WO2005104245A1 - Led driver circuit - Google Patents

Led driver circuit Download PDF

Info

Publication number
WO2005104245A1
WO2005104245A1 PCT/JP2004/009019 JP2004009019W WO2005104245A1 WO 2005104245 A1 WO2005104245 A1 WO 2005104245A1 JP 2004009019 W JP2004009019 W JP 2004009019W WO 2005104245 A1 WO2005104245 A1 WO 2005104245A1
Authority
WO
WIPO (PCT)
Prior art keywords
fet
led
voltage
gate
power supply
Prior art date
Application number
PCT/JP2004/009019
Other languages
French (fr)
Japanese (ja)
Inventor
Ryouichi Miyajima
Takeshi Kobayashi
Original Assignee
Tokyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyoto filed Critical Tokyoto
Publication of WO2005104245A1 publication Critical patent/WO2005104245A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits

Definitions

  • the present invention relates to a light-emitting diode drive circuit for driving a high-output, high-current light-emitting diode of, for example, 1 W or more with a commercial AC power supply.
  • LEDs Light-emitting diodes
  • the first method is to convert AC into DC and drive the LED with the converted DC.
  • the power supply becomes large because a power transformer, a large-capacity capacitor, and the like are required to convert AC into DC. Therefore, it is difficult to reduce the size of a lighting device using LEDs. Further, since the conversion causes a loss, the power consumption of the entire lighting device also increases.
  • the second method is a method in which the LED 105 is driven by a rectified current rectified by the rectifier circuit 103, as shown in FIG.
  • the LED has a current limiting resistor 107 connected in series to prevent damage.
  • the second method there is a problem that the amount of heat generated by the current limiting resistor increases because it is necessary to use the current flowing constantly.
  • the applicant of the present application uses a rectifier circuit for rectifying AC and a transistor that functions as a switching element, and generates a drive current in one half wave at the output of the rectifier circuit.
  • An LED drive circuit that turns on and off has been proposed (see Patent Document 1).
  • the base voltage of the transistor is reduced in response to detecting the drive current of the LED flowing when the transistor is turned on, and the transistor is turned off by the drop. By turning it off, there is no need to constantly supply a drive current, and the amount of generated heat is reduced.
  • Patent Document 1 Japanese Patent Publication No. 3122870
  • the LED driving circuit according to the invention described in claim 1 is a circuit for driving one LED.
  • a circuit for driving a plurality of LEDs will be described later.
  • an AC power supply rectifier circuit having a power supply connection terminal on the input side, one LED with an anode terminal connected to the positive output side of the AC power supply rectification circuit, and an LED connected to the power source terminal of the LED.
  • a FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor. Then, the FET control circuit applies a control voltage for applying a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the plus output side of the AC power supply rectification circuit rises, to the gate resistor. To turn on the FET and drive the current detection resistor beyond the specified value. In response to the detection of the current, the control voltage is reduced to a voltage lower than the threshold voltage and the discharge of the gate terminal is accelerated to delay off the FET. That is, both the anode terminal of the LED and the FET control circuit are connected to the positive output side of the AC power supply rectifier circuit, and the power source terminal of the LED is connected to FET.
  • the FET control circuit applies a control voltage to the gate resistor due to the rise of the rectified voltage, and the FET is turned on when the gate voltage exceeds the threshold voltage. I do.
  • a drive current flows through the LED to which the rectified voltage is applied, and the LED lights up.
  • the drive current is detected by the current detection resistor, and the FET control circuit that receives this detection drops the control voltage. Due to this drop, the potential of the gate resistance on the FET control circuit side becomes lower than the potential on the gate terminal side. As a result, the charged electric charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge.
  • the FET When the gate voltage drops below the threshold voltage, the FET turns off, which turns off the LED. In other words, the drive current flows even until the gate voltage reaches the threshold voltage due to charge discharge (until the FET is turned off), so that the LED can be turned on with high brightness. In this way, the detection of the drive current by the current detection resistor triggers the FET to be turned off, so that the latter operates with a delay from the former. This delay operation realizes high brightness even at a low voltage and a large current, that is, even when the applied voltage is low. Furthermore, since the on-resistance value of the FET is generally smaller than the on-resistance value of the transistor, the former generates less heat than the latter even when the same current flows. In addition, in order to light the LED with direct current, a power transformer, a large-capacity capacitor, and the like are required, but the drive circuit of claim 1 does not require such a thing. The drive circuit can be reduced in size because it is not needed.
  • the LED driving circuit according to the invention described in claim 2 is a circuit for driving an LED group formed by connecting a plurality of LEDs in series.
  • an AC power supply rectifier circuit having a power supply connection terminal on the input side and a plurality of LEDs connected to the anode terminal on the positive output side of the AC power supply rectifier circuit are connected in series.
  • a current detection resistor arranged between the rectifier circuit and the negative output side, and a FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor are included. is there. Then, the FET control circuit applies a control voltage for applying a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the plus output side of the AC power supply rectification circuit rises, to the gate resistor. To turn on the FET, and when the current detection resistor detects the drive current exceeding the predetermined value, the control voltage is reduced to a voltage lower than the threshold voltage, and the voltage is reduced from the gate terminal.
  • both the anode terminal of the LED group and the FET control circuit are connected to the positive output side of the AC power supply rectifier circuit, and the power source terminal of the LED group is connected to the FET.
  • the FET control circuit applies the control voltage to the gate resistor due to the rise of the rectified voltage, and thereby, the FET is turned on when the gate voltage exceeds the threshold voltage.
  • a drive current flows through the LED group to which the rectified voltage is applied, and the LED group is turned on.
  • the drive current is detected by the current detection resistor, and the FET control circuit that receives this detection drops the control voltage. Due to this drop, the potential of the gate resistance on the FET control circuit side becomes lower than the potential on the gate terminal side. As a result, the charged charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge.
  • the FET When the gate voltage falls below the threshold voltage, the FET turns off and the LEDs turn off.
  • the drive current flows until the gate voltage reaches the threshold voltage (until the FET turns off) due to charge discharge, and this drive current increases almost in proportion to the increase in the number of LEDs.
  • the LED group can be turned on with high brightness. In other words, for example, when comparing the drive current when two LEDs are connected in series and the drive current when three LEDs are connected in series, the drive current when three LEDs are connected is greater than when two LEDs are connected. The current increases. Above As described above, the detection of the drive current by the current detection resistor triggers the FET to be turned off, so that the latter operates with a delay from the former.
  • This delay operation realizes high luminance even at a low voltage and a large current, that is, even when the applied voltage is low.
  • the on-resistance value of the FET is generally smaller than the on-resistance value of the transistor, the former generates less heat than the latter even if the same current is applied.
  • a power transformer and a large-capacity capacitor are required.
  • the drive circuit can be reduced in size because it is not needed (the feature of the invention described in claim 3).
  • the LED driving circuit according to the invention described in claim 3 (hereinafter referred to as “the driving circuit of claim 3”) is used to drive one LED or a group of LEDs connected in series or series / parallel. Circuit. Specifically, an AC power supply rectification circuit having a power supply connection terminal on the input side, a single LED, or an LED group connected in series or in series / parallel, an anode terminal of the LED or the LED group, and The FET connected between the positive output side of the AC power supply rectifier circuit and the FET for turning on / off the drive current of the LED or the LED group, and the drive current that has passed through the LED or the LED group (passed through the FET To detect the drive current), a gate resistor is connected to the current detection resistor placed between the power source terminal of the LED or LED group and the minus output side of the AC power supply rectifier circuit, and the gate terminal of the FET.
  • an FET control circuit for controlling the FET connected through the FET. Then, the FET control circuit applies a control voltage for applying a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the plus output side of the AC power supply rectifier circuit increases.
  • the FET is turned on by applying the voltage to the gate resistor, and the control voltage is lowered to a voltage lower than the threshold voltage in response to the detection of the drive current exceeding the predetermined value by the current detection resistor, and the gate is turned off.
  • the FET is configured to delay off by prompting charge discharge from the terminal.
  • the anode terminal of the LED or LED group is connected to the positive output side of the AC power supply rectifier circuit through the FET, and the power source terminal of the LED or LED group is connected to the AC power supply rectifier through the current detection resistor. Connected to the negative output side of the circuit. Positive output of AC power supply rectifier circuit On the side, the FET control circuit is connected together with the FET.
  • the FET control circuit applies the control voltage to the gate resistor due to the rise of the rectified voltage, and the FET is turned on when the gate voltage exceeds the threshold voltage. I do.
  • a drive current flows through the LED due to the rectified voltage applied through the FET, thereby turning on the LED or the LED group.
  • the drive current is detected by the current detection resistor, and the FET control circuit that receives this detection drops the control voltage. Due to this drop, the potential of the gate resistance on the FET control circuit side becomes lower than the potential on the gate terminal side. As a result, the charged electric charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge.
  • the FET When the gate voltage falls below the threshold voltage, the FET turns off, causing the LED or LED group to turn off. In other words, the drive current flows even until the gate voltage reaches the threshold voltage by charge discharge (until the FET is turned off), so that the LED or the LED group can be lit with high luminance.
  • the detection of the drive current by the current detection resistor triggers the FET to be turned off, so that the latter operates with a delay from the former.
  • This delay operation realizes high brightness even at low voltage and large current, that is, even when the applied voltage is low.
  • the on-resistance value of the FET is generally smaller than the on-resistance value of the transistor, the former generates less heat than the latter even at the same current.
  • a power supply transformer and a large-capacity capacitor are required to light the LED or the LED group with direct current.
  • the drive circuit according to claim 3 does not need such a thing.
  • the drive circuit can be reduced in size because it is not needed.
  • the LED driving circuit according to the invention described in claim 4 (hereinafter referred to as “the driving circuit of claim 4” as appropriate) is used to drive one LED or a group of LEDs connected in series or series / parallel. Circuit. Specifically, an AC power supply rectification circuit with a power supply connection terminal on the input side, and one LED with an anode terminal connected to the positive output side of the AC power supply rectification circuit, or a series or series-parallel connection To turn on and off the drive current of the LED or LED group connected to the LED or the power source terminal of the LED group, and to detect the drive current passing through the FET
  • the FET and the AC power It is configured to include a current detection resistor arranged between the negative output side of the power supply rectifier circuit and a FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor.
  • the FET control circuit applies a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the positive output side of the AC power supply rectifier circuit via the LED or the group of LEDs increases.
  • the control voltage is applied to the gate resistor to turn on the FET, and the control voltage drops to a voltage lower than the threshold voltage when the current detection resistor detects the drive current exceeding the predetermined value. Then, the FET is delayed off by promoting electric charge discharge from the gate terminal. That is, the anode terminal of the LED or LED group is connected to the positive output side of the AC power supply rectifier circuit, and the cathode terminal of the LED or LED group is connected to the FET control circuit.
  • the FET control circuit applies the control voltage to the gate resistor due to the rise of the rectified voltage applied via the LED or the LED group, whereby the gate voltage becomes the threshold voltage. FET turns on when exceeds.
  • a drive current flows through the LED or the LED group to which the rectified voltage is applied, thereby turning on the LED or the LED group.
  • the drive current is detected by the current detection resistor, and the FET control circuit that receives this detection drops the control voltage. Due to this drop, the potential of the gate resistance on the FET control circuit side becomes lower than the potential on the gate terminal side. As a result, the charged charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge.
  • FET When the gate voltage falls below the threshold voltage, FET is turned off, which turns off the LED or LEDs (although in practice the LED or LEDs may be turned off even if the FET is off).
  • a small drive current flows through the FET control circuit through the In other words, the drive current flows even until the gate voltage reaches the threshold voltage (until the FET is turned off) due to charge discharge, so that the LED or LED group can be lit with high luminance.
  • the detection of the drive current by the current detection resistor triggers the FET to be turned off, the latter operates with a delay from the former. This delay operation realizes high luminance even at a low voltage and a large current, that is, at a low applied voltage.
  • the on-resistance of the FET is generally smaller than the on-resistance of the transistor. Therefore, even if the same current flows, the former generates less heat than the latter. Further, in order to light the LED or the LED group with direct current, a power transformer and a large-capacity capacitor are required, but the drive circuit of claim 4 does not need such a thing. The drive circuit can be reduced in size because it is not required.
  • the LED driving circuit according to the invention described in claim 5 (hereinafter referred to as “the driving circuit of claim 5” as appropriate) is used to drive one LED or a group of LEDs connected in series or series / parallel. Circuit.
  • an AC power supply rectification circuit with a power supply connection terminal on the input side and a power source terminal connected to the minus output side of the AC power supply rectification circuit, one LED, or a series or series-parallel connection LED group connected to the positive output side of the AC power supply rectifier circuit, or an FET for turning on and off the drive current of the LED group, and for detecting the drive current passing through the FET
  • a current detection resistor arranged between the FET and the anode of the LED or LED group, and a FET control for controlling the FET connected to the gate terminal of the FET via a gate resistor And a circuit.
  • the FET control circuit applies a control voltage to the gate resistor to apply a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the positive output side of the AC power supply rectifier circuit increases.
  • the control voltage is reduced to a voltage lower than the threshold voltage to discharge the charge from the gate terminal. The delay is turned off by prompting the FET.
  • the difference between the drive circuit of claim 5 and the drive circuit of claim 4 is that the latter LED or LED group is arranged on the positive output side of the AC power supply rectifier circuit, while the former LED or LED group is Is a point arranged on the minus side of the AC power supply rectifier circuit.
  • the FET control circuit applies a control voltage to the gate resistor due to an increase in the rectified voltage applied from the positive output side of the AC power supply rectifier circuit.
  • the FET turns on when the voltage exceeds the threshold voltage.
  • a drive current flows to the LED or the LED group to which the rectified voltage is applied, and the LED or the LED group is turned on.
  • the drive current is detected by the current detection resistor.
  • the FET control circuit receives this detection, it lowers the control voltage. Due to this drop, the potential of the gate resistor on the FET control circuit side becomes lower than the potential on the gate terminal side.
  • the charged electric charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge.
  • the FET is turned off, thereby turning off the LED or LEDs (although in practice, even if the FET is off, the AC power supply rectifier circuit A small drive current flows from the plus output side to the FET control circuit.
  • the driving current flows even before the gate voltage reaches the threshold voltage due to charge discharge (until the FET is turned off), so that the LED or the LED group can be lit with high luminance.
  • the detection of the drive current by the current detection resistor triggers the FET to be turned off, the latter operates later than the former.
  • This delay operation realizes high luminance even at a low voltage and a large current, that is, at a low applied voltage. Furthermore, since the on-resistance value of the FET is generally smaller than the on-resistance value of the transistor, the former generates less heat than the latter even when the same current is applied. Further, in order to light the LED or the LED group with direct current, a power transformer, a large-capacity capacitor, and the like are required, but the drive circuit of claim 5 does not require such a thing. The drive circuit can be reduced in size because it is not needed.
  • the gate resistance Has a bypass path connected in parallel, the bypass path includes a diode directed forward to the FET, and a bypass resistor connected in series to the diode, and the value of the bypass resistance is It is set smaller than the value of the gate resistance.
  • the value of the bypass resistor depends on the value of the gate resistance depending on the difference between the two resistance values.
  • the gate current is at least half of the FET gate current, or if the difference between the two resistances is large, most of the gate current during charge charging flows through the bypass resistor. Since the discharge direction is opposite to that of the diode, the electric charge is discharged only through the gate resistance, and the discharge through the bypass resistance is impossible. Since the value of the bypass resistor is smaller than the value of the gate resistor, The charging of the FET via the former takes less time than the discharging of the FET via the latter. By shortening the charging time, the FET can be turned on at a low output voltage, and the heat generated by the FET can be reduced accordingly.
  • the LED drive circuit according to the invention of claim 7 (hereinafter, appropriately referred to as “the drive circuit of claim 7”) has a basic configuration of the drive circuit of claim 6, and the gate resistance is provided with the FET. It is preferable that a diode in the reverse direction is connected in series.
  • the gate current at the time of charge charging flows only through the bypass resistor, and the charge discharge is good This is done only through the resistor. Therefore, the charge charging to the FET and the charge discharging from the FET are independent of each other, and as a result, the gate resistance and the bypass resistance can be easily designed.
  • the LED drive circuit according to the present invention it is possible to drive the LED with high luminance while suppressing heat generation while being small.
  • FIG. 1 is a circuit diagram of an LED drive circuit (hereinafter, appropriately referred to as “drive circuit”) according to the first embodiment.
  • FIG. 2 is a diagram illustrating waveforms of a rectified voltage and a drive current of the drive circuit according to the first embodiment.
  • FIG. 3 is a circuit diagram of a drive circuit according to the second embodiment.
  • FIG. 4 is a diagram illustrating a waveform of a drive current of the drive circuit according to the second embodiment.
  • FIG. 5 is a circuit diagram of a drive circuit according to the third embodiment. 6 and 7 are circuit diagrams of a drive circuit according to the fourth embodiment.
  • FIG. 8 is a circuit diagram of a drive circuit according to the fifth embodiment.
  • FIG. 9 is a circuit diagram of another drive circuit according to the fifth embodiment.
  • the drive circuit 1 includes a rectifier circuit (AC power supply rectifier circuit) 3, an LED (light emitting element) 5, an FET (field effect transistor) 7, a current detection resistor R2, and a FET control circuit 11.
  • Rectifier circuit 3 is connected to AC power supply E on the input side.
  • AC power source E is generally a commercial power source (for example, 100V-220V, 50Hz-60Hz). However, an AC power source other than the commercial power source can be used.
  • a power source using a single-phase AC of 100V50HZ as a power source may be a three-phase AC source or the like.
  • the rectifier circuit 3 is configured as a full-wave bridge type, but may be configured as a rectifier circuit such as a half-wave rectifier type.
  • the LED 5 in the first embodiment a large-current high-output LED having a forward voltage of 3.42 V and a forward current of 350 mA was used. LEDs with ratings other than the above can also be used.
  • the color of the LED 5 is white because the drive circuit 1 is mainly used for lighting. It is not necessary to use a color other than white, depending on the taste or application.
  • the driving circuit 1 drives only one LED5. Driving a plurality of LEDs will be described later.
  • the LED 5 has an anode terminal 5a and a force source terminal 5k. The former is connected to the rectification output terminal 3b (+), and the latter is connected to the drain terminal 7d of the FET 7.
  • the heat generated by the drive circuit 1 is relatively small, it is needless to say that a radiator plate or the like for supporting the use environment such as the ambient temperature of the drive circuit 1 can be added to the LED 5 as necessary. .
  • FET7 the power that a P-channel FET can also be used
  • an N-channel MOS type FET is used.
  • the FET 7 has a source terminal 7s and a gate terminal 7g serving as a control electrode, in addition to the drain terminal 7d described above.
  • the source terminal 7s is connected to one end of the current detection resistor R2 via the connection point S1, and the other end of the current detection resistor R2 is connected to the rectification output terminal 3b (-).
  • the gate terminal 7g is connected to the FET control circuit 11 (emitter terminal 13e of the transistor 13) via the gate resistor R4, and the FET 7 controls the driving current of the LED 5 in accordance with the signal applied to the gate terminal 7g.
  • a field effect transistor suitable for the FET 7 is, for example, 2SK 2914 force S.
  • This 2SK2914f has a standard on-resistance of 0.42 ⁇ for standard S and 0.5 ⁇ at the maximum.
  • the FET control circuit 11 includes a PNP transistor 13, an NPN transistor 15, a resistor R3 And a resistor R5.
  • the resistor R3 is connected between the rectified output terminal 3b (+) of the rectifier circuit 3 and the emitter terminal 13e of the transistor 13, and the resistor R5 is connected to the emitter terminal 13e of the transistor 13 and the base terminal of the transistor 13. 13b.
  • the base terminal 13b of the transistor 13 is connected to the collector terminal 15c of the transistor 15.
  • the collector terminal 13c of the transistor 13 is connected to the base terminal 15b of the transistor 15.
  • the emitter terminal 15e of the transistor 15 is connected to one rectification output terminal 3b (-).
  • the base terminal 15b of the transistor 15 is connected to the connection point S1 via the resistor R1.
  • connection point S2 coincides with the emitter terminal 13e.
  • the alternating current supplied from the AC power supply E to the rectifier circuit 3 via the power supply connection terminals 3a, 3a is full-wave rectified by the rectifier circuit 3.
  • the waveform of the output voltage e between the rectification output terminals 3b (+) and 3b (—) of the rectifier circuit 3 is a waveform in which half cycles of a sine wave are arranged as shown in FIG.
  • the output voltage e is applied to both the anode terminal 5 a of the LED 5 and the FET control circuit 11.
  • the FET control circuit 11 to which the output voltage e is applied applies the control voltage to the gate resistor R4.
  • the output voltage e is applied to the gate terminal 7g of the FET 7 via the resistor R3 of the FET control circuit 11 and the gate resistor R4 for applying the control voltage.
  • the gate current does not flow, but as the output voltage e increases, the gate current flows and charges the gate region of the FET7, and the control voltage further rises to lower the threshold voltage of the FET7.
  • the potential of the gate terminal 7g in the ON state is maintained at a potential higher than the threshold voltage Vth due to charge.
  • the drive current i that has passed through the LED 5 is the force flowing through the current detection resistor R2.
  • the potential of the connection point S1 between the FET 7 and the current detection resistor R2 and the rectified output terminal 3b (-) of the current detection resistor R2 Since a potential difference occurs between the potential and the potential due to the voltage drop, the potential of the connection point S1 of the current detection resistor R2 is higher than the potential of the rectified output terminal 3b ( ⁇ ) of the current detection resistor R2.
  • the generation of a potential difference at the connection point S1 serves as a trigger, and a base current flows through the resistor R1 to the base terminal 15b of the transistor 15 to turn on the transistor 15.
  • the FET control circuit 11 in the first embodiment turns on the LED 5 by driving the drive current i when the FET 7 is turned on, and turns off the FET 7 when the drive current i is detected by the current detection resistor R2.
  • the power to turn off the LED 5 is not turned off almost at the same time as the detection of the drive current i, but rather is delayed by charge discharge.
  • the transistor can charge less than the FET, so when the gate voltage drops below the threshold voltage, the transistor turns off and the drive current is interrupted. (Indicated by i 'in Figure 2).
  • the gate region is charged, and the charge is discharged, thereby delaying the turning off of the FET.
  • the FET causes an extra drive current to flow than the transistor. That is, the brightness of the LED is increased.
  • the amount of heat generated can be reduced significantly as compared with the case where the drive current always flows by turning on and off the FET7.
  • the on-resistance of the FET is lower than that of the transistor, even if the same drive current is applied, the heat generated by the FET can be suppressed by the lower on-resistance.
  • the drive circuit 21 according to the second embodiment is different from the drive circuit 1 according to the first embodiment in that the LED 5 having only the latter is connected to the plurality of LEDs 5, which are connected in series. LED group 5 consisting of Therefore, the following description focuses on the differences between the drive circuit 21 and the drive circuit 1, and the same reference numerals as those used in FIG. 1 can be used in FIG. 3 for common parts. Descriptions thereof will be omitted as much as possible.
  • the waveform of the driving current shown in FIG. 4A is a waveform when one LED is used, and is almost the same as the waveform of the driving current shown in FIG.
  • FIG. 4 (a) is a diagram for comparison with a case where a plurality of LEDs are connected.
  • the waveform of the drive current shown in FIG. 4 (b) is a waveform for two LEDs
  • the waveform of the drive current shown in FIG. 4 (c) is a waveform for three LEDs.
  • the waveform of the drive current shown in Fig. 4 is obtained when the current detection resistor R2 is set to 2 ⁇ .
  • One scale on the vertical axis is 250 mA
  • one scale on the horizontal axis is 2 mS. Is shown.
  • the drive circuit 21 shown in FIG. 3 has an LED group 5 composed of three LEDs connected in series.
  • the number of LEDs 5 does not prevent two or four or more LEDs 5 depending on the use of the drive circuit 21 and the like.
  • a voltage equal to n times the forward voltage of each LED is required. Therefore, if three LEDs 5 are connected in series, the forward voltage of each LED 5 ( At least a voltage equal to three times the LED voltage) is required.
  • a single LED5 requires a forward voltage for one LED, and two LEDs require a forward voltage equal to two forward voltages.
  • the forward voltage of LED5 is 3.42V, so if it is one LED it is 3.42V, if it is two it is 6.84 (3.42 X 2) V, if it is three it is 10.26 ( 3. At least a voltage of 42 x 3) V is required.
  • LED5 has a stronger waveform with two LED5's (Fig. 4 (b)) than a single waveform (Fig. 4 (a)).
  • the LED5 has three waveforms (Fig. 4 (c)).
  • the single-peak waveform has a higher height. That is, it can be seen that the current amount increases almost in proportion to the increase rate as the number of LEDs 5 increases. This indicates that according to the drive circuit 21, the brightness of each LED 5 when a plurality of LEDs 5 are connected in series is higher than the brightness when a single LED 5 is connected. By connecting multiple LEDs 5, each LED 5 Assuming that the brightness is significantly lower than the brightness when only one LED 5 is turned on, a device using many LEDs is not suitable.
  • the drive circuit 21 can be suitably used for a device having a large number of LEDs, for example, an illuminator for the reasons described above.
  • the LED group 5 in the second embodiment is formed by connecting a plurality of LEDs 5 in series.However, one or more LEDs 5 are connected in parallel with some or all of the LEDs 5 connected in series. That is, it can be composed of a plurality of LEDs arranged in series and parallel.
  • the drive circuit 31 according to the third embodiment differs from the drive circuit 1 according to the first embodiment in the connection position of the LED 5. For this reason, the following description focuses on the differences between the driving circuit 31 and the driving circuit 1, and the parts common to both are denoted by the same reference numerals as those used in FIG. 1 in FIG. The explanation is omitted as much as possible.
  • the LED 5 of the drive circuit 1 is connected to the rectified output terminal 3 b (+) and the drain terminal 7 d of the FET 7. And the current detection resistor R2. Specifically, the anode terminal 5a of the LED 5 is connected to the source terminal 7s, the power source terminal 5k is connected to the FET7 side terminal of the current detection resistor R2, and the rectification output terminal 3b (+) Is connected to one end of the resistor R3 of the FET control circuit 11.
  • the operation and effect of the drive circuit 31 are basically different from the operation and effect of the drive circuit 1. The difference between the case where the LED5 is located upstream of the FET7 and the case where the LED5 is located downstream is also seen from the direction of the drive current i. There is only.
  • a plurality of LEDs connected in series or in series / parallel can also be connected in the drive circuit 31. Note that, even when a plurality of LEDs are connected in series or in series / parallel in the drive circuit 31, the brightness of each LED 5 is lower than the brightness of a single LED 5 as in the drive circuit 21 according to the above-described second embodiment. The increase is almost constant.
  • the drive circuit 41 according to the fourth embodiment differs from the drive circuit 1 according to the first embodiment in the connection position of the LED 5. For this reason, the following description focuses on the differences between the drive circuit 41 and the drive circuit 1 and focuses on the parts common to both.
  • FIG. 6 the same reference numerals as those used in FIG. 1 are used, and the description thereof is omitted as much as possible.
  • the LED 5 in the drive circuit 41 is connected to the rectified output terminal 3b (+) and one end of the resistor R3 of the FET control circuit 11. Specifically, the anode terminal 5a of the LED 5 is connected to the rectified output terminal 3b (+), and the force source terminal 5k is connected to one end of the resistor R3.
  • the output terminal e is applied to the drain terminal 7d and the FET control circuit 11 via the LED5 to the drain terminal 7d and the FET control circuit 11 to the force source terminal 5k. ing.
  • the operation and effect of the drive circuit 41 are basically different from the operation and effect of the drive circuit 1 except that the voltage applied to the FET control circuit 11 is reduced by the LED 5.
  • a plurality of LEDs connected in series or in series / parallel can be connected. Note that even when a plurality of LEDs are connected in series or in series / parallel in the drive circuit 41, the brightness of each LED 5 is greater than the brightness of a single LED 5 as in the drive circuit 21 according to the above-described second embodiment. What you do is almost constant.
  • the LED 5 of the driving circuit 41 shown in FIG. 6 is a power connected between the rectification output terminal 3b (+) and one end of the resistor R3 of the FET control circuit 11 as described above. It can also be placed on the terminal 3b (1) side. That is, as shown in Fig. 7, the rectification output terminal 3b (-) is connected to the power source terminal 5k of ED5, and the anode terminal 5a of LED5 is connected to the source terminal 7s of FET7 via the current detection resistor R2. .
  • the rectified output terminal 3b (+) is directly connected to the drain terminal 7d of FET7 and one end of the resistor R3.
  • the driving circuit 51 according to the fifth embodiment is structurally different from the driving circuit 1 according to the first embodiment in the connection method between the FET 7 and the FET control circuit 11. For this reason, the following description focuses on the differences between the driving circuit 51 and the driving circuit 1, and the parts common to both are denoted by the same reference numerals as those used in FIG. 1 in FIGS. 8 and 9. Description thereof will be omitted as much as possible.
  • bypass path 23 is composed of a diode D1 in the forward direction toward the FET 7 and a bypass resistor R6 connected in series to the diode D1.
  • the value of the bypass resistor R6 is set smaller than the value of the gate resistor R4 '. For example, if the no-pass resistance R6 is 300 ⁇ , the gate resistance R4 'is about 1 ⁇ .
  • the value of the bypass resistor R6 is set to be smaller than the value of the good resistor R4 'so that the gate current mainly flows through the bypass resistor R6, and the electric charge from the gate terminal 7g discharges only the gate resistor R4'. This is to make it flow.
  • the gate current is the force S flowing through both the bypass resistor R6 and the gate resistor R4 ', and the resistance of the former is smaller than the resistance of the latter (diode D1).
  • the internal resistance is negligible), and the gate current mainly flows through the bypass resistor R6.
  • the direction of the charge discharge is opposite to the direction of the diode D1, so that the charge discharge flows exclusively through the gate resistor R4 'without flowing through the bypass path 23. Since the value of the bypass resistor R6 is smaller than the value of the gate resistor R4 ', by appropriately setting the value of the resistor R3, the charge of the FET 7 can be performed in a shorter time than the charge discharge. Reducing the charging time turns on the FET at a lower output voltage, which reduces the heat generated by the FET. The same effect can be obtained even if the relative position between the diode D1 and the bypass resistor R6 is reversed from that shown in FIG. 8 and the bypass resistor R6 is set closer to the FET7 than the diode D1.
  • a diode D2 in the reverse direction can be connected to the FET 7 in series with the gate resistor.
  • the gate current is prevented from flowing through the gate resistor R4 '. Therefore, the charging of the FET 7 and the discharging of the FET 7 are independent of each other, and as a result, the gate resistor R4 ′ and the bypass resistor R6 can be easily designed.
  • the above-described bypass path 23 and also D2 may employ the drive circuits 1, 21, 31, 41, and 41 according to the first to fourth embodiments.
  • FIG. 1 is a circuit diagram of a drive circuit according to a first embodiment.
  • FIG. 2 is a diagram showing waveforms of a rectified voltage and a drive current of the drive circuit according to the first embodiment.
  • Garden 3] is a circuit diagram of a drive circuit according to a second embodiment.
  • FIG. 4 is a diagram showing a waveform of a drive current of a drive circuit according to a second embodiment.
  • FIG. 5 is a circuit diagram of a drive circuit according to a third embodiment.
  • FIG. 7 is a circuit diagram of a drive circuit according to a fourth embodiment.
  • FIG. 9 is a circuit diagram of another drive circuit according to the fifth embodiment.

Abstract

[PROBLEMS] To provide an LED driver circuit that is small-sized but capable of driving an LED to exhibit a higher brightness with its heating suppressed. [MEANS FOR SOLVING PROBLEMS] In an LED driver circuit (1), an LED (5) is connected between the plus output side of an AC power supply rectifier circuit (3) and an FET (7), and a detection resistor (R2) for detecting a drive current is connected between the FET and the minus output side of the AC power supply rectifier circuit (3). An FET control circuit (11) applies a control voltage to the gate terminal (7g) to turn on the FET, while causing, in response to a drive current detection of the detection resistor, the control voltage to drop below a threshold voltage of the FET, thereby causing the FET to discharge. This discharging maintains the on-state of the FET, meanwhile the drive current continues to flow, whereby the higher brightness of the LED can be realized.

Description

明 細 書  Specification
LED駆動回路  LED drive circuit
技術分野  Technical field
[0001] 本発明は、たとえば、 1W以上の高出力大電流発光ダイオードを商用交流電源で 駆動するための発光ダイオードの駆動回路に関する。  The present invention relates to a light-emitting diode drive circuit for driving a high-output, high-current light-emitting diode of, for example, 1 W or more with a commercial AC power supply.
背景技術  Background art
[0002] 街路照明、スポットライト、誘導灯等の照明装置に好適な発光ダイオード (本明細書 において、単に「LED」という)は、これを商用交流電源で駆動する主な方式として、 次の 3つの方式がある。第 1の方式は、交流を直流に変換し、変換して得た直流によ つて LEDを駆動する方式である。しかし、この第 1の方式によれば、交流を直流に変 換するためには電源トランスゃ大容量コンデンサ等を必要とするため電源が大型化 してしまう。したがって、 LEDを用いた照明装置を小型化することが難しい。さらに、 変換によるロスが生じるため、照明装置全体の消費電力も大きくなつてしまう。第 2の 方式は、図 10に示すように、整流回路 103によって整流した整流電流によって LED 105を駆動する方式である。 LEDには、破損防止のための電流制限抵抗 107を直 列に接続してある。第 2の方式によれば、電流を常時流した状態で使用する必要が あるため電流制限抵抗の発熱量が多くなつてしまうという問題があった。そこで、第 3 の方式として本願出願人は、交流を整流するための整流回路と、スイッチング素子と して機能するトランジスタと、を用レ、、整流回路の出力における 1つの半波において 駆動電流をオン'オフさせる LED駆動回路を提案した(特許文献 1参照)。第 3の方 式によれば、トランジスタをオンさせたときに流れる LEDの駆動電流を検知したのを 受けてトランジスタのベース電圧を降下させ、この降下によってこのトランジスタをオフ させるようになつている。オフさせることによって、駆動電流を常時流す必要がなくなり 、発熱量を少なくするためである。  [0002] Light-emitting diodes (hereinafter simply referred to as "LEDs") suitable for lighting devices such as street lighting, spotlights, and guide lights are mainly driven by a commercial AC power supply. There are two methods. The first method is to convert AC into DC and drive the LED with the converted DC. However, according to the first method, the power supply becomes large because a power transformer, a large-capacity capacitor, and the like are required to convert AC into DC. Therefore, it is difficult to reduce the size of a lighting device using LEDs. Further, since the conversion causes a loss, the power consumption of the entire lighting device also increases. The second method is a method in which the LED 105 is driven by a rectified current rectified by the rectifier circuit 103, as shown in FIG. The LED has a current limiting resistor 107 connected in series to prevent damage. According to the second method, there is a problem that the amount of heat generated by the current limiting resistor increases because it is necessary to use the current flowing constantly. Thus, as a third method, the applicant of the present application uses a rectifier circuit for rectifying AC and a transistor that functions as a switching element, and generates a drive current in one half wave at the output of the rectifier circuit. An LED drive circuit that turns on and off has been proposed (see Patent Document 1). According to the third method, the base voltage of the transistor is reduced in response to detecting the drive current of the LED flowing when the transistor is turned on, and the transistor is turned off by the drop. By turning it off, there is no need to constantly supply a drive current, and the amount of generated heat is reduced.
特許文献 1 :特許第 3122870号掲載公報  Patent Document 1: Japanese Patent Publication No. 3122870
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0003] 上述の第 3の方式によれば、比較的小型であり、かつ、発熱が比較的少ない利点を 持った LED駆動回路を提供することができる。しかし、近年において、高輝度化の要 望を満たすために 1W以上の高出力大電流の LEDが供給されるようになった。これ に伴って、たとえば、 300mAの電流を LEDに流す場合がある。し力、し、第 3の方式 のまま 300mA以上の電流を流すと、オン抵抗の関係からトランジスタの発熱が無視 できなくなる。高輝度化を図るために電流量を増やせば増やすほど、この発熱量が 多くなつてしまう。このため、第 3の方式には、発熱を抑えながら大電流を流すための 改良が望まれていた。本発明が解決しょうとする課題は、上述の第 3の方式が持つ利 点を損なうことなぐこれに改良を加えることで、小型でありながら、たとえば、商用電 源で 1W以上の高出力大電流 LEDの発熱を抑えた上で高輝度に駆動可能な LED 駆動回路を提供することにある。 Problems the invention is trying to solve [0003] According to the above-described third method, it is possible to provide an LED drive circuit that is relatively small and has an advantage of generating relatively little heat. However, in recent years, high-output and high-current LEDs of 1 W or more have been supplied in order to meet the demand for higher brightness. Accordingly, for example, a current of 300 mA may flow through the LED. If a current of 300 mA or more is passed in the third method, the heat generation of the transistor cannot be ignored due to the on-resistance. The more the current is increased in order to achieve higher luminance, the greater the amount of generated heat. For this reason, there has been a demand for an improvement in the third method for flowing a large current while suppressing heat generation. The problem to be solved by the present invention is to improve the above-mentioned third method without impairing the advantages of the third method. An object of the present invention is to provide an LED drive circuit capable of driving a high brightness while suppressing heat generation of the LED.
課題を解決するための手段  Means for solving the problem
[0004] 上述した課題を解決するために本発明は、次の構成を備えている。なお、何れかの 請求項に係る発明の説明に当って行う用語の定義等は、その性質上可能な範囲に おいて他の請求項に係る発明にも適用があるものとする。  [0004] In order to solve the above-described problems, the present invention has the following configuration. It should be noted that the definition of terms used in the description of the invention claimed in any one of the claims shall apply to the invention claimed in the other claims as far as its nature allows.
[0005] (請求項 1に記載した発明の特徴)  [0005] (Characteristics of the invention described in claim 1)
請求項 1に記載した発明に係る LED駆動回路 (以下、適宜「請求項 1の駆動回路」 という)は、 1個の LEDを駆動するための回路である。複数個の LEDを駆動するため の回路については後述する。具体的には、入力側に電源接続端子を有する交流電 源整流回路と、当該交流電源整流回路のプラス出力側にアノード端子を接続した 1 個の LEDと、当該 LEDの力ソード端子に接続した当該 LED又の駆動電流をオン 'ォ フするための FETと、当該 FETを通過した駆動電流を検出するために当該 FETと当 該交流電源整流回路のマイナス出力側との間に配した電流検出抵抗と、当該 FET のゲート端子に、ゲート抵抗を介して接続した当該 FETを制御するための FET制御 回路と、を含ませて構成してある。そして、当該 FET制御回路が、当該交流電源整 流回路のプラス出力側から印加された整流電圧の上昇に伴い当該ゲート端子にスレ ッシュホールド電圧を超えるゲート電圧を印加するための制御電圧を当該ゲート抵抗 に印加して当該 FETをオンさせ、かつ、当該電流検出抵抗が所定値を超えた駆動 電流を検出したことを受けて当該制御電圧を当該スレッシュホールド電圧未満の電 圧まで降下させ当該ゲート端子からの電荷放電を促すことによって当該 FETを遅延 オフさせるように構成してある。すなわち、 LEDのアノード端子及び FET制御回路の 両者が交流電源整流回路のプラス出力側に接続してあり、 LEDの力ソード端子が F ETに接続してある。 The LED driving circuit according to the invention described in claim 1 (hereinafter, appropriately referred to as “the driving circuit of claim 1”) is a circuit for driving one LED. A circuit for driving a plurality of LEDs will be described later. Specifically, an AC power supply rectifier circuit having a power supply connection terminal on the input side, one LED with an anode terminal connected to the positive output side of the AC power supply rectification circuit, and an LED connected to the power source terminal of the LED. A FET for turning on or off the drive current of the LED or a current detection resistor placed between the FET and the minus output side of the AC power supply rectifier circuit to detect the drive current passed through the FET. And a FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor. Then, the FET control circuit applies a control voltage for applying a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the plus output side of the AC power supply rectification circuit rises, to the gate resistor. To turn on the FET and drive the current detection resistor beyond the specified value. In response to the detection of the current, the control voltage is reduced to a voltage lower than the threshold voltage and the discharge of the gate terminal is accelerated to delay off the FET. That is, both the anode terminal of the LED and the FET control circuit are connected to the positive output side of the AC power supply rectifier circuit, and the power source terminal of the LED is connected to FET.
[0006] 請求項 1の駆動回路によれば、整流電圧の上昇により FET制御回路がゲート抵抗 に制御電圧を印加し、これによつて、ゲート電圧がスレッシュホールド電圧を超えたと ころで FETがオンする。オンすることによって、整流電圧が印加されている LEDに駆 動電流が流れ、これによつて LEDが点灯する。駆動電流は電流検出抵抗によって検 出され、この検出を受けた FET制御回路は制御電圧を降下させる。この降下によつ て、ゲート抵抗の FET制御回路側の電位が、同じくゲート端子側の電位よりも低くな る。これにより、充電されていた電荷がゲート端子からゲート抵抗を介して放電され、 放電に伴ってゲート電圧が低下する。ゲート電圧が低下してスレッシュホールド電圧 を下回ったところで FETがオフになり、これによつて LEDが消灯する。すなわち、電 荷放電によりゲート電圧がスレッシュホールド電圧に至るまで(FETがオフになるまで )の間も駆動電流が流れるため LEDを高輝度で点灯させることができる。このように、 電流検出抵抗による駆動電流の検出がトリガーとなって FETをオフさせるので、後者 が前者より遅延して動作することになる。この遅延動作が、低電圧大電流、すなわち 、印加する電圧が低くても高輝度化を実現させる。さらに、 FETのオン抵抗の値がト ランジスタのオン抵抗の値に比べて一般的に小さいため、同じ電流を流したとしても 前者の方が後者よりも発熱量が少ない。また、 LEDを直流で点灯させるためには、電 源トランスゃ大容量コンデンサ等が必要であるが、請求項 1の駆動回路はそのような ものを必要としなレ、。必要としない分、駆動回路を小型化することができる。  [0006] According to the drive circuit of claim 1, the FET control circuit applies a control voltage to the gate resistor due to the rise of the rectified voltage, and the FET is turned on when the gate voltage exceeds the threshold voltage. I do. When the LED is turned on, a drive current flows through the LED to which the rectified voltage is applied, and the LED lights up. The drive current is detected by the current detection resistor, and the FET control circuit that receives this detection drops the control voltage. Due to this drop, the potential of the gate resistance on the FET control circuit side becomes lower than the potential on the gate terminal side. As a result, the charged electric charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge. When the gate voltage drops below the threshold voltage, the FET turns off, which turns off the LED. In other words, the drive current flows even until the gate voltage reaches the threshold voltage due to charge discharge (until the FET is turned off), so that the LED can be turned on with high brightness. In this way, the detection of the drive current by the current detection resistor triggers the FET to be turned off, so that the latter operates with a delay from the former. This delay operation realizes high brightness even at a low voltage and a large current, that is, even when the applied voltage is low. Furthermore, since the on-resistance value of the FET is generally smaller than the on-resistance value of the transistor, the former generates less heat than the latter even when the same current flows. In addition, in order to light the LED with direct current, a power transformer, a large-capacity capacitor, and the like are required, but the drive circuit of claim 1 does not require such a thing. The drive circuit can be reduced in size because it is not needed.
[0007] (請求項 2に記載した発明の特徴)  [0007] (Characteristics of the invention described in claim 2)
請求項 2に記載した発明に係る LED駆動回路 (以下、適宜「請求項 2の駆動回路」 という)は、複数個の LEDを直列接続してなる LED群を駆動するための回路である。 具体的には、入力側に電源接続端子を有する交流電源整流回路と、当該交流電源 整流回路のプラス出力側にアノード端子を接続した複数の LEDを直列接続してなる LED群と、当該 LED群の力ソード端子に接続した当該 LED群の駆動電流をオン'ォ フするための FETと、当該 FETを通過した駆動電流を検出するために当該 FETと当 該交流電源整流回路のマイナス出力側との間に配した電流検出抵抗と、当該 FET のゲート端子に、ゲート抵抗を介して接続した当該 FETを制御するための FET制御 回路と、を含ませて構成してある。そして、当該 FET制御回路が、当該交流電源整 流回路のプラス出力側から印加された整流電圧の上昇に伴い当該ゲート端子にスレ ッシュホールド電圧を超えるゲート電圧を印加するための制御電圧を当該ゲート抵抗 に印加して当該 FETをオンさせ、かつ、当該電流検出抵抗が所定値を超えた駆動 電流を検出したことを受けて当該制御電圧を当該スレッシュホールド電圧未満の電 圧まで降下させ当該ゲート端子からの電荷放電を促すことによって当該 FETを遅延 オフさせることによって、当該 LED群を構成する LEDの個数増加にほぼ比例して駆 動電流を増加可能に構成してある。すなわち、 LED群のアノード端子及び FET制御 回路の両者が交流電源整流回路のプラス出力側に接続してあり、 LED群の力ソード 端子が FETに接続してある。 The LED driving circuit according to the invention described in claim 2 (hereinafter, appropriately referred to as “driving circuit of claim 2”) is a circuit for driving an LED group formed by connecting a plurality of LEDs in series. Specifically, an AC power supply rectifier circuit having a power supply connection terminal on the input side and a plurality of LEDs connected to the anode terminal on the positive output side of the AC power supply rectifier circuit are connected in series. An LED group, a FET connected to the power source terminal of the LED group for turning on and off the drive current of the LED group, and a FET and the AC power supply for detecting the drive current passing through the FET. A current detection resistor arranged between the rectifier circuit and the negative output side, and a FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor are included. is there. Then, the FET control circuit applies a control voltage for applying a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the plus output side of the AC power supply rectification circuit rises, to the gate resistor. To turn on the FET, and when the current detection resistor detects the drive current exceeding the predetermined value, the control voltage is reduced to a voltage lower than the threshold voltage, and the voltage is reduced from the gate terminal. By driving off the FET by promoting electric charge discharge, the driving current can be increased almost in proportion to the increase in the number of LEDs constituting the LED group. That is, both the anode terminal of the LED group and the FET control circuit are connected to the positive output side of the AC power supply rectifier circuit, and the power source terminal of the LED group is connected to the FET.
請求項 2の駆動回路によれば、整流電圧の上昇により FET制御回路がゲート抵抗 に制御電圧を印加し、これによつて、ゲート電圧がスレッシュホールド電圧を超えたと ころで FETがオンする。オンすることによって、整流電圧が印加されている LED群に 駆動電流が流れ、これによつて LED群が点灯する。駆動電流は電流検出抵抗によ つて検出され、この検出を受けた FET制御回路は制御電圧を降下させる。この降下 によって、ゲート抵抗の FET制御回路側の電位が、同じくゲート端子側の電位よりも 低くなる。これにより、充電されていた電荷がゲート端子からゲート抵抗を介して放電 され、放電に伴ってゲート電圧が低下する。ゲート電圧が低下してスレッシュホールド 電圧を下回ったところで FETがオフになり、これによつて LED群が消灯する。すなわ ち、電荷放電によりゲート電圧がスレッシュホールド電圧に至るまで(FETがオフにな るまで)の間も駆動電流が流れ、この駆動電流は LEDの個数増加にほぼ比例して増 加するため LED群を高輝度で点灯させることができる。つまり、たとえば、 2個の LED を直列接続したときの駆動電流と 3個の LEDを直列接続したときの駆動電流とを比 較すると、 3個接続したときのほうが 2個接続したときよりも駆動電流が増加する。上述 したように電流検出抵抗による駆動電流の検出がトリガーとなって FETをオフさせる ので、後者が前者より遅延して動作することになる。この遅延動作が、低電圧大電流 、すなわち、印加する電圧が低くても高輝度化を実現させる。さらに、 FETのオン抵 抗の値がトランジスタのオン抵抗の値に比べて一般的に小さいため、同じ電流を流し たとしても前者の方が後者よりも発熱量が少なレ、。また、 LEDを直流で点灯させるた めには、電源トランスゃ大容量コンデンサ等が必要であるが、請求項 2の駆動回路は そのようなものを必要としなレ、。必要としない分、駆動回路を小型化することができる (請求項 3に記載した発明の特徴) According to the drive circuit of the second aspect, the FET control circuit applies the control voltage to the gate resistor due to the rise of the rectified voltage, and thereby, the FET is turned on when the gate voltage exceeds the threshold voltage. When turned on, a drive current flows through the LED group to which the rectified voltage is applied, and the LED group is turned on. The drive current is detected by the current detection resistor, and the FET control circuit that receives this detection drops the control voltage. Due to this drop, the potential of the gate resistance on the FET control circuit side becomes lower than the potential on the gate terminal side. As a result, the charged charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge. When the gate voltage falls below the threshold voltage, the FET turns off and the LEDs turn off. In other words, the drive current flows until the gate voltage reaches the threshold voltage (until the FET turns off) due to charge discharge, and this drive current increases almost in proportion to the increase in the number of LEDs. The LED group can be turned on with high brightness. In other words, for example, when comparing the drive current when two LEDs are connected in series and the drive current when three LEDs are connected in series, the drive current when three LEDs are connected is greater than when two LEDs are connected. The current increases. Above As described above, the detection of the drive current by the current detection resistor triggers the FET to be turned off, so that the latter operates with a delay from the former. This delay operation realizes high luminance even at a low voltage and a large current, that is, even when the applied voltage is low. In addition, since the on-resistance value of the FET is generally smaller than the on-resistance value of the transistor, the former generates less heat than the latter even if the same current is applied. In order to light the LED with direct current, a power transformer and a large-capacity capacitor are required. The drive circuit can be reduced in size because it is not needed (the feature of the invention described in claim 3).
請求項 3に記載した発明に係る LED駆動回路 (以下、適宜「請求項 3の駆動回路」 という)は、 1個の LED、又は、直列若しくは直並列接続してなる LED群を駆動する ための回路である。具体的には、入力側に電源接続端子を有する交流電源整流回 路と、 1個の LED、又は、直列若しくは直並列接続してなる LED群と、当該 LED又は 当該 LED群のアノード端子と当該交流電源整流回路のプラス出力側との間に接続 した当該 LED又は当該 LED群の駆動電流をオン ·オフするための FETと、当該 LE D又は当該 LED群を通過した駆動電流 (FETを通過した駆動電流)を検出するため に当該 LED又は当該 LED群の力ソード端子と当該交流電源整流回路のマイナス出 力側との間に配した電流検出抵抗と、当該 FETのゲート端子に、ゲート抵抗を介して 接続した当該 FETを制御するための FET制御回路と、を含ませて構成してある。そ して、当該 FET制御回路が、当該交流電源整流回路のプラス出力側から印加された 整流電圧の上昇に伴い当該ゲート端子にスレッシュホールド電圧を超えるゲート電 圧を印加するための制御電圧を当該ゲート抵抗に印加して当該 FETをオンさせ、か つ、当該電流検出抵抗が所定値を超えた駆動電流を検出したことを受けて当該制御 電圧を当該スレッシュホールド電圧未満の電圧まで降下させ当該ゲート端子からの 電荷放電を促すことによって当該 FETを遅延オフさせるように構成してある。すなわ ち、 LED又は LED群のアノード端子が FETを介して交流電源整流回路のプラス出 力側に接続してあり、 LED又は LED群の力ソード端子が電流検出抵抗を介して交 流電源整流回路のマイナス出力側に接続してある。交流電源整流回路のプラス出力 側には、 FET制御回路が FETとともに接続してある。 The LED driving circuit according to the invention described in claim 3 (hereinafter referred to as “the driving circuit of claim 3”) is used to drive one LED or a group of LEDs connected in series or series / parallel. Circuit. Specifically, an AC power supply rectification circuit having a power supply connection terminal on the input side, a single LED, or an LED group connected in series or in series / parallel, an anode terminal of the LED or the LED group, and The FET connected between the positive output side of the AC power supply rectifier circuit and the FET for turning on / off the drive current of the LED or the LED group, and the drive current that has passed through the LED or the LED group (passed through the FET To detect the drive current), a gate resistor is connected to the current detection resistor placed between the power source terminal of the LED or LED group and the minus output side of the AC power supply rectifier circuit, and the gate terminal of the FET. And an FET control circuit for controlling the FET connected through the FET. Then, the FET control circuit applies a control voltage for applying a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the plus output side of the AC power supply rectifier circuit increases. The FET is turned on by applying the voltage to the gate resistor, and the control voltage is lowered to a voltage lower than the threshold voltage in response to the detection of the drive current exceeding the predetermined value by the current detection resistor, and the gate is turned off. The FET is configured to delay off by prompting charge discharge from the terminal. That is, the anode terminal of the LED or LED group is connected to the positive output side of the AC power supply rectifier circuit through the FET, and the power source terminal of the LED or LED group is connected to the AC power supply rectifier through the current detection resistor. Connected to the negative output side of the circuit. Positive output of AC power supply rectifier circuit On the side, the FET control circuit is connected together with the FET.
[0010] 請求項 3の駆動回路によれば、整流電圧の上昇により FET制御回路がゲート抵抗 に制御電圧を印加し、これによつて、ゲート電圧がスレッシュホールド電圧を超えたと ころで FETがオンする。オンすることによって、 FETを介して印加される整流電圧に よって LEDに駆動電流が流れ、これによつて LED又は LED群が点灯する。駆動電 流は電流検出抵抗によって検出され、この検出を受けた FET制御回路は制御電圧 を降下させる。この降下によって、ゲート抵抗の FET制御回路側の電位力 同じくゲ ート端子側の電位よりも低くなる。これにより、充電されていた電荷がゲート端子から ゲート抵抗を介して放電され、放電に伴ってゲート電圧が低下する。ゲート電圧が低 下してスレッシュホールド電圧を下回ったところで FETがオフになり、これによつて LE D又は LED群が消灯する。すなわち、電荷放電によりゲート電圧がスレッシュホール ド電圧に至るまで(FETがオフになるまで)の間も駆動電流が流れるため LED又は L ED群を高輝度で点灯させることができる。このように、電流検出抵抗による駆動電流 の検出がトリガーとなって FETをオフさせるので、後者が前者より遅延して動作するこ とになる。この遅延動作が、低電圧大電流、すなわち、印加する電圧が低くても高輝 度化を実現させる。さらに、 FETのオン抵抗の値がトランジスタのオン抵抗の値に比 ベて一般的に小さいため、同じ電流を流したとしても前者の方が後者よりも発熱量が 少ない。また、 LED又は LED群を直流で点灯させるためには、電源トランスゃ大容 量コンデンサ等が必要である力 請求項 3の駆動回路はそのようなものを必要としな レ、。必要としない分、駆動回路を小型化することができる。  [0010] According to the drive circuit of claim 3, the FET control circuit applies the control voltage to the gate resistor due to the rise of the rectified voltage, and the FET is turned on when the gate voltage exceeds the threshold voltage. I do. When the LED is turned on, a drive current flows through the LED due to the rectified voltage applied through the FET, thereby turning on the LED or the LED group. The drive current is detected by the current detection resistor, and the FET control circuit that receives this detection drops the control voltage. Due to this drop, the potential of the gate resistance on the FET control circuit side becomes lower than the potential on the gate terminal side. As a result, the charged electric charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge. When the gate voltage falls below the threshold voltage, the FET turns off, causing the LED or LED group to turn off. In other words, the drive current flows even until the gate voltage reaches the threshold voltage by charge discharge (until the FET is turned off), so that the LED or the LED group can be lit with high luminance. Thus, the detection of the drive current by the current detection resistor triggers the FET to be turned off, so that the latter operates with a delay from the former. This delay operation realizes high brightness even at low voltage and large current, that is, even when the applied voltage is low. Furthermore, since the on-resistance value of the FET is generally smaller than the on-resistance value of the transistor, the former generates less heat than the latter even at the same current. In addition, a power supply transformer and a large-capacity capacitor are required to light the LED or the LED group with direct current. The drive circuit according to claim 3 does not need such a thing. The drive circuit can be reduced in size because it is not needed.
[0011] (請求項 4に記載した発明の特徴)  [0011] (Characteristics of the invention described in claim 4)
請求項 4に記載した発明に係る LED駆動回路 (以下、適宜「請求項 4の駆動回路」 という)は、 1個の LED、又は、直列若しくは直並列接続してなる LED群を駆動する ための回路である。具体的には、入力側に電源接続端子を有する交流電源整流回 路と、当該交流電源整流回路のプラス出力側にアノード端子を接続した、 1個の LE D、又は、直列若しくは直並列接続してなる LED群と、当該 LED又は当該 LED群の 力ソード端子に接続した当該 LED又は当該 LED群の駆動電流をオン'オフするため の FETと、当該 FETを通過した駆動電流を検出するために当該 FETと当該交流電 源整流回路のマイナス出力側との間に配した電流検出抵抗と、当該 FETのゲート端 子に、ゲート抵抗を介して接続した当該 FETを制御するための FET制御回路と、を 含ませて構成してある。当該 FET制御回路が、当該交流電源整流回路のプラス出力 側から当該 LED又は当該 LED群を介して印加された整流電圧の上昇に伴い当該 ゲート端子にスレッシュホールド電圧を超えるゲート電圧を印加するための制御電圧 を当該ゲート抵抗に印加して当該 FETをオンさせ、かつ、当該電流検出抵抗が所定 値を超えた駆動電流を検出したことを受けて当該制御電圧を当該スレッシュホールド 電圧未満の電圧まで降下させ当該ゲート端子からの電荷放電を促すことによって当 該 FETを遅延オフさせるように構成してある。すなわち、 LED又は LED群のアノード 端子が交流電源整流回路のプラス出力側に接続してあり、 LED又は LED群のカソ ード端子が FET制御回路に接続してある。 The LED driving circuit according to the invention described in claim 4 (hereinafter referred to as “the driving circuit of claim 4” as appropriate) is used to drive one LED or a group of LEDs connected in series or series / parallel. Circuit. Specifically, an AC power supply rectification circuit with a power supply connection terminal on the input side, and one LED with an anode terminal connected to the positive output side of the AC power supply rectification circuit, or a series or series-parallel connection To turn on and off the drive current of the LED or LED group connected to the LED or the power source terminal of the LED group, and to detect the drive current passing through the FET The FET and the AC power It is configured to include a current detection resistor arranged between the negative output side of the power supply rectifier circuit and a FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor. I have. The FET control circuit applies a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the positive output side of the AC power supply rectifier circuit via the LED or the group of LEDs increases. The control voltage is applied to the gate resistor to turn on the FET, and the control voltage drops to a voltage lower than the threshold voltage when the current detection resistor detects the drive current exceeding the predetermined value. Then, the FET is delayed off by promoting electric charge discharge from the gate terminal. That is, the anode terminal of the LED or LED group is connected to the positive output side of the AC power supply rectifier circuit, and the cathode terminal of the LED or LED group is connected to the FET control circuit.
請求項 4の駆動回路によれば、 LED又は LED群を介して印加される整流電圧の 上昇により FET制御回路がゲート抵抗に制御電圧を印加し、これによつて、ゲート電 圧がスレッシュホールド電圧を超えたところで FETがオンする。オンすることによって 、整流電圧が印加されている LED又は LED群に駆動電流が流れ、これによつて LE D又は LED群が点灯する。駆動電流は電流検出抵抗によって検出され、この検出を 受けた FET制御回路は制御電圧を降下させる。この降下によって、ゲート抵抗の FE T制御回路側の電位が、同じくゲート端子側の電位よりも低くなる。これにより、充電さ れていた電荷がゲート端子からゲート抵抗を介して放電され、放電に伴ってゲート電 圧が低下する。ゲート電圧が低下してスレッシュホールド電圧を下回ったところで FE Tがオフになり、これによつて LED又は LED群が消灯する(しかし、実際には、 FET がオフ状態であっても LED又は LED群を通じて FET制御回路に僅かな駆動電流が 流れる)。すなわち、電荷放電によりゲート電圧がスレッシュホールド電圧に至るまで( FETがオフになるまで)の間も駆動電流が流れるため、 LED又は LED群を高輝度で 点灯させることができる。このように、電流検出抵抗による駆動電流の検出がトリガー となって FETをオフさせるので、後者が前者より遅延して動作することになる。この遅 延動作が、低電圧大電流、すなわち、印加する電圧が低くても高輝度化を実現させ る。さらに、 FETのオン抵抗の値がトランジスタのオン抵抗の値に比べて一般的に小 さいため、同じ電流を流したとしても前者の方が後者よりも発熱量が少ない。また、 L ED又は LED群を直流で点灯させるためには、電源トランスゃ大容量コンデンサ等が 必要であるが、請求項 4の駆動回路はそのようなものを必要としなレ、。必要としない分 、駆動回路を小型化することができる。 According to the drive circuit of claim 4, the FET control circuit applies the control voltage to the gate resistor due to the rise of the rectified voltage applied via the LED or the LED group, whereby the gate voltage becomes the threshold voltage. FET turns on when exceeds. When the LED is turned on, a drive current flows through the LED or the LED group to which the rectified voltage is applied, thereby turning on the LED or the LED group. The drive current is detected by the current detection resistor, and the FET control circuit that receives this detection drops the control voltage. Due to this drop, the potential of the gate resistance on the FET control circuit side becomes lower than the potential on the gate terminal side. As a result, the charged charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge. When the gate voltage falls below the threshold voltage, FET is turned off, which turns off the LED or LEDs (although in practice the LED or LEDs may be turned off even if the FET is off). A small drive current flows through the FET control circuit through the In other words, the drive current flows even until the gate voltage reaches the threshold voltage (until the FET is turned off) due to charge discharge, so that the LED or LED group can be lit with high luminance. As described above, since the detection of the drive current by the current detection resistor triggers the FET to be turned off, the latter operates with a delay from the former. This delay operation realizes high luminance even at a low voltage and a large current, that is, at a low applied voltage. In addition, the on-resistance of the FET is generally smaller than the on-resistance of the transistor. Therefore, even if the same current flows, the former generates less heat than the latter. Further, in order to light the LED or the LED group with direct current, a power transformer and a large-capacity capacitor are required, but the drive circuit of claim 4 does not need such a thing. The drive circuit can be reduced in size because it is not required.
[0013] (請求項 5記載の発明の特徴)  (Characteristics of the invention described in claim 5)
請求項 5に記載した発明に係る LED駆動回路 (以下、適宜「請求項 5の駆動回路」 という)は、 1個の LED、又は、直列若しくは直並列接続してなる LED群を駆動する ための回路である。具体的には、入力側に電源接続端子を有する交流電源整流回 路と、当該交流電源整流回路のマイナス出力側に力ソード端子を接続した、 1個の L ED、又は、直列若しくは直並列接続してなる LED群と、当該交流電源整流回路の プラス出力側に接続した当該 LED又は当該 LED群の駆動電流をオン ·オフするた めの FETと、当該 FETを通過した駆動電流を検出するために、当該 FETと当該 LE D又は当該 LED群のアノード端子との間に配した電流検出抵抗と、当該 FETのゲー ト端子に、ゲート抵抗を介して接続した当該 FETを制御するための FET制御回路と 、を含ませて構成してある。当該 FET制御回路が、当該交流電源整流回路のプラス 出力側から印加された整流電圧の上昇に伴い当該ゲート端子にスレッシュホールド 電圧を超えるゲート電圧を印加するための制御電圧を当該ゲート抵抗に印加して当 該 FETをオンさせ、かつ、当該電流検出抵抗が所定値を超えた駆動電流を検出した ことを受けて当該制御電圧を当該スレッシュホールド電圧未満の電圧まで降下させ 当該ゲート端子からの電荷放電を促すことによって当該 FETを遅延オフさせるように 構成してある。請求項 5の駆動回路が請求項 4の駆動回路と異なるのは、後者の LE D又は LED群は交流電源整流回路のプラス出力側に配してあるのに対し、前者の L ED又は LED群は交流電源整流回路のマイナス側に配してある点である。  The LED driving circuit according to the invention described in claim 5 (hereinafter referred to as “the driving circuit of claim 5” as appropriate) is used to drive one LED or a group of LEDs connected in series or series / parallel. Circuit. Specifically, an AC power supply rectification circuit with a power supply connection terminal on the input side and a power source terminal connected to the minus output side of the AC power supply rectification circuit, one LED, or a series or series-parallel connection LED group connected to the positive output side of the AC power supply rectifier circuit, or an FET for turning on and off the drive current of the LED group, and for detecting the drive current passing through the FET In addition, a current detection resistor arranged between the FET and the anode of the LED or LED group, and a FET control for controlling the FET connected to the gate terminal of the FET via a gate resistor And a circuit. The FET control circuit applies a control voltage to the gate resistor to apply a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the positive output side of the AC power supply rectifier circuit increases. In response to the fact that the current detection resistor detects a drive current exceeding a predetermined value, the control voltage is reduced to a voltage lower than the threshold voltage to discharge the charge from the gate terminal. The delay is turned off by prompting the FET. The difference between the drive circuit of claim 5 and the drive circuit of claim 4 is that the latter LED or LED group is arranged on the positive output side of the AC power supply rectifier circuit, while the former LED or LED group is Is a point arranged on the minus side of the AC power supply rectifier circuit.
[0014] 請求項 5の駆動回路によれば、交流電源整流回路のプラス出力側から印加される 整流電圧の上昇により FET制御回路がゲート抵抗に制御電圧を印加し、これによつ て、ゲート電圧がスレッシュホールド電圧を超えたところで FETがオンする。オンする ことによって、整流電圧が印加されている LED又は LED群に駆動電流が流れ、これ によって LED又は LED群が点灯する。駆動電流は電流検出抵抗によって検出され 、この検出を受けた FET制御回路は制御電圧を降下させる。この降下によって、ゲ ート抵抗の FET制御回路側の電位が、同じくゲート端子側の電位よりも低くなる。こ れにより、充電されていた電荷がゲート端子からゲート抵抗を介して放電され、放電 に伴ってゲート電圧が低下する。ゲート電圧が低下してスレッシュホールド電圧を下 回ったところで FETがオフになり、これによつて LED又は LED群が消灯する(しかし 、実際には、 FETがオフ状態であっても交流電源整流回路のプラス出力側から FET 制御回路に僅かな駆動電流が流れる)。すなわち、電荷放電によりゲート電圧がスレ ッシュホールド電圧に至るまで (FETがオフになるまで)の間も駆動電流が流れるた め、 LED又は LED群を高輝度で点灯させることができる。このように、電流検出抵抗 による駆動電流の検出がトリガーとなって FETをオフさせるので、後者が前者より遅 延して動作することになる。この遅延動作が、低電圧大電流、すなわち、印加する電 圧が低くても高輝度化を実現させる。さらに、 FETのオン抵抗の値がトランジスタのォ ン抵抗の値に比べて一般的に小さいため、同じ電流を流したとしても前者の方が後 者よりも発熱量が少ない。また、 LED又は LED群を直流で点灯させるためには、電 源トランスゃ大容量コンデンサ等が必要であるが、請求項 5の駆動回路はそのような ものを必要としない。必要としない分、駆動回路を小型化することができる。 [0014] According to the drive circuit of claim 5, the FET control circuit applies a control voltage to the gate resistor due to an increase in the rectified voltage applied from the positive output side of the AC power supply rectifier circuit. The FET turns on when the voltage exceeds the threshold voltage. When the LED is turned on, a drive current flows to the LED or the LED group to which the rectified voltage is applied, and the LED or the LED group is turned on. The drive current is detected by the current detection resistor. When the FET control circuit receives this detection, it lowers the control voltage. Due to this drop, the potential of the gate resistor on the FET control circuit side becomes lower than the potential on the gate terminal side. As a result, the charged electric charge is discharged from the gate terminal via the gate resistor, and the gate voltage decreases with the discharge. When the gate voltage falls below the threshold voltage, the FET is turned off, thereby turning off the LED or LEDs (although in practice, even if the FET is off, the AC power supply rectifier circuit A small drive current flows from the plus output side to the FET control circuit. In other words, the driving current flows even before the gate voltage reaches the threshold voltage due to charge discharge (until the FET is turned off), so that the LED or the LED group can be lit with high luminance. As described above, since the detection of the drive current by the current detection resistor triggers the FET to be turned off, the latter operates later than the former. This delay operation realizes high luminance even at a low voltage and a large current, that is, at a low applied voltage. Furthermore, since the on-resistance value of the FET is generally smaller than the on-resistance value of the transistor, the former generates less heat than the latter even when the same current is applied. Further, in order to light the LED or the LED group with direct current, a power transformer, a large-capacity capacitor, and the like are required, but the drive circuit of claim 5 does not require such a thing. The drive circuit can be reduced in size because it is not needed.
[0015] (請求項 6に記載した発明の特徴)  (Characteristics of the invention described in claim 6)
請求項 6に記載した発明に係る LED駆動回路 (以下、適宜「請求項 6の駆動回路」 という)では、請求項 1乃至 5何れかの駆動回路の基本的構成に加え、前記ゲート抵 抗には、バイパス路を並列接続してあり、当該バイパス路が、前記 FETに向って順方 向のダイオードと、当該ダイオードに直列接続したバイパス抵抗と、を含み、当該バイ パス抵抗の値が、当該ゲート抵抗の値よりも小さく設定してある。  In the LED driving circuit according to the invention described in claim 6 (hereinafter referred to as “the driving circuit of claim 6” as appropriate), in addition to the basic configuration of the driving circuit of any of claims 1 to 5, the gate resistance Has a bypass path connected in parallel, the bypass path includes a diode directed forward to the FET, and a bypass resistor connected in series to the diode, and the value of the bypass resistance is It is set smaller than the value of the gate resistance.
[0016] 請求項 6の駆動回路によれば、請求項 1乃至 5何れかの駆動回路の基本的な作用 効果に加え、両抵抗値の差にもよるがバイパス抵抗の値がゲート抵抗の値よりも小さ いため FETのゲート電流の少なくとも半分以上力 又は、両抵抗値の差が大きけれ ば電荷充電時のゲート電流のほとんどが、バイパス抵抗を介して流れる。放電方向は ダイオードの逆方向となるから、電荷放電はゲート抵抗のみを介して行われ、バイパ ス抵抗を介した放電はなレ、。バイパス抵抗の値はゲート抵抗の値よりも小さいので、 前者を介して行われる FETへの電荷充電の方が、後者を介して行われる電荷放電よ りも短い時間で行われる。充電時間を短くすることにより低い出力電圧で FETをオン させることができるので、その分 FETの発熱を少なくすることができる。 According to the drive circuit of claim 6, in addition to the basic operation and effect of the drive circuit of any one of claims 1 to 5, the value of the bypass resistor depends on the value of the gate resistance depending on the difference between the two resistance values. The gate current is at least half of the FET gate current, or if the difference between the two resistances is large, most of the gate current during charge charging flows through the bypass resistor. Since the discharge direction is opposite to that of the diode, the electric charge is discharged only through the gate resistance, and the discharge through the bypass resistance is impossible. Since the value of the bypass resistor is smaller than the value of the gate resistor, The charging of the FET via the former takes less time than the discharging of the FET via the latter. By shortening the charging time, the FET can be turned on at a low output voltage, and the heat generated by the FET can be reduced accordingly.
[0017] (請求項 7記載の発明の特徴)  (Characteristics of the invention described in claim 7)
請求項 7記載の発明に係る LED駆動回路 (以下、適宜「請求項 7の駆動回路」とい う)では、請求項 6の駆動回路の基本的構成にカ卩え、前記ゲート抵抗に、前記 FETに 向って逆方向のダイオードを直列接続してあることが好ましい。  The LED drive circuit according to the invention of claim 7 (hereinafter, appropriately referred to as “the drive circuit of claim 7”) has a basic configuration of the drive circuit of claim 6, and the gate resistance is provided with the FET. It is preferable that a diode in the reverse direction is connected in series.
[0018] 請求項 7の駆動回路によれば、請求項 6の駆動回路の基本的な作用効果に加え、 電荷充電時のゲート電流はパイパス抵抗のみを介して流れ、また、電荷放電はグー ト抵抗のみを介して行われる。したがって、 FETへの電荷充電と FETからの電荷放 電とが互いに独立することになり、この結果、ゲート抵抗及びバイパス抵抗の設計を 行いやすくすることができる。  According to the drive circuit of claim 7, in addition to the basic operation and effect of the drive circuit of claim 6, the gate current at the time of charge charging flows only through the bypass resistor, and the charge discharge is good This is done only through the resistor. Therefore, the charge charging to the FET and the charge discharging from the FET are independent of each other, and as a result, the gate resistance and the bypass resistance can be easily designed.
発明の効果  The invention's effect
[0019] 本発明に係る LED駆動回路によれば、小型でありながら、発熱を抑えた上で LEDを 高輝度に駆動することが可能になる。  According to the LED drive circuit according to the present invention, it is possible to drive the LED with high luminance while suppressing heat generation while being small.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 各図に基づいて、本発明の実施の形態について説明する。図 1は、第 1実施形態 に係る LED駆動回路 (以下、適宜「駆動回路」という)の回路図である。図 2は、第 1 実施形態に係る駆動回路の整流電圧及び駆動電流の波形を示す図である。図 3は 、第 2実施形態に係る駆動回路の回路図である。図 4は、第 2の実施形態に係る駆動 回路の駆動電流の波形を示す図である。図 5は、第 3実施形態に係る駆動回路の回 路図である。図 6及び 7は、第 4実施形態に係る駆動回路の回路図である。図 8は、 第 5実施形態に係る駆動回路の回路図である。図 9は、第 5実施形態に係る他の駆 動回路の回路図である。  An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of an LED drive circuit (hereinafter, appropriately referred to as “drive circuit”) according to the first embodiment. FIG. 2 is a diagram illustrating waveforms of a rectified voltage and a drive current of the drive circuit according to the first embodiment. FIG. 3 is a circuit diagram of a drive circuit according to the second embodiment. FIG. 4 is a diagram illustrating a waveform of a drive current of the drive circuit according to the second embodiment. FIG. 5 is a circuit diagram of a drive circuit according to the third embodiment. 6 and 7 are circuit diagrams of a drive circuit according to the fourth embodiment. FIG. 8 is a circuit diagram of a drive circuit according to the fifth embodiment. FIG. 9 is a circuit diagram of another drive circuit according to the fifth embodiment.
[0021] (第 1実施形態)  (First Embodiment)
図 1及び 2に基づいて説明する。駆動回路 1は、整流回路(交流電源整流回路) 3と 、 LED (発光素子) 5と、 FET (電界効果トランジスタ) 7と、電流検出抵抗 R2及び FE T制御回路 11と、を備えている。整流回路 3は、入力側には交流電源 Eを接続するた めの交流接続端子 (電源接続端子) 3a, 3aを、出力側には整流電圧 (整流電流)を 取り出すための整流出力端子 3b ( + ) , 3b (—)を、それぞれ備えている。交流電源 E には、汎用性が高いこと力 商用電源(たとえば、 100V— 220V, 50Hz— 60Hz)を 用いるのが一般的であるが、商用電源以外の交流電源を採用することもできる。本実 施形態では 100V50HZの単相交流を電源としている力 三相交流等を電源としても よい。整流回路 3は、これを、全波ブリッジ型に構成してあるが半波整流型等の整流 回路により構成することもできる。 This will be described with reference to FIGS. The drive circuit 1 includes a rectifier circuit (AC power supply rectifier circuit) 3, an LED (light emitting element) 5, an FET (field effect transistor) 7, a current detection resistor R2, and a FET control circuit 11. Rectifier circuit 3 is connected to AC power supply E on the input side. AC connection terminals (power supply connection terminals) 3a, 3a, and rectification output terminals 3b (+), 3b (—) for extracting rectified voltage (rectified current) on the output side. AC power source E is generally a commercial power source (for example, 100V-220V, 50Hz-60Hz). However, an AC power source other than the commercial power source can be used. In this embodiment, a power source using a single-phase AC of 100V50HZ as a power source may be a three-phase AC source or the like. The rectifier circuit 3 is configured as a full-wave bridge type, but may be configured as a rectifier circuit such as a half-wave rectifier type.
[0022] 第 1実施形態における LED5には、順電圧 3. 42V,順方向電流 350mAの大電流 高出力のものを採用した。上記定格以外の定格の LEDも採用可能である。 LED5の 色は、駆動回路 1が主として照明用に用レ、るものであるため白色とした。 白色に限る 必要はなぐ好みや用途に応じて白色以外の色の採用を妨げない。駆動回路 1が駆 動する LEDは、 1個の LED5だけである。複数の LEDを駆動することについては、後 述する。 LED5は、アノード端子 5aと力ソード端子 5kを備え、前者は整流出力端子 3 b ( + )に、後者は、 FET7のドレイン端子 7dに、それぞれ接続してある。駆動回路 1の 発熱量は比較的少ないのであるが、駆動回路 1の周囲温度等の使用環境等に対応 させるための放熱板等を、必要に応じて LED5に併設可能であることは言うまでもな レ、。 As the LED 5 in the first embodiment, a large-current high-output LED having a forward voltage of 3.42 V and a forward current of 350 mA was used. LEDs with ratings other than the above can also be used. The color of the LED 5 is white because the drive circuit 1 is mainly used for lighting. It is not necessary to use a color other than white, depending on the taste or application. The driving circuit 1 drives only one LED5. Driving a plurality of LEDs will be described later. The LED 5 has an anode terminal 5a and a force source terminal 5k. The former is connected to the rectification output terminal 3b (+), and the latter is connected to the drain terminal 7d of the FET 7. Although the heat generated by the drive circuit 1 is relatively small, it is needless to say that a radiator plate or the like for supporting the use environment such as the ambient temperature of the drive circuit 1 can be added to the LED 5 as necessary. .
[0023] FET7には、 Pチャンネルの FETも採用可能である力 ここでは、 Nチャンネルの M OS型 FETを採用した。 FET7は、上述したドレイン端子 7dとともに、ソース端子 7s及 び制御電極であるゲート端子 7gを備えている。ソース端子 7sは、接続点 S1を介して 電流検出抵抗 R2の一端に接続してあり、電流検出抵抗 R2の他端は整流出力端子 3b (-)に接続してある。また、ゲート端子 7gは、ゲート抵抗 R4を介して FET制御回 路 11 (トランジスタ 13のェミッタ端子 13e)に接続してあり、ゲート端子 7gに印加され る信号に応じて FET7が LED5の駆動電流をオン'オフするスイッチング素子として 働くように構成してある。 FET7に好適な電界効果トランジスタとして、たとえば、 2SK 2914力 Sある。この 2SK2914fま、標準のオン抵抗力 S標準で 0. 42 Ω、最大でも 0. 5 Ωである。  [0023] For FET7, the power that a P-channel FET can also be used Here, an N-channel MOS type FET is used. The FET 7 has a source terminal 7s and a gate terminal 7g serving as a control electrode, in addition to the drain terminal 7d described above. The source terminal 7s is connected to one end of the current detection resistor R2 via the connection point S1, and the other end of the current detection resistor R2 is connected to the rectification output terminal 3b (-). Further, the gate terminal 7g is connected to the FET control circuit 11 (emitter terminal 13e of the transistor 13) via the gate resistor R4, and the FET 7 controls the driving current of the LED 5 in accordance with the signal applied to the gate terminal 7g. It is configured to work as a switching element that turns on and off. A field effect transistor suitable for the FET 7 is, for example, 2SK 2914 force S. This 2SK2914f has a standard on-resistance of 0.42 Ω for standard S and 0.5 Ω at the maximum.
[0024] FET制御回路 11は、 PNP型のトランジスタ 13、 NPN型のトランジスタ 15、抵抗 R3 及び抵抗 R5を備えている。抵抗 R3は、整流回路 3の整流出力端子 3b ( + )とトラン ジスタ 13のェミッタ端子 13eとの間に接続してあり、抵抗 R5は、トランジスタ 13のエミ ッタ端子 13eとトランジスタ 13のベース端子 13bとの間に接続してある。トランジスタ 1 3のベース端子 13bは、トランジスタ 15のコレクタ端子 15cに接続してある。トランジス タ 13のコレクタ端子 13cは、トランジスタ 15のベース端子 15bに接続してある。トラン ジスタ 15のェミッタ端子 15eは、一方の整流出力端子 3b (-)に接続してある。トラン ジスタ 15のベース端子 15bは抵抗 R1を介して接続点 S1に接続してある。トランジス タ 13のェミッタ端子 13eは、上述したように、ゲート抵抗 R4を介して FET7のゲート端 子 7gに接続してある。以後、ゲート抵抗 R4と抵抗 R3との接続点を、接続点 S2と呼ぶ ことにする。接続点 S2は、ェミッタ端子 13eと一致する。 The FET control circuit 11 includes a PNP transistor 13, an NPN transistor 15, a resistor R3 And a resistor R5. The resistor R3 is connected between the rectified output terminal 3b (+) of the rectifier circuit 3 and the emitter terminal 13e of the transistor 13, and the resistor R5 is connected to the emitter terminal 13e of the transistor 13 and the base terminal of the transistor 13. 13b. The base terminal 13b of the transistor 13 is connected to the collector terminal 15c of the transistor 15. The collector terminal 13c of the transistor 13 is connected to the base terminal 15b of the transistor 15. The emitter terminal 15e of the transistor 15 is connected to one rectification output terminal 3b (-). The base terminal 15b of the transistor 15 is connected to the connection point S1 via the resistor R1. The emitter terminal 13e of the transistor 13 is connected to the gate terminal 7g of the FET 7 via the gate resistor R4 as described above. Hereinafter, the connection point between the gate resistors R4 and R3 is referred to as a connection point S2. The connection point S2 coincides with the emitter terminal 13e.
[0025] (駆動回路の作用)  (Operation of Drive Circuit)
図 1及び 2に基づいて説明する。交流電源 Eから電源接続端子 3a, 3aを介して整 流回路 3に供給された交流は、整流回路 3によって全波整流される。整流回路 3の整 流出力端子 3b ( + ), 3b (—)間における出力電圧 eの波形は、図 2に示すような正弦 波の半周期が並ぶ波形となる。図 2において、出力電圧 eは、 LED5のアノード端子 5 a及び FET制御回路 11の両者に印加される。出力電圧 eが印加された FET制御回 路 11は、制御電圧をゲート抵抗 R4に印加する。つまり、出力電圧 eが、 FET制御回 路 11が有する抵抗 R3と、制御電圧を印加するゲート抵抗 R4と、を介して FET7のゲ ート端子 7gに印加される。ここで、出力電圧 eがゼロのときはゲート電流は流れないが 、出力電圧 eの上昇に伴いゲート電流が流れて FET7のゲート領域に電荷が充電さ れ、さらなる上昇により制御電圧が FET7のスレッシュホールド電圧 Vthを超えたとこ ろで FET7をオンさせる。オン状態にあるゲート端子 7gの電位は、電荷の充電により スレッシュホールド電圧 Vthよりも高い電位に保持されている。 FET7のオンにより、 整流回路 3、プラス側の整流出力端子 3b (十)、 LED5、 FET7、電流検出抵抗 R2及 び整流出力端子 3b (—)を介して整流回路 3に戻る回路が形成され、これによつて、 出力電圧 eが印加されている LED5に駆動電流 iが流れ LED5を点灯させる。  This will be described with reference to FIGS. The alternating current supplied from the AC power supply E to the rectifier circuit 3 via the power supply connection terminals 3a, 3a is full-wave rectified by the rectifier circuit 3. The waveform of the output voltage e between the rectification output terminals 3b (+) and 3b (—) of the rectifier circuit 3 is a waveform in which half cycles of a sine wave are arranged as shown in FIG. In FIG. 2, the output voltage e is applied to both the anode terminal 5 a of the LED 5 and the FET control circuit 11. The FET control circuit 11 to which the output voltage e is applied applies the control voltage to the gate resistor R4. That is, the output voltage e is applied to the gate terminal 7g of the FET 7 via the resistor R3 of the FET control circuit 11 and the gate resistor R4 for applying the control voltage. Here, when the output voltage e is zero, the gate current does not flow, but as the output voltage e increases, the gate current flows and charges the gate region of the FET7, and the control voltage further rises to lower the threshold voltage of the FET7. Turn on FET7 when the hold voltage Vth is exceeded. The potential of the gate terminal 7g in the ON state is maintained at a potential higher than the threshold voltage Vth due to charge. When FET7 is turned on, a circuit is formed that returns to rectifier circuit 3 via rectifier circuit 3, rectifier output terminal 3b (10) on the positive side, LED5, FET7, current detection resistor R2, and rectifier output terminal 3b (—) As a result, the drive current i flows through the LED 5 to which the output voltage e is applied, and the LED 5 is turned on.
[0026] LED5を通過した駆動電流 iは電流検出抵抗 R2を流れる力 このとき FET7と電流 検出抵抗 R2の接続点 S1の電位と、電流検出抵抗 R2の整流出力端子 3b (-)側の 電位との間に、電圧降下による電位差が生じるので、電流検出抵抗 R2の整流出力 端子 3b (—)側の電位と比べて、電流検出抵抗 R2の接続点 S1の電位のほうが高い 電位となる。接続点 S1における電位差発生がトリガーとなり、トランジスタ 15のベース 端子 15bに抵抗 R1を介してベース電流が流れてトランジスタ 15をオンさせる。トラン ジスタ 15がオンすると、トランジスタ 13のベース端子 13bに抵抗 R3及び抵抗 R5を介 してベース電流が流れてトランジスタ 13をオンさせる。トランジスタ 13がオンすること によって接続点 S 2における電位が低下する。ここで、低下した電位がスレッシュホー ルド電圧 Vthよりも低くなるように抵抗 R3を設定してあるため、電位低下により接続点 S2における電位がスレッシュホールド電圧 Vthよりも低くなる。すなわち、ゲート端子 7gの電位が、ゲート抵抗 R4を挟んだ接続点 S2の電位よりも高い状態になる。このゲ ート抵抗 R4両端の電位差により、電荷放電が起こりゲート領域の電荷はゲート抵抗 R 4を介して徐々に接続点 S2に流れ込む。この電荷放電に伴い、ゲート電圧が降下す る。ゲート電圧が降下してスレッシュホールド電圧 Vthと等しい電圧に至るまでは FE T7のオン状態は続く力 スレッシュホールド電圧 Vthより低くなつたところで FET7は オフとなる。 [0026] The drive current i that has passed through the LED 5 is the force flowing through the current detection resistor R2. At this time, the potential of the connection point S1 between the FET 7 and the current detection resistor R2 and the rectified output terminal 3b (-) of the current detection resistor R2 Since a potential difference occurs between the potential and the potential due to the voltage drop, the potential of the connection point S1 of the current detection resistor R2 is higher than the potential of the rectified output terminal 3b (−) of the current detection resistor R2. The generation of a potential difference at the connection point S1 serves as a trigger, and a base current flows through the resistor R1 to the base terminal 15b of the transistor 15 to turn on the transistor 15. When the transistor 15 is turned on, a base current flows to the base terminal 13b of the transistor 13 via the resistors R3 and R5, and the transistor 13 is turned on. When the transistor 13 is turned on, the potential at the connection point S2 decreases. Here, since the resistor R3 is set so that the lowered potential becomes lower than the threshold voltage Vth, the potential at the connection point S2 becomes lower than the threshold voltage Vth due to the lowering of the potential. That is, the potential of the gate terminal 7g becomes higher than the potential of the connection point S2 across the gate resistor R4. Charge discharge occurs due to the potential difference between both ends of the gate resistor R4, and charges in the gate region gradually flow into the connection point S2 via the gate resistor R4. Along with this discharge, the gate voltage drops. Until the gate voltage drops and reaches a voltage equal to the threshold voltage Vth, the ON state of FET7 continues. When the voltage drops below the threshold voltage Vth, the FET7 turns off.
すなわち、第 1実施形態における FET制御回路 11は、 FET7のオンにより駆動電 流 iを流して LED5を点灯させる一方、駆動電流 iが電流検出抵抗 R2によって検出さ れたことを受けて FET7のオフにより LED5を消灯させる力 この FET7のオフを駆動 電流 iの検出とほぼ同時に行わせるのではなく電荷放電により遅延して行わせている 。 FETの代わりにトランジスタを用いたとすると、トランジスタは FETに比べて電荷の 充電可能量が少なレ、から、ゲート電圧がスレッシュホールド電圧未満に低下した時点 でオフとなって駆動電流の流れを遮断してしまう(図 2に i'で表示)。これに対して、 F ETであれば、ゲート領域に充電されてレ、た電荷の放電により FETのオフを遅延させ る。この遅延により FETは、トランジスタより余分に駆動電流を流す。すなわち、 LED を高輝度化する。さらに、 FET7のオン'オフにより常時駆動電流が流れる場合に比 ベて遥かに発熱量を少なくすることができる。これに加え、 FETのほうがトランジスタよ りもオン抵抗が小さいことから、同じ駆動電流を流すとしてもオン抵抗が小さい分、 F ETの発熱量を抑えることが可能になる。 [0028] (第 2実施形態) That is, the FET control circuit 11 in the first embodiment turns on the LED 5 by driving the drive current i when the FET 7 is turned on, and turns off the FET 7 when the drive current i is detected by the current detection resistor R2. The power to turn off the LED 5 is not turned off almost at the same time as the detection of the drive current i, but rather is delayed by charge discharge. If a transistor is used instead of an FET, the transistor can charge less than the FET, so when the gate voltage drops below the threshold voltage, the transistor turns off and the drive current is interrupted. (Indicated by i 'in Figure 2). On the other hand, in the case of FET, the gate region is charged, and the charge is discharged, thereby delaying the turning off of the FET. Due to this delay, the FET causes an extra drive current to flow than the transistor. That is, the brightness of the LED is increased. In addition, the amount of heat generated can be reduced significantly as compared with the case where the drive current always flows by turning on and off the FET7. In addition, since the on-resistance of the FET is lower than that of the transistor, even if the same drive current is applied, the heat generated by the FET can be suppressed by the lower on-resistance. (Second Embodiment)
図 3及び 4に基づいて説明する。第 2実施形態に係る駆動回路 21が、第 1実施形 態に係る駆動回路 1と異なる点は、後者力 個しか有していない LED5を、前者が直 列接続した複数個の LED5, · ·からなる LED群 5を有している点である。したがって 、以下においては、駆動回路 21が駆動回路 1と異なる点を中心に説明を行レ、、両者 共通する部分については図 1で使用した符号と同じ符号を図 3で使用するにとめ可 能な限りそれらの説明を省略する。なお、図 4 (a)が示す駆動電流の波形は、 LEDが 1個の場合の波形であり、図 2に示す駆動電流の波形とほぼ同じ波形である。図 4 (a )は、複数の LEDを接続した場合と比較するための図である。図 4 (b)が示す駆動電 流の波形は LED2個のときの波形であって、図 4 (c)が示す駆動電流の波形は LED 3個のときの波形である。なお、図 4に示す駆動電流の波形は、電流検出抵抗 R2を 2 Ωとしたときのものであって、縦軸の 1目盛は 250mAを、横軸の 1目盛は 2mSを、そ れぞれ示している。  This will be described with reference to FIGS. The drive circuit 21 according to the second embodiment is different from the drive circuit 1 according to the first embodiment in that the LED 5 having only the latter is connected to the plurality of LEDs 5, which are connected in series. LED group 5 consisting of Therefore, the following description focuses on the differences between the drive circuit 21 and the drive circuit 1, and the same reference numerals as those used in FIG. 1 can be used in FIG. 3 for common parts. Descriptions thereof will be omitted as much as possible. The waveform of the driving current shown in FIG. 4A is a waveform when one LED is used, and is almost the same as the waveform of the driving current shown in FIG. FIG. 4 (a) is a diagram for comparison with a case where a plurality of LEDs are connected. The waveform of the drive current shown in FIG. 4 (b) is a waveform for two LEDs, and the waveform of the drive current shown in FIG. 4 (c) is a waveform for three LEDs. The waveform of the drive current shown in Fig. 4 is obtained when the current detection resistor R2 is set to 2 Ω.One scale on the vertical axis is 250 mA, and one scale on the horizontal axis is 2 mS. Is shown.
[0029] 図 3に示す駆動回路 21は、直列接続した 3個の LEDからなる LED群 5を有してい る。 LED5の数は、駆動回路 21の用途等に応じて、 2個としたり、 4個以上としたりす ることを妨げるものではない。直列接続した n個の LEDを点灯させるためには各 LED の順電圧の n倍と等しい電圧を必要とするので、 3個の LED5, · ·を直列接続した場 合は各 LED5の順電圧(LED電圧)の 3倍の電圧と等しい電圧が少なくとも必要にな る。 LED5が 1個であれば 1個分の順電圧と、 2個であれば 2個分の順電圧と等しい 電圧が必要である。前述したように LED5の順電圧 3. 42Vであるから、 1個であれば 3. 42V、 2個であれば 6. 84 (3. 42 X 2)V、 3個であれば 10. 26 (3. 42 X 3)Vの電 圧が少なくとも必要となる。  The drive circuit 21 shown in FIG. 3 has an LED group 5 composed of three LEDs connected in series. The number of LEDs 5 does not prevent two or four or more LEDs 5 depending on the use of the drive circuit 21 and the like. In order to light up the n LEDs connected in series, a voltage equal to n times the forward voltage of each LED is required. Therefore, if three LEDs 5 are connected in series, the forward voltage of each LED 5 ( At least a voltage equal to three times the LED voltage) is required. A single LED5 requires a forward voltage for one LED, and two LEDs require a forward voltage equal to two forward voltages. As described above, the forward voltage of LED5 is 3.42V, so if it is one LED it is 3.42V, if it is two it is 6.84 (3.42 X 2) V, if it is three it is 10.26 ( 3. At least a voltage of 42 x 3) V is required.
[0030] 図 4におレ、て、 LED5が 1個の波形(図 4 (a) )よりも LED5が 2個の波形(図 4 (b) )の 方力 LED5が 2個の波形よりも LED5が 3個の波形(図 4 (c) )の方力 単峰波形の 高さが高くなつている。すなわち、 LED5の個数が増加するにつれ、増加割合にほぼ 比例して電流量が増加していることが分かる。このことは、駆動回路 21によれば、複 数個の LED5を直列した場合の各 LED5の輝度力 単独の LED5を接続した場合の 輝度より増加することを示している。複数の LED5を接続することによって各 LED5の 輝度が、 1個の LED5のみを点灯させたときの輝度よりも著しく低下するものであると すると、多数の LEDを使用する装置は不向きである。駆動回路 21であれば、上述し た理由から、多数の LEDを持つ装置、たとえば、照明灯にも好適に用いることができ る。なお、第 2実施形態における LED群 5は、複数の LED5を直列接続してなるもの であるが、直列接続した各 LED5の一部又は全部と並列に 1個又は複数個の LED 接続すること、すなわち、直並列した複数個の LEDから構成することもできる。 [0030] In Fig. 4, LED5 has a stronger waveform with two LED5's (Fig. 4 (b)) than a single waveform (Fig. 4 (a)). The LED5 has three waveforms (Fig. 4 (c)). The single-peak waveform has a higher height. That is, it can be seen that the current amount increases almost in proportion to the increase rate as the number of LEDs 5 increases. This indicates that according to the drive circuit 21, the brightness of each LED 5 when a plurality of LEDs 5 are connected in series is higher than the brightness when a single LED 5 is connected. By connecting multiple LEDs 5, each LED 5 Assuming that the brightness is significantly lower than the brightness when only one LED 5 is turned on, a device using many LEDs is not suitable. The drive circuit 21 can be suitably used for a device having a large number of LEDs, for example, an illuminator for the reasons described above. The LED group 5 in the second embodiment is formed by connecting a plurality of LEDs 5 in series.However, one or more LEDs 5 are connected in parallel with some or all of the LEDs 5 connected in series. That is, it can be composed of a plurality of LEDs arranged in series and parallel.
[0031] (第 3実施形態) (Third Embodiment)
図 5に基づいて説明する。第 3実施形態に係る駆動回路 31が、第 1実施形態に係 る駆動回路 1と異なるのは、 LED5の接続位置である。このため、以下においては、 駆動回路 31が駆動回路 1と異なる点を中心に説明を行レ、、両者共通する部分につ レ、ては図 5に図 1で使用した符号と同じ符号を付するにとめ可能な限りそれらの説明 を省略する。  This will be described with reference to FIG. The drive circuit 31 according to the third embodiment differs from the drive circuit 1 according to the first embodiment in the connection position of the LED 5. For this reason, the following description focuses on the differences between the driving circuit 31 and the driving circuit 1, and the parts common to both are denoted by the same reference numerals as those used in FIG. 1 in FIG. The explanation is omitted as much as possible.
[0032] 第 1実施形態に係る駆動回路 1の LED5は、整流出力端子 3b ( + )と FET7のドレ イン端子 7dとの間に接続してある力 駆動回路 31における LED5は FET7のソース 端子 7sと電流検出抵抗 R2との間に接続してある。具体的には、 LED5のアノード端 子 5aをソース端子 7sに、同じく力ソード端子 5kを電流検出抵抗 R2の FET7側の端 子に、それぞれ接続してあり、さらに、整流出力端子 3b ( + )は FET制御回路 11が有 する抵抗 R3の一端に接続してある。駆動回路 31における作用効果は基本的に駆動 回路 1の作用効果と異なることはなぐ駆動電流 iの流れる方向から見て FET7の上流 に LED5がある場合と、同じく下流に LED5がある場合との違いがあるだけである。駆 動回路 31においても、直列又は直並列接続した複数個の LEDを接続可能であるこ とは言うまでもなレ、。なお、駆動回路 31において複数個の LEDを直列又は直並列に 接続した場合であっても、前述した第 2実施形態に係る駆動回路 21のように各 LED 5の輝度が単独の LED5の輝度より増加することはなぐほぼ一定である。  The LED 5 of the drive circuit 1 according to the first embodiment is connected to the rectified output terminal 3 b (+) and the drain terminal 7 d of the FET 7. And the current detection resistor R2. Specifically, the anode terminal 5a of the LED 5 is connected to the source terminal 7s, the power source terminal 5k is connected to the FET7 side terminal of the current detection resistor R2, and the rectification output terminal 3b (+) Is connected to one end of the resistor R3 of the FET control circuit 11. The operation and effect of the drive circuit 31 are basically different from the operation and effect of the drive circuit 1.The difference between the case where the LED5 is located upstream of the FET7 and the case where the LED5 is located downstream is also seen from the direction of the drive current i. There is only. Needless to say, a plurality of LEDs connected in series or in series / parallel can also be connected in the drive circuit 31. Note that, even when a plurality of LEDs are connected in series or in series / parallel in the drive circuit 31, the brightness of each LED 5 is lower than the brightness of a single LED 5 as in the drive circuit 21 according to the above-described second embodiment. The increase is almost constant.
[0033] (第 4実施形態)  (Fourth Embodiment)
図 6に基づいて説明する。第 4実施形態に係る駆動回路 41が、第 1実施形態に係 る駆動回路 1と異なるのは、 LED5の接続位置である。このため、以下においては、 駆動回路 41が駆動回路 1と異なる点を中心に説明を行レ、、両者共通する部分につ いては図 6に図 1で使用した符号と同じ符号を付するにとめ可能な限りそれらの説明 を省略する。 This will be described with reference to FIG. The drive circuit 41 according to the fourth embodiment differs from the drive circuit 1 according to the first embodiment in the connection position of the LED 5. For this reason, the following description focuses on the differences between the drive circuit 41 and the drive circuit 1 and focuses on the parts common to both. In FIG. 6, the same reference numerals as those used in FIG. 1 are used, and the description thereof is omitted as much as possible.
[0034] 駆動回路 41における LED5は、整流出力端子 3b ( + )と FET制御回路 11が有す る抵抗 R3の一端に接続してある。具体的には、 LED5のアノード端子 5aを整流出力 端子 3b ( + )に、同じく力ソード端子 5kを抵抗 R3の一端に、それぞれ接続してある。 力ソード端子 5kには、 FET7のドレイン端子 7dを併せて接続してあり、これによつて、 ドレイン端子 7dと FET制御回路 11には、 LED5を介して出力電圧 eが印加されるよう になっている。駆動回路 41における作用効果は基本的に駆動回路 1の作用効果と 異なることはなぐ FET制御回路 11に印加される電圧が LED5により降下したもので ある点が異なっている。駆動回路 41においても、直列又は直並列接続した複数個の LEDを接続することもできる。なお、駆動回路 41において複数個の LEDを直列又は 直並列に接続した場合であっても、前述した第 2実施形態に係る駆動回路 21のよう に各 LED5の輝度が単独の LED5の輝度より増加することはなぐほぼ一定である。  The LED 5 in the drive circuit 41 is connected to the rectified output terminal 3b (+) and one end of the resistor R3 of the FET control circuit 11. Specifically, the anode terminal 5a of the LED 5 is connected to the rectified output terminal 3b (+), and the force source terminal 5k is connected to one end of the resistor R3. The output terminal e is applied to the drain terminal 7d and the FET control circuit 11 via the LED5 to the drain terminal 7d and the FET control circuit 11 to the force source terminal 5k. ing. The operation and effect of the drive circuit 41 are basically different from the operation and effect of the drive circuit 1 except that the voltage applied to the FET control circuit 11 is reduced by the LED 5. Also in the drive circuit 41, a plurality of LEDs connected in series or in series / parallel can be connected. Note that even when a plurality of LEDs are connected in series or in series / parallel in the drive circuit 41, the brightness of each LED 5 is greater than the brightness of a single LED 5 as in the drive circuit 21 according to the above-described second embodiment. What you do is almost constant.
[0035] 図 6に示す駆動回路 41の LED5は、上述したように整流出力端子 3b ( + )と FET制 御回路 11の抵抗 R3の一端との間に接続してある力 この LED5を整流出力端子 3b (一)側に配することもできる。すなわち、図 7に示すように、整流出力端子 3b (—)にし ED5の力ソード端子 5kを接続するとともに、 LED5のアノード端子 5aを電流検出抵 抗 R2を介して FET7のソース端子 7sに接続する。整流出力端子 3b ( + )は、 FET7 のドレイン端子 7d及び抵抗 R3の一端に直接接続する。 LED5の配置以外の構成は 、駆動回路 41と駆動回路 4Γとの間で異なる点はない。駆動回路の作用効果の点 でも、複数個の LEDを直列又は直並列に接続可能な点でも、同じである。  The LED 5 of the driving circuit 41 shown in FIG. 6 is a power connected between the rectification output terminal 3b (+) and one end of the resistor R3 of the FET control circuit 11 as described above. It can also be placed on the terminal 3b (1) side. That is, as shown in Fig. 7, the rectification output terminal 3b (-) is connected to the power source terminal 5k of ED5, and the anode terminal 5a of LED5 is connected to the source terminal 7s of FET7 via the current detection resistor R2. . The rectified output terminal 3b (+) is directly connected to the drain terminal 7d of FET7 and one end of the resistor R3. There is no difference between the drive circuit 41 and the drive circuit 4 # in the configuration other than the arrangement of the LED5. The same applies to the operation and effect of the drive circuit and the fact that a plurality of LEDs can be connected in series or in series / parallel.
[0036] (第 5実施形態)  (Fifth Embodiment)
図 8及び 9に基づいて説明する。第 5実施形態に係る駆動回路 51が、第 1実施形 態に係る駆動回路 1と構造的に異なるのは、 FET7と FET制御回路 11との接続方法 である。このため、以下においては、駆動回路 51が駆動回路 1と異なる点を中心に説 明を行い、両者共通する部分については図 8及び 9に図 1で使用した符号と同じ符号 を付するにとめ可能な限りそれらの説明を省略する。  This will be described with reference to FIGS. The driving circuit 51 according to the fifth embodiment is structurally different from the driving circuit 1 according to the first embodiment in the connection method between the FET 7 and the FET control circuit 11. For this reason, the following description focuses on the differences between the driving circuit 51 and the driving circuit 1, and the parts common to both are denoted by the same reference numerals as those used in FIG. 1 in FIGS. 8 and 9. Description thereof will be omitted as much as possible.
[0037] すなわち、 FET7のゲート端子 7gと FET制御回路 11 (すなわち、接続点 S2)との間 には、ゲート抵抗 R4'を接続してあり、さらに、ゲート抵抗 と並列にバイパス路 23 を接続してある。バイパス路 23は、 FET7に向って順方向のダイオード D1と、ダイォ ード D1に直列接続したバイパス抵抗 R6により構成してある。バイパス抵抗 R6の値は ゲート抵抗 R4'よりも小さい値に設定してある。たとえば、ノ ィパス抵抗 R6を 300Κ Ω としたときに、ゲート抵抗 R4'を 1Μ Ω程度とするとよレ、。パイパス抵抗 R6の値をグー ト抵抗 R4'の値よりも小さく設定したのは、ゲート電流が主としてバイパス抵抗 R6を流 れるように、かつ、ゲート端子 7gからの電荷放電がゲート抵抗 R4'のみを流れるよう にするためである。つまり、ダイオード D1は FET7に向って順方向であるからゲート 電流はバイパス抵抗 R6及びゲート抵抗 R4'の双方を流れる力 S、前者の抵抗値が後 者の抵抗値よりも小さいため(ダイオード D1の内部抵抗は無視できる大きさ)、ゲート 電流は主としてバイパス抵抗 R6を流れることになる。他方、電荷放電の方向はダイォ ード D1の逆方向となるため、電荷放電はバイパス路 23を流れず専らゲート抵抗 R4' を流れることになる。バイパス抵抗 R6の値はゲート抵抗 R4'の値よりも小さいので、 抵抗 R3の値を適切に設定することにより、 FET7への電荷充電を電荷放電よりも短 い時間で行わせることができる。充電時間を短くすることはより低い出力電圧で FET をオンさせることになるので、その分 FETの発熱を少なくすることができる。なお、ダイ オード D1とバイパス抵抗 R6の相対位置は、図 8に示すものと逆にしてパイパス抵抗 R6をダイオード D1よりも FET7側に設定しても同じ作用効果を得ることができる。 [0037] That is, between the gate terminal 7g of the FET 7 and the FET control circuit 11 (that is, the connection point S2). Is connected to a gate resistor R4 ', and a bypass path 23 is connected in parallel with the gate resistor. The bypass path 23 is composed of a diode D1 in the forward direction toward the FET 7 and a bypass resistor R6 connected in series to the diode D1. The value of the bypass resistor R6 is set smaller than the value of the gate resistor R4 '. For example, if the no-pass resistance R6 is 300ΚΩ, the gate resistance R4 'is about 1ΜΩ. The value of the bypass resistor R6 is set to be smaller than the value of the good resistor R4 'so that the gate current mainly flows through the bypass resistor R6, and the electric charge from the gate terminal 7g discharges only the gate resistor R4'. This is to make it flow. In other words, since the diode D1 is in the forward direction toward the FET7, the gate current is the force S flowing through both the bypass resistor R6 and the gate resistor R4 ', and the resistance of the former is smaller than the resistance of the latter (diode D1). The internal resistance is negligible), and the gate current mainly flows through the bypass resistor R6. On the other hand, the direction of the charge discharge is opposite to the direction of the diode D1, so that the charge discharge flows exclusively through the gate resistor R4 'without flowing through the bypass path 23. Since the value of the bypass resistor R6 is smaller than the value of the gate resistor R4 ', by appropriately setting the value of the resistor R3, the charge of the FET 7 can be performed in a shorter time than the charge discharge. Reducing the charging time turns on the FET at a lower output voltage, which reduces the heat generated by the FET. The same effect can be obtained even if the relative position between the diode D1 and the bypass resistor R6 is reversed from that shown in FIG. 8 and the bypass resistor R6 is set closer to the FET7 than the diode D1.
[0038] また、図 9に示すように、ゲート抵抗 と直列に FET7に向って逆方向(電荷放電 の順方向)のダイオード D2を接続することもできる。ダイオード D2を設けることによつ て、ゲート電流がゲート抵抗 R4'を流れることが阻止されることになる。したがって、 F ET7への電荷充電と FET7からの電荷放電とが互いに独立することになり、この結果 、ゲート抵抗 R4'及びバイパス抵抗 R6の設計を行いやすくすることができる。さらに、 上述したバイパス路 23、さらには D2を、前述した第 1乃至 4の実施形態に係る駆動 回路 1 , 21 , 31, 41 , 41Ίこ採用してもよレ、。 As shown in FIG. 9, a diode D2 in the reverse direction (forward direction of charge discharge) can be connected to the FET 7 in series with the gate resistor. By providing the diode D2, the gate current is prevented from flowing through the gate resistor R4 '. Therefore, the charging of the FET 7 and the discharging of the FET 7 are independent of each other, and as a result, the gate resistor R4 ′ and the bypass resistor R6 can be easily designed. Furthermore, the above-described bypass path 23 and also D2 may employ the drive circuits 1, 21, 31, 41, and 41 according to the first to fourth embodiments.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]第 1実施形態に係る駆動回路の回路図である。  FIG. 1 is a circuit diagram of a drive circuit according to a first embodiment.
[図 2]第 1実施形態に係る駆動回路の整流電圧及び駆動電流の波形を示す図である 園 3]第 2実施形態に係る駆動回路の回路図である。 FIG. 2 is a diagram showing waveforms of a rectified voltage and a drive current of the drive circuit according to the first embodiment. Garden 3] is a circuit diagram of a drive circuit according to a second embodiment.
[図 4]第 2の実施形態に係る駆動回路の駆動電流の波形を示す図である。 園 5]第 3実施形態に係る駆動回路の回路図である。  FIG. 4 is a diagram showing a waveform of a drive current of a drive circuit according to a second embodiment. FIG. 5 is a circuit diagram of a drive circuit according to a third embodiment.
園 6]第 4実施形態に係る駆動回路の回路図である。 Garden 6] is a circuit diagram of a drive circuit according to a fourth embodiment.
[図 7]第 4実施形態に係る駆動回路の回路図である  FIG. 7 is a circuit diagram of a drive circuit according to a fourth embodiment.
園 8]第 5実施形態に係る駆動回路の回路図である。 Garden 8] is a circuit diagram of a drive circuit according to a fifth embodiment.
[図 9]第 5実施形態に係る他の駆動回路の回路図である。  FIG. 9 is a circuit diagram of another drive circuit according to the fifth embodiment.
園 10]従来の駆動回路の回路図である。 Garden 10] is a circuit diagram of a conventional drive circuit.
符号の説明 Explanation of symbols
1, 21, 31 , 51 LED駆動回路(駆動回路)  1, 21, 31, 51 LED drive circuit (drive circuit)
3 整流回路  3 Rectifier circuit
3a 電源接続端子  3a Power connection terminal
3b 整流出力端子  3b Rectification output terminal
5 LED (LED群)  5 LED (LED group)
7 FET  7 FET
11 FET制御回路  11 FET control circuit
13, 15  13, 15
23 バイパス路  23 Bypass road
Dl, D2 ダイオード  Dl, D2 diode
Rl, R3, R5 抵抗  Rl, R3, R5 resistance
R2 電流検出抵抗  R2 current detection resistor
R4 ゲート抵抗  R4 Gate resistance
R6 バイパス抵抗  R6 Bypass resistor
SI, S2 接続点  SI, S2 connection point

Claims

請求の範囲  The scope of the claims
[1] 入力側に電源接続端子を有する交流電源整流回路と、  [1] an AC power supply rectifier circuit having a power supply connection terminal on an input side,
当該交流電源整流回路のプラス出力側にアノード端子を接続した 1個の LEDと、 当該 LEDの力ソード端子に接続した当該 LED又の駆動電流をオン 'オフするため の FETと、  One LED with an anode terminal connected to the positive output side of the AC power supply rectifier circuit, and a FET connected to the power source terminal of the LED for turning on and off the driving current of the LED and
当該 FETを通過した駆動電流を検出するために当該 FETと当該交流電源整流回 路のマイナス出力側との間に配した電流検出抵抗と、  A current detection resistor disposed between the FET and the negative output side of the AC power supply rectification circuit to detect a drive current passing through the FET;
当該 FETのゲート端子に、ゲート抵抗を介して接続した当該 FETを制御するため の FET制御回路と、を含み、  A FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor,
当該 FET制御回路が、当該交流電源整流回路のプラス出力側から印加された整 流電圧の上昇に伴い当該ゲート端子にスレッシュホールド電圧を超えるゲート電圧を 印加するための制御電圧を当該ゲート抵抗に印加して当該 FETをオンさせ、かつ、 当該電流検出抵抗が所定値を超えた駆動電流を検出したことを受けて当該制御電 圧を当該スレッシュホールド電圧未満の電圧まで降下させ当該ゲート端子からの電 荷放電を促すことによって当該 FETを遅延オフさせるように構成してある  The FET control circuit applies a control voltage to the gate resistor to apply a gate voltage exceeding a threshold voltage to the gate terminal as the rectification voltage applied from the plus output side of the AC power supply rectifier circuit increases. In response to the fact that the current detection resistor has detected a drive current exceeding a predetermined value, the control voltage is reduced to a voltage lower than the threshold voltage, and the voltage from the gate terminal is reduced. It is configured to delay off the FET by prompting charge discharge.
ことを特徴とする LED駆動回路。  An LED driving circuit, characterized by:
[2] 入力側に電源接続端子を有する交流電源整流回路と、 [2] an AC power supply rectifier circuit having a power supply connection terminal on an input side,
当該交流電源整流回路のプラス出力側にアノード端子を接続した複数の LEDを直 列接続してなる LED群と、  An LED group in which a plurality of LEDs having anode terminals connected to the positive output side of the AC power supply rectifier circuit are connected in series,
当該 LED群の力ソード端子に接続した当該 LED群の駆動電流をオン'オフするた めの FETと、  An FET connected to the power source terminal of the LED group for turning on and off the drive current of the LED group;
当該 FETを通過した駆動電流を検出するために当該 FETと当該交流電源整流回 路のマイナス出力側との間に配した電流検出抵抗と、  A current detection resistor disposed between the FET and the negative output side of the AC power supply rectification circuit to detect a drive current passing through the FET;
当該 FETのゲート端子に、ゲート抵抗を介して接続した当該 FETを制御するため の FET制御回路と、を含み、  A FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor,
当該 FET制御回路が、当該交流電源整流回路のプラス出力側から印加された整 流電圧の上昇に伴い当該ゲート端子にスレッシュホールド電圧を超えるゲート電圧を 印加するための制御電圧を当該ゲート抵抗に印加して当該 FETをオンさせ、かつ、 当該電流検出抵抗が所定値を超えた駆動電流を検出したことを受けて当該制御電 圧を当該スレッシュホールド電圧未満の電圧まで降下させ当該ゲート端子からの電 荷放電を促すことによって当該 FETを遅延オフさせることによって、 The FET control circuit applies a control voltage to the gate resistor to apply a gate voltage exceeding a threshold voltage to the gate terminal as the rectification voltage applied from the plus output side of the AC power supply rectifier circuit increases. To turn on the FET, and In response to the detection of the drive current exceeding the predetermined value by the current detection resistor, the control voltage is reduced to a voltage lower than the threshold voltage to promote discharge of the gate terminal, thereby delaying the FET. By turning it off,
当該 LED群を構成する LEDの個数増加にほぼ比例して駆動電流を増加可能に 構成してある  The drive current can be increased almost in proportion to the increase in the number of LEDs that make up the LED group.
ことを特徴とする LED駆動回路。  An LED driving circuit, characterized by:
[3] 入力側に電源接続端子を有する交流電源整流回路と、 [3] an AC power supply rectifier circuit having a power supply connection terminal on an input side,
1個の LED、又は、直列若しくは直並列接続してなる LED群と、  One LED or a group of LEDs connected in series or series / parallel,
当該 LED又は当該 LED群のアノード端子と当該交流電源整流回路のプラス出力 側との間に接続した当該 LED又は当該 LED群の駆動電流をオン ·オフするための F ETと、  A FET connected between the anode terminal of the LED or the LED group and the positive output side of the AC power supply rectifier circuit for turning on / off the driving current of the LED or the LED group; and
当該 LED又は当該 LED群を通過した駆動電流を検出するために当該 LED又は 当該 LED群の力ソード端子と当該交流電源整流回路のマイナス出力側との間に配 した電流検出抵抗と、  A current detection resistor disposed between a power source terminal of the LED or the LED group and a negative output side of the AC power supply rectifier circuit to detect a drive current passing through the LED or the LED group;
当該 FETのゲート端子に、ゲート抵抗を介して接続した当該 FETを制御するため の FET制御回路と、を含み、  A FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor,
当該 FET制御回路が、当該交流電源整流回路のプラス出力側から印加された整 流電圧の上昇に伴い当該ゲート端子にスレッシュホールド電圧を超えるゲート電圧を 印加するための制御電圧を当該ゲート抵抗に印加して当該 FETをオンさせ、かつ、 当該電流検出抵抗が所定値を超えた駆動電流を検出したことを受けて当該制御電 圧を当該スレッシュホールド電圧未満の電圧まで降下させ当該ゲート端子からの電 荷放電を促すことによって当該 FETを遅延オフさせるように構成してある  The FET control circuit applies a control voltage to the gate resistor to apply a gate voltage exceeding a threshold voltage to the gate terminal as the rectification voltage applied from the plus output side of the AC power supply rectifier circuit increases. In response to the fact that the current detection resistor has detected a drive current exceeding a predetermined value, the control voltage is reduced to a voltage lower than the threshold voltage, and the voltage from the gate terminal is reduced. It is configured to delay off the FET by prompting charge discharge.
ことを特徴とする LED駆動回路。  An LED driving circuit, characterized by:
[4] 入力側に電源接続端子を有する交流電源整流回路と、 [4] an AC power supply rectifier circuit having a power supply connection terminal on an input side,
当該交流電源整流回路のプラス出力側にアノード端子を接続した、 1個の LED、 又は、直列若しくは直並列接続してなる LED群と、  A single LED or a series of LEDs connected in series or series / parallel with the anode terminal connected to the positive output side of the AC power supply rectifier circuit,
当該 LED又は当該 LED群の力ソード端子に接続した当該 LED又は当該 LED群 の駆動電流をオン'オフするための FETと、 当該 FETを通過した駆動電流を検出するために当該 FETと当該交流電源整流回 路のマイナス出力側との間に配した電流検出抵抗と、 An FET connected to the power source terminal of the LED or the LED group for turning on and off the driving current of the LED or the LED group; and A current detection resistor disposed between the FET and the negative output side of the AC power supply rectification circuit to detect a drive current passing through the FET;
当該 FETのゲート端子に、ゲート抵抗を介して接続した当該 FETを制御するため の FET制御回路と、を含み、  A FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor,
当該 FET制御回路が、当該交流電源整流回路のプラス出力側から当該 LED又は 当該 LED群を介して印加された整流電圧の上昇に伴い当該ゲート端子にスレッシュ ホールド電圧を超えるゲート電圧を印加するための制御電圧を当該ゲート抵抗に印 加して当該 FETをオンさせ、かつ、当該電流検出抵抗が所定値を超えた駆動電流を 検出したことを受けて当該制御電圧を当該スレッシュホールド電圧未満の電圧まで 降下させ当該ゲート端子からの電荷放電を促すことによって当該 FETを遅延オフさ せるように構成してある  The FET control circuit is configured to apply a gate voltage exceeding a threshold voltage to the gate terminal as the rectified voltage applied from the positive output side of the AC power supply rectifier circuit via the LED or the LED group increases. The control voltage is applied to the gate resistor to turn on the FET, and the control voltage is reduced to a voltage lower than the threshold voltage in response to the detection of the drive current exceeding the predetermined value by the current detection resistor. It is configured to turn off the FET by lowering it and promoting discharge of the charge from the gate terminal.
ことを特徴とする LED駆動回路。  An LED drive circuit characterized by the following.
入力側に電源接続端子を有する交流電源整流回路と、  An AC power supply rectifier circuit having a power supply connection terminal on an input side,
当該交流電源整流回路のマイナス出力側に力ソード端子を接続した、 1個の LED 、又は、直列若しくは直並列接続してなる LED群と、  A single LED or a series of LEDs connected in series or series / parallel, with a power source terminal connected to the negative output side of the AC power supply rectifier circuit,
当該交流電源整流回路のプラス出力側に接続した当該 LED又は当該 LED群の 駆動電流をオン'オフするための FETと、  An FET connected to the positive output side of the AC power supply rectifier circuit for turning on and off the driving current of the LED or the LED group;
当該 FETを通過した駆動電流を検出するために、当該 FETと当該 LED又は当該 LED群のアノード端子との間に配した電流検出抵抗と、  A current detection resistor disposed between the FET and the LED or the anode terminal of the LED group to detect a drive current passing through the FET;
当該 FETのゲート端子に、ゲート抵抗を介して接続した当該 FETを制御するため の FET制御回路と、を含み、  A FET control circuit for controlling the FET connected to the gate terminal of the FET via a gate resistor,
当該 FET制御回路が、当該交流電源整流回路のプラス出力側から印加された整 流電圧の上昇に伴い当該ゲート端子にスレッシュホールド電圧を超えるゲート電圧を 印加するための制御電圧を当該ゲート抵抗に印加して当該 FETをオンさせ、かつ、 当該電流検出抵抗が所定値を超えた駆動電流を検出したことを受けて当該制御電 圧を当該スレッシュホールド電圧未満の電圧まで降下させ当該ゲート端子からの電 荷放電を促すことによって当該 FETを遅延オフさせるように構成してある  The FET control circuit applies a control voltage to the gate resistor to apply a gate voltage exceeding a threshold voltage to the gate terminal as the rectification voltage applied from the plus output side of the AC power supply rectifier circuit increases. In response to the fact that the current detection resistor has detected a drive current exceeding a predetermined value, the control voltage is reduced to a voltage lower than the threshold voltage, and the voltage from the gate terminal is reduced. The FET is configured to delay off by prompting charge discharge.
ことを特徴とする LED駆動回路。 [6] 前記ゲート抵抗には、バイパス路を並列接続してあり、 An LED driving circuit, characterized by: [6] A bypass path is connected in parallel to the gate resistor,
当該バイパス路が、前記 FETに向って順方向のダイオードと、当該ダイオードに直 列接続したバイパス抵抗と、を含み、  The bypass path includes a diode in a forward direction toward the FET, and a bypass resistor connected in series to the diode;
当該バイパス抵抗の値が、当該ゲート抵抗の値よりも小さく設定してある ことを特徴とする請求項 1乃至 5何れか記載の LED駆動回路。  6. The LED drive circuit according to claim 1, wherein a value of the bypass resistance is set smaller than a value of the gate resistance.
[7] 前記ゲート抵抗には、前記 FETに向って逆方向のダイオードを直列接続してある ことを特徴とする請求項 6記載の LED駆動回路。 7. The LED drive circuit according to claim 6, wherein a diode in a direction opposite to the FET is connected in series to the gate resistor.
PCT/JP2004/009019 2004-04-22 2004-06-25 Led driver circuit WO2005104245A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004126309A JP2005311090A (en) 2004-04-22 2004-04-22 Led drive circuit
JP2004-126309 2004-04-22

Publications (1)

Publication Number Publication Date
WO2005104245A1 true WO2005104245A1 (en) 2005-11-03

Family

ID=35197279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009019 WO2005104245A1 (en) 2004-04-22 2004-06-25 Led driver circuit

Country Status (2)

Country Link
JP (1) JP2005311090A (en)
WO (1) WO2005104245A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416623A3 (en) * 2010-08-04 2012-02-22 Immense Advance Technology Corp. Novel led driver circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805985B2 (en) * 2008-07-29 2011-11-02 廣美科技股▲分▼有限公司 Constant current light emitting device for vehicles
KR101684659B1 (en) * 2016-05-13 2016-12-08 금호이앤지 (주) System and method for improving energy efficiency using swithching device
KR200482184Y1 (en) * 2016-05-26 2016-12-27 금호이앤지 (주) System for improving energy efficiency using swithching device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324776A (en) * 1989-06-22 1991-02-01 Omron Corp Drive circuit for light-emitting element
JPH07114990A (en) * 1993-10-14 1995-05-02 Plus Kk Halogen lamp dimmer
JPH0822579A (en) * 1994-07-06 1996-01-23 Tokyo Metropolis Led lamp for ac current
JPH08148721A (en) * 1994-11-21 1996-06-07 Tokyo Metropolis Led lighting circuit for ac

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324776A (en) * 1989-06-22 1991-02-01 Omron Corp Drive circuit for light-emitting element
JPH07114990A (en) * 1993-10-14 1995-05-02 Plus Kk Halogen lamp dimmer
JPH0822579A (en) * 1994-07-06 1996-01-23 Tokyo Metropolis Led lamp for ac current
JPH08148721A (en) * 1994-11-21 1996-06-07 Tokyo Metropolis Led lighting circuit for ac

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416623A3 (en) * 2010-08-04 2012-02-22 Immense Advance Technology Corp. Novel led driver circuit

Also Published As

Publication number Publication date
JP2005311090A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
TWI428057B (en) Light-emitting driving circuit with function of dynamic loading and increasing power factor and related dynamic loading module
US7564198B2 (en) Device and method for driving LED
US9451661B2 (en) Linear LED driver and control method thereof
US9433046B2 (en) Driving circuitry for LED lighting with reduced total harmonic distortion
EP2666220B1 (en) Driving circuitry for led lighting with reduced total harmonic distortion
US9699853B2 (en) Method and apparatus for dimmable LED driver
US8872434B2 (en) Constant-current-drive LED module device
CN104041188B (en) Two-wire system dimmer switch
JP2014123535A (en) Led lighting device
US20100156314A1 (en) Light source driver circuit
US20130207555A1 (en) Led driver system with dimmer detection
JP5242212B2 (en) Light control device
US8669709B2 (en) Solid state lighting driver with THDi bypass circuit
JPH11307815A (en) Collective led lamp for ac power source
CA2892775A1 (en) Led driver circuit using flyback converter to reduce observable optical flicker by reducing rectified ac mains ripple
TW201206236A (en) Driving circuit of light-emitting element
CN107736080B (en) Light modulation device
TWI576008B (en) Low-flicker light-emitting diode lighting device
TWI449458B (en) Led driving system
WO2005104245A1 (en) Led driver circuit
TWI508617B (en) Electronic control gears for led light engine and application thereof
US8917028B2 (en) Driving circuit
TWM508182U (en) A LED drive circuit
TW201632029A (en) LED drive system and LED drive method
TWI670995B (en) Light emitting diode driving apparatus with switch control circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase