WO2005103994A1 - リガンド分子の形状作成方法および装置 - Google Patents

リガンド分子の形状作成方法および装置 Download PDF

Info

Publication number
WO2005103994A1
WO2005103994A1 PCT/JP2005/007595 JP2005007595W WO2005103994A1 WO 2005103994 A1 WO2005103994 A1 WO 2005103994A1 JP 2005007595 W JP2005007595 W JP 2005007595W WO 2005103994 A1 WO2005103994 A1 WO 2005103994A1
Authority
WO
WIPO (PCT)
Prior art keywords
biopolymer
van der
virtual
shape
ligand molecule
Prior art date
Application number
PCT/JP2005/007595
Other languages
English (en)
French (fr)
Inventor
Chiaki Handa
Tomonaga Ozawa
Motoyasu Ozawa
Hidetoshi Maruyama
Denichi Momose
Original Assignee
Kissei Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kissei Pharmaceutical Co., Ltd. filed Critical Kissei Pharmaceutical Co., Ltd.
Priority to JP2006512581A priority Critical patent/JP4829108B2/ja
Publication of WO2005103994A1 publication Critical patent/WO2005103994A1/ja

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/50Molecular design, e.g. of drugs
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/30Drug targeting using structural data; Docking or binding prediction

Definitions

  • the present invention relates to a method and an apparatus for creating a shape of a ligand molecule that binds to a biopolymer, for use in molecular design of a biologically active compound such as a medicine or an agricultural chemical.
  • the ligand molecule In order for a ligand molecule such as a drug or a biologically active substance to exhibit a physiological activity, the ligand molecule is used as a target biological macromolecule (a pharmacological receptor, an enzyme, or a site for signal transduction between cells). (Including in-proteins and other proteins, nucleic acids and their complexes).
  • a target biological macromolecule a pharmacological receptor, an enzyme, or a site for signal transduction between cells.
  • the biopolymer and the ligand molecule In order to form a strong bond between the biopolymer and the ligand molecule in this way, the biopolymer and the ligand molecule must have complementary shapes, and furthermore, an affinity exists between the two molecules. is important. Among them, the shape of the ligand molecule is compared to the key of a key and a keyhole, and its importance is known.
  • a ligand molecule for a certain biopolymer becomes clear, it is very useful for designing a chemical structure of a new compound or for screening a compound on a computer (so-called in-silico screening).
  • drug discovery chemists can design compounds that fit well.
  • drug discovery researchers will be able to design based on the comparison of ligand shapes of multiple biopolymers in order to obtain selectivity between biomolecules.
  • a drug discovery scholar can perform screening using the shape of the ligand molecule.
  • the shape of the ligand molecule is extremely useful particularly when designing a new drug or a bioactive substance based on the three-dimensional structure of a biopolymer.
  • the shape of a ligand is determined by superimposing the ligand molecules on the basis of the structure of a plurality of ligand molecules.
  • the obtained results differ depending on the conformation and the superposition method of the used ligand molecules, and the shape of the ligand cannot always be uniquely predicted.
  • the ligand itself is not known, and cannot be applied to a biopolymer.
  • Non-Patent Document 1 When searching for a ligand from the three-dimensional structure of a biopolymer, a method of simulating a stable binding state between the biopolymer and an arbitrary ligand molecule (a so-called docking study) is often performed (for example, , Non-Patent Document 1).
  • the docking study is a method of searching for ligands that may have activity, and is not a method that can predict the shape of a ligand molecule.Therefore, the shape of a ligand is predicted only from the protein structure. You can't.
  • Non-patent document 1 Yamada M. et al, J. Mol. Biol, 1994, Vol.243, p.310
  • Non-Patent Document 2 Kuntz ID. Et al "J. Mol. Biol, 1982, Vol.161, p.269
  • Non-Patent Document 3 Goodford P.J. et al., J. Med.Chem., 1985, Vol.28, p.849
  • Non-Patent Document 4 Mattos C. et al "Nat. Biotech., 1996, Vol. 14, p. 595
  • Non-Patent Document 5 Word J M. et al "J. Mol. Biol, 1999, Vol.285, p.1735
  • Non-Patent Document 6 Per U n TJ, Propst C ⁇ al., Yoshiaki Kiso, Akiko translation Itai, "chemical and biological experimental line (44 Certificates) 'drug design computer-aided", Hirokawa Publishing Company, 1999, p. 289-295)
  • the shape of a ligand is very useful information in a drug design (structure-based drug design) based on the three-dimensional structure of a biopolymer. No general method has been established to create the shape of the ligand molecule from the structure alone.
  • An object of the present invention is to provide a method and an apparatus for forming a shape of a ligand molecule that binds to a biopolymer.
  • Van der Waals force, Klonon force, and hydrogen bonding force are known as interaction forces acting between a biopolymer and a ligand molecule.
  • Coulomb force is an interaction due to electric charge, and its value is greatly affected by the value of the point charge of the molecule and the dielectric constant of the solvent.
  • Hydrogen bonding force is the force acting between electrically positive and negative atoms, and its value is directionally dependent and is also affected by the dielectric constant of the solvent.
  • the van der Waals force is a force that works universally regardless of the polarity or non-polarity of the molecule, and is not affected by the dielectric constant of the surrounding solvent. Calculation is stable Give the result. Therefore, the present inventors focused on the use of the Van der Waals force, which is a universal interaction, and its potential.
  • the present inventors have conducted intensive research on a method of creating a ligand shape based on only three-dimensional structural information of a biopolymer without using structural information of the ligand molecule. As a result, a virtual atom was placed in the ligand binding region of the biopolymer, and a method of calculating the van der Waals potential between the biopolymer and the virtual atom was considered.
  • the method and apparatus of the present invention predict the shape of a ligand molecule that binds to a biopolymer based on only the information of the biopolymer without using the information of the ligand molecule, and calculate the shape of the ligand molecule.
  • a three-dimensional space that is particularly important for binding to a biopolymer can be determined. Therefore, the present invention can be applied not only to biopolymers whose ligand molecules are known, but also to biopolymers whose ligand molecules are unknown.
  • the method and apparatus of the present invention can create the shape of a ligand molecule using only van der Waals force without considering the interaction due to Coulomb force and hydrogen bonding, and Predict the shape of the ligand molecule without considering the solvent around the polymer and the type of biopolymer, etc., and determine the three-dimensional space that is particularly important for binding to the biopolymer among the shapes of the ligand molecule. Can be done.
  • FIG. 1 is a flowchart for a first embodiment of the method of the present invention.
  • FIG. 2 is a diagram showing a configuration of an apparatus used in the method of the present invention.
  • FIG. 3 is a flowchart for a second embodiment of the method of the present invention.
  • FIG. 4 is a schematic diagram showing the relationship between a biopolymer and the shape of a ligand molecule, a ligand binding site and a ligand binding region.
  • FIG. 5 is a diagram showing a relationship between a biopolymer and a ligand binding region when the ligand binding region is designated as a rectangular parallelepiped.
  • FIG. 6 is a view showing a predicted shape of a ligand molecule that binds to dihydrofolate reductase, obtained in Example 1.
  • FIG. 7 is a diagram in which the shape of a ligand molecule obtained in Example 1 is superimposed on a known ligand molecule (methotrexate).
  • FIG. 8 is a diagram obtained by superposing a three-dimensional space particularly important for binding of a ligand molecule and a known ligand molecule (methotrexate) obtained in Example 1.
  • FIG. 9 is a view showing a predicted shape of a ligand molecule that binds to retinoic acid receptor gamma, obtained in Example 2.
  • FIG. 10 is a diagram in which the predicted shape of a ligand molecule obtained in Example 2 is superimposed on a known ligand molecule (BMS 961).
  • FIG. 11 is a view showing a predicted shape of a ligand molecule that binds to bacteriorhodopsin, obtained in Example 3.
  • FIG. 12 is a diagram in which the predicted shape of a ligand molecule obtained in Example 3 is superimposed on a known ligand molecule (retinal).
  • Biopolymer means a protein (eg, a receptor involved in signal transduction between cells, an enzyme, a cytokin), a nucleic acid, a complex thereof, and the like. Quality.
  • ligand or "ligand molecule” means a low-molecular-weight compound (for example, an endogenous bioactive substance, a drug, a drug candidate or the like) that binds to a biopolymer.
  • the “shape of a ligand molecule” means a steric space occupied by the ligand molecule when the ligand molecule and a biopolymer targeted by the molecule form a strong bond. That is, when a ligand molecule strongly binds to a biological macromolecule, it refers to a stereoscopic space occupied by the ligand molecule.
  • the "ligand binding site” is a space where a biopolymer and a ligand bind. However, not all of that space is filled with ligand molecules (see Figure 4).
  • Ligand binding region means a steric space of any shape including a ligand binding site.
  • FIG. 2 is a diagram showing an example of the configuration of a computer device used in the method for forming a shape of a ligand molecule that binds to a biopolymer according to the present invention.
  • the computer includes an input unit 100, a molecular data storage unit 210, a parameter storage unit 220, a virtual atom data storage unit 230, a Van der Waals potential calculation unit 310 (hereinafter, referred to as an E calculation unit), and a comparison unit 32 vdW.
  • the input unit 100 includes a keyboard, a touch panel, a paper tape reader, a paper card reader, a disk (CD, DVD) reader, a magnetic tape reader, a floppy disk reader, and the like.
  • Parameter holding unit 220, comparison unit 320, It is used for inputting data to the display figure creating unit 330 or the like.
  • the molecular data holding unit 210 stores the types of atoms constituting the biopolymer described later and their coordinates.
  • the molecular data holding unit 210 may be constituted by a main storage device of a computer or an external storage device (a readable / writable recording medium such as a node disk, CD, DVD, flash memory, magnetic tape, or floppy disk).
  • the parameter holding unit 220 stores parameters for expressing atoms of a biopolymer and parameters for expressing virtual atoms, which will be described later.
  • the parameter holding unit 220 may be constituted by a main storage device of the computer or an external storage device (a readable / writable recording medium such as a hard disk, a CD, a DVD, a flash memory, a magnetic tape, and a floppy disk).
  • the virtual atom data holding unit 230 stores the three-dimensional coordinates of the three-dimensional lattice points generated in the ligand binding region described later, the van der Waals potential at each three-dimensional lattice point, and each three-dimensional lattice point. And a flag indicating that it has been removed.
  • the virtual atomic data storage unit 230 is a main storage device of the computer! /, And may be constituted by an external storage device (hard disk, CD, DVD, flash memory, magnetic tape, floppy disk, or other readable / writable recording medium).
  • the E operation unit 310 includes a CPU, a computer program stored in a storage medium, and a program vdW
  • the computer-readable “storage medium” storing the computer program may be a hard disk, a CD, a DVD, a flash memory, a magnetic tape, a floppy disk, or the like.
  • the working storage area is mainly composed of the main storage device of the computer, but a readable and writable recording medium such as a hard disk, a CD, a DVD, a flash memory, a magnetic tape, and a floppy disk may be used in combination.
  • E The operation unit 310 converts the biopolymer stored in the molecular data holding unit 210 into vdW
  • the types and coordinates of the constituent atoms, the parameters representing each atom of the biomolecule stored in the parameter storage unit 220 and the parameters representing virtual atoms, and the three-dimensional parameters stored in the virtual atom data storage unit 230 The three-dimensional coordinates of the lattice point are read out, and this information is applied to equation (I) to calculate the van der Waals potential of the three-dimensional lattice point. Then, the calculation result is associated with the coordinates of the three-dimensional lattice point, and the virtual atom data is Recorded in the data holding unit 230.
  • the comparison unit 320 includes a CPU, a computer program stored in a storage medium, and a work storage area.
  • a readable / writable recording medium such as a hard disk, a CD, a DVD, a flash memory, a magnetic tape, a floppy disk, etc. may be used in combination with a power mainly constituted by a main storage device of a computer.
  • the comparison unit 320 compares the van der Waal potential of the three-dimensional lattice points stored in the virtual atom data holding unit 230 with a threshold value, and generates a flag indicating whether or not each three-dimensional lattice point should be removed. Recorded in the virtual atom data storage unit 230.
  • the configuration may be such that the data of the three-dimensional lattice points to be removed is deleted from the virtual atom data holding unit 230.
  • the threshold value may be read from the input unit 100.
  • the display figure creating unit 330 is configured by a CPU, a computer program stored in a storage medium, and a work storage area.
  • the work storage area is mainly composed of a main storage device of the computer, but a readable and writable recording medium such as a hard disk, a CD, a DVD, a flash memory, a magnetic tape, and a floppy disk may be used in combination.
  • the display figure creating unit 330 creates a predicted shape of the ligand molecule using the three-dimensional coordinates of the three-dimensional lattice points stored in the virtual atom data holding unit 230, and displays the predicted shape on the display unit 400.
  • the biopolymer may be configured to display the three-dimensional structure of the biopolymer together with the predicted shape of the ligand molecule using the three-dimensional coordinates of the atoms of the biopolymer held in the molecular data storage unit 210! . Further, R1 used when creating a predicted shape of the ligand molecule may be read from the input unit 100.
  • the display unit 400 is well known in the art, such as a display, a printer, a plotter, and the like! It may consist of any visualization means.
  • the device shown in FIG. 2 may be realized in a distributed computing environment.
  • the input unit 100 may be configured as a communication interface to acquire various data via a network.
  • the parameters expressing the atoms of the biopolymer are read out as the memory device power.
  • the “storage device” in the present invention includes a reading device for a computer-readable recording medium such as a hard disk, a CD, a DVD, a flash memory, a magnetic tape, a floppy disk, and a buffer memory provided in the input unit 100 such as a keyboard. Also included.
  • the parameters representing the biopolymer atoms may be determined by selecting a set of biopolymer atom descriptors, commonly known as force fields, or may be determined independently. .
  • a force that selectively describes a CHARMm force field or an Amber force field as a parameter expressing an atom of a biological macromolecule is well known to those skilled in the art in place of these force fields. The same can be done using other force fields.
  • the atomic parameters of the biopolymer read in this step are stored in the parameter holding unit 220 in FIG.
  • v represents a virtual atom
  • i represents the i-th atom of the biopolymer.
  • R represents the distance between the center of the virtual atom and the center of the atom of the biopolymer.
  • VR represents (The van der Waals radius (angstrom) of each atom.
  • V ⁇ represents the van der Waals potential well depth (KcalZmol) of each atom.
  • V ⁇ and VR of the virtual atom are defined.
  • the parameters of the virtual atom can be defined with reference to the methyl group meter of the selected force field. Specifically, it is desirable that V ⁇ of the virtual atom be the same value as V ⁇ of the methyl group, and that the VR of the virtual atom be 85% to 100%, preferably 90 to 95% of the VR of the methyl group. Was found. Furthermore, the present inventors have made extensive studies and found that these values do not need to be changed regardless of the biopolymer.
  • each VR may have a value different from that of the methyl group VR in a range of 85% to 100%.
  • the parameters V ⁇ and VR of the virtual atom may be input from the input unit, or may be automatically generated from the parameters stored in the parameter holding unit 220 in the first step 10.
  • the parameters V ⁇ and VR of the virtual atom defined in this step are also stored in the parameter holding unit 220.
  • the parameters representing the atoms and virtual atoms of the biopolymer are converted to read-only media (CD-ROM, DVD-ROM, ROM, EPROM, EEPROM, etc.) by performing the first and second steps in advance. May be used as the parameter holding unit 220.
  • the types of atoms constituting the biopolymer and their coordinates are read from the storage device.
  • Information on atoms constituting a biopolymer can be input according to various methods well known to those skilled in the art. For example, a method for calculating the tertiary structural force obtained by X-ray crystallography or NMR analysis; a method for obtaining the protein structure using a protein crystal database, etc .; or a biopolymer model ( For example, a method of creating a homology modeling model) can be used. The information obtained according to these methods may not know the coordinates of the hydrogen atoms.
  • the information of the coordinates of the hydrogen atom is added using known software, for example, Insight II (registered trademark), Reduce, or the like (for example, see Non-Patent Document 5).
  • the subsequent steps may be performed by further inputting information on cofactors (eg, coenzymes, water molecules, metal ions, etc.) that play an important role by binding to the biopolymer.
  • the reading in this step is performed by the input unit, and may be performed manually using a keyboard or the like, or may be information recorded in advance on a removable recording medium (floppy disk, CD, DVD, magnetic tape, etc.). May be performed by reading the information, or by downloading information via a communication line such as the Internet.
  • the read data of the types and coordinates of the atoms constituting the biopolymer are stored in the molecular data holding unit 210.
  • the fourth step 40 includes the following two sub-steps 41 and 42.
  • a ligand binding region is specified.
  • This ligand binding region can specify any part of the biopolymer. For example, it can be specified as any shape (sphere, cuboid, or any polyhedron) that includes the ligand binding site (see Figure 4).
  • the ligand binding region is described as being specified as a rectangular parallelepiped.
  • the method for specifying the ligand binding region is limited as long as the ligand binding region can be specified in relation to the atomic coordinate information of the biopolymer. There is no.
  • the region encompassing the entire biopolymer input in the third step may be automatically designated by a computer, or information on the biopolymer (such as atomic species, interatomic bonds and coordinates) may be displayed on a display device. It may be displayed and the ligand binding region can be specified interactively.
  • the designated ligand binding region is stored in the molecular data holding unit 210.
  • a three-dimensional grid point is a point composed of three-dimensional coordinates generated at regular intervals.
  • the three-dimensional coordinates for specifying a three-dimensional grid point can be based on any coordinate system such as a rectangular coordinate system (xyz), a polar coordinate system (r0 ⁇ ), or a cylindrical coordinate system (r ⁇ z). Although good, it is convenient to use coordinates based on a rectangular coordinate system.
  • the interval between the three-dimensional lattice points is preferably 0.5 to 1.0 angstroms. It is.
  • the generated three-dimensional coordinates of the plurality of three-dimensional lattice points are stored in the virtual atom data storage unit 230.
  • the fifth step 50 virtual atoms are placed at one of the plurality of three-dimensional lattice points generated in the fourth step (substep 42), and the atoms of the biopolymer read out in the first step 10 are displayed.
  • the van der Waals potential of the virtual atom is calculated.
  • the calculated value is stored as a van der Waals potential at each three-dimensional lattice point.
  • each three-dimensional lattice point is made to coincide with the center of a virtual atom.
  • the E operation unit 310 includes a vdW that constitutes a biopolymer stored in the molecular data holding unit 210.
  • the type and coordinates of each atom, the parameters (VR, V ⁇ ) representing each atom of the biopolymer stored in the parameter holding unit 220, the parameters (VR, V ⁇ ) representing virtual atoms, and the virtual atom data The three-dimensional coordinates of the three-dimensional lattice points stored in the holding unit 230 are read, and the information is applied to the equation (I) to calculate the van der Waals potential ⁇ of the three-dimensional lattice points. Then, the calculated ⁇ is defined as the coordinates of the three-dimensional grid point.
  • the information is stored in the virtual atom data storage unit 230 in association with the data.
  • a Van der Waals potential equal to or more than the first threshold E shown below is present.
  • 3D lattice points to be removed By performing this step, the positions of the virtual atoms that are not stable, that is, the positions of the virtual atoms that are not desirable for bonding with the biopolymer can be removed.
  • the present inventors have set E to be 7 to 11 times the absolute value of VE, more preferably 1 to 11 times the absolute value of V ⁇ . It has been found that it is preferable to set the number twice. This setting is effective when the atoms of the biopolymer are represented by the CHARMm force field or the Amber force field in the first step 10 and the parameters of the virtual atoms are within the range described in the second step 20.
  • V ⁇ stored in the noramator holding section 220 is read out, and ⁇ is automatically generated.
  • the comparing unit 320 sets the E and the three-dimensional lattice points set.
  • a flag is displayed (recorded) on the data stored in the virtual atom data holding unit 230 to indicate whether the force satisfies the condition. It is convenient to show the data that has been removed. Alternatively, data satisfying the above condition may be deleted from the virtual atom data holding unit 230.
  • the seventh step 70 includes the following two sub-steps 71 and 72.
  • the display figure creating unit 330 generates a sphere having a radius R1 around each of the three-dimensional lattice points that have not been removed in the sixth step.
  • R1 When determining the shape of a ligand molecule including hydrogen atoms, it is preferable to set R1 to 100 to 90% (preferably 100%) of VR when VR is within the range described in the second step.
  • R1 is set to a VR force of 1.0 ⁇ to 0.9 ⁇ (preferably 0.9 ⁇ ). It is preferable to set a value obtained by subtracting 95 angstroms).
  • the configuration may be such that VR is read from the meter storage unit 220 to automatically generate R1.
  • the display figure creating unit 330 receives the input from the virtual atom data holding unit 230 and generates a spherical aggregate having the radius R1 as described above. [0054] (7-2)
  • the display figure creating unit 330 makes the overlapping portion of the spherical aggregate generated in the sub-step 71 unique. That is, a hidden line processing is performed to obtain a three-dimensional contour of a spherical aggregate. The resulting three-dimensional space is the predicted result of the shape of the ligand molecule that binds to the biopolymer.
  • the display unit 400 may be configured to display the three-dimensional structure of the biopolymer using the information of the biopolymer stored in the molecular data storage unit 210 together with the prediction result of the shape of the ligand molecule. .
  • the input unit 100, the display figure creating unit 330, and the display unit 400 may be linked to display the prediction result and the shape of Z or biopolymer from the viewpoint specified by the operator.
  • the first threshold value E used for the comparison in the sixth step is
  • Data can be selected.
  • the operator can also adjust the displayed E
  • a suitable value may be input from the input unit 100. Then, using E selected or input by the operator, the sixth and seventh steps are performed again and
  • the predicted shape of the gand molecule can be obtained.
  • screening of candidate conjugates conforming to the shape can be performed. Specifically, by superimposing the three-dimensional structure of an arbitrary compound on the predicted ligand molecule shape and evaluating the fitness using various indexes (for example, shared volume, etc.), the compound becomes a candidate. It can be screened for suitability as a compound. Such superposition of the three-dimensional structures and evaluation of the degree of conformity can be performed using known software that can perform a three-dimensional search using the shape as a search condition.
  • the catalyst when Catalyst (registered trademark) is used, the catalyst (registered trademark) is used as a search condition based on the shape of the ligand molecule as the prediction result.
  • the three-dimensional search function of (Trademark) makes it possible to screen candidate conjugates.
  • the shape of the ligand molecule obtained according to the method of the present invention is fitted with general chemical characteristics (for example, a hydrogen bonding region, a hydrophobic region, etc.) based on chemical considerations. It is also possible to evaluate the degree. By applying such screening to a group of library conjugates or a group of newly designed compounds, it becomes possible to efficiently screen candidate conjugates that bind to biopolymers.
  • FIG. 3 shows a second embodiment of the present invention, in which, in addition to predicting the shape of a ligand molecule that binds to a biopolymer, a three-dimensional space that is particularly important for binding to a biopolymer is shown.
  • 5 is a flowchart showing a method for determining the value. The method of the second embodiment can also be performed using the apparatus shown in FIG.
  • the second embodiment of the present invention will be described in detail.
  • the first to seventh steps of the above-described first embodiment are performed.
  • the following steps are further performed to determine which region of the ligand molecule shape is particularly important for creating a strong bond. carry out.
  • the original lattice points are further removed. Through this step, it is possible to determine a three-dimensional space that is particularly important for binding to a biopolymer.
  • the atoms of the biopolymer are represented by the CH ARMm force field or the Amber force field. If the parameters of the virtual atoms are within the range described in the second step 20, E (E0) is expressed as ⁇ 12 times or less the absolute value of ⁇ , preferably — th2
  • it is set to 14 times or more).
  • This step is performed in the comparison unit 320, and the set E and th2
  • a ninth step 90 is performed.
  • the resulting spatial space is a three-dimensional space that is particularly important for the binding between the biopolymer and the ligand molecule.
  • the three-dimensional space that is particularly important for binding to the obtained biopolymer can be displayed on the display unit 400.
  • the display unit 400 may be configured to display the prediction result of the shape of the ligand molecule and the three-dimensional shape of the biopolymer held in the Z or molecular data holding unit 210.
  • the predicted results of the three-dimensional space that are particularly important for binding to the biological macromolecule have different attributes (brightness, It is preferable that the display is performed with a change in saturation and hue, display with different hatching, blinking display, highlight display, and the like.
  • the input unit 100, the display figure creating unit 330, and the display unit 400 cooperate with each other to predict the shape of the ligand molecule from the viewpoint specified by the operator.
  • the three-dimensional space and the shape of Z or biopolymer which are particularly important for the user may be displayed.
  • the method and apparatus of the present invention described above predict the shape of a ligand molecule that binds to a biopolymer based on only the information of the biopolymer without using the information of the ligand molecule. From the shape of the ligand molecule, a steric space that is particularly important for binding to a biopolymer can be determined. Therefore, the present invention can be applied not only to biopolymers whose ligand molecules are known, but also to biopolymers whose ligand molecules are unknown, and can be applied to biopolymers whose ligand molecules such as orphan receptors are unknown. By predicting the shape of the molecule, it is possible to determine, among the shapes of the ligand molecule, a three-dimensional space that is particularly important for binding to a biopolymer.
  • the method and apparatus of the present invention create the shape of the ligand molecule using only Van der Waals forces, so that the solvent around the biopolymer, the type of biopolymer, and the like need not be considered. It is possible to predict the shape of the ligand molecule and to determine, among the shapes of Z or its ligand molecule, a steric space that is particularly important for binding to a biopolymer.
  • the shape of the ligand molecule obtained by the method and apparatus of the present invention it is determined whether the library compound group or the newly designed compound group conforms to the shape of the ligand molecule.
  • Silico screening it is possible to efficiently conduct a molecular design study of a drug active substance or a physiologically active substance.
  • dihydrofolate reductase A specific example for carrying out the method of the present invention will be described using dihydrofolate reductase.
  • Dihydrofolate reductase has been studied for a long time, and several X-ray crystal structures have been analyzed.
  • the atomic coordinates of dihydrofolate reductase (DHFR) used the information of entry ID “1RX3” of Protein Data Bank. Also this As a descriptor of these atoms, a general CHARMm Version 22 (hereinafter, CHARMm) was used as a force field for a biopolymer.
  • CHARMm a general CHARMm Version 22
  • the van der Waals radius (VR) force of the methyl atom is 2.165 angstroms, and the depth (VE) of the potential well is defined as -0.11811 KcalZmol. Therefore, the virtual atom VR for calculating the Van der Waals potential is 1.95 ⁇ (about 90% of the methyl atom VR), and V £ is -0.1181 KcalZmol (100% of the methyl atom V ⁇ ). .
  • a first threshold E of -1.8 KcalZmol (about -10 times the absolute value of V £ ) is set, and three-dimensional lattice points having a Van der Waals potential larger than E are removed.
  • a sphere with a radius of Rl 1.0 angstroms (VR-0.95 angstroms) was generated, and the shape of the ligand molecule was created by making the overlapping portion unique.
  • the shape of the obtained ligand molecule is shown in FIG.
  • the methotrexate obtained from a known DHFR ′ methotrexate cocrystal (entry ID “1R X3” of the protein data bank) was used. Using three-dimensional coordinates, this methotrexate was superimposed with the shape of the ligand molecule obtained by the method of the present invention without moving the coordinates, and as shown in FIG. 7, it was confirmed that the methotrexate agreed very well. .
  • a second threshold value E £ (about -14 times the absolute value) is set.
  • FIG. 8 is a diagram in which the obtained three-dimensional space and methotrexate are similarly overlapped without moving the coordinates.
  • the three-dimensional space determined in this way is consistent with the area occupied by the pyrimidine ring of methotrexate. From the results of X-ray crystallography, this pyrimidine ring part plays a large role in forming a stable DHFR-methotrexate complex by forming many hydrogen bonds and hydrophobic bonds with DHFR, and the activity of methotrexate It is known that the partial structure is indispensable (see Non-Patent Document 6).
  • the three-dimensional space particularly important for binding to the biopolymer obtained by the method of the present invention using the second threshold value, and the pyrimidine which is a partial structure important for binding to DHFR in the molecular structure of methotrexate It was confirmed that the ring portion was well matched.
  • RAR Retinoic acid receptor gamma
  • CHARMm a general CHARMm Version22
  • the virtual atom VR for calculating the Van der Waals potential is 1.95 angstroms (about 90% of the methyl atom VR), and ⁇ ⁇ is ⁇ 0.1181 KcalZmol (methyl atom V 100% of ⁇ ).
  • the first threshold value E is set to 1.8 KcalZmol (about 10% of the absolute value of the virtual atom V E).
  • a sphere with a radius of 1.0 angstroms (VR-0.95 angstroms) was generated at each of the three-dimensional lattice points that were removed, and the shape of the ligand molecule was created by making the overlapping portion unique.
  • the shape of the obtained ligand molecule is shown in FIG.
  • the van der Waals radius (VR) of a methyl atom is defined as 2.165 angstroms, and the depth (V ⁇ ) of a potential well is defined as 0.181 KcalZmol. Therefore, the virtual atom VR for calculating the van der Waals potential was 1.95 ⁇ (about 90% of the methyl atom VR), and ⁇ ⁇ was 0.181 KcalZmol (100% of the methyl atom V E).
  • the first threshold E is set to 1.8 KcalZmol (about 10 times the absolute value of V £ )
  • FIG. 11 shows the shape of the obtained ligand molecule.
  • the shape of a ligand molecule that binds to a biopolymer can be created. Therefore, the method and apparatus of the present invention are extremely useful for molecular design of compounds having physiological activity such as medicines and agricultural chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Evolutionary Biology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Computing Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 生体高分子の三次元構造情報に基づいて、当該生体高分子に結合するリガンド分子の形状を作成する方法および装置であって、生体高分子のリガンド結合領域に仮想原子を置き、生体高分子と仮想原子との間のファンデルワールスポテンシャルを計算し、このファンデルワールスポテンシャルから、安定でない仮想原子の位置するファンデルワールスポテンシャル部分を除去することにより、生体高分子に結合するリガンド分子の形状を作成する方法および装置。

Description

リガンド分子の形状作成方法および装置
技術分野
[0001] 本発明は医薬、農薬などの生理活性ィ匕合物の分子設計に利用するための、生体 高分子に結合するリガンド分子の形状を作成する方法および装置に関する。
背景技術
[0002] 薬物や生理活性物質などのリガンド分子が生理活性を発現するためには、そのリガ ンド分子が、標的とする生体高分子 (細胞間のシグナル伝達に関する薬理的受容体 、酵素、サイト力インタンパク質その他のタンパク質、核酸及びそれらの複合体を含む )と強く結合することが必要である。このように生体高分子とリガンド分子とが強い結合 を形成するためには、生体高分子とリガンド分子とが相補的な形状をしており、さらに は両分子の間に親和性が存在することが重要である。なかでもリガンド分子の形状に 関しては、鍵と鍵穴の鍵に例えられ、その重要性が知られている。
[0003] ある生体高分子に対するリガンド分子の形状が明らかになると、それは、新規化合 物の化学構造デザインやコンピュータ上での化合物スクリーニング(いわゆる in— Sili coスクリーニング)に非常に有用である。創薬化学者は、リガンド分子の形状を基に、 それに良く合う化合物をデザインすることが可能となる。また創薬ィ匕学者は、生体高 分子間での選択性を出すために複数の生体高分子のリガンド形状を比較しながらそ れに基づきデザインを行うことも可能になる。また In— Silicoスクリーニングにおいて 、創薬ィ匕学者はリガンド分子の形状を用いてスクリーニングを行うことが可能となる。こ のようにリガンド分子の形状は、特に生体高分子の三次元構造を基に新 、薬物や 生理活性物質を設計する場合に極めて有用である。
[0004] ゲノムの解読、タンパク 3000のような国家プロジェクトによる生体高分子の三次元 構造解析、またその結果を基にしたホモロジ一モデリングにより、今後生体高分子の 三次元構造は飛躍的に増えると考えられている。それに従いリガンド分子が未知の 生体高分子の三次元構造が数多く得られるようになると考えられている。リガンド分子 が未知の生体高分子の場合、そのような生体高分子に結合するリガンドを見出すこと は非常に困難である。このような場合に、リガンドの形状が生体高分子の三次元構造 のみから予測できれば、リガンド分子の探索に極めて有用である。
[0005] リガンドの形状は、一般的には、複数のリガンド分子の構造を基に、それらのリガン ド分子を重ね合わせることによって求められる。し力しながら、このような方法では、用 いられたリガンド分子の配座や重ね合わせの方法によって、得られる結果が異なり、 必ずしもリガンドの形状を一義的に予測することができない。また複数のリガンドの情 報を用いるため、リガンドそのものが知られて ヽな 、生体高分子の場合には適用でき ない。
[0006] 生体高分子の三次元構造からリガンドを探索する場合、当該生体高分子と任意の リガンド分子との安定な結合状態をシミュレーションする手法 ( 、わゆるドッキングスタ ディー)がよく行われる (例えば、非特許文献 1参照)。し力しながら、ドッキングスタデ ィ一は活性を有する可能性のあるリガンドを探索する手法であって、リガンド分子の形 状を予測できる方法ではな 、ことから、タンパク構造のみからリガンドの形状を予測す ることはできない。
[0007] また生体高分子とリガンドの構造が既知の場合でも、リガンドの形状を予測すること は容易でない。リガンドの形状を予測しょうとすると、複数のリガンドとタンパク質との 複合体の構造を、例えば、 X線結晶構造解析などの結果を用いて明らかにし、それら のリガンドが共通して占有して!/、る領域を決めなければならな 、。このような作業には 多大な時間と労力が必要である。
[0008] 生体高分子の三次元構造が既知の場合、他の方法として生体高分子の表面にあ る半径の球を転がし、その球の中心が描く軌跡力 生体高分子の結合部位の形状を 表現する方法が広く知られている(例えば、非特許文献 2参照)。し力しながらこの方 法で求められる形状は、あくまでも生体高分子表面の窪みを表現するものであって、 リガンドの形状とは異なるものである。
[0009] 他の生体高分子の三次元構造を使った手法としては、生体高分子内に格子点を 作成しそこに仮想プローブを置 、て生体高分子との相互作用を計算する手法 ( 、わ ゆる GRID法)が知られている(例えば、非特許文献 3参照)。この GRID法を用いると 、リガンドと生体高分子との相互作用に重要な部分の位置を知ることができるが、リガ ンドの形状を予測することは困難である。また、 GRID法の欠点として、生体高分子の 表面に、プローブが安定な位置が多数出現してしまい、それらのうちのいずれが生体 高分子との結合に重要であるかが決められない欠点が指摘されている(例えば、非 特許文献 4参照)。
[0010] 非特許文献 1: Yamada M. et al, J. Mol. Biol, 1994, Vol.243, p.310
非特許文献 2 : Kuntz I D. et al" J. Mol. Biol, 1982, Vol.161, p.269
非特許文献 3 : Goodford P.J. et al., J. Med. Chem., 1985, Vol.28, p.849
非特許文献 4 : Mattos C. et al" Nat. Biotech., 1996, Vol.14, p.595
非特許文献 5 : Word J M. et al" J. Mol. Biol, 1999, Vol.285, p.1735
非特許文献 6 : PerUn T.J., Propst C丄.著,木曽良明,板井昭子訳,「化学と生物実験 ライン (第 44卷) 'コンピュータ支援によるドラッグデザイン」,廣川書店, 1999年, p.289-295)
発明の開示
発明が解決しょうとする課題
[0011] 上記のように、リガンドの形状は生体高分子の三次元構造を基にしたドラッグデザィ ン (ストラクチャーベースドドラッグデザイン)において非常に有用な情報であるが、こ れまで生体高分子の三次元構造のみからリガンド分子の形状を作成する一般的な手 法は確立されてない。
[0012] 本発明の目的は、生体高分子に結合するリガンド分子の形状を作成するための方 法および装置を提供するものである。
課題を解決するための手段
[0013] 生体高分子とリガンド分子との間に働く相互作用力としてファンデルワールス力、ク 一ロン力および水素結合力が知られている。クーロン力は、電荷による相互作用であ り、その値は分子の点電荷の値、溶媒の誘電率に大きな影響を受ける。水素結合力 は、電気的に陽性な原子と陰性な原子との間に働く力であり、その値には方向依存 性があり、溶媒の誘電率にも影響を受ける。一方、ファンデルワールス力は、分子の 極性、非極性にかかわらず普遍的に働く力であり、周囲の溶媒の誘電率にも影響を 受けな 、こと力ら、ファンデルワールス力およびそのポテンシャルの計算は安定した 結果を与える。そこで本発明者らは、普遍的な相互作用であるファンデルワールス力 、およびそのポテンシャルの利用に着目した。
[0014] さらに本発明者らは、リガンド分子の構造情報を使わずに生体高分子の三次元構 造情報のみを基に、リガンドの形状を作成する方法につ 1ヽて鋭意研究を重ねた結果 、生体高分子のリガンド結合領域に仮想原子を置き、生体高分子と仮想原子との間 のファンデルワールスポテンシャルを計算する方法を考えた。得られた計算結果につ いてさらに詳細な研究を行ったところ、生体高分子と仮想原子との間のファンデルヮ 一ルスポテンシャルから、後述する如ぐある特定の範囲のポテンシャルエネルギー 領域を除去することによって得られる立体的空間が、驚くべきことに、生体高分子中 のリガンド分子と極めてよく一致することを見出し、本発明を完成するに至った。 発明の効果
[0015] 本発明の方法および装置は、リガンド分子の情報を利用することなぐ生体高分子 の情報のみに基づいて当該生体高分子に結合するリガンド分子の形状を予測し、そ のリガンド分子の形状のうち、生体高分子との結合に特に重要な立体空間を決定す ることができる。したがって、リガンド分子が既知の生体高分子のみならず、リガンド分 子が知られていない生体高分子に対しても適用が可能であり、ォーファンレセプター などのリガンド分子が未知の生体高分子に関してもリガンド分子の形状を予測し、そ のリガンド分子の形状のうち、生体高分子との結合に特に重要な立体空間を決定す ることがでさる。
[0016] また、本発明の方法および装置は、クーロン力および水素結合による相互作用を 考慮することなくファンデルワールス力のみを用いてリガンド分子の形状を作成するこ とが可能であるので、生体高分子の周囲の溶媒や生体高分子の種類等を考慮する ことなぐリガンド分子の形状を予測し、そのリガンド分子の形状のうち、生体高分子と の結合に特に重要な立体空間を決定することが出来る。
[0017] さらに、本発明の方法および装置により得られたリガンド分子の予測形状を利用し て、ライブラリー化合物群や新規に設計した化合物群が当該リガンド分子の形状に 適合するかどうかの In— Silicoスクリーニングを行うことにより、薬物活性物質または 生理活性物質の分子設計研究を効率的に行うことができる。 図面の簡単な説明
[0018] [図 1]本発明の方法の第 1の実施態様についてのフローチャートである。
[図 2]本発明の方法に用いられる装置の構成を示す図である。
[図 3]本発明の方法の第 2の実施態様についてのフローチャートである。
[図 4]生体高分子と、リガンド分子の形状、リガンド結合部位およびリガンド結合領域と の関係を示す模式図である。
[図 5]リガンド結合領域を直方体として指定する場合における、生体高分子とリガンド 結合領域との関係を示す図である。
[図 6]実施例 1により得られた、ジヒドロ葉酸還元酵素に結合するリガンド分子の予測 形状を示す図である。
[図 7]実施例 1により得られたリガンド分子の形状と、既知のリガンド分子 (メトトレキセ ート)とを重ね合わせた図である。
[図 8]実施例 1により得られた、リガンド分子の結合に特に重要な立体空間と、既知の リガンド分子 (メトトレキセート)とを重ね合わせた図である。
[図 9]実施例 2により得られた、レチノイン酸受容体ガンマに結合するリガンド分子の 予測形状を示す図である。
[図 10]実施例 2により得られたリガンド分子の予測形状と、既知のリガンド分子 (BMS 961)とを重ね合わせた図である。
[図 11]実施例 3により得られた、バクテリオロドプシンに結合するリガンド分子の予測 形状を示す図である。
[図 12]実施例 3により得られたリガンド分子の予測形状と、既知のリガンド分子 (レチ ナール)とを重ね合わせた図である。
符号の説明
[0019] 10, 20, 30, 40, 50, 60, 70, 80, 90 工程
41, 42, 71, 72 サブステップ
100 入力部
210 分子データ保持部
220 パラメータ保持部 230 仮想原子データ保持部
310 E (ファンデルワールスポテンシャル)演算部
vdW
320 比較部
330 表示図形作成部
400 表示部
発明を実施するための最良の形態
[0020] 本発明において、以下の用語は以下の意味を有する。
[0021] 「生体高分子」とは、蛋白質 (例えば、細胞間のシグナル伝達に関与する受容体、 酵素、サイト力インなど)、核酸、およびそれらの複合体などを意味し、好適には蛋白 質である。
[0022] 「リガンド」または「リガンド分子」とは、生体高分子に結合する、低分子量の化合物( 例えば、内因性の生理活性物質、薬物、薬物の候補ィ匕合物など)を意味する。
[0023] 「リガンド分子の形状」とは、リガンド分子と、当該分子が標的とする生体高分子とが 、強い結合を作った場合に、リガンド分子が占める立体的空間を意味する。すなわち 、リガンド分子が、生体高分子と強く結合する場合に、そのリガンド分子が占有する立 体的空間のことである。
[0024] 「リガンド結合部位」とは、生体高分子とリガンドとが結合する空間である。ただしそ の空間全てがリガンド分子で埋められて 、るわけではな ヽ(図 4を参照)。
[0025] 「リガンド結合領域」とは、リガンド結合部位を包含する任意の形状の立体的空間を 意味する。
[0026] 図 2は、本発明の生体高分子に結合するリガンド分子の形状作成方法に用いられ るコンピュータ装置の構成の一例を示す図である。該コンピュータ装置は、入力部 10 0、分子データ保持部 210、パラメータ保持部 220、仮想原子データ保持部 230、フ アンデルワールスポテンシャル演算部 310 (以下、 E 演算部と称する)、比較部 32 vdW
0、表示図形作成部 330、および表示部 400を含む。
[0027] 入力部 100は、キーボード、タツチパネル、紙テープ読取装置、紙カード読取装置 、ディスク (CD、 DVD)読取装置、磁気テープ読取装置、フロッピィディスク読取装置 などにより構成され、分子データ保持部 210、パラメータ保持部 220、比較部 320、 表示図形作成部 330などにデータを入力するために用いられる。
[0028] 分子データ保持部 210には、後述する生体高分子を構成する原子の種類および その座標が記憶される。分子データ保持部 210は、コンピュータの主記憶装置あるい は外部記憶装置 (ノヽードディスク、 CD、 DVD,フラッシュメモリ、磁気テープ、フロッ ピィディスクなど読み書き可能な記録媒体)で構成されてもょ ヽ。
[0029] ノ メータ保持部 220には、後述する生体高分子の原子を表現するパラメータおよ び仮想原子を表現するパラメータが記憶される。パラメータ保持部 220は、コンビュ ータの主記憶装置あるいは外部記憶装置 (ハードディスク、 CD、 DVD,フラッシュメ モリ、磁気テープ、フロッピィディスクなど読み書き可能な記録媒体)で構成されてもよ い。
[0030] 仮想原子データ保持部 230には、後述するリガンド結合領域に発生される三次元 格子点の三次元座標、各三次元格子点におけるファンデルワールスポテンシャル、 および各三次元格子点が比較部で除去されたことを示すフラグを記憶する。仮想原 子データ保持部 230は、コンピュータの主記憶装置ある!/、は外部記憶装置 (ハード ディスク、 CD、 DVD,フラッシュメモリ、磁気テープ、フロッピィディスクなど読み書き 可能な記録媒体)で構成されてもょ ヽ。
[0031] E 演算部 310は、 CPU、記憶媒体に記憶したコンピュータプログラム、および作 vdW
業用記憶領域から構成される。ここでコンピュータプログラムを記憶したコンピュータ 読み取り可能な「記憶媒体」は、ハードディスクに加えて、 CD、 DVD,フラッシュメモ リ、磁気テープ、フロッピィディスクなどであってもよい。作業用記憶領域は、主として コンピュータの主記憶装置から構成されるが、補助的にハードディスク、 CD、 DVD, フラッシュメモリ、磁気テープ、フロッピィディスクなど読み書き可能な記録媒体を併用 してもよい。 E 演算部 310は、分子データ保持部 210に記憶された生体高分子を vdW
構成する各原子の種類およびその座標、パラメータ保持部 220に記憶された生体高 分子の各原子を表現するパラメータおよび仮想原子を表現するパラメータ、および仮 想原子データ保持部 230に記憶された三次元格子点の三次元座標を読み出してこ れの情報を式 (I)に適用して、該三次元格子点のファンデルワールスポテンシャルを 計算する。そして、計算結果を当該三次元格子点の座標と対応づけて仮想原子デ ータ保持部 230に記録する。
[0032] 比較部 320は、 CPU、記憶媒体に記憶したコンピュータプログラム、および作業用 記憶領域から構成される。作業用記憶領域は、主としてコンピュータの主記憶装置か ら構成される力 補助的にハードディスク、 CD、 DVD,フラッシュメモリ、磁気テープ 、フロッピィディスクなど読み書き可能な記録媒体を併用してもよい。比較部 320は、 仮想原子データ保持部 230に記憶された三次元格子点のファンデルワールスポテン シャルを閾値と比較し、それぞれの三次元格子点が除去されるべき力否かを表すフ ラグを仮想原子データ保持部 230に記録する。あるいはまた、除去される三次元格 子点のデータを仮想原子データ保持部 230から削除するように構成されてもよい。閾 値は、入力部 100から読み出されてもよい。
[0033] 表示図形作成部 330は、 CPU、記憶媒体に記憶したコンピュータプログラム、およ び作業用記憶領域から構成される。作業用記憶領域は、主としてコンピュータの主記 憶装置から構成されるが、補助的にハードディスク、 CD、 DVD,フラッシュメモリ、磁 気テープ、フロッピィディスクなど読み書き可能な記録媒体を併用してもよい。表示図 形作成部 330は、仮想原子データ保持部 230に記憶された三次元格子点の三次元 座標を用いてリガンド分子の予測形状を作成し、表示部 400に表示する。また、分子 データ保持部 210に保持された生体高分子の原子の三次元座標を用いて、リガンド 分子の予測形状とともに、生体高分子の三次元構造を表示するように構成してもよ!、 。また、リガンド分子の予測形状を作成する際に用いる R1を、入力部 100から読み出 すように構成してもよい。
[0034] ここで、 E 演算部 310、比較部 320および表示図形作成部 330を構成する CPU
vdW
は、同一のものであってもよいし、別個のものであってもよい。
[0035] 表示部 400は、ディスプレイ、プリンタ、プロッタなど、当該技術にぉ 、て知られて!/ヽ る任意の可視化手段から構成されてもょ ヽ。
[0036] なお、図 2に示す装置を分散コンピューティング環境において実現してもよい。この 場合には、入力部 100を通信インターフェースとして構成し、各種データをネットヮー クを介して取得してもよい。
[0037] 次に、上記のように構成された装置が実行するリガンド分子の形状作成方法 (本発 明の第 1の実施態様)を図 1のフローチャートおよび図 2を参照して説明する。
[0038] (第 1工程)
図 1の第 1工程 10において、記憶装置力も生体高分子の原子を表現するパラメ一 タが読み出される。本発明における「記憶装置」は、ハードディスク、 CD、 DVD,フラ ッシュメモリ、磁気テープ、フロッピィディスクなどコンピュータ読み取り可能な記録媒 体の読取装置に加えて、キーボードなどの入力部 100が具えるバッファメモリなどをも 含む。生体高分子の原子を表現するパラメータは、一般的に力場という名称で知ら れる生体高分子の原子のディスクリプタ一の集合を選択することによって決定しても よいし、独自に決定してもよい。本発明では、以下、生体高分子の原子を表現するパ ラメータとして CHARMm力場または Amber力場を選択して記述する力 本発明は 、これらの力場の代わりに、当該分野の当業者に周知の他の力場を用いても同様に 行うことができる。本工程において読み出された生体高分子の原子パラメータは、図 2のパラメータ保持部 220に記憶される。
[0039] (第 2工程)
図 1の第 2工程 20において、記憶装置力 力場に応じた仮想原子のパラメータが 読み出される。 CHARMm力場および Amber力場におけるファンデルワールスポテ ンシャル(E は、以下の式(I)
vdW
[0040] [数 1]
Figure imgf000011_0001
= VR.V + VRit f v i
Figure imgf000011_0002
[0041] (式中、 vは仮想原子を表し、 iは生体高分子の i番目の原子を表す。 rは、仮想原子の 中心と生体高分子の原子の中心との距離を表す。 VRは各原子のファンデルワール ス半径(オングストローム)を表す。 V εは、各原子のファンデルワールスポテンシャル 井戸の深さ (KcalZmol)を表す。 )
を用いて計算される。 [0042] このポテンシャルエネルギーを計算するために、仮想原子のパラメータ V εおよび VRを定義する。鋭意研究を重ねた結果、本発明者らは、選択した力場のメチル基の ノ メータを参考にして、仮想原子のパラメータを定義することができることを見出し た。具体的には、仮想原子の V ε をメチル基の V εと同じ値とし、仮想原子の VRを メチル基の VRの 85%〜100%、好適には 90〜95%とすることが望ましいことを見出 した。さらに、本発明者らは、鋭意研究を重ねた結果、生体高分子に拠らずこれらの 値を変更する必要が無いことを見出した。すなわち、本発明では、生体内における生 体高分子を取り巻く不確定な条件を考慮する必要が無ぐ生体高分子を表現するパ ラメータ (力場)を変更しない限り、仮想原子のパラメータを変更する必要が無ぐ第 2 工程は、基本的に一度行えばよい。なお、 2種以上の仮想原子を用いる場合、それ ぞれの VRは、メチル基の VRの 85%〜 100%の範囲力も適宜異なる値を選択する ことができる。仮想原子のパラメータ V ε および VRは、入力部から入力してもよいし 、あるいは第 1工程 10においてパラメータ保持部 220に記憶されたパラメータから自 動生成させてもよい。本工程において定義された仮想原子のパラメータ V ε および VRも、パラメータ保持部 220に記憶される。
[0043] なお、第 1および第 2工程を予め行って、生体高分子の原子ならびに仮想原子を表 現するパラメータを、読取専用媒体(CD— ROM、 DVD-ROM, ROM, EPROM 、 EEPROMなど)に記録し、これをパラメータ保持部 220として用いてもよい。
[0044] (第 3工程)
第 3工程 30において、記憶装置から生体高分子を構成する原子の種類およびその 座標が読み出される。生体高分子を構成する原子の情報は、当該分野の当業者に 周知である種々の方法に従って入力することができる。例えば、 X線結晶解析や NM R解析により得られた立体構造力 算出する方法;蛋白質結晶データベース等を利 用して入手する方法;またはこれらの情報をもとに構築された生体高分子モデル (ホ モロジ一モデリングモデル)を作成する方法等を利用することができる。これらの方法 に従って得られた情報は、水素原子の座標が不明な場合がある。この場合、水素原 子の座標を既知のソフトウェア、例えば、 Insight II (登録商標)、 Reduce等(たとえ ば、非特許文献 5参照)を用いて情報を付加する。また、生体高分子の情報として、 生体高分子に結合し、重要な役割を果たす補因子 (例:補酵素、水分子、金属ィォ ン等)の情報をさらに入力して、以後の工程を行ってもよい。
[0045] 本工程における読み出しは、入力部で行われ、キーボードなどを用いて手動で行 つてもよいし、リムーバブル記録媒体(フロッピィディスク、 CD、 DVD,磁気テープな ど)に予め記録された情報を読みとることで行ってもよいし、あるいはインターネットな どの通信回線を経由して情報をダウンロードすることにより行ってもよい。読み出され た生体高分子を構成する原子の種類および座標のデータは、分子データ保持部 21 0に記憶される。
[0046] (第 4工程)
第 4工程 40は、以下の 2つのサブステップ 41および 42を含む。
[0047] (4- 1)
第 1のサブステップ 41において、リガンド結合領域を指定する。このリガンド結合領 域は、生体高分子の任意の部分を指定できる。例えば、リガンド結合部位を包含する 任意の形状 (球、直方体、あるいは任意の多面体)として指定することができる(図 4 参照)。本発明では、以下、リガンド結合領域を直方体として指定したとして記述する 力 本発明においては、生体高分子の原子座標情報に関連してリガンド結合領域を 指定できる限り、リガンド結合領域の指定方法に制限はない。たとえば、第 3工程で 入力された生体高分子全体を包含する領域をコンピュータによって自動的に指定し てもよいし、生体高分子の情報 (原子種、原子間結合および座標など)を表示装置に 表示させ、対話式にリガンド結合領域を指定してもよい。指定されたリガンド結合領域 は、分子データ保持部 210に記憶される。
[0048] (4- 2)
次に、第 2のサブステップ 42においては、第 3工程 30で入力した生体高分子の原 子の座標情報を利用して、サブステップ 41で指定したリガンド結合領域内に複数の 三次元格子点を発生させる。三次元格子点とは、一定間隔ごとに発生させる三次元 座標からなる点をいうものとする。三次元格子点を指定するための三次元座標は、直 交座標系(xyz)、極座標系(r 0 φ )、円筒座標系(r θ z)など任意の座標系に基づく ものであってもよいが、直交座標系に基づく座標を用いることが便利である。発生す る三次元格子点間の間隔 (特定の格子点力 最も近接して隣接する格子点までの距 離)は、少なくとも第 2工程で読み出された仮想原子の VRV以下であり、 VRVが第 2ェ 程に記述した好ましい範囲内(使用する力場のメチル基の VRの 85%〜: LOO%以内 )である場合、三次元格子点の間隔は好ましくは 0. 5〜1. 0オングストロームである。 発生させた複数の三次元格子点の三次元座標は、仮想原子データ保持部 230に記 憶させる。
[0049] (第 5工程)
第 5工程 50において、第 4工程 (サブステップ 42)で発生させた複数の三次元格子 点の 1つに仮想原子を置いて、第 1工程 10で読み出された生体高分子の原子を表 現するパラメータおよび第 2工程 20で読み出された仮想原子のパラメータを用いて、 該仮想原子のファンデルワールスポテンシャルを計算する。そして、計算した値を各 三次元格子点のファンデルワールスポテンシャルとして記憶する。この計算を、第 4 工程 (サブステップ 42)で発生させた三次元格子点の全てにっ ヽて反復する。なお、 本工程においては、各三次元格子点を仮想原子の中心に一致させる。具体的には 、 E 演算部 310は、分子データ保持部 210に記憶された生体高分子を構成する vdW
各原子の種類およびその座標、パラメータ保持部 220に記憶された生体高分子の各 原子を表現するパラメータ (VR、 V ε )および仮想原子を表現するパラメータ (VR 、 V ε )、および仮想原子データ保持部 230に記憶された三次元格子点の三次元座 標を読み出し、これの情報を式 (I)に適用して該三次元格子点のファンデルワールス ポテンシャル Ε を計算する。そして、計算された Ε を当該三次元格子点の座標と
vdW vdW
対応づけて仮想原子データ保持部 230に記録する。
[0050] (第 6工程)
第 6工程 60にお 、て、第 4工程 (サブステップ 42)で発生させた複数の三次元格子 点のうち、下記に示した第 1の閾値 E 以上のファンデルワールスポテンシャルを有
thl
する三次元格子点を除去する。この工程を行うことにより、安定でない仮想原子の位 置、すなわち生体高分子との結合のためには望ましくない仮想原子の位置を除去す ることができる。本発明者らは、このような安定でない仮想原子を除去するためには、 E を、 V E の絶対値の一 7〜一 11倍、さらに好適には V ε の絶対値の一 9〜一 10 倍に設定することが好ましいことを見出した。この設定は、第 1工程 10において生体 高分子の原子を CHARMm力場または Amber力場で表現し、仮想原子のパラメ一 タが第 2工程 20で記述した範囲内である場合に有効である。本工程において、ノラメ ータ保持部 220に記憶された V ε を読み出して、 Ε を自動的に生成するように構
thl
成されてもよい。
[0051] 本工程においては、比較部 320において、設定した E と各三次元格子点につい
thl
て計算された E とを比較し、 E <E となる三次元格子点を検索する。比較部 3
vdW thl dW
20は、仮想原子データ保持部 230からの入力を受けて、 E と E との比較を行う。
vdW thl
このとき、 VRの異なる複数の仮想原子を用いている場合、仮想原子データ保持部 2 30からの入力は複数ありうるが、最も小さな値、すなわち最安定な値をその三次元格 子点上のファンデルワールスポテンシャルとすることが望ま 、。前記条件を満たした 三次元格子点の除去については、仮想原子データ保持部 230に記憶されているデ ータに、前記条件を満たした力どうかを表示するフラグを立てて (記録して)、除去さ れたデータを示すことが好都合である。あるいはまた、前記条件を満たしたデータを 仮想原子データ保持部 230から削除してもよい。
[0052] (第 7工程)
第 7工程 70は、以下の 2つのサブステップ 71および 72を含む。
[0053] (7- 1)
第 1のサブステップ 71では表示図形作成部 330において、第 6工程において除去 されずに残っている三次元格子点のそれぞれを中心として半径 R1の球形を発生させ る。水素原子を含めたリガンド分子の形状を求める場合には、 VRが第 2工程で記述 した範囲内である場合、 R1を VRの 100〜90% (好適には 100%)に設定することが 好ましい。水素原子を含めないリガンド分子の形状を求める場合には、 VRが第 2ェ 程で記述した範囲内である場合、 R1を VR力 1. 0オングストローム〜 0. 9オングス トローム (好適には 0. 95オングストローム)を減算した値に設定することが好ましい。 ノ メータ保持部 220から VRを読み出して、 R1を自動的に生成するように構成され てもよい。表示図形作成部 330は、仮想原子データ保持部 230からの入力を受けて 、前述のように半径 R1の球形の集合体を発生させる。 [0054] (7- 2)
次に、第 2のサブステップ 72において、表示図形作成部 330は、サブステップ 71で 発生した球形の集合体の重複部分を一意にする。すなわち、陰線処理を施して、球 形の集合体の立体的な輪郭を得る。この結果、得られる立体的空間が、生体高分子 に結合するリガンド分子の形状の予測結果である。
[0055] そして、得られた予測結果を、表示部 400に表示することができる。リガンド分子の 形状の予測結果と併せて、分子データ保持部 210に保持される生体高分子の情報 を用いて生体高分子の三次元構造を表示するように表示部 400を構成してもよ 、。 あるいはまた、入力部 100、表示図形作成部 330および表示部 400を連携させて、 オペレータが指定した視点からみた予測結果および Zまたは生体高分子の形状を 表示するようにしてもよ ヽ。
[0056] 以上の説明においては、第 6工程における比較に用いられる第 1の閾値 E が予め
thl 設定されている場合について説明した。しかしながら、 E
thlとして用いる値を、入力部
100から入力することが可能であることは 、うまでもな 、。ある 、はまた、複数の E を
thl 設定してそれぞれにつ ヽて第 6および第 7工程を実施してその結果を表示させ、その 表示および化学的考察に基づいて、当該生体高分子に関して適切な E をォペレ
thl
ータが選択できるようにしてもょ 、。オペレータは、表示された複数の E の中力も適
thl
切なものを選択してもよいし、入力部 100から適当な値を入力してもよい。そして、ォ ペレータが選択ないし入力した E を用いて、再び第 6および第 7工程を実施してリ
thl
ガンド分子の予測形状を得るようにすることができる。
[0057] さらに、上記の方法により得られたリガンド分子の形状の予測結果を用いて、その 形状に適合する候補ィ匕合物のスクリーニングを実施することができる。具体的には、 予測したリガンド分子の形状に任意の化合物の立体構造を重ね合わせ、その適合度 を種々の指標 (たとえば、共有体積など)を用いて評価することにより、その化合物が 候補ィ匕合物として適切であるか否かをスクリーニングすることができる。このような立 体構造の重ね合わせおよび適合度の評価は、形状を検索条件とした 3次元検索可 能な既知のソフトを用いて実施することができる。例えば Catalyst (登録商標)を使用 する場合は、予測結果であるリガンド分子の形状を検索条件として、 Catalyst (登録 商標)の三次元検索機能により、候補ィ匕合物をスクリーニングすることができる。この とき、必要に応じて、本発明の方法に従って得られるリガンド分子の形状に、化学的 考察に基づいた一般的な化学特性 (例えば、水素結合領域、疎水性領域など)を付 カロして適合度を評価することも可能である。このようなスクリーニングを、ライブラリイ匕 合物群あるいは新規に設計した化合物群に適用することにより、生体高分子に結合 する候補ィ匕合物を効率よくスクリーニングすることが可能となる。
[0058] 図 3は、本発明の第 2の実施態様である、生体高分子に結合するリガンド分子の形 状を予測することに加えて、生体高分子との結合に特に重要な立体空間を決定する 方法を示したフローチャートである。第 2の実施態様の方法も、図 2に示される装置を 用いて実施することができる。以下、本発明の第 2の実施態様を詳しく説明する。
[0059] 第 2の実施態様の方法においては、最初に、前述の第 1の実施態様の第 1〜第 7ェ 程を実施する。次に、リガンド分子と生体高分子とが結合する際に、リガンド分子の形 状のうち、強い結合を作るためにどの領域が特に重要であるかを決定するために、以 下の工程をさらに実施する。
[0060] (第 8工程)
第 8工程 80にお 、ては、第 6工程 60で除去されずに残って 、る三次元格子点から 、下記に示した第 2の閾値 E 以上のファンデルワールスポテンシャルを有する三次 th2
元格子点をさらに除去する。この工程により、生体高分子との結合のために特に重要 な立体空間を決定することができる。第 1工程 10において生体高分子の原子を CH ARMm力場または Amber力場で表現し、仮想原子のパラメータが第 2工程 20で記 述した範囲内である場合、 E (く 0)を、 ν ε の絶対値の 12倍以下、好適には— th2
14倍以下に設定すること(すなわち、 E の絶対値を、 V ε の絶対値の 12倍以上、 th2
好適には 14倍以上に設定すること)が好まし 、ことを見出した。
[0061] 本工程は比較部 320において実施され、設定した E と各三次元格子点について th2
計算された E とを比較し、 E >E となる三次元格子点を検索する。比較部 320 vdW th2 vdW
は、仮想原子データ保持部 230からの入力を受けて、 E と E との比較を行う。こ vdW thl
のとき、 VRの異なる複数の仮想原子を用いている場合、仮想原子データ保持部 23 0からの入力は複数ありうるが、最も小さな値、すなわち最安定な値を各三次元格子 点上のファンデルワールスポテンシャルとすることが望ま 、。前記条件を満たした三 次元格子点の除去については、仮想原子データ保持部 230に記憶されているデー タに、前記条件を満たした力どうかを表示するフラグを立てて (記録して)、除去した データを示すことが好都合である。
[0062] (第 9工程)
次に、第 9工程 90を実施する。本工程では、表示図形作成部 330において、 E th2
>E となる三次元格子点について第 7工程で説明したサブステップ 71および 72と vdW
同様のサブステップを繰り返して、 E >E となる三次元格子点のそれぞれを中心 th2 vdW
とする半径 R1の球体の集合体の立体的な輪郭を得る。本工程における R1の値は、 第 5工程において用いた R1の値と同一にすることが望ましい。この結果、得られる立 体的空間が、生体高分子とリガンド分子との結合に特に重要な立体空間である。
[0063] そして、得られた生体高分子との結合に特に重要な立体空間を、表示部 400によ つて表示することができる。この立体空間に加えて、リガンド分子の形状の予測結果 および Zまたは分子データ保持部 210に保持されている生体高分子の三次元形状 を表示するように表示部 400を構成してもよい。なお、リガンド分子の形状の予測結 果と組み合わせて表示する場合には、生体高分子との結合に特に重要な立体空間 の予測結果は、リガンド分子の形状の予測結果とは異なる属性(明度、彩度、色相の 変更、異なるハッチングによる表示、点滅表示、ハイライト表示など)を有して表示す ることが好ましい。また、入力部 100、表示図形作成部 330および表示部 400を連携 して、オペレータが指定した視点力 みたリガンド分子の形状の予測結果、そのリガ ンド分子の形状のうち、生体高分子との結合に特に重要な立体空間および Zまたは 生体高分子の形状を表示するようにしてもよい。
[0064] 以上の説明においては、第 8工程 80における比較に用いられる第 2の閾値 E 力 S th2 予め設定されている場合について説明した。し力しながら、 E として用いる値を、入 th2
力部から入力することが可能であることはいうまでもない。あるいはまた、複数の E th2 を設定してそれぞれにつ ヽて第 8および第 9工程を実施してその結果を表示させ、そ の表示およびィ匕学的考察に基づいて、当該リガンド分子に関して適切な E をオペ th2 レータが選択できるようにしてもよい。オペレータは、表示された複数の E の中から 適切なものを選択してもよいし、入力部 100から適当な値を入力してもよい。そして、 オペレータが選択ないし入力した E を用いて再び第 8および第 9工程を実施して、 th2
リガンド分子の形状のうち、生体高分子との結合に特に重要な立体空間の形状を得 るよう〖こすることがでさる。
[0065] 以上で説明した本発明の方法および装置は、リガンド分子の情報を利用することな ぐ生体高分子の情報のみに基づいて当該生体高分子に結合するリガンド分子の形 状を予測し、そのリガンド分子の形状のうち、生体高分子との結合に特に重要な立体 空間を決定することができる。したがって、リガンド分子が既知の生体高分子のみなら ず、リガンド分子が知られていない生体高分子に対しても適用が可能であり、ォーフ アンレセプターなどのリガンド分子が未知の生体高分子に関してもリガンド分子の形 状を予測し、そのリガンド分子の形状のうち、生体高分子との結合に特に重要な立体 空間を決定することができる。
[0066] また、本発明の方法および装置は、ファンデルワールス力のみを用いてリガンド分 子の形状を作成するので、生体高分子の周囲の溶媒や生体高分子の種類等を考慮 することなぐリガンド分子の形状を予測し、および Zまたはそのリガンド分子の形状 のうち、生体高分子との結合に特に重要な立体空間を決定することが出来る。
[0067] さらに、本発明の方法および装置により得られたリガンド分子の形状を利用して、ラ イブラリー化合物群や新規に設計した化合物群が当該リガンド分子の形状に適合す るかどうかの In— Silicoスクリーニングを行うことにより、薬物活性物質または生理活 性物質の分子設計研究を効率的に行うことができる。
[0068] 本発明の方法を実施例でさらに詳細に説明するが、本発明はこれらの内容に限定 されるものではない。
実施例 1
[0069] (ジヒドロ葉酸還元酵素に結合するリガンド分子の形状)
本発明の方法を実施するための具体例を、ジヒドロ葉酸還元酵素を用いて説明す る。ジヒドロ葉酸還元酵素は古くから研究されている酵素の一つであり、いくつかの X 線結晶構造の解析がなされている。ジヒドロ葉酸還元酵素(以下、 DHFR)の原子座 標は、プロテインデータバンクのエントリー ID「1RX3」の情報を利用した。また、これ らの原子のディスクリプタ一として、生体高分子用の力場として一般的な CHARMm Version22 (以下、 CHARMm)を用いた。
[0070] CHARMmでは、メチル原子のファンデルワールス半径 (VR)力 2. 165オングス トローム、ポテンシャル井戸の深さ(V E )が、 -0. 1811KcalZmolと定義されてい る。そこで、ファンデルワールスポテンシャルを計算するための仮想原子の VRを 1. 95オングストローム(メチル原子の VRの約 90%)、 V £ を— 0. 1811KcalZmol (メ チル原子 V εの 100%)とした。
[0071] 上記 DHFRの三次元座標には、水素原子の座標情報がないため、ソフトウェア Re duceを用いて水素原子の座標を付加した。 DHFRのリガンド結合部位は文献既知 の情報を基に、その周辺のアミノ酸残基を含めてリガンド結合領域を直方体 (X座標 = 28. 0〜37. 0、Y座標 = 37. 0〜47. 0、 Ζ座標 =0. 0〜14. 0)で指定した(図 5 参照)。
[0072] 次に、この直方体のリガンド結合領域に 1オングストローム間隔の三次元格子点を 発生させ、仮想原子を用いて各格子点上のファンデルワールスポテンシャルを、 CH ARMmで用いられるファンデルワールス力を計算する前記式 (I)に従って計算した。
[0073] 続いて、第 1の閾値 E として— 1. 8KcalZmol (V £ の絶対値の約— 10倍)を設 定し、 E より大きいファンデルワールスポテンシャルをもつ三次元格子点を除去し、 残った三次元格子点のそれぞれにおいて半径 Rl = l. 0オングストローム (VR -0. 95オングストローム)の球を発生させ、重複部分を一意にしてリガンド分子の形状を 作成した。得られたリガンド分子の形状を図 6に示した。
[0074] また、本発明の方法に従って得られたリガンド分子の形状の妥当性を検討するため 、既知の DHFR'メトトレキセート共結晶(プロテインデータバンクのエントリー ID「1R X3」)から求められたメトトレキセートの三次元座標を用い、このメトトレキセートを、座 標を動かすことなぐ本発明の方法により得られたリガンド分子の形状と重ね合わせ たところ、図 7に示すように、極めてよく一致することが確認された。
[0075] さらに、第 2の閾値 E £ の絶対値の約ー14倍)を設
Figure imgf000020_0001
定し、 E より大きいファンデルワールスポテンシャルをもつ三次元格子点を除去し、 th2
残った三次元格子点のそれぞれにおいて半径 Rl = l. 0オングストロームの球を発 生させ、重複部分を一意にして、 DHFRとの結合に重要な立体的空間を決定した。 図 8は、得られた立体的空間とメトトレキセートとを、同様に、座標を動かすことなく重 ね合わせた図である。このようにして決定した立体空間は、メトトレキセートのピリミジ ン環が占める領域と一致している。 X線結晶解析の結果から、このピリミジン環部分は 、 DHFRと多数の水素結合および疎水結合を形成して安定な DHFR—メトトレキセ ート複合体を形成する上で大きな役割を果たしており、メトトレキセートの活性に欠く ことのできな 、部分構造であることが知られて 、る(非特許文献 6参照)。このように、 第 2の閾値を使用し本発明の方法に従って得られる生体高分子との結合に特に重要 な立体空間と、メトトレキセートの分子構造のうち DHFRとの結合に重要な部分構造 であるピリミジン環部分とが、よく一致することが確認された。
実施例 2
[0076] (レチノイン酸受容体ガンマに結合するリガンド分子の形状)
核内受容体に結合するリガンド分子の形状を作成する具体例として、レチノイン酸 受容体ガンマを用いた実施例を説明する。レチノイン酸受容体ガンマ(以下、 RAR) は核内ホルモン受容体の一つであり、皮膚疾患や癌に関与していることが知られて いる。 RARの原子座標は、プロテインデータバンクのエントリー ID「4LBD」の情報を 利用した。また、これらの原子のディスクリプタ一として、生体高分子用の力場として 一般的な CHARMm Version22 (以下、 CHARMm)を用いた。
[0077] 本実施例においても、ファンデルワールスポテンシャルを計算するための仮想原子 の VRを 1. 95オングストローム(メチル原子の VRの約 90%)、 ν ε を—0. 1811Kc alZmol (メチル原子 V εの 100%)とした。
[0078] 上記 RARの三次元座標には、水素原子の座標情報がないため、実施例 1と同様 にソフトウェア Reduceを用いて水素原子の座標を付カ卩した。 4LBDのリガンド結合部 位は文献既知の情報を基に、その周辺のアミノ酸残基を含めてリガンド結合領域を 直方体 (X座標 =— 31. 0〜47. 0、Y座標 = 10. 0〜21. 0、Ζ座標 = 78. 0〜90. 0)で指定した。
[0079] 次に、この直方体のリガンド結合領域に 1オングストローム間隔の三次元格子点を 発生させ、仮想原子を用いて各格子点上のファンデルワールスポテンシャルを、 CH ARMmで用いられるファンデルワールス力を計算する前記式 (I)に従って計算した。
[0080] 続いて、第 1の閾値 E を 1. 8KcalZmol (仮想原子の V Eの絶対値の約 10
thl
倍)に設定し、 E より大き 、ファンデルワールスポテンシャルをもつ三次元格子点を
thl
除去し、残った三次元格子点のそれぞれにおいて半径 1. 0オングストローム (VR— 0. 95オングストローム)の球を発生させ、重複部分を一意にしてリガンド分子の形状 を作成した。得られたリガンド分子の形状を図 9に示した。
[0081] また、本発明の方法に従って得られたリガンド分子の形状の妥当性を検討するため 、既知の RAR'RARァゴ-スト(BMS961 :化学名 3 フルオロー 4— [2 ヒドロキシ - 2- (5, 5, 8, 8—テトラメチル一 5, 6, 7, 8—テトラヒドロナフタレン一 2—ィル)ァ セチルァミノ]安息香酸)共結晶(プロテインデータバンクのエントリー ID「4LBD」)か ら求められた RARァゴ-ストの三次元座標を用い、この RARァゴニストを、座標を動 かすことなぐ本発明の方法により得られたリガンド分子の形状と重ね合わせたところ 、図 10に示すように、極めてよく一致することが確認された。
実施例 3
[0082] (パクテリオロドプシンに結合するリガンド分子の形状)
7回膜貫通型タンパク質に結合するリガンド分子の形状を作成する具体例として、 ノ クテリオロドプシンを用いた実施例を説明する。ノ クテリオロドプシンの座標情報は 、プロテインデータバンクのエントリー ID「1BRR」の情報を利用した。また、これらの 原子のディスクリプタ一として、生体高分子用の力場として一般的な Amber 91を用 いた。
[0083] Amber 91では、メチル原子のファンデルワールス半径 (VR)が、 2. 165オングス トローム、ポテンシャル井戸の深さ(V ε )が、 0. 181KcalZmolと定義されている。 そこで、ファンデルワールスポテンシャルを計算するための仮想原子の VRを 1. 95 オングストローム(メチル原子の VRの約 90%)、 ν ε を 0. 181KcalZmol (メチル原 子 V Eの 100%)とした。
[0084] 上記バクテリオロドプシンの三次元座標には、水素原子の座標情報がないため、実 施例 1と同様にソフトウェア Reduceを用 、て水素原子の座標を付カ卩した。「 1BRRJ のリガンド結合部位は文献既知の情報を基に、その周辺のアミノ酸残基を含めてリガ ンド結合領域を直方体 (X座標 = 9. 0〜17. 0、丫座標=ー15. 0〜0. 0、 Z座標 = 1
9. 0〜29. 0)で指定した。
[0085] 次に、この直方体のリガンド結合領域に 1オングストローム間隔の三次元格子点を 発生させ、仮想原子を用いて各格子点上のファンデルワールスポテンシャルを、 Am berで用いられるファンデルワールス力を計算する前記式 (I)に従って計算した。
[0086] 続いて、第 1の閾値 E を 1. 8KcalZmol(V £ の絶対値の約 10倍)に設定
thl V
し、 E より大きいファンデルワールスポテンシャルをもつ三次元格子点を除去し、残 thl
つた三次元格子点のそれぞれにおいて半径 1. 0オングストローム(VR— 0. 95オン ダストローム)の球を発生させ、重複部分を一意にしてリガンド分子の形状を作成した 。得られたリガンド分子の形状を図 11に示した。
[0087] また、本発明の方法に従って得られたリガンド分子の形状の妥当性を検討するため 、既知のバクテリオロドプシン ·レチナール共結晶(プロテインデータバンクのエントリ 一 ID riBRRj )から求められたレチナ一ノレの三次元座標を用い、このレチナ一ノレを、 座標を動かすことなぐ本発明の方法により得られたリガンド分子の形状と重ね合わ せたところ、図 12に示すように、極めてよく一致することが確認された。
産業上の利用可能性
[0088] 本発明の方法および装置を用いることにより生体高分子に結合するリガンド分子の 形状を作成することができる。従って、本発明の方法および装置は、医薬、農薬など の生理活性を有する化合物の分子設計に極めて有用である。

Claims

請求の範囲 [1] 生体高分子に結合するリガンド分子の形状作成方法であって:
(1) 記憶装置から生体高分子の原子を表現するパラメータを読み出す第一工程;
(2) 記憶装置から 1種または 2種以上の仮想原子のパラメータを読み出す第二ェ 程;
(3) 生体高分子の原子座標を読み出す第三工程;
(4) (3)で読み出した生体高分子のリガンド結合領域に複数の三次元格子点を 発生させる第四工程;
(5) (4)で発生させた複数の三次元格子点のそれぞれに、(2)でパラメータを読 み出した仮想原子を置!、たときに、該仮想原子と生体高分子との間のファンデルヮ 一ルスポテンシャルを計算する第五工程;
(6) (5)で計算したファンデルワールスポテンシャルが第 1の閾値より大きい三次 元格子点を除去する第六工程;および
(7) (6)で残った三次元格子点からリガンド分子の形状を作成する第七工程 を実施することを特徴とする生体高分子に結合するリガンド分子の形状作成方法。
[2] 生体高分子に結合するリガンド分子の形状を予測し、さらにリガンド分子形状のうち 生体高分子との結合に特に重要な立体空間を決定する方法であって:
(1) 記憶装置から生体高分子の原子を表現するパラメータを読み出す第一工程;
(2) 記憶装置から 1種または 2種以上の仮想原子のパラメータを読み出す第二ェ 程;
(3) 生体高分子の原子座標を読み出す第三工程;
(4) (3)で読み出した生体高分子のリガンド結合領域に複数の三次元格子点を 発生させる第四工程;
(5) (4)で発生させた複数の三次元格子点のそれぞれに、(2)でパラメータを読 み出した仮想原子を置!、たときに、該仮想原子と生体高分子との間のファンデルヮ 一ルスポテンシャルを計算する第五工程;
(6) (5)で計算したファンデルワールスポテンシャルが第 1の閾値より大きい三次 元格子点を除去する第六工程; (7) (6)で残った三次元格子点からリガンド分子の形状を作成する第七工程;
(8) (5)で計算したファンデルワールスポテンシャルが第 2の閾値より大き 、三次 元格子点を除去する第八工程;および
(9) (8)で残った三次元格子点からリガンド分子の生体高分子との結合に特に重 要な立体空間を決定する第九工程
をさらに実施し、第 2の閾値は第 1の閾値よりも小さいことを特徴とする生体高分子に 結合するリガンド分子の形状を予測し、さらにリガンド分子形状のうち生体高分子との 結合に特に重要な立体空間を決定する方法。
[3] 第二工程で読み出される仮想原子のパラメータは仮想原子のファンデルワールス ポテンシャル井戸の深さを含み、第 1の閾値は、第二工程で定義した仮想原子のファ ンデルワールスポテンシャル井戸の深さの絶対値の 7〜一 11倍の範囲内であるこ とを特徴とする請求項 1に記載の方法。
[4] 第二工程で読み出される仮想原子のパラメータは仮想原子のファンデルワールス ポテンシャル井戸の深さを含み、第 1の閾値は、第二工程で定義した仮想原子のファ ンデルワールスポテンシャル井戸の深さの絶対値の 7〜一 11倍の範囲内であるこ とを特徴とする請求項 2に記載の方法。
[5] 第 2の閾値は、仮想原子のファンデルワールスポテンシャル井戸の深さの絶対値の
12倍以下であることを特徴とする請求項 4に記載の方法。
[6] 生体高分子に結合するリガンド分子の形状作成装置であって:
(1) 生体高分子の原子および仮想原子を表現するパラメータを保持するパラメ一 タ保持部;
(2) 生体高分子の原子の座標を保持する分子データ保持部;
(3) 前記パラメータ保持部に保持されたパラメータおよび前記分子データ保持部 に保持された生体高分子の原子の座標を用いて、生体高分子のリガンド結合領域内 の複数の三次元格子点に 1種または 2種以上の仮想原子を置いたときに、該仮想原 子と生体高分子との間のファンデルワールスポテンシャルを計算するファンデルヮー ルスポテンシャル演算部;
(4) 前記複数の三次元格子点の三次元座標、および前記ファンデルワールスポ テンシャル演算部で計算されたファンデルワールスポテンシャルを保持する仮想原 子データ保持部;
(5) 前記仮想原子データ保持部に保持されたファンデルワールスポテンシャルと 第 1の閾値とを比較して、第 1の閾値よりも大きいファンデルワールスポテンシャルを 有する三次元格子点を前記仮想原子データ保持部から除去する比較部;および
(6) 前記仮想原子データ保持部に保持され、前記比較部で除去されなかった三 次元格子点から、リガンド分子の形状を作成する表示図形作成部
を具えたことを特徴とする装置。
[7] 前記比較部が、前記仮想原子データ保持部に保持されたファンデルワールスポテ ンシャルと第 2の閾値とを比較して、第 2の閾値よりも大きいファンデルワールスポテン シャルを有する三次元格子点を前記仮想原子データ保持部から除去する第二の機 能をさらに有し、
前記表示図形作成部が、前記仮想原子データ保持部に保持され、前記第二の機 能により除去されなかった三次元格子点から、生体高分子に結合するリガンド分子の 形状のうち、生体高分子との結合に特に重要な立体空間を作成する機能をさらに有 することを特徴とする請求項 6に記載の装置。
[8] 生体高分子に結合する候補ィ匕合物のスクリーニング方法であって:
(1) 記憶装置から生体高分子の原子を表現するパラメータを読み出す第一工程;
(2) 記憶装置から仮想原子のパラメータを読み出す第二工程;
(3) 生体高分子の原子座標を読み出す第三工程;
(4) (3)で読み出した生体高分子のリガンド結合領域に複数の三次元格子点を 発生させる第四工程;
(5) (4)で発生させた複数の三次元格子点のそれぞれに、(2)でパラメータを読 み出した仮想原子を置!、たときに、該仮想原子と生体高分子との間のファンデルヮ 一ルスポテンシャルを計算する第五工程;
(6) (5)で計算したファンデルワールスポテンシャルが第 1の閾値より大きい三次 元格子点を除去する第六工程;
(7) (6)で残った三次元格子点からリガンド分子の形状を作成する第七工程; (8) (7)で得られたリガンド分子の形状と、候補ィ匕合物の立体構造とを重ね合わ せ、その適合度を評価する第八工程
を実施することを特徴とする生体高分子に結合する候補化合物のスクリーニング方 法。
PCT/JP2005/007595 2004-04-23 2005-04-21 リガンド分子の形状作成方法および装置 WO2005103994A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512581A JP4829108B2 (ja) 2004-04-23 2005-04-21 リガンド分子の形状作成方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-128864 2004-04-23
JP2004128864 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005103994A1 true WO2005103994A1 (ja) 2005-11-03

Family

ID=35197192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007595 WO2005103994A1 (ja) 2004-04-23 2005-04-21 リガンド分子の形状作成方法および装置

Country Status (2)

Country Link
JP (1) JP4829108B2 (ja)
WO (1) WO2005103994A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232126A (ja) * 2012-04-27 2013-11-14 Fujitsu Ltd 計算支援プログラム、計算支援装置、および計算支援方法
WO2019078006A1 (ja) * 2017-10-17 2019-04-25 富士フイルム株式会社 特徴量算出方法、特徴量算出プログラム、及び特徴量算出装置、スクリーニング方法、スクリーニングプログラム、及びスクリーニング装置、化合物創出方法、化合物創出プログラム、及び化合物創出装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018180A1 (fr) * 1995-11-13 1997-05-22 Akiko Itai Procede de mise au point de compose physiologiquement actif
WO1997024301A1 (fr) * 1995-12-28 1997-07-10 Akiko Itai Procede de preparation d'un compose physiologiquement actif

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256307B2 (ja) * 1993-01-07 2002-02-12 昭子 板井 生理活性を有するリガンドの分子構造を構築する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018180A1 (fr) * 1995-11-13 1997-05-22 Akiko Itai Procede de mise au point de compose physiologiquement actif
WO1997024301A1 (fr) * 1995-12-28 1997-07-10 Akiko Itai Procede de preparation d'un compose physiologiquement actif

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ITAI A. ET AL: "Lead Kagobutsu o Sosei suru", NIKKEI SCIENCE, vol. 24, no. 3, 1 March 1994 (1994-03-01), pages 42 - 45 *
YAMAGUCHI Y. ET AL: "Bunshikan Sogo ni okeru Bunshi no Kyodo Kaiseki", DAI 29 KAI CHINO SYSTEM SYMPOSIUM SHIRYO, 2002, pages 271 - 276 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232126A (ja) * 2012-04-27 2013-11-14 Fujitsu Ltd 計算支援プログラム、計算支援装置、および計算支援方法
WO2019078006A1 (ja) * 2017-10-17 2019-04-25 富士フイルム株式会社 特徴量算出方法、特徴量算出プログラム、及び特徴量算出装置、スクリーニング方法、スクリーニングプログラム、及びスクリーニング装置、化合物創出方法、化合物創出プログラム、及び化合物創出装置
JPWO2019078006A1 (ja) * 2017-10-17 2020-09-10 富士フイルム株式会社 特徴量算出方法、特徴量算出プログラム、及び特徴量算出装置、スクリーニング方法、スクリーニングプログラム、及びスクリーニング装置、化合物創出方法、化合物創出プログラム、及び化合物創出装置

Also Published As

Publication number Publication date
JP4829108B2 (ja) 2011-12-07
JPWO2005103994A1 (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
Blaszczyk et al. Modeling of protein–peptide interactions using the CABS-dock web server for binding site search and flexible docking
Case et al. AmberTools
Brookes et al. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule
Raval et al. Basics, types and applications of molecular docking: A review
Meller Molecular dynamics
Fu et al. BFEE2: automated, streamlined, and accurate absolute binding free-energy calculations
Lagorce et al. DG-AMMOS: A New tool to generate 3D conformation of small molecules using D istance G eometry and A utomated M olecular M echanics O ptimization for in silico S creening
Goodsell Computational docking of biomolecular complexes with AutoDock
Patil et al. Organization of Swiss Dock: in study of computational and molecular docking study
Orry et al. Preparation and refinement of model protein–ligand complexes
Lo et al. TMPad: an integrated structural database for helix-packing folds in transmembrane proteins
Leach et al. Synergy between combinatorial chemistry and de novo design
JP6484612B2 (ja) 改善された治療リガンドの取得
Clarke et al. Novel insights through the integration of structural and functional genomics data with protein networks
Chikhi et al. Comparative study of the efficiency of three protein-ligand docking programs
Good et al. Analysis and optimization of structure-based virtual screening protocols (1): exploration of ligand conformational sampling techniques
Chandershekar et al. A Review On Computer Aided Drug Design (Caad) And It’s Implications In Drug Discovery And Development Process
WO2005103994A1 (ja) リガンド分子の形状作成方法および装置
JP2006323833A (ja) 生理活性化合物の設計方法及び設計装置、並びに生理活性化合物の設計プログラム
Kurcinski et al. A protocol for CABS-dock protein–peptide docking driven by side-chain contact information
Banaganapalli et al. Molecular docking
Reddy et al. Homology modeling studies of human genome receptor using modeller, Swiss-model server and esypred-3D tools
Kim et al. Protocols for molecular dynamics simulations of RNA nanostructures
US6970791B1 (en) Tailored user interfaces for molecular modeling
JP2004110262A (ja) 計算機上の仮想プロテインアレイによる蛋白質−リガンド相互作用の解析方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512581

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase