WO2005097497A1 - Laminates - Google Patents

Laminates Download PDF

Info

Publication number
WO2005097497A1
WO2005097497A1 PCT/JP2005/006999 JP2005006999W WO2005097497A1 WO 2005097497 A1 WO2005097497 A1 WO 2005097497A1 JP 2005006999 W JP2005006999 W JP 2005006999W WO 2005097497 A1 WO2005097497 A1 WO 2005097497A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
mass
parts
metal oxide
composite metal
Prior art date
Application number
PCT/JP2005/006999
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiro Mori
Junji Momoda
Original Assignee
Tokuyama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corporation filed Critical Tokuyama Corporation
Priority to JP2006512150A priority Critical patent/JP4757795B2/en
Publication of WO2005097497A1 publication Critical patent/WO2005097497A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a laminate in which a cured product layer of a coating composition is formed on the surface of a thiourethane resin substrate or an aryl resin substrate, and more particularly, to adhesion, abrasion resistance, and weather resistance.
  • the present invention relates to a laminate having excellent properties and the like, and suitable as an eyeglass lens. Background technology>
  • Synthetic resin lenses have features that glass lenses do not have, such as lightness, safety, ease of processing, and fashionability, and have rapidly spread in recent years, but have the disadvantage that they are easily scratched.
  • a silicone-based coating layer (so-called hard coat layer) is provided on the lens surface.
  • such a silicone-based coating layer is formed by applying a coating composition mainly composed of silica fine particles, a polymerizable organic silane compound, a polymerization catalyst, an aqueous acid solution, and a solvent to the surface of a synthetic resin lens, and then heating the coating composition. Then, the composition was formed by curing the composition and volatilizing the solvent (for example, see Japanese Patent Publication No. 57-27335).
  • the hard coat layer formed by curing such a coating composition has a low refractive index, and when formed on the surface of a synthetic resin lens having a high refractive index, the difference in the refractive index from the synthetic resin lens. There is a problem that interference fringes are generated due to this, which causes poor appearance.
  • silica fine particles blended in the above-mentioned coating composition can be treated with a refractive index Coating compositions that have been replaced with various complex metal oxides having a high content, specifically, the following coating compositions have been proposed.
  • Coating composition replaced with a composite metal oxide containing Sb, Ti, Zr, Sn, etc.
  • Coating composition replaced with composite oxide containing Ti, Ce, Sn, etc.
  • Coating composition replaced with a complex metal oxide such as Sn, Zr, W, Si (Japanese Patent Laid-Open No. 2000-281973)
  • the coating compositions using the composite metal oxides of (1) to (5) have high sensitivity to moisture, so that a phenomenon in which the formed hard coat layer is whitened (turbid) is observed. Further, the weather resistance (or durability) of the formed hard coat layer is low, and for example, there is a problem that the adhesion between the hard coat layer and the synthetic resin lens decreases with time.
  • the present invention provides a laminate in which a cured product layer of a coating composition is formed on the surface of a resin substrate, in which whitening (cloudiness) of the cured product layer due to moisture is effectively suppressed and weather resistance is improved.
  • An object of the present invention is to provide a laminate excellent in adhesiveness and in which a decrease in adhesion over time is effectively suppressed.
  • a thiourethane resin substrate or an aryl resin substrate was selected as a resin substrate, and a composite metal oxide composed of tin oxide and zirconium oxide was used as a coating composition.
  • a composite metal oxide fine particle coated with a resin and a material containing other specific components and combining such a resin base material with a coating composition, the cured product layer caused by moisture is whitened. (White turbidity) was suppressed, and a laminate excellent in weather resistance or durability was found to be obtained, and the present invention was completed.
  • the coating composition comprises the following components ( ⁇ ) to (D): (A) composite metal oxide fine particles obtained by coating a composite metal oxide composed of tin oxide and zirconium oxide with antimony pentoxide and gay oxide;
  • a laminate is provided, wherein the resin substrate is a thiourethane resin substrate or an aryl resin substrate.
  • the coating composition comprises the component (B)
  • the setnato complex Per 100 parts by mass, 25 to 250 parts by mass of the composite metal oxide fine particles of the component (A), 0 to 2500 parts by mass of the organic solvent of the component (C) 100 to 2500 parts by mass, and acetyla of the component (D) It is preferable to contain the setnato complex in an amount of 0.1 to 15 parts by mass.
  • the refractive index of the thiourethane resin base material or the aryl resin base material is 1.55 or more; It is preferable that the base material or the aryl resin base material contains a dye.
  • a coating composition containing the components (A) to (D) is applied to the surface of a polyurethane resin substrate or an aryl resin substrate, and heated to a temperature of 80 ° C or more.
  • a method for producing a laminate which comprises curing the coating composition to form a cured layer. Since the cured product layer of the coating composition is formed on the surface of the thiourethane resin substrate or the aryl resin substrate, the laminate of the present invention has the characteristics of low sensitivity to moisture and excellent weather resistance. For example, even when the coating composition is applied under high humidity or when the coating composition is applied in a state of absorbing water, a transparent cured layer without clouding can be obtained.
  • the laminate of the present invention is extremely excellent in both the sensitivity to moisture and the weather resistance.
  • the sensitivity to moisture is low, and the turbidity of the cured product layer due to the influence of moisture is reduced.
  • the weather resistance is poor, and the adhesion between the cured product layer and the resin substrate is greatly reduced after the accelerated deterioration test.
  • the component (B) is used.
  • the component (B) is used.
  • the component (B) is used.
  • the surface of the polycarbonate base material is dissolved, and the resin base material itself becomes slightly cloudy.
  • the U-resistance, abrasion resistance, and adhesion are insufficient, making them unsuitable for use as plastic lenses.
  • the presence or absence of white turbidity (or whitening) of the laminate is visually observed by irradiating the laminate with light along the direction of the cured product layer.
  • white turbidity or whitening
  • the light path of light passing through the cloudy layer is extremely short because the cloudy layer is extremely thin, and the cloudiness is almost visually observed. Is not possible.
  • the laminate of the present invention is excellent in both sensitivity to moisture and weather resistance, and retains excellent properties such as transparency, adhesion, and abrasion for a long period of time.
  • As a lens its industrial value is high.
  • the coating composition used for producing the laminate of the present invention contains the above-mentioned components (I) to (D).
  • the component (II) is a composite metal oxide fine particle obtained by coating a composite metal oxide composed of tin oxide and zirconium oxide with antimony pentoxide and gallium oxide. These composite metal oxide fine particles are usually used by being dispersed in a colloidal form using water, an alcoholic or other organic solvent as a dispersion medium.
  • Such composite metal oxide fine particles contain 70 to 99% by mass of a composite metal oxide composed of tin oxide and zirconium oxide, and a total of antimony pentoxide and silicon oxide. It is preferably contained in an amount of 1 to 30% by mass, more preferably 50 to 96% by mass of tin oxide, 3 to 49% by mass of zirconium oxide, and 1 to 29% of antimony pentoxide. It is preferred to contain 9% by mass and 0.1 to 29% by mass of manganese oxide.
  • the above-mentioned composite metal oxide fine particles may contain a trace amount of a metal oxide component other than tin-zirconium, but preferably contain substantially no titanium oxide. Titanium oxide has high sensitivity to moisture, tends to cause whitening of the cured product layer of the coating composition, and tends to reduce the weather resistance of the cured product layer.
  • alcoholic organic solvents such as methanol, ethanol, n-propanol, isopropanol, t-butyl alcohol, and n-butyl alcohol are preferable, and particularly, methanol and 2-propanol are preferable.
  • the ratio of the composite metal oxide fine particles in the dispersion medium at this time is to increase the refractive index of the cured product layer of the coating composition, and that the composite metal oxide fine particles become unstable in the dispersion medium.
  • the content is preferably from 10% by mass to 50% by mass.
  • a composite metal oxide fine particle whose surface is treated with an amine compound and Z or carboxylic acid.
  • the amine compound used in this case include ammonium or ethylamine, triethylamine, isopropylamine, n-propylamine, dimethylamine, dimethylamine, diisopropylamine, alkylamine such as dipropylamine, aralkylamine such as benzylamine, morpholine, pyridine, and the like.
  • alkanolamines such as monoethanolamine, diethanolamine, triethanolamine and isopropanolamine.
  • carboxylic acid examples include acetic acid, oxalic acid, lactic acid, malic acid, citric acid, tartaric acid, salicylic acid, glycolic acid, benzoic acid, phthalic acid, malonic acid, and mandelic acid.
  • a surface treatment agent is preferably used in an amount of 0.01 to 5 parts by mass per 100 parts by mass of the composite metal oxide fine particles.
  • the particle diameter of the composite metal oxide fine particles is not particularly limited, but the average particle diameter is preferably in the range of 1 to 300 nm so as not to impair the transparency of the obtained cured product layer.
  • the composite metal oxide fine particles are generally used as a dispersion dispersed in a dispersion medium, and the dispersion pH may be 4.0 to 9.5. preferable.
  • the pH By adjusting the pH to such a range, it is possible to prevent a decrease in the transmittance of the dispersion liquid due to a decrease in the dispersibility of the composite metal oxide fine particles, and to improve the coating composition due to a decrease in the dispersion stability of the composite metal oxide fine particles.
  • the storage stability can be prevented from lowering.
  • the compounding amount of the composite metal oxide fine particles described above may be appropriately determined according to the composition ratio of the metal oxide, the desired physical properties and the like according to the purpose of the finally obtained hardened material layer. (Epoxy group-containing gay compound or its partial carohydrate hydrolyzate) It is preferably in the range of 25 to 250 parts by mass, more preferably 40 to 200 parts by mass, per 100 parts by mass. .
  • the amount of the composite metal oxide fine particles is preferably 20 to 70 parts by mass, more preferably 30 to 70 parts by mass, per 100 parts by mass of the finally formed cured layer. 665 parts by mass.
  • the amount of the composite metal oxide fine particles per cured layer is less than 20 parts by mass, the abrasion resistance of the cured layer, the refractive index of the cured layer, and the like may be insufficient. Further, when an inorganic vapor-deposited film (anti-reflection film) is formed on the cured product layer, the adhesion with the vapor-deposited film may be reduced. Furthermore, if the amount of the composite metal oxide fine particles per cured layer exceeds 70 parts by mass, cracks tend to occur in the cured layer.
  • the mass of the cured product layer finally formed is the mass of the composite metal oxide fine particles, the epoxy compound-containing silicon compound described later or a partial hydrolyzate thereof, and further compounded as necessary. This is the total mass of the solid content when the organic silicon compound other than (II) and the epoxy compound are polymerized and condensed. Since the organic solvent such as methanol added to the coating composition is generated during the formation of the cured product layer, it is not included in the mass of the finally obtained cured product layer.
  • the epoxy group-containing silicon compound as the component (II) has a function as a binder.
  • a known per se epoxy compound may be used without any limitation. be able to.
  • polyglycidoxypropyltrimethoxysilane, -glycidoxypropylmethyldimethoxysilane, and some or some of these are considered from the viewpoint of adhesion to a thiourethane resin substrate or an aryl resin substrate described later. It is preferable to use a product that is completely hydrolyzed or partially condensed.
  • the epoxy group-containing silane compound may be used alone or in combination of two or more.
  • the compounding amount of the epoxy group-containing gay compound may be appropriately determined depending on the desired properties and the like according to the purpose of the finally obtained cured product layer, and the finally formed cured product layer 100 mass It is preferably from 30 to 80 parts by mass, more preferably from 35 to 70 parts by mass, per part. If the compounding amount of the epoxy group-containing gay compound is less than 30 parts by mass, cracks tend to occur in the cured product layer, and if it exceeds 80 parts by mass, the scratch resistance and the refractive index tend to be insufficient. Further, when an inorganic vapor-deposited film is formed on the cured product layer, the adhesion between the two may be reduced.
  • the organic solvent of the component (C) dissolves the (B) epoxy group-containing silicon compound or a binder component (for example, an organic silicon compound) other than the component (B) that is blended as necessary.
  • a known organic solvent can be used without any limitation as long as it is a solvent capable of favorably dispersing oxide fine particles and has volatility.
  • Examples of such organic solvents include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, and n-pentanol; methyl acetate, ethyl acetate, propyl acetate, and the like.
  • Estezoles such as ethyl propionate, methyl acetate acetate, ethyl acetate acetate, and ethyl lactate; ethylene glycol monoisopropyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, Ethylene glycol mono-t-butyl ether, propylene Glyco J monomethyl ether, propylene glycol monoethyl ether, pyrene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, propylene glycol monomethyl ether acetate, pyrene glycol monoethyl ether Ethers such as acetate and dioxane; ketones such as acetone, acetylacetone and diacetone alcohol; halogenated hydrocarbons such as methylene chloride; hexane, h
  • an epoxy group-containing silicon compound and an organic gayne compound used as a binder component other than (B) are required to be soluble in an acid aqueous solution used for the purpose of hydrolyzing the cured product.
  • organic solvents methanosol, isopropanol, t-butanol, acetylacetone, diacetone alcohol, ethylene glycol, and the like, from the viewpoint of easy volatility in forming the layer and smooth formation of the hardened layer, It is preferable to use mono-isopropyl ether.
  • the amount of the organic solvent used is not particularly limited, but usually the total amount is in the range of 100 to 2500 parts by mass, preferably 100 to 2500 parts by mass, particularly 140 to 500 parts by mass per component (B). (If an alcohol or the like is used as a dispersion medium for the fine particles of the composite metal oxide of the component (A), the amount of such a dispersion medium is preferably Included in the amount of organic solvent.)
  • (D) Tiger acetyl acetonate complex is used as a curing catalyst for the above-mentioned epoxy group-containing cage compound (B), and has a solubility in a coating composition and a coating composition.
  • Known ones can be used without any limitation if they are appropriately selected in consideration of the physical properties such as the storage stability of the product and the hardness of the formed hard layer.
  • Acetyl acetonate complexes having A I (III), Fe (III) and Li (I) as central metals can be mentioned. There is no problem whether these acetyl acetonate complexes are used alone or as a mixture of two or more.
  • the amount of the acetyl acetonate complex described in _b is not particularly limited, but is 0.1 to 15 parts by mass, and particularly 0.2 to 10 parts by mass, per 100 parts by mass of the component (B). Is preferred. Further, per 100 parts by mass of the finally formed cured product layer,
  • the coating composition used in the present invention may contain various components in addition to the components (A) to (D) described above, as long as excellent characteristics such as moisture sensitivity and weather resistance are not impaired. it can.
  • an organic gayen compound or epoxy compound other than the above-mentioned component (ii) can be blended as a binder component.
  • organic gay compounds examples include tetraethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and trimethylmethoxysilane.
  • the epoxy group-containing silicone compound of the component (B) is preferably at most 150 parts by mass, more preferably at most 100 parts by mass, per 100 parts by mass of the partial hydrolyzate thereof.
  • the amount is preferably 30 parts by mass or less per 100 parts by mass of the finally formed cured material layer.
  • the epoxy compound other than the component (B) that is, an epoxy compound having no silyl group
  • a known compound can be used.
  • the specific examples thereof include 1, 6 Hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, tetraethylene glycol diglycidyl ether, Z ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether Glycidyl ether, dipropylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, tetrapropylene glycol diglycidyl ether, nonapropylene glycol diglycidyl ether, neo pliers Glycoregyl glycidyl ether, dipentylglycol of neopentylglycol hydroxypivalic acid esterizole, trimethyl
  • Rudiglycidyl ether pentaerythritol triglycidyl ether, pentaerythryl I-tetratetraglycidyl ether, dipentaerythryl! Triglycidyl ether, sorbitol monotetraglycidyl ether, diglycidyl ether of tris (2-hydroxyethyl) isocyanate, triglycidyl ether of tris (2-hydroxyethyl) isocyanu U ⁇ - Aliphatic epoxy compounds such as isophthalone diylisyl glycidyl ether and bis-1,2,2-hydroxycyclohexylpropane diglycidyl ether; resorcinol diglycidyl ether J-bis, bisphenol A diglycidyl ether , Bisphenol F diglycidyl ether, bisphenol S diglycidyl J ether, diglycidyl orthophthalate: ester, aromatic epoxy such as phenol nopolak polygly
  • 1,6-hexanediol diglycidyl ether, diethylene glycol diglycidyl ether, trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, glycerol diglycidyl ether, and glycerol triglycidyl ether are particularly preferable.
  • the compounding amount of such an epoxy compound may be appropriately determined in accordance with the physical properties desired according to the purpose of the finally obtained cured product layer.
  • an acid aqueous solution can be added for the purpose of hydrolyzing the above-mentioned epoxy group-containing gay compound of the component (B) and the organic gay compound other than the component (B).
  • known acids can be used without any limitation as long as they have a function of hydrolyzing and condensing the azorecoxysilyl group in the above compound.
  • examples of such an acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid and propionic acid.
  • hydrochloric acid is preferably used from the viewpoints of storage stability and hydrolyzability of the coating composition.
  • the concentration is suitably in the range of 0.01 N to 5 N.
  • an acidic aqueous solution for 5 nights was subjected to the above-mentioned epoxy group-containing cage (B). It is used in such an amount that hydrolysis of the compound is effectively promoted.
  • a curing catalyst other than the acetyl acetonate complex may be added as necessary.
  • Examples of such a curing catalyst include perchloric acid, magnesium perchlorate, aluminum perchlorate, zinc perchlorate, Perchloric acids such as ammonium chlorate, organic metal salts such as sodium acetate, zinc naphthenate, cobalt naphthenate, zinc octoate, stannic chloride, aluminum chloride, ferric chloride, titanium chloride, zinc chloride, salt And Lewis acids such as antimony hydride.
  • the coating composition used in the present invention includes a surfactant, an antistatic agent, an ultraviolet absorber, an antioxidant, a disperse dye, an oil-soluble dye, a fluorescent dye, a pigment, a photochromic compound, a hinderdamine, and a hindered polymer.
  • Additives such as knol can be used alone or in combination of two or more.By adding these additives, the coating properties of the coating composition and the film performance after curing can be improved. I can do it.
  • the laminate of the present invention it is important to select a urethane resin substrate or an aryl resin substrate as the resin substrate. That is, when another resin base material is used, a cured product layer excellent in sensitivity characteristic to water / weather resistance cannot be formed even if the above-mentioned coating composition is used. Although the reason for this has not been clearly elucidated, it is likely that the above-described coating composition forms a chemical or physical cross-link with the surface of the thiourethane resin-based resin and the aryl resin-based material, Therefore, the adhesion between the cured product layer and the surface of the resin base material is remarkably improved, and such a cross-linking and the composite metal oxide in the coating composition are extremely stable against light and moisture.
  • the cross-linking is formed stably even when it is kept for a long time in a poor environment, so it seems that excellent il resistance will be exhibited.
  • a cured layer is formed on the surface of a polycarbonate resin substrate using the above-described coating composition, the adhesion between the cured layer and the resin substrate is insufficient from the beginning.
  • These resin substrates used in the present invention have a refractive index of 1.55 or more. It is preferable that interference fringes due to a difference in refractive index from the coating composition can be prevented.
  • Thiourethane resin used as a resin base material obtained by reacting thiol with isocyanate.
  • thiol include 1,2-ethanedithiol, 1,6-hexanedithiol, 1,2,3-propane Trithiol, propane tris
  • isocyanate examples include tylene diphenyl diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,2-diisocyanatobenzene, and 1,3-diisocyanate.
  • 1,4-diisocyanatomethylbenzene 1,2-diisocyanatomethylbenzene, 1,3-diisocyanatomethylbenzene, 1,4-diisocyanatomethylbenzene, 4,4, diphenylenediocyanate Tri, 3,3'-dimethyl-4,4,1-diphenylenediisocyanate, xylylenediisocyanate, naphthylene 1,5-diisocyanate, tetramethylxylenediisocyanate, isophoronediisosocyanate, dicyclohexylmethanedi ⁇ T socyanate, hexamethylenedi socyanate, tetramethylki Rirenji ⁇ Soshianeto, 1, 3, 5-Torii And sodium cyanomethylcyclohexane.
  • the aryl resin used as the resin base material is a polymer obtained by polymerization of a monomer containing an aryl group.
  • Specific examples of the aryl group-containing nomer include aryl diglycol carbonate, diaryl isophthalate and its oligomer, Examples include diaryl terephthalate and its oligomers.
  • the laminate of the present invention is obtained by applying the coating composition to the surface of the above-mentioned resin base material (thiourethane resin base material or aryl resin base material) and curing the composition to form a cured product layer. Manufactured.
  • the surface of the base material When applying the coating composition, the surface of the base material must be treated in advance with an alkali 5a treatment, acid treatment, surfactant treatment, uv ozone treatment, inorganic or organic fine particles in order to improve the adhesion between the base material and the cured product layer. It is effective to perform a polishing treatment by I2 or a plasma or corona discharge treatment.
  • the coating composition can be applied by a diving method, a spin coating method, a spraying method or a flow method. In particular, for eyeglass lenses, the dive method is preferably used in order to efficiently coat both surfaces of many substrates.
  • Curing after application is usually carried out by air drying in dry air or air and then heat treatment.
  • the heating temperature is generally 80 ° C. or higher, particularly 1 ° o ° C. or higher, and is a temperature at which the resin base material is not deformed, and one IS is preferably 150 ° C. or lower.
  • the curing time is about 2 hours at 130 ° C and about 2 to 5 hours at 100 ° C to 120 ° C.
  • the cured product layer ⁇ formed by curing can have a thickness of about 0.1 to 50 / m, but when this laminate is used for a mega lens, the thickness of the cured product layer is A range of 1 to 10 m is particularly preferred.
  • an antireflection film made of an inorganic substance is formed on the surface of the cured material layer.
  • Sputtering method and the like In the vacuum deposition method, an on-beam assist method in which an ion beam is simultaneously irradiated during the deposition may be used. Further, such an antireflection film may have either a single layer or a multilayer structure.
  • inorganic substances forming an antireflection film S i O U, S i O, Z r 0 2, T i 0 2, T i O , T i 2 0 3, T i 2 0 5, AI 2 0 3, T a 2 O 5, C e0 2, MgO, Y 2 0 3, S n 0 2, M g oxides such as F 2> WO 3 and the like.
  • These inorganic oxides may be used alone or in combination of two or more.
  • Composite metal oxide particles composed of tin oxide and zirconium oxide, coated with antimony pentoxide and gallium oxide, and dispersed in methanol (HX series manufactured by Nissan Chemical Industries, Ltd.).
  • Tin oxide, zirconium oxide, antimony pentoxide, and manganese oxide (% by mass): 77.7 / 1/1/7/7. 0X3.6
  • Composite metal oxide particles composed of titanium oxide, tin oxide and zirconium oxide, coated with antimony pentoxide, and dispersed in methanol (HIT series manufactured by Nissan Chemical Industries, Ltd.).
  • a composite metal oxide fine particle composed of titanium oxide, zirconium oxide and silicon oxide dispersed in methanol (trade name "Opt Lake 113 OZJ", manufactured by Catalyst Chemical Industry Co., Ltd.).
  • the transparency of the cured product layer was observed by visual inspection. That is, the sample lens is arranged in the light beam so that the optical axis of the sample lens is perpendicular to the direction of the light beam from the light source (color CAB INIII manufactured by Cabin Industry Co., Ltd.). Lens ⁇ 7) Optical axis direction From the visual observation, the transparency of the cured product layer was evaluated by the degree of cloudiness. The evaluation criteria are as follows.
  • The lens having the cured product layer was almost transparent, and no white bubbles were observed.
  • a sample lens is immersed in methanol, isopropyl alcohol, toluene, acetone, or a 0.4 mass% NaOH aqueous solution for 24 hours, and the solvent resistance is improved by changing the surface state. evaluated.
  • the evaluation criteria are as follows.
  • the evaluation criteria are as follows.
  • the coating film has peeled off.
  • the accelerated deterioration test was performed by accelerating the sample lens for 200 hours using Xenon Weather Meter X25 manufactured by Suga Test Instruments Co., Ltd.
  • the coating composition was prepared, it was stored at a temperature of 20 ° C. for 3 weeks and 5 weeks, and then cured using each coating composition to form a cured layer.
  • the storage stability was evaluated by evaluating solvent resistance, scratch resistance, adhesion, and weather resistance.
  • Composite metal oxide fine particle sol (a) 1 250 parts by mass,
  • a coating composition (A) was added and mixed, and the mixture was stirred for 5 hours, and then aged all day and night to obtain a coating composition (A). Further, a part of the coating composition (A) was subdivided, and distilled water was added thereto so that the content became 10% by mass, and the mixture was stirred for about 1 hour.
  • the above-described alkali-treated thiourethane resin lens is dipped in the coating composition (A) or ( ⁇ ′) obtained above, and is pulled up at a speed of 30 cm / min to form a coating on the surface of the thiourethane resin lens.
  • the coating composition was applied.
  • the dive was performed under three conditions of relative humidity of 30% RH, 50% RH, and 7O% RH (each temperature was about 23 ° C).
  • the coating was dried at 70 ° C. for 2 O minutes, and then cured at 120 ° C. for 4 hours to obtain a cured product layer on the surface to obtain a :: lens.
  • the formed cured material layer was a colorless and transparent film having a thickness of about 2 microns and a refractive index of 1.60.
  • the lens (cured material layer) formed by diving the coating compositions (A) and (A,) under the condition of 30% RH is described in (a) Appearance,
  • Example 3 The same procedure as in Example 1 was conducted, except that a 1.67 polyurethane resin lens with a refractive index of 1.67 was used as the resin base material instead of a polyurethane resin lens with a refractive index of 1.67 (Mitsui Toatsu resin: MR7). , About 2 microns thick, colorless and transparent with a refractive index of 1.60 A lens having a compound layer on the surface was prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3.
  • Example 3 Example 3—
  • Example 4 Except for using an aryl resin lens having a refractive index of 1.60 instead of the 1.60 thiourethane resin lens as the resin base material, the thickness was about 2 microns and the refractive index was 1 in the same manner as in Example 1. A lens having a colorless and transparent cured product layer on the surface was prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3.
  • Example 4
  • Example 5 Except that the above coating compositions ( ⁇ ) and ( ⁇ ') were used, in the same manner as in Example 1, a thickness of about 2 microns and a refractive index of 1.600) a colorless and transparent cured layer was provided on the surface. Each lens was manufactured, and various characteristics were evaluated in exactly the same way as in Example 1. The results are shown in Tables 1 to 3.
  • Example 5 Example 5—
  • Silicon surfactant attacked by Nippon Tunicer Co., Ltd., brand name "
  • Composite metal oxide fine particle sol (a) 1 250 parts by mass,
  • Example 1 a hydrogenation force coating composition (C ′) was prepared in exactly the same manner as in Example 1.
  • a polyurethane resin lens with a refractive index of 1.67 (made by Mitsui Toatsu) Resin: Except for using MR7), a lens with a thickness of about 2 microns and a refractive index of 1.60 a colorless and transparent cured layer on the surface was prepared and implemented in exactly the same manner as in Example 1. Various characteristics were evaluated in exactly the same manner as in Example 1, and the results are shown in Tables 1 to 3.
  • Silicon-based surfactant (manufactured by Nippon Rikiichi Co., Ltd., trade name "L-7001J") 2.0 parts by mass,
  • Composite metal oxide fine particle sol (a) 1 250 parts by mass,
  • a coating composition (D) was prepared in exactly the same manner as in Example 1.
  • Example 7 A colorless and transparent cured layer having a thickness of about 2 microns and a refractive index of 1.60 was provided on the surface in the same manner as in Example 1 except that the above-mentioned coating composition (D) or (D,) was used. A lens was manufactured, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3.
  • Example 7 A colorless and transparent cured layer having a thickness of about 2 microns and a refractive index of 1.60 was provided on the surface in the same manner as in Example 1 except that the above-mentioned coating composition (D) or (D,) was used. A lens was manufactured, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3. Example 7—
  • Silicone surfactant (manufactured by Nippon Unicar Co., Ltd., trade name "L-17001 J") 2.0 parts by mass,
  • Composite metal oxide fine particle sol (a) 1 250 mass sound 13
  • Example 1 a water-added coating composition ( ⁇ ′) was prepared in exactly the same manner as in Example 1.
  • Example 8 Except that the above coating composition ( ⁇ ) or ( ⁇ ,) was used, a colorless and transparent cured layer having a thickness of about 2 microns and a refractive index of 1.6 was applied to the surface in the same manner as in Example 1. A lens provided was prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3.
  • Example 8 Example 8—
  • a coating composition (F) was obtained in the same manner as in Example 1, except that A I (III) acetyl acetonate was replaced with Fe (III) acetyl acetonate. Further, a water-containing coating paste (F ′) was prepared in exactly the same manner as in Example 1. Except that the above-mentioned coating composition (F) or (F,) was used, a colorless and transparent cured layer having a thickness of about 2 microns and a refractive index of 1.6 was formed on the surface in exactly the same manner as in Example 1. A lens provided was prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3.
  • a coating composition (H) was obtained in the same manner as in Example 1, except that the composite metal oxide fine particle sol (c) was used instead of the composite metal oxide fine particle sol (a). Furthermore, a water-added coating composition ( ⁇ ′) was prepared in exactly the same manner as in Example 1. Except that the above coating composition ( ⁇ ) or ( ⁇ ,) was used, a colorless and transparent cured layer having a thickness of about 2 microns and a renewal rate of 1.62 was formed on the surface in the same manner as in Example 1. Were prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3. Comparative Example 3—
  • Example 2 In the same manner as in Example 1 except that a polycarbonate resin lens having a refractive index of 1.59 was used instead of the urethane resin lens having a refractive index of 1.60, a thickness of about 2 micron and a refractive index of 1. A lens having a 60 cured layer on the surface was prepared, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Tables 1 to 3.
  • Example 9 In addition, in Comparative Example 3 in which a cured product layer was formed using the coating composition of Example 1 on the surface of the polycarbonate resin lens I, physical properties such as solvent resistance, adhesion, and scratch resistance were insufficient. In addition, regarding the appearance, the surface of the polycarbonate resin lens is slightly clouded due to contact with the epoxy group-containing gay compound. Example 9
  • the polyurethane resin lens having a refractive index of 1.60 used in Example 1 was dyed with a dye (trade name: BPI® SunGray, trade name, manufactured by Toshiba Corporation) to obtain a dye-containing lens.
  • a dye trade name: BPI® SunGray, trade name, manufactured by Toshiba Corporation
  • a cured layer was formed on the surface of the dye-containing lens in the same manner as in Example 1.
  • Example 5 The refractive index of 1. 6 7 Chiouretan resin lens used in Example 5 were stained with a dye in the same manner as in Example 9, to obtain a dye-containing lenses. A cured product layer was formed on the surface of the dye-containing lens in the same manner as in Example 5. A cured product layer was formed on the surface of the dye-containing lens in the same manner as in Example 1 using the coating composition (C) prepared in Example.
  • Example 1 The thiourethane resin lens having a refractive index of 1/60 used in Example 1 (or Comparative Example 1) was dyed with a dye in the same manner as in Example 9 to obtain a dye-containing lens.
  • a cured product layer was formed on the surface of the dye-containing lens in the same manner as in Example 1.
  • the dye-containing lens was evaluated for adhesion and change in color tone in the same manner as in Example 9, and the results are shown in Table 4.
  • the laminates of the present invention (Examples 9 and 10) have good adhesion before and after the weather resistance test and little change in color tone.
  • the adhesion was reduced, and the color tone changed before and after the test.

Abstract

Laminates produced by laminating a thiourethane resin substrate or an allyl resin substrate with a cured layer formed by curing a coating composition which comprises (A) composite metal oxide fine particles produced by coating a composite metal oxide consisting of tin oxide and zirconium oxide with antimony pentaoxide or silicon oxide, (B) an epoxy-containing silicon compound or a partial hydrolyzate thereof, (C) an organic solvent, and (D) an acetylacetonato complex. The laminates are characterized by low water sensitivity, so that the cured layer little causes whitening even when the cured layer is formed either by conducting the application of the coating composition and the curing thereof at high humidity or in such a state that the coating composition contains water absorbed thereinto. Further, the laminates are excellent in weather resistance and are therefore little lowered in the tight adhesion of the cured layer to the substrate even when kept under the irradiation with light for a long time.

Description

明細書 積層体  Description laminate
<技術分野 > <Technical field>
本発明は、 コーティング組成物の硬化物層がチォゥレタン樹脂基材またはァリ ル樹脂基材の表面に形成された積層体に関するものであり、 より詳細には、 密着 性及び耐擦傷性や耐候性等に優れ、 メガネレンズとして好適な積層体に関するも のである。 ぐ背景技術 >  The present invention relates to a laminate in which a cured product layer of a coating composition is formed on the surface of a thiourethane resin substrate or an aryl resin substrate, and more particularly, to adhesion, abrasion resistance, and weather resistance. The present invention relates to a laminate having excellent properties and the like, and suitable as an eyeglass lens. Background technology>
合成樹脂レンズは、 軽さ、 安全性、 易加工性、 ファッション性などガラスレン ズにない特徴を有し、 近年急速に普及してきたが、 傷が付き易いという欠点があ リ、 このため、 合成樹脂レンズ表面には、 一般に、 シリコーン系のコート層 (所 謂ハードコー卜層と呼ばれている) が設けられている。  Synthetic resin lenses have features that glass lenses do not have, such as lightness, safety, ease of processing, and fashionability, and have rapidly spread in recent years, but have the disadvantage that they are easily scratched. Generally, a silicone-based coating layer (so-called hard coat layer) is provided on the lens surface.
このようなシリコーン系のコート層は、 従来、 シリカ微粒子、 重合性を有する 有機シラン化合物、 重合触媒、 酸水溶液、 及び溶媒を主成分とするコーティング 組成物を、 合成樹脂レンズ表面に塗布し、 加熱して該組成物を硬化させると共に 溶媒を揮発させることにより形成されていた (例えば特公昭 5 7— 2 7 3 5号公 報参照) 。 しかしながら、 このようなコーティング組成物を硬化させることによ リ形成されるハードコート層は、 屈折率が低く、 高屈折率の合成樹脂レンズ表面 に形成したときには、 合成樹脂レンズとの屈折率の差により干渉縞が発生し、 外 観不良を生じさせるという問題があリ、 その改善が求められている。  Conventionally, such a silicone-based coating layer is formed by applying a coating composition mainly composed of silica fine particles, a polymerizable organic silane compound, a polymerization catalyst, an aqueous acid solution, and a solvent to the surface of a synthetic resin lens, and then heating the coating composition. Then, the composition was formed by curing the composition and volatilizing the solvent (for example, see Japanese Patent Publication No. 57-27335). However, the hard coat layer formed by curing such a coating composition has a low refractive index, and when formed on the surface of a synthetic resin lens having a high refractive index, the difference in the refractive index from the synthetic resin lens. There is a problem that interference fringes are generated due to this, which causes poor appearance.
この問題を解決するために、 高屈折率のハードコ一ト層を形成するコーティン グ組成物も種々提案されており、 例えば、 上記のコーティング組成物中に配合さ れているシリカ微粒子を、 屈折率の高い各種の複合金属酸化物に置き換えたコ一 ティング組成物、 具体的には、 以下のようなコ一ティング組成物が提案されてい る。  In order to solve this problem, various coating compositions for forming a high-refractive-index hard coat layer have been proposed. For example, silica fine particles blended in the above-mentioned coating composition can be treated with a refractive index Coating compositions that have been replaced with various complex metal oxides having a high content, specifically, the following coating compositions have been proposed.
( 1 ) S b、 T i、 Z r、 S n等を含む複合金属酸化物に置き換えたコーティ ング組成物 (特開平 5— 2 6 4 8 0 5号公報) (2) T i、 Ce、 S n等を含む複合酸化物に置き換えたコーティング組成物 (特開平 1 0— 245523号公報) (1) Coating composition replaced with a composite metal oxide containing Sb, Ti, Zr, Sn, etc. (Japanese Patent Laid-Open No. 5-246805) (2) Coating composition replaced with composite oxide containing Ti, Ce, Sn, etc. (JP-A-10-245523)
(3) T i、 S n及び Z rを含む複合金属酸化物に置き換えたコーティング組 成物 (特開平 9一 4921 5号公報)  (3) Coating composition replaced with a composite metal oxide containing Ti, Sn and Zr (JP-A-9-149215)
(4) T iと S bとを含む複合金属酸化物に置き換えたコーティング組成物 (特開平 2002— 363442号公報)  (4) Coating composition replaced with composite metal oxide containing Ti and Sb (Japanese Patent Application Laid-Open No. 2002-363442)
(5) S n、 Z r、 W、 S i等の複合金属酸化物に置き換えたコーティング組 成物 (特開平 2000— 281 973号公報)  (5) Coating composition replaced with a complex metal oxide such as Sn, Zr, W, Si (Japanese Patent Laid-Open No. 2000-281973)
しかしながら、 (1 ) ~ (5) の複合金属酸化物を用いたコーティング組成物 は、 水分に対する感度が高く、 このため、 形成されるハードコート層が白化 (白 濁) する現象がみられる。 また、 形成されるハードコート層の耐候性 (もしくは 耐久性) が低く、 例えば時間の経過とともに、 ハードコート層と合成樹脂レンズ との密着性が低下するといった問題が生じる。  However, the coating compositions using the composite metal oxides of (1) to (5) have high sensitivity to moisture, so that a phenomenon in which the formed hard coat layer is whitened (turbid) is observed. Further, the weather resistance (or durability) of the formed hard coat layer is low, and for example, there is a problem that the adhesion between the hard coat layer and the synthetic resin lens decreases with time.
<発明の開示 > <Disclosure of Invention>
そこで、 本発明は、 樹脂基材表面にコーティング組成物の硬化物層が形成され た積層体であって、 水分に起因する硬化物層の白化 (白濁) が有効に抑制されて いるとともに、 耐候性に優れておリ、 経時による密着性の低下が有効に抑制され た積層体を提供することにある。  Accordingly, the present invention provides a laminate in which a cured product layer of a coating composition is formed on the surface of a resin substrate, in which whitening (cloudiness) of the cured product layer due to moisture is effectively suppressed and weather resistance is improved. An object of the present invention is to provide a laminate excellent in adhesiveness and in which a decrease in adhesion over time is effectively suppressed.
本発明者等は上記課題を解決すべく鋭意検討を行った。 その結果、 樹脂基材と してチォウレタン樹脂基材またはァリル樹脂基材を選択し、 且つコーティング組 成物として、 酸化スズ及び酸 匕ジルコニウムからなる複合金属酸化物を五酸化ァ ンチモン及び酸化ゲイ素で被覆した複合金属酸化物微粒子、 及びその他の特定の 成分を含むものを使用し、 このような樹脂基材とコーティング組成物とを組み合 わせることにより、 水分に起因する硬化物層の白化 (白濁) が抑制され、 且つ耐 候性もしくは耐久性に優れた積層体が得られることを見出し、 本発明を完成させ るに至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, a thiourethane resin substrate or an aryl resin substrate was selected as a resin substrate, and a composite metal oxide composed of tin oxide and zirconium oxide was used as a coating composition. By using a composite metal oxide fine particle coated with a resin and a material containing other specific components, and combining such a resin base material with a coating composition, the cured product layer caused by moisture is whitened. (White turbidity) was suppressed, and a laminate excellent in weather resistance or durability was found to be obtained, and the present invention was completed.
即ち、 本発明によれば、 樹 S旨基材表面にコーティング組成物の硬化物層が形成 された積層体において、  That is, according to the present invention, in a laminate in which a cured product layer of a coating composition is formed on the surface of a base material,
前記コーティング組成物が、 下記 (Α) 〜 (D) 成分: (A) 酸化スズ及び酸化ジルコニウムからなる複合金属酸化物を、 五酸化ァ ンチモン及び酸化ゲイ素で被覆した複合金属酸化物微粒子; The coating composition comprises the following components (Α) to (D): (A) composite metal oxide fine particles obtained by coating a composite metal oxide composed of tin oxide and zirconium oxide with antimony pentoxide and gay oxide;
(B) エポキシ基含有ケィ素化合物またはその部分加水分解物;  (B) an epoxy group-containing silicon compound or a partial hydrolyzate thereof;
(C) 有機溶媒;  (C) an organic solvent;
(D) ァセチルァセトナート錯体;  (D) acetyl acetonate complex;
を含有するものであり、 且つ Containing, and
前記樹脂基材が、 チォゥレタン樹脂基材またはァリル樹脂基材であること を特徴とする積層体が提供される。  A laminate is provided, wherein the resin substrate is a thiourethane resin substrate or an aryl resin substrate.
本発明の積層体においては、 前記コーティング組成物が、 前記 (B) 成分  In the laminate of the present invention, the coating composition comprises the component (B)
1 00質量部当り、 前記 (A) 成分の複合金属酸化物微粒子を 25〜 250質量 部、 前記 (C) 成分の有機溶媒を 1 O 0〜2500質量部及び前記 (D) 成分の ァセチルァセトナート錯体を 0. 1〜 1 5質量部の量で含有していることが好ま しい。 Per 100 parts by mass, 25 to 250 parts by mass of the composite metal oxide fine particles of the component (A), 0 to 2500 parts by mass of the organic solvent of the component (C) 100 to 2500 parts by mass, and acetyla of the component (D) It is preferable to contain the setnato complex in an amount of 0.1 to 15 parts by mass.
本発明の積層体は、 プラスチックレンズとして有用であるが、 特にプラスチッ クレンズの用途に用いる場合には、 チォウレタン樹脂基材またはァリル樹脂基材 の屈折率が 1. 55以上であること、 或いはチォウレタン樹脂基材またはァリル 樹脂基材が色素を含有していることカ好適である。  Although the laminate of the present invention is useful as a plastic lens, particularly when used for a plastic lens, the refractive index of the thiourethane resin base material or the aryl resin base material is 1.55 or more; It is preferable that the base material or the aryl resin base material contains a dye.
本発明によれば、 また、 チォウレタン樹脂基材またはァリル樹脂基材の表面に、 前記 (A) 〜 (D) 成分を含有するコーティング組成物を塗布し、 80°C以上の 温度に加熱して該コーティング組成物を硬化させて硬化物層を形成することを特 徵とする積層体の製造方法が提供される。 本発明の積層体は、 上記のコーティング組成物の硬化物層がチォウレタン樹脂 基材またはァリル樹脂基材表面に形成されているため、 水分に対する感度が低く、 しかも耐候性に優れているという特性を有しており、 例えば高湿度下でコ一ティ ング組成物を塗布し或いは吸水した状態でコーティング組成物を塗布する場合に も、 白濁のない透明な硬化物層が得られる。 しかも、 後述する実施例にも示され ているように、 長時間 (200時間) の劣化促進試験後においても、 硬化物層と 樹脂基材との間の密着性低下を生ぜず、 高い密着性が保持される。 このように、 水分に対する感度と耐候性の両方に関して、 本発明の積層体は極めて優れている。 例えば、 他の組成のコーティング組成物を用いてチォウレタン樹脂基材または ァリル樹脂基材表面に硬化物層を形成した場合には、 水分に対する感度は低く、 水分の影響による硬化物層の白濁等は生じなし、が、 耐候性が悪く、 劣化促進試験 後では、 硬化物層と樹脂基材との密着性が大きく低下してしまう。 また、 (A )According to the present invention, a coating composition containing the components (A) to (D) is applied to the surface of a polyurethane resin substrate or an aryl resin substrate, and heated to a temperature of 80 ° C or more. There is provided a method for producing a laminate, which comprises curing the coating composition to form a cured layer. Since the cured product layer of the coating composition is formed on the surface of the thiourethane resin substrate or the aryl resin substrate, the laminate of the present invention has the characteristics of low sensitivity to moisture and excellent weather resistance. For example, even when the coating composition is applied under high humidity or when the coating composition is applied in a state of absorbing water, a transparent cured layer without clouding can be obtained. Moreover, as shown in the examples described later, even after a long-term (200 hours) accelerated deterioration test, the adhesion between the cured material layer and the resin substrate does not decrease, and high adhesion is obtained. Is held. Thus, the laminate of the present invention is extremely excellent in both the sensitivity to moisture and the weather resistance. For example, when a cured product layer is formed on the surface of a polyurethane resin substrate or an aryl resin substrate using a coating composition of another composition, the sensitivity to moisture is low, and the turbidity of the cured product layer due to the influence of moisture is reduced. There is no occurrence, but the weather resistance is poor, and the adhesion between the cured product layer and the resin substrate is greatly reduced after the accelerated deterioration test. Also, (A)
〜 (D ) 成分を含むコーティング組成物を用し、たとしても、 チォウレタン樹脂基 材ゃァリル樹脂基材以外の樹脂基材、 例えばポリカーボネート樹脂基材を用いた 場合には、 (B ) 成分であるエポキシ基含有ケィ素化合物またはその部分加水分 解物との接触によって、 ポリカーボネート樹旨基材の表面が溶解し、 樹脂基材自 体に若干の白濁を生じてしまう。 また、 耐溶斉 U性、 耐擦傷性、 密着性も不十分と なり、 プラスチックレンズとして使用するに ίま不適当である。 When a coating composition containing the components (D) to (D) is used, even if a resin base other than the thiourethane resin base and the aryl resin base, for example, a polycarbonate resin base is used, the component (B) is used. By contact with a certain epoxy group-containing silicon compound or its partial hydrolyzate, the surface of the polycarbonate base material is dissolved, and the resin base material itself becomes slightly cloudy. In addition, the U-resistance, abrasion resistance, and adhesion are insufficient, making them unsuitable for use as plastic lenses.
尚、 本発明において、 積層体の白濁 (或い (ま白化) の有無は、 硬化物層の層方 向に沿って積層体に光を照射することによリ目視で観察される。 硬化物層の層方 向に対して垂直方向に光を照射したのでは、 白濁層が非常に薄いものであるため、 白濁層を透過する光の光路が極端に短く、 目視では白濁はほとんど観察すること ができないからである。  In the present invention, the presence or absence of white turbidity (or whitening) of the laminate is visually observed by irradiating the laminate with light along the direction of the cured product layer. When light is irradiated in the direction perpendicular to the layer direction, the light path of light passing through the cloudy layer is extremely short because the cloudy layer is extremely thin, and the cloudiness is almost visually observed. Is not possible.
このように、 本発明の積層体は、 水分に対する感度特性と耐候性との両方に優 れており、 透明性、 密着性、 擦傷性などの優れた特性が長期間にわたって保持さ れ、 特にプラスチックレンズとして、 その工業的価値は高い。  As described above, the laminate of the present invention is excellent in both sensitivity to moisture and weather resistance, and retains excellent properties such as transparency, adhesion, and abrasion for a long period of time. As a lens, its industrial value is high.
<発明を実施するための最良の形態 > <Best mode for carrying out the invention>
[コーティング組成物]  [Coating composition]
本発明の積層体の製造に用いられるコーティング組成物は、 前述した (Α ) 〜 ( D ) 成分を含有している。  The coating composition used for producing the laminate of the present invention contains the above-mentioned components (I) to (D).
( Α ) 成分  (Α) ingredient
( Α ) 成分は、 酸化スズ及び酸化ジルコニウムからなる複合金属酸化物を、 五 酸化アンチモン及び酸化ゲイ素で被覆した複合金属酸化物微粒子である。 この複 合金属酸化物微粒子は、 通常、 水、 アルコー レ系もしくは他の有機溶剤を分散媒 としてコロイド状に分散させて使用される。  The component (II) is a composite metal oxide fine particle obtained by coating a composite metal oxide composed of tin oxide and zirconium oxide with antimony pentoxide and gallium oxide. These composite metal oxide fine particles are usually used by being dispersed in a colloidal form using water, an alcoholic or other organic solvent as a dispersion medium.
このような複合金属酸化物微粒子は、 酸化スズ及び酸化ジルコニウムからなる 複合金属酸化物を 7 0〜 9 9質量%、 五酸化アンチモン及び酸化ケィ素を合計で 1〜3 0質量%の量で含有していることが好ましく、 より好ましくは、 酸化スズ を 5 0〜9 6質量%、 酸化ジルコニウムを 3〜4 9質量%、 五酸化アンチモンを 1〜2 9 . 9質量%及び酸化ゲイ素を 0 . 1〜2 9質量%の量で含有しているの がよい。 Such composite metal oxide fine particles contain 70 to 99% by mass of a composite metal oxide composed of tin oxide and zirconium oxide, and a total of antimony pentoxide and silicon oxide. It is preferably contained in an amount of 1 to 30% by mass, more preferably 50 to 96% by mass of tin oxide, 3 to 49% by mass of zirconium oxide, and 1 to 29% of antimony pentoxide. It is preferred to contain 9% by mass and 0.1 to 29% by mass of manganese oxide.
尚、 上記の複合金属酸化物微粒子は、 スズゃジルコニウム以外の他の金属酸化 物成分を微量含有していてもよいが、 酸化チタンを実質的に含有しないものであ ることが好適である。 酸化チタンは水分に対する感度が高く、 コーティング組成 物の硬化物層の白化を生じやすく、 また硬化物層の耐候性を低下させる傾向があ る。  The above-mentioned composite metal oxide fine particles may contain a trace amount of a metal oxide component other than tin-zirconium, but preferably contain substantially no titanium oxide. Titanium oxide has high sensitivity to moisture, tends to cause whitening of the cured product layer of the coating composition, and tends to reduce the weather resistance of the cured product layer.
上記の複合金属酸化物微粒子の分散媒としては、 メタノール、 エタノール、 n 一プロパノール、 イソプロパノール、 tーブチルァノレコール、 n—ブチルアルコ ールなどのアルコール系有機溶媒が好ましく、 特にメタノール、 2—プロパノー ルが好ましい。 また、 この時の分散媒中に占める複合金属酸化物微粒子の比率は、 コーティング組成物の硬化物層の屈折率を高くするため、 及び分散媒中において 複合金属酸化物微粒子が不安定になることを防止するために、 1 0質量%〜5 0 質量%が好ましい。  As a dispersion medium of the above-mentioned composite metal oxide fine particles, alcoholic organic solvents such as methanol, ethanol, n-propanol, isopropanol, t-butyl alcohol, and n-butyl alcohol are preferable, and particularly, methanol and 2-propanol are preferable. Are preferred. In addition, the ratio of the composite metal oxide fine particles in the dispersion medium at this time is to increase the refractive index of the cured product layer of the coating composition, and that the composite metal oxide fine particles become unstable in the dispersion medium. In order to prevent the above, the content is preferably from 10% by mass to 50% by mass.
また、 分散安定性を高めるために、 複合金属酸化物微粒子の表面をァミン化合 物及び Z又はカルボン酸で処理したものを使用することも可能である。 この際用 いられるァミン化合物としてはアンモニゥム又はェチルァミン、 トリェチルァミ ン、 イソプロピルァミン、 n—プロピルァミン、 ジメチルァミン、 ジェチルアミ ン、 ジイソプロピルァミン、 ジプロピルァミン等のアルキルァミン、 ベンジルァ ミン等のァラルキルァミン、 モルホリン、 ピぺリジン等の脂環式ァミン、 モノエ タノールァミン、 ジエタノールァミン、 トリエタノールァミン、 イソプロパノー ルァミン等のアルカノールァミンを挙げることができる。 カルボン酸としては、 酢酸、 シユウ酸、 乳酸、 リンゴ酸、 クェン酸、 酒石酸、 サリチル酸、 グリコール 酸、 安息香酸、 フタル酸、 マロン酸、 マンデル酸などを挙げることができる。 こ のような表面処理剤は、 複合金属酸化物微粒子 1 0 0質量部当り、 0 . 0 1乃至 5質量部の範囲内とするのがよい。  Further, in order to enhance the dispersion stability, it is also possible to use a composite metal oxide fine particle whose surface is treated with an amine compound and Z or carboxylic acid. Examples of the amine compound used in this case include ammonium or ethylamine, triethylamine, isopropylamine, n-propylamine, dimethylamine, dimethylamine, diisopropylamine, alkylamine such as dipropylamine, aralkylamine such as benzylamine, morpholine, pyridine, and the like. And alkanolamines such as monoethanolamine, diethanolamine, triethanolamine and isopropanolamine. Examples of the carboxylic acid include acetic acid, oxalic acid, lactic acid, malic acid, citric acid, tartaric acid, salicylic acid, glycolic acid, benzoic acid, phthalic acid, malonic acid, and mandelic acid. Such a surface treatment agent is preferably used in an amount of 0.01 to 5 parts by mass per 100 parts by mass of the composite metal oxide fine particles.
複合金属酸化物微粒子の粒子径は特に限定されないが、 得られる硬化物層の透 明性を損なわないためには、 その平均粒子径は 1 ~ 3 0 0 n mの範囲が好適であ る。 The particle diameter of the composite metal oxide fine particles is not particularly limited, but the average particle diameter is preferably in the range of 1 to 300 nm so as not to impair the transparency of the obtained cured product layer. The
先に述べたように、 上記複合金属酸化物微粒子は、 一般【こ、 分散媒に分散させ た分散液として使用されるが、 かかる分散液 p Hは 4 . 0〜9 . 5であることが 好ましい。 p Hをこのような範囲とすることにより、 複合 属酸化物微粒子の分 散性の低下による分散液の透過率減少を防ぎ、 且つ複合金属酸化物微粒子の分散 安定性の低下によるコーティング組成物の保存安定性の低下を防止することがで きる。  As described above, the composite metal oxide fine particles are generally used as a dispersion dispersed in a dispersion medium, and the dispersion pH may be 4.0 to 9.5. preferable. By adjusting the pH to such a range, it is possible to prevent a decrease in the transmittance of the dispersion liquid due to a decrease in the dispersibility of the composite metal oxide fine particles, and to improve the coating composition due to a decrease in the dispersion stability of the composite metal oxide fine particles. The storage stability can be prevented from lowering.
上述した複合金属酸化物微粒子の配合量は、 金属酸化物の組成比、 最終的に得 られる硬 ί匕物層の目的に応じ所望の物性等により適宜決定すればよく、 後述する ( Β ) 成分 (エポキシ基含有ゲイ素化合物またはその部分カロ水分解物) 1 0 0質 量部当たり、 2 5〜 2 5 0質量部、 特に 4 0質量部〜 2 0 0質量部の範囲である ことが好ましい。 複合金属酸化物微粒子を上記の範囲で用いた場合、 複合金属酸 化物微粒子の量は、 最終的に形成される硬化物層 1 0 0質量部当り、 2 0〜7 0 質量部、 特に 3 0〜6 5質量部となる。 硬化物層当りの複合金属酸化物微粒子の 量が 2 0質量部未満では硬化物層の耐擦傷性、 硬化物層の屈折率等が不十分とな るおそれ 75ある。 また、 硬化物層の上に無機蒸着膜 (反射防止膜) を形成する場 合、 該蒸着膜との密着性も低下するおそれがある。 さらに、 複合金属酸化物微粒 子の硬化物層当リの量が 7 0質量部を超えると硬化物層にクラックが生じる傾向 がある。  The compounding amount of the composite metal oxide fine particles described above may be appropriately determined according to the composition ratio of the metal oxide, the desired physical properties and the like according to the purpose of the finally obtained hardened material layer. (Epoxy group-containing gay compound or its partial carohydrate hydrolyzate) It is preferably in the range of 25 to 250 parts by mass, more preferably 40 to 200 parts by mass, per 100 parts by mass. . When the composite metal oxide fine particles are used in the above range, the amount of the composite metal oxide fine particles is preferably 20 to 70 parts by mass, more preferably 30 to 70 parts by mass, per 100 parts by mass of the finally formed cured layer. 665 parts by mass. If the amount of the composite metal oxide fine particles per cured layer is less than 20 parts by mass, the abrasion resistance of the cured layer, the refractive index of the cured layer, and the like may be insufficient. Further, when an inorganic vapor-deposited film (anti-reflection film) is formed on the cured product layer, the adhesion with the vapor-deposited film may be reduced. Furthermore, if the amount of the composite metal oxide fine particles per cured layer exceeds 70 parts by mass, cracks tend to occur in the cured layer.
なお、 最終的に形成される硬化物層の質量とは、 複合金属酸化物微粒子の質量、 後述する (Β ) エポキシ基含有ケィ素化合物またはその部分加水分解物、 さらに 必要に応じて配合される (Β ) 以外の有機ケィ素化合物、 更にはエポキシ化合物 が重合及び縮合したときの固形分の質量の合計である。 コーティング組成物に添 加しているメタノールなどの有機溶媒は硬化物層形成中に撢発するため、 最終的 に得られる硬化物層の質量には含まれない。  The mass of the cured product layer finally formed is the mass of the composite metal oxide fine particles, the epoxy compound-containing silicon compound described later or a partial hydrolyzate thereof, and further compounded as necessary. This is the total mass of the solid content when the organic silicon compound other than (II) and the epoxy compound are polymerized and condensed. Since the organic solvent such as methanol added to the coating composition is generated during the formation of the cured product layer, it is not included in the mass of the finally obtained cured product layer.
( Β ) 成分 (Β) ingredient
( Β ) 成分のエポキシ基含有ゲイ素化合物は、 バインダーとしての機能を有す るもので リ、 このようなエポキシ基含有ケィ素化合物としては、 それ自体公知 のものを ί可ら制限なく使用することができる。 具体例としては、 rーグリシドキ シプロピル卜リメトキシシラン、 rーグリシドキシプロピルメチルジメ トキシシ ラン、 Tーグリシドキシプロピルメチルジェトキシシラン、 ーグリシドキシプ 口ピルトリエトキシシラン、 β— ( 3、 4一エポキシシクロへキシル) ェチルト リメ トキシシラン及びこれらが一部或いは全部加水分解したもの又は一部縮合し たもの等が挙げられる。 これらの中でも、 後述するチォウレタン樹脂基材または ァリル樹脂基材との密着性の観点から、 Τーグリシドキシプロビルトリメ トキシ シラン、 ーグリシドキシプロピルメチルジメトキシシラン及びこれらが一部或 いは全部加水分解したもの又は一部縮合したものを使用するのカ 好適である。 な お、 エポキシ基含有シラン化合物は 1種のみを使用しても 2種類以上のものを併 用してもよい。 The epoxy group-containing silicon compound as the component (II) has a function as a binder. As such an epoxy group-containing silicon compound, a known per se epoxy compound may be used without any limitation. be able to. As a specific example, r-glycidol Cypropyl trimethoxysilane, r-glycidoxypropylmethyldimethoxysilane, T-glycidoxypropylmethyljetoxysilane, -glycidoxypip propyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane And partially or wholly hydrolyzed or partially condensed thereof. Among them, polyglycidoxypropyltrimethoxysilane, -glycidoxypropylmethyldimethoxysilane, and some or some of these are considered from the viewpoint of adhesion to a thiourethane resin substrate or an aryl resin substrate described later. It is preferable to use a product that is completely hydrolyzed or partially condensed. The epoxy group-containing silane compound may be used alone or in combination of two or more.
上記エポキシ基含有ゲイ素化合物の配合量は、 最終的に得られる硬化物層の目 的に応じて望まれる物性等により適宜決定すればよく、 最終的に形成される硬化 物層 1 0 0質量部当り 3 0〜8 0質量部、 さらに 3 5 ~ 7 0質量部であることが 好ましい。 エポキシ基含有ゲイ素化合物の配合量が 3 0質量部未満では硬化物層 にクラックが生じる傾向があリ、 8 0質量部を超えると耐擦傷性や屈折率等が不 十分になる傾向があり、 また、 硬化物層上に無機蒸着膜を形成する場合に、 両者 の密着性が低下するおそれもある。  The compounding amount of the epoxy group-containing gay compound may be appropriately determined depending on the desired properties and the like according to the purpose of the finally obtained cured product layer, and the finally formed cured product layer 100 mass It is preferably from 30 to 80 parts by mass, more preferably from 35 to 70 parts by mass, per part. If the compounding amount of the epoxy group-containing gay compound is less than 30 parts by mass, cracks tend to occur in the cured product layer, and if it exceeds 80 parts by mass, the scratch resistance and the refractive index tend to be insufficient. Further, when an inorganic vapor-deposited film is formed on the cured product layer, the adhesion between the two may be reduced.
( C ) 成分 (C) component
( C ) 成分の有機溶媒は、 前記の (B ) エポキシ基含有ケィ素化合物や、 必要 に応じ配合される (B ) 成分以外のバインダー成分 (例えば有機ケィ素化合物) を溶解し、 前記複合金属酸化物微粒子を良好に分散させ得る溶媒であって、 揮発 性を有するものであれば公知の有機溶媒を何ら制限なく使用することができる。 このような有機溶媒としては、 メタノール、 エタノール、 n—プロパノール、 ィ ソプロパノール、 n—ブタノール、 t —ブタノ一ル、 n—ペンタノ一ルなどのァ ルコール類;酢酸メチル、 酢酸ェチル、 酢酸プロピル、 プロピオン酸ェチル、 ァ セト酢酸メチル、 ァセト酢酸ェチル、 乳酸ェチルなどのエステゾレ類;エチレング リコールモノイソプロピルエーテル、 エチレングリコールモノェチルエーテル、 エチレングリコールモノ一 n—プロピルエーテル、 エチレングリコールモノ一 n 一ブチルエーテル、 エチレングリコールモノー t一ブチルエーテル、 プロピレン グリコー Jレモノメチルエーテル、 プロピレングリコールモノエチ レエ一テル、 プ 口ピレングリコールモノ一 n—プロピルエーテル、 プロピレングリコールモノ一 n—プチレエーテル、 プロピレングリコールモノメチルエーテルアセテート、 プ 口ピレングリコールモノェチルエーテルァセテ一ト、 ジォキサンなどのエーテル 類;アセトン、 ァセチルァセトン、 ジァセトンアルコールなどのケトン類; メチ レンク口ライドなどのハロゲン化炭化水素;へキサン、 ヘプタン、 シクロへキサ ン、 ベンぜン、 トルエン、 キシレンなどの炭化水素類;等が挙げられる。 これら 有機溶媒 ii、 単独で使用してもかまわないが、 コーティング組成物の物性を制御 する目的 ために 2種以上を混合して用いるのが好ましい。 The organic solvent of the component (C) dissolves the (B) epoxy group-containing silicon compound or a binder component (for example, an organic silicon compound) other than the component (B) that is blended as necessary. A known organic solvent can be used without any limitation as long as it is a solvent capable of favorably dispersing oxide fine particles and has volatility. Examples of such organic solvents include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, and n-pentanol; methyl acetate, ethyl acetate, propyl acetate, and the like. Estezoles such as ethyl propionate, methyl acetate acetate, ethyl acetate acetate, and ethyl lactate; ethylene glycol monoisopropyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, Ethylene glycol mono-t-butyl ether, propylene Glyco J monomethyl ether, propylene glycol monoethyl ether, pyrene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, propylene glycol monomethyl ether acetate, pyrene glycol monoethyl ether Ethers such as acetate and dioxane; ketones such as acetone, acetylacetone and diacetone alcohol; halogenated hydrocarbons such as methylene chloride; hexane, heptane, cyclohexane, benzene, toluene, Hydrocarbons such as xylene; and the like. These organic solvents ii may be used alone, but it is preferable to use a mixture of two or more of them for the purpose of controlling the physical properties of the coating composition.
また、 (B) エポキシ基含有ケィ素化合物及び (B) 以外のバインダー成分と して必要に使用される有機ゲイ素化合物を、 加水分解する目的で使用される酸水 溶液に対する溶解性、 硬化物層形成時の容易な揮発性、 更には硬ィ匕物層を平滑に 形成させるという観点から、 これら有機溶媒の中でも、 メタノーソレ、 イソプロパ ノール、 t ーブタノール、 ァセチルアセトン、 ジァセトンアルコール、 エチレン グリコ一レモノイソプロピルェ一テルなどを使用するのが好適である。  In addition, (B) an epoxy group-containing silicon compound and an organic gayne compound used as a binder component other than (B) are required to be soluble in an acid aqueous solution used for the purpose of hydrolyzing the cured product. Among these organic solvents, methanosol, isopropanol, t-butanol, acetylacetone, diacetone alcohol, ethylene glycol, and the like, from the viewpoint of easy volatility in forming the layer and smooth formation of the hardened layer, It is preferable to use mono-isopropyl ether.
有機溶媒の使用量は特に限定されないが、 通常、 そのトータル量が前記 (B) 成分 100質量部当たリ、 1 00〜 2500質量部、 特に 140〜"! 500質量 部の範囲となるように使用することが好ましい。 (尚、 前述した (A) 成分の複 合金属酸ィ匕物微粒子の分散媒としてアルコール等が使用されていた場合には、 こ のような分散媒の量も、 上記の有機溶媒の量に含まれる。 )  The amount of the organic solvent used is not particularly limited, but usually the total amount is in the range of 100 to 2500 parts by mass, preferably 100 to 2500 parts by mass, particularly 140 to 500 parts by mass per component (B). (If an alcohol or the like is used as a dispersion medium for the fine particles of the composite metal oxide of the component (A), the amount of such a dispersion medium is preferably Included in the amount of organic solvent.)
(D) 成分 (D) Ingredient
(D) 虎分のァセチルァセトナート錯体は、 前述した (B) 成分のエポキシ基 含有ケィ轰化合物の硬化触媒として使用されるものであり、 コーティング組成物 中への溶解性、 コーティング組成物の保存安定性、 形成される硬ィ匕物層の硬度な どの物性を考慮して適宜選択すれば、 公知のものを何ら制限なく使用することが 出来る。 その具体例を示せば、 L i ( I ) , Cu (II) , Z n (I D , Co (D) Tiger acetyl acetonate complex is used as a curing catalyst for the above-mentioned epoxy group-containing cage compound (B), and has a solubility in a coating composition and a coating composition. Known ones can be used without any limitation if they are appropriately selected in consideration of the physical properties such as the storage stability of the product and the hardness of the formed hard layer. Illustratively, L i (I), Cu (II), Zn (I D, Co
(II) , N i (II) , Be (II) , C e (III) , T a (III) , T i (III) , Mn (III) , L a (III) , C r (III) , V (III) , Co (I I I) , F e(II), Ni (II), Be (II), Ce (III), Ta (III), Ti (III), Mn (III), La (III), Cr (III), V (III), Co (III), Fe
(III) , A I (III) , Ce (IV) , Z r (IV) , V (IV) 等を中心金属原子と するァセチルァセトナート錯体を挙げることができる。 特に好ましくは、 (III), AI (III), Ce (IV), Zr (IV), V (IV), etc. Acetyl acetonate complex. Particularly preferably,
A I (III) 、 F e (III) 、 L i ( I ) を中心金属とするァセチルァセトネー卜 錯体などを挙げることができる。 またこれらァセチルァセトナート錯体は、 単独 で伎用しても 2種以上を混合して使用しても何ら問題はない。  Acetyl acetonate complexes having A I (III), Fe (III) and Li (I) as central metals can be mentioned. There is no problem whether these acetyl acetonate complexes are used alone or as a mixture of two or more.
_b記のァセチルァセトナート錯体の添加量は特に制限されないが、 前記 (B) 成分 1 00質量部当たり、 0. 1〜 1 5質量部、 特に 0. 2〜 1 0質量部である ことが好ましい。 また、 最終的に形成される硬化物層 1 00質量部当り、  The amount of the acetyl acetonate complex described in _b is not particularly limited, but is 0.1 to 15 parts by mass, and particularly 0.2 to 10 parts by mass, per 100 parts by mass of the component (B). Is preferred. Further, per 100 parts by mass of the finally formed cured product layer,
0. 0 1 〜5. 0質量部、 特に 0. 1〜3. 0質量部の範囲であることがより好 ましい。 そ CD他の成分 More preferably, it is in the range of 0.01 to 5.0 parts by mass, particularly 0.1 to 3.0 parts by mass. Its CD and other ingredients
本発明で用いるコーティング組成物には、 水分に対する感度特性や耐候性等の 優れた特性が損なわれない限り、 上述した (A) 〜 (D) 成分以外にも各種の成 分を配合することができる。  The coating composition used in the present invention may contain various components in addition to the components (A) to (D) described above, as long as excellent characteristics such as moisture sensitivity and weather resistance are not impaired. it can.
ί列えば、 バインダー成分として、 前述した (Β) 成分以外の有機ゲイ素化合物 やエポキシ化合物を配合することができる。  In this case, an organic gayen compound or epoxy compound other than the above-mentioned component (ii) can be blended as a binder component.
このような有機ゲイ素化合物としては、 テトラエトキシシラン、 ビニルトリ メ トキシシシラン、 ビニルトリエトキシシラン、 ビニルトリァセトキシシラン、 メチルトリメ トキシシラン、 メチルトリエトキシシラン、 メチルトリフエノキシ シラン、 ジメチルジメ トキシシラン、 トリメチルメ トキシシラン、 フエニルトリ メ トキシシラン、 ジフエ二ルジメ卜キシシラン、 シクロへキシルメチルジメ トキ シシラン、 η—プロビルトリメ トキシシラン、 η—プチルトリメ トキシシラン、 イソプチルトリメ トキシシラン、 イソブチルトリエトキシシラン、 η—へキシル トリメ トキシシラン、 η—へキシルトリエトキシシラン、 η—才クチルトリエト キシシラン、 η—デシルトリメ トキシシラン、 1 , 6—ビストリメ 卜キシシラン、 3—ゥレイドプロビルトリエトキシシラン、 トリフルォロプロビルトリメ トキシ シラン、 パーフルォロォクチルェチルトリエトキシシラン、 ークロロプロピル トリメ トキシシラン、 ビニレトリ ( ーメトキシーエトキシ) シラン、 ァリ レ卜 リメ トキシシラン、 rーァクリロキシプロピルトリメトキシシラン、 rーァクリ ロキシプロピソレトリエトキシシラン、 ーメタクリロキシプロピノレトリメ トキシ シラン、 T—メタクリロキシプロピルトリエトキシシラン、 Τーメタクリロキシ プロピルジメトキシメチルシラン、 Τ一メルカプトプロピルトリアルコキシシラ ン、 rーァミノプロビルトリメ トキシシラン、 一ァミノプロピルトリエトキシ シラン、 N—フエ二ルー rーァミノプロビルトリメ トキシシラン、 3—トリエト キシシリル一 N— ( 1 , 3—ジメチル-ブチリデン) プロピルァミン、 N— 2 Examples of such organic gay compounds include tetraethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and trimethylmethoxysilane. Phenyltrimethoxysilane, diphenyldimethoxysilane, cyclohexylmethyldimethoxysilane, η-provyltrimethoxysilane, η-butyltrimethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, η-hexyltrimethoxysilane, η-hexyltriethoxysilane —S-octyltriethoxysilane, η-decyltrimethoxysilane, 1,6-bistrimethoxysilane, 3 —Peridopropyl triethoxysilane, trifluoropropyl trimethoxysilane, perfluorooctylethyl triethoxysilane, -chloropropyl trimethoxysilane, vinyletri (-methoxyethoxy) silane, aryletrimethoxysilane, r- Acryloxypropyltrimethoxysilane, r-acryloxypropisoletriethoxysilane, methacryloxypropinoletrimethoxy Silane, T-methacryloxypropyltriethoxysilane, methacryloxypropyldimethoxymethylsilane, mercaptopropyltrialkoxysilane, r-aminopropyltrimethoxysilane, monoaminopropyltriethoxysilane, N-phenyl r -Aminopropyl trimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N- 2
(アミノエチル) 3—ァミノプロピルトリエトキシシラン、 N— 2 (アミノエチ ル) 3—ァミノプロビルトリメトキシシラン、 N— 2 (アミノエチル) 3—アミ ノプロピルメチルジメ トキシシラン、 p—スチリル卜リメ トキシシラン、 3—ィ ソシァネートプロピルトリエトキシシラン等を例示することができ、 これらは、 単独または 2種以上の組み合わせで使用することができる。 また、 このような有 機ゲイ素化合物は、 加水分解を行なった後に配合することが好ましい。 かかる有 機ゲイ素化合物の配合量は、 最終的に得られる硬化物層の目的に応じて望まれる 物性等により適宜决定すればよく、 一般には前記 (B ) 成分のエポキシ基含有ケ ィ素化合物またはその部分加水分解物 1 0 0質量部当たり、 1 5 0質量部以下、 特に 1 0 0質量部以下であることが好ましい。 また、 最終的に形成される硬化物 層 1 0 0質量部当り、 3 0質量部以下であることが好ましい。  (Aminoethyl) 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropyl trimethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, p-styryl Limethoxy silane, 3-isocyanatopropyltriethoxysilane and the like can be exemplified, and these can be used alone or in combination of two or more. Further, such an organic gay compound is preferably blended after hydrolysis. The compounding amount of the organic gay compound may be appropriately determined according to the physical properties and the like desired according to the purpose of the finally obtained cured product layer. Generally, the epoxy group-containing silicone compound of the component (B) Alternatively, it is preferably at most 150 parts by mass, more preferably at most 100 parts by mass, per 100 parts by mass of the partial hydrolyzate thereof. The amount is preferably 30 parts by mass or less per 100 parts by mass of the finally formed cured material layer.
また、 (B ) 成分以外のエポキシ化合物 (即ち、 シリル基を有していないェポ キシ化合物) としては、 それ自体公知のものを使用することができるが、 その具 体例としては、 1 , 6一へキサンジオールジグリシジルエーテル、 エチレングリ コールジグリシジレエ一テル、 ジエチレングリコールジグリシジルエーテル、 ト リエチレングリコ一ルジグリシジルエーテル、 テトラエチレングリコ一ルジグリ シジルエーテル、 Zナエチレングリコールジグリシジルエーテル、 プロピレング リコールジグリシジルエーテル、 ジプロピレングリコールジグリシジレエ一テル、 トリプロピレングリコールジグリシジルエーテル、 テトラプロピレングリコール ジグリシジルエーテル、 ノナプロピレングリコ一ルジグリシジルエーテル、 ネオ ペンチルグリコーレジグリシジルエーテル、 ネオペンチルグリコ一ルヒドロキシ ピバリン酸エステゾレのジグリシジルエーテル、 トリメチロールプロパンジグリシ ジルエーテル、 トリメチロールプロパントリグリシジルエーテル、 グリセロール ジグリシジルエーテル、 グリセロールトリグリシジルエーテル、 ジグリセロール ジグリシジルエーテル、 ジグリセロールトリグリシジルエーテル、 ジグリセ口一 ルテ卜ラグリシジルエーテル、 ベンタエリスリ ! ルジグリシジルエーテル、 ぺ ンタエリスリ トールトリグリシジルエーテル、 ペンタエリスリ I ^一ルテトラグリ シジルエーテル、 ジペンタエリスリ ! ルテトラグリシジルェ一テル、 ソルビト 一ルテトラグリシジルエーテル、 トリス (2—ヒドロキシェチル) イソシァ灭レ 一卜のジグリシジルエーテル、 ト リス (2—ヒドロキシェチル) イソシァヌ U ^— トのトリグリシジルェ一テル等の脂肪族エポキシ化合物;イソホロンジォ一リレジ グリシジルエーテル、 ビス一 2 , 2—ヒドロキシシクロへキシルプロパンジグリ シジルエーテル等の脂環族エポキシ化合物; レゾルシンジグリシジルエーテ Jレ、 ビスフエノール Aジグリシジルェ一テル、 ビスフエノール Fジグリシジルエーテ ル、 ビスフエノール Sジグリシジ Jレエ一テル、 オルトフタル酸ジグリシジル: Πス テル、 フヱノールノポラックポリグリシジルエーテル、 クレゾールノポラックポ リグリシジルエーテル等の芳香族エポキシ化合物等を挙げることができ、 これら のエポキシ化合物は、 単独或いは 2種以上の組み合わせで使用することがでぎる。 上記した中でも、 1 , 6—へキサンジォ一ルジグリシジルエーテル、 ジエチレン グリコールジグリシジルエーテル、 トリメチロールプロパンジグリシジルエーテ ル、 卜リメチロールプロパントリグリシジルエーテル、 グリセロールジグリシジ ルエーテル、 グリセロールトリグリシジルエーテルが特に好ましい。 このよラな エポキシ化合物の配合量は、 最終的に得られる硬化物層の目的に応じて望まれる 物性等により適宜決定すればよく、 前記 (B ) 成分のエポキシ基含有ゲイ素^:合 物またはその部分加水分解物 1 0 0質量部当たり 1 5 0質量部以下、 特に 1 O 0 質量部以下であることが好ましい。 また、 最終的に形成される硬化物層 1 0 0質 量部当り 3 0質量部以下であることが好ましい。 As the epoxy compound other than the component (B) (that is, an epoxy compound having no silyl group), a known compound can be used. Examples of the specific examples thereof include 1, 6 Hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, tetraethylene glycol diglycidyl ether, Z ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether Glycidyl ether, dipropylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, tetrapropylene glycol diglycidyl ether, nonapropylene glycol diglycidyl ether, neo pliers Glycoregyl glycidyl ether, dipentylglycol of neopentylglycol hydroxypivalic acid esterizole, trimethylolpropanediglycidylether, trimethylolpropanetriglycidylether, glycerol diglycidylether, glycerol triglycidylether, Diglycerol triglycidyl ether, diglycerone Lutetra glycidyl ether, Ventaerythri! Rudiglycidyl ether, pentaerythritol triglycidyl ether, pentaerythryl I-tetratetraglycidyl ether, dipentaerythryl! Triglycidyl ether, sorbitol monotetraglycidyl ether, diglycidyl ether of tris (2-hydroxyethyl) isocyanate, triglycidyl ether of tris (2-hydroxyethyl) isocyanu U ^- Aliphatic epoxy compounds such as isophthalone diylisyl glycidyl ether and bis-1,2,2-hydroxycyclohexylpropane diglycidyl ether; resorcinol diglycidyl ether J-bis, bisphenol A diglycidyl ether , Bisphenol F diglycidyl ether, bisphenol S diglycidyl J ether, diglycidyl orthophthalate: ester, aromatic epoxy such as phenol nopolak polyglycidyl ether, cresol nopolak polyglycidyl ether These epoxy compounds can be used singly or in combination of two or more. Of the above, 1,6-hexanediol diglycidyl ether, diethylene glycol diglycidyl ether, trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, glycerol diglycidyl ether, and glycerol triglycidyl ether are particularly preferable. The compounding amount of such an epoxy compound may be appropriately determined in accordance with the physical properties desired according to the purpose of the finally obtained cured product layer. The epoxy group-containing gay element of the component (B) ^: Compound Alternatively, it is preferably at most 150 parts by mass, more preferably at most 100 parts by mass, per 100 parts by mass of the partial hydrolyzate thereof. Further, the amount is preferably 30 parts by mass or less per 100 parts by mass of the finally formed cured layer.
また、 上述した (B ) 成分のエポキシ基含有ゲイ素化合物や (B ) 成分以外の 有機ゲイ素化合物を加水分解する目的で酸水溶液を配合することができる。 酸水 溶液としては、 上記化合物中のァゾレコキシシリル基を加水分解、 縮合させる機能 を有する酸であれば、 公知の酸が何ら制限無く使用できる。 この様な酸を例 す れば、 塩酸、 硫酸、 硝酸、 燐酸等の無機酸、 酢酸、 プロピオン酸等の有機酸力 挙 げられる。 これらの中でも、 コーティング組成物の保存安定性、 加水分解性 観 点から、 塩酸が好適に使用される。 その濃度は、 0 . 0 1 N〜5 Nの範囲が 適 である。 また、 このような酸水溶 5夜は、 上述した (B ) エポキシ基含有ケィ轰化 合物等の加水分解が有効に促進される程度の量で使用され、 例えば、 前記 (B ) エポキシ基含有ケィ素化合物 1 0 0質量部当たり 1 0 0質量部以下、 好ましくは 5〜8 0質量部、 最も好まし <は 1 0〜5 0質量部となる量で配合するのがよい。 さらに、 ァセチルァセトナート錯体以外の硬化触媒を必要により配合すること もでき、 このような硬化触媒としては、 過塩素酸、 過塩素酸マグネシウム、 過塩 素酸アルミニウム、 過塩素酸亜鉛、 過塩素酸アンモニゥム等の過塩素酸類、 酢酸 ナトリウム、 ナフテン酸亜鉛、 ナフテン酸コバルト、 ォクチル酸亜鉛等の有機金 属塩、 塩化第二錫、 塩化アルミニウム、 塩化第二鉄、 塩化チタン、 塩化亜鉛、 塩 化アンチモン等のルイス酸等が挙げられる。 Further, an acid aqueous solution can be added for the purpose of hydrolyzing the above-mentioned epoxy group-containing gay compound of the component (B) and the organic gay compound other than the component (B). As the acid aqueous solution, known acids can be used without any limitation as long as they have a function of hydrolyzing and condensing the azorecoxysilyl group in the above compound. Examples of such an acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid and propionic acid. Among them, hydrochloric acid is preferably used from the viewpoints of storage stability and hydrolyzability of the coating composition. The concentration is suitably in the range of 0.01 N to 5 N. In addition, such an acidic aqueous solution for 5 nights was subjected to the above-mentioned epoxy group-containing cage (B). It is used in such an amount that hydrolysis of the compound is effectively promoted. For example, 100 parts by mass or less, preferably 5 to 80 parts by mass, per 100 parts by mass of the (B) epoxy group-containing silicon compound. Parts by mass, most preferably <10 to 50 parts by mass. Further, a curing catalyst other than the acetyl acetonate complex may be added as necessary. Examples of such a curing catalyst include perchloric acid, magnesium perchlorate, aluminum perchlorate, zinc perchlorate, Perchloric acids such as ammonium chlorate, organic metal salts such as sodium acetate, zinc naphthenate, cobalt naphthenate, zinc octoate, stannic chloride, aluminum chloride, ferric chloride, titanium chloride, zinc chloride, salt And Lewis acids such as antimony hydride.
さらに、 本発明で用いるコーティング組成物には、 界面活性剤、 帯電防止剤、 紫外線吸収剤、 酸化防止剤、 分散染料、 油溶染料、 蛍光染料、 顔料、 フォトク口 ミック化合物、 ヒンダードァミン、 ヒンダードフヱノール等の添加剤を、 単独或 いは 2種以上の組み合わせで配合することもでき、 これら添加剤を添加すること によリ、 コーティング組成物の塗布性及び硬化後の被膜性能を改良することがで きる。  Further, the coating composition used in the present invention includes a surfactant, an antistatic agent, an ultraviolet absorber, an antioxidant, a disperse dye, an oil-soluble dye, a fluorescent dye, a pigment, a photochromic compound, a hinderdamine, and a hindered polymer. Additives such as knol can be used alone or in combination of two or more.By adding these additives, the coating properties of the coating composition and the film performance after curing can be improved. I can do it.
[樹脂基材] [Resin base material]
本発明の積層体においては、 樹脂基材として、 チォウレタン樹脂基材またはァ リル樹脂基材を選択することが重要である。 即ち、 他の樹脂基材を用いたときに は、 上述したコーティング組成物を用いたとしても、 水に対する感度特性ゃ耐候 性に優れた硬化物層を形成することができない。 この理由は、 明確に解明された わけではないが、 おそらく、 前述したコ一ティング組成物が、 チォウレタン樹脂 基材ゃァリル樹脂基材の表面と化学的もしくは物理的な架橋結合を形成し、 この ため硬化物層と樹脂基材表面との間の密着性が著しく高められ、 しかもこのよう な架橋結合や、 コーティング組成物中の複合金属酸化物が光や水分等に対して極 めて安定であり、 劣悪な環境下に長時間保持された場合にも架橋結合が安定に形 成されているため、 優れた耐 il 性が発現するのではないかと思われる。 例えば、 前述したコーティング組成物を用いてポリカーボネート樹脂基材の表面に硬化物 層を形成した場合には、 硬化 層と樹脂基材との密着性は初期から不十分である。 また、 本発明において用いるこれらの樹脂基材は、 屈折率が 1 . 5 5以上であ ることが、 コーティング組成物との屈折率の差による干渉縞の発生を防止できる ために好適である。 In the laminate of the present invention, it is important to select a urethane resin substrate or an aryl resin substrate as the resin substrate. That is, when another resin base material is used, a cured product layer excellent in sensitivity characteristic to water / weather resistance cannot be formed even if the above-mentioned coating composition is used. Although the reason for this has not been clearly elucidated, it is likely that the above-described coating composition forms a chemical or physical cross-link with the surface of the thiourethane resin-based resin and the aryl resin-based material, Therefore, the adhesion between the cured product layer and the surface of the resin base material is remarkably improved, and such a cross-linking and the composite metal oxide in the coating composition are extremely stable against light and moisture. Yes, the cross-linking is formed stably even when it is kept for a long time in a poor environment, so it seems that excellent il resistance will be exhibited. For example, when a cured layer is formed on the surface of a polycarbonate resin substrate using the above-described coating composition, the adhesion between the cured layer and the resin substrate is insufficient from the beginning. These resin substrates used in the present invention have a refractive index of 1.55 or more. It is preferable that interference fringes due to a difference in refractive index from the coating composition can be prevented.
樹脂基材として用いるチォウレタン樹脂 (ま、 チオールとイソシァネートとを反 応させて得られる。 チオールとしては、 例えば、 1 , 2—エタンジチオール、 1 , 6—へキサンジチオール、 1 , 2 , 3—プロパントリチオール、 プロパントリス Thiourethane resin used as a resin base material (obtained by reacting thiol with isocyanate. Examples of thiol include 1,2-ethanedithiol, 1,6-hexanedithiol, 1,2,3-propane Trithiol, propane tris
( 2—メルカプトアセテート) 、 1 , 3—プロパンジチオール、 テトラキス (メ ルカプトメチル) メタン、 ぺタエリスリ ト一ルテトラキス (2—メルカプトァセ テ一卜) 、 ペンタエリスリ トールテトラキス (2—メルカプトプロピオネー卜) 、 テトラキス (2—メルカプトェチルチオメチル) プロパン、 2—メルカプトエタ ノール、 2 , 3—ジメルカプトプロパノーレ、 3—メルカプト一 1 , 2—プロパ ンジオール、 ジ ( 2—メルカプトェチル) スルフイ ド、 2 , 5—ジメルカプト一 1 , 4—ジチアン、 2 , 5—ジメルカプト チル一 1 , 4ージチアン、 トリス(2-mercaptoacetate), 1,3-propanedithiol, tetrakis (mercaptomethyl) methane, petaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (2-mercaptopropionate), tetrakis (2 —Mercaptoethylthiomethyl) propane, 2-mercaptoethanol, 2,3-dimercaptopropanol, 3-mercapto-1,1,2-propanediol, di (2-mercaptoethyl) sulfide, 2,5— Dimercapto-1,4-dithiane, 2,5-Dimercaptotyl-1,4-dithiane, Tris
(メルカプトメチル) イソシァヌレート、 1 , 4—ジメルカプトシクロへキサン、 4一メルカプトフエノール、 1, 2—ベンゼンジチオール、 1, 3, 5—べンゼ ントリチオール、 1 , 2—ジメルカプトメチルベンゼン、 1, 3—ジメルカプト メチルベンゼン、 1 , 4—ジメルカプトメチルベンゼン、 1, 3 , 5—トリメル カプトメチルベンゼン、 ビスメルカプトェチルスルフイ ド、 1, 2—ビス { ( 2 一メルカプトェチル) チォ } —3—メルカプトプロパン、 1, 2—ビス (メルカ ブトメチルチオ) エタン、 テトラキス (メ レカプトェチルチオメチル) メタン等 が挙げられる。 (Mercaptomethyl) isocyanurate, 1,4-dimercaptocyclohexane, 4-mercaptophenol, 1,2-benzenedithiol, 1,3,5-benzenetrithiol, 1,2-dimercaptomethylbenzene, 1,2 3-dimercaptomethylbenzene, 1,4-dimercaptomethylbenzene, 1,3,5-trimercaptomethylbenzene, bismercaptoethyl sulfide, 1,2-bis {(2-mercaptoethyl) thio} —3 —Mercaptopropane, 1,2-bis (mercaptomethylthio) ethane, tetrakis (mercaptoethylthiomethyl) methane and the like.
またイソシァネートとしては、 例えば、 チレンジフエニルジイソシァネート、 2 , 4一トリレンジイソシァネート、 2 , 6—トリレンジイソシァネート、 1, 2—ジイソシアナ一卜ベンゼン、 1 , 3—ジイソシアナ一トベンゼン、 1 , 4— ジイソシアナ一トベンゼン、 1 , 2—ジィソシアナ一トメチルベンゼン、 1, 3 —ジイソシアナ一トメチルベンゼン、 1 , 4ージイソシアナ一トメチルベンゼン、 4 , 4, ージフエ二レンジイソシァネー卜、 3 , 3 ' —ジメチルー 4 , 4, 一ジ フエ二レンジイソシァネート、 キシリレンジイソシァネート、 ナフチレン 1, 5 —ジイソシァネート、 テトラメチルキシレンジイソシァネート、 イソホロンジィ ソシァネート、 ジシクロへキシルメタンジ^ Tソシァネート、 へキサメチレンジィ ソシァネート、 テトラメチルキシリレンジ <ソシァネート、 1, 3, 5—トリイ ソシアナ一トメチルシクロへキサン等を げることが出来る。 Examples of the isocyanate include tylene diphenyl diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,2-diisocyanatobenzene, and 1,3-diisocyanate. 1,4-diisocyanatomethylbenzene, 1,2-diisocyanatomethylbenzene, 1,3-diisocyanatomethylbenzene, 1,4-diisocyanatomethylbenzene, 4,4, diphenylenediocyanate Tri, 3,3'-dimethyl-4,4,1-diphenylenediisocyanate, xylylenediisocyanate, naphthylene 1,5-diisocyanate, tetramethylxylenediisocyanate, isophoronediisosocyanate, dicyclohexylmethanedi ^ T socyanate, hexamethylenedi socyanate, tetramethylki Rirenji <Soshianeto, 1, 3, 5-Torii And sodium cyanomethylcyclohexane.
樹脂基材として用いるァリル樹脂は、 "リル基を含有するモノマーの重合によ リ得られる重合体であり、 ァリル基含有 Έ:ノマーの具体例としては、 ァリルジグ リコールカーボネート、 ジァリルイソフタ レート及びそのオリゴマー、 ジァリル テレフタレート及びそのオリゴマー等が げられる。  The aryl resin used as the resin base material is a polymer obtained by polymerization of a monomer containing an aryl group. Specific examples of the aryl group-containing nomer include aryl diglycol carbonate, diaryl isophthalate and its oligomer, Examples include diaryl terephthalate and its oligomers.
[積層体の製造] [Manufacture of laminated body]
本発明の積層体は、 上述した樹脂基材 (チォウレタン樹脂基材またはァリル樹 脂基材) の表面に前記コーティング組成物を塗布し、 該組成物を硬化させて硬化 物層を形成することにより製造される。  The laminate of the present invention is obtained by applying the coating composition to the surface of the above-mentioned resin base material (thiourethane resin base material or aryl resin base material) and curing the composition to form a cured product layer. Manufactured.
コーティング組成物の塗布に際しては、 基材と硬化物層の密着性を向上させる 目的で、 あらかじめ基材表面をアルカリ 5a理、 酸処理、 界面活性剤処理、 u vォ ゾン処理、 無機あるいは有機物の微粒子 I二よる研磨処理、 又はプラズマもしくは コロナ放電処理を行うことが効果的である。 コ一ティング組成物の塗布は、 ディ ッビング法、 スピンコート法、 スプレー去あるいはフロー法等により行うことが できる。 特にメガネレンズ用途としては、 数多くの基材の両面を効率よく塗膜す るため、 デイツビング法が好適に使用さ る。  When applying the coating composition, the surface of the base material must be treated in advance with an alkali 5a treatment, acid treatment, surfactant treatment, uv ozone treatment, inorganic or organic fine particles in order to improve the adhesion between the base material and the cured product layer. It is effective to perform a polishing treatment by I2 or a plasma or corona discharge treatment. The coating composition can be applied by a diving method, a spin coating method, a spraying method or a flow method. In particular, for eyeglass lenses, the dive method is preferably used in order to efficiently coat both surfaces of many substrates.
塗布後の硬化は、 乾燥空気あるいは空 中で風乾した後に、 通常、 加熱処理す ることによって行われる。 加熱温度は、 一般に、 8 0 °C以上、 特に 1 o o °c以上 であって樹脂基材が変形しない温度、 一 ISには 1 5 0 °C以下の範囲が好適である。 硬化時間は、 1 3 0 °Cで約 2時間、 1 0 O〜 1 2 0 °Cで約 2 ~ 5時間が一応の目 安となる。 硬化して形成される硬化物層 ί 、 0 . 1〜5 0 / m程度の厚みとする ことが可能であるが、 この積層体をメガ レンズ用に用いる場合には、 硬化物層 の厚みは 1 ~ 1 0 mの範囲が特に好適である。  Curing after application is usually carried out by air drying in dry air or air and then heat treatment. The heating temperature is generally 80 ° C. or higher, particularly 1 ° o ° C. or higher, and is a temperature at which the resin base material is not deformed, and one IS is preferably 150 ° C. or lower. The curing time is about 2 hours at 130 ° C and about 2 to 5 hours at 100 ° C to 120 ° C. The cured product layer 物 formed by curing can have a thickness of about 0.1 to 50 / m, but when this laminate is used for a mega lens, the thickness of the cured product layer is A range of 1 to 10 m is particularly preferred.
このようにして得られた積層体においては、 必要により、 硬化物層の表面上に、 無機物からなる反射防止膜を形成する被]!奠化方法としては、 真空蒸着法、 イオン プレーティング法、 スパッタリング法等 挙げられる。 真空蒸着法においては、 蒸着中にイオンビームを同時に照射する fオンビームアシスト法を用いてもよい。 また、 このような反射防止膜は、 単層或し、は多層構造のどちらであってもかまわ ない。 反射防止膜を形成する無機物の例としては、 S i Oウ, S i O , Z r 0 2 , T i 02, T i O, T i 203, T i 205, A I 203, T a 2 O 5, C e02, MgO, Y203, S n 02, M g F2> WO 3などの酸化物が挙げられる。 これ らの無機酸化物は単独でも 2種以上の組み合わせであってもよい。 In the laminate obtained in this manner, if necessary, an antireflection film made of an inorganic substance is formed on the surface of the cured material layer. Sputtering method and the like. In the vacuum deposition method, an on-beam assist method in which an ion beam is simultaneously irradiated during the deposition may be used. Further, such an antireflection film may have either a single layer or a multilayer structure. Examples of inorganic substances forming an antireflection film, S i O U, S i O, Z r 0 2, T i 0 2, T i O , T i 2 0 3, T i 2 0 5, AI 2 0 3, T a 2 O 5, C e0 2, MgO, Y 2 0 3, S n 0 2, M g oxides such as F 2> WO 3 and the like. These inorganic oxides may be used alone or in combination of two or more.
<実施例 > <Example>
以下、 実施例および比較例を掲げて本発明を説明するが、 本発明はこれらの実 施例に限定されるものではない。  Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
実施例及び比較例において、 複合金属酸化物微粒子のゾルとしては、 以下のも のを用いた。  In Examples and Comparative Examples, the following sols were used as the sol of the composite metal oxide fine particles.
複合金属酸化物微粒子ゾル ( a ) :実施例 1〜 1 0及び比較例 3で使用  Composite metal oxide fine particle sol (a): used in Examples 1 to 10 and Comparative Example 3
酸化スズ及び酸化ジルコニウムからなる複合金属酸化物を、 五酸化アンチ モン及び酸化ゲイ素で被覆した複合金属酸化物微粒子を、 メタノールに分散 したもの (日産化学工業 (株) 製 HXシリーズ) 。  Composite metal oxide particles composed of tin oxide and zirconium oxide, coated with antimony pentoxide and gallium oxide, and dispersed in methanol (HX series manufactured by Nissan Chemical Industries, Ltd.).
酸化スズ一酸化ジルコニウム一五酸化アンチモン一酸化ゲイ素 (質量% 比) : 77. 7/1 1. 7/7. 0X3. 6  Tin oxide, zirconium oxide, antimony pentoxide, and manganese oxide (% by mass): 77.7 / 1/1/7/7. 0X3.6
固形分濃度; 30. 1質量%  Solids concentration; 30.1% by mass
p H; 7. 3  pH; 7.3
複合金属酸化物微粒子ゾル ( b ) :比較例 1及び 4で使用  Composite metal oxide fine particle sol (b): used in Comparative Examples 1 and 4.
酸化チタン、 酸化スズ及び酸化ジルコニウムからなる複合金属酸化物を、 五酸化アンチモンで被覆した複合金属酸化物微粒子を、 メタノールに分散し たもの (日産化学工業 (株) 製 H I Tシリーズ) 。  Composite metal oxide particles composed of titanium oxide, tin oxide and zirconium oxide, coated with antimony pentoxide, and dispersed in methanol (HIT series manufactured by Nissan Chemical Industries, Ltd.).
酸化チタン一酸化スズ一酸化ジルコニウム一五酸化アンチモン (質量% 比) : 5~1 5/1 5〜25 1〜5 1 ~5  Titanium oxide, tin monoxide, zirconium oxide, antimony pentoxide (% by mass): 5 to 15/1/5 to 25 1 to 5 1 to 5
固形分濃度; 30. 0質量%  Solid content: 30.0% by mass
p H; 7. 5  pH; 7.5
複合金属酸化物微粒子ゾル (c) :比較例 2で伎用  Mixed metal oxide fine particle sol (c): Comparative example 2
酸化チタン、 酸化ジルコニウム及び酸化ケィ素からなる複合金属酸化物微 粒子を、 メタノールに分散したもの (触媒化成工業 (株) 製、 商品名 「ォプ 卜レイク 1 1 3 OZJ ) 。  A composite metal oxide fine particle composed of titanium oxide, zirconium oxide and silicon oxide dispersed in methanol (trade name "Opt Lake 113 OZJ", manufactured by Catalyst Chemical Industry Co., Ltd.).
固形分濃度; 30. 0質量% p H; 4. 8 また、 各実施例及び比較例におけるレンズ (積層体) の ¾1化物層の特性評価方 法は、 以下の通りである。 Solid content: 30.0% by mass pH: 4.8 In addition, the method for evaluating the characteristics of the iodide layer of the lens (laminate) in each of Examples and Comparative Examples is as follows.
(a) 外観 (a) Appearance
目視検査で硬化物層の透明性を観察した。 即ち、 光源 (キャビン工業 (株) 製 c o l o r CAB I N I I I ) からの光束の方向に対して試料レンズの光軸が 垂直となるように、 試料レンズを光束中に配置し、 レンズ <7)光軸方向から目視で 観察することにより、 白濁の程度で硬化物層の透明性を評姻した。 評価基準は、 以下の通りである。  The transparency of the cured product layer was observed by visual inspection. That is, the sample lens is arranged in the light beam so that the optical axis of the sample lens is perpendicular to the direction of the light beam from the light source (color CAB INIII manufactured by Cabin Industry Co., Ltd.). Lens <7) Optical axis direction From the visual observation, the transparency of the cured product layer was evaluated by the degree of cloudiness. The evaluation criteria are as follows.
◎:硬化物層を有するレンズがほぼ透明であり、 白 蜀が観察されない。 ◎: The lens having the cured product layer was almost transparent, and no white bubbles were observed.
〇:若干の白濁が観察される。 〇: Slight cloudiness is observed.
Δ:かなりの白濁の程度が観察される。  Δ: A considerable degree of cloudiness is observed.
X :完全に白濁している。  X: Completely cloudy.
(b) 耐溶剤性  (b) Solvent resistance
メタノール、 イソプロピルアルコール、 トルエン、 ァセ トン或し、は 0. 4質 量%濃度の N a OH水溶液のそれぞれに、 試料レンズを 2 4時間含浸し、 表面状 態変化によリ耐溶剤性を評価した。 評価基準は以下の通リである。  A sample lens is immersed in methanol, isopropyl alcohol, toluene, acetone, or a 0.4 mass% NaOH aqueous solution for 24 hours, and the solvent resistance is improved by changing the surface state. evaluated. The evaluation criteria are as follows.
〇:含浸前と変化がない。  〇: No change from before impregnation.
X :含浸前に比して変化が認められる。  X: Change is observed as compared to before impregnation.
(c) 耐擦傷性  (c) Scratch resistance
スチールウール (日本スチールウール (株) 製ポンスター #0000番) を用 い、 試料レンズの表面 (硬化物層表面) を 1 k gの荷重で 1 0往復擦り、 傷つい た程度を目視で 3段階評価した。 評価基準は次の通リである。  Using a steel wool (Pontstar # 0000 manufactured by Nippon Steel Wool Co., Ltd.), the surface of the sample lens (cured material layer surface) was rubbed 10 times back and forth with a load of 1 kg, and the degree of damage was visually evaluated in three steps. . The evaluation criteria are as follows.
A:ほとんど傷がつかない。  A: Almost no scratch.
B:少し傷がつく。  B: Slightly damaged.
C:塗膜が剥離している。  C: The coating film has peeled off.
(d) 密着性  (d) Adhesion
硬化物層とレンズ基材 (樹脂基材) との密着性を、 J I SD— 0202に準じ てのクロスカツトテープ試験によって評価した。 Adhesion between the cured product layer and the lens substrate (resin substrate) according to JI SD-0202 All crosscut tape tests evaluated.
すなわち、 カッターナイフを使い、 レンズ表面 (硬化物表面) に約 1 mm間隔 に切れ目を入れ、 マス目を 1 00個形成させる。 その上にセロファン粘着テープ That is, using a cutter knife, cuts are made at intervals of about 1 mm on the lens surface (cured material surface) to form 100 squares. Cellophane adhesive tape on it
(ニチバン (株) 製セロテープ) を強く貼り付けた後、 表面から 90° 方向へ一 気に引っ張り剥離した後、 硬化物層の残っているマス目を測定した。 評価結果は、(Nichiban Co., Ltd. Cellotape) was strongly adhered, and it was pulled at once from the surface in the direction of 90 ° and peeled off, and the squares where the cured product layer remained were measured. The evaluation result is
(残っているマス目数) /1 00で表した。 (Number of remaining cells) / 100
(e) 耐候性  (e) Weather resistance
光照射による硬化物層の耐候性 (耐久性【こ相当) を評価するために、 劣化促進 試験を行い、 劣化促進試験後に、 上記と同様の方法で密着性を測定し、 この密着 性によリ耐候性を評価した。  In order to evaluate the weather resistance (durability [equivalent to durability]) of the cured product layer due to light irradiation, a deterioration promotion test was performed. After the deterioration promotion test, the adhesion was measured in the same manner as above, and the adhesion was measured. The weather resistance was evaluated.
尚、 劣化促進試験は、 試料レンズをスガ試験器 (株) 製キセノンウエザーメー ター X 25により 200時間促進劣化させることにより行った。  The accelerated deterioration test was performed by accelerating the sample lens for 200 hours using Xenon Weather Meter X25 manufactured by Suga Test Instruments Co., Ltd.
( f ) 保存安定性  (f) Storage stability
コーティング組成物調製後、 20°Cの温度に、 3週間および 5週間保存した後 に、 各コーティング組成物を用いて、 硬化!!^層を形成し、 得られた硬化物層の外 観、 耐溶剤性、 耐擦傷性、 密着性、 耐候性を評価することにより、 保存安定性を 評価した。  After the coating composition was prepared, it was stored at a temperature of 20 ° C. for 3 weeks and 5 weeks, and then cured using each coating composition to form a cured layer. The storage stability was evaluated by evaluating solvent resistance, scratch resistance, adhesion, and weather resistance.
—実施例 1一 —Example 11
(1 ) コーティング組成物の調整  (1) Adjustment of coating composition
r—グリシドキシプロビルトリメ トキシシラン 5 30. 1質量部、 メタノールr- glycidoxy pro built Increment Tokishishiran 5 3 0.1 parts by mass Methanol
700質量部を混合した。 この液を十分に!^拌しながら、 0. 05 Nの塩酸水溶 液 1 21. 3質量部を添加し、 3時間継続して撹拌した。 次いで、 この混合液に、 シリコン系界面活性剤 (日本ュニ力一 (株) 製、 商品名 「L一 7001 J ) 2. 0質量部、 700 parts by weight were mixed. While the solution was sufficiently stirred, 121.3 parts by mass of a 0.05 N aqueous hydrochloric acid solution was added thereto, and the mixture was continuously stirred for 3 hours. Next, 2.0 parts by mass of a silicon-based surfactant (trade name “L-17001 J”, manufactured by Nippon Rikiichi Co., Ltd.)
A I ( I I I ) ァセチルァセトナート 7. 3質量部、  A I (I I I) acetyl acetate 7.3 parts by mass,
t―ブチルアルコール 400質量部、  400 parts by mass of t-butyl alcohol,
複合金属酸化物微粒子ゾル ( a ) 1 250質量部、  Composite metal oxide fine particle sol (a) 1 250 parts by mass,
を添加混合し、 5時間撹拌後、 一昼夜熟成させてコーティング組成物 (A) を得 た。 また、 コーティング組成物 (A) の一部を小分けし、 これに含量が 1 0質量% となるように蒸留水を添加し、 約 1時間撹拌し、 水添力□コーティング組成物 Was added and mixed, and the mixture was stirred for 5 hours, and then aged all day and night to obtain a coating composition (A). Further, a part of the coating composition (A) was subdivided, and distilled water was added thereto so that the content became 10% by mass, and the mixture was stirred for about 1 hour.
(Α') を調製した。 (2) 硬化物層の形成  (Α ') was prepared. (2) Formation of cured layer
屈折率 1. 60のチォウレタン樹脂レンズ (三井東 ΙΞ製樹脂: MR8) を用意 し、 このチォウレタン樹脂レンズを、 40°Cの 1 0% a ΟΗ水溶液に 5分間浸 漬してアル力リ処理を行った。  Prepare a urethane resin lens with a refractive index of 1.60 (Mitsui East 井 resin: MR8), immerse the urethane resin lens in a 10% aqueous solution of water at 40 ° C for 5 minutes, and carry out an air treatment. went.
前記で得られたコーティング組成物 (A) 或いは (Α') に、 アルカリ処理さ れた上記のチォウレタン樹脂レンズをディッビングし、 30 cm/分の速度で引 き上げて該チォウレタン樹脂レンズの表面にコーティング組成物を塗布した。 デ イツビングは、 相対湿度 30%RH、 50%RH、 7 O % R H (いずれも温度が 23°C程度) の 3条件で実施した。 塗布後 70°Cで 2 O分乾燥した後、 1 20°C で 4時間保持して硬化を行い、 硬化物層を表面に備え/::レンズを得た。  The above-described alkali-treated thiourethane resin lens is dipped in the coating composition (A) or (Α ′) obtained above, and is pulled up at a speed of 30 cm / min to form a coating on the surface of the thiourethane resin lens. The coating composition was applied. The dive was performed under three conditions of relative humidity of 30% RH, 50% RH, and 7O% RH (each temperature was about 23 ° C). After application, the coating was dried at 70 ° C. for 2 O minutes, and then cured at 120 ° C. for 4 hours to obtain a cured product layer on the surface to obtain a :: lens.
形成された硬化物層は、 厚みは約 2ミクロン、 屈折率 1. 60の無色透明な膜 であった。  The formed cured material layer was a colorless and transparent film having a thickness of about 2 microns and a refractive index of 1.60.
また、 コーティング組成物 (A) 及び (A,) を 30 %RH条件下でディツビ ングして形成されたレンズ (硬化物層) については、 前述した (a) 外観、  The lens (cured material layer) formed by diving the coating compositions (A) and (A,) under the condition of 30% RH is described in (a) Appearance,
(b) 耐溶剤性、 耐擦傷性、 (d) 密着性、 (e) 耐 ί侯性の全てについて評価し、 50%RH及び 70%RH条件下でディッビングして形成されたレンズについて は、 (a) 外観のみついて評価を行い、 その結果を表 1に示した。  (b) Solvent resistance, scratch resistance, (d) adhesion, and (e) weather resistance were all evaluated. For lenses formed by diving under 50% RH and 70% RH conditions, (A) Only the appearance was evaluated, and the results are shown in Table 1.
さらに、 コーティング組成物 (A) 及び (Α') を、 20°Cの温度に、 3週間 及び 5週間保持した後に、 上記と全く同様にして硬化物層を形成したレンズにつ いても、 上記と同様に各特性の評価を行うことにより、 保存安定性を評価した。 その結果を表 2及び表 3に示した。 一実施例 2—  Furthermore, after holding the coating compositions (A) and (Α ′) at a temperature of 20 ° C. for 3 weeks and 5 weeks, a lens in which a cured layer was formed in the same manner as described above was also used. The storage stability was evaluated by evaluating each property in the same manner as described above. The results are shown in Tables 2 and 3. Example 2—
樹脂基材として、 屈折率が 1. 60チォウレタン樹脂レンズの代わりに屈折率 1. 67のチォウレタン樹脂レンズ (三井東圧製樹脂 : MR 7) を用いた以外は、 実施例 1と全く同様にして、 厚さ約 2ミクロン、 屈折率 1. 60の無色透明な硬 化物層を表面に備えたレンズを作製し、 且つ実施倒 1と全く同様にして各種特性 を評価し、 その結果を表 1〜表 3に示した。 一実施例 3— The same procedure as in Example 1 was conducted, except that a 1.67 polyurethane resin lens with a refractive index of 1.67 was used as the resin base material instead of a polyurethane resin lens with a refractive index of 1.67 (Mitsui Toatsu resin: MR7). , About 2 microns thick, colorless and transparent with a refractive index of 1.60 A lens having a compound layer on the surface was prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3. Example 3—
樹脂基材として、 屈折率が 1. 60チォウレタン樹脂レンズの代わりに屈折率 1. 60のァリル樹脂レンズを用いた以外は、 実施例 1と全く同様にして、 厚さ 約 2ミクロン、 屈折率 1. 60の無色透明な硬化物層を表面に備えたレンズを作 製し、 且つ実施例 1と全く同様にして各種特性を評価し、 その結果を表 1〜表 3 に示した。 一実施例 4一  Except for using an aryl resin lens having a refractive index of 1.60 instead of the 1.60 thiourethane resin lens as the resin base material, the thickness was about 2 microns and the refractive index was 1 in the same manner as in Example 1. A lens having a colorless and transparent cured product layer on the surface was prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3. Example 4
rーグリシドキシプロビルトリメトキシシラン 530. 1質量部、 メタノール 1 25質量部、 ァセチルアセトン 200質量部、 イソプロピルアルコール 375 質量部を混合した。 この液に、 実施例 1と全く同榜にして、 0. 05 Nの塩酸水 溶液、 シリコン系界面活性剤、 A l ( I I I ) ァセチルァセトナート、 t一プチ ルアルコール及び複合金属酸化物微粒子ゾル (a> を混合して、 コーティング組 成物 (B) を得た。 さらに、 実施例 1と全く同様【こして、 水添加コーティング組 成物 (Β') を調製した。 530.1 parts by mass of r-glycidoxypropyltrimethoxysilane, 125 parts by mass of methanol, 200 parts by mass of acetylacetone, and 375 parts by mass of isopropyl alcohol were mixed. In exactly the same manner as in Example 1, a 0.05 N hydrochloric acid solution, a silicon-based surfactant, Al (III) acetyl acetonate, t-butyl alcohol and a composite metal oxide were added to this solution. The fine particle sol ( a >) was mixed to obtain a coating composition (B). Furthermore, a water-added coating composition (Β ') was prepared in exactly the same manner as in Example 1.
上記のコーティング組成物 (Β) 、 (Β' ) を用いた以外は、 実施例 1と全く 同様にして、 厚さ約 2ミクロン、 屈折率 1. 600)無色透明な硬化物層を表面に 備えたレンズを作製し、 且つ実施例 1と全く同様 fこして各種特性を評価し、 その 結果を表 1〜表 3に示した。 一実施例 5—  Except that the above coating compositions (Β) and (Β ') were used, in the same manner as in Example 1, a thickness of about 2 microns and a refractive index of 1.600) a colorless and transparent cured layer was provided on the surface. Each lens was manufactured, and various characteristics were evaluated in exactly the same way as in Example 1. The results are shown in Tables 1 to 3. Example 5—
rーグリシドキシプロビルトリメトキシシラン 530. 1質量部、 メタノール 400質量部及びイソプロピルアルコール 300質量部を混合した。 この液を十 分に撹拌しながら、 0. 05 Nの塩酸水溶液 1 2 1. 3質量部を添加し、 3時間 継続して撹拌した。 次いで、 この混合液に、  530.1 parts by mass of r-glycidoxypropyltrimethoxysilane, 400 parts by mass of methanol and 300 parts by mass of isopropyl alcohol were mixed. While sufficiently stirring this solution, 12.3 parts by mass of a 0.05 N aqueous hydrochloric acid solution was added thereto, and the mixture was continuously stirred for 3 hours. Then, to this mixture,
シリコン系界面活性剤 (日本ュニカー (株) 襲、 商品名 「|_ー7001」 ) Silicon surfactant (attacked by Nippon Tunicer Co., Ltd., brand name "| _ 7001")
2. 0質量部、 A I ( I I I ) ァセチルァセトナート 7. 3質量部、 2.0 parts by mass, AI (III) acetyl acetate 7.3 parts by mass,
エチレングリコールモノイソプロピルエーテル 400質量部、  400 parts by mass of ethylene glycol monoisopropyl ether,
複合金属酸化物微粒子ゾル ( a ) 1 250質量部、  Composite metal oxide fine particle sol (a) 1 250 parts by mass,
を添加混合し、 5時間撹拌後、 一昼夜熟成させてコーティング組成物 (C) を得 た。 さらに、 実施例 1と全く同様にして、 水添力□コーティング組成物 (C') を 調製した。 Was added and mixed, and the mixture was stirred for 5 hours and then aged all day and night to obtain a coating composition (C). Further, a hydrogenation force coating composition (C ′) was prepared in exactly the same manner as in Example 1.
上記のコーティング組成物 (C) 或いは (C,) を使用し、 樹脂基材として、 屈折率が 1 , 60チォウレタン樹脂レンズの代 りに屈折率 1. 67のチォウレ タン樹脂レンズ (三井東圧製樹脂: MR 7) を用いた以外は、 実施例 1と全く同 様にして、 厚さ約 2ミクロン、 屈折率 1. 60 無色透明な硬化物層を表面に備 えたレンズを作製し、 且つ実施例 1と全く同様 Iこして各種特性を評価し、 その結 果を表 1〜表 3に示した。  Using the above coating composition (C) or (C,), instead of a 1,60 polyurethane resin lens with a refractive index of 1.67, a polyurethane resin lens with a refractive index of 1.67 (made by Mitsui Toatsu) Resin: Except for using MR7), a lens with a thickness of about 2 microns and a refractive index of 1.60 a colorless and transparent cured layer on the surface was prepared and implemented in exactly the same manner as in Example 1. Various characteristics were evaluated in exactly the same manner as in Example 1, and the results are shown in Tables 1 to 3.
—実施例 6— —Example 6—
rーグリシドキシプロビルトリメ トキシシラン 47 1. 0質量部、 テトラエト キシシラン 69. 0質量部及びメタノール 40 O質量部を混合した。 この液を十 分に撹拌しながら、 0. 05 Nの塩酸水溶液 1 3 1. 66質量部を添加し、 3時 間継続して撹拌した。 次いで、 この混合液に、  471.0 parts by mass of r-glycidoxypropyltrimethoxysilane, 69.0 parts by mass of tetraethoxysilane and 40 parts by mass of methanol were mixed. While the liquid was sufficiently stirred, 13.66 parts by mass of a 0.05 N aqueous hydrochloric acid solution was added thereto, and the mixture was continuously stirred for 3 hours. Then, to this mixture,
シリコン系界面活性剤 (日本ュニ力一 (株) 製、 商品名 「L— 7001 J ) 2. 0質量部、  Silicon-based surfactant (manufactured by Nippon Rikiichi Co., Ltd., trade name "L-7001J") 2.0 parts by mass,
A I ( I I I ) ァセチルァセトナート 7. 3質量部、  A I (I I I) acetyl acetate 7.3 parts by mass,
t一ブチルアルコール 380質量部、  t-butyl alcohol 380 parts by mass,
複合金属酸化物微粒子ゾル ( a ) 1 250質量部、  Composite metal oxide fine particle sol (a) 1 250 parts by mass,
を添加混合し、 5時間撹拌後、 一昼夜熟成させてコーティング組成物 (D) を得 た。 さらに、 実施例 1と全く同様にして、 水添力 aコーティング組成物 (D,) を 調製した。 Was added and mixed, stirred for 5 hours, and then aged all day long to obtain a coating composition (D). Further, a coating composition (D,) was prepared in exactly the same manner as in Example 1.
上記のコーティング組成物 (D) 或いは (D,) を使用した以外は、 実施例 1 と全く同様にして、 厚さ約 2ミクロン、 屈折率 1 . 60の無色透明な硬化物層を 表面に備えたレンズを作製し、 且つ実施例 1と全く同様にして各種特性を評価し、 その結果を表 1〜表 3に示した。 一実施例 7— A colorless and transparent cured layer having a thickness of about 2 microns and a refractive index of 1.60 was provided on the surface in the same manner as in Example 1 except that the above-mentioned coating composition (D) or (D,) was used. A lens was manufactured, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3. Example 7—
rーグリシドキシプロビルトリメ トキシシラン 375. 0質量部、 Tーグリシ ドキシプロピルメチルジメトキシシラン 1 50. 0質量部、 メタノール 400質 量部及びイソプロピルアルコール 300質量部を混合した。 この液を十分に撹拌 しながら、 0. 05 Nの塩酸水溶液 1 10. 4質量部を添加し、 3時間継続して 撹拌した。 次いで、 この混合液に、  375.0 parts by mass of r-glycidoxypropyltrimethoxysilane, 155.0 parts by mass of T-glycidoxypropylmethyldimethoxysilane, 400 parts by mass of methanol and 300 parts by mass of isopropyl alcohol were mixed. While sufficiently stirring this solution, 11.4 parts by mass of a 0.05 N aqueous hydrochloric acid solution was added, and the mixture was continuously stirred for 3 hours. Then, to this mixture,
シリコン系界面活性剤 (日本ュニカー (株) 製、 商品名 「L一 7001 J ) 2. 0質量部、  Silicone surfactant (manufactured by Nippon Unicar Co., Ltd., trade name "L-17001 J") 2.0 parts by mass,
A I ( I I I ) ァセチルァセトナー卜 7. 3質量部、  A I (I I I) acetyl acetate 7.3 parts by mass,
ジァセトンアルコール 41 0質量部、  Jaceton alcohol 410 parts by mass,
複合金属酸化物微粒子ゾル ( a ) 1 250質量音 13、  Composite metal oxide fine particle sol (a) 1 250 mass sound 13,
を添加混合し、 5時間撹拌後、 一昼夜熟成させてコーティング組成物 (E) を得 た。 さらに、 実施例 1と全く同様にして、 水添加コーティング組成物 (Ε') を 調製した。 Was added and mixed, and the mixture was stirred for 5 hours and then aged all day and night to obtain a coating composition (E). Further, a water-added coating composition (Ε ′) was prepared in exactly the same manner as in Example 1.
上記のコーティング組成物 (Ε) 或いは (Ε,) を使用した以外は、 実施例 1 と全く同様にして、 厚さ約 2ミクロン、 屈折率 1. 6ひの無色透明な硬化物層を 表面に備えたレンズを作製し、 且つ実施例 1と全く同裱にして各種特性を評価し、 その結果を表 1〜表 3に示した。 一実施例 8—  Except that the above coating composition (Ε) or (Ε,) was used, a colorless and transparent cured layer having a thickness of about 2 microns and a refractive index of 1.6 was applied to the surface in the same manner as in Example 1. A lens provided was prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3. Example 8—
A I ( I I I ) ァセチルァセトナートを F e ( I I I ) ァセチルァセトナート に代えた以外は、 実施例 1と同様にしてコーティング組成物 (F) を得た。 さら に、 実施例 1と全く同様にして、 水添加コーティング糊成物 (F') を調製した。 上記のコーティング組成物 (F) 或いは (F,) を使用した以外は、 実施例 1 と全く同様にして、 厚さ約 2ミクロン、 屈折率 1. 6ひの無色透明な硬化物層を 表面に備えたレンズを作製し、 且つ実施例 1と全く同髌にして各種特性を評価し、 その結果を表 1〜表 3に示した。  A coating composition (F) was obtained in the same manner as in Example 1, except that A I (III) acetyl acetonate was replaced with Fe (III) acetyl acetonate. Further, a water-containing coating paste (F ′) was prepared in exactly the same manner as in Example 1. Except that the above-mentioned coating composition (F) or (F,) was used, a colorless and transparent cured layer having a thickness of about 2 microns and a refractive index of 1.6 was formed on the surface in exactly the same manner as in Example 1. A lens provided was prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3.
—比較例 1一 —Comparative Example 11
複合金属酸化物微粒子ゾル (a) に代えて、 複合金属酸化物微粒子ゾル (b) を用いた以外は、 実施例 1と同様にしてコーティング組成物 (G ) を得た。 さら に、 実施例 1と全く同様にして、 水添加コーティング組成物 (G,) を調製した。 上記のコーティング組成物 (G ) 或いは (G ') を使用した以外は、 実施例 1 と全く同様にして、 厚さ約 2ミクロン、 屈キ斤率 1 . 6 2の無色透明な硬化物層を 表面に備えたレンズを作製し、 且つ実施例 1と全く同様にして各種特性を評価し、 その結果を表 1〜表 3に示した。 一比較例 2— Composite metal oxide fine particle sol (b) instead of composite metal oxide fine particle sol (a) Except for using, a coating composition (G) was obtained in the same manner as in Example 1. Further, a water-added coating composition (G,) was prepared in exactly the same manner as in Example 1. Except that the above-mentioned coating composition (G) or (G ') was used, a colorless and transparent cured product layer having a thickness of about 2 microns and a flexural ratio of 1.62 was obtained in the same manner as in Example 1. A lens provided on the surface was prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3. Comparative Example 2—
複合金属酸化物微粒子ゾル (a ) に代えて、 複合金属酸化物微粒子ゾル (c ) を用いた以外は、 実施例 1と同様にしてコーティング組成物 (H ) を得た。 さら に、 実施例 1と全く同様にして、 水添加コーティング組成物 (Η ') を調製した。 上記のコーティング組成物 (Η ) 或いは (Η,) を使用した以外は、 実施例 1 と全く同様にして、 厚さ約 2ミクロン、 屈新率 1 . 6 2の無色透明な硬化物層を 表面に備えたレンズを作製し、 且つ実施例 1と全く同様にして各種特性を評価し、 その結果を表 1〜表 3に示した。 一比較例 3—  A coating composition (H) was obtained in the same manner as in Example 1, except that the composite metal oxide fine particle sol (c) was used instead of the composite metal oxide fine particle sol (a). Furthermore, a water-added coating composition (Η ′) was prepared in exactly the same manner as in Example 1. Except that the above coating composition (Η) or (Η,) was used, a colorless and transparent cured layer having a thickness of about 2 microns and a renewal rate of 1.62 was formed on the surface in the same manner as in Example 1. Were prepared, and various characteristics were evaluated in exactly the same manner as in Example 1. The results are shown in Tables 1 to 3. Comparative Example 3—
屈折率 1 . 6 0のチォウレタン樹脂レンズの代わりに、 屈折率 1 . 5 9のポリ カーボネート樹脂レンズを用いた以外は、 実施例 1と同様にして、 厚さ約 2ミク ロン、 屈折率 1 . 6 0の硬化物層を表面に ϋえたレンズを作製し、 且つ実施例 1 と全く同様にして各種特性を評価し、 その艇果を表 1〜表 3に示した。 In the same manner as in Example 1 except that a polycarbonate resin lens having a refractive index of 1.59 was used instead of the urethane resin lens having a refractive index of 1.60, a thickness of about 2 micron and a refractive index of 1. A lens having a 60 cured layer on the surface was prepared, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Tables 1 to 3.
Figure imgf000024_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000026_0001
表 1〜表 3から明らかなように、 実施例 1〜8におけるコーティング組成物を 用いてチォウレタン樹脂基材またはァリル樹脂基材の表面に硬化物層を積層させ た場合、 初期の外観 (白濁の程度) 、 耐溶剤性、 耐擦傷性、 密着性、 耐候性とも 良好であった。 また、 保存安定性に関しても良好であり、 保存 3週間後及び 5週 間後のコーティング組成物を用いて硬化物層を形成した場合においても、 外観、 耐溶剤性、 耐擦傷性、 密着性、 耐候性などの物性は、 コーティング組成物を調製 後直ちに硬化物層を形成したときの物性 (初期物性) と同じであった。 更には、 水添加コ一ティング組成物を用いた場合におしヽても、 その積層体の外観は非常に 良好であった。 As is clear from Tables 1 to 3, when the cured product layer was laminated on the surface of the polyurethane resin substrate or the aryl resin substrate using the coating compositions in Examples 1 to 8, the initial appearance (white turbidity) was observed. Degree), solvent resistance, scratch resistance, adhesion, and weather resistance were all good. In addition, storage stability is good, and even when a cured layer is formed using the coating composition after 3 weeks and 5 weeks of storage, appearance, solvent resistance, scratch resistance, adhesion, Physical properties such as weather resistance were the same as the physical properties (initial physical properties) when a cured layer was formed immediately after preparing the coating composition. Furthermore, even when the water-added coating composition was used, the appearance of the laminate was very good.
—方、 比較例 1及び 2の場合には、 初期の 観、 耐溶剤性、 耐擦傷性、 密着性 は良好であつたが、 耐候性が不十分である。 この耐候性が劣る点は、 保存安定性 試験 (表 2 , 3参照) においても同様であつ f二。 また、 水添加コーティング組成 物を用いた場合においては、 その外観の不良 著しく、 水分に対してこれらのコ —ティング組成物が敏感であり、 限られた条 ί牛でしか使用できないことが理解で きる。  On the other hand, in the case of Comparative Examples 1 and 2, the initial appearance, solvent resistance, scratch resistance, and adhesion were good, but the weather resistance was insufficient. This inferior weather resistance is the same in the storage stability test (see Tables 2 and 3). In addition, it is understood that when a water-added coating composition is used, the appearance of the coating composition is remarkably poor, and these coating compositions are sensitive to moisture and can be used only in a limited number of cows. Wear.
また、 ポリカーボネート樹脂レンズの表面 Iこ実施例 1のコーティング組成物を 用いて硬化物層を形成した比較例 3では、 耐溶剤性、 密着性、 耐擦傷性といった 物性が不十分であった。 また、 外観について ίま、 ポリカーボネート樹脂レンズの 表面がエポキシ基含有ゲイ素化合物との接触 ίこよって若干白濁している。 一実施例 9一  In addition, in Comparative Example 3 in which a cured product layer was formed using the coating composition of Example 1 on the surface of the polycarbonate resin lens I, physical properties such as solvent resistance, adhesion, and scratch resistance were insufficient. In addition, regarding the appearance, the surface of the polycarbonate resin lens is slightly clouded due to contact with the epoxy group-containing gay compound. Example 9
実施例 1で用いた屈折率 1 . 6 0のチォウレタン樹脂レンズを、 染料 (Β Ρ Ι 社製、 商品名 B P I ® S u n G r a y ) を用し、て染色し、 色素含有レンズを得た。 この色素含有レンズの表面に、 実施例 1で調製したコーティング組成物 (A ) を 用いて、 実施例 1と同様にして硬化物層を形虎した。  The polyurethane resin lens having a refractive index of 1.60 used in Example 1 was dyed with a dye (trade name: BPI® SunGray, trade name, manufactured by Toshiba Corporation) to obtain a dye-containing lens. Using the coating composition (A) prepared in Example 1, a cured layer was formed on the surface of the dye-containing lens in the same manner as in Example 1.
かかる色素含有レンズについて、 スガ試験 (株) 製キセノンゥヱザ一メータ —X 2 5による 2 0 0時間促進試験前後 (耐 ί 性試験前後) の密着性と、 硬化物 層形成前後での色調変化を、 カラーコンピューター (スガ試験機製) を用いて a *および b *を求めることによって行った。 の結果を表 4に示す。 一実施例 1 o― For such a dye-containing lens, the adhesion before and after the 200-hour accelerated test (before and after the heat resistance test) by Xenon Laser Meter X25 manufactured by Suga Test Co., Ltd. This was performed by determining a * and b * using a color computer (manufactured by Suga Test Instruments). Table 4 shows the results. Example 1 o-
実施例 5で用いた屈折率 1 . 6 7 のチォウレタン樹脂レンズを、 実施例 9と同 様に染料を用いて染色し、 色素含有レンズを得た。 この色素含有レンズの表面に、 実施例 5と同様にして硬化物層を形成した。 この色素含有レンズの表面に、 実施 例で調製したコーティング組成物 ( C ) を用いて、 実施例 1と同様にして硬化物 層を形成した。 The refractive index of 1. 6 7 Chiouretan resin lens used in Example 5 were stained with a dye in the same manner as in Example 9, to obtain a dye-containing lenses. A cured product layer was formed on the surface of the dye-containing lens in the same manner as in Example 5. A cured product layer was formed on the surface of the dye-containing lens in the same manner as in Example 1 using the coating composition (C) prepared in Example.
かかる色素含有レンズについて、 実施例 9と同様にして密着性及び色調変化の 評価を行い、 その結果を表 4に示した。 一比較例 4—  The adhesion and the change in color tone were evaluated for the dye-containing lens in the same manner as in Example 9, and the results are shown in Table 4. Comparative Example 4—
実施例 1 (或いは比較例 1 ) で用いた屈折率 1 · 6 0のチォウレタン樹脂レン ズを、 実施例 9と同様に染料を用いて染色し、 色素含有レンズを得た。 この色素 含有レンズの表面に、 比較例 1で調製したコーティング組成物 (G ) を用いて、 実施例 1と同様にして硬化物層を形减した。  The thiourethane resin lens having a refractive index of 1/60 used in Example 1 (or Comparative Example 1) was dyed with a dye in the same manner as in Example 9 to obtain a dye-containing lens. Using the coating composition (G) prepared in Comparative Example 1, a cured product layer was formed on the surface of the dye-containing lens in the same manner as in Example 1.
かかる色素含有レンズについて、 实施例 9と同様にして密着性及び色調変化の 評価を行い、 その結果を表 4に示しブこ。 表 4の結果から理解されるように、 本発明の積層体 (実施例 9 , 1 0 ) は、 耐 候性試験前後の密着性が共に良好であり、 また色調の変化が少ない。 それに比べ て、 比較例 4の積層体では、 耐候性試験を実施すると、 密着性が低下し、 試験前 後で色調が変化してしまう。 The dye-containing lens was evaluated for adhesion and change in color tone in the same manner as in Example 9, and the results are shown in Table 4. As can be seen from the results in Table 4, the laminates of the present invention (Examples 9 and 10) have good adhesion before and after the weather resistance test and little change in color tone. On the other hand, in the laminate of Comparative Example 4, when the weather resistance test was performed, the adhesion was reduced, and the color tone changed before and after the test.
表 4 Table 4
コーティング剤組成物 染料 而卖 §式1¾ 耐  Coating composition Dyes ## EQU1
a* b * 目視色調 密着性 a * b* 目視色調 密着性 実施例 9 A Sun ray -1.17 -5.34 レー 100/100 -0.27 -5.12 グレー 100/100 実施例 10 C ¾un ray -1.15 一 5.12 100/100 -0.23 -4.96 グレー 100/100 し比較例 4 I G SunGray -1.17 -5.25 Lグレー」 100/100 -0.24 1.13 イエロイツシュグレー 0/100  a * b * Visual color tone Adhesion a * b * Visual color tone Adhesion Example 9 A Sun ray -1.17 -5.34 Ray 100/100 -0.27 -5.12 Gray 100/100 Example 10 C ¾un ray -1.15 One 5.12 100 / 100 -0.23 -4.96 Gray 100/100 and Comparative Example 4 IG SunGray -1.17 -5.25 L Gray "100/100 -0.24 1.13 Yellow Grays 0/100

Claims

請求の範囲 The scope of the claims
1. 樹脂基材表面にコ一ティング組成物の硬化物層が形成された積層体におい て、 1. In a laminate in which a cured layer of a coating composition is formed on a resin substrate surface,
前記コーティング組成物が、 下記 (A) 〜 (D) 成分:  The coating composition comprises the following components (A) to (D):
(A) 酸化スズ及 酸化ジルコニウムからなる複合金属酸化物を、 五酸化ァ ンチモン及び酸化ケィ素で被覆した複合金属酸化物微粒子;  (A) composite metal oxide fine particles obtained by coating a composite metal oxide composed of tin oxide and zirconium oxide with antimony pentoxide and silicon oxide;
(B) エポキシ基含有ゲイ素化合物またはその部分加水分解物;  (B) an epoxy group-containing gayne compound or a partial hydrolyzate thereof;
(C) 有機溶媒;  (C) an organic solvent;
(D) ァセチルァセ トナート錯体;  (D) acetyl acetonate complex;
を含有するものであり、 且つ Containing, and
前記樹脂基材が、 チォゥレタン樹脂基材またはァリル樹脂基材であること を特徴とする積層体。  A laminate, wherein the resin substrate is a thiourethane resin substrate or an aryl resin substrate.
2. 前記コーティング組成物が、 前記 (B) 成分 1 00質量部当り、 前記 (A) 成分の複合金属酸化物微粒子を 25〜 250質量部、 前記 (C) 成分の有 機溶媒を 1 00〜250 0質量部、 前記 (D) 成分のァセチルァセトナート錯体 を 0. 1〜1 5質量部の量で含有している請求の範囲 1記載の積層体。 2. The coating composition contains 25 to 250 parts by mass of the composite metal oxide fine particles of the component (A) and 100 to 100 parts by mass of the organic solvent of the component (C) per 100 parts by mass of the component (B). 2. The laminate according to claim 1, wherein the laminate contains 2,500 parts by mass of the acetyl acetonate complex of the component (D) in an amount of 0.1 to 15 parts by mass.
3. チォウレタン樹脂基材またはァリル樹脂基材の屈折率が 1. 55以上であ る請求の範囲 1記載の欖層体。 3. The lanthanum body according to claim 1, wherein the thiourethane resin base material or the aryl resin base material has a refractive index of 1.55 or more.
4. チォゥレタン樹脂基材またはァリル樹脂基材が色素を含有している請求の 範囲 3記載の積層体。 4. The laminate according to claim 3, wherein the thiourethane resin base or the aryl resin base contains a dye.
5. 請求の範囲 3記載の積層体よりなるプラスチックレンズ。 5. A plastic lens comprising the laminate according to claim 3.
6. 請求の範囲 4記載の積層体よりなるプラスチックレンズ。 6. A plastic lens comprising the laminate according to claim 4.
7. チォウレタン樹脂基材またはァリル樹脂基材の表面に、 下記 (A) 〜 (D) 成分: 7. The following (A) ~ on the surface of the polyurethane resin base or aryl resin base (D) Ingredient:
(A) 酸化スズ及び酸化ジノレコニゥムからなる複合金属酸化物を、 五酸ヒア ンチモン及び酸化ゲイ素で被覆した複合金属酸化物微粒子;  (A) composite metal oxide fine particles comprising a composite metal oxide composed of tin oxide and dinoreconium oxide, coated with hyantimon pentate and gay oxide;
(Β) エポキシ基含有ケィ素化合物またはその部分加水分解物;  (Β) an epoxy group-containing silicon compound or a partial hydrolyzate thereof;
(C) 有機溶媒;  (C) an organic solvent;
(D) ァセチルァセトナー 卜錯体;  (D) acetyl acetate complex;
を含有するコ一ティング組成物を塗布し、 80°C以上の温度に加熱して該コーテ イング組成物を硬化させて硬化物層を形成することを特徴とする積層体の製造方 法。 A method for producing a laminate, comprising: applying a coating composition containing the same; and heating the coating composition to a temperature of 80 ° C. or higher to cure the coating composition to form a cured product layer.
PCT/JP2005/006999 2004-04-06 2005-04-05 Laminates WO2005097497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512150A JP4757795B2 (en) 2004-04-06 2005-04-05 Laminated body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004111837 2004-04-06
JP2004-111837 2004-04-06

Publications (1)

Publication Number Publication Date
WO2005097497A1 true WO2005097497A1 (en) 2005-10-20

Family

ID=35124928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006999 WO2005097497A1 (en) 2004-04-06 2005-04-05 Laminates

Country Status (2)

Country Link
JP (1) JP4757795B2 (en)
WO (1) WO2005097497A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020756A (en) * 2006-07-14 2008-01-31 Hoya Corp Plastic lens
WO2008132794A1 (en) * 2007-04-12 2008-11-06 Nikon Corporation Body member with photochromic decoration
JP2008279425A (en) * 2007-04-12 2008-11-20 Nikon Corp Body member with photochromic decoration
JP2009517521A (en) * 2005-12-01 2009-04-30 エルジー・ケム・リミテッド Siloxane-based hard coating composition having medium refractive index and high refractive index, method for producing the same, and optical lens produced therefrom
WO2010134464A1 (en) * 2009-05-20 2010-11-25 株式会社トクヤマ Coating composition and optical article
JP2012077101A (en) * 2010-09-30 2012-04-19 Dainippon Toryo Co Ltd Composition for forming transparent conductive film, transparent conductive film and antireflection film
WO2018021339A1 (en) * 2016-07-29 2018-02-01 リンテック株式会社 Method of producing thin-film liquid-repelling layer and thin-film liquid-repelling layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264805A (en) * 1992-03-18 1993-10-15 Asahi Optical Co Ltd Coating composition and plastic lens using the same
JPH10324846A (en) * 1997-05-26 1998-12-08 Seiko Epson Corp Composition for use in coating, laminated product and lens for eyeglass
JPH11116843A (en) * 1997-10-14 1999-04-27 Seiko Epson Corp Coating composition and composite structure
JPH11302597A (en) * 1998-04-20 1999-11-02 Asahi Optical Co Ltd Hard coat composition and optical member
JP2001123115A (en) * 1999-08-16 2001-05-08 Nissan Chem Ind Ltd Coating composition and optical member
JP2003055601A (en) * 2001-06-08 2003-02-26 Ito Kogaku Kogyo Kk Hard coating composition
JP2004224965A (en) * 2003-01-24 2004-08-12 Tokuyama Corp Coating composition
JP2005015324A (en) * 2002-12-03 2005-01-20 Nissan Chem Ind Ltd Denatured stannic oxide sol, stannic oxide-zirconium oxide multiple sol, and production method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133211A (en) * 1983-01-21 1984-07-31 Toray Ind Inc Resin for use in high-refractive index plastic lens
JPS6346213A (en) * 1986-03-01 1988-02-27 Mitsui Toatsu Chem Inc Resin for high-refractive index plastic lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264805A (en) * 1992-03-18 1993-10-15 Asahi Optical Co Ltd Coating composition and plastic lens using the same
JPH10324846A (en) * 1997-05-26 1998-12-08 Seiko Epson Corp Composition for use in coating, laminated product and lens for eyeglass
JPH11116843A (en) * 1997-10-14 1999-04-27 Seiko Epson Corp Coating composition and composite structure
JPH11302597A (en) * 1998-04-20 1999-11-02 Asahi Optical Co Ltd Hard coat composition and optical member
JP2001123115A (en) * 1999-08-16 2001-05-08 Nissan Chem Ind Ltd Coating composition and optical member
JP2003055601A (en) * 2001-06-08 2003-02-26 Ito Kogaku Kogyo Kk Hard coating composition
JP2005015324A (en) * 2002-12-03 2005-01-20 Nissan Chem Ind Ltd Denatured stannic oxide sol, stannic oxide-zirconium oxide multiple sol, and production method therefor
JP2004224965A (en) * 2003-01-24 2004-08-12 Tokuyama Corp Coating composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517521A (en) * 2005-12-01 2009-04-30 エルジー・ケム・リミテッド Siloxane-based hard coating composition having medium refractive index and high refractive index, method for producing the same, and optical lens produced therefrom
JP2008020756A (en) * 2006-07-14 2008-01-31 Hoya Corp Plastic lens
WO2008132794A1 (en) * 2007-04-12 2008-11-06 Nikon Corporation Body member with photochromic decoration
JP2008279425A (en) * 2007-04-12 2008-11-20 Nikon Corp Body member with photochromic decoration
WO2010134464A1 (en) * 2009-05-20 2010-11-25 株式会社トクヤマ Coating composition and optical article
JP2012077101A (en) * 2010-09-30 2012-04-19 Dainippon Toryo Co Ltd Composition for forming transparent conductive film, transparent conductive film and antireflection film
WO2018021339A1 (en) * 2016-07-29 2018-02-01 リンテック株式会社 Method of producing thin-film liquid-repelling layer and thin-film liquid-repelling layer

Also Published As

Publication number Publication date
JPWO2005097497A1 (en) 2008-02-28
JP4757795B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
EP2420543B1 (en) Primer composition for optical articles, and optical article
CA2099893C (en) Optical elements having cured coating film
CA2099892C (en) Coating compositions
KR100953230B1 (en) Plastic lens and method for producing plastic lens
EP3136140B1 (en) Eyeglass lens
WO2012036084A1 (en) Primer composition for optical article and optical article
JPH0822997B2 (en) Hard coating agent
WO2005097497A1 (en) Laminates
JP4815288B2 (en) Plastic lens
EP1798260A1 (en) Coating compositions and process for production thereof
KR20160114616A (en) Coating composition and optical member
JP2006131899A (en) Composition for coating agent and method for producing the same
WO2006001354A1 (en) Layered product
JP2006249351A (en) Hard coat composition
JP2805877B2 (en) Composition for coating
JP2001294812A (en) Coating composition, and lense made of synthetic resin
JP2000206305A (en) Hard coat composition for optical part
JP4076668B2 (en) Weatherproof hard coat composition
JP2001288406A (en) Primer composition, hard coated lens with primer and hard multi-coated lens
JP2001288412A (en) Coating composition and hard coated lens with primer and hard multicoated lens
JPH01217402A (en) Plastic lens provided with reflection reducing film
JP2001295185A (en) Method of dyeing plastic lens and plastic lens
JP2003315501A (en) Plastic lens
JP2007025631A (en) Method for manufacturing optical component, and optical component
JP3401303B2 (en) Primer composition for plastic lens and method for producing plastic lens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512150

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase