明 細 書 リボソームを鍀型とする中空ナノ粒子の作製方法 技術分野 Description Method for producing hollow nanoparticles with ribosomes as type II
本発明は、 リボソーム等の脂質膜の表面に少なくとも 1つのポリマーを含む化 合物を積層させることによりナノサイズの中空粒子を作製する方法および該方法 により作製された少なくとも 1つのポリマーを含む化合物が表面に積層されたリ ポソームからなるナノサイズの中空粒子に関する。 背景技術 The present invention provides a method for producing nano-sized hollow particles by laminating a compound containing at least one polymer on the surface of a lipid membrane such as a ribosome, and a compound containing at least one polymer produced by the method. It relates to nano-sized hollow particles composed of liposomes stacked on the surface. Background art
近年、 新時代の科学技術のドライビングフォースとしてナノテクノロジーが注 目されている。 In recent years, nanotechnology has been attracting attention as a driving force for a new era of science and technology.
ナノテクノロジーとは、 ナノメートルオーダ一での極微細な場において、 原子 や分子などの構造制御によって超微細 ·高機能 ·低エネルギー消費の新材料、 デ バイス、 およびシステムを創造することである。 一般的にナノメートルオーダー 以下の領域では約 100種類の原子があるだけであり、 個性に乏しい世界であると いえる。 それに対してナノメートルオーダー""の領域では、 原子が配列され分子を 形成し様々な特性を持つことが可能となる。 例として炭素からなる多種の物質が あげられる。 タイヤモンドやグラフアイト ·カーボンナノチュ ^ブ ·フラーレン はすべて炭素が構成要素であるにもかかわらず、 それぞれの特性は大きく異なる。 炭素原子単体ではない特性が、 炭素原子同士の空間的な組み合わさり方により、 ナノメートル領域では様々は特性を示していると言うことがわかる。 また生体内 における例として DNAが挙げられる。 DNAも数種の原子が配列したものであるのに も関わらず、 生体内で遺伝情報をつかさどる大きな役割を担っている。 DNAにお ける塩基配列が少し異なるだけで生体の個性が大きく異なってくる。 つまりナノ メートルオーダーでの DNAの小さな変化が、 巨視的な領域では大きな変化をもた らすということになる。 このように、 様々な個体を形成する上での根本的情報が ナノメートル領域に蓄積されているといえる。 ナノテクノロジーとはこのナノメ
—トル領域での分子の制御を試み、 様々な個体における現象の解明 ·新規物質の 開発などに広く用いられる技術である。 Nanotechnology is the creation of new materials, devices, and systems that use ultra-fine, high-performance, and low-energy consumption by controlling the structure of atoms and molecules in ultra-fine fields on the order of nanometers. Generally, there are only about 100 types of atoms in the region below the nanometer order, and it can be said that this is a world with poor individuality. On the other hand, in the nanometer-order "" region, atoms are arranged to form molecules and have various properties. Examples include various substances consisting of carbon. Diamonds, graphite, carbon nanotubes, and fullerenes all differ greatly in their properties, even though carbon is a constituent. It can be seen that characteristics that are not carbon atoms alone show various characteristics in the nanometer range depending on the spatial combination of carbon atoms. In addition, DNA is mentioned as an example in vivo. Despite the fact that DNA is a sequence of several atoms, it plays a major role in controlling genetic information in vivo. Even a slight difference in the base sequence of DNA greatly changes the individuality of living organisms. In other words, a small change in DNA on the order of nanometers will cause a large change in a macroscopic region. In this way, it can be said that the fundamental information for forming various individuals is accumulated in the nanometer range. What is nanotechnology? —It is a technology widely used to try to control molecules in the torr region, elucidate phenomena in various individuals, and develop new substances.
現在多岐にわたりナノテクノロジ一の考え方が利用されているが、 その中の一 つとして、 生命科学におけるナノテクノロジ一がある。 生体内は非常に小さなも のから大きなサイズのものへ組み上げていく 「ボトムアップ」 と呼ばれる方式を とり創造されている場合が多い。 例えば生体内においてタンパク質が DNAの塩基 配列によって制御されて、 個体を形成していることはまさにボトムアップ方式に よる構築といってよいであろう。 現在このようなナノテクノロジーにおけるポト ムアツプの考え方を利用しナノサイズの微粒子などを組織化することで、 生体内 の自己組織化挙動の解明や新規バイオマテリアルの開発等の研究が行われている。 このような研究の材料としてナノサイズの粒子を適当な高分子材料で被覆した 粒子の開発が試みられている。 At present, the concept of nanotechnology is widely used, and one of them is nanotechnology in life science. Living organisms are often created using a method called “bottom-up” in which a very small one is assembled into a large one. For example, the fact that proteins are controlled in vivo by the DNA base sequence to form an individual can be said to be exactly a bottom-up construction. At present, research is being conducted on elucidation of self-organizing behavior in vivo and development of new biomaterials by organizing nano-sized fine particles using the concept of nanotechnology in nanotechnology. As a material for such research, the development of particles in which nano-sized particles are coated with an appropriate polymer material has been attempted.
例えば、 非荷電中空ポリマーカプセルを荷電を有する界面活性剤で被覆し、 さ らにその上に荷電を有する高分子物質を積層させることが報告されている (特許 文献 1参照) 。 また、 金属粒子上にポリマーを積層させ、 積層させたポリマーの みを製造する技術も報告されている (非特許文献 1参照) 。 また、 荷電を有する シリカ粒子等の表面に適当な界面活性剤やポリマーを結合させたという報告があ る (非特許文献 2参照) 。 For example, it has been reported that an uncharged hollow polymer capsule is coated with a charged surfactant, and a charged polymer substance is laminated thereon (see Patent Document 1). In addition, a technique has been reported in which a polymer is laminated on metal particles and only the laminated polymer is produced (see Non-Patent Document 1). In addition, there is a report that an appropriate surfactant or polymer is bonded to the surface of charged silica particles or the like (see Non-Patent Document 2).
しかしながら、 これらの従来の検討においては、 ナノサイズ粒子は金属粒子や シリカ粒子等の硬い粒子であったり、 また粒子に結合させるポリマー等も 1層の みであり、 その用途もィムノアッセィへの使用等に限られており、 多くの用途に 適するものではなかった。 However, in these conventional studies, the nano-sized particles are hard particles such as metal particles and silica particles, and the polymer to be bonded to the particles has only one layer. And was not suitable for many uses.
ナノサイズの粒子として、 薬物の輸送担体や放出担体として、 リボソームが使 用されている。 しかしながら、 リボソームをこのような用途に用いようとして、 リボソーム中に薬剤を封入する場合、 リボソーム自体の強度が低いため破裂して しまうという問題があった。 Ribosomes are used as nano-sized particles and as drug transport and release carriers. However, when the ribosome is used for such a purpose, when the drug is encapsulated in the ribosome, there is a problem that the ribosome itself is ruptured due to its low strength.
静電的相互作用によりポリマーを一層だけ吸着させた例がある (非特許文献 3 参照) 。 これはリボソームに部分的にポリマーが吸着していることにより、 分散 安定性が向上するために行われたものであり、 中空粒子を作製することを意図し
て行ったものではない。 さらに、 一層のポリマ一ではそもそも安定な中空層を形 成させることはできない。 - 特許文献 1 特表 2003-519565号公報 There is an example in which only one polymer is adsorbed by electrostatic interaction (see Non-Patent Document 3). This was done to improve the dispersion stability by partially adsorbing the polymer to the ribosome, and was intended to produce hollow particles. It's not something I've done. Furthermore, a single layer of polymer cannot form a stable hollow layer in the first place. -Patent Document 1 JP 2003-519565 Gazette
特許文献 1 Ant ipov. A. A. et al. , Col loids and Surfaces A: Phys icochem. Eng. Aspects 224 (2003) 175-183 Patent Document 1 Ant ipov.A.A. et al., Colloids and Surfaces A: Phys icochem.Eng.Aspects 224 (2003) 175-183
非特許文献 2 Caruso F. / Adv. Mater, 2001, 13, No. 1, January 5 非特許文献 3 Ge L. et al. , Col loids and Surfaces A, Phys icochem. Eng. Aspects 221 (2003) 49-53 発明の開示 Non-Patent Document 2 Caruso F. / Adv. Mater, 2001, 13, No. 1, January 5 Non-Patent Document 3 Ge L. et al., Col loids and Surfaces A, Phys icochem. Eng. Aspects 221 (2003) 49 -53 Disclosure of the Invention
本発明は、 表面に少なくとも 1つのポリマーを含む化合物が 2層以上積層した リボソーム、 その製造方法およびその利用の提供を目的とする。 An object of the present invention is to provide a ribosome having at least two layers of a compound containing at least one polymer on the surface, a method for producing the ribosome, and use thereof.
本発明者らは、 ボトムアップ方式による、 微粒子の新規作製方法の開発、 およ びそれら微粒子から構造体を組み上げることによる新規機能性マテリアルの構築 を試みた。 まず、 ナノサイズの微粒子に着目し、 リボソームをテンプレートとし てサイズの均一な生体由来成分からなる中空ナノ粒子作製を行った。 リボソーム は、 脂質組成やナノメートルサイズの制御が容易であり、 表面修飾なども可能で あることから、 生体膜モデルとして脂質の物性研究や透過性の研究 ·膜の構造と 機能の研究材料 ·輸送系タンパク質や膜を介して情報伝達するタンパク質の構造 と機能の研究材料 ·糖脂質やコレステロールと結合して作用を発揮する毒素や薬 物の作用機序の解明などに用いられてきた。 また、 近年ではリボソームの内部に 封入できる物質が、 酵素やプラスミドなどの高分子、 また疎水性や両親媒性物質 なども安定に脂質二重膜中で保持されることが明らかとなった。 このことからリ ポソームのキャリアとしての有効性が注目を浴びている。 このような特性を活か しリボソームは医学分野において、 基礎医学 ·診断,治療 ·予防などの医学分野 で研究がなされている。 本発明者らは、 Dimyris toyl phosphat idylchol ine The present inventors have attempted to develop a novel method for producing fine particles by a bottom-up method and to construct a novel functional material by assembling a structure from the fine particles. First, we focused on nano-sized fine particles and prepared hollow nanoparticles consisting of biologically-derived components with uniform size using ribosomes as templates. Since ribosomes can easily control lipid composition and nanometer size, and can be modified on the surface, they can be used as a biological membrane model to study lipid properties and permeability.Material structure and function research and transport. Materials for studying the structure and function of systemic proteins and proteins that transmit information through membranes. ・ They have been used to elucidate the mechanism of action of toxins and drugs that exert their actions by binding to glycolipids and cholesterol. In recent years, it has been clarified that substances that can be encapsulated in ribosomes can be stably retained in lipid bilayers, including macromolecules such as enzymes and plasmids, and hydrophobic and amphiphilic substances. For this reason, the effectiveness of liposomes as carriers has attracted attention. Utilizing these characteristics, ribosomes are being studied in the medical field, such as basic medicine, diagnosis, treatment, and prevention. The present inventors have proposed that Dimyris toyl phosphat idylchol ine
(DMPC)と Di lauroyl phosphat idylac id (DLPA)を構成脂質としてリボソームを作 製した。 DMPCは中性条件で負電荷と正電荷を同時に一箇所ずつ有し、 全体として 中性である。 一方 DLPAは正電荷を持たないために中性条件下で負電荷を示す。 こ
れら二つの脂質からなるリボソームは全体として負電荷を示す。 リボソームに電 荷を付与することは、 静電的反発によりリポソ一ム同士の凝集を防ぐことができ るとともに、 リボソーム表面上に静電相互作用を利用した吸着に利用できる吸着 サイトを作り出すことを可能とする。 Ribosomes were prepared using (DMPC) and Di lauroyl phosphat idylac id (DLPA) as constituent lipids. DMPC has one negative charge and one positive charge at the same time under neutral conditions, and is neutral as a whole. On the other hand, DLPA shows a negative charge under neutral conditions because it has no positive charge. This The ribosome composed of these two lipids has a negative charge as a whole. Applying a charge to the ribosome not only prevents liposomes from aggregating due to electrostatic repulsion, but also creates an adsorption site on the ribosome surface that can be used for adsorption using electrostatic interaction. Make it possible.
さらに、 本発明者らはこのような負に荷電しているリボソーム表面に異なる電 荷を持つ物質を L aye r-by-L aye r吸着させることを試みた。 L ay e r-by-Laye r (交互 吸着法)とは水溶性高分子鎖が有する多くの電荷に着目し、 それらと反対の電荷 を有する高分子と静電的な相互作用を利用することで、 層を逐次的に積層させる 技術である。 電荷を持ったテンプレー卜と高分子電解質とが系内に存在した場合、 高分子電解質はそれぞれ固有の臨界濃度を越えたとき、 協奏的にテンプレー卜へ 吸着する。 この際テンプレートの電荷量以上に高分子電解質が過剰に吸着するた めに表面電荷の逆転が起こる。 Further, the present inventors have attempted to adsorb a substance having a different charge to such a negatively charged ribosome surface in a Layer-by-Layer manner. Layer-by-Layer (alternative adsorption method) focuses on the many charges of a water-soluble polymer chain and uses the electrostatic interaction with a polymer having the opposite charge. In this technology, layers are sequentially stacked. When a charged template and a polymer electrolyte are present in the system, the polymer electrolytes cooperatively adsorb to the template when their respective critical concentrations exceed their respective critical concentrations. At this time, the surface charge is reversed because the polymer electrolyte is excessively adsorbed in excess of the charge amount of the template.
このように、 リボソーム表面に物質を吸着させることにより、 リポソ一ム自体 の強度を高めることができた。 Thus, by adsorbing the substance on the ribosome surface, the strength of the liposome itself could be increased.
また、 もう一つの特徴として、 吸着質として合成高分子だけでなくタンパク質 や核酸などの生体高分子にも適用できるという点にある。 生体高分子を用いるこ とで、 生体適合性を持った薄膜や粒子などを作製することが可能となる。 特にリ ポソーム表面の積層膜中に刺激応答性を付与することにより、 放出制御等種々の 用途に用いることができる。 生体適合性のあるマテリアルを作製するために本発 明者らは、 吸着質としてポリペプチドを選択し、 リボソームとポリペプチドから なるナノ粒子の作製を行った。 Another feature is that it can be applied not only to synthetic polymers but also to biological polymers such as proteins and nucleic acids as adsorbates. The use of biopolymers makes it possible to produce biocompatible thin films and particles. In particular, by imparting stimulus responsiveness to the laminated film on the liposome surface, it can be used for various applications such as controlled release. In order to produce a biocompatible material, the present inventors selected polypeptide as an adsorbate and produced nanoparticles composed of ribosome and polypeptide.
本発明の粒子は、 テンプレートがリボソームであるために作製段階でのサイズ の制御が容易である。 また、 種々の物質を内封することが可能であるため、 キヤ リアとしての応用も期待できる。 表層を形作る物質間の相互作用は静電相互作用 以外にも他の分子間力 ·バイオアフィニティ ·共有結合などによっても構築可能 である。 吸着質のポリマーとしてポリペプチドだけでなく多糖や DNAなどを用い ることもできる。 本研究のように天然由来成分からなる中空ナノ粒子を作製し、 これらを組織化して構造体を構築していくことで、 生体適合性に優れたバイオマ テリアルの創製にもつながる。
すなわち、 本発明は以下の通りである。 Since the template of the present invention is a ribosome, its size can be easily controlled at the stage of preparation. In addition, since it is possible to enclose various substances, it can be expected to be applied as a carrier. Interactions between materials that form the surface layer can be established by other intermolecular forces, bioaffinities, covalent bonds, etc., in addition to electrostatic interactions. As the polymer of the adsorbate, not only a polypeptide but also a polysaccharide or DNA can be used. By producing hollow nanoparticles composed of naturally occurring components and organizing them to construct a structure as in this study, it will lead to the creation of biomaterials with excellent biocompatibility. That is, the present invention is as follows.
[ I ] 表面に少なくとも 1つのボリマーを含む化合物が 2層以上積層されたリポ ゾーム、 [I] a liposome in which at least two compounds containing at least one polymer are laminated on the surface,
[ 2 ] 化合物が生体適合性ポリマーである [ 1 ]のリボソーム、 [2] The ribosome of [1], wherein the compound is a biocompatible polymer,
[ 3 ] 化合物が生体分解性ポリマーである [ 1 ]のリボソーム、 [3] The ribosome of [1], wherein the compound is a biodegradable polymer,
[4] 化合物がタンパク質、 ポリアミノ酸、 多糖類および核酸からなる群から選 択される少なくとも一つである [1]から [3]のいずれかのリボソーム、 [4] the ribosome according to any of [1] to [3], wherein the compound is at least one selected from the group consisting of proteins, polyamino acids, polysaccharides, and nucleic acids;
[5] 正または負に荷電したリボソームに、 負または正に荷電した化合物を交互 に静電相互作用により積層させたことを特徴とする [1]から [4]のいずれかのリ ポソーム、 [5] The liposome according to any one of [1] to [4], wherein a negatively or positively charged compound is alternately stacked on a positively or negatively charged ribosome by electrostatic interaction.
[6] リボソームが負に荷電したリボソームであって、 リボソームの構成脂質と して、 フォスファチジン酸、 ホスファチジルグリセ口一ル類、 ホスファチジルセ リン類およびホスファチジルイノシトール類からなる群から選択される脂質の少 なくとも 1種類を含む、 [5]のリボソーム、 [6] A ribosome in which the ribosome is negatively charged, and a lipid selected from the group consisting of phosphatidic acid, phosphatidylglycerols, phosphatidylserine, and phosphatidylinositol as a constituent lipid of the ribosome. The ribosome of [5], including at least one of
[7] リボソームの構成脂質が、 ジラウロイルフォスファチジン酸 (DLPE)であ る [6]のリボソーム、 [7] The ribosome according to [6], wherein the constituent lipid of the ribosome is dilauroylphosphatidic acid (DLPE),
[8] 負に荷電した化合物がポリ - L-リシン、 ヒアルロン酸および核酸からなる 群から選択され、 正に荷電した化合物がポリ -L -アルギニン酸、 キトサンからな る群から選択される [5]から [7]のいずれかのリボソーム、 [8] The negatively charged compound is selected from the group consisting of poly-L-lysine, hyaluronic acid and nucleic acid, and the positively charged compound is selected from the group consisting of poly-L-arginic acid and chitosan [5 ] To any of the ribosomes of [7],
[9] 反応性の官能基を有するリボソームに、 化学結合を介して少なくとも 1つ のポリマーを含む化合物を交互に積層させたことを特徴とする [1]から [4]のい ずれかのリボソーム、 [9] The ribosome according to any of [1] to [4], wherein a compound containing at least one polymer is alternately stacked on the ribosome having a reactive functional group via a chemical bond. ,
[10] 分子間力がリボソームと化合物間または化合物と化合物間に働くことを 利用して化合物を交互に積層させたことを特徴とする [ 1 ]から [4]のいずれかの リボソーム、 [10] The ribosome according to any one of [1] to [4], wherein the compounds are alternately stacked by utilizing intermolecular force acting between the ribosome and the compound or between the compound and the compound.
[I I] 分子間力が核酸の相補的な水素結合によるものである [10]のリポソ一 ム、 [I I] The liposome of [10], wherein the intermolecular force is due to complementary hydrogen bonding of the nucleic acid,
[12] リボソーム中に薬剤、 蛍光物質、 生理活性物質、 および色素からなる群 から選択される物質が封入された、 [1]から [11]のいずれかのリボソーム、
[13] 生理活性物質がタンパク質または DNAである、 [12]のリボソーム、 [14] リボソーム表面に積層された少なくとも 1つのポリマーを含む化合物中 に半導体ナノ粒子が含まれている [1]から [13]のいずれかのリボソーム、 [12] The ribosome according to any of [1] to [11], wherein the ribosome contains a substance selected from the group consisting of a drug, a fluorescent substance, a bioactive substance, and a dye. [13] The ribosome according to [12], wherein the physiologically active substance is a protein or DNA; [14] The semiconductor nanoparticle is contained in a compound containing at least one polymer laminated on the surface of the ribosome [1] to [ 13] any of the ribosomes,
[15] 正または負に荷電したリボソームを調製し、 該リポソ一ム表面に負また は正に荷電した化合物を静電相互作用により交互に結合させることを含む、 表面 にポリマーが 2層以上積層されたリボソームを製造する方法、 [15] preparing a positively or negatively charged ribosome and alternately bonding a negatively or positively charged compound to the liposome surface by electrostatic interaction, and laminating two or more layers of polymer on the surface A method for producing a ribosome,
[16] 化合物が生体適合性ポリマーである [15]の表面に化合物が 2層以上積 層されたリボソームを製造する方法、 [16] A method for producing ribosomes in which a compound is a biocompatible polymer [15], wherein two or more layers of the compound are stacked on the surface,
[17] 化合物がタンパク質、 ポリアミノ酸、 多糖類および核酸からなる群から 選択される少なくとも一つである [15]または [16]の表面に少なくとも 1つの ポリマーを含む化合物が 2層以上積層されたリボソームを製造する方法、 [17] The compound is at least one selected from the group consisting of proteins, polyamino acids, polysaccharides, and nucleic acids. [15] or [16] has at least two layers of compounds containing at least one polymer on the surface. A method for producing ribosomes,
[18] リボソームが負に荷電したリボソームであって、 リボソームの構成脂質 として、 フォスファチジン酸、 ホスファチジルグリセロール類、 ホスファチジル セリン類およびホスファチジルイノシトール類からなる群から選択される脂質の 少なくとも 1種類を含む、 [15]から [17]のいずれかの表面に少なくとも 1つ のポリマ二を含む化合物が 2層以上積層されたリポゾームを製造する方法、 [18] The ribosome is a negatively charged ribosome, and the ribosome comprises at least one lipid selected from the group consisting of phosphatidic acid, phosphatidylglycerols, phosphatidylserines, and phosphatidylinositols A method of producing a liposome in which at least one compound containing at least one polymer 2 is laminated on at least two layers on the surface of any of [15] to [17],
[19] リボソームの構成脂質が、 ジラウロイルフォスファチジン酸 (DLPE) で ある [15]から [18]のいずれかの表面に少なくとも 1つのポリマ一を含む化合 物が 2層以上積層されたリボソームを製造する方法、 [19] The liposome is composed of dilauroylphosphatidic acid (DLPE) whose constituent lipid is dilauroylphosphatidic acid (DLPE). A ribosome in which two or more layers of a compound containing at least one polymer are laminated on one of the surfaces How to manufacture the
[20] 負に荷電した化合物がポリ- L-リシン、 ヒアルロン酸および核酸からな る群から選択され、 正に荷電した化合物がポリ - L-アルギニン酸、 キトサンから なる群から選択される [15]から [19]のいずれかの表面に少なくとも 1つのポ リマ一を含む化合物が 2層以上積層されたリポソームを製造する方法、 [20] The negatively charged compound is selected from the group consisting of poly-L-lysine, hyaluronic acid and nucleic acids, and the positively charged compound is selected from the group consisting of poly-L-arginic acid and chitosan [15] ] To [19], a method for producing a liposome in which at least one compound containing at least one polymer is laminated on at least two layers on the surface of any of [19].
[21] 架橋性物質を用いて化合物からなる積層を化学的に架橋したリボソーム、 [22] [1]から [.14]のいずれかのリボソームを表面の化合物の架橋により集 合させた固体の架橋型リボソーム、 ならびに [21] A ribosome obtained by chemically cross-linking a stack of compounds using a cross-linkable substance. [22] A solid ribosome obtained by assembling the ribosomes of any of [1] to [.14] by cross-linking the compound on the surface. Cross-linked ribosomes, and
[23] シート状またはチューブ状の形状を有する [22]の固体の架橋型リポソ ーム。 [23] The solid crosslinked liposome according to [22], which has a sheet or tube shape.
本明細書は本願の優先権の基礎である日本国特許出願 2004-1136350号の明細書
および/または図面に記載される内容を包含する 図面の簡単な説明 This specification is a description of Japanese Patent Application No. 2004-1136350, which is the basis of the priority of the present application. And / or a brief description of the drawing (s), including the content described in the drawings.
図 1は、 リボソームの調製方法を示す図である。 FIG. 1 is a diagram showing a method for preparing ribosomes.
図 2は、 脂質の流動性を示す図である。 右は T>Tcの脂質結晶相を、 左は Tく Tc (ゲル相) を、 中央は T=Tcを示す。 FIG. 2 is a diagram showing the fluidity of lipids. The right shows the lipid crystal phase of T> Tc, the left shows Tc Tc (gel phase), and the center shows T = Tc.
図 3は、 Tc以上におけるリボソーム中の脂質分子の運動性を示す図である。 図 中、 (a)は側方拡散を、 (b)は異方性軸回転運動を、 (c)はフリツプフ口ップを示 す。 FIG. 3 is a diagram showing the motility of lipid molecules in ribosomes above Tc . In the figure, (a) shows lateral diffusion, (b) shows anisotropic axial rotation, and (c) shows flip-flops.
図 4は、 リン脂質の濃度の検量線を示す図である。 FIG. 4 is a diagram showing a calibration curve of phospholipid concentration.
図 5は、 リボソームの相転移温度を示す図である。 (a)は DLPAリボソームを、 (b)は DMPC/DLPA ( = 1/1 by mol) リボソームを、 (c)は DMPCリボソームを示す。 図 6は、 リポソームの FE-TEM観察像を示す写真である。 FIG. 5 is a diagram showing a ribosome phase transition temperature. (A) shows DLPA ribosome, (b) shows DMPC / DLPA (= 1/1 by mol) ribosome, and (c) shows DMPC ribosome. FIG. 6 is a photograph showing an FE-TEM observation image of the liposome.
図 7は、 リポソームへのポリべプチドの吸着の様子を示す図である。 FIG. 7 is a diagram showing the state of adsorption of polypeptide to liposomes.
図 8は、 CBQACとァミンの反応様式を示す図である。 FIG. 8 is a diagram showing a reaction mode between CBQAC and amine.
図 9は、 リボソームとポリぺプチドの複合体とポリぺプチドの超遠心による分 離を示す図である。 FIG. 9 is a diagram showing separation of a complex of ribosome and polypeptide and polypeptide by ultracentrifugation.
図 1 0は、 円二色測定の原理を示す図である。 FIG. 10 is a diagram illustrating the principle of the circular two-color measurement.
図 1 1は、 CBQACタンパク質アツセィによる Plysの検量線を示す図である。 Figure 1 1 is a diagram showing a calibration curve of P lys by CBQAC protein Atsusi.
図 1 2は、 DLPA (上) および DMPC (下) の構造を示す図である。 FIG. 12 is a diagram showing the structures of DLPA (top) and DMPC (bottom).
図 1 3は、 リボソーム上の Plysの吸着等温線を示す図である。 FIG. 13 is a diagram showing an adsorption isotherm of Polys on the ribosome.
図 1 4は、 遠心後のリボソームとポリ- L-リシン複合体の SEMを示す写真である。 図 1 5は、 ポリ- L -リシン量が異なる場合のリボソームとポリ- L-リシン複合体 同士の相互作用を示す図である。 (a)は 5〜20ppm、 (b)は 50〜 100ppm、 (c)はFIG. 14 is a photograph showing an SEM of the ribosome and poly-L-lysine complex after centrifugation. FIG. 15 is a diagram showing the interaction between the ribosome and the poly-L-lysine complex when the amount of poly-L-lysine is different. (A) is 5~ 2 0ppm, (b) is 50~ 100ppm, (c) is
200ρρπ!〜 2000ppmである。 200ρρπ! ~ 2000 ppm.
図 1 6は、 遠心後のリボソームとポリ- L-リシン複合体を示す写真である。 (a) は、 HPTSを含む DLPA/DMPO0. 5/0. 5リポソームを使用した場合であり、 (b)は、 FIG. 16 is a photograph showing the ribosome and poly-L-lysine complex after centrifugation. (A) is the case where DLPA / DMPO 0.5 / 0.5 liposome containing HPTS is used, and (b) is
DLPA/DMPC=0. 5/0. 5リボソームを使用した場合である。 DLPA / DMPC = 0.5 / 0.5 This is the case where ribosomes are used.
図 1 7は、 各温度おょぴ pHでのポリ- L-リシンの構造を示す図である。
図 1 8は、 ポリ- L -リシンの CDスペクトルを示す図である。 ①は、 ランダムコ ィル (pH7. 4, 20°C ) 、 ②は《ニヘリックス (pHl l. 4, 20°C ) 、 ③は、 /3 -構造 (pHl l. 4, 65°C→20 ) である。 FIG. 17 is a diagram showing the structure of poly-L-lysine at each temperature and pH. FIG. 18 is a diagram showing a CD spectrum of poly-L-lysine. ① is a random coil (pH 7.4, 20 ° C), ② is a << helix (pH 11; 4, 20 ° C), ③ is a / 3-structure (pH 11 4, 65 ° C → 20).
図 1 9は、 リボソーム存在下でのポリ -L-リシンの CDスペクトルを示す図であ る (ポリ- L-リシン濃度は 50ppm) 。 FIG. 19 is a diagram showing a CD spectrum of poly-L-lysine in the presence of ribosome (poly-L-lysine concentration is 50 ppm).
図 2 0は、 195〜200ηπι範囲での平均モル楕円率を示す図である。 FIG. 20 is a diagram showing the average molar ellipticity in the range of 195 to 200ηπι.
図 2 1は、 リボソーム存在下でのポリ- L-リシンの CDスペクトルを示す図であ る (ポリ- L-リシン濃度は 400ppm) 。 FIG. 21 shows a CD spectrum of poly-L-lysine in the presence of ribosome (poly-L-lysine concentration: 400 ppm).
図 2 2は、 195〜200nm範囲での平均モル楕円率を示す図である。 FIG. 22 is a diagram showing the average molar ellipticity in the range of 195 to 200 nm.
図 2 3は、 DLPA/DMPCリボソーム表面で誘導される ;6構造を示す図である。 FIG. 23 shows a structure induced on the surface of DLPA / DMPC ribosome; FIG.
図 2 4は、 リボソームとポリ -L-リシンの複合体の FE-TEM観察像を示す写真で ある。 , FIG. 24 is a photograph showing an FE-TEM observation image of a complex of ribosome and poly-L-lysine. ,
図 2 5は、 リボソームとポリ- L-リシンとポリ-ァスパラギン酸の複合体の FE - TEM観察像を示す写真である。 FIG. 25 is a photograph showing an FE-TEM observation image of a complex of ribosome, poly-L-lysine, and poly-aspartic acid.
図 2 6は、 それぞれのポリペプチドを積層させたときのリボソームの ζポテン シャルを示す図である。 ρΗ7. 4、 25°Cおよび DLPA/DMPC ). 5/0. 5の場合である。 図 2 7は、 リボソームとポリ- L-リシンの複合体およびリボソームとポリ- L -リ シンとポリ-ァスパラギン酸の複合体の混合物の FE-TEM観察像を示す写真である。 図中のスケ一ルバ一は、 (a)が 0. 2 III、 (b)が lOOnmである。 FIG. 26 is a diagram showing the ribopotential of ribosomes when each polypeptide is laminated. ρΗ7.4, 25 ° C and DLPA / DMPC). 5 / 0.5. FIG. 27 is a photograph showing FE-TEM observation images of a complex of ribosome and poly-L-lysine and a mixture of ribosome, poly-L-lysine and poly-aspartic acid. In the scale of the figure, (a) is 0.2 III and (b) is 100 nm.
図 2 8は、 リボソームおよびリボソームとポリ -L -リシンの複合体の混合物の FE- TEM観察像を示す図である。 図中のスケールバーは、 0. Ι ΠΙである。 FIG. 28 is a diagram showing an FE-TEM observation image of ribosome and a mixture of ribosome and a complex of poly-L-lysine. The scale bar in the figure is 0. Ι ΠΙ.
図 2 9は、 リボソームにポリ- L-リシン、 ポリ-ァスパラギン酸およびポリ - L- リシンの順で積層させたものの FE-TEM観察像を示す写真である。 図中のスケール バーは、 (a)が lOOnmであり、 (b)が 20nmである。 FIG. 29 is a photograph showing an FE-TEM observation image of a ribosome laminated with poly-L-lysine, poly-aspartic acid and poly-L-lysine in this order. In the scale bar in the figure, (a) is 100 nm and (b) is 20 nm.
図 3 0は、 リボソームにポリ- L-リシン、 ポリ -ァスパラギン酸、 ポリ- L-リシ ンおよびポリ-ァスパラギン酸の順で積層させたものの FE- TEM観察像を示す写真 である。 図中のスケールバ一は、 (a)が lOOnmであり、 (b)が 20mnである。 FIG. 30 is a photograph showing an FE-TEM observation image of a ribosome laminated in the order of poly-L-lysine, poly-aspartic acid, poly-L-lysine, and poly-aspartic acid. In the scale bar in the figure, (a) is 100 nm and (b) is 20 nm.
図 3 1は、 それぞれのポリペプチドを積層させたときのリボソームの ζポテン シャルを示す図である。
図 3 2は、 半導体ナノ粒子 (ナノ粒子蛍光体) を含む表面にポリマーが 2層以 上積層されたリボソームを示す図である。 FIG. 31 is a diagram showing the ribopotential of ribosomes when the respective polypeptides are laminated. Figure 32 is a diagram showing a ribosome in which two or more layers of polymer are stacked on the surface containing semiconductor nanoparticles (nanoparticle phosphors).
図 3 3は、 リポソ一ム上のポリアリルァミンの吸着等温線を示す図である。 発明を実施するための最良の形態 FIG. 33 is a diagram showing an adsorption isotherm of polyallylamine on a liposome. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の少なくとも 1つのポリマーを含む化合物が表面に積層されたリポソ一 ムは、 リボソームの表面に少なくとも 1つのポリマーを含む化合物が 2層以上積 層されたリボソームである。 The liposome of the present invention in which the compound containing at least one polymer is laminated on the surface is a ribosome in which two or more layers of the compound containing at least one polymer are laminated on the surface of the ribosome.
本発明において、 「リボソーム」 とは、 膜状に集合した脂質層および内部の水 層から構成される膜状の構造物が構成する閉鎖小胞を意味し、 べシクル In the present invention, the term “ribosome” refers to a closed vesicle composed of a membrane-like structure composed of a lipid layer assembled in a membrane and an internal aqueous layer, and a vesicle.
(yes ic le)ともいう。 また、 本発明において、 正に荷電した粒子または正に荷電 したポリマーとは、 生理的 pH、 すなわち pH6. 5から 7. 5付近の水性媒体中において 負荷電よりも多くの正荷電を有する粒子またはポリマーをいい、 負に荷電した粒 子または負に荷電したポリマーとは、 生理的 pH、 すなわち pH6. 5から 7. 5付近の水 性媒体中において正荷電よりも多くの負荷電を有する粒子またはボリマーをいう。 また、 ポリマーとは、 分子内の主鎖が共有結合で結合しており、 分子量が比較的 大きい化合物、 例えば分子量 1万程度以上の化合物をいい、 1種または数種の構 造単位が繰り返し結合、 すなわち重合した重合体を含む。 本発明の少なくとも 1 つのポリマーを含む化合物が 2層以上積層されたリボソームにおいて、 リポソ一 ムに積層される化合物に少なくとも 1つのポリマーが含まれ、 他に低分子化合物、 有機または無機結晶体、 チタン化合物、 磁性体粒子、 蛍光性ナノ粒子等の無機微 粒子が積層されていてもよい。 また、 積層される化合物の総てがポリマーであつ てもよい。 例えば、 n層 (nは 2以上の自然数) からなる少なくとも 1つのポリマ(yes ic le). Further, in the present invention, a positively charged particle or a positively charged polymer refers to a particle or a particle having a larger positive charge than a negative charge in an aqueous medium near physiological pH, that is, pH 6.5 to 7.5. Polymer refers to negatively charged particles or negatively charged polymers.Particles or particles that have more negative charge than positive charge in aqueous medium near physiological pH, i.e., pH 6.5 to 7.5. Bolimer. A polymer is a compound in which the main chain in the molecule is bonded by a covalent bond and has a relatively large molecular weight, for example, a compound having a molecular weight of about 10,000 or more.One or several types of structural units are repeatedly bonded. That is, it includes a polymerized polymer. In a ribosome in which a compound containing at least one polymer of the present invention is laminated on two or more layers, the compound laminated on the liposome contains at least one polymer, and further includes a low-molecular compound, an organic or inorganic crystal, and titanium. Inorganic fine particles such as compounds, magnetic particles, and fluorescent nanoparticles may be laminated. Further, all of the compounds to be laminated may be polymers. For example, at least one polymer consisting of n layers (n is a natural number of 2 or more)
—を含む化合物が積層されたリボソームにおいて、 n層のうちのポリマーの層の 数は l〜nであり、 他はポリマー以外の化合物の層であってもよい。 また、 n層の ポリマーの層が、 内側から数えて何番目の層に存在していてもよい。 以下、 積層 される化合物が総てポリマーの場合について説明するが、 積層される化合物の総 てがポリマーである必要はなく、 低分子化合物等を含んでいてもよい。 すなわち、 以下の説明において、 「ポリマ一」 という語を 「少なくとも 1つのポリマーを含
む化合物」 と置き換えることもできるし、 「ポリマー以外の化合物」 と置き換え ることもできる。 ' In the ribosome in which the compound containing-is laminated, the number of polymer layers out of the n layers is 1 to n, and the other layers may be layers of compounds other than the polymer. Further, the n polymer layers may be present in any number of layers counted from the inside. Hereinafter, the case where all of the compounds to be laminated are polymers will be described. However, it is not necessary that all of the compounds to be laminated are polymers, and low molecular compounds or the like may be included. That is, in the following description, the term "polymer" is used to refer to "including at least one polymer. Can be replaced with “compound other than polymer” or “compound other than polymer”. '
本発明のポリマーが表面に積層されたリボソームにおいて、 第 1層目のボリマ 一はリボソーム表面と相互作用し結合し、 第 2層目のポリマーは第 1層目のポリ マーと相互作用し結合する。 さらに、 ポリマ一を最外層のポリマーと相互作用さ せることによりポリマーは次々に層状に積層する。 リポソームとポリマーとの相 互作用は静電相互作用やファンデルワールス引力等の分子間相互作用でも、 バイ オアフィニティ一でも共有結合でもよい。 例えば、 DNA二重螺旋にみられる相補 的な水素結合等が挙げられる。 好適には、 静電相互作用によりポリマーが積層す る。 静電相互作用により積層する場合、 リボソーム表面が負または正に荷電して いる必要がある。 リポソ一ム表面が負に荷電している場合には、 第 1層のポリマ 一は正に荷電しているものを用い、 第 2層のポリマーは負に荷電しているものを 用いる。 逆にリボソーム表面が正に荷電している場合には、 第 1層のポリマーは 負に荷電しているものを用い、 第 2層のポリマ一は正に荷電しているものを用い る。 このように、 正に荷電しているポリマ一および負に荷電しているポリマーを 交互に積層していけばよい。 共有結合により積層する場合は、 リボソームとポリ マ一およびポリマーとポリマーを適当な官能基等を利用して共有結合させればよ い。 このような官能基として、 例えば SH基、 N¾基、 リン酸基、 力ルポキシル基、 チォ基、 チォカルボン酸基、 ジスルフィド基、 スルホ基、 カルボニル基、 ァシル 基、 ヒドロキシル基、 エーテル基、 アミド基、 アミノ基、 ニトロ基、 イミノ基、 シァノ基、 ビニル基、 フエニル基、 ハロゲン基、 アミジノ基、 イミダゾール基、 グァニジノ基等が挙げられる。 また、 適当な架橋性物質を用いてポリマー鎖から なる積層を化学的に架橋してもよい。 例えば、 リンカ一試薬等を介して共有結合 させてもよい。 共有結合による結合は公知の方法で行うことができる。 In the ribosome having the polymer of the present invention laminated on the surface, the first layer of polymer interacts with and binds to the ribosome surface, and the second layer of polymer interacts with and binds to the first layer of polymer. . Further, the polymers are layered one after the other by interacting the polymer with the outermost layer of the polymer. The interaction between the liposome and the polymer may be an electrostatic interaction or an intermolecular interaction such as van der Waals attraction, or may be a bioaffinity or covalent bond. For example, there are complementary hydrogen bonds and the like found in the DNA double helix. Preferably, the polymer is laminated by electrostatic interaction. When laminating by electrostatic interaction, the ribosome surface must be negatively or positively charged. If the liposome surface is negatively charged, the first layer polymer should be positively charged and the second layer polymer should be negatively charged. Conversely, if the ribosome surface is positively charged, the polymer in the first layer should be negatively charged and the polymer in the second layer should be positively charged. In this way, the positively charged polymer and the negatively charged polymer may be alternately laminated. In the case of lamination by covalent bonding, the ribosome and the polymer and the polymer and the polymer may be covalently bonded using an appropriate functional group or the like. Such functional groups include, for example, SH group, N¾ group, phosphate group, carbonyl group, thio group, thiocarboxylic acid group, disulfide group, sulfo group, carbonyl group, acyl group, hydroxyl group, ether group, amide group, Examples include an amino group, a nitro group, an imino group, a cyano group, a vinyl group, a phenyl group, a halogen group, an amidino group, an imidazole group, and a guanidino group. In addition, the laminate composed of polymer chains may be chemically cross-linked by using an appropriate cross-linking substance. For example, they may be covalently bonded via a linker reagent or the like. Covalent bonding can be performed by a known method.
本発明のリボソームを構成する脂質としては、 例えば、 フォスファチジルコリ ン類、 フォスファチジルエタノールアミン類、 フォスファチジン酸類、 ホスファ チジルセリン類、 ホスファチジルイノシトール類、 長鎖アルキルリン酸塩類、 ガ ングリオシド類、 糖脂質類、 フォスファチジルグリセロール類、 コレステロール 類等が挙げられ、 フォスファチジルコリン類としては、 ジミリストイルフォスフ
ァチジルコリン(DMPC)、 ジパルミトイルフォスファチジルコリン (DPPC) 、 ジス ミン類としては、 ジォレイルフォスファチジルエタノールァミン (DOPE) 、 ジミ リストィルフォスファチジルエタノールァミン、 ジパルミトイルフォスファチジ ルエタノールアミン、 ジステアロイルフォスファチジルエタノールアミン (DSPE) 等が、 フォスファチジン酸類もしくは長鎖アルキルリン酸塩類としては、 Examples of the lipid constituting the ribosome of the present invention include phosphatidylcholines, phosphatidylethanolamines, phosphatidic acids, phosphatidylserines, phosphatidylinositols, long-chain alkyl phosphates, and gangliosides. , Glycolipids, phosphatidylglycerols, cholesterols, etc., and phosphatidylcholines include dimyristoylphosph Apatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and as disamines, dioleylphosphatidylethanolamine (DOPE), dimyristoylphosphatidylethanolamine, dipalmitoylphosphatidyl Phosphatidic acid or long-chain alkyl phosphates such as diethanolamine, distearoylphosphatidylethanolamine (DSPE)
チルリン酸等が、 ホスファチジルセリン類としては、 ジパルミトイルホスファチ ジルセリン等が、 ホスファチジルイノ.シトール類としては、 ジパルミトイルホス ファチジルイノシトール等が、 ガンダリオシド類としては、 ガンダリオシド GM 1、 ガンダリオシド G D l a、 ガンダリオシド G T 1 b等が、 糖脂質類としては、 ガラクトシルセラミド、 ダルコシルセラミド、 ラクトシルセラミド、 フォスファ チド、 グロポシド等が、 フォスファチジルグリセロール類としては、 ジミリスト Tilphosphoric acid, etc., phosphatidylserines, such as dipalmitoylphosphatidylserine, phosphatidylinosylsitols, dipalmitoylphosphatidylinositol, etc. GT 1b, etc .; glycolipids: galactosylceramide, darkosylceramide, lactosylceramide, phosphatide, gloposide, etc .; phosphatidylglycerols: dimyristo
—ル、 ジステアロイルフォスファチジルグリセロール等が好ましい。 このうち、 フォスファチジン酸類もしくは長鎖アルキルリン酸塩類、 ガンダリオシド類もし くは糖脂質類、 コレステロール類はリボソームの安定性を上昇させる効果を有す るので、 構成脂質として添加するのが望ましい。 また、 一本鎖の脂肪酸、 アルコ 一ル等を混ぜてもよい。 さらに、 上記の脂質ばかりではなく、 親水部と疎水部か らなる両親媒性化合物を含んでいてもよい。 この場合、 親水部としてはカチオン 性、 ァニオン性、 非イオン性、 双性イオン性のものいずれも用いることができ、 疎水部としては 2本鎖アルキル等を用いることができる。 これらの脂質や両親媒 性化合物の複数を含んでもよいが、 脂質の脂肪酸の長さ (脂肪酸の炭素骨格の炭 素の数) または両親媒性化合物の疎水部の長さを同程度にすることが望ましい。 第 1層のポリマーをリボソームに静電相互作用に結合させる場合は、 リポソ一 ム表面は負に荷電している必要がある。 リボソーム表面が全体として正または負 に荷電していればよく、 上述のリボソームを構成する脂質等を適当な比率で混合 し、 全体として表面が正または負に荷電するようにすればよい。
リボソーム表面を負に荷電させるためには、 リボソームの構成脂質として負に 荷電した脂質を多く用いればよい'。 負に荷電した脂質として、 ジラウロイルフォ スファチジン酸等のフォスファチジン酸、 ジパルミトイルホスファチジルグリセ ン等のホスファチジルセリン類、 ジパルミトイルホスファチジルイノシトール等 のホスファチジルイノシトール類などが挙げられる。 また、 リボソーム表面を正 に荷電させるためには、 リポソ一ムを構成する脂質として、 正に荷電した脂質を 多く用いればよい。 正に荷電した脂質として、 ステアリルァミンのようなアルキ ルァミン類、 3— /3 _ [N— (Ν ' 、 N ' —ジメチルアミノエタン) 力ルバモイ ル] コレステロールのようなコレステロールのァミン誘導体、 Ν— 一卜リメチ ルアンモニオアセチルジドデシルー D—グル夕メートクロライドのような Ν— a 一トリメチルアンモニオアセチルジ (炭素数 1 0〜2 0のアルキルまたはァルケ ニル) —D—ダル夕メートクロライド類、 Ν— [ 1— ( 2、 3—ジォレイルォキ シ) プロピル] 一 Ν、 Ν、 Ν—トリメチルアンモニゥムクロライドのような Ν _And distearoylphosphatidylglycerol are preferred. Of these, phosphatidic acids or long-chain alkyl phosphates, gandariosides, glycolipids, and cholesterols have the effect of increasing the stability of ribosomes, and are therefore preferably added as constituent lipids. Also, single-chain fatty acids, alcohols and the like may be mixed. Further, it may contain not only the above-mentioned lipid but also an amphiphilic compound composed of a hydrophilic part and a hydrophobic part. In this case, any of cationic, anionic, nonionic and zwitterionic ones can be used as the hydrophilic part, and a double-chain alkyl or the like can be used as the hydrophobic part. These lipids and amphipathic compounds may contain more than one, but the length of the fatty acids of the lipids (the number of carbon atoms in the carbon skeleton of the fatty acids) or the length of the hydrophobic portion of the amphipathic compounds should be the same. Is desirable. The liposome surface must be negatively charged if the first layer polymer is attached to the ribosome by electrostatic interaction. It is sufficient that the ribosome surface is positively or negatively charged as a whole, and the above-mentioned lipids constituting the ribosome may be mixed at an appropriate ratio so that the surface is positively or negatively charged as a whole. In order to make the ribosome surface negatively charged, it is sufficient to use many negatively charged lipids as the constituent lipids of the ribosome '. Examples of the negatively charged lipid include phosphatidic acid such as dilauroyl phosphatidic acid, phosphatidyl serine such as dipalmitoyl phosphatidyl glycerin, and phosphatidylinositol such as dipalmitoyl phosphatidylinositol. Further, in order to positively charge the ribosome surface, a large amount of positively charged lipid may be used as the lipid constituting the liposome. As positively charged lipids, alkylamines such as stearylamine, amide derivatives of cholesterol such as 3- / 3_ [N- (Ν ', N'-dimethylaminoethane) -pothamyl] cholesterol, Ν — Trimethylammonioacetyldidodecyl-D—like glutamate chloride Ν— a Trimethylammonioacetyldi (10- to 20-carbon alkyl or alkenyl) —D—Dalmidomeryl chlorides , Ν— [1— (2,3-dioleoxy) propyl] Ν よ う な, such as Ν, Ν, Ν—trimethylammonium chloride
[ 1 - ( 2、 3—ジ (炭素数 1 0〜 2 0のアルキルまたはアルケニル) ォキシ) プロピル]' 一 Ν、 Ν、 Ν—トリメチルアンモニゥムクロライド類などが挙げられ る。 [1-(2,3-di (alkyl or alkenyl having 10 to 20 carbon atoms) oxy) propyl] 'mono-, di-, tri-trimethylammonium chloride and the like.
また、 リボソームの構成脂質として用いるコレステロールまたはその誘導体に 荷電を有する基を結合させたものを用いることもできる。 例えば、 カルボキシル 基を導入した CHMES (Choles teryl hemisucc inate)を用いることができる。 Alternatively, cholesterol or a derivative thereof used as a constituent lipid of a ribosome and a group having a charge bound thereto may be used. For example, CHMES (Choles teryl hemisucc inate) into which a carboxyl group has been introduced can be used.
また、 本発明でリボソームは種々の用途に用いるため、 ある程度の強度を有し ている必要がある。 従って、 リボソームが必要な強度を有するようにリボソーム を構成する脂質を選択する必要がある。 例えば、 コレステロールまたはその誘導 体の量を変えることにより強度を変えることができる。 In addition, since the ribosome is used for various purposes in the present invention, it needs to have a certain strength. Therefore, it is necessary to select lipids constituting the ribosome so that the ribosome has the required strength. For example, the strength can be changed by changing the amount of cholesterol or a derivative thereof.
リボソームの荷電状態および相転移温度は、 リボソームを構成する脂質の組成 を変えることにより適宜選択することができる。 The charge state and the phase transition temperature of the ribosome can be appropriately selected by changing the composition of the lipid constituting the ribosome.
リボソームまたはポリマーが結合した粒子の荷電は、 例えばコンパクトゼ一夕 電位測定装置 ZEEC0M (マイクロテック ·ニチオン) を用いて ζポテンシャルおよ び Ζまたは ΕΡΜ (電気泳動移動度) を測定すればよい。 粒子の ζポテンシャルお
よび Zまたは EPMが負または正ならば、 その表面に正または負に荷電したポリマ 一が相互作用により結合し得る。' The charge of the ribosome or polymer-bound particles can be measured, for example, using a Compactze overnight potential measuring device ZEEC0M (Microtech Nithion) to measure ζpotential and Ζ or ΕΡΜ (electrophoretic mobility). Ζ potential of particles If the Z and EPM are negative or positive, then a positive or negatively charged polymer may bind to the surface by interaction. '
相転移温度は、 例えば示差走查超高感度カロリーメーターを用いて測定するこ とができる。 The phase transition temperature can be measured, for example, using a differential scanning 查 ultrasensitive calorimeter.
リボソームは、 周知の方法に従い製造することができるが、 これには、 薄膜法、 逆層蒸発法、 エタノール注入法、 脱水一再水和法等を挙げることができる。 また、 超音波照射法、 ェクストルージョン法、 フレンチプレス法、 ホモジナイゼーショ ン法等を用いて、 リボソームの粒子径を調節することも可能である。 本発明のリ ポソーム自体の製法について、 概要を述べると、 例えば、 まずリボソームを構成 する脂質等を含む混合液を蒸留し、 容器内面に脂質膜を形成させ適当なバッファ 一に溶解させる。 次いで、 凍結融解を数回繰り返したのち、 ェクストクルージョ ン により所望の粒径のリボソームを得ることができる。 The ribosome can be produced according to a well-known method, and examples thereof include a thin film method, a reverse layer evaporation method, an ethanol injection method, and a dehydration-rehydration method. It is also possible to adjust the particle size of the ribosome by using an ultrasonic irradiation method, an extrusion method, a French press method, a homogenization method, or the like. The method for producing the liposome of the present invention itself is briefly described. For example, first, a mixed solution containing lipids constituting ribosomes is distilled to form a lipid film on the inner surface of the container and dissolve it in a suitable buffer. Next, after freeze-thawing is repeated several times, ribosomes having a desired particle size can be obtained by extraclusion.
本発明のリボソームの粒径は、 限定されないが、 数十皿から数 /i mのリポソ一 ムを用いることができる。 好ましくは、 30〜500nm、 さらに好ましくは 50〜300nm、 特に好ましくは 70〜150nmである。 Although the particle size of the ribosome of the present invention is not limited, a liposome of several tens of dishes to several / im can be used. It is preferably from 30 to 500 nm, more preferably from 50 to 300 nm, particularly preferably from 70 to 150 nm.
積層させるポリマーは、 限定されずタンパク質、 ポリペプチド、 ポリアミノ酸、 多糖類、 核酸等を用いることができる。 また、 天然高分子も合成高分子も用いる ことができる。 具体的には、 限定はされないが、 タンパク質として抗体、 アルブ ミン等の生体由来タンパク質がある。 ポリアミノ酸としてポリ- L-リシン、 ポリ アルギニン酸、 ポリアルギニン等がある。 また、 多糖類としては、 キトサン、 ヒ アルロン酸、 アルギン酸、 へパラン硫酸、 デキストリン、 ぺクチン、 グリコーゲ ン、 アミロース、 コンドロイチン等がある。 核酸としては DNA、 RNAがある。 また、 ポリマーとして、 ポリシラン、 ポリシラノール、 ポリホスファゼン、 ポリスルフ ァゼン、 ポリスルフイド、 ポリホスフェート、 ポリダルコ一ル酸、 ポリ乳酸、 ポ リアミド、 ポリ- 2-ヒドロキシブチレ一ト、 ポリ力プロラクトン、 ポリアリルァ ミンやこれらの共重合体を用いることもできる。 The polymer to be laminated is not limited, and proteins, polypeptides, polyamino acids, polysaccharides, nucleic acids and the like can be used. Also, natural polymers and synthetic polymers can be used. Specifically, the proteins include, but are not limited to, biological proteins such as antibodies and albumin. Polyamino acids include poly-L-lysine, polyarginic acid, polyarginine and the like. Examples of polysaccharides include chitosan, hyaluronic acid, alginic acid, heparan sulfate, dextrin, pectin, glycogen, amylose, chondroitin, and the like. Nucleic acids include DNA and RNA. Examples of the polymer include polysilane, polysilanol, polyphosphazene, polysulfazene, polysulfide, polyphosphate, polydalcolic acid, polylactic acid, polyamide, poly-2-hydroxybutyrate, polyproprolactone, polyallylamine, and the like. These copolymers can also be used.
さらに、 上記のように、 本発明のリボソームにおいて、 積層される化合物の総 てがポリマーである必要はなく、 低分子化合物、 有機または無機結晶体、 チタン 化合物、 磁性体粒子、 蛍光性ナノ粒子等の無機微粒子を含んでいてもよい。 低分
子化合物は限定されず、 例えばメルカプト酢酸等が挙げられる。 Furthermore, as described above, in the ribosome of the present invention, not all of the compounds to be laminated need to be polymers, but low molecular compounds, organic or inorganic crystals, titanium compounds, magnetic particles, fluorescent nanoparticles, etc. May be included. Low The child compound is not limited, and examples thereof include mercaptoacetic acid.
本発明のリポソームは、 ドラヅグデリバリーシステム等生体に直接適用するこ とも可能である。 生体に適用するような用途で用いる場合、 用いるポリマーは生 体由来ポリマー等の長期間にわたって生体に悪影響も強い刺激も与えず、 本来の 機能を果たしながら生体と共存できる生体適合性 (生体親和性) ポリマーが好ま しい。 The liposome of the present invention can also be directly applied to a living body such as a drug delivery system. When used in applications that are applied to living organisms, the polymers used do not give adverse effects or strong irritation to living organisms over a long period of time, such as polymers derived from living organisms. ) Polymers are preferred.
ポリマーの積層が静電相互作用による結合による場合は、 正または負に荷電し ているポリマーを用いれば良い。 例えば、 ポリ- L-リシンは負荷電ポリマーとし て、 ポリアルギニン酸は正荷電ポリマーとして用いることができる。 また、 任意 のアミノ酸からなるポリアミノ酸であって、 リシン等の負荷電アミノ酸を多く含 み全体として負に荷電しているポリアミノ酸や、 アルギニン酸等の正荷電アミノ 酸を多く含む全体として正に荷電しているポリアミノ酸を用いることができる。 さらに、 正に荷電している多糖類として、 キトサン等を、 負に荷電している多糖 類としてヒアルロン酸等を用いることができる。 また、 核酸は負に荷電しており、 正に荷電しているリボソームまたはリボソームに積層されている化合物であって、 正に荷電している化合物に結合させることができる。 In the case where the polymer layers are bonded by electrostatic interaction, a positively or negatively charged polymer may be used. For example, poly-L-lysine can be used as a negatively charged polymer and polyarginic acid can be used as a positively charged polymer. In addition, a polyamino acid composed of arbitrary amino acids and containing a large amount of negatively charged amino acids such as lysine, etc., and being positively charged as a whole, and a polyamino acid containing a large amount of positively charged amino acids such as arginic acid. Charged polyamino acids can be used. Furthermore, chitosan or the like can be used as a positively charged polysaccharide, and hyaluronic acid or the like can be used as a negatively charged polysaccharide. Nucleic acids are negatively charged and can be bound to positively charged ribosomes or compounds that are stacked on ribosomes and are positively charged.
積層させるポリマーの分子量は、 ある程度大きい方がよく、 例えば、 分子量 30, 000以上のポリマ一が好適に用いられる。 The molecular weight of the polymer to be laminated is preferably higher to some extent. For example, a polymer having a molecular weight of 30,000 or more is preferably used.
積層させるポリマーの層の数は限定されず、 好ましくは少なくとも 2層である。 また、 用いるリボソームの粒子サイズ、 用いるポリマーの種類、 ポリマー層の数 を調節することで、 得られたポリマーを積層させたリボソームの最終的なサイズ を調節することができる。 層の厚さは用いるポリマーの種類により異なるが、 一 般的には、 1層で数 Mi、 3層積層した場合でも約 5mn以下である。 ポリマ一を積 層させたリボソームの粒子サイズは、 50nn!〜 500nmでリボソーム粒子間で差はな く均一なサイズのリポゾームが得られる。 The number of polymer layers to be laminated is not limited, and is preferably at least two layers. Further, by adjusting the particle size of the ribosome used, the type of the polymer used, and the number of polymer layers, the final size of the ribosome on which the obtained polymer is laminated can be adjusted. The thickness of the layer depends on the type of polymer used, but is generally several Mi for one layer, and about 5 mn or less even when three layers are laminated. The particle size of the ribosome on which the polymer is laminated is 50nn! A liposome of uniform size can be obtained without difference between ribosome particles at ~ 500 nm.
また、 複数のポリマ一を積層する場合、 ポリマーの種類も限定されず、 同種類 のポリマーを積層させても、 異なる種類のポリマ一を積層させてもよい。 また、 When a plurality of polymers are laminated, the type of the polymer is not limited, and the same type of polymer or different types of polymers may be laminated. Also,
1層に複数のポリマーを混合させて積層させてもよい。 A plurality of polymers may be mixed and laminated in one layer.
積層が静電相互作用に基づいて行われる場合は、 第 1層に正に荷電したポリマ
一、 第 2層に負に荷電したポリマーというように、 荷電状態が異なるポリマーを 交互に積層すればよい。 ' If the stacking is based on electrostatic interactions, the first layer will have a positively charged polymer First, polymers having different charge states may be alternately laminated, such as a negatively charged polymer in the second layer. '
ポリマーの積層は、 以下のようにして行うことができる。 The lamination of the polymer can be performed as follows.
上述の方法で作製したリボソームに、 精製した上記ポリマーを混合し攪拌する。 この際の温度は、 限定されずリボソームの相転移温度に応じて、 適宜相転移温度 付近、 相転移温度以上、 相転移温度以下の温度のいずれかで行うことができる。 また、 反応時間も限定されず、 数分から数時間攪拌して反応させればよい。 また、 用いる水性媒体も限定されない。 次いで、 リボソームに結合していない遊離のポ リマ一を遠心分離等により除去する。 次いで、 第 1層を形成するポリマーが結合 したリボソームに第 2層を形成するポリマーを混合し攪拌する。 結合が静電相互 作用に基づく場合、 このときに混合するポリマーは、 第 1層のポリマーとは反対 の電荷を有するポリマ一である。 この場合は、 反応温度、 反応時間も限定されず 適宜決定することができる。 反応後、 遠心分離により結合しなかったポリマーを 除去する。 以下、 この操作を繰り返すことにより、 複数層のポリマーが積層され たリボソームを製造することができる。 The above-mentioned purified polymer is mixed with the ribosome prepared by the above-mentioned method and stirred. The temperature at this time is not particularly limited, and the temperature can be appropriately set at around the phase transition temperature, at a temperature equal to or higher than the phase transition temperature, or equal to or lower than the phase transition temperature according to the phase transition temperature of the ribosome. In addition, the reaction time is not limited, and the reaction may be performed with stirring for several minutes to several hours. Further, the aqueous medium used is not limited. Next, free polymer not bound to the ribosome is removed by centrifugation or the like. Next, the polymer forming the second layer is mixed with the ribosome to which the polymer forming the first layer is bonded, and the mixture is stirred. If the bond is based on electrostatic interaction, the polymer mixed at this time is a polymer having a charge opposite to that of the polymer of the first layer. In this case, the reaction temperature and the reaction time are not limited, and can be appropriately determined. After the reaction, unbound polymer is removed by centrifugation. Hereinafter, by repeating this operation, a ribosome in which a plurality of layers of polymers are laminated can be produced.
本発明のポリマーが積層されたリボソームは、 表面にポリマーが積層されてい るため、 一定の強度を有し、 物理的な力が加わるような環境下でも壊れずその形 態が維持される。 また、 表面に均一な荷電を有するため、 懸濁された状態でも、 凝集することなく分散状態を保つことができる。 また、 リボソームの構成脂質と して用いる脂質の種類、 積層させるポリマーの種類および層数を調節することに より、 本発明のポリマーが積層されたリボソーム全■(本としての強度をコントロー ルすることもできる。 例えば、 ドラッグデリバリ一担体として用いるときドラッ グの放出ができるように、 強度が弱いリボソームを用いればよい。 The ribosome on which the polymer of the present invention is laminated has a certain strength because the polymer is laminated on the surface, and its shape is maintained without breaking even under an environment where physical force is applied. In addition, since the surface has a uniform charge, even in a suspended state, the dispersed state can be maintained without agglomeration. In addition, by controlling the type of lipid used as the constituent lipid of the ribosome, the type of polymer to be laminated, and the number of layers, the entire ribosome on which the polymer of the present invention is laminated (the strength as a book can be controlled). For example, a ribosome having a low strength may be used so that the drug can be released when used as a drug delivery carrier.
さらに、 リボソームにポリマーを積層する際に、 積層されたポリマー中に他の 化合物を含ませることもできる。 他の化合物としては、 例えば、 薬剤、 ナノ蛍光 体粒子 (半導体ナノ粒子) 等のナノサイズ粒子、 生理活性物質、 色素、 蛍光物質、 顔料等が挙げられる。 ここで、 「ナノサイズ蛍光体」 とは、 発光イオンがドープ された硫化物または酸化物または窒化物で、 そのサイズが 50nm以下である発光材 料をいい、 ナノサイズ蛍光体を含む複合粒子を含む。 ナノサイズ蛍光体としてド
ープ型、 コアシェル型があるが、 本発明においてはいずれのナノサイズ蛍光体も 用いることができる。 硫化物、 酸化物または窒化物として、 硫化亜鉛 (ZnS) 、 硫化カドミウム (CdS) 、 セレン化亜鉛 (ZnSe) 、 酸化亜鉛 (ZnO) 等の半導体材 料が挙げられ、 ドープするイオンとして、 マンガン (Mn) 、 銅 (Cu) 、 アルミ二 ゥム (A1) 、 銀 (Ag) または塩素 (C1) が挙げられる。 ドープするイオンは複数 であってもよい。 ドープするイオンによりそれぞれ固有の発光性をもたせること が可能である。 本明細書において、 例えば、 Mnがド一プされた ZnSを 「ZnS :Mn」 と、 Cu及び A1がド一プされた ZnSを 「ZnS : Cu, Al」 と表記する。 また、 テルビウムFurther, when laminating a polymer on the ribosome, another compound can be included in the laminated polymer. Other compounds include, for example, drugs, nanosized particles such as nanophosphor particles (semiconductor nanoparticles), physiologically active substances, dyes, fluorescent substances, pigments, and the like. Here, the “nano-sized phosphor” refers to a sulfide, oxide or nitride doped with luminescent ions and having a size of 50 nm or less, and a composite particle containing a nano-sized phosphor. Including. Do as nano-sized phosphor There are a loop type and a core-shell type. In the present invention, any nano-sized phosphor can be used. Examples of the sulfide, oxide or nitride include semiconductor materials such as zinc sulfide (ZnS), cadmium sulfide (CdS), zinc selenide (ZnSe), and zinc oxide (ZnO). Mn), copper (Cu), aluminum (A1), silver (Ag) or chlorine (C1). A plurality of ions may be doped. Each doping ion can have its own light emission. In this specification, for example, ZnS doped with Mn is referred to as “ZnS: Mn”, and ZnS doped with Cu and A1 is referred to as “ZnS: Cu, Al”. Also, terbium
(Tb) 、 ツリウム (Tm) 、 ユーロピウム (Eu) 、 フッ素 (F) を単体或いは化合 物としてドープしてもそれぞれ固有の発光性をもたせることが可能である。 ナノ サイズ蛍光体はナノクリスタル、 ナノクラスター、 量子ドット等とも呼ばれるこ とがあり、 本発明において、 このように呼ばれているものも含む。 本発明におい て用い得るナノサイズ蛍光体は、 これらに限定されず、 特開平 10- 310770号公報、Even if (Tb), thulium (Tm), europium (Eu), or fluorine (F) is doped as a simple substance or as a compound, it is possible to have a specific light emitting property. The nano-sized phosphor is sometimes called a nanocrystal, a nanocluster, a quantum dot, or the like, and includes those so-called in the present invention. The nano-sized phosphor that can be used in the present invention is not limited thereto, and is disclosed in JP-A-10-310770,
A. P. Al ivisatos et al. MRS Bul l. , No. 2, 18 (1998)、 T. Trindade et al. ,A. P. Al ivisatos et al. MRS Bull., No. 2, 18 (1998), T. Trindade et al.,
Chem. Mater. 13 3843 (2001)、 磯部徹彦,未来材料 3, 26 (2003)、 磯部徹彦,照明 学会誌 87, 256 (2003)、 T. Isobe, Recent Res. Dev. Mater. Sci. 3, 441 (2002)、 磯部徹彦,応用物理 70, 1087 (2001)、 磯部徹彦,表面科学 22, 315 (2001、 磯部 徹彦,機能材料 19, 17 (1999)、 仙名保 他,ディスプレイアンドイメージング 7,Chem. Mater. 13 3843 (2001), Tetsuhiko Isobe, Future Materials 3, 26 (2003), Tetsuhiko Isobe, Journal of the Illuminating Engineering Institute of Japan 87, 256 (2003), T. Isobe, Recent Res. Dev. Mater. Sci. 3, 441 (2002), Tetsuhiko Isobe, Applied Physics 70, 1087 (2001), Tetsuhiko Isobe, Surface Science 22, 315 (2001, Tetsuhiko Isobe, Functional Materials 19, 17 (1999), Tamotsu Senna et al. Display and imaging 7,
3 (1998)等に記載の公知の全てのナノサイズ蛍光体を用いることができる。 また、 市販のナノサイズ蛍光体を用いることもできる。 市販のナノサイズ蛍光体として、 例えば、 Q dot (商標) (住商バイオサイエンス株式会社) 等がある。 これらの化 合物は、 ポリマ一を積層させるときに混合すれば、 ポリマーが積層するときにポ リマーと一緒になつて積層し得る。 この際、 これらの積層に含ませる化合物もポ リマーと相互作用するように荷電を有している必要がある。 元来荷電を有してい ないナノ粒子等は、 .例えば、 荷電を有するカチオン性界面活性剤ゃァニオン性界 面活性剤を表面に結合させて混合すればよい。 この場合に用いる界面活性剤は限 定されないが、 例えば、 カチオン性界面活性剤として第 4級アンモニゥム塩等が 挙げられ、 ァニオン性界面活性剤として、 アルキルスルホネート等が挙げられる。 また、 ポリマーを積層する際にナノサイズ蛍光体などの他の化合物を合成しても
よい。 この場合、 合成された化合物がポリマーが積層されたリボソームに含まれ る。 他の化合物は、 リボソーム上に積層されたポリマー中に含まれる場合もあれ ば、 積層されたポリマーの最外層のポリマー上に結合する場合もある。 いずれの 場合も、 本発明において、 「ポリマー中に他の化合物を含む」 という。 このよう に、 他の化合物を積層に含ませることにより、 本発明のポリマーが積層されたリ ポゾームに含ませる化合物が有する特性を持たせることが可能である。 例えば、 薬剤を含ませた場合、 本発明のリボソームを薬物運搬用担体として用いることが でき、 ナノ蛍光体を含ませた場合、 本発明のリボソームに蛍光特性を持たせるこ とができ、 物質の検出のためのマーカーとして用いることができる。 3 (1998) and the like can be used. Also, commercially available nano-sized phosphors can be used. Commercially available nanosize phosphors include, for example, Qdot (trademark) (Sumisho Bioscience Co., Ltd.). These compounds can be laminated together with the polymer when the polymer is laminated, provided that they are mixed when the polymer is laminated. At this time, it is necessary that the compounds included in these layers also have a charge so as to interact with the polymer. Nanoparticles or the like that do not have a charge originally may be mixed by, for example, binding a cationic surfactant having a charge and a vanionic surfactant to the surface. The surfactant used in this case is not limited, but examples thereof include quaternary ammonium salts and the like as the cationic surfactant, and alkyl sulfonates and the like as the anionic surfactant. Also, when laminating polymers, other compounds such as nano-sized phosphors are synthesized. Good. In this case, the synthesized compound is contained in the ribosome on which the polymer is laminated. Other compounds may be included in the polymer stacked on the ribosome, or may bind on the outermost polymer of the stacked polymer. In any case, in the present invention, it is referred to as "the polymer contains another compound". As described above, by incorporating another compound into the laminate, it is possible to impart the properties of the compound contained in the liposome in which the polymer of the present invention is laminated. For example, when a drug is included, the ribosome of the present invention can be used as a carrier for drug delivery, and when a nanophosphor is included, the ribosome of the present invention can have fluorescent properties. It can be used as a marker for detection.
本発明のポリマーが積層されたリボソームは、 表面に積層させるポリマーを選 択することにより、 種々の用途に用いることができる。 The ribosome on which the polymer of the present invention is laminated can be used for various applications by selecting the polymer to be laminated on the surface.
また、 リボソーム内に種々の物質を封入させることにより種々の用途に用いる ことができる。 リボソーム内に含ませる物質として、 薬剤、 磁性粒子、 色素、 蛍 光物質、 顔量、 生理活性物質等が挙げられる。 生理活性物質としては、 生体由来 タンパク質等の夕ンパク質や DNA、 RNA等が挙げられる。 Further, various substances can be used by encapsulating various substances in the ribosome. Examples of substances contained in the ribosome include drugs, magnetic particles, dyes, fluorescent substances, facial masses, and bioactive substances. Examples of the physiologically active substance include proteins such as biological proteins, DNA, and RNA.
また、 表面荷電の異なるリボソームを混合したり、 あるいはリボソームに遠心 操作等で圧力を加えることにより、 表面のポリマーの静電相互作用ゃブリッジン グにより凝集させることもでき、 本発明のリポソームからなる固体を作製するこ とができる。 この場合、 架橋型のリボソームということができる。 この際、 架橋 性物質を用いてポリマー鎖からなる積層を化学的に架橋してもよい。 このときに 用いる架橋性物質としては、 公知のものを用いればよい。 この際、 固体を型に入 れて作製することにより、 シート状やチューブ状の任意の形の、 ポリマーが積層 されたリボソームの固体集合体を作製することができる。 また、 一旦固体となつ た架橋型のリポソームを粉体化することにより、 粉体としても利用することがで きる。 Alternatively, the liposomes of the present invention can be aggregated by mixing ribosomes having different surface charges or applying pressure to the ribosomes by centrifugation or the like, thereby causing electrostatic interaction of the surface polymer ゃ bridging. Solids can be made. In this case, it can be called a crosslinked ribosome. At this time, the laminate composed of polymer chains may be chemically cross-linked using a cross-linking substance. As the crosslinkable substance used at this time, a known substance may be used. At this time, by preparing the solid in a mold, a solid aggregate of ribosomes in which the polymer is laminated in an arbitrary shape such as a sheet or a tube can be prepared. Further, once the crosslinked liposome, which has become solid, is powdered, it can be used as a powder.
例えば、 本発明のポリマーを積層させたリボソームの用途として以下のものが 挙げられる。 For example, the use of the ribosome laminated with the polymer of the present invention includes the following.
( 1 ) ドラッグデリバリー用担体 (1) Drug delivery carrier
例えば、 リボソーム内に薬剤を封入し、 ドラッグデリバリーシステムの担体と
して用いることができる。 この際、 表面のポリマーを選択することにより適当な 組織や器官をターゲットとする標的指向的なリボソームとすることができる。 こ の際の最外層のポリマーとして、 例えば、 特定の組織や器官に特異的に発現する タンパク質に特異的に結合する物質例えば、 抗体が挙げられる。 本発明のポリマ —を積層したリボソームをドラッグデリバリ一用担体として用いる場合、 体内で 封入した薬剤が放出される必要がある。 このためには、 ポリマーが積層されたリ ポソーム全体の強度をコントロールすればよい。 また、 積層するポリマ一として、 体液中に溶解するものを用いてもよく、 生分解性のポリマーを用いてもよい。 こ のような、 ポリマーが積層されたリボソームは除放性の薬剤担体としても用いる ことができる。 For example, a drug is encapsulated in the ribosome and used as a carrier for a drug delivery system. Can be used. At this time, by selecting a polymer on the surface, it is possible to obtain a ribosome targeted at an appropriate tissue or organ. In this case, examples of the polymer in the outermost layer include a substance that specifically binds to a protein specifically expressed in a specific tissue or organ, for example, an antibody. When a ribosome having the polymer of the present invention laminated thereon is used as a carrier for drug delivery, it is necessary to release the encapsulated drug in the body. This can be achieved by controlling the strength of the entire liposome on which the polymer is laminated. Further, as the polymer to be laminated, a polymer that dissolves in a body fluid may be used, or a biodegradable polymer may be used. Such a polymer-laminated ribosome can also be used as a sustained-release drug carrier.
( 2 ) ベクター (2) Vector
また、 リボソーム内に DNA等の遺伝子を封入し、 ベクターとして用いることも できる。 この場合も、 最外層のポリマーとして特定の細胞に特異的に発現する夕 ンパク質に特異的に結合する物質を用いることにより、 特定の細胞に封入した遺 伝子を導入することが可能である。 In addition, genes such as DNA can be enclosed in ribosomes and used as vectors. Also in this case, it is possible to introduce a gene encapsulated in a specific cell by using a substance that specifically binds to a protein specifically expressed in a specific cell as the outermost layer polymer. .
( 3 ) 物質検出用マーカー (3) Marker for substance detection
さらに、 本発明のポリマ一を積層したリポソ一ムを物質の検出に用いることも 可能である。 前記のようなナノ粒子を含ませたリボソームを物質検出のためのマ 一力一として用いることができる。 この際、 リボソームの最外層に積層させるポ リマーとして、 検出しょうとする物質に特異的に結合する抗体等のタンパク質を 用いればよい。 また、 検出しょうとする物質が DNA等の核酸の場合は、 該核酸に 相補的な核酸を用いればよい。 Further, the liposome obtained by laminating the polymer of the present invention can be used for detecting a substance. The ribosome containing the nanoparticles as described above can be used as a tool for detecting a substance. At this time, a protein such as an antibody that specifically binds to a substance to be detected may be used as a polymer to be laminated on the outermost layer of the ribosome. When the substance to be detected is a nucleic acid such as DNA, a nucleic acid complementary to the nucleic acid may be used.
( 4 ) 化粧品 (4) Cosmetics
さらに、 本発明のポリマーが積層されたリボソームを化粧品として用いること も可能である。 該リポソ一ムは、 表面に均一な荷電を持たせることができ、 分散 性がよく、 化粧品として好適に用いることができる。 この際、 リボソーム内部に 化粧用色素、 化粧用顔料や適当な薬剤を封入すればよい。 Furthermore, ribosomes on which the polymer of the present invention is laminated can be used as cosmetics. The liposome can have a uniform charge on the surface, has good dispersibility, and can be suitably used as cosmetics. At this time, a cosmetic pigment, a cosmetic pigment, or an appropriate drug may be encapsulated in the ribosome.
( 5 ) 光沢剤 (5) Brightener
本発明のポリマーが積層されたリボソームを光沢剤としても用いることができ
る。 該リボソームは、 中空なので、 屈折率が高く、 光沢剤として好適に用いるこ とができる。 ' The ribosome on which the polymer of the present invention is laminated can also be used as a brightener. The Since the ribosome is hollow, it has a high refractive index and can be suitably used as a brightener. '
( 6 ) 塗料顔料 (6) Paint pigment
通常、 塗料の白色顔料として酸化チタンが使用されるが、 本発明のポリマーが 積層されたリボソームを酸化チタンの代替物として用いることが可能である。 本 発明のリボソームは、 白色化性能や隠蔽能力を低下させずに用いることができる。 また、 リボソーム内部に色素や顔料を封入することにより特定の色を呈する塗料 顔料として用いることもできる。 塗料顔料として用いる場合、 分散した状態にお いて水系塗料として用いることができ、 上記のように架橋型リボソームの状態に おいては粉体塗料、 溶剤系塗料として用いることも可能である。 Normally, titanium oxide is used as a white pigment of a paint, but ribosomes on which the polymer of the present invention is laminated can be used as a substitute for titanium oxide. The ribosome of the present invention can be used without deteriorating whitening performance or masking performance. In addition, it can be used as a paint pigment that exhibits a specific color by enclosing a dye or pigment inside the ribosome. When used as a paint pigment, it can be used as a water-based paint in a dispersed state, and can be used as a powder paint or a solvent-based paint in a crosslinked ribosome state as described above.
( 7 ) 紙コーティング剤 (7) Paper coating agent
本発明のポリマーが積層されたリボソームを塗工紙塗料に添加することも可能 であり、 この場合塗工紙の光沢や印刷性の改善、 軽量紙の不透明度を改善するこ とができる。 It is also possible to add a ribosome on which the polymer of the present invention is laminated to a coated paper coating, and in this case, it is possible to improve the gloss and printability of the coated paper and the opacity of the lightweight paper.
( 8 ) 樹脂軽量化剤 (8) Lightening agent for resin
本発明のポリマーが積層されたリボソームは中空で軽量のため、 例えば樹脂に 混合すれば、 樹脂性能を低下させずに軽量化を達成することができる。 Since the ribosome on which the polymer of the present invention is laminated is hollow and lightweight, if it is mixed with, for example, a resin, the weight can be reduced without reducing the resin performance.
( 9 ) 感熱プリンタ一紙 (9) One sheet of thermal printer
感熱紙作製の際に、 感熱剤層と紙層の間に本発明のポリマーが積層されたリポ ゾームの層を断熱層として設けることができる。 その結果、 感熱紙の感度を向上 させることができる。 When producing the thermal paper, a liposome layer in which the polymer of the present invention is laminated between the thermal agent layer and the paper layer can be provided as a heat insulating layer. As a result, the sensitivity of the thermal paper can be improved.
( 1 0 ) 止血材 ·癒着防止材 (10) Hemostatic material
手術中に血液を凝固する必要性、 あるいは癒着を防止する必要性が生じたとき にお互いに結合して凝集塊を形成する 2組以上のリボソームを術野で混合するこ とにより血液凝固作用および癒着防止作用を達成することができる。 When blood needs to coagulate during surgery or to prevent adhesions, it can bind to each other to form aggregates. An anti-adhesion effect can be achieved.
( 1 1 ) 代替器官等 (11) Alternative organs, etc.
前記のように、 本発明のポリマーが積層されたリボソームを架橋型リボソーム とし、 フィルム状、 チューブ状等の適当な形状に成形することができる。 このよ うにして、 本発明のリボソームを人工皮膚、 人工血管、 人工神経誘導管等として、
手術の際に用いることができる。 この際、 リボソームに積層させるポリマーとし ては生体適合性高分子を用いることが望ましい。 As described above, the ribosome on which the polymer of the present invention is laminated can be used as a crosslinked ribosome, and can be formed into an appropriate shape such as a film or a tube. In this way, the ribosome of the present invention can be used as an artificial skin, an artificial blood vessel, an artificial nerve guide tube, or the like. Can be used during surgery. At this time, it is desirable to use a biocompatible polymer as the polymer to be laminated on the ribosome.
(12) 細胞培養基材 (12) Cell culture substrate
フィルム状に成形した本発明のポリマーが積層されたリボソームは、 細胞培養 の基材としても用いることができる。 この場合、 ポリマーの最外層に、 細胞の成 長の足場となるタンパク質や多糖類を結合させればよい。 The ribosome laminated with the polymer of the present invention formed into a film can also be used as a substrate for cell culture. In this case, a protein or polysaccharide serving as a scaffold for cell growth may be bonded to the outermost layer of the polymer.
以下、 本発明の実施例に基づき具体的に説明する。 もっとも本発明は下記実施 例に限定されるものではない。 Hereinafter, a specific description will be given based on examples of the present invention. However, the present invention is not limited to the following examples.
〔実施例 1〕 リボソームの作製とそのキャラクタリゼーシヨン [Example 1] Preparation of ribosome and its characterization
1. リボソームの作製およびそのキャラクタリゼーシヨンの方法 1. Method of ribosome preparation and its characterization
リポゾームの作製およびそのキャラクタリゼーシヨンは以下の方法で行つた。 The liposome was prepared and characterized by the following method.
(1) リボソームの作製 (1) Ribosome preparation
リボソームの構成脂質として、 1, 2-Dilauroyl-sn-Glycero-3-Phosphate Monosodium Salt (DLPA)および L-«- Phosphatidylcholine, Dimyristoyl (DMPC)を 用いた。 1,2-Dilauroyl-sn-Glycero-3-Phosphate Monosodium Salt (DLPA) and L-«-Phosphatidylcholine, Dimyristoyl (DMPC) were used as the constituent lipids of the ribosome.
脂質膜の構成成分となるリン脂質、 計 10— ¾olを 50mlスリ付きナス型フラスコ に量り取り、 少量のメタノールに溶解した。 ロータリーエバポレーターで減圧し て溶媒を留去し、 フラスコの壁に脂質フィルムを得た。 さらにデシケ一夕一へ移 し、 真空ポンプを用いて 6時間減圧乾燥を行い溶媒を完全に除去した。 次に A total of 10 mol of phospholipid, which is a component of the lipid membrane, was weighed into a 50 ml eggplant-shaped flask equipped with a pickpocket, and dissolved in a small amount of methanol. The pressure was reduced using a rotary evaporator to distill off the solvent, and a lipid film was obtained on the wall of the flask. The mixture was transferred to a desiccator overnight and dried under reduced pressure for 6 hours using a vacuum pump to completely remove the solvent. next
Buffer (本実施例では主に lOmM HEPES、 pH7.4を用いた) lmlを加えて水和させ、 多 重膜リボソーム(multilamellar vesicle:MLV)を形成させた。 その際、 浴槽型ソ ニケ一夕—で機械的振動を加えることで脂質フィルムの壁面からのはがれや水和 を促進させた。 飽和脂質よりなる脂質フィルムを水和し閉鎖小胞の脂質二重膜を 得るためには脂質が液晶状態である必要があるため、 浴槽の温度を用いる脂質の 相転移温度 +10で程度にして用いた。 次に凍結融解法にてリボソームを融合させ、 大きなリボソームを形成させた。 液体窒素を用いて懸濁液を凍結、 室温での融解、 リン脂質の相転移温度 +10°Cに加温の操作を三回繰り返した。 最後にェクストル ージョン法により均一サイズの小さな一枚膜リボソーム(small unilamellar vesicle: SUV)を作製した。 リボソームのサイズはェクストルーダー(Avestin)内
にセッ卜するポリカーボネートフィルターのポアサイズをかえることで制御が可 能である(図 1 )。 ' 1 ml of Buffer (mainly lOmM HEPES, pH 7.4 in this example) was added and hydrated to form multilamellar vesicles (MLV). At that time, peeling and hydration from the wall surface of the lipid film were promoted by applying mechanical vibration to the bathtub-type sonike overnight. To obtain a lipid bilayer of closed vesicles by hydrating a lipid film composed of saturated lipids, the lipids must be in a liquid crystalline state. Using. Next, ribosomes were fused by freeze-thawing to form large ribosomes. The operation of freezing the suspension using liquid nitrogen, thawing at room temperature, and heating to the phase transition temperature of phospholipid + 10 ° C was repeated three times. Finally, single unilamellar vesicles (SUVs) of uniform size were prepared by the extrusion method. Ribosome size in Extruder (Avestin) It can be controlled by changing the pore size of the polycarbonate filter to be set (Fig. 1). '
凍結融解法とは以下のような方法である。 The freeze-thaw method is as follows.
リポソームを構成するリン脂質は両親媒性分子であり、 水溶液に懸濁するとそ の親水性基が水和する。 一方、 疎水性基は水の環境から押し出され、 疎水性基同 士で集合する。 そのため二分子膜構造の脂質二重膜が形成される。 こうして形成 されたリボソーム懸濁液を凍結すると、 水和していた水分子は氷を形成するため に脱水和が起こる。 次の融解過程では水分子は再び親水基に結合するが、 この過 程で二分子膜の再配列が起こると考えられ、 二分子膜が再配列するときに、 リポ ゾームの融合が起こる。 The phospholipids that make up liposomes are amphipathic molecules whose hydrophilic groups hydrate when suspended in an aqueous solution. On the other hand, hydrophobic groups are pushed out of the water environment and aggregate with each other. Therefore, a lipid bilayer having a bilayer structure is formed. When the ribosome suspension thus formed is frozen, the hydrated water molecules are dehydrated to form ice. In the next melting process, the water molecules bind to the hydrophilic groups again, but it is thought that the bilayer rearranges in this process, and liposome fusion occurs when the bilayer rearranges.
ェクストルージョン法とは、 以下のような方法である。 The extrusion method is as follows.
押し出し法の一種であり、 MLVを一定の大きさの孔を通すことで、 サイズの均 一な SUVや LUVを調製したり、 リボソームのサイズを整えたりするのに用いられる 方法である。 他の方法と比較すると、 操作が容易で迅速に処理でき、 脂質の分解 もほとんどなく、 再現性も良い。 また、 比較的高濃度の脂質溶液を用いることが 可能であり、 収率が高いなどの利点がある。 This is a type of extrusion method used to prepare SUVs and LUVs of uniform size and to regulate the size of ribosomes by passing MLV through pores of a certain size. Compared to other methods, it is easier to operate and can be processed more quickly, has little degradation of lipids, and has better reproducibility. In addition, a relatively high-concentration lipid solution can be used, and there are advantages such as a high yield.
( 2 ) 動的光散乱法 (DLS)による粒径の測定 (2) Particle size measurement by dynamic light scattering (DLS)
動的光散乱法 (Dynamic l ight scat tering:DLS)は粒子のミクロブラウン運動に よる光散乱のゆらぎによって粒径、 粒度分布を求める方法であり、 Inn!〜 5 mの 測定範囲を持つ。 溶媒中の粒子で懸濁している系にレーザー光を照射すると、 そ の散乱強度は粒子のブラウン運動によって時間的に変化する。 溶媒中の不均一に よって散乱された光はその不均一さ自体がゆらいでおり、 運動しているために振 動数変化を受けてスぺクトルに広がりを持つようになる。 ここで振動数変化は主 に散乱光の中心振動数が入射光振動数と等しいレイリ一散乱であり、 固有に振動 数を持たない熱的なゆらぎを反映したものである。 この振動数のシフ卜は入射光 の振動数に比べて極めて小さく、 ピンボールを用いた光学系によりホモダイン光 混合し、 ビート(干渉)を起こす手法を用いて、 このビート信号を光電子倍増管に て光電交換する。 光電子倍増管の出力信号は互いに拡散したパルスとなる (この パルスは光量と比例関係)。 このパルス数を計算することによって粒子のブラウ
ン運動に関する情報が得られる。 このような光子計算を行い、 光電子パルス列に ついて相関をとる手法を光子相関法(Photon correlation spectroscopy:PCS)と いう。 Dynamic Light Scattering (DLS) is a method to obtain particle size and particle size distribution by fluctuation of light scattering due to micro Brownian motion of particles. Has a measuring range of ~ 5 m. When laser light is applied to a system suspended with particles in a solvent, the scattering intensity changes over time due to Brownian motion of the particles. The light scattered by the non-uniformity in the solvent fluctuates in its non-uniformity itself, and because of the movement, the light spreads due to a change in the frequency. Here, the frequency change is mainly Rayleigh scattering in which the center frequency of the scattered light is equal to the frequency of the incident light, and reflects thermal fluctuations that have no inherent frequency. The shift of this frequency is extremely small compared to the frequency of the incident light, and the beat signal is transmitted to the photomultiplier using a method that mixes homodyne light with an optical system using a pinball and generates a beat (interference). To perform photoelectric exchange. The output signal of the photomultiplier tube becomes a pulse diffused from each other (this pulse is proportional to the amount of light). By calculating the number of pulses, the particle You can get information about exercise. The method of performing such photon calculations and taking the correlation of the photoelectron pulse train is called photon correlation spectroscopy (PCS).
測定によって得られた光子パルス列から、 二次の散乱強度 -時間相関関数 g(2) (r)を求めると大きな粒子では相関時間の長い相関関数が、 小さな粒子では 相関時間の短い相関関数が得られる。 この相関関数は浮遊粒子の並進運動に関す る情報が含まれており、 計算式により粒径や粒度分布を求めることができる。 規 一e- 2 c When the secondary scattering intensity-time correlation function g (2) (r) is obtained from the photon pulse train obtained by the measurement, a correlation function with a long correlation time is obtained for large particles, and a correlation function with a short correlation time is obtained for small particles. Can be This correlation function contains information on the translational motion of suspended particles, and the particle size and particle size distribution can be obtained by using the calculation formula. Regulation e- 2 c
格化された二次相関関数 g(2) (て)は次のように表すことができる。 The classified quadratic correlation function g ( 2 ) can be expressed as follows.
て:相関関数 T: correlation function
β:実験条件に依存する定数 β: constant depending on experimental conditions
g(1) (r):規格化された一次相関関数 (散乱電場の相 関関数) ' g (1) (r): Normalized first-order correlation function (correlation function of scattered electric field) ''
ここで、 一次相関関数は、 球形粒子では次のように表される。 Here, the first-order correlation function is expressed as follows for spherical particles.
数 2 g(l) =exp[-2q2Dr) (式 2) Number 2 g (l) = exp [-2q 2 Dr) (Equation 2)
数 3 m Number 3 m
sin(式 3) sin (Equation 3)
D:並進拡散定数 D: translational diffusion constant
n:溶媒の屈折率 n: Refractive index of solvent
λ0:レーザ一光の波長 λ 0 : wavelength of one laser beam
Θ:散乱角
この並進拡散定数 Dは上式より容易に求められると共に、 Einstein-Stokesの式 から粒子径が求められる。 ' Θ: scattering angle The translational diffusion constant D can be easily obtained from the above equation, and the particle diameter can be obtained from the Einstein-Stokes equation. '
数 4 Number 4
D = (Einstein-Stokesの式) (式 4 ) r :粒子のストークス半径 D = (Einstein-Stokes equation) (Equation 4) r: Stokes radius of particle
D :溶媒の粘性係数 D: viscosity coefficient of solvent
k:ボルツマン係数 k: Boltzmann coefficient
T:絶対温度 T: Absolute temperature
測定によって得られた g(2) (て)と上式から並進拡散係数 Dを求めるため、 二次相 関関数を対数化し、 ヒストグラム解析においては、 解析粒子範囲を分割してヒス トグラムを表示する。 結果としては散乱強度分布が得られるが、 重量分布換算係 数によって補正されて粒径に関する重量分布を得ることができる。 この重量分布 から数平均分布を得ることもできる。 To obtain the translational diffusion coefficient D from g ( 2 ) (te) obtained by the measurement and the above equation, the quadratic correlation function is logarithmic, and in histogram analysis, the histogram is displayed by dividing the analysis particle range. . As a result, a scattering intensity distribution can be obtained, but it is possible to obtain a weight distribution relating to the particle diameter by correcting with a weight distribution conversion coefficient. A number average distribution can also be obtained from this weight distribution.
本研究では作製したリボソーム懸濁液を Bufferで適度な濃度に希釈し、 PAR- I II (大塚電子)を用いて積算回数 50回の条件で測定を行った。 In this study, the prepared ribosome suspension was diluted to an appropriate concentration with Buffer, and the measurement was performed using PAR-II (Otsuka Electronics) under the condition of 50 accumulations.
( 3 ) 電気泳動移動度 (EPM) · ζポテンシャルの測定 (3) Measurement of electrophoretic mobility (EPM) and ζ potential
粒子表面に酸または塩基サイトがあれば、 粒子表面は正または負に荷電し、 こ れらはイオンの吸着 ·交換サイトになりうる。 電解質水溶液では、 その電解質ィ オンが粒子の表面電荷に引かれ、 電気二重層を形成する。 この状態の粒子が電場 中に置かれると、 粒子は反対電荷の電極の方向に移動する。 この現象を電気泳動 (electrophores is)とレ う。 If there are acid or base sites on the particle surface, the particle surface will be positively or negatively charged, and these can be sites for adsorption and exchange of ions. In an aqueous electrolyte solution, the electrolyte ions are attracted to the surface charge of the particles, forming an electric double layer. When particles in this state are placed in an electric field, they move in the direction of the oppositely charged electrode. This phenomenon is called electrophores is.
電気泳動移動度(electrophoret ic mobi l i ty:EPM)測定は、 粒子を電場に置き、 その移動の速さを測定することで粒子表面の電荷状態を知る方法である。 粒子を 電解質中に分散させ外部から電場をかけると粒子は電気泳動を起こす。 このとき、 液体の粘性が抵抗力となり、 粘性力と電場から受ける力が均衡し、 粒子は等速運 動する。 この移動の速さを測定し、 電場の強さで割ることで粒子の EPMが求めら れる。
数 5 Electrophoretic mobility (EPM) measurement is a method of determining the charge state of the particle surface by placing the particle in an electric field and measuring the speed of its movement. When particles are dispersed in an electrolyte and an external electric field is applied, the particles undergo electrophoresis. At this time, the viscosity of the liquid becomes a resistive force, the viscous force and the force received from the electric field are balanced, and the particles move at a constant speed. By measuring the speed of this movement and dividing by the strength of the electric field, the EPM of the particles is determined. Number 5
EPM( v., _ = v x (式 v :移動速度 ( Π · sec"1) EPM (v ., _ = Vx (Equation v: Moving speed (Π · sec " 1 )
d :電極間距離 (cm) d: distance between electrodes (cm)
V:電圧 (V) V: Voltage (V)
ζポテンシャルは以下のようにあらわされる。 ζ Potential is expressed as follows.
ε:水溶液の誘電率 ε: dielectric constant of aqueous solution
7?:水溶液の粘度 7 ?: Viscosity of aqueous solution
本研究では作製したリボソームの ΕΡΜおよび ζポテンシャルの測定をコンパク トゼ一夕電位測定装置 ZEEC0M (マイクロテック ·ニチオン)を用いて、 溶液温度 25°C ·泳動電圧 20mVの条件で行った。 In this study, the リ ボ and ζ potentials of the prepared ribosomes were measured using a Compactze overnight potential measuring device ZEEC0M (Microtech NITION) at a solution temperature of 25 ° C and a migration voltage of 20 mV.
( 4 ) 示差走査超高感度カロリーメーター (Nano- DSC)による転移温度 Tcの測定 本研究ではリボソームの相転移温度(phase trans i t ion temperature : TG)を示 差走査超高感度カロリーメーター (Nano- DSCI I) (CSC社)を用いて測定した。 (4) Measurement of transition temperature Tc by differential scanning ultra-sensitive calorimeter (Nano-DSC) In this study, the ribosome phase transition temperature ( TG ) was measured by differential scanning ultra-sensitive calorimeter ( TG ). The measurement was performed using Nano-DSCI I) (CSC).
走査熱測定とは温度を変化させたときの物質の状態変化に伴う熱の出入りを測 定する方法である。 熱分析法の一つであるが、 各温度で平衡状態にあるときに観 測されるシグナルは熱容量に対応する。 タンパク質や生体高分子の温度転移(熱 変性)などが対象となる。 熱変性温度などが容易に測定できることに加え、 ェン タルピー変化や熱容量変化など熱力学量を直接決定することが可能である。 また、 ドメイン構造に関する情報などを得ることも可能である。 Scanning calorimetry is a method for measuring the flow of heat in and out of a material as the temperature changes. As one of the thermal analysis methods, the signal observed when equilibrium is present at each temperature corresponds to the heat capacity. Targets include temperature transition (thermal denaturation) of proteins and biopolymers. In addition to being able to easily measure the thermal denaturation temperature, it is possible to directly determine thermodynamic quantities such as changes in enthalpy and heat capacity. It is also possible to obtain information on the domain structure.
本研究で用いた Nano- DSCでは、 ノイズをおさえ、 さらに降温を容易にさせるた めに、 セルの断熱制御は行なわれず、 セルを囲むジャケットに設置された熱電素 子によってジャケットが昇温され、 それに温度が追随していく仕組みになってい る。 試料セルと比較セルがあり、 比較セルには溶媒(本研究に用いた Buf fer)を入
れる。 昇温中に熱の出入りがあれば、 それを打ち消すようにセルに取り付けられ た補償用ヒー夕で熱補償し、 両セルとも同一温度に保たれるよう制御されている。 このときの補償熱流を記録している。 In the Nano-DSC used in this study, the thermal insulation of the cell was not controlled in order to suppress the noise and facilitate the temperature drop, and the temperature of the jacket was increased by the thermoelements installed in the jacket surrounding the cell. The temperature follows the system. There is a sample cell and a comparison cell. The comparison cell contains the solvent (Buf fer used in this study). It is. If heat flows in or out during the temperature rise, the heat is compensated by a compensation heater attached to the cell so as to cancel it, and both cells are controlled to keep the same temperature. The compensation heat flow at this time is recorded.
リボソームの相転移温度とは、 以下の通りである。 The ribosome phase transition temperature is as follows.
飽和の炭化水素鎖からなる脂質でリポソームを形成すると、 低温で膜の運動性 が抑えられたゲル相(gel phase)をとることが知られている。 ゲル相では脂質分 子の側鎖が秩序正しく配列している。 ゲル相にある脂質二重層の温度を上げてい くと、 一定温度以上で液晶相(l iduid crystal l ine phase)となる。 ゲル相から液 晶相へ変化する温度をゲル-液晶転移温度、 あるいは相転移温度( )という(図 2 )。 It is known that when a liposome is formed from a lipid consisting of a saturated hydrocarbon chain, a liposome takes a gel phase with reduced membrane motility at low temperatures. In the gel phase, the side chains of the lipid molecules are ordered. As the temperature of the lipid bilayer in the gel phase is increased, the liquid crystal phase (iduid crystal lin phase) is reached above a certain temperature. The temperature at which the gel phase changes to the liquid crystal phase is called the gel-liquid crystal transition temperature, or the phase transition temperature () (Figure 2).
Tc以上であるときリボソーム表面の脂質分子は運動性に富み、 膜の流動性 (f luidi ty)が高くなつている。 図 3にあるように、 液晶相において脂質分子は膜 中で二次元方向の移動である側方拡散(lateral di f fus ion) , 膜内での異方性軸 回転運動(anisotropic axial rotat ion) , 二重層の片面からもう一方の面へ動く フリップフロップ(f l ip f lop)というような運動を繰り返している。 When the temperature is above T c , the lipid molecules on the ribosome surface are rich in mobility, and the fluidity (fluidity) of the membrane is high. As shown in Fig. 3, in the liquid crystal phase, lipid molecules move in two dimensions in the membrane, lateral diffusion (lateral diffusion), and anisotropic axial rotation in the membrane (anisotropic axial rotation). , The flip-flop (fl ip flop) moves from one side of the double layer to the other.
このようなことからリポソ一ムの膜流動性は温度に依存するものであると考え られる。 From these facts, it is considered that the membrane fluidity of liposomes depends on temperature.
( 5 ) リン脂質濃度の測定 (5) Measurement of phospholipid concentration
本実施例ではリン脂質-テストヮコー(和光純薬株式会社)を用いて、 リン脂質 濃度を測定することで作製したリボソーム濃度の検討を行っている。'このキット では過マンガン酸塩灰化法によってリン脂質濃度の測定を行っている。 In this example, the concentration of ribosomes produced by measuring the concentration of phospholipid was examined using phospholipid-Test Co. (Wako Pure Chemical Industries, Ltd.). 'This kit measures the phospholipid concentration by the permanganate incineration method.
一般的にリン脂質の定量は科学的な方法で行われているが、 加熱条件が高温で あり、 また操作が煩雑で危険性の伴う薬品を使うというような欠点があった。 そ れに対しこの過マンガン酸塩灰化法は沸騰水浴中で容易にかつ完全にリン脂質を 分解できるという安全性での利点がある。 In general, phospholipids are quantified by scientific methods, but have disadvantages such as high temperature heating conditions, complicated operations, and use of dangerous chemicals. In contrast, this permanganate incineration method has an advantage in safety that phospholipids can be easily and completely decomposed in a boiling water bath.
リン脂質から構成されるリボソーム懸濁液を試料とし、 そこへトリクロ口酢酸 液を加えると、 リン脂質はタンパクとともに沈殿する。 遠心分離し、 無機リンが 溶存している上清をすてリン脂質をタンパクとともに分離する。 分離した沈殿に 硫酸及び過マンガン酸塩を加え、 沸騰した水浴中で過熱すると、 有機物の大部分
は酸化分解され、 構成成分でもあるリン酸が生成する。 ここに生じた無機リンに モリブデン酸アンモニゥム及び還元剤を加えると、 モリプデンブルーが生成し、 青色を呈する。 この青色の吸光度を測定することで試料中のリン脂質濃度を算出 する。 When a ribosome suspension composed of phospholipids is used as a sample and trichloroacetic acid is added thereto, the phospholipids precipitate together with the protein. After centrifugation, the supernatant containing the dissolved inorganic phosphorus is removed to separate the phospholipids together with the protein. Sulfuric acid and permanganate are added to the separated precipitate and heated in a boiling water bath to remove most of the organic matter. Is oxidatively decomposed to produce phosphoric acid, which is also a component. When ammonium molybdate and a reducing agent are added to the inorganic phosphorus generated here, molybdenum blue is formed and exhibits a blue color. By measuring the absorbance of this blue color, the phospholipid concentration in the sample is calculated.
実際には試験管中にリボソーム懸濁液 0. 1mlを量り取り、 硫酸を 0. 4ml加え沸騰 した水浴中で 10分間加熱する。 そこへ混合しながら酸化剤である過マンガン酸力 リウムを 2. Oml加え、 さらに 30分間加熱する。 その後室温で 10分間放置した後、 脱色剤であるモリブデン酸アンモニゥムを 2. 0ml加え、 ミキサーを用いて混和さ せる。 さらに発色剤である亜硫酸ナトリゥムを加え 37°Cの水槽中で 20分間加熱す る。 最後に流水で 5分間試験管の外から溶液を冷却して、 660nmフィルタ一を用い て吸光度を測定し、 リン脂質濃度を算出する。 In practice, weigh 0.1 ml of the ribosome suspension in a test tube, add 0.4 ml of sulfuric acid, and heat in a boiling water bath for 10 minutes. While mixing, add 2. Oml of potassium permanganate, an oxidizing agent, and heat for another 30 minutes. After leaving at room temperature for 10 minutes, add 2.0 ml of ammonium molybdate, a decolorizing agent, and mix using a mixer. Add sodium sulfite as a color former and heat in a 37 ° C water bath for 20 minutes. Finally, cool the solution from outside the test tube with running water for 5 minutes, measure the absorbance using a 660 nm filter, and calculate the phospholipid concentration.
( 6 ) 異なるサイズのリボソームの作製 (6) Preparation of ribosomes of different sizes
本研究ではェクストルージョン法によりリボソーム作製を行なっている。 この 方法ではポリ力一ポネートフィルターのポアサイズにより作製するリボソームの サイズを制御することが可能である。 そこで DLPA/DMPC=0. 5/0. 5の組成のリポソ ームをポアサイズ 50nm、 lOOnm, 400nmのポリカーボネートフィルタ一用いて異 なるサイズのリポソ一ムを作製し、 動的光散乱法により粒径測定することでリポ ソ一ムサイズの制御について検討した。 In this study, ribosomes are produced by extrusion method. With this method, it is possible to control the size of the ribosome produced by the pore size of the poly-one-ponate filter. Therefore, using a liposome with a composition of DLPA / DMPC = 0.5 / 0.5 using a polycarbonate filter with a pore size of 50 nm, 100 nm, and 400 nm, liposomes of different sizes were prepared, and the particle size was determined by dynamic light scattering. We examined the control of liposome size by measuring.
( 7 ) 電界放出型透過電子顕微鏡 (FE- TEM)による観察 (7) Observation by field emission transmission electron microscope (FE-TEM)
透過電子顕微鏡(Transmi ss ion El ect ron Microscope : TEM)は試料に電子線を照 射し、 その内部構造を主に観察する装置であり、 試料の形状並びに表面構造に加 え試料の凝集度合い、 結晶パターン、 格子欠陥の存在及び結晶の配向方位などの 観察が可能である。 A transmission electron microscope (TEM) is a device that irradiates a sample with an electron beam and mainly observes its internal structure. In addition to the shape and surface structure of the sample, the degree of aggregation of the sample, Observation of crystal patterns, existence of lattice defects, crystal orientation, etc. is possible.
試料に電子線を照射すると、 そのまま試料を透過する電子(透過電子)と相互作 用によって散乱する電子 (散乱電子)が生じる。 通常は対物可動絞りにより散乱電 子をカットし、 透過電子のみを結像させる明視野像を観察する。 一方、 散乱電子 を結像させた場合、 暗視野像が得られる。 When a sample is irradiated with an electron beam, electrons that pass through the sample (transmitted electrons) and electrons that are scattered by interaction (scattered electrons) are generated. Normally, the scattered electrons are cut by the objective movable aperture, and a bright-field image that forms only transmitted electrons is observed. On the other hand, when scattered electrons are imaged, a dark-field image is obtained.
TEMの原理は光学顕微鏡と同様であるが、 観察を高真空中で行う。 光源に電子 線を用いており、 レンズは電磁レンズが用いられる。 電子線は可視光線より波長
が短いため、 光学顕微鏡より高倍率の観察が可能である。 電磁レンズとはコイル に電流を流した時に凸状に分布する磁界が発生し、 電子に対して凸レンズとして 作用するものである。 TEMは、 試料を電子線透過可能な 0. 1 x m以下に薄片ィ匕する 必要がある。 そこで薄片化にあたり、 超薄切片法やイオンミリング法といった試 料調製を用いる。 電子線源にはいくつか種類があり、 一般的なものでは夕ングス テンフィラメントに電流を流して電子を発生させるタングステンヘアピン型が、 高分解能型のものでは Siチップ に電界をかけて電子を発生させる電界放出型透 過電子顕微鏡 (Field Emiss ion Transmiss ion Electron Microscope :FE- TEM) が 用いられる。 FE- TEMは材料をミクロなレベルで評価する上で極めて有力であり、 セラミックス、 金属、 半導体、 高分子材料、 生体試料などの分野において用いら れる。 The principle of TEM is the same as that of an optical microscope, but observation is performed in a high vacuum. An electron beam is used as the light source, and an electromagnetic lens is used as the lens. Electron beam is longer wavelength than visible light Is short, so observation at a higher magnification than with an optical microscope is possible. Electromagnetic lenses generate a magnetic field that distributes in a convex shape when a current flows through a coil, and acts as a convex lens for electrons. In TEM, it is necessary to flake a sample to 0.1 xm or less, which allows electron beam transmission. Therefore, sample preparation such as ultra-thin sectioning and ion milling is used for thinning. There are several types of electron beam sources.The general type is a tungsten hairpin type, which generates electrons by passing a current through a tungsten filament, and the high-resolution type generates an electron by applying an electric field to a Si chip. A field emission type transmission electron microscope (FE-TEM) is used. FE-TEM is extremely effective in evaluating materials on a micro level, and is used in fields such as ceramics, metals, semiconductors, polymer materials, and biological samples.
本実施例では、 作製したリボソームにネガティブ染色を施すことで、 FE- TEMに よる形状観察を行った。 In this example, the ribosomes prepared were negatively stained to observe the shape by FE-TEM.
ネガティブ染色とは以下の通りである。 Negative staining is as follows.
ネガティブ染色法は、 一般的な染色法と異なり試料と染色剤が反応せず、 無構 造でかつ高密度な低分子化合物を用いて試料の周りを囲むことで試料と指示膜の 間の濃淡を増し、 試料の大きさや表面の微細構造を観察するための方法である。 すなわち、 電子線を透過しない染色剤が脂質会合部位から排除された状態で電子 線を照射すると、 会合部位がより強く露光する。 よって二分子膜構造が白い帯状 に写し出される。 In the negative staining method, unlike the general staining method, the sample and the staining agent do not react, and the density between the sample and the indicator film is reduced by surrounding the sample with a low-molecular compound, which is structured and has a high density. This is a method for observing the sample size and surface microstructure. That is, when the electron beam is irradiated with the dye that does not transmit the electron beam excluded from the lipid association site, the association site is exposed more strongly. Therefore, the bilayer structure appears as a white band.
本実施例ではリボソームにネガティブ染色を施し観察を行っている。 In this example, ribosomes are negatively stained and observed.
コロジオン膜でコートした銅製グリッドにカーボン蒸着を施し、 そのダリッド 上へ約 1. OmMに希釈したリボソーム懸濁液を滴下した。 1〜2分後にろ紙を用いて 余剰の液体を吸い取り、 さらに染色剤として lw%モリブデン酸アンモニゥム溶液 を滴下して同様に余剰の液体を取り除いた。 このサンプル作製直後に FE- TEMを用 いた観察を行った。 Carbon deposition was performed on a copper grid coated with a collodion film, and a ribosome suspension diluted to about 1. OmM was dropped onto the dalid. After 1 to 2 minutes, the excess liquid was sucked up using a filter paper, and a lw% ammonium molybdate solution was added dropwise as a staining agent to remove the excess liquid in the same manner. Immediately after the preparation of this sample, observation using FE-TEM was performed.
2 . リボソームの作製およびそのキャラクタリゼ一シヨンの結果 2. Production of ribosomes and results of their characterization
作製したキヤラクタリゼーションの結果は以下の通りであった。 The results of the produced characterization were as follows.
( 1 ) リボソームサイズの均一性の確認
DLPA/匿 O0/1. 0、 0. 1/0. 9、 0. 5/0. 5、 1. 0/0の組成 (それぞれモル比)でリポソ ームを作製し、 リボソームのサイズを動的光散乱法により測定したところ、 どの 組成のリボソームも約 ΙΟΟηπιで単分散が得られた(Dff/DN½ 1. 10であることを確認 した)。 (1) Confirmation of ribosome size uniformity DLPA / secret O0 / 1.0, 0.1 / 0.9, 0.5 / 0.5, 1.0 / 0 Composition of liposomes (molar ratio, respectively) was prepared to control the size of ribosome. As a result of measurement by a dynamic light scattering method, ribosomes of any composition were monodispersed at about 約 ηπι (confirmed that D ff / D N ½1.10).
( 2 ) リン脂質濃度の測定 (2) Measurement of phospholipid concentration
•検量線の作成 • Creating a calibration curve
本実施例ではリン脂質濃度の測定をリン脂質-テストヮコーを用いて算出して いる。 In the present embodiment, the measurement of the phospholipid concentration is calculated by using a phospholipid-Test Corporation.
検量線作成のためにリン脂質-テストヮコ一に同封されているリン脂質基準液 を 5%のトリクロ口酢酸液を用いて、 150 · 300 · 450 · 600mg/dlとなるように希釈 し、 これらを用いて検量線を作成した (図 4 ) 。 R2値などから近似曲線に直線性 が得られたので、 図 4を検量線とし以後の実験でも用いる。 To prepare a calibration curve, dilute the phospholipid standard solution enclosed in the phospholipid-test container to a concentration of 150, 300, 450, and 600 mg / dl using 5% trichloroacetic acid in acetic acid, and dilute them. A calibration curve was created using the data (Fig. 4). Since linearity and the like R 2 value to an approximate curve was obtained, used in and after the experiment Figure 4 with a calibration curve.
• リボソーム懸濁液中のリン脂質濃度の測定 • Measurement of phospholipid concentration in ribosome suspension
DLPA/DMPO0/1. 0、 0. 1/0. 9、 0. 5/0. 5、 1. 0/0の組成で作製したリボソーム懸濁 液のリン脂質濃度について考える。 作製したリボソーム懸濁液を 2倍に希釈し 100 1量り取ったものをサンプルとしてリン脂質濃度の測定を行つた。 Consider the phospholipid concentration of the ribosome suspension prepared with the compositions DLPA / DMPO0 / 1.0, 0.1 / 0.9, 0.5 / 0.5, 1.0 / 0. The prepared ribosome suspension was diluted two-fold and weighed 100, and the phospholipid concentration was measured using as a sample.
DMPCのみで作製したリボソームの場合、 吸光度は 0. 170であり、 検量線より濃 度は 340mg/dlとなり、 二倍希釈していることから実際の濃度は 680mg/dl (6. 8g/l) であつに。 よって、 In the case of ribosomes made only with DMPC, the absorbance is 0.170, the concentration is 340 mg / dl from the calibration curve, and the actual concentration is 680 mg / dl (6.8 g / l) due to double dilution. At that time. Therefore,
数 7 Number 7
6·8( 695'96 Γ 9'77 χ 1°— 3(" 9·77(ι) となる。 同様にして他の組成でのリポソーム懸濁液中のリン脂質濃度を測定する と、 DLPA/DMPC=0. 1/0. 9では 9. 2械、 0. 5/0. 5では 10. 46mM、 DLPAリボソームでは 6 · 8 ( 695 '96 Γ 9 '77 χ 1 ° -3 (" 9 · 77 (ι). Similarly, if the phospholipid concentration in the liposome suspension of another composition is measured, DLPA / DMPC = 0. 1 / 0.9 for 9.2 machines, 0.5 / 0.5 for 10.46 mM, DLPA ribosome
10. l lmMとなった(混合した場合は DLPAと DMPCの分子量の平均値を用いて算出し た)。 どのリポソ一ムもリン脂質濃度が 10mMとなるように脂質の仕込み量を決定 し秤量しているので、 多少の誤差はあるがどの組成のリボソームも約 10mMと算出
できることから、 ほぼ 100 %の収率でリポソ一ム懸濁液が得られていると言える。 このような方法を用いて以後の実験においてもリン脂質濃度を決定している。It was 10. 11 lmM (when mixed, it was calculated using the average molecular weight of DLPA and DMPC). All liposomes are prepared and weighed so that the phospholipid concentration is 10 mM, so the ribosome of any composition is calculated to be about 10 mM, although there are some errors. From this, it can be said that a liposomal suspension was obtained with a yield of almost 100%. The phospholipid concentration is determined in the subsequent experiments using such a method.
( 3 ) リボソームの電気泳動移動度の測定 (3) Measurement of ribosome electrophoretic mobility
DLPA/匿 C=0/1. 0、 0. 1/0. 9、 0. 5/0. 5、 1. 0/0の組成でリボソームを作製し、 ZEECOMを用いて電気泳動移動度(EPM)および ζポテンシャルを測定した。 その結 果、 ΡΑが含まれているリボソームは負電荷を示しており、 また ΡΑ分率が高くなる につれて ΕΡΜや ζポテンシャルの絶対値が大きくなつていることが分かる(表 1 )。 このことから負電荷脂質である ΡΑの仕込み量に伴いリボソーム表面の負電荷は強 くなつていくということが言える。 また、 ΡΑがリボソーム表面上で負電荷を持つ 吸着サイ卜となりうることから、 ΡΑの仕込み量に伴い吸着サイトが多くなつてい くということが考えられる。 DLPA / hidden C = 0 / 1.0.0, 0.1 / 0.9, 0.5 / 0.5, 1.0 / 0. Create ribosomes with the composition of 1.0 / 0, and use ZEECOM for electrophoretic mobility (EPM ) And ζ potential were measured. As a result, it can be seen that the ribosome containing ΡΑ shows a negative charge, and that the absolute values of ΕΡΜ and ζ potentials increase as the fraction increases (Table 1). This suggests that the negative charge on the ribosome surface increases with the amount of the negatively charged lipid ΡΑ. In addition, since う る can be an adsorption site having a negative charge on the ribosome surface, it is conceivable that the number of adsorption sites increases with the amount of ΡΑ charged.
表 1 リボソームの電気泳動移動度 (Ε Ρ Μ )および ζポテンシャル Table 1 Ribosome electrophoretic mobility (Ε Ρ Μ) and ζ potential
:ポテンシャル / EPM / m' s-1 ' cm-: Potential / EPM / m 's -1 ' cm-
DLPA/DMPC DLPA / DMPC
mV ν-' mV ν- '
0: 1 0.000 0,000 0: 1 0.000 0,000
0.1: 0.9 -56.080 -4.376 0.1: 0.9 -56.080 -4.376
0.5: 0.5 -93.295 -7.281 0.5: 0.5 -93.295 -7.281
1: 0 -136.595 -10.657 1: 0 -136.595 -10.657
( 4 ) リボソームの相転移温度の測定 (4) Measurement of ribosome phase transition temperature
DLPA/DMPC= (a) 1. 0/0, (b) 0· 5/0. 5、 (c) 0/1. 0の組成でリボソームを作製し、 Nano-DSCを用いた相転移温度の測定結果を図 5に示す。 相転移温度は(a) 30. 6°C、 (b) 29. 2°C, (c) 24. 5°Cとなった。 PAや PCの単一脂質で構成されているリボソーム のピーク(a)、 (c)は鋭いピークを示すのに対して、 PAと PCの二種類の脂質からな るリボソームのピーク(b)はなだらかなピークを示している。 また、 ひとつのピ ークしか現れないことから、 PAと PCの二成分からなるリボソームはドメインを形 成しておらず、 緩慢転移をしていると考えられる。 DLPA / DMPC = (a) 1.0 / 0, (b) 0.5 / 0.5, (c) A ribosome was prepared with the composition of 0 / 1.0, and the phase transition temperature using Nano-DSC was determined. Figure 5 shows the measurement results. The phase transition temperatures were (a) 30.6 ° C, (b) 29.2 ° C, and (c) 24.5 ° C. The ribosome peaks (a) and (c), which consist of a single lipid of PA and PC, show sharp peaks, whereas the ribosome peak (b), which consists of two types of lipids, PA and PC, shows a sharp peak. It shows a gentle peak. In addition, since only one peak appears, it is considered that the ribosome consisting of the two components, PA and PC, does not form a domain and is undergoing slow metastasis.
( 5 ) 異なるサイズのリボソームの作製 (5) Preparation of ribosomes of different sizes
本実施例ではェクストルージョン法によりリボソームの作製を行なっている。
用いるポリ力一ポネートフィルタ一のポアサイズを 50nm、 lOOnm, および 400nmの ものを使う こ とで異なるサイズの リ ボソームの作製を試みた。 DLPA/DMPC=0. 5/0. 5の組成で作製を行なった。 In this embodiment, ribosomes are produced by the extrusion method. We attempted to produce liposomes of different sizes by using a pore size filter with a pore size of 50 nm, 100 nm, and 400 nm. DLPA / DMPC = 0.5 / 0.5 composition.
作製されたリボソームのサイズについて表 2にまとめる。 Table 2 summarizes the size of the ribosomes produced.
表 2 リポソ -ムの直径 Table 2 Diameter of liposomes
フィルタ一のポアサイズ Filter pore size
/nm リポソ ^ —ムの直径/ nm DW/DN / nm Liposo ^ — diameter of the membrane / nm D W / D N
50 68.1 1.0850 68.1 1.08
100 103.2 1.09100 103.2 1.09
400 161,7 1.18 400 161,7 1.18
lOOnmのサイズの場合、 フィルターのポアサイズとほぼ同サイズのリボソーム が単分散で作製されていると言える。 50nmの場合は多少粒径が大きくなつてしま つているが、 単分散でリポソ一ムが作製されていると言える。 ェクストル一ジョ ンによる押し出し操作の回数を増やすなどの工夫によりさらにフィルターのポア サイズに近いサイズのリボソームが作製できると考えられる。 40 Onmの場合は前 者に比べ多分散度も高く、 ポアサイズよりも小さいサイズでリボソームが作製さ れている。 これはリボソーム作製において、 凍結融解操作の際に十分にサイズの ある MLVが形成されていないことが原因の一つとして考えられる。 このことから 凍結融解操作の回数を増やし同様の作製を行なったが、 この結果と多少サイズは 大きくなつたものの差ほど大きな変化はなかった。 In the case of lOOnm size, it can be said that ribosomes of about the same size as the pore size of the filter are monodispersed. In the case of 50 nm, the particle size is slightly larger, but it can be said that the liposome is produced in a monodispersed state. It is thought that ribosomes with a size close to the pore size of the filter can be produced by devising, for example, increasing the number of extrusion operations performed by the extension zone. At 40 Onm, the polydispersity is higher than the former, and ribosomes are produced in a size smaller than the pore size. This is considered to be one of the causes of the lack of a sufficiently large MLV during the freeze-thaw operation in ribosome production. For this reason, the same production was performed by increasing the number of freeze-thaw operations, but the result was not as large as the difference between the results and the slightly larger size.
このようなことから DLPAと DMPCを構成脂質とする系では、 50ηπ!〜 150nmくらい の範囲でのリポソ一ム作製が可能であると言える。 加えて lOOnmサイズのリポソ ーム作製が最も容易に行えると言うことがいえる。 また、 構成脂質や作製時の操 作条件を変えることでサイズの制御できる幅は異なってくるものと考えられる。 For this reason, in systems using DLPA and DMPC as constituent lipids, 50ηπ! It can be said that liposome fabrication in the range of about 150 nm is possible. In addition, it can be said that lOOnm-sized liposomes can be easily manufactured. In addition, it is considered that the width of size control can be changed by changing the constituent lipids and the operating conditions during preparation.
( 6 ) リボソームの形状観察 (6) Observation of ribosome shape
作製した DLPA/DMPC=0. 5/0. 5の組成のリボソームにネガティブ染色を施し FE - Negative staining was applied to the prepared ribosome with the composition of DLPA / DMPC = 0.5 / 0.5 and FE-
TEMで観察した結果を図 6に示す。 ネガティブ染色を行ったことで、 脂質膜自体
は染まらず白く映っている様子が分かる。 また、 形状が崩れてしまっているのは 乾燥過程による影響であると考えられる。 全体的にはリボソームの球形を保った まま存在していると言える。 Fig. 6 shows the results of TEM observation. By performing negative staining, the lipid membrane itself You can see that it is not dyed and is white. The collapse of the shape is considered to be the effect of the drying process. Overall, it can be said that the ribosome remains spherical.
以上のように、 ェクストルージョン法を用いてリボソームを作製することによ り、 約 lOOnm均一サイズで濃度が約 lOmMのリボソームを作製することができた。 また、 DLPAと DMPCの組成を変えることで表面電荷の違いを確認した。 DLPAの割合 が多いほど、 表面はより負電荷を帯びているということがわかった。 このことか ら DLPAを構成脂質として含んでいるリボソームには静電相互作用を利用した吸着 サイトを有しているということが言える。 As described above, by producing ribosomes using the extrusion method, ribosomes having a uniform size of about 100 nm and a concentration of about 10 mM could be produced. The difference in surface charge was confirmed by changing the composition of DLPA and DMPC. We found that the higher the proportion of DLPA, the more negatively the surface was. From this, it can be said that ribosomes containing DLPA as a constituent lipid have adsorption sites utilizing electrostatic interaction.
〔実施例 2〕 リポソーム表面へのポリぺプチドの吸着 [Example 2] Adsorption of polypeptide on liposome surface
本実施例では铸型となるリボソーム表面へのポリペプチドの吸着について検討 する。 実施例 1に記載の通り、 DLPAを構成脂質に含むリボソームは負に荷電して いることがわかっている。 そこでリボソーム表面へポリカチオンである poly- L- lys ine (PLys)やホリァニオンである poly - L- aspart ic ac id (PAsp)を L aye r -by- Layer させることで表面電荷の異なる粒子の作製を試みた。 図 7に Layer-by- Layerの概 念図を示す。 In this example, the adsorption of a polypeptide to the surface of a ribosome of type I will be examined. As described in Example 1, it is known that ribosomes containing DLPA in the constituent lipids are negatively charged. Therefore, particles with different surface charges are obtained by applying poly-L-lysine (P Lys ), a polycation, and poly-L-aspartic acid (P Asp ), a holion, to the ribosome surface in a layer-by-layer manner. Was attempted. Figure 7 shows a conceptual diagram of Layer-by-Layer.
また、 異なる表面電荷を持つリポソ一ム-ポリぺプチド複合体を用いて静電相 互作用を利用した構造体作製について報告をする。 We also report on the fabrication of structures using liposomal-polypeptide complexes with different surface charges and utilizing electrostatic interaction.
1 . リポソーム表面へのポリぺプチドの吸着 1. Adsorption of polypeptide to liposome surface
リポソーム表面へのポリぺプチドの吸着および得られたリポゾームの検討は以 下の方法で行った。 Adsorption of the polypeptide on the liposome surface and examination of the obtained liposome were performed by the following methods.
( 1 ) リポソーム表面への poly- L- lys ine (PLys)の吸着 (1) Adsorption of poly-L-lysine (P Lys ) to liposome surface
構成脂質として酸性脂質である DLPAを含むことでリボソームは負電荷を帯び、 吸着サイトを有する(実施例 1参照)。 このようなリボソーム表面へポリカチオン である po ly- L-lys i.ne (PLys)を作用させ、 静電相互作用により吸着させることでそ の挙動についての検討を行った。 一般的に PAのみからなるリボソームは PCのみか らなるリボソームに比べて安定性に乏しいということが言われている。 よって本 研究では主に DLPA/DMPO0. 5/0. 5のリボソームを用いて PLysの吸着について検討を 行った。
( i) 吸着量測定 By containing the acidic lipid DLPA as a constituent lipid, the ribosome is negatively charged and has an adsorption site (see Example 1). The polycation poly-L-lysine.Plys (P Lys ) was allowed to act on the ribosome surface, and its behavior was investigated by adsorption by electrostatic interaction. It is generally said that ribosomes consisting only of PA are less stable than ribosomes consisting only of PC. Therefore, in this study, we examined the adsorption of P Lys mainly using DLPA / DMPO 0.5 / 0.5 ribosomes. (i) Adsorption measurement
リボソーム溶液 (終リン脂質濃度 0. 5mM)と所定の濃度の PLys溶液 を 25°C、 700rpm、 30min, pH7. 4の攪拌条件下で反応させた。 反応後、 分利用小 型超遠心機 CS 100GX (日立ェ機)を用いて 4°C、 70、 000rpm、 45minの超遠心分離 を行い、 混合液から l iposome-PLys複合体を沈降させた。 上清の 濃度を CBQCAを 用いて測定することで吸着した PLys濃度を算出した。 A ribosome solution (final phospholipid concentration: 0.5 mM) and a Lys solution of a predetermined concentration were reacted under stirring conditions of 25 ° C, 700 rpm, 30 min, and pH 7.4. After the reaction, ultracentrifugation was performed at 4 ° C, 70, 000 rpm, and 45 min using a small-sized ultracentrifuge CS 100GX (Hitachi Machine) to precipitate the liposome-P Lys complex from the mixture. . The concentration of the supernatant was calculated PL ys concentration adsorbed by measuring using a CBQCA.
ここで、 CBQCA法はタンパク質の定量法の一つである。 この方法はァミンのク 口 マ ト グ ラ フ ィ ー誘導体化試薬 と し て用 い ら れて い た 3- (4- carboxybenzoyl) Qu inol ine-2-carboxaldehyde (CBQCA)を用いる。 CBQCAは水溶液 中で非蛍光性であるが、 シアン化物の存在下で CBQCAはタンパク質中の第一級ァ ミンと反応し、 非常に強い蛍光を発する誘導体を形成する(図 8 )。 タンパク質を 含んだサンプルを適したバッファーで希釈し、 KCNを加え、 さらに CBQCAを加える ことで反応を開始させる。 1時間 (必要に応じて 5時間まで)ィンキュベ一トさせた 後、 サンプルの蛍光強度を 465/550nmの吸光/発光の波長で計測する。 Here, the CBQCA method is one of the protein quantification methods. In this method, 3- (4-carboxybenzoyl) quinoline-2-carboxaldehyde (CBQCA), which has been used as a reagent for derivatization of amines in a mouth, is used. Although CBQCA is non-fluorescent in aqueous solution, in the presence of cyanide, CBQCA reacts with primary amines in proteins to form very fluorescent derivatives (Figure 8). Dilute the protein-containing sample with an appropriate buffer, add KCN, and start the reaction by adding CBQCA. After incubating for 1 hour (up to 5 hours if necessary), measure the fluorescence intensity of the sample at the absorption / emission wavelength of 465/550 nm.
(i i) 反応時間の検討 (i i) Examination of reaction time
DLPA/DMPC= 1. 0/0、 0. 5/0. 5、 0/1. 0の組成のリボソームと PLysを用いて反応時間 の検討を行った。 リボソーム懸濁液 500 /z L (終リン脂質濃度 0. 5mM)と P s溶液 500 L (終 濃度 50ppm)として 25° (:、 700rpmの攪拌条件下で反応させた。 この際、 反応時間を 20min、 80minとし比較を行った。 The reaction time was examined using ribosomes having a composition of DLPA / DMPC = 1.0 / 0, 0.5 / 0.5, and 0 / 1.0 and P Lys . 25 ° as ribosome suspension 500 / z L (final phospholipid concentration 0. 5 mM) and P s solution 500 L (final concentration 50 ppm) (:., Was reacted under stirring conditions of 700rpm this time, the reaction time The comparison was made at 20 min and 80 min.
(i i i) 吸着等温線の作成 (i i i) Creation of adsorption isotherm
10mM HEPES pH7. 4を用いて DLPA/DMPO0. 5/0. 5の組成のリボソームを作製し、 添加する PLysの濃度を変化させることで吸着等温線を作成した。 10 mM HEPES pH 7. 4 with DLPA / DMPO0. 5/0. To produce ribosomes 5 composition was prepared an adsorption isotherm by changing the concentration of PL ys added.
リボソーム溶液 500 L (終リン脂質濃度 0. 5mM) と P 溶液 500 Lを 25 °C、 700rpm、 30min, pH7. 4の攪拌条件下で反応させた。 反応後、 4°C、 70、 OOOrpm, 45πΰηの条件で超遠心分離を行い、 上清の P s濃度を CBQCAを用いて測定 することで吸着した! ys濃度を算出した。 各濃度でこの操作を行い吸着等温線を 得た。 500 L of ribosome solution (final phospholipid concentration: 0.5 mM) and 500 L of P solution were reacted under stirring conditions of 25 ° C., 700 rpm, 30 min, and pH 7.4. After the reaction, 4 ° C, 70, OOOrpm , performs ultracentrifugation under the conditions of 45Pye, the P s concentration of the supernatant was adsorbed by measuring using a CBQCA! The ys concentration was calculated. This operation was performed at each concentration to obtain an adsorption isotherm.
( iv) 精製方法の検討 (iv) Purification method
作製した l iposome-P^複合体を単分散の状態で得るために限外ろ過による精製
みた。 Purification by ultrafiltration to obtain the prepared l iposome-P ^ complex in a monodispersed state saw.
限外ろ過フィルター(Amicon Ul tra-4, 分画分子量 30、 000)を用いて、 25 C、 3000rpm, 2minの条件で遠心操作を行い l iposome-?^複合体と吸着していない PLysを分離した(図 9 )。 濃縮された l iposome- PLYSを HEPESを用いて希釈し、 同様の 濃縮を行なう。 この操作を七回繰り返すことで l iposome-PLysと PLysを完全に分離 した。 Using an ultrafiltration filter (Amicon Ultra-4, molecular weight cut off 30, 000), perform centrifugation at 25 C, 3000 rpm, 2 min. L iposome-? ^ The complex and the non-adsorbed PLys were separated (Fig. 9). Dilute the concentrated liposome-P LYS using HEPES and perform the same concentration. By repeating this operation seven times, liposome-P Lys and P Lys were completely separated.
このようにして精製した l iposome-P^を動的光散乱を用いて粒径測定を行った。 The particle size of the purified iposome-P ^ was measured using dynamic light scattering.
(V) 円二色性スぺクトロメトリー(CD)を用いた PLysの二次構造の観察 (V) Observation of secondary structure of P Lys using circular dichroism spectrometry (CD)
円二色' I生スぺク卜ロメ卜リー(c ircul ar d ichroism spectromet ry)は、 タンパ ク質ゃ核酸の立体構造研究において用いられる測定方法のひとつである。 また、 小分子生体物質のキラリティーを決定する手段としても用いられる。 Circular dichroism spectrometry is one of the measurement methods used in the study of the three-dimensional structure of proteins and nucleic acids. It is also used as a means to determine the chirality of small molecule biological materials.
平面偏光(直線偏光)は入射光に向かつて左および右回りに回転する振幅、 振動 数の等しい左偏光および右偏光が合成されたものであり、 複素数を用いて以下の ように表される。 Planar polarized light (linearly polarized light) is a combination of left and right polarized light having the same amplitude and frequency rotating left and right toward incident light, and is expressed as follows using complex numbers.
数 8 Number 8
elwt = cos cot + is t β~1ϋ~ = cos c - isin ca (式 7 ) el0X + e~ia( - 2cos e lwt = cos cot + is t β ~ 1ϋ ~ = cos c-isin ca (Equation 7) e l0X + e ~ ia ( -2cos
この平面偏光が光学活性な物質を透過するとき、 左 ·右円偏光の吸光係数が異 なるために、 それぞれの物質を通過する速度や吸光度が異なる。 この通過速度が 異なる現象を円二色性(c ircular dicliroi sm: CD)という。 図 1 0に平面偏光の入 射光が光学活性物質を通過して楕円偏光となる様子を示した。 平面偏光は進行方 向に垂直な向きから見ると、 左右の円偏光(Aい AR)を重ね合わせた結果、 直線上 を振動するこことなる。 そのため、 平面偏光は直線偏光とも呼ばれる。 旋光性の 物質を通過する場合、 左 ·右円偏光の吸光係数が異なるために偏光面が旋回する。
その角度を Q:とよぶ(図 1 0の場合は右円偏光に比べて左円偏光の吸光係数が大 きく、 右円偏光がより早く透過する。 その結果、 偏光面が右に旋回する(右 1旋 性物質の透過))。 また、 円二色性の物質を透過する場合は左 ·右円偏光の吸光度 が異なるために、 透過後の左 ·右偏光の振幅に差が生じ、 偏光面の軌跡は楕円に なる。 (図 10の場合は左円偏光の吸光度がより大きいため、 試料透過後には右 円偏光の振幅に比べて左円偏光の振幅が小さくなつている。 結果としてそれらの 重ね合わせは楕円偏光となる) CDは左 ·右円偏光に対する分子吸光係数 い 8 R)を用いて Δ £ = sL-£Rで表す。 また、 左 ·右円偏光に対する吸光度が異なるた め、 円偏光の振幅にも差が生じ、 透過光は楕円偏光になる。 CDの大きさは、 楕円 の短軸 '.長軸の比で定義される角度 0 (楕円率: ellipticity)でも表す。 モル楕円 率 〔0〕 (molar, ellipticity)は次式で表す。 When this plane-polarized light passes through an optically active substance, the extinction coefficients of left and right circularly polarized lights are different, so that the speed and the absorbance of the light passing through each substance are different. This phenomenon of different passing speeds is called circular dichroism (CD). FIG. 10 shows how incident light of plane polarization passes through the optically active substance and becomes elliptically polarized light. When viewed from a direction perpendicular to the direction of travel, plane polarized light oscillates on a straight line as a result of superimposing left and right circularly polarized light (A or A R ). Therefore, plane polarized light is also called linearly polarized light. When passing through an optically rotatory substance, the plane of polarization rotates due to the different extinction coefficients of left and right circularly polarized light. The angle is called Q: (In the case of Fig. 10, the extinction coefficient of left-handed circularly polarized light is larger than that of right-handed circularly polarized light, and the right-handed circularly polarized light is transmitted faster. As a result, the plane of polarization rotates rightward ( Permeation of right-handed substance)). Also, when transmitting a circular dichroic substance, the absorbance of the left and right circularly polarized light is different, so that the amplitude of the left and right polarized light after transmission is different, and the locus of the polarization plane is elliptical. (In the case of Fig. 10, since the absorbance of left-handed circularly polarized light is larger, the amplitude of left-handed circularly polarized light is smaller than that of right-handed circularly polarized light after transmission through the sample. As a result, their superposition becomes elliptically polarized light. ) CD is expressed as Δ £ = s L- £ R using the molecular extinction coefficient for left and right circularly polarized light (8 R ). In addition, since the absorbances for the left and right circularly polarized lights are different, the amplitude of the circularly polarized light also differs, and the transmitted light becomes elliptically polarized light. The size of the CD is also represented by the angle 0 (ellipticity) defined by the ratio of the minor axis to the major axis of the ellipse. The molar ellipticity [0] (molar, ellipticity) is represented by the following equation.
数 9' Number 9 '
[θ] - cm1 · ώηοί—ή (式 8〉[θ]-cm 1 · ώηοί—ή (Equation 8)
c:試料のモル濃度 (mol · cm—3) c: molar concentration of sample (mol · cm- 3 )
1:光路長 (cm) 1: Optical path length (cm)
θ~] や△ εの値は正または負の符号を付けて表し、 それぞれ正のコットン効 果、 負のコットン効果とも言う。 θ ~] and △ ε are denoted with a positive or negative sign, and are also referred to as a positive cotton effect and a negative cotton effect, respectively.
本研究では円二色性測定装置(J- 720W1 JASC0)を用いて遠紫外領域の円二色測 定を行うことで PTYSの二次構造の検討を行った。 光路長 1匪のセルに 300〜400 L のサンプルを注入し、 遠紫外領域(190M!〜 250ηπι)における分子楕円率 〔0〕 を測 定した。 測定速度は 20nm/miii、 スキャン回数は 10〜30回の条件で測定を行った。 P の二次構造の観察 In this study, we investigated the secondary structure of the P TYS by performing circular dichroism measurements in the far ultraviolet region using circular dichroism measuring apparatus (J- 720W1 JASC0). A 300-400 L sample was injected into a cell with an optical path length of 1, and the molecular ellipticity [0] was measured in the far ultraviolet region (190 M! -250ηπι). The measurement was performed at a measurement speed of 20 nm / miii and a scan count of 10 to 30 times. Observation of secondary structure of P
PLysは温度や pHに応じて、 ひへリックス · 3シート · ランダムコイルという三 つの二次構造をとり、 生理的 pHにおいてはランダム構造をとることが知られてい る。 そこでそれぞれの構造を以下の方法で作製し 190〜250nmにおける CDスぺク卜 ル測定を行なった。
ランダムコイル: pH7.4の緩衝液に溶解 It is known that P Lys has three secondary structures, ie, a helix, a three-sheet, and a random coil, depending on the temperature and pH, and that it has a random structure at physiological pH. Therefore, each structure was prepared by the following method, and CD spectrum measurement at 190 to 250 nm was performed. Random coil: dissolved in pH 7.4 buffer
αヘリックス: pHl 1.4の緩衝液に溶解 α helix: soluble in pH 1.4 buffer
シート: pHll.4の緩衝液に溶解させ 65°Cで 10分加熱後、 20°Cに冷却。 各溶液を用いて測定速度 20nm/min ·スキャン回数 10回の条件で測定を行なつ た。 Sheet: Dissolve in pH11 buffer, heat at 65 ° C for 10 minutes, then cool to 20 ° C. Using each solution, measurement was performed under the conditions of a measurement speed of 20 nm / min and a scan count of 10 times.
• リボソームへの吸着に伴う PTy。の二次構造変化 • P Ty associated with ribosome adsorption. Secondary structure change
リボソームへの PLysの吸着に伴う二次構造の変化について検討するために CDス ぺクトル測定を行なった。 CD spectra were measured to study the change in secondary structure due to the adsorption of P Lys to ribosomes.
DLPA/DMPC=1.0/0、 0.5/0.5、 0/1.0の組成のリポソ一ムを作製し(なお CD測定に 用いるリポソ一ムは HEPESで作製すると CDスペクトルのバックグラウンドのノィ ズが大きくなつてしまうことから、 lOmMリン酸バッファー、 pH7.4を用いて作製 した)、 このリボソーム懸濁液 200 L (終リン脂質濃度 0.5mM)と所定の濃度の 溶液 200 Lを 25°C、 700rpm、 30min、 pH7.4の攪拌条件下で反応させた。 この 溶液を用いて、 セルの温度 25°C、 測定速度 20nm/iniii、 スキャン回数 30回で CD スぺクトル測定を行なった。 A liposome with the composition of DLPA / DMPC = 1.0 / 0, 0.5 / 0.5, 0 / 1.0 was prepared. (Note that the liposome used for CD measurement was made with HEPES, and the background noise of the CD spectrum became large. Therefore, 200 L of this ribosome suspension (final phospholipid concentration: 0.5 mM) and 200 L of a solution of a predetermined concentration were added at 25 ° C, 700 rpm, and 30 min. The reaction was carried out under stirring conditions of pH 7.4. Using this solution, the CD spectrum was measured at a cell temperature of 25 ° C, a measurement speed of 20 nm / iniii, and 30 scans.
( 2 ) liposome - PLys表面への poly - aspartic acid (PAsp)の吸着 (2) Adsorption of poly-aspartic acid (P Asp ) on liposome-P Lys surface
作製した liposome- PLys複合体表面への poly- aspartic acid (PAsp)の吸着につい て検討する。 The adsorption of poly-aspartic acid (P Asp ) on the surface of the prepared liposome-P Lys complex is examined.
これまでに作製した liposome-? 複合体についての検討を行った。 PAを構成脂 質にもつリボソーム表面にポリカチオンである PLysを吸着させることで、 表面電 位が反転し、 複合体は正電荷を帯びていることがわかった。 そこで二層目の吸着 としてポリァニオンである PAspを liposome- PLys表面へ吸着させることを試みた。 1 iposome - PLys - PAspの作製 The liposome-? The complex was studied. By adsorbing the polycation, P Lys , on the ribosome surface containing PA as a constituent lipid, the surface potential was reversed, and the complex was found to be positively charged. Therefore, we attempted to adsorb the polyanion P Asp to the liposome-P Lys surface as the second layer adsorption. 1 Preparation of iposome-P Lys -P Asp
DLPA:DMPC=l:l(by mol)の組成のリポソーム 500 1 (終リン脂質濃度 0.5mM)と DLPA: DMPC = l: l (by mol) liposome 500 1 (final phospholipid concentration 0.5mM)
PLys溶液 500 ^ 1 (終 Piys濃度 400ppm)を 30min、 25°C、 700rpm, pH7.4の条件下で 反応させた。 反応溶液を限外ろ過フィルター(分画分子量 100、 000)を用いて 2min、The P Lys solution 500 ^ 1 (final Pis concentration 400 ppm) was reacted for 30 min at 25 ° C, 700 rpm, and pH 7.4. The reaction solution was filtered using an ultrafiltration filter (fraction molecular weight: 100, 000) for 2 min.
25°C、 3000rpmの条件下で 7回濃縮と再分散を行い精製を行なった。 作製されたPurification was performed by concentrating and redispersing 7 times at 25 ° C and 3000 rpm. Made
11 0301116-?^溶液500 ^と?^溶液500//1 (終? 濃度40(^111)を同様の反応条件で 反応させた。 ポリイオンコンプレックス除去のために 15miii、 25T:、 15、
OOOrpmの条件で遠心をした後、 限外ろ過フィルターを用いて同様の精製を行なつ た。 ' 11 0301116-? ^ Solution 500 ^? ^ Solution 500 // 1 (final concentration 40 (^ 111) was reacted under the same reaction conditions. To remove polyion complex, 15miii, 25T :, 15, After centrifugation under the condition of OOOrpm, the same purification was performed using an ultrafiltration filter. '
( 3 ) 異なる電荷を持つリボソーム-ポリべプチド複合体からなる構造体の作 製 (3) Fabrication of ribosome-polypeptide complex structures with different charges
これまで負に荷電したリボソームをテンプレートとして PLysや PAspで被覆するこ とで力チォン性を持つ 1 iposome-? 複合体、 ァニオン性を持つ 1 iposome- PLys- PAsp を作製してきた。 そこでこれらの電荷を利用した構造体の作製を試みた。 Until now, a negatively charged ribosome as a template is coated with P Lys or P Asp to have a strong ion potential 1 iposome-? We have produced a complex, 1 iposome-P Lys -P Asp with anionic properties. Therefore, an attempt was made to fabricate a structure using these charges.
l iposome_PLys溶液 200 1と l iposome- PLys-PAsp溶液 200 1 (どちらも終リン脂質 濃度を 0. 5mM)を 30min、 25°C、 700rpmの条件下で反応させた。 また負電荷を持 つ]) LPA/DMPC ). 5/0. 5の組成のリボソームと 1 iposome- PLysも同様の条件で反応さ せた。 このようにして得られたサンプルにネガティブ染色を施し、 FE- TEMによる 観察を行なった。 The l iposome_P Lys solution 200 1 and the l iposome-P Lys -P Asp solution 200 1 (both having a final phospholipid concentration of 0.5 mM) were reacted under the conditions of 30 min, 25 ° C, and 700 rpm. Also, a ribosome having a negative charge]) LPA / DMPC). 5 / 0.5 and 1 iposome-P Lys were reacted under the same conditions. The sample thus obtained was negatively stained and observed by FE-TEM.
2 . ポリペプチドを吸着したリボソーム 2. Ribosome adsorbed polypeptide
ポリペプチドを吸着したリボソームの作製および検討の結果は以下の通りであ つた。 The results of the preparation and examination of the ribosome to which the polypeptide was adsorbed were as follows.
( 1 ) リボソーム表面への poly- L lys ine (PLys)の吸着 (1) Adsorption of poly-Llysine (P Lys ) on the ribosome surface
(i) 吸着量について (i) Adsorption amount
•検量線の作成 • Creating a calibration curve
本研究ではリボソーム表面へ吸着し
いて算出した。 検量線作成のために pH7. 4の HEPESを用いて終 PLys濃度 5、 10、 20、 50、 100、 200、 500、 lOOOppmの P s溶液を調製した。 これらを用いて検量線を作成した(図 1 1 )。 検量線より CBQCAを用いて PLysを定量することは可能であると言える。 測定範囲 に関しては、 500ppm、 lOOOppmで多少検量線から外れているが R2値から誤差範囲 であると考えられる。 また文献によると CBQCAを用いたタンパク質の定量の測定 範囲は 0. Olppn!〜 1500ppmくらいまで検出をすることが可能であるという報告がな されていることから、 この範囲において P! ^の定量を行なうことが可能である。 •吸着量の算出 In this study, Was calculated. Final P Lys concentration of 5 using a pH 7. 4 of HEPES for preparation of the calibration curve, 10, 20, 50, 100, 200, 500, to prepare a P s solution LOOOppm. A calibration curve was created using these data (Fig. 11). From the calibration curve, it can be said that PL ys can be quantified using CBQCA. Regarding the measurement range, 500 ppm and 100 ppm deviate slightly from the calibration curve, but are considered to be within the error range from the R 2 value. According to the literature, the measurement range of protein quantification using CBQCA is 0. Olppn! Since it has been reported that detection is possible up to about 1500 ppm, it is possible to quantify P! ^ In this range. • Calculation of adsorption amount
DLPAと界面での断面積 aD=0. 6nm2 ·全ての C- C結合がトランスのときの長さ lc=l. 43nm, また DMPCは a。=0. 65nm2 · lc=l. 80nmである(図 1 2 )。 このとき直径
lOOnmのリボソーム 1個に含まれる脂質分子数は、 リボソーム外表面積と内表面積 の和を脂質分子 1分子が占める面積で割って、 Cross-sectional area at the interface with DLPA a D = 0.6 nm 2 · Length when all C-C bonds are in the transformer l c = l. 43 nm, and for DMPC a. = 0.65 nm 2 · l c = 1 80 nm (Fig. 12). At this time the diameter The number of lipid molecules contained in one lOOnm ribosome is calculated by dividing the sum of the ribosome outer surface area and inner surface area by the area occupied by one lipid molecule.
数 10 Number 10
匪 : 4 02 +47'142) = 9.89 X 104(個) Marauder : 4 02 +47 ' 142 ) = 9.89 X 10 4 (pieces)
0.6 0.6
匪 PC: 502 ÷46.42) 4 Marauder PC: 50 2 ÷ 46.4 2 ) 4
0.65 、 ノ と表される。 0.65, represented as no.
ここで DLPAと DMPCとの二成分系からなる場合を考える。 DLPA/DMPO0.5: 0.5 (by mol)の組成のリボソームの場合、 リポソ一ム 1個に含まれる DLPAと DMPCの総数は、 数 1 1 Here, consider the case of a binary system consisting of DLPA and DMPC. DLPA / DMPO0.5: For ribosomes with a composition of 0.5 (by mol), the total number of DLPA and DMPC contained in one liposome is
^^/^iv r^-u^.u^;. 50 +46 X 4 ^ ^^ / ^ iv r ^ -u ^ .u ^ ;. 50 +46 X 4 ^
' (0.6 + 0.65) 、 '(0.6 + 0.65),
(4.68 X H)4ト 2 = 9.36 χ 104 (個) と表される。 これより脂質 lmolあたりのリポソ一ムの個数は以下のように表され る。 (4.68 XH) 4 to 2 = 9.36 χ 10 4 (pieces). From this, the number of liposomes per 1 mol of lipid is expressed as follows.
数 1 2 Number 1 2
^—- = 6.43 ^ —- = 6.43
9.36 ^IO4 9.36 ^ IO 4
NA: アポガドロ数 N A : Apogadro number
DLPA/DMPC=0.5:0.5(by mol)の組成のリボソームを作る際、 それぞれの脂質を 5.0 X 10— ¾olずつはかり取り混合しているので、 この系で形成されるリボソーム の個数は、 When making ribosomes of DLPA / DMPC = 0.5: 0.5 (by mol), each lipid is weighed and mixed 5.0 x 10-—ol, so the number of ribosomes formed in this system is
数 1 3
(6.43 x 1018 )χ (1.0 x 10一6 }= 6.43 χ 1013 (個) Number 1 3 (6.43 x 10 18) χ ( 1.0 x 10 one 6} = 6.43 χ 10 13 (pieces)
実際には終リン脂質濃度は作製時の 1/20の濃度で用いているので 6. 43 X 1012 (個)である。 よって系内にあるリボソームの全表面積は、 Actually, the final phospholipid concentration is 6.43 × 10 12 (pieces) because it is used at 1/20 the concentration at the time of preparation. Therefore, the total surface area of the ribosome in the system is
数 1 4 Number 1 4
4π X 502 X (3.22 χ 1012 ) = 1.01 χ 1017 rnm2) 4π X 50 2 X (3.22 χ 10 12 ) = 1.01 χ 10 17 rnm 2 )
と表される。 It is expressed.
50ppmの PLysが DLPA/DMPC=0. 5/0. 5の組成のリポソ一ム表面に吸着したと仮定す ると吸着量は、 Assuming that 50 ppm of P Lys was adsorbed on the liposome surface with a composition of DLPA / DMPC = 0.5 / 0.5, the amount of adsorption was
数 1 5 Number 1 5
本実施例では CBQCA法により定量した I\ys濃度をもとに、 以上のような計算によ り吸着量を算出している。 Based on the I \ ys concentration quantified by CBQCA method in the present embodiment, it calculates the by Ri adsorbed amount calculation as described above.
( i i) 反応時間の検討 (ii) Examination of reaction time
DLPA/DMPOL 0/0、 0. 5/0. 5、 0/1. 0の組成のリボソームと PLysを用いて反応時間 を 20min、 80niinとし反応させた。 吸着量について表 3にまとめる。 The reaction was carried out using ribosomes having a composition of DLPA / DMPOL 0/0, 0.5 / 0.5, 0 / 1.1.0 and P Lys for a reaction time of 20 min and 80 niin. Table 3 summarizes the adsorption amount.
表 3
吸'着の時間依存性 Table 3 Time dependence of sorption
PAモルフラクショ 時間 / 吸着 PA morph fraction time / adsorption
ン 分 1 ng*cm"" Min 1 ng * cm ""
0 20 0.00 0 20 0.00
0.5 20 48.16 0.5 20 48.16
1.0 20 48.09 1.0 20 48.09
0 80 0.00 0 80 0.00
0.5 80 45.54 0.5 80 45.54
1.0 80 49,50 1.0 80 49,50
この結果から PAのモル分率が 1. 0、 0. 5の場合は仕込んだ PLysのほぼすべてが吸 着したと考えられる。 また、 20mmと 80minで大きな差がないことから、 これらの 系での反応時間は 20minで十分であると考えられる。 From these results, it is considered that when the mole fraction of PA was 1.0 or 0.5, almost all of the charged Lys had absorbed. Since there is no significant difference between 20 mm and 80 min, the reaction time in these systems is considered to be sufficient for 20 min.
このようなことから、 以後のリボソームと PLysを反応させる場合の攪拌条件は 25°C, 700rpm, 30min、 pH7. 4として行った。 For this reason, the subsequent stirring conditions for the reaction of ribosomes with P Lys were 25 ° C, 700 rpm, 30 min, and pH 7.4.
(i i i) 吸着等温線の作成 (i i i) Creation of adsorption isotherm
ΙΟπιΜ HEPES pH7. 4を用いて DLPA/DMPC=0. 5/0. 5の組成のリボソームを作製し、 添加する Ptysの濃度を変化させた時(終 濃度 5、 10、 20、 50、 100、 200、 400、 600、 800、 1000、 2000ppm)の仕込みの P s濃度と吸着量の関係を表 4に示し、 そ れをもとに作成した吸着等温線を図 1 3に示す (吸着量の数値は同じ実験を四回 行なった平均値を用いている。 )。 ΙΟπιΜ HEPES pH7. 4 DLPA / DMPC = 0 using. 5/0. Ribosomes 5 composition was prepared, when varying the concentration of P tys added (final concentration 5, 10, 20, 50, 100 , 200, 400, 600, 800, 1000, and 2000 ppm) are shown in Table 4 and the adsorption isotherm created based on the Ps concentration is shown in Fig. 13 (adsorption amount). The numerical value of is the average value of the same experiment performed four times.)
表 4
Table 4
ポリマーの仕込み濃度による吸着量の変化 Change in adsorption amount depending on polymer concentration
リボソーム一個 リボソーム一個 仕込み PLys濃度 PLyS吸着量 PLyS吸着量 当たりの 当たりの One ribosome One ribosome Charge P Lys concentration PLy S adsorption amount Per PLy S adsorption amount
/ppm /ppm /ng · cm— 2 / ppm / ppm / ng · cm— 2
PLyS分子数 PLYS占有面積/ nm2 Number of PLy S molecules PLYS occupied area / nm 2
5 5.00 4.95 18.70 1275.985 5.00 4.95 18.70 1275.98
10 10.00 9.90 37.39 2551.9610 10.00 9.90 37.39 2551.96
20 20.00 19.80 74.78 5103.9120 20.00 19.80 74.78 5103.91
50 50.00 49.50 186.96 12759.7850 50.00 49.50 186.96 12759.78
100 94.85 93.91 354.65 24204.67100 94.85 93.91 354.65 24204.67
200 127.09 125.83 475.22 32433.45200 127.09 125.83 475.22 32433.45
400 130.32 129.02 487.26 33255.82400 130.32 129.02 487.26 33255.82
600 137.21 135.85 513.05 35015.40600 137.21 135.85 513.05 35015.40
800 140.04 138.65 523.63 35737.60800 140.04 138.65 523.63 35737.60
1000 132.20 130.89 494.29 33735.59 '1000 132.20 130.89 494.29 33735.59 '
1500 130.00 128.71 486.09 33175.431500 130.00 128.71 486.09 33175.43
2000 143.24 141.82 535.58 36553.59 2000 143.24 141.82 535.58 36553.59
図 1 3より吸着量がほぼ一定になっていることがわかる。 この吸着等温線は Langmuir型をとつており、 130〜140ngん m2でリポソーム表面のほぼ全ての吸着サ ィトが埋つた状態であると考えられる。 多少吸着量が上下している部分があるが、 これは用いているリポソームによって吸着サイトとなる PA分子がバルタの方を向 いている数ゃリポソ.ーム内での配列などが厳密には一定ではないことから、 PLys の吸着場の数に多少の差があるものと考えられる。 From FIG. 13, it can be seen that the adsorption amount is almost constant. This adsorption isotherm is of the Langmuir type, and it is considered that almost all adsorption sites on the liposome surface are buried at 130 to 140 ng m 2 . There is a part where the amount of adsorption slightly fluctuates, but this is due to the liposome used, where the PA molecules that become the adsorption site are oriented toward Balta. Therefore, it is considered that there is some difference in the number of adsorption fields of P Lys .
また、 超遠心による分離前後での liposome- P 複合体の状態の変化について以 下の表 5にまとめる。 Table 5 below summarizes the changes in the state of the liposome-P complex before and after separation by ultracentrifugation.
表 5
リボソーム -PLYS 複合体の状態の変化 Table 5 Changes in the state of the ribosome-P LYS complex
π リポソ—ム - PLYS 複合体の状態 State of π liposome-P LYS complex
PLVS ;辰度/ ppm —
PLVS; cinnabar / ppm —
20 20
50 50
100 100
200 200
500 膜状沈降物 500 Membranous sediment
1000 膜状沈降物 1000 Membranous sediment
1500 膜状沈降物 1500 Membranous sediment
2000 2000
ノNノノノ 777, s 膜状沈降物 ノ, ノ ノ ノ 777, s Membranous sediment
ο。3τ- κ κ、、ゝ \ ο. 3τ- κ κ ,, ゝ \
この結果より P の仕込み量が 5〜 10ρρπιの場合は超遠心による分離を行った後 も再分散し約 lOOnmの単分散であつたのに対し、 20〜 100ppmでは凝集してしまつ ていた。 さらに 200ppm以上の場合は膜状の沈降物が生じていた(図 1 4 ) 。 From these results, when the charged amount of P was 5 to 10 ρππ, the particles were redispersed even after separation by ultracentrifugation and were monodispersed at about 100 nm, whereas they were agglomerated at 20 to 100 ppm. Further, when the content was 200 ppm or more, a film-like sediment was generated (Fig. 14).
凝疑疑疑 Suspicion
このような違いはリボソームに吸着した PLysの量が異なること fiで生じるもので あると考えられる。 図 1 5に示したように、 5〜 10ppmの仕込み量の場合はリポソ ームの表面に対して PLysの占有面積が小さいために、 正電荷の影響が小さく、 リ ポソーム全体としては負電荷を持っているような状態になっていると考えられる。 よって負電荷同士の反発によって超遠心による分離操作後も単分散のまま存在し ていると考えられる。 これに対して 20〜 100ppmの場合は PLysが吸着した部分とそ うでない部分が存在するため、 リボソーム表面には正電荷を示す部分と負電荷を 示す部分があると考えられる。 そのため静電相互作用より超遠心操作後により凝 集体が形成されやすくなつているものと考えられる。 さらに 200ppm以上になると 系内には過剰な が存在するようになる。 そのような系での超遠心操作後の状 態は膜状の沈降物が形成している。 これに関する考察は後にも述べるが、 過剰な PLysとともにリボソーム間を架橋していくためにこのような膜状の沈降物が生じ ているものと考えられる。 Such a difference is considered to be caused by fi that the amount of Lys adsorbed on the ribosome is different. As shown in FIG. 1 5, for the case of charge of. 5 to 10 ppm small area occupied by the PL ys to the surface of the liposome, reduce the influence of positive charge, negative charge as a whole liposome Is considered to have a state. Therefore, it is considered that the monodispersion exists even after the separation operation by ultracentrifugation due to the repulsion between the negative charges. On the other hand, in the case of 20 to 100 ppm, there are a portion where P Lys is adsorbed and a portion where it is not, so it is considered that there are a portion showing a positive charge and a portion showing a negative charge on the ribosome surface. Therefore, it is considered that aggregates are easily formed after the ultracentrifugation operation due to the electrostatic interaction. If the concentration exceeds 200 ppm, excess will be present in the system. After ultracentrifugation in such a system, a film-like sediment is formed. As will be discussed later, it is probable that such membrane-like precipitates have been formed due to bridging between ribosomes with excess P Lys .
(iv) 膜状沈降物の検討 (iv) Examination of film-like sediment
上記のように、 過剰な P 存在下で l iposome- PLys複合体を形成させ、 超遠心に
よる精製を試みると図 1 4のような膜状の沈降物が形成されることがわかった。 その沈降物内でのリボソームの状態を検討するために、 蛍光物質である 1 - Hydroxy Pyrene-3, 6、 8-Tr isul fonic ac id (HPTS)を内封したリボソームを作製 し同様の実験を行うことで、 膜内のリボソームの状態について検討した。 As described above, liposome-P Lys complex is formed in the presence of excess P, It was found that a membrane-like sediment as shown in Fig. 14 was formed when this purification was attempted. In order to examine the state of ribosomes in the sediment, we prepared ribosomes containing 1-hydroxypyrene-3,6,8-trisul fonic acid (HPTS), a fluorescent substance, and performed similar experiments. By doing so, we examined the state of ribosomes in the membrane.
リポソ一ムを水和させる際に、 10mM HPTS溶液 (pH7. 4)を用いて水和させ、 ゲル ろ過 ·超遠心を用いて精製を行い HPTS内封リボソームを得た。 HPTS内封リポソ一 ム 500 1 (終リン脂質濃度 0. 5mM)と PLys溶液 500 x 1 (終 濃度 lOOOppm)を 30min、 25°C , 700rpm、 pH7. 4の条件下で反応させた。 反応溶液を 45min、 4で、 70、 OOOrpmの条件で超遠心を行なった。 このとき生じた膜状沈降物を図 1 6に示す (図 1 6において(a)は HPTSを内封したリボソームで実験を行なった場合、 (b)は HPTSを内封させていないリボソームで行なった場合に形成した膜状沈降物であ る。 )。 When liposomes were hydrated, they were hydrated using a 10 mM HPTS solution (pH 7.4), and purified using gel filtration and ultracentrifugation to obtain HPTS-enclosed ribosomes. HPTS-encapsulated liposome 5001 (final phospholipid concentration 0.5 mM) and P Lys solution 500 x 1 (final concentration 100 ppm) were reacted for 30 min at 25 ° C, 700 rpm, and pH 7.4. The reaction solution was ultracentrifuged at 45 and 4 min at 70 and OOO rpm. Figure 16 shows the film-like sediment generated at this time. It is a film-like sediment formed in the case of).
図 1 6 (a)より膜は緑色になっているが、 超遠心した際の上清も緑色になって いた。 このことから膜を形成する際リボソームは崩壊しているのではないかと考 えられる。 (a)で生成している緑色の膜はリボソームの崩壊により漏れ出した HPTSと Ι^'が静電的な相互作用により結合したために緑色になっているのではな いかと考えられる。 According to FIG. 16 (a), the membrane was green, but the supernatant after ultracentrifugation was also green. This suggests that the ribosome may have collapsed during membrane formation. The green membrane formed in (a) may be green due to the binding of HPTS and Ι ^ 'leaked out by ribosome breakdown due to electrostatic interaction.
このようなことからリボソームと過剰な PLysの存在した系を超遠心にかけるこ とによってリボソームは崩壊しながら周囲の PLysを架橋することで図 1 6のよう な膜状の沈降物を作っていると考えられる。 また、 これら膜状沈降物は比較的安 定であり、 pH7. 4の HEPES中で形状を保っていられることがわかった。 さらにこの 膜状沈降物は pH3. 6の MES中では形状が崩壊していくことを確認した。 For this reason, ultracentrifugation of the system in which ribosomes and excess P Lys were present causes the ribosome to collapse and crosslink the surrounding P Lys to form a membrane-like sediment as shown in Figure 16. It is thought that it is. In addition, it was found that these film-like sediments were relatively stable and could maintain their shape in HEPES at pH 7.4. Furthermore, it was confirmed that the shape of this film-like sediment collapsed in pH 3.6 MES.
(v) 精製方法の検討 (v) Examination of purification method
上記のように超遠心を用いた精製では、 リボソーム表面のほぼ全てを被覆した Purification using ultracentrifugation covered almost the entire ribosome surface as described above.
1 iposome- 複合体を単分散で得ることができなかった。 よって限外ろ過を用い た精製を試みた。 l iposome- P 溶液を限外ろ過フィルタ一(分画分子量 300、 000) を用いて 25 、 3、 000rpm、 2minの条件下で 7回濃縮と再分散を行うことで l iposome- P の精製した。 One iposome-complex could not be obtained in a monodisperse manner. Therefore, purification using ultrafiltration was attempted. The l iposome-P solution was purified and concentrated seven times using an ultrafiltration filter (fraction molecular weight: 300, 000) at 25, 3,000 rpm and 2 min, and the l iposome-P was purified. .
動的光散乱を用いて l iposome-? の粒径測定を行ったところ約 lOOnmで単分散
が得られた。 また、 精製前後でリン脂質濃度を測定したところ、 多少低下したも のの損失が少なかったことから、'限外ろ過を用いた精製によって吸着しなかったL iposome- using dynamic light scattering? The particle size was measured and found to be monodisperse at about 100 nm. was gotten. When the phospholipid concentration was measured before and after purification, it was slightly reduced but the loss was small.
PLysと l iposome-P 複合体を単分散の状態でかつ損失量を少なく抑えて分離する ことが可能であると言える。 It can be said that P Lys and the liposome-P complex can be separated in a monodispersed state with a small loss.
以後の実験では l iposome- 複合体の精製を限外ろ過フィルターを用いて行つ ている。 In subsequent experiments, purification of the liposome-complex was performed using an ultrafiltration filter.
(vi) CDを用いた PLysの二次構造の検討 (vi) Examination of secondary structure of P Lys using CD
• P,y,の二次構造の観察 • Observation of secondary structure of P, y ,
PLysは αヘリックス · j3シ一ト ·ランダムコイルという三つの二次構造をとる ことが知られている (図 1 7 )。 それぞれの構造を作製し 190〜250nmにおける CD スぺクトル測定結果を図 1 8に示す。 It is known that P Lys has three secondary structures: α helix, j3 sheet, and random coil (Fig. 17). Fig. 18 shows the results of CD spectrum measurement at 190 to 250 nm for each structure.
各二次構造の楕円率として、 ランダムコイルは 195nmに極大を、 αヘリックス は 222nmと 208nmに極小、 200mnに cross over, 191mnに極大を、 j6シートは 206〜 207nmの cross overをはさんで極小 ·極大を持つことということがわかっている。 この値と図 1 8を比較すると、 ほぼ同じような CDスペクトルが得られている。 よ つて PLysの'各二次構造が形成されていることが確認できる。 以後、 図 1 8を 二 次構造の基準スぺクトルとして検討を行なった。 As for the ellipticity of each secondary structure, the random coil has a maximum at 195 nm, the α-helix has a minimum at 222 nm and 208 nm, a crossover at 200 mn, a maximum at 191 mn, and a j6 sheet has a minimum at a crossover of 206 to 207 nm. · We know we have a maximum. When this value is compared with Figure 18, almost the same CD spectrum is obtained. Thus, it can be confirmed that each secondary structure of PLys is formed. Thereafter, Fig. 18 was examined as the reference spectrum of the secondary structure.
• リボソームへの吸着に伴う の二次構造変化 • Secondary structure change of the ribosome upon adsorption to ribosome
DLPA/DMPC=1. 0/0、 0. 5/0. 5、 0/1. 0の組成のリボソーム溶液(終リン脂質濃度 0. 5mM)と 溶液(終 PLys濃度 50卯 m)を反応させ CDスぺクトル測定した結果を図 1 9に示す。 また、 ランダム構造 · ]3構造で特徴的な 195- 200nmの領域のモル楕円 率の平均を取り図 2 0にまとめる。 この領域ではランダム構造は負のモル楕円率、 β構造では正のモル楕円率を持つことが知られている。 DLPA / DMPC = 1.0 / 0, 0.5 / 0.5, 0 / 1.0 Reaction of ribosome solution (final phospholipid concentration 0.5mM) and solution (final Lys concentration 50m) Fig. 19 shows the results of CD spectrum measurement. Figure 20 shows the average of the molar ellipticity in the region of 195-200 nm, which is characteristic of random structure and] 3 structure. It is known that in this region, the random structure has a negative molar ellipticity and the β structure has a positive molar ellipticity.
これまでに I\ysは ΡΑを構成脂質にもつリボソーム表面に吸着し、 PCのみで作製 したリボソームには吸着しないことを確認してきた。 図 1 9、 図 2 0より P が 吸着している PA分率が 1. 0、 0. 5のものは /3構造を示し、 PCのみのものはランダム 構造を示していることがわかる。 This I \ ys so far adsorbed on the ribosomal surface with the configuration lipid ΡΑ, the ribosomes were made only at the PC has been confirmed that no adsorption. From FIGS. 19 and 20, it can be seen that those with a PA fraction of 1.0 and 0.5 in which P is adsorbed have a / 3 structure, and those with only PC have a random structure.
次に DLPA/DMPO0. 5/0. 5の組成のリボソーム溶液(終リン脂質濃度 0. 5mM)と!^ 溶液 (終 P ^濃度 400ρριιι)を反応させ、 限外ろ過による精製操作の前後において CD
スペクトル測定した結果を図 2 1に示し、 モル楕円率の平均を図 2 2にまとめる。 この結果より精製前はランダム構造であつたの対して、 精製後は )3構造を示し ていることがわかる。 これは、 精製前は吸着しなかった PLysがランダム構造をと り多く存在しているのに対し、 限外ろ過を用いて精製することでそれらが取り除 かれリボソーム表面に /3構造をとり吸着している P ^が残っていることを示して いる。 これらの結果より I ysはリボソームに吸着することで二次構造がランダム 構造から )8構造へと変化することが確認できた。 Next, a ribosome solution (final phospholipid concentration: 0.5 mM) with the composition of DLPA / DMPO 0.5 / 0.5! ^ Solution (final P ^ concentration 400 ρριιι), before and after purification by ultrafiltration The spectrum measurement results are shown in Fig. 21 and the average of the molar ellipticity is summarized in Fig. 22. From this result, it can be seen that before purification, the protein had a random structure, whereas after purification, it had a) 3 structure. This is because P Lys, which had not been adsorbed before purification, had a large number of random structures, whereas purification using ultrafiltration removed them, leaving a / 3 structure on the ribosome surface. This indicates that the adsorbed P ^ remains. From these results, it was confirmed that the secondary structure of Iys changed from a random structure to an 8) structure by adsorption to ribosomes.
• リボソームと PT y。の相互作用について • Ribosomes and P T y . The interaction of
図 1 9〜図 2 2の結果より、 P はリボソーム表面への吸着とともに二次構造 がランダム構造から) 3·構造へ変化していることがわかった。 は図 1 7に示し たように高 pH領域において j6構造を示すことが知られているが、 リボソーム表面 へ吸着した場合 pHが中性付近にもかかわらず jS構造をとつている。 P sの吸着は P sの側鎖の lys ine残基のァミノ基とリボソームの構成脂質である DLPAのリン酸 部分との静電引力によって生じる。 DLPAのみでリボソームを作製した場合、 P s の lys ine残基に対して吸着サイ卜が多いために PLysは多点で相互作用をして /3構 造へと変化する。 一方、 DMPCの場合はコリン基が存在するために、 リン酸部分の 電荷が打ち消さることで電化的に中性を示す。 このことから静電引力が働くと言 うことはない。 さらにコリン基が構造的に嵩高いということからも PLysが近づけ ないということも考えられる。 From the results in Fig. 19 to Fig. 22, it was found that the secondary structure of P was changed from a random structure to a (3) structure with the adsorption to the ribosome surface. Is known to show the j6 structure in the high pH region as shown in Fig. 17, but when adsorbed on the ribosome surface, it adopts the jS structure even though the pH is near neutral. Adsorption of P s is caused by electrostatic attraction between the phosphate moieties of DLPA a constituent lipid of Amino groups and ribosomal lys ine residues of the side chains of P s. If only to produce a ribosome DLPA, P Lys changes to the / 3 structure interactions at multiple points for many adsorption sites Bok respect lys ine residues of P s. On the other hand, in the case of DMPC, because of the presence of the choline group, the electric charge of the phosphate moiety is canceled out, indicating neutrality in charge. This does not mean that electrostatic attraction works. Furthermore, the fact that the choline group is structurally bulky may also prevent P Lys from approaching.
DLPAと DMPCとの二成分系でのリポソームと PLysとの場合を考えると、 DLPAがあ る程度存在しないと i3構造への変化は現われないと考えられる。 また、 リポソ一 ム表面で DLPAが連続している部分があれば PLysは静電引力から相互作用し i3構造 を誘導するが、 DMPCがあればその部分はランダムのままで存在してしまうと考え られる(図 2 3 )。 このことから図 1 9で示されているとおり DLPAの含有率が多く なると j3構造に富んでくるのは、 DLPAの連続した配列の割合がリボソーム表面に 多いために /3構造をとりやすくなつているためであるといえる。 Considering the case of liposome and P Lys in a two-component system of DLPA and DMPC, it is considered that the change to the i3 structure does not appear unless DLPA is present to some extent. Also, PL ys if any portion DLPA in Liposomes one beam surface are continuous induces interact i3 structure from electrostatic attraction, but if the part if any DMPC would be present remains random It is possible (Fig. 23). From this, as shown in Fig. 19, when the content of DLPA increases, the j3 structure becomes richer because the ratio of the continuous sequence of DLPA is large on the ribosome surface, so that it becomes easier to adopt the / 3 structure. It can be said that it is.
さらに、 本研究では の吸着実験を室温(25°C )に設定し行なった。 この温度 はリボソームの相転移温度よりも少しだけ低い温度であり、 部分的にゲル相から 液晶相へ変化し始める温度である。 この温度を相転移温度に対して明確な差をつ
けることで吸着挙動に差が出るものと言える。 T〉Teとした場合、 脂質膜内で脂質 分子は動きやすくなるため、 DLP'Aの連続した配列を取りやすくなるのに対し、 T <Teであれば脂質分子は動けないために連続した配列は取りにくくなる。 In this study, the adsorption experiment was performed at room temperature (25 ° C). This temperature is slightly lower than the phase transition temperature of the ribosome, and is the temperature at which the gel phase begins to partially change from the gel phase to the liquid crystal phase. This temperature must be clearly different from the phase transition temperature. It can be said that the difference in the adsorption behavior is caused by the removal. If the T> T e, continuous to become lipid molecules easy to move in the lipid membranes, in order to become easily take contiguous sequence of DLP'A, that T <immobile lipid molecules if T e It becomes difficult to take the array.
このような点から、 の吸着における温度条件や脂質の組成は吸着挙動に大 きな影響を与える因子であると言える。 From these points, it can be said that the temperature conditions and lipid composition in the adsorption of are factors that greatly affect the adsorption behavior.
(vi i) FE-TEMを用いた形状観察と ζポテンシャルの測定 (vi i) Shape observation and 形状 potential measurement using FE-TEM
作製した l iposome- I ys複合体にネガティブ染色を施し FE- TEMを用いた観察結果 を図 2 4に示す。 図 2 4より l iposome-P^複合体は比較的球形を保ったまま存在 していることがわかる。 The observation results using the prepared l iposome- I ys complex FE- subjected to negative staining in the TEM are shown in Fig 4. Figure 24 shows that the liposome-P ^ complex exists with a relatively spherical shape.
また、 l iposome- PLys複合体の ζポテンシャルは 70. 865mVで正電荷を示した。 テ ンプレートとして用いた DLPA/DMPC=0. 5/0. 5の組成のリボソームの ζポテンシャ ルは- 73. 585mVで負電荷を示していたので、 が吸着したことで表面電荷量の逆 転が起こっていることが確認できる。 The ζ potential of the liposome-P Lys complex showed a positive charge at 70.865 mV. DLPA / DMPC used as template = 0.5 / 0.5 The ribopotential of the ribosome had a negative charge of -73.585 mV. You can see that is happening.
( 3 ) l iposome- PLys表面への poly-aspart ic ac id (PAsp)の吸着 (3) Adsorption of poly-aspartic acid (P Asp ) on l iposome- P Lys surface
(i) l iposome- PLys_PAspの作製 (i) Preparation of l iposome- P Lys _P Asp
作製した l iposome- PLys表面にポリァニオンである Poly- L- aspart ic acid (PAsD) を吸着質として用い吸着実験を行った。 Adsorption experiments were performed using polyanion Poly-L-aspartic acid (P AsD ) as an adsorbate on the surface of the prepared liposome-P Lys .
DLPA:DMPC=1 : 1 (by mol)の組成のリボソーム 500 1 (終リン脂質濃度 0. 5mM)と ? 溶液500 1 (終?1^濃度400卯111)を301^11、 25°C , 700rpm、 pH7. 4の条件下で反応 させ、 限外ろ過フィル夕一(分画分子量 100、 000)を用いて 2min、 25°C , 3000rpm の条件下で 7回濃縮と再分散を行い精製を行なった。 DLPA: DMPC = 1: 1 (by mol) composition of ribosome 500 1 (final phospholipid concentration 0.5 mM) and? Solution 500 1 (final? 1 ^ concentration 400400111) at 301 ^ 11, 25 ° C, The reaction was carried out under the conditions of 700 rpm and pH 7.4, and the mixture was concentrated and re-dispersed seven times under the conditions of 3000 rpm at 25 ° C for 2 min using an ultrafiltration filter (fraction molecular weight: 100, 000) to purify. Done.
このようにして作製された l iposome - PLys溶液 500 1と PAsp溶液 500 _ί 1 (終 PAsp濃 度 400ppm)を同様の反応条件で反応させた。 このとき、 PAspは 1 1003011½-?^複合体 表面の他、 完全に除去し切れなかった とポリイオンコンプレックスを形成す る可能性が考えられる。 そこでポリイオンコンプレックス除去のために 15min、 25°C, 15、 OOOrpmの条件で遠心分離を行った。 さらに遠心操作後の上清を限外ろ 過フィルターを用いて同様の精製を行なった。 The liposome-P Lys solution 5001 thus prepared and the P Asp solution 500_ί1 (final P Asp concentration: 400 ppm) were reacted under the same reaction conditions. At this time, it is possible that P Asp could form a polyion complex if it was not completely removed in addition to the surface of the 11003011½-? ^ Complex. Therefore, centrifugation was performed under the conditions of 15 min, 25 ° C, 15 and OOOrpm to remove the polyion complex. Further, the supernatant after centrifugation was subjected to the same purification using an ultrafiltration filter.
このようにして得られた 1 ipsome-PLys- PAsp複合体の粒径を動的光散乱法により 測定したところ、 約 lOOnmで単分散であった。
(i i) FE- TEMによる形状観察と ζポテンシャルの測定 The particle size of the 1 ipsome-P Lys -P Asp complex thus obtained was measured by a dynamic light scattering method and found to be monodisperse at about 100 nm. (ii) FE-TEM observation of shape and measurement of ζ potential
作製した l iposome- P^- PAsp複合体にネガティブ染色を施し FE-TEMを用いた観察 結果を図 2 5に示す。 図 2 5より l iposome- PLys-PAsp複合体は球形を保ったまま存 在していることがわかる。 Fig. 25 shows the results of negative staining of the prepared liposome-P ^ -P Asp complex and observation using FE-TEM. From Fig. 25, it can be seen that the liposome-P Lys -P Asp complex exists while maintaining a spherical shape.
また、 l iposome_PLys- PAsp複合体の ζポテンシャルは -61. 525mVで負電荷を示し た。 l iposome-P^複合体の ζポテンシャルと比較すると、 PLysが吸着したことで 表面電荷の反転が起こっていることが確認できる。 The ζ potential of the liposome_P Lys -P Asp complex was negative at -61.525 mV. Comparing with the ipotential of the l iposome-P ^ complex, it can be confirmed that the surface charge has been inverted due to the adsorption of P Lys .
( 4 ) ζポテンシャルによる各リボソームの評価 (4) Evaluation of each ribosome by ζ potential
これまでに作製した l iposome, l iposome- PLys, l iposome- PLys- PAspの ζポテンシ ャルと ΕΡΜの変化について表 6および図 2 6にまとめる。 Changes in テ ン potential and の of l iposome, l iposome-P Lys and l iposome-P Lys -P Asp prepared so far are summarized in Table 6 and FIG. 26.
ζポテンシャルの変化からテンプレートとなるリボソームに PLysや PAspを吸着さ せることで表面電荷量が逆転していることがわかる。 変 化 From the change in potential, it can be seen that the adsorption of P Lys and P Asp on the template ribosome reverses the surface charge.
このようにリボソーム表面と PLysや PAspを反応させ, 限外ろ過を用いて精製をす る方法により単分散なリボソーム-ポリペプチド複合体を得ることが可能である。 本研究では現在二層目まで吸着を行ったが, 同様の方法からさらに層を重ねてい くことも可能であると考えられる。 層を重ねていくことで, より強度の高い粒子 が得られるのではないかと思われる。 In this way, it is possible to obtain a monodispersed ribosome-polypeptide complex by reacting the ribosome surface with P Lys or P Asp and purifying it using ultrafiltration. In the present study, adsorption was performed up to the second layer at present, but it is possible to add more layers using the same method. It seems that more layers can be obtained by stacking layers.
表 6 ζポテンシャルおよび ΕΡΜの変化 Table 6 Changes in ζpotential and ΕΡΜ
^ポテンシャル 1 EPM 1 μπι- s"1 - cm* ^ Potential 1 EPM 1 μπι- s " 1 -cm *
サンプル mV v-! Sample mV v- !
リポソ一ム -73.585 -5.742 Liposomes -73.585 -5.742
リボソーム- PLys 70.865 5.531 + Ribosome-P Lys 70.865 5.531 +
リボソーム Ribosome
-61.525 -4.801 -61.525 -4.801
- PLys Asp -PLys Asp
( 5 ) 異なる電荷を持つリボソーム -ポリべプチド複合体からなる構造体の作製(5) Preparation of ribosome-polypeptide complex with different charges
• l iposome- Ρ と l iposome- P,y -P^からなる構造体について • About the structure consisting of l iposome- Ρ and l iposome- P, y -P ^
カチオン性を持つ 1 i po s ome-PLysとァニオン性を持つ 1 i p o s ome-PLys-PAspを作製し た。 そこで、 これらを混合することで構造体を形成させ、 FE-TEMにより観察を行
なった。 The 1 ipos ome-P Lys -P Asp with 1 i po s ome-P Lys and Anion of having a cationic were prepared. Therefore, these are mixed to form a structure, which is observed by FE-TEM. became.
反応後の溶液には細かい粒状め凝集物が目視で確認できた。 このようにして得 られたサンプルにネガティブ染色を施し、 FE- TEMによる観察を行なった結果を図 2 7に示す。 Fine granular agglomerates could be visually observed in the solution after the reaction. The sample obtained in this way was negatively stained and observed by FE-TEM. The results are shown in FIG.
図 2 7より約 lOOnmのリボソームが並んでいる様子が確認できる。 形状が多少 崩れているものもあるが、 これは乾燥過程が影響しているのではないかと考えら れる。 全体的にはリボソームは球状をほぼ保ったまま存在しているといえる。 ま た、 このサンプルを室温条件下で静置しておくと、 時間の経過とともに細かな粒 状のものがより大きな凝集体を形成し沈降していた。 From Fig. 27, it can be confirmed that ribosomes of about 100 nm are lined up. Some of the shapes are slightly collapsed, but this is probably due to the drying process. On the whole, it can be said that the ribosome exists while maintaining almost spherical shape. In addition, when this sample was allowed to stand at room temperature, fine particles formed larger aggregates and settled as time passed.
• 1 iposomeと 1 iposome- Pr„からなる構造体について • About the structure consisting of 1 iposome and 1 iposome-P r „
ァニオン性を持つ DLPA/DMPO0. 5/0. 5の組成のリボソームとカチオン性を持つ l ipsome- PLysを混合することで構造体の作製を試み、 FE- TEMでの観察を行なった。 この場合も反応後の溶液には細かい粒状の凝集物が目視で確認できた。 FE- TEM の観察結果を図 2 8に示す。 The structure was attempted by mixing liposomes with the composition of DLPA / DMPO 0.5 / 0.5 with anionic properties and lipsome-P Lys with cationic properties, and observed by FE-TEM. Also in this case, fine granular aggregates were visually confirmed in the solution after the reaction. Figure 28 shows the FE-TEM observation results.
図 2 8より約 lOOnmのリボソームが連なっている様子が確認できた。 また、 こ のサンプルの場合も室温条件下で静置しておくと、 時間の経過とともに細かな粒 状のものがより大きな凝集体を形成し沈降していく挙動が観察ざれた。 これらの 凝集体は DLPAを構成脂質に持つリボソーム、 l iposome_PLys、 および l iposome-From FIG. 28, it was confirmed that ribosomes of about 100 nm were linked. In addition, when this sample was allowed to stand still at room temperature, it was observed that fine particles formed larger aggregates and settled as time passed. These aggregates are composed of ribosomes with DLPA as a constituent lipid, l iposome_P Lys , and l iposome-
PLyS-PAsPの表面電荷の違いにより、 静電相互作用が働いて凝集体を形成している ものと考えられる。 It is thought that due to the difference in the surface charge of PLy S -P AsP , aggregates were formed due to the electrostatic interaction.
DLPAを構成脂質に持つリボソーム、 l iposome- PLys、 および 1 iposome- PLys-PAspと いうような異なる表面電位を持った粒子を作製することで、 静電相互作用を利用 し構造体を作製していくことが可能であると言うことが示唆された。 By creating particles with different surface potentials, such as liposomes, liposome-P Lys , and 1 iposome-P Lys- P Asp , which have DLPA as a constituent lipid, we can use electrostatic interactions to construct structures using electrostatic interactions. It was suggested that it is possible to produce.
本実施例では Layer- by-Layerを用いてリボソーム表面上にポリぺプチドを吸着 させることについて検討した。 In this example, the adsorption of polypeptide on the ribosome surface using Layer-by-Layer was examined.
負電荷を持つリボソームをテンプレートとしてポリカチオンである Poly - L - lys ine (PLys)を 1層目の吸着質として吸着させた。 CBQCAを用いた吸着量測定から 作成した Langmuir型の吸着等温線より、 130〜140ng/cni2でリボソーム表面のほぼ 全ての吸着サイトが埋つていると考えられる。 また、 吸着の際に P は二次構造
をランダムから 3シートへ変化させて吸着していることがわかった。 さらに、 限 外ろ過を用いた精製により単分散の状態で l iposome- P ^複合体を得ることができ た。 Using a ribosome having a negative charge as a template, poly-L-lysine (P Lys ), which is a polycation, was adsorbed as a first layer adsorbate. From the adsorption isotherm of Langmuir type created from the adsorption amount measurement using CBQCA, it is considered that almost all adsorption sites on the ribosome surface are buried at 130 to 140 ng / cni 2 . In addition, P has a secondary structure during adsorption. Was changed from random to three sheets. Furthermore, the liposome-P ^ complex was obtained in a monodispersed state by purification using ultrafiltration.
2層目の吸着質としてポリァニオンである Poly - L- aspart icac id (PAsp)を用いて、 1 iposome_PLys表面へ吸着させた。 これらリポゾーム-ポリぺプチド複合体粒子は 吸着ごとに表面電荷が変化していることが ζポテンシャルの測定から確認できた。 このことからも表面にポリぺプチドが吸着していることが言える。 このようにし て作製したリボソーム -ポリべプチド複合体にネガティブ染色を施して、 FE- ΤΕΜ による形状観察を行ったところ球状を保つた状態で観察された。 Using a polyanion, Poly-L-aspartic acid (P Asp ), as a second layer adsorbate, it was adsorbed on the surface of 1 iposome_P Lys . The potential of these liposome-polypeptide composite particles was confirmed to change with each adsorption from the measurement of the potential. This also indicates that the polypeptide is adsorbed on the surface. The ribosome-polypeptide complex thus prepared was negatively stained, and the shape was observed by FE-ΤΕΜ. As a result, the ribosome-polypeptide complex was observed to be spherical.
また、.異なる電荷を持ったリボソーム-ポリペプチド複合体を用いて、 静電相 互作用を利用した構造体を作製することができた。 構造体内でリボソームは形態 を保持したまま連なっていることが観測された。 この実験系に形や配列を制御す る因子を導入することで、 より秩序化された構造体を作製することが可能である といえる。 In addition, using a ribosome-polypeptide complex with different charges, we were able to construct a structure using electrostatic interaction. It was observed that ribosomes were linked in the structure while maintaining their morphology. By introducing factors that control shape and arrangement into this experimental system, it can be said that a more ordered structure can be produced.
〔実施例 3〕 リボソーム-ポリペプチド複合体の作製 [Example 3] Preparation of ribosome-polypeptide complex
テンプレートとして DLPA/DMPO0. 5/0. 5の組成を有するリボソームを用いて、 多層構造を有するリポソームを作製した。 Liposomes having a multilayer structure were prepared using a ribosome having a composition of DLPA / DMPO 0.5 / 0.5 as a template.
( 1 ) 第一層目(l iposome - PLysの作製) (1) First layer (production of l iposome-P Lys )
l iposome 500 1 (終リン脂質濃度 0. 5mM)と Poly- L- lys ine (PLys) 500 1 (終 PLys 濃度 400ppm) を 25 °C, 700 rpm, 30min, pH7. 4の条件下で反応させ、 次いで 25°C, 3000rpm, 2minの条件下で限外ろ過による精製を行った。 この際、 濃縮と再 分散を七回行なった。 l iposome 500 1 (final phospholipid concentration 0.5 mM) and Poly-L-lysine (P Lys ) 500 1 (final P Lys concentration 400 ppm) at 25 ° C, 700 rpm, 30 min, pH 7.4 The reaction was followed by purification by ultrafiltration at 25 ° C., 3000 rpm, 2 min. At this time, concentration and redispersion were performed seven times.
( 2 ) 第二層目(l iposome - PLys- PAspの作製) (2) 2nd layer (production of l iposome-P Lys -P Asp )
( 1 ) で得られた l iposome _PLys500 1 (終リン脂質濃度 0. 5mM) と Poly-L - aspart ic acid (? lys) 500 x 1 (終 PLys濃度 400ppm)を 25で, 700rpm, 30min, ρΗ7· 4の 条件下で反応させ、 次いで 25°C, 15000rpm, 15minの条件下で遠心分離し、 ポリイ オンコンプレックスを除去した。 さらに、 25°C, 3000rpm, 2minの条件下で限外ろ 過による精製を行った。 この際、 濃縮と再分散を七回行なった。 この結果、 表面 に 2層のポリマーが積層されたリボソームが得られた。
( 3 ) 第三層目(l iposome - PLys- PAsp- PLysの作製) (1) l obtained in iposome _P Lys 500 1 (final phospholipid concentration 0. 5 mM) and Poly-L - aspart ic acid ( ? Lys) 500 x 1 in (final P Lys concentration 400 ppm) to 25, 700 rpm, The reaction was carried out under the conditions of ρΗ7.4 for 30 min, followed by centrifugation at 25 ° C, 15000 rpm for 15 min to remove the polyion complex. Furthermore, purification was performed by ultrafiltration under the conditions of 25 ° C, 3000 rpm, and 2 min. At this time, concentration and redispersion were performed seven times. As a result, a ribosome having two layers of polymer laminated on the surface was obtained. (3) Third layer (preparation of l iposome-P Lys -P Asp -P Lys )
( 2 ) で得られた l iposome - PLys- PAsp500 1 (終リン脂質濃度 0. 5mM)と Poly-L- lys ine (PLys) 500 1 (終 PLys濃度 400ppm)を 25°C , 700rpm, 30min, pH7. 4の条件下で 反応させ、 次いで 25 , 15000rpm, 15minの条件下で遠心分離し、 ポリイオンコン プレックスを除去した。 さらに、 25°C, 3000rpm, 2minの条件下で限外ろ過による 精製を行った。 この際、 濃縮と再分散を七回行なった。 この結果、 表面に 3層の ポリマーが積層されたリボソームが得られた。 図 2 9に FE- TEM観察像を示す。 The l iposome-P Lys -P Asp 500 1 (final phospholipid concentration 0.5 mM) and Poly-L-lysine (P Lys ) 500 1 (final P Lys concentration 400 ppm) obtained in (2) at 25 ° C The reaction was performed under the conditions of, 700 rpm, 30 min, pH 7.4, and then centrifuged at 25, 15,000 rpm, 15 min to remove the polyion complex. Furthermore, purification was carried out by ultrafiltration at 25 ° C, 3000 rpm and 2 min. At this time, concentration and redispersion were performed seven times. As a result, ribosomes with three layers of polymer laminated on the surface were obtained. Figure 29 shows the FE-TEM observation image.
( 4 ) 第四層目(l iposome _PLys- PAsp- PLys- PAspの作製) (4) Fourth layer (preparation of l iposome _P Lys -P Asp -P Lys -P Asp )
( 3 ) で得られた l iposome- PLys-PAsp - PLys500 1 (終リン脂質濃度 0. 5mM)と Poly- L-aspart ic ac id (PLys) 500 1 (終 PLys濃度 400ppm)を 25°C, 700rpm, 30min, pH7. 4 の条件下で反応させ、 次いで 25°C, 15000rpm, 15minの条件下で遠心分離し、 ポリ イオンコンプレックスを除去した。 さらに、 25°C, 3000rpm, 2minの条件下で限外 ろ過による精製を行った。 この際、 濃縮と再分散を七回行なった。 この結果、 表 面に 4層のポリマーが積層されたリボソームが得られた。 図 3 0に FE- TEM観察像 を示す。 L iposome- P Lys -P Asp -P Lys 500 1 (final phospholipid concentration 0.5 mM) and Poly-L-aspartic acid (P Lys ) 500 1 (final P Lys concentration 400 ppm) obtained in (3) ) Was reacted at 25 ° C, 700 rpm, 30 min, pH 7.4, and centrifuged at 25 ° C, 15000 rpm, 15 min to remove the polyion complex. Furthermore, purification by ultrafiltration was performed under the conditions of 25 ° C, 3000 rpm, and 2 min. At this time, concentration and redispersion were performed seven times. As a result, a ribosome having four layers of polymer laminated on the surface was obtained. Figure 30 shows an FE-TEM observation image.
このようにして得られた多層構造を有するリボソームの ζポテンシャルの測定 の結果は以下の通りであった。 図 3 1にグラフを示す。 The results of the measurement of the zeta potential of the ribosome having a multilayer structure thus obtained were as follows. Figure 31 shows the graph.
表 7 サンプル ^ポテンシャル (mV) —移動度 電荷 liposome -127.03 9.902 liposome-PLys 83.01 6.478 Table 7 Sample ^ potential (mV) —mobility charge liposome -127.03 9.902 liposome-P Lys 83.01 6.478
liposome-PLvs-PAsp -81.66 6.373 liposome-P Lvs -P Asp -81.66 6.373
liposome-PLyS-PASp-PLys 52.12 4.068 liposome-P L y S -P AS p-PLys 52.12 4.068
liposome-PLYS-PAsn-PLYs-PASD -61.99 4.837 liposome-P LYS -P Asn -PLYs-PA SD -61.99 4.837
〔実施例 4〕 リポソ一ム表面へのポリアリルアミンおよびメルカブト酢酸の吸 着と蛍光性半導体ナノ粒子の積層化 [Example 4] Adsorption of polyallylamine and mercaptoacetic acid on liposome surface and lamination of fluorescent semiconductor nanoparticles
本実施例では铸型となるリボソーム表面へのポリアリルァミンとメルカプト酢 酸の吸着を行い、 つづいて半導体ナノ粒子 (ナノ蛍光体粒子) の積層化について 検討する。 実施例 1に記載の通り、 DLPAを構成脂質に含むリボソームは負に荷電
していることがわかっている。 そこでリボソーム表面へポリカチオンであるポリ ァリルアミン (PAA) とメルカブト酢酸を Layer- by- Layerさせることで表面電荷 の異なる粒子の作製を試みた。 図 3 2にこのときの Layer- by- Layerの概念図を示 す。 In the present example, polyallylamine and mercaptoacetic acid are adsorbed on the surface of a ribosome of type I, and the lamination of semiconductor nanoparticles (nanophosphor particles) is examined. As described in Example 1, ribosomes containing DLPA as a constituent lipid are negatively charged. I know you are. Therefore, we attempted to make particles with different surface charges by layer-by-layering polyacrylamine (PAA) and mercaptoacetic acid on the ribosome surface. Figure 32 shows a conceptual diagram of Layer-by-Layer in this case.
( 1 ) リポソ一ム表面へのポリァリルァミンの吸着 (1) Adsorption of polyarylamine on liposome surface
構成脂質として酸性脂質である DLPAを含むことでリボソーム (l iposome) は負 電荷を帯び、 吸着サイトを有する(実施例 1参照)。 このようなリボソーム表面へ ポリカチオンであるポリアリルアミンを作用させ、 静電相互作用により吸着させ ることでその挙動についての検討を行った。 By containing the acidic lipid DLPA as a constituent lipid, the liposome (liposome) is negatively charged and has an adsorption site (see Example 1). We investigated the behavior of ribosomes by allowing polyallylamine, a polycation, to act on the ribosome surface and adsorbing them by electrostatic interaction.
(i) 吸着量測定 (i) Adsorption measurement
リボソーム溶液 (終リン脂質濃度 0. 5mM)と所定の濃度のポリアリルアミ ン液 500 x Lを 25°C、 700rpm, 30min.、 所定濃度および所定 pHにおいて攪拌条件下 で反応させた。 反応後、 限外ろ過フィルタ一(Amicon Ul t ra- 4、 分画分子量 30、 000)を用いて、 25 °C、 3000rpm、 2minの条件で遠心操作を行い、 混合液から 1 iposome-ポリァリルァミン複合体を沈降させた。 分離されたポリアリルアミン 濃度を CBQCAを用いて測定することで吸着したポリァリルアミン濃度を算出した。 A ribosome solution (final phospholipid concentration: 0.5 mM) and a predetermined concentration of a polyallylamine solution (500 × L) were allowed to react at 25 ° C., 700 rpm, 30 min., A predetermined concentration and a predetermined pH under stirring conditions. After the reaction, the mixture was centrifuged using an ultrafiltration filter (Amicon Ultra-4, molecular weight cut-off 30,000) at 25 ° C, 3000 rpm, and 2 min, to obtain 1 iposome-polyarylamine from the mixed solution. The body sank. The concentration of adsorbed polyarylamine was calculated by measuring the concentration of separated polyallylamine using CBQCA.
(i i) 吸着等温線の作成 (i i) Preparation of adsorption isotherm
10mM HEPES pH7. 4を用いて DLPA/DMPO0. 5/0. 5および DLPA/MPC=0. 75/0. 25の組 成のリボソームを作製し、 添加するポリアリルァミンの濃度を変化させることで pH6. 48 (プロトンがついて正電荷を帯びているため PAAと区別するために PAHと表 す) と pH8. 50 (この場合は PAA) における吸着等温線を作成した。 Using 10 mM HEPES pH 7.4, ribosomes with the composition of DLPA / DMPO 0.5 / 0.5 and DLPA / MPC = 0.75 / 0.25 were prepared, and the concentration of polyallylamine added was changed to pH6. Adsorption isotherms were created at 48 (PAH because of the positive charge associated with the proton) and pH 8.50 (PAA in this case).
リボソーム溶液 500 L (終リン脂質濃度 0. 5mM)と PAA溶液あるいは PAH溶液 500 ^ Ribosome solution 500 L (final phospholipid concentration 0.5 mM) and PAA or PAH solution 500 ^
Lを 25°C、 700rpm 30min.の攪拌条件下で反応させた。 反応後、 限外ろ過フィル ター(Amicon Ul tra- 4、 分画分子量 30、 000)を用いて、 25°C、 3000rpm、 2min.の 条件で遠心操作を行い、 混合液から l iposome-ポリアリルアミン複合体を沈降さ せた。 分離した PAAあるいは PAHの濃度を CBQCAを用いて測定することで、 吸着し た PAAあるいは PAH濃度を算出した。 各濃虔でこの操作を行って吸着等温線を得た。 結果を図 3 3に示す。 リボソームの負電荷が増すほどポリアリルァミンの吸着量 が増加し、 PAAと PAHではより正電荷に富む PAHの方が吸着し易いことがわかった。
(l i i) リボソーム一ポリアリルアミン複合体へのメルカプト酢酸の吸着 L was reacted at 25 ° C. under stirring conditions of 700 rpm for 30 min. After the reaction, centrifugation was performed using an ultrafiltration filter (Amicon Ultra-4, molecular weight cut off 30,000) at 25 ° C, 3000 rpm, and 2 min. The complex was allowed to settle. The concentration of adsorbed PAA or PAH was calculated by measuring the concentration of the separated PAA or PAH using CBQCA. This operation was performed for each god and an adsorption isotherm was obtained. The results are shown in FIG. As the negative charge of the ribosome increased, the amount of polyallylamine adsorbed increased, indicating that PAH with higher positive charge adsorbed PAA and PAH more easily. (lii) Mercaptoacetic acid adsorption on ribosome-polyallylamine complex
10mM HEPES pH7. 4を用いて DLP'A/DMPC=0. 5/0. 5の組成のリボソーム (終濃度 1. 5mM) を作製し、 ポリアリルアミンを終濃度 500ppmになるように添加して、 25°Cで 700rpmの撹拌下で 30分間吸着させた。 25°Cで限外濾過によりリボソーム一 ポリアリルアミン複合体を得た。 1. 5mMの複合体 0. 8mLに 4000ppmのメルカプト酢 酸を 200 L添加して 4°Cで 500rpmの撹拌下で 20分間吸着させた。 Using 10 mM HEPES pH 7.4, a ribosome (final concentration: 1.5 mM) having a composition of DLP'A / DMPC = 0.5 / 0.5 was prepared, and polyallylamine was added to a final concentration of 500 ppm. The adsorption was performed at 25 ° C for 30 minutes under stirring at 700 rpm. A ribosome-polyallylamine complex was obtained by ultrafiltration at 25 ° C. To 0.8 mL of the 1.5 mM complex, 200 L of 4000 ppm mercaptoacetic acid was added, and the mixture was adsorbed at 4 ° C under stirring at 500 rpm for 20 minutes.
( 2 ) 半導体ナノ粒子作製のための試料の調製 (2) Sample preparation for semiconductor nanoparticle fabrication
カチオン溶液(0. 09M Zn (CH3COO) 2 0. 01M Mn (CH3C00) 2) Cation solution (0. 09M Zn (CH3COO) 2 0. 01M Mn (CH 3 C00) 2)
酢酸亜鉛二水和物 396. 68mgを超純水 18mlに加え、 マグネティクス夕一ラーを用 いて溶解させた(0. 1M Zn (C¾C00) 2)。 一方で、 酢酸マンガン四水和物 49. 20mgを 超純水 20mlに加え、 マグネティクスターラーを用いて溶解させた(0. 1M Mn (CH3COO) 2)。 396.68 mg of zinc acetate dihydrate was added to 18 ml of ultrapure water, and dissolved using a magnetic mixer (0.1 M Zn (C¾C00) 2 ). Meanwhile, 49.20 mg of manganese acetate tetrahydrate was added to 20 ml of ultrapure water and dissolved using a magnetic stirrer (0.1 M Mn (CH3COO) 2 ).
それぞれを十分に溶解した後、 二つの水溶液を混合しカチオン溶液を調製した。 ァニオン溶液(0. 1M Na2S) After sufficiently dissolving each, the two aqueous solutions were mixed to prepare a cation solution. Anion solution (0.1 M Na 2 S)
硫化ナトリゥム九水和物 488. 28mgを超純水 20mlに溶解させた。 488.28 mg of sodium sulfide nonahydrate was dissolved in 20 ml of ultrapure water.
分散安定剤 (0. 1M C6H5Na307) Dispersion stabilizer (0.1 M C 6 H 5 Na 3 0 7 )
クェン酸ナトリゥムニ水和物 295. (kgを超純水 10mlに溶解させた。 Sodium sodium citrate hydrate 295. (kg was dissolved in 10 ml of ultrapure water.
( 3 ) リボソーム—ポリアリルアミンーメルカプト酢酸複合体への ZnS :Mn2+ナノ 粒子の複合化 (3) Conjugation of ZnS: Mn2 + nanoparticles to ribosome-polyallylamine-mercaptoacetic acid complex
4ッロフラスコに超純水 9ml (30°C)を加え、 90分間窒素置換した後、 0. 1Mクェ ン酸ナトリゥムニ水和物 0. 2ml、 0. 1M硫化ナトリゥム九水和物 0. 32ml、 酢酸亜鉛 二水和物と酢酸マンガン(Π )四水和物の混合溶液(9 : 1 0. 1M 0. 4ml)を順に加え、 窒素置換中で反応させた。 反応時間は 45分とし、 その後、 リボソームおよび各種 リボソーム複合体 (脂質量 3. 0 mol)をそれぞれ加えて 2時間反応させた。 4 ml of ultrapure water (30 ° C) was added to the flask, and the atmosphere in the flask was replaced with nitrogen for 90 minutes.Then, 0.1 M sodium citrate dihydrate 0.2 ml, 0.1 M sodium sulfide nonahydrate 0.32 ml, acetic acid A mixed solution of zinc dihydrate and manganese acetate (Π) tetrahydrate (9: 10.1 M, 0.4 ml) was added in that order, and the mixture was reacted in a nitrogen atmosphere. The reaction time was 45 minutes, and then ribosomes and various ribosome complexes (lipid amount: 3.0 mol) were added and reacted for 2 hours.
( 4 ) 特性評価方法 (4) Characteristics evaluation method
Xeランプを用いて得られた複合体試料を励起し、 試料から出た蛍光強度を、 分 光蛍光光度計を用いて測定した。 そのときの励起波長は、 各試料について分光蛍 光光度計を用いて蛍光波長 580mで励起スぺクトルを測定し、 その励起スぺクトル のピークの波長を用いた。
リボソーム、 リボソーム-ポリアリルアミン複合体、 及びリボソーム-ポリアリ ルァミン-メルカプト酢酸複合体'はいずれも半導体ナノ粒子を吸着させることが わかつた。 リポソーム -PAH複合体への複合化によつて得られた試料が最も高い蛍 光強度を示したが、 凝集性も高い結果となった。 リボソーム- PAH-メルカプト酢 酸複合体が凝集しにくく蛍光強度が高い試料を与えることがわかった (表 8 ) 。 表 8 The obtained composite sample was excited using an Xe lamp, and the fluorescence intensity emitted from the sample was measured using a spectrofluorometer. As the excitation wavelength at that time, the excitation spectrum was measured at a fluorescence wavelength of 580 m using a spectrofluorometer for each sample, and the peak wavelength of the excitation spectrum was used. It was found that the ribosome, ribosome-polyallylamine complex, and ribosome-polyallylamine-mercaptoacetic acid complex 'all adsorb semiconductor nanoparticles. The sample obtained by conjugation to the liposome-PAH complex showed the highest fluorescence intensity, but also resulted in high cohesion. It was found that the ribosome-PAH-mercaptoacetic acid complex hardly aggregated and gave a sample with high fluorescence intensity (Table 8). Table 8
サンプル 蛍光強度 Sample fluorescence intensity
① Liposome - ZnS :Mn2T com lex 805. 7 ① Liposome-ZnS: Mn 2T com lex 805.7
(DLiposome-PAA-ZnS :Mn2+ complex 119. 7(DLiposome-PAA-ZnS: Mn 2+ complex 119. 7
③ Liposome - PAH_ZnS :Mn2+ complex 930. 7③ Liposome-PAH_ZnS: Mn 2+ complex 930.7
④ Liposome- PAA_mercaptoace t ic ac id - ZnS :Mn2+ com lex 581. 2④ Liposome- PAA_mercaptoace tic ac id-ZnS: Mn 2+ com lex 581.2
⑤ Liposome - PAH- mercaptoacet ic ac id-ZnS :Mn2+ complex 625. 1 産業上の利用可能性 ⑤ Liposome-PAH- mercaptoacet ic ac id-ZnS: Mn 2+ complex 625.1 Industrial applicability
本発明のポリマーが積層されたリボソームは、 任意のサイズ、 任意の強度で作 製することができ、 またポリマ一として荷電を有するポリマーを用いた場合、 均 一に分散し得るリボソーム粒子を得ることができる。 さらに、 リボソーム内部に 特定の物質を封入したり、 積層させるポリマ一中に特定の物質を含ませることも 可能である。 このような、 リボソームにポリマーを積層させた中空粒子は従来存 在しなかった粒子であり、 本発明のポリマーを積層させたリボソームは、 従来の 技術では達成することができなかった、 新たな用途を有する。 The ribosome on which the polymer of the present invention is laminated can be manufactured at any size and any strength.When a charged polymer is used as the polymer, ribosome particles that can be uniformly dispersed can be obtained. Can be. Furthermore, it is possible to encapsulate a specific substance inside the ribosome, or to include a specific substance in the polymer to be laminated. Such a hollow particle in which a polymer is laminated on a ribosome is a particle that has not existed conventionally, and a ribosome in which the polymer of the present invention is laminated cannot be achieved by the conventional technology. Having.
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。
All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.