WO2005103256A1 - Gene encoding gtpase activating protein and gene product thereof - Google Patents

Gene encoding gtpase activating protein and gene product thereof Download PDF

Info

Publication number
WO2005103256A1
WO2005103256A1 PCT/JP2005/007313 JP2005007313W WO2005103256A1 WO 2005103256 A1 WO2005103256 A1 WO 2005103256A1 JP 2005007313 W JP2005007313 W JP 2005007313W WO 2005103256 A1 WO2005103256 A1 WO 2005103256A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
polynucleotide
present
expression
tissue
Prior art date
Application number
PCT/JP2005/007313
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Ohara
Takahiro Nagase
Michio Ohishi
Hiroshi Yokota
Osamu Kamida
Original Assignee
Daiichi Pharmaceutical Co., Ltd.
Kazusa Dna Research Institute Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co., Ltd., Kazusa Dna Research Institute Foundation filed Critical Daiichi Pharmaceutical Co., Ltd.
Priority to JP2006512519A priority Critical patent/JPWO2005103256A1/en
Publication of WO2005103256A1 publication Critical patent/WO2005103256A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • C07K14/4706Guanosine triphosphatase activating protein, GAP
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to a protein capable of acting as a GTPase activating protein on a Rho family protein, which is a group of low molecular weight GTP-binding proteins, and a polynucleotide encoding the protein. More specifically, a protein that binds to Racl, one of the Rho family low-molecular-weight GTP-binding proteins, a polynucleotide encoding the protein, a recombinant vector containing the polynucleotide, and a transformant transformed with the recombinant vector It relates to a transformant. Further, the present invention relates to a method for producing the protein, and an antibody against the protein.
  • the present invention relates to a method for identifying a compound that inhibits the function of the protein and the expression of Z or the polynucleotide. Further, the present invention relates to a method for diagnosing a chronic inflammatory disease, which comprises measuring the expression level of the polynucleotide. Further, a preventive and / or therapeutic agent for chronic inflammatory diseases comprising a protein function inhibitor and / or an expression inhibitor of the polynucleotide as an active ingredient, a protein function inhibitor and / or a Z or the polyfunctional inhibitor. The present invention relates to a method for preventing a chronic inflammatory disease and a method for treating Z or a therapeutic method, characterized by using a nucleotide expression inhibitor. The present invention also relates to a reagent kit comprising at least one of the protein, the polynucleotide, the recombinant vector, the transformant, and the antibody.
  • Rho family low molecular weight GTP-binding protein is a protein belonging to one group of low molecular weight GTP-binding proteins (hereinafter simply referred to as low molecular weight G protein).
  • Low-molecular-weight G proteins act as signal amplification factors between cell membrane receptors and effectors involved in intracellular signaling pathways.
  • the low-molecular-weight G protein specifically binds to guanosine ⁇ triphosphate (GTP) or guanosine ⁇ diphosphate (GDP) and has an enzymatic activity to hydrolyze the bound GTP to GDP.
  • GTPase activity refers to the enzyme activity that hydrolyzes GTP to GDP.
  • GAP GTPase activating protein
  • GAP has the function of promoting the GTPase activity of low molecular weight G proteins. With this function, GAP promotes the change from GTP-linked active low-molecular-weight G protein to GDP-linked inactive low-molecular-weight G-protein.
  • GAP has a characteristic domain structure called GAP domain. The GAP domain is the active domain of GAP.
  • Rho-GAPs those that act on Rho family proteins are called Rho-GAPs.
  • Rho family proteins As Rho family proteins, Cdc42, Racl, RhoA and the like are known. Cdc42 regulates the formation of filopodia in fibroblasts. Racl regulates the production of superoxide in leukocytes and macrophages, and regulates the formation of ruffling-lamellipodia in cell membranes in fibroblasts. Cdc42 and Racl can also activate the c Jun N-terminal kinase signaling pathway. Thus, Rho family proteins are involved in various cell functions through the control of intracellular signaling. As cellular functions involving the Rho family protein, for example, cytoskeletal rearrangement, cell adhesion, gene expression and the like are known. Such actions through Rho family proteins are thought to act on morphogenesis during development, leukocyte migration, neurite retraction, and metastasis and invasion of cancer cells.
  • Rho-GAP is thought to play an important role in controlling intracellular signaling involved in Rho family proteins by its function of promoting GTPase activity.
  • the genes isolated as Rho-GAP include Oligophrenin-1 (non-patent document 1) involved in nonspecific X-linked mental retardation, Lowe syndrome OCRL-1 (Non-Patent Document 2) and the like involved in (Lowe's syndrome).
  • Non-Patent Document 1 "Nature”, 1998, Vol. 392, No. 6679, p. 923-926.
  • Non-Patent Document 2 "Proceedings of the National Academy oi sciences oi The United States oi America", 1995, Vol. 92, Issue 11, p. 4853—4856.
  • An object of the present invention is to provide a novel Rho-GAP and a gene encoding the Rho-GAP. Another object of the present invention is to provide a recombinant vector containing the gene, and a transformant transformed by the recombinant vector. Further, the object of the present invention includes providing a method for producing the Rho-GAP and an antibody recognizing the Rho-GAP. Another object of the present invention is to provide a method for identifying a compound that inhibits the function of Rho-GAP and the expression of Z or the gene.
  • the object of the present invention is to provide a method for preventing and treating a disease based on an abnormality in the function of Rho-GAP and an abnormality in the expression of Z or the gene, a method for diagnosing the disease, a diagnostic method for the disease, and a reagent kit. It also includes providing.
  • the present inventors have made intensive efforts to solve the above-mentioned problems, have found a novel gene having a region encoding a GAP domain characteristic of Rho-GAP, and have further obtained a protein encoded by the gene. succeeded in. Then, it was experimentally revealed that the protein encoded by the gene binds to Racl, one of the Rho family proteins. Furthermore, it was found that the tissue expression of the gene was at least 4.5 times and at least 3.5 times higher than that of normal tissues in cases of chronic inflammation of the thyroid gland and chronic inflammation of the kidney, respectively. The present invention has been achieved based on these findings.
  • the present invention provides
  • nucleotide sequence of SEQ ID NO: 1 or its complementary nucleotide sequence A polynucleotide encoding a protein represented by the amino acid sequence of SEQ ID NO: 2 or a polynucleotide represented by a nucleotide sequence complementary to the polynucleotide,
  • a polynucleotide that hybridizes with the nucleotide under stringent conditions is a polynucleotide having a mutation such as deletion, substitution, addition or the like of one or several nucleotides or an induced mutation in the nucleotide sequence of the polynucleotide according to the item 1, and iii) the polynucleotide according to the item 1.
  • a polynucleotide that hybridizes with the nucleotide under stringent conditions is a polynucleotide having a mutation such as deletion, substitution, addition or the like of one or several nucleotides or an induced mutation in the nucleotide sequence of the polynucleotide according to the item 1, and iii) the polynucleotide according to the item 1.
  • the method for producing a protein according to the above 7 or 8 comprising a step of culturing the transformant according to the above 5 or 6. 10. an antibody that recognizes the protein according to the above 7. or 8.
  • An identification method which comprises determining whether the compound inhibits the function of the protein and the expression of Z or the polynucleotide,
  • a method for determining whether or not a test tissue derived from a human thyroid tissue is a tissue derived from a chronic inflammatory disease of the human thyroid gland comprising: A determination method characterized by measuring the expression level of the described polynucleotide,
  • test tissue is at least 4.5 times the expression level of the polynucleotide in the normal human thyroid-derived fibrous tissue as a control.
  • test tissue is determined to be a tissue derived from a chronic inflammatory disease of the human thyroid gland, wherein the determination method according to the above 13,
  • a method for determining whether or not a test tissue derived from a human kidney tissue is a tissue derived from a chronic inflammatory disease of a human kidney comprising: A determination method characterized by measuring the expression level of the described polynucleotide,
  • Expression strength of the polynucleotide according to any one of 3. above in the test tissue is at least 3.5 times or more the expression level of the polynucleotide in a normal human kidney-derived tissue as a control.
  • the test tissue is determined to be a tissue derived from a chronic inflammatory disease of a human kidney,
  • a compound that inhibits the function of a protein according to the above 7. or 8. 1.
  • a reagent kit comprising at least one of the recombinant and the antibody according to 10.
  • the present invention it is possible to provide a polynucleotide encoding a novel protein that binds to a Rho family protein and a protein encoded by the polynucleotide.
  • This protein bound to Racl, one of the Rho family proteins.
  • this protein has a GAP domain characteristic of Rho-GAP in its amino acid sequence. From this, it is considered that the present protein binds to a Rho protein, for example, Racl, and acts as Rho-GAP.
  • the present invention can provide a method for diagnosing a chronic inflammatory disease, such as chronic thyroiditis and chronic nephritis, which comprises measuring the expression level of the polynucleotide.
  • an agent for preventing and treating a chronic inflammatory disease for example, chronic thyroiditis and Z or chronic nephritis, comprising a protein function inhibitor and Z or an expression inhibitor of the polynucleotide as an active ingredient
  • a method for preventing a chronic inflammatory disease for example, chronic thyroiditis and Z or chronic nephritis
  • a method for treating Z or chronic nephritis which comprise using the protein function inhibitor and the Z or expression inhibitor of the polynucleotide.
  • a reagent kit comprising at least one of the protein, the polynucleotide, the recombinant vector, the transformant, and the antibody.
  • the present invention makes it possible to elucidate and regulate signaling pathways and cell functions involving Rho family proteins, for example, Racl. Further, diseases based on abnormal function of the protein encoded by the present polynucleotide and abnormal expression of Z or the present polynucleotide, such as chronic inflammatory diseases, such as chronic thyroiditis and Z or chronic nephritis, prevention, and diagnosis of Z. Or treatment becomes possible.
  • diseases based on abnormal function of the protein encoded by the present polynucleotide and abnormal expression of Z or the present polynucleotide such as chronic inflammatory diseases, such as chronic thyroiditis and Z or chronic nephritis, prevention, and diagnosis of Z. Or treatment becomes possible.
  • the present invention is a useful invention that contributes widely to the field of basic science and pharmaceutical development. Brief Description of Drawings
  • Panel A is a diagram showing the detection of binding between a protein encoded by sj04085 and Racl.
  • a cell lysate of a cell obtained by cotransfection of the sj04085 expression vector and the Racl expression vector a band indicating the binding of the protein encoded by sj04085 to Racl was detected (lane 6 in panel A).
  • GUS j8-Glucuronidase
  • Such bands were not detected in any of the following cell lysates (Panel A): Cells transfected with sj04085 expression vector alone (lane 4); GUS expression vector or Rac l Cells transfected only with the expression vector (lanes 2 and 3); and cells transfected only with Lipofectamine TM 2000 without the introduction of each vector (lane 1).
  • the measurement of the binding was performed by a pull-down method. Specifically, sj04085 was expressed in cells as FLAG fusion protein, and Racl and GUS were expressed as GST fusion proteins.
  • Each cell lysate was incubated with glutathione sepharose, after deploying the protein bound to glutathione ceph Arosu in SDS-PAGE, and detected binding of s J04085 and Rac l by I beam knob blotting using anti-FLAG antibody.
  • Panel B is a diagram in which SDS-PAGE was performed using a sample of each cell lysate, and the protein encoded by sj04085 was detected using an anti-FLAG antibody.
  • Panel C is a diagram in which SDS-PAGE was performed using a sample of each cell lysate, and GST-fused GUS was detected using an anti-GST antibody.
  • Panel D is a diagram in which SDS-PAGE was performed using a sample of each cell lysate, and GST-fused Racl was detected using an anti-GST antibody.
  • the amount of protein encoded by sj04085 was almost the same (panel B, lanes 46).
  • the amount of Racl or GUS was approximately the same (lanes 3 and 6 in panel D or lanes 2 and 5 in panel C). (Example 3)
  • isolated full-length DNA and Z or RNA synthetic full-length DNA and Z or RNA
  • isolated DNA oligonucleotides and Z or RNA oligonucleotides The term "polynucleotide” is used as a generic term to refer to and Z or RNA oligonucleotides, where such DNA and Z or RNA have a minimum size of 2 nucleotides.
  • a generic term is used to mean an isolated or synthetic full-length protein; an isolated or synthetic full-length polypeptide; or an isolated or synthetic full-length oligopeptide.
  • the term "protein” is used, where a protein, polypeptide or oligopeptide has a minimum size of 2 amino acids.
  • amino acids when describing amino acids, they may be represented by one or three letters.
  • One aspect of the present invention relates to novel polynucleotides.
  • This polynucleotide was identified and isolated from a human spleen-derived cDNA library as a gene having a region encoding a GAP domain, which is a characteristic domain of Rho-GAP.
  • a specific embodiment of the polynucleotide according to the present invention may be, for example, a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the sequence listing or a complementary nucleotide sequence thereof.
  • the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 is a 4393 bp polynucleotide and contains an open reading frame (ORF) encoding 1101 amino acid residues (SEQ ID NO: 2).
  • the region from the 421st to the 879th nucleotide has the nucleotide force from the 34th amino acid (Pro) to the 186th amino acid in the amino acid sequence shown in SEQ ID NO: 2. It encodes a GAP domain consisting of 153 amino acid residues up to the serine (Ser).
  • the polynucleotide according to the present invention is preferably a polynucleotide encoding a protein that binds to a Rho family protein or a polynucleotide represented by a complementary nucleotide sequence to the polynucleotide.
  • binding between proteins means that a certain protein (protein A) and another certain protein (protein B) form a complex, such as a hydrogen bond, a hydrophobic bond, or an electrostatic interaction. It means that protein A and protein B interact by non-covalent bond.
  • the binding is sufficient if protein A and protein B bind at a part of those molecules.
  • the amino acids constituting protein A or protein B may contain amino acids that are not involved in the binding between protein A and protein B!
  • the protein encoded by the polynucleotide according to the present invention has a GAP domain in its structure and binds to a Rho family protein.
  • the GAP domain is the active domain of GAP. Therefore, the protein encoded by the present polynucleotide is considered to have GAP activity against Rho family proteins.
  • GAP activity on Rho family protein means the activity of the Rho family protein to promote GTPase activity.
  • the protein encoded by this polynucleotide promotes the GTPase activity of Rho family proteins, and the GTP-linked active Rho family protein also changes into a GDP-linked inactive Rho family protein.
  • Facilitate the expression of Rho family protein to promote GTPase activity of Rho family proteins.
  • the protein encoded by the present polynucleotide can promote the inactivation of Rho family proteins.
  • the “GAP activity for Rho family proteins” includes an activity of promoting the change of the Rho family protein from an active form to an inactive form and an activity of promoting the inactivation of the Rho family protein.
  • the protein encoded by the polynucleotide of the present invention is preferably a Rho family protein capable of exhibiting GAP activity, for example, Racl.
  • Rho family proteins are not limited to these, as long as the protein encoded by the present polynucleotide can exhibit GAP activity.
  • the Rho family protein may be, for example, as long as it can bind.
  • the term Rho family protein preferably refers to Racl.
  • the binding between the protein encoded by the polynucleotide and the Rho family protein can be measured using, for example, the Burdun method (see Example 3).
  • promoting the inactivation of promotion and Rho family protein of Rho family proteins GTP Aze activity by proteins present polynucleotide encodes for example as described below - measured by a method using [ ⁇ 32 P] GTP, etc. it can.
  • Such a measuring method can be carried out by referring to a known document [“Journal of Biological Chemistry J, 1998, Vol. 273, No. 44, p. 29172-29177” or the like. It is.
  • Rhotin and the nucleotide sequence of the Racl gene are described in SEQ ID NO: 6 and SEQ ID NO: 5 in the sequence listing, respectively.
  • Racl and its gene are not limited to those represented by each of the above sequences, but are proteins and genes having one to several mutations in each of the above sequences as long as they have a generally known Racl function. be able to. Further, for desired purposes such as promoting or deleting these functions, mutants in which one or several mutations have been introduced into each of the above sequences can also be used.
  • Racl is obtained, for example, by preparing a transformant by transfection of a recombinant vector containing the gene into an appropriate host by a genetic engineering method known per se, and culturing the transformant. Is possible.
  • the polynucleotide according to the present invention is prepared based on the specific information disclosed by the present invention, for example, the sequence information on the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the sequence listing.
  • sequence information on the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the sequence listing.
  • known genetic engineering methods Sabrook et al., Eds., “Moleki Yura-Cloating, Laboratory Ma- ual, 2nd Edition”, 1989, Cold Spring Laboratories; and Masami Muramatsu, “ Lab Manual Genetic Engineering ", 1988
  • a cDNA library is prepared from an appropriate source in which expression of the polynucleotide according to the present invention has been confirmed according to a conventional method, and a desired clone is also selected using the cDNA library.
  • the source of the cDNA may be various cells or tissues in which expression of the present polynucleotide has been confirmed, or may be based on these. Examples of such cultured cells include, for example, cells derived from human spleen. Isolation of total RNA of these origins, isolation and purification of mRNA, acquisition of cDNA and its closing can all be carried out according to ordinary methods.
  • polyA + RNA derived from human spleen can be used by constructing a cDNA library.
  • the method of selecting a desired clone and the method of selecting a desired clone are not particularly limited, and a conventional method can be used.
  • a desired clone can be selected by using a probe or a primer which selectively and / or selectively hybridizes with the present polynucleotide.
  • examples include a plaque hybridization method using a probe that selectively hybridizes to the present polynucleotide, a co-hybridization method, a method combining these methods, and the like. it can.
  • a probe or a primer which selectively and / or selectively hybridizes with the present polynucleotide.
  • examples include a plaque hybridization method using a probe that selectively hybridizes to the present polynucleotide, a co-hybridization method, a method combining these methods, and the like. it can
  • a polynucleotide or the like chemically synthesized based on the sequence information of the present polynucleotide can be generally used.
  • the polynucleotide of the present invention or a polynucleotide represented by a partial base sequence thereof which has already been obtained can also be preferably used.
  • sense primers and antisense primers designed based on the sequence information of the present polynucleotide can also be used as such a probe.
  • Selection of a desired clone from the cDNA library is performed by, for example, confirming the expressed protein of each clone using a known protein expression system, and further using the function of the protein as an indicator.
  • a known protein expression system any expression system known per se can be used.
  • a cell-free protein expression system can be exemplified [Madin, K. et al., “Proceedings of The National Academy of the National Academy of the National Academy of the United States”. of Sciences of The United States of America), 2000, Vol. 97, p. 559-564].
  • the function of the protein encoded by the polynucleotide of the present invention or the function of the protein of the present invention preferably refers to GAP activity against a Rho family protein, more preferably
  • the polynucleotide of the present invention can be obtained by the polymerase chain reaction [hereinafter, abbreviated as PCR, Ulmer, KM, "Science", 1983, Vol. 219, p. 666—671; Ehrlich, HA, eds., "PCR Technology, Principles and Applications of DNA Amplification", 1989, Stockton Press; and Saiki, RK, et al., Science, 1985. 230, p. 1350-1354].
  • PCR polymerase chain reaction
  • the RACE method ("Experimental Medicine", 1994, Vol. 12, No. 6, p. 615-618), especially 5'- The RACE method (Frohman, MA) et al., "Proceedings of the National Academy of sciences of the United States of America", “Proceedings of the National Academy of Sciences of the United States of America," 1988, Vol. 85, No. 23, p. 8998-9002] is suitable.
  • Primers used for PCR can be appropriately designed based on the base sequence information of the polynucleotide, and can be obtained by synthesis according to a conventional method.
  • Isolation and purification of the amplified DNAZRNA fragment can be performed by a conventional method. For example, it can be carried out by a gel electrophoresis method or the like.
  • the nucleotide sequence of the polynucleotide obtained by such a method is determined by a conventional method, for example, the didoxy method [“Proceedings of the National Academy of Sciences of the United States, United States (Proceedings of the United States). The National Academy of Sciences of United States of America), 1977, Vol. 74, p. 5463-5467) and the Maxam-Gilbert method ("Methods in Enzymology", 1980, Vol. 65, p. 499-560], or simply using a commercially available sequence kit or the like.
  • the polynucleotide according to the present invention is not limited to the above-described polynucleotide, and may be a polynucleotide encoding a protein having sequence homology to the above-mentioned polynucleotide and having GAP activity against a Rho family protein, or a polynucleotide of the polynucleotide. Includes polynucleotides represented by complementary base sequences.
  • it is a polynucleotide having sequence homology to the present polynucleotide and encoding a protein that binds to a Rho family protein, and a polynucleotide represented by a complementary nucleotide sequence of the polynucleotide.
  • Sequence homology is usually It is appropriate that the total nucleotide sequence is 50% or more, preferably at least 70%. It is more preferably at least 70%, further preferably at least 80%, even more preferably at least 90%.
  • a polynucleotide having a GAP domain coding region is preferred.
  • the sequence homology in the GAP domain coding region is at least 70%. It is more preferably 70% or more, further preferably 80% or more, and still more preferably 90% or more. It is further preferred that the GAP domain retains its function.
  • L00 preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 100 nucleotides in the base sequence of the polynucleotide.
  • a polynucleotide represented by a nucleotide sequence having a mutation such as deletion, substitution, addition or insertion of L0, particularly preferably 1 to several nucleotides, or a nucleotide sequence complementary thereto is included.
  • the degree of mutation, their position, and the like are not particularly limited as long as the polynucleotide having the mutation is a protein having GAP activity against Rho family proteins, more preferably a protein that binds to Rho family proteins. More preferably, it is a polynucleotide encoding a protein having a GAP domain.
  • a polynucleotide having such a mutation may be a naturally-occurring polynucleotide and a polynucleotide having an induced mutation. Further, it may be a polynucleotide obtained by introducing a mutation based on a naturally-occurring gene.
  • Examples of the polynucleotide according to the present invention include a polynucleotide that hybridizes to the above-mentioned polynucleotide under stringent conditions.
  • Hybridize The conditions for the screening are according to, for example, the method described in a compendium (edited by Sambrook et al., "Molecular Closing, Laboratory Machines, 2nd Edition", Cold Spring Novell Laboratory, 1989). be able to.
  • under stringent conditions means, for example, after heating at 42 ° C.
  • polynucleotides need not be polynucleotides having a complementary sequence as long as they hybridize to the present polynucleotide.
  • it is a polynucleotide encoding a protein having a GAP domain. More preferably, the encoded protein is a protein having GAP activity against a Rho family protein, and even more preferably, the encoded protein is a protein that binds to a Rho family protein.
  • the polynucleotide according to the present invention includes an oligonucleotide represented by a partial base sequence existing in a designated region of the polynucleotide.
  • Such an oligonucleotide is preferably composed of 5 or more nucleotides, more preferably 10 or more, more preferably 20 or more nucleotides continuous in the region as a minimum unit.
  • an oligonucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or 4 in the sequence listing can be preferably exemplified.
  • oligonucleotides can be used as a primer for amplifying the present gene or the present gene fragment, a probe for detecting the present gene or a transcription product thereof, and the like.
  • These oligonucleotides can be produced by designing a desired sequence according to the nucleotide sequence information of the polynucleotide according to the present invention, and by a chemical synthesis method known per se. Conveniently, it can be obtained using a DNAZRNA automatic synthesizer.
  • the polynucleotide according to the present invention is preferably a human-derived polynucleotide.
  • a protein having sequence homology to the present polynucleotide and having a GAP activity against a Rho family protein preferably a polynucleotide encoding a protein that binds to a Rho family protein, a polynucleotide derived from a mammal,
  • polynucleotides derived from mice, horses, sheep, horses, dogs, dogs, monkeys, cats, bears, rats, and egrets are also included in the present invention.
  • Sequence homology is usually preferred to be 50% or more of the entire base sequence. Or at least 70%.
  • a polynucleotide having a GAP domain coding region is desirable.
  • sequence homology in the GAP domain coding region is at least 70%. More preferably, it is at least 70%, further preferably at least 80%, even more preferably at least 90%.
  • the polynucleotide according to the present invention may be a polynucleotide having a desired gene added to its 5, terminal or ⁇ terminal as long as its expression or the function of the protein encoded thereby is not inhibited. !,.
  • genes that can be added to the polynucleotide include daltathione S-transferase (GST), monogalactosidase (j8-Gal), horseradish peroxidase (HRP), and alkaline phosphatase.
  • GST daltathione S-transferase
  • j8-Gal monogalactosidase
  • HRP horseradish peroxidase
  • alkaline phosphatase examples include enzymes such as (ALP), and genes such as tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag and Xpress-tag.
  • One or more types of genes selected from these genes can be added in combination. The
  • One aspect of the present invention relates to a recombinant vector containing the polynucleotide according to the present invention.
  • the present recombinant vector can be obtained by inserting the present polynucleotide into an appropriate vector DNA.
  • the vector DNA is not particularly limited as long as it can be replicated in the host, and is appropriately selected depending on the type of the host and the purpose of use.
  • the vector DNA may be a vector DNA obtained by extracting a naturally-occurring DNA, or a vector DNA lacking a part of a DNA other than a part necessary for replication.
  • Representative vector DNAs include, for example, vector DNAs derived from plasmids, batteriophages and viruses.
  • the plasmid DNA include a plasmid derived from Escherichia coli, a plasmid derived from Bacillus subtilis, and a plasmid derived from yeast. Batatheriophage DNA includes ⁇ phage and the like.
  • Winnores-derived vector DNAs include, for example, Retro Pinoles, Vaccinia Pinoles, Examples include vectors derived from animal viruses such as adenovirus, papovavirus, SV40, fowlpox virus, and pseudorabies virus, and some vectors include vectors derived from insect viruses such as baculovirus. Other examples include transposon-derived, insertion element-derived, and yeast chromosome element-derived vector DNA. Alternatively, vector DNAs prepared by combining them, for example, vector DNAs (cosmids / phagemids etc.) prepared by combining genetic elements of plasmids and batteriophages can be exemplified.
  • Any vector DNA such as an expression vector or a closing vector, can be used depending on the purpose.
  • the recombinant expression vector containing the polynucleotide according to the present invention can be used for producing a protein encoded by the present polynucleotide.
  • a gene sequence carrying information on replication and control can be combined and incorporated into vector DNA by a method known per se.
  • Such gene sequences include, for example, ribosome binding sequences, terminators, signal sequences, cis elements such as enhancers, splicing signals, and selectable markers (dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene, etc. ) And the like.
  • One or more gene sequences selected from these can be incorporated into the vector DNA.
  • a method for incorporating the polynucleotide according to the present invention into a vector DNA a method known per se can be applied. For example, a method is used in which a gene containing the present polynucleotide is treated with an appropriate restriction enzyme, cut at a specific site, then mixed with a similarly treated vector DNA, and religated with ligase.
  • a desired recombinant vector can also be obtained by ligating a suitable linker to the present polynucleotide and inserting it into a multicloning site of a vector suitable for the purpose.
  • One aspect of the present invention relates to a transformant obtained by transforming a host with the recombinant vector of the present invention.
  • a transformant into which the recombinant expression vector containing the polynucleotide according to the present invention has been introduced is useful for producing a protein encoded by the present polynucleotide. It is.
  • One or more kinds of vector DNAs containing a desired gene other than the present polynucleotide can be further introduced into the present transformant.
  • a vector DNA containing a desired gene other than the present polynucleotide for example, a vector DNA containing a gene encoding a Rho family protein such as Racl can be mentioned.
  • a transformant obtained by transformation with an expression vector containing the present polynucleotide and an expression vector containing a gene encoding a Rho family protein has a GAP for the Rho family protein of the protein encoded by the present polynucleotide. It can be used in a method for identifying a compound that inhibits the activity. Specifically, it is used for the method of identifying a compound that inhibits the binding of the present protein to the Rho family protein, the promotion of the GTPase activity of the Rho family protein by the present protein, and the promotion of the inactivation of the Rho family protein by the Z or the present protein. it can.
  • Such a transformant is preferably a transformant obtained by transforming the recombinant vector according to the present invention with a recombinant vector containing a gene encoding Racl.
  • Prokaryotic and eukaryotic organisms can also be used as hosts.
  • prokaryotes include genus Escherichia such as Escherichia coli, genus Bacillus such as Bacillus subtilis, genus Pseudomonas such as Pseudomonas putida, and Rhizobium meliloti. And bacteria belonging to the genus Rhizobium.
  • eukaryotes include animal cells such as yeast, insect cells, and mammalian cells. Examples of yeast include Saccharomyces cerevisiae, Schizosaccharomyces pombe, and the like. Examples of insect cells include Sf9 cells and Sf21 cells.
  • mammalian cells examples include monkey kidney-derived cells (such as COS cells and Vero cells), Chinese nose, Muster ovary cells (CHO cells), mouse L cells, rat GH3 cells, human FL cells, and 293EBNA cells.
  • monkey kidney-derived cells such as COS cells and Vero cells
  • Chinese nose such as COS cells and Vero cells
  • CHO cells Chinese nose
  • Muster ovary cells CHO cells
  • mouse L cells rat GH3 cells
  • human FL cells examples of the mammalian cells
  • 293EBNA cells are used.
  • Transformation of a host cell with a recombinant vector can be carried out by applying a means known per se.
  • the method can be carried out by a standard method described in a compendium (Sambrook et al., Edited by "Molecular Cloning, Laboratory Machines, Second Edition", 1989, Cold Spring Nover Laboratory).
  • a more preferable method is to use gene safety. If qualitative considerations are taken into account, an integration method into the chromosome can be mentioned.
  • an autonomous replication system using extranuclear genes can be used. Specifically, calcium phosphate transfection, DEAE-dextran-mediated transfection, microinjection, cationic lipid-mediated transfection, electoral poration, transduction, scrape loading, ballistic introduction and ballistic introduction Infection.
  • the recombinant vector When a prokaryote is used as a host, the recombinant vector must be capable of autonomous replication in the prokaryote and, at the same time, be composed of a promoter, a ribosome binding sequence, the polynucleotide of the present invention, and a transcription termination sequence. preferable.
  • a gene that controls a promoter may be included.
  • any promoter can be used as long as it can be expressed in bacteria such as Escherichia coli.
  • promoters derived from the Otsuki Bacillus phage such as the trp motor, the same promoter, the pL promoter, and the pR promoter, are used.
  • An artificially designed and modified promoter such as the tac promoter may be used.
  • the method for introducing the recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria, and any method can be used.
  • the recombinant vector can be autonomously replicated in the cell, and at the same time, a promoter and a price site can be used.
  • an SRa promoter an SV40 promoter, an LTR promoter, a CMV promoter or the like may be used, or an early gene promoter of cytomegalovirus may be used.
  • an electoral port method a calcium phosphate method, a lipofection method, or the like can be used. Most preferably, the Lipofection method is used.
  • the promoter is not particularly limited as long as it can be expressed in yeast, and examples thereof include gall promoter, gallO promoter, and heat shock. Examples include a protein promoter, an MFa1 promoter, a PH05 promoter, a PGK promoter, a GAP promoter, an ADH promoter, and an AOX1 promoter.
  • the method for introducing the recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast, and preferably, for example, an electoporation method, a spheroplast method, a lithium acetate method, or the like can be used.
  • the recombinant vector can be preferably introduced by, for example, a calcium phosphate method, a lipofection method, an electoral poration method, or the like.
  • One embodiment of the present invention relates to a protein encoded by the polynucleotide of the present invention.
  • a specific embodiment of the protein according to the present invention includes, for example, a protein encoded by a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1. More specifically, a protein represented by the amino acid sequence of SEQ ID NO: 2 can be exemplified as such a protein. In this protein, the amino acid residues from the 34th proline (Pro) to the 186th serine (Ser) constitute the GAP domain.
  • the protein according to the present invention is preferably a protein having GAP activity against Rho family proteins.
  • the binding between the protein encoded by the polynucleotide and Rac1 was detected. (See Example 3).
  • the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 encodes the protein represented by the amino acid sequence of SEQ ID NO: 2. Therefore, it is considered that the protein represented by the amino acid sequence of SEQ ID NO: 2 bound to Racl.
  • the protein according to the present invention has a GAP domain in its structure and binds to a Rho family protein.
  • the GAP domain is the active domain of GAP. Therefore, the present protein is considered to have GAP activity against the Rh family protein. More specifically, the protein represented by the amino acid sequence of SEQ ID NO: 2 is considered to have GAP activity against Racl, one of Rho family proteins.
  • the protein according to the present invention is not limited to the above proteins, and any protein encoded by the polynucleotide according to the present invention is included in the scope of the present invention. Preferably, a protein encoded by the present polynucleotide, which has GAP activity against a Rho family protein, is included.
  • a protein encoded by the present polynucleotide which protein binds to a Rho family protein.
  • a protein for example, a polynucleotide encoding the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 or its complementary nucleotide sequence and the polynucleotide encoding the protein represented by the amino acid sequence of SEQ ID NO: 2 or A polynucleotide represented by a nucleotide sequence having at least 70% homology with the nucleotide sequence of any one of the polynucleotides selected from the polynucleotides represented by the complementary nucleotide sequences of the polynucleotide, wherein the Rho family protein And a protein that encodes a polynucleotide that encodes a protein that binds to a protein that has GAP activity against Rho or a Rho family protein.
  • a polynucleotide represented by a nucleotide sequence having a mutation such as deletion, substitution, addition or the like of one or several nucleotides or an induced mutation in the nucleotide sequence of any one of the polynucleotides selected from the above-mentioned polynucleotide group A protein having GAP activity against a Rho family protein or a protein encoded by a polynucleotide encoding a protein that binds to a Rho family protein.
  • such a protein according to the present invention has sequence homology to the protein represented by the amino acid sequence of SEQ ID NO: 2 and has a GAP activity against a Rho family protein.
  • it is a protein having sequence homology to the protein represented by the amino acid sequence of SEQ ID NO: 2 and binding to a Rho family protein.
  • the sequence homology is usually at least 50%, preferably at least 70%, of the entire amino acid sequence. It is more preferably 70% or more, further preferably 80% or more, and still more preferably 90% or more.
  • GAP A polypeptide having a domain is desirable.
  • the sequence homology in the GAP domain is at least 70%.
  • the GAP domain retains its function.
  • one or more amino acids in the amino acid sequence of SEQ ID NO: 2 for example, 1 to: L00, preferably 1 to 30, more preferably 1 to 20, still more preferably 1 to 10,
  • a protein represented by an amino acid sequence having a mutation such as deletion, substitution, addition or insertion of one or several amino acids and having GAP activity against Rho family protein. More preferably, it is a protein represented by the amino acid sequence having the above mutation in the amino acid sequence of SEQ ID NO: 2, and which binds to a Rho family protein.
  • the degree of amino acid mutation and the position thereof are not particularly limited as long as the protein having the mutation is a protein having GAP activity against a Rho family protein, more preferably a protein that binds to a Rho family protein. More preferably, it is a protein having a GAP domain. Proteins having such mutations may be those naturally produced by, for example, mutation or post-translational modification, and those obtained by introducing mutations based on naturally-occurring genes. Good. Methods for introducing mutations are known per se, and can be carried out using, for example, known genetic engineering techniques.
  • the point of view that the mutation does not alter the basic properties (physical properties, function, physiological activity or immunological activity, etc.) of the protein is, for example, related amino acids (polar amino acids, non-polar amino acids, hydrophobic amino acids). Mutual substitutions between amino acids, hydrophilic amino acids, positively charged amino acids, negatively charged amino acids and aromatic amino acids) are readily envisioned.
  • the protein according to the present invention further includes a protein represented by a partial sequence of the above protein.
  • a protein represented by the partial sequence of the protein represented by the amino acid sequence of SEQ ID NO: 2 is also included in the scope of the present invention.
  • Such a protein is represented by a minimum unit of preferably 5 or more, more preferably 8 or more, still more preferably 12 or more, particularly preferably 15 or more continuous amino acids.
  • the protein according to the present invention is preferably a human-derived protein.
  • proteins having sequence homology with the present protein and having GAP activity against Rho family proteins are preferred.
  • it is a protein derived from a mammal, such as a mouse, a horse, a sheep, a horse, a dog, a monkey, a cat, a bear, a rat, or a rabbit.
  • Derived proteins are also included in the present invention.
  • the sequence homology is usually at least 50%, preferably at least 70%, as a whole of the amino acid sequence. More preferably, it is at least 70%, further preferably at least 80%, even more preferably at least 90%.
  • a protein having a GAP domain is desirable.
  • the sequence homology in the GAP domain is at least 70%. It is more preferably at least 70%, further preferably at least 80%, even more preferably at least 90%.
  • the protein according to the present invention may be a cell, a cell-free synthetic product, a chemical synthetic product, or a biological sample derived from the cell or the organism, in which a gene encoding the protein is expressed by a genetic engineering technique.
  • the power was also prepared, and these powers were also more refined.
  • the protein according to the present invention can be further modified as long as its function is not remarkably changed, for example, by modifying its constituent amino group or carboxyl group or the like by amidation modification. Labeling was performed by adding another protein or the like to the N-terminal side or C-terminal side directly or indirectly via a linker peptide or the like using genetic engineering techniques or the like. May be something. Preferably, labeling is desired so that the function of the present protein is not inhibited.
  • Labeling substances used for labeling such as enzymes such as GST, ⁇ -Gal, HRP or ALp, His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag Tag peptides, fluorescent substances such as fluorescein isothiocynate or phycoerythrin, maltose-binding protein, Fc fragment of immunoglobulin or biotin. Not. Labeling with a radioisotope is also possible.
  • the labeling substance can be added to the present protein in one kind or in combination of two or more kinds. By measuring the labeling substance itself or its function, the present protein can be easily detected or purified.For example, it is possible to detect the binding of the present protein to another protein or to measure the function of the present protein. .
  • One embodiment of the present invention relates to a method for producing the protein of the present invention.
  • This protein for example, for example, a general genetic engineering method based on the nucleotide sequence information of the gene encoding the present protein [Sambrook et al., Edited by Molecular Cloning, Laboratory Manual, 2nd Edition, 1989, Cold Spring Harbour Laboratory; Masanori Muramatsu, "La Boma-Yual Genetic Engineering", 1988, Maruzen Co .; Ulmer, KM, "Science”, 1983, Vol. 219, p. 666—671; And Enolichich (HA), edited by PCR Technology, Principles and Applications of DNA Amplification, 1989, Stockton Press, etc.].
  • a cDNA library is first prepared from various cells and tissues in which expression of the polynucleotide according to the present invention has been confirmed, or cultured cells derived therefrom in accordance with a conventional method.
  • the cDNA library is also amplified using the primers that selectively hybridize to the gene encoding the present protein.
  • the present protein can be obtained by inducing the expression of the obtained polynucleotide using a known gene engineering technique.
  • the present protein can be produced by culturing the transformant according to the present invention and then recovering the present protein from the obtained culture.
  • the present transformant can be cultured under culture conditions and methods known per se that are optimal for the host used to prepare the transformant.
  • the culturing can be carried out using the present protein itself expressed by the transformant or the function of the present protein as an index.
  • subculture or batch culture may be performed using the amount of the transformant in the medium, which can be cultured using the present protein itself or the amount of the protein produced in or outside the host as an index. .
  • the transformant When the protein of the present invention is expressed in the cells of the transformant or on the cell membrane, the transformant is crushed to extract the present protein.
  • the protein When the protein is secreted outside the transformant, use the culture solution as it is or use a culture solution from which the transformant has been removed by centrifugation or the like.
  • the protein according to the present invention can be separated and Z- or purified from a culture solution or a transformant in which the transformant has been cultured, if desired. Separation and Z or purification can be performed by various separation procedures utilizing the physical properties, chemical properties, etc. of the present protein. Specific examples of the separation operation method include ammonium sulfate precipitation, ultrafiltration, gel chromatography, ion exchange chromatography, affinity chromatography, and high-speed separation. Examples thereof include liquid chromatography and dialysis. Further, these methods can be appropriately combined and used. Preferably, it is recommended to use affinity chromatography using a column to which a specific antibody against the present protein is bound. A specific antibody to the present protein can be obtained by a known antibody preparation method based on the amino acid sequence information of the present protein. When performing separation and Z or purification, the function of the present protein can be used as an index for obtaining the present protein.
  • the protein according to the present invention can also be produced by a general chemical synthesis method.
  • a method for chemically synthesizing a protein for example, a solid phase synthesis method, a liquid phase synthesis method and the like are known. Either method can be used. More specifically, such a protein synthesis method is based on amino acid sequence information, in which each amino acid is successively linked one by one to extend the chain, which is referred to as the so-called stepwise longation method.
  • a fragment condensing method in which a fragment having several amino acids is synthesized in advance, and then the respective fragments are subjected to a coupling reaction. The synthesis of the present protein can be performed by any of them.
  • the condensation method used in the above protein synthesis method can also follow a conventional method.
  • Examples of the condensation method include azide method, mixed acid anhydride method, DCC method, active ester method, oxidation-reduction method, DPPA (diphenylphosphoryl azide) method, DCC + Sol, N-hydroxysuccinamide, N-hydroxy-15-norbornene-1,2,3-dicarboximide) method, Woodward method and the like.
  • the present protein obtained by chemical synthesis can be further appropriately purified by various conventional purification methods as described above.
  • the protein represented by the partial sequence of the protein according to the present invention can also be obtained by cleaving the present protein with an appropriate peptidase.
  • the present antibody can be prepared using the present protein as an antigen.
  • the antigen is composed of at least 8, preferably at least 10, more preferably at least 12, and even more preferably 15 or more amino acids, which may be the present protein or a fragment thereof.
  • the amino acid sequence of this region is not necessarily the amino acid sequence of the present protein or a fragment thereof. It need not be the same as the sequence.
  • an amino acid sequence an amino acid sequence at an exposed site on the three-dimensional structure of a protein is preferable.
  • the present antibody is not particularly limited as long as it is an antibody that specifically recognizes the present protein. Recognizing the present protein specifically means recognizing the present protein, for example, binding to the present protein, but not recognizing or weakly recognizing a protein other than the present protein. The presence or absence of recognition can be determined by a known antigen-antibody binding reaction.
  • Antibodies can be produced by a known antibody production method. For example, antibody production is achieved by administering an antigen to an animal in the presence or absence of an adjuvant, alone or in combination with a carrier, to induce immunity such as humoral response and Z or cellular response. Can be applied.
  • a carrier any known carrier can be used as long as it has no adverse effect on the host itself and enhances antigenicity. Specific examples include cellulose, polymerized amino acids, albumin, and keyhole limpet hemocyanin.
  • FCA Freund's complete adjuvant
  • FIA Freund's incomplete adjuvant
  • MPL MPL
  • TDM Ribi
  • MPL + TDM pertussis vaccine
  • MDP muramyl dipeptide
  • ALUM Aluminum adjuvant
  • the polyclonal antibody can be obtained from the serum of an animal to which immunization has been applied by a known antibody recovery method.
  • Preferred antibody recovery means includes immunoaffinity chromatography.
  • Monoclonal antibodies include antibody-producing cells (for example, lymphocytes derived from spleen or lymph node) collected from an animal to which immunization has been applied, and perpetually proliferating cells known per se (for example, P3-X63- Ag8 strains and other myeloma strains) can be produced using a hybridoma.
  • a hybridoma is prepared by fusing antibody-producing cells and perpetually proliferating cells in a manner known per se, and then cloned.
  • Hybridomas that produce an antibody that specifically recognizes the protein according to the present invention are selected from the cloned hybridomas, and the antibody in the culture solution of the hybridomas is also recovered.
  • a polyclonal antibody or a monoclonal antibody capable of recognizing or binding to the protein according to the present invention can be used as an antibody for purifying the protein, a reagent, a label marker, or the like.
  • antibodies that inhibit the function of this protein can be used to regulate the function of this protein, and are useful for elucidation, prevention, improvement, and Z or treatment of various diseases caused by abnormal or quantitative abnormalities of this protein. It is.
  • One embodiment of the present invention relates to a method for identifying a compound that inhibits the function of the protein according to the present invention or a compound that inhibits expression of the polynucleotide according to the present invention.
  • the present identification method can be carried out using at least one of the protein, polynucleotide, recombinant vector, transformant and antibody according to the present invention, using a drug screening system known per se. .
  • the identification method includes any method performed in vitro or in vivo. This identification method enables selection of antagonists by drag design based on the three-dimensional structure of the protein, selection of inhibitors of gene-level expression using a protein synthesis system, or selection of antibody-recognizing substances using antibodies. It is possible.
  • the method for identifying a compound that inhibits the function of a protein according to the present invention is characterized in that, in an experimental system capable of measuring the function of the protein, the interaction between the protein and the compound to be examined (test compound) is tested.
  • the function of the present protein is measured in the presence of the test compound and the function of the present protein in the absence of the test compound.
  • the present invention can be carried out by comparing the function of the protein and detecting the presence, absence, or change of the function of the present protein, for example, reduction, increase in calorie, disappearance, or appearance.
  • the function of the present protein in the presence of the test compound decreases or disappears as compared with the function of the present protein in the absence of the test compound, it can be determined that the test compound inhibits the function of the present protein.
  • the function can be measured by directly detecting the function, or by, for example, introducing a signal as an indicator of the function into an experimental system and detecting the signal.
  • Enzymes such as GST, tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag, and fluorescent proteins can be used as the signal.
  • deviations can also be used as long as they are generally used in a compound identification method and are labeled substances.
  • the protein according to the present invention bound to a Rho family protein. Since this protein has a GAP domain, it is considered that this protein has GAP activity against Rho family proteins. That is, the functions of the present protein include the activity of promoting the GTPase activity of the Rho family protein and the activity of promoting the inactivation of the Rho family protein.
  • the identification method using the binding of the protein to the Rho family protein according to the present invention as an index is, for example, obtained by expressing the present protein by a genetic engineering technique, in the presence or absence of a test compound.
  • the detection can be performed by detecting the binding to the Rho family protein in the above.
  • a Rho family protein is expressed as a GST-tag fusion protein by genetic engineering techniques, and then bound to daltathione sepharose, and the protein is combined with the present protein in the presence or absence of a test compound. Let react.
  • the present protein By quantifying the present protein that binds to the Rho family protein bound to daltathione sepharose, it is possible to identify a compound that inhibits the binding of the present protein to the Rho family protein. When the binding of both proteins in the presence of the test compound is reduced or eliminated as compared to the binding of both proteins in the absence of the test compound, the test compound binds to the Rho family protein of the present protein. It can be determined that binding is inhibited. Quantification of the present protein can be performed, for example, using the antibody according to the present invention. As the antibody, an antibody labeled with an enzyme such as HRP or ALP, a radioisotope, a fluorescent substance, or a labeling substance such as biotin can be used.
  • a labeled secondary antibody may be used. If a protein fused with a tag peptide is used as the present protein, quantification can be performed using an anti-tag antibody.
  • the present protein may be directly labeled with a labeling substance such as the above enzyme, radioisotope, fluorescent substance, and biotin. In such a case, the present protein can be quantified by measuring the labeling substance.
  • the binding between the two proteins is detected by a pull-down method.
  • compounds that inhibit the binding can be identified (see Example 3).
  • a compound that inhibits the binding of the protein of the present invention to a Rho family protein is also included.
  • the determination method can be performed using a known two-hybrid method.
  • it contains a plasmid expressing the protein of the present invention and a DNA binding protein as a fusion protein, a plasmid expressing a Rho family protein and a transcriptionally active protein as a fusion protein, and a reporter gene connected to an appropriate promoter gene.
  • the resulting plasmid is introduced into yeast, eukaryotic cells, or the like.
  • the expression of the compound that inhibits the binding between the present protein and the Rho family protein was determined. The same can be achieved.
  • the test compound is compared with the Rho family protein of the present protein. It can be determined that binding is inhibited.
  • the reporter gene a gene generally used in the reporter atssay can be used.
  • a gene having an enzymatic activity such as luciferase, ⁇ Gal or chloramue-co-acetylacetyl transferase can be exemplified.
  • the expression of the reporter gene can be detected by detecting the activity of the gene product, for example, the enzyme activity in the case of the above-described reporter gene.
  • the method for identifying a compound that inhibits the binding between the protein and the Rho family protein according to the present invention can also be carried out using a surface plasmon resonance sensor such as a BIACORE system.
  • the identification method is performed using a scintillation proximity assay (SPA) or a force method that applies optical resonance energy transfer (FRET). It is possible.
  • SPA scintillation proximity assay
  • FRET optical resonance energy transfer
  • the method for identifying a compound that inhibits the GAP activity of the protein according to the present invention can be carried out, for example, by using a general method for measuring the GAP activity of Rho-GAP.
  • the measurement method of the Rho-GAP of GAP activity e.g., measurement method worn exemplified using [ ⁇ - 32 P] GTP [ "Journal O Bed Biological Chemistry (Journal of Biological)
  • Rho-GAP method Measurement of GAP activity is specifically purified Rho protein is reacted with [ ⁇ - 32 P] GTP, to form a GTP-bound Rho protein. Then, [ ⁇ - 32 P] GTP-bound R The ho protein is reacted with the protein of the present invention. [ ⁇ -P] GTP-linked Rho family One protein can also measure the GAP activity of this protein by measuring the change to GDP-linked Rho family protein.
  • [ ⁇ - 32 P] measured changes to GTP-bound Rho family protein force also GDP-bound Rho family proteins the change to [ ⁇ - 32 P] GTP-bound Rho family ⁇ HakuTadashiryoku also GDP-bound Rho family protein It can be carried out by measuring the released ⁇ - 32 ⁇ ⁇ ⁇ . Specifically, after reacting the present protein with [ ⁇ 32 P] GTP-bound Rho protein, the reaction solution is filtered through a trocellulose filter or the like, and the trocellulose filter is washed, dried, and released. the ⁇ 32 p measurements can be measured by the amount of decrease in radioactivity of the filter. Since the protein is captured by the nitrocellulose filter, the Rho protein is captured by the filter, and the released 32 P passes through the filter.
  • GTP-linked Rho protein also increases the amount of free 32 P as the reaction with the GDP-linked Rho protein progresses, and decreases the amount of 32 P captured by the trocellulose filter via the Rho protein.
  • the radioactivity of the nitrocellulose filter decreases, it can be said that the reaction of the GTP-bound Rho protein with the GDP-bound Rho protein is in progress. Therefore, when the radioactivity of the -trocellulose filter in the presence of the protein according to the present invention is reduced as compared to the case in the absence of the protein, the protein has GAP activity against the Rho protein. Then it can be determined.
  • the method of identifying a compound that inhibits the GAP activity protein has according to the present invention, for example, a method of measuring the GAP activity of Rho-GAP with [.gamma. 32 P] GTP, as described above, the test It can be carried out in the presence or absence of a compound. Specifically, after reaction in the presence or absence of [ ⁇ 3 2 P] GTP-bound Rho protein and the protein according to the present invention, the test compound, [ ⁇ - 32 P] GTP-bound Measure the change from Rho family protein to GDP-linked Rho family protein.
  • ⁇ - 32 P] GTP-binding Rho family protein in the presence of test compound also decreases or disappears when changes to GDP-binding Rho family protein are reduced compared to changes in the absence of test compound It can be determined that the test compound inhibits the GAP activity of the present protein on the Rho family protein.
  • Rho family protein used in the identification method of the present invention is a GTPase thereof.
  • the protein may be partially defective or may be a protein to which the above-mentioned labeling substance has been added. .
  • the method for identifying a compound that inhibits the expression of a polynucleotide according to the present invention comprises a method for determining the interaction between the present polynucleotide and a test compound in an experimental system capable of measuring the expression of the present polynucleotide.
  • the expression of the polynucleotide is measured in the presence of the test compound, and the expression of the polynucleotide is measured in the absence of the test compound.
  • the presence, absence or change of the expression of the present polynucleotide for example, reduction, increase, disappearance, or appearance, can be detected.
  • the test compound inhibits the expression of the present polynucleotide when the expression of the present polynucleotide in the presence of the test compound decreases or disappears compared to the expression of the present polynucleotide in the absence of the test compound. Then it can be determined.
  • the present identification method comprises bringing the transformant into contact with a test compound in an experimental system for expressing the present polynucleotide using the transformant according to the present invention. Thereafter, the expression can be measured by measuring the expression of the present polynucleotide. The expression can be measured simply by using the amount of the expressed protein or the function of the protein as an index.
  • expression can be measured by introducing a signal as an index of expression into an experimental system and detecting the signal.
  • Enzymes such as GST, tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag, and fluorescent substances can be used as the signal. Methods for detecting these signals are well known to those skilled in the art.
  • the method for identifying a compound that inhibits the expression of a polynucleotide according to the present invention also includes, for example, preparing a vector in which a reporter gene is linked instead of the polynucleotide downstream of the promoter region of a gene containing the polynucleotide.
  • the method can be carried out by contacting a test compound with a cell into which the vector has been introduced, for example, a eukaryotic cell, and measuring the presence, absence, or change in the expression of the reporter gene.
  • a reporter gene a gene commonly used in reporter attesties can be used. Specifically, luciferase, ⁇ Gal or chloramphene-coal acetyltransferase, etc. A gene having the above enzyme activity can be used.
  • the expression of the reporter gene can be detected by detecting the activity of the gene product, for example, the enzyme activity of the reporter gene exemplified above.
  • the compound obtained by the identification method according to the present invention can be used as a candidate compound such as an inhibitor or an antagonist of the function of the protein according to the present invention. Further, it can also be used as a candidate for the polynucleotide expression inhibitor according to the present invention.
  • These candidate compounds can be prepared as a medicament by selecting them in consideration of the balance between their usefulness and toxicity, and can be used in various pathological conditions caused by abnormal function of the present protein and abnormal expression of Z or the present polynucleotide. The effect of preventing symptoms and Z or therapeutic effects can be expected.
  • the compound according to the present invention is a compound obtained by a method other than the present identification method, and includes a compound that inhibits the function of the present protein and the expression of Z or the present polynucleotide.
  • One embodiment of the present invention comprises, as an active ingredient, the protein, polypeptide, recombinant vector, transformant, antibody, or compound according to the present invention, and inhibits the function of the protein and the expression of Z or the polypeptide. It relates to a medicament or a pharmaceutical composition based on antagonism.
  • the medicament according to the present invention does not include a medicament containing at least one of the protein, polynucleotide, recombinant vector, transformant, antibody, or compound according to the present invention as an active ingredient and an effective amount thereof. You may. Usually, it is preferable to produce a pharmaceutical composition using one or more kinds of pharmaceutically acceptable carriers (pharmaceutical carriers).
  • the amount of the active ingredient contained in the pharmaceutical preparation according to the present invention is appropriately selected from a wide range. Usually, it is suitably in the range of about 0.0001 to 70% by weight, preferably about 0.0001 to 5% by weight.
  • diluents and excipients such as fillers, extenders, binders, humectants, disintegrants, lubricants and the like which are usually used depending on the use form of the preparation are used. Can be illustrated. These are appropriately selected and used depending on the administration form of the obtained preparation.
  • water a pharmaceutically acceptable organic solvent
  • collagen a pharmaceutically acceptable organic solvent
  • polybutyl alcohol a pharmaceutically acceptable organic solvent
  • polybutylpyrrolidone carboxybutyl polymer
  • sodium alginate sodium carboxymethyl starch
  • pectin xanthan gum
  • gum arabic examples include zein, gelatin, agar, glycerin, propylene glycol, polyethylene glycol, glycerin, paraffin, stearyl alcohol, stearic acid, human serum albumin, mantole, sorbitol, ratatose and the like. These are used singly or in combination of two or more depending on the dosage form according to the present invention.
  • various components that can be used in ordinary protein preparations for example, a stabilizer, a bactericide, a buffer, a tonicity agent, a chelating agent, a pH adjuster, and a surfactant are appropriately used.
  • a stabilizer for example, a stabilizer, a bactericide, a buffer, a tonicity agent, a chelating agent, a pH adjuster, and a surfactant are appropriately used.
  • the stabilizer examples include human serum albumin, ordinary L-amino acids, saccharides, cellulose derivatives and the like, and these can be used alone or in combination with a surfactant or the like. In particular, this combination may improve the stability of the active ingredient in some cases.
  • the L amino acid is not particularly limited, and may be, for example, glycine, cysteine, glutamic acid, or the like.
  • the sugars are not particularly limited, for example, monosaccharides such as glucose, mannose, galactose and fructose, sugar alcohols such as mantol, inositol and xylitol, disaccharides such as sucrose, maltose and lactose, dextran, hydroxypropyl starch and chondroitin. Any of polysaccharides such as sulfuric acid and hyaluronic acid and derivatives thereof may be used. Cellulose derivatives are also not particularly limited, such as methylcellulose, ethylcellulose, hydroxyethylenosenorelose, hydroxypropinoresenorelose, hydroxypropinolemethinoresenorelose, sodium carboxymethylcellulose and the like.
  • the surfactant is not particularly limited, and the difference between ionic and nonionic surfactants can be used. This includes, for example, polyoxyethylene glycol sorbitan alkyl ester type, polyoxyethylene alkyl ether type, sorbitan monoacyl ester type, fatty acid glyceride type and the like.
  • boric acid As a buffer, boric acid, phosphoric acid, acetic acid, citric acid, ⁇ -aminocaproic acid, glutamic acid and ⁇ ⁇ or a salt thereof (for example, alkali salts such as sodium salt, potassium salt, calcium salt, magnesium salt and the like) Metal salts and alkaline earth metal salts).
  • alkali salts such as sodium salt, potassium salt, calcium salt, magnesium salt and the like
  • Metal salts and alkaline earth metal salts for example, alkali salts such as sodium salt, potassium salt, calcium salt, magnesium salt and the like.
  • Examples of the tonicity agent include sodium salt, potassium salt, saccharides, glycerin and the like.
  • Examples of the chelating agent include sodium edetate and citric acid.
  • the medicament and the pharmaceutical composition according to the present invention can be used as a solution preparation. Alternatively, it can be used after freeze-drying it to make it storable and dissolving it in a buffer solution containing water or a saline solution, etc. to prepare an appropriate concentration before use.
  • the medicament and the pharmaceutical composition according to the present invention may be used as a preventive agent and a Z or therapeutic agent for diseases based on abnormal function of the protein according to the present invention and abnormal expression of Z or the present polynucleotide.
  • it can be used for a method for preventing and Z or treating the disease.
  • the function of the present protein and the expression of Z or the present polynucleotide are inhibited.
  • Administering an effective amount of an inhibitor to a subject together with a pharmaceutically acceptable pharmaceutical carrier can prevent, ameliorate or treat abnormal symptoms.
  • the expression of the endogenous polynucleotide may be inhibited using an expression blocking method.
  • an oligonucleotide that is a partial sequence of the present polynucleotide can be used as an antisense oligonucleotide in gene therapy to inhibit the expression of the present polynucleotide.
  • Oligonucleotides used as antisense oligonucleotides are useful even if they correspond to untranslated regions other than only the translated regions of the present polynucleotide. In order to specifically inhibit the expression of the present polynucleotide, it is preferable to use a nucleotide sequence of a region unique to the polynucleotide.
  • Tissue expression of the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the Sequence Listing which is one embodiment of the polynucleotide according to the present invention, was examined using disease database information BioExpress (GeneLogic). The expression level in thyroid tissue of patients with chronic inflammation of the thyroid gland was found to be 4.65 times higher than that in normal thyroid tissue. When the expression of the polynucleotide was examined using BioExpress (GeneLogic), it was found that the expression level in renal tissues of patients with chronic inflammation of the kidney was 3.55 times higher than that in normal kidney tissues. found.
  • the present polynucleotide is associated with chronic inflammatory diseases, for example, thyroid and kidney chronic inflammatory diseases.
  • chronic inflammatory diseases of the thyroid gland and kidney include chronic thyroiditis and chronic nephritis.
  • the medicament and the pharmaceutical composition according to the present invention are useful as a preventive agent and a Z or therapeutic agent for chronic inflammatory diseases such as chronic thyroiditis and chronic nephritis. Further, it can be used for a method for preventing and treating Z or treating chronic inflammatory diseases such as chronic thyroiditis and chronic nephritis.
  • the dose range of the medicament and the pharmaceutical composition according to the present invention is not particularly limited. And the like, whether or not a drug is used), and the judgment of the attending physician.
  • a suitable dose is, for example, about 0. Ol ⁇ g-lOOmg, preferably about 0: g to lmg per kg of the subject's body weight. Whilst, these dosages can be varied using routine experimentation for optimization well known in the art.
  • the above dose can be administered once or several times a day, or may be administered intermittently once every few days or weeks.
  • the medicament or pharmaceutical composition may be used alone or in combination with other compounds or medicaments necessary for treatment.
  • the difference between systemic administration and local administration can be selected.
  • an appropriate administration route is selected according to the disease, symptom and the like.
  • parenteral routes include normal intravenous administration and intraarterial administration, as well as subcutaneous, intradermal and intramuscular administration.
  • oral administration is also possible.
  • transmucosal administration or transdermal administration is also possible.
  • these may be oral, parenteral (drip, injection), nasal, inhalant, vaginal, suppository, sublingual, eye drops, ear drops, ointment, cream Agent, transdermal absorbent, transmucosal They are classified into absorbents and the like, and can be prepared, molded and prepared according to the usual methods.
  • the protein, polynucleotide, recombinant vector, transformant, antibody or compound according to the present invention can be used per se as a means for diagnosing a disease such as a diagnostic marker or a diagnostic reagent.
  • the presence or absence of abnormality in the polynucleotide or the gene containing the polynucleotide in an individual or various kinds of fibrous tissue is determined.
  • the presence or absence of expression can be specifically detected.
  • Diagnosis of a disease is, for example, to detect the presence of the polynucleotide according to the present invention, determine its abundance, and identify Z or its mutation in a sample to be examined (test sample). It can be implemented by doing. In comparison with a normal control sample, a change in the presence of the present polynucleotide and a quantitative change thereof can be detected. Alternatively, a mutation such as a deletion or insertion can be detected by, for example, measuring a change in size of an amplification product obtained by amplifying the present polynucleotide by a known method in comparison with a normal genotype.
  • a point mutation can be identified by hybridizing a polynucleotide whose test sample strength has also been amplified with, for example, a labeled present polynucleotide. By detecting such changes and mutations, the above diagnosis can be performed.
  • the tissue expression of the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 was examined using the disease database information BioExpress (GeneLogic). The expression level in the thyroid tissue of a case of chronic inflammation of the thyroid gland was determined. It was found to be 4.65 times higher than normal thyroid tissue. In addition, the expression of the polynucleotide is based on the disease database information BioExpress ( Examination using GeneLogic) revealed that the expression level in kidney tissue of patients with chronic inflammation of the kidney was 3.55 times higher than that in normal kidney tissue. From these results, it is considered that high expression of the present polynucleotide is associated with chronic inflammatory diseases, for example, thyroid and kidney chronic inflammatory diseases.
  • chronic inflammatory diseases for example, thyroid and kidney chronic inflammatory diseases.
  • test sample is a test tissue derived from a chronic inflammatory disease by detecting an increase in the expression level of the polynucleotide in the test sample. It is possible. Such a determination method is also included in the scope of the present invention. In this determination method, an increase in the expression level of the polynucleotide can be detected by comparing the test sample with a normal control sample.
  • the test sample preferably includes a test tissue derived from human thyroid tissue or human kidney tissue.
  • Control samples preferably include human normal thyroid-derived tissue or human normal kidney-derived tissue.
  • the caloric increase is preferably at least 4.5 times or more, more preferably at least 5 times or more. If so, it can be determined that the test sample is a sample derived from a chronic inflammatory disease of the thyroid gland.
  • the expression level of the present polynucleotide in a sample derived from human kidney tissue is increased in caloric level as compared to the control sample, it is preferably increased by at least 3.5 times or more, more preferably by at least 4 times or more! In this case, it can be determined that the test sample is a sample derived from a chronic inflammatory disease of the kidney.
  • the expression level of the polynucleotide according to the present invention means the level of the transcription product of the polynucleotide.
  • the test sample is not particularly limited as long as it contains the polynucleotide of the present invention, the gene containing the polynucleotide or the nucleic acid of the mutant gene thereof.
  • examples thereof include cells, blood, urine, saliva, cerebrospinal fluid,
  • a sample derived from a living organism such as a tissue biopsy or autopsy material can be exemplified.
  • a nucleic acid sample can be prepared by extracting a nucleic acid from the sample and used. Nucleic acids may be used directly for detection of genomic DNA or may be amplified enzymatically by using PCR or other amplification methods prior to analysis. RNA or cDNA may be used as well. Nucleic acid samples may also be prepared by various methods that facilitate detection of the target sequence, such as denaturation, restriction enzyme digestion, electrophoresis or dot blotting.
  • any known gene detection method can be used. Specifically, plaque hybridization, colony hybridization, Southern blotting, Northern blotting
  • RNA detection method in order to identify the polynucleotide according to the present invention, a gene containing the polynucleotide or a mutant gene thereof, and to carry out Z or amplification thereof, an oligonucleotide having a partial sequence ability of the present polynucleotide is used. However, those having properties as a probe or those having properties as a primer are useful.
  • the oligonucleotide having the property as a probe refers to an oligonucleotide having a sequence specific to the polynucleotide which can specifically hybridize only to the present polynucleotide.
  • the one having the property as a primer means one having specific sequence power capable of specifically amplifying only the present polynucleotide.
  • a primer or probe having a sequence of a predetermined length including a site having a mutation in the gene is prepared and used.
  • Probes or primers generally have a nucleotide sequence length of about 5 to 50 nucleotides, more preferably about 10 to 35 nucleotides, and more preferably about 15 to 30 nucleotides.
  • a primer for amplifying the polynucleotide of the present invention or a fragment thereof, or a probe for detecting the present polynucleotide specifically, an oligonucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or 4 Reotide is a preferred example.
  • a labeled probe is used.
  • unlabeled probes can also be used.
  • detection may be performed by direct or indirect specific binding with a labeled ligand.
  • Various methods are known for labeling a probe and a ligand, and examples thereof include a method using nick translation, random priming, and kinase treatment. Suitable labels include radioisotopes, biotin, fluorescent substances, chemiluminescent substances, enzymes, antibodies and the like.
  • PCR is also preferable in terms of sensitivity.
  • the PCR is a method using a primer capable of specifically amplifying the polynucleotide according to the present invention, a gene containing the polynucleotide or a mutant gene thereof, any deviation from a conventionally known method can be used.
  • RT-PCR can be exemplified.
  • various modifications of PCR used in the art can be applied.
  • the DNA of the polynucleotide of the present invention can be quantified by PCR.
  • analysis methods include the competitive quantification method such as the MSSA method, and the PCR-SSCP method known as a mutation detection method that utilizes the change in mobility due to the change in the higher-order structure of single-stranded DNA. Can be shown.
  • the present invention for example, by using the protein according to the present invention, the presence or absence of abnormality in the protein and its function in an individual or various tissues can be specifically detected. Detection of abnormalities in the protein and its function according to the present invention makes it possible to diagnose the susceptibility, onset, and Z or prognosis of a disease based on the quantitative abnormality of the protein and Z or function abnormality.
  • Diagnosis of a disease by detecting a protein can be carried out, for example, by detecting the presence of the protein, determining its abundance, and detecting Z or its mutation in a test sample. That is, the protein of the present invention and Z or a mutant thereof are quantitatively or qualitatively measured. In comparison with a normal control sample, a change in the presence of the present protein and a quantitative change thereof can be detected. In comparison with a normal protein, for example, its mutation can be detected by determining the amino acid sequence. The above diagnosis can be carried out by detecting such changes and mutations.
  • the test sample is not particularly limited as long as it contains the present protein and Z or a mutant thereof, and examples thereof include biological samples derived from living organisms such as blood, serum, urine, and biopsy tissue.
  • the measurement of the protein of the present invention and the protein having a mutation is performed on the protein of the present invention, for example, the protein represented by the amino acid sequence of SEQ ID NO: 2 in the sequence listing, or the amino acid sequence of the protein.
  • This can be achieved by using a protein represented by an amino acid sequence in which one or several or a plurality of amino acids have been deleted, substituted, inserted or added, a fragment thereof, or an antibody against the protein or a fragment thereof.
  • Quantitative or qualitative measurement of a protein can be carried out using a protein detection method or a quantification method according to a conventional technique in this field.
  • the amino acid sequence of this protein Mutant proteins can be detected by column analysis. More preferably, by using an antibody (polyclonal or monoclonal antibody), a difference in protein sequence or the presence or absence of the protein can be detected.
  • the above-described detection can be performed by subjecting a test sample to immunoprecipitation using a specific antibody against the present protein, and analyzing the present protein by Western blotting or immunoblotting.
  • the present protein can be detected in paraffin or frozen tissue sections using an immunohistochemical technique using an antibody against the present protein.
  • Preferred specific examples of the method for detecting the present protein or a mutant thereof include an enzyme immunoassay (ELISA) and a radioimmunoassay (RIA), including a sandwich method using a monoclonal antibody and Z or a polyclonal antibody. , Immunoradiometric assay (IRMA), and immunoenzymatic assay (IEMA). In addition, it is also possible to use a radioimmunity / competition bond / attachment.
  • ELISA enzyme immunoassay
  • RIA radioimmunoassay
  • IRMA Immunoradiometric assay
  • IEMA immunoenzymatic assay
  • any of the proteins, polynucleotides, recombinant vectors, transformants, and antibodies according to the present invention can be used alone or in combination as reagents or the like.
  • the reagent may be at least one of the protein, polynucleotide, recombinant vector, transformant, and antibody according to the present invention, as well as substances such as buffers, salts, stabilizers, and / or preservatives. Can be included.
  • a known formulation means may be introduced according to each property.
  • the reagent can be used, for example, in the determination method according to the present invention, the method for identifying a compound, or the method for measuring the present protein or the present polynucleotide.
  • the reagent is useful for elucidation of intracellular signal transduction pathways involving the protein or polynucleotide of the present invention, and basic research on diseases or the like based on abnormalities of the protein or polynucleotide.
  • the present invention also provides a reagent kit comprising at least one of the protein, polynucleotide, recombinant vector, transformant, and antibody according to the present invention.
  • the reagent kit also includes a label for detecting the protein or polynucleotide according to the present invention. It can contain substances required for the measurement, such as identification substances, label detection agents, reaction diluents, standard antibodies, buffers, detergents, and reaction stop solutions. Examples of the labeling substance include the aforementioned proteins and radioisotopes.
  • the labeling substance may be added in advance to the protein or polynucleotide according to the present invention.
  • the present reagent kit can be used for the determination method according to the present invention, the method for identifying a compound, or the method for measuring the present protein or the present polynucleotide. Further, the present reagent kit can be used as a test agent and a test kit in a test method using the above-mentioned measurement method. Also, the diagnostic method using the above-mentioned measurement method can be used as a diagnostic agent and a diagnostic kit.
  • a human spleen-derived cDNA library was constructed according to the method of Ohara et al. [Ohara, O., et al., "DNA Research", 1997, Vol. 4, p. 53-59). Specifically, an oligonucleotide having a Notl site [GACTAGTTCTAGA TCGCGAGCGGCCGCCC (T) 15] (SEQ ID NO: 9: GIBCO BRL) was used as a primer, and human spleen mRNA (Clontech: Catalog No. 6542-1) was used as a template.
  • Double-stranded cDNA was synthesized using Superscriptll reverse transcriptase kit (GIBCO BRL)
  • An adapter (GIBCO BRL) having a S all site was ligated with cDNA, Notl digested, and 1% low melting point A DNA fragment of 3 kb or more was purified by agarose electrophoresis, and the purified cDNA fragment was ligated with pBluescriptll SK + plasmid treated with Sail-Notl restriction enzyme, and E. coli ElectroMa X DH10B (GIBCO BRL) by the electoral poration method. Approximately 10,000 recombinants were selected from the cDNA library thus constructed, and the DNA clones from both ends of these clones were selected.
  • the total nucleotide sequence of cDNA of about 420 clones containing the novel gene was determined.
  • the sequencing was performed using a DNA sequencer (RISA) manufactured by Shimadzu Corporation and PE Applied.
  • RISA DNA sequencer
  • a reaction kit from Biosystems was used.For most sequences, a shotgun clone was prepared using the dye terminator method (Terminator (One-label method).
  • ORF was predicted by a general-purpose analysis method using a computer program. Next, a motif domain search was performed on the ORF region to identify cDNA containing a region encoding a GAP domain characteristic of Rho-GAP.
  • cDNA (hereinafter, referred to as sj04085) having a novel nucleotide sequence and containing a region encoding the GAP domain was identified.
  • sj04085 was found to consist of the base sequence of SEQ ID NO: 1 (4393 bp) and encode the amino acid sequence of SEQ ID NO: 2 (1101 amino acids).
  • the GAP domain is encoded in the region that also has the 879th nucleotide force from the 421st eyesight to the 879th nucleotide force in the base Irigami IJ number 1 shown in IJ number 1.
  • the GAP domain consists of 153 amino acid residues from the 34th peptide (Pro) to the 186th serine (Ser) in the amino acid sequence of SEQ ID NO: 2. .
  • the expression vector of sj04085 obtained in Example 1 was produced using Gateway TM Cloning Technology (manufactured by GATEWAY TM Cloning Technology, Invitrogen). Next, using the expression vector, the protein encoded by sj04085 was expressed as a FLAG-tag fusion protein in 293EBNA cells (Invitrogen). Expression was confirmed by Western blotting.
  • the sj04085 (inserted into the Sall-Notl site of pBluescriptII SK +) obtained in Example 1 was used as a template, and the ORF region of sj04085 (STRATAGENE) was used by pfu turbo (manufactured by STRATAGENE). (Excluding the stop codon). Oligonucleotides represented by the nucleotide sequences shown in SEQ ID NO: 3 and SEQ ID NO: 4 were used as amplification primers. Thereafter, the amplified product was inserted into pENTRZ SD / D-TOPO by a reaction using a TOPO cloning system to prepare an entry-one vector.
  • an sj04085 expression plasmid was prepared by a recombination reaction using an LR clonase enzyme.
  • the protein encoded by sj04085 is expressed as a protein with FLAG-tag (3X) added to the C-terminus.
  • the sj04085 expression vector was transfected into 293EBNA cells by the Lipofux method.
  • 293EBNA cells were seeded on a 24-well plate on the day before gene transfer at a cell count of 6 ⁇ 10 4 Zwell, and cultured in a culture medium (IMDM medium, manufactured by SIGMA; 10% fetal bovine serum; 4%). mM glutamine; and 10 ⁇ g / ml gentamicin).
  • IMDM medium manufactured by SIGMA
  • mM glutamine 10% fetal bovine serum
  • 10 ⁇ g / ml gentamicin The next day, gene transfer was performed by a method using Lipofectamine 2000 (Lipofectamine TM 2000, manufactured by Invitrogen).
  • serum-free DMEM to which each expression vector was added (manufactured by SIGMA) and DMEM to which Lipofectamine TM 2000 was added were mixed and incubated at room temperature for 20 minutes. The resulting mixture was seeded the day before and kept at 37 ° C with 5% CO.
  • the cells are washed with a buffered saline solution (PBS), and the cells are washed with a lysis buffer (Lysis buffer) containing 1% of a protease inhibitor cocktail (protease inhibitor cocktail, 1/100 concentration, manufactured by SIGMA).
  • the cells were lysed to prepare a cell lysate.
  • the lysis buffer consists of the following composition: 25 mM Tris-HCU pH 7.5; 150 mM NaCl; lm M CaCl; and 1% Triton X-100.
  • Each cell lysate was mixed with an equal volume of SDS-PAGE sample buffer, and heat-treated (at 100 ° C for 5 minutes) to prepare a sample for electrophoresis.
  • SDS-PAGE SDS-polyacrylamide gel electrophoresis
  • the electrophoresis gel was immersed in a blotting buffer for 5 minutes or more to equilibrate, and then the protein was transferred onto a PVDF membrane.
  • the PVDF membrane is blocked by soaking at 4 ° C in a solution (TBS-T + BA) in which Block Ace (manufactured by Dainippon Pharmaceutical Co., Ltd.) is mixed with TBS-T at a ratio of 3: 1. did.
  • the PVDF membrane was washed once with TBS-T for 10 minutes or more while shaking.
  • SDS-PAGE sample buffer Tris SDS ⁇ ME sample treatment solution (manufactured by Daiichi Pure Chemicals) was used.
  • the electrophoresis buffer used for SDS-PAGE also has the following compositional power: 100 mM Tris; 192 mM glycine; 0.1% SDS, pH 8.3 (Bio Rad).
  • the blocking buffer has the following composition: 25 mM Tris; 40 mM ⁇ -amino-n-caproic acid; 20% methanol; and 0.05% SDS.
  • TBS-T consists of the following composition: 1 50 mM NaCl; 10 mM Tris-HC1, pH 7.5; and 0.05% Tween-20.
  • an anti-FLAG M2 monoclonal antibody 1000-fold diluted, manufactured by SIGMA was added after dilution with TBS-T + BA, and the mixture was kept at 37 ° C for 1 hour or more. Then, wash the PVDF membrane three times with TBS-T (shake for at least 20 minutes per wash), and wash with TBS-T + BA for 1 hour. HRP-labeled goat anti-mouse IgG antibody (manufactured by Cell Signaling Technology) diluted 000-fold was added, and the mixture was kept at 37 ° C for 1 hour or more.
  • the predicted molecular weight of the protein encoded by sj04085, expressed as a FLAG-tag fusion protein, is approximately 120 KDa.
  • a major band was detected at the position indicating the expected molecular weight of the protein.
  • such a band was not observed in cells added with only Lipofectamine TM 2000 without introducing each vector. With great effort, I was able to obtain the protein encoded by sj04085.
  • Rho family Racl was used as one protein.
  • 8-Gluccuronidase (GUS) with GST-tag added to the N-terminal side was used as a negative control.
  • An expression vector for expressing Racl as an N-terminal GST-tag fusion protein was prepared using Gateway TM Cloning Technology (Invitrogen).
  • the Racl gene was amplified using pfu turbo using the spleen first strand DNA (Spleen first strand DNA) of Multiple Tissue cDNA Panels (Clontech) as a template.
  • the amplification product was inserted into pENTRZD in a reaction using the TOPO cloning system to prepare an entry vector.
  • Oligonucleotides represented by the nucleotide sequences of SEQ ID NOs: 7 and 8 were used as primers in the amplification reaction.
  • a GST-fused Rho expression plasmid was prepared by recombination with LR clonase using pDEST27, which is an N-terminal GST-tag fusion protein expression vector.
  • the GST-fused GUS protein was prepared using two vectors attached to an expression vector preparation kit (CAT # 11826-021) manufactured by Invitorogen. Specifically, two vectors, pENTR-gus, in which the GUS gene is integrated, and PDEST27, in which the GST gene is integrated, undergo recombination using LR clonase, and a GST-tagged GUS vector (pDEST27-GUS) is obtained. It was constructed.
  • the cells were lysed with a lysis buffer (see Example 2 for the composition) containing 1% of a protease inhibitor cocktail (protease inhibitor cocktail, lZlOO concentration, manufactured by SIGMA) to prepare a cell lysate.
  • a lysis buffer see Example 2 for the composition
  • protease inhibitor cocktail protease inhibitor cocktail, lZlOO concentration, manufactured by SIGMA
  • a negative control a cell lysate of cells transfected with only the Racl gene expression vector was used.
  • the PVDF membrane was washed with TBS-T (1 shaking for 20 minutes or more).
  • TBS-T 1 shaking for 20 minutes or more.
  • the blotting buffer, the TBS-T and the TBS-T + BA the same buffers as those used in Example 2 were used.
  • An anti-FLAG M2 monoclonal antibody (1000-fold diluted, manufactured by SIGMA) was diluted with TBS-T + BA and added to the PVDF membrane, and the mixture was kept at 37 ° C for 1 hour or more. Thereafter, the PVDF membrane was washed 3 times with TBS-T (shake for 20 minutes or more per wash), and HRP-labeled anti-mouse IgG antibody (Cell Signaling Technology) diluted 1,000 times with TBS-T + BA. ) And kept at 37 ° C for 1 hour or more. Finally, after washing the PVDF membrane 3 times with TBS-T (shake for 20 minutes or more per washing), the membrane is washed with ECL Plus Western Blotting Detection System (Amersham Biosciences). An expressed protein that reacts with the FLAG antibody was detected. The chemiluminescence signal was visualized by a detector (Lumino Imaging Analyzer, manufactured by Toyobo Co., Ltd.).
  • the protein encoded by sj04085 binds to Racl.
  • the protein encoded by sj04085 has a GAP domain, which is an active domain of GAP. From these, it is considered that the protein encoded by sj04085 acts as Rho-GAP by binding to Rho family proteins such as Racl.
  • the protein encoded by the polynucleotide according to the present invention has a GAP domain, which is a characteristic domain of GAP, and bound to Racl. From this, it is considered that this protein has the function of Rho-GAP.
  • GAP domain which is a characteristic domain of GAP, and bound to Racl. From this, it is considered that this protein has the function of Rho-GAP.
  • Use of the present proteins and polynucleotides will elucidate and regulate signaling pathways and cell functions involving Rho family proteins, and diseases based on abnormalities of the present proteins or polynucleotides, such as chronic inflammatory diseases, and more specifically It can diagnose, prevent and prevent or treat chronic inflammatory diseases of the thyroid and kidneys. Therefore
  • SEQ ID NO: 1 (421): (879) Region encoding GAP domain.
  • SEQ ID NO: 3 oligonucleotide designed based on the sequence of SEQ ID NO: 1 for primers.
  • SEQ ID NO: 4 Oligonucleotide designed for primer based on the sequence of SEQ ID NO: 1.
  • SEQ ID NO: 5 polynucleotide encoding Racl.
  • SEQ ID NO: 6 amino acid sequence of Rac 1.
  • SEQ ID NO: 7 Designed based on the sequence of SEQ ID NO: 5 for use as a primer.
  • SEQ ID NO: 8 Designed based on the sequence of SEQ ID NO: 5 for use as a primer.
  • SEQ ID NO: 9 oligonucleotide designed for primer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Microbiology (AREA)
  • Endocrinology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Diabetes (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

It is intended to find a novel protein capable of serving as a GTPase activating protein (GAP) to Rho family proteins belonging to a group of low-molecular weight GTP-binding proteins and a gene encoding this protein, and provide a method of identifying a compound inhibiting the function and/or expression of the GAP, a medicinal composition usable for a disease based on abnormality in the function and/or expression of the GAP, a method of judging the disease, and a reagent kit. A polynucleotide comprising the base sequence represented by SEQ ID NO:1 or its complementary chain; a homolog of the polynucleotide; a protein encoded by the polynucleotide; a vector containing the polynucleotide; a transformant containing the vector; an antibody against the above protein; a method of identifying a compound inhibiting the function and/or expression of the above protein and a method of judging a disease characterized by comprising using the same; and a medicinal composition and a reagent kit containing the same.

Description

明 細 書  Specification
GTPァーゼ活性ィ匕蛋白質をコードする遺伝子およびその遺伝子産物 技術分野  TECHNICAL FIELD The gene encoding the GTPase activity protein and its gene product
[0001] 本発明は、低分子量 GTP結合蛋白質の 1グループである Rhoファミリー蛋白質に 対して GTPァーゼ活性化蛋白質として作用し得る蛋白質および該蛋白質をコードす るポリヌクレオチドに関する。より詳しくは、 Rhoファミリー低分子量 GTP結合蛋白質 の 1つである Raclに結合する蛋白質、該蛋白質をコードするポリヌクレオチド、該ポリ ヌクレオチドを含有する組換えベクター、該組換えベクターにより形質転換されてなる 形質転換体に関する。また、前記蛋白質の製造方法、前記蛋白質に対する抗体に 関する。さらに、前記蛋白質の機能および Zまたは前記ポリヌクレオチドの発現を阻 害する化合物の同定方法に関する。また、前記ポリヌクレオチドの発現量を測定する ことを特徴とする慢性炎症性疾患の診断方法に関する。さらに、前記蛋白質の機能 阻害剤および/または前記ポリヌクレオチドの発現阻害剤を有効成分として含んで なる慢性炎症性疾患の防止剤および Zまたは治療剤、前記蛋白質の機能阻害剤お よび Zまたは前記ポリヌクレオチドの発現阻害剤を用いることを特徴とする、慢性炎 症性疾患の防止方法および Zまたは治療方法に関する。また、前記蛋白質、前記ポ リヌクレオチド、前記組換えベクター、前記形質転換体および前記抗体のうち、少なく とも 、ずれか 1つを含んでなる試薬キットに関する。  The present invention relates to a protein capable of acting as a GTPase activating protein on a Rho family protein, which is a group of low molecular weight GTP-binding proteins, and a polynucleotide encoding the protein. More specifically, a protein that binds to Racl, one of the Rho family low-molecular-weight GTP-binding proteins, a polynucleotide encoding the protein, a recombinant vector containing the polynucleotide, and a transformant transformed with the recombinant vector It relates to a transformant. Further, the present invention relates to a method for producing the protein, and an antibody against the protein. Furthermore, the present invention relates to a method for identifying a compound that inhibits the function of the protein and the expression of Z or the polynucleotide. Further, the present invention relates to a method for diagnosing a chronic inflammatory disease, which comprises measuring the expression level of the polynucleotide. Further, a preventive and / or therapeutic agent for chronic inflammatory diseases comprising a protein function inhibitor and / or an expression inhibitor of the polynucleotide as an active ingredient, a protein function inhibitor and / or a Z or the polyfunctional inhibitor. The present invention relates to a method for preventing a chronic inflammatory disease and a method for treating Z or a therapeutic method, characterized by using a nucleotide expression inhibitor. The present invention also relates to a reagent kit comprising at least one of the protein, the polynucleotide, the recombinant vector, the transformant, and the antibody.
背景技術  Background art
[0002] Rhoファミリー低分子量 GTP結合蛋白質 (以下、単に Rhoファミリー蛋白質と称する ことがある)は低分子量 GTP結合蛋白質 (以下、単に低分子量 G蛋白質と称する)の 1グループに属する蛋白質である。低分子量 G蛋白質は、細胞膜受容体と細胞内情 報伝達経路に関与する効果器 (エフェクター)との間で、シグナルの増幅因子として 作用する。また、低分子量 G蛋白質は、グアノシン^ 三リン酸 (GTP)またはグアノ シン^ 二リン酸 (GDP)と特異的に結合し、結合した GTPを GDPに加水分解する 酵素活性をもつ。 GTPを GDPに加水分解する酵素活性を GTPァーゼ活性と ヽぅ。 細胞膜受容体に細胞外情報物質が結合すると、そのシグナルが低分子量 G蛋白質 に伝達され、低分子量 G蛋白質に結合している GDPと細胞内に存在する GTPとの 交換反応 (以下、 GDPZGTP交換反応と略称する)が起きる。その結果、活性型の GTP結合型低分子量 G蛋白質が生じる。活性型低分子量 G蛋白質は、エフェクター に作用してシグナルを増幅する。その後、 GTP結合型低分子量 G蛋白質は、その G TPァーゼ活性により、結合している GTPを GDPに加水分解して不活性ィ匕する。この ように、低分子量 G蛋白質は、グァニンヌクレオチドの交換により、細胞内情報伝達 経路において分子スィッチとして働く。 [0002] The Rho family low molecular weight GTP-binding protein (hereinafter sometimes simply referred to as Rho family protein) is a protein belonging to one group of low molecular weight GTP-binding proteins (hereinafter simply referred to as low molecular weight G protein). Low-molecular-weight G proteins act as signal amplification factors between cell membrane receptors and effectors involved in intracellular signaling pathways. In addition, the low-molecular-weight G protein specifically binds to guanosine ^ triphosphate (GTP) or guanosine ^ diphosphate (GDP) and has an enzymatic activity to hydrolyze the bound GTP to GDP. GTPase activity refers to the enzyme activity that hydrolyzes GTP to GDP. When an extracellular information substance binds to a cell membrane receptor, its signal is converted to a low molecular weight G protein Then, an exchange reaction occurs between GDP bound to the low molecular weight G protein and GTP present in the cell (hereinafter referred to as GDPZGTP exchange reaction). As a result, an active GTP-linked low molecular weight G protein is generated. Active low-molecular-weight G proteins act on effectors to amplify signals. Thereafter, the GTP-linked low-molecular-weight G protein hydrolyzes the bound GTP to GDP and inactivates it due to its GTPase activity. Thus, low-molecular-weight G proteins act as molecular switches in intracellular signaling pathways by exchanging guanine nucleotides.
[0003] 低分子量 G蛋白質の分子スィッチとしての作用に関与している分子の 1つ力 GTP ァーゼ活性化蛋白質(GTPase activating protein;以下、 GAPと略称する)であ る。 GAPは、低分子量 G蛋白質の GTPァーゼ活性を促進する機能を有する。 GAP は、この機能により、 GTP結合型の活性型低分子量 G蛋白質から GDP結合型の不 活性型低分子量 G蛋白質への変化を促進する。 GAPには、 GAPドメインと呼ばれる 特徴的ドメイン構造が存在する。 GAPドメインは、 GAPの活性ドメインである。  [0003] One of the molecules involved in the action of a low molecular weight G protein as a molecular switch is GTPase activating protein (hereinafter abbreviated as GAP). GAP has the function of promoting the GTPase activity of low molecular weight G proteins. With this function, GAP promotes the change from GTP-linked active low-molecular-weight G protein to GDP-linked inactive low-molecular-weight G-protein. GAP has a characteristic domain structure called GAP domain. The GAP domain is the active domain of GAP.
[0004] GAPの中で、 Rhoファミリー蛋白質に対して作用するものを、 Rho— GAPと呼ぶ。  [0004] Among GAPs, those that act on Rho family proteins are called Rho-GAPs.
Rhoファミリー蛋白質としては、 Cdc42、 Raclおよび RhoA等が知られている。 Cdc4 2は線維芽細胞でフイロポディアの形成を制御している。 Raclは、白血球やマクロフ ァージではスーパーォキシドの産生を、線維芽細胞では細胞膜のラッフリングゃラメリ ポディアの形成をそれぞれ制御している。また、 Cdc42と Raclは c Jun N末端キ ナーゼシグナル伝達経路を活性ィ匕することもできる。このように、 Rhoファミリー蛋白 質は、細胞内情報伝達の制御を介して様々な細胞機能に関与している。 Rhoファミリ 一蛋白質が関与する細胞機能として、例えば細胞骨格の再構成、細胞接着、遺伝 子発現等が知られている。 Rhoファミリー蛋白質を介するこのような作用は、発生時 の形態形成、白血球等の遊走、神経突起退縮、および癌細胞の転移や浸潤に働くと 考えられる。  As Rho family proteins, Cdc42, Racl, RhoA and the like are known. Cdc42 regulates the formation of filopodia in fibroblasts. Racl regulates the production of superoxide in leukocytes and macrophages, and regulates the formation of ruffling-lamellipodia in cell membranes in fibroblasts. Cdc42 and Racl can also activate the c Jun N-terminal kinase signaling pathway. Thus, Rho family proteins are involved in various cell functions through the control of intracellular signaling. As cellular functions involving the Rho family protein, for example, cytoskeletal rearrangement, cell adhesion, gene expression and the like are known. Such actions through Rho family proteins are thought to act on morphogenesis during development, leukocyte migration, neurite retraction, and metastasis and invasion of cancer cells.
[0005] Rho— GAPは、 GTPァーゼ活性を促進する機能により、 Rhoファミリー蛋白質が関 与する細胞内情報伝達の制御に重要な役割を担うと考えられる。 Rho— GAPとして 単離された遺伝子には、非特異性の X連鎖性精神遅滞 (nonspecific X— Linked mental retardation)に関与する Oligophrenin— 1 (非特許文献 1)、ロウ症候群 (Lowe' s syndrome)に関与する OCRL— 1 (非特許文献 2)等がある。 [0005] Rho-GAP is thought to play an important role in controlling intracellular signaling involved in Rho family proteins by its function of promoting GTPase activity. The genes isolated as Rho-GAP include Oligophrenin-1 (non-patent document 1) involved in nonspecific X-linked mental retardation, Lowe syndrome OCRL-1 (Non-Patent Document 2) and the like involved in (Lowe's syndrome).
[0006] 非特許文献 1:「ネイチヤー(Nature)」、 1998年、第 392卷、第 6679号、 p. 923— 926。 [0006] Non-Patent Document 1: "Nature", 1998, Vol. 392, No. 6679, p. 923-926.
非特許文献 2 :「プロシーディンダス ォブ ザ ナショナル アカデミー ォブ サイエ ンシズ ォブ ザ ユナイテッド ステーッ ォブ アメリカ(Proceedings of The National Academy oi sciences oi The United States oi America)」 、 1995年、第 92卷、第 11号、 p. 4853—4856。  Non-Patent Document 2: "Proceedings of the National Academy oi sciences oi The United States oi America", 1995, Vol. 92, Issue 11, p. 4853—4856.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の課題は、新規な Rho— GAPおよび該 Rho— GAPをコードする遺伝子を 提供することである。また本発明の課題には、該遺伝子を含有する組換えベクター、 該組換えベクターにより形質転換されてなる形質転換体を提供することも含まれる。 さらに本発明の課題には、該 Rho— GAPの製造方法および該 Rho— GAPを認識 する抗体を提供することも含まれる。また本発明の課題には、該 Rho— GAPの機能 および Zまたは該遺伝子の発現を阻害する化合物の同定方法を提供することも含ま れる。さらに本発明の課題には、該 Rho— GAPの機能の異常および Zまたは該遺 伝子の発現の異常に基づく疾患の防止方法および Zまたは治療方法、並びに該疾 患の診断方法、試薬キットを提供することも含まれる。 An object of the present invention is to provide a novel Rho-GAP and a gene encoding the Rho-GAP. Another object of the present invention is to provide a recombinant vector containing the gene, and a transformant transformed by the recombinant vector. Further, the object of the present invention includes providing a method for producing the Rho-GAP and an antibody recognizing the Rho-GAP. Another object of the present invention is to provide a method for identifying a compound that inhibits the function of Rho-GAP and the expression of Z or the gene. Furthermore, the object of the present invention is to provide a method for preventing and treating a disease based on an abnormality in the function of Rho-GAP and an abnormality in the expression of Z or the gene, a method for diagnosing the disease, a diagnostic method for the disease, and a reagent kit. It also includes providing.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは上記課題解決のために鋭意努力し、 Rho— GAPに特徴的な GAPド メインをコードする領域を有する新規遺伝子を見出し、さらに該遺伝子がコードする 蛋白質を取得することに成功した。そして、該遺伝子がコードする蛋白質が、 Rhoフ アミリー蛋白質の 1つである Raclに結合することを実験的に明らかにした。さらに、該 遺伝子の組織発現が、甲状腺の慢性炎症例および腎臓の慢性炎症例においてそれ ぞれ正常組織の少なくとも 4. 5倍以上および少なくとも 3. 5倍以上であることを見出 した。本発明はこれらの知見に基づいて達成した。 [0008] The present inventors have made intensive efforts to solve the above-mentioned problems, have found a novel gene having a region encoding a GAP domain characteristic of Rho-GAP, and have further obtained a protein encoded by the gene. succeeded in. Then, it was experimentally revealed that the protein encoded by the gene binds to Racl, one of the Rho family proteins. Furthermore, it was found that the tissue expression of the gene was at least 4.5 times and at least 3.5 times higher than that of normal tissues in cases of chronic inflammation of the thyroid gland and chronic inflammation of the kidney, respectively. The present invention has been achieved based on these findings.
[0009] すなわち、本発明は、 That is, the present invention provides
1.配列表の配列番号 1に記載の塩基配列若しくはその相補的塩基配列で表され るポリヌクレオチド、または配列表の配列番号 2に記載のアミノ酸配列で表される蛋白 質をコードするポリヌクレオチド若しくは該ポリヌクレオチドの相補的塩基配列で表さ れるポリヌクレオチド、 1. represented by the nucleotide sequence of SEQ ID NO: 1 or its complementary nucleotide sequence A polynucleotide encoding a protein represented by the amino acid sequence of SEQ ID NO: 2 or a polynucleotide represented by a nucleotide sequence complementary to the polynucleotide,
2.下記の群力 選ばれるポリヌクレオチドであって、 Raclと結合する蛋白質をコー ドするポリヌクレオチド:  2. A polynucleotide selected from the group consisting of: a polynucleotide encoding a protein that binds to Racl:
i )前記 1. に記載のポリヌクレオチドの塩基配列と少なくとも 70%の相同性を有する 塩基配列で表されるポリヌクレオチド、 i) a polynucleotide represented by a nucleotide sequence having at least 70% homology with the nucleotide sequence of the polynucleotide according to 1.
ii )前記 1.に記載のポリヌクレオチドの塩基配列において、 1乃至数個のヌクレオチ ドの欠失、置換、付加などの変異あるいは誘発変異を有するポリヌクレオチド、および iii)前記 1. に記載のポリヌクレオチドとストリンジェントな条件下でノヽイブリダィゼーシ ヨンするポリヌクレオチド、 ii) a polynucleotide having a mutation such as deletion, substitution, addition or the like of one or several nucleotides or an induced mutation in the nucleotide sequence of the polynucleotide according to the item 1, and iii) the polynucleotide according to the item 1. A polynucleotide that hybridizes with the nucleotide under stringent conditions,
3.下記の群から選ばれるポリヌクレオチドであって、 Raclの GTPァーゼ活性を促 進する機能 (GAP活性)を有する蛋白質をコードするポリヌクレオチド:  3. A polynucleotide selected from the following group, which encodes a protein having a function of promoting Racl GTPase activity (GAP activity):
i )前記 1. に記載のポリヌクレオチドの塩基配列と少なくとも 70%の相同性を有する 塩基配列で表されるポリヌクレオチド、 i) a polynucleotide represented by a nucleotide sequence having at least 70% homology with the nucleotide sequence of the polynucleotide according to 1.
ii )前記 1.に記載のポリヌクレオチドの塩基配列において、 1乃至数個のヌクレオチ ドの欠失、置換、付加などの変異あるいは誘発変異を有するポリヌクレオチド、および iii)前記 1. に記載のポリヌクレオチドとストリンジェントな条件下でノヽイブリダィゼーシ ヨンするポリヌクレオチド、 ii) a polynucleotide having a mutation such as deletion, substitution, addition or the like of one or several nucleotides or an induced mutation in the nucleotide sequence of the polynucleotide according to the item 1, and iii) the polynucleotide according to the item 1. A polynucleotide that hybridizes with the nucleotide under stringent conditions,
4.前記 1.力 3.のいずれか 1に記載のポリヌクレオチドを含有する組換えべクタ  4. A recombinant vector containing the polynucleotide according to any one of 1.
5.前記 4.に記載の組換えベクターにより形質転換されてなる形質転換体、5. a transformant obtained by transformation with the recombinant vector according to 4.
6.前記 4.に記載の組換えベクターおよび Raclをコードするポリヌクレオチドを含 有する組換えベクターにより形質転換されてなる前記 5.に記載の形質転換体、6. The transformant according to 5 above, which is transformed with the recombinant vector according to 4 above and a recombinant vector comprising a polynucleotide encoding Racl.
7.配列表の配列番号 2に記載のアミノ酸配列で表される蛋白質、 7.A protein represented by the amino acid sequence described in SEQ ID NO: 2 in the sequence listing,
8.前記 2.または 3.に記載のポリヌクレオチドがコードする蛋白質、  8. a protein encoded by the polynucleotide according to 2 or 3 above,
9.前記 5.または 6.に記載の形質転換体を培養する工程を含む、前記 7.または 8 . に記載の蛋白質の製造方法、 10.前記 7.または 8.に記載の蛋白質を認識する抗体、 9. The method for producing a protein according to the above 7 or 8, comprising a step of culturing the transformant according to the above 5 or 6. 10. an antibody that recognizes the protein according to the above 7. or 8.
11.前記 7.または 8.に記載の蛋白質の機能および Zまたは前記 1.力 3.のい ずれか 1に記載のポリヌクレオチドの発現を阻害する化合物の同定方法であって、該 化合物と該蛋白質および Zまたは該ポリヌクレオチドとの相互作用を可能にする条件 下で、該機能および Zまたは該発現の存在、不存在または変化を検出することにより 11. A method for identifying a compound that inhibits the function of the protein according to 7 or 8 and the expression of the polynucleotide according to any one of Z or 1. force 3. By detecting the presence, absence or alteration of said function and Z or said expression under conditions that allow interaction with the protein and Z or said polynucleotide.
、該化合物が該蛋白質の機能および Zまたは該ポリヌクレオチドの発現を阻害する か否かを判定することを特徴とする同定方法、 An identification method, which comprises determining whether the compound inhibits the function of the protein and the expression of Z or the polynucleotide,
12.蛋白質の機能力 Raclに対する GAP活性である前記 11.に記載の同定方 法、  12. The method for identification according to the above 11, which is GAP activity against Racl,
13.ヒト甲状腺組織由来の被検組織が、ヒト甲状腺の慢性炎症性疾患由来組織で ある力否かを判定する方法であって、該被検組織における前記 1.力 3.のいずれ か 1に記載のポリヌクレオチドの発現量を測定することを特徴とする判定方法、  13. A method for determining whether or not a test tissue derived from a human thyroid tissue is a tissue derived from a chronic inflammatory disease of the human thyroid gland, the method comprising: A determination method characterized by measuring the expression level of the described polynucleotide,
14.被検組織における前記 1.力も 3.のいずれか 1に記載のポリヌクレオチドの発 現量力 対照であるヒト正常甲状腺由来糸且織における該ポリヌクレオチドの発現量の 少なくとも 4. 5倍以上である場合に、被検組織がヒト甲状腺の慢性炎症性疾患由来 組織であると判定することを特徴とする、前記 13.に記載の判定方法、  14. The expression of the polynucleotide according to any one of the above items 1 to 3 in the test tissue is at least 4.5 times the expression level of the polynucleotide in the normal human thyroid-derived fibrous tissue as a control. In some cases, the test tissue is determined to be a tissue derived from a chronic inflammatory disease of the human thyroid gland, wherein the determination method according to the above 13,
15.ヒト腎臓組織由来の被検組織が、ヒト腎臓の慢性炎症性疾患由来組織である か否かを判定する方法であって、該被検組織における前記 1.力 3. のいずれか 1 に記載のポリヌクレオチドの発現量を測定することを特徴とする判定方法、  15. A method for determining whether or not a test tissue derived from a human kidney tissue is a tissue derived from a chronic inflammatory disease of a human kidney, the method comprising: A determination method characterized by measuring the expression level of the described polynucleotide,
16.被検組織における前記 1.力も 3.のいずれか 1に記載のポリヌクレオチドの発 現量力 対照であるヒト正常腎臓由来組織における該ポリヌクレオチドの発現量の少 なくとも 3. 5倍以上である場合に、被検組織がヒト腎臓の慢性炎症性疾患由来組織 であると判定することを特徴とする、前記 15.に記載の判定方法、  16. Expression strength of the polynucleotide according to any one of 3. above in the test tissue is at least 3.5 times or more the expression level of the polynucleotide in a normal human kidney-derived tissue as a control. In some cases, the test tissue is determined to be a tissue derived from a chronic inflammatory disease of a human kidney,
17.前記 7.または 8.に記載の蛋白質の機能を阻害する化合物および Zまたは前 記 1.力 3.のいずれか 1に記載のポリヌクレオチドの発現を阻害する化合物を有効 成分として含んでなる甲状腺の慢性炎症性疾患および Zまたは腎臓の慢性炎症性 疾患の防止剤および Zまたは治療剤、  17. As an active ingredient, a compound that inhibits the function of the protein described in 7 or 8 above and a compound that inhibits the expression of the polynucleotide described in any one of Z or 1. Preventive and Z or therapeutic agents for chronic inflammatory diseases of the thyroid and Z or kidney
18.前記 7.または 8.に記載の蛋白質の機能を阻害する化合物および Zまたは前 記 1.力 3.のいずれか 1に記載のポリヌクレオチドの発現を阻害する化合物を用い ることを特徴とする甲状腺の慢性炎症性疾患および Zまたは腎臓の慢性炎症性疾 患の防止方法および zまたは治療方法、 18. A compound that inhibits the function of a protein according to the above 7. or 8. 1. A method for preventing a chronic inflammatory disease of the thyroid gland and Z or a chronic inflammatory disease of the kidney, characterized by using a compound that inhibits the expression of the polynucleotide according to any one of 1. Or treatment method,
19.前記 7.または 8.に記載の蛋白質、前記 1.力 3.のいずれか 1に記載のポリ ヌクレオチド、前記 4.に記載の組換えベクター、前記 5.または 6.に記載の形質転 換体および前記 10.に記載の抗体のうち少なくともいずれ力 1つを含んでなる試薬キ ッ卜、  19. The protein described in 7 or 8 above, the polynucleotide described in any one of 1. above, the recombinant vector described in 4. above, and the transformation described in 5. or 6. above. A reagent kit comprising at least one of the recombinant and the antibody according to 10.
からなる。 Consists of
発明の効果 The invention's effect
本発明においては、 Rhoファミリー蛋白質に結合する新規蛋白質をコードするポリ ヌクレオチドおよび該ポリヌクレオチドがコードする蛋白質を提供可能である。本蛋白 質は、 Rhoファミリー蛋白質の 1つである Raclに結合した。また、本蛋白質は、その アミノ酸配列中に、 Rho— GAPに特徴的な GAPドメインを有する。このことから、本 蛋白質は、 Rho蛋白質、例えば Raclに結合して、 Rho— GAPとして作用すると考え る。また、本発明においては、前記ポリヌクレオチドを含有する組換えベクター、該組 換えベクターにより形質転換されてなる形質転換体を提供可能である。さらに、前記 蛋白質の製造方法、前記蛋白質に対する抗体を提供可能である。また、前記蛋白質 の機能および Zまたは前記ポリヌクレオチドの発現を阻害する化合物の同定方法を 提供可能である。さらに、前記ポリヌクレオチドの発現量を測定することを特徴とする 慢性炎症性疾患、例えば慢性甲状腺炎および慢性腎炎の診断方法を提供可能で ある。また、前記蛋白質の機能阻害剤および Zまたは前記ポリヌクレオチドの発現阻 害剤を有効成分として含んでなる、慢性炎症性疾患、例えば慢性甲状腺炎および Z または慢性腎炎の防止剤および Zまたは治療剤、前記蛋白質の機能阻害剤および Zまたは前記ポリヌクレオチドの発現阻害剤を用いることを特徴とする慢性炎症性疾 患、例えば慢性甲状腺炎および Zまたは慢性腎炎の防止方法および Zまたは治療 方法を提供可能である。さらに、前記蛋白質、前記ポリヌクレオチド、前記組換えべク ター、前記形質転換体および前記抗体のうち、少なくともいずれか 1つを含んでなる 試薬キットを提供可能である。 [0011] 本発明により、 Rhoファミリー蛋白質、例えば Rac lが関与する情報伝達経路および 細胞機能の解明とその調節が可能になる。さらに、本ポリヌクレオチドがコードする蛋 白質の機能の異常および Zまたは本ポリヌクレオチドの発現の異常に基づく疾患、 例えば慢性炎症性疾患、例えば慢性甲状腺炎および Zまたは慢性腎炎の診断、防 止および Zまたは治療が可能になる。 In the present invention, it is possible to provide a polynucleotide encoding a novel protein that binds to a Rho family protein and a protein encoded by the polynucleotide. This protein bound to Racl, one of the Rho family proteins. In addition, this protein has a GAP domain characteristic of Rho-GAP in its amino acid sequence. From this, it is considered that the present protein binds to a Rho protein, for example, Racl, and acts as Rho-GAP. Further, in the present invention, it is possible to provide a recombinant vector containing the polynucleotide, and a transformant transformed by the recombinant vector. Furthermore, it is possible to provide a method for producing the protein, and an antibody against the protein. Further, a method for identifying a compound that inhibits the function of the protein and the expression of Z or the polynucleotide can be provided. Further, the present invention can provide a method for diagnosing a chronic inflammatory disease, such as chronic thyroiditis and chronic nephritis, which comprises measuring the expression level of the polynucleotide. In addition, an agent for preventing and treating a chronic inflammatory disease, for example, chronic thyroiditis and Z or chronic nephritis, comprising a protein function inhibitor and Z or an expression inhibitor of the polynucleotide as an active ingredient, It is possible to provide a method for preventing a chronic inflammatory disease, for example, chronic thyroiditis and Z or chronic nephritis, and a method for treating Z or chronic nephritis, which comprise using the protein function inhibitor and the Z or expression inhibitor of the polynucleotide. is there. Further, it is possible to provide a reagent kit comprising at least one of the protein, the polynucleotide, the recombinant vector, the transformant, and the antibody. [0011] The present invention makes it possible to elucidate and regulate signaling pathways and cell functions involving Rho family proteins, for example, Racl. Further, diseases based on abnormal function of the protein encoded by the present polynucleotide and abnormal expression of Z or the present polynucleotide, such as chronic inflammatory diseases, such as chronic thyroiditis and Z or chronic nephritis, prevention, and diagnosis of Z. Or treatment becomes possible.
、本発明は基礎科学分野力 医薬開発分野まで広く寄与する有用な発明である。 図面の簡単な説明  The present invention is a useful invention that contributes widely to the field of basic science and pharmaceutical development. Brief Description of Drawings
[0012] [図 1]パネル Aは、 sj04085がコードする蛋白質と Rac lとの結合を検出した図である 。 sj04085発現ベクターと、 Rac l発現ベクターとをコトランスフエクシヨンした細胞の 細胞溶解液において、 sj04085がコードする蛋白質と Rac lとの結合を示すバンドが 検出された(パネル Aのレーン 6)。一方、 sj 04085発現ベクターと j8—グルクロニダ ーゼ(Glucuronidase) (GUS)発現ベクターとをコトランスフエクシヨンした細胞の細 胞溶解液では、このようなバンドは検出さな力つた (パネル Aのレーン 5)。また、以下 の細胞の細胞溶解液では、いずれにおいてもこのようなバンドは検出されな力つた( パネル A): sj04085発現ベクターのみをトランスフエクシヨンした細胞(レーン 4); GU S発現ベクターまたは Rac l発現ベクターのみをトランスフエクシヨンした細胞(レーン 2 および 3);および各ベクター導入せず LipofectamineTM2000のみを添加した細胞 (レーン 1)。結合の測定はプルダウン法により行った。具体的には、 sj04085を FLA G融合蛋白質として Rac lおよび GUSを GST融合蛋白質として細胞に発現させた。 各細胞溶解液をグルタチオンセファロースとインキュベーションし、グルタチオンセフ ァロースに結合した蛋白質を SDS— PAGEで展開した後、抗 FLAG抗体を用いたィ ムノブロッテイングにより sj04085と Rac lの結合を検出した。パネル Bは、各細胞溶 解液のサンプルを用いて SDS— PAGEを行 、、抗 FLAG抗体を用いて sj 04085が コードする蛋白質を検出した図である。パネル Cは、各細胞溶解液のサンプルを用い て SDS— PAGEを行い、抗 GST抗体を用いて GST融合 GUSを検出した図である。 パネル Dは、各細胞溶解液のサンプルを用いて SDS— PAGEを行い、抗 GST抗体 を用いて GST融合 Rac lを検出した図である。各細胞溶解液中の、 sj04085がコー ドする蛋白質はほぼ同量であった (パネル Bのレーン 4 6)。また、各細胞溶解液中 の Raclまたは GUSの量はほぼ同量であった(パネル Dのレーン 3および 6またはパ ネル Cのレーン 2および 5)。(実施例 3) [FIG. 1] Panel A is a diagram showing the detection of binding between a protein encoded by sj04085 and Racl. In a cell lysate of a cell obtained by cotransfection of the sj04085 expression vector and the Racl expression vector, a band indicating the binding of the protein encoded by sj04085 to Racl was detected (lane 6 in panel A). On the other hand, in the cell lysate of cells transfected with the sj04085 expression vector and j8-Glucuronidase (GUS) expression vector, such a band was not detected (panel A lane). Five). Such bands were not detected in any of the following cell lysates (Panel A): Cells transfected with sj04085 expression vector alone (lane 4); GUS expression vector or Rac l Cells transfected only with the expression vector (lanes 2 and 3); and cells transfected only with Lipofectamine 2000 without the introduction of each vector (lane 1). The measurement of the binding was performed by a pull-down method. Specifically, sj04085 was expressed in cells as FLAG fusion protein, and Racl and GUS were expressed as GST fusion proteins. Each cell lysate was incubated with glutathione sepharose, after deploying the protein bound to glutathione ceph Arosu in SDS-PAGE, and detected binding of s J04085 and Rac l by I beam knob blotting using anti-FLAG antibody. Panel B is a diagram in which SDS-PAGE was performed using a sample of each cell lysate, and the protein encoded by sj04085 was detected using an anti-FLAG antibody. Panel C is a diagram in which SDS-PAGE was performed using a sample of each cell lysate, and GST-fused GUS was detected using an anti-GST antibody. Panel D is a diagram in which SDS-PAGE was performed using a sample of each cell lysate, and GST-fused Racl was detected using an anti-GST antibody. In each cell lysate, the amount of protein encoded by sj04085 was almost the same (panel B, lanes 46). In each cell lysate The amount of Racl or GUS was approximately the same (lanes 3 and 6 in panel D or lanes 2 and 5 in panel C). (Example 3)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明について発明の実施の態様をさらに詳しく説明する。 Hereinafter, embodiments of the present invention will be described in more detail.
本発明において、単離された完全長 DNAおよび Zまたは RNA;合成完全長 DN Aおよび Zまたは RNA;単離された DNAオリゴヌクレオチド類および Zまたは RNA オリゴヌクレオチド類;ある 、は合成 DNAオリゴヌクレオチド類および Zまたは RNA オリゴヌクレオチド類を意味する総称的用語として「ポリヌクレオチド」 、う用語を使 用し、ここでそのような DNAおよび Zまたは RNAは最小サイズが 2ヌクレオチドであ る。  In the present invention, isolated full-length DNA and Z or RNA; synthetic full-length DNA and Z or RNA; isolated DNA oligonucleotides and Z or RNA oligonucleotides; The term "polynucleotide" is used as a generic term to refer to and Z or RNA oligonucleotides, where such DNA and Z or RNA have a minimum size of 2 nucleotides.
本発明にお ヽて、単離された若しくは合成の完全長蛋白質;単離された若しくは合 成の完全長ポリペプチド;または単離された若しくは合成の完全長オリゴペプチドを 意味する総称的用語として「蛋白質」という用語を使用し、ここで蛋白質、ポリべプチ ド若しくはオリゴペプチドは最小サイズが 2アミノ酸である。以降、アミノ酸を表記する 場合、 1文字または 3文字にて表記することがある。  In the present invention, a generic term is used to mean an isolated or synthetic full-length protein; an isolated or synthetic full-length polypeptide; or an isolated or synthetic full-length oligopeptide. The term "protein" is used, where a protein, polypeptide or oligopeptide has a minimum size of 2 amino acids. Hereinafter, when describing amino acids, they may be represented by one or three letters.
[0014] (ポリヌクレオチド)  [0014] (polynucleotide)
本発明の一態様は新規ポリヌクレオチドに関する。本ポリヌクレオチドは、ヒト脾臓由 来 cDNAライブラリーから、 Rho— GAPに特徴的なドメインである GAPドメインをコー ドする領域を有する遺伝子として同定し単離した。  One aspect of the present invention relates to novel polynucleotides. This polynucleotide was identified and isolated from a human spleen-derived cDNA library as a gene having a region encoding a GAP domain, which is a characteristic domain of Rho-GAP.
[0015] 本発明に係るポリヌクレオチドの具体的態様は、例えば配列表の配列番号 1に記載 の塩基配列またはその相補的塩基配列で表されるポリヌクレオチドであり得る。配列 番号 1に記載の塩基配列で表されるポリヌクレオチドは、 4393bpのポリヌクレオチド であり、 1101アミノ酸残基 (配列番号 2)をコードするオープンリーディングフレーム( ORF)を含む。配列番号 1に記載の塩基配列にぉ 、て第 421番目力も第 879番目ま でのヌクレオチド力 なる領域は、配列番号 2に記載のアミノ酸配列の第 34番目のプ 口リン(Pro)から第 186番目のセリン(Ser)までの 153アミノ酸残基からなる GAPドメ インをコードする。本発明の範囲には、配列番号 2に記載のアミノ酸配列で表される 蛋白質をコードするポリヌクレオチドまたは該ポリヌクレオチドの相補的塩基配列で表 されるポリヌクレ才チドも包含される。 [0015] A specific embodiment of the polynucleotide according to the present invention may be, for example, a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the sequence listing or a complementary nucleotide sequence thereof. The polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 is a 4393 bp polynucleotide and contains an open reading frame (ORF) encoding 1101 amino acid residues (SEQ ID NO: 2). In the nucleotide sequence of SEQ ID NO: 1, the region from the 421st to the 879th nucleotide has the nucleotide force from the 34th amino acid (Pro) to the 186th amino acid in the amino acid sequence shown in SEQ ID NO: 2. It encodes a GAP domain consisting of 153 amino acid residues up to the serine (Ser). Within the scope of the present invention, a polynucleotide encoding the protein represented by the amino acid sequence set forth in SEQ ID NO: 2 or a complementary base sequence of the polynucleotide. Polynucleotides are also included.
[0016] 本発明に係るポリヌクレオチドは、好ましくは、 Rhoファミリー蛋白質に結合する蛋白 質をコードするポリヌクレオチドまたは該ポリヌクレオチドの相補的塩基配列で表され るポリヌクレオチドである。本発明において「蛋白質間の結合」とは、ある蛋白質 (蛋白 質 A)と別のある蛋白質 (蛋白質 B)が複合体を形成するように、水素結合、疎水結合 または静電的相互作用等の非共有結合により、蛋白質 Aと蛋白質 Bが相互作用する ことを意味する。ここでの結合とは、蛋白質 Aと蛋白質 Bがそれら分子の一部分にお いて結合すれば足りる。例えば、蛋白質 Aまたは蛋白質 Bを構成するアミノ酸中に、 蛋白質 Aと蛋白質 Bの結合に関与しな 、アミノ酸が含まれて 、てもよ!/、。  [0016] The polynucleotide according to the present invention is preferably a polynucleotide encoding a protein that binds to a Rho family protein or a polynucleotide represented by a complementary nucleotide sequence to the polynucleotide. In the present invention, the term "binding between proteins" means that a certain protein (protein A) and another certain protein (protein B) form a complex, such as a hydrogen bond, a hydrophobic bond, or an electrostatic interaction. It means that protein A and protein B interact by non-covalent bond. Here, the binding is sufficient if protein A and protein B bind at a part of those molecules. For example, the amino acids constituting protein A or protein B may contain amino acids that are not involved in the binding between protein A and protein B!
[0017] 配列番号 1に記載の塩基配列で表されるポリヌクレオチドがコードする蛋白質は、 R hoファミリー蛋白質の 1つである Raclに結合した。具体的には、配列番号 1に記載 の塩基配列で表されるポリヌクレオチドと Raclをコードする遺伝子とを共に発現させ た動物細胞において、該ポリヌクレオチドがコードする蛋白質と Raclの結合が検出さ れた (実施例 3参照)。  [0017] The protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 bound to Racl, one of Rho family proteins. Specifically, in animal cells in which both the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 and the gene encoding Racl are expressed, the binding between the protein encoded by the polynucleotide and Racl is detected. (See Example 3).
[0018] 本発明に係るポリヌクレオチドがコードする蛋白質は、その構造に GAPドメインを有 し、 Rhoファミリー蛋白質に結合する。 GAPドメインは、 GAPの活性ドメインである。し たがって、本ポリヌクレオチドがコードする蛋白質は、 Rhoファミリー蛋白質に対する G AP活性を有すると考える。「Rhoファミリー蛋白質に対する GAP活性」とは、該 Rho ファミリー蛋白質の GTPァーゼ活性を促進する活性を意味する。その結果、本ポリヌ クレオチドがコードする蛋白質は、 Rhoファミリー蛋白質の GTPァーゼ活性を促進す ることにより、 GTP結合型の活性型 Rhoファミリー蛋白質力も GDP結合型の不活性 型 Rhoファミリー蛋白質への変化を促進する。すなわち、本ポリヌクレオチドがコード する蛋白質は、 Rhoファミリー蛋白質の不活性ィ匕を促進し得る。「Rhoファミリー蛋白 質に対する GAP活性」には、 Rhoファミリー蛋白質の活性型カゝら不活性型への変化 を促進する活性および Rhoファミリー蛋白質の不活性ィ匕を促進する活性も含まれる。  The protein encoded by the polynucleotide according to the present invention has a GAP domain in its structure and binds to a Rho family protein. The GAP domain is the active domain of GAP. Therefore, the protein encoded by the present polynucleotide is considered to have GAP activity against Rho family proteins. “GAP activity on Rho family protein” means the activity of the Rho family protein to promote GTPase activity. As a result, the protein encoded by this polynucleotide promotes the GTPase activity of Rho family proteins, and the GTP-linked active Rho family protein also changes into a GDP-linked inactive Rho family protein. Facilitate. That is, the protein encoded by the present polynucleotide can promote the inactivation of Rho family proteins. The “GAP activity for Rho family proteins” includes an activity of promoting the change of the Rho family protein from an active form to an inactive form and an activity of promoting the inactivation of the Rho family protein.
[0019] 本発明に係るポリヌクレオチドがコードする蛋白質力 GAP活性を示し得る Rhoフ アミリー蛋白質として、例えば Raclが好ましく例示できる。 Rhoファミリー蛋白質はこ れに限定されず、本ポリヌクレオチドがコードする蛋白質が GAP活性を示し得る限り にお 、て、例えば結合し得る限りにお 、て 、ずれの Rhoファミリー蛋白質であっても よい。本発明において Rhoファミリー蛋白質というときは、好ましくは Raclを指す。本 ポリヌクレオチドがコードする蛋白質と Rhoファミリー蛋白質の結合は、例えばブルダ ゥン法を使用して測定できる(実施例 3参照)。また、本ポリヌクレオチドがコードする 蛋白質による Rhoファミリー蛋白質の GTPァーゼ活性の促進や Rhoファミリー蛋白質 の不活性化の促進は、例えば後述するような [ γ —32 P] GTP等を用いた方法により 測定できる。このような測定方法は、公知文献〔「ジャーナル ォブ バイオロジカル ケミストリー(Journal of Biological ChemistryJ、 1998年、第 273卷、第 44号、 p. 29172- 29177]記載の方法等を参照して実施可能である。 [0019] The protein encoded by the polynucleotide of the present invention is preferably a Rho family protein capable of exhibiting GAP activity, for example, Racl. Rho family proteins are not limited to these, as long as the protein encoded by the present polynucleotide can exhibit GAP activity. In this case, the Rho family protein may be, for example, as long as it can bind. In the present invention, the term Rho family protein preferably refers to Racl. The binding between the protein encoded by the polynucleotide and the Rho family protein can be measured using, for example, the Burdun method (see Example 3). Further, promoting the inactivation of promotion and Rho family protein of Rho family proteins GTP Aze activity by proteins present polynucleotide encodes, for example as described below - measured by a method using [γ 32 P] GTP, etc. it can. Such a measuring method can be carried out by referring to a known document [“Journal of Biological Chemistry J, 1998, Vol. 273, No. 44, p. 29172-29177” or the like. It is.
[0020] Raclのアミノ酸配列および Racl遺伝子の塩基配列を、それぞれ配列表の配列番 号 6および配列番号 5に記載する。 Raclおよびその遺伝子は、上記各配列で表され るものに限らず、一般的に知られている Raclの機能を有する限りにおいて、上記各 配列において 1乃至数個の変異を有する蛋白質および遺伝子であることができる。ま た、これらの機能を促進するあるいは欠失させるといった所望の目的のために上記各 配列に 1乃至数個の変異を導入した変異体を用いることもできる。 Raclは、例えば、 その遺伝子を含有する組換えベクターを自体公知の遺伝子工学的方法により適当 な宿主にトランスフエクシヨンして形質転換体を作製し、該形質転換体を培養すること により取得することが可能である。  [0020] The amino acid sequence of Racl and the nucleotide sequence of the Racl gene are described in SEQ ID NO: 6 and SEQ ID NO: 5 in the sequence listing, respectively. Racl and its gene are not limited to those represented by each of the above sequences, but are proteins and genes having one to several mutations in each of the above sequences as long as they have a generally known Racl function. be able to. Further, for desired purposes such as promoting or deleting these functions, mutants in which one or several mutations have been introduced into each of the above sequences can also be used. Racl is obtained, for example, by preparing a transformant by transfection of a recombinant vector containing the gene into an appropriate host by a genetic engineering method known per se, and culturing the transformant. Is possible.
[0021] 本発明に係るポリヌクレオチドは、本発明により開示されたその具体例、例えば配 列表の配列番号 1に記載の塩基配列で表されるポリヌクレオチドにつ 、ての配列情 報に基づいて、公知の遺伝子工学的手法 (サムブルック(Sambrook)ら編、「モレキ ユラ一クロー-ング,ァ ラボラトリーマ-ユアル 第 2版」、 1989年、コールドスプリン グハ一バーラボラトリー;および村松正實編、「ラボマニュアル遺伝子工学」、 1988[0021] The polynucleotide according to the present invention is prepared based on the specific information disclosed by the present invention, for example, the sequence information on the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the sequence listing. , Known genetic engineering methods (Sambrook et al., Eds., “Moleki Yura-Cloating, Laboratory Ma- ual, 2nd Edition”, 1989, Cold Spring Laboratories; and Masami Muramatsu, “ Lab Manual Genetic Engineering ", 1988
、丸善株式会社等を参照)により容易に取得することができる。 , Maruzen Co., Ltd.).
[0022] 具体的には、本発明に係るポリヌクレオチドの発現が確認されている適当な起源か ら、常法に従って cDNAライブラリーを調製し、該 cDNAライブラリ一力も所望のクロ ーンを選択することにより本ポリヌクレオチドを取得可能である。 cDNAの起源として 、本ポリヌクレオチドの発現が確認されている各種の細胞や組織、またはこれらに由 来する培養細胞、例えばヒトの脾臓由来の細胞等が例示できる。これら起源力もの全 RNAの分離、 mRNAの分離や精製、 cDNAの取得とそのクローユング等はいずれ も常法に従って実施可能である。また、ヒト脾臓由来の市販されている polyA+RNA 力も cDNAライブラリーを構築して用いることもできる。 cDNAライブラリ一力も所望の クローンを選択する方法も特に制限されず、慣用の方法を利用できる。例えば、本ポ リヌクレオチドに選択的にノ、イブリダィゼーシヨンするプローブやプライマー等を用い て所望のクローンを選択することができる。具体的には、本ポリヌクレオチドに選択的 にハイブリダィゼーシヨンするプローブを用いたプラークハイブリダィゼーシヨン法、コ 口-一ハイブリダィゼーシヨン法等やこれらを組合せた方法等を例示できる。ここで用[0022] Specifically, a cDNA library is prepared from an appropriate source in which expression of the polynucleotide according to the present invention has been confirmed according to a conventional method, and a desired clone is also selected using the cDNA library. Thus, the present polynucleotide can be obtained. The source of the cDNA may be various cells or tissues in which expression of the present polynucleotide has been confirmed, or may be based on these. Examples of such cultured cells include, for example, cells derived from human spleen. Isolation of total RNA of these origins, isolation and purification of mRNA, acquisition of cDNA and its closing can all be carried out according to ordinary methods. Also, commercially available polyA + RNA derived from human spleen can be used by constructing a cDNA library. The method of selecting a desired clone and the method of selecting a desired clone are not particularly limited, and a conventional method can be used. For example, a desired clone can be selected by using a probe or a primer which selectively and / or selectively hybridizes with the present polynucleotide. Specifically, examples include a plaque hybridization method using a probe that selectively hybridizes to the present polynucleotide, a co-hybridization method, a method combining these methods, and the like. it can. Here for
V、るプローブとして、本ポリヌクレオチドの配列情報に基づ 、て化学合成したポリヌク レオチド等が一般的に使用できる。また、既に取得された本ポリヌクレオチドやその部 分塩基配列で表されるポリヌクレオチドも好ましく使用できる。さらに、本ポリヌクレオ チドの配列情報に基づき設計したセンスプライマー、アンチセンスプライマーをこのよ うなプローブとして用いることもできる。 V. As the probe, a polynucleotide or the like chemically synthesized based on the sequence information of the present polynucleotide can be generally used. In addition, the polynucleotide of the present invention or a polynucleotide represented by a partial base sequence thereof which has already been obtained can also be preferably used. Furthermore, sense primers and antisense primers designed based on the sequence information of the present polynucleotide can also be used as such a probe.
[0023] cDNAライブラリーからの所望のクローンの選択は、例えば公知の蛋白質発現系を 利用して各クローンにつ 、て発現蛋白質の確認を行!、、さらに該蛋白質の機能を指 標にして実施できる。蛋白質発現系は、自体公知の発現系がいずれも利用可能であ る。具体的には、無細胞蛋白質発現系が例示できる〔マディン (Madin, K. )ら、「プ ロシーディングス ォブ ザ ナショナル アカデミー ォブ サイェンシズ ォブ ザ ユナイテッド ステーッ ォブ アメリカ(Proceedings of The National Acade my of Sciences of The United States of America)」、 2000年、第 97 卷、 p. 559— 564〕。 [0023] Selection of a desired clone from the cDNA library is performed by, for example, confirming the expressed protein of each clone using a known protein expression system, and further using the function of the protein as an indicator. Can be implemented. As the protein expression system, any expression system known per se can be used. Specifically, a cell-free protein expression system can be exemplified [Madin, K. et al., “Proceedings of The National Academy of the National Academy of the National Academy of the United States”. of Sciences of The United States of America), 2000, Vol. 97, p. 559-564].
[0024] 本発明に係るポリヌクレオチドがコードする蛋白質の機能、または本発明に係る蛋 白質の機能とは、好ましくは Rhoファミリー蛋白質に対する GAP活性、より好ましくは [0024] The function of the protein encoded by the polynucleotide of the present invention or the function of the protein of the present invention preferably refers to GAP activity against a Rho family protein, more preferably
Rhoファミリー蛋白質に対して結合した本発明に係る蛋白質が示す Rhoファミリー蛋 白質に対する GAP活性を意味する。さらに好ましくは、該機能は、 Raclに対する GIt means the GAP activity on the Rho family protein shown by the protein of the present invention bound to the Rho family protein. More preferably, the function is G
AP活性、さらにより好ましくは Raclに対して結合した本発明に係る蛋白質が示す R hoファミリー蛋白質に対する GAP活性を意味する。 [0025] 本発明に係るポリヌクレオチドの取得にはその他、ポリメラーゼ連鎖反応〔以下、 PC Rと略称する、ウルマー(Ulmer, K. M. )、 「サイエンス(Science)」、 1983年、第 2 19卷、 p. 666— 671 ;エールリツヒ(Ehrlich, H. A. )編、「PCRテクノロジー, DNA 増幅の原理と応用」、 1989年、ストックトンプレス;およびサイキ(Saiki, R. K. )ら、「 サイエンス(Science)」、 1985年、第 230卷、 p. 1350— 1354〕による DNAZRN A増幅法が好適に利用できる。 cDNAライブラリ一力ゝら全長の cDNAが得られ難 、よ うな場合には、 RACE法(「実験医学」、 1994年、第 12卷、第 6号、 p. 615-618)、 特に 5'—RACE法〔フローマン(Frohman, M. A. )ら、「プロシーディングス ォブ ザ ナショナル アカデミー ォブ サイェンシズ ォブ ザ ユナイテッド ステーッ オフ ゾ'メリ 7 (Proceedings of The National Academy of sciences of The United States of America)」、 1988年、第 85卷、第 23号、 p. 8998— 9002〕等の採用が好適である。 PCRに使用するプライマーは、ポリヌクレオチドの塩 基配列情報に基づいて適宜設計でき、常法に従って合成により得ることができる。増 幅させた DNAZRNA断片の単離精製は、常法により行うことができる。例えばゲル 電気泳動法等により実施可能である。 It means the AP activity, and more preferably the GAP activity on the Rho family protein shown by the protein of the present invention bound to Racl. [0025] The polynucleotide of the present invention can be obtained by the polymerase chain reaction [hereinafter, abbreviated as PCR, Ulmer, KM, "Science", 1983, Vol. 219, p. 666—671; Ehrlich, HA, eds., "PCR Technology, Principles and Applications of DNA Amplification", 1989, Stockton Press; and Saiki, RK, et al., Science, 1985. 230, p. 1350-1354]. If it is difficult to obtain a full-length cDNA from a cDNA library, the RACE method ("Experimental Medicine", 1994, Vol. 12, No. 6, p. 615-618), especially 5'- The RACE method (Frohman, MA) et al., "Proceedings of the National Academy of sciences of the United States of America", "Proceedings of the National Academy of Sciences of the United States of America," 1988, Vol. 85, No. 23, p. 8998-9002] is suitable. Primers used for PCR can be appropriately designed based on the base sequence information of the polynucleotide, and can be obtained by synthesis according to a conventional method. Isolation and purification of the amplified DNAZRNA fragment can be performed by a conventional method. For example, it can be carried out by a gel electrophoresis method or the like.
[0026] このような方法で得られるポリヌクレオチドの塩基配列の決定は、常法、例えばジデ ォキシ法〔「プロシーディングス ォブ ザ ナショナル アカデミー ォブ サイェンシ ズ ォブ ザ ユナイテッド ステーッ ォブ アメリカ(Proceedings of The Nati onal Academy of Sciences of l he United states of America)」、 19 77年、第 74卷、 p. 5463— 5467〕やマキサム—ギルバート法〔「メソッズ イン ェン ザィモロジ一(Methods in Enzymology)」、 1980年、第 65卷、 p. 499— 560〕 等により、また簡便には市販のシーケンスキット等を用いて行うことができる。  [0026] The nucleotide sequence of the polynucleotide obtained by such a method is determined by a conventional method, for example, the didoxy method [“Proceedings of the National Academy of Sciences of the United States, United States (Proceedings of the United States). The National Academy of Sciences of United States of America), 1977, Vol. 74, p. 5463-5467) and the Maxam-Gilbert method ("Methods in Enzymology", 1980, Vol. 65, p. 499-560], or simply using a commercially available sequence kit or the like.
[0027] 本発明に係るポリヌクレオチドは上記ポリヌクレオチドに限定されず、上記ポリヌクレ ォチドと配列相同性を有し、かつ Rhoファミリー蛋白質に対する GAP活性を有する蛋 白質をコードするポリヌクレオチドまたは該ポリヌクレオチドの相補的塩基配列で表さ れるポリヌクレオチドを包含する。好ましくは本ポリヌクレオチドと配列相同性を有し、 Rhoファミリー蛋白質に結合する蛋白質をコードするポリヌクレオチドかつ該ポリヌク レオチドの相補的塩基配列で表されるポリヌクレオチドである。配列相同性は、通常 、塩基配列の全体で 50%以上、好ましくは少なくとも 70%であることが適当である。 より好ましくは 70%以上、さらに好ましくは 80%以上、さらにより好ましくは 90%以上 であることが適当である。また、好ましくは、 GAPドメインコード領域を有するポリヌクレ ォチドが望まし ヽ。 GAPドメインコード領域における配列相同性は少なくとも 70%で あることが好ましい。より好ましくは 70%以上、さらに好ましくは 80%以上、さらにより 好ましくは 90%以上であることが適当である。また、 GAPドメインがその機能を保持し ていることがさらに好ましい。 [0027] The polynucleotide according to the present invention is not limited to the above-described polynucleotide, and may be a polynucleotide encoding a protein having sequence homology to the above-mentioned polynucleotide and having GAP activity against a Rho family protein, or a polynucleotide of the polynucleotide. Includes polynucleotides represented by complementary base sequences. Preferably, it is a polynucleotide having sequence homology to the present polynucleotide and encoding a protein that binds to a Rho family protein, and a polynucleotide represented by a complementary nucleotide sequence of the polynucleotide. Sequence homology is usually It is appropriate that the total nucleotide sequence is 50% or more, preferably at least 70%. It is more preferably at least 70%, further preferably at least 80%, even more preferably at least 90%. Preferably, a polynucleotide having a GAP domain coding region is preferred. Preferably, the sequence homology in the GAP domain coding region is at least 70%. It is more preferably 70% or more, further preferably 80% or more, and still more preferably 90% or more. It is further preferred that the GAP domain retains its function.
[0028] 本発明に係るポリヌクレオチドには、上記ポリヌクレオチドの塩基配列において 1個 以上、例えば 1〜: L00個、好ましくは 1〜30個、より好ましくは 1〜20個、さらに好まし くは 1〜: L0個、特に好ましくは 1個乃至数個のヌクレオチドの欠失、置換、付加または 挿入といった変異が存する塩基配列またはその相補的塩基配列で表されるポリヌク レオチドが包含される。変異の程度およびそれらの位置等は、該変異を有するポリヌ クレオチドが、 Rhoファミリー蛋白質に対する GAP活性を有する蛋白質、より好ましく は Rhoファミリー蛋白質に結合する蛋白質である限り特に制限されない。さらに好ま しくは GAPドメインを有する蛋白質をコードするポリヌクレオチドである。このような変 異を有するポリヌクレオチドは、天然に存在するポリヌクレオチドであってよぐ誘発変 異を有するポリヌクレオチドであってよい。また、天然由来の遺伝子に基づいて変異 を導入して得たポリヌクレオチドであってもよい。変異を導入する方法は自体公知で あり、例えば、部位特異的変異導入法、遺伝子相同組換え法、プライマー伸長法ま たは PCR等を、単独でまたは適宜組合せて用いることができる。例えば成書に記載 の方法〔サムブルック(Sambrook)ら編、「モレキュラークロー-ング,ァ ラボラトリー マ-ユアル 第 2版」、 1989年、コールドスプリングハーバーラボラトリー;および村松 正實編、「ラボマニュアル遺伝子工学」、 1988年、丸善株式会社〕に準じて、あるい はそれらの方法を改変して実施することができ、ウルマーの技術〔ウルマー(Ulmer, K. M 、「サイエンス(Science)」、 1983年、第 219卷、 p. 666— 671〕を利用する ことちでさる。 [0028] In the polynucleotide according to the present invention, one or more, for example, 1 to: L00, preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 100 nucleotides in the base sequence of the polynucleotide. 1 to: A polynucleotide represented by a nucleotide sequence having a mutation such as deletion, substitution, addition or insertion of L0, particularly preferably 1 to several nucleotides, or a nucleotide sequence complementary thereto is included. The degree of mutation, their position, and the like are not particularly limited as long as the polynucleotide having the mutation is a protein having GAP activity against Rho family proteins, more preferably a protein that binds to Rho family proteins. More preferably, it is a polynucleotide encoding a protein having a GAP domain. A polynucleotide having such a mutation may be a naturally-occurring polynucleotide and a polynucleotide having an induced mutation. Further, it may be a polynucleotide obtained by introducing a mutation based on a naturally-occurring gene. Methods for introducing mutations are known per se, and for example, site-directed mutagenesis, homologous recombination, primer extension, PCR and the like can be used alone or in an appropriate combination. For example, the method described in a compendium [Sambrook et al., Eds., "Molecular Cloning, Laboratory Manual, Second Edition", 1989, Cold Spring Harbor Laboratory; and Masamura Muramatsu, "Lab Manual Genetic Engineering" 1988, Maruzen Co., Ltd.] or by modifying those methods, and can be carried out using Ulmer's technology [Ulmer, K.M., “Science”, 1983. 219, p. 666—671].
[0029] 本発明に係るポリヌクレオチドとしてはまた、上記ポリヌクレオチドにストリンジェント な条件下でハイブリダィゼーシヨンするポリヌクレオチドを例示できる。ハイブリダィゼ ーシヨンの条件は、例えば成書に記載の方法〔サムブルック(Sambrook)ら編、「モ レキユラ一クロー-ング,ァ ラボラトリーマ-ユアル 第 2版」、 1989年、コールドスプ リングノヽーバーラボラトリー〕等に従うことができる。具体的には、「ストリンジェントな条 件下」とは、例えば、 6 X SSC、 0. 5% SDSおよび 50% ホノレムアミドの溶液中で 4 2°Cにて加温した後、 0. 1 X SSC、0. 5% SDSの溶液中で 68°Cにて洗浄する条 件を 、う。これらポリヌクレオチドは本ポリヌクレオチドにハイブリダィゼーシヨンするポ リヌクレオチドであれば相補的配列を有するポリヌクレオチドでなくてもよ 、。好ましく は、 GAPドメインを有する蛋白質をコードするポリヌクレオチドであることが望ましい。 より好ましくは、コードする蛋白質が Rhoファミリー蛋白質に対する GAP活性を有する 蛋白質、さらに好ましくはコードする蛋白質が Rhoファミリー蛋白質に結合する蛋白 質であることが望ましい。 [0029] Examples of the polynucleotide according to the present invention include a polynucleotide that hybridizes to the above-mentioned polynucleotide under stringent conditions. Hybridize The conditions for the screening are according to, for example, the method described in a compendium (edited by Sambrook et al., "Molecular Closing, Laboratory Machines, 2nd Edition", Cold Spring Novell Laboratory, 1989). be able to. Specifically, "under stringent conditions" means, for example, after heating at 42 ° C. in a solution of 6 × SSC, 0.5% SDS and 50% honolemamide, 0.1 × Conditions for washing at 68 ° C in a solution of SSC, 0.5% SDS are as follows. These polynucleotides need not be polynucleotides having a complementary sequence as long as they hybridize to the present polynucleotide. Preferably, it is a polynucleotide encoding a protein having a GAP domain. More preferably, the encoded protein is a protein having GAP activity against a Rho family protein, and even more preferably, the encoded protein is a protein that binds to a Rho family protein.
[0030] 本発明に係るポリヌクレオチドには、上記ポリヌクレオチドの指定された領域に存在 する部分塩基配列で表されるオリゴヌクレオチドが包含される。このようなオリゴヌタレ ォチドは、その最小単位として好ましくは該領域において連続する 5個以上のヌクレ ォチド、より好ましくは 10個以上、より好ましくは 20個以上のヌクレオチドからなる。具 体的には、配列表の配列番号 3または 4に記載の塩基配列で表されるオリゴヌクレオ チドを好ましく例示できる。これらのオリゴヌクレオチドは、本遺伝子または本遺伝子 断片を増幅するためのプライマー、本遺伝子またはその転写産物を検出するための プローブ等として用いることができる。これらオリゴヌクレオチドは、本発明に係るポリ ヌクレオチドの塩基配列情報に従って、所望の配列を設計し、 自体公知の化学合成 法により製造することができる。簡便には、 DNAZRNA自動合成装置を用いて取得 可能である。 [0030] The polynucleotide according to the present invention includes an oligonucleotide represented by a partial base sequence existing in a designated region of the polynucleotide. Such an oligonucleotide is preferably composed of 5 or more nucleotides, more preferably 10 or more, more preferably 20 or more nucleotides continuous in the region as a minimum unit. Specifically, an oligonucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or 4 in the sequence listing can be preferably exemplified. These oligonucleotides can be used as a primer for amplifying the present gene or the present gene fragment, a probe for detecting the present gene or a transcription product thereof, and the like. These oligonucleotides can be produced by designing a desired sequence according to the nucleotide sequence information of the polynucleotide according to the present invention, and by a chemical synthesis method known per se. Conveniently, it can be obtained using a DNAZRNA automatic synthesizer.
[0031] 本発明に係るポリヌクレオチドは、好ましくはヒト由来のポリヌクレオチドである。しか し、本ポリヌクレオチドと配列相同性を有し、 Rhoファミリー蛋白質に対する GAP活性 を有する蛋白質、好ましくは Rhoファミリー蛋白質に結合する蛋白質をコードするポリ ヌクレオチドである限りにおいて、哺乳動物由来のポリヌクレオチド、例えばマウス、ゥ マ、ヒッジ、ゥシ、ィヌ、サル、ネコ、クマ、ラットまたはゥサギ等由来のポリヌクレオチド も本発明に包含される。配列相同性は、通常、塩基配列の全体で 50%以上、好まし くは少なくとも 70%であることが適当である。より好ましくは 70%以上、さらに好ましく は 80%以上、さらにより好ましくは 90%以上であることが適当である。また、好ましく は、 GAPドメインコード領域を有するポリヌクレオチドが望ましい。 GAPドメインコード 領域における配列相同性は少なくとも 70%であることが好ましい。より好ましくは 70 %以上、さらに好ましくは 80%以上、さらにより好ましくは 90%以上であることが適当 である。 [0031] The polynucleotide according to the present invention is preferably a human-derived polynucleotide. However, as long as it is a protein having sequence homology to the present polynucleotide and having a GAP activity against a Rho family protein, preferably a polynucleotide encoding a protein that binds to a Rho family protein, a polynucleotide derived from a mammal, For example, polynucleotides derived from mice, horses, sheep, horses, dogs, dogs, monkeys, cats, bears, rats, and egrets are also included in the present invention. Sequence homology is usually preferred to be 50% or more of the entire base sequence. Or at least 70%. It is more preferably 70% or more, further preferably 80% or more, and still more preferably 90% or more. Preferably, a polynucleotide having a GAP domain coding region is desirable. Preferably, sequence homology in the GAP domain coding region is at least 70%. More preferably, it is at least 70%, further preferably at least 80%, even more preferably at least 90%.
[0032] 本発明に係るポリヌクレオチドは、その発現あるいはそれがコードする蛋白質の機 能が阻害されない限りにおいて、 5,末端側や^末端側に所望の遺伝子が付加され たポリヌクレオチドであってよ!、。本ポリヌクレオチドに付加することのできる遺伝子と して、具体的にはダルタチオン S—トランスフェラーゼ (GST)、 一ガラクトシダー ゼ(j8—Gal)、ホースラディッシュパーォキシダーゼ(HRP)またはアルカリホスファタ ーゼ(ALP)等の酵素類、あるいは His— tag、 Myc— tag、 HA—tag、 FLAG -tag または Xpress— tag等のタグペプチド類等の遺伝子が例示できる。これら遺伝子から 選択した 1種類または複数種類の遺伝子を組合せて付加することができる。これら遺 伝子の付カ卩は、慣用の遺伝子工学的手法により行うことができ、遺伝子や mRNAの 検出を容易にするために有用である。  [0032] The polynucleotide according to the present invention may be a polynucleotide having a desired gene added to its 5, terminal or ^ terminal as long as its expression or the function of the protein encoded thereby is not inhibited. !,. Specific examples of genes that can be added to the polynucleotide include daltathione S-transferase (GST), monogalactosidase (j8-Gal), horseradish peroxidase (HRP), and alkaline phosphatase. Examples include enzymes such as (ALP), and genes such as tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag and Xpress-tag. One or more types of genes selected from these genes can be added in combination. The addition of these genes can be performed by conventional genetic engineering techniques, and is useful for facilitating the detection of genes and mRNA.
[0033] (ベクター)  [0033] (vector)
本発明の一態様は、本発明に係るポリヌクレオチドを含有する組換えベクターに関 する。本組換えベクターは、本ポリヌクレオチドを適当なベクター DNAに挿入するこ とにより得ることができる。  One aspect of the present invention relates to a recombinant vector containing the polynucleotide according to the present invention. The present recombinant vector can be obtained by inserting the present polynucleotide into an appropriate vector DNA.
[0034] ベクター DNAは宿主中で複製可能なものであれば特に限定されず、宿主の種類 および使用目的により適宜選択される。ベクター DNAは、天然に存在する DNAを 抽出して得られたベクター DNAの他、複製に必要な部分以外の DNAの部分が一 部欠落しているベクター DNAでもよい。代表的なベクター DNAとして例えば、プラス ミド、バタテリオファージおよびウィルス由来のベクター DNAを挙げることができる。プ ラスミド DNAとして、大腸菌由来のプラスミド、枯草菌由来のプラスミド、酵母由来の プラスミド等を例示できる。バタテリオファージ DNAとして、 λファージ等が挙げられ る。ウイノレス由来のベクター DNAとして、例えばレトロゥイノレス、ワクシニアゥイノレス、 アデノウイルス、パポバウィルス、 SV40、鶏痘ウィルス、および仮性狂犬病ウィルス 等の動物ウィルス由来のベクター、ある ヽはバキュロウィルス等の昆虫ウィルス由来 のベクターが挙げられる。その他、トランスポゾン由来、挿入エレメント由来、酵母染 色体エレメント由来のベクター DNA等を例示できる。あるいは、これらを組合せて作 成したベクター DNA、例えばプラスミドおよびバタテリオファージの遺伝学的エレメン トを組合せて作成したベクター DNA (コスミドゃファージミド等)を例示できる。 [0034] The vector DNA is not particularly limited as long as it can be replicated in the host, and is appropriately selected depending on the type of the host and the purpose of use. The vector DNA may be a vector DNA obtained by extracting a naturally-occurring DNA, or a vector DNA lacking a part of a DNA other than a part necessary for replication. Representative vector DNAs include, for example, vector DNAs derived from plasmids, batteriophages and viruses. Examples of the plasmid DNA include a plasmid derived from Escherichia coli, a plasmid derived from Bacillus subtilis, and a plasmid derived from yeast. Batatheriophage DNA includes λ phage and the like. Examples of Winnores-derived vector DNAs include, for example, Retro Pinoles, Vaccinia Pinoles, Examples include vectors derived from animal viruses such as adenovirus, papovavirus, SV40, fowlpox virus, and pseudorabies virus, and some vectors include vectors derived from insect viruses such as baculovirus. Other examples include transposon-derived, insertion element-derived, and yeast chromosome element-derived vector DNA. Alternatively, vector DNAs prepared by combining them, for example, vector DNAs (cosmids / phagemids etc.) prepared by combining genetic elements of plasmids and batteriophages can be exemplified.
[0035] ベクター DNAは、発現ベクターやクローユングベクター等、 目的に応じていずれを 用いることもできる。本発明に係るポリヌクレオチドを含有する組換え発現ベクターは 、本ポリヌクレオチドがコードする蛋白質の製造に使用可能である。  [0035] Any vector DNA, such as an expression vector or a closing vector, can be used depending on the purpose. The recombinant expression vector containing the polynucleotide according to the present invention can be used for producing a protein encoded by the present polynucleotide.
[0036] ベクター DNAには、本発明に係るポリヌクレオチドの機能が発揮されるように該ポリ ヌクレオチドを組込むことが必要であり、少なくとも本ポリヌクレオチドとプロモーターと をその構成要素とする。これら要素に加えて、所望によりさらに、複製そして制御に関 する情報を担持した遺伝子配列を組合せて自体公知の方法によりベクター DNAに 組込むことができる。このような遺伝子配列として、例えば、リボソーム結合配列、ター ミネ一ター、シグナル配列、ェンハンサ一等のシスエレメント、スプライシングシグナル 、および選択マーカー (ジヒドロ葉酸還元酵素遺伝子、アンピシリン耐性遺伝子、ネ ォマイシン耐性遺伝子等)等を例示できる。これらから選択した 1種類または複数種 類の遺伝子配列をベクター DNAに組込むことができる。  [0036] It is necessary to incorporate the polynucleotide into the vector DNA so that the function of the polynucleotide according to the present invention is exhibited, and at least the present polynucleotide and a promoter are constituent elements thereof. In addition to these elements, if desired, a gene sequence carrying information on replication and control can be combined and incorporated into vector DNA by a method known per se. Such gene sequences include, for example, ribosome binding sequences, terminators, signal sequences, cis elements such as enhancers, splicing signals, and selectable markers (dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene, etc. ) And the like. One or more gene sequences selected from these can be incorporated into the vector DNA.
[0037] ベクター DNAに本発明に係るポリヌクレオチドを組込む方法は、自体公知の方法 を適用できる。例えば、本ポリヌクレオチドを含む遺伝子を適当な制限酵素により処 理して特定部位で切断し、次いで同様に処理したベクター DNAと混合し、リガーゼ により再結合する方法が用いられる。あるいは、本ポリヌクレオチドに適当なリンカ一 をライゲーシヨンし、これを目的に適したベクターのマルチクローユングサイトへ挿入 することによつても、所望の組換えベクターが得られる。  As a method for incorporating the polynucleotide according to the present invention into a vector DNA, a method known per se can be applied. For example, a method is used in which a gene containing the present polynucleotide is treated with an appropriate restriction enzyme, cut at a specific site, then mixed with a similarly treated vector DNA, and religated with ligase. Alternatively, a desired recombinant vector can also be obtained by ligating a suitable linker to the present polynucleotide and inserting it into a multicloning site of a vector suitable for the purpose.
[0038] (形質転換体)  [0038] (Transformant)
本発明の一態様は、本発明に係る組換えベクターにより、宿主を形質転換して得ら れる形質転換体に関する。本発明に係るポリヌクレオチドを含有する組換え発現べク ターを導入した形質転換体は、本ポリヌクレオチドがコードする蛋白質の製造に有用 である。本形質転換体には、本ポリヌクレオチド以外の所望の遺伝子を含有するべク ター DNAの 1種類または複数種類をさらに導入することができる。本ポリヌクレオチド 以外の所望の遺伝子を含有するベクター DNAとして、例えば、 Racl等の Rhoフアミ リー蛋白質をコードする遺伝子を含有するベクター DNAが挙げられる。本ポリヌクレ ォチドを含有する発現ベクターと Rhoファミリー蛋白質をコードする遺伝子を含有す る発現ベクターとにより形質転換して得られる形質転換体は、本ポリヌクレオチドがコ ードする蛋白質の Rhoファミリー蛋白質に対する GAP活性を阻害する化合物の同定 方法に使用できる。具体的には、本蛋白質と Rhoファミリー蛋白質の結合、本蛋白質 による Rhoファミリー蛋白質の GTPァーゼ活性促進、および Zまたは本蛋白質による Rhoファミリー蛋白質の不活性ィ匕促進を阻害する化合物の同定方法に使用できる。 このような形質転換体として好ましくは、本発明に係る組換えベクターと Raclをコード する遺伝子を含有する組換えベクターとにより形質転換して得られる形質転換体が 挙げられる。 One aspect of the present invention relates to a transformant obtained by transforming a host with the recombinant vector of the present invention. A transformant into which the recombinant expression vector containing the polynucleotide according to the present invention has been introduced is useful for producing a protein encoded by the present polynucleotide. It is. One or more kinds of vector DNAs containing a desired gene other than the present polynucleotide can be further introduced into the present transformant. As a vector DNA containing a desired gene other than the present polynucleotide, for example, a vector DNA containing a gene encoding a Rho family protein such as Racl can be mentioned. A transformant obtained by transformation with an expression vector containing the present polynucleotide and an expression vector containing a gene encoding a Rho family protein has a GAP for the Rho family protein of the protein encoded by the present polynucleotide. It can be used in a method for identifying a compound that inhibits the activity. Specifically, it is used for the method of identifying a compound that inhibits the binding of the present protein to the Rho family protein, the promotion of the GTPase activity of the Rho family protein by the present protein, and the promotion of the inactivation of the Rho family protein by the Z or the present protein. it can. Such a transformant is preferably a transformant obtained by transforming the recombinant vector according to the present invention with a recombinant vector containing a gene encoding Racl.
[0039] 宿主として、原核生物および真核生物の!/、ずれも用いることができる。原核生物とし て、例えば大腸菌〔ェシエリヒアコリ(Escherichia coli)〕等のェシエリヒア属、枯草 菌等のバシラス属、シユードモナスプチダ(Pseudomonas putida)等のシユードモ ナス属、リゾビゥムメリロティ(Rhizobium meliloti)等のリゾビゥム属に属する細菌 が挙げられる。真核生物として、酵母、昆虫細胞および哺乳動物細胞等の動物細胞 を例示できる。酵母は、サッカロミセス ·セレビシェ (Saccharomyces cerevisiae)、 シゾサッカロミセスボンべ(Schizosaccharomyces pombe)等が挙げられる。昆虫 細胞は、 Sf 9細胞や Sf 21細胞等を例示できる。哺乳動物細胞は、サル腎由来細胞( COS細胞、 Vero細胞等)、チャイニーズノ、ムスター卵巣細胞(CHO細胞)、マウス L 細胞、ラット GH3細胞、ヒト FL細胞や 293EBNA細胞等が例示できる。好ましくは哺 乳動物細胞を用いる。最も好ましくは、 293EBNA細胞を用いる。  [0039] Prokaryotic and eukaryotic organisms can also be used as hosts. Examples of prokaryotes include genus Escherichia such as Escherichia coli, genus Bacillus such as Bacillus subtilis, genus Pseudomonas such as Pseudomonas putida, and Rhizobium meliloti. And bacteria belonging to the genus Rhizobium. Examples of eukaryotes include animal cells such as yeast, insect cells, and mammalian cells. Examples of yeast include Saccharomyces cerevisiae, Schizosaccharomyces pombe, and the like. Examples of insect cells include Sf9 cells and Sf21 cells. Examples of the mammalian cells include monkey kidney-derived cells (such as COS cells and Vero cells), Chinese nose, Muster ovary cells (CHO cells), mouse L cells, rat GH3 cells, human FL cells, and 293EBNA cells. Preferably, mammalian cells are used. Most preferably, 293EBNA cells are used.
[0040] 組換えベクターによる宿主細胞の形質転換は、 自体公知の手段を応用して実施で きる。例えば成書に記載されている標準的な方法〔サムブルック(Sambrook)ら編、「 モレキュラークロー-ング,ァ ラボラトリーマ-ユアル 第 2版」、 1989年、コールドス プリングノヽーバーラボラトリー〕により実施できる。より好ましい方法として、遺伝子の安 定性を考慮するならば染色体内へのインテグレート法が挙げられる。簡便には核外 遺伝子を利用した自律複製系を使用できる。具体的には、リン酸カルシウムトランスフ ェクシヨン、 DEAE—デキストラン媒介トランスフエクシヨン、マイクロインジェクション、 陽イオン脂質媒介トランスフエクシヨン、エレクト口ポレーシヨン、形質導入、スクレープ 負荷 (scrape loading)、バリスティック導入 (ballistic introduction)および感染 等が挙げられる。 [0040] Transformation of a host cell with a recombinant vector can be carried out by applying a means known per se. For example, the method can be carried out by a standard method described in a compendium (Sambrook et al., Edited by "Molecular Cloning, Laboratory Machines, Second Edition", 1989, Cold Spring Nover Laboratory). A more preferable method is to use gene safety. If qualitative considerations are taken into account, an integration method into the chromosome can be mentioned. For convenience, an autonomous replication system using extranuclear genes can be used. Specifically, calcium phosphate transfection, DEAE-dextran-mediated transfection, microinjection, cationic lipid-mediated transfection, electoral poration, transduction, scrape loading, ballistic introduction and ballistic introduction Infection.
原核生物を宿主とする場合、組換えベクターが該原核生物中で自律複製可能であ ると同時に、プロモーター、リボゾーム結合配列、本発明に係るポリヌクレオチド、転 写終結配列により構成されていることが好ましい。また、プロモーターを制御する遺伝 子が含まれていてもよい。細菌を宿主とする場合、プロモーターとして、大腸菌等の 細菌中で発現できるプロモーターであればいずれも利用可能である。例えば、 trpプ 口モーター、 じプロモーター、 pLプロモーター、 pRプロモーター等の、大月募菌ゃフ ァージに由来するプロモーターが用いられる。 tacプロモーター等の人為的に設計改 変されたプロモーターを用いてもよい。細菌への糸且換えベクターの導入方法は、細菌 に DNAを導入する方法であれば特に限定されず、いずれも利用可能である。好まし くは例えば、カルシウムイオンを用いる方法、エレクト口ポレーシヨン法等を利用できる 哺乳動物細胞を宿主とする場合、組換えベクターが該細胞中で自律複製可能であ ると同時に、プロモーター、 プライス部位、本発明に係るポリヌクレオチド、ポリ アデニル化部位、転写終結配列により構成されていることが好ましい。また、所望によ り複製起点が含まれていてもよい。プロモーターとして、 SR aプロモーター、 SV40 プロモーター、 LTRプロモーター、 CMVプロモーター等が用いられ、また、サイトメ ガロウィルスの初期遺伝子プロモーター等を用いてもょ 、。哺乳動物細胞への組換 えベクターの導入方法は、好ましくは例えば、エレクト口ポレーシヨン法、リン酸カルシ ゥム法、リポフエクシヨン法等を利用できる。最も好ましくは、リポフエクシヨン法を用い る。  When a prokaryote is used as a host, the recombinant vector must be capable of autonomous replication in the prokaryote and, at the same time, be composed of a promoter, a ribosome binding sequence, the polynucleotide of the present invention, and a transcription termination sequence. preferable. In addition, a gene that controls a promoter may be included. When a bacterium is used as a host, any promoter can be used as long as it can be expressed in bacteria such as Escherichia coli. For example, promoters derived from the Otsuki Bacillus phage, such as the trp motor, the same promoter, the pL promoter, and the pR promoter, are used. An artificially designed and modified promoter such as the tac promoter may be used. The method for introducing the recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria, and any method can be used. Preferably, for example, in the case of using a mammalian cell as a host which can use a method using calcium ion, an electoral poration method, or the like, the recombinant vector can be autonomously replicated in the cell, and at the same time, a promoter and a price site can be used. , A polynucleotide according to the present invention, a polyadenylation site, and a transcription termination sequence. Further, a replication origin may be included if desired. As the promoter, an SRa promoter, an SV40 promoter, an LTR promoter, a CMV promoter or the like may be used, or an early gene promoter of cytomegalovirus may be used. As a method for introducing the recombinant vector into mammalian cells, preferably, for example, an electoral port method, a calcium phosphate method, a lipofection method, or the like can be used. Most preferably, the Lipofection method is used.
酵母を宿主とする場合、プロモーターは、酵母中で発現できるプロモーターであれ ば特に限定されず、例えば、 gallプロモーター、 gallOプロモーター、ヒートショック 蛋白質プロモーター、 MF a 1プロモーター、 PH05プロモーター、 PGKプロモータ 一、 GAPプロモーター、 ADHプロモーター、 AOX1プロモーター等が挙げられる。 酵母への組換えベクターの導入方法は、酵母に DNAを導入する方法であれば特に 限定されず、好ましくは例えば、エレクト口ポレーシヨン法、スフエロプラスト法、酢酸リ チウム法等を利用できる。 When yeast is used as a host, the promoter is not particularly limited as long as it can be expressed in yeast, and examples thereof include gall promoter, gallO promoter, and heat shock. Examples include a protein promoter, an MFa1 promoter, a PH05 promoter, a PGK promoter, a GAP promoter, an ADH promoter, and an AOX1 promoter. The method for introducing the recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast, and preferably, for example, an electoporation method, a spheroplast method, a lithium acetate method, or the like can be used.
昆虫細胞を宿主とする場合、組換えベクターの導入方法は、好ましくは例えば、リン 酸カルシウム法、リポフエクシヨン法、エレクト口ポレーシヨン法等を利用できる。  When an insect cell is used as a host, the recombinant vector can be preferably introduced by, for example, a calcium phosphate method, a lipofection method, an electoral poration method, or the like.
[0042] (蛋白質) [0042] (protein)
本発明の一態様は、本発明に係るポリヌクレオチドがコードする蛋白質に関する。  One embodiment of the present invention relates to a protein encoded by the polynucleotide of the present invention.
[0043] 本発明に係る蛋白質の具体的態様は、例えば配列番号 1に記載の塩基配列で表 されるポリヌクレオチドがコードする蛋白質を挙げることができる。より具体的には、こ のような蛋白質として配列番号 2に記載のアミノ酸配列で表される蛋白質を例示でき る。本蛋白質において、その第 34番目プロリン (Pro)から第 186番目セリン (Ser)ま でのアミノ酸残基が GAPドメインを構成する。 [0043] A specific embodiment of the protein according to the present invention includes, for example, a protein encoded by a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1. More specifically, a protein represented by the amino acid sequence of SEQ ID NO: 2 can be exemplified as such a protein. In this protein, the amino acid residues from the 34th proline (Pro) to the 186th serine (Ser) constitute the GAP domain.
[0044] 本発明に係る蛋白質は、好ましくは、 Rhoファミリー蛋白質に対する GAP活性を有 する蛋白質である。配列番号 1に記載の塩基配列で表されるポリヌクレオチドがコー ドする蛋白質は、 Rhoファミリー蛋白質の 1つである Raclに結合した。具体的には、 配列番号 1に記載の塩基配列で表されるポリヌクレオチドと Raclをコードする遺伝子 とを共に発現させた動物細胞において、該ポリヌクレオチドがコードする蛋白質と Rac 1の結合が検出された(実施例 3参照)。配列番号 1に記載の塩基配列で表されるポ リヌクレオチドは、配列番号 2に記載のアミノ酸配列で表される蛋白質をコードする。 したがって、配列番号 2に記載のアミノ酸配列で表される蛋白質が、 Raclに結合した と考えられる。 [0044] The protein according to the present invention is preferably a protein having GAP activity against Rho family proteins. The protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 bound to Racl, one of Rho family proteins. Specifically, in animal cells in which the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 and the gene encoding Racl are both expressed, the binding between the protein encoded by the polynucleotide and Rac1 was detected. (See Example 3). The polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 encodes the protein represented by the amino acid sequence of SEQ ID NO: 2. Therefore, it is considered that the protein represented by the amino acid sequence of SEQ ID NO: 2 bound to Racl.
[0045] 本発明に係る蛋白質は、その構造に GAPドメインを有し、 Rhoファミリー蛋白質に 結合する。 GAPドメインは、 GAPの活性ドメインである。したがって、本蛋白質は、 Rh oファミリー蛋白質に対する GAP活性を有すると考える。より具体的には、配列番号 2 に記載のアミノ酸配列で表される蛋白質は、 Rhoファミリー蛋白質の 1つである Racl に対する GAP活性を有すると考える。 [0046] 本発明に係る蛋白質は上記蛋白質に限定されず、本発明に係るポリヌクレオチドが コードする蛋白質であればいずれも本発明の範囲に包含される。好ましくは、本ポリ ヌクレオチドがコードする蛋白質であって、 Rhoファミリー蛋白質に対する GAP活性 を有する蛋白質が包含される。より好ましくは、本ポリヌクレオチドがコードする蛋白質 であって、 Rhoファミリー蛋白質に結合する蛋白質を包含する。このような蛋白質とし て、例えば、配列番号 1に記載の塩基配列またはその相補的塩基配列で表されるポ リヌクレオチドおよび配列番号 2に記載のアミノ酸配列で表される蛋白質をコードする ポリヌクレオチドまたは該ポリヌクレオチドの相補的塩基配列で表されるポリヌクレオ チドより選ばれるいずれか 1のポリヌクレオチドの塩基配列と少なくとも 70%の相同性 を有する塩基配列で表されるポリヌクレオチドであって、 Rhoファミリー蛋白質に対す る GAP活性を有する蛋白質または Rhoファミリー蛋白質に結合する蛋白質をコード するポリヌクレオチドがコードする蛋白質が挙げられる。また、例えば、上記ポリヌクレ ォチド群より選ばれるいずれか 1のポリヌクレオチドの塩基配列において 1乃至数個 のヌクレオチドの欠失、置換、付加等の変異あるいは誘発変異を有する塩基配列で 表されるポリヌクレオチドであって、 Rhoファミリー蛋白質に対する GAP活性を有する 蛋白質または Rhoファミリー蛋白質に結合する蛋白質をコードするポリヌクレオチドが コードする蛋白質が挙げられる。さらに、上記ポリヌクレオチド群より選ばれるいずれ 力 1のポリヌクレオチドとストリンジヱントな条件下でハイブリダィゼーシヨンするポリヌク レオチドであって、 Rhoファミリー蛋白質に対する GAP活性を有する蛋白質または R hoファミリー蛋白質に結合する蛋白質をコードするポリヌクレオチドがコードする蛋白 質であってもよい。 [0045] The protein according to the present invention has a GAP domain in its structure and binds to a Rho family protein. The GAP domain is the active domain of GAP. Therefore, the present protein is considered to have GAP activity against the Rh family protein. More specifically, the protein represented by the amino acid sequence of SEQ ID NO: 2 is considered to have GAP activity against Racl, one of Rho family proteins. [0046] The protein according to the present invention is not limited to the above proteins, and any protein encoded by the polynucleotide according to the present invention is included in the scope of the present invention. Preferably, a protein encoded by the present polynucleotide, which has GAP activity against a Rho family protein, is included. More preferably, it includes a protein encoded by the present polynucleotide, which protein binds to a Rho family protein. As such a protein, for example, a polynucleotide encoding the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 or its complementary nucleotide sequence and the polynucleotide encoding the protein represented by the amino acid sequence of SEQ ID NO: 2 or A polynucleotide represented by a nucleotide sequence having at least 70% homology with the nucleotide sequence of any one of the polynucleotides selected from the polynucleotides represented by the complementary nucleotide sequences of the polynucleotide, wherein the Rho family protein And a protein that encodes a polynucleotide that encodes a protein that binds to a protein that has GAP activity against Rho or a Rho family protein. Also, for example, a polynucleotide represented by a nucleotide sequence having a mutation such as deletion, substitution, addition or the like of one or several nucleotides or an induced mutation in the nucleotide sequence of any one of the polynucleotides selected from the above-mentioned polynucleotide group A protein having GAP activity against a Rho family protein or a protein encoded by a polynucleotide encoding a protein that binds to a Rho family protein. Furthermore, a polynucleotide that hybridizes under stringent conditions with a polynucleotide of any force selected from the above-mentioned polynucleotide groups, and binds to a protein having GAP activity against a Rho family protein or to a Rho family protein. It may be a protein encoded by a polynucleotide encoding the protein.
[0047] 本発明に係るこのような蛋白質として、より具体的には、配列番号 2に記載のァミノ 酸配列で表される蛋白質と配列相同性を有し、かつ Rhoファミリー蛋白質に対する G AP活性を有する蛋白質が例示できる。より好ましくは、配列番号 2に記載のアミノ酸 配列で表される蛋白質と配列相同性を有し、かつ Rhoファミリー蛋白質に結合する蛋 白質である。配列相同性は、通常、アミノ酸配列の全体で 50%以上、好ましくは少な くとも 70%であることが適当である。より好ましくは 70%以上、さらに好ましくは 80% 以上、さらにより好ましくは 90%以上であることが適当である。また、好ましくは、 GAP ドメインを有するポリペプチドが望ま ヽ。 GAPドメインにおける配列相同性は少なく とも 70%であることが好ましい。より好ましくは 70%以上、さらに好ましくは 80%以上 、さらにより好ましくは 90%以上であることが適当である。 GAPドメインがその機能を 保持していることがさらに好ましい。また、本蛋白質として、配列番号 2に記載のァミノ 酸配列において 1個以上、例えば 1〜: L00個、好ましくは 1〜30個、より好ましくは 1 〜20個、さらに好ましくは 1〜10個、特に好ましくは 1個乃至数個のアミノ酸の欠失、 置換、付加または挿入といった変異を有するアミノ酸配列で表わされ、かつ Rhoファ ミリ一蛋白質に対する GAP活性を有する蛋白質が例示できる。より好ましくは、配列 番号 2に記載のアミノ酸配列において上記変異を有するアミノ酸配列で表わされ、か つ Rhoファミリー蛋白質に結合する蛋白質である。アミノ酸の変異の程度およびそれ らの位置等は、該変異を有する蛋白質が、 Rhoファミリー蛋白質に対する GAP活性 を有する蛋白質、より好ましくは Rhoファミリー蛋白質に結合する蛋白質である限り特 に制限されない。さらに好ましくは、 GAPドメインを有する蛋白質である。このような変 異を有する蛋白質は、天然において例えば突然変異や翻訳後の修飾等により生じ たものであってよぐまた天然由来の遺伝子に基づいて変異を導入して得たものであ つてもよい。変異を導入する方法は自体公知であり、例えば、公知の遺伝子工学的 技術を利用して実施できる。変異の導入において、当該蛋白質の基本的な性質 (物 性、機能、生理活性または免疫学的活性等)を変化させないという観点力 は、例え ば、同族アミノ酸 (極性アミノ酸、非極性アミノ酸、疎水性アミノ酸、親水性アミノ酸、陽 性荷電アミノ酸、陰性荷電アミノ酸および芳香族アミノ酸等)の間での相互の置換は 容易に想定される。 [0047] More specifically, such a protein according to the present invention has sequence homology to the protein represented by the amino acid sequence of SEQ ID NO: 2 and has a GAP activity against a Rho family protein. Can be exemplified. More preferably, it is a protein having sequence homology to the protein represented by the amino acid sequence of SEQ ID NO: 2 and binding to a Rho family protein. The sequence homology is usually at least 50%, preferably at least 70%, of the entire amino acid sequence. It is more preferably 70% or more, further preferably 80% or more, and still more preferably 90% or more. Also preferably, GAP A polypeptide having a domain is desirable. Preferably, the sequence homology in the GAP domain is at least 70%. It is more preferably at least 70%, further preferably at least 80%, even more preferably at least 90%. More preferably, the GAP domain retains its function. In addition, as the present protein, one or more amino acids in the amino acid sequence of SEQ ID NO: 2, for example, 1 to: L00, preferably 1 to 30, more preferably 1 to 20, still more preferably 1 to 10, Particularly preferred is a protein represented by an amino acid sequence having a mutation such as deletion, substitution, addition or insertion of one or several amino acids and having GAP activity against Rho family protein. More preferably, it is a protein represented by the amino acid sequence having the above mutation in the amino acid sequence of SEQ ID NO: 2, and which binds to a Rho family protein. The degree of amino acid mutation and the position thereof are not particularly limited as long as the protein having the mutation is a protein having GAP activity against a Rho family protein, more preferably a protein that binds to a Rho family protein. More preferably, it is a protein having a GAP domain. Proteins having such mutations may be those naturally produced by, for example, mutation or post-translational modification, and those obtained by introducing mutations based on naturally-occurring genes. Good. Methods for introducing mutations are known per se, and can be carried out using, for example, known genetic engineering techniques. The point of view that the mutation does not alter the basic properties (physical properties, function, physiological activity or immunological activity, etc.) of the protein is, for example, related amino acids (polar amino acids, non-polar amino acids, hydrophobic amino acids). Mutual substitutions between amino acids, hydrophilic amino acids, positively charged amino acids, negatively charged amino acids and aromatic amino acids) are readily envisioned.
[0048] 本発明に係る蛋白質にはさらに、上記蛋白質の部分配列で表される蛋白質が包含 される。例えば、配列番号 2に記載のアミノ酸配列で表される蛋白質の部分配列で表 される蛋白質も本発明の範囲に包含される。このような蛋白質は、その最小単位とし て好ましくは 5個以上、より好ましくは 8個以上、さらに好ましくは 12個以上、特に好ま しくは 15個以上の連続するアミノ酸で表される。  [0048] The protein according to the present invention further includes a protein represented by a partial sequence of the above protein. For example, a protein represented by the partial sequence of the protein represented by the amino acid sequence of SEQ ID NO: 2 is also included in the scope of the present invention. Such a protein is represented by a minimum unit of preferably 5 or more, more preferably 8 or more, still more preferably 12 or more, particularly preferably 15 or more continuous amino acids.
[0049] 本発明に係る蛋白質は、好ましくはヒト由来の蛋白質である。しかし、本蛋白質と配 列相同性を有し、かつ Rhoファミリー蛋白質に対する GAP活性を有する蛋白質、好 ましくは Rhoファミリー蛋白質に結合する蛋白質である限りにお 、て、哺乳動物由来 の蛋白質、例えばマウス、ゥマ、ヒッジ、ゥシ、ィヌ、サル、ネコ、クマ、ラットまたはゥサ ギ等由来の蛋白質も本発明に包含される。配列相同性は、通常、アミノ酸配列の全 体で 50%以上、好ましくは少なくとも 70%であることが適当である。より好ましくは 70 %以上、さらに好ましくは 80%以上、さらにより好ましくは 90%以上であることが適当 である。また、好ましくは、 GAPドメインを有する蛋白質が望ましい。 GAPドメインにお ける配列相同性は少なくとも 70%であることが好ましい。より好ましくは 70%以上、さ らに好ましくは 80%以上、さらにより好ましくは 90%以上であることが適当である。 [0049] The protein according to the present invention is preferably a human-derived protein. However, proteins having sequence homology with the present protein and having GAP activity against Rho family proteins are preferred. Preferably, as long as it is a protein that binds to a Rho family protein, it is a protein derived from a mammal, such as a mouse, a horse, a sheep, a horse, a dog, a monkey, a cat, a bear, a rat, or a rabbit. Derived proteins are also included in the present invention. The sequence homology is usually at least 50%, preferably at least 70%, as a whole of the amino acid sequence. More preferably, it is at least 70%, further preferably at least 80%, even more preferably at least 90%. Preferably, a protein having a GAP domain is desirable. Preferably, the sequence homology in the GAP domain is at least 70%. It is more preferably at least 70%, further preferably at least 80%, even more preferably at least 90%.
[0050] 本発明に係る蛋白質は、該蛋白質をコードする遺伝子を遺伝子工学的手法で発 現させた細胞、無細胞系合成産物、化学合成産物、または該細胞や生体由来の生 物学的試料力も調製したものであってよぐこれら力もさらに精製されたものであって ちょい。 [0050] The protein according to the present invention may be a cell, a cell-free synthetic product, a chemical synthetic product, or a biological sample derived from the cell or the organism, in which a gene encoding the protein is expressed by a genetic engineering technique. The power was also prepared, and these powers were also more refined.
[0051] 本発明に係る蛋白質はさらに、その構成アミノ基またはカルボキシル基等を、例え ばアミド化修飾する等、機能の著し 、変更を伴わない限りにお 、て改変が可能であ る。また、 N末端側や C末端側に別の蛋白質等を、直接的に、またはリンカ一べプチ ド等を介して間接的に、遺伝子工学的手法等を用いて付加することにより標識ィ匕した ものであってよい。好ましくは、本蛋白質の機能が阻害されないような標識ィ匕が望まし い。標識ィ匕に用いる物質 (標識物質)として、例えば GST、 β— Gal、 HRPまたは AL p等の酵素類、 His -tag, Myc— tag、 HA -tag, FLAG— tagまたは Xpress— ta g等のタグペプチド類、フルォレセインイソチオシァネート(fluorescein isothiocya nate)またはフィコエリスリン(phycoerythrin)等の蛍光物質類、マルトース結合蛋 白質、免疫グロブリンの Fc断片あるいはピオチン等が例示できる力 これらに限定さ れない。また、放射性同位元素による標識化も可能である。標識物質は、 1種類また は複数種類を組合せて本蛋白質に付加することができる。これら標識物質自体また はその機能の測定により、本蛋白質を容易に検出または精製可能であり、また、例え ば本蛋白質と他の蛋白質との結合の検出や本蛋白質の機能の測定が可能である。  [0051] The protein according to the present invention can be further modified as long as its function is not remarkably changed, for example, by modifying its constituent amino group or carboxyl group or the like by amidation modification. Labeling was performed by adding another protein or the like to the N-terminal side or C-terminal side directly or indirectly via a linker peptide or the like using genetic engineering techniques or the like. May be something. Preferably, labeling is desired so that the function of the present protein is not inhibited. Substances (labeling substances) used for labeling such as enzymes such as GST, β-Gal, HRP or ALp, His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag Tag peptides, fluorescent substances such as fluorescein isothiocynate or phycoerythrin, maltose-binding protein, Fc fragment of immunoglobulin or biotin. Not. Labeling with a radioisotope is also possible. The labeling substance can be added to the present protein in one kind or in combination of two or more kinds. By measuring the labeling substance itself or its function, the present protein can be easily detected or purified.For example, it is possible to detect the binding of the present protein to another protein or to measure the function of the present protein. .
[0052] (蛋白質の製造方法)  (Method for Producing Protein)
本発明の一態様は、本発明に係る蛋白質の製造方法に関する。本蛋白質は、例え ば本蛋白質をコードする遺伝子の塩基配列情報に基づいて一般的遺伝子工学的手 法〔サムブルック(Sambrook)ら編、「モレキュラークローユング,ァ ラボラトリーマ- ュアル 第 2版」、 1989年、コールドスプリングハーバーラボラトリー;村松正實編、「ラ ボマ-ユアル遺伝子工学」、 1988年、丸善株式会社;ウルマー(Ulmer, K. M. )、「 サイエンス(Science)」、 1983年、第 219卷、 p. 666— 671;およびエーノレリツヒ(Eh rlich, H. A. )編、「PCRテクノロジー, DNA増幅の原理と応用」、 1989年、ストック トンプレス等を参照〕により取得可能である。例えば、本発明に係るポリヌクレオチドの 発現が確認されている各種の細胞や組織、またはこれらに由来する培養細胞から常 法に従って cDNAライブラリーをまず調製する。次いで、本蛋白質をコードする遺伝 子に選択的にハイブリダィゼーシヨンするプライマーを用いて、該 cDNAライブラリー 力も本ポリヌクレオチドを増幅する。得られたポリヌクレオチドの発現誘導を公知の遺 伝子工学的手法を利用して行うことにより、本蛋白質を取得できる。 One embodiment of the present invention relates to a method for producing the protein of the present invention. This protein, for example, For example, a general genetic engineering method based on the nucleotide sequence information of the gene encoding the present protein [Sambrook et al., Edited by Molecular Cloning, Laboratory Manual, 2nd Edition, 1989, Cold Spring Harbour Laboratory; Masanori Muramatsu, "La Boma-Yual Genetic Engineering", 1988, Maruzen Co .; Ulmer, KM, "Science", 1983, Vol. 219, p. 666—671; And Enolichich (HA), edited by PCR Technology, Principles and Applications of DNA Amplification, 1989, Stockton Press, etc.]. For example, a cDNA library is first prepared from various cells and tissues in which expression of the polynucleotide according to the present invention has been confirmed, or cultured cells derived therefrom in accordance with a conventional method. Next, the cDNA library is also amplified using the primers that selectively hybridize to the gene encoding the present protein. The present protein can be obtained by inducing the expression of the obtained polynucleotide using a known gene engineering technique.
[0053] 具体的には例えば、本発明に係る形質転換体を培養し、次いで得られた培養物か ら本蛋白質を回収することにより、本蛋白質を製造できる。本形質転換体の培養は、 形質転換体の作製に用いた宿主に最適な自体公知の培養条件および培養方法で 行うことができる。培養は、形質転換体により発現される本蛋白質自体または本蛋白 質の機能を指標にして実施できる。あるいは、宿主中または宿主外に産生された本 蛋白質自体またはその蛋白質量を指標にして培養してもよぐ培地中の形質転換体 量を指標にして継代培養またはバッチ培養を行ってもよい。 [0053] Specifically, for example, the present protein can be produced by culturing the transformant according to the present invention and then recovering the present protein from the obtained culture. The present transformant can be cultured under culture conditions and methods known per se that are optimal for the host used to prepare the transformant. The culturing can be carried out using the present protein itself expressed by the transformant or the function of the present protein as an index. Alternatively, subculture or batch culture may be performed using the amount of the transformant in the medium, which can be cultured using the present protein itself or the amount of the protein produced in or outside the host as an index. .
[0054] 本発明に係る蛋白質が形質転換体の細胞内あるいは細胞膜上に発現する場合に は、形質転換体を破砕して本蛋白質を抽出する。また、本蛋白質が形質転換体外に 分泌される場合には、培養液をそのまま使用するか、遠心分離処理等により形質転 換体を除去した培養液を用いる。 When the protein of the present invention is expressed in the cells of the transformant or on the cell membrane, the transformant is crushed to extract the present protein. When the protein is secreted outside the transformant, use the culture solution as it is or use a culture solution from which the transformant has been removed by centrifugation or the like.
[0055] 本発明に係る蛋白質は、所望により、形質転換体を培養した培養液または形質転 換体から、分離および Zまたは精製することができる。分離および Zまたは精製は、 本蛋白質の物理的性質や化学的性質等を利用した各種分離操作方法により実施で きる。分離操作方法として、具体的には、硫酸アンモ-ゥム沈殿、限外ろ過、ゲルクロ マトグラフィー、イオン交換クロマトグラフィー、ァフィ-ティークロマトグラフィー、高速 液体クロマトグラフィー、透析法等を例示できる。また、これら方法を適宜組合せて用 いることができる。好ましくは、本蛋白質に対する特異抗体を結合させたカラムを利用 するァフィ二ティクロマトグラフィーを用いることが推奨される。本蛋白質に対する特異 抗体は、本蛋白質のアミノ酸配列情報に基づき、自体公知の抗体作成法により取得 できる。分離および Zまたは精製を行なうとき、本蛋白質を得るための指標として、本 蛋白質の機能を利用することができる。 [0055] The protein according to the present invention can be separated and Z- or purified from a culture solution or a transformant in which the transformant has been cultured, if desired. Separation and Z or purification can be performed by various separation procedures utilizing the physical properties, chemical properties, etc. of the present protein. Specific examples of the separation operation method include ammonium sulfate precipitation, ultrafiltration, gel chromatography, ion exchange chromatography, affinity chromatography, and high-speed separation. Examples thereof include liquid chromatography and dialysis. Further, these methods can be appropriately combined and used. Preferably, it is recommended to use affinity chromatography using a column to which a specific antibody against the present protein is bound. A specific antibody to the present protein can be obtained by a known antibody preparation method based on the amino acid sequence information of the present protein. When performing separation and Z or purification, the function of the present protein can be used as an index for obtaining the present protein.
[0056] 本発明に係る蛋白質はまた、一般的な化学合成法により製造することができる。蛋 白質の化学合成方法として、例えば、固相合成方法、液相合成方法等が知られてい る。いずれの方法も利用可能である。このような蛋白質合成法は、より詳しくは、ァミノ 酸配列情報に基づ 、て、各アミノ酸を 1個ずつ逐次結合させて鎖を延長させて 、く 、 わゆるステップワイズェロンゲーシヨン法と、アミノ酸数個力もなるフラグメントを予め合 成し、次 、で各フラグメントをカップリング反応させるフラグメントコンデンセーシヨン法 とを包含する。本蛋白質の合成は、そのいずれによっても行うことができる。上記蛋白 質合成法において利用される縮合法も常法に従うことができる。縮合法として、例え ば、アジド法、混合酸無水物法、 DCC法、活性エステル法、酸化還元法、 DPPA (ジ フエ-ルホスホリルアジド)法、 DCC +添カ卩物(1—ヒドロキシベンゾトリァゾール、 N— ヒドロキシサクシンアミド、 N—ヒドロキシ一 5—ノルボルネン一 2, 3—ジカルボキシイミ ド等)法、ウッドワード法等が例示できる。化学合成により得られる本蛋白質はさらに、 上記のような慣用の各種精製方法により適宜精製を行うことができる。  [0056] The protein according to the present invention can also be produced by a general chemical synthesis method. As a method for chemically synthesizing a protein, for example, a solid phase synthesis method, a liquid phase synthesis method and the like are known. Either method can be used. More specifically, such a protein synthesis method is based on amino acid sequence information, in which each amino acid is successively linked one by one to extend the chain, which is referred to as the so-called stepwise longation method. A fragment condensing method in which a fragment having several amino acids is synthesized in advance, and then the respective fragments are subjected to a coupling reaction. The synthesis of the present protein can be performed by any of them. The condensation method used in the above protein synthesis method can also follow a conventional method. Examples of the condensation method include azide method, mixed acid anhydride method, DCC method, active ester method, oxidation-reduction method, DPPA (diphenylphosphoryl azide) method, DCC + Sol, N-hydroxysuccinamide, N-hydroxy-15-norbornene-1,2,3-dicarboximide) method, Woodward method and the like. The present protein obtained by chemical synthesis can be further appropriately purified by various conventional purification methods as described above.
[0057] 本発明に係る蛋白質の部分配列で表される蛋白質は、本蛋白質を適当なぺプチ ダーゼにより切断することによつても得ることができる。  [0057] The protein represented by the partial sequence of the protein according to the present invention can also be obtained by cleaving the present protein with an appropriate peptidase.
[0058] (抗体)  [0058] (Antibody)
本発明の一態様は、本発明に係る蛋白質を認識する抗体に関する。本抗体は、本 蛋白質を抗原として用いて作製することができる。抗原は、本蛋白質またはその断片 でもよぐ少なくとも 8個、好ましくは少なくとも 10個、より好ましくは少なくとも 12個、さ らに好ましくは 15個以上のアミノ酸で構成される。本蛋白質に特異的な抗体を作成 するためには、本蛋白質に固有なアミノ酸配列力もなる領域を抗原として用いること が好ましい。この領域のアミノ酸配列は、必ずしも本蛋白質またはその断片のアミノ酸 配列と同一である必要はない。このようなアミノ酸配列として、蛋白質の立体構造上の 外部への露出部位のアミノ酸配列が好まし 、。露出部位のアミノ酸配列が一次構造 上で不連続であっても、該露出部位につ!、て連続的なアミノ酸配列であればょ 、。 本抗体は本蛋白質を特異的に認識する抗体であればいずれであってもよぐ特に限 定されない。本蛋白質を特異的に認識するとは、本蛋白質を認識する、例えば本蛋 白質に結合するが、本蛋白質以外の蛋白質は認識しないか、弱く認識することを意 味する。認識の有無は、公知の抗原抗体結合反応により決定できる。 One embodiment of the present invention relates to an antibody that recognizes the protein of the present invention. The present antibody can be prepared using the present protein as an antigen. The antigen is composed of at least 8, preferably at least 10, more preferably at least 12, and even more preferably 15 or more amino acids, which may be the present protein or a fragment thereof. In order to prepare an antibody specific to the present protein, it is preferable to use, as an antigen, a region having amino acid sequence power unique to the present protein. The amino acid sequence of this region is not necessarily the amino acid sequence of the present protein or a fragment thereof. It need not be the same as the sequence. As such an amino acid sequence, an amino acid sequence at an exposed site on the three-dimensional structure of a protein is preferable. Even if the amino acid sequence at the exposed site is discontinuous on the primary structure, the amino acid sequence should be continuous at the exposed site. The present antibody is not particularly limited as long as it is an antibody that specifically recognizes the present protein. Recognizing the present protein specifically means recognizing the present protein, for example, binding to the present protein, but not recognizing or weakly recognizing a protein other than the present protein. The presence or absence of recognition can be determined by a known antigen-antibody binding reaction.
[0059] 抗体の産生には、自体公知の抗体作製法を利用できる。例えば、抗体の産生は、 抗原をアジュバントの存在下または非存在下で、単独でまたは担体に結合して動物 に投与し、体液性応答および Zまたは細胞性応答等の免疫誘導を行うことにより実 施できる。担体は、それ自体が宿主に対して有害作用を示さずかつ抗原性を増強せ しめる限りにおいて、公知の担体をいずれも使用できる。具体的には、セルロース、 重合アミノ酸、アルブミンおよびキーホールリンペットへモシァニン等を例示できる。ァ ジュバントとして、フロイント完全アジュバント(FCA)、フロイント不完全アジュバント( FIA)、 Ribi (MPL)、 Ribi (TDM)、 Ribi (MPL+TDM)、百日咳ワクチン(Bordet ella pertussis vaccine)、ムラミルジペプチド(MDP)、アルミニウムアジュバント( ALUM)、およびこれらの組み合わせを例示できる。免疫される動物は、マウス、ラッ ト、ゥサギ、ャギ、ゥマ等が好適に用いられる。  [0059] Antibodies can be produced by a known antibody production method. For example, antibody production is achieved by administering an antigen to an animal in the presence or absence of an adjuvant, alone or in combination with a carrier, to induce immunity such as humoral response and Z or cellular response. Can be applied. As the carrier, any known carrier can be used as long as it has no adverse effect on the host itself and enhances antigenicity. Specific examples include cellulose, polymerized amino acids, albumin, and keyhole limpet hemocyanin. As adjuvants, Freund's complete adjuvant (FCA), Freund's incomplete adjuvant (FIA), Ribi (MPL), Ribi (TDM), Ribi (MPL + TDM), pertussis vaccine (Bordet ella pertussis vaccine), muramyl dipeptide (MDP) ), Aluminum adjuvant (ALUM), and combinations thereof. As an animal to be immunized, a mouse, a rat, a heron, a goat, a horse, and the like are suitably used.
[0060] ポリクローナル抗体は、免疫手段を施された動物の血清から自体公知の抗体回収 法により取得できる。好ましい抗体回収手段として免疫ァフィ二ティクロマトグラフィー 法が挙げられる。  [0060] The polyclonal antibody can be obtained from the serum of an animal to which immunization has been applied by a known antibody recovery method. Preferred antibody recovery means includes immunoaffinity chromatography.
[0061] モノクローナル抗体は、免疫手段が施された動物から採取した抗体産生細胞 (例え ば、脾臓またはリンパ節由来のリンパ球)と、自体公知の永久増殖性細胞 (例えば、 P 3— X63—Ag8株等のミエローマ株)とを融合させて作製したノヽイブリドーマを用いて 生産できる。例えば、抗体産生細胞と永久増殖性細胞とを自体公知の方法で融合さ せてハイプリドーマを作成し、次いでクローン化する。クローン化した種々のハイブリド 一マから、本発明に係る蛋白質を特異的に認識する抗体を産生するハイブリドーマ を選別し、該ハイブリドーマの培養液力も抗体を回収する。 [0062] 本発明に係る蛋白質を認識または結合し得るポリクローナル抗体またはモノクロ一 ナル抗体は、該蛋白質の精製用抗体、試薬または標識マーカー等として利用できる 。特に本蛋白質の機能を阻害する抗体は、本蛋白質の機能調節に使用でき、本蛋 白質の機能異常や量的異常に起因する各種疾患の解明、防止、改善および Zまた は治療のために有用である。 [0061] Monoclonal antibodies include antibody-producing cells (for example, lymphocytes derived from spleen or lymph node) collected from an animal to which immunization has been applied, and perpetually proliferating cells known per se (for example, P3-X63- Ag8 strains and other myeloma strains) can be produced using a hybridoma. For example, a hybridoma is prepared by fusing antibody-producing cells and perpetually proliferating cells in a manner known per se, and then cloned. Hybridomas that produce an antibody that specifically recognizes the protein according to the present invention are selected from the cloned hybridomas, and the antibody in the culture solution of the hybridomas is also recovered. [0062] A polyclonal antibody or a monoclonal antibody capable of recognizing or binding to the protein according to the present invention can be used as an antibody for purifying the protein, a reagent, a label marker, or the like. In particular, antibodies that inhibit the function of this protein can be used to regulate the function of this protein, and are useful for elucidation, prevention, improvement, and Z or treatment of various diseases caused by abnormal or quantitative abnormalities of this protein. It is.
[0063] (化合物の同定方法)  (Method for identifying compound)
本発明の一態様は、本発明に係る蛋白質の機能を阻害する化合物、あるいは本発 明に係るポリヌクレオチドの発現を阻害する化合物の同定方法に関する。本同定方 法は、本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換体または 抗体のうち少なくともいずれか 1種類を用いて、自体公知の医薬品スクリーニングシス テムを利用して実施可能である。本同定方法は、インビトロまたはインビボで実施され るいずれの方法も包含する。本同定方法により、本蛋白質の立体構造に基づくドラッ グデザインによる拮抗剤の選別、蛋白質合成系を利用した遺伝子レベルでの発現の 阻害剤の選別、または抗体を利用した抗体認識物質の選別等が可能である。  One embodiment of the present invention relates to a method for identifying a compound that inhibits the function of the protein according to the present invention or a compound that inhibits expression of the polynucleotide according to the present invention. The present identification method can be carried out using at least one of the protein, polynucleotide, recombinant vector, transformant and antibody according to the present invention, using a drug screening system known per se. . The identification method includes any method performed in vitro or in vivo. This identification method enables selection of antagonists by drag design based on the three-dimensional structure of the protein, selection of inhibitors of gene-level expression using a protein synthesis system, or selection of antibody-recognizing substances using antibodies. It is possible.
[0064] 本発明に係る蛋白質の機能を阻害する化合物の同定方法は、本蛋白質の機能を 測定することのできる実験系において、本蛋白質と調べようとする化合物 (被検化合 物)の相互作用を可能にする条件下で、本蛋白質と被検化合物とを共存させてその 機能を測定し、次いで、被検化合物の存在下における本蛋白質の機能と、被検化合 物の非存在下における本蛋白質の機能とを比較し、本蛋白質の機能の存在、不存 在または変化、例えば低減、増カロ、消失、出現を検出することにより実施可能である 。被検化合物の非存在下における本蛋白質の機能と比較して、被検化合物の存在 下における本蛋白質の機能が低減または消失する場合、該被検化合物は本蛋白質 の機能を阻害すると判定できる。機能の測定は、該機能の直接的な検出により、また は例えば機能の指標となるシグナルを実験系に導入して該シグナルを検出すること により実施可能である。シグナルとして、 GST等の酵素類、 His— tag、 Myc— tag、 HA -tag, FLAG— tagまたは Xpress— tag等のタグペプチド類、または蛍光蛋白 質等を用いることができる。これら例示した物質以外であっても、一般的に化合物の 同定方法に用いられて 、る標識物質であれば、 、ずれも利用可能である。 [0065] 本発明に係る蛋白質は、 Rhoファミリー蛋白質に結合した。本蛋白質が GAPドメイ ンを有することから、本蛋白質は Rhoファミリー蛋白質に対する GAP活性を有すると 考える。すなわち、本蛋白質の機能として、 Rhoファミリー蛋白質の GTPァーゼ活性 を促進する活性および Rhoファミリー蛋白質の不活性ィ匕を促進する活性が挙げられ る。 [0064] The method for identifying a compound that inhibits the function of a protein according to the present invention is characterized in that, in an experimental system capable of measuring the function of the protein, the interaction between the protein and the compound to be examined (test compound) is tested. The function of the present protein is measured in the presence of the test compound and the function of the present protein in the absence of the test compound. The present invention can be carried out by comparing the function of the protein and detecting the presence, absence, or change of the function of the present protein, for example, reduction, increase in calorie, disappearance, or appearance. When the function of the present protein in the presence of the test compound decreases or disappears as compared with the function of the present protein in the absence of the test compound, it can be determined that the test compound inhibits the function of the present protein. The function can be measured by directly detecting the function, or by, for example, introducing a signal as an indicator of the function into an experimental system and detecting the signal. Enzymes such as GST, tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag, and fluorescent proteins can be used as the signal. Other than these exemplified substances, deviations can also be used as long as they are generally used in a compound identification method and are labeled substances. [0065] The protein according to the present invention bound to a Rho family protein. Since this protein has a GAP domain, it is considered that this protein has GAP activity against Rho family proteins. That is, the functions of the present protein include the activity of promoting the GTPase activity of the Rho family protein and the activity of promoting the inactivation of the Rho family protein.
[0066] 本発明に係る蛋白質の Rhoファミリー蛋白質との結合を指標にした同定方法は、例 えば、本蛋白質を遺伝子工学的手法により発現させて取得し、被検化合物の存在下 または非存在下における Rhoファミリー蛋白質との結合の検出を行うことにより実施で きる。具体的には、例えば Rhoファミリー蛋白質を遺伝子工学的手法により GST—ta g融合蛋白質として発現させ、その後ダルタチオンセファロースに結合させ、被検化 合物の存在下または非存在下で、本蛋白質と反応させる。ダルタチオンセファロース に結合させた Rhoファミリー蛋白質に結合する本蛋白質を定量することにより、本蛋 白質の Rhoファミリー蛋白質との結合を阻害する化合物の同定が可能である。被検 化合物の非存在下における両蛋白質の結合と比較して、被検化合物の存在下にお ける両蛋白質の結合が低減または消失する場合、該被検化合物は本蛋白質の Rho ファミリー蛋白質との結合を阻害すると判定できる。本蛋白質の定量は、例えば、本 発明に係る抗体を用いて実施できる。抗体は、 HRPや ALP等の酵素、放射性同位 元素、蛍光物質またはピオチン等の標識物質で標識した抗体を用いることができる。 あるいは、標識した二次抗体を用いてもよい。本蛋白質として、タグペプチドを融合し た蛋白質を用いれば、抗タグ抗体を用いて定量を実施できる。または、本蛋白質を 上記酵素、放射性同位元素、蛍光物質、ピオチン等の標識物質で直接標識して用 いてもよい。このような場合、標識物質を測定することにより、本蛋白質の定量が可能 である。  [0066] The identification method using the binding of the protein to the Rho family protein according to the present invention as an index is, for example, obtained by expressing the present protein by a genetic engineering technique, in the presence or absence of a test compound. The detection can be performed by detecting the binding to the Rho family protein in the above. Specifically, for example, a Rho family protein is expressed as a GST-tag fusion protein by genetic engineering techniques, and then bound to daltathione sepharose, and the protein is combined with the present protein in the presence or absence of a test compound. Let react. By quantifying the present protein that binds to the Rho family protein bound to daltathione sepharose, it is possible to identify a compound that inhibits the binding of the present protein to the Rho family protein. When the binding of both proteins in the presence of the test compound is reduced or eliminated as compared to the binding of both proteins in the absence of the test compound, the test compound binds to the Rho family protein of the present protein. It can be determined that binding is inhibited. Quantification of the present protein can be performed, for example, using the antibody according to the present invention. As the antibody, an antibody labeled with an enzyme such as HRP or ALP, a radioisotope, a fluorescent substance, or a labeling substance such as biotin can be used. Alternatively, a labeled secondary antibody may be used. If a protein fused with a tag peptide is used as the present protein, quantification can be performed using an anti-tag antibody. Alternatively, the present protein may be directly labeled with a labeling substance such as the above enzyme, radioisotope, fluorescent substance, and biotin. In such a case, the present protein can be quantified by measuring the labeling substance.
[0067] より具体的には、本発明に係る蛋白質をコードするポリヌクレオチドと Rhoファミリー 蛋白質をコードするポリヌクレオチドとを共発現させた適当な細胞を用い、両蛋白質 の結合をプルダウン法により検出する実験系を用いて、該結合を阻害する化合物を 同定できる(実施例 3参照)。  More specifically, using appropriate cells in which a polynucleotide encoding the protein of the present invention and a polynucleotide encoding a Rho family protein are co-expressed, the binding between the two proteins is detected by a pull-down method. Using an experimental system, compounds that inhibit the binding can be identified (see Example 3).
[0068] また、本発明に係る蛋白質と Rhoファミリー蛋白質との結合を阻害する化合物の同 定方法は、公知のツーハイブリッド (two— hybrid)法を用いて実施可能である。例え ば、本発明に係る蛋白質と DNA結合蛋白質を融合蛋白質として発現するプラスミド 、 Rhoファミリー蛋白質と転写活性ィ匕蛋白質を融合蛋白として発現するプラスミド、お よび適切なプロモーター遺伝子に接続したレポーター遺伝子を含有するプラスミドを 、酵母または真核細胞等に導入する。次いで、被検化合物の存在下におけるレポ一 ター遺伝子の発現量と、被検化合物の非存在下におけるレポーター遺伝子の発現 量との比較により、本蛋白質と Rhoファミリー蛋白質との結合を阻害する化合物の同 定を達成できる。被検化合物の非存在下におけるレポーター遺伝子の発現量と比較 して、被検化合物の存在下におけるレポーター遺伝子の発現量が減少または消失 する場合、該被検化合物は本蛋白質の Rhoファミリー蛋白質との結合を阻害すると 判定できる。レポーター遺伝子は、レポーターアツセィで一般的に用いられている遺 伝子を使用可能である。具体的には、ルシフェラーゼ、 β Galまたはクロラムフエ- コールァセチルトランスフェラーゼ等の酵素活性を有する遺伝子が例示できる。レポ 一ター遺伝子の発現の検出は、その遺伝子産物の活性、例えば、上記例示したレポ 一ター遺伝子の場合は酵素活性を検出することにより実施可能である。 [0068] In addition, a compound that inhibits the binding of the protein of the present invention to a Rho family protein is also included. The determination method can be performed using a known two-hybrid method. For example, it contains a plasmid expressing the protein of the present invention and a DNA binding protein as a fusion protein, a plasmid expressing a Rho family protein and a transcriptionally active protein as a fusion protein, and a reporter gene connected to an appropriate promoter gene. The resulting plasmid is introduced into yeast, eukaryotic cells, or the like. Next, by comparing the expression level of the reporter gene in the presence of the test compound with the expression level of the reporter gene in the absence of the test compound, the expression of the compound that inhibits the binding between the present protein and the Rho family protein was determined. The same can be achieved. When the expression level of the reporter gene in the presence of the test compound decreases or disappears as compared with the expression level of the reporter gene in the absence of the test compound, the test compound is compared with the Rho family protein of the present protein. It can be determined that binding is inhibited. As the reporter gene, a gene generally used in the reporter atssay can be used. Specifically, a gene having an enzymatic activity such as luciferase, β Gal or chloramue-co-acetylacetyl transferase can be exemplified. The expression of the reporter gene can be detected by detecting the activity of the gene product, for example, the enzyme activity in the case of the above-described reporter gene.
[0069] 本発明に係る蛋白質と Rhoファミリー蛋白質との結合を阻害する化合物の同定方 法はまた、ビアコアシステム(BIACORE system)等の表面プラズモン共鳴センサ 一を用いて実施可能である。あるいは、シンチレーシヨンプロキシミティアツセィ法(Sc intillation proximity assay、 SPA)や 光共鳴ェ不ル = ー 栘 (Fluorescenc e resonance energy transferゝ FRET)を応用した力法を用 ヽて、本同定方法 を実施可能である。 [0069] The method for identifying a compound that inhibits the binding between the protein and the Rho family protein according to the present invention can also be carried out using a surface plasmon resonance sensor such as a BIACORE system. Alternatively, the identification method is performed using a scintillation proximity assay (SPA) or a force method that applies optical resonance energy transfer (FRET). It is possible.
[0070] 本発明に係る蛋白質が有する GAP活性を阻害する化合物の同定方法は、例えば 、 Rho— GAPの GAP活性を測定する一般的な方法を利用して実施できる。 Rho— GAPの GAP活性の測定方法として、例えば、 [ γ—32 P]GTPを用いた測定方法が 例示きる〔「ジャーナル ォブ バイオロジカル ケミストリー(Journal of Biological[0070] The method for identifying a compound that inhibits the GAP activity of the protein according to the present invention can be carried out, for example, by using a general method for measuring the GAP activity of Rho-GAP. The measurement method of the Rho-GAP of GAP activity, e.g., measurement method worn exemplified using [γ- 32 P] GTP [ "Journal O Bed Biological Chemistry (Journal of Biological
Chemistry」、 1998年、第 273卷、第 44号、 p. 29172— 29177〕。 Rho— GAP の GAP活性の測定方法は、具体的には、精製した Rho蛋白質と [ γ— 32P]GTPを 反応させ、 GTP結合型 Rho蛋白質を形成させる。次いで、 [ γ—32P]GTP結合型 R ho蛋白質と本発明に係る蛋白質を反応させる。 [ γ— P]GTP結合型 Rhoファミリ 一蛋白質力も GDP結合型 Rhoファミリー蛋白質への変化の測定により、本蛋白質の GAP活性を測定できる。 [ γ— 32P]GTP結合型 Rhoファミリー蛋白質力も GDP結合 型 Rhoファミリー蛋白質への変化の測定は、 [ γ— 32P]GTP結合型 Rhoファミリー蛋 白質力も GDP結合型 Rhoファミリー蛋白質への変化に伴って遊離される γ— 32Ρを 測定すること等により実施できる。具体的には、本蛋白質と [ γ 32P]GTP結合型 R ho蛋白質との反応後に、反応溶液を-トロセルロースフィルタ一等でろ過し、この-ト ロセルロースフィルターを洗浄.乾燥し、遊離の Ύ 32 pの測定を、このフィルターの 放射活性の減少量で測定できる。ニトロセルロースフィルターには蛋白質が捕捉され るので、 Rho蛋白質はこのフィルターに捕捉される力 遊離した32 Pはフィルターを通 過する。 GTP結合型 Rho蛋白質力も GDP結合型 Rho蛋白質への反応が進めば、 遊離の32 Pの量が増加し、 Rho蛋白質を介して-トロセルロースフィルターに捕捉され る32 P量は減少する。つまり、ニトロセルロースフィルターの放射活性が減少していれ ば、 GTP結合型 Rho蛋白質力 GDP結合型 Rho蛋白質への反応が進行していると いえる。したがって、本発明に係る蛋白質の存在下における-トロセルロースフィルタ 一の放射活性が、該蛋白質の非存在下における場合と比較して減少しているとき、 該蛋白質は、 Rho蛋白質に対する GAP活性を有すると判定できる。 Chemistry, 1998, Vol. 273, No. 44, p. 29172-29177]. Rho-GAP method Measurement of GAP activity is specifically purified Rho protein is reacted with [γ- 32 P] GTP, to form a GTP-bound Rho protein. Then, [γ- 32 P] GTP-bound R The ho protein is reacted with the protein of the present invention. [γ-P] GTP-linked Rho family One protein can also measure the GAP activity of this protein by measuring the change to GDP-linked Rho family protein. [Γ- 32 P] measured changes to GTP-bound Rho family protein force also GDP-bound Rho family proteins, the change to [γ- 32 P] GTP-bound Rho family蛋HakuTadashiryoku also GDP-bound Rho family protein It can be carried out by measuring the released γ- 32さ れ る. Specifically, after reacting the present protein with [γ 32 P] GTP-bound Rho protein, the reaction solution is filtered through a trocellulose filter or the like, and the trocellulose filter is washed, dried, and released. the Ύ 32 p measurements can be measured by the amount of decrease in radioactivity of the filter. Since the protein is captured by the nitrocellulose filter, the Rho protein is captured by the filter, and the released 32 P passes through the filter. GTP-linked Rho protein also increases the amount of free 32 P as the reaction with the GDP-linked Rho protein progresses, and decreases the amount of 32 P captured by the trocellulose filter via the Rho protein. In other words, if the radioactivity of the nitrocellulose filter decreases, it can be said that the reaction of the GTP-bound Rho protein with the GDP-bound Rho protein is in progress. Therefore, when the radioactivity of the -trocellulose filter in the presence of the protein according to the present invention is reduced as compared to the case in the absence of the protein, the protein has GAP activity against the Rho protein. Then it can be determined.
[0071] 本発明に係る蛋白質が有する GAP活性を阻害する化合物の同定方法は、例えば 、上記のような [ γ—32P]GTPを用いた Rho— GAPの GAP活性の測定方法を、被 検化合物の存在下または非存在下で行なうことにより実施できる。具体的には、 [ γ 32 P]GTP結合型 Rho蛋白質と本発明に係る蛋白質を、被検化合物の存在下また は非存在下において反応させた後、 [ γ—32 P]GTP結合型 Rhoファミリー蛋白質か ら GDP結合型 Rhoファミリー蛋白質への変化を測定する。被検化合物の存在下にお ける γ—32P]GTP結合型 Rhoファミリー蛋白質力も GDP結合型 Rhoファミリー蛋白 質への変化が、被検化合物非存在下における変化と比較して低減または消失する 場合、該被検化合物は本蛋白質の Rhoファミリー蛋白質に対する GAP活性を阻害 すると判定できる。 [0071] The method of identifying a compound that inhibits the GAP activity protein has according to the present invention, for example, a method of measuring the GAP activity of Rho-GAP with [.gamma. 32 P] GTP, as described above, the test It can be carried out in the presence or absence of a compound. Specifically, after reaction in the presence or absence of [γ 3 2 P] GTP-bound Rho protein and the protein according to the present invention, the test compound, [γ- 32 P] GTP-bound Measure the change from Rho family protein to GDP-linked Rho family protein. Γ- 32 P] GTP-binding Rho family protein in the presence of test compound also decreases or disappears when changes to GDP-binding Rho family protein are reduced compared to changes in the absence of test compound It can be determined that the test compound inhibits the GAP activity of the present protein on the Rho family protein.
[0072] 本発明に係る同定方法において用いる Rhoファミリー蛋白質は、その GTPァーゼ 活性および該 GTPァーゼ活性に対する本発明に係る蛋白質の作用に影響がな ヽ 限りにおいて、一部を欠損した蛋白質であってよぐあるいは上記のような標識物質 が付加された蛋白質であってょ 、。 [0072] The Rho family protein used in the identification method of the present invention is a GTPase thereof. As long as the activity and the effect of the protein of the present invention on the GTPase activity are not affected, the protein may be partially defective or may be a protein to which the above-mentioned labeling substance has been added. .
[0073] 本発明に係るポリヌクレオチドの発現を阻害する化合物の同定方法は、本ポリヌク レオチドの発現を測定することのできる実験系にお 、て、本ポリヌクレオチドと被検化 合物の相互作用を可能にする条件下で、本ポリヌクレオチドと被検化合物とを共存さ せてその発現を測定し、次いで、被検化合物の存在下における本ポリヌクレオチドの 発現と、被検化合物の非存在下における本ポリヌクレオチドの発現とを比較し、本ポ リヌクレオチドの発現の存在、不存在または変化、例えば低減、増カ卩、消失、出現を 検出することにより実施可能である。被検化合物の非存在下における本ポリヌクレオ チドの発現と比較して、被検化合物の存在下における本ポリヌクレオチドの発現が減 少または消失する場合、該被検化合物は本ポリヌクレオチドの発現を阻害すると判定 できる。具体的には例えば、本同定方法は、本発明に係る形質転換体を用いて本ポ リヌクレオチドを発現させる実験系にお!/ヽて、該形質転換体と被検化合物とを接触さ せた後に、本ポリヌクレオチドの発現を測定することにより実施可能である。発現の測 定は、簡便には発現される蛋白質の量、あるいは該蛋白質の機能を指標にして実施 できる。また、例えば発現の指標となるシグナルを実験系に導入して該シグナルを検 出することにより、発現の測定が可能である。シグナルとして、 GST等の酵素類、 His -tag, Myc— tag、 HA -tag, FLAG— tagまたは Xpress— tag等のタグペプチド 類、または蛍光物質等を用いることができる。これらシグナルの検出方法は当業者に は周知である。 [0073] The method for identifying a compound that inhibits the expression of a polynucleotide according to the present invention comprises a method for determining the interaction between the present polynucleotide and a test compound in an experimental system capable of measuring the expression of the present polynucleotide. The expression of the polynucleotide is measured in the presence of the test compound, and the expression of the polynucleotide is measured in the absence of the test compound. And the presence, absence or change of the expression of the present polynucleotide, for example, reduction, increase, disappearance, or appearance, can be detected. The test compound inhibits the expression of the present polynucleotide when the expression of the present polynucleotide in the presence of the test compound decreases or disappears compared to the expression of the present polynucleotide in the absence of the test compound. Then it can be determined. Specifically, for example, the present identification method comprises bringing the transformant into contact with a test compound in an experimental system for expressing the present polynucleotide using the transformant according to the present invention. Thereafter, the expression can be measured by measuring the expression of the present polynucleotide. The expression can be measured simply by using the amount of the expressed protein or the function of the protein as an index. In addition, for example, expression can be measured by introducing a signal as an index of expression into an experimental system and detecting the signal. Enzymes such as GST, tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag, and fluorescent substances can be used as the signal. Methods for detecting these signals are well known to those skilled in the art.
[0074] 本発明に係るポリヌクレオチドの発現を阻害する化合物の同定方法はまた、例えば 本ポリヌクレオチドを含む遺伝子のプロモーター領域の下流に、該ポリヌクレオチドの 代わりにレポーター遺伝子を連結したベクターを作成し、該ベクターを導入した細胞 、例えば真核細胞等と被検化合物とを接触させ、レポーター遺伝子の発現の存在、 不存在または変化を測定することにより実施可能である。レポーター遺伝子として、レ ポーターアツセィで一般的に用 、られて 、る遺伝子を使用可能である。具体的には 、ルシフェラーゼ、 β Galまたはクロラムフエ-コールァセチルトランスフェラーゼ等 の酵素活性を有する遺伝子を用いることができる。レポーター遺伝子の発現の検出 は、その遺伝子産物の活性、例えば、上記に例示したレポーター遺伝子の場合は酵 素活性を検出することにより実施可能である。 [0074] The method for identifying a compound that inhibits the expression of a polynucleotide according to the present invention also includes, for example, preparing a vector in which a reporter gene is linked instead of the polynucleotide downstream of the promoter region of a gene containing the polynucleotide. The method can be carried out by contacting a test compound with a cell into which the vector has been introduced, for example, a eukaryotic cell, and measuring the presence, absence, or change in the expression of the reporter gene. As a reporter gene, a gene commonly used in reporter attesties can be used. Specifically, luciferase, β Gal or chloramphene-coal acetyltransferase, etc. A gene having the above enzyme activity can be used. The expression of the reporter gene can be detected by detecting the activity of the gene product, for example, the enzyme activity of the reporter gene exemplified above.
[0075] (化合物) [0075] (Compound)
本発明に係る同定方法により得られたィ匕合物は、本発明に係る蛋白質の機能の阻 害剤、拮抗剤等の候補ィ匕合物として利用可能である。また、本発明に係るポリヌクレ ォチドの発現阻害剤の候補ィ匕合物としても利用可能である。これら候補化合物は、 その有用性と毒性のバランスを考慮して選別することにより医薬として調製可能であり 、本蛋白質の機能の異常および Zまたは本ポリヌクレオチドの発現の異常に起因す る各種病的症状の防止効果および Zまたは治療効果を期待できる。また、本発明に 係る化合物は、本同定方法以外の方法により得られた化合物であって、本蛋白質の 機能を阻害するおよび Zまたは本ポリヌクレオチドの発現を阻害する化合物も含まれ る。  The compound obtained by the identification method according to the present invention can be used as a candidate compound such as an inhibitor or an antagonist of the function of the protein according to the present invention. Further, it can also be used as a candidate for the polynucleotide expression inhibitor according to the present invention. These candidate compounds can be prepared as a medicament by selecting them in consideration of the balance between their usefulness and toxicity, and can be used in various pathological conditions caused by abnormal function of the present protein and abnormal expression of Z or the present polynucleotide. The effect of preventing symptoms and Z or therapeutic effects can be expected. Further, the compound according to the present invention is a compound obtained by a method other than the present identification method, and includes a compound that inhibits the function of the present protein and the expression of Z or the present polynucleotide.
[0076] (医薬組成物)  (Pharmaceutical composition)
本発明の一態様は、本発明に係る蛋白質、ポリペプチド、組換えベクター、形質転 換体、抗体、または化合物を有効成分として含み、本蛋白質の機能および Zまたは 本ポリペプチドの発現を阻害するまたは拮抗することに基づく医薬または医薬組成 物に関する。  One embodiment of the present invention comprises, as an active ingredient, the protein, polypeptide, recombinant vector, transformant, antibody, or compound according to the present invention, and inhibits the function of the protein and the expression of Z or the polypeptide. It relates to a medicament or a pharmaceutical composition based on antagonism.
[0077] 本発明に係る医薬は、本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形 質転換体、抗体、または化合物のうち少なくともいずれ力 1つを有効成分としてその 有効量含む医薬となしてもよい。通常は、 1種類または 2種類以上の医薬用許容され る担体 (医薬用担体)を用いて医薬組成物を製造することが好ましい。  [0077] The medicament according to the present invention does not include a medicament containing at least one of the protein, polynucleotide, recombinant vector, transformant, antibody, or compound according to the present invention as an active ingredient and an effective amount thereof. You may. Usually, it is preferable to produce a pharmaceutical composition using one or more kinds of pharmaceutically acceptable carriers (pharmaceutical carriers).
[0078] 本発明に係る医薬製剤中に含まれる有効成分の量は、広範囲から適宜選択される 。通常約 0. 00001〜70重量%、好ましくは 0. 0001〜5重量%程度の範囲とするの が適当である。  [0078] The amount of the active ingredient contained in the pharmaceutical preparation according to the present invention is appropriately selected from a wide range. Usually, it is suitably in the range of about 0.0001 to 70% by weight, preferably about 0.0001 to 5% by weight.
[0079] 医薬用担体として、製剤の使用形態に応じて通常使用される、充填剤、増量剤、結 合剤、付湿剤、崩壊剤、滑沢剤等の希釈剤や賦形剤等を例示できる。これらは得ら れる製剤の投与形態に応じて適宜選択使用される。 [0080] 例えば水、医薬的に許容される有機溶剤、コラーゲン、ポリビュルアルコール、ポリ ビュルピロリドン、カルボキシビュルポリマー、アルギン酸ナトリウム、水溶性デキストラ ン、カルボキシメチルスターチナトリウム、ぺクチン、キサンタンガム、アラビアゴム、力 ゼイン、ゼラチン、寒天、グリセリン、プロピレングリコール、ポリエチレングリコール、ヮ セリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マン-ト ール、ソルビトール、ラタトース等が挙げられる。これらは、本発明に係る剤形に応じ て適宜 1種類または 2種類以上を組合せて使用される。 [0079] As the pharmaceutical carrier, diluents and excipients such as fillers, extenders, binders, humectants, disintegrants, lubricants and the like which are usually used depending on the use form of the preparation are used. Can be illustrated. These are appropriately selected and used depending on the administration form of the obtained preparation. [0080] For example, water, a pharmaceutically acceptable organic solvent, collagen, polybutyl alcohol, polybutylpyrrolidone, carboxybutyl polymer, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, xanthan gum, gum arabic, Examples include zein, gelatin, agar, glycerin, propylene glycol, polyethylene glycol, glycerin, paraffin, stearyl alcohol, stearic acid, human serum albumin, mantole, sorbitol, ratatose and the like. These are used singly or in combination of two or more depending on the dosage form according to the present invention.
[0081] 所望により、通常の蛋白質製剤に使用され得る各種の成分、例えば安定化剤、殺 菌剤、緩衝剤、等張化剤、キレート剤、 pH調整剤、界面活性剤等を適宜使用して調 製することちでさる。  [0081] If desired, various components that can be used in ordinary protein preparations, for example, a stabilizer, a bactericide, a buffer, a tonicity agent, a chelating agent, a pH adjuster, and a surfactant are appropriately used. To produce.
[0082] 安定化剤として、例えばヒト血清アルブミンや通常の L—アミノ酸、糖類、セルロース 誘導体等を例示でき、これらは単独でまたは界面活性剤等と組合せて使用できる。 特にこの組合せによれば、有効成分の安定性をより向上させ得る場合がある。上記 L アミノ酸は、特に限定はなぐ例えばグリシン、システィン、グルタミン酸等のいずれ でもよい。糖類も特に限定はなぐ例えばグルコース、マンノース、ガラクトース、果糖 等の単糖類、マン-トール、イノシトール、キシリトール等の糖アルコール、ショ糖、マ ルトース、乳糖等の二糖類、デキストラン、ヒドロキシプロピルスターチ、コンドロイチン 硫酸、ヒアルロン酸等の多糖類等およびそれらの誘導体等のいずれでもよい。セル口 ース誘導体も特に限定はなぐメチルセルロース、ェチルセルロース、ヒドロキシェチ ノレセノレロース、ヒドロキシプロピノレセノレロース、ヒドロキシプロピノレメチノレセノレロース、 カルボキシメチルセルロースナトリウム等の!/、ずれでもよ!/、。  [0082] Examples of the stabilizer include human serum albumin, ordinary L-amino acids, saccharides, cellulose derivatives and the like, and these can be used alone or in combination with a surfactant or the like. In particular, this combination may improve the stability of the active ingredient in some cases. The L amino acid is not particularly limited, and may be, for example, glycine, cysteine, glutamic acid, or the like. The sugars are not particularly limited, for example, monosaccharides such as glucose, mannose, galactose and fructose, sugar alcohols such as mantol, inositol and xylitol, disaccharides such as sucrose, maltose and lactose, dextran, hydroxypropyl starch and chondroitin. Any of polysaccharides such as sulfuric acid and hyaluronic acid and derivatives thereof may be used. Cellulose derivatives are also not particularly limited, such as methylcellulose, ethylcellulose, hydroxyethylenosenorelose, hydroxypropinoresenorelose, hydroxypropinolemethinoresenorelose, sodium carboxymethylcellulose and the like.
[0083] 界面活性剤も特に限定はなぐイオン性および非イオン性界面活性剤の 、ずれも 使用できる。これには、例えばポリオキシエチレングリコールソルビタンアルキルエス テル系、ポリオキシエチレンアルキルエーテル系、ソルビタンモノァシルエステル系、 脂肪酸グリセリド系等が包含される。  [0083] The surfactant is not particularly limited, and the difference between ionic and nonionic surfactants can be used. This includes, for example, polyoxyethylene glycol sorbitan alkyl ester type, polyoxyethylene alkyl ether type, sorbitan monoacyl ester type, fatty acid glyceride type and the like.
[0084] 緩衝剤として、ホウ酸、リン酸、酢酸、クェン酸、 ε アミノカプロン酸、グルタミン酸 および Ζまたはそれらに対応する塩 (例えばそれらのナトリウム塩、カリウム塩、カル シゥム塩、マグネシウム塩等のアルカリ金属塩やアルカリ土類金属塩)等を例示でき る。 [0084] As a buffer, boric acid, phosphoric acid, acetic acid, citric acid, ε-aminocaproic acid, glutamic acid and 対 応 or a salt thereof (for example, alkali salts such as sodium salt, potassium salt, calcium salt, magnesium salt and the like) Metal salts and alkaline earth metal salts). The
[0085] 等張化剤として、例えば塩ィ匕ナトリウム、塩ィ匕カリウム、糖類、グリセリン等を例示で きる。  [0085] Examples of the tonicity agent include sodium salt, potassium salt, saccharides, glycerin and the like.
[0086] キレート剤として、例えばェデト酸ナトリウム、クェン酸等を例示できる。  [0086] Examples of the chelating agent include sodium edetate and citric acid.
[0087] 本発明に係る医薬および医薬組成物は、溶液製剤として使用できる。その他、これ を凍結乾燥化し保存し得る状態にした後、用時、水や生埋的食塩水等を含む緩衝 液等で溶解して適当な濃度に調製した後に使用することも可能である。  [0087] The medicament and the pharmaceutical composition according to the present invention can be used as a solution preparation. Alternatively, it can be used after freeze-drying it to make it storable and dissolving it in a buffer solution containing water or a saline solution, etc. to prepare an appropriate concentration before use.
[0088] 本発明に係る医薬および医薬組成物は、本発明に係る蛋白質の機能の異常およ び Zまたは本ポリヌクレオチドの発現の異常に基づく疾患の防止剤および Zまたは 治療剤として使用することができる。また、当該疾患の防止方法および Zまたは治療 方法に使用することができる。  [0088] The medicament and the pharmaceutical composition according to the present invention may be used as a preventive agent and a Z or therapeutic agent for diseases based on abnormal function of the protein according to the present invention and abnormal expression of Z or the present polynucleotide. Can be. In addition, it can be used for a method for preventing and Z or treating the disease.
[0089] 本発明に係る蛋白質の機能および Zまたは本発明に係るポリヌクレオチドの発現 の過剰に関連する異常な症状に対しては、例えば本蛋白質の機能および Zまたは 本ポリヌクレオチドの発現を阻害する有効量の阻害剤を医薬上許容される医薬用担 体とともに対象に投与することにより異常な症状を防止、改善または治療することがで きる。あるいは、内在性の本ポリヌクレオチドの発現を、発現ブロック法を用いて阻害 してもょ 、。例えば本ポリヌクレオチドの部分配列力 なるオリゴヌクレオチドをアンチ センスオリゴヌクレオチドとして遺伝子治療に用いて、本ポリヌクレオチドの発現を阻 害できる。アンチセンスオリゴヌクレオチォドとして用いるオリゴヌクレオチォドは、本ポ リヌクレオチドの翻訳領域のみでなぐ非翻訳領域に対応するものであっても有用で ある。本ポリヌクレオチドの発現を特異的に阻害するためには、該ポリヌクレオチドに 固有な領域の塩基配列を用いることが好まし 、。  [0089] For abnormal symptoms associated with excessive expression of the function and Z of the protein of the present invention or the expression of the polynucleotide of the present invention, for example, the function of the present protein and the expression of Z or the present polynucleotide are inhibited. Administering an effective amount of an inhibitor to a subject together with a pharmaceutically acceptable pharmaceutical carrier can prevent, ameliorate or treat abnormal symptoms. Alternatively, the expression of the endogenous polynucleotide may be inhibited using an expression blocking method. For example, an oligonucleotide that is a partial sequence of the present polynucleotide can be used as an antisense oligonucleotide in gene therapy to inhibit the expression of the present polynucleotide. Oligonucleotides used as antisense oligonucleotides are useful even if they correspond to untranslated regions other than only the translated regions of the present polynucleotide. In order to specifically inhibit the expression of the present polynucleotide, it is preferable to use a nucleotide sequence of a region unique to the polynucleotide.
[0090] 本発明に係るポリヌクレオチドの一態様である配列表の配列番号 1に記載の塩基 配列で表されるポリヌクレオチドの組織発現は、疾患データベース情報 BioExpress (GeneLogic社)を用いて調べたところ、甲状腺の慢性炎症例の甲状腺組織におけ る発現量が正常甲状腺組織と比較して 4. 65倍高いことが判明した。また、該ポリヌク レオチドの発現は、 BioExpress (GeneLogic社)を用いて調べたところ、腎臓の慢 性炎症例の腎臓組織における発現量が正常腎臓組織と比較して 3. 55倍高いことが 判明した。これらから、本ポリヌクレオチドの高発現は慢性炎症性疾患、例えば、甲状 腺や腎臓の慢性炎症性疾患に関連すると考える。甲状腺や腎臓の慢性炎症性疾患 として、具体的には、慢性甲状腺炎や慢性腎炎が例示できる。本発明に係る医薬お よび医薬組成物は、慢性炎症性疾患、例えば慢性甲状腺炎や慢性腎炎の防止剤お よび Zまたは治療剤として有用である。さらに、慢性炎症性疾患、例えば慢性甲状腺 炎や慢性腎炎の防止方法および Zまたは治療方法に使用できる。 [0090] Tissue expression of the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the Sequence Listing, which is one embodiment of the polynucleotide according to the present invention, was examined using disease database information BioExpress (GeneLogic). The expression level in thyroid tissue of patients with chronic inflammation of the thyroid gland was found to be 4.65 times higher than that in normal thyroid tissue. When the expression of the polynucleotide was examined using BioExpress (GeneLogic), it was found that the expression level in renal tissues of patients with chronic inflammation of the kidney was 3.55 times higher than that in normal kidney tissues. found. From these results, it is considered that high expression of the present polynucleotide is associated with chronic inflammatory diseases, for example, thyroid and kidney chronic inflammatory diseases. Specific examples of chronic inflammatory diseases of the thyroid gland and kidney include chronic thyroiditis and chronic nephritis. The medicament and the pharmaceutical composition according to the present invention are useful as a preventive agent and a Z or therapeutic agent for chronic inflammatory diseases such as chronic thyroiditis and chronic nephritis. Further, it can be used for a method for preventing and treating Z or treating chronic inflammatory diseases such as chronic thyroiditis and chronic nephritis.
[0091] 本発明に係る医薬および医薬組成物の用量範囲は特に限定されず、含有される 成分の有効性、投与形態、投与経路、疾患の種類、対象の性質 (体重、年齢、病状 および他の医薬の使用の有無等)、および担当医師の判断等に応じて適宜選択され る。一般的には適当な用量は、例えば対象の体重 lkgあたり約 0. Ol ^ g-lOOmg 程度、好ましくは約 0.: g〜lmg程度の範囲であることが好ましい。し力しながら、 当該分野においてよく知られた最適化のための一般的な常套的実験を用いてこれら の用量の変更を行うことができる。上記投与量は 1日 1〜数回に分けて投与すること ができ、数日または数週間に 1回の割合で間欠的に投与してもよい。  [0091] The dose range of the medicament and the pharmaceutical composition according to the present invention is not particularly limited. And the like, whether or not a drug is used), and the judgment of the attending physician. In general, a suitable dose is, for example, about 0. Ol ^ g-lOOmg, preferably about 0: g to lmg per kg of the subject's body weight. Whilst, these dosages can be varied using routine experimentation for optimization well known in the art. The above dose can be administered once or several times a day, or may be administered intermittently once every few days or weeks.
[0092] 本発明に係る医薬または医薬組成物を投与するときには、該医薬または医薬組成 物を単独で使用してよぐあるいは治療に必要な他の化合物または医薬と共に使用 してちよい。 [0092] When administering the medicament or pharmaceutical composition according to the present invention, the medicament or pharmaceutical composition may be used alone or in combination with other compounds or medicaments necessary for treatment.
[0093] 投与経路は、全身投与または局所投与の!/、ずれも選択することができる。この場合 、疾患、症状等に応じた適当な投与経路を選択する。例えば、非経口経路として、通 常の静脈内投与、動脈内投与のほか、皮下、皮内、筋肉内等への投与を挙げること ができる。あるいは経口による投与も可能である。さらに、経粘膜投与または経皮投 与も可能である。  [0093] As for the administration route, the difference between systemic administration and local administration can be selected. In this case, an appropriate administration route is selected according to the disease, symptom and the like. For example, parenteral routes include normal intravenous administration and intraarterial administration, as well as subcutaneous, intradermal and intramuscular administration. Alternatively, oral administration is also possible. Further, transmucosal administration or transdermal administration is also possible.
[0094] 投与形態は、各種の形態が治療目的に応じて適宜選択できる。その代表的な例と して、錠剤、丸剤、散剤、粉末剤、細粒剤、顆粒剤、カプセル剤等の固体投与形態 や、水溶液製剤、エタノール溶液製剤、懸濁剤、脂肪乳剤、リボソーム製剤、シクロ デキストリン等の包接体、シロップ、エリキシル等の液剤投与形態が含まれる。これら はさらに投与経路に応じて経口剤、非経口剤(点滴剤、注射剤)、経鼻剤、吸入剤、 経膣剤、坐剤、舌下剤、点眼剤、点耳剤、軟膏剤、クリーム剤、経皮吸収剤、経粘膜 吸収剤等に分類され、それぞれ通常の方法に従い、調合、成形、調製することがで きる。 [0094] Various dosage forms can be appropriately selected according to the purpose of treatment. Typical examples are solid dosage forms such as tablets, pills, powders, powders, fine granules, granules, capsules, aqueous solutions, ethanol solutions, suspensions, fat emulsions, ribosomes Formulations, inclusion forms such as cyclodextrin, liquid dosage forms such as syrups and elixirs are included. Depending on the route of administration, these may be oral, parenteral (drip, injection), nasal, inhalant, vaginal, suppository, sublingual, eye drops, ear drops, ointment, cream Agent, transdermal absorbent, transmucosal They are classified into absorbents and the like, and can be prepared, molded and prepared according to the usual methods.
[0095] (診断方法)  [0095] (Diagnosis method)
本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換体、抗体または 化合物は、それ自体を、診断マーカーや診断試薬等の疾患診断手段として使用でき る。  The protein, polynucleotide, recombinant vector, transformant, antibody or compound according to the present invention can be used per se as a means for diagnosing a disease such as a diagnostic marker or a diagnostic reagent.
本発明によれば、例えば本発明に係るポリヌクレオチドの一部または全部のポリヌク レオチドを利用することにより、個体または各種糸且織における該ポリヌクレオチドまた は該ポリヌクレオチドを含む遺伝子の異常の有無あるいは発現の有無を特異的に検 出することができる。本発明に係るポリヌクレオチドの検出により、該ポリヌクレオチド または該ポリヌクレオチドを含む遺伝子の量的異常および Zまたは機能異常等に基 づく疾患の易罹患性、発症、および Zまたは予後の診断が可能である。  According to the present invention, for example, by utilizing a part or all of the polynucleotide of the polynucleotide of the present invention, the presence or absence of abnormality in the polynucleotide or the gene containing the polynucleotide in an individual or various kinds of fibrous tissue is determined. The presence or absence of expression can be specifically detected. By detecting the polynucleotide according to the present invention, it is possible to diagnose the susceptibility, onset, and Z or prognosis of a disease based on the quantitative abnormality and the Z or functional abnormality of the polynucleotide or a gene containing the polynucleotide. is there.
[0096] 疾患の診断は、例えば調べようとする試料 (被検試料)について、本発明に係るポリ ヌクレオチドの存在を検出すること、その存在量を決定すること、および Zまたはその 変異を同定することにより実施できる。正常な対照試料との比較において、本ポリヌク レオチドの存在の変化、その量的変化を検出することができる。あるいは、正常遺伝 子型との比較において本ポリヌクレオチドを公知の手法により増幅した増幅生成物に ついて、例えばサイズ変化を測定することにより、欠失や挿入といった変異を検出可 能である。また、被検試料力も増幅したポリヌクレオチドを、例えば標識した本ポリヌク レオチドとハイブリダィゼーシヨンさせることにより点突然変異を同定できる。このような 変化および変異の検出により、上記診断を実施することが可能である。  [0096] Diagnosis of a disease is, for example, to detect the presence of the polynucleotide according to the present invention, determine its abundance, and identify Z or its mutation in a sample to be examined (test sample). It can be implemented by doing. In comparison with a normal control sample, a change in the presence of the present polynucleotide and a quantitative change thereof can be detected. Alternatively, a mutation such as a deletion or insertion can be detected by, for example, measuring a change in size of an amplification product obtained by amplifying the present polynucleotide by a known method in comparison with a normal genotype. In addition, a point mutation can be identified by hybridizing a polynucleotide whose test sample strength has also been amplified with, for example, a labeled present polynucleotide. By detecting such changes and mutations, the above diagnosis can be performed.
[0097] 本発明にお ヽては、被検試料中の本発明に係るポリヌクレオチドの定性的または 定量的な測定方法、または該ポリヌクレオチドの特定領域における変異の定性的ま たは定量的な測定方法をも提供可能である。  [0097] In the present invention, a method for qualitatively or quantitatively measuring the polynucleotide of the present invention in a test sample, or qualitatively or quantitatively detecting a mutation in a specific region of the polynucleotide. Measurement methods can also be provided.
[0098] 配列番号 1に記載の塩基配列で表されるポリヌクレオチドの組織発現は、疾患デー タベース情報 BioExpress (GeneLogic社)を用いて調べたところ、甲状腺の慢性炎 症例の甲状腺組織における発現量が正常甲状腺組織と比較して 4. 65倍高いことが 判明した。また、該ポリヌクレオチドの発現は、疾患データベース情報 BioExpress ( GeneLogic社)を用いて調べたところ、腎臓の慢性炎症例の腎臓組織における発現 量が正常腎臓組織と比較して 3. 55倍高いことが判明した。これらから、本ポリヌクレ ォチドの高発現は慢性炎症性疾患、例えば、甲状腺や腎臓の慢性炎症性疾患に関 連すると考える。したがって、被検試料中の該ポリヌクレオチドの発現量の増加を検 出することにより、該被検試料が慢性炎症性疾患由来の被検組織であるカゝ否かを判 定する方法を実施することが可能である。このような判定方法も本発明の範囲に包含 される。本判定方法において該ポリヌクレオチドの発現量の増加は、被検試料と正常 な対照試料とを比較することにより検出できる。被検試料として、好ましくはヒト甲状腺 組織由来またはヒト腎臓組織由来の被検組織が挙げられる。対照試料として、好まし くはヒト正常甲状腺由来組織またはヒト正常腎臓由来組織が挙げられる。ヒト甲状腺 組織由来の試料にお!、て、本ポリヌクレオチドの発現量が対照試料と比較して増加 している場合、好ましくは少なくとも 4. 5倍以上、より好ましくは少なくとも 5倍以上に 増カロしている場合、被検試料が甲状腺の慢性炎症性疾患由来試料であると判定す ることができる。また、ヒト腎臓組織由来の試料において、本ポリヌクレオチドの発現量 が対照試料と比較して増カロしている場合、好ましくは少なくとも 3. 5倍以上、より好ま しくは少なくとも 4倍以上に増力!]して 、る場合、被検試料が腎臓の慢性炎症性疾患由 来試料であると判定することができる。本発明に係るポリヌクレオチドの発現量とは、 該ポリヌクレオチドの転写産物の量を意味する。 [0098] The tissue expression of the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 was examined using the disease database information BioExpress (GeneLogic). The expression level in the thyroid tissue of a case of chronic inflammation of the thyroid gland was determined. It was found to be 4.65 times higher than normal thyroid tissue. In addition, the expression of the polynucleotide is based on the disease database information BioExpress ( Examination using GeneLogic) revealed that the expression level in kidney tissue of patients with chronic inflammation of the kidney was 3.55 times higher than that in normal kidney tissue. From these results, it is considered that high expression of the present polynucleotide is associated with chronic inflammatory diseases, for example, thyroid and kidney chronic inflammatory diseases. Therefore, a method for determining whether the test sample is a test tissue derived from a chronic inflammatory disease by detecting an increase in the expression level of the polynucleotide in the test sample is performed. It is possible. Such a determination method is also included in the scope of the present invention. In this determination method, an increase in the expression level of the polynucleotide can be detected by comparing the test sample with a normal control sample. The test sample preferably includes a test tissue derived from human thyroid tissue or human kidney tissue. Control samples preferably include human normal thyroid-derived tissue or human normal kidney-derived tissue. In a sample derived from human thyroid tissue, if the expression level of the polynucleotide is increased as compared to the control sample, the caloric increase is preferably at least 4.5 times or more, more preferably at least 5 times or more. If so, it can be determined that the test sample is a sample derived from a chronic inflammatory disease of the thyroid gland. In addition, when the expression level of the present polynucleotide in a sample derived from human kidney tissue is increased in caloric level as compared to the control sample, it is preferably increased by at least 3.5 times or more, more preferably by at least 4 times or more! In this case, it can be determined that the test sample is a sample derived from a chronic inflammatory disease of the kidney. The expression level of the polynucleotide according to the present invention means the level of the transcription product of the polynucleotide.
[0099] 被検試料は、本発明に係るポリヌクレオチド、該ポリヌクレオチドを含む遺伝子また はその変異遺伝子の核酸を含む限りにおいて特に制限されず、例えば、細胞、血液 、尿、唾液、髄液、組織生検または剖検材料等の生体生物由来の試料を例示できる 。あるいは所望により試料カゝら核酸を抽出して核酸試料を調製して用いることもできる 。核酸は、ゲノム DNAを検出に直接使用してもよぐあるいは分析前に PCRまたはそ の他の増幅法を用いることにより酵素的に増幅してもよい。 RNAまたは cDNAを同 様に用いてもよい。核酸試料は、また、標的配列の検出を容易にする種々の方法、 例えば変性、制限酵素による消化、電気泳動またはドットブロッテイング等により調製 してちよい。 [0099] The test sample is not particularly limited as long as it contains the polynucleotide of the present invention, the gene containing the polynucleotide or the nucleic acid of the mutant gene thereof. Examples thereof include cells, blood, urine, saliva, cerebrospinal fluid, A sample derived from a living organism such as a tissue biopsy or autopsy material can be exemplified. Alternatively, if necessary, a nucleic acid sample can be prepared by extracting a nucleic acid from the sample and used. Nucleic acids may be used directly for detection of genomic DNA or may be amplified enzymatically by using PCR or other amplification methods prior to analysis. RNA or cDNA may be used as well. Nucleic acid samples may also be prepared by various methods that facilitate detection of the target sequence, such as denaturation, restriction enzyme digestion, electrophoresis or dot blotting.
[0100] 本発明に係るポリヌクレオチドまたは該ポリヌクレオチドを含む遺伝子の検出には、 自体公知の遺伝子検出法がいずれも使用可能である。具体的には、プラークハイブ リダィゼーシヨン、コロニーハイブリダィゼーシヨン、サザンブロット法、ノザンブロット法[0100] For detection of the polynucleotide according to the present invention or a gene containing the polynucleotide, Any known gene detection method can be used. Specifically, plaque hybridization, colony hybridization, Southern blotting, Northern blotting
、 NASBA法、または逆転写ポリメラーゼ連鎖反応 (RT— PCR)等が例示できる。ま た、 in situ RT— PCRや in situ ハイブリダィゼーシヨン等を利用した細胞レベル での測定により検出可能である。このような遺伝子検出法においては、本発明に係る ポリヌクレオチド、該ポリヌクレオチドを含む遺伝子またはその変異遺伝子の同定およ び Zまたはその増幅の実施に、本ポリヌクレオチドの部分配列力もなるオリゴヌクレオ チドであってプローブとしての性質を有するものまたはプライマーとしての性質を有す るものが有用である。プローブとしての性質を有するオリゴヌクレオチドとは、本ポリヌ クレオチドのみに特異的にハイブリダィゼーシヨンできる該ポリヌクレオチド特有の配 列からなるものを意味する。プライマーとしての性質を有するものとは本ポリヌクレオ チドのみを特異的に増幅できる該ポリヌクレオチド特有の配列力 なるものを意味す る。また、増幅できる変異遺伝子を検出する場合には、遺伝子内の変異を有する箇 所を含む所定の長さの配列を持つプライマーあるいはプローブを作成して用いる。プ ローブまたはプライマーとしては、塩基配列長が一般的に 5〜50ヌクレオチド程度で あるものが好ましぐ 10〜35ヌクレオチド程度であるものがより好ましぐ 15〜30ヌク レオチド程度であるものがさらに好ましい。本発明に係るポリヌクレオチドまたはその 断片を増幅するためのプライマー、あるいは本ポリヌクレオチドを検出するためのプロ ーブとして、具体的には、配列番号 3または 4に記載の塩基配列で表されるオリゴヌク レオチドを好ましく例示できる。プローブは、通常は標識したプローブを用いる。しか し、非標識のプローブを使用することもできる。また、直接的または間接的に標識した リガンドとの特異的結合により検出してもよい。プローブおよびリガンドを標識する方 法は、種々の方法が知られており、例えばニックトランスレーション、ランダムプライミ ングまたはキナーゼ処理を利用する方法等を例示できる。適当な標識として、放射性 同位体、ピオチン、蛍光物質、化学発光物質、酵素、抗体等が挙げられる。 , NASBA method, reverse transcription polymerase chain reaction (RT-PCR) and the like. It can also be detected by measurement at the cell level using in situ RT-PCR or in situ hybridization. In such a gene detection method, in order to identify the polynucleotide according to the present invention, a gene containing the polynucleotide or a mutant gene thereof, and to carry out Z or amplification thereof, an oligonucleotide having a partial sequence ability of the present polynucleotide is used. However, those having properties as a probe or those having properties as a primer are useful. The oligonucleotide having the property as a probe refers to an oligonucleotide having a sequence specific to the polynucleotide which can specifically hybridize only to the present polynucleotide. The one having the property as a primer means one having specific sequence power capable of specifically amplifying only the present polynucleotide. When detecting a mutant gene that can be amplified, a primer or probe having a sequence of a predetermined length including a site having a mutation in the gene is prepared and used. Probes or primers generally have a nucleotide sequence length of about 5 to 50 nucleotides, more preferably about 10 to 35 nucleotides, and more preferably about 15 to 30 nucleotides. preferable. As a primer for amplifying the polynucleotide of the present invention or a fragment thereof, or a probe for detecting the present polynucleotide, specifically, an oligonucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or 4 Reotide is a preferred example. Usually, a labeled probe is used. However, unlabeled probes can also be used. Alternatively, detection may be performed by direct or indirect specific binding with a labeled ligand. Various methods are known for labeling a probe and a ligand, and examples thereof include a method using nick translation, random priming, and kinase treatment. Suitable labels include radioisotopes, biotin, fluorescent substances, chemiluminescent substances, enzymes, antibodies and the like.
遺伝子検出法は、 PCRが感度の点力も好ましい。 PCRは、本発明に係るポリヌクレ ォチド、該ポリヌクレオチドを含む遺伝子またはその変異遺伝子を特異的に増幅でき るプライマーを用 、る方法である限り、従来公知の方法の 、ずれも使用可能である。 例えば RT—PCRが例示できる。その他、当該分野で用いられる種々の PCRの変法 を適応することができる。 In the gene detection method, PCR is also preferable in terms of sensitivity. As long as the PCR is a method using a primer capable of specifically amplifying the polynucleotide according to the present invention, a gene containing the polynucleotide or a mutant gene thereof, any deviation from a conventionally known method can be used. For example, RT-PCR can be exemplified. In addition, various modifications of PCR used in the art can be applied.
[0102] PCRにより、遺伝子の検出の他に、本発明に係るポリヌクレオチド、該ポリヌクレオ チドを含む遺伝子またはその変異遺伝子の DNAの定量も可能である。このような分 析方法として、 MSSA法等の競合的定量法、または一本鎖 DNAの高次構造の変化 に伴う移動度の変化を利用した突然変異検出法として知られる PCR— SSCP法を例 示できる。 [0102] In addition to the detection of the gene, the DNA of the polynucleotide of the present invention, the gene containing the polynucleotide or the mutant gene thereof can be quantified by PCR. Examples of such analysis methods include the competitive quantification method such as the MSSA method, and the PCR-SSCP method known as a mutation detection method that utilizes the change in mobility due to the change in the higher-order structure of single-stranded DNA. Can be shown.
[0103] 本発明によればまた、例えば本発明に係る蛋白質を利用することにより、個体若し くは各種組織における該蛋白質およびその機能の異常の有無を特異的に検出する ことができる。本発明に係る蛋白質およびその機能の異常の検出により、該蛋白質の 量的異常および Zまたは機能の異常に基づく疾患の易罹患性、発症、および Zまた は予後の診断が可能である。  [0103] According to the present invention, for example, by using the protein according to the present invention, the presence or absence of abnormality in the protein and its function in an individual or various tissues can be specifically detected. Detection of abnormalities in the protein and its function according to the present invention makes it possible to diagnose the susceptibility, onset, and Z or prognosis of a disease based on the quantitative abnormality of the protein and Z or function abnormality.
[0104] 蛋白質の検出による疾患の診断は、例えば被検試料について、該蛋白質の存在を 検出すること、その存在量を決定すること、および Zまたはその変異を検出することに より実施できる。すなわち、本発明に係る蛋白質および Zまたはその変異体を定量 的あるいは定性的に測定する。正常な対照試料との比較において、本蛋白質の存 在の変化、その量的変化を検出することができる。正常蛋白質との比較において、例 えばアミノ酸配列を決定することによりその変異を検出することができる。このような変 化および変異の検出により、上記診断を実施することが可能である。被検試料は、本 蛋白質および Zまたはその変異体を含むものである限り特に制限されず、例えば、 血液、血清、尿、生検組織等の生体生物由来の生物学的試料を例示できる。  [0104] Diagnosis of a disease by detecting a protein can be carried out, for example, by detecting the presence of the protein, determining its abundance, and detecting Z or its mutation in a test sample. That is, the protein of the present invention and Z or a mutant thereof are quantitatively or qualitatively measured. In comparison with a normal control sample, a change in the presence of the present protein and a quantitative change thereof can be detected. In comparison with a normal protein, for example, its mutation can be detected by determining the amino acid sequence. The above diagnosis can be carried out by detecting such changes and mutations. The test sample is not particularly limited as long as it contains the present protein and Z or a mutant thereof, and examples thereof include biological samples derived from living organisms such as blood, serum, urine, and biopsy tissue.
[0105] 本発明に係る蛋白質および変異を有する該蛋白質の測定は、本発明に係る蛋白 質、例えば配列表の配列番号 2に記載のアミノ酸配列で表される蛋白質、または該 蛋白質のアミノ酸配列において 1若しくは数個乃至複数のアミノ酸が欠失、置換、挿 入または付加されたアミノ酸配列で表される蛋白質、これらの断片、または該蛋白質 やその断片に対する抗体を用いることにより可能である。  [0105] The measurement of the protein of the present invention and the protein having a mutation is performed on the protein of the present invention, for example, the protein represented by the amino acid sequence of SEQ ID NO: 2 in the sequence listing, or the amino acid sequence of the protein. This can be achieved by using a protein represented by an amino acid sequence in which one or several or a plurality of amino acids have been deleted, substituted, inserted or added, a fragment thereof, or an antibody against the protein or a fragment thereof.
[0106] 蛋白質の定量的あるいは定性的な測定は、この分野における慣用技術による蛋白 質検出法あるいは定量法を用いて行うことができる。例えば、本蛋白質のアミノ酸配 列分析により変異蛋白質の検出ができる。さらに好ましくは、抗体 (ポリクローナルま たはモノクローナル抗体)を用いることにより、蛋白質の配列の相違、または蛋白質の 有無を検出することができる。 [0106] Quantitative or qualitative measurement of a protein can be carried out using a protein detection method or a quantification method according to a conventional technique in this field. For example, the amino acid sequence of this protein Mutant proteins can be detected by column analysis. More preferably, by using an antibody (polyclonal or monoclonal antibody), a difference in protein sequence or the presence or absence of the protein can be detected.
[0107] 本発明においては、被検試料中の本蛋白質の定性的または定量的な測定方法、 または該蛋白質の特定領域の変異の定性的または定量的な測定方法をも提供可能 である。  [0107] In the present invention, it is also possible to provide a qualitative or quantitative method for measuring the present protein in a test sample, or a qualitative or quantitative method for measuring a mutation in a specific region of the protein.
[0108] 具体的には、被検試料について、本蛋白質に対する特異抗体を用いて免疫沈降 を行い、ウェスタンブロット法またはィムノブロット法で本蛋白質の解析を行うことにより 、上記検出が可能である。また、本蛋白質に対する抗体により、免疫組織化学的技 術を用いてパラフィンまたは凍結組織切片中の本蛋白質を検出することができる。  [0108] Specifically, the above-described detection can be performed by subjecting a test sample to immunoprecipitation using a specific antibody against the present protein, and analyzing the present protein by Western blotting or immunoblotting. In addition, the present protein can be detected in paraffin or frozen tissue sections using an immunohistochemical technique using an antibody against the present protein.
[0109] 本蛋白質またはその変異体を検出する方法の好ましい具体例として、モノクローナ ル抗体および Zまたはポリクローナル抗体を用いるサンドイッチ法を含む、酵素免疫 測定法 (ELISA)、放射線免疫検定法 (RIA)、免疫放射線検定法 (IRMA)、および 免疫酵素法 (IEMA)等が挙げられる。その他、ラジオィムノアツセィゃ競争結合アツ セィ等を利用することもできる。  [0109] Preferred specific examples of the method for detecting the present protein or a mutant thereof include an enzyme immunoassay (ELISA) and a radioimmunoassay (RIA), including a sandwich method using a monoclonal antibody and Z or a polyclonal antibody. , Immunoradiometric assay (IRMA), and immunoenzymatic assay (IEMA). In addition, it is also possible to use a radioimmunity / competition bond / attachment.
[0110] 本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換体、および抗体 はいずれも、それ自体を単独であるいは組合わせて、試薬等として使用できる。試薬 は、本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換体、および抗 体のうちの少なくとも 1種類の他に、緩衝液、塩、安定化剤、および,または防腐剤 等の物質を含むことができる。なお、製剤化にあたっては、各性質に応じた自体公知 の製剤化手段を導入すればよい。該試薬は、例えば、本発明に係る判定方法、化合 物の同定方法、あるいは本蛋白質または本ポリヌクレオチドの測定方法に使用するこ とができる。該試薬はその他、本発明に係る蛋白質またはポリヌクレオチドが関与す る細胞内情報伝達経路の解明、および該蛋白質またはポリヌクレオチドの異常に基 づく疾患等に関する基礎的研究等に有用である。 [0110] Any of the proteins, polynucleotides, recombinant vectors, transformants, and antibodies according to the present invention can be used alone or in combination as reagents or the like. The reagent may be at least one of the protein, polynucleotide, recombinant vector, transformant, and antibody according to the present invention, as well as substances such as buffers, salts, stabilizers, and / or preservatives. Can be included. In formulating, a known formulation means may be introduced according to each property. The reagent can be used, for example, in the determination method according to the present invention, the method for identifying a compound, or the method for measuring the present protein or the present polynucleotide. In addition, the reagent is useful for elucidation of intracellular signal transduction pathways involving the protein or polynucleotide of the present invention, and basic research on diseases or the like based on abnormalities of the protein or polynucleotide.
[0111] 本発明はまた、本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換 体、および抗体のうちの少なくとも 、ずれか 1つを含んでなる試薬キットを提供する。 試薬キットにはその他、本発明に係る蛋白質やポリヌクレオチドを検出するための標 識物質、標識の検出剤、反応希釈液、標準抗体、緩衝液、洗浄剤および反応停止 液等、測定の実施に必要とされる物質を含むことができる。標識物質として、上述の 蛋白質や放射性同位元素等が挙げられる。標識物質は、予め本発明に係る蛋白質 あるいはポリヌクレオチドに付加されていてもよい。本試薬キットは、本発明に係る判 定方法、化合物の同定方法、あるいは本蛋白質または本ポリヌクレオチドの測定方 法に使用することができる。さらに、本試薬キットは、前記測定方法を用いる検査方法 に、検査剤並びに検査用キットとして使用可能である。また、前記測定方法を用いる 診断方法にも、診断剤並びに診断用キットとして使用可能である。 [0111] The present invention also provides a reagent kit comprising at least one of the protein, polynucleotide, recombinant vector, transformant, and antibody according to the present invention. The reagent kit also includes a label for detecting the protein or polynucleotide according to the present invention. It can contain substances required for the measurement, such as identification substances, label detection agents, reaction diluents, standard antibodies, buffers, detergents, and reaction stop solutions. Examples of the labeling substance include the aforementioned proteins and radioisotopes. The labeling substance may be added in advance to the protein or polynucleotide according to the present invention. The present reagent kit can be used for the determination method according to the present invention, the method for identifying a compound, or the method for measuring the present protein or the present polynucleotide. Further, the present reagent kit can be used as a test agent and a test kit in a test method using the above-mentioned measurement method. Also, the diagnostic method using the above-mentioned measurement method can be used as a diagnostic agent and a diagnostic kit.
[0112] 以下、本発明を実施例に基づき具体的に説明するが、本発明はこれらの実施例に 限定して解釈されない。  [0112] Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not construed as being limited to these Examples.
実施例 1  Example 1
[0113] (遺伝子のクローユング)  [0113] (Clothing of the gene)
ヒト脾臓由来 cDNAライブラリ一は、小原らの方法 [オハラ (Ohara, O. )ら、「ディー ェヌエー リサーチ(DNA Research)」、 1997年、第 4卷、 p. 53— 59)に従って構 築した。具体的には、 Notl部位を有するオリゴヌクレオチド〔GACTAGTTCTAGA TCGCGAGCGGCCGCCC (T) 15〕(配列番号 9: GIBCO BRL社製)をプライマ 一として、ヒト脾臓 mRNA(Clontech社:カタログ番号 6542— 1]をテンプレートに S uperscriptll逆転写酵素キット(GIBCO BRL社製)で 2本鎖 cDNAを合成した。 S all部位を有するアダプター(GIBCO BRL社製)を cDNAとライゲーシヨンした後、 Notl消化し、 1%濃度の低融点ァガロース電気泳動により、 3kb以上の DNA断片を 精製した。精製 cDNA断片を、 Sail— Notl制限酵素処理した pBluescriptll SK+ プラスミドとライゲーシヨンした。エレクト口ポーレーシヨン法により、大腸菌 ElectroMa X DH10B株 (GIBCO BRL社製)に組換えプラスミドを導入した。こうして構築した cDNAライブラリーから、約 10, 000個の組換え体を選択し、これらのクローンの両末 端 DNA配列を決定した。この中から、新規遺伝子を含む約 420個のクローンの cDN Aに関しての全塩基配列の決定を行なった。配列決定には、株式会社島津製作所 製の DNAシーケンサー (RISA)と PEアプライドバイォシステム社製反応キットを使 用した。大部分の配列は、ショットガンクローンをダイターミネータ一法 (ターミネータ 一標識法)を用いて決定した。 A human spleen-derived cDNA library was constructed according to the method of Ohara et al. [Ohara, O., et al., "DNA Research", 1997, Vol. 4, p. 53-59). Specifically, an oligonucleotide having a Notl site [GACTAGTTCTAGA TCGCGAGCGGCCGCCC (T) 15] (SEQ ID NO: 9: GIBCO BRL) was used as a primer, and human spleen mRNA (Clontech: Catalog No. 6542-1) was used as a template. Double-stranded cDNA was synthesized using Superscriptll reverse transcriptase kit (GIBCO BRL) An adapter (GIBCO BRL) having a S all site was ligated with cDNA, Notl digested, and 1% low melting point A DNA fragment of 3 kb or more was purified by agarose electrophoresis, and the purified cDNA fragment was ligated with pBluescriptll SK + plasmid treated with Sail-Notl restriction enzyme, and E. coli ElectroMa X DH10B (GIBCO BRL) by the electoral poration method. Approximately 10,000 recombinants were selected from the cDNA library thus constructed, and the DNA clones from both ends of these clones were selected. From these, the total nucleotide sequence of cDNA of about 420 clones containing the novel gene was determined.The sequencing was performed using a DNA sequencer (RISA) manufactured by Shimadzu Corporation and PE Applied. A reaction kit from Biosystems was used.For most sequences, a shotgun clone was prepared using the dye terminator method (Terminator (One-label method).
[0114] 全塩基配列の決定を行った cDNAクローンについて、コンピュータプログラムを用 いた汎用解析方法により ORFを予想した。次いで、 ORF領域についてモチーフドメ イン検索を行い、 Rho— GAPに特徴的な GAPドメインをコードする領域を含む cDN Aを同定した。  [0114] For the cDNA clones for which the entire nucleotide sequence was determined, ORF was predicted by a general-purpose analysis method using a computer program. Next, a motif domain search was performed on the ORF region to identify cDNA containing a region encoding a GAP domain characteristic of Rho-GAP.
[0115] その結果、新規な塩基配列を有し、 GAPドメインをコードする領域を含む cDNA ( 以下、 sj04085と称する)が同定された。  [0115] As a result, cDNA (hereinafter, referred to as sj04085) having a novel nucleotide sequence and containing a region encoding the GAP domain was identified.
[0116] シーケンス解析の結果、 sj04085は、配列番号 1に示す塩基配列(4393bp)から なり、配列番号 2に示すアミノ酸配列(1101アミノ酸)をコードすることが判明した。 sjO 4085にお!/ヽて、 GAPドメイン ίま、酉己歹 IJ番号 1に示す塩基酉己歹 IJの第 421目力ら第 879 番目のヌクレオチド力もなる領域にコードされている。また、 sj04085がコードする蛋 白質において、 GAPドメインは、配列番号 2に記載のアミノ酸配列の第 34番目のプ 口リン(Pro)から第 186番目のセリン(Ser)までの 153アミノ酸残基からなる。  [0116] As a result of sequence analysis, sj04085 was found to consist of the base sequence of SEQ ID NO: 1 (4393 bp) and encode the amino acid sequence of SEQ ID NO: 2 (1101 amino acids). In sjO 4085, the GAP domain is encoded in the region that also has the 879th nucleotide force from the 421st eyesight to the 879th nucleotide force in the base Irigami IJ number 1 shown in IJ number 1. In the protein encoded by sj04085, the GAP domain consists of 153 amino acid residues from the 34th peptide (Pro) to the 186th serine (Ser) in the amino acid sequence of SEQ ID NO: 2. .
実施例 2  Example 2
[0117] (DNAの発現と精製) [0117] (Expression and purification of DNA)
実施例 1で得られた sj04085の発現ベクターを、ゲートウェイ™クローユングテクノ ロジー(GATEWAY™ Cloning Technology, Invitrogen社製)を用いて作製 した。次いで、該発現ベクターを用いて、 sj04085がコードする蛋白質を FLAG—ta g融合蛋白質として 293EBNA細胞 (Invitrogen社製)で発現させた。発現の確認 はウェスタンブロット法により行った。  The expression vector of sj04085 obtained in Example 1 was produced using Gateway ™ Cloning Technology (manufactured by GATEWAY ™ Cloning Technology, Invitrogen). Next, using the expression vector, the protein encoded by sj04085 was expressed as a FLAG-tag fusion protein in 293EBNA cells (Invitrogen). Expression was confirmed by Western blotting.
[0118] 具体的には、実施例 1で得られた sj04085 (pBluescriptII SK+の Sall—Notl サイトに挿入されて 、る)をテンプレートとし、 pfu turbo (STRATAGENE社製)に より、 sj04085の ORF領域(終止コドンを除く)を増幅した。増幅用プライマーには、 配列番号 3および配列番号 4に記載の各塩基配列で表されるオリゴヌクレオチドを用 いた。その後、増幅産物を TOPO cloning systemを用いた反応にて、 pENTRZ SD/D - TOPOに挿入してエントリ一ベクターを作製した。作製したエントリ一べクタ 一を KpnlZHindlllZNdelで切断した遺伝子断片および実施例 1で得られた sj04 085を HindlllZNdelで切断した遺伝子断片をライゲーシヨンした後、コンビテントセ ル (TOPlC lnvitrogen社製)に導入した。形質転換した大腸菌より精製キット (QI AGEN社製)を用いて DNAを精製した。増幅した領域の配列および制限酵素処理 を行なった塩基配列前後の配列が正 、配列であることは、シーケンス解析により確 した。、ン' ~~ケンス反応は DYEnamic ET Terminator Cycle Sequencing Kit (Amersham Biosciences社製)を用いて、泳動および解析は ABI PRISM 377を用いて、それぞれ実施した。次に、 sj04085と BspEIで切断した C末端 FLAG -tag (3 X )融合蛋白質発現ベクターとを用いて、 LRクロナーゼ酵素による組換え 反応により、 sj04085発現プラスミドを作製した。この発現プラスミドを用いることにより 、 sj04085がコードする蛋白質は、 C末端に FLAG— tag (3 X )が付加された蛋白質 として発現される。 Specifically, the sj04085 (inserted into the Sall-Notl site of pBluescriptII SK +) obtained in Example 1 was used as a template, and the ORF region of sj04085 (STRATAGENE) was used by pfu turbo (manufactured by STRATAGENE). (Excluding the stop codon). Oligonucleotides represented by the nucleotide sequences shown in SEQ ID NO: 3 and SEQ ID NO: 4 were used as amplification primers. Thereafter, the amplified product was inserted into pENTRZ SD / D-TOPO by a reaction using a TOPO cloning system to prepare an entry-one vector. After ligation of the gene fragment obtained by cutting the prepared entry vector with KpnlZHindlllZNdel and the gene fragment obtained by cutting sj04085 obtained in Example 1 with HindlllZNdel, the combined (TOPlC lnvitrogen). DNA was purified from the transformed Escherichia coli using a purification kit (QI AGEN). It was confirmed by sequence analysis that the sequence of the amplified region and the sequence before and after the base sequence subjected to the restriction enzyme treatment were correct. And the cans reaction was performed using DYEnamic ET Terminator Cycle Sequencing Kit (manufactured by Amersham Biosciences), and electrophoresis and analysis were performed using ABI PRISM 377. Next, using sj04085 and the C-terminal FLAG-tag (3X) fusion protein expression vector cleaved with BspEI, an sj04085 expression plasmid was prepared by a recombination reaction using an LR clonase enzyme. By using this expression plasmid, the protein encoded by sj04085 is expressed as a protein with FLAG-tag (3X) added to the C-terminus.
[0119] シーケンス解析の結果、発現ベクターに挿入した sj04085と配列番号 1に記載の 塩基配列で表されるポリヌクレオチドを比較すると、 1塩基が異なる可能性があること が判明した。しかし、この 1塩基の差異によるアミノ酸置換は認められな力つた。具体 的には、配列番号 1に記載の塩基配列にぉ 、て第 486番目の塩基はシトシン (C)で ある。一方、発現ベクターに挿入した sj04085の塩基配列において、第 486番目の 塩基はアデニン (A)またはシトシン (C)であった。このことから、発現ベクターに挿入 した sj04085と配列番号 1に記載の塩基配列で表されるポリヌクレオチドとは、 1塩基 が異なる可能性があることが明らかになった。配列番号 1に記載の塩基配列で表され るポリヌクレオチドにおいて、第 484番目力も第 486番目までの塩基は CGCであり、 アルギニン (Arg)をコードしている。一方、発現ベクターに挿入した sj04085におい て、該位置に相当する塩基は CGAまたは CGCであり、いずれもアルギニンをコード している。すなわち、 1塩基の差異によるアミノ酸置換は認められな力つた。第 486番 目以外の塩基配列はエラーが無く完全に一致した。したがって、本発現ベクターによ り発現される蛋白質のアミノ酸配列と、配列番号 1に記載の塩基配列で表されるポリ ヌクレオチドがコードするアミノ酸配列は同一である。  [0119] As a result of sequence analysis, when sj04085 inserted into the expression vector was compared with the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1, it was found that one nucleotide might be different. However, the amino acid substitution due to this single base difference was not recognized. Specifically, the 486th nucleotide in the nucleotide sequence of SEQ ID NO: 1 is cytosine (C). On the other hand, in the base sequence of sj04085 inserted into the expression vector, the 486th base was adenine (A) or cytosine (C). This revealed that there is a possibility that sj04085 inserted into the expression vector and the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 differ by one base. In the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1, the base up to the 486th position and the 486th position are CGC, and encode arginine (Arg). On the other hand, in sj04085 inserted into the expression vector, the base corresponding to the position is CGA or CGC, each of which encodes arginine. That is, amino acid substitution due to a single base difference was not observed. Nucleotide sequences other than the 486th were identical without error. Therefore, the amino acid sequence of the protein expressed by this expression vector and the amino acid sequence encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 are the same.
[0120] sj04085発現ベクターは、 293EBNA細胞にリポフエクシヨン法によりトランスフエク シヨンした。 293EBNA細胞は、遺伝子導入の前日に 24ゥエルプレートに細胞数 6 X 104Zwellで播種し、培養培地(IMDM培地、 SIGMA社製; 10%牛胎仔血清; 4 mM グルタミン;および 10 μ g/ml ゲンタマイシン)中で培養した。翌日、リポフエ クトァミン 2000 (LipofectamineTM2000、 Invitrogen社製)を用いた手法で遺伝子 導入を実施した。具体的には、まず、各発現ベクターを添加した無血清の DMEM ( SIGMA社製)と LipofectamineTM2000を添カ卩した DMEMとを混合し、室温で 20 分間インキュベーションした。得られた混合液を、前日播種して 37°Cにて 5%CO存 [0120] The sj04085 expression vector was transfected into 293EBNA cells by the Lipofux method. 293EBNA cells were seeded on a 24-well plate on the day before gene transfer at a cell count of 6 × 10 4 Zwell, and cultured in a culture medium (IMDM medium, manufactured by SIGMA; 10% fetal bovine serum; 4%). mM glutamine; and 10 μg / ml gentamicin). The next day, gene transfer was performed by a method using Lipofectamine 2000 (Lipofectamine 2000, manufactured by Invitrogen). Specifically, first, serum-free DMEM to which each expression vector was added (manufactured by SIGMA) and DMEM to which Lipofectamine 2000 was added were mixed and incubated at room temperature for 20 minutes. The resulting mixture was seeded the day before and kept at 37 ° C with 5% CO.
2 在下で培養した 293EBNA細胞に添加した。遺伝子導入処理した細胞は 37°Cにて 5%CO存在下でさらに培養を行なった。遺伝子導入 2日後、培地を除去してリン酸 2 was added to 293EBNA cells cultured in the presence. The cells subjected to the gene transfer treatment were further cultured at 37 ° C in the presence of 5% CO. Two days after gene transfer, remove the medium and add phosphate
2 2
緩衝化生理食塩水食塩水(PBS)にて細胞を洗浄し、プロテアーゼインヒビターカク テル(protease inhibitor cocktail, 1/100濃度、 SIGMA社製) 1%を含む溶 解バッファー (Lysis buffer)にて細胞を溶解して細胞溶解液を調製した。溶解バッ ファーは、次の組成からなる: 25mM Tris-HCU pH7. 5 ; 150mM NaCl; lm M CaCl;および 1% Triton X— 100。  The cells are washed with a buffered saline solution (PBS), and the cells are washed with a lysis buffer (Lysis buffer) containing 1% of a protease inhibitor cocktail (protease inhibitor cocktail, 1/100 concentration, manufactured by SIGMA). The cells were lysed to prepare a cell lysate. The lysis buffer consists of the following composition: 25 mM Tris-HCU pH 7.5; 150 mM NaCl; lm M CaCl; and 1% Triton X-100.
2  2
[0121] 各細胞溶解液は、等量の SDS— PAGEサンプルバッファーと混合し、加熱処理(1 00°Cで 5分間)して電気泳動用サンプルを調製した。 SDSポリアクリルアミドゲル電 気泳動(SDS— PAGE)を行 、、泳動ゲルをブロッテイングバッファーに 5分間以上 浸して平衡ィ匕した後、 PVDF膜上に蛋白質をトランスファーした。ブロッテイング終了 後の PVDF膜は、 TBS— Tにブロックエース(大日本製薬株式会社製)を 3: 1の割合 で混合した溶液 (TBS— T+BA)に 4°Cでー晚浸してブロッキングした。ブロッキング 終了後に、 PVDF膜を TBS— Tにて 10分以上振とうしながら 1回洗浄した。上記 SD S— PAGEサンプルバッファ一は、トリス SDS β MEサンプル処理液(第一化学薬品 社製)を用いた。 SDS— PAGEに用いた泳動バッファ一は次の組成力もなる: 100m M Tris ; 192mM グリシン; 0. 1% SDS、 pH8. 3 (Bio Rad社製)。上記ブロッ ティングバッファ一は、次の組成からなる: 25mM Tris ;40mM ε —アミノー n—力 プロン酸; 20%メタノール;および 0. 05% SDS。 TBS—Tは、次の組成からなる: 1 50mM NaCl; 10mM Tris— HC1、 pH7. 5 ;および 0. 05% Tween— 20。  [0121] Each cell lysate was mixed with an equal volume of SDS-PAGE sample buffer, and heat-treated (at 100 ° C for 5 minutes) to prepare a sample for electrophoresis. After performing SDS-polyacrylamide gel electrophoresis (SDS-PAGE), the electrophoresis gel was immersed in a blotting buffer for 5 minutes or more to equilibrate, and then the protein was transferred onto a PVDF membrane. After the completion of blotting, the PVDF membrane is blocked by soaking at 4 ° C in a solution (TBS-T + BA) in which Block Ace (manufactured by Dainippon Pharmaceutical Co., Ltd.) is mixed with TBS-T at a ratio of 3: 1. did. After the blocking was completed, the PVDF membrane was washed once with TBS-T for 10 minutes or more while shaking. As the above-mentioned SDS-PAGE sample buffer, Tris SDSβME sample treatment solution (manufactured by Daiichi Pure Chemicals) was used. The electrophoresis buffer used for SDS-PAGE also has the following compositional power: 100 mM Tris; 192 mM glycine; 0.1% SDS, pH 8.3 (Bio Rad). The blocking buffer has the following composition: 25 mM Tris; 40 mM ε-amino-n-caproic acid; 20% methanol; and 0.05% SDS. TBS-T consists of the following composition: 1 50 mM NaCl; 10 mM Tris-HC1, pH 7.5; and 0.05% Tween-20.
[0122] PVDF膜に、抗 FLAG M2モノクローナル抗体(1000倍希釈、 SIGMA社製)を TBS— T+BAで希釈して添加し、 37°Cで 1時間以上保温した。その後、 PVDF膜を TBS— Tにて 3回洗浄し( 1回の洗浄に付き 20分以上の振とう)、 TBS— T+ BAで 1 000倍に希釈した HRP標識ャギ抗マウス IgG抗体(Cell Signaling Technology 社製)を添加して、 37°Cで 1時間以上保温した。最終的に、 PVDF膜を TBS— Tにて 3回洗浄した後(1回の洗浄に付き 20分以上の振とう)、 ECLプラスウェスタンブロッ ティングディテクシヨンシステム(Amersham Biosciences社製)により、抗 FLAG抗 体に反応する発現蛋白質を検出した。化学発光シグナルは検出装置 (Lumino Im aging Analyzer,東洋紡績株式会社製)にて可視化した。 [0122] To the PVDF membrane, an anti-FLAG M2 monoclonal antibody (1000-fold diluted, manufactured by SIGMA) was added after dilution with TBS-T + BA, and the mixture was kept at 37 ° C for 1 hour or more. Then, wash the PVDF membrane three times with TBS-T (shake for at least 20 minutes per wash), and wash with TBS-T + BA for 1 hour. HRP-labeled goat anti-mouse IgG antibody (manufactured by Cell Signaling Technology) diluted 000-fold was added, and the mixture was kept at 37 ° C for 1 hour or more. Finally, after washing the PVDF membrane three times with TBS-T (for at least 20 minutes of shaking for one wash), anti-FLAG was detected using the ECL Plus Western Blotting Detection System (Amersham Biosciences). The expressed protein that reacts with the antibody was detected. The chemiluminescence signal was visualized by a detector (Lumino Imaging Analyzer, manufactured by Toyobo Co., Ltd.).
[0123] FLAG— tag融合蛋白質として発現させた、 sj04085がコードする蛋白質の予想分 子量は、約 120KDaである。該蛋白質の予想分子量を示す位置に主要バンドが検 出された。一方、各ベクターを導入せず LipofectamineTM2000のみを添カ卩した細 胞ではこのようなバンドは認められなかった。力べして、 sj04085がコードする蛋白質 を取得することができた。 [0123] The predicted molecular weight of the protein encoded by sj04085, expressed as a FLAG-tag fusion protein, is approximately 120 KDa. A major band was detected at the position indicating the expected molecular weight of the protein. On the other hand, such a band was not observed in cells added with only Lipofectamine 2000 without introducing each vector. With great effort, I was able to obtain the protein encoded by sj04085.
実施例 3  Example 3
[0124] (sj04085がコードする蛋白質と Rhoファミリー蛋白質との結合の検出)  [0124] (Detection of binding between the protein encoded by sj04085 and Rho family proteins)
実施例 2で構築した sj04085発現ベクターを用いて、 sj04085がコードする蛋白質 と Rhoファミリー蛋白質との結合について、プルダウン法により検討した。 Rhoファミリ 一蛋白質として、 Raclを用いた。また、 sj04085に結合する Rhoファミリー蛋白質の 特異性を確認するため、 N末端側に GST— tagを付加した |8—ダルク口-ダーゼ (G lucuronidase) (GUS)を陰性コントロールとして用いた。 Raclを N末端 GST—tag 融合蛋白質として発現させるための発現ベクターは、ゲートウェイ™クローユングテク ノロジー(Invitrogen社製)を用いて作製した。具体的には、まず、 Multiple Tissu e cDNA Panels (Clontech社製)のスプリーンファーストストランド DNA (spleen first strand DNA)をテンプレートとして、 pfu turboを用いて Racl遺伝子を増 幅した。増幅産物を、 TOPO cloning systemを用いた反応にて pENTRZDに 挿入してエントリーベクターを作製した。増幅反応にはプライマーとして、配列番号 7 および 8に記載の各塩基配列で表されるオリゴヌクレオチドを使用した。次に、構築し たエントリーベクターについて、 N末端 GST— tag融合蛋白質発現ベクターである p DEST27を用いて LRクロナーゼによる組換え反応より GST融合 Rho発現プラスミド を作製した。各遺伝子のコード領域の塩基配列が正しく挿入されて ヽることをシーケ ンスを行って確認した。シーケンス反応は DYEnamic ET Terminator Cycle Sequencing Kit (Amersham Biosciences社製)を、泳動および解析は ABI P RISM 377を用いて行なった。 GST融合 GUS蛋白質は、 Invitorogen社製の発 現ベクター作製キット(CAT# 11826— 021)に添付の 2つのベクターを用いて作製 した。具体的には、 GUS遺伝子が組み込まれている pENTR—gusと GST遺伝子が 組み込まれている PDEST27という 2つのベクターを LRクロナーゼにより組換え反応 させ、 GSTタグの付いた GUSベクター(pDEST27— GUS)を構築した。 Using the sj04085 expression vector constructed in Example 2, binding between the protein encoded by sj04085 and the Rho family protein was examined by a pull-down method. Rho family Racl was used as one protein. In order to confirm the specificity of the Rho family protein that binds to sj04085, | 8-Gluccuronidase (GUS) with GST-tag added to the N-terminal side was used as a negative control. An expression vector for expressing Racl as an N-terminal GST-tag fusion protein was prepared using Gateway ™ Cloning Technology (Invitrogen). Specifically, first, the Racl gene was amplified using pfu turbo using the spleen first strand DNA (Spleen first strand DNA) of Multiple Tissue cDNA Panels (Clontech) as a template. The amplification product was inserted into pENTRZD in a reaction using the TOPO cloning system to prepare an entry vector. Oligonucleotides represented by the nucleotide sequences of SEQ ID NOs: 7 and 8 were used as primers in the amplification reaction. Next, for the constructed entry vector, a GST-fused Rho expression plasmid was prepared by recombination with LR clonase using pDEST27, which is an N-terminal GST-tag fusion protein expression vector. Sequence confirms that the base sequence of the coding region of each gene has been inserted correctly. And confirmed it. The sequencing reaction was performed using DYEnamic ET Terminator Cycle Sequencing Kit (manufactured by Amersham Biosciences), and the electrophoresis and analysis were performed using ABI P RISM 377. The GST-fused GUS protein was prepared using two vectors attached to an expression vector preparation kit (CAT # 11826-021) manufactured by Invitorogen. Specifically, two vectors, pENTR-gus, in which the GUS gene is integrated, and PDEST27, in which the GST gene is integrated, undergo recombination using LR clonase, and a GST-tagged GUS vector (pDEST27-GUS) is obtained. It was constructed.
[0125] sj04085がコードする蛋白質と Rhoファミリー蛋白質との結合の検出のために、ま ず、 sj04085発現ベクターと Racl遺伝子発現ベクターとを細胞にコトランスフエクショ ンした。具体的には、両ベクターを添加した無血清の DMEMと、 Lipofectamine™ 2000を添カ卩した無血清の DMEMを混合し、室温で 20分間インキュベーションした 。得られた混合液を 293EBNA細胞に添カ卩した。 293EBNA細胞は、遺伝子導入の 前日に細胞数 6. 0 X 104Zwellを 24ゥエルプレートへ播種し、 37°Cにて 5%CO存 [0125] In order to detect the binding between the protein encoded by sj04085 and the Rho family protein, cells were first cotransfected with an sj04085 expression vector and a Racl gene expression vector. Specifically, serum-free DMEM to which both vectors were added and serum-free DMEM to which Lipofectamine ™ 2000 was added were mixed and incubated at room temperature for 20 minutes. The obtained mixture was added to 293EBNA cells. 293EBNA cells were seeded on a 24-well plate with 6.0 X 10 4 Zwell cells the day before gene transfer, and 5% CO2 at 37 ° C.
2 在下で一晩培養した後に本実施例で用いた。遺伝子導入処理した細胞は 37°Cにて 5%CO存在下で 2日間インキュベーションした。培養終了後、 PBSにて細胞を洗浄 2 This was used in this example after overnight culture in the presence. The transfected cells were incubated at 37 ° C in the presence of 5% CO for 2 days. After culture, wash cells with PBS
2 2
し、プロテアーゼインヒビターカクテル(protease inhibitor cocktail、 lZlOO濃 度、 SIGMA社製) 1%を含む溶解バッファー (組成は実施例 2を参照)にて細胞を溶 解して細胞溶解液を調製した。陰性コントロールとして、 Racl遺伝子発現ベクターの みを遺伝子導入した細胞の細胞溶解液を用いた。  Then, the cells were lysed with a lysis buffer (see Example 2 for the composition) containing 1% of a protease inhibitor cocktail (protease inhibitor cocktail, lZlOO concentration, manufactured by SIGMA) to prepare a cell lysate. As a negative control, a cell lysate of cells transfected with only the Racl gene expression vector was used.
[0126] sj04085がコードする蛋白質と Raclとの結合を、上記細胞溶解液を用いてブルダ ゥン法により検出した。各細胞溶解液 300 1、溶解バッファーにけん濁した 20 1の グルタチオンセファロース 4B (Glutathione sepharose 4B)および溶解バッファ 一 100 1を混合した。各サンプルは、 MgClおよびジチオスレィトール(DTT)がそ [0126] The binding between the protein encoded by sj04085 and Racl was detected by the Bourdund method using the above cell lysate. 300 1 of each cell lysate, 20 1 of glutathione sepharose 4B suspended in the lysis buffer, and 100 1 of the lysis buffer were mixed. Each sample was treated with MgCl and dithiothreitol (DTT).
2  2
れぞれ最終濃度 ImMとなるように調製した。回転盤にて回転させながら 4°Cで 1時間 反応させた後に、 1mlの冷却した溶解バッファー(MgClの最終濃度 ImM)を用い  Each was prepared to have a final concentration of ImM. After reacting at 4 ° C for 1 hour while rotating on a turntable, use 1 ml of cold lysis buffer (final concentration of MgCl ImM).
2  2
て遠心処理(1, OOOrpmで 4°Cにて 15秒間)により 3回洗浄した。洗浄後に上清を除 去した Glutathione sepharose 4Bに、溶解バッファーと等量の SDS— PAGEサ ンプルバッファーを混合した溶液を 40 1添加してミキサーにて撹拌後、加熱処理(1 00°Cにて 5分間)して電気泳動用サンプルを調製した。 SDSポリアクリルアミドゲル電 気泳動を行 ヽ、ブロッテイングバッファーに 5分間以上浸して平衡ィ匕した泳動ゲルか ら、 PVDF膜上に蛋白質をトランスファーした。ブロッテイング終了後の PVDF膜は、 TBS—T+BAに 4°Cでー晚浸してブロッキングした。ブロッキング終了後に、 PVDF 膜を TBS—Tで洗浄した(20分以上の振とうを 1回)。 SDS— PAGEサンプルバッフ ァー、ブロッテイングバッファー、 TBS— Tおよび TBS— T+BAはいずれも、実施例 2で使用した各バッファーと同一糸且成のバッファーを用いた。 And washed three times by centrifugation (1, OOOrpm at 4 ° C for 15 seconds). To the Glutathione sepharose 4B from which the supernatant was removed after washing, a solution obtained by mixing a lysis buffer and an equal amount of SDS-PAGE sample buffer was added. (At 00 ° C for 5 minutes) to prepare a sample for electrophoresis. SDS polyacrylamide gel electrophoresis was performed, and proteins were transferred onto a PVDF membrane from a migration gel that had been immersed in a blotting buffer for 5 minutes or longer and equilibrated. After the completion of the blotting, the PVDF membrane was immersed in TBS-T + BA at 4 ° C. for blocking. After blocking, the PVDF membrane was washed with TBS-T (1 shaking for 20 minutes or more). For the SDS-PAGE sample buffer, the blotting buffer, the TBS-T and the TBS-T + BA, the same buffers as those used in Example 2 were used.
[0127] 抗 FLAG M2モノクローナル抗体(1000倍希釈、 SIGMA社製)を TBS— T+B Aで希釈して PVDF膜に添加し、 37°Cで 1時間以上保温した。その後、 PVDF膜を TBS— Tにて 3回洗浄し( 1回の洗浄に付き 20分以上の振とう)、 TBS— T+ BAで 1 000倍に希釈した HRP標識抗マウス IgG抗体(Cell Signaling Technology社製 )を添カ卩して、 37°Cで 1時間以上保温した。最終的に、 PVDF膜を TBS—Tにて 3回 洗浄した後(1回の洗浄に付き 20分以上の振とう)、 ECLプラスウェスタンブロッテイン グディテクシヨンシステム(Amersham Biosciences社製)により、抗 FLAG抗体に 反応する発現蛋白質を検出した。化学発光シグナルは検出装置 (Lumino Imagin g Analyzer,東洋紡績株式会社製)にて可視化した。  [0127] An anti-FLAG M2 monoclonal antibody (1000-fold diluted, manufactured by SIGMA) was diluted with TBS-T + BA and added to the PVDF membrane, and the mixture was kept at 37 ° C for 1 hour or more. Thereafter, the PVDF membrane was washed 3 times with TBS-T (shake for 20 minutes or more per wash), and HRP-labeled anti-mouse IgG antibody (Cell Signaling Technology) diluted 1,000 times with TBS-T + BA. ) And kept at 37 ° C for 1 hour or more. Finally, after washing the PVDF membrane 3 times with TBS-T (shake for 20 minutes or more per washing), the membrane is washed with ECL Plus Western Blotting Detection System (Amersham Biosciences). An expressed protein that reacts with the FLAG antibody was detected. The chemiluminescence signal was visualized by a detector (Lumino Imaging Analyzer, manufactured by Toyobo Co., Ltd.).
[0128] 抗 FLAG抗体にてバンドが検出された場合、 sj04085がコードする蛋白質は Racl に結合すると判定した。図 1に示したように、 sj04085がコードする蛋白質と Raclとを 共発現させた細胞から調製した試料では該蛋白質を示すバンドが検出された (図 1 のパネル Aのレーン 6)。一方、 sj04085がコードする蛋白質と GUSとを共発現させ た細胞力も調製した試料では、該蛋白質を示すバンドは検出されな力つた(図 1のパ ネル Aのレーン 5)。また、 sj04085発現ベクターのみをトランスフエクシヨンした細胞 ではこのようなバンドは認められなかった(図 1のパネル Aのレーン 4)。 GUS発現べ クタ一または Racl発現ベクターのみをトランスフエクシヨンした細胞でも、このようなバ ンドは認められなかった(図 1のパネル Aのレーン 2および 3)。各ベクターを導入せず LipofectamineTM2000のみを添カ卩した細胞でも、このようなバンドは認められなか つた(図 1のパネル Aのレーン 1)。また、 sj04085がコードする蛋白質の各細胞にお ける発現が確認できた。各試料に含まれる sj04085がコードする蛋白質の量は、ほ ぼ同量であった(図 1のパネル Bのレーン 4— 6)。また、各試料に含まれる Raclまた は GUSの量も、ほぼ同量であった(図 1のパネル Dのレーン 3および 6またはパネル C のレーン 2および 5)。 [0128] When a band was detected with the anti-FLAG antibody, it was determined that the protein encoded by sj04085 bound to Racl. As shown in FIG. 1, in a sample prepared from cells in which the protein encoded by sj04085 and Racl were co-expressed, a band indicating the protein was detected (lane 6 of panel A in FIG. 1). On the other hand, in the sample in which the cell strength in which the protein encoded by sj04085 and GUS were co-expressed was also prepared, no band showing the protein was detected (lane 5 in panel A in FIG. 1). No such band was observed in cells transfected with the sj04085 expression vector alone (lane 4 of panel A in FIG. 1). No such band was observed in cells transfected with only the GUS expression vector or the Racl expression vector (FIG. 1, panel A, lanes 2 and 3). No such band was observed even in cells supplemented with Lipofectamine 2000 without the introduction of each vector (lane 1 of panel A in FIG. 1). In addition, the expression of the protein encoded by sj04085 in each cell was confirmed. The amount of protein encoded by sj04085 in each sample is approximately The amount was almost the same (lanes 4-6 of panel B in Fig. 1). In addition, the amount of Racl or GUS contained in each sample was almost the same (lanes 3 and 6 in panel D or lanes 2 and 5 in panel C in Fig. 1).
[0129] このように、 sj04085がコードする蛋白質は Raclに結合することが判明した。 sj04 085がコードする蛋白質は、 GAPの活性ドメインである GAPドメインを有する。これら から、 sj04085がコードする蛋白質は、 Racl等の Rhoファミリー蛋白質に結合するこ とにより、 Rho— GAPとして作用すると考えられる。  [0129] Thus, it was found that the protein encoded by sj04085 binds to Racl. The protein encoded by sj04085 has a GAP domain, which is an active domain of GAP. From these, it is considered that the protein encoded by sj04085 acts as Rho-GAP by binding to Rho family proteins such as Racl.
産業上の利用可能性  Industrial applicability
[0130] 本発明に係るポリヌクレオチドがコードする蛋白質は、 GAPに特徴的なドメインであ る GAPドメインを有し、 Raclに結合した。このことから、本蛋白質は Rho— GAPの機 能を有すると考える。本蛋白質およびポリヌクレオチドの利用により、 Rhoファミリー蛋 白質が関与する情報伝達経路および細胞機能の解明とその調節、並びに本蛋白質 またはポリヌクレオチドの異常に基づく疾患、例えば慢性炎症性疾患、より具体的に は甲状腺や腎臓の慢性炎症性疾患の診断、防止および Zまたは治療が可能になる 。したがって [0130] The protein encoded by the polynucleotide according to the present invention has a GAP domain, which is a characteristic domain of GAP, and bound to Racl. From this, it is considered that this protein has the function of Rho-GAP. Use of the present proteins and polynucleotides will elucidate and regulate signaling pathways and cell functions involving Rho family proteins, and diseases based on abnormalities of the present proteins or polynucleotides, such as chronic inflammatory diseases, and more specifically It can diagnose, prevent and prevent or treat chronic inflammatory diseases of the thyroid and kidneys. Therefore
配列表フリーテキスト  Sequence listing free text
[0131] 配列番号 1: (421): (879) GAPドメインをコードする領域。 [0131] SEQ ID NO: 1 (421): (879) Region encoding GAP domain.
配列番号 3:プライマー用に配列番号 1の配列に基づ!/、て設計されたオリゴヌクレオ チド。  SEQ ID NO: 3: oligonucleotide designed based on the sequence of SEQ ID NO: 1 for primers.
配列番号 4:プライマー用に配列番号 1の配列に基づ!/、て設計されたオリゴヌクレオ チド。  SEQ ID NO: 4: Oligonucleotide designed for primer based on the sequence of SEQ ID NO: 1.
配列番号 5 :Raclをコードするポリヌクレオチド。  SEQ ID NO: 5: polynucleotide encoding Racl.
配列番号 6: Rac 1のアミノ酸配列。  SEQ ID NO: 6: amino acid sequence of Rac 1.
配列番号 7:プライマー用に配列番号 5の配列に基づ 、て設計されたオリゴヌクレオ チド。  SEQ ID NO: 7: Designed based on the sequence of SEQ ID NO: 5 for use as a primer.
配列番号 8:プライマー用に配列番号 5の配列に基づ 、て設計されたオリゴヌクレオ チド。  SEQ ID NO: 8: Designed based on the sequence of SEQ ID NO: 5 for use as a primer.
配列番号 9:プライマー用に設計されたオリゴヌクレオチド。  SEQ ID NO: 9: oligonucleotide designed for primer.

Claims

請求の範囲 The scope of the claims
[1] 配列表の配列番号 1に記載の塩基配列若しくはその相補的塩基配列で表されるポ リヌクレオチド、または配列表の配列番号 2に記載のアミノ酸配列で表される蛋白質を コードするポリヌクレオチド若しくは該ポリヌクレオチドの相補的塩基配列で表される ポリヌクレオチド。  [1] a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the sequence listing or a complementary nucleotide sequence thereof, or a polynucleotide encoding a protein represented by the amino acid sequence of SEQ ID NO: 2 in the sequence listing Alternatively, a polynucleotide represented by a complementary base sequence of the polynucleotide.
[2] 下記の群力 選ばれるポリヌクレオチドであって、 Raclと結合する蛋白質をコード するポリヌクレ才チド:  [2] A polynucleotide selected from the group consisting of polynucleotides encoding a protein that binds to Racl:
i )請求項 1に記載のポリヌクレオチドの塩基配列と少なくとも 70%の相同性を有す る塩基配列で表されるポリヌクレオチド、  i) a polynucleotide represented by a nucleotide sequence having at least 70% homology with the nucleotide sequence of the polynucleotide according to claim 1,
ii)請求項 1に記載のポリヌクレオチドの塩基配列において、 1乃至数個のヌクレオチ ドの欠失、置換、付加などの変異あるいは誘発変異を有するポリヌクレオ チド 、および  ii) the nucleotide sequence of the polynucleotide according to claim 1, wherein the polynucleotide has a mutation such as deletion, substitution, or addition of one or several nucleotides or an induced mutation, and
iii)請求項 1に記載のポリヌクレオチドとストリンジェントな条件下でノヽイブリダィゼーシ ヨンするポリヌクレオチド。  iii) a polynucleotide that hybridizes with the polynucleotide of claim 1 under stringent conditions.
[3] 下記の群力 選ばれるポリヌクレオチドであって、 Raclの GTPァーゼ活性を促進 する機能 (GAP活性)を有する蛋白質をコードするポリヌクレオチド:  [3] A polynucleotide selected from the group consisting of: a polynucleotide encoding a protein having a function of promoting GTPase activity of Racl (GAP activity):
i )請求項 1に記載のポリヌクレオチドの塩基配列と少なくとも 70%の相同性を有す る塩基配列で表されるポリヌクレオチド、  i) a polynucleotide represented by a nucleotide sequence having at least 70% homology with the nucleotide sequence of the polynucleotide according to claim 1,
ii)請求項 1に記載のポリヌクレオチドの塩基配列において、 1乃至数個のヌクレオチ ドの欠失、置換、付加などの変異あるいは誘発変異を有するポリヌクレオチド、および iii)請求項 1に記載のポリヌクレオチドとストリンジェントな条件下でノヽイブリダィゼーシ ヨンするポリヌクレオチド。  ii) a polynucleotide having a mutation such as deletion, substitution, or addition of one or several nucleotides or an induced mutation in the nucleotide sequence of the polynucleotide according to claim 1, and iii) the polynucleotide according to claim 1. A polynucleotide that hybridizes under stringent conditions with nucleotides.
[4] 請求項 1から 3の 、ずれ力 1項に記載のポリヌクレオチドを含有する組換えベクター  [4] A recombinant vector containing the polynucleotide according to claim 1 according to claim 1
[5] 請求項 4に記載の組換えベクターにより形質転換されてなる形質転換体。 [5] A transformant obtained by transformation with the recombinant vector according to claim 4.
[6] 請求項 4に記載の組換えベクターおよび Raclをコードするポリヌクレオチドを含有 する組換えベクターにより形質転換されてなる請求項 5に記載の形質転換体。  [6] The transformant according to claim 5, which is transformed with the recombinant vector according to claim 4 and a recombinant vector containing a polynucleotide encoding Racl.
[7] 配列表の配列番号 2に記載のアミノ酸配列で表される蛋白質。 [7] A protein represented by the amino acid sequence of SEQ ID NO: 2 in the sequence listing.
[8] 請求項 2または 3に記載のポリヌクレオチドがコードする蛋白質。 [8] A protein encoded by the polynucleotide according to claim 2 or 3.
[9] 請求項 5または 6に記載の形質転換体を培養する工程を含む、請求項 7または 8に 記載の蛋白質の製造方法。  [9] The method for producing a protein according to claim 7 or 8, comprising a step of culturing the transformant according to claim 5 or 6.
[10] 請求項 7または 8に記載の蛋白質を認識する抗体。 [10] An antibody that recognizes the protein according to claim 7 or 8.
[11] 請求項 7または 8に記載の蛋白質の機能および Zまたは請求項 1から 3のいずれか [11] The function of the protein according to claim 7 or 8, and Z or any of claims 1 to 3.
1項に記載のポリヌクレオチドの発現を阻害する化合物の同定方法であって、該化合 物と該蛋白質および Zまたは該ポリヌクレオチドとの相互作用を可能にする条件下でA method for identifying a compound that inhibits expression of the polynucleotide according to claim 1, wherein the compound and the protein or Z or the polynucleotide are allowed to interact with each other.
、該機能および Zまたは該発現の存在、不存在または変化を検出することにより、該 化合物が該蛋白質の機能および Zまたは該ポリヌクレオチドの発現を阻害する力否 かを判定することを特徴とする同定方法。 Detecting the presence, absence or alteration of the function and Z or the expression to determine whether the compound has the ability to inhibit the function of the protein and the expression of Z or the polynucleotide. Identification method.
[12] 蛋白質の機能力 Raclに対する GAP活性である請求項 11に記載の同定方法。  [12] The identification method according to claim 11, which is a GAP activity against Racl, a functional ability of the protein.
[13] ヒト甲状腺組織由来の被検組織が、ヒト甲状腺の慢性炎症性疾患由来組織である か否かを判定する方法であって、該被検組織における請求項 1から 3の 、ずれか 1項 に記載のポリヌクレオチドの発現量を測定することを特徴とする判定方法。  [13] A method for determining whether or not a test tissue derived from a human thyroid tissue is a tissue derived from a chronic inflammatory disease of the human thyroid, wherein the method according to claim 1 or 2 in the test tissue is performed. 13. A determination method, comprising measuring the expression level of the polynucleotide according to item 13.
[14] 被検組織における請求項 1から 3のいずれか 1項に記載のポリヌクレオチドの発現 量力 対照であるヒト正常甲状腺由来糸且織における該ポリヌクレオチドの発現量の少 なくとも 4. 5倍以上である場合に、被検組織がヒト甲状腺の慢性炎症性疾患由来組 織であると判定することを特徴とする、請求項 13に記載の判定方法。  [14] Expression capacity of the polynucleotide according to any one of claims 1 to 3 in a test tissue At least 4.5 times the expression level of the polynucleotide in a human normal thyroid-derived fibrous tissue as a control 14. The method according to claim 13, wherein in the case described above, the test tissue is determined to be a tissue derived from a chronic inflammatory disease of human thyroid.
[15] ヒト腎臓組織由来の被検組織が、ヒト腎臓の慢性炎症性疾患由来組織である力否 かを判定する方法であって、該被検組織における請求項 1から 3のいずれか 1項に記 載のポリヌクレオチドの発現量を測定することを特徴とする判定方法。  [15] A method for determining whether or not a test tissue derived from a human kidney tissue is a tissue derived from a chronic inflammatory disease of a human kidney, wherein the test tissue in the test tissue is any one of claims 1 to 3. A determination method comprising measuring the expression level of the polynucleotide described in (1).
[16] 被検組織における請求項 1から 3のいずれか 1項に記載のポリヌクレオチドの発現 量力 対照であるヒト正常腎臓由来組織における該ポリヌクレオチドの発現量の少な くとも 3. 5倍以上である場合に、被検組織がヒト腎臓の慢性炎症性疾患由来組織で あると判定することを特徴とする、請求項 15に記載の判定方法。  [16] the expression level of the polynucleotide according to any one of claims 1 to 3 in a test tissue, at least 3.5 times or more the expression level of the polynucleotide in a normal human kidney-derived tissue as a control; 16. The method according to claim 15, wherein in some cases, the test tissue is determined to be a tissue derived from a chronic inflammatory disease of a human kidney.
[17] 請求項 7または 8に記載の蛋白質の機能を阻害する化合物および Zまたは請求項 1から 3のいずれか 1項に記載のポリヌクレオチドの発現を阻害する化合物を有効成 分として含んでなる甲状腺の慢性炎症性疾患および Zまたは腎臓の慢性炎症性疾 患の防止剤および Zまたは治療剤。 [17] A compound that inhibits the function of the protein according to claim 7 or 8 and a compound that inhibits the expression of Z or the polynucleotide according to any one of claims 1 to 3 as effective components. Chronic inflammatory disease of the thyroid and chronic inflammatory disease of the Z or kidneys Disease preventive and Z or therapeutic agents.
[18] 請求項 7または 8に記載の蛋白質の機能を阻害する化合物および Zまたは請求項 1から 3のいずれか 1項に記載のポリヌクレオチドの発現を阻害する化合物を用いるこ とを特徴とする甲状腺の慢性炎症性疾患および Zまたは腎臓の慢性炎症性疾患の 防止方法および Zまたは治療方法。  [18] A compound which inhibits the function of the protein according to claim 7 or 8, and a compound which inhibits the expression of Z or the polynucleotide according to any one of claims 1 to 3 is used. Methods for preventing and Z or treating chronic inflammatory diseases of the thyroid and Z or kidney.
[19] 請求項 7または 8に記載の蛋白質、請求項 1から 3のいずれか 1項に記載のポリヌク レオチド、請求項 4に記載の組換えベクター、請求項 5または 6に記載の形質転換体 および請求項 10に記載の抗体のうち少なくともいずれか 1つを含んでなる試薬キット  [19] The protein according to claim 7 or 8, the polynucleotide according to any one of claims 1 to 3, the recombinant vector according to claim 4, and the transformant according to claim 5 or 6. And a reagent kit comprising at least one of the antibodies according to claim 10.
PCT/JP2005/007313 2004-04-23 2005-04-15 Gene encoding gtpase activating protein and gene product thereof WO2005103256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512519A JPWO2005103256A1 (en) 2004-04-23 2005-04-15 Gene encoding GTPase activating protein and gene product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004128670 2004-04-23
JP2004-128670 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005103256A1 true WO2005103256A1 (en) 2005-11-03

Family

ID=35196978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007313 WO2005103256A1 (en) 2004-04-23 2005-04-15 Gene encoding gtpase activating protein and gene product thereof

Country Status (2)

Country Link
JP (1) JPWO2005103256A1 (en)
WO (1) WO2005103256A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075106A1 (en) * 2000-03-31 2001-10-11 Millennium Pharmaceuticals, Inc. 32591, A NOVEL HUMAN GTPase ACTIVATING MOLECULE AND USES THEREFOR
WO2003031568A2 (en) * 2001-08-17 2003-04-17 Incyte Genomics, Inc. Intracellular signaling molecules

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075106A1 (en) * 2000-03-31 2001-10-11 Millennium Pharmaceuticals, Inc. 32591, A NOVEL HUMAN GTPase ACTIVATING MOLECULE AND USES THEREFOR
WO2003031568A2 (en) * 2001-08-17 2003-04-17 Incyte Genomics, Inc. Intracellular signaling molecules

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FAUCHERRE A. ET AL.: "Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network.", HUM.MOL.GENET., vol. 12, no. 19, 2003, pages 2449 - 2456, XP002989200 *
FURUKAWA Y. ET AL.: "Isolation of a novel Human Gene, ARHGAP9, Encoding a Rho-GTPase Activating Protein.", BIOCHEM.BIOPHYS.RES.COMMUN., vol. 284, 2001, pages 643 - 649, XP002989198 *
KNAUS U. ET AL.: "Rho GTPase signaling in inflammation and transformation.", IMMUNOL. RES., vol. 21, no. 2, 2000, pages 103 - 109, XP002989602 *
LAMARCHE-VANE AND HALL A. ET AL.: "CdGAP, a Novel Proline-rich GTPase-activating Protein for Cdc42 and Rac.", J.BIOL.CHEM., vol. 273, no. 44, 1998, pages 29172 - 29177, XP002989601 *
SCHMIDT A. ET AL.: "Guanine nucleotide exchange factors for Rho GTPases:turning on the Switch.", GENES DEV., vol. 16, 2002, pages 1587 - 1609, XP002989199 *

Also Published As

Publication number Publication date
JPWO2005103256A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
EP1290160B1 (en) Human pellino polypeptides
US7196182B2 (en) Card domain containing polypeptides, encoding nucleic acids, and methods of use
US7070940B2 (en) Method for determining the ability of a compound to modify the interaction between parkin and the p38 protein
US6872558B1 (en) Heparanase-2 a member of the heparanase protein family
WO1998037196A1 (en) PARG, A GTPase ACTIVATING PROTEIN WHICH INTERACTS WITH PTPL1
JPWO2005103257A1 (en) Gene encoding guanine nucleotide exchange factor that binds to RhoA
AU2002365637B2 (en) GIPs, a family of polypeptides with transcription factor activity that interact with goodpasture antigen binding protein
JP4746537B2 (en) Gene encoding guanine nucleotide exchange factor and gene product thereof
US5948883A (en) Human CRM1 Protein
WO2005103256A1 (en) Gene encoding gtpase activating protein and gene product thereof
JP2006122048A (en) Mitsugumin29 gene
WO2005100567A1 (en) Gene encoding guanine nucleotide exchange factor and its gene product
JP2004089190A (en) Human myt-1 kinase clone
US6790622B2 (en) Tumor suppressor encoding nucleic acid, PTX1, and methods of use thereof
JP2003532424A (en) RH116 polypeptides and fragments thereof, and polynucleotides encoding said polypeptides and therapeutic uses
JP2005192567A (en) Tyrosine kinase gene and its gene product
WO2003044196A1 (en) Postsynaptic proteins
US7041783B2 (en) Survivin-binding proteins, encoding nucleic acids, and methods of use
US7259244B2 (en) Human homologue of the DBF4/ASK1 protein, nucleic acids, and methods related to the same
WO2003078633A1 (en) POLYPEPTIDES BINDING TO HUMAN SYNTAXIN 1a
WO2001019864A1 (en) Polynucleotides encoding novel human angiotensin ii-1 receptor proteins and the method of preparation and its use
CA2412663A1 (en) A human homologue of the dbf4/ask1 protein, nucleic acids, and methods related to the same
WO2002097117A2 (en) Ipaf, an ice-protease activating factor
JPH11239494A (en) Caspase-activated dnase
JP2003061686A (en) HUMAN m-TOMOSYN

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512519

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase