WO2005104078A1 - Information display drive method - Google Patents

Information display drive method Download PDF

Info

Publication number
WO2005104078A1
WO2005104078A1 PCT/JP2005/007542 JP2005007542W WO2005104078A1 WO 2005104078 A1 WO2005104078 A1 WO 2005104078A1 JP 2005007542 W JP2005007542 W JP 2005007542W WO 2005104078 A1 WO2005104078 A1 WO 2005104078A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
display
driving
information display
display device
Prior art date
Application number
PCT/JP2005/007542
Other languages
French (fr)
Japanese (ja)
Inventor
Maki Masutani
Norio Nihei
Shuhei Tsuchie
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004239661A external-priority patent/JP4124180B2/en
Priority claimed from JP2004239632A external-priority patent/JP5129919B2/en
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to EP05734545A priority Critical patent/EP1758087A4/en
Priority to US11/587,185 priority patent/US7973740B2/en
Publication of WO2005104078A1 publication Critical patent/WO2005104078A1/en
Priority to US13/152,540 priority patent/US20110234576A1/en
Priority to US13/152,518 priority patent/US20110234575A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/06Passive matrix structure, i.e. with direct application of both column and row voltages to the light emitting or modulating elements, other than LCD or OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals

Definitions

  • the present invention encapsulates at least two types of display media of a first color and a second color between two opposing substrates, at least one of which is transparent, and applies an electric field to the display medium from the electrodes. Also, the present invention relates to a method for driving an information display device that displays information such as an image by moving a display medium (first invention and second invention).
  • a display medium is sealed between two opposing substrates, at least one of which is transparent, an electric field is applied to the display medium from the electrodes, and the display medium is moved to display information such as an image.
  • the present invention relates to a method for driving an information display device (third invention).
  • a conductive particle is used without using a solution.
  • a method of incorporating a carrier and a charge transport layer into a part of a substrate has begun to be proposed (for example, Guo Lao Zhao and three others, "New Toner Display Device (1)", July 21, 1999, Japan Image Annual conference (83 times in total), "Japan Hardcopy '99", pp.249-252.
  • the arrangement of the charge transport layer and the charge generation layer complicates the structure, and it is difficult to inject charges uniformly into the conductive particles, which causes a problem of lack of stability.
  • a display medium (a group of particles! Is powdered fluid) is sealed between a front substrate having a front electrode and a rear substrate having a back electrode, 2.
  • an information display device including an information display panel that applies an electric field to a display medium and moves the display medium by Coulomb force or the like to display information such as an image.
  • An information display device that uses the display medium described above!
  • One end of a row electrode is provided for a row electrode composed of a plurality of electrodes extending in a row direction on one substrate side and a column electrode composed of a plurality of electrode cables extending in a column direction on the other substrate side.
  • Crosstalk originally refers to a phenomenon in which signals from other lines are mixed in a telephone.
  • crosstalk refers to the effect of other rows even though a column electrode is not selected. This is a phenomenon in which an image different from the actual one is displayed.
  • a voltage for maintaining the display is applied to the non-selected rows of the column electrodes. The effect of applying the holding voltage by the number of rows of the column electrodes lowers the contrast and, depending on the display pattern, causes shading to occur in the image display, resulting in unevenness.
  • An information display device that uses the display medium described above!
  • One end of a row electrode is provided for a row electrode composed of a plurality of electrodes extending in a row direction on one substrate side and a column electrode composed of a plurality of electrode cables extending in a column direction on the other substrate side. Scan to the other end and apply voltage Therefore, when displaying information such as an image on a single screen, there is a problem that crosstalk occurs when driving in a matrix display or when driving segments dynamically.
  • Crosstalk is a phenomenon in which signals from other lines are mixed together in a telephone.
  • Crosstalk in this case refers to the effect of other rows even though the column electrode is not selected.
  • This is a phenomenon in which an image different from the actual one is displayed.
  • a voltage for maintaining the display is applied to the non-selected rows of the column electrodes. The effect of applying this holding voltage by the number of rows of the column electrodes causes shading in the image display and causes unevenness.
  • FIG. 25 is a diagram for describing shading unevenness due to crosstalk in a conventional information display device.
  • an 8 ⁇ 6 image is also formed in which the lower row electrodes 51-1 to 51-6 and the upper column electrodes 52-1 to 52-8 also have a force.
  • a white and black display medium having different charging characteristics are filled between the row electrode and the column electrode, and the row electrode 51-1 to 51-6 and the column electrode 52-1 to 52-8 are filled.
  • Black and white display is performed according to the voltage applied between them.
  • the driving method is a line erasing method in which erasing and writing are repeated for each row, and image display is performed by scanning the row electrodes 51-1 to 51-6 in that order.
  • the selected row of row electrodes 51-1 to 51-6 is erased by applying a voltage of 100 to apply a voltage of 0, and non-selected rows are erased by applying a voltage of 0 to erase. This is done by applying a voltage of 50.
  • the column electrodes 52-1 to 52-8 apply the voltage 0 at the time of erasing, apply the voltage 100 to the writing column at the time of writing, and apply the voltage 0 to columns other than the writing column.
  • FIG. 25 shows an example in which scanning is started from the row electrode 51-1 and writing is completed in the last row electrode 51-6.
  • a portion which should be white display is displayed in whitish gray due to partial force crosstalk and a portion which should be black display. Is displayed in blackish gray due to crosstalk, and the image display has shading and unevenness.
  • the cross-section applied to the non-rewritable pixels is controlled. Contrast reduction due to the talk voltage is a problem.
  • Crosstalk originally refers to a phenomenon in which signals from other lines are mixed in a telephone.
  • crosstalk refers to the effect of other rows even though a column electrode is not selected. This is a phenomenon in which an image different from the actual one is displayed.
  • a voltage for maintaining the display is applied to the non-selected rows of the column electrodes. The effect of applying the holding voltage by the number of rows of the column electrodes causes shading in the information display and causes unevenness.
  • An object of the first invention of the present invention is to solve the above-mentioned problem and to provide a method of driving an information display device capable of eliminating shading unevenness caused by crosstalk.
  • the method for driving an information display device is characterized in that at least one of the two substrates having at least one of them is transparent and has at least two types of display having a first color and a second color.
  • a method for driving an information display device in which a medium is sealed and an electric field is applied to a display medium from electrodes provided on each substrate to move the display medium and display information such as an image is provided.
  • a row electrode consisting of a plurality of electrodes extending in the row direction and a column electrode consisting of a plurality of electrodes extending in the column direction on the other substrate side are scanned from one end of the row electrode to the other end.
  • the voltage causing crosstalk in the first color and the crosstalk in the second color occur after the display of one screen is completed. Characterized in that the voltage to be applied is applied at least once to all the cells of the display unit.
  • the simplest method for realizing the above is to add two or more lines at the end of a scan, and after one scan is completed,
  • the drive for displaying the first color display and the second color display at least once each is performed, and the image erasing method prior to the image display is such that the image is erased line by line and then the image is written line by line.
  • This may be a line erasing method, or a total erasing method in which images are erased all at once and then an image is written for each line.
  • the display of one screen is completed.
  • a voltage for generating crosstalk in the first color and a voltage for generating crosstalk in the second color are applied to all the cells of the display unit at least once each, preferably at the end of the scan.
  • An object of the second invention of the present invention is to solve the above-mentioned problems and to provide a method of driving an information display device capable of eliminating contrast reduction and shading unevenness due to crosstalk. is there.
  • the method for driving an information display device is characterized in that at least one of the two substrates, at least one of which is transparent, has at least two types of display of a first color and a second color.
  • a method of driving an information display device that encloses a medium, applies an electric field to the display medium from the electrodes, and moves the display medium to display information such as an image, the electric field is applied to the electrodes to generate the electric field.
  • a pulse-like voltage composed of a plurality of voltages including a drive voltage in an on state and a voltage equal to or lower than a threshold value at which a display medium in an off state starts moving is applied as a drive voltage.
  • the driving voltage V is larger than the threshold voltage V (V> V> V: V is
  • the drive voltage applied to the electrodes to generate an electric field includes a drive voltage in an on state and a display medium in an off state.
  • An object of the third invention of the present invention is to solve the above-mentioned problems and to reduce the problem caused by the crosstalk voltage. It is an object of the present invention to provide a method for driving an information display device, which can eliminate a decrease in contrast.
  • a display medium is sealed between two opposing substrates, at least one of which is transparent, and an electric field is applied to the display medium from the electrodes.
  • a pulse is applied a plurality of times during one pixel rewrite, and a pulse is applied to a non-rewritten pixel during one pixel rewrite.
  • the drive waveform is adjusted so that the polarity of the crosstalk voltage does not change.
  • a preferred example of the driving method of the information display device according to the third invention of the present invention is that a pulse in a pulse voltage applied to a pixel to be rewritten while a plurality of pulses are applied in one pixel rewriting. Widening the interval between the peaks, and configuring the row (scan) drive voltage and column drive voltage with pulse trains of the same cycle and the same duty, respectively, when selecting the row side, select the row drive voltage and column drive voltage. Invert the phase of each pulse train.
  • a pulse is applied a plurality of times in one pixel rewriting, and is applied to a non-rewritten pixel during one pixel rewriting.
  • FIG. 1] (a) and (b) are diagrams each showing an example of an information display panel provided in the information display device of the present invention.
  • FIGS. 3 (a) and 3 (b) are diagrams showing still another example of the information display panel provided in the information display device of the present invention.
  • FIG. 4 (a) and (b) show the driving method of the information display device according to the first invention of the present invention, respectively.
  • FIG. 16 is a diagram for explaining an example added to the conventional example shown in FIG.
  • FIGS. 5 (a) and 5 (b) show the driving method of the information display device according to the first invention of the present invention, respectively.
  • FIG. 16 is a diagram for explaining another example added to the conventional example shown in FIG.
  • ⁇ 6] (a) and (b) are diagrams for explaining another example of the method of driving the information display device according to the first invention of the present invention.
  • FIG. 7 is a diagram for explaining the effect of the driving method of the information display device according to the first invention of the present invention.
  • ⁇ 8] (a) and (b) are diagrams for explaining the effect of the method for driving the information display device according to the first invention of the present invention.
  • FIG. 10 is a diagram showing an example of a pulse voltage used in the method for driving the information display device according to the second invention of the present invention.
  • FIG. 11 (a) and (b) are diagrams showing states when row 1 and row 2 are selected in a simple matrix of 2 rows and 2 columns, respectively (third invention).
  • FIG. 12 is a view showing an example of a shape of a partition wall in the information display device of the present invention.
  • FIG. 13 is a diagram showing an example of a test pattern displayed by passive matrix driving (second invention).
  • FIG. 14 is a diagram showing a display screen and a measurement area when a test pattern is actually displayed (second invention).
  • FIG. 15 is a graph showing the relationship between the applied voltage and the reflectance measured in each region shown in FIG. 14 (second invention).
  • FIG. 16 is a graph showing a relationship between a duty ratio and a contrast in a noisy drive voltage (second invention).
  • FIG. 17 is a graph showing a relationship between a duty ratio and a margin in a noisy drive voltage (second invention).
  • FIG. 18 is a graph showing the relationship between the off-time and the margin at a noisy drive voltage (second invention).
  • FIG. 19 is a view for explaining an example of a simple matrix panel composed of row electrodes and column electrodes (third invention).
  • FIG. 20 is a diagram for explaining the driving method of Comparative Example 1 (third invention).
  • FIG. 21 is a diagram for explaining a driving method according to the first embodiment (third invention).
  • FIG. 22 is a diagram for explaining a driving method according to the second embodiment (third invention).
  • FIG. 23 is a view for explaining the driving method according to the third embodiment (third invention).
  • FIG. 24 (a) and (b) are diagrams for explaining a test pattern and a measurement position on the test pattern, respectively (third invention).
  • FIG. 25 is a diagram for explaining shading in a conventional information display device due to crosstalk.
  • the basic configuration of the information display panel provided in the information display device of the present invention using a particle group will be described.
  • an electric field is applied to a particle group sealed between two opposing substrates.
  • low-charged particles are attracted to the high potential side by Coulomb force
  • high-charged particles are attracted to the low potential side.
  • the particles are attracted by the Coulomb force or the like, and the direction of movement is switched by the change in the direction of the electric field due to the switching of the potential, whereby information is displayed. Therefore, it is necessary to design an information display panel so that the particles can move uniformly and maintain stability when display rewriting is repeatedly performed or when continuous display, that is, when the display is kept as it is.
  • the force applied to the particles may be, for example, a force attracting each other due to the Coulomb force between the particles, an electric image force with an electrode or a substrate, an intermolecular force, a liquid crosslinking force, gravity, and the like.
  • FIGS. 1 (a) and 1 (b) at least two or more types of display media 3 (here, particles) having different optical reflectivity and charging characteristics are also configured, each having at least one type of particle force.
  • a white display medium 3W composed of a group of particles and a black display medium 3B composed of a group of particles are shown), and the substrates 1 and 2 are arranged in accordance with the electric field generated from electrodes (not shown) arranged outside the substrates 1 and 2.
  • the display is moved perpendicular to 2, and the black display medium 3B is visually recognized by the observer to perform black display, or the white display medium 3W is visually recognized by the observer to perform white display.
  • Fig. 1 (b) In the example shown in FIG. 1A, in addition to the example shown in FIG. Further, in FIG. 1 (b), a partition wall in the foreground is omitted.
  • FIGS. 2 (a) and 2 (b) at least two or more types of display media 3 (here, particles having different optical reflectivities and charging characteristics) each comprising at least one type of particle force are also shown.
  • a partition 4 is provided between the substrates 1 and 2 in a lattice shape to form a cell. Also, in FIG. 2 (b), the partition wall in front is omitted.
  • one type of display medium 3 having optical reflectivity and chargeability (at this time, a particle group force of white Display medium 3W) is moved in a direction parallel to the substrate 2 in accordance with an electric field generated by applying a voltage between the electrodes 5 and 6 provided on the substrate 1, and the white display medium 3W is moved. Either the white color is displayed by the observer or the color of the electrode 6 or the substrate 1 is displayed by making the observer visually recognize the color of the electrode 6 or the substrate 1.
  • a grid-like partition 4 is provided between the substrate 2 and the substrate 2 to form a cell. Also, in FIG. 3 (b), the partition in the foreground is omitted.
  • the features of the driving method of the information display device according to the first invention of the present invention include a row electrode composed of a plurality of electrodes extending in the row direction on one substrate side and a plurality of row electrodes extending in the column direction on the other substrate side.
  • a row electrode composed of a plurality of electrodes extending in the row direction on one substrate side and a plurality of row electrodes extending in the column direction on the other substrate side.
  • the display of one screen ends.
  • the crosstalk voltages 1 and 2 refer to a voltage of 100 and a voltage of ⁇ 100 in order to display white as the first color and black as the second color. And a voltage of 50 is applied as the crosstalk voltage 2. Specifically, two or more lines are added at the end of the scan, and after one scan is completed, the display of the first color and the display of the second color may be displayed one or more times.
  • FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b) are diagrams for explaining examples in which the driving method of the present invention is added to the conventional example shown in FIG. .
  • the row electrodes 111 to 116 and the column electrodes 12-1 to 12- In addition to the provision of 8, row electrodes 11-7 and 11-8 are previously provided as the last two rows.
  • FIGS. 4 (a) and 4 (b) after scanning of the image display portion is completed, here, scanning is performed up to the row electrodes 11-6 to form an image of one screen of 8 ⁇ 6 pixels.
  • the row electrodes 11-7 which is the first of the last two rows, are erased as shown in FIG. Perform white writing.
  • black writing is performed as shown in FIG. 5B.
  • the white color is unified to light gray
  • the black color is unified to dark gray, and they are not 100% white or black, respectively. Since the portions displayed in light and gray and those displayed in black are all displayed in dark and gray, unevenness in light and shade caused by crosstalk can be completely eliminated.
  • the line erasing method in which the force erased for each line is also described as an example. Even with the total erasure method of writing every power line, unevenness of light and shade can be eliminated similarly. In addition, although an example of white erasing at the time of erasing is shown, unevenness of shading can be similarly eliminated in black erasing.
  • the row electrodes 117, 118 were added and the display medium was filled to actually display black and white. However, even if no electrode is provided, two or more rows to be driven are added Also, by applying a voltage for displaying white and a voltage for displaying black to the added row, the unevenness of density can be similarly eliminated.
  • FIGS. 6A and 6B are diagrams for explaining another example of the method of driving the information display device according to the first invention of the present invention.
  • the checker pattern is displayed on the last two rows, row electrodes 117, 11-8, to show Figs. 4 (a), (b) and 5
  • unevenness of shading is eliminated.
  • the checker pattern when displaying the first color and the second color for each column in the last two rows, the first two rows are displayed for each column in the last two rows.
  • the display of the first color and the display of the second color in each column are performed in a zigzag manner different from each other, or a newly provided row electrode is provided.
  • a voltage for displaying the first color and a voltage for displaying the second color are applied between the column and the extended portion of each column electrode, the display of the first color and the second color is performed in each column. It is possible to achieve the application of the voltage so as to perform the zigzag display in which the display order is different from each other.
  • FIGS. 7, 8 (a), (b), 9 (a), and (b) are diagrams for explaining the effects of the driving method of the information display device of the present invention.
  • the pattern image shown in FIG. 7 is displayed.
  • Fig. 8 (a) shows an example of displaying a pattern image using the conventional driving method in line erasing.
  • Figure 8 (b) shows an example of the image displayed.
  • Fig. 9 (a) shows an example of a pattern image displayed by the conventional driving method in all erasure.
  • Figure 9 (b) shows an example in which is displayed. Comparing Fig. 8 (a) and Fig. 8 (b), and Fig. 9 (a) and Fig. 9 (b), both the line erase method and the all erase method It can be seen that the shading caused by the crosstalk is remarkable, whereas the shading unevenness caused by the crosstalk is not present in the example of the present invention.
  • the voltage 100 applied when erasing or writing a pixel is touched, but the density of an image greatly differs depending on the value of the voltage V depending on the structure of the information display device.
  • the voltage V is low, black display cannot be performed, while when the voltage 100 is high, the difference between the gray portion and the black portion due to the crosstalk disappears. Therefore, it is necessary to select the optimal voltage according to the structure of the information display device. For example, a voltage of about 80V to 110V is used.
  • the feature of the method for driving the information display device according to the second invention of the present invention is that, unlike the information display device having the above-described configuration, the drive voltage V, which is conventionally in the ON state for displaying an image, is continuously applied. However, on the other hand, the driving voltage V in the ON state and the voltage V pulse below the threshold value at which the display medium in the OFF state starts moving.
  • V and V can take a plurality of values and may be gradually changed.
  • FIG. 10 is a diagram showing an example of a pulse voltage used in the method for driving the information display device according to the second invention of the present invention.
  • the pulse voltage used in the present invention is such that the drive voltage in the on state and the display medium in the off state start to move! As shown.
  • the feature of the driving method of the information display device according to the third invention of the present invention is that the information display device having the above-described configuration has a crosstalk voltage waveform when various driving methods are applied in more detail, and is optimized. The point is that the contrast is improved by selecting an appropriate method.
  • the non-rewrite pixel While applying a pulse multiple times during one pixel rewrite, the non-rewrite pixel
  • the polarity of the crosstalk voltage applied to the non-rewriting pixel does not change, that is, the pulse of the crosstalk voltage given as the difference between the row (scanning) drive voltage and the column drive voltage in the non-rewrite pixel has a positive and negative polarity
  • the drive voltage pulse waveform is adjusted so that it does not exist over the region, in other words, it exists only in the positive region when it is positive, and it exists only in the negative region when it is negative.
  • FIGS. 11 (a) and 11 (b) are diagrams showing states when row 1 and row 2 are selected in a simple matrix of 2 rows and 2 columns, respectively.
  • FIGS. 11 (a) and 11 (b) when a rewrite voltage is applied to a pixel to be rewritten (the hatched portion in the figure), three types of crosstalk voltages 1 to 3 are applied. Even if the number of matrices increases, only the above two types of voltages exist (two types: selected for row, two types for non-selection, rewrite for column, two types for non-rewrite, two types of 2 ⁇ 2.
  • the non-rewritable pixel becomes black (gray) with more whiteness if it is black, for example, and becomes white (gray) with more blackness if it is white (for black and white display). ).
  • the rewriting pixel is applied while applying the pulse a plurality of times in one pixel rewriting.
  • the display color of the rewritten pixel can be increased, and as a result, the contrast can be further improved.
  • the row (scanning) drive voltage and the column drive voltage are composed of pulse trains having the same cycle and the same duty, respectively, and when selecting a row on the row side, each of the port drive voltage and the column drive voltage is used.
  • the crosstalk voltage given as the difference between the row (scanning) drive voltage and the column drive voltage at the rewrite pixel increases the difference between the peak 'toe' peaks, thereby increasing the color of the rewrite pixel. Can be increased. Both examples will be described in detail in embodiments described later.
  • the substrate is a force outside the information display panel. It is a transparent front substrate 2 whose color can be confirmed, and a material having high visible light transmittance and good heat resistance is preferable.
  • the rear substrate 1 may be transparent or opaque.
  • the substrate material include polymer sheets such as polyethylene terephthalate, polyether sulfone, polyethylene, polycarbonate, polyimide, and acrylic, and flexible materials such as metal sheets, and flexible materials such as glass and quartz. Inorganic sheet having no properties.
  • the thickness of the substrate is preferably between 2 and 5000 ⁇ m, and more preferably between 5 and 2000 ⁇ m. If the thickness is too small, the strength and uniformity between the substrates are maintained. If the thickness is more than 5000 / zm, This is inconvenient when using a thin information display panel.
  • examples of the electrode forming material include metals such as aluminum, silver, nickel, copper, and gold, ITO , indium oxide, conductive tin oxide, and conductive zinc oxide.
  • examples of such conductive metal oxides and conductive polymers such as polyaline, polypyrrole, and polythiophene are exemplified and appropriately selected for use.
  • Examples of the method of forming the electrode include a method of forming the above-described materials into a thin film by a sputtering method, a vacuum evaporation method, a CVD (chemical vapor deposition) method, a coating method, or a method in which a conductive agent is mixed with a solvent or a synthetic resin binder.
  • the electrode provided on the viewing side (display surface side) substrate needs to be transparent.
  • the electrode provided on the back side substrate does not need to be transparent.
  • the above-mentioned conductive material capable of forming a pattern can be suitably used.
  • the thickness of the electrode is preferably 3 to: LOOO nm, and more preferably 5 to 400 nm, as long as the conductivity can be ensured and the light transmittance is not impaired.
  • the material and thickness of the electrodes provided on the back side substrate are the same as those of the electrodes provided on the display surface side substrate, and need not be transparent. In this case, the external voltage input may be superimposed with DC or AC.
  • the shape of the partition wall 4 provided as necessary is appropriately set appropriately according to the type of the display medium involved in the display, and is not particularly limited, but the width of the partition wall is 2 to: ⁇ / ⁇ , preferably Preferably, the height is adjusted to 3 to 50 ⁇ m, and the height of the septum is adjusted to 10 to 500 ⁇ m, preferably 10 to 200 ⁇ m. Further, in forming the partition, a two-rib method in which ribs are formed on both of the opposing substrates and then joined, or a one-rib method in which the ribs are formed only on one substrate is conceivable. In the present invention, any of the methods is suitably used.
  • the cells formed by the ribs having the rib force are arranged on the substrate plane as shown in FIG. Seen from the direction, a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape are exemplified, and the arrangement is exemplified by a lattice shape, a honeycomb shape, and a mesh shape. It is better to make the part (area of the cell frame) corresponding to the cross-section of the partition seen from the display surface side as small as possible, and the sharpness of the display state increases.
  • examples of the method for forming the partition include a mold transfer method, a screen printing method, a sand blast method, a photolithography method, and an additive method. Of these, a photolithography method using a resist film and a mold transfer method are preferably used.
  • the particles constituting the particle group can contain a charge control agent, a coloring agent, an inorganic additive, and the like, as necessary, in a resin as a main component thereof, as necessary.
  • a charge control agent e.g., a coloring agent, an inorganic additive, and the like.
  • the following are examples of resins, charge control agents, coloring agents, and other additives.
  • the resin examples include urethane resin, urethane resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluorine resin, acrylic fluorine resin, Silicone resin, acrylic silicone resin, epoxy resin, polystyrene resin, styrene acrylic resin, polyolefin resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluorine resin, polycarbonate. Fat, polysulfone resin, polyether resin, polyamide resin, and the like, and two or more kinds can be mixed.
  • the charge control agent is not particularly limited, but examples of the charge control agent include a metal salicylate complex, a metal-containing azo dye, and a metal-containing dye (including a metal ion and a metal atom) in an oil-soluble dye.
  • a metal salicylate complex e.g., a metal-containing azo dye
  • a metal-containing dye e.g., a metal ion and a metal atom
  • Materials quaternary ammonium salt-based compounds, Rick's Allylene conjugates, boron-containing compounds (boron benzylate complexes), nitroimidazole derivatives and the like.
  • Examples of the positive charge control agent include a nig mouth dye, a triphenylmethane compound, a quaternary ammonium salt compound, a polyamine resin, and an imidazole derivative.
  • metal oxides such as ultrafine silica, ultrafine titanium oxide and ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and derivatives and salts thereof, various organic pigments, and resins containing fluorine, chlorine, nitrogen, etc.
  • a charge control agent e.g., a charge control agent for organic or inorganic pigments and dyes.
  • black colorant examples include carbon black, copper oxide, dimanganese diacid, arin black, activated carbon and the like.
  • Blue colorants include CI Pigment Blue 15: 3, CI Pigment Blue 15, Navy Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-Free Phthalocyanine Blue, Partially Chlorinated Phthalocyanine Blue, First Sky Blue and Indanthrene Blue BC are available.
  • Red colorants include Bengala, Cadmium Red, Lead Tan, Mercury Sulfide, Cadmium, Permanent Red 4R, Linole Red, Pyrazolone Red, Watching Red, Calcium Salt, Lake Red D, Brilliant Carmine 6B, Eosin Lake, Rhodamine Lake B, Aliza Lin Lake, Brilliant Carmine 3B, CI Pigment Red 2, etc.
  • yellow colorant examples include graphite, zinc yellow, cadmium yellow, yellow iron oxide, mineral yellow, nickel yellow, yellow yellow, navy yellow, naphtho no yellow yellow S, nonzai yellow G, hanzi yellow 10G, benzidine Yellow G, Benzijin Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, CI Pigment Yellow 12 and others.
  • green colorant examples include chrome green, oxidized chromium, pigment green B, CI pigment green 7, malachite green lake, and huainanorayello green G.
  • Orange colorants include red lead, molybdenum orange, permanent orange GTR, pyrazolone age range, norecan age range, indanthrene brilliant age range RK :, benzidine age range G, indanthrene brilliant age range GK, CI Pigment Age Range 3 1 mag.
  • Purple colorants include manganese violet, first violet B, methyl violet lake, and the like.
  • white colorants include zinc white, titanium oxide, antimony white, zinc sulfate, and the like.
  • extenders examples include norite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Also, with various dyes such as basic, acidic, dispersion, direct dye And Nigguchi Shin, Methylene Blue, Rose Bengal, Quinoline Yellow, Ultramarine Blue and the like.
  • examples of the inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, aluminum powder and the like. These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferred as the black pigment, and titanium oxide is preferred as the white pigment.
  • the particles used in the present invention have an average particle diameter d (0.5) force of 0.1 to 20 ⁇ m, and are preferably uniform and uniform. If the average particle diameter d (0.5) is larger than this range, the sharpness of the display will be poor, and if it is smaller than this range, the cohesion between the particles will be too large and the movement of the particles will be hindered.
  • the particle size distribution Span represented by the following formula is set to less than 5, preferably less than 3.
  • d (0.5) is the numerical value of the particle diameter in which 50% of the particles are larger and 50% is smaller than this, expressed in m
  • d (0.1) is the particle in which the ratio of particles smaller than 10% is 10%.
  • the particle diameter is expressed as / zm
  • d (0.9) is the particle diameter at which 90% of the particles are 90% or less./zm.
  • the ratio of d (0.5) of the particle having the minimum diameter to d (0.5) of the particle having the maximum diameter is 50 or less, preferably 10 or less. It is important to do so. Even if the particle size distribution Span is reduced, particles with different charging characteristics move in opposite directions, so that particles with similar particle sizes can easily move in opposite directions by an equivalent amount. It is preferable that the force falls within this range.
  • the above-mentioned particle size distribution and particle size can be determined by a laser diffraction Z scattering method or the like. When laser light is applied to the particles to be measured, a spatial light intensity distribution pattern of the diffracted Z scattered light is generated, and since this light intensity pattern has a correspondence with the particle size, the particle size and the particle size distribution are measured. it can.
  • the particle size and the particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, the particles are put into a nitrogen gas stream, and the particles are analyzed using the attached analysis software (software based on volume-based distribution using Mie theory). Measurements of diameter and particle size distribution can be made.
  • Mastersizer2000 Malvern Instruments Ltd.
  • the charge amount of the particles naturally depends on the measurement conditions, the charge amount of the particles in the information display panel is almost the same as the initial charge amount, the contact with the partition, the contact with the substrate, and the charge accompanying the elapsed time. It was found that it depends on the attenuation, and in particular, the saturation value of the charging behavior of the particles is the dominant factor.
  • the present inventors have found that by measuring the charge amount of each particle using the same carrier particles in the blow-off method, it is possible to evaluate the appropriate range of the charge characteristic value of the particles used. I found it.
  • the "powder fluid” in the present invention is a substance in an intermediate state between a fluid and a particle that exhibits fluidity by itself without using the power of gas or liquid.
  • a liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity, a characteristic of liquid, and anisotropy (optical properties), a characteristic of solid (Heibonsha: Encyclopedia) ).
  • the definition of a particle is an object having a finite mass, even if it is negligible, and is said to be affected by gravity (Maruzen: Encyclopedia of Physics).
  • particles also have a special state of gas-solid fluidized bed or liquid-solid fluid.
  • the powder fluid in the present invention is an intermediate state having both characteristics of particles and liquid, and has the characteristics of the particles described above.
  • Such a substance can be obtained in an aerosol state, that is, a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the solid substance is dispersed in the information display panel of the present invention. It is assumed that.
  • the information display panel that is the object of the present invention is a powder fluid that exhibits high fluidity in an aerosol state in which solid particles are stably suspended as a dispersoid in a gas between opposed substrates, at least one of which is transparent.
  • a powder fluid can be easily and stably moved by a cooler or the like when a low voltage is applied.
  • the powder fluid used in the present invention is, as described above, a substance in an intermediate state between a fluid and a particle, which exhibits fluidity by itself without using the power of gas or liquid.
  • the powdered fluid can be in an aerosol state, and the information display panel of the present invention is used in a state where a solid substance is relatively stably suspended as a dispersoid in a gas.
  • the range of the aerosol state is preferably twice or more the maximum apparent volume of the powder fluid when it was not suspended, more preferably 2.5 times or more, and particularly preferably 3 times or more. You.
  • the upper limit is not particularly limited, but is preferably 12 times or less.
  • the apparent volume at the time of the maximum suspension of the powder fluid is smaller than twice that of the non-floating state, it will be difficult to control the display. If the apparent volume is larger than 12 times, the powder fluid will flutter too much when enclosed in the device. Inconvenience in handling occurs.
  • the apparent volume at the time of maximum suspension is measured as follows. That is, the powdered fluid is placed in a closed container through which the powdered fluid can be seen, and the container itself is vibrated or dropped to create a maximum floating state, and the apparent volume at that time is also measured for the external force of the container.
  • a powdery liquid with no suspension is placed in a container with a lid made of polypropylene (trade name: i-boy: Azwan Corporation) with an average particle diameter d (0.5) (inner diameter) of 6 cm and a height of 10 cm. Then, put the powder fluid equivalent to the volume of 1Z5, set the container on a shaker, and shake for 3 hours at 3 round trip Zsec over a distance of 6cm. The apparent volume immediately after stopping shaking is the apparent volume at the time of maximum suspension.
  • polypropylene trade name: i-boy: Azwan Corporation
  • the temporal change of the apparent volume of the powder fluid satisfies the following expression.
  • V is the apparent volume (cm 3 ) 5 minutes after the maximum suspension, and V is 10
  • the temporal change V / V of the apparent volume of the powdery fluid is larger than 0.85, and more preferable that it is larger than 0.9.
  • V / V is 0.8 or less, the field using ordinary so-called particles
  • the average particle diameter d (0.5) (d (0.5)) of the particulate matter constituting the powder fluid is preferably 0.1 to 20 111, and more preferably 0.5 to 15 111, particularly preferably 0.9 to 8 m. If it is smaller than 0.1 m, it will be difficult to control the display. If it is larger than 20 m, the display will be less clear.
  • the average particle size d (0.5) (d (0.5)) of the particulate matter constituting the powder fluid is the same as d (0.5) in the next particle size distribution Span.
  • the particle material constituting the powder fluid preferably has a particle size distribution Span represented by the following formula of less than 5, more preferably less than 3.
  • d (0.5) is a numerical value expressed by / zm that 50% of the particulate matter constituting the powder fluid is larger than 50% and smaller than 50%
  • d (0.1) is Numerical value in ⁇ m of the particle diameter where the ratio of the particulate matter constituting the powder fluid is 10%
  • d (0.9) is the particle where the particulate matter constituting the powder fluid is 90% or less. It is a numerical value representing the diameter in / zm.
  • the above particle size distribution and particle size can be determined by a laser diffraction Z scattering method or the like.
  • a laser beam is irradiated to the powder fluid to be measured, a spatially diffracted Z-scattered light intensity distribution pattern is generated, and this light intensity pattern has a correspondence with the particle diameter.
  • the particle size and the particle size distribution can be measured.
  • the particle size and the particle size distribution are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring machine, charge the powder fluid into a nitrogen stream, and use the attached analysis software (software based on volume-based distribution using Mie theory) A measurement can be made.
  • Powder fluid is produced by kneading and kneading necessary resins, charge control agents, coloring agents, and other additives, or by polymerizing with monomers, to convert existing particles into resins, charge control agents, It may be coated with a coloring agent or other additives.
  • the resin, the charge control agent, the coloring agent, and other additives constituting the powder fluid will be exemplified.
  • Examples of the resin include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, and butyral resin. And acrylamine resin, melamine resin, phenol resin, fluorine resin and the like. Two or more of them can be mixed. Particularly, in order to control the adhesion to the substrate, acrylic urethane resin is used. Preferred are acrylic urethane silicone resin, acrylic urethane fluorine resin, urethane resin, and fluorine resin.
  • Examples of the charge control agent include, in the case of imparting a positive charge, a quaternary ammonium salt-based compound, a Nigguchi syn dye, a triphenylmethane-based compound, and an imidazole derivative.
  • a metal-containing azo dye, a metal salicylate complex, a nitroimidazole derivative and the like can be mentioned.
  • coloring agent various kinds of organic or inorganic pigments and dyes as exemplified below can be used.
  • black colorant examples include carbon black, copper oxide, dimanganese diacid, arin black, activated carbon and the like.
  • Blue colorants include CI Pigment Blue 15: 3, CI Pigment Blue 15, Navy Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-Free Phthalocyanine Blue, Partially Chlorinated Phthalocyanine Blue, First Sky Blue and Indanthrene Blue BC are available.
  • Red colorants include Bengala, Cadmium Red, Lead Tan, Mercury Sulfide, Cadmium, Permanent Red 4R, Linol Red, Pyrazolone Red, Watching Red, Calcium Salt , Lake Red D, Brilliant Carmine 6B, Eosin Lake, Rhodamine Lake B, Aliza Lin Lake, Brilliant Carmine 3B, CI Pigment Red 2, etc.
  • yellow colorant examples include graphite, zinc yellow, cadmium yellow, yellow iron oxide, mineral yellow yellow, nickele titanium yellow, neve yellow, naphthone yellow S, nonza yellow G, hanza yellow 10G, and benzidine.
  • Yellow G Benzijin Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, CI Pigment Yellow 12 and others.
  • green colorant examples include chrome green, oxidized chromium, pigment green B, CI pigment green 7, malachite green lake, and huainanorayello green G.
  • Orange colorants include red lead, molybdenum orange, permanent orange GTR, pyrazolone age range, norecan age range, indanthrene brilliant age range RK :, benzidine age range G, indanthrene brilliant age range GK, CI Pigment Age Range 3 1 mag.
  • Purple colorants include manganese violet, first violet B, methyl violet lake, and the like.
  • white colorants include zinc white, titanium oxide, antimony white, zinc sulfate, and the like.
  • extenders examples include norite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white.
  • Various dyes such as basic, acidic, disperse and direct dyes include Nigguchi Shin, Methylene Blue, Rose Bengal, Quinoline Yellow and Ultramarine Blue.
  • inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, aluminum powder and the like. These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferred as the black pigment, and titanium oxide is preferred as the white pigment.
  • inorganic fine particles having an average particle diameter of 20 to: LOOnm, preferably 20 to 80 nm, on the surface of the particle material constituting the powder fluid. Further, it is appropriate that the inorganic fine particles are treated with silicone oil.
  • examples of the inorganic fine particles include silicon dioxide (silica), zinc oxide, aluminum oxide, magnesium oxide, cerium oxide, iron oxide, copper oxide, and the like.
  • the method of fixing the inorganic fine particles is important.For example, using a hybridizer (manufactured by Nara Machinery Co., Ltd.) ⁇ mechanofusion (manufactured by Hosokawa Micron Co., Ltd.), etc. ), A powder fluid showing an aerosol state can be produced.
  • the relative humidity at 25 ° C. of the gas in the void portion be 60% RH or less, preferably 50% RH or less, and more preferably 35% RH or less.
  • the gap is defined as a portion between the opposing substrates 1 and 2 and the electrodes 5 and 6 (between the electrodes and the inside of the substrate). Excluding the portion occupied by the display medium 3, the portion occupied by the partition 4 (if a partition is provided), and the sealing portion of the information display panel.
  • the type of gas in the void portion is not limited as long as it is in the humidity range described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane and the like are preferable.
  • This gas needs to be sealed in the information display panel so that the humidity is maintained.For example, filling of particles or powder fluid, assembly of the information display panel, etc. under a predetermined humidity environment.
  • it is important to provide a sealing material and a sealing method for preventing external force from entering the humidity.
  • the distance between the substrates in the information display panel according to the present invention is not particularly limited as long as the display medium can be moved and the contrast can be maintained, but is usually 10 to 500111, preferably 10 to 200 ⁇ m. Adjusted.
  • the volume occupancy of the display medium in the space between the opposing substrates is preferably 5 to 70%, more preferably 5 to 60%. If it exceeds 70%, the movement of the display medium is hindered, and if it is less than 5%, the contrast tends to be unclear.
  • the contrast between the contrast and the driving voltage which is an index for evaluating the driving method of the information display device according to the second invention of the present invention, was defined by performing the following experiment.
  • test pattern was displayed by various driving methods, and the reflectance of the display state when the voltage was changed was measured.
  • Fig. 13 shows a test pattern displayed by noisy matrix driving.
  • (a) is a solid black area
  • (b) is a solid white area
  • (c) to (f) are areas affected by crosstalk. Details will be described in the next section.
  • Fig. 14 shows the display screen when the test pattern is displayed
  • Fig. 15 shows a typical measured reflectivity-applied voltage characteristic.
  • 5 X 5 measurement points were allocated, and the write voltage was gradually applied to the OV force to measure the reflectance at each point when the test pattern was displayed.
  • the value obtained by averaging the portions surrounded by squares is defined as the reflectance of each region.
  • FIG. 15 shows the characteristic curves of the applied voltage on the horizontal axis and the reflectance on the vertical axis.
  • each line shown in FIG. 15 will be described.
  • the matrix drive in this experiment was performed as shown in Table 1 below.
  • a potential difference is represented by setting a potential applied to a column-side electrode to +. For example, if OV is applied to a column and 50V is applied to a row, the potential difference between the electrodes is 50V. [Table 1]
  • V O
  • VZ2 crosstalk voltage of VZ2 is applied in the first half of scanning—V / 2 in the second half of scanning. In this area, lines are selected in the first half of the scan, but when the applied voltage increases, it is greatly affected by the crosstalk in the second half of the scan, and the display shifts to black despite the white display.
  • V voltage When a line is selected, the V voltage is applied. When the line is not selected, a crosstalk voltage of VZ2 is applied in the first half of scanning and one VZ2 in the second half of scanning. In an area where a line is selected in the first half of the scan, the crosstalk in the second half of the scan is greatly affected by an increase in the applied voltage, and the area shifts to white despite black display.
  • the area where the voltage of V is applied when the line is selected and where the voltage of VZ2 is always applied when the line is not selected remains black display, which is the black reference for each display method.
  • An important evaluation item in displaying a halftone is contrast.
  • the most important area in each area is Area 22-1. No matter how low the minimum reflectance of black is, the contrast is limited to the reflectance in this region because region 22-1 has shifted to white due to crosstalk.
  • Area 21-1 is also strongly affected by crosstalk. This crosstalk change occurs on the higher voltage side compared to area 22-1. Since the purpose is to obtain a good display at lower voltage in order to reduce power consumption, the crosstalk in region 21-1 can be ignored.
  • contrast is represented by the ratio of the maximum reflectance of white to the minimum reflectance of black.
  • contrast was defined as the ratio of the reflectance of the lowest (highest: in the case of blackout white) level of line 22-1 to the reflectance of the white (black: in the case of blackout white) display at that time.
  • black erase white writing refers to an “erasing-rewriting method” in which a display state is erased so as to be black, and then a portion desired to be displayed in white is rewritten so as to be white.
  • white erase black writing refers to an “erasing-rewriting method” in which a display state is erased so as to be black, and then a portion desired to be displayed in white is rewritten so as to be white.
  • white erase black writing the “erasing-rewriting method” in which the display state is erased so as to be white and then displayed in black and the part is rewritten so as to be black. The higher the contrast, the better.
  • the drive voltage margin is 10% higher than the difference between the lowest (highest: blacked out white writing) level reflectance of line 22-1 and the white (black: blacked out white writing) display reflectance at that time. (Decreased: black and white) when defined as the width of line 22-1.
  • the drive voltage margin is wider and better.
  • the drive voltage three types of pulse-like voltages, 4 pulses with a pulse width of 0.2 msec, 8 pulses with a pulse width of 0.08 msec, and 8 pulses with a pulse width of 0.2 msec, are used, and the duty of each pulse-like voltage is used.
  • the contrast when various ratios were changed was measured.
  • Figure 16 shows the results. In FIG. 16, the duty ratio on the horizontal axis is shown as a logarithm. From the results shown in FIG. 16, it can be seen that when the duty ratio exceeds 0.9, the contrast is reduced, and that the duty ratio is preferably set to 0.9 or less.
  • the relationship between the off-time and the margin was examined.
  • the results are shown in FIG.
  • the results in FIG. 18 show that the margin is reduced when the off-time is less than 0.1 msec, and that the off-time is preferably set to 0.1 msec or more.
  • FIG. 19 shows the driving method of Comparative Example 1
  • FIGS. 21 to 23 show the driving methods of Examples 1 to 3.
  • the same simple matrix panel of 2 rows and 2 columns as that shown in FIGS. 11 (a) and 11 (b) will be described.
  • the following shows an example of driving by applying two pulse voltages (ON-OFF-ON-OFF) during rewriting.
  • the column rewrite voltage is applied twice in a pulsed manner, while the row selection voltage is the same as the conventional one.
  • the polarity of the pulse voltage at crosstalk 2 and 4 applied to the non-rewritable pixel changes from + VI to one VI and to one VI from the other. Is large. In both cases, the display medium was more likely to move, and the contrast was more strongly affected by the crosstalk, and the contrast deteriorated.
  • the row selection voltage is applied twice in a pulsed manner, while the column rewrite voltage is the same as the conventional one.
  • the polarity of each of the pulse voltages applied to the non-rewritable pixels in crosstalks 1 to 3 and 4 to 6 is constant, that is, in crosstalks 1 and 6, one peak is 0 V and the other peak is 0 V.
  • the crosstalk 2 and 4 have + VI and the same polarity
  • the crosstalk 3 and 5 have the same VI and the same polarity.
  • the peak “toe” peak of the rewriting voltage applied to the pixel is half of the rewriting voltage (V2-VI).
  • the row Z column is set as a synchronized pulse train, and the pulse for selecting the row, particularly, the pulse is removed.
  • the applied voltage when the pulse is removed may not be 0V.
  • the polarity is constant in all of the crosstalks 1 to 3 and 4 to 6 applied to the non-rewritable pixels, that is, the crosstalk 1 and 6 have a constant polarity of 0 V, and the crosstalk is constant.
  • the row (scanning) driving voltage and the column driving voltage are configured by pulse trains having the same cycle and the same duty, respectively. Invert the phase of each pulse train.
  • the polarity of crosstalks 1 to 3 and 4 to 6 applied to the non-rewritable pixel has a constant polarity. That is, in crosstalks 1 and 6, one peak is 0 V and the other peak is —VI and polarity. In crosstalk 2 and 4, one peak is + V and the other peak power S0V is constant, and in crosstalk 3 and 5, one peak is 0V and the other peak is —VI and polarity Is constant.
  • the magnitude of the rewriting voltage peak “toe” peak is three times larger than that of the first embodiment, while maintaining the effect of the first and second embodiments with respect to the influence of crosstalk.
  • the rewriting of the rewritten pixel can be performed more effectively, and the change of the non-rewritten pixel due to the influence of the crosstalk can be more preferably prevented.
  • the force that determines the sign of the voltage applied based on 0V is not necessary for the information display device of the present invention to be driven with the reference being 0V. No. In that case, it is only necessary to define whether the reference voltage is constant on the positive side or constant on the negative side with respect to the reference voltage that is not positive or negative with reference to 0V.
  • the present invention is not limited to this.
  • the bias voltage VI may be set to (( V2) Z3) can also be used.
  • a test pattern is displayed on the simple matrix panel shown in FIG. 24 (a) with 320 lines on the row (scanning) side and 320 lines on the column side driven by the driving method shown in the above-described Examples 1 to 3 and Comparative Example 1.
  • the reflectivity of the rewrite (no crosstalk) area and the crosstalk area (crosstalk 4 to 6 above) shown in FIG. 24 (b) was measured with an optical densitometer (RD-1 manufactured by Dareta Macbeth).
  • Table 2 The results are shown in Table 2 below.
  • the information display panel and the information display device to which the driving method of the present invention is applied include a display unit of a mopile device such as a notebook computer, a PDA, a mobile phone, a handy terminal, an electronic book such as an electronic book, and an electronic newspaper.
  • a mopile device such as a notebook computer, a PDA, a mobile phone, a handy terminal, an electronic book such as an electronic book, and an electronic newspaper.
  • Signboards, posters, bulletin boards such as blackboards, calculators, displays for home appliances, automotive supplies, etc., card displays for point cards, IC cards, etc., electronic advertisements, electronic POP, electronic price tags, electronic shelf labels, electronic music scores, RF — Appropriately used for the display of ID devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

For the line electrodes composed of lines of electrodes extending in the line direction on one substrate and the column electrodes composed of columns of electrodes extending in the column direction on the other substrate, information on image of one frame is displayed by applying a voltage while scanning the line electrodes from one end to the other. After one frame is displayed, a voltage for generating crosstalk in a first color and a voltage for generating crosstalk in a second color are applied to all the cells of the display section once or more times. Specifically, two or more lines are added at the end of a scan, and drive for performing a display with the first color and a display with the second color once or more times is performed after one scan (a first invention). Pulse voltages composed of voltages including a drive voltage of the ON state and a voltage of the OFF state lower than the threshold voltage at which the display medium starts moving are applied as drive voltage applied to the electrodes to produce an electric field (a second invention). Further, a pulse is applied a plurality of times when one pixel rewrite is performed, and the drive waveform is adjusted so that the polarity of the crosstalk voltage applied to non-rewritten pixels does not change during one pixel rewrite (a third invention).

Description

明 細 書  Specification
情報表示装置の駆動方法  Driving method of information display device
技術分野  Technical field
[0001] 本発明は、少なくとも一方が透明な対向する 2枚の基板間に、第 1の色と第 2の色と の少なくとも 2種類の表示媒体を封入し、電極から表示媒体に電界を与えて、表示媒 体を移動させて画像等の情報を表示する情報表示装置の駆動方法に関するもので ある (第 1発明〜第 2発明)。  [0001] The present invention encapsulates at least two types of display media of a first color and a second color between two opposing substrates, at least one of which is transparent, and applies an electric field to the display medium from the electrodes. Also, the present invention relates to a method for driving an information display device that displays information such as an image by moving a display medium (first invention and second invention).
また、本発明は、少なくとも一方が透明な対向する 2枚の基板間に、表示媒体を封 入し、電極から表示媒体に電界を与えて、表示媒体を移動させて画像等の情報を表 示する情報表示装置の駆動方法に関するものである (第 3発明)。  Further, according to the present invention, a display medium is sealed between two opposing substrates, at least one of which is transparent, an electric field is applied to the display medium from the electrodes, and the display medium is moved to display information such as an image. The present invention relates to a method for driving an information display device (third invention).
背景技術  Background art
[0002] 従来より、液晶(LCD)に代わる情報表示装置として、電気泳動方式、エレクト口クロ ミック方式、サーマル方式、 2色粒子回転方式等の技術を用いた情報表示装置が提 案されている。  [0002] Hitherto, information display devices using technologies such as an electrophoresis system, an electrochromic system, a thermal system, and a two-color particle rotation system have been proposed as information display devices replacing liquid crystal (LCD). .
[0003] これら従来技術は、 LCDと比較すると、通常の印刷物に近い広い視野角が得られ る、消費電力が小さい、メモリー機能を有している等のメリットがあることから、次世代 の安価な情報表示装置に使用可能な技術として考えられており、携帯端末用情報表 示、電子ペーパー等への展開が期待されている。特に最近では、分散粒子と着色溶 液力 成る分散液をマイクロカプセルィ匕し、これを対向する基板間に配置して成る電 気泳動方式が提案され、期待が寄せられている。  [0003] These conventional technologies have advantages such as a wide viewing angle close to ordinary printed matter, low power consumption, and a memory function as compared with LCDs. It is considered as a technology that can be used for various information display devices, and is expected to be applied to information display for mobile terminals and electronic paper. In particular, recently, an electrophoresis method in which a dispersion liquid composed of dispersed particles and a coloring solution is microencapsulated and disposed between opposed substrates has been proposed and expected.
[0004] し力しながら、電気泳動方式では、液中を粒子が泳動するために液の粘性抵抗に より応答速度が遅くなるという問題がある。さらに、低比重の溶液中に酸ィ匕チタン等の 高比重の粒子を分散させているため沈降しやすくなつており、分散状態の安定性維 持が難しぐ情報繰り返し安定性に欠けるという問題を抱えている。また、マイクロカブ セルィ匕にしても、セルサイズをマイクロカプセルレベルにして、見力け上、上述した欠 点が現れに《して 、るだけであって、本質的な問題は何ら解決されて 、な 、。  [0004] However, in the electrophoresis method, there is a problem that the response speed is reduced due to the viscous resistance of the liquid because particles migrate in the liquid. In addition, since particles of high specific gravity such as titanium oxide are dispersed in a solution of low specific gravity, sedimentation is likely to occur, and the stability of the dispersed state is difficult to maintain. Have In addition, even in the case of a micro cub, the cell size is set to the microcapsule level, and the above-mentioned drawbacks appear in the visual sense. , Na,.
[0005] 一方、溶液中での挙動を利用する電気泳動方式に対し、溶液を使わず、導電性粒 子と電荷輸送層とを基板の一部に組み入れる方式も提案され始めて 、る(例えば、 趙 国来、外 3名、 "新しいトナーディスプレイデバイス (1) "、 1999年 7月 21日、日本 画像学会年次大会(通算 83回)" Japan Hardcopy' 99"論文集、 p.249-252参照)。し かし、電荷輸送層、さらには電荷発生層を配置するために構造が複雑化するとともに 、導電性粒子に電荷を一定に注入することは難しいため、安定性に欠けるという問題 もめる。 [0005] On the other hand, in contrast to the electrophoresis method using behavior in a solution, a conductive particle is used without using a solution. A method of incorporating a carrier and a charge transport layer into a part of a substrate has begun to be proposed (for example, Guo Lao Zhao and three others, "New Toner Display Device (1)", July 21, 1999, Japan Image Annual conference (83 times in total), "Japan Hardcopy '99", pp.249-252. However, the arrangement of the charge transport layer and the charge generation layer complicates the structure, and it is difficult to inject charges uniformly into the conductive particles, which causes a problem of lack of stability.
[0006] 上述した種々の問題を解決するための一方法として、前面電極を有する前面基板 及び背面電極を有する背面基板の間に、表示媒体 (粒子群ある!ヽは粉流体)を封入 し、表示媒体に電界を与え、クーロン力等により表示媒体を移動させて画像等の情 報を表示する情報表示用パネルを備える情報表示装置が知られている。  [0006] As one method for solving the various problems described above, a display medium (a group of particles! Is powdered fluid) is sealed between a front substrate having a front electrode and a rear substrate having a back electrode, 2. Description of the Related Art There has been known an information display device including an information display panel that applies an electric field to a display medium and moves the display medium by Coulomb force or the like to display information such as an image.
[0007] (第 1発明の課題)  [0007] (Problem of the first invention)
上述した表示媒体を使用する情報表示装置にお!ヽて、一方の基板側で行方向に 延びる複数本の電極からなる行電極、及び、他方の基板側で列方向に延びる複数 本の電極カゝらなる列電極、に対し、行電極の一端力ゝら他端にスキャンして電圧を印加 することで 1画面の画像等の情報を表示するにあたり、マトリクス表示するよう駆動さ せる場合や、セグメントをダイナミック駆動させる場合に、クロストークが発生する問題 かあつた。  An information display device that uses the display medium described above! One end of a row electrode is provided for a row electrode composed of a plurality of electrodes extending in a row direction on one substrate side and a column electrode composed of a plurality of electrode cables extending in a column direction on the other substrate side. When displaying information such as an image on one screen by scanning and applying a voltage to the other end of the force, crosstalk occurs when driving to display in a matrix or when driving segments dynamically. I have a problem.
[0008] クロストーク (漏話)とは元々電話で他の回線の信号が混じり合う現象を言うが、この 場合のクロストークとは、列電極が非選択にもかかわらず、他の行の影響を受けて実 際とは違う画像が表示されてしまう現象である。上述した表示媒体を使用する情報表 示装置のパッシブマトリクス駆動による表示では、列電極の非選択行には表示を保 持するための電圧が印加される。この保持電圧が列電極の行数だけ印加される影響 で、コントラストが低下し、又、表示パターンによっては画像表示に濃淡が発生しムラ になる。  [0008] Crosstalk (crosstalk) originally refers to a phenomenon in which signals from other lines are mixed in a telephone. In this case, crosstalk refers to the effect of other rows even though a column electrode is not selected. This is a phenomenon in which an image different from the actual one is displayed. In the display by the passive matrix driving of the information display device using the display medium described above, a voltage for maintaining the display is applied to the non-selected rows of the column electrodes. The effect of applying the holding voltage by the number of rows of the column electrodes lowers the contrast and, depending on the display pattern, causes shading to occur in the image display, resulting in unevenness.
[0009] (第 2発明の課題)  (Problem of second invention)
上述した表示媒体を使用する情報表示装置にお!ヽて、一方の基板側で行方向に 延びる複数本の電極からなる行電極、及び、他方の基板側で列方向に延びる複数 本の電極カゝらなる列電極、に対し、行電極の一端力ゝら他端にスキャンして電圧を印加 することで 1画面の画像等の情報を表示するにあたり、マトリックス表示するよう駆動さ せる場合や、セグメントをダイナミック駆動させる場合に、クロストークが発生する問題 かあつた。 An information display device that uses the display medium described above! One end of a row electrode is provided for a row electrode composed of a plurality of electrodes extending in a row direction on one substrate side and a column electrode composed of a plurality of electrode cables extending in a column direction on the other substrate side. Scan to the other end and apply voltage Therefore, when displaying information such as an image on a single screen, there is a problem that crosstalk occurs when driving in a matrix display or when driving segments dynamically.
[0010] クロストーク (漏話)とは元々電話で他の回線の信号が混じり合う現象を言うが、この 場合のクロストークとは、列電極が非選択にもかかわらず、他の行の影響を受けて実 際とは違う画像が表示されてしまう現象である。上述した表示媒体を使用する情報表 示装置のパッシブマトリックス駆動による表示では、列電極の非選択行には表示を保 持するための電圧が印加される。この保持電圧が列電極の行数だけ印加される影響 で、画像表示に濃淡が発生しムラになる。  [0010] Crosstalk (crosstalk) is a phenomenon in which signals from other lines are mixed together in a telephone. Crosstalk in this case refers to the effect of other rows even though the column electrode is not selected. This is a phenomenon in which an image different from the actual one is displayed. In the display by passive matrix driving of the information display device using the above-described display medium, a voltage for maintaining the display is applied to the non-selected rows of the column electrodes. The effect of applying this holding voltage by the number of rows of the column electrodes causes shading in the image display and causes unevenness.
[0011] 図 25は従来の情報表示装置におけるクロストークに起因する濃淡のムラを説明す るための図である。図 25に示す例では、簡単のため、下側の行電極 51— 1〜51— 6 と上側の列電極 52— 1〜52— 8と力も構成される 8 X 6の画像を示す。そして、行電 極と列電極との間に、互いに帯電特性が異なる白色及び黒色の表示媒体が充填さ れ、行電極51—1〜51—6と列電極52—1〜52— 8との間に印加される電圧に応じ て、白黒の表示を行っている。駆動方式は、 1行毎に消去と書込を繰り返すライン消 去方式とし、行電極 51— 1〜51—6をその順にスキャンして画像表示を行っている。 スキャンの際、行電極 51— 1〜51—6の選択行の消去は電圧 100を書込は電圧 0を 印加することで行うとともに、非選択行は消去の際は電圧 0を、書込の際は電圧 50を 印加することで行う。同時に、列電極 52— 1〜52— 8は、消去時は電圧 0を、書込時 は書込列に電圧 100を印加し、書込列以外の列には電圧 0を印加する。  FIG. 25 is a diagram for describing shading unevenness due to crosstalk in a conventional information display device. In the example shown in FIG. 25, for simplicity, an 8 × 6 image is also formed in which the lower row electrodes 51-1 to 51-6 and the upper column electrodes 52-1 to 52-8 also have a force. Then, a white and black display medium having different charging characteristics are filled between the row electrode and the column electrode, and the row electrode 51-1 to 51-6 and the column electrode 52-1 to 52-8 are filled. Black and white display is performed according to the voltage applied between them. The driving method is a line erasing method in which erasing and writing are repeated for each row, and image display is performed by scanning the row electrodes 51-1 to 51-6 in that order. During scanning, the selected row of row electrodes 51-1 to 51-6 is erased by applying a voltage of 100 to apply a voltage of 0, and non-selected rows are erased by applying a voltage of 0 to erase. This is done by applying a voltage of 50. At the same time, the column electrodes 52-1 to 52-8 apply the voltage 0 at the time of erasing, apply the voltage 100 to the writing column at the time of writing, and apply the voltage 0 to columns other than the writing column.
[0012] 図 25に示す例では、行電極 51—1からスキャンを開始して、最後の行電極 51— 6 において書込を終了した例を示す。図 25において、第 1行の行電極 51— 1と第 2行 の行電極 52— 2のうち、本来は白表示であるべき部分力クロストークにより白っぽい グレイに表示され、黒表示であるべき部分がクロストークにより黒っぽいグレイに表示 され、画像表示に濃淡が発生しムラになっている。  The example shown in FIG. 25 shows an example in which scanning is started from the row electrode 51-1 and writing is completed in the last row electrode 51-6. In FIG. 25, of the row electrode 51-1 in the first row and the row electrode 52-2 in the second row, a portion which should be white display is displayed in whitish gray due to partial force crosstalk and a portion which should be black display. Is displayed in blackish gray due to crosstalk, and the image display has shading and unevenness.
[0013] (第 3発明の課題)  (Problem of the Third Invention)
上述した表示媒体を用いる情報表示装置にお!ヽて、単純マトリックス駆動やダイナ ミック駆動(セグメントパネル)などで駆動する場合、非書換え画素に印加されるクロス トーク電圧によるコントラスト低下が問題であった。 In the information display device using the above-described display medium, when driving by simple matrix driving or dynamic driving (segment panel), the cross-section applied to the non-rewritable pixels is controlled. Contrast reduction due to the talk voltage is a problem.
[0014] クロストーク (漏話)とは元々電話で他の回線の信号が混じり合う現象を言うが、この 場合のクロストークとは、列電極が非選択にもかかわらず、他の行の影響を受けて実 際とは違う画像が表示されてしまう現象である。上述した表示媒体を使用する情報表 示装置のパッシブマトリクス駆動による表示では、列電極の非選択行には表示を保 持するための電圧が印加される。この保持電圧が列電極の行数だけ印加される影響 で、情報表示に濃淡が発生しムラになる。  [0014] Crosstalk (crosstalk) originally refers to a phenomenon in which signals from other lines are mixed in a telephone. In this case, crosstalk refers to the effect of other rows even though a column electrode is not selected. This is a phenomenon in which an image different from the actual one is displayed. In the display by the passive matrix driving of the information display device using the display medium described above, a voltage for maintaining the display is applied to the non-selected rows of the column electrodes. The effect of applying the holding voltage by the number of rows of the column electrodes causes shading in the information display and causes unevenness.
発明の開示  Disclosure of the invention
[0015] (第 1発明)  [0015] (First invention)
本発明の第 1発明の目的は上述した問題点を解消して、クロストークに起因する濃 淡のムラを無くすことのできる情報表示装置の駆動方法を提供しょうとするものである  An object of the first invention of the present invention is to solve the above-mentioned problem and to provide a method of driving an information display device capable of eliminating shading unevenness caused by crosstalk.
[0016] 本発明の第 1発明に係る情報表示装置の駆動方法は、少なくとも一方が透明な対 向する 2枚の基板間に、第 1の色と第 2の色を有する少なくとも 2種類の表示媒体を封 入し、各基板に設けた電極から表示媒体に電界を与えて、表示媒体を移動させて画 像等の情報を表示する情報表示装置の駆動方法にぉ 、て、一方の基板側で行方向 に延びる複数本の電極からなる行電極、及び、他方の基板側で列方向に延びる複 数本の電極からなる列電極、に対し、行電極の一端力ゝら他端にスキャンして電圧を印 加することで 1画面の画像等の情報を表示するにあたり、 1画面の表示が終了した後 、第 1の色にクロストークを発生させる電圧と第 2の色にクロストークを発生させる電圧 とを表示部のセル全てに各 1回以上印加することを特徴とするものである。 [0016] The method for driving an information display device according to the first invention of the present invention is characterized in that at least one of the two substrates having at least one of them is transparent and has at least two types of display having a first color and a second color. A method for driving an information display device in which a medium is sealed and an electric field is applied to a display medium from electrodes provided on each substrate to move the display medium and display information such as an image is provided. A row electrode consisting of a plurality of electrodes extending in the row direction and a column electrode consisting of a plurality of electrodes extending in the column direction on the other substrate side are scanned from one end of the row electrode to the other end. When displaying information such as an image on one screen by applying a voltage, the voltage causing crosstalk in the first color and the crosstalk in the second color occur after the display of one screen is completed. Characterized in that the voltage to be applied is applied at least once to all the cells of the display unit. A.
[0017] 本発明の第 1発明に係る情報表示装置の駆動方法の好適例としては、上記を実現 する最も簡単方法として、スキャンの最後に 2行以上行を付け足し、 1スキャンが終了 した後、第 1の色の表示と第 2の色の表示を各 1回以上表示する駆動を行うこと、及び 、画像表示に先立つ画像の消去方法が、行毎に消去してから行毎に画像を書き込 むライン消去方法、または、全面一斉に消去してから画像を行毎に書き込む全消去 方法であることがある。 [0017] As a preferred example of the method of driving the information display device according to the first invention of the present invention, the simplest method for realizing the above is to add two or more lines at the end of a scan, and after one scan is completed, The drive for displaying the first color display and the second color display at least once each is performed, and the image erasing method prior to the image display is such that the image is erased line by line and then the image is written line by line. This may be a line erasing method, or a total erasing method in which images are erased all at once and then an image is written for each line.
[0018] 本発明の第 1発明に係る情報表示装置の駆動方法によれば、 1画面の表示が終了 した後、第 1の色にクロストークを発生させる電圧と第 2の色にクロストークを発生させ る電圧とを表示部のセル全てに各 1回以上印加すること、好ましくは、スキャンの最後 に 2行以上行を付け足し、 1スキャンが終了した後、第 1の色の表示と第 2の色の表示 を各 1回以上表示させることにより、例えば白黒表示の場合に、白色を若干黒く淡い グレイに表示するとともに黒色を若干白く濃いグレイに表示することができ、情報表示 にあたりクロストークに起因する濃淡のムラを無くすことができる。 [0018] According to the method for driving the information display device according to the first aspect of the present invention, the display of one screen is completed. After that, a voltage for generating crosstalk in the first color and a voltage for generating crosstalk in the second color are applied to all the cells of the display unit at least once each, preferably at the end of the scan. By adding two or more lines, and after one scan, displaying the first color and the second color one or more times each, for example, in the case of black and white display, white is slightly black and pale gray In addition, black can be displayed in a slightly white and dark gray, and unevenness in shading caused by crosstalk can be eliminated when displaying information.
[0019] (第 2発明) [0019] (Second invention)
本発明の第 2発明の目的は上述した問題点を解消して、クロストークに起因するコ ントラストの低下及び濃淡のムラを無くすことのできる情報表示装置の駆動方法を提 供しょうとするものである。  An object of the second invention of the present invention is to solve the above-mentioned problems and to provide a method of driving an information display device capable of eliminating contrast reduction and shading unevenness due to crosstalk. is there.
[0020] 本発明の第 2発明に係る情報表示装置の駆動方法は、少なくとも一方が透明な対 向する 2枚の基板間に、第 1の色と第 2の色との少なくとも 2種類の表示媒体を封入し 、電極から表示媒体に電界を与えて、表示媒体を移動させて画像等の情報を表示す る情報表示装置の駆動方法にお!、て、電界を発生させるため電極に印加する駆動 電圧として、オン状態である駆動電圧とオフ状態である表示媒体が移動を開始するし きい値以下の電圧との複数の電圧から成るパルス状の電圧を印加することを特徴と するものである。ここで、駆動電圧 Vはしきい値電圧 Vより大きい(V>V >V: Vは [0020] The method for driving an information display device according to the second invention of the present invention is characterized in that at least one of the two substrates, at least one of which is transparent, has at least two types of display of a first color and a second color. In a method of driving an information display device that encloses a medium, applies an electric field to the display medium from the electrodes, and moves the display medium to display information such as an image, the electric field is applied to the electrodes to generate the electric field. It is characterized in that a pulse-like voltage composed of a plurality of voltages including a drive voltage in an on state and a voltage equal to or lower than a threshold value at which a display medium in an off state starts moving is applied as a drive voltage. . Here, the driving voltage V is larger than the threshold voltage V (V> V> V: V is
1 1 0 0 しきい値以下の電圧)。  1 100 voltage below threshold).
[0021] 本発明の第 2発明に係る情報表示装置の駆動方法の好適例としては、パルス状の 電圧のデューティー比(=パルス幅 Z (パルス幅 +オフ状態の時間))が 0. 9以下で あること、オフ状態の時間が 0. 1msec以上であること、がある。  [0021] As a preferred example of the driving method of the information display device according to the second invention of the present invention, the duty ratio of the pulse-like voltage (= pulse width Z (pulse width + time in off state)) is 0.9 or less. And that the off-state time is 0.1 msec or more.
[0022] 本発明の第 2発明に係る情報表示装置の駆動方法によれば、電界を発生させるた め電極に印加する駆動電圧として、オン状態である駆動電圧とオフ状態である表示 媒体が移動を開始するしきい値以下の電圧との複数の電圧から成るパルス状の電圧 を印加することで、クロストークに起因するコントラストの低下及び濃淡のムラを無くす ことができる。  According to the method of driving the information display device according to the second aspect of the present invention, the drive voltage applied to the electrodes to generate an electric field includes a drive voltage in an on state and a display medium in an off state. By applying a pulse-like voltage composed of a plurality of voltages with a voltage equal to or lower than the threshold value for starting the contrast, it is possible to eliminate the decrease in contrast and the unevenness in density due to crosstalk.
[0023] (第 3発明) (Third invention)
本発明の第 3発明の目的は上述した問題点を解消して、クロストーク電圧に起因す るコントラスト低下を解消することができる情報表示装置の駆動方法を提供しょうとす るものである。 An object of the third invention of the present invention is to solve the above-mentioned problems and to reduce the problem caused by the crosstalk voltage. It is an object of the present invention to provide a method for driving an information display device, which can eliminate a decrease in contrast.
[0024] 本発明の第 3発明に係る情報表示装置の駆動方法は、少なくとも一方が透明な対 向する 2枚の基板間に、表示媒体を封入し、電極から表示媒体に電界を与えて、表 示媒体を移動させて画像等の情報を表示する情報表示装置の駆動方法において、 1回の画素書換えに際し複数回パルスを印加するとともに、 1回の画素書換えの間、 非書換え画素に印加されるクロストーク電圧の極性が変化しないように駆動波形を調 整したことを特徴とするものである。  [0024] In the method for driving an information display device according to a third aspect of the present invention, a display medium is sealed between two opposing substrates, at least one of which is transparent, and an electric field is applied to the display medium from the electrodes. In a method of driving an information display device that displays information such as an image by moving a display medium, a pulse is applied a plurality of times during one pixel rewrite, and a pulse is applied to a non-rewritten pixel during one pixel rewrite. The drive waveform is adjusted so that the polarity of the crosstalk voltage does not change.
[0025] 本発明の第 3発明に係る情報表示装置の駆動方法の好適例としては、 1回の画素 書換えに際し複数回パルスを印加する間、書換え画素に印加されるパルス電圧にお けるピークとピークとの間隔を広くすること、および、ロウ(走査)駆動電圧およびカラ ム駆動電圧をそれぞれ同一周期および同一デューティーのパルス列で構成し、ロウ 側の列選択に際し、ロウ駆動電圧とカラム駆動電圧のそれぞれのパルス列の位相を 反転すること、がある。 [0025] A preferred example of the driving method of the information display device according to the third invention of the present invention is that a pulse in a pulse voltage applied to a pixel to be rewritten while a plurality of pulses are applied in one pixel rewriting. Widening the interval between the peaks, and configuring the row (scan) drive voltage and column drive voltage with pulse trains of the same cycle and the same duty, respectively, when selecting the row side, select the row drive voltage and column drive voltage. Invert the phase of each pulse train.
[0026] 本発明の第 3発明に係る情報表示装置の駆動方法によれば、 1回の画素書換えに 際し複数回パルスを印加するとともに、 1回の画素書換えの間、非書換え画素に印加 されるクロストーク電圧の極性が変化しな ヽように駆動波形を調整することで、クロスト ーク電圧に起因するコントラスト低下を解消することができる。  [0026] According to the driving method of the information display device according to the third aspect of the present invention, a pulse is applied a plurality of times in one pixel rewriting, and is applied to a non-rewritten pixel during one pixel rewriting. By adjusting the drive waveform so that the polarity of the crosstalk voltage does not change, it is possible to eliminate a decrease in contrast due to the crosstalk voltage.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 l] (a)、 (b)はそれぞれ本発明の情報表示装置が備える情報表示用パネルの一 例を示す図である。  [FIG. 1] (a) and (b) are diagrams each showing an example of an information display panel provided in the information display device of the present invention.
[図 2] (a)、 (b)はそれぞれ本発明の情報表示装置が備える情報表示用パネルの他 の例を示す図である。  2] (a) and (b) are diagrams each showing another example of the information display panel provided in the information display device of the present invention. [FIG.
[図 3] (a)、 (b)はそれぞれ本発明の情報表示装置が備える情報表示用パネルのさら に他の例を示す図である。  FIGS. 3 (a) and 3 (b) are diagrams showing still another example of the information display panel provided in the information display device of the present invention.
[図 4] (a)、 (b)はそれぞれ本発明の第 1発明に係る情報表示装置の駆動方式を図 2 [FIG. 4] (a) and (b) show the driving method of the information display device according to the first invention of the present invention, respectively.
5に示した従来例に対し付加した一例を説明するための図である。 FIG. 16 is a diagram for explaining an example added to the conventional example shown in FIG.
[図 5] (a)、 (b)はそれぞれ本発明の第 1発明に係る情報表示装置の駆動方式を図 2 5に示した従来例に対し付加した他の例を説明するための図である。 FIGS. 5 (a) and 5 (b) show the driving method of the information display device according to the first invention of the present invention, respectively. FIG. 16 is a diagram for explaining another example added to the conventional example shown in FIG.
圆 6] (a)、 (b)はそれぞれ本発明の第 1発明に係る情報表示装置の駆動方法の他の 例を説明するための図である。 圆 6] (a) and (b) are diagrams for explaining another example of the method of driving the information display device according to the first invention of the present invention.
圆 7]本発明の第 1発明に係る情報表示装置の駆動方法の効果を説明するための図 である。 [7] FIG. 7 is a diagram for explaining the effect of the driving method of the information display device according to the first invention of the present invention.
圆 8] (a)、 (b)はそれぞれ本発明の第 1発明に係る情報表示装置の駆動方法の効果 を説明するための図である。 圆 8] (a) and (b) are diagrams for explaining the effect of the method for driving the information display device according to the first invention of the present invention.
圆 9] (a)、 (b)はそれぞれ本発明の第 1発明に係る情報表示装置の駆動方法の効果 を説明するための図である。 [9] (a) and (b) are diagrams illustrating the effect of the driving method of the information display device according to the first invention of the present invention.
圆 10]本発明の第 2発明に係る情報表示装置の駆動方法に用いるパルス電圧の一 例を示す図である。 [10] FIG. 10 is a diagram showing an example of a pulse voltage used in the method for driving the information display device according to the second invention of the present invention.
[図 11] (a)、 (b)はそれぞれ 2行 2列の単純マトリックスにおけるロウ 1選択時とロウ 2選 択時の状態を示す図である (第 3発明)。  [FIG. 11] (a) and (b) are diagrams showing states when row 1 and row 2 are selected in a simple matrix of 2 rows and 2 columns, respectively (third invention).
圆 12]本発明の情報表示装置における隔壁の形状の一例を示す図である。 [12] FIG. 12 is a view showing an example of a shape of a partition wall in the information display device of the present invention.
[図 13]パッシブマトリックス駆動により表示するテストパターンの一例を示す図である( 第 2発明)。  FIG. 13 is a diagram showing an example of a test pattern displayed by passive matrix driving (second invention).
圆 14]テストパターンを実際に表示したときの表示画面及び測定領域を示す図であ る (第 2発明)。 [14] FIG. 14 is a diagram showing a display screen and a measurement area when a test pattern is actually displayed (second invention).
圆 15]図 14に示す各領域で測定した印加電圧と反射率との関係を示すグラフである (第 2発明)。 [15] FIG. 15 is a graph showing the relationship between the applied voltage and the reflectance measured in each region shown in FIG. 14 (second invention).
[図 16]ノ ルス状の駆動電圧におけるデューティー比とコントラストとの関係を示すダラ フである (第 2発明)。  FIG. 16 is a graph showing a relationship between a duty ratio and a contrast in a noisy drive voltage (second invention).
[図 17]ノ ルス状の駆動電圧におけるデューティー比とマージンとの関係を示すグラフ である (第 2発明)。  FIG. 17 is a graph showing a relationship between a duty ratio and a margin in a noisy drive voltage (second invention).
[図 18]ノ ルス状の駆動電圧におけるオフ時間とマージンとの関係を示すグラフである (第 2発明)。  FIG. 18 is a graph showing the relationship between the off-time and the margin at a noisy drive voltage (second invention).
[図 19]ロウ電極とカラム電極とから構成される単純マトリックスパネルの一例を説明す るための図である(第 3発明)。 [図 20]比較例 1の駆動方法を説明するための図である(第 3発明)。 FIG. 19 is a view for explaining an example of a simple matrix panel composed of row electrodes and column electrodes (third invention). FIG. 20 is a diagram for explaining the driving method of Comparative Example 1 (third invention).
[図 21]実施例 1の駆動方法を説明するための図である (第 3発明)。  FIG. 21 is a diagram for explaining a driving method according to the first embodiment (third invention).
[図 22]実施例 2の駆動方法を説明するための図である(第 3発明)。  FIG. 22 is a diagram for explaining a driving method according to the second embodiment (third invention).
[図 23]実施例 3の駆動方法を説明するための図である(第 3発明)。  FIG. 23 is a view for explaining the driving method according to the third embodiment (third invention).
[図 24] (a)、 (b)はそれぞれテストパターン及びテストパターン上の測定位置を説明す るための図である(第 3発明)。  [FIG. 24] (a) and (b) are diagrams for explaining a test pattern and a measurement position on the test pattern, respectively (third invention).
[図 25]従来の情報表示装置におけるクロストークに起因する濃淡のムラを説明するた めの図である。  FIG. 25 is a diagram for explaining shading in a conventional information display device due to crosstalk.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] まず、粒子群を利用する本発明の情報表示装置が備える情報表示用パネルの基 本的な構成について説明する。本発明で用いる情報表示用パネルでは、対向する 2 枚の基板間に封入した粒子群に電界が付与される。付与された電界方向にそって、 高電位側に向力つては低電位に帯電した粒子群がクーロン力などによって引き寄せ られ、また、低電位側に向力つては高電位に帯電した粒子群がクーロン力などによつ て引き寄せられ、それら粒子群が電位の切替による電界方向の変化によって移動方 向が切り換わることにより、情報表示がなされる。従って、粒子群が、均一に移動し、 かつ、表示書き換えを繰り返して行う時あるいは継続表示すなわち表示をそのまま保 存しておく時の安定性を維持できるように、情報表示用パネルを設計する必要がある 。ここで、粒子に力かる力は、粒子同士のクーロン力により引き付けあう力の他に、電 極や基板との電気影像力、分子間力、液架橋力、重力などが考えられる。  First, the basic configuration of the information display panel provided in the information display device of the present invention using a particle group will be described. In the information display panel used in the present invention, an electric field is applied to a particle group sealed between two opposing substrates. Along the direction of the applied electric field, low-charged particles are attracted to the high potential side by Coulomb force, and high-charged particles are attracted to the low potential side. The particles are attracted by the Coulomb force or the like, and the direction of movement is switched by the change in the direction of the electric field due to the switching of the potential, whereby information is displayed. Therefore, it is necessary to design an information display panel so that the particles can move uniformly and maintain stability when display rewriting is repeatedly performed or when continuous display, that is, when the display is kept as it is. There is. Here, the force applied to the particles may be, for example, a force attracting each other due to the Coulomb force between the particles, an electric image force with an electrode or a substrate, an intermolecular force, a liquid crosslinking force, gravity, and the like.
[0029] 本発明の対象となる情報表示用パネルの例を、図 1 (a)、 (b)〜図 3 (a)、 (b)に基 づき説明する。  An example of an information display panel to which the present invention is applied will be described based on FIGS. 1 (a) and 1 (b) to 3 (a) and 3 (b).
[0030] 図 1 (a)、 (b)に示す例では、それぞれが少なくとも 1種以上の粒子力も構成される 光学的反射率および帯電特性の異なる少なくとも 2種以上の表示媒体 3 (ここでは粒 子群からなる白色表示媒体 3Wと粒子群からなる黒色表示媒体 3Bを示す)を、基板 1 、 2の外部に配置した電極(図示せず)からカ卩えられる電界に応じて、基板 1、 2と垂直 に移動させ、黒色表示媒体 3Bを観察者に視認させて黒色の表示を行うか、あるいは 、白色表示媒体 3Wを観察者に視認させて白色の表示を行っている。なお、図 1 (b) に示す例では、図 1 (a)に示す例に加えて、基板 2との間に例えば格子状に隔壁 4を設けセルを形成している。また、図 1 (b)において、手前にある隔壁は省略してい る。 In the examples shown in FIGS. 1 (a) and 1 (b), at least two or more types of display media 3 (here, particles) having different optical reflectivity and charging characteristics are also configured, each having at least one type of particle force. A white display medium 3W composed of a group of particles and a black display medium 3B composed of a group of particles are shown), and the substrates 1 and 2 are arranged in accordance with the electric field generated from electrodes (not shown) arranged outside the substrates 1 and 2. The display is moved perpendicular to 2, and the black display medium 3B is visually recognized by the observer to perform black display, or the white display medium 3W is visually recognized by the observer to perform white display. Fig. 1 (b) In the example shown in FIG. 1A, in addition to the example shown in FIG. Further, in FIG. 1 (b), a partition wall in the foreground is omitted.
[0031] 図 2 (a)、 (b)に示す例では、それぞれが少なくとも 1種以上の粒子力も構成される 光学的反射率および帯電特性の異なる少なくとも 2種以上の表示媒体 3 (ここでは粒 子群からなる白色表示媒体 3Wと粒子群からなる黒色表示媒体 3Bを示す)を、基板 1 に設けた電極 5と基板 2に設けた電極 6との間に電圧を印加することにより発生する 電界に応じて、基板 2と垂直に移動させ、黒色表示媒体 3Bを観察者に視認させ て黒色の表示を行うか、あるいは、白色表示媒体 3Wを観察者に視認させて白色の 表示を行っている。なお、図 2 (b)に示す例では、図 2 (a)に示す例に加えて、基板 1 、 2との間に例えば格子状に隔壁 4を設けセルを形成している。また、図 2 (b)におい て、手前にある隔壁は省略している。  In the examples shown in FIGS. 2 (a) and 2 (b), at least two or more types of display media 3 (here, particles having different optical reflectivities and charging characteristics) each comprising at least one type of particle force are also shown. Electric field generated by applying a voltage between the electrode 5 provided on the substrate 1 and the electrode 6 provided on the substrate 2). Is moved vertically with respect to the substrate 2, and the black display medium 3B is visually recognized by the observer to perform black display, or the white display medium 3W is visually recognized by the observer to perform white display. . In the example shown in FIG. 2 (b), in addition to the example shown in FIG. 2 (a), for example, a partition 4 is provided between the substrates 1 and 2 in a lattice shape to form a cell. Also, in FIG. 2 (b), the partition wall in front is omitted.
[0032] 図 3 (a)、 (b)に示す例では、少なくとも 1種以上の粒子力も構成される光学的反射 率および帯電性を有する 1種の表示媒体 3 (ここでは粒子群力 なる白色表示媒体 3 Wを示す)を、基板 1に設けた電極 5と電極 6との間に電圧を印加することにより発生 する電界に応じて、基板 2と平行方向に移動させ、白色表示媒体 3Wを観察者に 視認させて白色の表示を行うか、あるいは、電極 6または基板 1の色を観察者に視認 させて電極 6または基板 1の色の表示を行っている。なお、図 3 (b)に示す例では、図 3 (a)に示す例に加えて、基板 2との間に例えば格子状の隔壁 4を設けセルを形 成している。また、図 3 (b)において、手前にある隔壁は省略している。  In the example shown in FIGS. 3 (a) and 3 (b), one type of display medium 3 having optical reflectivity and chargeability (at this time, a particle group force of white Display medium 3W) is moved in a direction parallel to the substrate 2 in accordance with an electric field generated by applying a voltage between the electrodes 5 and 6 provided on the substrate 1, and the white display medium 3W is moved. Either the white color is displayed by the observer or the color of the electrode 6 or the substrate 1 is displayed by making the observer visually recognize the color of the electrode 6 or the substrate 1. In the example shown in FIG. 3 (b), in addition to the example shown in FIG. 3 (a), for example, a grid-like partition 4 is provided between the substrate 2 and the substrate 2 to form a cell. Also, in FIG. 3 (b), the partition in the foreground is omitted.
[0033] 以上の説明は、粒子群からなる白色表示媒体 3Wを粉流体からなる白色表示媒体 に、粒子群力もなる黒色表示媒体 3Bを粉流体力もなる黒色表示媒体に、それぞれ 置き換えた場合も同様に適用することが出来る。  [0033] The above description also applies to the case where the white display medium 3W composed of particle groups is replaced with a white display medium composed of powdered fluid, and the black display medium 3B also composed of particle groups is replaced by a black display medium also composed of powdered fluid. Can be applied to
[0034] (第 1発明の説明)  (Description of First Invention)
本発明の第 1発明に係る情報表示装置の駆動方法の特徴は、一方の基板側で行 方向に延びる複数本の電極からなる行電極、及び、他方の基板側で列方向に延び る複数本の電極力 なる列電極、に対し、行電極の一端力 他端にスキャンして電圧 を印加することで 1画面の画像等の情報を表示するにあたり、 1画面の表示が終了し た後、第 1の色にクロストークを発生させる電圧 =クロストーク電圧 1と、第 2の色にクロ ストークを発生させる電圧 =クロストーク電圧 2と、を表示部のセル全てに各 1回以上 印加する点にある。ここで、クロストーク電圧 1、 2とは、第 1の色として白色を第 2の色 として黒色を表示するために電圧 100、電圧— 100を印加する例において、クロスト ーク電圧 1として電圧 50を印加し、クロストーク電圧 2として電圧一 50を印加する。具 体的には、スキャンの最後に 2行以上行を付け足し、 1スキャンが終了した後、第 1の 色の表示と第 2の色の表示を各 1回以上表示させることがある。 The features of the driving method of the information display device according to the first invention of the present invention include a row electrode composed of a plurality of electrodes extending in the row direction on one substrate side and a plurality of row electrodes extending in the column direction on the other substrate side. In order to display information such as an image on one screen by scanning the one end of the row electrode and applying the voltage to the other end of the row electrode, the display of one screen ends. After that, the voltage that causes crosstalk in the first color = crosstalk voltage 1 and the voltage that causes crosstalk in the second color = crosstalk voltage 2 are applied to all cells in the display at least once. At the point of application. Here, the crosstalk voltages 1 and 2 refer to a voltage of 100 and a voltage of −100 in order to display white as the first color and black as the second color. And a voltage of 50 is applied as the crosstalk voltage 2. Specifically, two or more lines are added at the end of the scan, and after one scan is completed, the display of the first color and the display of the second color may be displayed one or more times.
[0035] 図 4 (a)、(b)及び図 5 (a)、(b)はそれぞれ本発明の駆動方式を図 25に示した従来 例に対し付加した一例を説明するための図である。図 4 (a)、(b)及び図 5 (a)、(b)に 示す例では、図 25に示す従来例のように、行電極11 1〜11 6と列電極12—1 〜12— 8を設ける他に、予め最後の 2行として行電極 11— 7、 11— 8を追カ卩して設け ている。 FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b) are diagrams for explaining examples in which the driving method of the present invention is added to the conventional example shown in FIG. . In the examples shown in FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b), like the conventional example shown in FIG. 25, the row electrodes 111 to 116 and the column electrodes 12-1 to 12- In addition to the provision of 8, row electrodes 11-7 and 11-8 are previously provided as the last two rows.
[0036] 図 4 (a)、 (b)に示す例においては、画像表示部分のスキャンが終了した後、ここで は、行電極 11— 6までスキャンして 8 X 6画素の 1画面の画像等の情報を表示した後 、最後の 2行の 1行目である行電極 11— 7に対し、図 4 (a)に示すように消去を行った 後、図 4 (b)に示すように白色の書き込みを行う。次に、最後の 2行の 2行目である電 極 11 8に対し、図 5 (a)に示すように消去を行った後、図 5 (b)に示すように黒色の 書き込みを行う。その結果、図 5 (b)に示すように、白色は淡いグレイに統一され、黒 色は濃いグレイに統一され、それぞれ 100%の白色または黒色とはならないが、白色 に表示した 、部分はすべて淡 、グレイで表示され、黒色に表示した 、部分はすべて 濃、グレイで表示されるため、クロストークに起因する濃淡のムラを完全に無くすこと ができる。  In the example shown in FIGS. 4 (a) and 4 (b), after scanning of the image display portion is completed, here, scanning is performed up to the row electrodes 11-6 to form an image of one screen of 8 × 6 pixels. After displaying such information as shown in FIG. 4 (a), the row electrodes 11-7, which is the first of the last two rows, are erased as shown in FIG. Perform white writing. Next, after erasing the electrode 118 as the second row of the last two rows as shown in FIG. 5A, black writing is performed as shown in FIG. 5B. As a result, as shown in Fig. 5 (b), the white color is unified to light gray, the black color is unified to dark gray, and they are not 100% white or black, respectively. Since the portions displayed in light and gray and those displayed in black are all displayed in dark and gray, unevenness in light and shade caused by crosstalk can be completely eliminated.
[0037] 図 4 (a)、(b)及び図 5 (a)、 (b)に示す例では、ライン毎に消去した力も書き込むラ イン消去方法を例にとって説明したが、全面一斉に消して力 ライン毎書き込む全消 去方法でも、同様に濃淡のムラを無くすことができる。また、消去の際の白色消去の 例を示したが、黒色消去でも同様に濃淡のムラを無くすことができる。さらに、図 4 (a) 、(b)、図 5 (a)、(b)に示す例では、行電極 11 7、 11 8を追加し表示媒体を充填 して実際に白黒の表示を行ったが、電極は設けなくても、駆動する行を 2行以上追加 し追加した行に白色の表示を行う電圧と黒色の表示を行う電圧を印加することでも、 同様に濃淡のムラを無くすことができる。 In the examples shown in FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b), the line erasing method in which the force erased for each line is also described as an example. Even with the total erasure method of writing every power line, unevenness of light and shade can be eliminated similarly. In addition, although an example of white erasing at the time of erasing is shown, unevenness of shading can be similarly eliminated in black erasing. In addition, in the examples shown in FIGS. 4 (a), (b), and FIGS. 5 (a), (b), the row electrodes 117, 118 were added and the display medium was filled to actually display black and white. However, even if no electrode is provided, two or more rows to be driven are added Also, by applying a voltage for displaying white and a voltage for displaying black to the added row, the unevenness of density can be similarly eliminated.
[0038] 上述したように、本発明の第 1発明に係る情報表示装置の駆動方法では、クロスト ークが発生することは前提として、発生するクロストークに起因してグレイになった画 素の色に第 1の色 (例えば白色)または第 2の色 (例えば黒色)をあわせて、第 1の色 を淡いグレイとする力 または、第 2の色を濃いグレイとすることで、濃淡を無くす点に 最大の特徴がある。  [0038] As described above, in the method for driving the information display device according to the first invention of the present invention, it is assumed that a crosstalk occurs, and that the grayscale pixel due to the generated crosstalk is used. Eliminate shading by combining the first color (for example, white) or the second color (for example, black) with the color to make the first color light gray or the second color to dark gray The point has the biggest feature.
[0039] 図 6 (a)、(b)はそれぞれ本発明の第 1発明に係る情報表示装置の駆動方法の他 の例を説明するための図である。図 6 (a)または (b)のように、最後の 2行である行電 極 11 7、 11— 8にチェッカーパターンの表示を行うことで、図 4 (a)、(b)及び図 5 (a ) , (b)に示す例と同様に、濃淡のムラを無くしている。ここで、チェッカーパターンの 表示をすることで、最後の 2行で各列に対し第 1の色の表示と第 2の色の表示を行う にあたり、最後の 2行で各列毎に第 1の色の表示と第 2の色の表示を行うにあたり、各 列において第 1の色の表示と第 2の色の表示の順が互いに異なるジグザグの表示を 行うこと、または、新たに設けた行電極と各列電極の延長部分との間に、第 1の色の 表示を行う電圧と第 2の色の表示を行う電圧を印加するにあたり、各列において第 1 の色の表示と第 2の色の表示の順が互いに異なるジグザグの表示を行うよう電圧を印 加することを達成することができる。  FIGS. 6A and 6B are diagrams for explaining another example of the method of driving the information display device according to the first invention of the present invention. As shown in Fig. 6 (a) or (b), the checker pattern is displayed on the last two rows, row electrodes 117, 11-8, to show Figs. 4 (a), (b) and 5 As in the examples shown in (a) and (b), unevenness of shading is eliminated. Here, by displaying the checker pattern, when displaying the first color and the second color for each column in the last two rows, the first two rows are displayed for each column in the last two rows. In displaying the color and the second color, the display of the first color and the display of the second color in each column are performed in a zigzag manner different from each other, or a newly provided row electrode is provided. When a voltage for displaying the first color and a voltage for displaying the second color are applied between the column and the extended portion of each column electrode, the display of the first color and the second color is performed in each column. It is possible to achieve the application of the voltage so as to perform the zigzag display in which the display order is different from each other.
[0040] 次に、実際に本発明の第 1発明に係る情報表示装置の駆動方法を適用した例に ついて説明する。図 7、図 8 (a)、(b)、図 9 (a)、(b)はそれぞれ本発明の情報表示装 置の駆動方法の効果を説明するための図である。まず、本例では図 7に示すパター ン画像を表示させるものとする。そして、ライン消去において従来の駆動方法でバタ ーン画像を表示した例を図 8 (a)に示し、同じくライン消去において最後の 2行に白色 と黒色とを書き込んだ本発明の駆動方法でパターン画像を表示した例を図 8 (b)に 示す。また、全消去において従来の駆動方法でパターン画像を表示した例を図 9 (a) に示し、同じく全消去において最後の 2行に白色と黒色とを書き込んだ本発明の駆 動方法でパターン画像を表示した例を図 9 (b)に示す。図 8 (a)と図 8 (b)、及び、図 9 (a)と図 9 (b)を比較すると、ライン消去方法でも全消去方法でも、従来例ではクロスト ークに起因する濃淡のムラが顕著なのに対し、本発明例ではクロストークに起因する 濃淡のムラが無 、ことがわかる。 Next, an example in which the driving method of the information display device according to the first invention of the present invention is actually applied will be described. FIGS. 7, 8 (a), (b), 9 (a), and (b) are diagrams for explaining the effects of the driving method of the information display device of the present invention. First, in this example, the pattern image shown in FIG. 7 is displayed. Fig. 8 (a) shows an example of displaying a pattern image using the conventional driving method in line erasing. Figure 8 (b) shows an example of the image displayed. Fig. 9 (a) shows an example of a pattern image displayed by the conventional driving method in all erasure. Figure 9 (b) shows an example in which is displayed. Comparing Fig. 8 (a) and Fig. 8 (b), and Fig. 9 (a) and Fig. 9 (b), both the line erase method and the all erase method It can be seen that the shading caused by the crosstalk is remarkable, whereas the shading unevenness caused by the crosstalk is not present in the example of the present invention.
[0041] なお、上述した例では、画素の消去や書込時に印加する電圧 100について触れな 力つたが、情報表示装置の構造に応じて電圧 Vの値により画像の濃淡が大きく異な る。一般に、電圧 Vが低いと黒色の表示が出来ず、一方、電圧 100が高いとクロスト ークに起因するグレイの部分と黒色の部分との差がなくなる。そのため、情報表示装 置の構造に応じて最適な電圧を選択する必要があり、一例として 80V〜110V程度 の電圧を使用する。  In the above-described example, the voltage 100 applied when erasing or writing a pixel is touched, but the density of an image greatly differs depending on the value of the voltage V depending on the structure of the information display device. In general, when the voltage V is low, black display cannot be performed, while when the voltage 100 is high, the difference between the gray portion and the black portion due to the crosstalk disappears. Therefore, it is necessary to select the optimal voltage according to the structure of the information display device. For example, a voltage of about 80V to 110V is used.
[0042] (第 2発明の説明) (Description of Second Invention)
本発明の第 2発明に係る情報表示装置の駆動方法の特徴は、上述した構成の情 報表示装置にぉ 、て、従来は画像表示にあたってオン状態である駆動電圧 Vを連 続して印カロして 、たのに対し、オン状態である駆動電圧 Vとオフ状態である表示媒体 が移動を開始するしき ヽ値以下の電圧 V パルス  The feature of the method for driving the information display device according to the second invention of the present invention is that, unlike the information display device having the above-described configuration, the drive voltage V, which is conventionally in the ON state for displaying an image, is continuously applied. However, on the other hand, the driving voltage V in the ON state and the voltage V pulse below the threshold value at which the display medium in the OFF state starts moving.
0との間を往復する 状の電圧を印加 する点にある。言い換えると、しきい値以下の電圧 Vを印加するオフ状態の時間(=  The point is to apply a voltage that reciprocates between zero. In other words, the OFF state time (=
0  0
オフ時間)という新しい概念を用い、オフ時間を制御することでクロストークを低減して いる。この際、 V、 Vは複数の値と取る事ができ、又、徐々に変化させてもよい。  Using a new concept of off-time, the cross-talk is reduced by controlling the off-time. At this time, V and V can take a plurality of values and may be gradually changed.
0  0
[0043] 図 10は本発明の第 2発明に係る情報表示装置の駆動方法に用いるパルス電圧の 一例を示す図である。図 10に示す例において、本発明で用いるノ ルス電圧は、オン 状態である駆動電圧とオフ状態である表示媒体が移動を開始するしき!、値 (V )以 下の電圧とを用いたパルスとして示される。そして、本発明の好適例としては、パルス 電圧のデューティー比(=パルス幅 Z (パルス幅 +オフ状態の時間))が 0. 9以下で あること、及び、オフ状態の時間が 0. 1msec以上であること、がある。いずれの例も、 後述する実施例で詳細に説明する。  FIG. 10 is a diagram showing an example of a pulse voltage used in the method for driving the information display device according to the second invention of the present invention. In the example shown in FIG. 10, the pulse voltage used in the present invention is such that the drive voltage in the on state and the display medium in the off state start to move! As shown. As a preferred example of the present invention, the duty ratio of the pulse voltage (= pulse width Z (pulse width + time in off state)) is 0.9 or less, and the off state time is 0.1 msec or more. There is that. Both examples will be described in detail in embodiments described later.
[0044] (第 3発明の説明)  (Description of Third Invention)
本発明の第 3発明に係る情報表示装置の駆動方法の特徴は、上述した構成の情 報表示装置において、様々な駆動方法を適用した場合のクロストーク電圧波形をさら に詳細に検討し、最適な方法を選択することにより、コントラストを向上させた点にある 。具体的には、 1回の画素書換えに際し複数回パルスを印加する間、非書換え画素 に印加されているクロストーク電圧の極性が変化しないよう、すなわち、非書換え画素 におけるロウ(走査)駆動電圧とカラム駆動電圧との差分として与えられるクロストーク 電圧のパルスが正と負の両極性の領域にまたがって存在しないよう、言い換えると、 正の場合は正の領域のみに存在し、負の場合は負の領域のみに存在するよう、駆動 電圧のパルス波形を調整した点にある。 The feature of the driving method of the information display device according to the third invention of the present invention is that the information display device having the above-described configuration has a crosstalk voltage waveform when various driving methods are applied in more detail, and is optimized. The point is that the contrast is improved by selecting an appropriate method. Specifically, while applying a pulse multiple times during one pixel rewrite, the non-rewrite pixel The polarity of the crosstalk voltage applied to the non-rewriting pixel does not change, that is, the pulse of the crosstalk voltage given as the difference between the row (scanning) drive voltage and the column drive voltage in the non-rewrite pixel has a positive and negative polarity The point is that the drive voltage pulse waveform is adjusted so that it does not exist over the region, in other words, it exists only in the positive region when it is positive, and it exists only in the negative region when it is negative.
[0045] 図 11 (a)、(b)はそれぞれ 2行 2列の単純マトリックスにおけるロウ 1選択時とロウ 2選 択時の状態を示す図である。図 l l (a)、(b)に示す例において、書換えしたい画素( 図中斜線部)に書換え電圧を印加すると、図示したクロストーク 1〜3の 3種類のクロス トーク電圧がかかる。行列数が増えても上記 2種類の電圧のみが存在する(ロウに選 択 '非選択の 2種、カラムに書換え'非書換えの 2種で、 2 X 2の 2種である。もっと複 雑な駆動ロジックを用いればさらに多種類の電圧が存在する)。クロストーク電圧が 0 Vでない場合、非書換え画素がたとえば黒なら白みが力つた黒 (グレー)に、たとえば 白なら黒みが力つた白(グレー)になって画質を劣化させる(白黒表示の場合)。画像 メモリー性のある情報表示装置の場合は印加電圧の極性を反転して書込み(消去と 同意の場合もある)を行う必要がある。  FIGS. 11 (a) and 11 (b) are diagrams showing states when row 1 and row 2 are selected in a simple matrix of 2 rows and 2 columns, respectively. In the examples shown in FIGS. 11 (a) and 11 (b), when a rewrite voltage is applied to a pixel to be rewritten (the hatched portion in the figure), three types of crosstalk voltages 1 to 3 are applied. Even if the number of matrices increases, only the above two types of voltages exist (two types: selected for row, two types for non-selection, rewrite for column, two types for non-rewrite, two types of 2 × 2. If various drive logics are used, more types of voltages exist.) If the crosstalk voltage is not 0 V, the non-rewritable pixel becomes black (gray) with more whiteness if it is black, for example, and becomes white (gray) with more blackness if it is white (for black and white display). ). In the case of an information display device with image memory, it is necessary to perform writing (in some cases, concurrence with erasing) by inverting the polarity of the applied voltage.
[0046] また、本発明の第 3発明に係る情報表示装置の駆動方法の好適例として、上述し たコントラストの向上に加えて、 1回の画素書換えに際し複数回パルスを印加する間 、書換え画素に印加されるノ ルス電圧におけるピークとピークとの間隔を広くすること で、書換え画素の表示色を濃くすることができ、その結果、コントラストをさらに向上さ せることができる。具体的には、ロウ(走査)駆動電圧およびカラム駆動電圧をそれぞ れ同一周期および同一デューティーのノ ルス列で構成し、ロウ側の列選択に際し、口 ゥ駆動電圧とカラム駆動電圧のそれぞれのパルス列の位相を反転することで、書換 え画素におけるロウ(走査)駆動電圧とカラム駆動電圧との差分として与えられるクロ ストーク電圧において、ピーク 'トウ'ピークの差を大きくして、書換え画素の色を濃く することができる。いずれの例も、後述する実施例で詳細に説明する。  Further, as a preferred example of the method of driving the information display device according to the third invention of the present invention, in addition to the above-described improvement of the contrast, the rewriting pixel is applied while applying the pulse a plurality of times in one pixel rewriting. By increasing the interval between the peaks in the pulse voltage applied to the pixel, the display color of the rewritten pixel can be increased, and as a result, the contrast can be further improved. Specifically, the row (scanning) drive voltage and the column drive voltage are composed of pulse trains having the same cycle and the same duty, respectively, and when selecting a row on the row side, each of the port drive voltage and the column drive voltage is used. By inverting the phase of the pulse train, the crosstalk voltage given as the difference between the row (scanning) drive voltage and the column drive voltage at the rewrite pixel increases the difference between the peak 'toe' peaks, thereby increasing the color of the rewrite pixel. Can be increased. Both examples will be described in detail in embodiments described later.
[0047] 以下、本発明の対象となる情報表示用パネルを構成する各部材について説明する  Hereinafter, each member constituting the information display panel to which the present invention is applied will be described.
[0048] 基板については、少なくとも一方の基板は情報表示用パネル外側力 表示媒体の 色が確認できる透明な前面基板 2であり、可視光の透過率が高くかつ耐熱性の良い 材料が好適である。背面基板 1は透明でも不透明でもカゝまわない。基板材料を例示 すると、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカー ボネート、ポリイミド、アクリルなどのポリマーシートや、金属シートのように可とう性のあ るもの、および、ガラス、石英などの可とう性のない無機シートが挙げられる。基板の 厚みは、 2〜5000 μ m力好ましく、さらに 5〜2000 μ 111カ 子適であり、薄すぎると、 強度、基板間の間隔均一性を保ちに《なり、 5000 /z mより厚いと、薄型の情報表示 用パネルとする場合に不都合がある。 [0048] As for the substrate, at least one of the substrates is a force outside the information display panel. It is a transparent front substrate 2 whose color can be confirmed, and a material having high visible light transmittance and good heat resistance is preferable. The rear substrate 1 may be transparent or opaque. Examples of the substrate material include polymer sheets such as polyethylene terephthalate, polyether sulfone, polyethylene, polycarbonate, polyimide, and acrylic, and flexible materials such as metal sheets, and flexible materials such as glass and quartz. Inorganic sheet having no properties. The thickness of the substrate is preferably between 2 and 5000 μm, and more preferably between 5 and 2000 μm.If the thickness is too small, the strength and uniformity between the substrates are maintained.If the thickness is more than 5000 / zm, This is inconvenient when using a thin information display panel.
[0049] 情報表示用パネルに電極を設ける場合の電極形成材料としては、アルミニウム、銀 、ニッケル、銅、金等の金属類や ITO、酸化インジウム、導電性酸化錫、導電性酸ィ匕 亜鉛等の導電金属酸化物類、ポリア-リン、ポリピロール、ポリチォフェンなどの導電 性高分子類が例示され、適宜選択して用いられる。電極の形成方法としては、上記 例示の材料をスパッタリング法、真空蒸着法、 CVD (化学蒸着)法、塗布法等で薄膜 状に形成する方法や、導電剤を溶媒や合成樹脂バインダーに混合して塗布したりす る方法が用いられる。視認側(表示面側)基板に設ける電極は透明である必要がある 力 背面側基板に設ける電極は透明である必要がない。いずれの場合もパターン形 成可能である導電性である上記材料を好適に用いることができる。なお、電極厚みは 、導電性が確保でき光透過性に支障がなければ良ぐ 3〜: LOOOnm、好ましくは 5〜 400nmが好適である。背面側基板に設ける電極の材質や厚みなどは上述した表示 面側基板に設ける電極と同様である力 透明である必要はない。なお、この場合の外 部電圧入力は、直流あるいは交流を重畳しても良い。 [0049] When forming electrodes on the information display panel, examples of the electrode forming material include metals such as aluminum, silver, nickel, copper, and gold, ITO , indium oxide, conductive tin oxide, and conductive zinc oxide. Examples of such conductive metal oxides and conductive polymers such as polyaline, polypyrrole, and polythiophene are exemplified and appropriately selected for use. Examples of the method of forming the electrode include a method of forming the above-described materials into a thin film by a sputtering method, a vacuum evaporation method, a CVD (chemical vapor deposition) method, a coating method, or a method in which a conductive agent is mixed with a solvent or a synthetic resin binder. A method of applying is used. The electrode provided on the viewing side (display surface side) substrate needs to be transparent. The electrode provided on the back side substrate does not need to be transparent. In any case, the above-mentioned conductive material capable of forming a pattern can be suitably used. The thickness of the electrode is preferably 3 to: LOOO nm, and more preferably 5 to 400 nm, as long as the conductivity can be ensured and the light transmittance is not impaired. The material and thickness of the electrodes provided on the back side substrate are the same as those of the electrodes provided on the display surface side substrate, and need not be transparent. In this case, the external voltage input may be superimposed with DC or AC.
[0050] 必要に応じて設ける隔壁 4については、その形状は表示にかかわる表示媒体の種 類により適宜最適設定され、一概には限定されないが、隔壁の幅は 2〜: ίΟΟ /ζ πι、好 ましくは 3〜50 μ mに、隔壁の高さは 10〜500 μ m、好ましくは 10〜200 μ mに調 整される。また、隔壁を形成するにあたり、対向する両基板の各々にリブを形成した 後に接合する両リブ法、片側の基板上にのみリブを形成する片リブ法が考えられる。 本発明では、いずれの方法も好適に用いられる。  [0050] The shape of the partition wall 4 provided as necessary is appropriately set appropriately according to the type of the display medium involved in the display, and is not particularly limited, but the width of the partition wall is 2 to: ίΟΟ / ζπι, preferably Preferably, the height is adjusted to 3 to 50 μm, and the height of the septum is adjusted to 10 to 500 μm, preferably 10 to 200 μm. Further, in forming the partition, a two-rib method in which ribs are formed on both of the opposing substrates and then joined, or a one-rib method in which the ribs are formed only on one substrate is conceivable. In the present invention, any of the methods is suitably used.
[0051] これらのリブ力 なる隔壁により形成されるセルは、図 12に示すごとぐ基板平面方 向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配置としては格 子状ゃハニカム状や網目状が例示される。表示面側から見える隔壁断面部分に相 当する部分 (セルの枠部の面積)はできるだけ小さくした方が良ぐ表示状態の鮮明 さが増す。ここで、隔壁の形成方法を例示すると、金型転写法、スクリーン印刷法、サ ンドブラスト法、フォトリソ法、アディティブ法が挙げられる。このうち、レジストフイルム を用いるフォトリソ法や金型転写法が好適に用いられる。 The cells formed by the ribs having the rib force are arranged on the substrate plane as shown in FIG. Seen from the direction, a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape are exemplified, and the arrangement is exemplified by a lattice shape, a honeycomb shape, and a mesh shape. It is better to make the part (area of the cell frame) corresponding to the cross-section of the partition seen from the display surface side as small as possible, and the sharpness of the display state increases. Here, examples of the method for forming the partition include a mold transfer method, a screen printing method, a sand blast method, a photolithography method, and an additive method. Of these, a photolithography method using a resist film and a mold transfer method are preferably used.
[0052] 次に、本発明の対象となる情報表示用パネルで表示媒体として用いる粒子群につ いて説明する。粒子群を構成する粒子は、その主成分となる樹脂に、必要に応じて、 従来と同様に、荷電制御剤、着色剤、無機添加剤等を含ますことができる。以下に、 榭脂、荷電制御剤、着色剤、その他添加剤を例示する。  Next, the particle group used as a display medium in the information display panel according to the present invention will be described. The particles constituting the particle group can contain a charge control agent, a coloring agent, an inorganic additive, and the like, as necessary, in a resin as a main component thereof, as necessary. The following are examples of resins, charge control agents, coloring agents, and other additives.
[0053] 榭脂の例としては、ウレタン榭脂、ウレァ榭脂、アクリル榭脂、ポリエステル榭脂、ァ クリルウレタン榭脂、アクリルウレタンシリコーン榭脂、アクリルウレタンフッ素榭脂、ァ クリルフッ素榭脂、シリコーン榭脂、アクリルシリコーン榭脂、エポキシ榭脂、ポリスチレ ン榭脂、スチレンアクリル榭脂、ポリオレフイン榭脂、プチラール榭脂、塩化ビニリデン 榭脂、メラミン榭脂、フエノール榭脂、フッ素榭脂、ポリカーボネート榭脂、ポリスルフォ ン榭脂、ポリエーテル榭脂、ポリアミド榭脂等が挙げられ、 2種以上混合することもで きる。特に、基板との付着力を制御する観点から、アクリルウレタン榭脂、アクリルシリ コーン榭脂、アクリルフッ素榭脂、アクリルウレタンシリコーン榭脂、アクリルウレタンフ ッ素榭脂、フッ素榭脂、シリコーン榭脂が好適である。  Examples of the resin include urethane resin, urethane resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluorine resin, acrylic fluorine resin, Silicone resin, acrylic silicone resin, epoxy resin, polystyrene resin, styrene acrylic resin, polyolefin resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluorine resin, polycarbonate. Fat, polysulfone resin, polyether resin, polyamide resin, and the like, and two or more kinds can be mixed. In particular, from the viewpoint of controlling the adhesion to the substrate, acrylic urethane resin, acrylic silicone resin, acrylic fluorine resin, acrylic urethane silicone resin, acrylic urethane fluorine resin, fluorine resin, silicone resin. Is preferred.
[0054] 荷電制御剤としては、特に制限はな 、が、負荷電制御剤としては例えば、サリチル 酸金属錯体、含金属ァゾ染料、含金属 (金属イオンや金属原子を含む)の油溶性染 料、 4級アンモ-ゥム塩系化合物、力リックスアレンィ匕合物、含ホウ素化合物(ベンジ ル酸ホウ素錯体)、ニトロイミダゾール誘導体等が挙げられる。正荷電制御剤としては 例えば、ニグ口シン染料、トリフエ-ルメタン系化合物、 4級アンモ-ゥム塩系化合物、 ポリアミン榭脂、イミダゾール誘導体等が挙げられる。その他、超微粒子シリカ、超微 粒子酸化チタン、超微粒子アルミナ等の金属酸化物、ピリジン等の含窒素環状化合 物及びその誘導体や塩、各種有機顔料、フッ素、塩素、窒素等を含んだ榭脂等も荷 電制御剤として用いることもできる。 [0055] 着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染 料が使用可能である。 The charge control agent is not particularly limited, but examples of the charge control agent include a metal salicylate complex, a metal-containing azo dye, and a metal-containing dye (including a metal ion and a metal atom) in an oil-soluble dye. Materials, quaternary ammonium salt-based compounds, Rick's Allylene conjugates, boron-containing compounds (boron benzylate complexes), nitroimidazole derivatives and the like. Examples of the positive charge control agent include a nig mouth dye, a triphenylmethane compound, a quaternary ammonium salt compound, a polyamine resin, and an imidazole derivative. In addition, metal oxides such as ultrafine silica, ultrafine titanium oxide and ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and derivatives and salts thereof, various organic pigments, and resins containing fluorine, chlorine, nitrogen, etc. Can also be used as a charge control agent. [0055] As the colorant, various kinds of organic or inorganic pigments and dyes as exemplified below can be used.
[0056] 黒色着色剤としては、カーボンブラック、酸化銅、二酸ィ匕マンガン、ァ-リンブラック 、活性炭等がある。  [0056] Examples of the black colorant include carbon black, copper oxide, dimanganese diacid, arin black, activated carbon and the like.
青色着色剤としては、 C. I.ビグメントブルー 15 : 3、 C. I.ビグメントブルー 15、紺 青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシア-ン ブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファー ストスカイブルー、インダンスレンブルー BC等がある。  Blue colorants include CI Pigment Blue 15: 3, CI Pigment Blue 15, Navy Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-Free Phthalocyanine Blue, Partially Chlorinated Phthalocyanine Blue, First Sky Blue and Indanthrene Blue BC are available.
赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パー マネントレッド 4R、リノールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩 、レーキレッド D、ブリリアントカーミン 6B、ェォシンレーキ、ローダミンレーキ B、ァリザ リンレーキ、ブリリアントカーミン 3B、 C. I.ビグメントレッド 2等がある。  Red colorants include Bengala, Cadmium Red, Lead Tan, Mercury Sulfide, Cadmium, Permanent Red 4R, Linole Red, Pyrazolone Red, Watching Red, Calcium Salt, Lake Red D, Brilliant Carmine 6B, Eosin Lake, Rhodamine Lake B, Aliza Lin Lake, Brilliant Carmine 3B, CI Pigment Red 2, etc.
[0057] 黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイェロー、黄色酸化鉄、ミネラルファ 一ストイェロー、ニッケノレチタンイェロー、ネーブノレイエロー、ナフトーノレイェロー S、 ノヽンザイェロー G、ハンザイェロー 10G、ベンジジンイェロー G、ベンジジンイェロー GR、キノリンイェローレーキ、パーマネントイェロー NCG、タートラジンレーキ、 C. I. ビグメントイエロー 12等がある。 [0057] Examples of the yellow colorant include graphite, zinc yellow, cadmium yellow, yellow iron oxide, mineral yellow, nickel yellow, yellow yellow, navy yellow, naphtho no yellow yellow S, nonzai yellow G, hanzi yellow 10G, benzidine Yellow G, Benzijin Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, CI Pigment Yellow 12 and others.
緑色着色剤としては、クロムグリーン、酸ィ匕クロム、ビグメントグリーン B、 C. I.ピグメ ントグリーン 7、マラカイトグリーンレーキ、フアイナノレイェローグリーン G等がある。 橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジ GTR、 ピラゾロン才レンジ、ノ ノレカン才レンジ、インダンスレンブリリアント才レンジ RK:、ベン ジジン才レンジ G、インダンスレンブリリアント才レンジ GK、 C. I.ピグメント才レンジ 3 1等がある。  Examples of the green colorant include chrome green, oxidized chromium, pigment green B, CI pigment green 7, malachite green lake, and huainanorayello green G. Orange colorants include red lead, molybdenum orange, permanent orange GTR, pyrazolone age range, norecan age range, indanthrene brilliant age range RK :, benzidine age range G, indanthrene brilliant age range GK, CI Pigment Age Range 3 1 mag.
紫色着色剤としては、マンガン紫、ファーストバイオレット B、メチルバイオレットレー キ等がある。  Purple colorants include manganese violet, first violet B, methyl violet lake, and the like.
白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫ィ匕亜鉛等がある。  Examples of white colorants include zinc white, titanium oxide, antimony white, zinc sulfate, and the like.
[0058] 体質顔料としては、ノ ライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タル ク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料と して、ニグ口シン、メチレンブルー、ローズベンガル、キノリンイェロー、ウルトラマリン ブルー等がある。 [0058] Examples of extenders include norite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Also, with various dyes such as basic, acidic, dispersion, direct dye And Nigguchi Shin, Methylene Blue, Rose Bengal, Quinoline Yellow, Ultramarine Blue and the like.
[0059] 無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭 酸カルシウム、鉛白、タルク、シリカ、ケィ酸カルシウム、アルミナホワイト、カドミウムィ エロー、カドミウムレッド、カドミウムオレンジ、チタンイェロー、紺青、群青、コバルトブ ルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフ エライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。 これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いるこ とができる。このうち特に黒色顔料としてカーボンブラック力 白色顔料として酸化チ タンが好ましい。  [0059] Examples of the inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, aluminum powder and the like. These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferred as the black pigment, and titanium oxide is preferred as the white pigment.
[0060] また、本発明で用いる粒子は平均粒子径 d (0. 5)力 0. 1〜20 μ mの範囲であり、 均一で揃っていることが好ましい。平均粒子径 d (0. 5)がこの範囲より大きいと表示 上の鮮明さに欠け、この範囲より小さいと粒子同士の凝集力が大きくなりすぎるため に粒子の移動に支障をきたすようになる。  The particles used in the present invention have an average particle diameter d (0.5) force of 0.1 to 20 μm, and are preferably uniform and uniform. If the average particle diameter d (0.5) is larger than this range, the sharpness of the display will be poor, and if it is smaller than this range, the cohesion between the particles will be too large and the movement of the particles will be hindered.
[0061] 更に本発明では、各粒子の粒子径分布に関して、下記式に示される粒子径分布 Spanを 5未満、好ましくは 3未満とする。  [0061] Further, in the present invention, regarding the particle size distribution of each particle, the particle size distribution Span represented by the following formula is set to less than 5, preferably less than 3.
Span= (d(0.9)-d(0.1)) /d(0.5)  Span = (d (0.9) -d (0.1)) /d(0.5)
(但し、 d(0.5)は粒子の 50%がこれより大きぐ 50%がこれより小さいという粒子径を mで表した数値、 d(0.1)はこれ以下の粒子の比率が 10%である粒子径を/ z mで表し た数値、 d(0.9)はこれ以下の粒子が 90%である粒子径を/ z mで表した数値である。 ) Spanを 5以下の範囲に納めることにより、各粒子のサイズが揃い、均一な粒子移動 が可能となる。  (However, d (0.5) is the numerical value of the particle diameter in which 50% of the particles are larger and 50% is smaller than this, expressed in m, and d (0.1) is the particle in which the ratio of particles smaller than 10% is 10%.) The particle diameter is expressed as / zm, and d (0.9) is the particle diameter at which 90% of the particles are 90% or less./zm.) By setting the Span within the range of 5 or less, The size is uniform and uniform particle movement is possible.
[0062] さらにまた、各粒子の相関について、使用した粒子の内、最大径を有する粒子の d(0.5)に対する最小径を有する粒子の d(0.5)の比を 50以下、好ましくは 10以下とする ことが肝要である。たとえ粒子径分布 Spanを小さくしたとしても、互いに帯電特性の異 なる粒子が互いに反対方向に動くので、互いの粒子サイズが近ぐ互いの粒子が当 量ずつ反対方向に容易に移動できるようにするのが好適であり、それ力この範囲とな る。 [0063] なお、上記の粒子径分布および粒子径は、レーザー回折 Z散乱法などから求める ことができる。測定対象となる粒子にレーザー光を照射すると空間的に回折 Z散乱 光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があるこ とから、粒子径ぉよび粒子径分布が測定できる。 [0062] Furthermore, regarding the correlation of each particle, of the particles used, the ratio of d (0.5) of the particle having the minimum diameter to d (0.5) of the particle having the maximum diameter is 50 or less, preferably 10 or less. It is important to do so. Even if the particle size distribution Span is reduced, particles with different charging characteristics move in opposite directions, so that particles with similar particle sizes can easily move in opposite directions by an equivalent amount. It is preferable that the force falls within this range. [0063] The above-mentioned particle size distribution and particle size can be determined by a laser diffraction Z scattering method or the like. When laser light is applied to the particles to be measured, a spatial light intensity distribution pattern of the diffracted Z scattered light is generated, and since this light intensity pattern has a correspondence with the particle size, the particle size and the particle size distribution are measured. it can.
ここで、本発明における粒子径および粒子径分布は、体積基準分布から得られた ものである。具体的には、 Mastersizer2000(Malvern Instruments Ltd.)測定機を用い て、窒素気流中に粒子を投入し、付属の解析ソフト (Mie理論を用いた体積基準分布 を基本としたソフト)にて、粒子径および粒子径分布の測定を行なうことができる。  Here, the particle size and the particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, the particles are put into a nitrogen gas stream, and the particles are analyzed using the attached analysis software (software based on volume-based distribution using Mie theory). Measurements of diameter and particle size distribution can be made.
[0064] 粒子の帯電量は当然その測定条件に依存するが、情報表示用パネルにおける粒 子の帯電量はほぼ、初期帯電量、隔壁との接触、基板との接触、経過時間に伴う電 荷減衰に依存し、特に粒子の帯電挙動の飽和値が支配因子となっているということ が分かった。  Although the charge amount of the particles naturally depends on the measurement conditions, the charge amount of the particles in the information display panel is almost the same as the initial charge amount, the contact with the partition, the contact with the substrate, and the charge accompanying the elapsed time. It was found that it depends on the attenuation, and in particular, the saturation value of the charging behavior of the particles is the dominant factor.
[0065] 本発明者らは鋭意検討の結果、ブローオフ法において同一のキャリア粒子を用い て、それぞれの粒子の帯電量測定を行うことにより、用いる粒子の適正な帯電特性値 の範囲を評価できることを見出した。  As a result of intensive studies, the present inventors have found that by measuring the charge amount of each particle using the same carrier particles in the blow-off method, it is possible to evaluate the appropriate range of the charge characteristic value of the particles used. I found it.
[0066] 次に、本発明の対象となる情報表示用パネルで表示媒体として用いる粉流体につ いて説明する。なお、本発明の情報表示装置で用いる粉流体の名称については、本 出願人が「電子粉流体 (登録商標):登録番号 4636931」の権利を得て 、る。  Next, a powder fluid used as a display medium in the information display panel according to the present invention will be described. The name of the liquid powder used in the information display device of the present invention is obtained by the present applicant with the right of “Electronic powder liquid (registered trademark): registration number 4636931”.
[0067] 本発明における「粉流体」は、気体の力も液体の力も借りずに、自ら流動性を示す、 流体と粒子の特性を兼ね備えた両者の中間状態の物質である。例えば、液晶は液 体と固体の中間的な相と定義され、液体の特徴である流動性と固体の特徴である異 方性 (光学的性質)を有するものである(平凡社:大百科事典)。一方、粒子の定義は 、無視できるほどの大きさであっても有限の質量をもった物体であり、重力の影響を 受けるとされている(丸善:物理学事典)。ここで、粒子でも、気固流動層体、液固流 動体という特殊状態があり、粒子に底板から気体を流すと、粒子には気体の速度に 対応して上向きの力が作用し、この力が重力とつりあう際に、流体のように容易に流 動できる状態になるものを気固流動層体と呼び、同じぐ流体により流動化させた状 態を液固流動体と呼ぶとされて 、る(平凡社:大百科事典)。このように気固流動層体 や液固流動体は、気体や液体の流れを利用した状態である。本発明では、このよう な気体の力も、液体の力も借りずに、自ら流動性を示す状態の物質を、特異的に作り 出せることが判明し、これを粉流体と定義した。 [0067] The "powder fluid" in the present invention is a substance in an intermediate state between a fluid and a particle that exhibits fluidity by itself without using the power of gas or liquid. For example, a liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity, a characteristic of liquid, and anisotropy (optical properties), a characteristic of solid (Heibonsha: Encyclopedia) ). On the other hand, the definition of a particle is an object having a finite mass, even if it is negligible, and is said to be affected by gravity (Maruzen: Encyclopedia of Physics). Here, particles also have a special state of gas-solid fluidized bed or liquid-solid fluid. When gas flows from the bottom plate to the particles, an upward force acts on the particles corresponding to the velocity of the gas. When the fluid balances with gravity, it is called a gas-solid fluidized bed that can easily flow like a fluid, and the fluidized fluidized state is called a liquid-solid fluidized body. (Heibonsha: Encyclopedia). Gas-solid fluidized bed And liquid-solid fluids are in a state utilizing the flow of gas or liquid. In the present invention, it has been found that a substance in a state of fluidity can be specifically produced without using the power of such a gas or the power of a liquid, and this is defined as a powder fluid.
[0068] すなわち、本発明における粉流体は、液晶(液体と固体の中間相)の定義と同様に 、粒子と液体の両特性を兼ね備えた中間的な状態で、先に述べた粒子の特徴である 重力の影響を極めて受け難ぐ高流動性を示す特異な状態を示す物質である。この ような物質はエアロゾル状態、すなわち気体中に固体状もしくは液体状の物質が分 散質として安定に浮遊する分散系で得ることができ、本発明の情報表示用パネルで 固体状物質を分散質とするものである。  That is, as in the definition of the liquid crystal (intermediate phase between liquid and solid), the powder fluid in the present invention is an intermediate state having both characteristics of particles and liquid, and has the characteristics of the particles described above. A substance that exhibits a unique state of high fluidity that is extremely insensitive to gravity. Such a substance can be obtained in an aerosol state, that is, a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the solid substance is dispersed in the information display panel of the present invention. It is assumed that.
[0069] 本発明の対象となる情報表示用パネルは、少なくとも一方が透明な、対向する基板 間に、気体中に固体粒子が分散質として安定に浮遊するエアロゾル状態で高流動 性を示す粉流体を封入するものであり、このような粉流体は、低電圧の印加でクーロ ンカなどにより容易に安定して移動させることができる。 [0069] The information display panel that is the object of the present invention is a powder fluid that exhibits high fluidity in an aerosol state in which solid particles are stably suspended as a dispersoid in a gas between opposed substrates, at least one of which is transparent. Such a powder fluid can be easily and stably moved by a cooler or the like when a low voltage is applied.
本発明に用いる粉流体とは、先に述べたように、気体の力も液体の力も借りずに、 自ら流動性を示す、流体と粒子の特性を兼ね備えた両者の中間状態の物質である。 この粉流体は、特にエアロゾル状態とすることができ、本発明の情報表示用パネルで は、気体中に固体状の物質が分散質として比較的安定に浮遊する状態で用いられ る。  The powder fluid used in the present invention is, as described above, a substance in an intermediate state between a fluid and a particle, which exhibits fluidity by itself without using the power of gas or liquid. The powdered fluid can be in an aerosol state, and the information display panel of the present invention is used in a state where a solid substance is relatively stably suspended as a dispersoid in a gas.
[0070] エアロゾル状態の範囲は、粉流体の最大浮遊時の見かけ体積が未浮遊時の 2倍 以上であることが好ましぐ更に好ましくは 2. 5倍以上、特に好ましくは 3倍以上であ る。上限は特に限定されないが、 12倍以下であることが好ましい。  [0070] The range of the aerosol state is preferably twice or more the maximum apparent volume of the powder fluid when it was not suspended, more preferably 2.5 times or more, and particularly preferably 3 times or more. You. The upper limit is not particularly limited, but is preferably 12 times or less.
粉流体の最大浮遊時の見かけ体積が未浮遊時の 2倍より小さいと表示上の制御が 難しくなり、また、 12倍より大きいと粉流体を装置内に封入する際に舞い過ぎてしまう などの取扱い上の不便さが生じる。なお、最大浮遊時の見かけ体積は次のようにして 測定される。すなわち、粉流体が透過して見える密閉容器に粉流体を入れ、容器自 体を振動或いは落下させて、最大浮遊状態を作り、その時の見かけ体積を容器外側 力も測定する。具体的には、平均粒子径 d (0. 5) (内径) 6cm、高さ 10cmのポリプロ ピレン製の蓋付き容器 (商品名アイボーイ:ァズワン (株)製)に、未浮遊時の粉流体と して 1Z5の体積相当の粉流体を入れ、振とう機に容器をセットし、 6cmの距離を 3往 復 Zsecで 3時間振とうさせる。振とう停止直後の見かけ体積を最大浮遊時の見かけ 体積とする。 If the apparent volume at the time of the maximum suspension of the powder fluid is smaller than twice that of the non-floating state, it will be difficult to control the display.If the apparent volume is larger than 12 times, the powder fluid will flutter too much when enclosed in the device. Inconvenience in handling occurs. The apparent volume at the time of maximum suspension is measured as follows. That is, the powdered fluid is placed in a closed container through which the powdered fluid can be seen, and the container itself is vibrated or dropped to create a maximum floating state, and the apparent volume at that time is also measured for the external force of the container. Specifically, a powdery liquid with no suspension is placed in a container with a lid made of polypropylene (trade name: i-boy: Azwan Corporation) with an average particle diameter d (0.5) (inner diameter) of 6 cm and a height of 10 cm. Then, put the powder fluid equivalent to the volume of 1Z5, set the container on a shaker, and shake for 3 hours at 3 round trip Zsec over a distance of 6cm. The apparent volume immediately after stopping shaking is the apparent volume at the time of maximum suspension.
[0071] また、本発明では、粉流体の見かけ体積の時間変化が次式を満たすものが好まし い。  Further, in the present invention, it is preferable that the temporal change of the apparent volume of the powder fluid satisfies the following expression.
V /V >0. 8  V / V> 0.8
10 5  10 5
ここで、 Vは最大浮遊時から 5分後の見かけ体積 (cm3)、 V は最大浮遊時から 10 Where V is the apparent volume (cm 3 ) 5 minutes after the maximum suspension, and V is 10
5 10  5 10
分後の見かけ体積 (cm3)を示す。なお、本発明の情報表示装置は、粉流体の見か け体積の時間変化 V /Vが 0. 85よりも大きいものが好ましぐ 0. 9よりも大きいも Shows the apparent volume (cm 3 ) after minutes. In the information display device of the present invention, it is preferable that the temporal change V / V of the apparent volume of the powdery fluid is larger than 0.85, and more preferable that it is larger than 0.9.
10 5  10 5
のが特に好ましい。 V /Vが 0. 8以下の場合は、通常のいわゆる粒子を用いた場  Is particularly preferred. If V / V is 0.8 or less, the field using ordinary so-called particles
10 5  10 5
合と同様となり、本発明のような高速応答、耐久性の効果が確保できなくなる。  In this case, the effects of high-speed response and durability as in the present invention cannot be secured.
[0072] また、粉流体を構成する粒子物質の平均粒子径 d (0. 5) (d (0. 5) )は、好ましくは 0. 1〜20 111、更に好ましく【ま0. 5〜15 111、特に好ましく【ま0. 9〜8 mである。 0. 1 mより小さいと表示上の制御が難しくなり、 20 mより大きいと、表示上の鮮明 さに欠けるようになる。なお、粉流体を構成する粒子物質の平均粒子径 d (0. 5) (d (0 . 5) )は、次の粒子径分布 Spanにおける d (0. 5)と同様である。 [0072] Further, the average particle diameter d (0.5) (d (0.5)) of the particulate matter constituting the powder fluid is preferably 0.1 to 20 111, and more preferably 0.5 to 15 111, particularly preferably 0.9 to 8 m. If it is smaller than 0.1 m, it will be difficult to control the display. If it is larger than 20 m, the display will be less clear. The average particle size d (0.5) (d (0.5)) of the particulate matter constituting the powder fluid is the same as d (0.5) in the next particle size distribution Span.
[0073] 粉流体を構成する粒子物質は、下記式に示される粒子径分布 Spanが 5未満である ことが好ましぐ更に好ましくは 3未満である。 [0073] The particle material constituting the powder fluid preferably has a particle size distribution Span represented by the following formula of less than 5, more preferably less than 3.
粒子径分布 Span= (d (0. 9)— d (0. l) ) /d (0. 5)  Particle size distribution Span = (d (0.9) —d (0.l)) / d (0.5)
ここで、 d (0. 5)は粉流体を構成する粒子物質の 50%がこれより大きぐ 50%がこれ より小さいという粒子径を/ z mで表した数値、 d (0. 1)はこれ以下の粉流体を構成す る粒子物質の比率が 10%である粒子径を μ mで表した数値、 d (0. 9)はこれ以下の 粉流体を構成する粒子物質が 90%である粒子径を/ z mで表した数値である。粉流 体を構成する粒子物質の粒子径分布 Spanを 5以下とすることにより、サイズが揃い、 均一な粉流体移動が可能となる。  Here, d (0.5) is a numerical value expressed by / zm that 50% of the particulate matter constituting the powder fluid is larger than 50% and smaller than 50%, and d (0.1) is Numerical value in μm of the particle diameter where the ratio of the particulate matter constituting the powder fluid is 10%, and d (0.9) is the particle where the particulate matter constituting the powder fluid is 90% or less. It is a numerical value representing the diameter in / zm. By setting the particle size distribution Span of the particulate matter constituting the powder fluid to 5 or less, the size becomes uniform and the powder fluid can be moved uniformly.
[0074] なお、以上の粒子径分布および粒子径は、レーザー回折 Z散乱法などから求める ことができる。測定対象となる粉流体にレーザー光を照射すると空間的に回折 Z散 乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係がある ことから、粒子径および粒子径分布が測定できる。この粒子径および粒子径分布は、 体積基準分布から得られる。具体的には、 Mastersizer2000(Malvern Instruments Ltd.)測定機を用いて、窒素気流中に粉流体を投入し、付属の解析ソフト (Mie理論を 用いた体積基準分布を基本としたソフト)にて、測定を行うことができる。 [0074] The above particle size distribution and particle size can be determined by a laser diffraction Z scattering method or the like. When a laser beam is irradiated to the powder fluid to be measured, a spatially diffracted Z-scattered light intensity distribution pattern is generated, and this light intensity pattern has a correspondence with the particle diameter. Thus, the particle size and the particle size distribution can be measured. The particle size and the particle size distribution are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring machine, charge the powder fluid into a nitrogen stream, and use the attached analysis software (software based on volume-based distribution using Mie theory) A measurement can be made.
[0075] 粉流体の作製は、必要な榭脂、荷電制御剤、着色剤、その他添加剤を混練り粉砕 しても、モノマー力 重合しても、既存の粒子を榭脂、荷電制御剤、着色剤、その他 添加剤でコーティングしても良い。以下、粉流体を構成する榭脂、荷電制御剤、着色 剤、その他添加剤を例示する。  [0075] Powder fluid is produced by kneading and kneading necessary resins, charge control agents, coloring agents, and other additives, or by polymerizing with monomers, to convert existing particles into resins, charge control agents, It may be coated with a coloring agent or other additives. Hereinafter, the resin, the charge control agent, the coloring agent, and other additives constituting the powder fluid will be exemplified.
[0076] 榭脂の例としては、ウレタン榭脂、アクリル榭脂、ポリエステル榭脂、ウレタン変'性ァ クリル樹脂、シリコーン榭脂、ナイロン榭脂、エポキシ榭脂、スチレン榭脂、プチラー ル榭脂、塩ィ匕ビユリデン榭脂、メラミン榭脂、フエノール榭脂、フッ素榭脂などが挙げ られ、 2種以上混合することもでき、特に、基板との付着力を制御する上から、アクリル ウレタン榭脂、アクリルウレタンシリコーン榭脂、アクリルウレタンフッ素榭脂、ウレタン 榭脂、フッ素榭脂が好適である。  [0076] Examples of the resin include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, and butyral resin. And acrylamine resin, melamine resin, phenol resin, fluorine resin and the like. Two or more of them can be mixed. Particularly, in order to control the adhesion to the substrate, acrylic urethane resin is used. Preferred are acrylic urethane silicone resin, acrylic urethane fluorine resin, urethane resin, and fluorine resin.
[0077] 荷電制御剤の例としては、正電荷付与の場合には、 4級アンモ-ゥム塩系化合物、 ニグ口シン染料、トリフエ-ルメタン系化合物、イミダゾール誘導体などが挙げられ、負 電荷付与の場合には、含金属ァゾ染料、サリチル酸金属錯体、ニトロイミダゾール誘 導体などが挙げられる。  [0077] Examples of the charge control agent include, in the case of imparting a positive charge, a quaternary ammonium salt-based compound, a Nigguchi syn dye, a triphenylmethane-based compound, and an imidazole derivative. In such a case, a metal-containing azo dye, a metal salicylate complex, a nitroimidazole derivative and the like can be mentioned.
[0078] 着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染 料が使用可能である。  [0078] As the coloring agent, various kinds of organic or inorganic pigments and dyes as exemplified below can be used.
[0079] 黒色着色剤としては、カーボンブラック、酸化銅、二酸ィ匕マンガン、ァ-リンブラック 、活性炭等がある。  [0079] Examples of the black colorant include carbon black, copper oxide, dimanganese diacid, arin black, activated carbon and the like.
青色着色剤としては、 C. I.ビグメントブルー 15 : 3、 C. I.ビグメントブルー 15、紺 青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシア-ン ブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファー ストスカイブルー、インダンスレンブルー BC等がある。  Blue colorants include CI Pigment Blue 15: 3, CI Pigment Blue 15, Navy Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-Free Phthalocyanine Blue, Partially Chlorinated Phthalocyanine Blue, First Sky Blue and Indanthrene Blue BC are available.
赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パー マネントレッド 4R、リノールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩 、レーキレッド D、ブリリアントカーミン 6B、ェォシンレーキ、ローダミンレーキ B、ァリザ リンレーキ、ブリリアントカーミン 3B、 C. I.ビグメントレッド 2等がある。 Red colorants include Bengala, Cadmium Red, Lead Tan, Mercury Sulfide, Cadmium, Permanent Red 4R, Linol Red, Pyrazolone Red, Watching Red, Calcium Salt , Lake Red D, Brilliant Carmine 6B, Eosin Lake, Rhodamine Lake B, Aliza Lin Lake, Brilliant Carmine 3B, CI Pigment Red 2, etc.
[0080] 黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイェロー、黄色酸化鉄、ミネラルファ 一ストイェロー、ニッケノレチタンイェロー、ネーブノレイエロー、ナフトーノレイェロー S、 ノヽンザイェロー G、ハンザイェロー 10G、ベンジジンイェロー G、ベンジジンイェロー GR、キノリンイェローレーキ、パーマネントイェロー NCG、タートラジンレーキ、 C. I. ビグメントイエロー 12等がある。 [0080] Examples of the yellow colorant include graphite, zinc yellow, cadmium yellow, yellow iron oxide, mineral yellow yellow, nickele titanium yellow, neve yellow, naphthone yellow S, nonza yellow G, hanza yellow 10G, and benzidine. Yellow G, Benzijin Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, CI Pigment Yellow 12 and others.
緑色着色剤としては、クロムグリーン、酸ィ匕クロム、ビグメントグリーン B、 C. I.ピグメ ントグリーン 7、マラカイトグリーンレーキ、フアイナノレイェローグリーン G等がある。 橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジ GTR、 ピラゾロン才レンジ、ノ ノレカン才レンジ、インダンスレンブリリアント才レンジ RK:、ベン ジジン才レンジ G、インダンスレンブリリアント才レンジ GK、 C. I.ピグメント才レンジ 3 1等がある。  Examples of the green colorant include chrome green, oxidized chromium, pigment green B, CI pigment green 7, malachite green lake, and huainanorayello green G. Orange colorants include red lead, molybdenum orange, permanent orange GTR, pyrazolone age range, norecan age range, indanthrene brilliant age range RK :, benzidine age range G, indanthrene brilliant age range GK, CI Pigment Age Range 3 1 mag.
紫色着色剤としては、マンガン紫、ファーストバイオレット B、メチルバイオレットレー キ等がある。  Purple colorants include manganese violet, first violet B, methyl violet lake, and the like.
白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫ィ匕亜鉛等がある。  Examples of white colorants include zinc white, titanium oxide, antimony white, zinc sulfate, and the like.
[0081] 体質顔料としては、ノ ライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タル ク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料と して、ニグ口シン、メチレンブルー、ローズベンガル、キノリンイェロー、ウルトラマリン ブルー等がある。 [0081] Examples of extenders include norite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Various dyes such as basic, acidic, disperse and direct dyes include Nigguchi Shin, Methylene Blue, Rose Bengal, Quinoline Yellow and Ultramarine Blue.
[0082] 無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭 酸カルシウム、鉛白、タルク、シリカ、ケィ酸カルシウム、アルミナホワイト、カドミウムィ エロー、カドミウムレッド、カドミウムオレンジ、チタンイェロー、紺青、群青、コバルトブ ルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフ エライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。 これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いるこ とができる。このうち特に黒色顔料としてカーボンブラック力 白色顔料として酸化チ タンが好ましい。 [0083] し力しながら、このような材料を工夫無く混練り、コーティングなどを施しても、エア口 ゾル状態を示す粉流体を作製することはできな!ヽ。エアロゾル状態を示す粉流体の 決まった製法は定かではな 、が、例示すると次のようになる。 Examples of inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, aluminum powder and the like. These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferred as the black pigment, and titanium oxide is preferred as the white pigment. [0083] Even if such a material is kneaded and coated without any effort while applying force, it is not possible to produce a powder fluid showing an aerosol sol state! It is not clear how the powdered fluid that shows the aerosol state is determined, but for example, it is as follows.
まず、粉流体を構成する粒子物質の表面に、平均粒子径が 20〜: LOOnm、好ましく は 20〜80nmの無機微粒子を固着させることが適当である。更に、その無機微粒子 がシリコーンオイルで処理されていることが適当である。ここで、無機微粒子としては、 二酸ィ匕珪素(シリカ)、酸ィ匕亜鉛、酸ィ匕アルミニウム、酸化マグネシウム、酸ィ匕セリウム 、酸化鉄、酸化銅等が挙げられる。この無機微粒子を固着させる方法が重要であり、 例えば、ハイブリダィザー (奈良機械製作所 (株)製)ゃメカノフュージョン (ホソカワミク ロン (株)製)などを用いて、ある限定された条件下 (例えば処理時間)で、エアロゾル 状態を示す粉流体を作製することができる。  First, it is appropriate to fix inorganic fine particles having an average particle diameter of 20 to: LOOnm, preferably 20 to 80 nm, on the surface of the particle material constituting the powder fluid. Further, it is appropriate that the inorganic fine particles are treated with silicone oil. Here, examples of the inorganic fine particles include silicon dioxide (silica), zinc oxide, aluminum oxide, magnesium oxide, cerium oxide, iron oxide, copper oxide, and the like. The method of fixing the inorganic fine particles is important.For example, using a hybridizer (manufactured by Nara Machinery Co., Ltd.) ゃ mechanofusion (manufactured by Hosokawa Micron Co., Ltd.), etc. ), A powder fluid showing an aerosol state can be produced.
[0084] 更に、本発明においては基板間の粒子群あるいは粉流体を取り巻く空隙部分の気 体の管理が重要であり、表示安定性向上に寄与する。具体的には、空隙部分の気体 の湿度について、 25°Cにおける相対湿度を 60%RH以下、好ましくは 50%RH以下、 更に好ましくは 35%RH以下とすることが重要である。  Further, in the present invention, it is important to manage the particles in the substrate or the air in the void surrounding the powder fluid, which contributes to the improvement of display stability. Specifically, it is important that the relative humidity at 25 ° C. of the gas in the void portion be 60% RH or less, preferably 50% RH or less, and more preferably 35% RH or less.
この空隙部分とは、図 l (a)、(b)〜図 3 (a)、(b)において、対向する基板 1、基板 2 に挟まれる部分から、電極 5、 6 (電極と基板内側に設けた場合)、表示媒体 3の占有 部分、隔壁 4の占有部分 (隔壁を設けた場合)、情報表示用パネルのシール部分を 除 、た、 V、わゆる表示媒体が接する気体部分を指すものとする。  In FIGS. L (a) and (b) to FIGS. 3 (a) and (b), the gap is defined as a portion between the opposing substrates 1 and 2 and the electrodes 5 and 6 (between the electrodes and the inside of the substrate). Excluding the portion occupied by the display medium 3, the portion occupied by the partition 4 (if a partition is provided), and the sealing portion of the information display panel. And
空隙部分の気体は、先に述べた湿度領域であれば、その種類は問わないが、乾燥 空気、乾燥窒素、乾燥アルゴン、乾燥へリウム、乾燥二酸化炭素、乾燥メタンなどが 好適である。この気体は、その湿度が保持されるように情報表示用パネルに封入する ことが必要であり、例えば、粒子群あるいは粉流体の充填、情報表示用パネルの組 み立てなどを所定湿度環境下にて行い、さらに、外力 の湿度侵入を防ぐシール材 、シール方法を施すことが肝要である。  The type of gas in the void portion is not limited as long as it is in the humidity range described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane and the like are preferable. This gas needs to be sealed in the information display panel so that the humidity is maintained.For example, filling of particles or powder fluid, assembly of the information display panel, etc. under a predetermined humidity environment In addition, it is important to provide a sealing material and a sealing method for preventing external force from entering the humidity.
[0085] 本発明の対象となる情報表示用パネルにおける基板と基板との間隔は、表示媒体 が移動できて、コントラストを維持できればよいが、通常10〜500 111、好ましくは 10 〜200 μ mに調整される。 対向する基板間の空間における表示媒体の体積占有率は 5〜70%が好ましぐさ らに好ましくは 5〜60%である。 70%を超える場合には表示媒体の移動の支障をき たし、 5%未満の場合にはコントラストが不明確となり易い。 [0085] The distance between the substrates in the information display panel according to the present invention is not particularly limited as long as the display medium can be moved and the contrast can be maintained, but is usually 10 to 500111, preferably 10 to 200 µm. Adjusted. The volume occupancy of the display medium in the space between the opposing substrates is preferably 5 to 70%, more preferably 5 to 60%. If it exceeds 70%, the movement of the display medium is hindered, and if it is less than 5%, the contrast tends to be unclear.
実施例  Example
[0086] 以下、本発明の第 2発明〜第 3発明に係る実施例を示して、本発明をさらに具体的 に説明するが、本発明は下記に限定されるものではない。  [0086] Hereinafter, the present invention will be described more specifically with reference to Examples according to the second to third inventions of the present invention. However, the present invention is not limited to the following.
[0087] (第 2発明の実施例) (Example of the Second Invention)
くコントラストと駆動電圧のマージンにつ 、て >  The contrast and drive voltage margins>
本発明の第 2発明に係る情報表示装置の駆動方法を評価する指標となる、コントラ ストと駆動電圧のマージンを、以下のような実験を行うことで定義した。  The contrast between the contrast and the driving voltage, which is an index for evaluating the driving method of the information display device according to the second invention of the present invention, was defined by performing the following experiment.
[0088] 1.実験方法 [0088] 1. Experimental method
クロストークの影響を測定するために最も単純なテストパターンをさまざまな駆動に より表示させる方法において、電圧を変えて表示させた場合の表示状態の反射率を 測定することとした。  In order to measure the effects of crosstalk, the simplest test pattern was displayed by various driving methods, and the reflectance of the display state when the voltage was changed was measured.
1. 1.テストパターン  1. 1.Test pattern
ノッシブマトリクス駆動により表示するテストパターンを図 13に示す。図 13中、(a) は黒ベタ領域、 (b)は白ベタ領域、(c)〜 (f)はクロストークにより影響を受ける領域で ある。詳細は次の項で述べる。  Fig. 13 shows a test pattern displayed by noisy matrix driving. In FIG. 13, (a) is a solid black area, (b) is a solid white area, and (c) to (f) are areas affected by crosstalk. Details will be described in the next section.
[0089] 1. 2.典型的な反射率 印加電圧特性の説明 [0089] 1. 2. Description of typical reflectance applied voltage characteristics
図 14にテストパターンを表示したときの表示画面、図 15に測定した典型的な反射 率—印加電圧特性を示す。図 14のように 5 X 5の測定ポイントを割り付けて、書込み 電圧を OV力 徐々に印加してテストパターンを表示させたときの各点の反射率を測 定した。このうち四角で囲んだ部分をそれぞれ平均化した値を各領域の反射率とし、 図 15では、横軸印加電圧、縦軸反射率の特性曲線を描いている。以下、図 15に示 すそれぞれのラインについて説明する。尚、本実験のマトリクス駆動は以下の表 1の 様に行った。又、以下の説明では、列側の電極にカゝかる電位を +として電位差を表 記している。例えば、列に OV、行に 50V電圧がかかればその電極の電位差は 50 Vになる。 [0090] [表 1] Fig. 14 shows the display screen when the test pattern is displayed, and Fig. 15 shows a typical measured reflectivity-applied voltage characteristic. As shown in Fig. 14, 5 X 5 measurement points were allocated, and the write voltage was gradually applied to the OV force to measure the reflectance at each point when the test pattern was displayed. Of these, the value obtained by averaging the portions surrounded by squares is defined as the reflectance of each region. FIG. 15 shows the characteristic curves of the applied voltage on the horizontal axis and the reflectance on the vertical axis. Hereinafter, each line shown in FIG. 15 will be described. The matrix drive in this experiment was performed as shown in Table 1 below. Further, in the following description, a potential difference is represented by setting a potential applied to a column-side electrode to +. For example, if OV is applied to a column and 50V is applied to a row, the potential difference between the electrodes is 50V. [Table 1]
Figure imgf000027_0001
Figure imgf000027_0001
[0091] (1)領域 21— 1  [0091] (1) Area 21—1
ラインの選択時には O (V)の電圧が加わり、非選択時にはスキャンの前半では— V /2 後半では VZ2のクロストーク電圧が加わる。この領域はスキャンの前半にライン 選択されるが、印加電圧が大きくなるとスキャン後半のクロストークの影響を大きく受 け、白表示にもかかわらず黒色へと移行する。  When a line is selected, an O (V) voltage is applied. When a line is not selected, a crosstalk voltage of VZ2 is applied in the first half of scanning—V / 2 in the second half of scanning. In this area, lines are selected in the first half of the scan, but when the applied voltage increases, it is greatly affected by the crosstalk in the second half of the scan, and the display shifts to black despite the white display.
[0092] (2)領域 21— 5  [0092] (2) Area 21-5
ラインの選択時には Vの電圧が加わり、非選択時にはスキャンの前半では VZ2 、後半では VZ2のクロストーク電圧が加わる。スキャンの後半に選択されるこの領域 はほとんどクロストークの影響を受けないので、領域 5とほぼ同じ傾向を示す。  When the line is selected, the V voltage is applied. When the line is not selected, the crosstalk voltage of VZ2 is applied in the first half of the scan and VZ2 in the second half. This region, which is selected later in the scan, shows almost the same trend as region 5, since it is hardly affected by crosstalk.
[0093] (3)領域 22— 1  [0093] (3) Area 22—1
ラインの選択時には Vの電圧が加わり、非選択時にはスキャンの前半では VZ2、 後半では一 VZ2のクロストーク電圧が加わる。スキャンの前半にライン選択されるこ の領域は、印加電圧が大きくなるとスキャン後半のクロストークの影響を大きく受け、 黒表示にもかかわらず白色へと移行する。  When a line is selected, the V voltage is applied. When the line is not selected, a crosstalk voltage of VZ2 is applied in the first half of scanning and one VZ2 in the second half of scanning. In an area where a line is selected in the first half of the scan, the crosstalk in the second half of the scan is greatly affected by an increase in the applied voltage, and the area shifts to white despite black display.
[0094] (4)領域 22— 5  [0094] (4) Region 22—5
ラインの選択時には 0 (V)の電圧が加わり、非選択時にはスキャンの前半では VZ 2、後半では—VZ2のクロストーク電圧が加わる。この領域はスキャンの後半にライン 選択されるが、領域 1—5と異なり、 O (V)で選択されるので、前半に受けたクロストー クの影響が残ってしまう。このため、印加電圧が高くなると白表示にもかかわらずやや 黒色に移行する。  When a line is selected, a voltage of 0 (V) is applied. When the line is not selected, a crosstalk voltage of VZ2 is applied in the first half of the scan and —VZ2 in the second half. This region is selected in the second half of the scan, but unlike region 1-5, it is selected by O (V), so the effect of the crosstalk received in the first half remains. For this reason, when the applied voltage becomes higher, the display shifts to a little black despite the white display.
[0095] (5)領域 24  [0095] (5) Area 24
ラインの選択時には O (V)の電圧が加わり、非選択時には常に— VZ2の電圧が加 わるこの領域は白表示のままであり、これが各表示法の白の基準となる。 [0096] (6)領域 25 The area where the voltage of O (V) is applied when the line is selected and the voltage of -VZ2 is always applied when the line is not selected remains white display, which is the white reference for each display method. [0096] (6) Area 25
ラインの選択時には Vの電圧が加わり、非選択時には常に VZ2の電圧が加わるこ の領域は黒表示のままであり、これが各表示法の黒の基準となる。  The area where the voltage of V is applied when the line is selected and where the voltage of VZ2 is always applied when the line is not selected remains black display, which is the black reference for each display method.
[0097] 2.評価方法 [0097] 2. Evaluation method
中間調表示をする上で重要な評価項目としてコントラストがある。各領域の中でもつ とも重要な領域は領域 22—1である。どんなに黒の最低反射率が低くても、領域 22 — 1がクロストークの影響で白側へシフトしているため、コントラストがこの領域の反射 率に制限されてしまう。領域 21— 1もクロストークの影響を大きく受けてはいる力 この クロストークによる変化は領域 22— 1に比べて高電圧側で起こっている。消費電力低 減のために、より低電圧で良好な表示を得ることを目的としているので、領域 21— 1 のクロストークは無視できる。  An important evaluation item in displaying a halftone is contrast. The most important area in each area is Area 22-1. No matter how low the minimum reflectance of black is, the contrast is limited to the reflectance in this region because region 22-1 has shifted to white due to crosstalk. Area 21-1 is also strongly affected by crosstalk. This crosstalk change occurs on the higher voltage side compared to area 22-1. Since the purpose is to obtain a good display at lower voltage in order to reduce power consumption, the crosstalk in region 21-1 can be ignored.
ここで本実験での評価方法を以下のように定義する。  Here, the evaluation method in this experiment is defined as follows.
[0098] (1)コントラスト(図 15の両矢印縦ライン) [0098] (1) Contrast (vertical line with double arrow in Fig. 15)
通常のコントラストは白色の最大反射率と黒色の最小反射率との比で表されるが、 本実験では上に述べた事項を考慮して、以下のように定義した。すなわち、コントラス トを、ライン 22— 1の最低 (最高:黒消し白書きの場合)レベルの反射率とその時の白 (黒:黒消し白書きの場合)表示の反射率の比として定義した。ここで 、う「黒消し白書 き」とは、表示状態が黒になるように消してから、白に表示したい部分が白になるよう にして書き換える「消去—書換え方法」のことである。これとは逆に、表示状態が白に なるように消してから、黒に表示した 、部分が黒になるように書き換える「消去一書換 え方法」のことを「白消し黒書き」と呼ぶ。なお、コントラストはより高い方が良い。  Normal contrast is represented by the ratio of the maximum reflectance of white to the minimum reflectance of black. In this experiment, the following definition was made in consideration of the above items. In other words, contrast was defined as the ratio of the reflectance of the lowest (highest: in the case of blackout white) level of line 22-1 to the reflectance of the white (black: in the case of blackout white) display at that time. Here, “black erase white writing” refers to an “erasing-rewriting method” in which a display state is erased so as to be black, and then a portion desired to be displayed in white is rewritten so as to be white. Conversely, the “erasing-rewriting method” in which the display state is erased so as to be white and then displayed in black and the part is rewritten so as to be black is called “white erase black writing”. The higher the contrast, the better.
[0099] (2)駆動電圧のマージン(図 15の両矢印横ライン) [0099] (2) Drive voltage margin (horizontal line with double arrow in Fig. 15)
駆動電圧のマージンは、ライン 22— 1の最低 (最高:黒消し白書きの場合)レベルの 反射率とその時の白(黒:黒消し白書きの場合)表示の反射率の差の 10%上がった( 下がった:黒消し白書きの場合)ところでの、ライン 22— 1の幅として定義した。なお、 駆動電圧のマージンは広 、方が良 、。  The drive voltage margin is 10% higher than the difference between the lowest (highest: blacked out white writing) level reflectance of line 22-1 and the white (black: blacked out white writing) display reflectance at that time. (Decreased: black and white) when defined as the width of line 22-1. The drive voltage margin is wider and better.
[0100] <パルス状の駆動電圧について > [0100] <Pulse Drive Voltage>
以上のように定義したコントラストと駆動電圧のマージンを指標として、パルス状の 駆動電圧について調べた。本実験ではしきい値以下の電圧 V = o(v)とした。 Using the contrast and drive voltage margin defined as above as indices, The driving voltage was examined. In this experiment, the voltage V was equal to or lower than the threshold value V = o (v).
0  0
[0101] (1)デューティー比について  [0101] (1) Duty ratio
まず、駆動電圧として、パルス幅 0. 2msecで 4パルス、パルス幅 0. 08msecで 8パ ルス、パルス幅 0. 2msecで 8パルスの 3種類のパルス状の電圧を用い、各パルス状 電圧のデューティー比を種々変化させたときのコントラストを測定した。結果を図 16に 示す。なお、図 16において、横軸のデューティー比は対数として記載している。図 16 の結果から、デューティー比が 0. 9を超えるとコントラストが低下していることがわかり 、デューティー比を 0. 9以下とすることが好ましいことがわかる。  First, as the drive voltage, three types of pulse-like voltages, 4 pulses with a pulse width of 0.2 msec, 8 pulses with a pulse width of 0.08 msec, and 8 pulses with a pulse width of 0.2 msec, are used, and the duty of each pulse-like voltage is used. The contrast when various ratios were changed was measured. Figure 16 shows the results. In FIG. 16, the duty ratio on the horizontal axis is shown as a logarithm. From the results shown in FIG. 16, it can be seen that when the duty ratio exceeds 0.9, the contrast is reduced, and that the duty ratio is preferably set to 0.9 or less.
[0102] 次に、駆動電圧として、ノ ルス幅 0. 2msecで 4パルス、パルス幅 0. 08msecで 8パ ルス、パルス幅 0. 2msecで 8パルスの 3種類のパルス状の電圧を用い、各パルス状 電圧のデューティー比を種々変化させたときのマージンを測定した。結果を図 17に 示す。図 17の結果から、マージンはデューティー比が小さいほど大きいので、デュー ティー比は小さければ小さいほど好ましいことがわかる。  [0102] Next, as the driving voltage, three pulse-like voltages of 4 pulses with a pulse width of 0.2 msec, 8 pulses with a pulse width of 0.08 msec, and 8 pulses with a pulse width of 0.2 msec were used. The margin was measured when the duty ratio of the pulsed voltage was varied. Figure 17 shows the results. From the results of FIG. 17, it can be seen that the smaller the duty ratio is, the larger the margin is, so the smaller the duty ratio is, the more preferable.
[0103] (2)オフ時間について  [0103] (2) Off time
上述したデューティー比とコントラストまたはマージンとの関係について得られたデ ータに基づき、オフ時間とマージンとの関係について調べた。結果を図 18に示す。 図 18の結果から、オフ時間が 0. 1msec未満であるとマージンが小さくなることがわ かり、オフ時間を 0. 1msec以上とすることが好ましいことがわかる。  Based on the data obtained on the relationship between the duty ratio and the contrast or the margin, the relationship between the off-time and the margin was examined. The results are shown in FIG. The results in FIG. 18 show that the margin is reduced when the off-time is less than 0.1 msec, and that the off-time is preferably set to 0.1 msec or more.
[0104] (第 3発明の実施例)  (Example of Third Invention)
まず、図19に示すょぅにロゥ電極31—1〜31—11とカラム電極32—1〜32—111から 構成される単純マトリックスパネルを作製した。単純マトリックスパネルでは、ロウ電極 31— 1〜31— nまで 1列ずつ選択して 1画面を書き換える。そして、図 20に比較例 1 の駆動方法を示すとともに、図 21〜図 23に実施例 1〜3の駆動方法を示す。図 20 〜図 23の駆動方法では、説明を簡単にするために、図 11 (a)、 (b)に示した例と同じ 2行 2列の単純マトリックスパネルを例にとって説明し、 1回の書換えに際し 2回のパル ス電圧を印加(ON- OFF-ON- OFF)して駆動した例を示す。そして、 1番目のロウ書 換え時 (選択時)及び 2番目のロウ書換え時 (選択時)の、ロウ、カラム及びそれぞれ の電極に印加される電圧波形と各画素に印加される電圧波形を示している。 [0105] <比較例 1 > First, as shown in FIG. 19, a simple matrix panel composed of row electrodes 31-1 to 31-11 and column electrodes 32-1 to 32-111 was manufactured. In a simple matrix panel, one row is selected from row electrodes 31-1 to 31-n, and one screen is rewritten. FIG. 20 shows the driving method of Comparative Example 1, and FIGS. 21 to 23 show the driving methods of Examples 1 to 3. In the driving method of FIGS. 20 to 23, for simplicity of explanation, the same simple matrix panel of 2 rows and 2 columns as that shown in FIGS. 11 (a) and 11 (b) will be described. The following shows an example of driving by applying two pulse voltages (ON-OFF-ON-OFF) during rewriting. Then, the voltage waveforms applied to the rows, columns, and the respective electrodes, and the voltage waveforms applied to each pixel at the time of the first row rewrite (when selected) and the second row rewrite (when selected) are shown. ing. <Comparative Example 1>
図 20に示す比較例 1の駆動方法では、カラムの書換え電圧をパルス状に 2回印加 させる一方、ロウの選択電圧は従来と同様とした。本例では、非書換え画素に印加さ れるクロストーク 2及び 4におけるパルス状の電圧力 一方のピークが + VIで他方の ピークが一 VIと極性が変化しており、また、ピーク'トウ'ピークの大きさが大きい。ど ちらも表示媒体が移動し易くなる方向であり、クロストークの影響をより強く受け、コン トラストが劣化した。  In the driving method of Comparative Example 1 shown in FIG. 20, the column rewrite voltage is applied twice in a pulsed manner, while the row selection voltage is the same as the conventional one. In this example, the polarity of the pulse voltage at crosstalk 2 and 4 applied to the non-rewritable pixel changes from + VI to one VI and to one VI from the other. Is large. In both cases, the display medium was more likely to move, and the contrast was more strongly affected by the crosstalk, and the contrast deteriorated.
[0106] <実施例 1 >  <Example 1>
図 21に示す実施例 1の駆動方法では、ロウの選択電圧をパルス状に 2回印加させ る一方、カラムの書換え電圧は従来と同様とした。本例では、非書換え画素に印加さ れるクロストーク 1〜3及び 4〜6におけるパルス状の電圧のいずれもが極性が一定、 すなわち、クロストーク 1と 6では一方のピークが 0Vで他方のピークが VIと極性が 一定であり、クロストーク 2と 4では + VIと極性が一定であり、クロストーク 3と 5では VIと極性が一定である。ただ、画素に印加される書換え電圧のピーク 'トウ'ピークが 書換え電圧の半分 (V2— VI)である。そのため、コントラストは良好であった力 1回 から複数回にパルス電圧の印加を分割する目的に対して効果が低減した。  In the driving method according to the first embodiment shown in FIG. 21, the row selection voltage is applied twice in a pulsed manner, while the column rewrite voltage is the same as the conventional one. In this example, the polarity of each of the pulse voltages applied to the non-rewritable pixels in crosstalks 1 to 3 and 4 to 6 is constant, that is, in crosstalks 1 and 6, one peak is 0 V and the other peak is 0 V. Has the same polarity as VI, the crosstalk 2 and 4 have + VI and the same polarity, and the crosstalk 3 and 5 have the same VI and the same polarity. However, the peak “toe” peak of the rewriting voltage applied to the pixel is half of the rewriting voltage (V2-VI). As a result, the effect was reduced for the purpose of dividing the application of the pulse voltage from one force to several times, which had good contrast.
[0107] <実施例 2>  <Example 2>
図 22示す実施例 2の駆動方法では、ロウ Zカラムを同期させたパルス列とし、ロウ を選択する特にはパルスを取り除く。ノィァス電圧が駆動電圧の 1Z2でない場合は パルスを取り除いたときの印加電圧は 0Vでない場合もある。本例では、非書換え画 素に印加されるクロストーク 1〜3及び 4〜6におけるいずれもが極性が一定、すなわ ち、クロストーク 1と 6では 0Vと極'性が一定であり、クロストーク 2と 4では一方のピーク が +Vで他方のピークが 0Vと極性が一定であり、クロストーク 3と 5では一方のピーク が 0Vで他方のピークが一 VIと極性が一定である。実施例 2では、クロストークの影響 は実施例 1の改善効果をそのままに、書換え電圧のピーク 'トウ'ピークの大きさを実 施例 1より 2倍も大きくしている。これにより、書換え画素の書換えを効果的に行うこと ができ、且つ、非書換え画素がクロストークの影響で変化してしまうことを防ぐことがで [0108] <実施例 3 > In the driving method according to the second embodiment shown in FIG. 22, the row Z column is set as a synchronized pulse train, and the pulse for selecting the row, particularly, the pulse is removed. When the noise voltage is not 1Z2 of the driving voltage, the applied voltage when the pulse is removed may not be 0V. In this example, the polarity is constant in all of the crosstalks 1 to 3 and 4 to 6 applied to the non-rewritable pixels, that is, the crosstalk 1 and 6 have a constant polarity of 0 V, and the crosstalk is constant. In Talks 2 and 4, one peak is + V and the other peak is 0V, and the polarity is constant, and in Crosstalks 3 and 5, one peak is 0V and the other peak is 1VI, and the polarity is constant. In the second embodiment, the magnitude of the rewrite voltage peak “toe” peak is twice as large as that of the first embodiment, while the effect of the crosstalk remains the same as that of the first embodiment. As a result, the rewriting of the rewritten pixels can be performed effectively, and the non-rewritten pixels can be prevented from changing due to the influence of crosstalk. <Example 3>
図 23に示す実施例 3の駆動方法では、ロウ(走査)駆動電圧およびカラム駆動電圧 をそれぞれ同一周期および同一デューティーのパルス列で構成し、ロウ側の列選択 に際し、ロウ駆動電圧とカラム駆動電圧のそれぞれのパルス列の位相を反転する。 本例では、非書換え画素に印加されるクロストーク 1〜3及び 4〜6におけるいずれも が極性が一定、すなわち、クロストーク 1と 6では一方のピークが 0Vで他方のピークが —VIと極性が一定であり、クロストーク 2と 4では一方のピークが +Vで他方のピーク 力 S0Vと極性が一定であり、クロストーク 3と 5では一方のピークが 0Vで他方のピーク が— VIと極性が一定である。実施例 3では、クロストークの影響は実施例 1、 2の改善 効果をそのままに、書換え電圧のピーク 'トウ'ピークの大きさを実施例 1より 3倍も大き くしている。これにより、書換え画素の書換えをより効果的に行うことができ、且つ、非 書換え画素がクロストークの影響で変化してしまうことをより良好に防ぐことができた。  In the driving method according to the third embodiment shown in FIG. 23, the row (scanning) driving voltage and the column driving voltage are configured by pulse trains having the same cycle and the same duty, respectively. Invert the phase of each pulse train. In this example, the polarity of crosstalks 1 to 3 and 4 to 6 applied to the non-rewritable pixel has a constant polarity. That is, in crosstalks 1 and 6, one peak is 0 V and the other peak is —VI and polarity. In crosstalk 2 and 4, one peak is + V and the other peak power S0V is constant, and in crosstalk 3 and 5, one peak is 0V and the other peak is —VI and polarity Is constant. In the third embodiment, the magnitude of the rewriting voltage peak “toe” peak is three times larger than that of the first embodiment, while maintaining the effect of the first and second embodiments with respect to the influence of crosstalk. As a result, the rewriting of the rewritten pixel can be performed more effectively, and the change of the non-rewritten pixel due to the influence of the crosstalk can be more preferably prevented.
[0109] なお、上述した実施例 1〜3及び比較例 1では、 0Vを基準に印加する電圧の正負 を定めた力 本発明の情報表示装置では駆動するために基準が 0Vである必要はな い。その場合は、 0Vを基準とした正負ではなぐ基準となる電圧に対し、正側に一定 か負側に一定かを規定すれば良い。また、非選択ロウに印加するバイアス電圧を VI (= (V2) /2)とカラムに印加する書換え電圧 V2の半分としたが、これに限定される ものではなぐ例えば、バイアス電圧 VIを((V2) Z3)とすることもできる。  [0109] In Examples 1 to 3 and Comparative Example 1 described above, the force that determines the sign of the voltage applied based on 0V is not necessary for the information display device of the present invention to be driven with the reference being 0V. No. In that case, it is only necessary to define whether the reference voltage is constant on the positive side or constant on the negative side with respect to the reference voltage that is not positive or negative with reference to 0V. In addition, the bias voltage applied to the unselected row is set to VI (= (V2) / 2) and half of the rewrite voltage V2 applied to the column. However, the present invention is not limited to this. For example, the bias voltage VI may be set to (( V2) Z3) can also be used.
[0110] <効果の確認 >  [0110] <Confirmation of effect>
上述した実施例 1〜3及び比較例 1に示す駆動方法で駆動する、ロウ(走査)側 32 0ライン、カラム側 320ラインの図 24 (a)に示す単純マトリックスパネルにテストパター ンを表示し、図 24 (b)に示す書換え (クロストークなし)エリアとクロストークエリア(上記 クロストーク 4〜6)の反射率を、光学濃度計 (ダレタマクベス社製 RD— 1)によって測 定した。駆動条件は以下の通りであった。すなわち、 1画素に対する書換え電圧印加 回数 =8、コントラストが最大で且つクロストーク 4の影響が最も少なくなる駆動電圧で 駆動し、非選択カラム Zロウは駆動電圧の 1Z2でバイアスした。結果を以下の表 2に 示す。  A test pattern is displayed on the simple matrix panel shown in FIG. 24 (a) with 320 lines on the row (scanning) side and 320 lines on the column side driven by the driving method shown in the above-described Examples 1 to 3 and Comparative Example 1. The reflectivity of the rewrite (no crosstalk) area and the crosstalk area (crosstalk 4 to 6 above) shown in FIG. 24 (b) was measured with an optical densitometer (RD-1 manufactured by Dareta Macbeth). The driving conditions were as follows. That is, the number of times of applying the rewriting voltage to one pixel = 8, the driving was performed with the driving voltage that maximizes the contrast and the influence of the crosstalk 4 was the least, and the unselected column Z row was biased with the driving voltage of 1Z2. The results are shown in Table 2 below.
[0111] [表 2] 測定箇所 比較例 1 実施例 1 実施例 2 実施例 3 クロストーク 5 1 % 1 % 2 . 5 % 2 . 5 % (書換えとの差) [0111] [Table 2] Measurement point Comparative example 1 Example 1 Example 2 Example 3 Crosstalk 5 1% 1% 2.5% 2.5% (difference from rewriting)
クロス トーク 4 7 % 1 % 3 % 3 % (非書換えとの差)  Cross talk 4 7% 1% 3% 3% (difference from non-rewritable)
クロストーク 6 0 . 5 % 0 . 5 % 0 % 0 . 5 % (非書換えとの差)  Cross talk 60.5% 0.5% 0% 0.5% (difference from non-rewritable)
書換え後の表示状態 コン卜ラス コントラス コン卜ラス コン卜ラス トは良好で 卜はやや低 トも良好で 卜も良好で あるがクロ 下したがク クロストー クロス卜一 ストークが ロス トーク クも目立た クも目立た 目立った。 は目立たな なかった。 なかった。  Display state after rewriting Contrast Contrast Contrast Contrast good It was also noticeable. Was not noticeable. Did not.
かった。  won.
[0112] 表 2の結果から、非書換え画素に印加されるクロストーク 1〜3及び 4〜6におけるパ ルス状の電圧のいずれも極性が一定の実施例 1〜3は、非書換え画素に印加される クロストーク 2及び 4にお!/、てパルス状の電圧の極性が一定でな 、比較例 1と比べて 、濃度変化が少なくクロストークが目立たないことがわかる。また、実施例 1〜3を比較 してみると、書換え電圧のピーク 'トウ'ピークの大きさが大きいほど、濃度変化が少な くクロストークが目立たないことがわかる。 産業上の利用可能性 [0112] From the results in Table 2, it can be seen that Examples 1 to 3 in which the pulse voltages in the crosstalks 1 to 3 and 4 to 6 applied to the non-rewriting pixels have a constant polarity are applied to the non-rewriting pixels. In the crosstalks 2 and 4, it can be seen that the polarity of the pulse-like voltage is not constant and that the crosstalk is less noticeable than in the comparative example 1, as compared with the comparative example 1. Comparing Examples 1 to 3, it can be seen that the larger the magnitude of the rewrite voltage peak 'toe' peak, the smaller the density change and the less noticeable the crosstalk. Industrial applicability
[0113] 本発明の駆動方法の対象となる情報表示用パネル、情報表示装置は、ノートバソコ ン、 PDA、携帯電話、ハンディターミナル等のモパイル機器の表示部、電子ブック、 電子新聞等の電子ペーパー、看板、ポスター、黒板等の掲示板、電卓、家電製品、 自動車用品等の表示部、ポイントカード、 ICカード等のカード表示部、電子広告、電 子 POP、電子値札、電子棚札、電子楽譜、 RF— ID機器の表示部などに好適に用 いられる。 [0113] The information display panel and the information display device to which the driving method of the present invention is applied include a display unit of a mopile device such as a notebook computer, a PDA, a mobile phone, a handy terminal, an electronic book such as an electronic book, and an electronic newspaper. Signboards, posters, bulletin boards such as blackboards, calculators, displays for home appliances, automotive supplies, etc., card displays for point cards, IC cards, etc., electronic advertisements, electronic POP, electronic price tags, electronic shelf labels, electronic music scores, RF — Appropriately used for the display of ID devices.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも一方が透明な対向する 2枚の基板間に、第 1の色と第 2の色を有する少な くとも 2種類の表示媒体を封入し、各基板側に設けた電極から表示媒体に電界を与 えて、表示媒体を移動させて画像等の情報を表示する情報表示装置の駆動方法に おいて、一方の基板上で行方向に延びる複数本の電極からなる行電極、及び、他方 の基板上で列方向に延びる複数本の電極力 なる列電極、に対し、行電極の一端か ら他端にスキャンして電圧を印加することで 1画面の画像等の情報を表示するにあた り、 1画面の表示が終了した後、第 1の色にクロストークを発生させる電圧と第 2の色 にクロストークを発生させる電圧とを表示部のセル全てに各 1回以上印加することを 特徴とする情報表示装置の駆動方法。  [1] At least two types of display media having a first color and a second color are encapsulated between two opposing substrates, at least one of which is transparent, and the display media are separated from electrodes provided on each substrate side. In an information display device driving method for displaying information such as an image by applying an electric field to a display medium and moving the display medium, a row electrode composed of a plurality of electrodes extending in a row direction on one substrate and the other. To display information such as an image on a single screen by applying a voltage by scanning from one end of the row electrode to the other end of a row electrode with a plurality of electrodes extending in the column direction on the substrate After the display of one screen is completed, a voltage that causes crosstalk in the first color and a voltage that causes crosstalk in the second color should be applied at least once to all cells in the display unit. A method for driving an information display device, comprising:
[2] スキャンの最後に 2行以上行を付け足し、 1スキャンが終了した後、第 1の色の表示 と第 2の色の表示を各 1回以上表示する駆動を行うことを特徴とする情報表示装置の 駆動方法。 [2] At least two lines are added at the end of the scan, and after one scan is completed, driving is performed to display the first color display and the second color display at least once each. Display device driving method.
[3] 画像表示に先立つ画像の消去方法が、行毎に消去してから行毎に画像を書き込 むライン消去方法、または、全面一斉に消去してから画像を行毎に書き込む全消去 方法である請求項 1または 2に記載の情報表示装置の駆動方法。  [3] The image erasing method prior to image display can be either a line erasing method in which the image is erased line by line and then the image is written line by line, or a total erasing method in which the entire image is erased and the image is erased line by line. 3. The method for driving an information display device according to claim 1, wherein:
[4] 少なくとも一方が透明な対向する 2枚の基板間に、第 1の色と第 2の色との少なくと も 2種類の表示媒体を封入し、電極から表示媒体に電界を与えて、表示媒体を移動 させて画像等の情報を表示する情報表示装置の駆動方法にぉ 、て、電界を発生さ せるため電極に印加する駆動電圧として、オン状態である駆動電圧とオフ状態である 表示媒体が移動を開始するしきい値以下の電圧との複数の電圧より成るパルス状の 電圧を印加することを特徴とする情報表示装置の駆動方法。  [4] At least two types of display media of the first color and the second color are sealed between two opposing substrates, at least one of which is transparent, and an electric field is applied from the electrode to the display medium, According to a driving method of an information display device that moves a display medium to display information such as an image, a driving voltage applied to an electrode for generating an electric field is a driving voltage in an on state and a driving voltage in an off state. A method for driving an information display device, comprising applying a pulse-like voltage composed of a plurality of voltages with a voltage equal to or lower than a threshold value at which a medium starts moving.
[5] パルス状の電圧のデューティー比(=パルス幅 Z (パルス幅 +オフ状態の時間))が 0. 9以下である請求項 4記載の情報表示装置の駆動方法。  5. The method of driving an information display device according to claim 4, wherein the duty ratio of the pulsed voltage (= pulse width Z (pulse width + time in the off state)) is 0.9 or less.
[6] オフ状態の時間が 0. 1msec以上である請求項 4記載の情報表示装置の駆動方法  [6] The driving method of the information display device according to [4], wherein the off-state time is 0.1 msec or more.
[7] 少なくとも一方が透明な対向する 2枚の基板間に、表示媒体を封入し、電極から表 示媒体に電界を与えて、表示媒体を移動させて画像等の情報を表示する情報表示 装置の駆動方法において、 1回の画素書換えに際し複数回パルスを印加するととも に、 1回の画素書換えの間、非書換え画素に印加されるクロストーク電圧の極性が変 化しな 、ように駆動波形を調整したことを特徴とする情報表示装置の駆動方法。 [7] An information display that encloses a display medium between two opposing substrates, at least one of which is transparent, applies an electric field from the electrodes to the display medium, moves the display medium, and displays information such as an image. In the device driving method, a driving waveform is applied such that a pulse is applied a plurality of times during one pixel rewriting, and the polarity of a crosstalk voltage applied to a non-rewriting pixel does not change during one pixel rewriting. A method for driving an information display device, characterized in that:
[8] 1回の画素書換えに際し複数回パルスを印加する間、書換え画素に印加されるパ ルス電圧におけるピークとピークとの間隔を広くすることを特徴とする請求項 7記載の 情報表示装置の駆動方法。  [8] The information display device according to claim 7, wherein the interval between the peaks in the pulse voltage applied to the rewrite pixel is widened while applying the pulse a plurality of times in one pixel rewrite. Drive method.
[9] ロウ(走査)駆動電圧およびカラム駆動電圧をそれぞれ同一周期および同一デュー ティーのパルス列で構成し、ロウ側の列選択に際し、ロウ駆動電圧とカラム駆動電圧 のそれぞれのパルス列の位相を反転することを特徴とする請求項 8記載の情報表示 装置の駆動方法。  [9] The row (scanning) drive voltage and column drive voltage are composed of pulse trains of the same cycle and duty, respectively, and when selecting a row on the row side, the phases of the respective pulse trains of the row drive voltage and the column drive voltage are inverted. 9. The method for driving an information display device according to claim 8, wherein:
PCT/JP2005/007542 2004-04-21 2005-04-20 Information display drive method WO2005104078A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05734545A EP1758087A4 (en) 2004-04-21 2005-04-20 Information display drive method
US11/587,185 US7973740B2 (en) 2004-04-21 2005-04-20 Method of driving information display device
US13/152,540 US20110234576A1 (en) 2004-04-21 2011-06-03 Method of Driving Information Display Device
US13/152,518 US20110234575A1 (en) 2004-04-21 2011-06-03 Method of Driving Information Display Device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-125986 2004-04-21
JP2004-126027 2004-04-21
JP2004126027 2004-04-21
JP2004125988 2004-04-21
JP2004-125988 2004-04-21
JP2004125986 2004-04-21
JP2004-239661 2004-08-19
JP2004239661A JP4124180B2 (en) 2004-04-21 2004-08-19 Driving method of image display device
JP2004239632A JP5129919B2 (en) 2004-04-21 2004-08-19 Driving method of image display device
JP2004-239632 2004-08-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/152,518 Division US20110234575A1 (en) 2004-04-21 2011-06-03 Method of Driving Information Display Device
US13/152,540 Division US20110234576A1 (en) 2004-04-21 2011-06-03 Method of Driving Information Display Device

Publications (1)

Publication Number Publication Date
WO2005104078A1 true WO2005104078A1 (en) 2005-11-03

Family

ID=35197219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007542 WO2005104078A1 (en) 2004-04-21 2005-04-20 Information display drive method

Country Status (2)

Country Link
EP (1) EP1758087A4 (en)
WO (1) WO2005104078A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020390A3 (en) * 2006-08-17 2008-05-29 Koninkl Philips Electronics Nv Electrophoretic display devices
JP2012252115A (en) * 2011-06-02 2012-12-20 Funai Electric Advanced Applied Technology Research Institute Inc Display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143119A (en) * 1996-11-14 1998-05-29 Sony Corp Active matrix display device and its driving method
JP2003307755A (en) * 2002-02-15 2003-10-31 Bridgestone Corp Image display unit
JP2004037496A (en) * 2002-06-28 2004-02-05 Seiko Epson Corp Electro-optical device and method for driving same, and electronic apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194642A (en) * 2000-01-12 2001-07-19 Nec Viewtechnology Ltd Blanking device of liquid crystal display, and its blanking method
JP4196555B2 (en) * 2001-09-28 2008-12-17 富士ゼロックス株式会社 Image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143119A (en) * 1996-11-14 1998-05-29 Sony Corp Active matrix display device and its driving method
JP2003307755A (en) * 2002-02-15 2003-10-31 Bridgestone Corp Image display unit
JP2004037496A (en) * 2002-06-28 2004-02-05 Seiko Epson Corp Electro-optical device and method for driving same, and electronic apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The Imaging Society of Japan", JAPAN HARDCOPY '99, 21 July 1999 (1999-07-21), pages 249 - 252
See also references of EP1758087A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020390A3 (en) * 2006-08-17 2008-05-29 Koninkl Philips Electronics Nv Electrophoretic display devices
US8228290B2 (en) 2006-08-17 2012-07-24 Adrea, LLC Electrophoretic display device with overlapping first and second row and column electrodes
JP2012252115A (en) * 2011-06-02 2012-12-20 Funai Electric Advanced Applied Technology Research Institute Inc Display device

Also Published As

Publication number Publication date
EP1758087A1 (en) 2007-02-28
EP1758087A4 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP5054953B2 (en) Driving method of information display panel
JP2006106596A (en) Particle for display medium used for panel for information display
JP2007140129A (en) Panel for information display
JP4945119B2 (en) Driving method of information display panel
JPWO2005098525A1 (en) Particles for display medium, information display panel using the same, and information display device
JP5129919B2 (en) Driving method of image display device
US20110234576A1 (en) Method of Driving Information Display Device
JP4939778B2 (en) Driving method of information display panel
WO2005104078A1 (en) Information display drive method
JP2005331936A (en) Driving method for information display device
CN100487781C (en) Information display drive method
JP4714681B2 (en) Driving method of information display device and information display device using the same
JP4679511B2 (en) Information display panel
JP4124180B2 (en) Driving method of image display device
JP2007164155A (en) Method of driving information display panel
JP5129932B2 (en) Driving method of information display panel and information display panel
JP4657639B2 (en) Image forming method for image display panel
WO2008035740A1 (en) Information display panel drive method
JP4624080B2 (en) Information display panel
JP4763985B2 (en) Image display device
JP4657677B2 (en) Information display panel and information display device
JP5078387B2 (en) Driving method of information display panel
JP5002225B2 (en) Driving method of information display panel
WO2006070608A1 (en) Display drive method for information display panel
JP2007047262A (en) Panel for information display

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580012595.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005734545

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005734545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11587185

Country of ref document: US