WO2005104598A1 - Handover control method and mobile station device using the same - Google Patents

Handover control method and mobile station device using the same Download PDF

Info

Publication number
WO2005104598A1
WO2005104598A1 PCT/JP2004/005534 JP2004005534W WO2005104598A1 WO 2005104598 A1 WO2005104598 A1 WO 2005104598A1 JP 2004005534 W JP2004005534 W JP 2004005534W WO 2005104598 A1 WO2005104598 A1 WO 2005104598A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
handover
timing
reference frame
physical channel
Prior art date
Application number
PCT/JP2004/005534
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeki Yamaguchi
Yoshihiro Kubo
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/005534 priority Critical patent/WO2005104598A1/en
Publication of WO2005104598A1 publication Critical patent/WO2005104598A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present invention relates to a technique for controlling handover in a compressed mode of a W-CDM clear A (Wideband Code Division Multiple Access) mobile communication system.
  • W—CD MA Wideband Code Division Multiple Access
  • IMT-2000 International Mobile Telecommunications-2000
  • IMT-2000 International Mobile Telecommunications-2000
  • ITU - R International Telecommunications Union - Radio communication Sector
  • the service area is composed of a collection of small areas called cells that can communicate with base stations.
  • the reason why the mobile phone can talk over a wide range is because the mobile phone communicates while switching the base station that covers the cell.
  • there are roughly two types of switching processing of the base station with which communication is performed One is to maintain communication with the currently accessed base station while maintaining communication with the new base station. Is a soft handover that terminates the communication with the base station of the switching source. The other is a hard handover in which communication with the currently accessed base station is terminated and communication is switched to communication with the new base station.
  • the carrier frequencies of base stations that cover basically adjacent cells are the same, and communication channels of a plurality of subscribers are multiplexed using a spreading code. In this case, soft handover is possible when switching between base stations. However, when multiple carriers provide services, the carrier frequencies of the base stations that cover adjacent cells may differ, and hard handover processing is performed when switching between base stations.
  • W-CDM Wideband Code Division Multiple Access
  • the shortening of the hard handover processing time is disclosed, for example, in Japanese Patent Application Laid-Open Publication No. 2000-308081.
  • the wireless condition of the base station indicates communication control information including a communication frequency and a scrambling pattern that is a spreading code.
  • the mobile unit has two radio units that have a transceiver unit with the base station. At this time, one radio unit communicates with the base station of the handover source, and the other radio unit establishes synchronization of the communication channel with the base station of the handover destination. If communication with the handover destination base station can be established, communication with the handover source base station is terminated, so that handover without instantaneous interruption is possible.
  • the present invention has been made to solve the above-described problems, and the handover processing time during hard handover using the compressed mode of the W-CDM (Wideband Code Division Multiple Access) mobile communication system is considered.
  • An object of the present invention is to provide a short handover control method and a mobile station device using the same.
  • a handover control method is a base station in which the timing of a reference frame of a common channel transmitted by a mobile station based on different carrier frequencies in a compression mode of a W-CDMA (Wideband Code Division Multiple Access) mobile communication system is unknown.
  • the reference frame timing acquisition processing for acquiring the reference frame timing and the downlink physical channel synchronization establishment processing for establishing physical channel synchronization on the downlink are performed in parallel. is there.
  • a mobile station apparatus differs in a compression mode of a W-CDMA (Wideband Code Division Multiule Access) mobile communication system.
  • Communication control unit that establishes synchronization of physical channels in the downlink when the timing of each frame is known in order to hand over to the base station whose timing of the common channel reference frame transmitted based on the carrier frequency is unknown. It is provided with.
  • a mobile station hands over to a base station whose reference frame timing of a common channel transmitted based on different carrier frequencies is unknown. Therefore, the handover processing time is short because the reference frame timing acquisition processing for acquiring the reference frame timing and the downlink physical channel synchronization establishment processing for establishing the downlink physical channel synchronization are performed in parallel. A handover control method can be obtained.
  • W_CDMA Wideband Code Division Multiple Access
  • a base station in order to perform handover to a base station whose timing of a reference frame of a common channel transmitted based on different carrier frequencies in a compression mode of a W-CDMA (Wideband Code Division Multiple Access) mobile communication system is unknown. If the timing of each frame is known, a mobile station device having a short handover processing time can be obtained because the communication control unit that establishes synchronization of the physical channel in the downlink is provided.
  • W-CDMA Wideband Code Division Multiple Access
  • FIG. 1 is a block diagram showing an outline of handover according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a mobile station device according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a communication control in the mobile station apparatus according to Embodiment 1 of the present invention.
  • 4 is a block diagram illustrating a configuration of a control unit.
  • FIG. 4 is a sequence diagram showing a series of operations of handover of related equipment including a mobile station device according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing main operations of handover of the mobile station device according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing instantaneous interruption times of communication channels of the mobile station apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a block diagram showing an outline of a handover according to the first embodiment of the present invention.
  • the base station 10 communicates with a mobile phone which is a mobile station device in the cell 11.
  • the mobile phone in the cell 11 communicates with the base station 10 via a wireless communication channel.
  • the radio communication channel uses a carrier frequency of f ul for the uplink from the mobile phone to the base station 10 and a carrier frequency of f dl for the downlink from the base station 10 to the mobile phone.
  • the base station 20 performs wireless communication with a mobile phone in the cell 21.
  • the radio communication channel uses a carrier frequency of fu 2 for the uplink and f d 2 for the downlink.
  • the base stations 10 and 20 are connected to the radio network controller 30 connected to the core network 40 by wire.
  • the mobile phone 100 at position A in cell 11 is communicating with base station 10.
  • the mobile phone 100 moves to the position B.
  • position B is in the range where cells 11 and 21 overlap.
  • the mobile phone 100 that has moved to the position B becomes farther from the base station 10, and the reception level of the wireless communication channel transmitted from the base station 10 decreases.
  • the mobile phone 100 Notify the radio network controller 30 via the station 10 of the decrease in the reception level.
  • the radio network controller 30 selects the type of handover and the handover destination base station based on the notification information from the mobile phone 100 and the resource information of the base station covering the cells around the cell 11, and performs the base operation. Notify station 10.
  • the radio network controller 30 selects a hard handover using the compressed mode and the base station of the handover destination.
  • the base station 10 is notified together with the selection information of 20.
  • the base station 10 notifies the mobile phone 100 at the position B to disconnect the communication with the base station 10 and start the communication with the base station 20.
  • the mobile phone 100 performs a handover process for switching from the base station 10 to the base station 20 based on the information of the base station 20 designated from the wireless network control device 30 via the base station 1 ⁇ .
  • the mobile phone 100 After performing the handover process, the mobile phone 100 that has moved from the position B to the position C in the cell 21 communicates with the base station 20 using the wireless communication channel of the base station 20.
  • the setting information of the base station 20 specified via the base station 10 from the wireless network control device 30 includes the carrier frequency of the wireless communication channel of the base station 20 and the reception of data of the wireless communication channel. Includes timing, spreading code, etc.
  • FIG. 2 is a block diagram showing a configuration of the mobile station apparatus according to Embodiment 1 of the present invention.
  • Antenna 110 of mobile phone 100 receives a downlink radio signal transmitted by a W-CDMA (Wideband Code Division Multiple Access) method from a base station (not shown). The received signal to be received is output to the transceiver 120.
  • W-CDMA Wideband Code Division Multiple Access
  • the transceiver 120 includes a wideband band-pass filter (not shown) for extracting a frequency component in a predetermined band from the reception signal output from the antenna 110, and a carrier recovery circuit (for regenerating a carrier from the reception signal). And a receiver (not shown) for synchronously detecting the received signal using the carrier output from the carrier recovery circuit, and the received signal can be easily handled in the mobile phone 100. To convert to a signal with a frequency that is easy to handle.
  • the demodulated signal output by the receiving section is output to receiving path searching section 130 and receiving path extracting section 140.
  • Reception path search section 130 checks the reception timing of a radio signal reaching mobile phone 100 at various timings from the base station.
  • Radio waves transmitted from a base station include a direct wave that directly reaches the mobile phone 100 and a reflected wave that is reflected by a building or the like and arrives. Since some of these reflected waves reach the mobile phone 100 via a plurality of reception paths, the mobile phone 100 receives a radio signal from the base station at various times. Measure the delay port file of the common pilot channel (CPICH) included in the common channel transmitted from the base station, and determine the reception timing for various reception paths.
  • CPICH common pilot channel
  • the reception path extraction unit 140 includes an AZD conversion unit (not shown), a synchronous detection unit (not shown), a despread demodulation unit (not shown), and a RAKE combining unit ( Not shown).
  • the A / D converter converts the physical channels of the downlink including data symbols such as the common control physical channel (S_CCPCH: Secondary Common Control Physical Channel) and the dedicated physical channel (DPCH: Dedicated Physical Channel) into digital signals.
  • the signals that have been converted and code-demodulated by the synchronous detection unit and the despread demodulation unit are combined by a rake combining unit by correcting the time delay of the reception timing for each path, and output to the decoding unit 150.
  • the decoding unit 150 performs turbo / Viterbi decoding, dinterleaving, rate dematching, cyclic redundancy check (CRC) processing, and concealment processing, and generates transport channel data. Output to the mobile phone interface 170 and the communication control section 160.
  • CRC cyclic redundancy check
  • the communication control unit 160 controls the reception path search unit 130, the reception path extraction unit 140, the decoding unit 150, and the modulation / coding unit 190 described later. That is, communication control such as call termination control, data retransmission control, and transmission / reception power control is performed. The configuration of the communication control unit 160 will be described later.
  • the mobile phone interface 1700 performs display on the screen 181, which is a display of the mobile phone 100, controls input of the operation keys 182, and performs voice control for the microphone 18 3 ⁇ speaking power 1884. .
  • the decoding unit 190 performs transport redundancy data error correction code addition processing for cyclic redundancy check (CRC) processing, turbo Viterbi coding processing, interleaving processing, and rate matching processing. Then, the transport channel data is mapped to the physical channel data, modulated, and output to the transceiver 120.
  • the modulation is primary modulation, which is a narrowband modulation that modulates a carrier with physical channel data, and spread modulation is performed by switching a narrowband modulation signal with a spreading code to a wideband. Tuning secondary modulation.
  • the wideband modulated signal output from the modulation / encoding section 190 is output to the transceiver 120, and after being power-amplified, radiated from the antenna 110 into space.
  • the base station (not shown) receives radio waves radiated from the antenna 110 into the space, and performs communication between the base station and the mobile phone 100.
  • FIG. 3 is a block diagram showing a configuration of a communication control unit in the mobile station device according to Embodiment 1 of the present invention.
  • the reference control unit 160 obtains the reference frame timing.
  • the unit 1601 obtains the reference frame timing, which is the reception timing of the common channel broadcast from the base station, that is, obtains the reference frame system frame number (SFN). I do.
  • the system frame numbering means that the time of the pilot signal timing (pilot timing) provided at the beginning of the reference frame, which is the first frame of the common channel, is shifted from the reference time of the built-in clock of the mobile phone 100 by a frame. This is a number that indicates how many times the unit is late.
  • one frame is 10 milliseconds.
  • the downlink physical channel synchronization establishment processing section 162 performs downlink physical channel synchronization establishment processing when the timing in frame units is known. If the timing in frame units is known, the reference frame timing acquisition unit 161 and the downlink physical channel synchronization establishment processing unit 162 can perform each process independently.
  • the handover control section 16 3 controls handover processing.
  • the transmission power control section 164 performs transmission power control for the base station.
  • FIG. 4 is a sequence diagram showing a series of operations of handover of related equipment including the mobile station device according to Embodiment 1 of the present invention.
  • FIG. 5 shows main operations of handover of a mobile station device according to Embodiment 1 of the present invention. It is a flow chart.
  • FIG. 4 shows a mobile phone (MS: Mobile Station) 100, a base station (BS1: Base Station) 100, a base station (BS2) 20, and a radio network controller (RNC: Radio Network Controller).
  • equipment 30 indicates the operation and procedure between each equipment related to the handover process.
  • step S100 it is assumed that the mobile phone 100 is located in the cell 11, for example, at the position A in FIG. 1, and is communicating with the base station 10 using an individual channel.
  • step S110 the radio network controller 30 issues a request for starting the compressed mode to the base station 10.
  • the mobile phone 100 moves from position A to position B in FIG. 1, the distance of the mobile phone 100 from the base station 10 increases, and the reception level of the wireless communication channel transmitted from the base station 10 Decrease.
  • the mobile phone 100 notifies the wireless network control device 30 via the base station 10 of the reception level reduction.
  • the radio network controller 30 selects the type of handover and the handover destination base station based on the notification information from the mobile phone 100 and the resource information of the base station that covers cells around the cell 11.
  • the base station 10 is notified.
  • the base station 20 serving the cell 21 is selected.
  • the base station 20 uses a radio communication channel of a frequency different from that of the base station 10 and performs a hard handover process using the compression mode.
  • the radio network controller 30 issues a request for starting the compressed mode to the base station 10.
  • step S120 the base station 100 issues a compression mode start request to the mobile phone 100 based on the compression mode start request from the wireless network control device 30.
  • step S121 the mobile phone 100 receives a compression mode start request from the base station 10 as a handover command.
  • step S130 based on the request to start the compression mode from the wireless network control device 30 to the base station 10 and the request to start the compression mode from the base station 10 to the mobile phone 100, the base station The station 10 and the mobile phone 100 start the compression mode.
  • step S131 the mobile phone 100 determines whether or not the frame timing of the handover destination base station 20 is known.
  • Frame timing is frame-level timing, not reference frame timing. If the frame timing is known, it means that the frame level can be synchronized. Once the frame level is synchronized, the physical channel can be opened. However, if the timing of the reference frame is unknown, physical channel data cannot be mapped to transport channel data, and significant data communication cannot be performed. If the frame timing is unknown, go to step S140.
  • step S140 the timing of each frame of the common channel of the base station 20 as the handover destination is measured.
  • the timing of the pilot signal on the common pilot channel (CPICH) broadcast from the base station 20 is measured.
  • the handover control unit 163 sends a frame timing acquisition request of the handover destination base station 20 to the reception path search unit 130.
  • the reception path search unit 130 measures the timing of the pilot signal on the common pilot channel (CPICH) from the handover destination base station 20.
  • step S150 the common channel of the handover destination base station 20
  • the measurement result of frame timing 2 is reported to the base station 10 of the handover source.
  • step S160 the measurement result of the frame timing of the common channel of the base station 20 received from the mobile phone 100 is reported to the wireless network 30.
  • step S170 a communication setting request with the mobile phone 100 is issued to the handover destination base station 20.
  • This communication setting information includes the carrier frequency of the wireless communication channel of the base station 20, the reception timing of the data of the wireless communication channel, the spreading code, and the like.
  • step S180 based on the communication setting request from the wireless network control device 30, the handover destination base station 20 performs communication setting for the dedicated channel.
  • step S190 the wireless network control device 30 causes the handover source base station 10 to perform a handover in which the mobile phone device 100 in communication is handed over to the handover destination base station 20. Make a request.
  • step S200 based on the handover request from the wireless network control device 30, the base station 100 issues a request to the mobile phone 100 to perform a handover to the handover destination base station 20.
  • step S210 based on the handover request from base station 10, mobile phone 100 starts handover processing from base station 10 to base station 20. This is the handover execution timing.
  • the handover control unit 163 sends a request for switching from the handover source base station 10 to the data transmission / reception setting of the handover destination base station 20 to the transceiver 120.
  • the data transmission / reception setting includes information on the carrier frequency of the handover destination base station 20 and the scrambling code.
  • step S 211 handover from base station 10 to base station 20 As processing, the downlink physical channel is switched from base station 10 to base station 20.
  • step S212 the mobile phone 100 determines whether or not the timing of the basic frame of the base station 20 of the handover destination is known. That is, it is determined whether or not the timing acquisition of the reference frame has been completed.
  • the basic frame timing of the base station of the handover destination is unknown, and the process proceeds to step S220.
  • step S224 the basic frame timing of the handover destination base station is known, and the process proceeds to step S224 described later.
  • step S220 a process of acquiring a system frame number (SFN) representing the timing of the reference frame, a process of establishing physical channel synchronization on the downlink, and a process of the power control preamble section are performed in parallel.
  • SFN system frame number
  • step S22 a system frame number (SFN) representing the timing of the reference frame is obtained.
  • the handover control unit 163 instructs the reference frame timing acquisition unit 161 to acquire the reference frame system frame number (SFN). Since the timing of the frame unit is known in step S150, the reference frame timing acquisition unit 161 can perform the acquisition processing of the system frame number (SFN) of the reference frame.
  • step S222 synchronization of the downlink physical channel is established.
  • the handover control unit 163 instructs the downlink physical channel synchronization establishment processing unit 162 to perform the process of establishing the synchronization of the physical channel of the line. Since the timing of each frame is known in step S150, the downlink physical channel synchronization establishment processing section 162 can perform the processing of establishing the synchronization of the downlink physical channel.
  • step S223 preparation for transmission power control for base station 20 is performed.
  • the handover control unit 163 instructs the transmission power control unit 164 to perform transmission power control processing.
  • Step S2224 is the same as step S222.
  • Step S225 is the same as step S223.
  • step S226 processing is performed for a Signaling Radio Bearer Delay section.
  • the Signaling Radio Bearer Delay section is a section provided in consideration of communication control information transmission delay.
  • step S230 the mobile phone 100 that has completed the handover process communicates with the base station 20 using the dedicated channel.
  • FIG. 6 is a diagram showing instantaneous interruption times of communication channels of the mobile station device according to Embodiment 1 of the present invention.
  • (A) of Fig. 6 shows the down link
  • (b) of Fig. 6 shows the instantaneous interruption time of the communication channel of the up link.
  • b is called Dedicated Physical Control Channel (DPCCH) quality measurement time and is the time required for downlink synchronization establishment processing. It takes at least 40 milliseconds.
  • c is the timing acquisition time of the reference frame, which takes 30 to 40 ms.
  • d is the maximum TTI (Transmission Time Interval) delimitation waiting time, which is the time used to delimit data determined for each communication type (bearer). It takes 10 to 80 milliseconds.
  • TTI Transmission Time Interval
  • the time c can be reduced. Therefore, the time of a + b + d is the instantaneous interruption time of the downlink transport channel.
  • the time T4 corresponds to the time T1 at which the switching of the downlink physical channel in FIG. 6A is started, and the switching of the physical channel of the uplink starts at the same time as the switching of the physical channel of the downlink starts. It is assumed that the synchronization establishment processing of the uplink physical channel is completed at time T5.
  • e is the time required to establish downlink physical channel synchronization, and corresponds to the time a + b in (a) of Fig. 6.
  • f is the time required for power control preamble section processing.
  • e + f is the instantaneous interruption time of the uplink transport channel.
  • the handover control method and the mobile station device using the same according to the present invention are suitable for executing a hard handover using a compression mode of a W-CDMA (Wideband Code Division Multiple Access) mobile communication method.
  • W-CDMA Wideband Code Division Multiple Access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

There are provided a handover control method having a short base station switching processing time in handover using a compression mode of W-CDMA (Wideband Code Division Multiple Access) mobile communication method and a mobile station device using the method. For handover to a base station in which a reference frame timing of a common channel transmitted according to a carrier frequency of different mobile station devices is unknown, a reference frame timing acquisition processing for acquiring the reference frame timing and a downstream physical channel synchronization establishment for establishing synchronization of the physical channel in the down stream line are performed in parallel. Moreover, for handover to a base station in which a reference frame timing of the common channel transmitted according to a carrier frequency of different mobile station devices is unknown, a communication control section (160) is provided for establishing synchronization of the physical channel in the downstream line if the timing in frame unit is known.

Description

ハンドオーバ制御方式及びこれを用いた移動局装置  Handover control method and mobile station apparatus using the same
技術分野 Technical field
この発明は、 W— C DM明A (Wideband Code Division Multiple Access) 移動通信方式の圧縮モードにおけるハンドオーバの制御技術 に関するものである。 書  The present invention relates to a technique for controlling handover in a compressed mode of a W-CDM clear A (Wideband Code Division Multiple Access) mobile communication system. book
背景技術 Background art
移動通信システムは、 音声中心のサービスを提供するアナログ方式の 第 1世代から、 音声と低速データ通信サービスを提供するデジタル方式 の第 2世代、 音声と高速データ通信サービスを提供する第 3世代へと変. 遷してきた。 W— C D MA ( Wideband Code Division Multiple Access) 移動通信方式は、 第 3世代の移動通信方式であるアイエムテ ィ ー 2 0 0 0 ( I M T — 2 0 0 0 : International Mobile Telecommunications-2000 ) の地上無線システム規格として国際電気 通 信 連 合 無 線 通 信 部 門 ( I T U — R : International Telecommunications Union - Radio Communication Sector) 力 s勧告し た規格の一つである。 Mobile communication systems are moving from the first generation of analog systems that provide voice-centric services to the second generation of digital systems that provide voice and low-speed data communication services, and the third generation of voice and high-speed data communication services. Odd. W—CD MA (Wideband Code Division Multiple Access) mobile communication system is the terrestrial radio system of the 3rd generation mobile communication system, IMT-2000 (International Mobile Telecommunications-2000). International communication Union no line communications sector as standard (ITU - R: International Telecommunications Union - Radio communication Sector) , which is one of the force s recommendations and standards.
携帯電話機などを対象とする移動通信システムは、 サービスエリアが '基地局と通信できるセルと呼ばれる小さなエリアの集合により構成され る。 携帯電話機が広い範囲で通話できるのは、 携帯電話機がセルをカバ 一する基地局を切り替えながら通信するためである。 ここで、 通信を行 う基地局の切り替え処理には大きく分けて 2種類ある。 一つは、 現在ァ クセス中の基地局との通信を維持しつつ、 切り替え先の基地局との通信 を追加し、 その後切り替え元の基地局との通信を打ち切るソフトハンド オーバである。 もう一つは、 現在アクセス中の基地局との通信を打ち切 り、 切り替え先の基地局との通信へ切り替えるハードハンドオーバであ る。 In mobile communication systems for mobile phones, etc., the service area is composed of a collection of small areas called cells that can communicate with base stations. The reason why the mobile phone can talk over a wide range is because the mobile phone communicates while switching the base station that covers the cell. Here, there are roughly two types of switching processing of the base station with which communication is performed. One is to maintain communication with the currently accessed base station while maintaining communication with the new base station. Is a soft handover that terminates the communication with the base station of the switching source. The other is a hard handover in which communication with the currently accessed base station is terminated and communication is switched to communication with the new base station.
C D M A ( Code Division Multiple Access) 移動通信方式では、 基 本的に隣接するセルをそれぞれカバーする基地局の搬送波周波数が同一 であり、 拡散コードを用いて複数の加入者の通信チャネルを多重する。 この場合には、 基地局を切り替えるときにソフトハンドオーバが可能で ある。 しかし、 複数の通信事業者がサービスを行う場合には隣接するセ ルをそれぞれカバーする基地局の搬送波周波数が異なることがあり、 基 地局を切り替えるときにハードハンドオーバ処理をすることになる。 W - C D MA (Wideband Code Division Multiple Access) 移動通信方式 では、 異なる搬送波周波数を用いる基地局へ切り替える時に、 圧縮モー ド (Compressed mode) を用いてハードハンドオーバ処理する。  In the CDMA (Code Division Multiple Access) mobile communication system, the carrier frequencies of base stations that cover basically adjacent cells are the same, and communication channels of a plurality of subscribers are multiplexed using a spreading code. In this case, soft handover is possible when switching between base stations. However, when multiple carriers provide services, the carrier frequencies of the base stations that cover adjacent cells may differ, and hard handover processing is performed when switching between base stations. In the W-CDM (Wideband Code Division Multiple Access) mobile communication system, when switching to a base station using a different carrier frequency, a hard handover process is performed using a compressed mode.
基地局の切り替え時に、 ソフ トハンドオーバでは通信断が発生しない がハードハンドオーバでは通信断が発生する。 ハードハンドオーバ時の 通信断時間が長引くと通話品質の劣化につながり、 ハードハンドオーバ 処理に要する時間を短縮することが課題となっている。  When switching between base stations, communication disconnection does not occur in soft handover, but communication disconnection occurs in hard handover. Prolonged communication interruption time during hard handover leads to deterioration of communication quality, and reducing the time required for hard handover processing is an issue.
ハードハンドオーバ処理時間の短縮について、 例えば日本国特開 2 0 0 0— 3 0 8 1 0 8号公報に示されたものがある。 ハンドオーバ先の基 地局の無線条件をハンドオーバ元の基地局から携帯電話機に通知するこ とにより、 ハンドオーバ後の通信チャネルの同期確立処理に要する時間 を短縮する。 ここで、 基地局の無線条件とは、 通信用周波数と、 拡散符 号であるスクランブルパターンなどを含む通信制御情報を示す。  The shortening of the hard handover processing time is disclosed, for example, in Japanese Patent Application Laid-Open Publication No. 2000-308081. By notifying the wireless condition of the base station of the handover destination to the mobile phone from the base station of the handover source, the time required for establishing the synchronization of the communication channel after the handover is reduced. Here, the wireless condition of the base station indicates communication control information including a communication frequency and a scrambling pattern that is a spreading code.
また、 日本国実開平 0 3— 0 7 6 5 2 3号公報に示されたものがある。 移動機が基地局との送受信部を持つ無線部を 2系統備え、 ハンドオーバ 時、 一方の無線部でハンドオーバ元の基地局と通信を行い、 他方の無線 部でハンドオーバ先の基地局と通信チャネルの同期確立を行う。 ハンド オーバ先の基地局との通信チャネルの同期確立ができたらハンドオーバ 元の基地局との通信を打ち切るので、 瞬断のないハンドオーバが可能で ある。 There is also one disclosed in Japanese Unexamined Utility Model Publication No. 03-076753. The mobile unit has two radio units that have a transceiver unit with the base station. At this time, one radio unit communicates with the base station of the handover source, and the other radio unit establishes synchronization of the communication channel with the base station of the handover destination. If communication with the handover destination base station can be established, communication with the handover source base station is terminated, so that handover without instantaneous interruption is possible.
以上のような従来技術の対象は、 F D M A (Frequency Division Multiple Access) 方式や T D M A (Time Division Multiple Access) 方式で使用される携帯電話機であり、 W—C D M A (Wideband Code Division Multiple Access) 移動通信方式の圧縮モードを用いる移動局 装置におけるハンドオーバの処理時間の短縮を図るものでなかった。 発明の開示  The above-mentioned prior art is applied to mobile phones used in the FDMA (Frequency Division Multiple Access) system or the TDMA (Time Division Multiple Access) system, and is used in the W-CDMA (Wideband Code Division Multiple Access) mobile communication system. It did not attempt to reduce the processing time of handover in a mobile station device using the compressed mode. Disclosure of the invention
この発明は、 上記のような問題点を解決するためになされたものであ り、 W— C D MA (Wideband Code Division Multiple Access) 移動通 信方式の圧縮モードを用いるハードハンドオーバ時、 ハンドオーバ処理 時間が短いハンドオーバ制御方式及びこれを用いた移動局装置を提供す るものである。  The present invention has been made to solve the above-described problems, and the handover processing time during hard handover using the compressed mode of the W-CDM (Wideband Code Division Multiple Access) mobile communication system is considered. An object of the present invention is to provide a short handover control method and a mobile station device using the same.
この発明に係るハンドオーバ制御方式は、 W— C D M A (Wideband Code Division Multiple Access) 移動通信方式の圧縮モードにおいて 移動局が異なる搬送波周波数に基づき送信される共通チャネルの基準フ レームのタイミングが未知な基地局へハンドオーバするために、 基準フ レームのタイミングを取得する基準フレームタイミング取得処理と、 下 り回線における物理チャネルの同期を確立する下り物理チャネル同期確 立処理とを並行して行うようにしたものである。  A handover control method according to the present invention is a base station in which the timing of a reference frame of a common channel transmitted by a mobile station based on different carrier frequencies in a compression mode of a W-CDMA (Wideband Code Division Multiple Access) mobile communication system is unknown. In order to perform a handover to the reference frame, the reference frame timing acquisition processing for acquiring the reference frame timing and the downlink physical channel synchronization establishment processing for establishing physical channel synchronization on the downlink are performed in parallel. is there.
この発明に係る移動局装置は、 W— C D M A ( Wideband Code Division Multiule Access) 移動通信方式の圧縮モードにおいて異なる 搬送波周波数に基づき送信される共通チャネルの基準フレームのタイミ ングが未知な基地局へハンドオーバするために、 フレーム単位のタイミ ングが既知な場合、 下り回線における物理チャネルの同期を確立する通 信制御部を備えたものである。 A mobile station apparatus according to the present invention differs in a compression mode of a W-CDMA (Wideband Code Division Multiule Access) mobile communication system. Communication control unit that establishes synchronization of physical channels in the downlink when the timing of each frame is known in order to hand over to the base station whose timing of the common channel reference frame transmitted based on the carrier frequency is unknown. It is provided with.
この発明によれば、 W _ C D M A ( Wideband Code Division Multiple Access) 移動通信方式の圧縮モードにおいて移動局が異なる 搬送波周波数に基づき送信される共通チャネルの基準フレームのタイミ ングが未知な基地局へハンドオーバするために、 基準フレームのタイミ ングを取得する基準フレームタイミング取得処理と、 下り回線における 物理チャネルの同期を確立する下り物理チャネル同期確立処理とを並行 して行うようにしたので、 ハンドオーバ処理時間が短いハンドオーバ制 御方式を得ることができる。  According to the present invention, in a compression mode of a W_CDMA (Wideband Code Division Multiple Access) mobile communication system, a mobile station hands over to a base station whose reference frame timing of a common channel transmitted based on different carrier frequencies is unknown. Therefore, the handover processing time is short because the reference frame timing acquisition processing for acquiring the reference frame timing and the downlink physical channel synchronization establishment processing for establishing the downlink physical channel synchronization are performed in parallel. A handover control method can be obtained.
この発明によれば、 W— C D M A ( Wideband Code Division Multiple Access) 移動通信方式の圧縮モードにおいて異なる搬送波周 波数に基づき送信される共通チャネルの基準フレームのタイミングが未 知な基地局へハンドオーバするために、 フレーム単位のタイミングが既 知な場合、 下り回線における物理チャネルの同期を確立する通信制御部 を備えたので、 ハンドオーバ処理時間が短い移動局装置を得ることがで きる。 図面の簡単な説明  According to the present invention, in order to perform handover to a base station whose timing of a reference frame of a common channel transmitted based on different carrier frequencies in a compression mode of a W-CDMA (Wideband Code Division Multiple Access) mobile communication system is unknown. If the timing of each frame is known, a mobile station device having a short handover processing time can be obtained because the communication control unit that establishes synchronization of the physical channel in the downlink is provided. Brief Description of Drawings
第 1図は、 この発明の実施の形態 1によるハンドオーバの概要を示す ブロックである。  FIG. 1 is a block diagram showing an outline of handover according to Embodiment 1 of the present invention.
第 2図は、 この発明の実施の形態 1による移動局装置の構成を示すブ ロック図である。  FIG. 2 is a block diagram showing a configuration of a mobile station device according to Embodiment 1 of the present invention.
第 3図は、 この発明の実施の形態 1による移動局装置における通信制 御部の構成を示すプロックである。 FIG. 3 is a diagram showing a communication control in the mobile station apparatus according to Embodiment 1 of the present invention. 4 is a block diagram illustrating a configuration of a control unit.
第 4図は、 この発明の実施の形態 1による移動局装置を含む関係機器 のハンドオーバの一連の動作を示すシーケンス図である。  FIG. 4 is a sequence diagram showing a series of operations of handover of related equipment including a mobile station device according to Embodiment 1 of the present invention.
第 5図は、 この発明の実施の形態 1による移動局装置のハンドオーバ の主要な動作を示すフローチャートである。  FIG. 5 is a flowchart showing main operations of handover of the mobile station device according to Embodiment 1 of the present invention.
第 6図は、 この発明の実施の形態 1による移動局装置の通信チャネル の瞬断時間を示す図である。 発明を実施するための最良の形態  FIG. 6 is a diagram showing instantaneous interruption times of communication channels of the mobile station apparatus according to Embodiment 1 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 . Embodiment 1
図 1はこの発明の実施の形態 1によるハンドオーバの概要を示すブロ ックである。 基地局 1 0はセル 1 1内の移動局装置である携帯電話機と 通信を行う。 セル 1 1内の携帯電話機は基地局 1 0と無線通信チャネル を介して通信を行う。 ここで無線通信チャネルは、 携帯電話機から基地 局 1 0への上り回線用に f u l、 基地局 1 0から携帯電話機への下り回 線用に f d lの搬送波周波数を用いる。 基地局 2 0はセル 2 1内の携帯 電話機と無線通信を行う。 ここで無線通信チャネルは、 上り回線用に f u 2、 下り回線用に f d 2の搬送波周波数を用いる。 基地局 1 0及び 2 0 は、 コアネットワーク 4 0に接続する無線ネットワーク制御装置 3 0と 有線で接続される。 FIG. 1 is a block diagram showing an outline of a handover according to the first embodiment of the present invention. The base station 10 communicates with a mobile phone which is a mobile station device in the cell 11. The mobile phone in the cell 11 communicates with the base station 10 via a wireless communication channel. Here, the radio communication channel uses a carrier frequency of f ul for the uplink from the mobile phone to the base station 10 and a carrier frequency of f dl for the downlink from the base station 10 to the mobile phone. The base station 20 performs wireless communication with a mobile phone in the cell 21. Here, the radio communication channel uses a carrier frequency of fu 2 for the uplink and f d 2 for the downlink. The base stations 10 and 20 are connected to the radio network controller 30 connected to the core network 40 by wire.
セル 1 1内の位置 Aにある携帯電話機 1 0 0は基地局 1 0と通信中と する。 次に、 携帯電話機 1 0 0が位置 Bへ移動するものとする。 ここで、 位置 Bはセル 1 1と 2 1との重なる範囲にある。 位置 Bへ移動した携帯 電話機 1 0 0は基地局 1 0からの距離が遠くなり、 基地局 1 0から送信 される無線通信チャネルの受信レベルが低下する。 受信レベルが所定の 通信品質を確保できない程度まで低下すると、 携帯電話機 1 0 0は基地 局 1 0を経由して無線ネットワーク制御装置 3 0へ受信レベルの低下を 通知する。 無線ネットワーク制御装置 3 0は携帯電話機 1 0 0からの通 知情報、 セル 1 1の周辺のセルをカバーする基地局のリソース情報に基 づき、 ハンドオーバの種類、 ハンドオーバ先基地局の選別を行い基地局 1 0へ通知する。 ハンドオーバ先の基地局 2 0がハンドオーバ元の基地 局 1 0と異なる搬送波周波数を用いているので、 無線ネットワーク制御 装置 3 0は圧縮モードを用いたハードハンドオーバを選定し、 ハンドォ ーバ先の基地局 2 0の選別情報とともに基地局 1 0へ通知する。 基地局 1 0は位置 Bにある携帯電話機 1 0 0に対し基地局 1 0との通信を切断 し、 基地局 2 0との通信を開始するように通知する。 携帯電話機 1 0 0 は、 無線ネットワーク制御装置 3 0から基地局 1◦を経由して指定され た基地局 2 0の情報に基づき、 基地局 1 0から基地局 2 0へ切り替える ハンドオーバ処理を行う。 ハンドオーバ処理を行なった後、 位置 Bから セル 2 1内の位置 Cへ移動した携帯電話機 1 0 0は、 基地局 2 0の無線 通信チャネルを用いて基地局 2 0と通信する。 無線ネットワーク制御装 置 3 0から基地局 1 0を経由して指定された基地局 2 0の設定情報には、 基地局 2 0の無線通信チャネルの搬送波周波数、 無線通信チャネルのデ ータの受信タイミング、 拡散コードなどを含む。 It is assumed that mobile phone 100 at position A in cell 11 is communicating with base station 10. Next, it is assumed that the mobile phone 100 moves to the position B. Here, position B is in the range where cells 11 and 21 overlap. The mobile phone 100 that has moved to the position B becomes farther from the base station 10, and the reception level of the wireless communication channel transmitted from the base station 10 decreases. When the reception level drops to a level where the predetermined communication quality cannot be secured, the mobile phone 100 Notify the radio network controller 30 via the station 10 of the decrease in the reception level. The radio network controller 30 selects the type of handover and the handover destination base station based on the notification information from the mobile phone 100 and the resource information of the base station covering the cells around the cell 11, and performs the base operation. Notify station 10. Since the base station 20 of the handover destination uses a carrier frequency different from that of the base station 10 of the handover source, the radio network controller 30 selects a hard handover using the compressed mode and the base station of the handover destination. The base station 10 is notified together with the selection information of 20. The base station 10 notifies the mobile phone 100 at the position B to disconnect the communication with the base station 10 and start the communication with the base station 20. The mobile phone 100 performs a handover process for switching from the base station 10 to the base station 20 based on the information of the base station 20 designated from the wireless network control device 30 via the base station 1◦. After performing the handover process, the mobile phone 100 that has moved from the position B to the position C in the cell 21 communicates with the base station 20 using the wireless communication channel of the base station 20. The setting information of the base station 20 specified via the base station 10 from the wireless network control device 30 includes the carrier frequency of the wireless communication channel of the base station 20 and the reception of data of the wireless communication channel. Includes timing, spreading code, etc.
ハンドオーバ処理時の基地局の設定情報におけるデータの受信タイミ ングについて、 無線ネットワーク制御装置 3 0からは、 共通チャネルの 先頭フレーム (後述する基準フレーム) の先頭に設けられるパイロッ ト 信号のタイミング (パイロットタイミング) に対し、 個別チャネルの先 頭フレームの先頭に設けられるパイ口ット信号のタイミング (パイ口ッ トタイミング) の時間のオフセット値のみが指定される。 したがって、 携帯電話機 1 0 0は、 共通チャネルの受信タイミングである基準フレー ムのタイミング (パイロットタイミング) を検出する必要がある。 図 2はこの発明の実施の形態 1による移動局装置の構成を示すプロッ ク図である。 基地局 (図示せず。 ) から W— C D M A ( Wideband Code Division Multiple Access) 方式で送信される下り回線の無線信 号を携帯電話機 1 0 0のアンテナ 1 1 0が受信し、 アンテナ 1 1 0が受 信する受信信号は送受信機 1 2 0へ出力される。 Regarding the data reception timing in the setting information of the base station at the time of the handover process, the wireless network control device 30 sends the pilot signal timing (pilot timing) provided at the head of the head frame (reference frame described later) of the common channel. For), only the time offset value of the timing of the pilot signal (pilot timing) provided at the beginning of the first frame of the individual channel is specified. Therefore, the mobile phone 100 needs to detect the reference frame timing (pilot timing), which is the reception timing of the common channel. FIG. 2 is a block diagram showing a configuration of the mobile station apparatus according to Embodiment 1 of the present invention. Antenna 110 of mobile phone 100 receives a downlink radio signal transmitted by a W-CDMA (Wideband Code Division Multiple Access) method from a base station (not shown). The received signal to be received is output to the transceiver 120.
送受信機 1 2 0は、 アンテナ 1 1 0が出力する受信信号から所定の帯 域の周波数成分を取り出す広帯域の帯域通過フィルタ (図示せず。 ) と、 受信信号から搬送波を再生する搬送波再生回路 (図示せず。 ) と、 搬送 波再生回路が出力する搬送波を用いて受信信号を同期検波する受信部 (図示せず。 ) とを含み、 受信信号を、 携帯電話機 1 0 0内で扱い易い 電力で扱い易い周波数の信号へ変換する。 受信部が出力する復調信号は 受信パスサーチ部 1 3 0及ぴ受信パス取り出し部 1 4 0 へ出力される。 受信パスサーチ部 1 3 0は、 基地局からさまざまなタイミングで携帯 電話機 1 0 0に到達する無線信号の受信タイミングを調べる。 基地局か ら送信される電波は、 直接携帯電話機 1 0 0に到達する直接波と、 ビル などにより反射されて到達する反射波とがある。 この反射波についても、 複数の経路である受信パスを通って携帯電話機 1 0 0に到達するものが あるため、 携帯電話機 1 0 0は基地局からの無線信号をさまざまなタイ ミングで受信する。 基地局から送信される共通チャネルに含まれる共通 パイロットチャネル (C P I C H: Common Pilot Channel) の遅延プ 口ファイルを測定し、 さまざまな受信パスに対する受信タイミングを調 ベる。  The transceiver 120 includes a wideband band-pass filter (not shown) for extracting a frequency component in a predetermined band from the reception signal output from the antenna 110, and a carrier recovery circuit (for regenerating a carrier from the reception signal). And a receiver (not shown) for synchronously detecting the received signal using the carrier output from the carrier recovery circuit, and the received signal can be easily handled in the mobile phone 100. To convert to a signal with a frequency that is easy to handle. The demodulated signal output by the receiving section is output to receiving path searching section 130 and receiving path extracting section 140. Reception path search section 130 checks the reception timing of a radio signal reaching mobile phone 100 at various timings from the base station. Radio waves transmitted from a base station include a direct wave that directly reaches the mobile phone 100 and a reflected wave that is reflected by a building or the like and arrives. Since some of these reflected waves reach the mobile phone 100 via a plurality of reception paths, the mobile phone 100 receives a radio signal from the base station at various times. Measure the delay port file of the common pilot channel (CPICH) included in the common channel transmitted from the base station, and determine the reception timing for various reception paths.
受信パス取り出し部 1 4 0は、 AZ D変換部 (図示せず。 ) と、 同期 検波部 (図示せず。 ) と、 逆拡散復調部 (図示せず。 ) とレイク (R A K E ) 合成部 (図示せず。 ) とを含む。 一次共通制御物理チャネル (P 一 C C P C H: Primary Common Control Physical Channel) 、 二次 共通制御物理チャネル ( S _ C C P C H: Secondary Common Control Physical Channel ) 、 個別物理チャネル ( D P C H : Dedicated Physical Channel) などのデータシンボルを含む下り回線の物理チヤ ネルに対し、 A / D変換部でデジタル信号に変換し、 同期検波部及び逆 拡散復調部で符号復調した信号を、 レイク (R A K E ) 合成部で各パス に対する受信タイミングの時間遅れを補正して合成し、 復号部 1 5 0へ 出力する。 The reception path extraction unit 140 includes an AZD conversion unit (not shown), a synchronous detection unit (not shown), a despread demodulation unit (not shown), and a RAKE combining unit ( Not shown). Primary Common Control Physical Channel (P-CCPCH), Secondary The A / D converter converts the physical channels of the downlink including data symbols such as the common control physical channel (S_CCPCH: Secondary Common Control Physical Channel) and the dedicated physical channel (DPCH: Dedicated Physical Channel) into digital signals. The signals that have been converted and code-demodulated by the synchronous detection unit and the despread demodulation unit are combined by a rake combining unit by correcting the time delay of the reception timing for each path, and output to the decoding unit 150.
復号部 1 5 0は、 ターボ/ビタビ復号化処理、 ディンターリーブ処理、 レートデマッチング処理、 巡回冗長検査 (C R C : Cyclic Redundancy Check) 処理、 秘匿解除処理を実施し、 トランスポートチャネルデータ を生成し、 携帯電話機ィンターフェース 1 7 0及び通信制御部 1 6 0へ 出力する。  The decoding unit 150 performs turbo / Viterbi decoding, dinterleaving, rate dematching, cyclic redundancy check (CRC) processing, and concealment processing, and generates transport channel data. Output to the mobile phone interface 170 and the communication control section 160.
通信制御部 1 6 0は、 受信パスサーチ部 1 3 0、 受信パス取り出し部 1 4 0、 復号部 1 5 0、 後述する変調■符号部 1 9 0に対する制御を行 う。 すなわち、 発呼終話制御、 データ再送制御、 送受信電力制御などの 通信制御を行う。 通信制御部 1 6 0の構成については後述する。  The communication control unit 160 controls the reception path search unit 130, the reception path extraction unit 140, the decoding unit 150, and the modulation / coding unit 190 described later. That is, communication control such as call termination control, data retransmission control, and transmission / reception power control is performed. The configuration of the communication control unit 160 will be described later.
携帯電話機インターフェース 1 7 0は、 携帯電話機 1 0 0のディスプ レイである画面 1 8 1への表示、 操作キー 1 8 2の入力制御、 マイク 1 8 3ゃスピー力 1 8 4に対する音声制御を行う。  The mobile phone interface 1700 performs display on the screen 181, which is a display of the mobile phone 100, controls input of the operation keys 182, and performs voice control for the microphone 18 3 ゃ speaking power 1884. .
変調 '復号部 1 9 0は、 トランスポートチャネルデータに対し巡回冗 長検査 ( C R C : Cyclic Redundancy Check) 処理用の誤り訂正符号の 付与処理、 ターボ ビタビ符号化処理、 インターリーブ処理、 レートマ ツチング処理を実施し、 トランスポートチャネルデータを物理チャネル データへマッピングした後、 変調し送受信機 1 2 0へ出力する。 ここで、 変調は、 物理チャネルデータで搬送波を変調する狭帯域変調である一次 変調と、 狭帯域変調信号を拡散符号でスィツチングして広帯域に拡散変 調する二次変調とを含む。 Modulation The decoding unit 190 performs transport redundancy data error correction code addition processing for cyclic redundancy check (CRC) processing, turbo Viterbi coding processing, interleaving processing, and rate matching processing. Then, the transport channel data is mapped to the physical channel data, modulated, and output to the transceiver 120. Here, the modulation is primary modulation, which is a narrowband modulation that modulates a carrier with physical channel data, and spread modulation is performed by switching a narrowband modulation signal with a spreading code to a wideband. Tuning secondary modulation.
変調 ·符号部 1 9 0の出力する広帯域変調信号は送受信機 1 2 0へ出 力され、 電力増幅された後、 アンテナ 1 1 0から空間へ放射される。 ァ ンテナ 1 1 0から空間へ放射された電波を基地局 (図示せず。 ) が受信 し、 基地局と携帯電話機 1 0 0との間で通信を行う。  The wideband modulated signal output from the modulation / encoding section 190 is output to the transceiver 120, and after being power-amplified, radiated from the antenna 110 into space. The base station (not shown) receives radio waves radiated from the antenna 110 into the space, and performs communication between the base station and the mobile phone 100.
図 3はこの発明の実施の形態 1による移動局装置における通信制御部 の構成を示すブロックである。 ここでは、 主として、 ハンドオーバ処理 に係わる構成を示す。 通信制御部 1 6 0の基準フレームタイミング取得 '部 1 6 1は、 基地局から報知される共通チャネルの受信タイミングであ る基準フレームのタイミング、 すなわち基準フレームのシステムフレー ムナンパ (S F N ) の取得処理を行う。 システムフレームナンパとは、 共通チャネルの先頭フレームである基準フレームの初めに設けられるパ イロット信号のタイミング (パイロットタイミング) の時刻が、 携帯電 話機 1 0 0の内蔵する時計の基準時刻に対し、 フレーム単位で何個遅れ た時刻であるかを表す数である。 ここで、 1 フレームは 1 0ミリ秒であ る。 下り物理チャネル同期確立処理部 1 6 2は、 フレーム単位のタイミ ングが既知の場合、 下り回線の物理チャネルの同期確立処理を行う。 フ レーム単位のタイミングが既知の場合、 基準フレームタイミング取得部 1 6 1及ぴ下り物理チャネル同期確立処理部 1 6 2はそれぞれの処理を 独立して行うことができる。 ハンドオーバ制御部 1 6 3は、 ハンドォー バ処理の制御を行う。 送信電力制御部 1 6 4は、 基地局に対する送信電 力制御を行う。  FIG. 3 is a block diagram showing a configuration of a communication control unit in the mobile station device according to Embodiment 1 of the present invention. Here, the configuration mainly related to the handover process is shown. The reference control unit 160 obtains the reference frame timing. The unit 1601 obtains the reference frame timing, which is the reception timing of the common channel broadcast from the base station, that is, obtains the reference frame system frame number (SFN). I do. The system frame numbering means that the time of the pilot signal timing (pilot timing) provided at the beginning of the reference frame, which is the first frame of the common channel, is shifted from the reference time of the built-in clock of the mobile phone 100 by a frame. This is a number that indicates how many times the unit is late. Here, one frame is 10 milliseconds. The downlink physical channel synchronization establishment processing section 162 performs downlink physical channel synchronization establishment processing when the timing in frame units is known. If the timing in frame units is known, the reference frame timing acquisition unit 161 and the downlink physical channel synchronization establishment processing unit 162 can perform each process independently. The handover control section 16 3 controls handover processing. The transmission power control section 164 performs transmission power control for the base station.
次に、 ハンドオーバ処理の動作について、 図 4及び図 5を用いて説明 する。 図 4はこの発明の実施の形態 1による移動局装置を含む関係機器 のハンドオーバの一連の動作を示すシーケンス図である。 図 5はこの発 明の実施の形態 1による移動局装置のハンドオーバの主要な動作を示す フローチヤ一トである。 Next, the operation of the handover process will be described using FIG. 4 and FIG. FIG. 4 is a sequence diagram showing a series of operations of handover of related equipment including the mobile station device according to Embodiment 1 of the present invention. FIG. 5 shows main operations of handover of a mobile station device according to Embodiment 1 of the present invention. It is a flow chart.
図 4は、 携帯電話機 (M S : Mobile Station) 1 0 0、 基地局 (B S 1 : Base Station) 1 0、 基地局 (B S 2 ) 2 0、 及び無線ネットヮ一 ク制御装置 (R N C : Radio Network Controller equipment) 3 0に ついて、 ハンドオーバ処理に関係する各機器間の動作や手順を示す。 ステップ S 1 0 0では、 携帯電話機 1 0 0がセル 1 1内、 例えば図 1 の位置 Aにあり、 個別チャネルを用いて基地局 1 0と通信を行っている ものとする。  Figure 4 shows a mobile phone (MS: Mobile Station) 100, a base station (BS1: Base Station) 100, a base station (BS2) 20, and a radio network controller (RNC: Radio Network Controller). equipment) 30 indicates the operation and procedure between each equipment related to the handover process. In step S100, it is assumed that the mobile phone 100 is located in the cell 11, for example, at the position A in FIG. 1, and is communicating with the base station 10 using an individual channel.
ステップ S 1 1 0では、 無線ネットワーク制御装置 3 0が基地局 1 0 に対し圧縮モードの開始要求を出す。 携帯電話機 1 0 0が、 図 1の位置 Aから位置 Bに移動すると、 携帯電話機 1 0 0は基地局 1 0からの距離 が遠くなり、 基地局 1 0から送信される無線通信チャネルの受信レベル が低下する。 受信レベルが所定の通信品質を確保できない程度まで低下 すると、 携帯電話機 1 0 0は基地局 1 0を経由して無線ネットワーク制 御装置 3 0へ受信レベルの低下を通知する。 無線ネッ トワーク制御装置 3 0は、 携帯電話機 1 0 0からの通知情報、 セル 1 1の周辺のセルを力 バーする基地局のリソース情報に基づきハンドオーバの種類及びハンド オーバ先基地局の選別を行い、 基地局 1 0へ通知する。 ここでは、 セル 2 1をサービスする基地局 2 0を選択するものとする。 基地局 2 0は基 地局 1 0と異なる周波数の無線通信チャネルを使用しており、 圧縮モー ドを用いたハードハンドオーバ処理を行うものとする。 その結果、 無線 ネットワーク制御装置 3 0は基地局 1 0に対し圧縮モードの開始要求を 出す。  In step S110, the radio network controller 30 issues a request for starting the compressed mode to the base station 10. When the mobile phone 100 moves from position A to position B in FIG. 1, the distance of the mobile phone 100 from the base station 10 increases, and the reception level of the wireless communication channel transmitted from the base station 10 Decrease. When the reception level decreases to a level where the predetermined communication quality cannot be ensured, the mobile phone 100 notifies the wireless network control device 30 via the base station 10 of the reception level reduction. The radio network controller 30 selects the type of handover and the handover destination base station based on the notification information from the mobile phone 100 and the resource information of the base station that covers cells around the cell 11. The base station 10 is notified. Here, it is assumed that the base station 20 serving the cell 21 is selected. The base station 20 uses a radio communication channel of a frequency different from that of the base station 10 and performs a hard handover process using the compression mode. As a result, the radio network controller 30 issues a request for starting the compressed mode to the base station 10.
ステップ S 1 2 0では、 無線ネッ トワーク制御装置 3 0からの圧縮モ ードの開始要求に基づき、 基地局 1 0が携帯電話機 1 0 0に対し 縮モ 一ドの開始要求を出す。 ステップ S 1 2 1では、 携帯電話機 1 0 0が基地局 1 0からの圧縮モ 一ドの開始要求をハンドオーバ命令として受信する。 In step S120, the base station 100 issues a compression mode start request to the mobile phone 100 based on the compression mode start request from the wireless network control device 30. In step S121, the mobile phone 100 receives a compression mode start request from the base station 10 as a handover command.
ステップ S 1 3 0では、 無線ネッ トワーク制御装置 3 0カゝら基地局 1 0への圧縮モードの開始要求及び基地局 1 0から携帯電話機 1 0 0への 圧縮モードの開始要求に基づき、 基地局 1 0及び携帯電話機 1 0 0が圧 縮モードを開始する。  In step S130, based on the request to start the compression mode from the wireless network control device 30 to the base station 10 and the request to start the compression mode from the base station 10 to the mobile phone 100, the base station The station 10 and the mobile phone 100 start the compression mode.
ステップ S 1 3 1では、 携帯電話機 1 0 0が、 ハンドオーバ先の基地 局 2 0のフレームタイミングが既知であるか否かを判別する。 フレーム タイミングとはフレームレベルのタイ ミングであり、 基準フレームのタ イミングではない。 フレームタイミングが既知であれば、 フレームレべ ルの同期がとれることを意味する。 フレームレベルの同期がとれると物 理チャネルを開くことができる。 しかし、 基準フレームのタイミングが 未知の場合、 物理チャネルデータをトランスポートチャネルデータにマ ッビングできず、 有意なデータの通信ができない。 フレームタイミング が未知の場合、 ステップ S 1 4 0へ進む。  In step S131, the mobile phone 100 determines whether or not the frame timing of the handover destination base station 20 is known. Frame timing is frame-level timing, not reference frame timing. If the frame timing is known, it means that the frame level can be synchronized. Once the frame level is synchronized, the physical channel can be opened. However, if the timing of the reference frame is unknown, physical channel data cannot be mapped to transport channel data, and significant data communication cannot be performed. If the frame timing is unknown, go to step S140.
ステップ S 1 4 0では、 ハンドオーバ先である基地局 2 0の共通チヤ ネルのフレーム単位のタイミングを計測する。 フレームタイミングを計 測するために、 基地局 2 0から報知される共通パイロットチャネル (C P I C H : Common Pilot Channel) におけるパイロッ ト信号のタイミ ングを計測する。 まず、 ハンドオーバ制御部 1 6 3は受信パスサーチ部 1 3 0へハンドオーバ先基地局 2 0のフレームタイミング取得要求を送 る。 フレームタイミング取得要求を受けた受信パスサーチ部 1 3 0はハ ンドオーバ先基地局 2 0からの共通パイ口ッ トチャネル (C P I C H : Common Pilot Channel) におけるパイ口ッ ト信号のタイミングを計測 する。  In step S140, the timing of each frame of the common channel of the base station 20 as the handover destination is measured. In order to measure the frame timing, the timing of the pilot signal on the common pilot channel (CPICH) broadcast from the base station 20 is measured. First, the handover control unit 163 sends a frame timing acquisition request of the handover destination base station 20 to the reception path search unit 130. Upon receiving the frame timing acquisition request, the reception path search unit 130 measures the timing of the pilot signal on the common pilot channel (CPICH) from the handover destination base station 20.
ステップ S 1 5 0では、 ハンドオーバ先の基地局 2 0の共通チャネル 2 のフレームタイミングの計測結果をハンドオーバ元の基地局 1 0へ報告 する。 In step S150, the common channel of the handover destination base station 20 The measurement result of frame timing 2 is reported to the base station 10 of the handover source.
ステップ S 1 6 0では、 携帯電話機 1 0 0から受信した基地局 2 0の 共通チャネルのフレームタイミングの計測結果を無線ネッ トワーク 3 0 へ報告する。  In step S160, the measurement result of the frame timing of the common channel of the base station 20 received from the mobile phone 100 is reported to the wireless network 30.
ステップ S 1 7 0では、 携帯電話 1 0 0との通信設定要求をハンドォ ーバ先の基地局 2 0へ出す。 この通信設定情報には、 基地局 2 0の無線 通信チャネルの搬送波周波数、 無線通信チャネルのデータの受信タイミ ング、 拡散コードなどを含む。  In step S170, a communication setting request with the mobile phone 100 is issued to the handover destination base station 20. This communication setting information includes the carrier frequency of the wireless communication channel of the base station 20, the reception timing of the data of the wireless communication channel, the spreading code, and the like.
ステップ S 1 8 0では、 無線ネットワーク制御装置 3 0からの通信設 定要求に基づき、 ハンドオーバ先の基地局 2 0が個別チャネルの通信設 定を行う。  In step S180, based on the communication setting request from the wireless network control device 30, the handover destination base station 20 performs communication setting for the dedicated channel.
ステップ S 1 9 0では、 無線ネッ トワーク制御装置 3 0が、 ハンドォ ーバ元の基地局 1 0に対し、 通信中の携帯電話装置 1 0 0をハンドォー バ先の基地局 2 0へハンドオーバさせるハンドオーバ要求を出す。  In step S190, the wireless network control device 30 causes the handover source base station 10 to perform a handover in which the mobile phone device 100 in communication is handed over to the handover destination base station 20. Make a request.
ステップ S 2 0 0では、 無線ネッ トワーク制御装置 3 0からのハンド オーバ要求に基づき、 基地局 1 0が携帯電話機 1 0 0に対しハンドォー バ先の基地局 2 0へハンドオーバする要求を出す。  In step S200, based on the handover request from the wireless network control device 30, the base station 100 issues a request to the mobile phone 100 to perform a handover to the handover destination base station 20.
ステップ S 2 1 0では、 基地局 1 0からのハンドオーバ要求に基づき、 携帯電話機 1 0 0が、 基地局 1 0から基地局 2 0へのハンドオーバ処理 を開始する。 これがハンドオーバの実施タイミングである。 ハンドォー バ制御部 1 6 3は送受信機 1 2 0に対し、 ハンドオーバ元基地局 1 0か らハンドオーバ先基地局 2 0のデータ送受信設定への切り替え要求を送 る。 データ送受信設定には、 ハンドオーバ先基地局 2 0の搬送波周波数、 スクランプリングコードの情報が含まれる。  In step S210, based on the handover request from base station 10, mobile phone 100 starts handover processing from base station 10 to base station 20. This is the handover execution timing. The handover control unit 163 sends a request for switching from the handover source base station 10 to the data transmission / reception setting of the handover destination base station 20 to the transceiver 120. The data transmission / reception setting includes information on the carrier frequency of the handover destination base station 20 and the scrambling code.
ステップ S 2 1 1では、 基地局 1 0から基地局 2 0へのハンドオーバ 処理として、 下り回線の物理チャネルを基地局 1 0から基地局 2 0へ切 り替える。 In step S 211, handover from base station 10 to base station 20 As processing, the downlink physical channel is switched from base station 10 to base station 20.
ステップ S 2 1 2では、 携帯電話機 1 0 0が、 ハンドオーバ先の基地 局 2 0の基本フレームのタイミングが既知であるか否かを判別する。 す なわち、 基準フレームのタイミング取得が完了しているか否かを判別す る。 圧縮モードを用いたハードハンドオーバでは、 ハンドオーバ先の基 地局の基本フレームタイミングが未知であり、 ステップ S 2 2 0へ進む。 圧縮モードを用いない通常のソフトハンドオーバでは、 ハンドオーバ先 の基地局の基本フレームタイミングが既知であり、 後述するステップ S 2 2 4へ進む。  In step S212, the mobile phone 100 determines whether or not the timing of the basic frame of the base station 20 of the handover destination is known. That is, it is determined whether or not the timing acquisition of the reference frame has been completed. In the hard handover using the compressed mode, the basic frame timing of the base station of the handover destination is unknown, and the process proceeds to step S220. In normal soft handover not using the compressed mode, the basic frame timing of the handover destination base station is known, and the process proceeds to step S224 described later.
ステップ S 2 2 0では、 基準フレームのタイ ミングを表すシステムフ レームナンパ (S F N ) 取得処理と、 下り回線の物理チャネル同期確立 処理及び電力制御プリアンプル区間の処理を並行して行う。  In step S220, a process of acquiring a system frame number (SFN) representing the timing of the reference frame, a process of establishing physical channel synchronization on the downlink, and a process of the power control preamble section are performed in parallel.
ステップ S 2 2 1は、 基準フレームのタイミングを表すシステムフレ ームナンパ (S F N ) の取得を行う。 ハンドオーバ制御部 1 6 3は基準 フレームタイ ミング取得部 1 6 1へ基準フレームのシスチムフレームナ ンバ (S F N ) の取得処理を指令する。 ステップ S 1 5 0でフレーム単 位のタイミングが既知となっているので、 基準フレームタイミング取得 部 1 6 1は基準フレームのシステムフレームナンパ (S F N ) の取得処 理が可能となる。  In step S221, a system frame number (SFN) representing the timing of the reference frame is obtained. The handover control unit 163 instructs the reference frame timing acquisition unit 161 to acquire the reference frame system frame number (SFN). Since the timing of the frame unit is known in step S150, the reference frame timing acquisition unit 161 can perform the acquisition processing of the system frame number (SFN) of the reference frame.
ステップ S 2 2 2は、 下り回線の物理チャネルの同期確立を行う。 ハ ンドオーバ制御部 1 6 3は下り物理チャネル同期確立処理部 1 6 2へ下 り回線の物理チャネルの同期確立の処理をするよう指令する。 ステップ S 1 5 0でフレーム単位のタイミングが既知となっているので、 下り物 理チャネル同期確立処理部 1 6 2は下り回線の物理チャネルの同期確立 の処理が可能となる。 ステップ S 2 2 3は、 基地局 2 0に対する送信電力制御の準備を行う。 ハンドオーバ制御部 1 6 3は送信電力制御部 1 6 4へ送信電力制御の処 理をするよう指令する。 In step S222, synchronization of the downlink physical channel is established. The handover control unit 163 instructs the downlink physical channel synchronization establishment processing unit 162 to perform the process of establishing the synchronization of the physical channel of the line. Since the timing of each frame is known in step S150, the downlink physical channel synchronization establishment processing section 162 can perform the processing of establishing the synchronization of the downlink physical channel. In step S223, preparation for transmission power control for base station 20 is performed. The handover control unit 163 instructs the transmission power control unit 164 to perform transmission power control processing.
ステップ S 2 2 4はステップ S 2 2 2と同様である。  Step S2224 is the same as step S222.
ステップ S 2 2 5はステップ S 2 2 3と同様である。  Step S225 is the same as step S223.
ステップ S 2 2 6はシグナリ ング ラジオ ベアラ ディ レイ (Signaling Radio Bearer Delay) 区間の処理を行う。 シグナリング ラジオ ベアラ ディレイ (Signaling Radio Bearer Delay) 区間とは、 通信制御情報伝送遅延を考慮して設けられる区間である。 ハンドオーバ 制御部 1 6 3が基準フレームタイミング取得部 1 6 1及び送信電力制御 部 1 6 4からそれぞれの処理を完了した通知を取得すると、 ハンドォー バ完了通知を携帯電話機 1 0 0から基地局 2 0を経由して無線通信ネッ トワーク制御装置 3 0へ送信する。  In step S226, processing is performed for a Signaling Radio Bearer Delay section. The Signaling Radio Bearer Delay section is a section provided in consideration of communication control information transmission delay. When the handover control unit 163 obtains a notification that the respective processes have been completed from the reference frame timing obtaining unit 161 and the transmission power control unit 1664, the handover control unit 163 transmits a handover completion notification from the mobile phone 100 to the base station 200. To the wireless communication network control device 30 via.
ステップ S 2 3 0では、 ハンドオーバ処理を終了した携帯電話機 1 0 0が、 個別チャネルを用いて基地局 2 0と通信を行う。  In step S230, the mobile phone 100 that has completed the handover process communicates with the base station 20 using the dedicated channel.
次に、 この発明のハンドオーバ制御方法による移動局装置の通信チヤ ネルの瞬断時間の短縮の効果について、 図 6を用いて説明する。  Next, the effect of shortening the instantaneous interruption time of the communication channel of the mobile station device by the handover control method of the present invention will be described with reference to FIG.
図 6は、 この発明の実施の形態 1による移動局装置の通信チャネルの 瞬断時間を示す図である。 図 6の ( a ) は下り回線、 図 6の (b ) は上 り回線の通信チャネルの瞬断時間を示す。  FIG. 6 is a diagram showing instantaneous interruption times of communication channels of the mobile station device according to Embodiment 1 of the present invention. (A) of Fig. 6 shows the down link, and (b) of Fig. 6 shows the instantaneous interruption time of the communication channel of the up link.
図 6の (a ) において、 ハードハンドオーバ処理のため、 時刻 T 1に ノヽンドオーバ元の基地局からの下り回線の物理チャネルから、 ハンドォ ーバ先の基地局からの下り回線の物理チャネルへの切り替えを開始する ものとする。 物理チャネルの切り替えと同時にトランスポートチャネル も切り替えを開始する。 時刻 T 2で下り回線の物理チャネルへの切り替 えが完了し、 時刻 T 3で下り回線のトランスポートチャネルの切り替え が完了したとする。 図中 aが下り回線の物理チャネルへの切り替えに要 する時間であり、 物理チャネルの瞬断時間となる。 例えば、 スリージ一 ピーピー ( 3 G P P : 3rd Generation Partnership Project) 仕 で は T 3 Uと呼ばれ、 1フレーム分である 1 0ミリ秒の時間が規定されて いる。 bは個別物理制御チャネル (D P C C H : Dedicated Physical Control Channel) 品質測定時間と呼ばれ、 下り回線の同期確立処理に 要する時間である。 最短で 4 0ミリ秒かかる。 cは基準フレームのタイ ミング取得時間であり、 3 0ミリ秒から 4 0ミリ秒かかる。 dは最大テ ィティアイ ( T T I : Transmission Time Interval) 区切り待ち合わせ 時間と呼ばれ、 通信種別 (ベアラ) 毎に決まっているデータの区切りに 用いる時間である。 1 0ミリ秒から 8 0ミリ秒かかる。 下り回線の基準 フレームタイミング取得処理と下り回線の同期確立処理とを並列して実 行することにより、 cの時間が短縮される。 したがって、 a + b + dの 時間が下り回線のトランスポートチャネルの瞬断時間となる。 In (a) of FIG. 6, at time T1, the physical channel of the downlink from the base station of the node over is switched to the physical channel of the downlink from the base station of the handover destination at time T1 due to the hard handover process. Shall be started. At the same time as switching the physical channel, the transport channel starts switching. At time T2, switching to the downlink physical channel is completed, and at time T3, switching of the downlink transport channel. Is completed. In the figure, a is the time required for switching to the downlink physical channel, which is the instantaneous interruption time of the physical channel. For example, Suriji one Phi Phi (3 GPP: 3rd Generation Partnership Project ) is a specification called T 3 U, time 1 0 millisecond is one frame is defined. b is called Dedicated Physical Control Channel (DPCCH) quality measurement time and is the time required for downlink synchronization establishment processing. It takes at least 40 milliseconds. c is the timing acquisition time of the reference frame, which takes 30 to 40 ms. d is the maximum TTI (Transmission Time Interval) delimitation waiting time, which is the time used to delimit data determined for each communication type (bearer). It takes 10 to 80 milliseconds. By performing the downlink reference frame timing acquisition processing and the downlink synchronization establishment processing in parallel, the time c can be reduced. Therefore, the time of a + b + d is the instantaneous interruption time of the downlink transport channel.
図 6の (b ) において、 ハンドオーバ処理のため、 時刻 T 4にハンド オーバ元の基地局への上り回線の物理チャネルから、 ハンドオーバ先の 基地局への上り回線の物理チャネルへの切り替えを開始する。 時刻 T 4 は、 図 6の (a ) の下り回線の物理チャネルの切り替え開始の時刻 T 1 に対応し、 下り回線の物理チャネルの切り替え開始と同時に上り回線の 物理チャネルの切り替えを開始する。 時刻 T 5で上り回線の物理チヤネ ルの同期確立処理が完了したとする。 eは下り回線の物理チャネル同期 確立に要する時間であり、 図 6の (a ) の a + bの時間に対応する。 f は電力制御プリアンプル (Power Control Preamble) 区間処理に要す る時間である。 gはシグナリ ング ラジオ ベアラ ディ レイ (Signaling Radio Bearer Delay) 区間処理に要する時間である。 した がって、 e + f が上り回線のトランスポートチャネルの瞬断時間となる。 このように、 下り回線の基準フレームタイミング取得処理と下り回線 の同期確立処理とを並列して実行することにより、 下り回線のトランス ポートチャネルの瞬断時間が短縮され、 その結果、 上り回線の物理チヤ ネル及ぴトランスポートチャネルの瞬断時間も短縮される。 In (b) of FIG. 6, at time T4, switching from the uplink physical channel to the handover source base station to the uplink physical channel to the handover destination base station starts at time T4 for the handover process. . The time T4 corresponds to the time T1 at which the switching of the downlink physical channel in FIG. 6A is started, and the switching of the physical channel of the uplink starts at the same time as the switching of the physical channel of the downlink starts. It is assumed that the synchronization establishment processing of the uplink physical channel is completed at time T5. e is the time required to establish downlink physical channel synchronization, and corresponds to the time a + b in (a) of Fig. 6. f is the time required for power control preamble section processing. g is the time required for processing the Signaling Radio Bearer Delay section. Therefore, e + f is the instantaneous interruption time of the uplink transport channel. In this way, by performing the downlink reference frame timing acquisition processing and the downlink synchronization establishment processing in parallel, the instantaneous interruption time of the downlink transport channel is reduced, and as a result, the physical The instantaneous interruption time of the channel and transport channel is also reduced.
以上の説明では、 異なる搬送波周波数を用いる隣接するセルの基地局 へのハンドオーバを対象としていたが、 同じセル内に複数の異なる搬送 波周波数を用いる基地局があり、 通信トラフィックの制約などから搬送 波周波数の異なる基地局へ切り替える場合についても適用できる。 産業上の利用可能性  In the above description, handover to the base station of an adjacent cell using a different carrier frequency is targeted.However, there are base stations using multiple different carrier frequencies in the same cell, and carrier waves are limited due to communication traffic restrictions. The present invention is also applicable to a case of switching to a base station having a different frequency. Industrial applicability
以上のように、 この発明に係るハンドオーバ制御方式及びこれを用い た移動局装置は、 W— C D M A (Wideband Code Division Multiple Access) 移動通信方式の圧縮モードを用いるハードハンドオーバの実 行に適している。  As described above, the handover control method and the mobile station device using the same according to the present invention are suitable for executing a hard handover using a compression mode of a W-CDMA (Wideband Code Division Multiple Access) mobile communication method.

Claims

請 求 の 範 囲 The scope of the claims
1 . W - C D MA (Wideband Code Division Multiple Access) 移動 通信方式の圧縮モードにおいて移動局が異なる搬送波周波数に基づき送 信される共通チャネルの基準フレームのタイミングが未知な基地局へハ ンドオーバするために、 前記基準フレームのタイミングを取得する基準 フレームタイミング取得処理と、 下り回線における物理チャネルの同期 を確立する下り物理チャネル同期確立処理とを並行して行うハンドォー バ制御方式。 1. In W-CD MA (Wideband Code Division Multiple Access) mobile communication system, in the compressed mode, the mobile station must perform handover to a base station whose timing of the reference frame of the common channel transmitted based on different carrier frequencies is unknown. A handover control method in which reference frame timing acquisition processing for acquiring the timing of the reference frame and downlink physical channel synchronization establishment processing for establishing downlink physical channel synchronization are performed in parallel.
2 . W - C D MA (Wideband Code Division Multiple Access) 移動 通信方式の圧縮モードにおいて異なる搬送波周波数に基づき送信される 共通チャネルの基準フレームのタイミングが未知な基地局へハンドォー バするために、 フレーム単位のタイミングが既知な場合、 下り回線にお ける物理チャネルの同期を確立する通信制御部を備えた移動局装置。 2. W-CD MA (Wideband Code Division Multiple Access) In the compressed mode of the mobile communication system, in order to perform handover to the base station where the timing of the reference frame of the common channel transmitted based on different carrier frequencies is unknown, A mobile station device including a communication control unit that establishes physical channel synchronization in a downlink when the timing is known.
3 . 通信制御部が下り回線の物理チャネルの同期確立と並行して基準 フレームのタイミングを表すシステムフレームナンバを取得する請求項 2に記載の移動局装置。 3. The mobile station apparatus according to claim 2, wherein the communication control unit acquires a system frame number indicating a timing of a reference frame in parallel with establishment of synchronization of the downlink physical channel.
PCT/JP2004/005534 2004-04-19 2004-04-19 Handover control method and mobile station device using the same WO2005104598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005534 WO2005104598A1 (en) 2004-04-19 2004-04-19 Handover control method and mobile station device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005534 WO2005104598A1 (en) 2004-04-19 2004-04-19 Handover control method and mobile station device using the same

Publications (1)

Publication Number Publication Date
WO2005104598A1 true WO2005104598A1 (en) 2005-11-03

Family

ID=35197382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005534 WO2005104598A1 (en) 2004-04-19 2004-04-19 Handover control method and mobile station device using the same

Country Status (1)

Country Link
WO (1) WO2005104598A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977393A1 (en) * 1997-04-16 2000-02-02 Ntt Mobile Communications Network Inc. Cdma communication method
EP0981256A2 (en) * 1998-08-19 2000-02-23 Fujitsu Limited Handover method, base station, mobile station, and mobile communication system
EP1401225A1 (en) * 2002-09-20 2004-03-24 Nec Corporation CDMA type mobile station having a first and a second receiving portion for rounding off a chip offset temporally early and late

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977393A1 (en) * 1997-04-16 2000-02-02 Ntt Mobile Communications Network Inc. Cdma communication method
EP0981256A2 (en) * 1998-08-19 2000-02-23 Fujitsu Limited Handover method, base station, mobile station, and mobile communication system
EP1401225A1 (en) * 2002-09-20 2004-03-24 Nec Corporation CDMA type mobile station having a first and a second receiving portion for rounding off a chip offset temporally early and late

Similar Documents

Publication Publication Date Title
KR100554513B1 (en) Defining measurement gaps in inter-frequency measurement
CA2395756C (en) Method for preparing an interfrequency handover, a network element and a mobile station
JP3296822B2 (en) Time alignment of transmission in downlink of CDMA system
AU2004239630B2 (en) Method for soft and softer handover in time division duplex code division multiple access (TDD-CDMA) networks
USRE40824E1 (en) Mobile station handoff between different CDMA frequencies
JP3966369B2 (en) Forward traffic channel power control method and apparatus for CDMA wireless subscriber network system
JP4318860B2 (en) Method and system for providing personal base station communication
JP3634641B2 (en) CDMA mobile communication system
CA2460689C (en) Cellular telephone
US6577880B1 (en) Radio communication method and radio communication system
JP2003500911A (en) Method and apparatus for efficient candidate frequency search while initiating handoff in code division multiple access communication
JP4681180B2 (en) CDMA signal component processing method
JP2001320321A (en) Method for operating mobile station, and the mobile station
JP2003518801A (en) Mobile station with two transceivers and inter-frequency method performed using such a mobile station
EP1096822A2 (en) Apparatus and method for TDMA-TDD based transmission/reception
JP3392630B2 (en) Spread spectrum communication equipment
EP1097527B1 (en) Method and apparatus for performing an inter-frequency search
CN102264113B (en) Virtual soft switching method in time division-synchronous code division multiple access (TD-SCDMA) system
WO2006064391A1 (en) Method and apparatus for use in handover measurement process
JP4347702B2 (en) Frame timing control during handover
JP2004112625A (en) Cdma mobile communication terminal
JPH08331625A (en) Mobile communication cellular system
JP4771648B2 (en) Mobile phone
JP2003304569A (en) Hand-off method, and mobile terminal
WO2005104598A1 (en) Handover control method and mobile station device using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP