る複数種類の応答波を受信してそれぞれ復調する受信復調部と、その受信復調部 による複数種類の応答波の復調結果に基づいて前記無線タグとの間の距離を算出 する距離算出部とを、含むことを特徴とするものである。 [0007] In order to achieve such an object, the gist of the present invention is a wireless tag communication device that performs non-contact information communication with a wireless tag in which predetermined information is stored. Interrogation wave transmitter for transmitting a plurality of types of interrogation waves having different frequencies, and a plurality of types of reply waves returned from the wireless tag in response to the plurality of types of interrogation waves transmitted from the interrogation wave transmission unit A reception demodulation unit that receives and demodulates the response wave, and a distance calculation unit that calculates a distance between the wireless tag based on a demodulation result of a plurality of types of response waves by the reception demodulation unit. It is a feature.
発明の効果  The invention's effect
[0008] このようにすれば、周波数のそれぞれ異なる複数種類の質問波を送信するための 質問波送信部と、その質問波送信部カゝら送信される複数種類の質問波に応じて前 記無線タグから返信される複数種類の応答波を受信してそれぞれ復調する受信復 調部と、その受信復調部による複数種類の応答波の復調結果に基づいて前記無線 タグとの間の距離を算出する距離算出部とを、含むことから、前記無線タグとの間で 通信を行うことによりその無線タグとの間の距離を好適に求めることができる。すなわ ち、無線タグとの間の距離を検出し得る無線タグ通信装置を提供することができる。  [0008] According to this configuration, the interrogation wave transmitting unit for transmitting a plurality of types of interrogation waves each having a different frequency, and the interrogation wave according to the plurality of types of interrogation waves transmitted from the interrogation wave transmitting unit A reception demodulation unit that receives and demodulates a plurality of types of response waves returned from the wireless tag, and calculates a distance between the wireless tag based on a demodulation result of the plurality of types of response waves by the reception and demodulation unit. The distance between the wireless tag and the wireless tag can be suitably obtained by performing communication with the wireless tag. That is, it is possible to provide a wireless tag communication device capable of detecting a distance from the wireless tag.
[0009] ここで、好適には、前記受信復調部は、前記無線タグから返信される応答波を互 ヽ に直交する I相信号及び Q相信号に変換して直交復調するものである。このようにす れば、直交検波方式の復調回路を備えた無線タグ通信装置にお!、て前記無線タグ との間の距離を好適に求めることができる。  [0009] Preferably, the reception demodulation unit converts the response wave returned from the wireless tag into an I-phase signal and a Q-phase signal that are orthogonal to each other and performs orthogonal demodulation. With this configuration, the distance between the wireless tag and the wireless tag can be suitably obtained in the wireless tag communication device including the demodulation circuit of the quadrature detection method.
[0010] また、好適には、前記距離算出部は、前記無線タグ力も返信される応答波力も変換 された I相信号と Q相信号との比に基づいてその無線タグとの間の距離を算出するも のである。このようにすれば、直交検波形式の復調回路を備えた無線タグ通信装置 において実用的な態様で前記無線タグとの間の距離を求めることができる。  [0010] Preferably, the distance calculation unit calculates a distance between the wireless tag based on a ratio between the I-phase signal and the Q-phase signal in which both the wireless tag power and the response wave power to be returned are converted. It is calculated. With this configuration, it is possible to obtain the distance between the wireless tag and the wireless tag in a practical manner in the wireless tag communication device including the quadrature detection waveform demodulation circuit.
[0011] また、好適には、前記質問波の主搬送波を分配し且つ位相を制御して前記受信復 調部に供給するための主搬送波位相制御部を含み、その受信復調部は、前記無線 タグカゝら返信される応答波をその主搬送波位相制御部により供給される位相が制御 された主搬送波に基づいてホモダイン復調するものである。このようにすれば、ホモ ダイン検波方式の復調回路を備えた無線タグ通信装置において前記無線タグとの間 の距離を好適に求めることができる。 [0011] Preferably, the radio communication apparatus further includes a main carrier phase control unit for distributing the main carrier of the interrogation wave, controlling the phase thereof, and supplying the main carrier to the reception demodulation unit. The response wave returned from the tag carrier is subjected to homodyne demodulation based on the main carrier whose phase is controlled and supplied by the main carrier phase controller. With this configuration, the distance from the wireless tag to the wireless tag communication device including the demodulation circuit of the homodyne detection method can be suitably obtained.
[0012] また、好適には、前記質問波送信部は、周波数のそれぞれ異なる第 1の質問波及 び第 2の質問波を送信するものであり、前記受信復調部は、その質問波送信部から 送信される第 1の質問波及び第 2の質問波に応じて前記無線タグ力 返信される第 1 の応答波及び第 2の応答波を受信してそれぞれ復調するものである。このようにすれ ば、必要にして十分な質問波及び応答波により前記無線タグとの間の距離を好適に 求めることができる。  [0012] Preferably, the interrogation wave transmitter transmits a first interrogation wave and a second interrogation wave having different frequencies, and the reception / demodulation unit transmits the interrogation wave from the interrogation wave transmitter. A first response wave and a second response wave returned in response to the wireless tag power in response to the transmitted first and second interrogation waves are received and demodulated, respectively. In this way, the distance between the wireless tag and the wireless tag can be suitably obtained by the necessary and sufficient interrogation waves and response waves.
[0013] また、好適には、前記第 1の質問波及び第 2の質問波の周波数は、互いに割り切れ ない値である。このようにすれば、前記無線タグとの間の距離を更に好適に求めるこ とがでさる。  [0013] Preferably, the frequencies of the first interrogation wave and the second interrogation wave are indivisible values. In this way, the distance to the wireless tag can be more preferably determined.
[0014] また、好適には、前記距離算出部は、前記受信復調部による前記第 1の応答波の 復調結果に基づいて求められる第 1の距離候補群と、前記第 2の応答波の復調結果 に基づいて求められる第 2の距離候補群とを比較して、前記第 1の距離候補群及び 第 2の距離候補群に共通して含まれる値のうち最小のものを前記無線タグとの間の 距離として算出するものである。このようにすれば、実用的な態様で前記無線タグと の間の距離を求めることができる。  [0014] Preferably, the distance calculation section includes a first distance candidate group obtained based on a demodulation result of the first response wave by the reception demodulation section, and a demodulation of the second response wave. The second distance candidate group determined based on the result is compared with the second distance candidate group, and the smallest value among the values commonly included in the first distance candidate group and the second distance candidate group is compared with the wireless tag. It is calculated as the distance between them. In this way, the distance between the wireless tag and the wireless tag can be obtained in a practical manner.
[0015] また、好適には、前記質問波送信部は、前記第 1の質問波及び第 2の質問波を交 互に送信するものである。このようにすれば、必要にして十分な質問波を簡単な構成 により送信することができる。  [0015] Preferably, the interrogation wave transmitting unit transmits the first interrogation wave and the second interrogation wave alternately. In this way, a necessary and sufficient interrogation wave can be transmitted with a simple configuration.
[0016] また、好適には、前記質問波送信部は、前記複数種類の質問波を同時に送信する ものである。このようにすれば、可及的速やかに前記無線タグとの間の距離を求める ことができる。  [0016] Preferably, the interrogation wave transmitting unit transmits the plurality of types of interrogation waves simultaneously. In this way, the distance to the wireless tag can be obtained as quickly as possible.
[0017] また、好適には、前記距離算出部は、前記無線タグから返信される応答波の強度 に基づいてその無線タグとの間の距離を算出するものである。このようにすれば、更 に好適に前記無線タグとの間の距離を求めることができる。 [0018] また、好適には、前記距離算出部は、前記無線タグとの間の通信可能距離に基づ いてその無線タグとの間の距離を算出するものである。このようにすれば、更に好適 に前記無線タグとの間の距離を求めることができる。 [0017] Preferably, the distance calculation unit calculates a distance from the wireless tag based on an intensity of a response wave returned from the wireless tag. In this way, the distance to the wireless tag can be more preferably obtained. [0018] Preferably, the distance calculation unit calculates a distance to the wireless tag based on a communicable distance to the wireless tag. In this way, the distance to the wireless tag can be more preferably obtained.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明が好適に適用される通信システムの構成を説明する図である。 FIG. 1 is a diagram illustrating a configuration of a communication system to which the present invention is suitably applied.
[図 2]本発明の一実施例である無線タグ通信装置の電気的構成を説明する図である  FIG. 2 is a diagram illustrating an electrical configuration of a wireless tag communication device according to an embodiment of the present invention.
[図 3]図 1の無線タグに含まれる無線タグ回路を説明するブロック線図である。 FIG. 3 is a block diagram illustrating a wireless tag circuit included in the wireless tag of FIG. 1.
[図 4]図 3の無線タグ回路に含まれる制御部による返信制御に用いられる副搬送波及 びその副搬送波が所定の情報信号によって符号化された符号ィ匕信号を例示する図 である。  4 is a diagram exemplifying a subcarrier used for reply control by a control unit included in the wireless tag circuit of FIG. 3 and a code signal in which the subcarrier is encoded by a predetermined information signal.
[図 5]図 2の無線タグ通信装置の制御部によるタグ位置検出制御を説明するフローチ ヤートである。  FIG. 5 is a flowchart illustrating tag position detection control by a control unit of the wireless tag communication device in FIG. 2.
[図 6]図 5の制御における候補列からのタグ位置決定制御を説明するフローチャート である。  6 is a flowchart illustrating tag position determination control from a candidate string in the control of FIG. 5.
[図 7]図 2の無線タグ通信装置の制御部によるタグ位置検出制御の原理を説明する 図である。  FIG. 7 is a diagram illustrating the principle of tag position detection control by a control unit of the wireless tag communication device in FIG. 2.
[図 8]図 2の無線タグ通信装置の制御部によるタグ位置検出制御の他の一例を説明 するフローチャートである。  8 is a flowchart illustrating another example of tag position detection control by the control unit of the wireless tag communication device in FIG. 2.
[図 9]本発明の第 2実施例である無線タグ通信装置の電気的構成を説明する図であ る。  FIG. 9 is a diagram illustrating an electrical configuration of a wireless tag communication device according to a second embodiment of the present invention.
[図 10]図 9の無線タグ通信装置の制御部によるタグ位置検出制御を説明するフロー チャートである。  FIG. 10 is a flowchart illustrating tag position detection control by a control unit of the wireless tag communication device in FIG. 9.
[図 11]図 2に示す無線タグ通信装置 2台からそれぞれ異なる質問波を無線タグに向 け同時に送信する様子を説明する図である。  FIG. 11 is a diagram illustrating a state in which different interrogation waves are simultaneously transmitted from the two wireless tag communication devices shown in FIG. 2 to the wireless tag.
符号の説明  Explanation of symbols
[0020] 10 :通信システム、 12、 70 :無線タグ通信装置、 16 :主搬送波発生部、 18 : PLL、 20 : VCO、 22 :主搬送波変調部、 24 :送信信号増幅部、 26 :アンテナ、 14 :無線タグ、 28 : 1相信号変換部 (受信復調部 )、 30 : Q相信号変換部 (受信復調部)、 32 :送受信 分離部、 34 :I¾ff^-BPF, 36 :1相信号増幅部、 38 : Q相信号 BPF、 40 : Q相信号 増幅部、 42 :RSSI回路、 44 :制御部、 50 :質問波送信部、 52 :信号処理部 (受信復 調部)、 54 :距離算出部、 56 :無線タグ回路、 58 :アンテナ、 60 :クロック部、 62 :電源 部、 64 :変 Z復調部、 66 :制御部、 68 :メモリ部、 72 :移相回路、 74 :受信復調部、 7 6 :復調信号 BPF、 78 :復調信号増幅部、 80 :搬送波位相制御部 [0020] 10: Communication system, 12, 70: Wireless tag communication device, 16: Main carrier generation unit, 18: PLL, 20: VCO, 22: Main carrier modulation unit, 24: Transmission signal amplification unit, 26: Antenna, 14: Wireless tag, 28: 1-phase signal converter (receiver / demodulator), 30: Q-phase signal converter (receiver / demodulator), 32: transmit / receive demultiplexer, 34: I¾ff ^ -BPF, 36: 1-phase signal amplifier, 38: Q Phase signal BPF, 40: Q-phase signal amplifier, 42: RSSI circuit, 44: controller, 50: interrogation transmitter, 52: signal processor (reception demodulator), 54: distance calculator, 56: wireless Tag circuit, 58: Antenna, 60: Clock block, 62: Power supply block, 64: Variable Z demodulation block, 66: Control block, 68: Memory block, 72: Phase shift circuit, 74: Receive demodulation block, 76: Demodulation Signal BPF, 78: Demodulated signal amplifier, 80: Carrier phase controller
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の好適な実施例を図面に基づいて詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
実施例 1  Example 1
[0022] 図 1は、本発明が好適に適用される通信システム 10の構成を説明する図である。こ の通信システム 10は、本発明の一実施例である無線タグ通信装置 12と、単数乃至 は複数(図 1では単数)の無線タグ 14とから構成される所謂 RFID (Radio Frequency Identification)システムであり、上記無線タグ通信装置 12はその RFIDシステムの質 問器として、上記無線タグ 14は応答器としてそれぞれ機能する。すなわち、上記無 線タグ通信装置 12から質問波 F (送信信号)が上記無線タグ 14に向けて送信される と、その質問波 Fを受信した上記無線タグ 14において所定の情報信号 (データ)によ りその質問波 Fが変調され、応答波 F (返信信号)として上記無線タグ通信装置 12 に向けて返信されることで、その無線タグ通信装置 12と無線タグ 14との間で情報の 通信が行われる。なお、図 1における Dは、上記無線タグ通信装置 12と無線タグ 14と の間の距離 (無線タグ通信装置 12のアンテナ 24と無線タグ 14のアンテナ 58との間 の距離)を示している。  FIG. 1 is a diagram illustrating a configuration of a communication system 10 to which the present invention is suitably applied. The communication system 10 is a so-called RFID (Radio Frequency Identification) system including a wireless tag communication device 12 according to an embodiment of the present invention and one or more (single in FIG. 1) wireless tags 14. The wireless tag communication device 12 functions as an interrogator of the RFID system, and the wireless tag 14 functions as a transponder. That is, when the interrogation wave F (transmission signal) is transmitted from the radio tag communication device 12 to the wireless tag 14, the radio tag 14 receiving the interrogation wave F converts the interrogation wave F into a predetermined information signal (data). Further, the interrogation wave F is modulated and returned as a response wave F (return signal) to the RFID tag communication device 12, whereby information communication between the RFID tag communication device 12 and the RFID tag 14 is performed. Is performed. D in FIG. 1 indicates the distance between the wireless tag communication device 12 and the wireless tag 14 (the distance between the antenna 24 of the wireless tag communication device 12 and the antenna 58 of the wireless tag 14).
[0023] 図 2は、本実施例の無線タグ通信装置 12の電気的構成を説明する図である。この 図 2に示すように、本実施例の無線タグ通信装置 12は、上記質問波 Fの主搬送波を 発生させる基準周波数発生部 16と、その基準周波数発生部 16により発生させられる 基準波と制御部 44からの制御信号とに基づいて主搬送波の周波数を設定する PLL (Phase Locked Loop) 18と、その主搬送波の周波数を PLL18からの制御電圧に応 じて制御する VCO (Voltage Controlled Oscillator) 20と、その VCO20により制御さ れた所定の周波数の主搬送波を所定の制御信号 TX-ASKに基づいて振幅変調し て送信信号を生成する主搬送波変調部 22と、その主搬送波変調部 22から出力され る送信信号を所定の制御信号 TX-PWRに基づいて増幅する送信信号増幅部 24と 、その送信信号増幅部 24から出力される送信信号を質問波 Fとして通信対象である 無線タグ 14に向けて送信すると共に、その質問波 Fに応じてその無線タグ 14力も返 信される応答波 Fを受信する送受信共用のアンテナ 26と、そのアンテナ 26により受 信された受信信号を π Ζ2ラジアンの位相差を持つ 2つの信号により互いに直交す る I相信号及び Q相信号に変換する I相信号変換部 28及び Q相信号変換部 30と、上 記送信信号増幅部 24から出力される送信信号を上記アンテナ 26に供給すると共に 、そのアンテナ 26により受信された受信信号を上記 I相信号変換部 28及び Q相信号 変換部 30に供給する送受信分離部 32と、その I相信号変換部 28から出力される I相 信号のうち所定の周波数帯域の信号のみを抽出する I相信号 BPF (Band Pass Filter ) 34と、その I相信号 BPF34から出力される I相信号を増幅する I相信号増幅部 36と、 上記 Q相信号変換部 30から出力される Q相信号のうち所定の周波数帯域の信号の みを抽出する Q相信号 BPF38と、その Q相信号 BPF38から出力される Q相信号を 増幅する Q相信号増幅部 40と、上記 I相信号増幅部 36及び Q相信号増幅部 40から 出力される I相信号及び Q相信号の強度を検出する RSSI (Redeved Signal Strength Indicator)回路 42と、上記無線タグ通信装置 12の動作を制御する制御部 44とを、備 えて構成されている。ここで、上記 I相信号変換部 28、 Q相信号変換部 30、及び後 述する信号処理部 54が受信復調部に対応する。また、上記送受信分離部 32として は、サーキユレータ若しくは方向性結合器等が好適に用いられる。 FIG. 2 is a diagram illustrating the electrical configuration of the wireless tag communication device 12 of the present embodiment. As shown in FIG. 2, the wireless tag communication device 12 of the present embodiment includes a reference frequency generator 16 for generating the main carrier of the interrogation wave F, a reference wave generated by the reference frequency generator 16 and a control signal. PLL (Phase Locked Loop) 18 that sets the frequency of the main carrier based on the control signal from unit 44, and VCO (Voltage Controlled Oscillator) 20 that controls the frequency of the main carrier according to the control voltage from PLL 18 And a main carrier having a predetermined frequency controlled by the VCO 20 is amplitude-modulated based on a predetermined control signal TX-ASK. And a transmission signal amplifying unit 24 for amplifying the transmission signal output from the main carrier modulation unit 22 based on a predetermined control signal TX-PWR, and a transmission signal amplifying unit. The transmitter / receiver transmits the transmission signal output from 24 as an interrogation wave F to the wireless tag 14 that is the object of communication, and receives a response wave F in which the wireless tag 14 also returns a response to the interrogation wave F. Antenna 26 and an I-phase signal converter 28 and Q that convert a received signal received by the antenna 26 into an I-phase signal and a Q-phase signal orthogonal to each other by two signals having a phase difference of ππ2 radians. The transmission signal output from the phase signal conversion unit 30 and the transmission signal amplification unit 24 is supplied to the antenna 26, and the reception signal received by the antenna 26 is converted into the I-phase signal conversion unit 28 and the Q-phase signal. Supply to converter 30 Transmission / reception separation unit 32, an I-phase signal BPF (Band Pass Filter) 34 that extracts only signals in a predetermined frequency band from the I-phase signals output from the I-phase signal conversion unit 28, and the I-phase signal BPF34 An I-phase signal amplifying unit 36 that amplifies the I-phase signal output from the Q-phase signal conversion unit 30, and a Q-phase signal BPF38 that extracts only a signal of a predetermined frequency band from the Q-phase signal output from the Q-phase signal conversion unit 30. The Q-phase signal amplifying section 40 amplifies the Q-phase signal output from the Q-phase signal BPF 38, and the I-phase signal and the Q-phase signal output from the I-phase signal amplifying section 36 and the Q-phase signal amplifying section 40. It is provided with an RSSI (Redeved Signal Strength Indicator) circuit 42 for detecting the strength and a control unit 44 for controlling the operation of the RFID tag communication device 12. Here, the I-phase signal conversion unit 28, the Q-phase signal conversion unit 30, and the signal processing unit 54 described later correspond to a reception demodulation unit. As the transmission / reception separating unit 32, a circulator or a directional coupler is preferably used.
上記制御部 44は、 CPU, ROM,及び RAM等を含んで構成され、 RAMの一時記 憶機能を利用しつつ ROMに予め記憶されたプログラムに従って信号処理を行う所 謂マイクロコンピュータであり、前記無線タグ 14への質問波 Fの送信処理動作及び その質問波 Fに応じてその無線タグ 14から返信される応答波 Fの受信処理動作等 の基本的な制御にカ卩えて、図 1に示す通信対象である無線タグ 14との間の距離 dを 検出する距離検出制御を実行する。斯カる制御を実行するため、上記 PLL18及び VCO20を制御すると共に、上記送信信号増幅部に制御信号 TX-PWRを供給する ことにより周波数のそれぞれ異なる複数種類の質問波 Fを前記アンテナ 26から前記 無線タグ 14に向けて送信するための質問波送信部 50と、上記 I相信号増幅部 36及 び Q相信号増幅部 40から出力される I相信号及び Q相信号に基づいて上記アンテナ 26により受信された受信信号を直交復調すると共に、上記主搬送波変調部 22に制 御信号 TX-ASKを供給する等の信号処理を行う信号処理部 52と、その信号処理部 52による複数種類の応答波 Fの復調結果に基づいて前記無線タグ 14との間の距離 dを算出する距離算出部 54とを、機能的に含んでいる。 The control unit 44 includes a CPU, a ROM, a RAM, and the like, and is a so-called microcomputer that performs signal processing in accordance with a program pre-stored in the ROM while using a temporary storage function of the RAM. The communication shown in Fig. 1 is based on the basic control of the transmission operation of the interrogation wave F to the tag 14 and the reception operation of the response wave F returned from the wireless tag 14 in response to the interrogation wave F. The distance detection control for detecting the distance d from the target wireless tag 14 is executed. In order to execute such control, while controlling the PLL 18 and the VCO 20 and supplying a control signal TX-PWR to the transmission signal amplifying unit, a plurality of types of interrogation waves F having different frequencies are transmitted from the antenna 26 to the antenna 26. An interrogation wave transmitter 50 for transmitting to the wireless tag 14 and the antenna 26 based on the I-phase signal and the Q-phase signal output from the I-phase signal amplifier 36 and the Q-phase signal amplifier 40, respectively. A signal processing unit 52 that performs quadrature demodulation of the received signal and performs signal processing such as supplying a control signal TX-ASK to the main carrier modulation unit 22, and a plurality of types of response waves by the signal processing unit 52. A distance calculator 54 for calculating a distance d from the wireless tag 14 based on the demodulation result of F is functionally included.
[0025] 図 3は、前記無線タグ 14に含まれる無線タグ回路 56を説明するブロック線図である 。この図 3に示すように、前記無線タグ 14は、前記無線タグ通信装置 12からの質問 波 Fを受信すると共に、その質問波 Fに応じてその無線タグ通信装置 12に向けて 応答波 Fを送信するためのアンテナ 58と、そのアンテナ部 58により受信された質問 波 F力 クロック信号を抽出して副搬送波を発生させ制御部 66に供給するクロック部 60と、上記アンテナ 58により受信される質問波 Fの一部を整流してエネルギ源とす る電源部 62と、上記アンテナ 58に接続されて信号の変調及び復調を行う変 Z復調 部 64と、上記無線タグ回路 56の動作を制御する制御部 66と、所定の情報の記憶及 び読み出しが可能なメモリ部 68とを、備えて構成されている。上記制御部 66は、前 記無線タグ生成装置 12と通信を行うことにより上記メモリ部 68に上記所定の情報を 記憶する制御や、上記アンテナ部 58により受信された質問波 Fを上記変 Z復調部 6 4にお 、て上記メモリ部 68に記憶された情報信号に基づ 、て変調したうえで応答波 Fとしてそのアンテナ部 58から反射返信する返信制御等の基本的な制御を実行す る。 FIG. 3 is a block diagram illustrating a wireless tag circuit 56 included in the wireless tag 14. As shown in FIG. 3, the wireless tag 14 receives the interrogation wave F from the wireless tag communication device 12, and responds to the wireless tag communication device 12 in response to the interrogation wave F. An antenna 58 for transmitting, an interrogation wave received by the antenna unit 58, a clock unit 60 for extracting a clock signal, generating a subcarrier, and supplying it to the control unit 66, and an interrogation received by the antenna 58 A power supply unit 62 for rectifying a part of the wave F to be an energy source, a modulation / demodulation unit 64 connected to the antenna 58 for modulating and demodulating a signal, and controlling operations of the wireless tag circuit 56. It comprises a control unit 66 and a memory unit 68 capable of storing and reading out predetermined information. The control unit 66 controls the storage of the predetermined information in the memory unit 68 by communicating with the wireless tag generation device 12 and the Z-modulation of the interrogation wave F received by the antenna unit 58. In the section 64, based on the information signal stored in the memory section 68, basic control such as return control is performed, in which the signal is modulated and then reflected and returned from the antenna section 58 as a response wave F. .
[0026] 図 4は、上記制御部 66による返信制御に用いられる副搬送波及びその副搬送波が 所定の情報信号によって符号化された符号ィ匕信号を例示する図である。上記アンテ ナ 58により前記無線タグ通信装置 12からの質問波 Fが受信されると、上記電源部 6 2により整流されるその質問波 Fの一部をエネルギ源として上記クロック部 60により所 定の副搬送波(サブキャリア)が発生させられる。次に、上記制御部 66によりコマンド フレームの解析が行われて上記副搬送波が上記メモリ部 68に記憶された情報信号 に基づいて符号ィ匕(1次変調)されて上記変 Z復調部 64に入力される。例えば、図 4 に示すデータ 1では副搬送波を用いた符号ィヒが行われ、データ 0では副搬送波を用 いない符号ィ匕が行われている。そして、その変 Z復調部 64においてその符号ィ匕信 号に基づいて前記無線タグ通信装置 12から受信された質問波 Fが変調 (2次変調) されて、上記アンテナ 58から応答波 Fとして前記無線タグ通信装置 12に向けて送信 される。なお、斯カる副搬送波の周波数は、前記 I相信号 BPF34、 Q相信号 BPF38 の通過帯域に含まれるように予め設定される。 FIG. 4 is a diagram exemplifying a subcarrier used for the reply control by the control unit 66 and a code signal in which the subcarrier is encoded by a predetermined information signal. When the interrogation wave F from the RFID tag communication device 12 is received by the antenna 58, the clock unit 60 uses the part of the interrogation wave F rectified by the power supply unit 62 as an energy source, and A subcarrier is generated. Next, the control unit 66 analyzes the command frame, encodes the subcarrier based on the information signal stored in the memory unit 68 (primary modulation), and sends it to the variable Z demodulation unit 64. Is entered. For example, the data 1 shown in FIG. 4 performs coding using a subcarrier, and the data 0 uses a subcarrier. There is no sign. The interrogation wave F received from the wireless tag communication device 12 is modulated (secondary modulated) based on the encoded signal by the modulation / demodulation unit 64, and the response wave F is received from the antenna 58 as the response wave F. Sent to wireless tag communication device 12. The frequency of the sub-carrier is set in advance so as to be included in the pass bands of the I-phase signal BPF34 and the Q-phase signal BPF38.
[0027] 図 5は、前記無線タグ通信装置 12の制御部 44によるタグ位置検出制御を説明する フローチャートであり、所定の周期で繰り返し実行されるものである。また、図 6は、図 5の SBにおける候補列力ものタグ位置決定制御を説明するフローチャートである。  FIG. 5 is a flowchart illustrating the tag position detection control by the control unit 44 of the wireless tag communication device 12, which is repeatedly executed at a predetermined cycle. FIG. 6 is a flowchart illustrating the tag position determination control in the SB in FIG. 5.
[0028] 先ず、ステップ (以下、ステップを省略する) SA1において、前記 VCO20により発 生させられる主搬送波の周波数 f が前記 PLL18により f に設定される。この周波数 f cは 2 π ωであり、 ω は主搬送波の角周波数である。次に、 SA2において、前記主 搬送波が所定の制御信号 TX-ASKに基づいて前記主搬送波変調部 22により振幅 変調されて送信信号とされた後、所定の制御信号 TX-PWRに基づ ヽて前記送信信 号増幅部 24により増幅されて前記アンテナ 26から質問波 Fとして前記無線タグ 14 に向けて送信される。この質問波 Fは、振幅を Αとして次の(1)式のように表される。  First, in step (hereinafter, step is omitted) SA 1, the frequency f of the main carrier generated by the VCO 20 is set to f by the PLL 18. This frequency f c is 2πω, where ω is the angular frequency of the main carrier. Next, in SA2, after the main carrier is amplitude-modulated by the main carrier modulation unit 22 based on a predetermined control signal TX-ASK to be a transmission signal, based on the predetermined control signal TX-PWR, The signal is amplified by the transmission signal amplifying unit 24 and transmitted from the antenna 26 to the wireless tag 14 as an interrogation wave F. This interrogation wave F is represented by the following equation (1), where the amplitude is Α.
[0029] [数 1]
Figure imgf000010_0001
[0029] [number 1]
Figure imgf000010_0001
[0030] 次に、 SA3において、 SA2にて送信された質問波 Fに応じて前記無線タグ 14から 返信される応答波 Fが前記アンテナ 26により受信される。この応答波 Fは、前述した 図 4に示すデータ 1の部分では、次の(2)式のように表される。なお、この(2)式にお ける ωは副搬送波の角周波数であり、その副搬送波 f は sinco tである。また、 Bは反 射効率、 mは変調度を示しており、例えば、 m= lすなわち変調度 100%の変調が行 われる。 Next, in SA3, the response wave F returned from the wireless tag 14 in response to the interrogation wave F transmitted in SA2 is received by the antenna 26. The response wave F is expressed by the following equation (2) in the data 1 shown in FIG. In the equation (2), ω is the angular frequency of the subcarrier, and the subcarrier f is sincot. B indicates the reflection efficiency and m indicates the degree of modulation. For example, m = l, that is, modulation with a degree of modulation of 100% is performed.
[0031] [数 2] r=ABsin ωοΐ X (1 +msin 6L)S · · - (2) [0031] [Equation 2] r = ABsin ωοΐ X (1 + msin 6L) S
[0032] 次に、 SA3' において、後述する SA9と同様に質問波 Feの送信が停止される。 Next, in SA 3 ′, the transmission of the interrogation wave F e is stopped in the same manner as in SA 9 described later.
[0033] 次に、 SA4において、前記無線タグ通信装置 12と無線タグ 14との間の通信におい て電波の往復により発生する質問波 Fと応答波 Fの位相差 Θ が算出され、タグ位 置候補列 dが決定される。前記アンテナ 26により受信される受信信号 Rは、電波の Next, in SA4, the phase difference の between the interrogation wave F and the response wave F generated by the reciprocation of the radio wave in the communication between the wireless tag communication device 12 and the wireless tag 14 is calculated, and the tag position is calculated. The candidate sequence d is determined. The received signal R received by the antenna 26 is
1 s  1 s
往復による減衰率を Cとして次の(3)式のように表される。この受信信号 Rは、前記 I  It is expressed as the following equation (3), where C is the attenuation factor due to round trip. This received signal R
s  s
相信号変換部 28及び Q相信号変換部 30により I相信号 R及び Q相信号 R に変換  Converted to I-phase signal R and Q-phase signal R by phase signal converter 28 and Q phase signal converter 30
si sq される。この I相信号 Rは、次の(4)式のように表され、前記 I相信号 BPF34を通過し て前記制御部 44に入力される信号は、次の(5)式のように表される。また、 Q相信号 R は、次の(6)式のように表され、前記 Q相信号 BPF38を通過して前記制御部 44 sq  si sq. The I-phase signal R is represented by the following equation (4), and the signal passing through the I-phase signal BPF34 and input to the control unit 44 is represented by the following equation (5). You. The Q-phase signal R is expressed by the following equation (6), passes through the Q-phase signal BPF38, and
に入力される信号は、次の(7)式のように表される。前記制御部 44では、次の(8)式 に従って I相信号 Rと Q相信号 R との比である tan 0 が算出され、それにより Q相信  Is expressed as in the following equation (7). The control unit 44 calculates tan 0, which is the ratio between the I-phase signal R and the Q-phase signal R, according to the following equation (8).
si sq c  si sq c
号 R 力 ^以上の場合には、次の(9)式のように 0 が算出され、 Q相信号 R 力^)未満 sq c sq の場合には、次の(10)式のように Θ が算出される。この(9)及び(10)式において、 nは 0と自然数であり、 η= 0, 1 , 2, 3,…である。また、 R /Rを Rで示している。前  If the signal R force is greater than or equal to ^, 0 is calculated as in the following equation (9). If the Q phase signal is less than the R force ^) sq c sq, Θ is calculated as in the following equation (10). Is calculated. In the equations (9) and (10), n is 0 and a natural number, and η = 0, 1, 2, 3,. R / R is indicated by R. Previous
sq si  sq si
記無線タグ通信装置 12と無線タグ 14との間の通信において電波が距離 dを往復す ることにより発生する位相差 Θ は、質問波 Fの波長をえ ( = 3 X 108/f [m] )として 、 2 π ηの項を省略すると次の(11)式のように表される。従って、斯カる通信において 電波が往復する距離 Dの最小値は、次の(12)式のように表され、この(12)式の値に λ ηΖ2を加算した値力も無線タグ通信装置 12と無線タグ 14との距離 Dの候補であ るタグ位置候補列 dが決定される。 The phase difference に よ り generated by the radio wave going back and forth over the distance d in the communication between the wireless tag communication device 12 and the wireless tag 14 is determined by the wavelength of the interrogation wave F (= 3 × 10 8 / f (m ]), If the term of 2πη is omitted, it is expressed as the following equation (11). Therefore, the minimum value of the distance D over which the radio wave reciprocates in such communication is expressed by the following equation (12), and the value obtained by adding ληΖ2 to the value of equation (12) is also the value of the wireless tag communication device. A tag position candidate sequence d that is a candidate for the distance D between the tag and the wireless tag 14 is determined.
[0034] [数 3] [0034] [Equation 3]
Rs=ABCsinC 6Uct+ 0 c) X (1 +msin 6L)st) · · ' (3) [6凝] [0濯] R s = ABCsinC 6Uct + 0 c) X (1 + msin 6L) st) [6 coagulation] [0 rinse]
(8)·
Figure imgf000012_0001
隨] [6S00]
(8)
Figure imgf000012_0001
[6S00]
( _)· · · (VV U|SUJ+ t)x30uis _L [8S00]
Figure imgf000012_0002
(_) · · (VV U | SUJ + t) x 3 0uis _L [8S00]
Figure imgf000012_0002
sp u!SLU+|_) x soo x (。0+:i。P9)u!sogv—=bsid sp u! SLU + | _) x soo x (.0+: i.P9) u! sogv— = bs id
[9凝] [ζεοο]
Figure imgf000012_0003
[9] [ζεοο]
Figure imgf000012_0003
[S凝] [9S00] [S] [9S00]
( ) ... (^CO UjSLU-i- 1. ) X 0 SOO-(3fT5 Q +^( ) )S00} ; 2 ― () ... (^ CO UjSLU-i- 1.) X 0 SOO- ( 3 fT5 Q + ^ ()) S00} ; 2 ―
oav oav
Figure imgf000012_0004
[esoo] 0c二 arctanR+兀 n (Q≥0) · ' ·(9)
Figure imgf000012_0004
[esoo] 0c2 arctanR + vert n (Q≥0)
[0041] [数 10] [0041] [number 10]
0 c二 arctanR+7T(n+1) (Q<0) · ' ·(10) 0 c2 arctanR + 7T (n + 1) (Q <0)
[0042] [数 11] θ,= ψ ···(") [Equation 11] θ, = ψ ··· (")
Ac  Ac
[0043] [数 12] d=-¾^ · ' ·(12)  [Equation 12] d = -¾ ^ · '· (12)
4兀  4 vault
[0044] 次に、 SA5において、前記 VCO20により発生させられる主搬送波の周波数 feが前 記 PLL18により f に設定される。好適には、この SA5にて設定される周波数 f と前記 Next, in SA5, the frequency f e of the main carrier generated by the VCO 20 is set to f by the PLL 18 described above. Preferably, the frequency f set in SA5 and the frequency f
2 2 twenty two
SA1にて設定される周波数 f とは、互いに割り切れない値とされる。 The frequency f set in SA1 is a value that cannot be divided by each other.
[0045] 次に、 SA6において、前記基準周波数発生部 16により主搬送波が発生させられて SA5にて設定された周波数 f に制御され、所定の制御信号 TX- ASKに基づいて前 Next, in SA 6, the main carrier is generated by the reference frequency generation section 16 and controlled to the frequency f set in SA 5, and based on a predetermined control signal TX-ASK,
2  2
記主搬送波変調部 22により振幅変調されて送信信号とされた後、所定の制御信号 T X-PWRに基づいて前記送信信号増幅部 24により増幅されて前記アンテナ 26から 質問波 Fとして前記無線タグ 14に向けて送信される。  After being amplitude-modulated by the main carrier modulating unit 22 to be a transmission signal, it is amplified by the transmission signal amplifying unit 24 based on a predetermined control signal TX-PWR, and is interrogated from the antenna 26 as an interrogation wave F by the radio tag. Sent to 14.
[0046] 次に、 SA8において、 SA6にて送信された質問波 Fに応じて前記無線タグ 14から 返信される応答波^が前記アンテナ 26により受信される。次に、 SA8において、前 述した SA4と同様の処理により前記無線タグ通信装置 12と無線タグ 14との間の通信 において電波の往復により発生する位相差 0 が算出され、タグ位置候補列 dが決 Next, in SA8, the wireless tag 14 transmits the The returned response wave is received by the antenna 26. Next, in SA8, the phase difference 0 generated by the reciprocation of the radio wave in the communication between the wireless tag communication device 12 and the wireless tag 14 is calculated by the same processing as SA4 described above, and the tag position candidate sequence d is calculated. Decision
2 2 定される。次に、 SA9において、前記 VCO20の発振が停止させられて前記アンテナ 26からの質問波 Fの送信が停止される。そして、図 6に示す候補列力ものタグ位置 決定制御が行われた後、本ルーチンが終了させられる。  2 2 is set. Next, in SA9, the oscillation of the VCO 20 is stopped, and the transmission of the interrogation wave F from the antenna 26 is stopped. Then, after the tag position determination control of the candidate row force shown in FIG. 6 is performed, the present routine is terminated.
[0047] 図 6に示す候補列からのタグ位置決定制御では、先ず、 SB1にお 、て、 n及び n ( In the tag position determination control from the candidate sequence shown in FIG. 6, first, in SB1, n and n (
1 2 f 、 f にそれぞれ対応する n)が共に 0とされる。次に、 SB2において、前述した(12) 1 2 n and n) corresponding to f and f are both set to 0. Next, at SB2, (12)
1 2 1 2
式力 d及び dが算出される。次に、 SB3において、 I d — d Iが所定値 E未満であ る力否かが判断される。この SB3の判断が肯定される場合には、 SB4において、前 記無線タグ通信装置 12と無線タグ 14との間の距離 (無線タグ通信装置 12のアンテ ナ 24と無線タグ 14のアンテナ 58との間の距離) Dが dであると決定された後、本ル 一チンが終了させられるが、 SB3の判断が否定される場合には、 SB5において、 n 力 S3であるか否かが判断される。この SB5の判断が否定される場合には、 SB8におい て、 nに 1が加算された後、 SB2以下の処理が再び実行される力 SB5の判断が肯 定される場合には、 SB6において、 n力^であるか否かが判断される。この SB6の判  Expression forces d and d are calculated. Next, in SB3, it is determined whether or not I d — d I is less than the predetermined value E. If the determination at SB3 is affirmative, at SB4, the distance between the wireless tag communication device 12 and the wireless tag 14 (the distance between the antenna 24 of the wireless tag communication device 12 and the antenna 58 of the wireless tag 14) is determined. After determining that D is d, this routine is terminated.If the determination of SB3 is denied, it is determined in SB5 whether n is S3. You. If the judgment of SB5 is denied, then in SB8, 1 is added to n, and then the force at which the processing of SB2 and below is executed again If the judgment of SB5 is affirmed, at SB6, It is determined whether or not the force is n ^. This SB6 format
2  2
断が肯定される場合には、 SB7において、エラーであるとされた後、本ルーチンが終 了させられる力 SB6の判断が否定される場合には、 SB9において、 n力 とされ、 S B10において、 nに 1が加算された後、 SB2以下の処理が再び実行される。以上の  If the determination is affirmative, the error is determined to be an error at SB7, and then, if the determination of the force SB6 at which this routine is terminated is denied, the force is determined to be n at SB9, and to SB10 at SB10. , N is incremented by 1, and then the processing of SB2 and below is executed again. More than
2  2
制御において、 SA1、 SA2、 SA5、及び SA6が前記質問波送信部 50の動作に、 S A3及び SA7が信号処理部 52 (受信復調部)の動作に、 SA4、 SA8、及び SBが距 離算出部 54の動作にそれぞれ対応する。なお、 SB3の判断では、 | d—d  In the control, SA1, SA2, SA5, and SA6 calculate the operation of the interrogation wave transmitting unit 50, SA3 and SA7 calculate the distance of the signal processing unit 52 (reception demodulation unit), and SA4, SA8, and SB calculate the distance. It corresponds to the operation of the unit 54, respectively. In SB3's judgment, | d—d
1 2 Iが所 定値 E未満であるか否かが判断されて 、るが、これは予想される計測誤差を踏まえて 解が定まらず前記無線タグ 14との間の距離が求まらなくなることを未然に防止するた めであり、複数のタグ位置候補列 dl、 d2の精度や SB5、 SB6で判断される自然数の 上限 (本実施例では 3)を勘案して決定される。  It is determined whether or not 1 2 I is less than the predetermined value E.However, this is because the solution is not determined based on the expected measurement error and the distance to the wireless tag 14 cannot be obtained. This is determined in consideration of the accuracy of the plurality of candidate tag positions dl and d2 and the upper limit of the natural number determined by SB5 and SB6 (3 in this embodiment).
[0048] 図 7は、前記タグ位置検出制御の原理を説明する図である。前記距離算出部 54は 、前記複数種類の質問波 Fに応じて前記無線タグ 14から返信される複数種類の応 答波^の復調結果に基づいてその無線タグ 14との間の距離 Dを算出するものであり 、本実施例では、その無線タグ 14から返信される応答波 Fカゝら変換された I相信号 R と Q相信号 R との比に基づいてその無線タグ 14との間の距離 Dを算出する態様に sq FIG. 7 is a diagram illustrating the principle of the tag position detection control. The distance calculation unit 54 performs a plurality of types of responses returned from the wireless tag 14 in response to the plurality of types of interrogation waves F. The distance D from the wireless tag 14 is calculated based on the result of demodulation of the response wave ^. In this embodiment, the response wave F returned from the wireless tag 14 In a mode in which the distance D between the wireless tag 14 and the signal R is calculated based on the ratio between the signal R and the Q-phase signal R, sq
ついて説明している。図 5のフローチャートに示すタグ位置検出制御では、前記質問 波送信部 50により周波数 f である第 1の質問波及び周波数 f である第 2の質問波が  Is explained. In the tag position detection control shown in the flowchart of FIG. 5, the first interrogation wave having the frequency f and the second interrogation wave having the frequency f are generated by the interrogation wave transmitting section 50.
1 2  1 2
交互に送信され、それら第 1の質問波及び第 2の質問波に応じて前記無線タグ 14か ら返信される第 1の応答波及び第 2の応答波が受信されてそれぞれ復調される。そし て、前記距離算出部 54により第 1の応答波の復調結果に基づいて求められる第 1の 距離候補群 (候補列) dと、第 2の応答波の復調結果に基づいて求められる第 2の距 離候補群 dとが比較されて、それら第 1の距離候補群 d及び第 2の距離候補群 dに  The first response wave and the second response wave transmitted alternately and returned from the wireless tag 14 according to the first and second interrogation waves are received and demodulated respectively. Then, the first distance candidate group (candidate sequence) d obtained by the distance calculation unit 54 based on the demodulation result of the first response wave, and the second distance candidate group d obtained based on the demodulation result of the second response wave Are compared with the first distance candidate group d and the second distance candidate group d.
2 1 2 共通して含まれる値のうち最小のもの、すなわち n = 1、 n = 1に対応する値が前記  2 1 2 The smallest value among the values included in common, that is, the value corresponding to n = 1, n = 1,
1 2  1 2
無線タグ 14との間の距離 Dとして算出される。なお、本実施例では nl = l、 n2= lの ときとなる。  The distance D from the wireless tag 14 is calculated. In this embodiment, nl = l and n2 = l.
[0049] 図 8は、前記無線タグ通信装置 12の制御部 44によるタグ位置検出制御の他の一 例を説明するフローチャートであり、所定の周期で繰り返し実行されるものである。な お、この態様では、図 11に示すように、周波数 f の主搬送波を発生させるための第 1 の無線タグ通信装置 12aと、その周波数 f とは互いに割り切れない値である周波数 f  FIG. 8 is a flowchart illustrating another example of the tag position detection control by the control unit 44 of the wireless tag communication device 12, which is repeatedly executed at a predetermined cycle. Note that, in this embodiment, as shown in FIG. 11, a first wireless tag communication device 12a for generating a main carrier having a frequency f and a frequency f which is a value that is indivisible from each other.
1 2 の主搬送波を発生させるための第 2の無線タグ通信装置 12bとがそれぞれ個別に設 けられており、それら無線タグ通信装置 12a及び 12bと前記無線タグ 14との間でそれ ぞれ情報や制御の通信が行われることにより、その無線タグ 14との距離が算出され る。また、無線タグ通信装置 12a及び 12bは、同一の無線タグ 14と通信を行うので時 間的に異なるタイミングで通信を行うように制御される。或いはまた、同時に通信を行 う場合には同一の無線タグ 14と通信を行うために周波数が異なるだけで内容、タイミ ングが同一の質問波を送信するように制御される。  A second wireless tag communication device 12b for generating 12 main carriers is separately provided, and information is transmitted between the wireless tag communication devices 12a and 12b and the wireless tag 14, respectively. The communication with the wireless tag 14 is calculated by the communication of the wireless tag and the control. Further, since the wireless tag communication devices 12a and 12b communicate with the same wireless tag 14, they are controlled so as to communicate at different timings. Alternatively, when communication is performed simultaneously, the content and timing are controlled so as to transmit the same interrogation wave only with a different frequency in order to perform communication with the same wireless tag 14.
[0050] 先ず、 SC1にお 、て、前記 VCO20により発生させられる主搬送波の周波数 f が前 記 PLL18により f 、 f に設定される。次に、 SC2において、上記第 1の無線タグ通信 First, at SC1, the frequency f of the main carrier generated by the VCO 20 is set to f 1 and f 2 by the PLL 18 described above. Next, at SC2, the first wireless tag communication
1 2  1 2
装置 12aにおいて発生させられた周波数 f の主搬送波が所定の制御信号 TX-ASK に基づいて前記主搬送波変調部 22により振幅変調されて送信信号とされた後、所 定の制御信号 TX-PWRに基づいて前記送信信号増幅部 24により増幅されて前記 アンテナ 26から質問波 F として前記無線タグ 14に向けて送信される。また、上記第 cl After the main carrier having the frequency f generated in the device 12a is amplitude-modulated by the main carrier modulator 22 based on a predetermined control signal TX-ASK to be a transmission signal, The signal is amplified by the transmission signal amplifying unit 24 based on the fixed control signal TX-PWR, and is transmitted from the antenna 26 to the wireless tag 14 as an interrogation wave F. In addition, the above-mentioned cl
2の無線タグ通信装置 12bでは、周波数 f の無変調の主搬送波が前記送信信号増  In the wireless tag communication device 12b of No. 2, the unmodulated main carrier of the frequency f increases the transmission signal.
2  2
幅部 24により増幅されて前記アンテナ 26から質問波 F として前記無線タグ 14に向 c2  Amplified by the width portion 24 and directed from the antenna 26 to the wireless tag 14 as an interrogation wave F c2
けて送信される。すなわち、周波数 f 1である第 1の質問波及び周波数 f 2である第 2の 質問波が前記無線タグ 14に向けて同時に送信される。次に、前記信号処理部 52の 動作に対応する SC3において、 SC2にて送信された第 1の質問波及び第 2の質問 波に応じて前記無線タグ 14から返信される第 1の応答波及び第 2の応答波が前記ァ ンテナ 26により受信される。  Sent. That is, the first interrogation wave having the frequency f1 and the second interrogation wave having the frequency f2 are transmitted simultaneously to the wireless tag 14. Next, in SC3 corresponding to the operation of the signal processing unit 52, the first response wave returned from the wireless tag 14 in response to the first interrogation wave and the second interrogation wave transmitted in SC2, and A second response wave is received by the antenna 26.
[0051] 次に、 SC4において、前記無線タグ通信装置 12と無線タグ 14との間の通信におい て電波の往復により発生する位相差 0 、 Θ が算出され、タグ位置候補列 d、 dが決 定される。位相差 0 は、周波数 f の第 1の質問波に対応する値であり、その位相差 Θ 及び質問波の波長え に基づいて次の(13)式に示すような第 1の距離候補群 d が求められる ( λ ηΖ2の項を省略)。また、位相差 Θ は、周波数 Next, in SC4, the phase difference 0, す る generated by the reciprocation of the radio wave in the communication between the wireless tag communication device 12 and the wireless tag 14 is calculated, and the tag position candidate strings d, d are determined. Is determined. The phase difference 0 is a value corresponding to the first interrogation wave of the frequency f. Based on the phase difference Θ and the wavelength of the interrogation wave, the first distance candidate group d as shown in the following equation (13) is obtained. (The term of λ ηΖ2 is omitted). The phase difference Θ is the frequency
2 f の第  2 f
2 2の質問波に 対応する値であり、その位相差 0 及び質問波の波長え 2に基づいて同様に次の(14  22 This is a value corresponding to the interrogation wave of 2, and similarly based on the phase difference 0 and the wavelength 2 of the interrogation wave, the following (14)
2  2
)式に示すような第 2の距離候補群 dが求められる ( λ  ), The second group of distance candidates d is obtained (λ
2 ηΖ2の項を省略)。  2 The term of ηΖ2 is omitted).
[0052] [数 13]
Figure imgf000016_0001
[0052] [Number 13]
Figure imgf000016_0001
[0053] [数 14]  [0053] [Number 14]
θ 2 λ  θ 2 λ
d2 = '(14) d 2 = '(14)
 4π
次に、 SC5において、前記 RSSI回路 42により検出される受信信号強度が所定値 K1未満である力否か、すなわち受信信号強度が比較的小さ!、か否かが判断される 。この SC5の判断が肯定される場合には、 SC6において、 n=0とされた後、 SC10以 下の処理が実行される力 SC5の判断が否定される場合には、 SC7において、前記 RSSI回路 42により検出される受信信号強度が所定値 K2 (K1よりも大きい値)未満 であるか否か、すなわち受信信号強度が中程度であるか否かが判断される。この SC 7の判断が肯定される場合には、 SC8において、 η= 1とされた後、 SC10以下の処 理が実行されるが、 SC7の判断が否定される場合、すなわち受信信号強度が比較的 大きいと判断される場合には、 SC9において、 η= 2とされた後、 SC10において、周 波数 f 、 f の両方について nが決定されたか否かが判断される。この SC10の判断がNext, in SC5, it is determined whether or not the received signal strength detected by the RSSI circuit 42 is less than a predetermined value K1, that is, whether or not the received signal strength is relatively small! . If the determination at SC5 is affirmative, the power at which the processing below SC10 is executed after n = 0 is set at SC6.If the determination at SC5 is negative, the RSSI circuit is set at SC7. It is determined whether the received signal strength detected by 42 is less than a predetermined value K2 (a value larger than K1), that is, whether the received signal strength is medium. If the determination in SC7 is affirmative, in SC8, η is set to 1 and then the processing below SC10 is performed.However, when the determination in SC7 is denied, that is, the received signal strength is compared. If it is determined that the target value is large, it is determined that η = 2 in SC9, and then it is determined in SC10 whether n has been determined for both of the frequencies f 1 and f 2. This SC10 decision
1 2 1 2
否定される場合には、 SC5以下の処理が再び実行される力 SC10の判断が肯定さ れる場合には、 SC11において、前記アンテナ 26からの質問波 Fの送信が停止され た後、本ルーチンが終了させられる。前記無線タグ通信装置 12と無線タグ 14との間 の距離は一定であることから、このようにして d = dの関係を満たす n、 n (f 、 f にそ  If the determination is negative, the power at which the processing below SC5 is executed again If the determination of SC10 is affirmative, the transmission of the interrogation wave F from the antenna 26 is stopped at SC11. Will be terminated. Since the distance between the wireless tag communication device 12 and the wireless tag 14 is constant, n, n (f, f
1 2 1 2 1 2 れぞれ対応する n)が求められる。以上の制御において、 SC1及び SC2が前記質問 波送信部 50の動作に、 SC4乃至 SC10が前記距離算出部 54の動作にそれぞれ対 応する。なお、周波数 f 、 f  1 2 1 2 1 2 The corresponding n) is obtained. In the above control, SC1 and SC2 correspond to the operation of the interrogation wave transmitting unit 50, and SC4 to SC10 correspond to the operation of the distance calculating unit 54, respectively. Note that the frequencies f and f
1 2は、それらの波長え 1、 λ 2に対して前記無線タグ 14との 通信可能距離 Daに対して次の(15)式を満たすように選ばれるものである。また、図 7に例示した周波数 f 、 f の波長差は、位相計測誤差に相当する距離誤差よりも十分  Numeral 1 2 is selected such that the wavelengths 1 and λ 2 satisfy the following formula (15) with respect to the communicable distance Da with the wireless tag 14. Further, the wavelength difference between the frequencies f 1 and f 2 illustrated in FIG. 7 is more than the distance error corresponding to the phase measurement error.
1 2  1 2
に大きく設定されており、その計測誤差により nの選択を誤らないように好適に定めら れている。  It is set to be large so that the selection of n is not mistaken due to the measurement error.
[0055] [数 15] [0055] [Number 15]
Da≥ ^- · ' · (15) Da≥ ^-· '· (15)
[0056] このように、本実施例によれば、周波数のそれぞれ異なる複数種類の質問波 Fを 送信するための質問波送信部 50 (SA1、 SA2、 SA5、 SA6、 SC1、及び SC2)と、 その質問波送信部 50から送信される複数種類の質問波 Feに応じて前記無線タグ 14 から返信される複数種類の応答波 Fを受信してそれぞれ復調する受信復調部すな わち I相信号変換部 28及び Q相信号変換部 30と、それら I相信号変換部 28及び Q 相信号変換部 30による複数種類の応答波 Fの復調結果に基づ!/、て前記無線タグ 1 4との間の距離 dを算出する距離算出部 54 (SA4、 SA8、 SB、 SC5乃至 SC10)とを 、含むことから、前記無線タグ 14との間で通信を行うことによりその無線タグ 14との間 の距離 dを好適に求めることができる。すなわち、無線タグ 14との間の距離を検出し 得る無線タグ通信装置 12を提供することができる。 As described above, according to the present embodiment, the interrogation wave transmitter 50 (SA1, SA2, SA5, SA6, SC1, and SC2) for transmitting a plurality of types of interrogation waves F having different frequencies, A reception demodulation unit for receiving and demodulating a plurality of types of response waves F returned from the wireless tag 14 in response to the plurality of types of interrogation waves F e transmitted from the interrogation wave transmitting unit 50. That is, based on the I-phase signal conversion unit 28 and the Q-phase signal conversion unit 30 and the demodulation results of a plurality of types of response waves F by the I-phase signal conversion unit 28 and the Q-phase signal conversion unit 30, And a distance calculation unit 54 (SA4, SA8, SB, SC5 to SC10) for calculating a distance d between the wireless tag 14 and the wireless tag 14 by performing communication with the wireless tag 14. The distance d from 14 can be suitably obtained. That is, it is possible to provide the wireless tag communication device 12 capable of detecting the distance from the wireless tag 14.
[0057] また、前記信号処理部 52 (SA3及び SA7)は、前記無線タグ 14力 返信される応 答波 Fを互いに直交する I相信号 R及び Q相信号 R に変換して直交復調するもの r si sq The signal processing unit 52 (SA3 and SA7) converts the response wave F returned from the wireless tag 14 into an I-phase signal R and a Q-phase signal R, which are orthogonal to each other, and performs orthogonal demodulation. r si sq
であるため、直交検波方式の復調回路を備えた無線タグ通信装置 12において前記 無線タグ 14との間の距離を好適に求めることができる。  Therefore, the distance from the wireless tag 14 can be suitably obtained in the wireless tag communication device 12 including the demodulation circuit of the quadrature detection method.
[0058] また、前記距離算出部 54は、前記無線タグ 14から返信される応答波 F力も変換さ れた I相信号 Rと Q相信号 R との比に基づいてその無線タグ 14との間の距離 dを算 [0058] Further, the distance calculation unit 54 determines the distance between the wireless tag 14 based on the ratio between the I-phase signal R and the Q-phase signal R, in which the response wave F returned from the wireless tag 14 is also converted. Calculate the distance d
si sq  si sq
出するものであるため、直交検波形式の復調回路を備えた無線タグ通信装置 12に おいて実用的な態様で前記無線タグ 14との間の距離を求めることができる。  Therefore, the distance from the wireless tag 14 can be determined in a practical manner in the wireless tag communication device 12 including the orthogonal detection type demodulation circuit.
[0059] また、前記質問波送信部 50は、周波数のそれぞれ異なる第 1の質問波及び第 2の 質問波を送信するものであり、前記信号処理部 52は、その質問波送信部 50から送 信される第 1の質問波及び第 2の質問波に応じて前記無線タグ 14から返信される第 1の応答波及び第 2の応答波を受信してそれぞれ復調するものであるため、必要にし て十分な質問波 F及び応答波 Fにより前記無線タグ 14との間の距離を好適に求め ることがでさる。 [0059] Further, the interrogation wave transmitting section 50 transmits a first interrogation wave and a second interrogation wave having different frequencies, and the signal processing section 52 transmits the interrogation wave from the interrogation wave transmission section 50. It is necessary to receive and demodulate the first response wave and the second response wave returned from the wireless tag 14 in response to the first and second interrogation waves received, respectively. Thus, a sufficient distance between the wireless tag 14 and the interrogation wave F and the response wave F can be suitably obtained.
[0060] また、前記第 1の質問波及び第 2の質問波の周波数は、互いに割り切れない値で あるため、前記無線タグ 14との間の距離を更に好適に求めることができる。  Further, since the frequencies of the first interrogation wave and the second interrogation wave are indivisible values from each other, the distance between the first interrogation wave and the second interrogation wave can be more preferably obtained.
[0061] また、前記距離算出部 54は、前記第 1の応答波の復調結果に基づいて求められる 第 1の距離候補群 dと、前記第 2の応答波の復調結果に基づいて求められる第 2の 距離候補群 dとを比較して、前記第 1の距離候補群 d及び第 2の距離候補群 dに共  [0061] Further, the distance calculation unit 54 determines a first distance candidate group d obtained based on the demodulation result of the first response wave and a second distance candidate group d obtained based on the demodulation result of the second response wave. The first distance candidate group d and the second distance candidate group d are compared with the second distance candidate group d.
2 1 2 通して含まれる値のうち最小のものを前記無線タグ 14との間の距離 Dとして算出する ものであるため、実用的な態様で前記無線タグ 14との間の距離を求めることができる [0062] また、前記質問波送信部 50は、前記第 1の質問波及び第 2の質問波を交互に送信 するものであるため、必要にして十分な質問波 Fを簡単な構成により送信することが できる。 Since the minimum value among the values included in the data is calculated as the distance D to the wireless tag 14, the distance to the wireless tag 14 can be obtained in a practical manner. it can [0062] Further, since the interrogation wave transmitter 50 transmits the first interrogation wave and the second interrogation wave alternately, the interrogation wave transmitter 50 transmits a necessary and sufficient interrogation wave F with a simple configuration. be able to.
[0063] また、前記質問波送信部 50は、前記複数種類の質問波 Fを同時に送信するもの であるため、可及的速やかに前記無線タグ 14との間の距離 Dを求めることができる。  [0063] Further, since the interrogation wave transmitter 50 transmits the plurality of types of interrogation waves F at the same time, the distance D to the wireless tag 14 can be obtained as quickly as possible.
[0064] また、前記距離算出部 54は、前記無線タグ 14から返信される応答波 Fの強度に基 づいてその無線タグ 14との間の距離 Dを算出するものであるため、更に好適にその 無線タグ 14との間の距離 dを求めることができる。 Further, the distance calculation unit 54 calculates the distance D to the wireless tag 14 based on the intensity of the response wave F returned from the wireless tag 14, so that it is more preferable. The distance d from the wireless tag 14 can be obtained.
[0065] また、前記距離算出部 54は、前記無線タグ 14との間の通信可能距離 Dに基づい てその無線タグ 14との間の距離を算出するものであるため、更に好適にその無線タ グ 14との間の距離 Dを求めることができる。 Since the distance calculation unit 54 calculates the distance to the wireless tag 14 based on the communicable distance D to the wireless tag 14, the wireless tag 14 is more preferably used. The distance D from the object 14 can be obtained.
実施例 2  Example 2
[0066] 続いて、本発明の他の好適な実施例を図面に基づいて詳細に説明する。なお、以 下の説明に用いる図面に関して、前述の第 1実施例と重複する部分については同一 の符号を付してその説明を省略する。  Next, another preferred embodiment of the present invention will be described in detail with reference to the drawings. In the drawings used in the following description, the same parts as those in the above-described first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0067] 図 9は、本発明の第 2実施例である無線タグ通信装置 70の電気的構成を説明する 図である。この図 2に示すように、本第 2実施例の無線タグ通信装置 70は、前記基準 周波数発生部 16から出力される前記質問波 Fの主搬送波を分配し且つ所定の位 相制御信号に基づいてその位相を制御する移相回路 72と、前記アンテナ 26により 受信された受信信号をその移相回路 72から供給される位相制御された主搬送波に 基づいてホモダイン復調する受信復調部 74と、その受信復調部 74から出力される 復調信号のうち所定の周波数帯域の信号のみを抽出する復調信号 BPF76と、その 復調信号 BPF76から出力される復調信号を増幅する復調信号増幅部 78とを、備え て構成されている。この無線タグ通信装置 70における RSSI42は、上記復調信号増 幅部 78から出力される復調信号の信号強度を検出する。また、本第 2実施例の無線 タグ通信装置 70の制御部 44には、上記位相回路 72に所定の位相制御信号を供給 するための搬送波位相制御部 80が機能的に備えられている。  FIG. 9 is a diagram illustrating an electrical configuration of a wireless tag communication device 70 according to a second embodiment of the present invention. As shown in FIG. 2, the wireless tag communication device 70 of the second embodiment distributes the main carrier of the interrogation wave F output from the reference frequency generation unit 16 and performs the distribution based on a predetermined phase control signal. A phase shift circuit 72 for controlling the phase of the received signal; a reception demodulation unit 74 for homodyne demodulating the received signal received by the antenna 26 based on the phase-controlled main carrier supplied from the phase shift circuit 72; A demodulation signal BPF for extracting only a signal of a predetermined frequency band from the demodulation signal output from the reception demodulation unit 74; and a demodulation signal amplifying unit 78 for amplifying the demodulation signal output from the demodulation signal BPF. It is configured. The RSSI 42 in the wireless tag communication device 70 detects the signal strength of the demodulated signal output from the demodulated signal amplifier 78. Further, the control unit 44 of the wireless tag communication device 70 of the second embodiment is functionally provided with a carrier phase control unit 80 for supplying a predetermined phase control signal to the phase circuit 72.
[0068] 図 10は、上記無線タグ通信装置 70の制御部 44によるタグ位置検出制御を説明す るフローチャートであり、所定の周期で繰り返し実行されるものである。 FIG. 10 illustrates tag position detection control by the control unit 44 of the wireless tag communication device 70. This flowchart is repeatedly executed at a predetermined cycle.
[0069] 先ず、 SD1において、前記基準周波数発生部 16により発生させられる主搬送波の 周波数 f が前記 PLL18により f に設定され、前記 VCO20によりその周波数 f に固定 される。次に、 SD2において、前記基準周波数発生部 16により主搬送波が発生させ られて SD1にて設定された周波数 f に制御され、所定の制御信号 TX- ASKに基づ いて前記主搬送波変調部 22により振幅変調されて送信信号とされた後、所定の制 御信号 TX-PWRに基づいて前記送信信号増幅部 24により増幅されて前記アンテ ナ 26から質問波 Fとして前記無線タグ 14に向けて送信される。  First, in SD 1, the frequency f of the main carrier generated by the reference frequency generator 16 is set to f by the PLL 18, and is fixed to the frequency f by the VCO 20. Next, in SD2, the main carrier is generated by the reference frequency generation unit 16 and controlled to the frequency f set in SD1, and is controlled by the main carrier modulation unit 22 based on a predetermined control signal TX-ASK. After being amplitude-modulated to be a transmission signal, the signal is amplified by the transmission signal amplifying section 24 based on a predetermined control signal TX-PWR and transmitted from the antenna 26 to the wireless tag 14 as an interrogation wave F. You.
[0070] 次に、 SD3において、前記移相回路 72における位相制御量 φ及び RSSIの最大 値である RSSI 力共に 0とされる。次に、 SD4において、 SD2にて送信された質問  Next, in SD3, the phase control amount φ in the phase shift circuit 72 and the RSSI force which is the maximum value of the RSSI are both set to 0. Next, in SD4, the question sent in SD2
max  max
波 Fに応じて前記無線タグ 14から返信される応答波 Fが前記アンテナ 26により受信 され、前記受信復調部 74にお 、て前記移相回路 72から供給される位相制御された 主搬送波に基づいてホモダイン復調される。そして、前記 RSSI42によりその受信復 調部 74から出力される復調信号の信号強度 RSSIが検出される。前記受信復調部 7 4から出力される復調信号は、 l +msin co tを Mとおいて、次の(16)式のように表さ  A response wave F returned from the wireless tag 14 in response to the wave F is received by the antenna 26, and is received by the reception demodulation unit 74 based on the phase-controlled main carrier supplied from the phase shift circuit 72. And is homodyne demodulated. Then, the RSSI 42 detects the signal strength RSSI of the demodulated signal output from the reception demodulation unit 74. The demodulated signal output from the reception demodulation unit 74 is represented by the following equation (16), where l + msin cot is M.
s  s
れる。  It is.
[0071] [数 16] [0071] [Number 16]
Asin( 6(J ct+0c) X sin( dt) c+0) X M Asin (6 (J c t + 0 c ) X sin (dt) c + 0) XM
= -"— {cos( ω ct+ θ ο+ ω ct+ 0)-cos( ω ct+ θ ο- ω ct- φ)}Μ ニ- + {cos(2 ω ct+ Θ c+ 0)-cos( Θ c- 0)}M
Figure imgf000020_0001
=-"— {Cos (ω ct + θ ο + ω ct + 0) -cos (ω c t + θ ο- ω c t- φ)} Μ d-+ (cos (2 ω ct + Θ c + 0) -cos (Θ c-0)} M
Figure imgf000020_0001
[0072] 次に、 SD5において、 SD4にて検出された復調信号強度 RSSIが最大値 RSSI より大きいか否かが判断される。この SD5の判断が否定される場合には、 SD8以下 の処理が実行される力 SD5の判断が肯定される場合には、 SD6において、 RSSI がその最大値 RSSI とされ、 SD7において、位相制御量 φがその最大値 φ とさ max max れた後、 SD8において、位相制御量 φが 2 π以上である力否かが判断される。この S D8の判断が肯定される場合には、 SD9において、前記アンテナ 26からの質問波 F の送信が停止された後、本ルーチンが終了させられる力 SD8の判断が否定される 場合には、 SD10において、位相制御量 φに所定値 φ が加算された後、 SD4以 step Next, in SD5, it is determined whether or not the demodulated signal strength RSSI detected in SD4 is larger than the maximum value RSSI. If the judgment of SD5 is denied, the power to execute the processing below SD8 If the judgment of SD5 is affirmed, the RSSI Is made its maximum value RSSI. In SD7, after the phase control amount φ is set to its maximum value φ max max, in SD8, it is determined whether or not the force whose phase control amount φ is 2π or more. If the determination in SD8 is affirmative, in SD9, after the transmission of the interrogation wave F from the antenna 26 is stopped, if the determination in SD8 to terminate this routine is denied, In SD10, after the specified value φ is added to the phase control amount φ,
下の処理が再び実行される。以上のようにして復調信号強度 RSSIが最大となるよう に前記移相回路 72における位相制御量 φを設定することで、第 1の周波数 f につい て前記無線タグ通信装置 12と無線タグ 14との間の通信において電波の往復により 発生する位相差の候補列 Θ が次の(17)式のように求められる。また、第 2の周波数 f についても同様に位相差の候補列 Θ が次の(18)式のように求められる。そして、 The following process is performed again. As described above, the phase control amount φ in the phase shift circuit 72 is set so that the demodulated signal strength RSSI is maximized, so that the wireless communication between the wireless tag communication device 12 and the wireless tag 14 for the first frequency f. The candidate sequence 位相 of the phase difference generated by the reciprocation of the radio wave in the communication between Θ is obtained as in the following equation (17). Similarly, for the second frequency f, a candidate sequence 位相 of the phase difference is obtained as in the following equation (18). And
2 2 twenty two
前述の第 1実施例と同様に n、 nが求められ、前記無線タグ 14との間の距離 Dが算  N and n are obtained in the same manner as in the first embodiment, and the distance D from the wireless tag 14 is calculated.
1 2  1 2
出される。以上の制御において、 SD1及び SD2が前記質問波送信部 50の動作に、 SD4が前記信号処理部 52の動作に、 SD5乃至 SD8、 SD10が前記距離算出部 54 及び搬送波位相制御部 80の動作にそれぞれ対応する。  Will be issued. In the above control, SD1 and SD2 operate as the interrogation wave transmitter 50, SD4 operates as the signal processor 52, and SD5 to SD8 and SD10 operate as the distance calculator 54 and the carrier phase controller 80. Each corresponds.
[0073] [数 17] [0073] [Equation 17]
0 ι= 0ι+2ηι 7Γ (ηι=0,1,2,· ") - - - (1 7) 0 ι = 0ι + 2ηι 7Γ (ηι = 0,1,2, ... ")---(1 7)
[0074] [数 18] 0 2η27Γ (η2=0,1,2,. · .) - - - (18) [0074] [Equation 18] 0 2η 2 7Γ (η 2 = 0, 1, 2, ...)---(18)
[0075] このように、本第 2実施例によれば、前記質問波 Fの主搬送波を分配し且つ位相を 制御して前記受信復調部 74に供給するための移相回路 72及び主搬送波位相制御 部 80 (SD5乃至 SD8、 SD10)を含み、前記受信復調部 74は、前記無線タグ 14から 返信される応答波 Fをその移相回路 72により供給される位相が制御された主搬送波 に基づ!/、てホモダイン復調するものであるため、ホモダイン検波方式の復調回路を 備えた無線タグ通信装置 70において前記無線タグ 14との間の距離 Dを好適に求め ることがでさる。 As described above, according to the second embodiment, the phase shift circuit 72 and the main carrier phase for distributing the main carrier of the interrogation wave F and controlling the phase to supply the main carrier to the reception demodulator 74 are provided. The reception / demodulation unit 74 includes a control unit 80 (SD5 to SD8, SD10) .The reception / demodulation unit 74 converts the response wave F returned from the wireless tag 14 into a main carrier having a controlled phase supplied by the phase shift circuit 72. Since the homodyne demodulation is performed based on the above, the distance D between the RFID tag 14 and the RFID tag 14 in the RFID tag communication device 70 including the demodulation circuit of the homodyne detection method can be suitably obtained.
[0076] また、前記距離算出部 54は、前記受信復調部 74により復調される復調信号の強 度 RSSIに基づいてその無線タグ 14との間の距離 Dを算出するものであるため、更に 好適にその無線タグ 14との間の距離 Dを求めることができる。  Further, the distance calculation unit 54 is further preferable because it calculates the distance D between the wireless tag 14 and the wireless tag 14 based on the strength RSSI of the demodulated signal demodulated by the reception demodulation unit 74. The distance D from the wireless tag 14 can be obtained.
[0077] 以上、本発明の好適な実施例を図面に基づいて詳細に説明した力 本発明はこれ に限定されるものではなぐ更に別の態様においても実施される。  As described above, the preferred embodiment of the present invention has been described in detail with reference to the drawings. The present invention is not limited to this, and may be embodied in still another mode.
[0078] 例えば、前述の実施例にお!、て、前記質問波送信部 50、信号処理部 52、距離算 出部 54、主搬送波位相制御部 80等は、何れも前記制御部 44の制御機能として備 えられたものであった力 それぞれ個別の制御装置として備えられたものであっても 構わない。  For example, in the above-described embodiment, the interrogation wave transmitting unit 50, the signal processing unit 52, the distance calculating unit 54, the main carrier phase control unit 80, and the like are all controlled by the control unit 44. Forces provided as functions Each may be provided as an individual control device.
[0079] また、前述の実施例において、前記距離算出部 54は、前記質問波送信部 50から 送信される第 1の質問波及び第 2の質問波に応じて前記無線タグ 14から返信される 第 1の応答波及び第 2の応答波に基づいてその無線タグ 14との距離 dDを検出する ものであつたが、前記質問波送信部 50から送信されるそれぞれ周波数が異なる 3種 類以上の質問波に応じて前記無線タグ 14から返信される同じく 3種類以上の応答波 に基づ!/、てその無線タグ 14との距離 dを検出するものであってもよ 、。このようにすれ ば、前記無線タグ 14との距離 Dを更に正確に求めることができる。  In the above-described embodiment, the distance calculation unit 54 is returned from the wireless tag 14 in response to the first and second interrogation waves transmitted from the interrogation wave transmission unit 50. Although the distance dD with respect to the wireless tag 14 is detected based on the first response wave and the second response wave, three or more types having different frequencies transmitted from the interrogation wave transmitting unit 50 are used. Based on the same three or more response waves returned from the wireless tag 14 in response to the interrogation wave, the distance d to the wireless tag 14 may be detected. In this way, the distance D from the wireless tag 14 can be obtained more accurately.
[0080] その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種 々の変更が加えられて実施されるものである。  [0080] Although not specifically exemplified, the present invention is embodied with various modifications within a range not departing from the gist thereof.

Claims

請求の範囲 The scope of the claims
[1] 所定の情報が記憶された無線タグとの間で非接触にて情報の通信を行う無線タグ 通信装置であって、  [1] A wireless tag communication device that performs non-contact information communication with a wireless tag in which predetermined information is stored,
周波数のそれぞれ異なる複数種類の質問波を送信するための質問波送信部と、 該質問波送信部から送信される複数種類の質問波に応じて前記無線タグから返信 される複数種類の応答波を受信してそれぞれ復調する受信復調部と、  An interrogation wave transmitting unit for transmitting a plurality of types of interrogation waves having different frequencies, and a plurality of types of response waves returned from the wireless tag in response to the plurality of types of interrogation waves transmitted from the interrogation wave transmitting unit. A reception demodulation unit for receiving and demodulating each,
該受信復調部による複数種類の応答波の復調結果に基づいて前記無線タグとの 間の距離を算出する距離算出部と  A distance calculating unit for calculating a distance between the wireless tag based on a result of demodulating a plurality of types of response waves by the receiving and demodulating unit;
を、含むことを特徴とする無線タグ通信装置。  A wireless tag communication device comprising:
[2] 前記受信復調部は、前記無線タグから返信される応答波を互いに直交する I相信 号及び Q相信号に変換して直交復調するものである請求項 1の無線タグ通信装置。  2. The wireless tag communication device according to claim 1, wherein the reception demodulation unit converts a response wave returned from the wireless tag into an I-phase signal and a Q-phase signal orthogonal to each other and performs orthogonal demodulation.
[3] 前記距離算出部は、前記無線タグから返信される応答波から変換された I相信号と Q相信号との角度差に基づいて該無線タグとの間の距離を算出するものである請求 項 2の無線タグ通信装置。  [3] The distance calculation unit calculates a distance between the wireless tag and the wireless tag based on an angle difference between the I-phase signal and the Q-phase signal converted from a response wave returned from the wireless tag. The wireless tag communication device according to claim 2.
[4] 前記質問波の主搬送波を分配し且つ位相を制御して前記受信復調部に供給する ための搬送波位相制御部を含み、該受信復調部は、前記無線タグから返信される応 答波を該搬送波位相制御部により供給される位相が制御された搬送波に基づいて ホモダイン復調するものである請求項 1の無線タグ通信装置。  [4] A carrier wave phase control unit for distributing the main carrier wave of the interrogation wave and controlling the phase thereof to supply the main wave to the reception demodulation unit, wherein the reception demodulation unit is a response wave returned from the wireless tag. 2. The wireless tag communication apparatus according to claim 1, wherein the signal is subjected to homodyne demodulation based on the carrier supplied by the carrier phase controller, the phase of which is controlled.
[5] 前記質問波送信部は、周波数のそれぞれ異なる第 1の質問波及び第 2の質問波を 送信するものであり、前記受信復調部は、該質問波送信部から送信される第 1の質 問波及び第 2の質問波に応じて前記無線タグから返信される第 1の応答波及び第 2 の応答波を受信してそれぞれ復調するものである請求項 1から 4の何れかの無線タグ 通信装置。  [5] The interrogation wave transmitting unit transmits a first interrogation wave and a second interrogation wave having different frequencies, and the reception demodulation unit transmits a first interrogation wave transmitted from the interrogation wave transmission unit. The wireless communication device according to any one of claims 1 to 4, wherein the first response wave and the second response wave returned from the wireless tag in response to the inquiry wave and the second inquiry wave are received and demodulated, respectively. Tag communication device.
[6] 前記第 1の質問波及び第 2の質問波の周波数は、互いに割り切れない値である請 求項 5の無線タグ通信装置。  6. The wireless tag communication device according to claim 5, wherein the frequencies of the first interrogation wave and the second interrogation wave are indivisible values.
[7] 前記距離算出部は、前記受信復調部による前記第 1の応答波の復調結果に基づ いて求められる第 1の距離候補群と、前記第 2の応答波の復調結果に基づいて求め られる第 2の距離候補群とを比較して、前記第 1の距離候補群及び第 2の距離候補 群に共通して含まれる値のうち最小のものを前記無線タグとの間の距離として算出す るものである請求項 5又は 6の無線タグ通信装置。 [7] The distance calculation unit obtains a first distance candidate group obtained based on a demodulation result of the first response wave by the reception demodulation unit and a demodulation result of the second response wave. The first distance candidate group and the second distance candidate are compared with each other. 7. The wireless tag communication device according to claim 5, wherein a minimum value among values included in the group is calculated as a distance from the wireless tag.
[8] 前記質問波送信部は、前記第 1の質問波及び第 2の質問波を交互に送信するもの である請求項 5から 7の何れかの無線タグ通信装置。 8. The wireless tag communication device according to claim 5, wherein the interrogation wave transmitting unit transmits the first interrogation wave and the second interrogation wave alternately.
[9] 前記質問波送信部は、前記複数種類の質問波を同時に送信するものである請求 項 1から 7の何れかの無線タグ通信装置。 9. The wireless tag communication device according to claim 1, wherein the interrogation wave transmitting unit transmits the plurality of types of interrogation waves simultaneously.
[10] 前記距離算出部は、前記無線タグから返信される応答波の強度に基づいて該無線 タグとの間の距離を算出するものである請求項 1から 9の何れかの無線タグ通信装置 10. The wireless tag communication device according to any one of claims 1 to 9, wherein the distance calculation unit calculates a distance between the wireless tag and the wireless tag based on an intensity of a response wave returned from the wireless tag.
[11] 前記距離算出部は、前記無線タグとの間の通信可能距離に基づいて該無線タグと の間の距離を算出するものである請求項 1から 10の何れかの無線タグ通信装置。 11. The wireless tag communication device according to claim 1, wherein the distance calculation unit calculates a distance between the wireless tag and the wireless tag based on a communicable distance between the wireless tag and the wireless tag.
PCT/JP2005/005513 2004-04-27 2005-03-25 Wireless tag communication apparatus WO2005106525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512733A JPWO2005106525A1 (en) 2004-04-27 2005-03-25 Wireless tag communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-132021 2004-04-27
JP2004132021 2004-04-27

Publications (1)

Publication Number Publication Date
WO2005106525A1 true WO2005106525A1 (en) 2005-11-10

Family

ID=35241804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005513 WO2005106525A1 (en) 2004-04-27 2005-03-25 Wireless tag communication apparatus

Country Status (2)

Country Link
JP (1) JPWO2005106525A1 (en)
WO (1) WO2005106525A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038879A (en) * 2007-08-01 2009-02-19 Hitachi Ltd Rotating electrical machine
JPWO2011142211A1 (en) * 2010-05-11 2013-07-22 アルプス電気株式会社 Communication sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501981A (en) * 1985-12-12 1988-08-04 シユテイフテルセン インスチチユ−テツト フオル ミクロフエ−クシユ テクニク ビドテクニスカ ホグスコ−ラン イ ストツクホルム Distance measurement method and distance measurement device
JPH09178842A (en) * 1995-12-27 1997-07-11 Nec Corp Transmitting device by range tone modulation and receiving device thereof
JPH11183602A (en) * 1997-12-24 1999-07-09 Furuno Electric Co Ltd Distance measuring apparatus, moving body, automatic running system and distance measuring method
JP2004502177A (en) * 2000-06-27 2004-01-22 シーメンス アクチエンゲゼルシヤフト Method for measuring the distance between two objects, and for controlling access control to an object or for controlling the use of an object, especially an access control and travel authentication device for a motor vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501981A (en) * 1985-12-12 1988-08-04 シユテイフテルセン インスチチユ−テツト フオル ミクロフエ−クシユ テクニク ビドテクニスカ ホグスコ−ラン イ ストツクホルム Distance measurement method and distance measurement device
JPH09178842A (en) * 1995-12-27 1997-07-11 Nec Corp Transmitting device by range tone modulation and receiving device thereof
JPH11183602A (en) * 1997-12-24 1999-07-09 Furuno Electric Co Ltd Distance measuring apparatus, moving body, automatic running system and distance measuring method
JP2004502177A (en) * 2000-06-27 2004-01-22 シーメンス アクチエンゲゼルシヤフト Method for measuring the distance between two objects, and for controlling access control to an object or for controlling the use of an object, especially an access control and travel authentication device for a motor vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038879A (en) * 2007-08-01 2009-02-19 Hitachi Ltd Rotating electrical machine
US8004128B2 (en) 2007-08-01 2011-08-23 Hitachi, Ltd. Rotating electrical machine
JPWO2011142211A1 (en) * 2010-05-11 2013-07-22 アルプス電気株式会社 Communication sensor device

Also Published As

Publication number Publication date
JPWO2005106525A1 (en) 2008-03-21

Similar Documents

Publication Publication Date Title
US7860535B2 (en) Radio-frequency receiver device
US7714773B2 (en) RFID tag distance measuring system and reader
US7777609B2 (en) Radio-frequency tag communication device
EP2093893B1 (en) Radio tag communication device, radio tag communication system, and radio tag detection system
EP1727235B1 (en) Wireless tag communication apparatus
JP5119870B2 (en) Radio tag communication apparatus and radio tag communication system
JP4982966B2 (en) Wireless tag detection system
JP4600114B2 (en) Wireless tag communication device
US8040222B2 (en) Radio-frequency tag communication system
WO2005106525A1 (en) Wireless tag communication apparatus
KR101378282B1 (en) Apparatus and method for improving receive sensitivity of rfid reader
CN101809587B (en) A method for classifying a transponder and/or signals originating from a transponder and reader
JP4529541B2 (en) Wireless communication device
JP2008048077A (en) Radio communication apparatus
JP2006050477A (en) Radio tag communication device
WO2006070563A1 (en) Wireless tag communication system, wireless tag communication equipment and wireless tag detecting system
JP4715184B2 (en) Wireless device
JP2010287077A (en) Wireless tag reader
JP4577489B2 (en) Wireless receiver and reception control program
KR20070084860A (en) Reader for rfid system
JP2000278169A (en) Interrogator of mobile communication system
JP2006186943A (en) Radio tag communication device, radio tag communication system
JP2008067318A (en) Radio tag communication equipment
JP2005269404A (en) Radio communications equipment
JP2007074403A (en) Radio tag communication device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512733

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase