WO2005099944A1 - Coated member and method for manufacture thereof - Google Patents

Coated member and method for manufacture thereof Download PDF

Info

Publication number
WO2005099944A1
WO2005099944A1 PCT/JP2005/007091 JP2005007091W WO2005099944A1 WO 2005099944 A1 WO2005099944 A1 WO 2005099944A1 JP 2005007091 W JP2005007091 W JP 2005007091W WO 2005099944 A1 WO2005099944 A1 WO 2005099944A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
oxygen
diamond
fluorine
cutting
Prior art date
Application number
PCT/JP2005/007091
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Nakai
Nobuo Omae
Masahito Tagawa
Hiroshi Kinoshita
Original Assignee
National University Corporation Kobe University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005087320A external-priority patent/JP2005324319A/en
Application filed by National University Corporation Kobe University filed Critical National University Corporation Kobe University
Publication of WO2005099944A1 publication Critical patent/WO2005099944A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Definitions

  • the present invention relates to a coated member in which a thin film is formed on a substrate such as a cemented carbide, diamond, or cermet, and a method for producing the same.
  • a covering member having an extremely thin thin film.
  • Patent Document 1 provides a cutting tool for long-life high-precision machining by controlling the film thickness of a coated cutting tool coated by a CVD method or a PVD method. That is, in this document, the thickness of the rake face and 0.5 ⁇ 2.0 / ⁇ ⁇ , Nyori that the thickness of the flank and 1.0 to 4.0 i um, suppressing Chippi ring of thin, substantially tool life Is described.
  • Patent Documents 2 and 3 disclose a technique of generating an atom having no charge by a laser beam and utilizing the atom.
  • Patent Document 2 relates to a high-energy atomic source, and discloses a method of concentrating a carbon dioxide gas laser on a raw material inlet using a convex lens.
  • Patent Document 3 describes a further improvement of the technique applied to a semiconductor manufacturing apparatus.
  • Patent Document 3 discloses that a safe SF gas is formed by forming atomic fluorine.
  • Patent Document 4 For high-precision cutting such as mirror finishing of non-ferrous materials, a tool using a single crystal diamond as a cutting edge is used (for example, Patent Document 4).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-347403
  • Patent Document 2 U.S. Pat.No. 4,894,511
  • Patent Document 3 JP 2004-79704 A
  • Patent Document 4 JP-A-10-43903
  • a thin film formed by a conventional CVD method or PVD method grows preferentially at a sharp portion, so that the film surface formed on a sharp portion of a substrate becomes round.
  • a cutting tool made of such a covering member is used under conditions in which the cutting tool is operated at a low processing feed or a small depth of cut, chipping of a thin film is likely to occur.
  • chipping occurs, the surface roughness of the work material becomes rough, and the machining accuracy deteriorates. Therefore, the tool cannot be used as a high-precision machining tool.
  • a tool having a rounded edge has a large cutting resistance and increases the surface temperature of the tool.
  • the work material is welded to the surface of the tool, the surface roughness of the tool is increased, and the surface roughness of the work material is increased.
  • the material constituting the thin film may adhere to the substrate as a lump of several microns, so that the film thickness becomes uneven and the surface roughness increases.
  • the surface roughness is large, the surface roughness of the work material becomes large, and the work material is easily welded to the surface of the tool.
  • Patent Documents 2 and 3 make specific proposals as to under what conditions a film is formed and in what field it can be used as a practical technique. Not.
  • Diamond has a drawback that it cannot be used for iron-based materials.
  • Diamond is suitable as a cutting tool material for hardness and thermal conductivity, but is composed of carbon nuclear.Since carbon atoms easily dissolve in the iron-based material, which is the main raw material of the mold, diamond is used. The tool wears so much that it cannot be used for cutting ferrous materials.
  • the present invention has been made in view of the above circumstances, and a main object of the present invention is to provide a covering member that can be used for a cutting tool in which a work material is not easily welded to the surface of the tool, and a method for manufacturing the same. And there.
  • Another object of the present invention is to provide a coating member capable of suppressing reaction with an iron-based material while using diamond as a base material and reducing cutting resistance, and a method of manufacturing the same. Means for solving the problem
  • the coated member of the present invention is a coated member in which a thin film is formed on a substrate surface.
  • the substrate is made of diamond, cemented carbide or cermet.
  • the thin film is composed of at least one selected from the group consisting of carbides, nitrides, carbonitrides, fluorine, and oxygen of Group 4a elements of the periodic table.
  • the thickness of the thin film is characterized by the number of atoms constituting the thin film being 1 to 100 atoms.
  • a raw material gas for a thin film is supplied into a vacuum chamber maintained at a predetermined degree of vacuum, and the raw material gas is irradiated with a laser to emit an atomic beam having no charge.
  • a group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of Group 4a elements of the periodic table is generated by irradiating the atomic beam onto a diamond, cemented carbide or cermet substrate.
  • the present inventors have obtained the knowledge that by forming a very thin thin film having a predetermined component force on the surface of a cemented carbide or cermet, welding to a work material can be suppressed and cutting resistance can be reduced. Thus, the coated member of the present invention was completed.
  • the coated member of the present invention is a coated member in which a thin film is formed on the surface of a hard metal or cermet as a base material.
  • the thin film is composed of at least one selected from the group consisting of carbides, nitrides, carbonitrides, fluorine, and oxygen of Group 4a elements of the periodic table.
  • the thickness of the thin film is 1 to 100 atoms in terms of the number of atoms constituting the thin film.
  • the base material is a cemented carbide or cermet.
  • a cemented carbide is usually composed of a hard phase composed of WC and the like, and a binder phase also composed of an iron group metal such as Co.
  • the cermet is composed of a hard phase having a strong property such as carbides, nitrides and WC of Ti and a binder phase formed of an iron group metal such as Co and Ni.
  • a thin film of 1 to 100 atoms is formed on these substrates. Since the thin film is formed under a high vacuum as described later, the thin film is free from foreign matter. Therefore, the surface state of the substrate appears on the thin film surface as it is.
  • the thin film is composed of at least one member selected from the group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of Group 4a elements of the periodic table. It is a force that becomes a thin film with excellent welding resistance. It can be confirmed by QCM described later that fluorine and oxygen can be coated on the cemented carbide or cermet. Fluorine is also present on the substrate surface, possibly as a fluorine compound bonded to fluorine atoms, fluorine molecules, and constituent materials of the base material.Oxygen is formed as an oxygen compound bonded to oxygen atoms, oxygen molecules, and the constituent materials of the base material. It is presumed that also exists on the substrate surface. Therefore, the fluorine or oxygen referred to in the present invention includes the substances presumed as described above.
  • this thin film is an extremely high-purity film.
  • various impurities are contained in a film obtained with a low degree of vacuum (high pressure) at the time of film formation.
  • the thin film of the coated member of the present invention is formed in an extremely high vacuum as described later, it has a very high purity and substantially no film defects. Can be obtained. More specifically, when the thin film is analyzed by XPS (X-ray Photo-electron Spectroscopy), it is preferable that 0, H, Ar, and the like are not detected from the thin film.
  • the thin film has a layer composed of oxygen, at least one of H and Ar is not practically detected from the oxygen layer, and (2) the thin film is formed of a substance other than oxygen.
  • a non-oxygen layer composed of the following, it is desirable that at least one of the non-oxygen layer forces 0, H, and Ar is not substantially detected.
  • the thin film is preferably composed of at least one selected from the group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of Ti. This is because a thin film having more excellent wear resistance is obtained.
  • the thin film be a carbide, nitride or carbonitride of Ti as a first layer on a cemented carbide or cermet and fluorine as an uppermost layer.
  • fluorine or a fluorine compound By coating fluorine or a fluorine compound on the carbide, nitride or carbonitride of Ti, welding resistance can be further improved. At the same time, the coefficient of friction of the thin film can be reduced.
  • the surface roughness of the thin film is preferably Rmax (maximum height: JIS B 0601 1982) of 0.2 m or more and 1 m or less.
  • Rmax maximum height: JIS B 0601 1982
  • a smooth cutting edge can be obtained, and surface properties excellent in wear resistance and welding resistance can be obtained.
  • the surface roughness of such a thin film is controlled by controlling the surface roughness of the base material before film formation to 0.2 ⁇ m or more and 1 ⁇ m or less by Rmax, and performing film formation by an atomic beam according to the method of the present invention described later. This can be achieved.
  • the sintered member of the present invention can be suitably used as a cutting tool.
  • a cutting tool for example, Neut, Endmill
  • the present inventors have obtained the knowledge that by forming a very thin thin film composed of a predetermined component on the diamond surface, it is possible to suppress the direct contact with the work material and reduce the cutting resistance and complete the present invention member. I came to.
  • the diamond member of the present invention is a diamond member having a thin film formed on a diamond surface.
  • This thin film is made of carbide, nitride, carbonitride, fluorine and A group power consisting of oxygen and oxygen.
  • the thin film is characterized in that the thickness of the thin film is 1 to 100 atoms.
  • the diamond used here either polycrystal or single crystal can be used.
  • Single crystal diamond can provide a smooth and sharp cutting edge with a grain boundary.
  • the thin film is composed of at least one force selected from the group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of Group 4a elements of the periodic table.
  • the thin film made of these materials suppresses the reaction between the diamond and the iron-based material, and becomes a thin film having excellent wear resistance and welding resistance.
  • fluorine and oxygen can be coated on the diamond.
  • Fluorine is also present on the substrate surface, possibly as a fluorine compound bonded to fluorine atoms, fluorine molecules, constituent materials of the base material, etc.
  • oxygen is an oxygen compound bonded to oxygen atoms, oxygen molecules, constituent materials of the base material, etc. Is presumed to be present on the substrate surface. Therefore, the fluorine or oxygen referred to in the present invention includes the substances presumed as described above.
  • this thin film be an extremely high-purity film.
  • various impurities are contained in a film obtained with a low degree of vacuum (high pressure) at the time of film formation.
  • the thin film of the diamond member of the present invention is formed in an extremely high vacuum as described later, the purity is extremely high, and film defects are substantially V. , Strength can be obtained.
  • the thin film when the thin film is analyzed by XPS (X-ray Photo-electron Spectroscopy), it is preferable that 0, H, Ar, and the like are not detected from the thin film. More specifically, (1) when the thin film has an oxygen layer composed of oxygen, at least one of H and Ar is not practically detected from the oxygen layer, and (2) the thin film is made of a substance other than oxygen. In the case of having a non-oxygen layer composed of the following, it is desirable that at least one of the non-oxygen layer forces 0, H, and Ar is not substantially detected.
  • the thin film be made of a carbide, nitride or carbonitride of Ti as the first layer on the diamond and fluorine or oxygen as the uppermost layer.
  • the carbide, nitride or carbonitride of Ti By coating the carbide, nitride or carbonitride of Ti with fluorine or oxygen, the welding resistance can be further improved. Wear. At the same time, the coefficient of friction of the thin film can be reduced.
  • the surface roughness of the thin film is preferably Rmax (maximum height: JIS B 0601 1982) of 10 nm or less.
  • Rmax maximum height: JIS B 0601 1982
  • the surface roughness of such a thin film is controlled, for example, by controlling the surface roughness of the diamond before film formation to 1 Onm or less at Rmax, and if the film is formed by an atomic beam described later, the surface roughness of the diamond is substantially reduced. This can be achieved by maintaining the surface roughness of the thin film as it is.
  • the diamond member of the present invention can be suitably used as a cutting tool.
  • a cutting tool can be used for cutting tools, end mills, drills, and the like.
  • the wear resistance and welding resistance of the tool can be improved, and the tool life can be extended.
  • it is suitable for cutting iron-based materials.
  • the cutting method is not particularly limited, but it is preferable to perform cutting by an elliptical vibration cutting method.
  • the elliptical vibration cutting method vibrations in the cutting direction and the chip outflow direction are superimposed on the cutting edge of a cutting tool by a piezoelectric element, and the cutting edge is moved in an elliptical vibration trajectory.
  • This is a technology that presses against the work material to perform cutting.
  • the elliptical vibration of the cutting blades allows the machining to be performed while lifting the chips, thereby reducing the cutting force and enabling high-precision machining.
  • the cutting edge does not always contact the work material, so that the reaction between the diamond and the work material can be further reduced, and the tool life can be extended.
  • the present inventors have conducted various studies on a technique for forming a film on a cemented carbide, cermet, or diamond surface, and have found that film formation using an atomic beam is suitable for forming an extremely thin film. Thus, the method of the present invention has been completed.
  • a raw material gas for a thin film is supplied into a vacuum chamber maintained at a predetermined degree of vacuum. Subsequently, the material gas is irradiated with a laser to generate an atomic beam having no charge. Then, the atomic beam is irradiated with cemented carbide, cermet or diamond. By irradiating the surface of the mond, a thin film having at least one force selected from the group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of the Group 4a element of the periodic table is formed.
  • diamond is a stable material except that it reacts with a metal that forms oxygen or a carbide at a high temperature at which corrosion resistance is high.
  • ion beam irradiation can be considered.
  • diamond is an insulator, it is charged and it becomes difficult to irradiate with an ion beam, and it is difficult to maintain uniformity of surface modification.
  • the film was formed by irradiation with a neutral atomic beam, the irradiated atoms were uniformly bonded to the diamond surface and an extremely thin thin film could be formed with high precision.
  • the source gas is appropriately selected according to the type of the thin film to be formed.
  • the introduction of the source gas into the vacuum vessel is performed intermittently.
  • the timing of gas introduction it is more preferable to match the timing of gas introduction with the timing of laser irradiation. Since the source gas is intermittently introduced, a decrease in the degree of vacuum can be suppressed, and a predetermined degree of vacuum can be easily obtained. Furthermore, by adjusting the laser irradiation timing to the introduction timing of the raw material gas, it is possible to more reliably generate an atomic beam. More specifically, it is preferable to supply the source gas in a pulse form from the nozzle, and irradiate the nozzle with a laser synchronized with the supply of the source gas to generate an atomic beam.
  • a laser is applied to the source gas.
  • This laser is preferably a pulsed laser.
  • a carbon dioxide laser can be used. More specifically, it is preferable to irradiate a pulsed carbon dioxide gas laser under conditions of about 5 to 7 J / pulse.
  • the atomic beam is applied to the base material with the same energy as the binding energy of the thin film constituent material. Irradiation is preferred. For example, assume that the energy of the atomic beam is 3 to 20 eV. By irradiating an atomic beam with such energy, the irradiated atoms can be deposited almost uniformly on the surface of the cemented carbide, cermet or diamond.
  • the atomic beam is generated by controlling the inside of the vacuum chamber to a predetermined vacuum state.
  • the preferred pressure of the vacuum chamber is about 1 X 10- 4 ⁇ 1 X 10- 8 Pa. More preferred pressure 1 X 10- 5 Pa, more preferably not more than 1 X 10- 6 Pa.
  • the space in the vacuum chamber where the source gas is atomized is maintained at a high degree of vacuum, and a long mean free path is maintained.
  • the high degree of vacuum not only maintains the surface cleanliness of the thin film and the substrate, but also reduces the amount of impurity elements in the thin film.
  • the temperature of the substrate is preferably from room temperature to 800 ° C! In this temperature range, the cemented carbide, cermet or diamond substrate is not damaged.
  • the thin film is formed by atoms that directly collide with the base material in the atomic beam generated as described above. At this time, specific neutral atoms constituting the atomic beam are selected and coated on the base material. Because this atom is neutral, it cannot accelerate electrically or bend its orbit. Therefore, the speed at which atoms collide with the substrate can be said to be the speed based on the energy of the atoms. Since the kinetic energies of the atomic beams in the same system are almost equal, light elements fly faster and heavy atoms fly at a slower speed.
  • atoms unnecessary for forming a thin film are also flying. Since the flight speed of an atom depends on the amount of an atom, it passes through the atom only when the atom necessary for forming a thin film arrives in synchronization with the pulse of the carbon dioxide laser, and does not pass through the rest of the time. By setting up the chives, atoms can be selected.
  • the sintered member of the present invention has a very thin thin film in which atoms are aligned. Therefore, the surface roughness of the thin film is equivalent to the surface roughness of the substrate of cemented carbide or cermet, and the surface roughness of the thin film can be reduced by reducing the surface roughness of the substrate. . Therefore, it is possible to effectively suppress the welding of the work material and obtain a cutting tool with extremely high processing accuracy.
  • the diamond member of the present invention can avoid or suppress direct contact between diamond and a work material by forming a very thin film of a specific type on the diamond surface. Therefore, when the member of the present invention is applied to a cutting tool, a ferrous material can be machined with diamond with high accuracy. Along with this, direct cutting of iron-based materials with diamond, which was impossible in the past, is now possible, and it can be expected that the cost and delivery time, especially for molds for optical parts, will be significantly improved.
  • the number of neutral atoms supplied to the substrate per unit time is smaller than that of the conventional method.
  • Neutral atoms arriving at the substrate accumulate and transfer electrons on the substrate, and the thin film grows slowly.
  • a uniform thin film having 1 to 100 atoms deposited therein is formed, and the thin film is not rounded at the tip of the base material. Therefore, it is possible to provide a cutting tool with less chipping at the tip of the cutting edge!
  • the method of the present invention using atomic beam irradiation has almost no various effects on the cutting edge of the substrate.
  • a good diamond member can be obtained by avoiding problems such as a decrease in the surface roughness of the diamond surface, generation of defects inside the diamond, and a decrease in the surface roughness of the thin film.
  • FIG. 1 shows a schematic cross-sectional view of the coated member of the present invention.
  • This covering member is composed of a substrate 1 and a thin film 2 coated on its surface.
  • the substrate is a cemented carbide, cermet or diamond.
  • WC-based cemented carbide, TiC-based cermet, and single crystal diamond are used as the base material.
  • the thin film 2 is formed of at least one of carbides, nitrides, carbonitrides, fluorine and oxygen of a Group 4a element in the periodic table, such as TiC, TiN, TiCN, or F or O.
  • This thin film 2 is a constituent element of the thin film 2 The number of children should be 1 to 100.
  • each of the circles constituting the thin film 2 represents a constituent atom, but in this figure, the size of the constituent atoms is exaggerated and is larger than the actual size.
  • a molecular beam valve 101, a nozzle 102, a laser entrance window 103, a mirror 104, a base material holder 105, a quartz oscillator are provided in a vacuum vessel 10 partitioned into a first area 10A and a third area 10C. It is equipped with a microbalance (QCM) 106 and a quadrupole mass spectrometer (QMS) 107. Each of the shift regions of the vacuum vessel 10 can be maintained at a predetermined vacuum by a turbo molecular pump (TMP). Further, in this apparatus, an X-ray analyzer 20 is provided in the vacuum vessel 10, and a transfer chamber 30 for transferring a sample between the vacuum vessel 10 and the X-ray analyzer 20 is also provided.
  • QCM microbalance
  • QMS quadrupole mass spectrometer
  • a molecular beam valve 101 for introducing a predetermined source gas is disposed on the end face of the vacuum vessel 10 in the first region 10A, and a nozzle 102 for irradiating an atomic beam to the inside of the vacuum vessel of the valve 101 is disposed. ing.
  • An entrance window 103 for the laser beam L is also formed on the end face where the molecular beam valve 101 is provided. The laser beam L applied to the source gas enters the vacuum vessel 10 through the entrance window 103.
  • the laser L incident on the vacuum vessel 10 is reflected by a mirror 104 (made of Au) similarly arranged in the first area 10 A and irradiated near the nozzle 102. Since a raw material gas supplied through the molecular beam valve 101 is introduced into the vicinity of the nozzle 102, the raw material gas is irradiated with the laser L, thereby generating an atomic beam having no charge. The generated atom beam is irradiated from the nozzle 102 to the second and third regions 10B and 10C.
  • the QCM 106 is arranged in the irradiation locus of the atomic beam in the first region 10A, and the irradiation amount (the number of atoms) per unit time and unit area of the atomic beam can be measured by the QCM 106.
  • a base material holder 105 for setting the sample S is provided in the second region 10B of the vacuum container.
  • the substrate holder 105 includes a heater, and can control the heating of the sample S set on the holder 105 to 800 ° C. at room temperature. Then, the generated atomic beam is applied to the sample S set in the substrate holder.
  • the energy of the atomic beam is displayed.
  • QMS107 for measuring energy is provided.
  • the energy of the atomic beam is measured by the QMS 107, and the energy of the laser is adjusted so that irradiation is performed at a predetermined energy.
  • the transfer chamber 30 is connected to the second area 10B.
  • the transfer chamber 30 is provided with a pair of transfer rods 301 arranged in an orthogonal direction so that the sample can be transferred between the vacuum vessel 10 and the X-ray analyzer 20.
  • the X-ray analysis unit 20 is also connected to the transfer chamber 30.
  • the X-ray analysis unit 20 has an X-ray source 201 and a DP-CMA (Double Path Cylindrical Mirror Analyzer) 202, and is configured to be able to analyze a sample by XPS (X-ray Photo-electron Spectroscopy). I have.
  • XPS X-ray Photo-electron Spectroscopy
  • WC-Positive tip made of cemented carbide of 6 mass% Co and having model number TCGW110300 was prepared.
  • the surface and rake face of this sample were further polished to a surface roughness of 0.2 ⁇ m at Rmax to obtain a substrate.
  • the prepared substrate was attached to a substrate holder in an apparatus having three atomic beam generation forces S3.
  • the raw material gas to be used is appropriately selected according to the type of the thin film to be formed.
  • the source gas of this embodiment is TiCl
  • a chopper was arranged in front of the sample in accordance with the number of beams, so that only a specific atomic beam reached the substrate.
  • the bigleaf was produced by providing a notch or the like at the outer periphery of the rotating disk. If the thin film is composed of two or more elements, arrange the same number of chambers in front of the sample as the number of beams, and adjust the rotation number of the chamber so that only the required atoms reach the sample at the same time. I made it. Because the element that reaches the sample is in the atomic state, the two elements combine on the substrate to form a compound.
  • Sample Nos. 1-5 used Beams 1 and 2
  • the material is further coated with fluorine as a material.
  • Sample Nos. 1-6 are samples coated with fluorine only. When SF is used as a raw material, fluorine or the like can be used without using
  • a thin film is formed.
  • the covering member produced in this manner was taken out of a vacuum vessel, and its performance was evaluated.
  • the film thickness was calculated by the following method based on various data during and after the preparation of the thin film.
  • the thin film material was analyzed by XRD (X-ray diffraction) and XPS at the X-ray analysis unit. As a result of analysis by XPS, 0, H, and Ar were not observed in Sample Nos. Ll to l-8.
  • the film thickness was checked using QCM.
  • QCM is a device that measures the resonance frequency. When a substance is adsorbed on the surface of the crystal unit, the weight of the crystal unit increases and the resonance frequency changes.
  • QCM is a means to calculate the weight increase of a crystal unit by utilizing the fact that the change in the resonance frequency of the crystal unit and the change in the weight are in a proportional relationship.
  • the increased weight of the crystal oscillator obtained by QCM and the material strength of the thin film specified by XRD are known, and the number of atoms in the thickness direction can be obtained by calculation.
  • Table 1 the sample numbers 1-4 and 1-5 have the film thicknesses of TiN and TiC. This shows that each of the atoms is 50 atoms, and that there is an additional 10 atoms of fluorine coated thereon.
  • the cutting conditions were as follows: Ato Si alloy was used as a work material, and cutting was performed for 10 minutes using an ultra-precision lathe under cutting conditions of a cutting speed of 100 m / min, a depth of cut of 0.1 mm and a feed of 0.3 mm.
  • the performance evaluation was performed by examining the situation where the work material welded to the tool. As a result, Sample Nos. 1 to 3 had slight traces of welded work material. Sample numbers 1-4, 1-5 and 1-6 proved that the uppermost layer was fluorine and thus had high welding resistance because welding was not performed. In sample Nos. 7 and 1-8, the cutting edge with the thicker thin film was rounded and the work material was welded.
  • a substance shown in Table 2 was attached to the surface of single-crystal diamond using a device with three atomic beam generators to form a thin film.
  • the sample used was a single-crystal diamond processed to have a radius of curvature of 10 nm or less at the edge and a surface roughness Rmax force of nm or less.
  • the deposition conditions were as follows: 1 x 10 " 9 torr (approximately 133 x 10" 9 Pa) in the vacuum vessel, and then various source gases were intermittently introduced from the molecular beam valve, and the wavelength was adjusted in accordance with the gas introduction timing. Irradiate a 10.6 ⁇ m carbon dioxide laser with 7JZ pulses.
  • the introduction of the raw material gas was performed by opening the molecular beam valve made of piezoelectric ceramic for about 100 microseconds, closing it for 1-2 seconds, and repeating this opening and closing. By doing so, the raw material gas introduced into the vacuum vessel is immediately converted into plasma, and then it is possible to efficiently generate an atomic beam that is electrically neutralized and has no charge, thereby suppressing a reduction in the degree of vacuum.
  • the surface of the single crystal diamond was irradiated with an atomic beam generated by irradiating the source gas with a laser to form a thin film.
  • a chopper was arranged in front of the sample in accordance with the number of beams, so that only a specific atomic beam reached the base material.
  • the chopper was manufactured by providing a notch or the like at the outer periphery of the rotating disk. If the thin film is composed of two or more elements, the attached atoms are identified by QMS, The atoms were allowed to reach the sample simultaneously. Since the elements that reach the sample are in the atomic state, the two elements combine on the substrate to form a compound.
  • the energy of the atomic beam was measured by the time-flight method, it was 5 to 10 eV.
  • Sample numbers 2-4 and 2-5 in Table 2 were obtained by first coating TiN and TiC and then further coating fluorine using CF of beam 3 as a raw material. Sample numbers 2-6 and 2-7 are
  • the chives may not be used.
  • a SUS440C ball having a radius of 5 mm was pressed against the surface of the sample on which the thin film was formed at 5 N, a friction test was performed at a speed of 2 mm / sec, and a friction coefficient was measured. Furthermore, a diamond tool with a nose radius of 0.8 mm was fabricated using the obtained sample, and ultra-precision cutting of alloy tool steel SKT4 with a Vickers hardness of 450 was performed at a cutting speed of 50 m / min, a cutting depth of 50 m, and a feed of 10 m. Cutting was performed for 5 minutes using a lathe.
  • a diamond tool with a nose radius of 0.8 mm was prepared using a sample in which a thin film was formed on the surface of a single crystal diamond, and SUS420J2 with a Rockwell hardness of HRC40 was cut at a cutting speed of 500 mm / min, a depth of cut of 5 ⁇ m, and a pick feed of 5 ⁇ m.
  • Cutting was performed using an ultra-precision lathe under dry conditions of 2 m and a cutting distance of 2 m. More specifically, a cutting test was performed by cutting 2 mm in length in the cutting direction and repeating this cutting 1000 times sequentially in the feed direction orthogonal to the cutting direction.
  • sample No. 2-7 adherered substance F
  • sample No. 2-9 was prepared in which the adhering substance of the thin film was 0 (oxygen), and each sample was tested. Was served.
  • the source gases of sample No. 2-9 were beam 1: oxygen, beam 2: none, and beam 3: none.
  • the thin film of sample No. 2-9 was analyzed by XPS, and the maximum flank wear width of each sample after cutting was determined. As a result of XPS analysis, neither H nor Ar was detected in the thin film of Sample No. 2-9.
  • a single crystal diamond without a thin film was also subjected to a cutting test.
  • the present invention can be suitably used for a cutting tool.
  • tools with little welding can be provided, they can be used as cutting tools in the field of precision machining with small cutting and feed. Further, it can be suitably used for a steel cutting tool.
  • FIG. 1 is a schematic sectional view of a coated member of the present invention.
  • FIG. 2 is a schematic view of an atomic beam generator used in the method for producing a coated member of the present invention.
  • FIG. 3 is a graph showing the maximum flank wear width of each sample after a cutting test.
  • FIG. 4 Photomicrographs of the cutting edge of each sample after the cutting test are shown, (A) without a thin film, (B) with a thin film formed with oxygen, and (C) with a thin film formed with fluorine. Things.

Abstract

A coated member having a substrate (1) and a thin film (2) formed on the surface of the substrate, wherein the substrate (1) comprises cermet, cemented carbides or diamond, and the thin film (2) comprises at least one of a carbide, a nitride and a carbonitride of an element of 4a Group element, fluorine and oxygen, and wherein the thin film (2) has a thickness of 1 to 100 atoms in terms of the number of the atoms constituting the film; and a method for manufacturing the above coated member. The formation of the above thin film (2) allows the effective inhibition of the deposition of a material to be cut on the surface of a tool, and thus the above member can provide a cutting tool exhibiting a markedly enhanced working accuracy.

Description

明 細 書  Specification
被覆部材とその製造方法  Coating member and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は超硬合金、ダイヤモンドやサーメット等の基材に薄膜を形成した被覆部材 とその製造方法に関するものである。特に、極めて薄い薄膜を有する被覆部材に関 する。  The present invention relates to a coated member in which a thin film is formed on a substrate such as a cemented carbide, diamond, or cermet, and a method for producing the same. In particular, it relates to a covering member having an extremely thin thin film.
背景技術  Background art
[0002] 近年、光通信用部品や小型デジタルカメラなどの光学製品分野において、より小型  [0002] In recent years, in the field of optical products such as optical communication components and small digital cameras, smaller
'高精度のレンズが求められている。通常、このようなレンズの製作には金型が利用さ れ、金型材には強度ゃ耐摩耗性の面で高硬度な鉄系材料が用いられることが多い。 そして、このような鉄系材料で金型を作製するには、高精度の鏡面加工が必要とされ る。  'High precision lenses are required. Usually, a mold is used for manufacturing such a lens, and an iron-based material having high strength and high abrasion resistance is often used for the mold material. Then, in order to manufacture a mold using such an iron-based material, high-precision mirror finishing is required.
[0003] このような鉄系材料の高精度の加工には、超硬合金やサーメットを基材とする工具 が利用されている。特に、加工の一層の高精度化と工具の高寿命化の要望に対応 するため、 CVD法、 PVD法などを利用し、切削工具の基材に種々の硬質被覆を形成 する技術が開発されている。  [0003] For high-precision processing of such an iron-based material, a tool using a cemented carbide or a cermet as a base material is used. In particular, in order to respond to the demand for higher precision machining and longer tool life, technologies for forming various hard coatings on the base material of cutting tools using CVD and PVD methods have been developed. I have.
[0004] 特許文献 1は、 CVD法や PVD法で被覆された被覆切削工具の膜厚を制御し、長寿 命の高精度加工用切削工具を提供している。すなわち、この文献には、すくい面の 膜厚を 0.5〜2.0 /ζ πιとし、逃げ面の膜厚を1.0〜4.0 iu mとすることにょり、薄膜のチッピ ングを抑制し、工具寿命を大幅に向上することができることが記載されている。 [0004] Patent Document 1 provides a cutting tool for long-life high-precision machining by controlling the film thickness of a coated cutting tool coated by a CVD method or a PVD method. That is, in this document, the thickness of the rake face and 0.5~2.0 / ζ πι, Nyori that the thickness of the flank and 1.0 to 4.0 i um, suppressing Chippi ring of thin, substantially tool life Is described.
[0005] その他、最近注目されて ヽる新し ヽ技術が、特許文献 2、特許文献 3に開示されて いる。これらの文献はいずれも、レーザビームにより電荷を持たない原子を発生させ、 これを利用する技術を開示して ヽる。  [0005] Other new technologies that have recently attracted attention are disclosed in Patent Documents 2 and 3. Each of these documents discloses a technique of generating an atom having no charge by a laser beam and utilizing the atom.
[0006] 特許文献 2は、高エネルギー原子源に関する文献で、凸レンズを用いて炭酸ガスレ 一ザを原料導入口に集光させる方法を開示して 、る。  [0006] Patent Document 2 relates to a high-energy atomic source, and discloses a method of concentrating a carbon dioxide gas laser on a raw material inlet using a convex lens.
[0007] 特許文献 3は、その技術をさらに改良して半導体製造装置に応用したものである。  [0007] Patent Document 3 describes a further improvement of the technique applied to a semiconductor manufacturing apparatus.
半導体のクリーニングやエッチング工程では危険なフッ素ガスの使用が増加してきて いる。この特許文献 3は、安全な SFガスカゝら原子フッ素を形成して安全にフッ素ガス Use of dangerous fluorine gas is increasing in semiconductor cleaning and etching processes. Yes. This Patent Document 3 discloses that a safe SF gas is formed by forming atomic fluorine.
6  6
を使用する技術を開示している。  Discloses a technique using.
[0008] 一方、非鉄系材料における鏡面加工などの高精度切削加工には、単結晶ダイヤモ ンドを刃先に用いた工具が利用されている(例えば、特許文献 4)。 [0008] On the other hand, for high-precision cutting such as mirror finishing of non-ferrous materials, a tool using a single crystal diamond as a cutting edge is used (for example, Patent Document 4).
[0009] 特許文献 1:特開 2001-347403号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2001-347403
特許文献 2 :米国特許第 4,894,511号公報  Patent Document 2: U.S. Pat.No. 4,894,511
特許文献 3:特開 2004-79704号公報  Patent Document 3: JP 2004-79704 A
特許文献 4:特開平 10-43903号公報  Patent Document 4: JP-A-10-43903
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] しかし、従来の CVD法や PVD法により形成された薄膜は尖った部分で優先的に成 長するので、基材の尖った部分に成膜した膜表面は丸くなる。このような被覆部材か らなる切削工具は、切削工具の加工送りや切り込みの小さい条件で使用すると、薄 膜のチッビングが起こりやすい。一且チッビングが発生すると、被削材の面粗さが粗く なり、加工精度が悪化するので、高精度加工用工具としては使用できな力つた。  [0010] However, a thin film formed by a conventional CVD method or PVD method grows preferentially at a sharp portion, so that the film surface formed on a sharp portion of a substrate becomes round. When a cutting tool made of such a covering member is used under conditions in which the cutting tool is operated at a low processing feed or a small depth of cut, chipping of a thin film is likely to occur. When chipping occurs, the surface roughness of the work material becomes rough, and the machining accuracy deteriorates. Therefore, the tool cannot be used as a high-precision machining tool.
[0011] また、刃先が丸い工具は、切削抵抗が大きく工具の表面温度が上昇する。その結 果、被削材が工具の表面に溶着し、工具の表面粗さが大きくなり、被削材の表面粗さ が大きくなるという課題もあった。特に、 PVD法により形成された薄膜では、薄膜を構 成する物質が数ミクロンの塊として基材に付着することがあるので、膜厚が不均一と なり、その表面粗さが大きくなる。このような部材を切削工具として用いると、表面粗さ が大きいので、被削材の表面粗さが大きくなり、かつ被削材が工具の表面に溶着し 易い。  [0011] In addition, a tool having a rounded edge has a large cutting resistance and increases the surface temperature of the tool. As a result, there is a problem that the work material is welded to the surface of the tool, the surface roughness of the tool is increased, and the surface roughness of the work material is increased. In particular, in the case of a thin film formed by the PVD method, the material constituting the thin film may adhere to the substrate as a lump of several microns, so that the film thickness becomes uneven and the surface roughness increases. When such a member is used as a cutting tool, since the surface roughness is large, the surface roughness of the work material becomes large, and the work material is easily welded to the surface of the tool.
[0012] さらに、特許文献 2や特許文献 3に記載の技術は、どのような条件の成膜を行えば 、どのような分野で実用的な技術として利用可能かに関して、具体的な提案を行って いない。  [0012] Furthermore, the techniques described in Patent Documents 2 and 3 make specific proposals as to under what conditions a film is formed and in what field it can be used as a practical technique. Not.
[0013] 一方、ダイヤモンドは鉄系材料の切肖 ijに利用できないという欠点があった。ダイヤ モンドは硬度や熱伝導率の点力 切削工具材料として好適であるが炭素原子力 構 成されており、金型の主原料である鉄系材料に炭素原子が容易に固溶するためェ 具の摩耗が大きくなり、鉄系材料の切削に使用することができない。 [0013] On the other hand, diamond has a drawback that it cannot be used for iron-based materials. Diamond is suitable as a cutting tool material for hardness and thermal conductivity, but is composed of carbon nuclear.Since carbon atoms easily dissolve in the iron-based material, which is the main raw material of the mold, diamond is used. The tool wears so much that it cannot be used for cutting ferrous materials.
[0014] そのため、従来は超硬合金工具により鉄系金型素材の粗切削加工を行った後、こ の 卩ェ表面に Ni-Pなどのめっきを施し、このめつき面 ¾ϋ¾利な刃先の単結晶ダイ ャモンド工具で仕上げるか、前記粗切削加工後に研磨加工を行って仕上げている。 その結果、金型の作製にはコスト、納期共に多くかかり、直接鉄系材料を高精度に加 ェする技術が強く要望されていた。  [0014] For this reason, conventionally, after rough cutting of an iron-based mold material using a cemented carbide tool, the surface of the die is plated with Ni-P or the like, and the surface of the metal die having a sharp edge is formed. It is finished by a single crystal diamond tool or by polishing after the rough cutting. As a result, the cost and delivery time of the production of molds are high, and there has been a strong demand for a technique for directly adding iron-based materials with high precision.
[0015] 本発明は、上記の事情に鑑みてなされたもので、その主目的は、被削材が工具の 表面に溶着しにくい切削工具に利用できる被覆部材とその製造方法とを提供するこ とにある。  The present invention has been made in view of the above circumstances, and a main object of the present invention is to provide a covering member that can be used for a cutting tool in which a work material is not easily welded to the surface of the tool, and a method for manufacturing the same. And there.
[0016] また、本発明の別の目的は、ダイヤモンドを基材としながら、鉄系材料との反応を抑 制し、切削抵抗を低減できる被覆部材とその製造方法とを提供することにある。 課題を解決するための手段  [0016] Another object of the present invention is to provide a coating member capable of suppressing reaction with an iron-based material while using diamond as a base material and reducing cutting resistance, and a method of manufacturing the same. Means for solving the problem
[0017] 本発明被覆部材は、基材表面に薄膜が形成された被覆部材である。基材は、ダイ ャモンド、超硬合金またはサーメットからなる。薄膜は、周期律表 4a族元素の炭化物 、窒化物、炭窒化物、フッ素および酸素よりなる群力 選択される少なくとも一種から 構成される。その薄膜の厚さは薄膜構成原子の数で 1〜100原子であることを特徴と する。 [0017] The coated member of the present invention is a coated member in which a thin film is formed on a substrate surface. The substrate is made of diamond, cemented carbide or cermet. The thin film is composed of at least one selected from the group consisting of carbides, nitrides, carbonitrides, fluorine, and oxygen of Group 4a elements of the periodic table. The thickness of the thin film is characterized by the number of atoms constituting the thin film being 1 to 100 atoms.
[0018] 上記の特定組成力 なる非常に薄い薄膜を形成することで、被削材が工具の表面 に溶着しにくい工具に好適な被覆部材とすることができる。  [0018] By forming a very thin thin film having the above-described specific composition power, a covering member suitable for a tool in which a work material is unlikely to be welded to the surface of the tool can be obtained.
[0019] また、本発明被覆部材の製造方法は、所定の真空度に保持された真空槽内に薄 膜の原料ガスを供給し、この原料ガスにレーザを照射して電荷を持たない原子ビー ムを生成して、その原子ビームをダイヤモンド、超硬合金またはサーメットの基材上に 照射することで周期律表 4a族元素の炭化物、窒化物、炭窒化物、フッ素および酸素 よりなる群カゝら選択される少なくとも一種カゝら構成される薄膜を形成することを特徴と する。  Further, according to the method for producing a coated member of the present invention, a raw material gas for a thin film is supplied into a vacuum chamber maintained at a predetermined degree of vacuum, and the raw material gas is irradiated with a laser to emit an atomic beam having no charge. A group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of Group 4a elements of the periodic table is generated by irradiating the atomic beam onto a diamond, cemented carbide or cermet substrate. A thin film composed of at least one selected from the group consisting of:
[0020] 基材の表面に電荷を持たない原子ビームを照射して薄膜を極めて薄く形成するこ とにより、被削材が工具の表面に溶着しにくい工具を得ることができる。  [0020] By irradiating an atomic beam having no charge to the surface of the base material to form an extremely thin thin film, it is possible to obtain a tool in which the work material does not easily adhere to the surface of the tool.
[0021] 以下、超硬合金またはサーメットを基材とする焼結部材の場合と、ダイヤモンドを基 材とするダイヤモンド部材の場合とに分けて本発明を説明する。 Hereinafter, the case of a sintered member having a cemented carbide or cermet as a base material and the case of The present invention will be described separately for the case of a diamond member as a material.
[0022] <焼結部材>  [0022] <Sintered member>
本発明者らは、超硬合金またはサーメットの表面に所定の成分力 なる薄膜を極め て薄く形成することにより、被削材との溶着を抑制して切削抵抗が低減できるとの知 見を得て本発明被覆部材を完成するに至った。  The present inventors have obtained the knowledge that by forming a very thin thin film having a predetermined component force on the surface of a cemented carbide or cermet, welding to a work material can be suppressed and cutting resistance can be reduced. Thus, the coated member of the present invention was completed.
[0023] 本発明被覆部材は、超硬合金またはサーメットを基材とし、その表面に薄膜が形成 された被覆部材である。薄膜は、周期律表 4a族元素の炭化物、窒化物、炭窒化物、 フッ素および酸素よりなる群力 選択される少なくとも一種力 構成される。その薄膜 の厚さは薄膜構成原子の数で 1〜100原子である。  [0023] The coated member of the present invention is a coated member in which a thin film is formed on the surface of a hard metal or cermet as a base material. The thin film is composed of at least one selected from the group consisting of carbides, nitrides, carbonitrides, fluorine, and oxygen of Group 4a elements of the periodic table. The thickness of the thin film is 1 to 100 atoms in terms of the number of atoms constituting the thin film.
[0024] 基材は、超硬合金またはサーメットとする。超硬合金は、通常、 WCなどからなる硬 質相と、 Coなどの鉄族金属力もなる結合相とで構成される。また、サーメットは、例え ば Tiの炭化物、窒化物および WCなど力もなる硬質相と Co、 Niなどの鉄族金属からな る結合相とで構成される。これらの基材の上に、 1〜100原子の数の薄い薄膜を形成 する。薄膜は、後述するように、高真空下で形成されるので、異物のない薄膜となる。 従って、基材の表面状態がそのまま薄膜表面に現れる。  [0024] The base material is a cemented carbide or cermet. A cemented carbide is usually composed of a hard phase composed of WC and the like, and a binder phase also composed of an iron group metal such as Co. In addition, the cermet is composed of a hard phase having a strong property such as carbides, nitrides and WC of Ti and a binder phase formed of an iron group metal such as Co and Ni. A thin film of 1 to 100 atoms is formed on these substrates. Since the thin film is formed under a high vacuum as described later, the thin film is free from foreign matter. Therefore, the surface state of the substrate appears on the thin film surface as it is.
[0025] 薄膜は、周期律表 4a族元素の炭化物、窒化物、炭窒化物、フッ素および酸素よりな る群カゝら選択される少なくとも一種カゝら構成されている。耐溶着性に優れた薄膜とな る力らである。フッ素や酸素が超硬合金またはサーメットの上に被覆できることは後述 する QCMにより確認できる。フッ素は、おそらくフッ素原子、フッ素分子、基材の構成 材料などと結合したフッ素化合物としても基材表面に存在し、酸素は酸素原子、酸素 分子、基材の構成材料などと結合した酸素化合物としても基材表面に存在して ヽると 推定される。従って、本発明でいうフッ素または酸素には、上記の推定される物質を 含む。  [0025] The thin film is composed of at least one member selected from the group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of Group 4a elements of the periodic table. It is a force that becomes a thin film with excellent welding resistance. It can be confirmed by QCM described later that fluorine and oxygen can be coated on the cemented carbide or cermet. Fluorine is also present on the substrate surface, possibly as a fluorine compound bonded to fluorine atoms, fluorine molecules, and constituent materials of the base material.Oxygen is formed as an oxygen compound bonded to oxygen atoms, oxygen molecules, and the constituent materials of the base material. It is presumed that also exists on the substrate surface. Therefore, the fluorine or oxygen referred to in the present invention includes the substances presumed as described above.
[0026] この薄膜は極めて高純度の膜とすることが好まし 、。例えば、従来の CVD法ある 、 は PVD法による成膜では、成膜時の真空度が低く(圧力が高く)得られる膜に種々の 不純物が含有される。これに対し、本発明被覆部材の薄膜は、後述するように極めて 高真空において成膜されるため、非常に純度が高ぐ膜欠陥が実質的にないため、 薄 、にも関わらず高 、強度を得ることができる。 [0027] より具体的には、薄膜を XPS (X- ray Photo-electron Spectroscopy)で分析した場 合に、薄膜から 0、 H、 Arなどが検出されないことが好ましい。より特定的には、(1)薄 膜が酸素で構成される層を有する場合、その酸素層から H、 Arの少なくとも一種が実 質的に検出されないこと、(2)薄膜が酸素以外の物質で構成される非酸素層を有する 場合、非酸素層力 0、 H、 Arの少なくとも一種が実質的に検出されないことが望まし い。 [0026] It is preferable that this thin film is an extremely high-purity film. For example, in the conventional CVD method or the film formation by the PVD method, various impurities are contained in a film obtained with a low degree of vacuum (high pressure) at the time of film formation. On the other hand, since the thin film of the coated member of the present invention is formed in an extremely high vacuum as described later, it has a very high purity and substantially no film defects. Can be obtained. More specifically, when the thin film is analyzed by XPS (X-ray Photo-electron Spectroscopy), it is preferable that 0, H, Ar, and the like are not detected from the thin film. More specifically, (1) when the thin film has a layer composed of oxygen, at least one of H and Ar is not practically detected from the oxygen layer, and (2) the thin film is formed of a substance other than oxygen. In the case of having a non-oxygen layer composed of the following, it is desirable that at least one of the non-oxygen layer forces 0, H, and Ar is not substantially detected.
[0028] 薄膜は、 Tiの炭化物、窒化物、炭窒化物、フッ素および酸素よりなる群力 選択さ れる少なくとも一種カゝら構成されて ヽることが好ま ヽ。一層耐摩耗性に優れた薄膜 となるからである。  [0028] The thin film is preferably composed of at least one selected from the group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of Ti. This is because a thin film having more excellent wear resistance is obtained.
[0029] さらに、薄膜は、 Tiの炭化物、窒化物または炭窒化物を超硬合金またはサーメット 上の第一層とし、フッ素を最上層とすることがさらに好ましい。 Tiの炭化物、窒化物ま たは炭窒化物の上にフッ素またはフッ素化合物を被覆することで、さらに耐溶着性を 高めることができる。同時に薄膜の摩擦係数を低下させることもできる。  [0029] Furthermore, it is more preferable that the thin film be a carbide, nitride or carbonitride of Ti as a first layer on a cemented carbide or cermet and fluorine as an uppermost layer. By coating fluorine or a fluorine compound on the carbide, nitride or carbonitride of Ti, welding resistance can be further improved. At the same time, the coefficient of friction of the thin film can be reduced.
[0030] 薄膜の表面粗さは Rmax (最大高さ: JIS B 0601 1982)で 0.2 m以上 1 m以下で あることが好ましい。例えばこの被覆部材を切削工具などに利用するときは、滑らか な刃先を得ることができ、耐摩耗性や耐溶着性に優れた表面性状を得ることができる 。このような薄膜の表面粗さは、成膜前の基材の表面粗さを Rmaxで 0.2 μ m以上 1 μ m 以下に制御しておき、後述する本発明方法の原子ビームによる成膜を行なうことで実 現できる。  [0030] The surface roughness of the thin film is preferably Rmax (maximum height: JIS B 0601 1982) of 0.2 m or more and 1 m or less. For example, when this covering member is used for a cutting tool or the like, a smooth cutting edge can be obtained, and surface properties excellent in wear resistance and welding resistance can be obtained. The surface roughness of such a thin film is controlled by controlling the surface roughness of the base material before film formation to 0.2 μm or more and 1 μm or less by Rmax, and performing film formation by an atomic beam according to the method of the present invention described later. This can be achieved.
[0031] 本発明焼結部材は、切削工具として好適に利用できる。例えば、ノイト、エンドミル [0031] The sintered member of the present invention can be suitably used as a cutting tool. For example, Neut, Endmill
、ドリルなどに利用することができる。このような切削工具に用いることで、工具の耐摩 耗性、耐溶着性を改善し、工具寿命を延ばすことができる。 , Drills and the like. By using such a cutting tool, the wear resistance and welding resistance of the tool can be improved, and the tool life can be extended.
[0032] <ダイヤモンド部材> [0032] <Diamond member>
本発明者らは、ダイヤモンド表面に所定の成分からなる薄膜を極めて薄く形成する ことにより、被削材との直接接触を抑制して切削抵抗が低減できるとの知見を得て本 発明部材を完成するに至った。  The present inventors have obtained the knowledge that by forming a very thin thin film composed of a predetermined component on the diamond surface, it is possible to suppress the direct contact with the work material and reduce the cutting resistance and complete the present invention member. I came to.
[0033] 本発明ダイヤモンド部材は、ダイヤモンド表面に薄膜が形成されたダイヤモンド部 材である。この薄膜は、周期律表 4a族元素の炭化物、窒化物、炭窒化物、フッ素およ び酸素よりなる群力 選択される少なくとも一種で構成する。そして、その薄膜の厚さ を薄膜構成原子の数で 1〜100原子とすることを特徴とする。 [0033] The diamond member of the present invention is a diamond member having a thin film formed on a diamond surface. This thin film is made of carbide, nitride, carbonitride, fluorine and A group power consisting of oxygen and oxygen. The thin film is characterized in that the thickness of the thin film is 1 to 100 atoms.
[0034] ここで用いるダイヤモンドは、多結晶、単結晶のいずれも用いることができる。特に、 単結晶体のダイヤモンドを利用することが好適である。単結晶体のダイヤモンドは結 晶粒界がなぐ滑らかで鋭利な刃先を得ることができる。  [0034] As the diamond used here, either polycrystal or single crystal can be used. In particular, it is preferable to use a single crystal diamond. Single crystal diamond can provide a smooth and sharp cutting edge with a grain boundary.
[0035] 薄膜は、周期律表 4a族元素の炭化物、窒化物、炭窒化物、フッ素および酸素よりな る群力 選択される少なくとも一種力 構成されている。これらの材料力 なる薄膜は 、また、基材をダイヤモンドとする場合、ダイヤモンドと鉄系材料との反応を抑制し、 耐摩耗性'耐溶着性に優れた薄膜となるからである。  The thin film is composed of at least one force selected from the group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of Group 4a elements of the periodic table. When a diamond is used as the base material, the thin film made of these materials suppresses the reaction between the diamond and the iron-based material, and becomes a thin film having excellent wear resistance and welding resistance.
[0036] フッ素や酸素がダイヤモンドの上に被覆できることは後述する QCMにより確認でき る。フッ素は、おそらくフッ素原子、フッ素分子、基材の構成材料などと結合したフッ 素化合物としても基材表面に存在し、酸素は酸素原子、酸素分子、基材の構成材料 などと結合した酸素化合物としても基材表面に存在していると推定される。従って、本 発明でいうフッ素または酸素には、上記の推定される物質を含む。  [0036] It can be confirmed by QCM described later that fluorine and oxygen can be coated on the diamond. Fluorine is also present on the substrate surface, possibly as a fluorine compound bonded to fluorine atoms, fluorine molecules, constituent materials of the base material, etc., and oxygen is an oxygen compound bonded to oxygen atoms, oxygen molecules, constituent materials of the base material, etc. Is presumed to be present on the substrate surface. Therefore, the fluorine or oxygen referred to in the present invention includes the substances presumed as described above.
[0037] この薄膜は極めて高純度の膜とすることが好ま 、。例えば、従来の CVD法ある 、 は PVD法による成膜では、成膜時の真空度が低く(圧力が高く)得られる膜に種々の 不純物が含有される。これに対し、本発明ダイヤモンド部材の薄膜は、後述するよう に極めて高真空において成膜されるため、非常に純度が高ぐ膜欠陥が実質的にな V、ため、薄 、にも関わらず高 、強度を得ることができる。  [0037] It is preferable that this thin film be an extremely high-purity film. For example, in the conventional CVD method or the film formation by the PVD method, various impurities are contained in a film obtained with a low degree of vacuum (high pressure) at the time of film formation. On the other hand, since the thin film of the diamond member of the present invention is formed in an extremely high vacuum as described later, the purity is extremely high, and film defects are substantially V. , Strength can be obtained.
[0038] より具体的には、薄膜を XPS (X- ray Photo-electron Spectroscopy)で分析した場 合に、薄膜から 0、 H、 Arなどが検出されないことが好ましい。より特定的には、(1)薄 膜が酸素で構成される酸素層を有する場合、酸素層から H、 Arの少なくとも一種が実 質的に検出されないこと、(2)薄膜が酸素以外の物質で構成される非酸素層を有する 場合、非酸素層力 0、 H、 Arの少なくとも一種が実質的に検出されないことが望まし い。  [0038] More specifically, when the thin film is analyzed by XPS (X-ray Photo-electron Spectroscopy), it is preferable that 0, H, Ar, and the like are not detected from the thin film. More specifically, (1) when the thin film has an oxygen layer composed of oxygen, at least one of H and Ar is not practically detected from the oxygen layer, and (2) the thin film is made of a substance other than oxygen. In the case of having a non-oxygen layer composed of the following, it is desirable that at least one of the non-oxygen layer forces 0, H, and Ar is not substantially detected.
[0039] また、薄膜は、 Tiの炭化物、窒化物または炭窒化物をダイヤモンド上の第一層とし、 フッ素または酸素を最上層とすることがさらに好ましい。 Tiの炭化物、窒化物または炭 窒化物の上にフッ素または酸素を被覆することで、さらに耐溶着性を高めることがで きる。同時に薄膜の摩擦係数を低下させることもできる。 [0039] Further, it is more preferable that the thin film be made of a carbide, nitride or carbonitride of Ti as the first layer on the diamond and fluorine or oxygen as the uppermost layer. By coating the carbide, nitride or carbonitride of Ti with fluorine or oxygen, the welding resistance can be further improved. Wear. At the same time, the coefficient of friction of the thin film can be reduced.
[0040] 薄膜の表面粗さは Rmax (最大高さ: JIS B 0601 1982)で 10nm以下であることが好 ましい。薄膜の表面粗さを、この規定値以下とすることで、滑らかな刃先を得ることが でき、耐摩耗性や耐溶着性に優れた表面性状を得ることができる。このような薄膜の 表面粗さは、例えば成膜前のダイヤモンドの表面粗さを Rmaxで 1 Onm以下に制御して おき、後述する原子ビームによる成膜を行なえば、ダイヤモンドの表面粗さがほぼそ のまま薄膜の表面粗さとなることで実現できる。  [0040] The surface roughness of the thin film is preferably Rmax (maximum height: JIS B 0601 1982) of 10 nm or less. By setting the surface roughness of the thin film to the specified value or less, a smooth cutting edge can be obtained, and a surface property excellent in wear resistance and welding resistance can be obtained. The surface roughness of such a thin film is controlled, for example, by controlling the surface roughness of the diamond before film formation to 1 Onm or less at Rmax, and if the film is formed by an atomic beam described later, the surface roughness of the diamond is substantially reduced. This can be achieved by maintaining the surface roughness of the thin film as it is.
[0041] 本発明ダイヤモンド部材は、切削工具として好適に利用できる。例えば、バイト、ェ ンドミル、ドリルなどに利用することができる。このような切削工具に用いることで、工具 の耐摩耗性、耐溶着性を改善し、工具寿命を延ばすことができる。とりわけ、鉄系材 料の切削に好適である。上述した薄膜をダイヤモンド表面に形成することで、ダイヤ モンドと鉄系材料との直接接触を抑制し、鉄系材料との反応によるダイヤモンドの摩 耗を低減することができる。  [0041] The diamond member of the present invention can be suitably used as a cutting tool. For example, it can be used for cutting tools, end mills, drills, and the like. By using such a cutting tool, the wear resistance and welding resistance of the tool can be improved, and the tool life can be extended. In particular, it is suitable for cutting iron-based materials. By forming the above-described thin film on the diamond surface, direct contact between the diamond and the iron-based material can be suppressed, and wear of the diamond due to the reaction with the iron-based material can be reduced.
[0042] また、本発明ダイヤモンド部材を切削工具として利用する際、切削方法に特に制約 はないが、楕円振動切削法にて切削を行なうことが好ましい。楕円振動切削法は、圧 電素子などにより切削工具の切刃に切削方向と切り屑流出方向の振動を重畳して与 えて、切刃を楕円状の振動軌道に運動させ、その状態で切刃を被削材に押し当てて 切削を行う技術である。この切刃の楕円振動により、切り屑を引き上げながら加工を 行うため、切削力を減少させて高精度の加工を可能にする。特に、鉄系材料を切削 する際、切刃と被削材が常時接触しないため、ダイヤモンドと被削材との反応をより 一層軽減することができ、工具寿命を延ばすことができる。  When the diamond member of the present invention is used as a cutting tool, the cutting method is not particularly limited, but it is preferable to perform cutting by an elliptical vibration cutting method. In the elliptical vibration cutting method, vibrations in the cutting direction and the chip outflow direction are superimposed on the cutting edge of a cutting tool by a piezoelectric element, and the cutting edge is moved in an elliptical vibration trajectory. This is a technology that presses against the work material to perform cutting. The elliptical vibration of the cutting blades allows the machining to be performed while lifting the chips, thereby reducing the cutting force and enabling high-precision machining. In particular, when cutting an iron-based material, the cutting edge does not always contact the work material, so that the reaction between the diamond and the work material can be further reduced, and the tool life can be extended.
[0043] <本発明被覆部材の製造方法 >  <Method of Manufacturing Coated Member of the Present Invention>
また、本発明者らは、超硬合金、サーメットまたはダイヤモンド表面への成膜技術に ついて種々の検討を行い、原子ビームによる成膜が非常に薄い膜の生成に好適で あるとの知見を得て本発明方法を完成するに至った。  In addition, the present inventors have conducted various studies on a technique for forming a film on a cemented carbide, cermet, or diamond surface, and have found that film formation using an atomic beam is suitable for forming an extremely thin film. Thus, the method of the present invention has been completed.
[0044] つまり、本発明被覆部材の製造方法は、所定の真空度に保持された真空槽内に薄 膜の原料ガスを供給する。続いて、この原料ガスにレーザを照射して電荷を持たない 原子ビームを生成する。そして、その原子ビームを超硬合金、サーメットまたはダイヤ モンド上に照射することで、周期律表 4a族元素の炭化物、窒化物、炭窒化物、フッ素 および酸素よりなる群力 選択される少なくとも一種力 なる薄膜を形成する。 That is, according to the method for producing a coated member of the present invention, a raw material gas for a thin film is supplied into a vacuum chamber maintained at a predetermined degree of vacuum. Subsequently, the material gas is irradiated with a laser to generate an atomic beam having no charge. Then, the atomic beam is irradiated with cemented carbide, cermet or diamond. By irradiating the surface of the mond, a thin film having at least one force selected from the group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of the Group 4a element of the periodic table is formed.
[0045] 本発明で用いる基材のうちダイヤモンドは、耐食性が高ぐ高温で酸素や炭化物を 形成する金属と反応する以外は安定な材料である。ダイヤモンドの表面改質には、ィ オンビームの照射も考えられる。しかし、ダイヤモンドは絶縁体であるため電荷を帯び 、イオンビームを照射することが困難となって、表面改質の均一性を保つことが難し い。これに対し、中性の原子ビームの照射により成膜を行なえば、ダイヤモンド表面 に均一に照射原子が結合され、極めて薄い薄膜を高精度に成膜できることが判明し た。 [0045] Among the base materials used in the present invention, diamond is a stable material except that it reacts with a metal that forms oxygen or a carbide at a high temperature at which corrosion resistance is high. For the surface modification of diamond, ion beam irradiation can be considered. However, since diamond is an insulator, it is charged and it becomes difficult to irradiate with an ion beam, and it is difficult to maintain uniformity of surface modification. On the other hand, it was found that if the film was formed by irradiation with a neutral atomic beam, the irradiated atoms were uniformly bonded to the diamond surface and an extremely thin thin film could be formed with high precision.
[0046] この本発明方法において、例えば炭酸ガスのパルスレーザを薄膜の原料ガスに照 射すると、原料ガスがプラズマ化され、その後プラズマは電気的に中和され中性の原 子ビームとなるものと考えられる。後に実施の形態で説明するように、真空中のガスを 質量分析計などで分析した結果、中性の原子しか検出されていない。このガスが中 性になる詳細な理由は未解明であるが、おそらく原料ガスイオンの飛行中に電子の 受け渡しがあり、中性になるものと推定される。  In the method of the present invention, for example, when a pulse laser of carbon dioxide gas is irradiated on the raw material gas of the thin film, the raw material gas is turned into plasma, and then the plasma is electrically neutralized to become a neutral atomic beam. it is conceivable that. As will be described later in the embodiments, as a result of analyzing a gas in a vacuum with a mass spectrometer or the like, only neutral atoms are detected. The detailed reason why this gas becomes neutral is unclear, but it is presumed that electrons are transferred during the flight of the source gas ions, and the gas becomes neutral.
[0047] 原料ガスは、形成する薄膜の種類に応じて適宜選択する。例えば、 TiCl、 N、 CO  [0047] The source gas is appropriately selected according to the type of the thin film to be formed. For example, TiCl, N, CO
4 2 2 4 2 2
、 SF、 CFなどが利用できる。また、原料ガスの真空容器への導入は、間歇的に行な, SF, CF etc. can be used. In addition, the introduction of the source gas into the vacuum vessel is performed intermittently.
6 4 6 4
うことが望ましい。その際、ガス導入のタイミングとレーザの照射タイミングとを合わせ ることがより好ましい。原料ガスが間歇的に導入されることで、真空度の低下を抑制し 、容易に所定の真空度を得ることができる。さらに、レーザの照射タイミングを原料ガ スの導入タイミングに合わせることで、より確実に原子ビームを発生させることができる 。より具体的には、原料ガスをノズルカゝらパルス状に供給し、原料ガスの供給に同期 するレーザをノズルに照射して原子ビームを発生させることが好ましい。  Is desirable. In that case, it is more preferable to match the timing of gas introduction with the timing of laser irradiation. Since the source gas is intermittently introduced, a decrease in the degree of vacuum can be suppressed, and a predetermined degree of vacuum can be easily obtained. Furthermore, by adjusting the laser irradiation timing to the introduction timing of the raw material gas, it is possible to more reliably generate an atomic beam. More specifically, it is preferable to supply the source gas in a pulse form from the nozzle, and irradiate the nozzle with a laser synchronized with the supply of the source gas to generate an atomic beam.
[0048] 原子ビームを生成するには、原料ガスにレーザを照射する。このレーザは、パルス レーザが好適である。代表的には、炭酸ガスレーザを利用することができる。より具体 的には、炭酸ガスパルスレーザを 5〜7J/パルス程度の条件で照射することが好適で ある。 [0048] In order to generate an atomic beam, a laser is applied to the source gas. This laser is preferably a pulsed laser. Typically, a carbon dioxide laser can be used. More specifically, it is preferable to irradiate a pulsed carbon dioxide gas laser under conditions of about 5 to 7 J / pulse.
[0049] 原子ビームは、薄膜構成物質の結合エネルギーと同程度のエネルギーで基材に 照射することが好ましい。例えば、原子ビームのエネルギーを 3〜20eVとする。この程 度のエネルギーの原子ビームを照射すれば、超硬合金、サーメットまたはダイヤモン ド表面にほぼ均一に照射原子を付着させることができる。 [0049] The atomic beam is applied to the base material with the same energy as the binding energy of the thin film constituent material. Irradiation is preferred. For example, assume that the energy of the atomic beam is 3 to 20 eV. By irradiating an atomic beam with such energy, the irradiated atoms can be deposited almost uniformly on the surface of the cemented carbide, cermet or diamond.
[0050] また、原子ビームは真空槽内を所定の真空状態に制御して生成する。好ましい真 空槽内の圧力は 1 X 10— 4〜1 X 10— 8Pa程度である。より好ましい圧力は 1 X 10— 5Pa以下 、さらに好ましくは 1 X 10— 6Pa以下である。中性原子は、他の原子と衝突すると、元の 分子に戻ったり、新しいィ匕合物を生成したりする。このような衝突を防止するために、 本発明方法においては、原料ガスが原子化される真空槽内の空間を高い真空度に 保ち、長いミーンフリーパスを維持している。また、この高い真空度により薄膜ゃ基材 の表面清浄性が保たれることに加え、薄膜中の不純物元素量を低減できる。 The atomic beam is generated by controlling the inside of the vacuum chamber to a predetermined vacuum state. The preferred pressure of the vacuum chamber is about 1 X 10- 4 ~1 X 10- 8 Pa. More preferred pressure 1 X 10- 5 Pa, more preferably not more than 1 X 10- 6 Pa. When neutral atoms collide with other atoms, they return to the original molecule or form new conjugates. In order to prevent such collision, in the method of the present invention, the space in the vacuum chamber where the source gas is atomized is maintained at a high degree of vacuum, and a long mean free path is maintained. The high degree of vacuum not only maintains the surface cleanliness of the thin film and the substrate, but also reduces the amount of impurity elements in the thin film.
[0051] さらに、基材の温度は常温から 800°Cまでが好まし!/、。この温度範囲であれば、超 硬合金、サーメットまたはダイヤモンドの基材が損傷されることもな 、。  [0051] Furthermore, the temperature of the substrate is preferably from room temperature to 800 ° C! In this temperature range, the cemented carbide, cermet or diamond substrate is not damaged.
[0052] 薄膜は、上述のようにして生成した原子ビームの中で、直接基材に衝突する原子に より形成される。その際、原子ビームを構成する特定の中性原子を選択して基材の上 に被覆する。この原子は中性であるため、電気的に加速したり、その軌道を曲げたり できない。従って、原子が基材に衝突する速度は、原子の持つエネルギーに基づく 速度ということができる。同一系内の、原子ビームの運動エネルギーはほぼ等しいの で、軽い元素は早ぐ重い原子は遅い速度で飛行する。  [0052] The thin film is formed by atoms that directly collide with the base material in the atomic beam generated as described above. At this time, specific neutral atoms constituting the atomic beam are selected and coated on the base material. Because this atom is neutral, it cannot accelerate electrically or bend its orbit. Therefore, the speed at which atoms collide with the substrate can be said to be the speed based on the energy of the atoms. Since the kinetic energies of the atomic beams in the same system are almost equal, light elements fly faster and heavy atoms fly at a slower speed.
[0053] 真空槽の中では薄膜の形成に不要な原子も飛行している。原子の飛行速度は、原 子量に依存するので、炭酸ガスレーザのパルスに同期して、薄膜の形成に必要な原 子が到達するときだけその原子を通し、それ以外の間は原子が通らないチヨツバを設 けることで、原子を選択することができる。  [0053] In the vacuum chamber, atoms unnecessary for forming a thin film are also flying. Since the flight speed of an atom depends on the amount of an atom, it passes through the atom only when the atom necessary for forming a thin film arrives in synchronization with the pulse of the carbon dioxide laser, and does not pass through the rest of the time. By setting up the chives, atoms can be selected.
発明の効果  The invention's effect
[0054] 本発明焼結部材によれば、原子が整列した非常に薄い薄膜を有している。そのた め、その薄膜の表面粗さは、超硬合金やサーメットの基材の表面粗さと同等であり、 基材の表面粗さを小さくすることで薄膜の表面粗さを小さくすることができる。従って、 被削材の溶着を効果的に抑制し、非常に加工精度の高い切削工具を得ることができ る。 [0055] 本発明ダイヤモンド部材は、ダイヤモンド表面に特定種類の薄膜をきわめて薄く形 成することで、ダイヤモンドと被削材との直接接触を回避または抑制することができる 。そのため、本発明部材を切削工具に適用した場合、ダイヤモンドで鉄系材料を高 精度に加工することができる。それに伴い、従来は不可能であった鉄系材料のダイヤ モンドによる直接切削が可能になり、特に光学部品用の金型カ卩ェにおけるコストと納 期を大幅に改善することが期待できる。 [0054] The sintered member of the present invention has a very thin thin film in which atoms are aligned. Therefore, the surface roughness of the thin film is equivalent to the surface roughness of the substrate of cemented carbide or cermet, and the surface roughness of the thin film can be reduced by reducing the surface roughness of the substrate. . Therefore, it is possible to effectively suppress the welding of the work material and obtain a cutting tool with extremely high processing accuracy. [0055] The diamond member of the present invention can avoid or suppress direct contact between diamond and a work material by forming a very thin film of a specific type on the diamond surface. Therefore, when the member of the present invention is applied to a cutting tool, a ferrous material can be machined with diamond with high accuracy. Along with this, direct cutting of iron-based materials with diamond, which was impossible in the past, is now possible, and it can be expected that the cost and delivery time, especially for molds for optical parts, will be significantly improved.
[0056] 本発明方法によれば、高真空下で薄膜が形成されるので、基材に供給される単位 時間当たりの中性原子の数は従来の方法に比較すると少ない。基材に到達した中性 原子は、基材の上で電子を授受しながら堆積し、薄膜はゆっくりと成長する。この結 果、原子の数で 1〜100原子が堆積した均一で薄い薄膜が形成され、基材の尖端部 において薄膜が丸くなるというようなことがない。従って、刃先先端部におけるチッピ ングの少な!/、切削工具を提供できる。  According to the method of the present invention, since a thin film is formed under a high vacuum, the number of neutral atoms supplied to the substrate per unit time is smaller than that of the conventional method. Neutral atoms arriving at the substrate accumulate and transfer electrons on the substrate, and the thin film grows slowly. As a result, a uniform thin film having 1 to 100 atoms deposited therein is formed, and the thin film is not rounded at the tip of the base material. Therefore, it is possible to provide a cutting tool with less chipping at the tip of the cutting edge!
[0057] CVD法や PVD法などの一般的な薄膜形成技術で基材表面に成膜した場合、鋭利 な刃先を得ることが難しいが、原子ビームの照射を用いた本発明方法では、基材表 面にきわめて薄く成膜することが可能で、鋭利な刃先を得ることができる。  When a film is formed on a substrate surface by a general thin film forming technique such as a CVD method or a PVD method, it is difficult to obtain a sharp cutting edge. However, in the method of the present invention using atomic beam irradiation, An extremely thin film can be formed on the surface, and a sharp cutting edge can be obtained.
[0058] 原子ビームの照射を用いた本発明方法は、基材の刃先への種々の影響がほとんど ない。例えば、ダイヤモンド表面の面粗度の低下、ダイヤモンド内部の欠陥発生、薄 膜表面粗度の低下と ヽつた問題を回避して、良好なダイヤモンド部材を得ることがで きる。  [0058] The method of the present invention using atomic beam irradiation has almost no various effects on the cutting edge of the substrate. For example, a good diamond member can be obtained by avoiding problems such as a decrease in the surface roughness of the diamond surface, generation of defects inside the diamond, and a decrease in the surface roughness of the thin film.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0059] 以下、本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described.
[0060] <実施例 >  [0060] <Example>
図 1に本発明被覆部材の断面模式図を示す。  FIG. 1 shows a schematic cross-sectional view of the coated member of the present invention.
[0061] この被覆部材は、基材 1と、その表面に被覆された薄膜 2とから構成される。基材は 超硬合金、サーメットまたはダイヤモンドである。例えば、 WC基超硬合金、 TiC系サ ーメット、単結晶ダイヤモンドを基材として用いる。薄膜 2は、周期律表 4a族元素の炭 化物、窒化物、炭窒化物、フッ素および酸素の少なくとも一種、例えば TiC、 TiN、 TiCNあるいは Fまたは Oなどにより形成される。この薄膜 2は、厚さが薄膜 2の構成原 子数で 1〜100個とする。図 1では、薄膜 2を構成する円の各々が構成原子を示してい るが、この図では構成原子の大きさを誇張して実際よりも大きく示している。 [0061] This covering member is composed of a substrate 1 and a thin film 2 coated on its surface. The substrate is a cemented carbide, cermet or diamond. For example, WC-based cemented carbide, TiC-based cermet, and single crystal diamond are used as the base material. The thin film 2 is formed of at least one of carbides, nitrides, carbonitrides, fluorine and oxygen of a Group 4a element in the periodic table, such as TiC, TiN, TiCN, or F or O. This thin film 2 is a constituent element of the thin film 2 The number of children should be 1 to 100. In FIG. 1, each of the circles constituting the thin film 2 represents a constituent atom, but in this figure, the size of the constituent atoms is exaggerated and is larger than the actual size.
[0062] <成膜装置の構成 > <Configuration of Film Forming Apparatus>
次に、本発明被覆部材の製造に用いる原子ビーム発生装置の構成を図 2に基づ いて説明する。  Next, the configuration of the atomic beam generator used for manufacturing the coated member of the present invention will be described with reference to FIG.
[0063] この装置は、第一領域 10A力も第三領域 10Cに区画された真空容器 10に、分子線 バルブ 101、ノズル 102、レーザの入射窓 103、ミラー 104、基材ホルダ 105、水晶振動 子マイクロバランス (QCM) 106、四重極質量分析管(QMS) 107を具えた装置である。 真空容器 10の 、ずれの領域も各々ターボ分子ポンプ (TMP)で所定の真空に保持す ることができる。さらに、この装置では、真空容器 10に X線分析部 20が設けられ、真空 容器 10と X線分析部 20の間に試料の移動を行なうための移送室 30をも有している。  [0063] In this apparatus, a molecular beam valve 101, a nozzle 102, a laser entrance window 103, a mirror 104, a base material holder 105, a quartz oscillator, are provided in a vacuum vessel 10 partitioned into a first area 10A and a third area 10C. It is equipped with a microbalance (QCM) 106 and a quadrupole mass spectrometer (QMS) 107. Each of the shift regions of the vacuum vessel 10 can be maintained at a predetermined vacuum by a turbo molecular pump (TMP). Further, in this apparatus, an X-ray analyzer 20 is provided in the vacuum vessel 10, and a transfer chamber 30 for transferring a sample between the vacuum vessel 10 and the X-ray analyzer 20 is also provided.
[0064] 第一領域 10Aの真空容器 10の端面には、所定の原料ガスを導入する分子線バル ブ 101が配置され、このバルブ 101の真空容器内側に原子ビームを照射するノズル 102が配置されている。また、分子線バルブ 101が設けられた上記端面には、レーザ L の入射窓 103も形成されている。原料ガスに照射されるレーザ Lは、この入射窓 103を 通って真空容器 10内に入射される。  A molecular beam valve 101 for introducing a predetermined source gas is disposed on the end face of the vacuum vessel 10 in the first region 10A, and a nozzle 102 for irradiating an atomic beam to the inside of the vacuum vessel of the valve 101 is disposed. ing. An entrance window 103 for the laser beam L is also formed on the end face where the molecular beam valve 101 is provided. The laser beam L applied to the source gas enters the vacuum vessel 10 through the entrance window 103.
[0065] 真空容器 10内に入射したレーザ Lは、同じく第一領域 10A内に配されたミラー 104 ( Au製)により反射されてノズル 102近傍に照射される。このノズル 102近傍には分子線 バルブ 101を介して供給された原料ガスが導入されるため、この原料ガスにレーザ L が照射されることで、電荷を持たない原子ビームが生成される。生成された原子ビー ムはノズル 102から第二、第三領域 10B、 10C側に照射される。この第一領域 10Aにお ける原子ビームの照射軌跡中には QCM106が配置され、 QCM106により原子ビーム の単位時間 ·単位面積当たりの照射量 (原子数)を計測することができる。  The laser L incident on the vacuum vessel 10 is reflected by a mirror 104 (made of Au) similarly arranged in the first area 10 A and irradiated near the nozzle 102. Since a raw material gas supplied through the molecular beam valve 101 is introduced into the vicinity of the nozzle 102, the raw material gas is irradiated with the laser L, thereby generating an atomic beam having no charge. The generated atom beam is irradiated from the nozzle 102 to the second and third regions 10B and 10C. The QCM 106 is arranged in the irradiation locus of the atomic beam in the first region 10A, and the irradiation amount (the number of atoms) per unit time and unit area of the atomic beam can be measured by the QCM 106.
[0066] また、真空容器の第二領域 10Bには、試料 Sをセットするための基材ホルダ 105が設 けられている。この基材ホルダ 105はヒータを具え、ホルダ 105上にセットされた試料 S を常温力も 800°Cに加熱制御できる。そして、生成された原子ビームは、この基材ホ ルダにセットされた試料 Sに照射される。  [0066] Further, a base material holder 105 for setting the sample S is provided in the second region 10B of the vacuum container. The substrate holder 105 includes a heater, and can control the heating of the sample S set on the holder 105 to 800 ° C. at room temperature. Then, the generated atomic beam is applied to the sample S set in the substrate holder.
[0067] さらに、第三領域 10Cにおける原子ビームの照射軌跡上には、原子ビームのェネル ギーを測定するための QMS107が設けられている。 QMS107で原子ビームのエネルギ 一を測定して、所定のエネルギーで照射が行なわれるようにレーザのエネルギーを 調整する。 [0067] Further, on the irradiation locus of the atomic beam in the third region 10C, the energy of the atomic beam is displayed. QMS107 for measuring energy is provided. The energy of the atomic beam is measured by the QMS 107, and the energy of the laser is adjusted so that irradiation is performed at a predetermined energy.
[0068] 一方、第二領域 10Bには移送室 30が連結されて 、る。移送室 30には試料の移送を 真空容器 10と X線分析部 20との間で行なえるように、直交方向に配された一対の移 送ロッド 301が設けられている。  On the other hand, the transfer chamber 30 is connected to the second area 10B. The transfer chamber 30 is provided with a pair of transfer rods 301 arranged in an orthogonal direction so that the sample can be transferred between the vacuum vessel 10 and the X-ray analyzer 20.
[0069] そして、移送室 30には X線分析部 20も連結されて 、る。 X線分析部 20は、 X線源 201 および DP- CMA (Double Path Cylindrical Mirror Analyzer) 202を有し、 XPS (X- ray Photo-electron Spectroscopy)などによる試料の分析が行なえるように構成され ている。  [0069] The X-ray analysis unit 20 is also connected to the transfer chamber 30. The X-ray analysis unit 20 has an X-ray source 201 and a DP-CMA (Double Path Cylindrical Mirror Analyzer) 202, and is configured to be able to analyze a sample by XPS (X-ray Photo-electron Spectroscopy). I have.
[0070] <試験例 1 >  <Test Example 1>
WC— 6質量%Coの超硬合金製であって、型番 TCGW110300のポジチップを準備 した。この試料の表面とすくい面をさらに Rmaxで 0.2 μ mの表面粗さまで研磨し、基材 とした。次に、図 2に示す原子ビーム発生装置と同じ原理で、原子ビームの発生部分 力 S3箇所ある装置の中の基材ホルダに、準備した基材を取り付けた。使用する原料ガ スは、形成する薄膜の種類に応じて適宜選択する。この実施例の原料ガスは、 TiCl  WC-Positive tip made of cemented carbide of 6 mass% Co and having model number TCGW110300 was prepared. The surface and rake face of this sample were further polished to a surface roughness of 0.2 μm at Rmax to obtain a substrate. Next, based on the same principle as the atomic beam generator shown in FIG. 2, the prepared substrate was attached to a substrate holder in an apparatus having three atomic beam generation forces S3. The raw material gas to be used is appropriately selected according to the type of the thin film to be formed. The source gas of this embodiment is TiCl
4 Four
、 N、 C〇、 SFである。 , N, C〇, SF.
2 2 6  2 2 6
[0071] 次に、真空容器内を 1 X 10— 8torr (約 1.33 X 10"6Pa)の高真空に調整し、また基材ホ ルダの温度を 100°Cに設定した。表 1のビーム 1からビーム 3の欄に記載した原料ガス を用いて、薄膜物質の欄の物質を基材表面に形成した。このとき、原料ガスの真空 容器への導入は、ノ ルスレーザの照射タイミングと合わせ、分子線バルブにより行わ れた。パルスレーザは、波長 10.6 mの炭酸ガスレーザであり、そのエネルギーは 1パ ルス当たり 7Jであった。原料ガスの導入は、圧電セラミック製の分子線バルブを約 100 マイクロ秒の間開け、 1〜2秒間閉鎖し、この開閉を繰り返すことで行った。こうすること で、真空容器へ導入された原料ガスが直ちにプラズマ化され、その後電気的に中和 され電荷を持たな 、原子ビームを効率よく発生させることができ、真空度の低下を抑 制できた。 [0071] Next, adjust the vacuum vessel to a high vacuum of 1 X 10- 8 torr (about 1.33 X 10 "6 Pa), also setting the temperature of the substrate Holder to 100 ° C. Table 1 The material in the column of thin film material was formed on the substrate surface using the source gas described in the column of beam 1 to beam 3. At this time, the introduction of the source gas into the vacuum vessel was synchronized with the irradiation timing of the laser. The pulse laser was a carbon dioxide gas laser with a wavelength of 10.6 m, the energy of which was 7 J / pulse. Opening for microseconds, closing for 1 to 2 seconds, and repeating this opening and closing were performed, whereby the raw material gas introduced into the vacuum vessel was immediately turned into plasma, and then electrically neutralized and charged. Without it, it is possible to efficiently generate an atomic beam And reduced the degree of vacuum.
[0072] [表 1] 試料 ビーム 1 ビーム 2 ビーム 3 薄膜物質 膜厚 Rmax 溶着の 番号 原料ガス 原料ガス 原料ガス 原子数 (個) πハ、ヽ[Table 1] Specimen beam 1 Beam 2 Beam 3 Thin film material Film thickness Rmax Welding number Source gas Source gas Source gas Number of atoms (pieces)
1-1 TiCl4 N2 ― TiN 20 0. 5 少しあり1-1 TiCl 4 N 2 ― TiN 20 0.5 slightly
1-2 TiCl4 ― co2 TiC 50 0. 5 少しあり1-2 TiCl 4 ― co 2 TiC 50 0.5 a little
1-3 TiCl4 co2 TiCN 100 0. 9 少しあり1-3 TiCl 4 co 2 TiCN 100 0.9 slightly
1-4 TiCl4 N2 SF6 TiN+F 50+10 0. 7 なし1-4 TiCl 4 N 2 SF 6 TiN + F 50 + 10 0.7 None
1-5 TiCl4 co2 SF6 TiC+F 50+10 0. 7 なし1-5 TiCl 4 co 2 SF 6 TiC + F 50 + 10 0.7 None
1-6 SF6 ― 一 F 20 0. 5 なし1-6 SF 6 ― 1 F 20 0.5 None
1-7 TiCl4 C02 ― TiC 500 4 あり1-7 TiCl 4 C0 2 ― TiC 500 4 Yes
1-8 TiCl4 co2 ― TiC 1000 9 あり 1-8 TiCl 4 co 2 ― TiC 1000 9 Yes
[0073] ビームの数に合わせて試料の前にチヨッパを配置し、特定の原子ビームのみが基 材に到達するように構成した。チヨツバは、回転する円板の外周部に切欠等を設けて 作製した。薄膜が 2つ以上の元素からなる場合、試料前にビームの数と同じ数のチヨ ツバを配置しておき、チヨツバの回転数を調整して必要とする原子だけが試料に同時 に到達するようにした。試料に到達するのは原子状態の元素なので、基材上で 2つの 元素は結合して化合物を形成する。表 1の中の、試料番号 1-4はビーム 1とビーム 2を 用いて TiClと Nを原料として ΉΝを被覆し、また試料番号 1-5はビーム 1とビーム 2を用 [0073] A chopper was arranged in front of the sample in accordance with the number of beams, so that only a specific atomic beam reached the substrate. The bigleaf was produced by providing a notch or the like at the outer periphery of the rotating disk. If the thin film is composed of two or more elements, arrange the same number of chambers in front of the sample as the number of beams, and adjust the rotation number of the chamber so that only the required atoms reach the sample at the same time. I made it. Because the element that reaches the sample is in the atomic state, the two elements combine on the substrate to form a compound. In Table 1, Sample Nos. 1-4 coated ΉΝ with TiCl and N as raw materials using Beams 1 and 2, and Sample Nos. 1-5 used Beams 1 and 2
4 2  4 2
いて TiClと COを原料として TiCを被覆した後に、それぞれの上にビーム 3の SFを原  After coating TiC using TiCl and CO as raw materials, the SF of beam 3 is
4 2 6 料として、フッ素をさらに被覆したものである。さらに試料番号 1-6は、フッ素のみを被 覆した試料である。 SFを原料とする場合は、チヨツバを使用しなくても、フッ素などを  The material is further coated with fluorine as a material. Sample Nos. 1-6 are samples coated with fluorine only. When SF is used as a raw material, fluorine or the like can be used without using
6  6
含む薄膜が形成される。  A thin film is formed.
[0074] このようにして作製された被覆部材は、真空容器カゝら取り出され、性能評価された。 [0074] The covering member produced in this manner was taken out of a vacuum vessel, and its performance was evaluated.
まず、薄膜作製中および後の各種データに基づき、以下の手法により膜厚を算出し た。薄膜物質は X線分析部にぉ 、て XRD (X-ray diffraction)と XPSで解析した。 XP Sによる解析の結果、試料 No.l-l〜l-8には 0、 H、 Arが認められなかった。また、膜 厚さは QCMを用いて調べた。 QCMは共振周波数を測定する装置である。水晶振動 子の表面に物質が吸着すると、水晶振動子の重量が増え共振周波数が変化する。 QCMは、水晶振動子の共振周波数の変化と重量の変化とが比例関係にあることを 利用して、水晶振動子の重量増加を算出する手段である。 QCMで求めた水晶振動 子の増加重量と XRDで特定した薄膜物質力 薄膜の厚さがわかり、厚さ方向の原子 数が計算で求められる。なお、表 1において試料番号 1-4、 1-5は TiN、 TiCの膜厚が それぞれ 50原子で、その上にさらにフッ素が 10原子被覆されていること示している。 First, the film thickness was calculated by the following method based on various data during and after the preparation of the thin film. The thin film material was analyzed by XRD (X-ray diffraction) and XPS at the X-ray analysis unit. As a result of analysis by XPS, 0, H, and Ar were not observed in Sample Nos. Ll to l-8. The film thickness was checked using QCM. QCM is a device that measures the resonance frequency. When a substance is adsorbed on the surface of the crystal unit, the weight of the crystal unit increases and the resonance frequency changes. QCM is a means to calculate the weight increase of a crystal unit by utilizing the fact that the change in the resonance frequency of the crystal unit and the change in the weight are in a proportional relationship. The increased weight of the crystal oscillator obtained by QCM and the material strength of the thin film specified by XRD are known, and the number of atoms in the thickness direction can be obtained by calculation. In Table 1, the sample numbers 1-4 and 1-5 have the film thicknesses of TiN and TiC. This shows that each of the atoms is 50 atoms, and that there is an additional 10 atoms of fluorine coated thereon.
[0075] さらに、薄膜表面の表面粗さを測定したところ、試料番号 1-1〜1-6はいずれの試料 も Rmaxで 1 μ m以下であることが表 1に示すように確認された。  Further, when the surface roughness of the thin film surface was measured, it was confirmed as shown in Table 1 that all of the samples No. 1-1 to 1-6 had an Rmax of 1 μm or less.
[0076] 次に、工具としての性能を評価した。切削条件は、被削材として A卜 Si合金を用いて 、切削速度 100m/分、切り込み 0.1mm、送り 0.3mmの切削条件で超精密旋盤を用い て 10分間切削加工した。性能評価は、被削材が工具に溶着する状況を調べることで 行った。その結果、試料番号ト 1〜ト 3はわずかに被削材の溶着した痕跡があった。 試料番号 1-4、 1-5および 1-6は最上層がフッ素なので溶着がなぐ耐溶着性の高い ことがわ力つた。試料番号ト 7、 1-8は、薄膜の膜厚が厚ぐ刃先が丸くなり被削材が 溶着していた。  Next, the performance as a tool was evaluated. The cutting conditions were as follows: Ato Si alloy was used as a work material, and cutting was performed for 10 minutes using an ultra-precision lathe under cutting conditions of a cutting speed of 100 m / min, a depth of cut of 0.1 mm and a feed of 0.3 mm. The performance evaluation was performed by examining the situation where the work material welded to the tool. As a result, Sample Nos. 1 to 3 had slight traces of welded work material. Sample numbers 1-4, 1-5 and 1-6 proved that the uppermost layer was fluorine and thus had high welding resistance because welding was not performed. In sample Nos. 7 and 1-8, the cutting edge with the thicker thin film was rounded and the work material was welded.
[0077] <試験例 2>  <Test Example 2>
次に、図 2に示す原子ビーム発生装置と同じ原理で、原子ビームの発生部分が 3箇 所ある装置を用いて表 2に示す物質を単結晶ダイヤモンド表面に付着させて薄膜を 形成した。試料としてはエッジ部の曲率半径が 10nm以下、表面粗さ Rmax力 nm以下 に加工された単結晶ダイヤモンドを用いた。付着条件は真空容器内を 1 X 10"9torr ( 約 133 X 10"9Pa)にした後、種々の原料ガスを分子線バルブから間歇的に導入し、ガ ス導入のタイミングとあわせて波長 10.6 μ mの炭酸ガスレーザを 7JZパルスで照射す る。原料ガスの導入は、圧電セラミック製の分子線バルブを約 100マイクロ秒の間開け 、 1〜2秒間閉鎖し、この開閉を繰り返すことで行った。こうすることで、真空容器へ導 入された原料ガスが直ちにプラズマ化され、その後電気的に中和され電荷を持たな い原子ビームを効率よく発生させることができ、真空度の低下を抑制できた。そして、 原料ガスへのレーザの照射により生成した原子ビームを単結晶ダイヤモンド表面に 照射して薄膜の形成を行なった。 Next, using the same principle as the atomic beam generator shown in Fig. 2, a substance shown in Table 2 was attached to the surface of single-crystal diamond using a device with three atomic beam generators to form a thin film. The sample used was a single-crystal diamond processed to have a radius of curvature of 10 nm or less at the edge and a surface roughness Rmax force of nm or less. The deposition conditions were as follows: 1 x 10 " 9 torr (approximately 133 x 10" 9 Pa) in the vacuum vessel, and then various source gases were intermittently introduced from the molecular beam valve, and the wavelength was adjusted in accordance with the gas introduction timing. Irradiate a 10.6 μm carbon dioxide laser with 7JZ pulses. The introduction of the raw material gas was performed by opening the molecular beam valve made of piezoelectric ceramic for about 100 microseconds, closing it for 1-2 seconds, and repeating this opening and closing. By doing so, the raw material gas introduced into the vacuum vessel is immediately converted into plasma, and then it is possible to efficiently generate an atomic beam that is electrically neutralized and has no charge, thereby suppressing a reduction in the degree of vacuum. Was. The surface of the single crystal diamond was irradiated with an atomic beam generated by irradiating the source gas with a laser to form a thin film.
[0078] [表 2] スススmax: nmnm [0078] [Table 2] Soot max: nmnm
,
、 O) 〇  , O) 〇
 ,
少りし ο々、 〇 〇  Less ο々, 〇 〇
着な少ありし々、  There are a few
雜削あり、  There is shaving,
Figure imgf000017_0001
原料ガスに化合物ガスを使用する場合は、ビームの数に合わせて試料前にチヨッ パを配置しておき、特定の原子ビームのみが基材に到達するように構成した。チヨッ パは、回転する円板の外周部に切欠等を設けて作製した。薄膜が 2つ以上の元素か らなる場合、付着原子を QMSで同定し、チヨツバの回転条件を調整して、必要とする 原子が試料に同時に到達するようにした。試料に到達するのは原子状態の元素なの で、基材上で 2つの元素は結合して化合物を形成する。さらに、タイムフライト法で原 子ビームのエネルギーを測定したところ、 5〜10eVであった。
Figure imgf000017_0001
When a compound gas was used as the source gas, a chopper was arranged in front of the sample in accordance with the number of beams, so that only a specific atomic beam reached the base material. The chopper was manufactured by providing a notch or the like at the outer periphery of the rotating disk. If the thin film is composed of two or more elements, the attached atoms are identified by QMS, The atoms were allowed to reach the sample simultaneously. Since the elements that reach the sample are in the atomic state, the two elements combine on the substrate to form a compound. When the energy of the atomic beam was measured by the time-flight method, it was 5 to 10 eV.
[0080] なお、表 2の中の、試料番号 2-4、 2-5は最初に TiN、 TiCを被覆した後に、ビーム 3 の CFを原料として、フッ素をさらに被覆したものである。さらに試料番号 2-6、 2-7は、[0080] Sample numbers 2-4 and 2-5 in Table 2 were obtained by first coating TiN and TiC and then further coating fluorine using CF of beam 3 as a raw material. Sample numbers 2-6 and 2-7 are
4 Four
フッ素のみを被覆した試料である。 CFまたは SFを原料としてフッ素のみを被覆する  This is a sample coated only with fluorine. Coating only fluorine using CF or SF as raw material
4 6  4 6
場合は、チヨツバを使用しなくてもよい。  In this case, the chives may not be used.
[0081] 付着物質の種類は XRD (X-ray diffraction)と XPSで解析し、付着量は QCMを用い て調べた。 XPSで解析での解析の結果、試料 No.2-1,2-2,2-3,2-4,2-5,2-6,2-7には 0、 H、 Arが認められな力つた。また、 QCMは水晶振動子の表面に物質が吸着すると 周波数が変化し、この周波数変化と質量とが比例関係にあることを利用した質量測 定手段である。 QCMによる質量計測結果力 単位時間 ·単位面積当たりの照射量が 求められ、物質により原子半径が決まることから、 QCMで求めた付着量力 薄膜の厚 さがわかり、厚さ方向の原子数が計算で求められる。さらに、薄膜表面の表面粗さを Rmax (最大高さ: JIS B 0601 1982)にて評価したところ、いずれの試料も Rmaxで 10nm以下であることが確認された。  [0081] The type of the adhered substance was analyzed by XRD (X-ray diffraction) and XPS, and the amount of the adhered substance was examined using QCM. As a result of analysis using XPS, 0, H, and Ar were not observed in sample Nos. 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, and 2-7. Helped. In addition, QCM is a mass measurement method that uses the fact that the frequency changes when a substance is adsorbed on the surface of the crystal unit, and that the change in frequency is proportional to the mass. Mass measurement result by QCM Force Unit time ・ The amount of irradiation per unit area is determined, and the atomic radius is determined by the substance. Desired. Furthermore, when the surface roughness of the thin film surface was evaluated by Rmax (maximum height: JIS B 0601 1982), it was confirmed that all samples had an Rmax of 10 nm or less.
[0082] <試験例 3 >  <Test Example 3>
次に、薄膜を形成した試料表面に半径 5mmの SUS440Cボールを 5Nで押し付け、 2mm/秒の速度で摩擦試験を行い、摩擦係数の測定を行なった。さらに、得られた試 料を用いてノーズ半径が 0.8mmのダイヤモンドバイトを作製し、ビッカース硬度 450の 合金工具鋼 SKT4を切削速度 50m/分、切り込み 50 m、送り 10 mの切削条件で超 精密旋盤を用いて 5分間切削加工した。そして、被削材面粗度、原子付着後のエツ ジ部の曲率半径、鋼切削後の刃先の状態を調べた。なお、比較のため、薄膜のない 単結晶ダイヤモンド単体についても同様に摩擦試験と切削試験を行なった。付着物 質の同定結果、薄膜の膜厚と併せて上記試験結果も表 2に記載する。  Next, a SUS440C ball having a radius of 5 mm was pressed against the surface of the sample on which the thin film was formed at 5 N, a friction test was performed at a speed of 2 mm / sec, and a friction coefficient was measured. Furthermore, a diamond tool with a nose radius of 0.8 mm was fabricated using the obtained sample, and ultra-precision cutting of alloy tool steel SKT4 with a Vickers hardness of 450 was performed at a cutting speed of 50 m / min, a cutting depth of 50 m, and a feed of 10 m. Cutting was performed for 5 minutes using a lathe. Then, the surface roughness of the work material, the radius of curvature of the edge portion after atom attachment, and the state of the cutting edge after steel cutting were examined. For comparison, a friction test and a cutting test were similarly performed on a single crystal diamond without a thin film. Table 2 also shows the above test results along with the identification results of the attached substances and the thickness of the thin film.
[0083] 表 2から明らかなように、単結晶ダイヤモンド表面に薄膜を形成し、その薄膜の厚さ を薄膜構成原子の数で 1〜100個とした試料は、いずれも摩耗が実質的に認められ ず、薄膜の被覆による被削材との反応が抑制されていることがわかる。特に、フッ素 力もなる薄膜を表面に具える試料では、耐溶着性に優れることがわかる。 As is clear from Table 2, abrasion was substantially observed in each of the samples in which a thin film was formed on the surface of a single crystal diamond and the thickness of the thin film was 1 to 100 in terms of the number of atoms constituting the thin film. It can be seen that the reaction with the work material due to the coating of the thin film was suppressed. In particular, fluorine It can be seen that a sample having a strong thin film on its surface has excellent welding resistance.
[0084] <試験例 4>  <Test Example 4>
次に、単結晶ダイヤモンド表面に薄膜を形成した試料を用いてノーズ半径が 0.8mm のダイヤモンドバイトを作製し、ロックウェル硬度 HRC40の SUS420J2を切削速度 500mm/分、切り込み 5 μ m、ピックフィード 5 μ m、切削距離 2m、ドライの切削条件で 超精密旋盤を用いて切削加工を行った。より詳しくは、切削方向に 2mmの長さの切 削を行ない、この切削を切削方向と直交する送り方向に順次 1000回繰り返すことによ り切削試験を行った。ここでは、上記表 2の試料 No.2-7 (付着物質 F)に加え、さら〖こ 薄膜の付着物質を 0 (酸素)とした試料 No.2-9を作製して、各試料を試験に供した。 試料 No.2-9の原料ガスは、ビーム 1 :酸素、ビーム 2 :なし、ビーム 3 :なしである。試料 No.2-9の薄膜を XPSで解析すると共に、切削後の各試料の最大逃げ面摩耗幅を調 ベた。 XPSで解析の結果、試料 No.2-9の薄膜には Hおよび Arのいずれも検出されな かった。また、比較のため、薄膜のない単結晶ダイヤモンド単体 (表 2の試料 No.2-8) についても同様に切削試験を行なった。  Next, a diamond tool with a nose radius of 0.8 mm was prepared using a sample in which a thin film was formed on the surface of a single crystal diamond, and SUS420J2 with a Rockwell hardness of HRC40 was cut at a cutting speed of 500 mm / min, a depth of cut of 5 μm, and a pick feed of 5 μm. Cutting was performed using an ultra-precision lathe under dry conditions of 2 m and a cutting distance of 2 m. More specifically, a cutting test was performed by cutting 2 mm in length in the cutting direction and repeating this cutting 1000 times sequentially in the feed direction orthogonal to the cutting direction. Here, in addition to sample No. 2-7 (adhered substance F) in Table 2 above, sample No. 2-9 was prepared in which the adhering substance of the thin film was 0 (oxygen), and each sample was tested. Was served. The source gases of sample No. 2-9 were beam 1: oxygen, beam 2: none, and beam 3: none. The thin film of sample No. 2-9 was analyzed by XPS, and the maximum flank wear width of each sample after cutting was determined. As a result of XPS analysis, neither H nor Ar was detected in the thin film of Sample No. 2-9. For comparison, a single crystal diamond without a thin film (sample No. 2-8 in Table 2) was also subjected to a cutting test.
[0085] 最大逃げ面摩耗幅を図 3のグラフに、切削試験後の各試料の切刃の顕微鏡写真を 図 4に示す。このグラフから明らかなように、薄膜のない試料 No.2-8 (Normal)に比べ て、薄膜を形成した試料 No.2-7 (F)、試料 No.2-9 (0)はいずれも最大逃げ面摩耗幅 が小さいことがわかる。また、顕微鏡写真力もも明らかなように、薄膜のない試料 No.2-8 (Normal)は図 4(A)に示すように逃げ面にぎざぎざとなった大きな摩耗が認め られ、図 4(C)に示す試料 No.2-7 (F)、図 4(B)に示す試料 No.2-9 (0)はいずれも逃げ 面の摩耗が小さいことが認められる。  [0085] The maximum flank wear width is shown in the graph of Fig. 3, and the micrograph of the cutting edge of each sample after the cutting test is shown in Fig. 4. As is clear from this graph, Sample No. 2-7 (F) and Sample No. 2-9 (0) with the thin film were both compared to Sample No. 2-8 (Normal) without the thin film. It can be seen that the maximum flank wear width is small. In addition, as can be seen from the photomicroscopic power, the sample No. 2-8 (Normal) without a thin film showed a large abrasion on the flank as shown in FIG. ) And sample No. 2-9 (0) shown in Fig. 4 (B) show that the flank wear is small.
産業上の利用可能性  Industrial applicability
[0086] 本発明は切削工具に好適に利用できる。特に、溶着の少ない工具を提供できるの で、切り込みや送りの小さな精密加工の分野の切削工具として利用できる。また、鋼 の切削工具に好適に利用することができる。 [0086] The present invention can be suitably used for a cutting tool. In particular, since tools with little welding can be provided, they can be used as cutting tools in the field of precision machining with small cutting and feed. Further, it can be suitably used for a steel cutting tool.
図面の簡単な説明  Brief Description of Drawings
[0087] [図 1]本発明被覆部材の模式断面図である。 FIG. 1 is a schematic sectional view of a coated member of the present invention.
[図 2]本発明被覆部材の製造方法に用いる原子ビーム発生装置の模式図である。 [図 3]切削試験後の各試料の最大逃げ面摩耗幅を示すグラフである。 FIG. 2 is a schematic view of an atomic beam generator used in the method for producing a coated member of the present invention. FIG. 3 is a graph showing the maximum flank wear width of each sample after a cutting test.
[図 4]切削試験後の各試料の切刃の顕微鏡写真を示し、(A)は薄膜のないもの、(B)は 酸素で薄膜を形成したもの、(C)はフッ素で薄膜を形成したものである。  [Figure 4] Photomicrographs of the cutting edge of each sample after the cutting test are shown, (A) without a thin film, (B) with a thin film formed with oxygen, and (C) with a thin film formed with fluorine. Things.
符号の説明 Explanation of symbols
1 基材 2 薄膜  1 Substrate 2 Thin film
10 真空容器 10A 第一領域 10B 第二領域 10C 第三領域  10 Vacuum container 10A First area 10B Second area 10C Third area
101 分子線バルブ 102 ノズル 103 入射窓 104 ミラー  101 molecular beam valve 102 nozzle 103 entrance window 104 mirror
105 基材ホノレダ 106 QCM 107 QMS  105 Base material Honoreda 106 QCM 107 QMS
20 X線分析部 201 X線源 202 DP- CMA  20 X-ray analyzer 201 X-ray source 202 DP-CMA
30 移送室 301移送ロッド  30 Transfer chamber 301 Transfer rod

Claims

請求の範囲 The scope of the claims
[1] 基材表面に薄膜が形成された被覆部材であって、  [1] A coated member having a thin film formed on a substrate surface,
前記基材は、ダイヤモンド、超硬合金またはサーメットからなり、  The substrate is made of diamond, cemented carbide or cermet,
前記薄膜は、周期律表 4a族元素の炭化物、窒化物、炭窒化物、フッ素および酸素 よりなる群力 選択される少なくとも一種力 構成され、  The thin film is constituted by at least one kind of force selected from the group consisting of carbides, nitrides, carbonitrides, fluorine and oxygen of group 4a elements in the periodic table,
その薄膜の厚さは薄膜構成原子の数で 1 100原子であることを特徴とする被覆部 材。  The coating material is characterized in that the thickness of the thin film is 1100 atoms in the number of atoms constituting the thin film.
[2] 前記薄膜は、 Tiの炭化物、窒化物、炭窒化物、フッ素および酸素よりなる群力も選 択される少なくとも一種力 構成されていることを特徴とする請求の範囲第 1項に記載 の被覆部材。  2. The thin film according to claim 1, wherein the thin film has at least one kind of force selected from a group force consisting of carbides, nitrides, carbonitrides, fluorine, and oxygen of Ti. Covering member.
[3] 前記薄膜は、 Tiの炭化物、窒化物または炭窒化物からなる基材上の第一層と、フッ 素または酸素からなる最上層とを具備することを特徴とする請求の範囲第 1項に記載 の被覆部材。  3. The thin film according to claim 1, wherein the thin film includes a first layer on a substrate made of carbide, nitride or carbonitride of Ti, and an uppermost layer made of fluorine or oxygen. 14. The covering member according to any one of the above.
[4] 前記薄膜が酸素で構成される層を有し、 [4] the thin film has a layer composed of oxygen,
この酸素層には、 XPSで分析した場合に、 H Arの少なくとも一種が実質的に検出さ れないことを特徴とする請求の範囲第 1項に記載の被覆部材。  2. The covering member according to claim 1, wherein at least one type of H Ar is not substantially detected in the oxygen layer when analyzed by XPS.
[5] 前記薄膜が酸素以外の材料から構成される層を有し、 [5] the thin film has a layer composed of a material other than oxygen,
この非酸素層には、 XPSで分析した場合に、 0 H Arの少なくとも一種が実質的に 検出されないことを特徴とする請求の範囲第 1項に記載の被覆部材。  2. The covering member according to claim 1, wherein at least one kind of 0 H Ar is not substantially detected in the non-oxygen layer when analyzed by XPS.
[6] 前記基材がダイヤモンドで、 [6] The base material is diamond,
薄膜の表面粗さが Rmaxで 10 以下であることを特徴とする請求の範囲第 1項に記 載の被覆部材。  2. The coating member according to claim 1, wherein the surface roughness of the thin film is 10 or less in Rmax.
[7] 前記基材が超硬合金またはサーメットで、 [7] The base material is a cemented carbide or cermet,
薄膜の表面粗さが Rmaxで 0.2 μ m以上 1 μ m以下であることを特徴とする請求の範 囲第 1項に記載の被覆部材。  2. The covering member according to claim 1, wherein the surface roughness of the thin film is not less than 0.2 μm and not more than 1 μm in Rmax.
[8] 前記基材がダイヤモンドで、そのダイヤモンドが単結晶体であることを特徴とする請 求の範囲第 1項に記載の被覆部材。 [8] The coated member according to claim 1, wherein the base material is diamond, and the diamond is a single crystal.
[9] 所定の真空度に保持された真空槽内に薄膜の原料ガスを供給し、 この原料ガスにレーザを照射して電荷を持たない原子ビームを生成して、 その原子ビームをダイヤモンド、超硬合金またはサーメットの基材上に照射すること で周期律表 4a族元素の炭化物、窒化物、炭窒化物、フッ素および酸素よりなる群か ら選択される少なくとも一種カゝら構成される薄膜を形成することを特徴とする被覆部 材の製造方法。 [9] Supply the raw material gas of the thin film into a vacuum chamber maintained at a predetermined degree of vacuum, This raw material gas is irradiated with a laser to generate an atomic beam having no charge, and the atomic beam is irradiated onto a diamond, cemented carbide or cermet base material, thereby forming carbides and nitrides of Group 4a elements of the periodic table. A method for producing a covering member, comprising: forming a thin film composed of at least one member selected from the group consisting of materials, carbonitrides, fluorine, and oxygen.
[10] 真空槽内への原料ガスの供給を間歇的に行い、 [10] Supply of raw material gas into the vacuum chamber is performed intermittently.
前記原料ガスの供給に同期するレーザを真空槽内に供給された原料ガスに照射し て電荷を持たない原子ビームを生成することを特徴とする請求の範囲第 9項に記載 の被覆部材の製造方法。  The production of a coated member according to claim 9, wherein a laser beam synchronized with the supply of the source gas is applied to the source gas supplied into the vacuum chamber to generate an atom beam having no charge. Method.
[11] 原子ビームのエネルギーが 3〜20eVであることを特徴とする請求の範囲第 9項また は第 10項に記載の被覆部材の製造方法。 [11] The method according to claim 9 or 10, wherein the energy of the atomic beam is 3 to 20 eV.
[12] 真空槽内の圧力を 1 X 10— 4〜1 X 10— 8Paとすることを特徴とする請求の範囲第 9項ま たは第 10項に記載の被覆部材の製造方法。 [12] The claims ninth Koma other, characterized in that a 1 X 10- 4 ~1 X 10- 8 Pa the pressure in the vacuum chamber producing method of the covering member according to Section 10.
PCT/JP2005/007091 2004-04-15 2005-04-12 Coated member and method for manufacture thereof WO2005099944A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-120710 2004-04-15
JP2004120710 2004-04-15
JP2005-087320 2005-03-24
JP2005087320A JP2005324319A (en) 2004-04-15 2005-03-24 Diamond member and its manufacture method
JP2005087321 2005-03-24
JP2005-087321 2005-03-24

Publications (1)

Publication Number Publication Date
WO2005099944A1 true WO2005099944A1 (en) 2005-10-27

Family

ID=35149833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007091 WO2005099944A1 (en) 2004-04-15 2005-04-12 Coated member and method for manufacture thereof

Country Status (1)

Country Link
WO (1) WO2005099944A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073452A (en) * 1993-06-15 1995-01-06 Ebara Corp Film forming device by high-speed atomic beam sputtering
JPH07263766A (en) * 1994-03-24 1995-10-13 Agency Of Ind Science & Technol Growth of metal nitride single crystal thin film and apparatus therefor
JP2000212766A (en) * 1998-07-24 2000-08-02 Agency Of Ind Science & Technol Method for forming ultrafine particles into film
JP2004042192A (en) * 2002-07-11 2004-02-12 Sumitomo Electric Ind Ltd Coated cutting tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073452A (en) * 1993-06-15 1995-01-06 Ebara Corp Film forming device by high-speed atomic beam sputtering
JPH07263766A (en) * 1994-03-24 1995-10-13 Agency Of Ind Science & Technol Growth of metal nitride single crystal thin film and apparatus therefor
JP2000212766A (en) * 1998-07-24 2000-08-02 Agency Of Ind Science & Technol Method for forming ultrafine particles into film
JP2004042192A (en) * 2002-07-11 2004-02-12 Sumitomo Electric Ind Ltd Coated cutting tool

Similar Documents

Publication Publication Date Title
JP4560964B2 (en) Amorphous carbon coated member
Vereschaka et al. Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools
JP5056949B2 (en) Covering member
KR101384421B1 (en) Surface-coated cutting tool
CN108883481B (en) Coated cutting tool
JP5715661B2 (en) Hard coating and method for manufacturing hard coating
JP2007001007A (en) Composite coating film for finishing hardened steel
JP2002144110A (en) Surface coat boron nitride sintered body tool
EP2935647B1 (en) Coated cutting tool and method for manufacturing the same
EP2935653B1 (en) Coated cutting tool and method for manufacturing the same
KR20200019199A (en) Sheath cutting tool
JP2009203485A (en) Coating member
WO2014142190A1 (en) Hard film, hard film covered member, and method for manufacturing hard film and hard film covered member
EP4292735A1 (en) Coated tool
JP6034579B2 (en) Durable coated tool
Kursuncu et al. Wear behavior of multilayer nanocomposite TiAlSiN/TiSiN/TiAlN coated carbide cutting tool during face milling of inconel 718 superalloy
KR101503128B1 (en) Surface-coated cutting tool
CN110603342A (en) Metal cutting tool with multi-layer coating
JPH05116003A (en) Tool member excellent in chipping resistance
JP5212416B2 (en) Amorphous carbon coated member
JP2012193406A (en) Exchangeable cutting tip, cutting method using the same, and method for producing exchangeable cutting tip
WO2005099944A1 (en) Coated member and method for manufacture thereof
JP2005324319A (en) Diamond member and its manufacture method
JP5680465B2 (en) Cutting edge exchangeable cutting tip, cutting method using the same, and manufacturing method of cutting edge exchangeable cutting tip
US20200406365A1 (en) Cutting tool and method for manufacturing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase