WO2005099965A1 - Pulse wrench - Google Patents

Pulse wrench Download PDF

Info

Publication number
WO2005099965A1
WO2005099965A1 PCT/JP2004/005043 JP2004005043W WO2005099965A1 WO 2005099965 A1 WO2005099965 A1 WO 2005099965A1 JP 2004005043 W JP2004005043 W JP 2004005043W WO 2005099965 A1 WO2005099965 A1 WO 2005099965A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
pressure chamber
cover
oil passage
anvil
Prior art date
Application number
PCT/JP2004/005043
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Oka
Original Assignee
Nippon Pneumatic Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pneumatic Manufacturing Co., Ltd. filed Critical Nippon Pneumatic Manufacturing Co., Ltd.
Priority to PCT/JP2004/005043 priority Critical patent/WO2005099965A1/en
Publication of WO2005099965A1 publication Critical patent/WO2005099965A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket

Definitions

  • the present invention relates to a pulse wrench having a hydraulic striking pulse generating mechanism.
  • Patent Document 1 Japanese Utility Model Application Laid-Open Publication No. Hei 12-1990
  • This pulse wrench comprises an air motor driven by compressed air, and a hydraulic striking pulse generating mechanism connected to a rotor of the air motor.
  • the striking pulse generation mechanism connects a cylinder to the mouth of the air motor, and connects two opposing blades to the rotor by a rotor located in the cylinder of the anvil that passes through the front cover of the cylinder.
  • the blade is movably supported in the radial direction, and each blade is urged toward the inner periphery of the cylinder by an elastic body.
  • the cylinder rotates relative to the anvil, the cylinder rotates every time the cylinder rotates 180 °.
  • a high-pressure chamber and two low-pressure chambers are formed inside the cylinder, and a single impact pulse is generated from two impact pulse generation states formed during one rotation of the cylinder.
  • the high-pressure chamber and the low-pressure chamber are communicated with each other so that the hydraulic oil in the high-pressure chamber flows to the low-pressure chamber so that no impact pulse is generated.
  • Loose is generated to apply a rotational impact to the anvil.
  • Patent Document 2 Japanese Utility Model Publication No. JP-A-Heisei 6-000113 discloses that two high pressures formed inside a cylinder when the cylinder rotates relative to an anvil. A pulse wrench has been proposed in which the chamber volumes are made equal. Disclosure of the invention
  • one impact pulse is generated from among the impact pulse generation states formed twice by one rotation of the cylinder with respect to the anvil.
  • the high-pressure chamber and the low-pressure chamber are communicated with each other through an oil passage in a raw state, so that the oil in the high-pressure chamber flows to the low-pressure chamber.
  • the oil passage has a complicated shape, a long overall length, and a thin-walled blade. Therefore, the cross-sectional area of the flow passage is small, and the resistance when hydraulic oil flows through the oil passage is large. As a result, hydraulic oil does not flow smoothly from the high-pressure chamber to the low-pressure chamber, creating a pressure difference between the high-pressure chamber and the low-pressure chamber, and this pressure difference becomes the rotational resistance of the cylinder. There is also the disadvantage that they cannot be formed and the impact pulse becomes uneven.
  • the oil in the high-pressure chamber easily leaks to the low-pressure chamber side on the surface, and there is a problem in the sealing performance.
  • the oil passage formed in the blade is formed at one end on the inner lid side, when the blade is installed, if one end and the other end are reversed, a hydraulic impact pulse is generated.
  • it takes time to assemble the pulse wrench since the blade has a directivity in assembling the blade.
  • An object of the present invention is to provide a pulse wrench having a hydraulic striking pulse generating mechanism, to facilitate processing of an oil passage connecting a high pressure chamber and a low pressure chamber and to reduce flow resistance of hydraulic oil.
  • the purpose is to improve the sealing performance at the end face of the blade, and to facilitate the assembly of the pulse wrench.
  • a hydraulic striking pulse generating mechanism is connected to a port rotated by compressed air, and the striking pulse generating mechanism has a front and rear cover, Thereafter, a cylinder having a cover connected to the rotor, a front end protruding from the front cover, a rear end supported by the rear cover, and a central portion formed by a rotor portion located inside the cylinder, Two blades that are inserted into the blade holes formed in the rotor and are movable in the radial direction of the rotor, and an elastic body that urges each blade toward the inner peripheral surface of the cylinder
  • the cylinder has two equal-volume high-pressure chambers and two equal-volume low-pressure chambers inside the cylinder each time the cylinder rotates 180 ° with respect to the anvil.
  • the oil passage is formed in a circumferential direction formed at a position facing the circumference of the rear cover.
  • a pair of arc holes having different lengths, four oil passage holes communicating from the inner surface of the rear cover to both ends of each arc hole, and an oil passage hole at an end facing the rear cover of the anvil.
  • Consists of four communication passages provided at opposing positions, one of two oil passages communicating with both ends of each arc-shaped hole for each rotation of the cylinder with respect to the anvil. The system was designed so that it could communicate with the user.
  • the rear cover is formed by a first cover and a second cover which are abutted with each other, and a pair of arc-shaped holes are formed on one of the abutting surfaces of the first cover and the second cover, If an oil passage is formed in the first cover on the cylinder side, the oil passage can be processed more easily.
  • a high-pressure chamber and a low-pressure chamber are formed during one revolution of the cylinder.
  • each of the four oil passage holes provided in the cylinder cover This coincides with the communication passage formed in the rotor portion to form an oil passage, and the high-pressure chamber and the low-pressure chamber communicate with each other through the oil passage, so that the hydraulic oil in the high-pressure chamber can flow into the low-pressure chamber.
  • a single, large hydraulic pulse can be applied to the anvil in one cylinder revolution.
  • the oil passage that connects the high-pressure chamber and the low-pressure chamber has a simple configuration consisting of an arc-shaped hole and an oil passage hole provided in the rear cover, and a communication passage formed in the rotor, the oil passage is machined. Is easy.
  • FIG. 1 is a partially cutaway front view showing an embodiment of a pulse wrench according to the present invention
  • FIG. 2 is an enlarged sectional view showing a striking pulse generating mechanism of the pulse wrench of FIG. 1, and FIG. -Cross-sectional view along line III
  • Fig. 4 is a cross-sectional view along line IV-IV in Fig. 2
  • Fig. 5 is a cross-sectional view along line V-V in Fig. 2
  • Fig. 6 is the state shown in Fig. 4.
  • Fig. 7 is a cross-sectional view showing a state in which the cylinder is rotated 90 ° from the state shown in Fig. 6, Fig.
  • FIG. 7 is a cross-sectional view showing a state in which the cylinder is further rotated 180 ° from the state in Fig. 6, and Fig. 8 is a diagram showing the oil passage and the communication passage.
  • FIG. 9 is a partially cutaway plan view showing a communication state
  • FIG. 9 is a partially cutaway plan view showing a non-communication state of an oil passage and a communication passage.
  • FIG. 10 is an exploded perspective view showing a rotor and a cover. It is sectional drawing which shows other embodiment of the pulse wrench which concerns on invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the wrench body 1 has a handle 2, and when the operation lever 3 provided on the handle 2 is gripped, compressed air is supplied into the wrench body 1 and incorporated into the wrench body 1.
  • the rotor 5 of the air motor 4 is rotated.
  • the hydraulic blow pulse generating mechanism 10 is connected to the mouth 5.
  • the striking pulse generating mechanism 10 has a cylinder 11 connected to the mouth 5 of the air motor 4 and rotating integrally with the mouth 5.
  • the cylinder 11 is composed of an outer cylinder 12 and an inner cylinder 13 fitted inside the outer cylinder 12. Both ends of the inner cylinder 13 have a front cover 14 and a rear cover 1. 5 and the pair of covers 14, 15 and the inner cylinder 13 are connected to the outer cylinder 12 by tightening the presser lid 16 screwed to the inner periphery of one end of the outer cylinder 12. It is pressed against an inward flange 17 provided at the end and integrated with the outer cylinder 12.
  • the rear cover 15 located on the air motor side of the cylinder 11 is composed of a first cover 15a and a second cover 15b, and is disposed on the air motor 4 side.
  • a square hole 18 is formed in the second cover 15 b, and a square shaft portion 5 a provided at an end of the rotor 5 is fitted into the square hole 18. Therefore, when the mouth 5 rotates, the cylinder 11 also rotates integrally.
  • a pin hole 19 is formed in each of the abutting surfaces of the first cover 15a and the inner cylinder 13 and the inner cylinder 13 and the second cylinder 13 are formed by pins 20 inserted into the pin holes 19.
  • the cover 15a is relatively stopped. Although not shown, turn between the first cover 15a and the second cover 15b as well. Has been stopped.
  • a substantially oval cylinder chamber 21 is formed inside the inner cylinder 13, and the cylinder chamber 21 is filled with hydraulic oil.
  • the front cover 14 has an anvil insertion hole 22, and an anvil 23 protrudes from the anvil insertion hole 22.
  • the anvil 23 is provided with a circular opening 23 a rotatable in the cylinder chamber 21 of the cylinder 11, and the rotor 2 3
  • a pair of blade insertion holes 24 that are elongated in the axial direction and open at opposing positions on the outer periphery are formed in 3a.
  • a pair of sealing ridges 25 that are long in the axial direction are provided on the outer periphery of the rotor portion 23 a at positions 90 ° in the circumferential direction from the center of each opening of the blade insertion hole 24. ing.
  • the seal ridges 25 are formed by providing recesses 26 on the outer periphery between each seal ridge 25 and the opening of the blade insertion hole 24.
  • each blade 27 is inserted into the blade insertion holes 24, and each blade 27 is directed toward the inner periphery of the cylinder chamber 21 by an elastic body 28 incorporated between the blades 27. It is energized.
  • a passage 30 communicating the high pressure chamber H and the low pressure chamber L is provided in the inner cylinder 13, and a relief valve 31 is incorporated in the passage 30, and the inside of the high pressure chamber H
  • the relief valve 31 allows the hydraulic oil in the high-pressure chamber H to flow to the low-pressure chamber L.
  • the second cover 15b of the rear cover 15 located on the air motor side of the cylinder 11 has a first arcuate surface on the surface that abuts the first cover 15a.
  • the hole 32 and the second arc-shaped hole 33 are formed at opposing positions, and the length of the second arc-shaped hole 33 in the circumferential direction is the circumference of the first arc-shaped hole 32. It is longer than the direction length.
  • the first cover 15a is formed with four oil passage holes 34 formed of axial holes communicating with both ends of the first arc-shaped hole 32 and both ends of the second arc-shaped hole 33, respectively. ing.
  • the surface of the anvil 23 where the first cover 15 a of the mouth portion 23 a contacts the first cover 15 a has four communication passages at positions corresponding to the oil holes 34. 3 5 is formed.
  • Each of the communication passages 35 has a pair of oil passages 34 communicating with both ends of each of the arc-shaped holes 32, 33 at each rotation of the cylinder 11, one of which is in the high-pressure chamber H, and the other is in the low-pressure chamber L.
  • the pulse wrench shown in the embodiment has the above structure.For example, when tightening a port using the pulse wrench, a socket is attached to the tip of the anvil 23 and the socket is attached to the bolt head. The rotor 5 of the air motor 4 is rotated by engaging and depressing the operation lever 3.
  • the cylinder 11 rotates relative to the anvil 23.
  • a pair of seal ridges 25 on the outer surface of the pair of blades 27 and the outer periphery of the rotor portion 23 a were formed on the inner periphery of the cylinder chamber 21.
  • two high-pressure chambers H and two low-pressure chambers L are formed in the cylinder chamber 21 by sliding contact with each of the four seal ridges 29. A striking pulse is generated.
  • This striking pulse generation state is formed twice during one rotation of the cylinder 11, but in one of these impact pulse generation states, as shown in Figs. 6 and 8, it is attached to the first cover 15a.
  • Each of the four oil passage holes 34 communicates with the four communication passages 35 provided in the rotor portion 23a.
  • the cylinder 11 is further rotated 180 ° from the state shown in FIG. 6 to form two high-pressure chambers H and two low-pressure chambers L in the cylinder chamber 21 as shown in FIG.
  • the four covers formed on the first cover 15a as shown in Figs. 7 and 9 The oil communication hole 34 and the four communication passages 35 formed in the rotor portion 23a are in a non-communication state in which they are displaced in the circumferential direction. For this reason, the blade 27 is hit by the high-pressure hydraulic oil in the high-pressure chamber H, and a shocking rotational force is applied to the anvil 23.
  • the oil passage connecting the high-pressure chamber H and the low-pressure chamber L has a simple configuration consisting of arcuate holes 32, 33, oil passage holes 34, and communication passages 35.
  • the hydraulic oil in the high-pressure chamber H can be smoothly transferred to the low-pressure chamber L when the impact pulse is generated as shown in Figs. It can be fluidized.
  • the pressure difference between the high-pressure chamber H and the low-pressure chamber L can be almost instantaneously equalized, the rotation of the cylinder 11 is smooth and the inertia force is large, and a large striking pulse is generated when a striking pulse is generated. Can be generated.
  • the blade 27 does not have an oil passage communicating the high-pressure chamber H and the low-pressure chamber L, the entire end face of the blade 27 must be brought into full contact with the end face of the first cover 15a. Can be. Therefore, good sealing properties can be obtained at the contact surface, and leakage of hydraulic oil from the high-pressure chamber H to the low-pressure chamber L can be effectively prevented.
  • the rear cover 15 is divided into the first cover 15a and the second cover 15b, and the second cover 15b is formed with the arc-shaped holes 32, 33.
  • Arc-shaped holes 32, 33 may be formed on the abutment surface of the cover 15a with the second cover 15b. In this case, the overall length of the oil passage can be further reduced. Further, the rear cover 15 may be one.
  • the communication passage 35 formed of a hole is formed in the low-end portion 6a, but the communication passage 35 formed of a groove may be formed.
  • the cylinder 11 was formed by an outer cylinder 12, an inner cylinder 13, a front cover 14 and a rear force bar 15, but as shown in FIG. Alternatively, the cylinder 11 may be formed by the cylinder body 11 a in which the inner cylinder 13 and the front cover 14 are integrated and the rear cover 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

In a pulse wrench having a percussion pulse generating mechanism, it is intended to facilitate the processing of an oil passage which establishes communication between high and lower pressure chambers in one percussion pulse generating state which is established twice during one revolution of a cylinder. To this end, the invention establishes twice in one revolution of a cylinder (11) a percussion pulse generating state in which a high pressure chamber (H) and a low pressure chamber (L) are formed in a cylinder chamber (21) during one revolution of the cylinder by rotation of the cylinder (11) relative to an anvil (23), wherein in one percussion pulse generating state, communication between the high and low pressure chambers (H, L) is established by the oil passage so as to allow the operating oil in the high pressure chamber (H) to flow into the low pressure chamber (L), thereby eliminating the generation of percussion pulses. The oil passage is composed of two arcuate holes (32, 33) of different peripheral lengths formed in the rear cover (15) of the cylinder (11), four communication oil holes (34) communicating with the opposite ends of each of the arcuate holes (32, 33), and a communication passage (35) formed in the rotor (23a) of the anvil (23).

Description

明 細 書  Specification
パルスレンチ 技術分野 Pulse wrench Technical field
この発明は、 油圧式の打撃パルス発生機構を有するパルスレンチに関するものである。 背景技術  The present invention relates to a pulse wrench having a hydraulic striking pulse generating mechanism. Background art
この種のパルスレンチとして、 実公平 1 一 2 9 0 1 2号公報 (特許文献 1 ) に記載さ れたものが従来から知られている。 このパルスレンチは、 圧縮空気を駆動源とするエア モータと、 そのエアモータのロータに接続された油圧式の打撃パルス発生機構とから成 つている。  As a pulse wrench of this type, a pulse wrench described in Japanese Utility Model Application Laid-Open Publication No. Hei 12-1990 (Patent Document 1) is conventionally known. This pulse wrench comprises an air motor driven by compressed air, and a hydraulic striking pulse generating mechanism connected to a rotor of the air motor.
打撃パルス発生機構は、 エアモー夕の口一夕にシリンダを接続し、 そのシリンダの前 カバ一を貫通するァンビルのシリンダ内に位置するロータ部によって 2枚の対向配置さ れたブレードをロータ部の半径方向に移動自在に支持し、 各ブレードを弾性体によって シリンダの内周に向けて付勢し、 前記アンビルに対するシリンダの相対回転時、 そのシ リンダが 1 8 0 ° 相対回転する毎に、 シリンダの内部に 2つの高圧室と 2つの低圧室と が形成される打撃パルス発生状態を形成し、 シリンダの 1回転中に形成される 2回の打 撃パルス発生状態のうち、 1回の打撃パルス発生状態では高圧室と低圧室とを連通させ て高圧室の作動油を低圧室に流動させるように構成して打撃パルスが発生しないように し、 シリ ンダ 1回転において、 1回の打撃パルスを発生させてアンビルに回転方向の打 撃力を付加するようにしている。  The striking pulse generation mechanism connects a cylinder to the mouth of the air motor, and connects two opposing blades to the rotor by a rotor located in the cylinder of the anvil that passes through the front cover of the cylinder. The blade is movably supported in the radial direction, and each blade is urged toward the inner periphery of the cylinder by an elastic body. When the cylinder rotates relative to the anvil, the cylinder rotates every time the cylinder rotates 180 °. A high-pressure chamber and two low-pressure chambers are formed inside the cylinder, and a single impact pulse is generated from two impact pulse generation states formed during one rotation of the cylinder. In the generation state, the high-pressure chamber and the low-pressure chamber are communicated with each other so that the hydraulic oil in the high-pressure chamber flows to the low-pressure chamber so that no impact pulse is generated. Loose is generated to apply a rotational impact to the anvil.
ところで、 特許文献 1 に記載されたパルスレンチにおいては、 打撃パルスの発生時、 対角位置に形成される 2つの高圧室の容積が異なるため、 各高圧室からアンビルに付与 される回転方向の打撃力が相違し、 アンピルの回転バランスが悪いという問題がある。 そのような問題点を解決するため、 実公平 6— 0 0 1 3 3 0号公報 (特許文献 2 ) に おいては、 アンビルに対するシリンダの相対回転時に、 シリンダの内部に形成される 2 つの高圧室の容積が等しくなるようにしたパルスレンチを提案している。 発明の開示  By the way, in the pulse wrench described in Patent Document 1, when a striking pulse is generated, the two high-pressure chambers formed at diagonal positions have different volumes. There is a problem that the power is different and the rotation balance of the ampill is poor. In order to solve such a problem, Japanese Utility Model Publication No. JP-A-Heisei 6-000113 (Patent Document 2) discloses that two high pressures formed inside a cylinder when the cylinder rotates relative to an anvil. A pulse wrench has been proposed in which the chamber volumes are made equal. Disclosure of the invention
ところで、 特許文献 2に記載されたパルスレンチにおいては、 アンビルに対するシリ ンダの 1回転によって 2回形成される打撃パルス発生状態のうち、 1回の打撃パルス発 生状態で高圧室と低圧室を油通路で連通して、 高圧室の油を低圧室に流動させるように しているが、 その油通路の形状が複雑であると共に、 上記油通路をシリンダの內蓋ゃァ ンビルおよびブレードの数多くの部品に加工する構成であるため、 加工に手間 かかる という不都合がある。 By the way, in the pulse wrench described in Patent Literature 2, one impact pulse is generated from among the impact pulse generation states formed twice by one rotation of the cylinder with respect to the anvil. The high-pressure chamber and the low-pressure chamber are communicated with each other through an oil passage in a raw state, so that the oil in the high-pressure chamber flows to the low-pressure chamber.構成 Because it is a structure that processes many parts such as lid anvils and blades, there is an inconvenience that processing is troublesome.
特に、 ブレードに形成される油通路は内蓋に対向する幅寸法の小さな端面からの孔あ けによるものであるため、 内径の大きな孔を加工することはできず、 その加工 ίこは非常 に手間がかかるという不都合がある。  In particular, since the oil passage formed in the blade is formed by drilling from the small end face facing the inner lid, it is not possible to machine a hole with a large inside diameter. There is a disadvantage that it takes time.
また、 油通路は複雑な形状であって全長が長く、 しかも、 薄肉厚のブレード【こ形成す るため、 流路の断面積が小さく、 作動油が油通路を流動する際の抵抗が大きい。 このた め、 高圧室から低圧室へ作動油がスムーズに流れず、 高圧室と低圧室の相互間【こ圧力差 が生じ、 その圧力差がシリンダの回転抵抗となるため、 大きな油圧打撃パルスを形成す ることができず、 打撃パルスにむらが生じるという不都合もある。  In addition, the oil passage has a complicated shape, a long overall length, and a thin-walled blade. Therefore, the cross-sectional area of the flow passage is small, and the resistance when hydraulic oil flows through the oil passage is large. As a result, hydraulic oil does not flow smoothly from the high-pressure chamber to the low-pressure chamber, creating a pressure difference between the high-pressure chamber and the low-pressure chamber, and this pressure difference becomes the rotational resistance of the cylinder. There is also the disadvantage that they cannot be formed and the impact pulse becomes uneven.
さらに、 ブレードに形成された油通路はブレードの幅寸法の小さな端面で開 1=1するた め、 シリンダの内蓋とブレードの端面とが接触する接触面のシール幅が小さくなり、 上 記接触面において高圧室の油が低圧室側にリークし易く、 シール性に問題がある。 また、 ブレードに形成された油通路は内蓋側の一端部に形成されているため、 ブレー ドの組込み時に、 一端部と他端部とが逆になる組込みであると、 油圧打撃パルスを形成 することができず、 ブレードの組込みに方向性を有するので、 パルスレンチの組立てに も手間がかかるという不都合がある。  Furthermore, since the oil passage formed in the blade opens 1 = 1 at the end face with a small blade width, the seal width of the contact surface where the inner lid of the cylinder and the end face of the blade come into contact is reduced, and the above-mentioned contact The oil in the high-pressure chamber easily leaks to the low-pressure chamber side on the surface, and there is a problem in the sealing performance. Also, since the oil passage formed in the blade is formed at one end on the inner lid side, when the blade is installed, if one end and the other end are reversed, a hydraulic impact pulse is generated. However, there is a disadvantage that it takes time to assemble the pulse wrench, since the blade has a directivity in assembling the blade.
この発明の課題は、 油圧式の打撃パルス発生機構を有するパルスレンチにぉレゝて、 高 圧室と低圧室を連通させる油通路の加工の容易化と作動油の流動抵抗の低減化とを図る こと、 ブレードの端面部におけるシール性の向上を図ること、 およびパルスレンチの組 立ての容易化を図ることである。  An object of the present invention is to provide a pulse wrench having a hydraulic striking pulse generating mechanism, to facilitate processing of an oil passage connecting a high pressure chamber and a low pressure chamber and to reduce flow resistance of hydraulic oil. The purpose is to improve the sealing performance at the end face of the blade, and to facilitate the assembly of the pulse wrench.
上記の課題を解決するために、 この発明においては、 圧縮空気によって回転される口 一夕に油圧式の打撃パルス発生機構を接続し、 その打撃パルス発生機構が、 前後にカバ 一を有し、 その後カバーが前記ロータに接続されたシリンダと、 前端が前カバ一から突 出し、 後端が後カバ一に支持され、 中央部がシリンダの内部に位置するロータ部でなる アンビルと、 口一夕部に形成されたブレード揷入孔内に挿入されて、 そのロータ部の半 径方向に移動可能な 2枚のブレードと、 各ブレードをシリンダの内周面に向けて付勢す る弾性体とを有し、 前記アンビルに対するシリンダの 1 8 0 ° 回転毎にシリ ンダの内部 に 2つの等容積の高圧室と 2つの等容積の低圧室とを形成し、 アンピルに対するシリ ン ダ.の 1回転毎に高圧室の作動油を油通路から低圧室に流動させるようにしたパルスレン チにおいて、 前記油通路が、 前記後カバ一の円周上の対向位置に形成された周方向長さ が相違する一対の弧状孔と、 前記後カバーの内面から各弧状孔の両端部に連通する 4つ の通油孔と、 前記アンビルの後カバーと対向する端部の前記通油孔の対向位置に設けら れた 4つの連通路から成り、 アンビルに対するシリンダの 1回転毎に各弧状孔の両端部 に連通する 2つの通油孔の一方を高圧室に連通させると共に、 他方を低圧室に連通させ るようにした構成を採用したのである。 In order to solve the above-mentioned problems, in the present invention, a hydraulic striking pulse generating mechanism is connected to a port rotated by compressed air, and the striking pulse generating mechanism has a front and rear cover, Thereafter, a cylinder having a cover connected to the rotor, a front end protruding from the front cover, a rear end supported by the rear cover, and a central portion formed by a rotor portion located inside the cylinder, Two blades that are inserted into the blade holes formed in the rotor and are movable in the radial direction of the rotor, and an elastic body that urges each blade toward the inner peripheral surface of the cylinder The cylinder has two equal-volume high-pressure chambers and two equal-volume low-pressure chambers inside the cylinder each time the cylinder rotates 180 ° with respect to the anvil. In a pulse wrench in which the hydraulic oil in the high-pressure chamber flows from the oil passage to the low-pressure chamber every rotation of the damper, the oil passage is formed in a circumferential direction formed at a position facing the circumference of the rear cover. A pair of arc holes having different lengths, four oil passage holes communicating from the inner surface of the rear cover to both ends of each arc hole, and an oil passage hole at an end facing the rear cover of the anvil. Consists of four communication passages provided at opposing positions, one of two oil passages communicating with both ends of each arc-shaped hole for each rotation of the cylinder with respect to the anvil. The system was designed so that it could communicate with the user.
ここで、 前記後カバ一を、 互いに衝合された第 1カバーと第 2カバーとで形成し、 そ の第 1カバーと第 2カバーの衝合面における一方に一対の弧状孔を形成し、 シリンダ側 の第 1カバ一に通油路を形成すると、 油通路をより簡単に加工することができる。  Here, the rear cover is formed by a first cover and a second cover which are abutted with each other, and a pair of arc-shaped holes are formed on one of the abutting surfaces of the first cover and the second cover, If an oil passage is formed in the first cover on the cylinder side, the oil passage can be processed more easily.
この発明は上記のように構成したので、 下記に示す効果を奏する。  Since the present invention is configured as described above, the following effects can be obtained.
i ) シリンダ 1回転中に高圧室と低圧室が形成される 2回の打撃パルス発生状態のうち、 1回の打撃パルス発生状態では、 シリンダのカバーに設けられた 4つの通油孔のそれぞ れがロータ部に形成された連通路と一致して油通路を形成し、 その油通路を介して高圧 室と低圧室が連通して高圧室の作動油を低圧室に流入させることができるため、 シリン ダ 1回転においてアンビルに 1回だけの大きな油圧打撃パルスを付与することができる。 i i ) 高圧室と低圧室を連通させる油通路が、 後カバ一に設けられた弧状孔および通油 孔と、 ロータに形成された連通路とから成る単純な構成であるため、 油通路の加工が容 易である。 i) A high-pressure chamber and a low-pressure chamber are formed during one revolution of the cylinder. Among the two impact pulse generation states, in one impact pulse generation state, each of the four oil passage holes provided in the cylinder cover This coincides with the communication passage formed in the rotor portion to form an oil passage, and the high-pressure chamber and the low-pressure chamber communicate with each other through the oil passage, so that the hydraulic oil in the high-pressure chamber can flow into the low-pressure chamber. A single, large hydraulic pulse can be applied to the anvil in one cylinder revolution. ii) Since the oil passage that connects the high-pressure chamber and the low-pressure chamber has a simple configuration consisting of an arc-shaped hole and an oil passage hole provided in the rear cover, and a communication passage formed in the rotor, the oil passage is machined. Is easy.
i i i ) 後カバーとロータに油通路を形成して、 薄肉厚のブレードには何も加工しないた め、 断面積の大きな油通路の形成が可能となり、 しかも、 油通路は全長が短く、 また屈 曲部も少ないため、 高圧室内の作動油を低圧室内にスムーズに流動させることができ、 高圧室と低圧室の圧力を瞬時にほぼ均一化させることができる。 このため、 シリンダの 1回転における慣性力も大きく、 きわめて大きな打撃パルスを発生させることができる。 i v) ブレードの端面全体を後カバーに対して全面接触させることができるため、 その 接触面において良好なシール性を得ることができ、 高圧室から低圧室への作動油の漏洩 を効果的に防止することができる。 iii) Since an oil passage is formed in the rear cover and the rotor and nothing is processed on the thin blade, it is possible to form an oil passage with a large cross-sectional area. Since there are few curved parts, the hydraulic oil in the high-pressure chamber can flow smoothly into the low-pressure chamber, and the pressures in the high-pressure chamber and the low-pressure chamber can be almost instantaneously equalized. For this reason, the inertia force in one rotation of the cylinder is large, and an extremely large impact pulse can be generated. iv) The entire end surface of the blade can be brought into full contact with the rear cover, so good sealing properties can be obtained at the contact surface, effectively preventing hydraulic oil from leaking from the high-pressure chamber to the low-pressure chamber. can do.
v) ブレードの組込みに方向性がないため、 パルスレンチの組立ての容易化を図ること ができる。 図面の簡単な説明 v) Since there is no direction in the installation of the blade, the assembly of the pulse wrench can be facilitated. Brief Description of Drawings
図 1はこの発明に係るパルスレンチの実施の形態を示す一部切欠正面図、 図 2は図 1 のパルスレンチの打撃パルス発生機構部を拡大して示す断面図、 図 3は図 2の I I I - I I I 線に沿った断面図、 図 4は図 2の I V- I V 線に沿った断面図、 図 5は図 2の V- V線 に沿った断面図、 図 6は図 4に示す状態からシリンダが 9 0 ° 回転した状態の断面図、 図 7は図 6の状態からシリンダがさらに 1 8 0 ° 回転した打撃パルス発生状態を示す断 面図、 図 8は通油孔と連通路の連通状態を示す一部切欠平面図、 図 9は通油孔と連通路 の非連通状態を示す一部切欠平面図、 図 1 0はロータとカバ一を示す分解斜視図、 図 1 1はこの発明に係るパルスレンチの他の実施の形態を示す断面図である。 発明を実施するための最良の形態  FIG. 1 is a partially cutaway front view showing an embodiment of a pulse wrench according to the present invention, FIG. 2 is an enlarged sectional view showing a striking pulse generating mechanism of the pulse wrench of FIG. 1, and FIG. -Cross-sectional view along line III, Fig. 4 is a cross-sectional view along line IV-IV in Fig. 2, Fig. 5 is a cross-sectional view along line V-V in Fig. 2, and Fig. 6 is the state shown in Fig. 4. Fig. 7 is a cross-sectional view showing a state in which the cylinder is rotated 90 ° from the state shown in Fig. 6, Fig. 7 is a cross-sectional view showing a state in which the cylinder is further rotated 180 ° from the state in Fig. 6, and Fig. 8 is a diagram showing the oil passage and the communication passage. FIG. 9 is a partially cutaway plan view showing a communication state, and FIG. 9 is a partially cutaway plan view showing a non-communication state of an oil passage and a communication passage. FIG. 10 is an exploded perspective view showing a rotor and a cover. It is sectional drawing which shows other embodiment of the pulse wrench which concerns on invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態を図面に基づいて説明する。 図 1に示すように、 レンチ 本体 1はハンドル 2を有し、 そのハンドル 2に設けられた操作レバ一 3を握ると、 レン チ本体 1内に圧縮空気が供給され、 レンチ本体 1内に組込まれたエアモータ 4のロータ 5が回転するようになっている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in Fig. 1, the wrench body 1 has a handle 2, and when the operation lever 3 provided on the handle 2 is gripped, compressed air is supplied into the wrench body 1 and incorporated into the wrench body 1. The rotor 5 of the air motor 4 is rotated.
口一夕 5には油圧式の打撃パルス発生機構 1 0が接続されている。  The hydraulic blow pulse generating mechanism 10 is connected to the mouth 5.
打撃パルス発生機構 1 0は、 エアモ一夕 4の口一夕 5に接続されて口一夕 5と一体に 回転するシリンダ 1 1 を有している。 , 図 2に示すように、 シリンダ 1 1は、 外筒 1 2 とその内側に嵌合された内筒 1 3 とか ら成り、 内筒 1 3の両端には前カパ一 1 4および後カバー 1 5が衝合され、 その一対の カバ一 1 4、 1 5 と内筒 1 3は、 外筒 1 2の一端部内周にねじ係合された押え蓋 1 6の 締付けにより外筒 1 2の他端部に設けられた内向きのフランジ 1 7に押し付けられて、 外筒 1 2 と一体化されている。  The striking pulse generating mechanism 10 has a cylinder 11 connected to the mouth 5 of the air motor 4 and rotating integrally with the mouth 5. As shown in FIG. 2, the cylinder 11 is composed of an outer cylinder 12 and an inner cylinder 13 fitted inside the outer cylinder 12. Both ends of the inner cylinder 13 have a front cover 14 and a rear cover 1. 5 and the pair of covers 14, 15 and the inner cylinder 13 are connected to the outer cylinder 12 by tightening the presser lid 16 screwed to the inner periphery of one end of the outer cylinder 12. It is pressed against an inward flange 17 provided at the end and integrated with the outer cylinder 12.
図 1および図 2に示すように、 シリンダ 1 1のエアモータ側に位置する後カバ一 1 5 は、 第 1カバー 1 5 a と第 2カバー 1 5 bとから成り、 エアモータ 4側に配置された第 2カバ一 1 5 bには角孔 1 8が形成され、 その角孔 1 8にロータ 5の端部に設けられた 角軸部 5 aが嵌合されている。 このため、 口一夕 5が回転すると、 シリンダ 1 1 も一体 に回転する。  As shown in FIGS. 1 and 2, the rear cover 15 located on the air motor side of the cylinder 11 is composed of a first cover 15a and a second cover 15b, and is disposed on the air motor 4 side. A square hole 18 is formed in the second cover 15 b, and a square shaft portion 5 a provided at an end of the rotor 5 is fitted into the square hole 18. Therefore, when the mouth 5 rotates, the cylinder 11 also rotates integrally.
また、 第 1カバ一 1 5 aと内筒 1 3の衝合面それぞれにはピン孔 1 9が形成され、 そ のピン孔 1 9に揷入されたピン 2 0によって内筒 1 3 と第 1カバ一 1 5 aは相対的に回 り止めされている。 図示されていないが、 第 1カバ一 1 5 aと第 2カバー 1 5 b間も回 り止めされている。 In addition, a pin hole 19 is formed in each of the abutting surfaces of the first cover 15a and the inner cylinder 13 and the inner cylinder 13 and the second cylinder 13 are formed by pins 20 inserted into the pin holes 19. The cover 15a is relatively stopped. Although not shown, turn between the first cover 15a and the second cover 15b as well. Has been stopped.
図 3に示すように、 内筒 1 3の内側にはほぼ長円形のシリンダ室 2 1が形成され、 そ のシリンダ室 2 1内に作動油が充満されている。  As shown in FIG. 3, a substantially oval cylinder chamber 21 is formed inside the inner cylinder 13, and the cylinder chamber 21 is filled with hydraulic oil.
図 2に示すように、 前カバー 1 4はアンビル挿入孔 2 2を有し、 そのアンピル揷入孔 2 2からアンピル 2 3が突出している。  As shown in FIG. 2, the front cover 14 has an anvil insertion hole 22, and an anvil 23 protrudes from the anvil insertion hole 22.
図 2および図 3に示すように、 アンビル 2 3にはシリンダ 1 1 のシリンダ室 2 1内に おいて回転可能な円形の口一夕部 2 3 aがー体に設けられ、 そのロータ部 2 3 aに外周 の対向位置で開口する軸方向に細長い一対のブレード揷入孔 2 4が形成されている。 ま た、 ロータ部 2 3 aの外周にはブレード揷入孔 2 4の各開口中心から周方向に 9 0 ° ず れた位置のそれぞれに軸方向に長い一対のシール突条 2 5が設けられている。 なお、 シ 一ル突条 2 5は各シール突条 2 5 とブレード揷入孔 2 4の開口間における外周のそれぞ れに凹部 2 6を設けることにより形成されている。  As shown in FIGS. 2 and 3, the anvil 23 is provided with a circular opening 23 a rotatable in the cylinder chamber 21 of the cylinder 11, and the rotor 2 3 A pair of blade insertion holes 24 that are elongated in the axial direction and open at opposing positions on the outer periphery are formed in 3a. A pair of sealing ridges 25 that are long in the axial direction are provided on the outer periphery of the rotor portion 23 a at positions 90 ° in the circumferential direction from the center of each opening of the blade insertion hole 24. ing. The seal ridges 25 are formed by providing recesses 26 on the outer periphery between each seal ridge 25 and the opening of the blade insertion hole 24.
ブレード揷入孔 2 4内には 2枚のブレード 2 7が挿入され、 各ブレード 2 7は、 その ブレード 2 7間に組込まれた弾性体 2 8によってシリ ンダ室 2 1の内周に向けて付勢さ れている。  Two blades 27 are inserted into the blade insertion holes 24, and each blade 27 is directed toward the inner periphery of the cylinder chamber 21 by an elastic body 28 incorporated between the blades 27. It is energized.
シリンダ 1 1のシリンダ室 2 1における内周面には長軸方向の対向位置と短軸方向の 対向位置のそれぞれに軸方向に長く延びる 4本のシール突条 2 9が形成され、 アンビル 2 3に対してシリンダ 1 1が相対回転したとき、 口一夕部 2 3 aのシール突条 2 5およ ぴブレード 2 7の外側面のそれぞれが前記 4本のシール突条 2 9に同時に搢接して、 図 6に示すように、 シリンダ室 2 1内に 2つの高圧室 Hと 2つの低圧室 Lとを形成するよ うになっている。 この高圧室 Hと低圧室 Lが形成される状態が打撃パルス発生状態であ つて、 シリンダ 1 1の 1回転中に 2回形成される。  On the inner peripheral surface of the cylinder chamber 21 of the cylinder 11, four seal protrusions 29 extending long in the axial direction are formed at the opposed position in the long axis direction and the opposed position in the short axis direction, respectively. When the cylinder 11 is relatively rotated with respect to, the seal ridges 25 of the mouth 23 and the outer surfaces of the blades 27 simultaneously contact the four seal ridges 29 at the same time. As shown in FIG. 6, two high-pressure chambers H and two low-pressure chambers L are formed in the cylinder chamber 21. The state in which the high-pressure chamber H and the low-pressure chamber L are formed is a striking pulse generation state, and is formed twice during one rotation of the cylinder 11.
ここで、 高圧室 H内の圧力が所定の圧力以上に上昇するのを防止すると共に、 アンビ ル 2 3に対するシリンダ 1 1の相対回転時にシリンダ 1 1が口ックするのを防止するた め、 図 2および図 6に示すように、 内筒 1 3に高圧室 Hと低圧室 Lを連通する通路 3 0 を設け、 その通路 3 0内にリ リーフバルブ 3 1 を組込み、 高圧室 H内の圧力がリ リーフ バルブ 3 1の設定圧力より高くなつた場合に、 そのリ リーフバルブ 3 1によって高圧室 Hの作動油を低圧室 Lに流動させるようにしている。  Here, in order to prevent the pressure in the high-pressure chamber H from rising above a predetermined pressure, and to prevent the cylinder 11 from being opened when the cylinder 11 rotates relative to the ambil 23, As shown in FIGS. 2 and 6, a passage 30 communicating the high pressure chamber H and the low pressure chamber L is provided in the inner cylinder 13, and a relief valve 31 is incorporated in the passage 30, and the inside of the high pressure chamber H When the pressure becomes higher than the set pressure of the relief valve 31, the relief valve 31 allows the hydraulic oil in the high-pressure chamber H to flow to the low-pressure chamber L.
図 6および図 1 0に示すように、 シリンダ 1 1のエアモータ側に位置する後カバー 1 5の第 2カバ一 1 5 bには、 第 1カバー 1 5 aに衝合する面に第 1弧状孔 3 2と第 2弧 状孔 3 3が対向位置に形成され、 第 2弧状孔 3 3の周方向長さは第 1弧状孔 3 2の周方 向長さより長くなつている。 As shown in FIGS. 6 and 10, the second cover 15b of the rear cover 15 located on the air motor side of the cylinder 11 has a first arcuate surface on the surface that abuts the first cover 15a. The hole 32 and the second arc-shaped hole 33 are formed at opposing positions, and the length of the second arc-shaped hole 33 in the circumferential direction is the circumference of the first arc-shaped hole 32. It is longer than the direction length.
第 1カバ一 1 5 aには、 第 1弧状孔 3 2の両端部および第 2弧状孔 3 3の両端部それ ぞれに連通する軸方向孔から成る 4つの通油孔 3 4が形成されている。  The first cover 15a is formed with four oil passage holes 34 formed of axial holes communicating with both ends of the first arc-shaped hole 32 and both ends of the second arc-shaped hole 33, respectively. ing.
一方、 図 4に示すように、 アンビル 2 3における口一夕部 2 3 aの第 1カバー 1 5 a と衝合する面には、 前記通油孔 3 4と対応する位置に 4つの連通路 3 5が形成されてい る。 これらの連通路 3 5はシリンダ 1 1の 1回転毎に各弧状孔 3 2 、 3 3の両端部に連 通する一対の通油孔 3 4の一方を高圧室 Hに、 他方を低圧室 Lに連通させるようになる。 実施の形態で示すパルスレンチは上記の構造から成り、 そのパルスレンチを用いて例 えばポルトの締付けを行なう場合は、 アンビル 2 3の先端部にソケッ トを取付け、 その ソケッ トをボルト頭部に係合し、 操作レバー 3を握ることによりエアモー夕 4のロータ 5を回転させる。  On the other hand, as shown in FIG. 4, the surface of the anvil 23 where the first cover 15 a of the mouth portion 23 a contacts the first cover 15 a has four communication passages at positions corresponding to the oil holes 34. 3 5 is formed. Each of the communication passages 35 has a pair of oil passages 34 communicating with both ends of each of the arc-shaped holes 32, 33 at each rotation of the cylinder 11, one of which is in the high-pressure chamber H, and the other is in the low-pressure chamber L. Will be able to communicate with The pulse wrench shown in the embodiment has the above structure.For example, when tightening a port using the pulse wrench, a socket is attached to the tip of the anvil 23 and the socket is attached to the bolt head. The rotor 5 of the air motor 4 is rotated by engaging and depressing the operation lever 3.
口一夕 5の回転時、 そのロータ 5の回転は、 シリンダ 1 1およびシリンダ室 2 1内に 充満された作動油およびブレード 2 7を介してアンビル 2 3に伝達され、 そのアンピル 2 3の回転によってポル卜の締付けが行なわれる。  When the mouth 5 rotates, the rotation of the rotor 5 is transmitted to the anvil 23 through the hydraulic oil and the blade 27 filled in the cylinder 11 and the cylinder chamber 21, and the rotation of the pill 23 This tightens the port.
ポル卜が所定のトルクまで締付けられ、 ポルトの回転抵抗が締付けトルクを上回って アンビル 2 3が停止すると、 そのアンビル 2 3に対してシリンダ 1 1が相対回転する。 このシリンダ 1 1の 1 8 0 ° の回転毎に、 一対のブレード 2 7の外側面およびロータ部 2 3 aの外周の一対のシール突条 2 5がシリンダ室 2 1の内周に形成された 4つのシ一 ル突条 2 9のそれぞれに摺接し、 その摺接によってシリンダ室 2 1 には図 6および図 7 に示すように、 2つの高圧室 Hと 2つの低圧室 Lが形成される打撃パルス発生状態とな る。  When the port is tightened to a predetermined torque and the rotation resistance of the port exceeds the tightening torque and the anvil 23 stops, the cylinder 11 rotates relative to the anvil 23. For each 180 ° rotation of the cylinder 11, a pair of seal ridges 25 on the outer surface of the pair of blades 27 and the outer periphery of the rotor portion 23 a were formed on the inner periphery of the cylinder chamber 21. As shown in FIGS. 6 and 7, two high-pressure chambers H and two low-pressure chambers L are formed in the cylinder chamber 21 by sliding contact with each of the four seal ridges 29. A striking pulse is generated.
この打撃パルス発生状態はシリンダ 1 1の 1回転中に 2回形成されるが、 そのうちの 1回の衝撃パルス発生状態では、 図 6および図 8に示すように、 第 1カバー 1 5 aに設 けた 4つの通油孔 3 4のそれぞれがロータ部 2 3 aに設けられた 4つの連通路 3 5 と一 致して連通する。  This striking pulse generation state is formed twice during one rotation of the cylinder 11, but in one of these impact pulse generation states, as shown in Figs. 6 and 8, it is attached to the first cover 15a. Each of the four oil passage holes 34 communicates with the four communication passages 35 provided in the rotor portion 23a.
このため、 図 6に示す左側上下の高圧室 Hと低圧室 Lおよび右側上下の低圧室 Lと高 圧室 Hとが連通路 3 5、 通油孔 3 4および弧状孔 3 2 、 3 3を介して互に連通して、 高 圧室 Hの作動油は低圧室 Lに瞬時に流動し、 打撃パルスは発生しない。  For this reason, the high-pressure chamber H and the low-pressure chamber L on the left and top and the low-pressure chamber L and the high-pressure chamber H on the right and bottom shown in FIG. The hydraulic oil in the high-pressure chamber H flows instantaneously to the low-pressure chamber L, and no impact pulse is generated.
図 6に示す状態からシリンダ 1 1がさらに 1 8 0 ° 回転して、 図 7に示すように、 シ リンダ室 2 1 内に 2つの高圧室 Hと 2つの低圧室 Lが形成される 2回目の打撃パルス発 生状態とされると、 図 7および図 9に示すように、 第 1カバ一 1 5 aに形成された 4つ の通油孔 3 4とロータ部 2 3 aに形成された 4つの連通路 3 5は周方向に位置ずれした 非連通状態とされる。 このため、 高圧室 H内の高圧の作動油によってブレード 2 7が打 撃され、 アンビル 2 3に衝撃的な回転力が付与される。 The cylinder 11 is further rotated 180 ° from the state shown in FIG. 6 to form two high-pressure chambers H and two low-pressure chambers L in the cylinder chamber 21 as shown in FIG. When the striking pulse is generated, the four covers formed on the first cover 15a as shown in Figs. 7 and 9 The oil communication hole 34 and the four communication passages 35 formed in the rotor portion 23a are in a non-communication state in which they are displaced in the circumferential direction. For this reason, the blade 27 is hit by the high-pressure hydraulic oil in the high-pressure chamber H, and a shocking rotational force is applied to the anvil 23.
ブレード 2 7の打撃時、 シリンダ室 2 1内に形成された 2つの高圧室 Hの容積は等し いため、 2つの高圧室 Hの相互間における圧力は等しく、 2枚のブレード 2 7は等しい 力でもって打撃されることになる。 このため、 アンビル 2 3はバランスよく回転する。 また、 高圧室 Hと低圧室 Lを連通させる油通路は、 弧状孔 3 2、 3 3、 通油孔 3 4お よび連通路 3 5から成る単純な構成であるため、 油通路を容易に加工することができる と共に、 その油通路は全長が短く、 また、 屈曲部も少ないため、 図 6、 図 8に示す打撃 パルス発生状態において、 高圧室 H内の作動油を低圧室 L側にスムーズに流動させるこ とができる。  When the blade 27 is hit, since the volumes of the two high-pressure chambers H formed in the cylinder chamber 21 are equal, the pressure between the two high-pressure chambers H is equal, and the two blades 27 have the same force. You will be hit. Therefore, the anvil 23 rotates in a well-balanced manner. The oil passage connecting the high-pressure chamber H and the low-pressure chamber L has a simple configuration consisting of arcuate holes 32, 33, oil passage holes 34, and communication passages 35. The hydraulic oil in the high-pressure chamber H can be smoothly transferred to the low-pressure chamber L when the impact pulse is generated as shown in Figs. It can be fluidized.
このため、 高圧室 Hと低圧室 Lの圧力差を瞬時にほぼ均一化することができ、 シリン ダ 1 1 の回転がスムーズであって慣性力も大きくなり、 打撃パルスの発生時に、 大きな 打撃パルスを発生させることができる。  As a result, the pressure difference between the high-pressure chamber H and the low-pressure chamber L can be almost instantaneously equalized, the rotation of the cylinder 11 is smooth and the inertia force is large, and a large striking pulse is generated when a striking pulse is generated. Can be generated.
さらに、 ブレード 2 7には、 高圧室 Hと低圧室 Lを連通させる油通路が形成されてい ないため、 そのプレード 2 7の端面全体を第 1カバ一 1 5 aの端面に全面接触させるこ とができる。 このため、 上記接触面において良好なシール性を得ることができ、 高圧室 Hから低圧室 Lへの作動油の漏洩を効果的に防止することができる。  Furthermore, since the blade 27 does not have an oil passage communicating the high-pressure chamber H and the low-pressure chamber L, the entire end face of the blade 27 must be brought into full contact with the end face of the first cover 15a. Can be. Therefore, good sealing properties can be obtained at the contact surface, and leakage of hydraulic oil from the high-pressure chamber H to the low-pressure chamber L can be effectively prevented.
また、 ブレード 2 7の組込みに方向性がないため、 パルスレンチの組立ての容易化を 図ることができる。  In addition, since there is no direction in the installation of the blade 27, the assembly of the pulse wrench can be facilitated.
実施の形態では、 後カバ一 1 5を第 1カバー 1 5 aと第 2カバー 1 5 bとに分割し、 第 2カバー 1 5 bに弧状孔 3 2、 3 3を形成したが、 第 1カバー 1 5 aの第 2カバ一 1 5 bに対する衝合面に弧状孔 3 2、 3 3を形成してもよい。 この場合、 油通路の全長を より短くすることができる。 また、 後カバー 1 5を一つにしてもよい。  In the embodiment, the rear cover 15 is divided into the first cover 15a and the second cover 15b, and the second cover 15b is formed with the arc-shaped holes 32, 33. Arc-shaped holes 32, 33 may be formed on the abutment surface of the cover 15a with the second cover 15b. In this case, the overall length of the oil passage can be further reduced. Further, the rear cover 15 may be one.
また、 ロー夕部 6 aに孔から成る連通路 3 5を形成したが、 溝から成る連通路 3 5を 形成するようにしてもよい。  Further, the communication passage 35 formed of a hole is formed in the low-end portion 6a, but the communication passage 35 formed of a groove may be formed.
図 2に示すように、 シリンダ 1 1 を、 外筒 1 2、 内筒 1 3、 前カバー 1 4および後力 バー 1 5で形成したが、 図 1 1 に示すように、 上記外筒 1 2、 内筒 1 3および前カバー 1 4を一体化したシリンダ本体 1 1 aと後カバー 1 5 とでシリ ンダ 1 1を形成するよう にしてもよい。  As shown in FIG. 2, the cylinder 11 was formed by an outer cylinder 12, an inner cylinder 13, a front cover 14 and a rear force bar 15, but as shown in FIG. Alternatively, the cylinder 11 may be formed by the cylinder body 11 a in which the inner cylinder 13 and the front cover 14 are integrated and the rear cover 15.

Claims

請 求 の 範 囲 The scope of the claims
1 . 圧縮空気によって回転される口一夕に油圧式の打撃パルス発生機構を接続し、 その 打撃パルス発生機構が、 前後にカバ一を有し、 その後カバーが前記ロータに接続された シリンダと、 前端が前カバーから突出し、 後端が後カバーに支持され、 中央部がシリン ダの内部に位置する口一夕部でなるアンビルと、 ロータ部に形成されたブレード揷入孔 内に挿入されて、 その口一夕部の半径方向に移動可能な 2枚のブレードと、 各ブレード をシリ ンダの内周面に向けて付勢する弾性体とを有し、 前記アンビルに対するシリンダ の 1 8 0 ° 回転毎にシリ ンダの内部に 2つの等容積の高圧室と 2つの等容積の低圧室と を形成し、 アンビルに対するシリンダの 1回転毎に高圧室の作動油を油通路から低圧室 に流動させるようにしたパルスレンチにおいて、 前記油通路が、 前記後カバーの軸心を 中心とする円周上の対向位置に形成された周方向長さが相違する一対の弧状孔と、 前記 後カバーの内面から各弧状孔の両端部に連通する 4つの通油孔と、 前記アンビルの後力 バーと対向する端部の前記通油孔の対向位置に設けた 4つの連通路から成り、 アンビル に対するシリンダの 1回転毎に各弧状孔の両端部に連通する 2つの通油孔の一方を高圧 室に連通させると共に、 他方を低圧室に連通させるようにしたことを特徴とするパルス レンチ。 1. A hydraulic striking pulse generating mechanism is connected to the mouth rotated by the compressed air, and the striking pulse generating mechanism has a front and rear cover, and a cylinder whose cover is connected to the rotor, and The front end protrudes from the front cover, the rear end is supported by the rear cover, and the center part is an anvil consisting of a mouth located inside the cylinder, and is inserted into the blade insertion hole formed in the rotor part. The cylinder has two blades that can move in the radial direction of the mouth and an elastic body that urges each blade toward the inner peripheral surface of the cylinder. Two equal-volume high-pressure chambers and two equal-volume low-pressure chambers are formed inside the cylinder for each rotation, and the hydraulic oil in the high-pressure chamber flows from the oil passage to the low-pressure chamber for each rotation of the cylinder relative to the anvil. Pulse wrench In the oil passage, a pair of arc-shaped holes having different circumferential lengths formed at opposing positions on a circumference centered on the axis of the rear cover, and a pair of arc-shaped holes from an inner surface of the rear cover. It consists of four oil passages communicating with both ends, and four communication passages provided at positions opposite to the oil passage holes at the ends facing the rear force bar of the anvil. A pulse wrench characterized in that one of two oil passages communicating with both ends of an arc-shaped hole communicates with a high-pressure chamber and the other communicates with a low-pressure chamber.
2 . 前記後カバ一が互に衝合された第 1カバーと第 2カバ一とから成り、 その第 1カバ —と第 2カバーの衝合面における一方に一対の弧状孔を形成し、 シリンダ側の第 1カパ —に通油路を形成した請求項 1 に記載のパルスレンチ。  2. The rear cover is composed of a first cover and a second cover abutted with each other, and a pair of arc-shaped holes are formed in one of the abutting surfaces of the first cover and the second cover. The pulse wrench according to claim 1, wherein an oil passage is formed in the first cap on the side.
PCT/JP2004/005043 2004-04-07 2004-04-07 Pulse wrench WO2005099965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005043 WO2005099965A1 (en) 2004-04-07 2004-04-07 Pulse wrench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005043 WO2005099965A1 (en) 2004-04-07 2004-04-07 Pulse wrench

Publications (1)

Publication Number Publication Date
WO2005099965A1 true WO2005099965A1 (en) 2005-10-27

Family

ID=35149838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005043 WO2005099965A1 (en) 2004-04-07 2004-04-07 Pulse wrench

Country Status (1)

Country Link
WO (1) WO2005099965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480131B (en) * 2013-09-27 2015-04-11 Chu Dai Ind Co Ltd Impact tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854916A (en) * 1986-04-22 1989-08-08 Atlas Copco Aktiebolag Hydraulic torque impulse generator with bypass mechanism
JPH0235681U (en) * 1988-08-25 1990-03-07
WO1995035185A1 (en) * 1994-06-20 1995-12-28 Chicago Pneumatic Tool Company Pulse tool
US5741186A (en) * 1994-04-08 1998-04-21 Uryu Seisaku, Ltd. Impulse torque generator for a hydraulic power wrench

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854916A (en) * 1986-04-22 1989-08-08 Atlas Copco Aktiebolag Hydraulic torque impulse generator with bypass mechanism
JPH0235681U (en) * 1988-08-25 1990-03-07
US5741186A (en) * 1994-04-08 1998-04-21 Uryu Seisaku, Ltd. Impulse torque generator for a hydraulic power wrench
WO1995035185A1 (en) * 1994-06-20 1995-12-28 Chicago Pneumatic Tool Company Pulse tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480131B (en) * 2013-09-27 2015-04-11 Chu Dai Ind Co Ltd Impact tool

Similar Documents

Publication Publication Date Title
US8347979B2 (en) Motor assembly for pneumatic tool
US6863134B2 (en) Rotary tool
TWM330892U (en) Electric tool
US20110139474A1 (en) Pneumatic impact tool
US11548124B2 (en) Pneumatic wrench
US10626725B2 (en) Gas passage switching structure for pneumatic rotary hand tool
EP1454715B1 (en) Drive system having an inertial valve and its method of operating
EP1266126B1 (en) Double-throw air motor with reverse feature
JP5700821B2 (en) Rotating tool
US8739832B2 (en) Motor assembly for pneumatic tool
WO2005099965A1 (en) Pulse wrench
CN210452535U (en) Oil pressure pulse tool
CN110228034B (en) Oil pressure pulse tool
JP4247426B2 (en) Pulse wrench
US20190160644A1 (en) Pneumatic rotary tool with airway switching structure
US6679340B1 (en) Hydraulic tool
JP3131622B2 (en) Hydraulic torque wrench
CN216372049U (en) Straight pneumatic tool
JP3730905B2 (en) Fastening tool
JP4249734B2 (en) Air impact wrench
CN213081259U (en) Pneumatic wrench
JP2983107B2 (en) Pulse wrench for stud
JPH04365564A (en) Hydraulic type torque wrench
JP2779749B2 (en) Impact torque generator for hydraulic torque wrench
JP3101332U (en) Air motor driven valve of compressed air screw tightening machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase