WO2005097991A1 - Rna sequence, rna and dna construction, pharmaceutical composition that inhibits the proliferation of the virus that causes type c hepatitis (hcv), and applications thereof - Google Patents

Rna sequence, rna and dna construction, pharmaceutical composition that inhibits the proliferation of the virus that causes type c hepatitis (hcv), and applications thereof Download PDF

Info

Publication number
WO2005097991A1
WO2005097991A1 PCT/ES2005/070034 ES2005070034W WO2005097991A1 WO 2005097991 A1 WO2005097991 A1 WO 2005097991A1 ES 2005070034 W ES2005070034 W ES 2005070034W WO 2005097991 A1 WO2005097991 A1 WO 2005097991A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
rna
sequence
hcv
dna
Prior art date
Application number
PCT/ES2005/070034
Other languages
Spanish (es)
French (fr)
Inventor
Cristina ROMERO LÓPEZ
Alicia Barroso Del Jesus
Elena PUERTA FERNÁNDEZ
Alfredo Berzal Herranz
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2005097991A1 publication Critical patent/WO2005097991A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/121Hammerhead
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3519Fusion with another nucleic acid

Definitions

  • the invention provides new products for the specific inhibition of HCV IRES and consequently has a high incidence in the areas of Biomedicine, Human and Animal Health, as well as Basic Research and Biotechnology due to the possibility of the development of modulation systems of the gene expression of industrial, agri-food interest, etc., controlled by the activity of IRES. Of the possible applications, the most immediate may be the use as therapeutic agents against HCV infection, although it has additional projections for use as inhibitors of other viruses of interest in livestock and agricultural holdings.
  • Hepatitis C virus is primarily responsible for hepatitis of post-transfusion origin. Chronic infection with this virus is a progressive disease that can lead to liver cirrhosis and hepatocellular carcinoma (Seef, 1997. Natural History of hepatitis C. Hepatology 26, Supp. 1, 21-28). It is the main cause of liver diseases in the world, with more than 170 million infected, most of them are in Afrecha and Asia, and affects 2% of the population of the western world (WHO report, 2000 www. cdc.gov).
  • interferon alpha non-specific antiviral agent
  • the efficacy of these current treatments is low, achieving only lower overall maintained response rates. 50%, being especially low for patients infected with HCV genotype 1b (McHutchinson et al., 1998. Interferon alpha-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. N England J Med 339, 1485-1492; Neumann et al., 1998.
  • RNA is in turn genome and messenger of the virus being translated in one of the earliest stages of viral infection, to a single polyprotein, which is subsequently processed by the action of viral and cellular proteases.
  • RNA is in turn genome and messenger of the virus being translated in one of the earliest stages of viral infection, to a single polyprotein, which is subsequently processed by the action of viral and cellular proteases.
  • At the 5 'end of the viral genome there is a 341 nucleotide region that is not coding (Purcell, 1997. The hepatitis C: Overview. Hepatology 26, Supp. 1, 11-14).
  • This region precedes the open reading pattern of the viral polyprotein, and is sufficient to direct its translation in a manner independent of Cap, indicating that in this region there is an internal ribosome entry site, known as IRES (" internal ribosome entry site ") that extends up to 30 nucleotides in 3 'of the initiation codon (Wang et al., 1993. Translation of human hepatitis C RNA virus in cultured cells is mediated by an internal ribosome-binding mechanism. J. Viral 67, 3338-3344; Reynols et al., 1995. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 14, 6010-6020).
  • HCV has great gene variability, the 5 'non-coding region being the most conserved genome. In turn, this region has a complex and especially stable structure that is essential for its biological function, and therefore for the viability of the virus.
  • the structure consists of four double-chain domains closed by single-chain fragments (stem-loop structures I to IV in fig. 1; Gallego and Varini, 2002.
  • the hepatitis C virus internal ribosome-entry site a new target for antiviral research, Biochemical Society Transactions 30, 140-145); tertiary interactions that define other structural motifs have also been identified (Lyons et al., 2001.
  • Hepatitis C virus internal ribosome entry site RNA contains a tertiary structural element in a functional domain of stem-loop II. 29, 2535-2541; Spahn et al., 2001. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291, 1959-1962).
  • Figure 1 shows a schematic representation of the secondary and tertiary structures proposed for the IRES domain of HCV. The different domains and subdomains are identified by I, II, Illa, b, c, d, e, f and IV.
  • AUG represents the translation initiation site ( Figure adapted from Honda et al., 1999.
  • Antisense oligonucleotides there is a patent application for the design, synthesis and use of antisense oligonucleotides as inhibitors of hepatitis virus activity C. (Anderson, KP; Hanecak, RC, Nozaki, C, Dorr, FA, Kwoh, TJ Compositions and methods for treatment of hepatitis C virus-associated diseases. US Patent Application, September 11, 2003).
  • Antisense oligonucleotides are defined as nucleic acids of variable length and sequence perfectly complementary to the target (DNA or RNA) against which they are directed.
  • Ribozymes They are RNA molecules endowed with catalytic activity (Welch et al., 1996. A potential therapeutic application of hairpin ribozymes: in vitro and in vivo studies of gene therapy for hepatitis C virus infection. Gene Therapy 3, 994- 1001; Sakamoto et al., 1996. Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. J Clin. Invest. 98, 2720-2728; Lieber et al., 1996. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J. Viral.
  • RNA aptamers that specifically bind to IRES domain II of HCV has been published (Kikuchi, et al., 2003. RNA aptamers targeted to domain II of Hepatitis C virus IRES that bind to its apical loop region. J Biochem. 133, 263-270). These strategies have been combined with the inclusion of chemical modifications in RNA molecules that give them greater stability and thus greater efficiency.
  • RNA molecules selected for specific binding to the IRES region of the virus, and which specifically inhibit its activity and consequently viral translation. These molecules have a defined structure necessary for their activity and require the presence of a series of nucleotides in specific positions.
  • the invention provides an RNA sequence inhibiting the replication of the HCV virus by its binding to the IRES region, as well as RNA constructs that contain it, DNA constructs that allow the expression of said RNA sequence, pharmaceutical compositions that they contain them, and their application in procedures of prevention and treatment of infections produced, preferably by HCV.
  • RNA sequences are highly conserved among the different strains of HCV, as well as in other related viruses, for example, bovine diarrhea virus or even classical swine fever, will allow the development of more effective therapeutic tools against these viruses that have a high capacity for mutagenesis, which allow them to escape antiviral treatments.
  • the invention faces the problem of providing new effective and safe pharmaceutical compounds against the virus causing hepatitis C (HCV).
  • HCV hepatitis C
  • the solution provided by this invention is based on the fact that the inventors have observed that inhibition of HCV replication is possible through the use of a specific sequence RNA molecule that specifically binds to highly conserved regions of the 5 'non-translatable domain of the virus genome, the IRES region of HCV involved in the onset of translation.
  • This RNA sequence can be used, for example, for therapeutic purposes, for example, as a therapeutic compound in the preparation of pharmaceutical compositions to protect mammals, preferably humans, from infection caused by viruses, preferably HCV.
  • RNA inhibitor sequences of the present invention have been specifically selected for their binding to the IRES region of HCV, and have been shown to block or inhibit the biological activity of the virus and consequently its ability to proliferate.
  • they have the advantage that being RNA molecules is a product that synthesizes cells naturally, so no type of toxic effect is anticipated for non-infected cells that will eliminate them like any other RNA derived from Your own gene activity.
  • this IRES region is highly conserved among the different strains of HCV (Martell et al., 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution.
  • an object of the present invention is an RNA sequence (also called aptamer) inhibiting the proliferation of the virus causing hepatitis C (HCV), hereinafter RNA sequence of the invention, characterized in that it is constituted by an RNA sequence that specifically binds to regions of the 5 'non-translatable domain of the virus genome, the IRES (Intemal Ribosome Entry Site) region of HCV and because it is forming a structure defined by a double-chain region that exposes nucleotides single chain RNA, through which it specifically binds to the RNA of the IRES region of HCV.
  • RNA sequence also called aptamer
  • HCV refers to the different strains of HCV belonging to any of the genotypes (by way of illustration, see Simmonds, P. 1993. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Viral. 74 (11): 2391-9). It also refers to the quasi-species that infects an individual (Martell et al., 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies natura of HCV genome distribution. J Viral, 66 (5 ): 3225-9).
  • IRES refers to the HCV RNA sequence (NC_004102), as well as sequences with this same function (Gallego, J. 2002. Intemal initiation of translation by viral and cellular IRESs : a new avenue for specific inhibition of protein synthesis? Curr Opin Drug Discov Devel. 5 (5): 777-84).
  • a particular object of the present invention is the RNA sequence of the invention characterized in that it belongs, among others, to one of the following families of defined sequences based on consensus domains of the defined IRES binding sequence:
  • A, Adenine C, Cytosine G, Guanine U, Uracil N and X is any nucleotide R, purine nucleotide (Adenine or Guanine) Y, pyrimidine nucleotide (Cytosine or Uracil) m, p, k and z any integer from 0 onwards.
  • the sequences (N), of length m in 5 ' will interact with the sequences (N) of length p in 3' forming a double-chain region (not necessarily perfect) that exposes the consensus sequences of each One of the groups.
  • RNA sequence of the invention are part of the invention, belonging to one of the previous families, belong, among others, for illustrative purposes and without limiting the scope of the present invention, to the following group:
  • RNA construct of the invention Another object of the present invention is an RNA construct, hereinafter referred to as the RNA construct of the invention, characterized in that it is constituted in addition to the IRES binding RNA sequence of the invention itself by a nucleotide sequence that allows the addition or Increase in the inhibitory activity of HCV replication of the RNA sequence of the invention.
  • the term "genetic construction of RNA” refers, among other possibilities, by way of illustration and without limiting the scope of the present invention, to constructions containing, in addition to the RNA sequence of the invention.
  • an antisense oligonucleotide (Anderson, KP; Hanecak, RC, Nozaki, C, Dorr, FA, Kwoh, TJ Compositions and methods for treatment of hepatitis C virus-associated diseases. US Patent Application, September 11, 2003), a ribozyme ( Welch et al., 1996. A potential therapeutic application of hairpin ribozymes: in vitro and in vivo studies of gene therapy for hepatitis C virus infection. Gene Therapy 3, 994-1001; Sakamoto et al., 1996. Intracellular cleavage of hepatitis C RNA virus and inhibition of viral protein translation by hammerhead ribozymes. J Clin. Invest.
  • a particular embodiment of the present invention is an RNA construct of the invention consisting of the RNA sequence of the invention and ribozyme 363 (see Example 2) capable of inhibiting the translation of HCV and belonging, among others, to the following group : RNA sequence HH 363-24, HH 363-31, HH 363-16, HH 363-10, HH 363-50, HH 363-17 and HH 363-18, encoded by the DNA sequences SEQ ID NO 60, 61, 62, 63, 64, 65 and 66, respectively.
  • RNA sequences can be made that are constituted or that comprise more than one of the RNA sequences of the invention in such a way that the ability to inhibit the replication of the virus from all of them is added.
  • another particular object of the invention is an RNA construct of the invention characterized in that it is constituted by, or because it contains, any one of the possible combinations of two or more IRES binding RNA sequences of the present invention with a binding domain or not between said sequences.
  • any of the RNA sequences and constructions of the invention described above that are subject to modifications, preferably chemical, leading to greater stability against the action of ribonucleases and thereby greater efficiency, form part of the present invention.
  • the term "chemical modifications” refers to the introduction of chemically modified nucleotides into the RNA sequence of the invention, for example, S groups replacing O in the phosphodiester chain, or the inclusion of 5 methylcytosines. , which allow to increase the efficiency of the same (to confer greater resistance against degradation, to favor its entry into the cells, etc.), as well as any modification in the pentose or in the nitrogen base (Brown and Brown, 1991.
  • RNA sequence of the invention is easy for a person skilled in the art, it can be done by chemical synthesis which also allows the incorporation of chemical modifications both in the different nucleotides of the product and the incorporation of other chemical compounds in any of the extremes.
  • the synthesis can also be done enzymatically using any of the available RNA polymerases.
  • Another object of the present invention is a genetic DNA construct, hereinafter referred to as a genetic DNA construct of the invention, characterized in that it allows in vitro or intracellular transcription of the RNA sequence or RNA construct of the invention and because it is constituted by a of the sequences belonging to the following group: a) DNA nucleotide sequence, preferably double stranded, comprising at least the sequence coding for the RNA sequence or the RNA construct of the invention for in vitro transcription, and, b) DNA nucleotide sequence, preferably double stranded, characterized in that it is a gene expression system or vector comprising the coding sequence of the RNA sequence of the invention with at least one promoter that directs the transcription of said nucleotide sequence of interest, to which it is operatively linked, and other sequences necessary or
  • Examples of appropriate expression vectors can be selected according to the conditions and needs of each particular case among bacterial plasmids or eukaryotic expression (eg pcDNA3), bacmids, artificial yeast chromosomes (YACs), artificial bacterial chromosomes (BACs), artificial chromosomes based on bacteriophage P1 (PACs), cosmids, or viruses, which may also contain an origin of bacterial or yeast replication so that it can be amplified in bacteria or yeasts, as well as a usable marker to select transfected cells different from the gene or genes of interest.
  • YACs artificial yeast chromosomes
  • BACs artificial bacterial chromosomes
  • PACs bacteriophage P1
  • cosmids or viruses, which may also contain an origin of bacterial or yeast replication so that it can be amplified in bacteria or yeasts, as well as a usable marker to select transfected cells different from the gene or genes of interest.
  • a particular embodiment of the present invention is the DNA construction of the present invention characterized in that it is a coding sequence of an RNA sequence of the invention (item a) above, belonging, inter alia, by way of illustration and without limiting the Scope of the invention, to the following group (see Example 1): SEQ ID NO 53, SEQ ID NO 54, SEQ ID NO 55, SEQ ID NO 56, SEQ ID NO 57, SEQ ID NO 58, SEQ ID NO 59.
  • RNA construct of the present invention is characterized in that it is a coding sequence of an RNA construct of the invention (item a) above), inter alia, by way of illustration and without limiting the scope of the invention, to the following group (see Example 2): SEQ ID NO 60, SEQ ID NO 61, SEQ ID NO 62, SEQ ID NO 63, SEQ ID NO 64, SEQ ID NO 65, SEQ ID NO 66.
  • Other object Additional of the present invention are constituted by cells, in among others and by way of illustration, prokaryotic and eukaryotic cells containing the genetic construction of DNA of the invention and where the RNA sequence of the invention can be adequately expressed.
  • These cells can be transformed, infected or transfected by said DNA construction by genetic engineering techniques known to a person skilled in the art. [Sambrook, J., Fritsch, EF, and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory] and are part of the present invention]. These cells may be useful for carrying out assessments of inhibitory activity of said sequence in virus infection assays, preferably HCV, for expression conditioned by an IRES region of proteins of commercial interest, for amplification and obtaining said genetic DNA construct, preferably the vector of expression, for later use in gene therapy, etc.
  • Another object of the invention is the use of the RNA sequence, of the RNA construction and of the genetic construction of DNA of the invention in the preparation of a pharmaceutical composition, for example, a medicament, a vector for gene therapy, a reagent or laboratory compound, etc.
  • Said pharmaceutical composition is useful for protecting humans and animals against diseases caused by certain RNA viruses.
  • said pharmaceutical composition is especially useful for protecting humans against infection caused by HCV.
  • the RNA sequence, the RNA construct and the genetic DNA construct of the invention may be used independently or combined with each other as part of a mixture of sequences (RNA and / or DNA) that are applied together in the preparation of said therapeutic composition.
  • the mixture could be constituted by any of the possible combinations of the different RNA sequences, the RNA construct and the genetic DNA constructs that are part of the present invention.
  • they can be used in combination with products other than those described here and existing in the state of the present and future art, e.g. interferon, antiviral drugs, etc; also in this case as part of a single product or a mixture, as a combination therapy.
  • the invention provides a pharmaceutical composition comprising a therapeutically effective amount of the RNA sequence and / or RNA construct and / or DNA genetic constructs of the invention, together with, optionally, one or more pharmaceutically adjuvant and / or vehicles. acceptable.
  • said pharmaceutical composition is a medicine intended to confer protection or to the treatment of human or animal diseases caused by RNA viruses.
  • said pharmaceutical composition is a medicament for the prophylaxis or treatment of human diseases caused by HCV.
  • said pharmaceutical composition is a medicament for the prophylaxis or treatment of animal diseases caused by viruses, such as, for example, bovine diarrhea virus or even classical swine fever.
  • said medicament is an expression vector for therapeutic methods of gene therapy that require the insertion of a therapeutic DNA into the mammalian genome.
  • said pharmaceutical composition is a laboratory reagent for use in biotechnological applications and in basic research as blocking agents for the translation of genes arranged under the control of the HCV IRES, as tools to functionally or structurally characterize the IRES, or subdomains thereof, as well as its possible interactions with other domains or viral molecules or cellular factors.
  • the term "therapeutically effective amount” refers to the amount of RNA sequence of the invention or the amount of a gene construct that allows its calculated intracellular expression to produce the desired effect and, in general, It will be determined, among other causes, by the characteristics of said sequences and constructions and the therapeutic effect to be achieved.
  • compositions are the adjuvants and vehicles known to those skilled in the art and commonly used in vaccine production.
  • said composition is prepared in the form of an aqueous solution or suspension, in a pharmaceutically acceptable diluent, such as saline, phosphate buffered saline (PBS), or any other pharmaceutically acceptable diluent.
  • a pharmaceutically acceptable diluent such as saline, phosphate buffered saline (PBS), or any other pharmaceutically acceptable diluent.
  • PBS phosphate buffered saline
  • the pharmaceutical composition provided by this invention may be administered by any appropriate route of administration that gives as The result is a protective therapeutic response against infection of the virus, preferably HCV, for which said composition will be formulated in the pharmaceutical form appropriate to the route of administration chosen.
  • the administration of the composition provided by this invention is carried out parenterally, for example, intraperitoneally, subcutaneously, etc.
  • Figure 1 Schematic representation of the secondary and tertiary structures proposed for the IRES domain of HCV.
  • the different domains and subdomains are identified by I, II, Illa, b, c, d, e, f and IV.
  • AUG represents the translation start site.
  • Figure 2. Schematic representation of the theoretical secondary structure presented by the inhibitory RNA sequences of the invention distributed in each of the selected families.
  • Figure 3 In vitro translation inhibition assay by the inhibitory RNA sequence of the invention.
  • the relative amount of luciferase protein is represented with respect to the amount of the Cat protein used as a control, in the presence of increasing amounts of the various aptamers. Luciferase is translated under the control of HCV IRES while Cat protein is independent of it.
  • In solid circles the inhibition of the translation of luciferase produced by aptamer 24 representative of group 1 is represented.
  • In empty circles the inhibition produced by aptamer 31 representative of group 2 is represented.
  • With solid triangles the inhibition produced by the aptamer is represented. 16 belonging to group 3.
  • Empty triangles represent the inhibition produced by aptamer 10 belonging to group 4.
  • Example 1 Design, elaboration and selection of the inhibitory RNA sequence of the invention.
  • the invention was carried out by applying a strategy of selective amplification of molecules capable of binding to IRES (aptamers). This strategy was applied to a population of RNA sequences resulting from the random combination of the four nucleotides (Adenine, Cytosine, Guanine and Uracil) in 25 consecutive positions. This strategy is applicable to obtain inhibitors of causative agents of other pathologies.
  • the internally biotinylated HCV IRES SEQ ID NO 1
  • was immobilized to a streptavidin column HiTrap Streptavidin HP column, Amersham Biosciences).
  • the population of inhibitory RNA sequences used was obtained by in vitro transcription of a population of DNA that was constructed from the pairing of two complementary deoxyoligonucleotides (SEQ ID NO 2 and SEQ ID NO 3). Double stranded DNA The resulting consisted of a random 25 nucleotide region flanked at 5 'by a known sequence containing the T7 phage promoter and at 3' by a known sequence that would be used in the amplification and cloning steps.
  • T7 RNA polymerase Barroso-del Jes ⁇ s et al., 1999. Comparative kinetic analysis of structural variants of the hairpin ribozyme reveal further potential to optimize its catalytic performance.
  • Antisense Nucleic Acid Drug Dev. 9 (5): 433-40 generated a population of RNA molecules that were subjected to the following in vitro molecular selection process. This population was incorporated into the column and incubated for 30 minutes at room temperature. After that time the column was subjected to 10 steps of TMN buffer washing (10 mM Tris-Acetic pH 7.5, 10 mM magnesium acetate, 100 mM sodium chloride), which eluted the population molecules that had not been bound to the HCV IRES. To collect the retained molecules, the RNA contained in the column was denatured by heating it at 95 ° C and subsequent washing with TMN buffer at 65 ° C.
  • the molecules collected in the first four elution steps were used for the retro-transcription and amplification reaction with a thermostable DNA polymerase enzyme, Tth (Promega), following the manufacturer's instructions.
  • Tth thermostable DNA polymerase enzyme
  • oligonucleotide primers were used SEQ ID NO 4 and SEQ ID NO 5.
  • a fraction of the DNA generated after amplification was destined for in vitro transcription (Barroso-deIJesus et al., 1999. Comparative kinetic analysis of structural variants of the hairpin ribozyme reveal further potential to optimize its catalytic performance Antisense Nucleic Acid Drug Dev. 9 (5): 433-40), the resulting RNA being integrated into the next selection cycle. The process was repeated six times, six cycles of selection.
  • A, Adenine C, Cytosine G, Guanine U, Uracil N and X is any R nucleotide, purine nucleotide (Adenine or Guanine) Y, pyrimidine nucleotide (Cytosine or Uracil) m, p, kyz any integer from 0 onwards.
  • the secondary structure prediction of the selected inhibitory RNAs was made using the Mfold program.
  • Figure 2 shows a schematic representation of the theoretical secondary structure presented by the inhibitory RNAs of each of the selected groups, where the sequences that define each group are exposed in a single chain region flanked by a double chain region represented for nucleotides N (any sequence) the length of the double chain region is variable and is represented by m nucleotides in the 5 'strand and p nucleotides in the 3' strand, where myp are integers from 0 onwards.
  • the single chain zone further includes a variable number of nucleotides k in 5 'and z in 3' flanking the fixed sequences represented by X which can be any nucleotide, kyz representing an integer from 0 onwards.
  • RNA sequences of the invention identified bind IRES to through the consensus sequence that defines each family most likely in the following positions of the viral RNA: Atamers belonging to group 1, for example AP24, SEQ ID NO 19, to positions 263 to 268; Aptamers belonging to group 2, for example AP31 SEQ ID NO 21, at positions 80 to 87; Aptamers belonging to group 3, for example AP16, SEQ ID NO 13, at positions 282 to 286; Aptamers belonging to group 4, for example AP10, SEQ ID NO 9, to positions 305 to 312; Aptamers belonging to group 5, for example AP50, SEQ ID NO 33, to positions 18 to 23; Aptamers belonging to group 6, for example AP50, SEQ ID NO 33, to positions 340 to 2345; Aptamers belonging to group 7, for example AP17, SEQ ID NO 14, to positions 322 to 328; Atamers belonging to group 8, for example AP18, SEQ ID NO 15, not determined; Atamers belonging to group 9, for example AP53, S
  • RNA sequences of the invention Inhibition of in vitro translation by means of the RNA sequences of the invention
  • the anti-HCV activity of these RNA sequences of the invention can easily be assayed in a laboratory in transcription-translation or translation cell extracts using appropriate plasmid DNAs in which The translation of a gene whose activity is easily quantifiable is expressed under the control of the IRES region of HCV.
  • the previously selected inhibitory RNA sequences of the invention were synthesized by in vitro transcription using oligonucleotides (SEQ ID.
  • This viral region controls the translation of the 3 'encoded luciferase protein mRNA thereof.
  • the products of the reactions were resolved by electrophoresis in denaturing polyacrylamide gels with SDS and subsequently quantified by means of a fluorescence scanner (Storm , Molecular Dinamycs).
  • Storm fluorescence scanner
  • Table 1 shows the IC 50 levels obtained with sequences of RNA of the invention representative of several of the families described above.
  • the IC 50 value represents the inhibitory RNA sequence concentration capable of achieving a 50% decrease in protein levels. This value was obtained from the inhibition data detailed in Figure 3.
  • Example 2 Inhibition of translation in vitro by means of the RNA sequences of the invention linked to a ribozyme
  • the aptamers or RNA sequences of the invention described can also be used in combination with other inhibitory agents.
  • chimeric RNA constructs have been developed that carry an aptamer and a catalytic domain, a hammerhead ribozyme designed to cut the IRES of HCV at position 363 (Lieber et al., 1996. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J Virol. 70 (12): 8782-91).
  • RNA inhibitor constructs (HH 363-Ap.) was carried out by hybridization of two complementary oligonucleotides: - SEQ. ID. NO 44 with SEQ ID NO 45 (RNA Construction HH 363-24), - SEQ. ID. NO 44 with SEQ ID NO 46 (RNA Construction HH 363-31), - SEQ. ID. NO 44 with SEQ ID NO 47 (RNA Construction HH 363- 16), - SEQ. ID. NO 44 with SEQ ID NO 48 (RNA Construction HH 363-10), - SEQ. ID. NO 44 with SEQ ID NO 49 (RNA Construction HH 365-50), - SEQ. ID. NO 44 with SEQ ID NO 50 (RNA Construction HH 363-17), and - SEQ. ID.
  • RNA Construction HH 363-18 RNA Construction HH 363-18
  • Taq DNA polymerase Biotools
  • RNA HH 363-18 coding for the construction of RNA HH 363-50
  • - SEQ. ID. NO 65 coding for the construction of RNA HH 363-17
  • - SEQ. ID. NO 66 coding for the construction of RNA HH 363-18.
  • the genetic construction of DNA was done so that the catalytic domain is 5 'from the aptamer.
  • the constructs of inhibitory RNAs (HH 363-24 / 31/16/10/50/17 and 18) were purified and their IRES-dependent translation inhibitory action of HCV tested in in vitro translation assays using rabbit reticulocyte used as described above.
  • the results of inhibition of HCV-IRES activity mediated by the different inhibitory RNA constructs (chimeras) carrying a ribozyme and an aptamer are shown in Figure 4, and compared with the inhibition exerted by the ribozyme independently. Luciferase is translated under the control of HCV IRES while Cat protein is independent of the same.
  • Example 3.- Test of the antiviral activity of inhibitory RNAs The antiviral activity of the RNA sequence of the invention can be evaluated in cellular models, although the impossibility of culturing HCV makes it necessary to resort to indirect measures by using marker genes whose translation takes place under the control of the IRES region of HCV. and whose product is easily quantifiable, for example, luciferase.
  • a specific embodiment consists in the use of viruses, for example, hybrids derived from the polio virus to which the IRES region has been replaced by that corresponding to the HCV IRES together with the 5 'region of the protein gene of the HCV capsid (PV-HCV).
  • HCV IRES Hepatitis C virus internal Ribosome Entry site
  • RNA sequences will be transfected with an expression vector, for example an appropriate plasmid in which the DNA sequence encoding said RNA sequence is included.
  • This DNA sequence will be cloned under the control of a polll promoter (for example, the CMV promoter).
  • Cells that produce the inhibitory RNA sequence will be exposed to infection by the PV-HCV hybrid viruses. Three days after infection, cell extracts are prepared to re-infect HeLa cells in monolayer. After three days of incubation at 37 ° C, staining with violet crystal is performed to determine the lysis plaques resulting from the viral infection. Those cells in which the synthesis of the RNA sequence of the invention achieves inhibition of virus replication will not occur lysis.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention relates to: an RNA sequence that inhibits the replication of the HCV virus by binding to the IRES region, RNA and DNA constructions, pharmaceutical compositions containing same, and the application thereof in methods for the prevention and treatment of infections caused, in particular, by the HCV. The aforementioned RNA sequences are advantageous in that it is a product that is synthesised naturally by cells and, as such, does not produce any type of toxic effect. In addition, the fact that the IRES region is highly conserved between the different HCV strains makes possible the development of more effective therapeutic tools against said viruses which have a good mutagenesis capacity, thereby enabling same to evade antiviral treatments.

Description

SECUENCIA DE RNA, CONSTRUCCIÓN DE RNA Y DNA, Y COMPOSICIÓN FARMACÉUTICA INHIBIDORAS DE LA PROLIFERACIÓN DEL VIRUS CAUSANTE DE LA HEPATITIS TIPO C (VHC), Y SUS APLICACIONESRNA SEQUENCE, RNA AND DNA CONSTRUCTION, AND INHIBITING PHARMACEUTICAL COMPOSITION OF THE PROLIFERATION OF THE VIRUS CAUSING THE TYPE C HEPATITIS (HCV), AND ITS APPLICATIONS
SECTOR DE LA TÉCNICA La invención proporciona nuevos productos para la inhibición específica del IRES del VHC y en consecuencia tiene una gran incidencia en las áreas de Biomedicina, Salud humana y animal, así como Investigación Básica y Biotecnología por la posibilidad del desarrollo de sistemas de modulación de la expresión génica de interés industrial, agroalimentario, etc., controlados por la actividad del IRES. De las posibles aplicaciones, la más inmediata puede ser el uso como agentes terapéuticos frente a la infección por el VHC, aunque tiene proyecciones adicionales para su utilización como inhibidores de otros virus de interés en explotaciones ganaderas y agrícolas.TECHNICAL SECTOR The invention provides new products for the specific inhibition of HCV IRES and consequently has a high incidence in the areas of Biomedicine, Human and Animal Health, as well as Basic Research and Biotechnology due to the possibility of the development of modulation systems of the gene expression of industrial, agri-food interest, etc., controlled by the activity of IRES. Of the possible applications, the most immediate may be the use as therapeutic agents against HCV infection, although it has additional projections for use as inhibitors of other viruses of interest in livestock and agricultural holdings.
ESTADO DE LA TÉCNICA El virus C de la hepatitis (VHC) es el principal responsable de las hepatitis de origen postransfusional. La infección crónica por este virus es una enfermedad progresiva que puede acabar en cirrosis hepática y carcinoma hepatocelular (Seef, 1997. Natural History of hepatitis C. Hepatology 26, Supp. 1 , 21 -28). Es el principal causante de las enfermedades hepáticas en el mundo, con más de 170 millones de infectados, la mayoría de ellos se encuentran en Afrecha y Asia, y afecta a un 2% de la población del mundo occidental (WHO report, 2000 www.cdc.gov). No existe vacuna para esta enfermedad y el agente terapéutico que ofrece mejores resultados es el interferón alpha (agente antivírico no específico) usado en combinación con la ribavirina, pero la eficacia de estos tratamientos actuales es baja, consiguiéndose tan sólo tasas globales de respuesta mantenida inferiores al 50%, siendo especialmente bajos para los pacientes infectados con el VHC del genotipo 1 b (McHutchinson et al., 1998. Interferon alpha-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. N England J Med 339, 1485-1492; Neumann et al., 1998. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282, 103-107; Poynard et al., 1998. Randomised trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. International Hepatitis Interventional Therapy Group (IHIT). Lancet 352, 1426-1432). El genoma del virus consiste en una molécula de RNA de polaridad positiva de 9.400 nucleótidos. Este RNA es a su vez genoma y mensajero del virus siendo traducido en una de las etapas más tempranas de la infección viral, a una única poliproteína, que es posteriormente procesada por la acción de proteasas virales y celulares. En el extremo 5' del genoma viral existe una región de 341 nucleótidos no codificante (Purcell, 1997. The hepatitis C: Overview. Hepatology 26, Supp. 1 , 11-14). Esta región precede a la pauta abierta de lectura de la poliproteína viral, y es suficiente para dirigir la traducción de la misma de una manera independiente de Cap, indicando que en esta región existe un sitio interno de entrada del ribosoma, conocido por IRES ("internal ribosome entry site") que se extiende hasta 30 nucleótidos en 3' del codón de iniciación (Wang et al., 1993. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J. Viral. 67, 3338-3344; Reynols et al., 1995. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 14, 6010-6020). Al igual que otros virus tipo RNA el VHC presenta una gran variabilidad génica, siendo la región 5' no codificante la más conservada del genoma. A su vez esta región presenta una estructura compleja y especialmente estable que es esencial para su función biológica, y por tanto para la viabilidad del virus. La estructura consta de cuatro dominios de doble cadena cerrados por fragmentos de cadena sencilla (estructuras tipo tallo-lazo I a IV en fig.1 ; Gallego y Varini, 2002. The hepatitis C virus internal ribosome-entry site: a new target for antiviral research. Biochemical Society Transactions 30, 140-145); además se han identificado interacciones terciarias que definen otros motivos estructurales (Lyons et al., 2001. Hepatitis C virus internal ribosome entry site RNA contains a tertiary structural element in a functional domain of stem-loop II. 29, 2535- 2541 ; Spahn et al., 2001. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291 , 1959-1962). En la Figura 1 se muestra una representación esquemática de las estructuras secundaría y terciaría propuesta para el dominio IRES del VHC. Los distintos dominios y subdominios se identifican por I, II, Illa, b, c, d, e, f y IV. AUG representa el sitio de inicio de la traducción (Figura adaptada de Honda et al., 1999. Natural variation in translational activities of the 5' nontranslated RNAs of hepatitis C virus genotypes 1a and 1b: evidence for a long-range RNA-RNA interaction outside of the internal ribosomal entry site. J. Viral 73, 4941 -51). La falta de eficiencia de las terapias disponibles actualmente hace necesario el desarrollo de nuevas estrategias antivirales, de un lado se trabaja en el desarrollo de fármacos que actúen sobre las actividades esenciales del ciclo vital del virus (proteasas virales, helicasa, polimerasa) y de otro en el desarrollo de estrategias que permitan la actuación directa sobre el genoma viral. En los últimos años se han publicado varios trabajos que describen el uso de ácidos nucleicos como inhibidores virales: 1.- Oligonucleótidos antisentido, existe una solicitud de patente del diseño, síntesis y uso de oligonucleótidos antisentido como inhibidores de la actividad del virus de la hepatitis C. (Anderson, K.P.; Hanecak, R.C., Nozaki, C, Dorr, F.A., Kwoh, T.J. Compositions and methods for treatment of hepatitis C virus-associated diseases. US Patent Application, 11 de Septiembre 2003). Los oligonucleótidos antisentido se definen como ácidos nucleicos de longitud variable y secuencia perfectamente complementaria a la diana (DNA o RNA) contra la que se dirigen. 2.- Ribozimas: Son moléculas de RNA dotadas de actividad catalítica (Welch et al., 1996. A potential therapeutic application of hairpin ribozymes: in vitro and in vivo studies of gene therapy for hepatitis C virus infection. Gene Therapy 3, 994-1001 ; Sakamoto et al., 1996. Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. J Clin. Invest. 98, 2720-2728; Lieber et al., 1996. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J. Viral. 70, 8782-8791 ; Macejak et al., 2000. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31 , 769-776), en todos estos trabajos se utiliza la capacidad de ciertas moléculas de RNA de cortar otras moléculas de RNA o dianas de las mismas. 3.- Aptámeros: Ácidos nucleicos que son capaces de unirse eficientemente a otra molécula bien un ácido nucleico, proteína, etc, y cuya actividad está determinada por la estructura que presentan los mismos y la presencia de nucleótidos concretos en posiciones específicas a través de los cuales se lleva a cabo la interacción con la diana. Recientemente se ha publicado el uso de aptámeros de RNA que se unen específicamente al dominio II del IRES del VHC (Kikuchi, et al., 2003. RNA aptamers targeted to domain II of Hepatitis C virus IRES that bind to its apical loop región. J. Biochem. 133, 263-270). Estas estrategias se han combinado con la inclusión de modificaciones químicas en las moléculas de RNA que les confieren una mayor estabilidad y con ello una mayor eficacia. Existe una patente de un producto que actúa como inhibidor del VHC consistente en una molécula de RNA que porta una ribozima dirigida frente a la región IRES y un segundo dominio que se une específicamente a la proteasa viral NS3 (Nishikawa, R., Fukuda, K., Nishikawa, F., Uragami, S. and Funaji, K. RNA molecule targeting IRES and NS3 protease of hepatitis C virus. JP2002165594. 11 de Junio de 2002). Las estrategias actuales con interferón dirigidas a frenar la infección por VHC han resultado inefectivas. Son tratamientos tremendamente agresivos para el paciente por los efectos secundarios que conllevan, además son muy costosos para la sanidad, lo cual ha impulsado la necesidad de desarrollar tratamientos alternativos. En el contexto de uso de ácidos nucleicos como inhibidores del VHC se enmarca la presente invención, moléculas de RNA seleccionadas para su unión específica a la región IRES del virus, y que inhiben específicamente la actividad del mismo y en consecuencia la traducción viral. Estas moléculas presentan una estructura definida necesaria para su actividad y requieren de la presencia de una serie de nucleótidos en posiciones concretas. DESCRIPCIÓN DE LA INVENCIÓNSTATE OF THE TECHNIQUE Hepatitis C virus (HCV) is primarily responsible for hepatitis of post-transfusion origin. Chronic infection with this virus is a progressive disease that can lead to liver cirrhosis and hepatocellular carcinoma (Seef, 1997. Natural History of hepatitis C. Hepatology 26, Supp. 1, 21-28). It is the main cause of liver diseases in the world, with more than 170 million infected, most of them are in Afrecha and Asia, and affects 2% of the population of the western world (WHO report, 2000 www. cdc.gov). There is no vaccine for this disease and the therapeutic agent that offers the best results is interferon alpha (non-specific antiviral agent) used in combination with ribavirin, but the efficacy of these current treatments is low, achieving only lower overall maintained response rates. 50%, being especially low for patients infected with HCV genotype 1b (McHutchinson et al., 1998. Interferon alpha-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. N England J Med 339, 1485-1492; Neumann et al., 1998. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy Science 282, 103-107; Poynard et al., 1998. Randomized trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. International Hepatitis Interventional Therapy Group (IHIT). Lancet 352, 1426-1432). The virus genome consists of a positively polar RNA molecule of 9,400 nucleotides. This RNA is in turn genome and messenger of the virus being translated in one of the earliest stages of viral infection, to a single polyprotein, which is subsequently processed by the action of viral and cellular proteases. At the 5 'end of the viral genome there is a 341 nucleotide region that is not coding (Purcell, 1997. The hepatitis C: Overview. Hepatology 26, Supp. 1, 11-14). This region precedes the open reading pattern of the viral polyprotein, and is sufficient to direct its translation in a manner independent of Cap, indicating that in this region there is an internal ribosome entry site, known as IRES (" internal ribosome entry site ") that extends up to 30 nucleotides in 3 'of the initiation codon (Wang et al., 1993. Translation of human hepatitis C RNA virus in cultured cells is mediated by an internal ribosome-binding mechanism. J. Viral 67, 3338-3344; Reynols et al., 1995. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 14, 6010-6020). Like other RNA viruses, HCV has great gene variability, the 5 'non-coding region being the most conserved genome. In turn, this region has a complex and especially stable structure that is essential for its biological function, and therefore for the viability of the virus. The structure consists of four double-chain domains closed by single-chain fragments (stem-loop structures I to IV in fig. 1; Gallego and Varini, 2002. The hepatitis C virus internal ribosome-entry site: a new target for antiviral research, Biochemical Society Transactions 30, 140-145); tertiary interactions that define other structural motifs have also been identified (Lyons et al., 2001. Hepatitis C virus internal ribosome entry site RNA contains a tertiary structural element in a functional domain of stem-loop II. 29, 2535-2541; Spahn et al., 2001. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291, 1959-1962). In the Figure 1 shows a schematic representation of the secondary and tertiary structures proposed for the IRES domain of HCV. The different domains and subdomains are identified by I, II, Illa, b, c, d, e, f and IV. AUG represents the translation initiation site (Figure adapted from Honda et al., 1999. Natural variation in translational activities of the 5 'nontranslated RNAs of hepatitis C virus genotypes 1a and 1b: evidence for a long-range RNA-RNA interaction outside of the internal ribosomal entry site. J. Viral 73, 4941-51). The lack of efficiency of currently available therapies necessitates the development of new antiviral strategies, on the one hand we are working on the development of drugs that act on the essential activities of the life cycle of the virus (viral proteases, helicase, polymerase) and on the other in the development of strategies that allow direct action on the viral genome. In recent years, several works have been published that describe the use of nucleic acids as viral inhibitors: 1.- Antisense oligonucleotides, there is a patent application for the design, synthesis and use of antisense oligonucleotides as inhibitors of hepatitis virus activity C. (Anderson, KP; Hanecak, RC, Nozaki, C, Dorr, FA, Kwoh, TJ Compositions and methods for treatment of hepatitis C virus-associated diseases. US Patent Application, September 11, 2003). Antisense oligonucleotides are defined as nucleic acids of variable length and sequence perfectly complementary to the target (DNA or RNA) against which they are directed. 2.- Ribozymes: They are RNA molecules endowed with catalytic activity (Welch et al., 1996. A potential therapeutic application of hairpin ribozymes: in vitro and in vivo studies of gene therapy for hepatitis C virus infection. Gene Therapy 3, 994- 1001; Sakamoto et al., 1996. Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. J Clin. Invest. 98, 2720-2728; Lieber et al., 1996. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J. Viral. 70, 8782-8791; Macejak et al., 2000. Inhibition of hepatitis C virus (HCV) -RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes Hepatology 31, 769-776), in all these works the capacity of certain RNA molecules cut other RNA molecules or targets thereof. 3.- Atamers: Nucleic acids that are capable of efficiently binding to another molecule, either a nucleic acid, protein, etc., and whose activity is determined by their structure and the presence of specific nucleotides at specific positions through which is carried out the interaction with the target. Recently, the use of RNA aptamers that specifically bind to IRES domain II of HCV has been published (Kikuchi, et al., 2003. RNA aptamers targeted to domain II of Hepatitis C virus IRES that bind to its apical loop region. J Biochem. 133, 263-270). These strategies have been combined with the inclusion of chemical modifications in RNA molecules that give them greater stability and thus greater efficiency. There is a patent for a product that acts as an HCV inhibitor consisting of an RNA molecule that carries a ribozyme directed against the IRES region and a second domain that specifically binds to the NS3 viral protease (Nishikawa, R., Fukuda, K ., Nishikawa, F., Uragami, S. and Funaji, K. RNA molecule targeting IRES and NS3 protease of hepatitis C virus. JP2002165594. June 11, 2002). Current interferon strategies aimed at curbing HCV infection have proved ineffective. They are tremendously aggressive treatments for the patient because of the side effects they entail, they are also very expensive for health, which has driven the need to develop alternative treatments. In the context of the use of nucleic acids as HCV inhibitors, the present invention is framed, RNA molecules selected for specific binding to the IRES region of the virus, and which specifically inhibit its activity and consequently viral translation. These molecules have a defined structure necessary for their activity and require the presence of a series of nucleotides in specific positions. DESCRIPTION OF THE INVENTION
- Descripción breve La invención proporciona una secuencia de RNA inhibidora de la replicación del virus VHC por su unión a la región IRES, así como construcciones de RNA que la contiene, construcciones de DNA que permiten la expresión de dicha secuencia de RNA, composiciones farmacéuticas que las contienen, y su aplicación en procedimientos de prevención y tratamiento de infecciones producidas, preferentemente por el VHC. La ventaja de dichas secuencias de RNA es que es un producto que sintetizan las células de forma natural, por lo que no se prevé ningún tipo de efecto tóxico por su administración para las células no infectadas que las eliminarán como cualquier otro RNA derivado de su propia actividad génica. Además, el hecho que esta región IRES esté altamente conservada entre las distintas cepas de VHC, así como en otros virus relacionados, por ejemplo, el virus de la diarrea bovina o incluso de la peste porcina clásica, permitirá el desarrollo de herramientas terapéuticas más eficaces frente a estos virus que presentan una gran capacidad de mutagénesis, que les permiten escapar a tratamientos antivirales.- Brief description The invention provides an RNA sequence inhibiting the replication of the HCV virus by its binding to the IRES region, as well as RNA constructs that contain it, DNA constructs that allow the expression of said RNA sequence, pharmaceutical compositions that they contain them, and their application in procedures of prevention and treatment of infections produced, preferably by HCV. The advantage of such RNA sequences is that it is a product that synthesizes cells naturally, so no toxic effect is expected due to their administration for non-infected cells that will eliminate them like any other RNA derived from their own gene activity In addition, the fact that this IRES region is highly conserved among the different strains of HCV, as well as in other related viruses, for example, bovine diarrhea virus or even classical swine fever, will allow the development of more effective therapeutic tools against these viruses that have a high capacity for mutagenesis, which allow them to escape antiviral treatments.
- Descripción detallada de la invención La invención se enfrenta con el problema de proporcionar nuevos compuestos farmacéuticos eficaces y seguros frente al virus causante de la hepatitis C (VHC). La solución proporcionada por esta invención se basa en que los inventores han observado que es posible la inhibición de la replicación del VHC mediante el uso de una molécula de RNA de secuencia concreta que se une específicamente a regiones muy conservadas del dominio 5' no traducible del genoma del virus, la región IRES del VHC implicada en el inicio de la traducción. Esta secuencia de RNA puede ser utilizada, por ejemplo, con fines terapéuticos, por ejemplo, como compuesto terapéutico en la elaboración de composiciones farmacéuticas para proteger a mamíferos, preferentemente humanos, de la infección causada por virus, preferentemente el VHC. Las secuencias de RNA inhibidoras de la presente invención, de aproximadamente unos 25 nucleótidos de longitud, se han seleccionado específicamente por su unión a la región IRES del VHC, y se ha probado que bloquean o inhiben la actividad biológica del virus y en consecuencia su capacidad de proliferar. Por otra parte, presentan la ventaja de que al ser moléculas de RNA es un producto que sintetizan las células de forma natural, por lo que no se prevé ningún tipo de efecto tóxico para las células no infectadas que las eliminarán como cualquier otro RNA derivado de su propia actividad génica. Además, el hecho que esta región IRES esté altamente conservada entre las distintas cepas de VHC (Martell et al., 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Viral, 66 (5): 3225-9) así como en otros virus relacionados, por ejemplo, el virus de la diarrea bovina o incluso de la peste porcina clásica, permite, por un lado, el desarrollo de herramientas terapéuticas más eficaces frente a estos virus que presentan una gran capacidad de mutagénesis, que les permiten escapar a tratamientos antivirales; y por otro lado, estas secuencias serán de utilidad en farmacología para el uso como cabezas de serie para el desarrollo de nuevos antivirales frente al VHC u otros virus que comparten con el VHC la existencia de una región IRES esencial para su viabilidad (Brown et al., 1992. Secondary structure of the 5' nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 20 (19): 5041-5). Igualmente, los productos descritos en la invención podrán ser utilizados para bloquear la actividad del IRES del VHC en aplicaciones de interés biotecnológico, o de investigación básica, procesos en los que se expresa un gen de interés bajo el control del IRES. Por consiguiente, un objeto de la presente invención lo constituye una secuencia de RNA (también denominada aptámero) inhibidora de la proliferación del virus causante de la hepatitis tipo C (VHC), en adelante secuencia de RNA de la invención, caracterizada porque está constituida por una secuencia de RNA que se une específicamente a regiones del dominio 5' no traducible del genoma del virus, la región IRES (Intemal Ribosome Entry Site) del VHC y porque se encuentra formando una estructura definida por una región de doble cadena que deja expuestos nucleótidos en cadena sencilla de RNA, a través de los cuales se une específicamente al RNA de la región IRES del VHC. El término "VHC", tal como se utiliza en la presente invención, se refiere a las diferentes cepas de VHC pertenecientes a cualquiera de los genotipos (a título ilustrativo, ver Simmonds, P. 1993. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 región. J Gen Viral. 74 (11): 2391-9). Asimismo, se refiere a la cuasiespecie que infecta a un individuo (Martell et al., 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies natura of HCV genome distribution. J Viral, 66 (5): 3225-9). Tal como se utiliza en la presente invención el término "IRES" se refiere a la secuencia de RNA del VHC (NC_004102), así como a secuencias con esta misma función (Gallego, J. 2002. Intemal initiation of translation by viral and cellular IRESs: a new avenue for specific inhibition of protein synthesis? Curr Opin Drug Discov Devel. 5(5): 777-84). Un objeto particular de la presente invención lo constituye la secuencia de RNA de la invención caracterizada porque pertenece, entre otras, a una de las siguientes familias de secuencias definidos en función de unos dominios consenso de la secuencia de unión al IRES definida:- DETAILED DESCRIPTION OF THE INVENTION The invention faces the problem of providing new effective and safe pharmaceutical compounds against the virus causing hepatitis C (HCV). The solution provided by this invention is based on the fact that the inventors have observed that inhibition of HCV replication is possible through the use of a specific sequence RNA molecule that specifically binds to highly conserved regions of the 5 'non-translatable domain of the virus genome, the IRES region of HCV involved in the onset of translation. This RNA sequence can be used, for example, for therapeutic purposes, for example, as a therapeutic compound in the preparation of pharmaceutical compositions to protect mammals, preferably humans, from infection caused by viruses, preferably HCV. The RNA inhibitor sequences of the present invention, of approximately 25 nucleotides in length, they have been specifically selected for their binding to the IRES region of HCV, and have been shown to block or inhibit the biological activity of the virus and consequently its ability to proliferate. On the other hand, they have the advantage that being RNA molecules is a product that synthesizes cells naturally, so no type of toxic effect is anticipated for non-infected cells that will eliminate them like any other RNA derived from Your own gene activity. In addition, the fact that this IRES region is highly conserved among the different strains of HCV (Martell et al., 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Viral, 66 (5): 3225-9) as well as in other related viruses, for example, bovine diarrhea virus or even classical swine fever, allows, on the one hand, the development of more effective therapeutic tools against these viruses that have a high capacity for mutagenesis, which allow them to escape antiviral treatments; and on the other hand, these sequences will be useful in pharmacology for use as serial heads for the development of new antivirals against HCV or other viruses that share with the HCV the existence of an IRES region essential for its viability (Brown et al ., 1992. Secondary structure of the 5 'nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 20 (19): 5041-5). Similarly, the products described in the invention may be used to block the activity of HCV IRES in applications of biotechnological interest, or basic research, processes in which a gene of interest is expressed under the control of IRES. Accordingly, an object of the present invention is an RNA sequence (also called aptamer) inhibiting the proliferation of the virus causing hepatitis C (HCV), hereinafter RNA sequence of the invention, characterized in that it is constituted by an RNA sequence that specifically binds to regions of the 5 'non-translatable domain of the virus genome, the IRES (Intemal Ribosome Entry Site) region of HCV and because it is forming a structure defined by a double-chain region that exposes nucleotides single chain RNA, through which it specifically binds to the RNA of the IRES region of HCV. The term "HCV", as used in the present invention, refers to the different strains of HCV belonging to any of the genotypes (by way of illustration, see Simmonds, P. 1993. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Viral. 74 (11): 2391-9). It also refers to the quasi-species that infects an individual (Martell et al., 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies natura of HCV genome distribution. J Viral, 66 (5 ): 3225-9). As used in the present invention, the term "IRES" refers to the HCV RNA sequence (NC_004102), as well as sequences with this same function (Gallego, J. 2002. Intemal initiation of translation by viral and cellular IRESs : a new avenue for specific inhibition of protein synthesis? Curr Opin Drug Discov Devel. 5 (5): 777-84). A particular object of the present invention is the RNA sequence of the invention characterized in that it belongs, among others, to one of the following families of defined sequences based on consensus domains of the defined IRES binding sequence:
Familia 1 : 5' (N)mXkCCAACXz(N)p3'Family 1: 5 '(N) m X k CCAACX z (N) p 3'
Familia 2: 5' (N)mXkUAUGGCUXz(N)p 3'Family 2: 5 '(N) m X k UAUGGCUX z (N) p 3'
Familia 3: 5' (N)mXkCCACGXz(N)p 3'Family 3: 5 '(N) m X k CCACGXz (N) p 3'
Familia 4: 5' (N)mXkRUUCGYRAXz(N)p3'Family 4: 5 '(N) m X k RUUCGYRAX z (N) p 3'
Familia 5: 5' (N)mXkCUYGUUYXz(N)p3'Family 5: 5 '(N) m X k CUYGUUYX z ( N) p 3'
Familia 6: 5' (N)mXkUYRUGGXz(N)p3'Family 6: 5 '(N) m X k UYRUGGX z (N) p 3'
Familia 7: 5' N)mXkYGAGACYXz(N)p3'Family 7: 5 'N) m X k YGAGACYX z (N) p 3'
Familia 8: 5' (N)mXkAUUAGXz(N)p3'Family 8: 5 '(N) m X k AUUAGX z (N) p 3'
Familia 9: 5' (N)mXkAUUCAGXz(N)p3'Family 9: 5 '(N) m X k AUUCAGX z (N) p 3'
Donde: A, Adenina C, Citosina G, Guanina U, Uracilo N y X es cualquier nucleótido R, nucleótido de purina (Adenina o Guanina) Y, nucleótido de pirimidina (Citosina o Uracilo) m, p, k y z cualquier número entero desde 0 en adelante. Las secuencias (N), de longitud m en 5' interaccionarán con las secuencias (N) de longitud p en 3' formando una región de doble cadena (no necesariamente perfecta) que deja expuestas en una región de cadena sencilla las secuencias consenso de cada uno de los grupos.Where: A, Adenine C, Cytosine G, Guanine U, Uracil N and X is any nucleotide R, purine nucleotide (Adenine or Guanine) Y, pyrimidine nucleotide (Cytosine or Uracil) m, p, k and z any integer from 0 onwards. The sequences (N), of length m in 5 'will interact with the sequences (N) of length p in 3' forming a double-chain region (not necessarily perfect) that exposes the consensus sequences of each One of the groups.
Por otro lado, forman parte de la invención las realizaciones particulares de la secuencia de RNA de la invención, que perteneciendo a alguno de las familias anteriores, pertenecen, entre otras, a título ilustrativo y sin que limite el alcance de la presente invención, al siguiente grupo: On the other hand, particular embodiments of the RNA sequence of the invention are part of the invention, belonging to one of the previous families, belong, among others, for illustrative purposes and without limiting the scope of the present invention, to the following group:
Figure imgf000011_0001
y, más preferentemente, al siguiente grupo:
Figure imgf000011_0001
and, more preferably, to the following group:
Figure imgf000012_0001
Figure imgf000012_0001
Otro objeto de la presente invención lo constituye una construcción de RNA, en adelante construcción de RNA de la invención, caracterizada porque está constituida además de la propia secuencia de RNA de unión al IRES de la invención por una secuencia de nucleótidos que permita la adición o incremento de la actividad inhibitoria de la replicación del VHC de la secuencia de RNA de la invención. Tal como se refiere en la presente invención el término "construcción genética de RNA" se refiere, entre otras posibilidades, a título ilustrativo y sin que limite el alcance de la presente invención, a construcciones que contengan, además de la secuencia RNA de la invención, un oligonucleótido antisentido (Anderson, K.P.; Hanecak, R.C., Nozaki, C, Dorr, F.A., Kwoh, T.J. Compositions and methods for treatment of hepatitis C virus- associated diseases. US Patent Application, 11 de Septiembre 2003), una ribozima (Welch et al., 1996. A potential therapeutic application of hairpin ribozymes: in vitro and in vivo studies of gene therapy for hepatitis C virus infection. Gene Therapy 3, 994-1001 ; Sakamoto et al., 1996. Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. J Clin. Invest. 98, 2720-2728; Lieber et al., 1996. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J. Viral. 70, 8782-8791 ; Macejak et al., 2000. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31 , 769-776) o un aptámero (Kikuchi, et al., 2003. RNA aptamers targeted to domain II of Hepatitis C virus IRES that bind to its apical loop región. J. Biochem. 133, 263-270). Una realización particular de la presente invención lo constituye una construcción de RNA de la invención constituida por la secuencia de RNA de la invención y la ribozima 363 (ver Ejemplo 2) capaz de inhibir la traducción del VHC y perteneciente, entre otras, al siguiente grupo: Secuencia de RNA HH 363-24, HH 363-31 , HH 363-16, HH 363-10, HH 363-50, HH 363-17 y HH 363-18, codificadas por las secuencias de DNA SEQ ID NO 60, 61 , 62, 63, 64, 65 y 66, respectivamente. De igual forma pueden elaborarse secuencias de RNA que estén constituidas o que comprendan más de una de las secuencias de RNA de la invención de tal forma que se adicione la capacidad de inhibición de la replicación del virus de todas ellas. Por consiguiente, otro objeto particular de la invención lo constituye una construcción de RNA de la invención caracterizada porque está constituida por, o porque contiene, una cualquiera de las combinaciones posibles de dos o más secuencias de RNA de unión al IRES de la presente invención con un dominio de unión o no entre dichas secuencias. Además, forman parte de la presente invención cualquiera de las secuencias y construcciones de RNA de la invención anteriormente descritas que son objeto de modificaciones, preferentemente químicas, que conduzcan a una mayor estabilidad frente a la acción de ribonucleasas y con ello a una mayor eficiencia, sin que suponga la alteración de su mecanismo de acción que es la unión específica al IRES. Tal como se utiliza en la presente invención el término "modificaciones químicas" se refiere a la introducción de nucleótidos modificados químicamente en la secuencia de RNA de la invención, por ejemplo, grupos S sustituyendo O en la cadena fosfodiéster, o la inclusión de 5 metilcitosinas, que permiten incrementar la eficiencia del mismo (conferir mayor resistencia frente a degradación, favorecer su entrada a las células, etc), así como cualquier modificación en la pentosa o en la base nitrogenada (Brown and Brown, 1991. Modern machine-aided methods of oligodeoxyribonucleotide synthesis, en Oligonucleotides and Analogues: a practical approach. pag 1 -48; Heidenreich et al., 1993. Chemically modified RNA: approaches and applications. Faseb J. 7(1 ):90-6; Usman and Cedergren, 1992. Exploiting the chemical synthesis of RNA. Trends Biochem Sci. 17 (9): 334-9). La preparación de la secuencia de RNA de la invención es fácil para un experto en la materia, se puede hacer por síntesis química lo cual permite además la incorporación de modificaciones químicas tanto en los distintos nucleótidos del producto como la incorporación de otros compuestos químicos en cualquiera de los extremos. La síntesis también puede hacerse enzimáticamente utilizando cualquiera de las RNA polimerasas disponiblesAnother object of the present invention is an RNA construct, hereinafter referred to as the RNA construct of the invention, characterized in that it is constituted in addition to the IRES binding RNA sequence of the invention itself by a nucleotide sequence that allows the addition or Increase in the inhibitory activity of HCV replication of the RNA sequence of the invention. As referred to in the present invention, the term "genetic construction of RNA" refers, among other possibilities, by way of illustration and without limiting the scope of the present invention, to constructions containing, in addition to the RNA sequence of the invention. , an antisense oligonucleotide (Anderson, KP; Hanecak, RC, Nozaki, C, Dorr, FA, Kwoh, TJ Compositions and methods for treatment of hepatitis C virus-associated diseases. US Patent Application, September 11, 2003), a ribozyme ( Welch et al., 1996. A potential therapeutic application of hairpin ribozymes: in vitro and in vivo studies of gene therapy for hepatitis C virus infection. Gene Therapy 3, 994-1001; Sakamoto et al., 1996. Intracellular cleavage of hepatitis C RNA virus and inhibition of viral protein translation by hammerhead ribozymes. J Clin. Invest. 98, 2720-2728; Lieber et al., 1996. Elimination of hepatitis C RNA virus in infected human hepatocytes by adenovirus-mediated expression of rib ozymes J. Viral. 70, 8782-8791; Macejak et al., 2000. Inhibition of hepatitis C virus (HCV) -RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31, 769-776) or an aptamer (Kikuchi, et al., 2003. RNA aptamers targeted to domain II of Hepatitis C virus IRES that bind to its apical loop region. J. Biochem. 133, 263-270). A particular embodiment of the present invention is an RNA construct of the invention consisting of the RNA sequence of the invention and ribozyme 363 (see Example 2) capable of inhibiting the translation of HCV and belonging, among others, to the following group : RNA sequence HH 363-24, HH 363-31, HH 363-16, HH 363-10, HH 363-50, HH 363-17 and HH 363-18, encoded by the DNA sequences SEQ ID NO 60, 61, 62, 63, 64, 65 and 66, respectively. Likewise, RNA sequences can be made that are constituted or that comprise more than one of the RNA sequences of the invention in such a way that the ability to inhibit the replication of the virus from all of them is added. Accordingly, another particular object of the invention is an RNA construct of the invention characterized in that it is constituted by, or because it contains, any one of the possible combinations of two or more IRES binding RNA sequences of the present invention with a binding domain or not between said sequences. In addition, any of the RNA sequences and constructions of the invention described above that are subject to modifications, preferably chemical, leading to greater stability against the action of ribonucleases and thereby greater efficiency, form part of the present invention. without supposing the alteration of its mechanism of action that is the specific union to the IRES. As used herein, the term "chemical modifications" refers to the introduction of chemically modified nucleotides into the RNA sequence of the invention, for example, S groups replacing O in the phosphodiester chain, or the inclusion of 5 methylcytosines. , which allow to increase the efficiency of the same (to confer greater resistance against degradation, to favor its entry into the cells, etc.), as well as any modification in the pentose or in the nitrogen base (Brown and Brown, 1991. Modern machine-aided methods of oligodeoxyribonucleotide synthesis, in Oligonucleotides and Analogues: a practical approach.pag 1-48; Heidenreich et al., 1993. Chemically modified RNA: approaches and applications.Faseb J. 7 (1): 90-6; Usman and Cedergren, 1992 Exploiting the chemical synthesis of RNA Trends Biochem Sci. 17 (9): 334-9). The preparation of the RNA sequence of the invention is easy for a person skilled in the art, it can be done by chemical synthesis which also allows the incorporation of chemical modifications both in the different nucleotides of the product and the incorporation of other chemical compounds in any of the extremes. The synthesis can also be done enzymatically using any of the available RNA polymerases.
(Struhl et al., 2002. DNA-dependent RNA polymerases. 1 : 3, 3.8.2). La síntesis enzimática también permite alguna modificación química de los productos o(Struhl et al., 2002. DNA-dependent RNA polymerases. 1: 3, 3.8.2). Enzymatic synthesis also allows some chemical modification of the products or
RNAs inhibidores (Theissen G et al. 1989. Degree of biotinylation in nucleic acids estimated by a gel retardation assay. Anal Biochem.179(1 ): 98-10). Otro objeto de la presente invención lo constituye una construcción genética de DNA, en adelante construcción genética de DNA de la invención, caracterizada porque permite la transcripción in vitro o intracelular de la secuencia RNA o construcción de RNA de la invención y porque está constituida por una de las secuencias pertenecientes al siguiente grupo: a) secuencia de nucléotidos de DNA, preferentemente de doble cadena, que comprende, al menos, la secuencia codificante de la secuencia de RNA o de la construcción de RNA de la invención para su transcripción in vitro, y, b) secuencia de nucléotidos de DNA, preferentemente de doble cadena, caracterizada porque es un sistema o vector de expresión génica que comprende la secuencia codificante de la secuencia de RNA de la invención con, al menos, un promotor que dirige la transcripción de dicha secuencia de nucleótidos de interés, al que está operativamente enlazado, y otras secuencias necesarias o apropiadas para la transcripción y su regulación adecuada en tiempo y lugar, por ejemplo, señales de inicio y terminación, sitios de corte, señal de poliadenilación, origen de replicación, activadores transcripcionales (enhancers), silenciadores transcripcionales (silencers), etc. Ejemplos de vectores de expresión apropiados pueden seleccionarse de acuerdo con las condiciones y necesidades de cada caso concreto entre plásmidos bacterianos o de expresión eucariótica (por ejemplo pcDNA3), bácmidos, cromosomas artificiales de levadura (YACs), cromosomas artificiales de bacteria (BACs), cromosomas artificiales basados en el bacteriófago P1 (PACs), cósmidos, o virus, que pueden contener, además, un origen de replicación bacteriano o de levadura para que pueda ser amplificado en bacterias o levaduras, así como un marcador utilizable para seleccionar las células transfectadas diferente al gen o genes de interés. Múltiples de estos sistemas o vectores de expresión pueden ser obtenidos por métodos convencionales conocidos por los expertos en la materia [Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory] y forman parte de la presente invención]. Una realización particular de la presente invención lo constituye la construcción de DNA de la presente invención caracterizada porque es una secuencia codificante de una secuencia de RNA de la invención (punto a) anterior) perteneciente, entre otras, a título ilustrativo y sin que limite el alcance de la invención, al siguiente grupo (ver Ejemplo 1 ): SEQ ID NO 53, SEQ ID NO 54, SEQ ID NO 55, SEQ ID NO 56, SEQ ID NO 57, SEQ ID NO 58, SEQ ID NO 59. Otra realización particular de la presente invención lo constituye la construcción de DNA de la presente invención caracterizada porque es una secuencia codificante de una construcción de RNA de la invención (punto a) anterior) perteneciente, entre otras, a título ilustrativo y sin que limite el alcance de la invención, al siguiente grupo (ver Ejemplo 2): SEQ ID NO 60, SEQ ID NO 61 , SEQ ID NO 62, SEQ ID NO 63, SEQ ID NO 64, SEQ ID NO 65, SEQ ID NO 66. Otro objeto adicional de la presente invención lo constituyen células, entre otras y a título ilustrativo, células procariotas y eucariotas que contengan la construcción genética de DNA de la invención y en donde puede expresarse de forma adecuada la secuencia de RNA de la invención. Estas células pueden ser transformadas, infectadas o transfectadas mediante dicha construcción de DNA por técnicas de ingeniería genética conocidas por un experto en la materia. [Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory] y forman parte de la presente invención]. Estas células pueden ser útiles para la realización de valoraciones de actividad inhibidora de dicha secuencia en ensayos de infección con el virus, preferentemente el VHC, para la expresión condicionada por una región IRES de proteínas de interés comercial, para la amplificación y obtención de dicha construcción genética de DNA, preferentemente el vector de expresión, para su posterior uso en terapia génica, etc. Constituye asimismo otro objeto de la invención la utilización de la secuencia de RNA, de la construcción de RNA y de la construcción genética de DNA de la invención en la elaboración de una composición farmacéutica, por ejemplo, un medicamento, un vector para terapia génica, un reactivo o compuesto de laboratorio, etc. Dicha composición farmacéutica es útil para proteger humanos y animales frente a enfermedades causadas por determinados virus RNA. En una realización particular, dicha composición farmacéutica resulta especialmente útil para proteger humanos frente a la infección causada por el VHC. La secuencia de RNA, la construcción de RNA y la construcción genética de DNA de la invención podrán ser utilizadas de manera independiente o combinadas entre sí formando parte de una mezcla de secuencias (RNA y/o DNA) que se aplican conjuntamente en la elaboración de dicha composición terapéutica. De esta forma, la mezcla podría estar constituida por cualquiera de las posibles combinaciones de las distintas secuencias de RNA, la construcción de RNA y las construcciones genéticas de DNA que forman parte de la presente invención. De la misma manera se podrán utilizar en combinación con otros productos distintos a los aquí descritos y existentes en el estado del arte presente y futuro, ej. interferón, fármacos antivirales, etc; también en este caso formando parte de un único producto o de una mezcla, a modo de terapia combinada. Finalmente, la invención proporciona una composición farmacéutica que comprende una cantidad terapéuticamente efectiva de la secuencia de RNA y/o construcción de RNA y/o construcciones genéticas de DNA de la invención, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables. En una realización particular, dicha composición farmacéutica es un medicamento destinado a conferir protección o al tratamiento de enfermedades humanas o animales causadas por virus RNAs. En otra realización particular, dicha composición farmacéutica es un medicamento para la profilaxis o el tratamiento de enfermedades humanas causadas por el VHC. En otra realización particular, dicha composición farmacéutica es un medicamento para la profilaxis o el tratamiento de enfermedades animales causadas por virus, como por ejemplo, el virus de la diarrea bovina o incluso de la peste porcina clásica. En otra realización particular, dicho medicamento es un vector de expresión para procedimientos terapéuticos de terapia génica que requieran la inserción de un ADN terapéutico en el genoma del mamífero. En otra realización particular, dicha composición farmacéutica es un reactivo de laboratorio para su uso en aplicaciones biotecnológicas y en investigación básica como agentes bloqueantes de la traducción de genes dispuestos bajo el control del IRES del VHC, como herramientas para caracterizar funcional o estructuralmente el IRES, o subdominios del mismo, así como sus posibles interacciones con otros dominios o moléculas virales o factores celulares. En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de secuencia de RNA de la invención o a la cantidad de una construcción génica que permitan su expresión intracelular calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de dichas secuencias y construcciones y el efecto terapéutico a conseguir. Los adyuvantes y vehículos farmacéuticamente aceptables que pueden ser utilizados en dichas composiciones son los adyuvantes y vehículos conocidos por los técnicos en la materia y utilizados habitualmente en la elaboración de vacunas. En una realización particular, dicha composición se prepara en forma de una solución o suspensión acuosa, en un diluyente farmacéuticamente aceptable, tal como solución salina, solución salina tamponada con fosfato (PBS), o cualquier otro diluyente farmacéuticamente aceptable. La composición farmacéutica proporcionada por esta invención puede ser administrada por cualquier vía de administración apropiada que dé como resultado una respuesta terapéutica protectora frente a la infección del virus, preferentemente el VHC, para lo cual dicha composición se formulará en la forma farmacéutica adecuada a la vía de administración elegida. En una realización particular, la administración de la composición proporcionada por esta invención se efectúa por vía parenteral, por ejemplo, por vía intraperitoneal, subcutánea, etc.RNAs inhibitors (Theissen G et al. 1989. Degree of biotinylation in nucleic acids estimated by a gel retardation assay. Anal Biochem. 179 (1): 98-10). Another object of the present invention is a genetic DNA construct, hereinafter referred to as a genetic DNA construct of the invention, characterized in that it allows in vitro or intracellular transcription of the RNA sequence or RNA construct of the invention and because it is constituted by a of the sequences belonging to the following group: a) DNA nucleotide sequence, preferably double stranded, comprising at least the sequence coding for the RNA sequence or the RNA construct of the invention for in vitro transcription, and, b) DNA nucleotide sequence, preferably double stranded, characterized in that it is a gene expression system or vector comprising the coding sequence of the RNA sequence of the invention with at least one promoter that directs the transcription of said nucleotide sequence of interest, to which it is operatively linked, and other sequences necessary or appropriate for the transcription and its appropriate regulation in time and place, for example, start and end signals, cut sites, polyadenylation signal, origin of replication, transcriptional activators (enhancers), transcriptional silencers (silencers), etc. Examples of appropriate expression vectors can be selected according to the conditions and needs of each particular case among bacterial plasmids or eukaryotic expression (eg pcDNA3), bacmids, artificial yeast chromosomes (YACs), artificial bacterial chromosomes (BACs), artificial chromosomes based on bacteriophage P1 (PACs), cosmids, or viruses, which may also contain an origin of bacterial or yeast replication so that it can be amplified in bacteria or yeasts, as well as a usable marker to select transfected cells different from the gene or genes of interest. Multiple of these systems or expression vectors can be obtained by conventional methods known to those skilled in the art [Sambrook, J., Fritsch, EF, and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory] and are part of the present invention]. A particular embodiment of the present invention is the DNA construction of the present invention characterized in that it is a coding sequence of an RNA sequence of the invention (item a) above, belonging, inter alia, by way of illustration and without limiting the Scope of the invention, to the following group (see Example 1): SEQ ID NO 53, SEQ ID NO 54, SEQ ID NO 55, SEQ ID NO 56, SEQ ID NO 57, SEQ ID NO 58, SEQ ID NO 59. Other Particular embodiment of the present invention is the DNA construct of the present invention characterized in that it is a coding sequence of an RNA construct of the invention (item a) above), inter alia, by way of illustration and without limiting the scope of the invention, to the following group (see Example 2): SEQ ID NO 60, SEQ ID NO 61, SEQ ID NO 62, SEQ ID NO 63, SEQ ID NO 64, SEQ ID NO 65, SEQ ID NO 66. Other object Additional of the present invention are constituted by cells, in among others and by way of illustration, prokaryotic and eukaryotic cells containing the genetic construction of DNA of the invention and where the RNA sequence of the invention can be adequately expressed. These cells can be transformed, infected or transfected by said DNA construction by genetic engineering techniques known to a person skilled in the art. [Sambrook, J., Fritsch, EF, and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory] and are part of the present invention]. These cells may be useful for carrying out assessments of inhibitory activity of said sequence in virus infection assays, preferably HCV, for expression conditioned by an IRES region of proteins of commercial interest, for amplification and obtaining said genetic DNA construct, preferably the vector of expression, for later use in gene therapy, etc. Another object of the invention is the use of the RNA sequence, of the RNA construction and of the genetic construction of DNA of the invention in the preparation of a pharmaceutical composition, for example, a medicament, a vector for gene therapy, a reagent or laboratory compound, etc. Said pharmaceutical composition is useful for protecting humans and animals against diseases caused by certain RNA viruses. In a particular embodiment, said pharmaceutical composition is especially useful for protecting humans against infection caused by HCV. The RNA sequence, the RNA construct and the genetic DNA construct of the invention may be used independently or combined with each other as part of a mixture of sequences (RNA and / or DNA) that are applied together in the preparation of said therapeutic composition. In this way, the mixture could be constituted by any of the possible combinations of the different RNA sequences, the RNA construct and the genetic DNA constructs that are part of the present invention. In the same way they can be used in combination with products other than those described here and existing in the state of the present and future art, e.g. interferon, antiviral drugs, etc; also in this case as part of a single product or a mixture, as a combination therapy. Finally, the invention provides a pharmaceutical composition comprising a therapeutically effective amount of the RNA sequence and / or RNA construct and / or DNA genetic constructs of the invention, together with, optionally, one or more pharmaceutically adjuvant and / or vehicles. acceptable. In a particular embodiment, said pharmaceutical composition is a medicine intended to confer protection or to the treatment of human or animal diseases caused by RNA viruses. In another particular embodiment, said pharmaceutical composition is a medicament for the prophylaxis or treatment of human diseases caused by HCV. In another particular embodiment, said pharmaceutical composition is a medicament for the prophylaxis or treatment of animal diseases caused by viruses, such as, for example, bovine diarrhea virus or even classical swine fever. In another particular embodiment, said medicament is an expression vector for therapeutic methods of gene therapy that require the insertion of a therapeutic DNA into the mammalian genome. In another particular embodiment, said pharmaceutical composition is a laboratory reagent for use in biotechnological applications and in basic research as blocking agents for the translation of genes arranged under the control of the HCV IRES, as tools to functionally or structurally characterize the IRES, or subdomains thereof, as well as its possible interactions with other domains or viral molecules or cellular factors. In the sense used in this description, the term "therapeutically effective amount" refers to the amount of RNA sequence of the invention or the amount of a gene construct that allows its calculated intracellular expression to produce the desired effect and, in general, It will be determined, among other causes, by the characteristics of said sequences and constructions and the therapeutic effect to be achieved. The pharmaceutically acceptable adjuvants and vehicles that can be used in said compositions are the adjuvants and vehicles known to those skilled in the art and commonly used in vaccine production. In a particular embodiment, said composition is prepared in the form of an aqueous solution or suspension, in a pharmaceutically acceptable diluent, such as saline, phosphate buffered saline (PBS), or any other pharmaceutically acceptable diluent. The pharmaceutical composition provided by this invention may be administered by any appropriate route of administration that gives as The result is a protective therapeutic response against infection of the virus, preferably HCV, for which said composition will be formulated in the pharmaceutical form appropriate to the route of administration chosen. In a particular embodiment, the administration of the composition provided by this invention is carried out parenterally, for example, intraperitoneally, subcutaneously, etc.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
Figura 1.- Representación esquemática de las estructuras secundaría y terciaría propuesta para el dominio IRES del VHC. Los distintos dominios y subdominios se identifican por I, II, Illa, b, c, d, e, f y IV. AUG representa el sitio de inicio de la traducción.Figure 1.- Schematic representation of the secondary and tertiary structures proposed for the IRES domain of HCV. The different domains and subdomains are identified by I, II, Illa, b, c, d, e, f and IV. AUG represents the translation start site.
Figura 2.- Representación esquemática de la estructura secundaria teórica que presentan las secuencias de RNA inhibidoras de la invención distribuidos en cada una de las familias seleccionadas.Figure 2.- Schematic representation of the theoretical secondary structure presented by the inhibitory RNA sequences of the invention distributed in each of the selected families.
Figura 3.- Ensayo de inhibición de la traducción in vitro mediante la secuencia de RNA inhibitoria de la invención. Se representa la cantidad relativa de proteína luciferasa con respecto a la cantidad de la proteína Cat usada como control, en presencia de cantidades crecientes de los distintos aptámeros. La luciferasa se traduce bajo el control del IRES del VHC mientras que la proteína Cat es independiente del mismo. En círculos sólidos se representa la inhibición de la traducción de luciferasa producida por el aptámero 24 representante del grupo 1. En círculos vacíos se representa la inhibición producida por el aptámero 31 representante del grupo 2. Con triángulos sólidos se representa la inhibición producida por el aptámero 16 perteneciente al grupo 3. Triángulos vacíos representan la inhibición producida por el aptámero 10 perteneciente al grupo 4. Con cuadrados sólidos se representa la inhibición obtenida por el aptámero 50 que representa tanto al grupo 5 como al 6, pues contiene simultáneamente los dominios que definen ambos grupos. Con cuadrados vacíos se representa la inhibición obtenida por el aptámero 17 representante del grupo 7. Rombos sólidos se utilizan para representar la inhibición obtenida por el aptámero 18 representante del grupo 8. Figura 4.- Ensayo de inhibición de la actividad del VHC-IRES mediado por construcciones de RNA inhibidoras quiméricas de la invención portadores de una ribozima y un aptámero de la invención. La luciferasa se traduce bajo el control del IRES del VHC mientras que la proteína Cat es independiente del mismo. En círculos sólidos se representa la inhibición de la traducción de luciferasa producida por la ribozima 363. En círculos vacíos se representa la inhibición producida por el RNA inhibidor que porta la ribozima 363 y el aptámero 24. Con triángulos sólidos se representa la inhibición producida por el RNA inhibidor que porta la ribozima 363 y el aptámero 18. Triángulos vacíos representan la inhibición producida por el RNA inhibidor que porta la ribozima 363 y el aptámero 16. Con cuadrados sólidos se representa la inhibición obtenida por el RNA inhibidor que porta la ribozima 363 y el aptámero 17. Con cuadrados vacíos se representa la inhibición obtenida por el RNA inhibidor que porta la ribozima 363 y aptámero 10. Rombos sólidos se utilizan para representar la inhibición obtenida por el RNA inhibidor que porta la ribozima 363 y aptámero 50.Figure 3.- In vitro translation inhibition assay by the inhibitory RNA sequence of the invention. The relative amount of luciferase protein is represented with respect to the amount of the Cat protein used as a control, in the presence of increasing amounts of the various aptamers. Luciferase is translated under the control of HCV IRES while Cat protein is independent of it. In solid circles the inhibition of the translation of luciferase produced by aptamer 24 representative of group 1 is represented. In empty circles the inhibition produced by aptamer 31 representative of group 2 is represented. With solid triangles the inhibition produced by the aptamer is represented. 16 belonging to group 3. Empty triangles represent the inhibition produced by aptamer 10 belonging to group 4. With solid squares the inhibition obtained by aptamer 50 representing both group 5 and 6 is represented, since it simultaneously contains the domains that define both groups With empty squares, the inhibition obtained by aptamer 17 representing group 7 is represented. Solid rhombs are used to represent the inhibition obtained by aptamer 18 representative of group 8. Figure 4.- Inhibition assay of the activity of HCV-IRES mediated by chimeric inhibitory RNA constructs of the invention carrying a ribozyme and an aptamer of the invention. Luciferase is translated under the control of HCV IRES while Cat protein is independent of it. In solid circles the inhibition of the translation of luciferase produced by ribozyme 363 is represented. In empty circles the inhibition produced by the inhibitory RNA carrying ribozyme 363 and aptamer 24. is represented. With solid triangles the inhibition produced by the RNA inhibitor that carries ribozyme 363 and aptamer 18. Empty triangles represent the inhibition produced by the inhibitor RNA that carries ribozyme 363 and aptamer 16. Solid inhibition represents the inhibition obtained by the inhibitor RNA that carries ribozyme 363 and aptamer 17. With empty squares the inhibition obtained by the inhibitory RNA carrying ribozyme 363 and aptamer 10 is represented. Solid rhombs are used to represent the inhibition obtained by the inhibitory RNA carrying ribozyme 363 and aptamer 50.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓNEXAMPLES OF EMBODIMENT OF THE INVENTION
Ejemplo 1.- Diseño, elaboración y selección de la secuencia de RNA inhibitoria de la invención. La invención se llevó a cabo mediante la aplicación de una estrategia de amplificación selectiva de las moléculas capaces de unirse al IRES (aptámeros). Esta estrategia se aplicó sobre una población de secuencias de RNA resultado de la combinación aleatoria de los cuatro nucleótidos (Adenina, Citosina, Guanina y Uracilo) en 25 posiciones consecutivas. Esta estrategia es aplicable para la obtención de inhibidores de agentes causantes de otras patologías. Selección in vitro de los aptámeros o secuencias de RNA de la invención El IRES de VHC (SEQ ID NO 1 ) biotinilado internamente fue inmovilizado a una columna de estreptavidina (HiTrap Streptavidin HP column, Amersham Biosciences). La población de secuencias RNAs inhibidoras utilizada se obtuvo por transcripción in vitro de una población de DNA que se construyó a partir del apareamiento de dos desoxioligonucleótidos complementarios (SEQ ID NO 2 y SEQ ID NO 3). El DNA de doble cadena resultante constaba de una región aleatoria de 25 nucleótidos flanqueada en 5' por una secuencia conocida que contenía el promotor del fago T7 y en 3' por una secuencia conocida que sería empleada en los pasos de amplificación y clonaje. La transcripción in vitro de dicho DNA con el enzima T7 RNA polimerasa (Barroso-del Jesús et al., 1999. Comparative kinetic analysis of structural variants of the hairpin ribozyme reveáis further potential to optimize its catalytic performance. Antisense Nucleic Acid Drug Dev. 9 (5): 433-40) generó una población de moléculas de RNA que fueron sometidas al siguiente proceso de selección molecular in vitro. Dicha población fue incorporada a la columna y se incubó durante 30 minutos a temperatura ambiente. Pasado ese tiempo la columna fue sometida a 10 pasos de lavado con búfer TMN (Tris-Acético 10 mM pH 7.5, acetato de magnesio 10 mM, cloruro sódico 100 mM), lo cual consiguió eluir las moléculas de la población que no habían quedado unidas al IRES de VHC. Para recoger las moléculas retenidas se procedió a la desnaturalización del RNA contenido en la columna mediante calentamiento de la misma a 95 °C y posterior lavado con búfer TMN a 65 °C. Las moléculas recogidas en los cuatro primeros pasos de elución fueron utilizadas para la reacción de retro-transcripción y amplificación con una enzima DNA polimerasa termoestable, Tth (Promega), siguiendo las instrucciones del fabricante. Como oligonucleótidos cebadores fueron empleados SEQ ID NO 4 y SEQ ID NO 5. Una fracción del DNA generado tras la amplificación fue destinada a transcripción in vitro (Barroso-deIJesus et al., 1999. Comparative kinetic analysis of structural variants of the hairpin ribozyme reveáis further potential to optimize its catalytic performance. Antisense Nucleic Acid Drug Dev. 9 (5): 433- 40), siendo el RNA resultante integrado en el siguiente ciclo de selección. El proceso se repitió seis veces, seis ciclos de selección. Para incrementar la presión selectiva a partir del cuarto ciclo se redujo el tiempo de incubación de la reacción de asociación y se incrementó la temperatura a 37 °C. Las diferentes secuencias independientes resultantes del sexto ciclo de selección fueron analizadas por secuenciación, obteniéndose una colección de productos (SEQ ID NO 6 a la SEQ ID NO 36) que se agruparon, en función de unos determinados dominios de secuencia definida, en las distintas familias de las secuencias y estructuras de RNA que se integran en la secuencia de RNA de la invención y que se relacionan a continuación: Familia 1 : 5' (N)mXkCCAACXz(N)p3' Familia 2: 5' (N)mXkUAUGGCUXz(N)p3' Familia 3: 5' (N)mXkCCACGXz(N)p3' Familia 4: 5' (N)mXkRUUCGYRAXz(N)p3' Familia 5: 5' (N)mXkCUYGUUYXz(N)p3' Familia 6: 5' (N)mXkUYRUGGXz(N)p3' Familia 7: 5' (N)mXkYGAGACYXz(N)p3' Familia 8: 5' (N)mXkAUUAGXz(N)p3' Familia 9: 5' (N)mXkAUUCAGXz(N)p3'Example 1.- Design, elaboration and selection of the inhibitory RNA sequence of the invention. The invention was carried out by applying a strategy of selective amplification of molecules capable of binding to IRES (aptamers). This strategy was applied to a population of RNA sequences resulting from the random combination of the four nucleotides (Adenine, Cytosine, Guanine and Uracil) in 25 consecutive positions. This strategy is applicable to obtain inhibitors of causative agents of other pathologies. In vitro selection of the aptamers or RNA sequences of the invention The internally biotinylated HCV IRES (SEQ ID NO 1) was immobilized to a streptavidin column (HiTrap Streptavidin HP column, Amersham Biosciences). The population of inhibitory RNA sequences used was obtained by in vitro transcription of a population of DNA that was constructed from the pairing of two complementary deoxyoligonucleotides (SEQ ID NO 2 and SEQ ID NO 3). Double stranded DNA The resulting consisted of a random 25 nucleotide region flanked at 5 'by a known sequence containing the T7 phage promoter and at 3' by a known sequence that would be used in the amplification and cloning steps. In vitro transcription of said DNA with the enzyme T7 RNA polymerase (Barroso-del Jesús et al., 1999. Comparative kinetic analysis of structural variants of the hairpin ribozyme reveal further potential to optimize its catalytic performance. Antisense Nucleic Acid Drug Dev. 9 (5): 433-40) generated a population of RNA molecules that were subjected to the following in vitro molecular selection process. This population was incorporated into the column and incubated for 30 minutes at room temperature. After that time the column was subjected to 10 steps of TMN buffer washing (10 mM Tris-Acetic pH 7.5, 10 mM magnesium acetate, 100 mM sodium chloride), which eluted the population molecules that had not been bound to the HCV IRES. To collect the retained molecules, the RNA contained in the column was denatured by heating it at 95 ° C and subsequent washing with TMN buffer at 65 ° C. The molecules collected in the first four elution steps were used for the retro-transcription and amplification reaction with a thermostable DNA polymerase enzyme, Tth (Promega), following the manufacturer's instructions. As oligonucleotide primers were used SEQ ID NO 4 and SEQ ID NO 5. A fraction of the DNA generated after amplification was destined for in vitro transcription (Barroso-deIJesus et al., 1999. Comparative kinetic analysis of structural variants of the hairpin ribozyme reveal further potential to optimize its catalytic performance Antisense Nucleic Acid Drug Dev. 9 (5): 433-40), the resulting RNA being integrated into the next selection cycle. The process was repeated six times, six cycles of selection. To increase the selective pressure from the fourth cycle, the incubation time of the association reaction was reduced and the temperature increased to 37 ° C. The different independent sequences resulting from the sixth selection cycle were analyzed by sequencing, obtaining a collection of products (SEQ ID NO 6 to SEQ ID NO 36) that were grouped, according to certain defined sequence domains, in the different families of the RNA sequences and structures that are integrated into the RNA sequence of the invention and which are listed below: Family 1: 5 '(N) m X k CCAACX z (N) p 3' Family 2: 5 '(N) m XkUAUGGCUX z (N) p 3' Family 3: 5 '(N) m XkCCACGX z (N) p 3' Family 4: 5 '(N) m XkRUUCGYRAX z (N) p 3' Family 5: 5 '(N) m XkCUYGUUYX z (N) p 3' Family 6: 5 '(N) m XkUYRUGGX z (N) p 3' Family 7: 5 '(N) m XkYGAGACYX z (N) p 3' Family 8: 5 '(N) m XkAUUAGX z (N) p 3' Family 9 : 5 '(N) m XkAUUCAGX z (N) p 3'
Donde: A, Adenina C, Citosina G, Guanina U, Uracilo N y X es cualquier nucleótido R, nucleótido de purina (Adenina o Guanina) Y, nucleótido de pirimidina (Citosina o Uracilo) m, p, k y z cualquier número entero desde 0 en adelante. La predicción de estructura secundaria de los RNAs inhibidores seleccionados se realizó mediante el empleo del programa Mfold. En la Figura 2 se muestra una representación esquemática de la estructura secundaria teórica que presentan los RNAs inhibidores de cada uno de los grupos seleccionados, donde las secuencias que definen cada grupo quedan expuestas en una región de cadena sencilla flanqueada por una región de doble cadena representada por los nucleótidos N (cualquier secuencia) la longitud de la región de doble cadena es variable y viene representada por m nucleótidos en la hebra 5' y p nucleótidos en la hebra 3', donde m y p son números enteros desde 0 en adelante. La zona de cadena sencilla incluye además un número variable de nucleótidos k en 5' y z en 3' flanqueando las secuencias fijas representados por X que puede ser cualquier nucleótido, k y z representan un número entero desde 0 en adelante. Las secuencias de RNA de la invención identificadas se unen al IRES a través de la secuencia consenso que define cada familia muy probablemente en las siguientes posiciones del RNA viral: Aptámeros pertenecientes al grupo 1 , por ejemplo AP24, SEQ ID NO 19, a las posiciones 263 a 268; Aptámeros pertenecientes al grupo 2, por ejemplo AP31 SEQ ID NO 21 , a las posiciones 80 a 87; Aptámeros pertenecientes al grupo 3, por ejemplo AP16, SEQ ID NO 13, a las posiciones 282 a 286; Aptámeros pertenecientes al grupo 4, por ejemplo AP10, SEQ ID NO 9, a las posiciones 305 a 312; Aptámeros pertenecientes al grupo 5, por ejemplo AP50, SEQ ID NO 33, a las posiciones 18 a 23; Aptámeros pertenecientes al grupo 6, por ejemplo AP50, SEQ ID NO 33, a las posiciones 340 a 2345; Aptámeros pertenecientes al grupo 7, por ejemplo AP17, SEQ ID NO 14, a las posiciones 322 a 328; Aptámeros pertenecientes al grupo 8, por ejemplo AP18, SEQ ID NO 15, sin determinar; Aptámeros pertenecientes al grupo 9, por ejemplo AP53, SEQ IDWhere: A, Adenine C, Cytosine G, Guanine U, Uracil N and X is any R nucleotide, purine nucleotide (Adenine or Guanine) Y, pyrimidine nucleotide (Cytosine or Uracil) m, p, kyz any integer from 0 onwards. The secondary structure prediction of the selected inhibitory RNAs was made using the Mfold program. Figure 2 shows a schematic representation of the theoretical secondary structure presented by the inhibitory RNAs of each of the selected groups, where the sequences that define each group are exposed in a single chain region flanked by a double chain region represented for nucleotides N (any sequence) the length of the double chain region is variable and is represented by m nucleotides in the 5 'strand and p nucleotides in the 3' strand, where myp are integers from 0 onwards. The single chain zone further includes a variable number of nucleotides k in 5 'and z in 3' flanking the fixed sequences represented by X which can be any nucleotide, kyz representing an integer from 0 onwards. The RNA sequences of the invention identified bind IRES to through the consensus sequence that defines each family most likely in the following positions of the viral RNA: Atamers belonging to group 1, for example AP24, SEQ ID NO 19, to positions 263 to 268; Aptamers belonging to group 2, for example AP31 SEQ ID NO 21, at positions 80 to 87; Aptamers belonging to group 3, for example AP16, SEQ ID NO 13, at positions 282 to 286; Aptamers belonging to group 4, for example AP10, SEQ ID NO 9, to positions 305 to 312; Aptamers belonging to group 5, for example AP50, SEQ ID NO 33, to positions 18 to 23; Aptamers belonging to group 6, for example AP50, SEQ ID NO 33, to positions 340 to 2345; Aptamers belonging to group 7, for example AP17, SEQ ID NO 14, to positions 322 to 328; Atamers belonging to group 8, for example AP18, SEQ ID NO 15, not determined; Atamers belonging to group 9, for example AP53, SEQ ID
NO 34, a las posiciones 305 a 312. Hay que indicar que estas posiciones de unión al IRES se presentan a título de orientación sin pretender establecer ningún modelo que pueda limitar el alcance de la presente invención. Inhibición de la traducción in vitro mediante las secuencias de RNA de la invención La actividad anti-VHC de estas secuencias de RNA de la invención se puede ensayar fácilmente en un laboratorio en extractos celulares de transcripción-traducción o traducción utilizando DNAs plasmídicos apropiados en los que la traducción de un gen cuya actividad es fácilmente cuantificable se expresa bajo el control de la región IRES del VHC. Para llevar a cabo estos ensayos las secuencias de RNA inhibidoras de la invención previamente seleccionadas fueron sintetizadas mediante transcripción in vitro utilizando oligonucleótidos (SEQ ID. NO 37, SEQ ID NO 38, SEQ ID NO 39, SEQ ID NO 40, SEQ ID NO 41 , SEQ ID NO 42, SEQ ID NO 43). La hibridación de cada uno de estos anteriores oligonucleótidos con el oligonucleótido SEQ ID NO 52 permitió la generación de una serie de construcciones genéticas de DNA que se utilizaron como un molde apto para la reacción de transcripción in vitro (Barroso-del Jesús et al., 1999. Comparative kinetic analysis of structural variants of the hairpin ribozyme reveáis further potential to optimize its catalytic performance. Antisense Nucleic Acid Drug Dev. 9 (5): 433-40). A continuación se indican las construcciones genéticas de DNA desarrolladas: DNA Ap 24 (SEQ ID NO 53): Oligo SEQ. ID. NO 52 con SEQ ID NO 37, DNA Ap 18 (SEQ ID NO 54): Oligo SEQ. ID. NO 52 con SEQ ID NO 38, DNA Ap 31 (SEQ ID NO 55): Oligo SEQ. ID. NO 52 con SEQ ID NO 39, - DNA Ap 16 (SEQ ID NO 56): Oligo SEQ. ID. NO 52 con SEQ ID NO 40, DNA Ap 17 (SEQ ID NO 57): Oligo SEQ. ID. NO 52 con SEQ ID NO 41 , DNA Ap 10 (SEQ ID NO 58): Oligo SEQ. ID. NO 52 con SEQ ID NO 42, y DNA Ap 50 (SEQ ID NO 59): Oligo SEQ. ID. NO 52 con SEQ ID NO 43.NO 34, at positions 305 to 312. It should be noted that these IRES binding positions are presented as guidance without intending to establish any model that may limit the scope of the present invention. Inhibition of in vitro translation by means of the RNA sequences of the invention The anti-HCV activity of these RNA sequences of the invention can easily be assayed in a laboratory in transcription-translation or translation cell extracts using appropriate plasmid DNAs in which The translation of a gene whose activity is easily quantifiable is expressed under the control of the IRES region of HCV. To carry out these tests the previously selected inhibitory RNA sequences of the invention were synthesized by in vitro transcription using oligonucleotides (SEQ ID. NO 37, SEQ ID NO 38, SEQ ID NO 39, SEQ ID NO 40, SEQ ID NO 41 , SEQ ID NO 42, SEQ ID NO 43). Hybridization of each of these previous oligonucleotides with oligonucleotide SEQ ID NO 52 allowed the generation of a series of genetic DNA constructs that were used as a suitable template for the in vitro transcription reaction (Barroso-del Jesús et al., 1999. Comparative kinetic analysis of structural variants of the hairpin ribozyme reveal further potential to optimize its catalytic performance Antisense Nucleic Acid Drug Dev. 9 (5): 433-40). Then the genetic constructions of DNA developed are indicated: DNA Ap 24 (SEQ ID NO 53): Oligo SEQ. ID. NO 52 with SEQ ID NO 37, DNA Ap 18 (SEQ ID NO 54): Oligo SEQ. ID. NO 52 with SEQ ID NO 38, DNA Ap 31 (SEQ ID NO 55): Oligo SEQ. ID. NO 52 with SEQ ID NO 39, - DNA Ap 16 (SEQ ID NO 56): Oligo SEQ. ID. NO 52 with SEQ ID NO 40, DNA Ap 17 (SEQ ID NO 57): Oligo SEQ. ID. NO 52 with SEQ ID NO 41, DNA Ap 10 (SEQ ID NO 58): Oligo SEQ. ID. NO 52 with SEQ ID NO 42, and DNA Ap 50 (SEQ ID NO 59): Oligo SEQ. ID. NO 52 with SEQ ID NO 43.
Los ensayos de inhibición de la traducción in vitro se llevaron a cabo usando usados de reticulocito de conejo (Alt et al., 1995. Specific inhibition of hepatitis C viral gene expression by antisense phosphorothioate oligodeoxynucleotides. Hepatology. 22(3): 707-717). Se utilizaron 50 ng de un DNA plasmídico que contiene la secuencia codificante para la proteína Cat (Cloramfenicol acetil transferasa) bajo el promotor del fago T7, seguido de la secuencia genómica de VHC, desde el nucleótido +1 hasta el +585 (en esta región se encuentra el IRES del virus así como la región codificante de la proteína componente de la cápsida viral) (AF009606). Esta región viral controla la traducción del mRNA de la proteína luciferasa codificada en 3' de la misma. Tras 60 minutos de incubación a 30°C en presencia o ausencia de las diferentes secuencias de RNA inhibidoras de la invención los productos de las reacciones se resolvieron por electroforesis en geles desnaturalizantes de poliacrilamida con SDS y posteriormente fueron cuantificados mediante un escáner de fluorescencia (Storm, Molecular Dinamycs). En la Figura 3 se muestran los resultados de los ensayos de inhibición de la actividad biológica del IRES del VHC como sitio de entrada de ribosomas por las secuencias de RNA inhibidoras de la invención correspondientes a los distintos grupos descritos anteriormente. Todos los aptámeros testados demostraron ejercer una disminución en la síntesis de proteínas de hasta un 85%, llegando incluso a conseguirse una inhibición del 100% cuando la secuencia ap10 fue testada. En la Tabla 1 se presentan los niveles IC50 obtenidos con secuencias de RNA de la invención representativas de varios de las familias descritas anteriormente. El valor de IC50 representa la concentración de secuencia de RNA inhibidora capaz de conseguir una bajada en los niveles de proteína del 50%. Este valor fue obtenido a partir de los datos de inhibición que se detallan en la Figura 3. Tabla 1.- Niveles IC50 de cada inhibidor ensayadoIn vitro translation inhibition assays were carried out using used rabbit reticulocyte (Alt et al., 1995. Specific inhibition of hepatitis C viral gene expression by antisense phosphorothioate oligodeoxynucleotides. Hepatology. 22 (3): 707-717 ). 50 ng of a plasmid DNA containing the coding sequence for the Cat protein (Chloramphenicol acetyl transferase) was used under the T7 phage promoter, followed by the HCV genomic sequence, from nucleotide +1 to +585 (in this region the IRES of the virus is found as well as the coding region of the viral capsid component protein) (AF009606). This viral region controls the translation of the 3 'encoded luciferase protein mRNA thereof. After 60 minutes of incubation at 30 ° C in the presence or absence of the different inhibitory RNA sequences of the invention, the products of the reactions were resolved by electrophoresis in denaturing polyacrylamide gels with SDS and subsequently quantified by means of a fluorescence scanner (Storm , Molecular Dinamycs). The results of the inhibition of the biological activity of HCV IRES as a ribosome entry site by the inhibitory RNA sequences of the invention corresponding to the different groups described above are shown in Figure 3. All aptamers tested demonstrated a decrease in protein synthesis of up to 85%, even achieving a 100% inhibition when the ap10 sequence was tested. Table 1 shows the IC 50 levels obtained with sequences of RNA of the invention representative of several of the families described above. The IC 50 value represents the inhibitory RNA sequence concentration capable of achieving a 50% decrease in protein levels. This value was obtained from the inhibition data detailed in Figure 3. Table 1.- IC 50 levels of each inhibitor tested
Figure imgf000024_0001
Figure imgf000024_0001
Ejemplo 2.- Inhibición de la traducción in vitro mediante las secuencias de RNA de la invención unidas a una ribozima Los aptámeros o secuencias de RNA de la invención descritos pueden además utilizarse en combinación con otros agentes inhibidores. Como ejemplo de su uso se han elaborado unas construcciones de RNA quiméricas que portan un aptámero y un dominio catalítico, una ribozima tipo hammerhead diseñada para cortar el IRES del VHC en la posición 363 (Lieber et al., 1996. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J Virol. 70 (12): 8782-91 ). La construcción de estos nuevas construcciones de RNA inhibidoras (HH 363- N°Ap) se realizó mediante hibridación de dos oligonucleótidos complementarios: - SEQ. ID. NO 44 con SEQ ID NO 45 (Construcción de RNA HH 363- 24), - SEQ. ID. NO 44 con SEQ ID NO 46 (Construcción de RNA HH 363- 31 ), - SEQ. ID. NO 44 con SEQ ID NO 47 (Construcción de RNA HH 363- 16), - SEQ. ID. NO 44 con SEQ ID NO 48 (Construcción de RNA HH 363- 10), - SEQ. ID. NO 44 con SEQ ID NO 49 (Construcción de RNA HH 365- 50), - SEQ. ID. NO 44 con SEQ ID NO 50 (Construcción de RNA HH 363- 17), y - SEQ. ID. NO 44 con SEQ ID NO 51 (Construcción de RNA HH 363- 18); y su posterior extensión con Taq DNA polimerasa (Biotools) generándose así una construcción genética de DNA de doble cadena que fue utilizado como molde para la reacción de transcripción in vitro. A continuación se indican las construcciones genéticas de DNA desarrolladas: - SEQ. ID. NO 60: codificante de la construcción de RNA HH 363-24, - SEQ. ID. NO 61 : codificante de la construcción de RNA HH 363-31 , - SEQ. ID. NO 62: codificante de la construcción de RNA HH 363-16, - SEQ. ID. NO 63: codificante de la construcción de RNA HH 363-10, - SEQ. ID. NO 64: codificante de la construcción de RNA HH 363-50, - SEQ. ID. NO 65: codificante de la construcción de RNA HH 363-17, y - SEQ. ID. NO 66: codificante de la construcción de RNA HH 363-18.Example 2.- Inhibition of translation in vitro by means of the RNA sequences of the invention linked to a ribozyme The aptamers or RNA sequences of the invention described can also be used in combination with other inhibitory agents. As an example of its use, chimeric RNA constructs have been developed that carry an aptamer and a catalytic domain, a hammerhead ribozyme designed to cut the IRES of HCV at position 363 (Lieber et al., 1996. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J Virol. 70 (12): 8782-91). The construction of these new RNA inhibitor constructs (HH 363-Ap.) Was carried out by hybridization of two complementary oligonucleotides: - SEQ. ID. NO 44 with SEQ ID NO 45 (RNA Construction HH 363-24), - SEQ. ID. NO 44 with SEQ ID NO 46 (RNA Construction HH 363-31), - SEQ. ID. NO 44 with SEQ ID NO 47 (RNA Construction HH 363- 16), - SEQ. ID. NO 44 with SEQ ID NO 48 (RNA Construction HH 363-10), - SEQ. ID. NO 44 with SEQ ID NO 49 (RNA Construction HH 365-50), - SEQ. ID. NO 44 with SEQ ID NO 50 (RNA Construction HH 363-17), and - SEQ. ID. NO 44 with SEQ ID NO 51 (RNA Construction HH 363-18); and its subsequent extension with Taq DNA polymerase (Biotools) thus generating a genetic double stranded DNA construct that was used as a template for the in vitro transcription reaction. The following are the genetic DNA constructs developed: - SEQ. ID. NO 60: coding for the construction of RNA HH 363-24, - SEQ. ID. NO 61: coding for the construction of RNA HH 363-31, - SEQ. ID. NO 62: coding for the construction of RNA HH 363-16, - SEQ. ID. NO 63: coding for the construction of RNA HH 363-10, - SEQ. ID. NO 64: coding for the construction of RNA HH 363-50, - SEQ. ID. NO 65: coding for the construction of RNA HH 363-17, and - SEQ. ID. NO 66: coding for the construction of RNA HH 363-18.
La construcción genética de DNA se hizo de modo que el dominio catalítico está en 5' del aptámero. Las construcciones de RNAs inhibidoras (HH 363-24/31/16/10/50/17 y 18) fueron purificadas y su acción inhibidora de la traducción dependiente del IRES del VHC testada en ensayos de traducción in vitro usando usados de reticulocito de conejo tal y como se describe anteriormente. En la Figura 4 se muestran los resultados de inhibición de la actividad del VHC-IRES mediado por las distintas construcciones de RNA inhibidoras (quimeras) portadores de una ribozima y un aptámero, y se comparan con la inhibición ejercida por el ribozima independientemente. La luciferasa se traduce bajo el control del IRES del VHC mientras que la proteína Cat es independiente del mismo. El efecto supresor obtenido por las construcciones de RNA quiméricas resultó en todos los casos superior al ejercido por la ribozima HH363, lo cual reporta una mejora sustancial de estas moléculas quiméricas con respecto a los inhibidores de RNA clásicos. En la Tabla 2 se presentan los niveles IC50 obtenidos con los inhibidores quiméricos. Este valor fue obtenido a partir de los datos de inhibición que se detallan en la Figura 4.The genetic construction of DNA was done so that the catalytic domain is 5 'from the aptamer. The constructs of inhibitory RNAs (HH 363-24 / 31/16/10/50/17 and 18) were purified and their IRES-dependent translation inhibitory action of HCV tested in in vitro translation assays using rabbit reticulocyte used as described above. The results of inhibition of HCV-IRES activity mediated by the different inhibitory RNA constructs (chimeras) carrying a ribozyme and an aptamer are shown in Figure 4, and compared with the inhibition exerted by the ribozyme independently. Luciferase is translated under the control of HCV IRES while Cat protein is independent of the same. The suppressive effect obtained by the chimeric RNA constructs was in all cases superior to that exerted by the HH363 ribozyme, which reports a substantial improvement of these chimeric molecules with respect to the classic RNA inhibitors. Table 2 shows the IC 50 levels obtained with the chimeric inhibitors. This value was obtained from the inhibition data detailed in Figure 4.
Figure imgf000026_0001
Figure imgf000026_0001
Ejemplo 3.- Ensayo de la actividad antiviral de los RNAs inhibidores. La actividad antiviral de la secuencia de RNA de la invención puede ser evaluada en modelos celulares, aunque la imposibilidad de cultivar el VHC hace necesario recurrir a medidas indirectas mediante la utilización de genes marcadores cuya traducción tenga lugar bajo el control de la región IRES del VHC y cuyo producto sea fácilmente cuantificable, por ejemplo, luciferasa. Una realización concreta consiste en el uso de virus, por ejemplo, híbridos derivados del virus de la polio al cual se le ha sustituido la región del IRES por la correspondiente al IRES del VHC junto con la región 5' del gen de la proteína de la cápsida del VHC (PV-VHC). En estos virus híbridos la traducción viral y en consecuencia su capacidad proliferativa es dependiente de la actividad del IRES del VHC. Este tipo de construcciones y ensayos pueden llevarse a cabo tal como se han sido descritos anteriormente (Das et al., 1998. A small Yeast RNA blocks Hepatitis C virus internal Ribosome Entry site (HCV- IRES)-mediated Translation and inhibits replication of a chimeric poliovirus under translational control of the HCV IRES element. J. Virology 72, 5638- 5647). Se construyen líneas celulares de Hepatocorcinoma (Huh-7) que produzcan establemente uno cualquiera de las realizaciones concretas de la secuencia de RNA de la invención. Para ello, se transfectarán con un vector de expresión, por ejemplo un plásmido apropiado en el cual se incluye la secuencia de DNA que codifica para dicha secuencia de RNA. Esta secuencia de DNA se clonará bajo el control de un promotor tipo polll (por ejemplo, el promotor CMV). Las células que producen la secuencia de RNA inhibidora serán expuestas a infección por los virus híbridos PV-VHC. Tres días después de la infección se preparan extractos celulares para volver a infectar células HeLa en monocapa. Después de tres días de incubación a 37°C se realiza una tinción con cristal violeta para determinar las placas de lisis producto de la infección viral. Aquellas células en las que la síntesis de la secuencia de RNA de la invención logre la inhibición de la replicación del virus no ocurrirá la lisis. Example 3.- Test of the antiviral activity of inhibitory RNAs. The antiviral activity of the RNA sequence of the invention can be evaluated in cellular models, although the impossibility of culturing HCV makes it necessary to resort to indirect measures by using marker genes whose translation takes place under the control of the IRES region of HCV. and whose product is easily quantifiable, for example, luciferase. A specific embodiment consists in the use of viruses, for example, hybrids derived from the polio virus to which the IRES region has been replaced by that corresponding to the HCV IRES together with the 5 'region of the protein gene of the HCV capsid (PV-HCV). In these hybrid viruses, viral translation and consequently their proliferative capacity is dependent on the activity of the HCV IRES. Such constructs and assays can be carried out as described above (Das et al., 1998. A small Yeast RNA blocks Hepatitis C virus internal Ribosome Entry site (HCV-IRES) -mediated Translation and inhibits replication of a chimeric poliovirus under translational control of the HCV IRES element. J. Virology 72, 5638-5647). Hepatocorcinoma cell lines (Huh-7) that stably produce any one of the specific embodiments of the RNA sequence of the invention are constructed. For this, they will be transfected with an expression vector, for example an appropriate plasmid in which the DNA sequence encoding said RNA sequence is included. This DNA sequence will be cloned under the control of a polll promoter (for example, the CMV promoter). Cells that produce the inhibitory RNA sequence will be exposed to infection by the PV-HCV hybrid viruses. Three days after infection, cell extracts are prepared to re-infect HeLa cells in monolayer. After three days of incubation at 37 ° C, staining with violet crystal is performed to determine the lysis plaques resulting from the viral infection. Those cells in which the synthesis of the RNA sequence of the invention achieves inhibition of virus replication will not occur lysis.

Claims

REIVINDICACIONES
1.- Secuencia de RNA inhibidora de la proliferación del virus causante de la hepatitis tipo C (VHC) caracterizada porque está constituida por una secuencia de RNA que se une específicamente a regiones del dominio 5' no traducible del genoma del virus, región IRES del VHC, y porque se encuentra formando una estructura definida por una región de doble cadena que deja expuestos nucleótidos en cadena sencilla de RNA, a través de los cuales se une específicamente al RNA de la región IRES del VHC.1.- RNA sequence that inhibits the proliferation of the virus causing hepatitis type C (HCV) characterized in that it consists of an RNA sequence that specifically binds to regions of the 5 'non-translatable domain of the virus genome, IRES region of the HCV, and because it is forming a structure defined by a double-chain region that exposes single-stranded nucleotides of RNA, through which it specifically binds to the RNA of the IRES region of HCV.
2.- Secuencia de RNA según la reivindicación 1 caracterizada porque pertenece, entre otras, a una de las siguientes familias de secuencias definidas en función de unos dominios de secuencia consenso de unión al IRES definida:2. RNA sequence according to claim 1 characterized in that it belongs, among others, to one of the following families of sequences defined as a function of consensus defined IRES binding sequence domains:
Familia 1 : 5' (N)mXkCCAACXz(N)p 3'Family 1: 5 '(N) m X k CCAACX z (N) p 3'
Familia 2: 5' (N)mXkUAUGGCUXz(N)p 3'Family 2: 5 '(N) m XkUAUGGCUX z (N) p 3'
Familia 3: 5' (N)mXkCCACGXz(N)p 3' Familia 4: 5' (N)mXkRUUCGYRAXz(N)p 3'Family 3: 5 '(N) m XkCCACGX z (N) p 3' Family 4: 5 '(N) m XkRUUCGYRAX z (N) p 3'
Familia 5: 5' (N)mXkCUYGUUYXz(N)p 3'Family 5: 5 '(N) m XkCUYGUUYX z (N) p 3'
Familia 6: 5' (N)mXkUYRUGGXz(N)p 3'Family 6: 5 '(N) m XkUYRUGGX z (N) p 3'
Familia 7: 5' (N)mXkYGAGACYXz(N)p 3'Family 7: 5 '(N) m XkYGAGACYX z (N) p 3'
Familia 8: 5' (N)mXkAUUAGXz(N)p 3' Familia 9: 5' (N)mXkAUUCAGXz(N)p 3' donde: A, es Adenina C, es Citosina G, es Guanina U, es Uracilo N y X es cualquier nucleótido R, es un nucleótido de purina (Adenina o Guanina) Y, es un nucleótido de pirimidina (Citosina o Uracilo) m, p, k y z es cualquier número entero desde 0 en adelante. Family 8: 5 '(N) m XkAUUAGX z (N) p 3' Family 9: 5 '(N) m XkAUUCAGXz (N) p 3' where: A, is Adenine C, is Cytosine G, is Guanine U, is Uracil N and X is any R nucleotide, it is a purine nucleotide (Adenine or Guanine) Y, it is a pyrimidine nucleotide (Cytosine or Uracil) m, p, k and z is any integer from 0 onwards.
3.- Secuencia de RNA según las reivindicaciones 1 y 2 caracterizada porque pertenece, entre otras, al siguiente grupo: SEQ ID NO 6, GGCUCGUUCAAGUGUCCCAACCACC SEQ ID NO 7, GGAACGAUCAGAGCAACCAACUGCC SEQ ID NO 8, GGAUGCAAUCUUGAGACCAACCUCC SEQ ID NO 9, UUCUGAGUGAUUCGUAAUCCUAC SEQ ID NO 10, GGUACCAGCGCGAGUUCCCAACACC SEQ ID NO 11 GGAUAUGGCUACGCUAAAACCCCC SEQ ID NO 12 GGAGCCUCCACCGGUAACCAACUCC SEQ ID NO 13 CUCGUUUCCACGACCUCACGAGACC SEQ ID NO 14 CGUCGCCACAUGAGACUUUACCCAC SEQ ID NO 15 GGAUUAGCUUCGGAUUAUGGCUGCC SEQ ID NO 16 AUGGCUAGCCUCAAUCCCACGGCCC SEQ ID NO 17 AUGGCUCGCCUUCCCUCACCAACCC SEQ ID NO 18 UCCUAAGUAUGGCUAUUAGGCAACC SEQ ID NO 19 GCCGUCCGAGCAGGUCCCCAACACC SEQ ID NO 20 GCGUGACCAACCACGCUACCAAACC SEQ ID NO 21 UAGAAGGUAUGGCUCCUUCUUGCC SEQ ID NO 22 GCAUUCGCGAUUGGUAACCAACUAC SEQ ID NO 23 UGCUCUUCACCGCCCGAUCCACGC SEQ ID NO 24 UGGACCAGCAUGGCUAACUCCUCCC SEQ ID NO 25 GGUUCUACCUGGUGUCCCAACCACC SEQ ID NO 26 UCCUAAGUAUGGCUAUUAGGCAACC SEQ ID NO 27 GGCACACCUAUUGUCGUGAACCUGC SEQ ID NO 28 UGUGACCAACCACAUAACCACCCC SEQ ID NO 29 GUGUUCGCAAGCUAACCCAACUAG SEQ ID NO 30 ACACUGCCCCAACCGGUGUAUGCC SEQ ID NO 31 GGCUUGACACUGACCAACCAGUGC SEQ ID NO 32 GCGGUCCGACAGUUUCCCAACGGC SEQ ID NO 33 GCUUGUUCUACAUCAUGGGUAGAGC SEQ ID NO 34 GUGAUUCAGCUUUUCUUCCCACGCC SEQ ID NO 35 CGAGAUGUAUGGCUCUCUUGAGGUC SEQ ID NO 36 GGGUCUCUCCUCUGUAACCAACUAC 3. RNA sequence according to claims 1 and 2, characterized in that it belongs, among others, to the following group: SEQ ID NO 6, GGCUCGUUCAAGUGUCCCAACCACC SEQ ID NO 7, GGAACGAUCAGAGCAACCAACUGCC SEQ ID NO 8, GGAUGCAAUCUUGAGACCAACCUCC SEQ ID NO 9, UUCUGAGA NOU IDUUCA NOCU 10 GGUACCAGCGCGAGUUCCCAACACC SEQ ID NO 11 GGAUAUGGCUACGCUAAAACCCCC SEQ ID NO 12 GGAGCCUCCACCGGUAACCAACUCC SEQ ID NO 13 CUCGUUUCCACGACCUCACGAGACC SEQ ID NO 14 CGUCGCCACAUGAGACUUUACCCAC SEQ ID NO 15 GGAUUAGCUUCGGAUUAUGGCUGCC SEQ ID NO 16 AUGGCUAGCCUCAAUCCCACGGCCC SEQ ID NO 17 AUGGCUCGCCUUCCCUCACCAACCC SEQ ID NO 18 UCCUAAGUAUGGCUAUUAGGCAACC SEQ ID NO 19 GCCGUCCGAGCAGGUCCCCAACACC SEQ ID NO 20 GCGUGACCAACCACGCUACCAAACC UAGAAGGUAUGGCUCCUUCUUGCC SEQ ID NO 21 SEQ ID NO 22 SEQ ID NO 23 GCAUUCGCGAUUGGUAACCAACUAC UGCUCUUCACCGCCCGAUCCACGC UGGACCAGCAUGGCUAACUCCUCCC SEQ ID NO 24 SEQ ID NO 25 SEQ ID NO 26 GGUUCUACCUGGUGUCCCAACCACC UCCUAAGUAUGGCUAUUAGGCAACC GGCACACCUAUUGUCGUGAACCUGC SEQ ID NO 27 SEQ ID NO 28 UGUGACCAACCAC AUAACCACCCC GUGUUCGCAAGCUAACCCAACUAG SEQ ID NO 29 SEQ ID NO 30 SEQ ID NO 31 ACACUGCCCCAACCGGUGUAUGCC GGCUUGACACUGACCAACCAGUGC GCGGUCCGACAGUUUCCCAACGGC SEQ ID NO 32 SEQ ID NO 33 SEQ ID NO 34 GCUUGUUCUACAUCAUGGGUAGAGC GUGAUUCAGCUUUUCUUCCCACGCC CGAGAUGUAUGGCUCUCUUGAGGUC SEQ ID NO 35 SEQ ID NO 36 GGGUCUCUCCUCUGUAACCAACUAC
4.- Construcción de RNA caracterizada porque está constituida además de la secuencia de RNA según las reivindicaciones 1 a la 3 por una secuencia de nucleótidos que permite la adición o incremento de la actividad inhibidora de la replicación del VHC. 4. RNA construction characterized in that it is constituted in addition to the RNA sequence according to claims 1 to 3 by a nucleotide sequence that allows the addition or increase of the inhibitory activity of HCV replication.
5.- Construcción de RNA según la reivindicación 4 caracterizada porque es una construcción que contiene un oligonucleótido antisentido, una ribozima o un aptámero como secuencia que adiciona la actividad inhibidora. 5. RNA construction according to claim 4 characterized in that it is a construction that contains an antisense oligonucleotide, a ribozyme or an aptamer as a sequence that adds the inhibitory activity.
6.- Construcción de RNA según la reivindicación 5 caracterizada porque la ribozima es la ribozima 363 y porque pertenece, entre otras, al siguiente grupo: Secuencia de RNA HH 363-24, HH 363-31 , HH 363-16, HH 363-10, HH 363-50, HH 363-17 y HH 363-18, codificadas por las secuencias de DNA SEQ ID NO 60, 61 , 62, 63, 64, 65 y 66, respectivamente.6. RNA construction according to claim 5 characterized in that the ribozyme is ribozyme 363 and because it belongs, among others, to the following group: RNA sequence HH 363-24, HH 363-31, HH 363-16, HH 363- 10, HH 363-50, HH 363-17 and HH 363-18, encoded by the DNA sequences SEQ ID NO 60, 61, 62, 63, 64, 65 and 66, respectively.
7.- Construcción de RNA según la reivindicación 4 caracterizada porque está constituida por, o porque contiene, una cualquiera de las combinaciones posibles de dos o más secuencias de RNA según una de las reivindicaciones 1 a la 3 con un dominio de unión o no entre dichas secuencias. 7. RNA construction according to claim 4 characterized in that it is constituted by, or because it contains, any one of the possible combinations of two or more RNA sequences according to one of claims 1 to 3 with a binding domain or not between these sequences.
8.- Secuencia de RNA y construcción de RNA según las reivindicaciones 1 a la 3 y 4 a la 7, respectivamente, caracterizadas porque presentan modificaciones, preferentemente químicas, que conducen a una mayor estabilidad frente a la acción de ribonucleasas y con ello a una mayor eficiencia, sin que suponga la alteración de su mecanismo de acción que es la unión específica al IRES. 8. RNA sequence and RNA construction according to claims 1 to 3 and 4 to 7, respectively, characterized in that they have modifications, preferably chemical, which lead to greater stability against the action of ribonucleases and thereby a greater efficiency, without supposing the alteration of its mechanism of action that is the specific union to the IRES.
9.- Construcción genética de DNA caracterizada porque permite la transcripción in vitro o intracelular de la secuencia RNA o construcción de RNA según una cualquiera de las reivindicaciones 1 a la 7 y porque está constituida por una de las secuencias pertenecientes al siguiente grupo: a) secuencia de nucléotidos de DNA, preferentemente de doble cadena, que comprende, al menos, dicha secuencia codificante de la secuencia de RNA o de la construcción de RNA para su transcripción in vitro, y, b) secuencia de nucléotidos de DNA, preferentemente de doble cadena, caracterizada porque es un sistema o vector de expresión génica que comprende la secuencia codificante de la secuencia de RNA de la invención con, al menos, un promotor que dirige la transcripción de dicha secuencia de nucleótidos de interés, al que está operativamente enlazado, y otras secuencias necesarias o apropiadas para la transcripción y su regulación adecuada en tiempo y lugar.9. Genetic construction of DNA characterized in that it allows in vitro or intracellular transcription of the RNA sequence or RNA construction according to any one of claims 1 to 7 and because it is constituted by one of the sequences belonging to the following group: a) DNA nucleotide sequence, preferably double stranded, comprising at least said sequence encoding the RNA sequence or the RNA construct for in vitro transcription, and, b) DNA nucleotide sequence, preferably double chain, characterized in that it is a gene expression system or vector comprising the sequence coding for the RNA sequence of the invention with at least one promoter that directs the transcription of said sequence of nucleotides of interest, to which it is operatively linked, and other sequences necessary or appropriate for transcription and its appropriate regulation in time and place.
10.- Construcción genética de DNA según la reivindicación 9 caracterizada porque es una secuencia codificante de una secuencia de RNA (punto a)) perteneciente, entre otras, al siguiente grupo: SEQ ID NO 53, SEQ ID NO 54, SEQ ID NO 55, SEQ ID NO 56, SEQ ID NO 57, SEQ ID NO 58, SEQ ID NO 59. 10. - DNA genetic construction according to claim 9 characterized in that it is a sequence coding for an RNA sequence (point a)) belonging, among others, to the following group: SEQ ID NO 53, SEQ ID NO 54, SEQ ID NO 55 , SEQ ID NO 56, SEQ ID NO 57, SEQ ID NO 58, SEQ ID NO 59.
11.- Construcción genética de DNA según la reivindicación 9 caracterizada porque es una secuencia codificante de una construcción de RNA (punto a)) perteneciente, entre otras, al siguiente grupo: SEQ ID NO 60, SEQ ID NO 61 , SEQ ID NO 62, SEQ ID NO 63, SEQ ID NO 64, SEQ ID NO 65, SEQ ID NO 66. 11. - DNA genetic construction according to claim 9 characterized in that it is a coding sequence of an RNA construction (point a)) belonging, among others, to the following group: SEQ ID NO 60, SEQ ID NO 61, SEQ ID NO 62 , SEQ ID NO 63, SEQ ID NO 64, SEQ ID NO 65, SEQ ID NO 66.
12.- Célula, preferentemente, células procariotas y eucariotas, caracterizada porque contiene y en la que se expresa adecuadamente la construcción genética de DNA según las reiviniciaciones 9 a la 11. 12.- Cell, preferably, prokaryotic and eukaryotic cells, characterized in that it contains and in which the genetic construction of DNA is properly expressed according to claims 9 through 11.
13.- Utilización de la secuencia de RNA, construcción de RNA y de la construcción genética de DNA según las reivindicaciones 1 a la 11 en la elaboración de una composición farmacéutica, por ejemplo, un medicamento, un vector para terapia génica, y un reactivo o compuesto de laboratorio. 13. Use of the RNA sequence, RNA construction and the genetic construction of DNA according to claims 1 to 11 in the preparation of a pharmaceutical composition, for example, a medicament, a vector for gene therapy, and a reagent or laboratory compound.
14.- Composición farmacéutica caracterizada porque comprende una cantidad terapéuticamente efectiva de la secuencia de RNA y/o construcción de RNA y/o construcciones génicas de DNA según las reivindicaciones 1 a la 11 , junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables. 14. Pharmaceutical composition characterized in that it comprises a therapeutically effective amount of the RNA sequence and / or RNA construct and / or DNA gene constructs according to claims 1 to 11, together with, optionally, one or more adjuvants and / or pharmaceutically acceptable vehicles.
15.- Composición farmacéutica según la reivindicación 14 caracterizada porque es un medicamento para la profilaxis o el tratamiento de enfermedades humanas o animales causadas por virus RNAs.15. Pharmaceutical composition according to claim 14 characterized in that it is a medicament for the prophylaxis or treatment of human or animal diseases caused by RNA viruses.
16.- Composición farmacéutica según la reivindicación 15 caracterizada porque es un medicamento para la profilaxis o el tratamiento de enfermedades humanas causadas por el VHC. 16. Pharmaceutical composition according to claim 15 characterized in that it is a medicament for the prophylaxis or treatment of human diseases caused by HCV.
17.- Composición farmacéutica según la reivindicación 15 caracterizada porque es un medicamento para la profilaxis o el tratamiento de enfermedades animales causadas por virus, como por ejemplo, el virus de la diarrea bovina o incluso de la peste porcina clásica. 17. Pharmaceutical composition according to claim 15 characterized in that it is a medicament for the prophylaxis or treatment of animal diseases caused by viruses, such as, for example, bovine diarrhea virus or even classical swine fever.
18.- Composición farmacéutica según la reivindicación 15 caracterizada porque el medicamento es un vector de expresión para procedimientos terapéuticos de terapia génica que requieran la inserción de ADN terapéutico en el genoma del mamífero. 18. Pharmaceutical composition according to claim 15 characterized in that the medicament is an expression vector for therapeutic methods of gene therapy that require the insertion of therapeutic DNA into the mammalian genome.
19.- Composición farmacéutica según la reivindicación 14 caracterizada porque es un reactivo de laboratorio para su uso en aplicaciones biotecnológicas y en investigación básica como agentes bloqueantes de la traducción de genes dispuestos bajo el control del IRES del VHC, como herramientas para caracterizar funcional o estructuralmente el IRES, o subdominios del mismo, así como sus posibles interacciones con otros dominios o moléculas virales o factores celulares. 19. Pharmaceutical composition according to claim 14 characterized in that it is a laboratory reagent for use in biotechnological applications and in basic research as blocking agents for the translation of genes arranged under the control of IRES of HCV, as tools for characterizing functionally or structurally IRES, or subdomains thereof, as well as its possible interactions with other domains or viral molecules or cellular factors.
PCT/ES2005/070034 2004-03-25 2005-03-23 Rna sequence, rna and dna construction, pharmaceutical composition that inhibits the proliferation of the virus that causes type c hepatitis (hcv), and applications thereof WO2005097991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200400734A ES2270656B1 (en) 2004-03-25 2004-03-25 RNA SEQUENCE, RNA AND DNA CONSTRUCTION, AND INHIBITING PHARMACEUTICAL COMPOSITION OF THE PROLIFERATION OF THE VIRUS CAUSING THE TYPE C HEPATITIS (HCV), AND ITS APPLICATIONS.
ESP200400734 2004-03-25

Publications (1)

Publication Number Publication Date
WO2005097991A1 true WO2005097991A1 (en) 2005-10-20

Family

ID=35125074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070034 WO2005097991A1 (en) 2004-03-25 2005-03-23 Rna sequence, rna and dna construction, pharmaceutical composition that inhibits the proliferation of the virus that causes type c hepatitis (hcv), and applications thereof

Country Status (2)

Country Link
ES (1) ES2270656B1 (en)
WO (1) WO2005097991A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165594A (en) * 2000-11-29 2002-06-11 National Institute Of Advanced Industrial & Technology Rna molecule targeting ires and ns3 protease of hepatitis c virus
ES2196157T3 (en) * 1995-06-06 2003-12-16 Hybridon Inc SPECIFIC OLIGONUCLEOTIDES FOR THE HEPATITIS C VIRUS.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2196157T3 (en) * 1995-06-06 2003-12-16 Hybridon Inc SPECIFIC OLIGONUCLEOTIDES FOR THE HEPATITIS C VIRUS.
JP2002165594A (en) * 2000-11-29 2002-06-11 National Institute Of Advanced Industrial & Technology Rna molecule targeting ires and ns3 protease of hepatitis c virus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALDAZ-CARROLL L. ET AL: "Apical loop-internal loop interactions: a new RNA-RNA recognition motif identified through in vitro selection against RNA hairpins of the hepatitis C virus mRNA.", BIOCHEMISTRY., vol. 41, 2002, pages 5883 - 5893, XP001183024, DOI: doi:10.1021/bi0121508 *
KIKUCHI K. ET AL: "RNA aptamers targeted to domain II of hepatitis C virus IRES that bind to its apical loop region.", JOURNAL OF BIOCHEMISTRY., vol. 133, no. 3, March 2003 (2003-03-01), pages 263 - 270 *
LIEBER A. ET AL: "Elimination of hepatitis C virus RNA infected human hepatocytes by adenovirus-mediated expression of ribozymes.", JOURNAL OF VIROLOGY., vol. 70, no. 12, December 1996 (1996-12-01), pages 8782 - 8791, XP002200431 *
TALLET-LOPEZ B. ET AL: "Antisense oligonucleotides targeted to the domain IIId of the hepatitis C virus IRES compete with 40s ribosomal subunit binding to its apical loop region.", NUCLEIC ACID RESEARCH., vol. 31, no. 2, 2003, pages 734 - 742 *

Also Published As

Publication number Publication date
ES2270656B1 (en) 2008-03-16
ES2270656A1 (en) 2007-04-01

Similar Documents

Publication Publication Date Title
JP4718379B2 (en) Modified small interfering RNA molecules and methods of use
US6132966A (en) Method and reagent for inhibiting hepatitis C virus replication
ES2361458T3 (en) PROCEDURE AND COMPOSITIONS TO REDUCE THE VIRAL VIRAL GENOME AMOUNTS OF HCV IN A DIANA CELL.
ES2302701T3 (en) N3'-P5 'OLIGONUCLEOTIDIC THIOPHOSPHORAMIDATES: ITS SYNTHESIS AND USE.
WO2002081494A1 (en) Oligonucleotide mediated inhibition of hepatitis b virus and hepatitis c virus replication
Lim et al. A scintillation proximity assay for dengue virus NS5 2′-O-methyltransferase—kinetic and inhibition analyses
Shamur et al. Interaction of nucleic acid polymers with the large and small forms of the hepatitis delta antigen protein
Haasnoot et al. The Brome mosaic virus subgenomic promoter hairpin is structurally similar to the iron-responsive element and functionally equivalent to the minus-strand core promoter stem-loop C.
Kim et al. Therapeutic application of RNA interference against foot-and-mouth disease virus in vitro and in vivo
JP4545091B2 (en) Oligoribonucleotide or peptide nucleic acid that inhibits the function of hepatitis C virus
Lv et al. Transient inhibition of foot-and-mouth disease virus replication by siRNAs silencing VP1 protein coding region
AU2020336278A1 (en) Enzymatic RNA capping method
ES2270656B1 (en) RNA SEQUENCE, RNA AND DNA CONSTRUCTION, AND INHIBITING PHARMACEUTICAL COMPOSITION OF THE PROLIFERATION OF THE VIRUS CAUSING THE TYPE C HEPATITIS (HCV), AND ITS APPLICATIONS.
Diegelman et al. Mimicry of the hepatitis delta virus replication cycle mediated by synthetic circular oligodeoxynucleotides
US20050059617A1 (en) Novel anitsense oligonucleotide derivatives against to hepatitis c virus
MOON et al. Target site search and effective inhibition of leukaemic cell growth by a covalently closed multiple anti-sense oligonucleotide to c-myb
Trepanier et al. Reduction in intracellular HCV RNA and virus protein expression in human hepatoma cells following treatment with 2′-O-methyl-modified anti-core deoxyribozyme
US20010055756A1 (en) Internal de novo initiation sites of the HCV NS5B polymerase and use thereof
Torrence et al. Evaluation of synthetic oligonucleotides as inhibitors of West Nile virus replication
Tsukahara et al. Inhibition of HIV-1 replication by triple-helix-forming phosphorothioate oligonucleotides targeted to the polypurine tract
Prater et al. Chimeric RNase H-competent oligonucleotides directed to the HIV-1 Rev response element
Tandon Future Advancement: Potential of Gene editing and RNAi in SARS-Cov-2 diagnosis and therapy
Petrov et al. Gene silencing of VP1 gene of coxsackievirus B3 neurotropic strain Nancy by dsRNAs and siRNAs
Ray et al. Ribosome–RNA interaction: a potential target for developing antiviral against hepatitis C virus
KR101384860B1 (en) Composition for RNA interference releasing siRNA target molecule-specifically and composition for treating HCV related diseases using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase