WO2005097170A1 - Angiogenesis promoter and angiogenic therapy - Google Patents

Angiogenesis promoter and angiogenic therapy Download PDF

Info

Publication number
WO2005097170A1
WO2005097170A1 PCT/JP2005/003333 JP2005003333W WO2005097170A1 WO 2005097170 A1 WO2005097170 A1 WO 2005097170A1 JP 2005003333 W JP2005003333 W JP 2005003333W WO 2005097170 A1 WO2005097170 A1 WO 2005097170A1
Authority
WO
WIPO (PCT)
Prior art keywords
angiogenesis
erythropoietin
bone marrow
blood
cells
Prior art date
Application number
PCT/JP2005/003333
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Toba
Kiminori Katou
Original Assignee
Niigata Tlo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Tlo Corporation filed Critical Niigata Tlo Corporation
Publication of WO2005097170A1 publication Critical patent/WO2005097170A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1816Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to an angiogenesis-promoting agent and angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease.
  • ischemic diseases such as extremities, heart, brain, and the like
  • vascular bypass surgery is conventionally used for patients with severe lower limb ischemic disease.
  • problems such as cutting of the lower limbs, if the force vessel was thin and bypassing was not possible.
  • autologous cell transplantation which is an angiogenic therapy
  • This autologous cell transplantation treatment is a therapy in which bone marrow cells are transplanted into muscles near the affected area, and this is divided into blood vessels to form blood vessels, which will be treated in the future. Although it is necessary to evaluate the effect by increasing it, it is expected as a future treatment because it can treat severe cases.
  • ischemic diseases obstructive arteriosclerosis, Buerger's disease, ischemic heart disease, cerebrovascular disease, etc.
  • ischemic diseases obstructive arteriosclerosis, Buerger's disease, ischemic heart disease, cerebrovascular disease, etc.
  • conventional technologies related to autologous cell transplantation include limb ischemia treatment using autologous bone marrow cell transplantation (Non-Patent Document 1) and ischemic heart disease treatment using autologous bone marrow cell transplantation.
  • Non-patent document 2 Treatment of limb ischemia using autologous peripheral blood cell transplantation (Non-patent document 3), Treatment of ischemic heart disease using autologous peripheral blood cell transplantation (Non-patent document 4), etc. It is done. Also blood vessels Endothelial progenitor cells are treated for cerebral vascular ischemia, renal ischemia, pulmonary ischemia, limb ischemia, ischemic cardiomyopathy, and myocardial ischemia in a method for controlling neoplasia, ie, for enhancing or inhibiting angiogenesis. A method for administration to a patient having such a disease is disclosed in, for example, Patent Document 1 !. However, although these treatments have a certain clinical effect, they have not been able to obtain sufficient effects in terms of blood flow improvement effect and symptom reduction effect.
  • Patent Document 1 JP 2001-503427 Gazette
  • Non-Patent Document 2 Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angio blasts, angiogenic ligands, and cytokines (and lrculation, vol. 104, pp 1046-1052, 2001)
  • Non-Patent Document 3 "Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs (circulation, vol. 106, pp
  • Non-Patent Document 4 "Improvement of collateral perfusion and regional function by implantation of peripheral olood mononuclear cells into ischemic hibernation myocardium" (Arteriosclerosis Thrombosis and Vascular Biology, vol. 22, pp 1804-1810, 2002)
  • an object of the present invention is to provide an angiogenesis promoting agent that can be easily applied, promotes angiogenic action, and has a high blood flow improving effect. Furthermore, an object of the present invention is to provide an angiogenesis therapy capable of enhancing a therapeutic effect by enhancing an angiogenesis action in an angiogenesis therapy for an ischemic disease. Means for solving the problem
  • transient erythroblast hematopoiesis at the transplantation site can be achieved by mixing the transplanted cells with the erythropoietin erythropoietin. It was also found that efficient angiogenesis can be promoted by inducing erythroblast activation and secreting the above-mentioned vascular proliferative tropic force in the vicinity of vascular progenitor cells.
  • nuclei exist in erythroblasts, and in the process of erythroblast maturation, the nuclei are removed (denucleated) by subendothelial macrophages around the microvessels of the bone marrow, At the same time as enucleation, intranuclear force moves through the gaps in the vascular endothelium, and enucleated erythroblasts (reticulocytes) move into the blood vessels.
  • macrophages in some of the CD14-positive cells
  • under the blood vessels of the blood vessels play a role in moving the reticulocytes into the blood vessels while taking the cell nuclei from the mature erythroblasts!
  • erythroblasts attract blood vessels by mechanisms such as cytodynamic in secretion, but do not come into direct contact with new blood vessels, and mediation by CD14-positive cells is necessary. It is induced in the erythroid hematopoiesis together with the new blood vessels by the cytodynamic force secreted by the blasts, and after induction, the CD14 positive cells adhere directly to the mature erythroblasts and directly to the vascular endothelium of the new blood vessels. To do. By stimulating these cell adhesions, it is expected that CD14 positive cells secrete various site force-ins and angiogenesis occurs as a whole of their temporal arrangement and spatial positional relationship.
  • the angiogenesis-promoting agent according to claim 1 of the present invention comprises mammalian bone marrow cells and an erythropoietin preparation containing 5,000-50,000 international units Z body weight 60 kg of erythropoietin per dose. It is characterized by that.
  • the angiogenesis promoter according to claim 2 of the present invention is characterized in that in claim 1, it further comprises a macrophage colony stimulating factor.
  • the angiogenesis-promoting agent according to claim 3 of the present invention is characterized in that, in claim 1, the erythropoietin is a naturally-derived erythropoietin, a modified erythropoietin or a derivative thereof.
  • the angiogenesis promoting agent according to claim 4 of the present invention is the angiogenesis promoting agent according to claim 1, wherein the bone marrow cells are
  • the angiogenesis-promoting agent according to claim 5 of the present invention is characterized in that, in claim 1, it is a dosage form of ampoules, syringes or vials.
  • the angiogenesis-promoting agent according to claim 6 of the present invention comprises erythroblasts derived from bone marrow, peripheral blood, umbilical cord blood or other cell resources, CD14-positive cells, and 5,000-50 per dose. , 000 international unit Z erythropoietin preparation containing 60 kg erythropoietin.
  • the angiogenesis promoter according to claim 7 of the present invention is characterized in that in claim 6, it further comprises a macrophage colony-stimulating factor.
  • the angiogenesis promoter according to claim 8 of the present invention is characterized in that, in claim 6, the erythropoietin is a naturally derived erythropoietin, a modified erythropoietin or a derivative thereof.
  • the angiogenesis promoting agent according to claim 9 of the present invention is the angiogenesis promoting agent according to claim 6, wherein the bone marrow, peripheral blood, umbilical cord blood or other cell resources are identical or partially mismatched with autologous or histocompatibility antigens. It is derived from a mammal.
  • the angiogenesis promoting agent according to claim 10 of the present invention is the angiogenesis promoting agent according to claim 6, wherein the erythroblast derived from the peripheral blood, umbilical cord blood or other cell resources is obtained by in vitro proliferation. It is characterized by that.
  • the angiogenesis-promoting agent according to claim 11 of the present invention is characterized in that, in claim 6, it is a dosage form of ampoules, syringes or nominals.
  • the angiogenesis therapy according to claim 12 of the present invention is an angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease.
  • the angiogenesis promoting agent according to any one of 1 is administered intramuscularly to an ischemic site.
  • the angiogenesis therapy according to claim 13 of the present invention is characterized in that, in claim 12, the ischemic disease is a peripheral arterial disease.
  • the angiogenesis therapy according to claim 14 of the present invention is an angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease. Any one of the angiogenesis promoters described in any one of the above may be administered by introducing an intravascular force tail from a blood vessel at a remote site to reach the ischemic site transvascularly.
  • the angiogenesis therapy according to claim 15 of the present invention is characterized in that, in claim 14, the ischemic disease is a peripheral arterial disease.
  • the angiogenesis action can be easily applied, and the erythroid hematopoietic cells induced by erythropoietin secrete vascular growth tropic site force in. Can be promoted.
  • the macrophage 'colony stimulating factor is a site force-in that activates the growth of macrophages, and therefore can further promote the angiogenesis action. it can.
  • angiogenesis promoter of claim 3 of the present invention various excellent effects such as enhancement of main effects and reduction of side effects can be expected by using modified erythropoietin or a derivative thereof. .
  • the bone marrow cell resource can be easily obtained even when the same type (human vs. human, mouse vs. mouse, etc.) cell resource is used. be able to.
  • the angiogenesis promoter according to claim 5 of the present invention can be easily applied.
  • the angiogenesis-promoting agent of claim 6 of the present invention it can be easily applied, and the erythroid hematopoietic cell induced by erythropoietin secretes vascular growth-trophic site force-in and has a strong angiogenesis action. Can be promoted.
  • the macrophage 'colony stimulating factor is a site force-in that activates the growth of macrophages, and therefore can further promote the angiogenesis action. it can.
  • angiogenesis-promoting agent According to the angiogenesis-promoting agent according to claim 8 of the present invention, various excellent effects such as enhancement of main effects and reduction of side effects can be expected by using modified erythropoietin or a derivative thereof. .
  • bone marrow, peripheral blood, umbilical cord blood or the like can be easily obtained even when the same type of cell resource (human vs. human, mouse vs. mouse, etc.) is used. Other cellular resources can be obtained.
  • erythroblasts can be easily obtained by in vitro growth.
  • the angiogenesis promoter according to claim 11 of the present invention can be easily applied.
  • angiogenesis therapy of claim 12 of the present invention it is possible to enhance the therapeutic effect by enhancing the angiogenesis action.
  • angiogenesis therapy of the thirteenth aspect of the present invention it is possible to enhance the therapeutic effect by enhancing the angiogenesis action.
  • angiogenesis therapy of claim 14 of the present invention it is possible to enhance the therapeutic effect by enhancing the angiogenesis action.
  • angiogenesis therapy of claim 15 of the present invention it is possible to enhance the therapeutic effect by enhancing the angiogenesis action.
  • Fig. 1 is a graph showing a recovery curve (Fig. 1-1) of cyanosis force in an ischemic limb and a survival curve (Fig. 1-2) of an ischemic limb in Test Example 1 of the present invention.
  • FIG. 2 is a graph showing a recovery curve (FIG. 2-1) of cyanosis force of ischemic limbs and a survival curve (FIG. 2-2) of ischemic limbs in Test Example 2 of the present invention.
  • FIG. 3 is a graph showing the results of blood flow ratio in Test Example 3 of the present invention.
  • FIG. 4 Number of microvessels consisting only of vascular endothelial cells in Test Example 4 of the present invention (Fig. 4-1), number of arterioles with vascular smooth muscle (Fig. 4-2), only from vascular endothelial cells The total area of microvessels (Fig. 4-3), the total area of arterioles with vascular smooth muscle (Fig. 4-4), and the average area per microvessel consisting only of vascular endothelial cells (Fig. 4) -5) and the average area per arteriole with vascular smooth muscle ( Figure 4-6).
  • FIG. 5 is a photomicrograph (FIGS. 5-1-6) showing a cultivated Hn vitro angiogenic sample in Test Example 5 of the present invention.
  • FIG. 6 BFU-e, CFU-c, or EPO added (Fig. 6-1), VEG F, P1GF1, P1GF2, Angl, or EPO added (Fig. 6-2), sFltl, Fig. 6 is a graph showing the ratio of blood vessel area when sKDR or BFU-e is added ( Figure 6-3).
  • FIG. 7 is a graph showing the results of secretion amounts of VEGF (FIG. 7-1) and P1GF (FIG. 7-2) in the culture supernatant measured by ELISA in Test Example 5 of the present invention.
  • FIG. 8 is a graph showing the measurement results of the amount of secreted protein (FIG. 8-1-2) by ELISA and the amount of mRNA (FIG. 8-3-4) by quantitative PCR in Test Example 6 of the present invention. .
  • FIG. 9 is a graph showing the results of spleen weight (FIG. 9-1), hemoglobin amount (FIG. 9-2), and hematocrit value (FIG. 9-3) in erythropoietin dose change in Test Example 7 of the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • Ischemic diseases to which the angiogenesis-promoting agent and angiogenesis therapy of the present invention are applied are mainly peripheral arterial diseases (obstructive arteriosclerosis, Buerger's disease, ischemic heart disease, cerebrovascular disease, etc.). is there.
  • peripheral arterial diseases obstructive arteriosclerosis, Buerger's disease, ischemic heart disease, cerebrovascular disease, etc.
  • surgical treatment such as autologous or human blood vessel transplantation
  • the mammal means any mammal including humans, and specific examples include various mammals such as human, rabbit, mouse, guinea pig, chimpanzee, monkey and the like.
  • bone marrow cells of mammals bone marrow cells obtained by general anesthesia of mammals and collecting pelvic force (such as iliac and femoral bones) are also used.
  • bone marrow cells are collected from autologous bone marrow cells of the patient (the patient's own), or bone marrow cells collected from mammalian relatives to whom an angiogenesis-promoting agent is administered, or matched or partially of histocompatibility antigen (HLA antigen) type. May be bone marrow cells collected from unmatched unrelated animals.
  • the collected bone marrow cells are separated into nucleated cell components or low density cell components by a known method such as specific gravity centrifugation, and used as a cell floating solution for the angiogenesis promoter of the present invention.
  • the cell suspension obtained from bone marrow cells contains cell populations containing erythroblasts (CD235a positive cells), monocytes / macrophages (CD14 positive cells), their progenitor cells, stem cells, and vascular endothelial progenitor cells. (CD34 positive cells).
  • erythroblasts derived from the bone marrow of mammals bone marrow and the like collected from a part of the pelvis (such as the iliac and femur) after general anesthesia of the mammal, such as by immunomagnetic bead method
  • Purified erythroblast cell suspension may be used.
  • erythroblasts derived from mammalian peripheral blood for example, peripheral blood mononuclear cell force collected by Leukapheresis, hematopoietic stem cells purified by immunomagnetic bead method can be used in vitro. You can also use cell suspension of erythroblasts obtained by liquid culture.
  • erythroblasts derived from mammalian umbilical cord blood for example, umbilical cord blood force obtained from human umbilical cord and placenta
  • hematopoietic stem cells purified by immunomagnetic bead method are used outside the body, and together with various hematopoietic site power-in.
  • CD14-positive cells may be sorted from cells collected from mammalian bone marrow, peripheral blood or umbilical cord blood using, for example, an immunomagnetic bead method.
  • an immunomagnetic bead method for example, hematopoietic stem cells purified from mammalian bone marrow, peripheral blood, or umbilical cord blood by the immunomagnetic bead method are in vitro! Use floating liquid.
  • the bone marrow, peripheral blood or umbilical cord blood of a mammal is not limited to that of its own (patient itself), but, for example, bone marrow or blood of a mammal to which an angiogenesis-promoting agent is administered is collected.
  • Peripheral blood, histocompatibility antigen (HLA antigen) type matched or partially mismatched unrelated It may be bone marrow or peripheral blood collected from an object, or neonatal force of related animals and Z or unrelated animals.
  • the histocompatibility antigens are completely the same when using their own cell resources, but the histocompatibility antigens are completely the same when using cell resources of the same species (human vs. human, mouse vs. mouse, etc.). Obtaining cellular resources is not easy and is not necessary, so histocompatibility antigens (
  • the partial mismatch of the (HLA antigen) type includes cell resources of allogeneic individuals that differ in one or more histocompatibility antigens.
  • the angiogenesis promoter of the present invention when using erythroblasts derived from mammalian bone marrow, peripheral blood, umbilical cord blood or other cell resources, strict antigen compatibility is not required.
  • a cell suspension of erythroblasts or CD14-positive cells obtained by culturing hematopoietic stem cells isolated from non-self blood from a blood bank outside the body and liquid culture with various hematopoietic site force-in may be used. .
  • Erythropoietin is an acidic glycoprotein hormone that promotes the differentiation and proliferation of erythroid progenitor cells, and mainly produces kidney strength. The most abundant red blood cells in the blood are destroyed in the spleen after functioning for a certain period of time, but are constantly supplied from the bone marrow, so that the total number of peripheral red blood cells is always kept constant under normal conditions. It is leaning. It is generally known that erythropoietin plays a central role in maintaining homeostasis of erythrocytes in the living body.
  • the erythropoietin contained in the erythropoietin preparation used for the angiogenesis-promoting agent of the present invention has substantially the same biological activity as that of mammals, particularly human erythropoietin, and is naturally derived erythropoietin. , Modified erythropoietin and z or its derivatives.
  • the modified erythropoietin is a natural-type erythropoietin that has undergone sugar modification, such as sugar chain substitution and deletion 'addition, etc.' by means of modification with enzymes, etc. in vitro.
  • Modified erythropoietin such as lyslopoietin or erythropoietin derivatives obtained by modification of disulfide bond, etc., and those modified erythropoietin having substantially the same biological activity as human erythropoietin.
  • erythropoietin is a hydrophilic substance that is excreted even when administered, but remains in the body, but is modified erythropoietin (specifically, a modified erythropoietin with an addition of a henolin-binding domain). Etc.) can be used for a longer period of time in the body and more effective.
  • the erythropoietin can be produced in Escherichia coli, yeast, Chinese hamster ovary cells, primate cell lines, etc. by well-known genetic engineering techniques, which may be manufactured by any method. Extracted by various methods, separated and purified are used. Furthermore, the sugar chain structure etc. which were changed by enzymatic treatment or chemical treatment are used.
  • the erythropoietin preparation used in the present invention is a solution preparation containing erythropoietin obtained as described above.
  • components such as a stabilizer usually added to the solution preparation, for example, polyethylene glycol, saccharides, inorganic salts, organic salts, amino acids and the like may be included.
  • Epogin Injection Syringe As erythropoietin preparations that can also be obtained from Kayabacho, the product names are described, for example, Epogin Injection Syringe, Ampoule 750 (manufactured by Chugai Pharmaceutical Co., Ltd.), Epogin Injection Syringe, Ampoule Injection 1500, 3000 (Chugai Pharmaceutical Co., Ltd.) Epogin Injection Syringe, Ampoule 6000 (manufactured by Chugai Pharmaceutical Co., Ltd.), Epoegin Injection Syringe, Ampoule 9 000 '12000 (manufactured by Chugai Pharmaceutical Co., Ltd.), Espoo Subcutaneous 24000 Syringe (Epoetin ⁇ (gene) Recombination), 24000 international units 0.5 mL cylinder, Kirin Co., Ltd.), Espoo subcutaneous 12000 syringe (epoetin (genetical recombination), 12000 international units
  • the amount of erythropoietin contained in the erythropoietin preparation can be determined according to the type of disease to be treated, the severity of the disease, the age of the patient, etc. , 000 International Units Z Contains 60 kg erythropoietin It is preferable to do.
  • one dose means a dose once a day, and the number of administration is preferably 1 to 6 days, more preferably 5 to 6 days continuously. Specifically, it is preferable to administer 6,000 international units Z body weight 60 kg per dose for 5-6 consecutive days. Since erythropoietin is a hydrophilic substance that hardly stays at the site of administration, it is possible to maintain the effect by performing divided administration in this way.
  • 5,000-50,000 international units Z per dose Z body weight 60 kg is a value converted to a patient with a body weight of 60 kg, and when converted to a weight per kg body weight 83.3-833.3 international unit Z Weight is 1kg. If the body weight is greater than or less than 60 kg, it is desirable to administer a dose converted to the patient's body weight.
  • Erythropoietin 5,000-50,000 international units per body dose Z body weight 60kg is a dosage that does not induce side effects such as polycythemia, and 50,000 international units per body weight Z body weight Above 60 kg, polycythemia may occur, and 5,000 international units per dose Z Body weight less than 60 kg cannot fully enhance the main effects.
  • the macrophage 'colony stimulating factor (M-CSF) used in the present invention acts on monocyte' macrophage cell (CD14 positive cell) and its progenitor cells, and promotes differentiation 'proliferation. It is.
  • M-CSF monocyte' macrophage cell
  • progenitor cells CD14 positive cell
  • M-CSF monocyte' macrophage cell
  • problems such as safety of administration have been sufficiently confirmed. Therefore, there seems to be no ethical problem regarding actual administration to ischemic patients.
  • Efficient angiogenesis can be promoted by administering M-CSF, bone marrow cells, and erythropoietin simultaneously.
  • an M-CSF preparation can be used as M-CSF.
  • M-CSF preparations that can be obtained from Kayabacho include, for example, “Leukoprol (registered trademark)” (manufactured by Kyowa Hakko Co., Ltd.).
  • the amount of M-CSF preparation is a force that can be determined according to the severity of the disease, the age of the patient, etc., preferably 2 ⁇ 10 6 — 20 ⁇ 10 6 units / weight 60 kg per dose.
  • the angiogenesis promoter of the present invention is usually housed in a sealed or sterilized plastic or glass container.
  • the container form include ampoules, syringes, and vials.
  • the angiogenesis promoting agent of the present invention can be easily applied and induced by erythropoietin.
  • the induced erythroblasts secrete vascular growth-directing site force-in and can promote a strong angiogenic action.
  • this angiogenic action is enhanced in the presence of erythropoietin, it can promote further angiogenic action, improving the blood flow failure and the resulting ischemia that are the basis of the pathology of ischemic disease. Clinical effect can be improved.
  • the arteriole with vascular smooth muscles can be increased to induce larger blood vessels, that is, arteries with high blood supply. it can.
  • the angiogenesis therapy of the present invention is an angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease, and the angiogenesis promoting agent of the present invention is applied to the ischemic site at several tens of strengths. Intramuscular administration is included. Further, the present invention includes an angiogenesis-promoting agent of the present invention, which is administered by introducing an intravascular catheter from a blood vessel at a remote site to reach an ischemic site transvascularly.
  • the route of administration of this preparation is as follows: (1) The preparation is intramuscularly administered directly to the ischemic site percutaneously; (2) The catheter is allowed to reach the ischemic site percutaneously transvascularly, and In addition, it is possible to inject this product. Specifically, for limb ischemia, it can be administered intramuscularly directly to the ischemic site, but for myocardial infarction, the chest is opened under general anesthesia and directly administered intramuscularly to the infarcted site. Alternatively, instead of performing thoracotomy under general anesthesia, the catheter can be inserted by puncturing a blood vessel such as the groin, and the tip of the catheter inside the heart ( The drug may also be injected into the ventricle (intraventricular or coronary). Especially for deep organs such as the heart and brain, the latter can be performed simply by local anesthesia alone.
  • the angiogenesis therapy of the present invention comprises a step of collecting bone marrow cells from a mammal, and administering the bone marrow cells to the ischemic site intramuscularly at the ischemic site, or an intravascular catheter from a blood vessel at a remote site. And administering the erythrobotin preparation intramuscularly to the ischemic site, while administering it after transvascularly reaching the ischemic site.
  • the angiogenesis therapy of the present invention includes a step of collecting bone marrow, peripheral blood or umbilical cord blood from a mammal, fractionating hematopoietic stem cells contained in the bone marrow, peripheral blood or umbilical cord blood, and hematopoietic into the hematopoietic stem cells.
  • the process of liquid culture with the addition of site force-in and the culture obtained by the liquid culture The step of separating erythroblasts and CD14 positive cells from the nutrient solution, and the erythroblasts and CD14 positive cells are administered intramuscularly at several strengths and several strengths at the ischemic site, or from blood vessels at remote sites.
  • Intravascular catheter was introduced and transvascularly reached to the ischemic site for administration, and erythropoietin preparation or erythropoietin preparation and M-CSF preparation were administered intramuscularly from several to several tens of places in the ischemic site.
  • the method may include a step of introducing an intravascular catheter from a blood vessel at a remote site and transvascularly reaching the ischemic site for administration.
  • an erythrobotin preparation is simultaneously added to the administration site in the bone marrow or peripheral blood cells, which is a conventional technique as an angiogenesis therapy for an ischemic disease.
  • the technical improvement measures of administration can significantly enhance the angiogenic effect, and improve the clinical effect by improving the blood flow failure and the resulting ischemia that form the basis of the patient's pathology and symptoms. Furthermore, since it is administered only to the ischemic site, there is little risk of side effects to others. In addition, administration of several strengths and several tens of strengths to the ischemic site can spread the formulation evenly in the ischemic site and promote the healing effect. Furthermore, since it is administered only to the ischemic site, there is little risk of side effects on other sites.
  • angiogenesis therapy of the present invention not only the number and area of microvessels composed solely of vascular endothelial cells are increased, but also the area of arterioles with vascular smooth muscles is increased, and more Large blood vessels, that is, arteries with high blood supply can be induced.
  • the angiogenesis promoter contains erythroblasts, erythropoietin, CD14-positive cells, M-CSF and the like in one preparation. Therefore, compared to administering bone marrow cells and erythropoietin preparations to patients, it can be administered easily, and the burden on patients and medical staff can be reduced.
  • the death of the lower limb was defined as the necrosis of all or part of the lower limb. From 1 in Fig. 1, it was confirmed that the recovery of cyanosis was better in the BE group than in the C, E and N groups. Based on 2 in Fig. 1, the BE group showed significant prolongation of lower limb survival compared to the C, E, and N groups.
  • TM group to which erythroblast component and CD14 positive cells were administered simultaneously showed recovery from cyanosis and prolonged survival of lower limbs. From this result, it was found that erythroblasts cannot show sufficient angiogenic ability in an environment where CD14 positive cells do not exist.
  • angiogenesis can be further enhanced by co-administering a bone marrow cell and erythropoietin with a macrophage colony-stimulating factor (M-CSF), which is a site force-in that proliferates and activates CD14 positive cells.
  • M-CSF macrophage colony-stimulating factor
  • the blood flow of the ischemic limb was measured by the laser Doppler method using the ICR mouse lower limb ischemia model.
  • Test example 4 For the purpose of simulating actual clinical techniques for patients with human ischemic disease, muscle tissue specimens of ICR mouse lower limb ischemia models were prepared, and the number of blood vessels and the area of blood vessels were calculated using image processing software.
  • Method The individual whose blood flow rate was measured in Test Example 3 was sacrificed as it was, and the biceps femoris of the ischemic limb was collected to prepare a muscle tissue sample.
  • Vascular endothelium was stained with anti-CD31 antibody.
  • vascular smooth muscle was stained with an anti-aSMA antibody.
  • a digital image was created using a microscope with a video system, and the number of blood vessels and the blood vessel area ( ⁇ m) were calculated using image processing software.
  • FIG. 4 shows the results.
  • 1, 3, 5 shows a comparison of vascular endothelial populations
  • 2, 4, 6 shows a comparison of vascular smooth muscle populations.
  • Number of microvessels consisting only of vascular endothelial cells (EC number) (1 in Fig. 4): Significant increase in the number of blood vessels in group B (p ⁇ 0.05) and BE group (p ⁇ 0.001) As seen, the blood vessel increasing effect in the BE group was significantly higher (p ⁇ 0.05) than in the B group.
  • Number of arterioles with vascular smooth muscle (SMC number) (2 in Fig. 4) Blood vessels with vascular smooth muscle were a small part of new blood vessels.
  • EC area Total area of microvessels consisting only of vascular endothelial cells (Fig. 4-3): Significant (p ⁇ 0.001) increase in total vascular area was observed only in BE group.
  • SMC area Total arteriole area with vascular smooth muscle (SMC area) ( Figure 4-4): Significant (p ⁇ 0.001) increase in total vascular smooth muscle area was observed only in BE group. Compared with the group, it was significantly higher (p 0.01).
  • Mean area per microvessel consisting only of vascular endothelial cells Mean EC area
  • 5 in Fig. 4 There was no difference in the average area per blood vessel in each group. This is probably because most of the new blood vessels are microvessels without vascular smooth muscle.
  • VEGF vascular endothelial growth factor
  • VIIRAg colored with green fluorescence
  • BFU-e CD235a: colored with red fluorescence
  • VEGF and P1GF in the culture supernatant were measured by ELISA.
  • vascular endothelial growth factor (VEGF) and angiopoietin 1 (Angl) are strong in vascular growth-directing site force-in, and force that exhibits angiogenic action
  • Placental growth factor (P1GF1, P1GF2) 16 international units (IU) Zml of erythropoietin (EPO), and 80 international units (IU) Zml of erythropoietin (EPO) itself had a weak angiogenic effect.
  • P1GF1, P1GF2 Placental growth factor
  • EPO erythropoietin
  • IU erythropoietin
  • FIG. 7 shows the secretion amounts of VEGF and P1GF in the culture supernatant measured by ELISA.
  • B FU-e supplementation secreted VEGF (see Figure 7-1) and P1GF (see Figure 7-2), and this effect was further enhanced by erythropoietin supplementation.
  • the biological activity of erythropoietin on hematopoietic stem cells is mainly: 1. Inducing erythroblasts from bone marrow 'peripheral blood' umbilical cord blood and other hematopoietic progenitor cells and stem cells, and 2. 3. It is known to induce differentiation and activate proliferating erythroblasts. Therefore, as is clear from the results of this test example, the action point of erythropoietin on angiogenesis is as follows: 1. Bone marrow, peripheral blood, umbilical cord blood and other forces are induced by erythropoietin and erythroblasts have a strong angiogenic action. 2. Furthermore, it is considered that this erythroblast acts at least at these two points that it exerts a stronger angiogenic effect by stimulation of erythropoietin!
  • vascular growth tropic cytoforce-in vascular endothelial growth factor (VEGF) and placental growth factor (P1GF)
  • VEGF vascular endothelial growth factor
  • P1GF placental growth factor
  • vascular growth tropic cytoforce-in vascular endothelial growth factor (VEGF) and placental growth factor (P1GF)
  • VEGF vascular endothelial growth factor
  • P1GF placental growth factor
  • a human patient with ischemic disease was treated with a cell suspension containing 1 x 10 8 bone marrow (kg) bone marrow cells on the first day of treatment, 6000 international units per dose Z weight 60 kg
  • the erythrobotin preparation was administered for 5 consecutive days up to the 5th day on the first day of treatment.
  • the dose of erythropoietin with a dose of 6,000 international units and Z body weight of 60 kg in this test example was within the range where the side effects of polycythemia were negligible in Test Example 7 above, and 24,000 international units per dose. This is a value calculated by multiplying a Z body weight of 60kg by taking a safety factor of 1Z4 in order to administer it in a smaller amount than that of mice in anticipation of further safety.
  • angiogenesis was observed, and side effects such as polycythemia were not observed.
  • the minimum dose for erythropoietin is 6,000 international units Z weight 60 kg (5,000 international units Z weight 60 kg), which is effective in actual patients and has no side effects. I found it desirable to do it.
  • the upper limit of the dose can be 10 times the minimum dose (ie, 50,000 international units Z body weight 60 kg).
  • Aseptic cell suspension containing 5 x 10 9 human bone marrow cells obtained by aseptic manipulation [This is 6,000 international units / 60 kg body weight! Also, 24,000 international units / 60 kg erythropoietin preparation (Described in the pharmacopoeia) was added, and this was filled into a sterile syringe to obtain an angiogenesis promoting agent.
  • Aseptic cell suspension containing 5 x 10 9 human bone marrow cells obtained by aseptic manipulation Liquid [This is 6,000 international units / 60 kg body weight!] 24,000 international units / 60 kg erythropoietin preparation (pharmacopoeia description) and 8,000,000 units M-CSF preparation (millimostim: pharmacopoeia description) ) was added and filled into a sterile syringe to obtain an angiogenesis-promoting agent.
  • Hematopoietic stem cells purified by immunomagnetic bead method such as human peripheral blood mononuclear cells obtained by Leu Caffelesis, are spread outside the body and liquid-cultured with various hematopoietic site-in to obtain erythroblast suspension. It was. After washing the cells, add erythrobotin preparation (described in Pharmacopeia) containing 6,000 international units Z body weight 60 kg or 2 4,000 international units Z body weight 60 kg genetically modified erythropoietin, and fill this into a sterile syringe Thus, an angiogenesis promoter was obtained.
  • erythrobotin preparation described in Pharmacopeia
  • Hematopoietic stem cells purified by immunomagnetic bead method such as human peripheral blood mononuclear cells obtained by Leucaulacesis, are spread outside the body and liquid-cultured with various hematopoietic site-in, erythroblasts and CD14 positive cells A mixed suspension was obtained. After washing the cells 6,000 international units Z body weight is 60 kg!
  • angiogenesis-promoting agent was obtained by adding M-CSF preparation (Millimostim: described in the pharmacopoeia) and filling this into a sterile syringe.
  • Umbilical cord blood force obtained from human umbilical cord and placenta was also cultured in vitro with hematopoietic stem cells purified by immunomagnetic bead method together with various hematopoietic site force ins to obtain erythroblast suspension. After washing the cells, add an erythropoietin preparation (described in the pharmacopoeia) of 6,000 international units Z body weight 60 kg or 24,000 international units Z body weight 60 kg, and fill this into a sterile syringe to obtain an angiogenesis promoter. It was.
  • Hematopoietic stem cells purified from human umbilical cord and placenta by immunomagnetic bead method were also cultured in liquid together with various hematopoietic site-in in vitro to obtain a mixed suspension of erythroblasts and CD14 positive cells. After washing the cells 6,000 international units Z body weight 60kg or 24,000 international units Z body weight 60kg erythropoietin preparation (pharmacopoeia description) and 8,000 0,000 units M-CSF preparation (Millimostim: Pharmacopoeia) And an angiogenesis-promoting agent was obtained by filling this into a sterile syringe.

Abstract

It is intended to provide an angiogenesis promoter which can be easily applied, promotes an angiogenic effect and is highly efficacious in improving blood flow and an angiogenic therapy. By using an angiogenesis promoter, which contains an erythropoietin preparation comprising mammalian bone marrow cells and 5,000 to 50,000 IU/60 kg body weight per unit dose of erythropoietin and can be easily applied, erythroblasts induced by erythropoietin secret a vasoproliferative cytokine and thus the angiogenic effect can be strongly promoted. Since this angiogenic effect is potentiated in the presence of erythropoietin, additional angiogenic effect can be promoted. Thus, blood flow insufficiency which is fundamentally causative of the pathological conditions and symptoms of ischemic diseases and the thus induced ischemia can be ameliorated and clinical effects can be improved.

Description

明 細 書  Specification
血管新生促進剤および血管新生療法  Angiogenesis promoters and angiogenesis therapy
技術分野  Technical field
[0001] 本発明は、虚血性疾患を有する哺乳動物に対して血管新生を促進するための血 管新生促進剤および血管新生療法に関するものである。  [0001] The present invention relates to an angiogenesis-promoting agent and angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease.
背景技術  Background art
[0002] 近年、四肢,心臓,脳などの虚血性疾患の治療は、臨床医学において大きな比重 を占めており、この市場規模が癌疾患の治療と並ぶ最大規模の疾患群を形成してい る。この虚血性疾患の治療には、血管拡張薬,経皮経管冠動脈形成術,血管バイパ ス術が用いられており、特に重症下肢虚血疾患の患者には従来血管バイパス術が 用いられている力 血管が細くてバイパス術ができなければ下肢部位の切断に至る 場合がある等の問題があった。そこで、これらの問題を解決する一つの手段として、 遺伝子治療や血管新生療法を行う研究が進められている。しかし、遺伝子治療では いまだ実験治療の域を出ておらず安全性や倫理上の問題があることから一般には普 及していないため、血管新生療法である自己細胞移植治療が主流となっている。こ の自己細胞移植治療は、骨髄細胞を患部近傍の筋肉中に移植することにより、これ が血管に分ィ匕して血管を形成することで治療を行うという療法であり、今後、症例数 を増やしてその効果に関する評価をする必要があるものの、重症例でも治療できるこ とから、将来的な治療法として期待されている。  [0002] In recent years, treatment of ischemic diseases such as extremities, heart, brain, and the like has become a major factor in clinical medicine, and this market size forms the largest disease group along with treatment of cancer diseases. Vasodilators, percutaneous transluminal coronary angioplasty, and vascular bypass are used to treat this ischemic disease, and vascular bypass surgery is conventionally used for patients with severe lower limb ischemic disease. There were problems, such as cutting of the lower limbs, if the force vessel was thin and bypassing was not possible. As a means to solve these problems, research on gene therapy and angiogenesis therapy is underway. However, gene therapy is not yet widely used due to safety and ethical issues that have not yet gone out of experimental therapy, so autologous cell transplantation, which is an angiogenic therapy, has become the mainstream. . This autologous cell transplantation treatment is a therapy in which bone marrow cells are transplanted into muscles near the affected area, and this is divided into blood vessels to form blood vessels, which will be treated in the future. Although it is necessary to evaluate the effect by increasing it, it is expected as a future treatment because it can treat severe cases.
[0003] 虚血性疾患である末梢動脈疾患(閉塞性動脈硬化症,ビュルガー病,虚血性心疾 患,脳血管障害など)においては、末梢動脈の血流不全による当該部位'臓器の虚 血が病態 ·症状の基幹をなすため、種々の技術を用いて当該部位'臓器に血管を新 生させることで疾患の治療を行う試みがなされている。これらの試みのうち自己細胞 移植治療に関連する従来技術としては、自己骨髄細胞移植を用いた四肢虚血の治 療 (非特許文献 1)、自己骨髄細胞移植を用いた虚血性心疾患の治療 (非特許文献 2)、自己末梢血細胞移植を用いた四肢虚血の治療 (非特許文献 3)、自己末梢血細 胞移植を用いた虚血性心疾患の治療 (非特許文献 4)などが挙げられる。また、血管 新生を制御する方法、すなわち血管形成を増強または阻害する方法において、内皮 前駆細胞を脳血管虚血,腎虚血,肺虚血,四肢の虚血,虚血性心筋症,および心筋 虚血の疾患を有する患者に投与する方法が、例えば特許文献 1に開示されて!、る。 しかしながら、これらの治療法には一定の臨床効果が認められるものの、血流改善効 果および症状軽減効果にぉ ヽて十分な効果は得られて ヽなかった。 [0003] In peripheral arterial diseases that are ischemic diseases (obstructive arteriosclerosis, Buerger's disease, ischemic heart disease, cerebrovascular disease, etc.) In order to form the basis of pathophysiology / symptoms, an attempt has been made to treat the disease by using a variety of techniques to generate blood vessels in the region's organ. Among these attempts, conventional technologies related to autologous cell transplantation include limb ischemia treatment using autologous bone marrow cell transplantation (Non-Patent Document 1) and ischemic heart disease treatment using autologous bone marrow cell transplantation. (Non-patent document 2), Treatment of limb ischemia using autologous peripheral blood cell transplantation (Non-patent document 3), Treatment of ischemic heart disease using autologous peripheral blood cell transplantation (Non-patent document 4), etc. It is done. Also blood vessels Endothelial progenitor cells are treated for cerebral vascular ischemia, renal ischemia, pulmonary ischemia, limb ischemia, ischemic cardiomyopathy, and myocardial ischemia in a method for controlling neoplasia, ie, for enhancing or inhibiting angiogenesis. A method for administration to a patient having such a disease is disclosed in, for example, Patent Document 1 !. However, although these treatments have a certain clinical effect, they have not been able to obtain sufficient effects in terms of blood flow improvement effect and symptom reduction effect.
特許文献 1:特表 2001—503427号公報  Patent Document 1: JP 2001-503427 Gazette
特干文献 1: Therapeutic angiogenesis for patients with limb ischemia by autologous transplantation of bone-marrow cells: a pilot study and a ramdomised controlled trial" (Lancet, vol. 360, pp 427-435, 2002) 非特許文献 2 : "Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angio blasts, angiogenic ligands, and cytokines (し lrculation, vol. 104, pp 1046-1052, 2001)  Special Reference 1: Therapeutic angiogenesis for patients with limb ischemia by autologous transplantation of bone-marrow cells: a pilot study and a ramdomised controlled trial "(Lancet, vol. 360, pp 427-435, 2002) Non-Patent Document 2: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angio blasts, angiogenic ligands, and cytokines (and lrculation, vol. 104, pp 1046-1052, 2001)
非特許文献 3 : "Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs (circulation, vol. 106, pp  Non-Patent Document 3: "Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs (circulation, vol. 106, pp
2019-2025, 2002)  (2019-2025, 2002)
非特許文献 4 : "Improvement of collateral perfusion and regional function by implantation of peripheral olood mononuclear cells into ischemic hibernation myocardium"(Arteriosclerosis Thrombosis and Vascular Biology, vol. 22, pp 1804-1810, 2002)  Non-Patent Document 4: "Improvement of collateral perfusion and regional function by implantation of peripheral olood mononuclear cells into ischemic hibernation myocardium" (Arteriosclerosis Thrombosis and Vascular Biology, vol. 22, pp 1804-1810, 2002)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 前記欠点を解決し、さらに簡単に適用でき臨床効果のある製剤および治療法の改 善が強く望まれていた。 [0004] There has been a strong demand for improvements in formulations and treatment methods that solve the above-mentioned drawbacks and can be applied more easily and have clinical effects.
[0005] そこで、本発明は、簡単に適用でき、かっ血管新生作用を促進し、血流改善効果 の高い血管新生促進剤を提供することを目的とする。さらに、本発明は、虚血性疾患 に対する血管新生療法において、血管新生作用を増強することで治療効果を高める ことが可能な血管新生療法を提供することを目的とする。 課題を解決するための手段 [0005] Accordingly, an object of the present invention is to provide an angiogenesis promoting agent that can be easily applied, promotes angiogenic action, and has a high blood flow improving effect. Furthermore, an object of the present invention is to provide an angiogenesis therapy capable of enhancing a therapeutic effect by enhancing an angiogenesis action in an angiogenesis therapy for an ischemic disease. Means for solving the problem
[0006] 上記課題に鑑みて鋭意検討した結果、哺乳動物の骨髄造血において、赤芽球以 外の骨髄細胞は遊走能を有し成熟に伴って自ら血管へ遊走し骨髄血管を通過する ことで末梢血に動員されるのに対し、赤芽球は遊走能を有しないため血管増殖向性 サイト力イン (血管内皮増殖因子: VEGF,胎盤増殖因子: P1GFなど)を分泌すること で赤芽球造血巣へ新生血管を誘導し末梢血に動員されるという性質に着目した。そ して、血管新生の従来技術として広く採用されて!、る骨髄細胞または末梢血細胞の 虚血部位への移植治療にお!、ては、虚血部位に移植される細胞集団に血管前駆細 胞が含まれているだけでなぐ造血幹細胞および幹細胞を多く含むことから、移植細 胞に赤芽球増殖因子のエリスロポエチンを混入して移植することで、移植部位での 一過性赤芽球造血および赤芽球活性化を誘導し血管前駆細胞の至近で上記血管 増殖向性サイト力インを分泌させることで効率のよい血管新生を促進できることを見 出した。  [0006] As a result of diligent studies in view of the above problems, in mammalian bone marrow hematopoiesis, bone marrow cells other than erythroblasts have the ability to migrate and migrate to the blood vessels themselves as they mature and pass through the bone marrow blood vessels. While erythroblasts are recruited to peripheral blood, erythroblasts do not have the ability to migrate, so erythroblasts secrete vascular growth-directing site force-in (vascular endothelial growth factor: VEGF, placental growth factor: P1GF, etc.) We focused on the property of inducing new blood vessels to the hematopoietic foci and being mobilized to peripheral blood. It is widely adopted as a conventional technique for angiogenesis! For transplantation treatment of bone marrow cells or peripheral blood cells to an ischemic site! Because it contains many hematopoietic stem cells and stem cells that contain only vesicles, transient erythroblast hematopoiesis at the transplantation site can be achieved by mixing the transplanted cells with the erythropoietin erythropoietin. It was also found that efficient angiogenesis can be promoted by inducing erythroblast activation and secreting the above-mentioned vascular proliferative tropic force in the vicinity of vascular progenitor cells.
[0007] さらに、赤芽球細胞には核が存在し、赤芽球細胞が成熟する過程で骨髄の微小血 管の周囲に存在する血管内皮下のマクロファージにより核が除去 (脱核)され、脱核 と同時に骨髄内力 血管内皮の隙間を通って、脱核した赤芽球 (網赤血球)が血管 内へ移動している。つまり、血管内皮下のマクロファージ (CD14陽性細胞の一部)は 成熟赤芽球から細胞核を奪 、つつ網赤血球を血管内に移動させる役割をして!/、る。 このことから、赤芽球はサイト力イン分泌などの機序で血管を誘致するものの、直接的 に新生血管と接触するわけではなぐ CD14陽性細胞による仲介が必要であり、 CD 14陽性細胞は赤芽球の分泌するサイト力インなどによって新生血管と共に赤芽球造 血巣に誘導され、誘導後には、 CD14陽性細胞は成熟赤芽球と直接接着し、かつ新 生血管の血管内皮とも直接接着する。これらの細胞接着が刺激となって、 CD14陽 性細胞からも種々のサイト力インが分泌され、それらの時間的配列と空間的位置関係 の総体として血管新生が生じることが期待できる。そこで、 CD14陽性細胞を増殖'活 性ィ匕するサイト力インであるマクロファージ 'コロニー刺激因子 (M— CSF)を、骨髄細 胞およびエリスロポエチンと同時に投与することで効率のよい血管新生を促進できる ことを見出し、本発明に想到した。 [0008] 本発明の請求項 1記載の血管新生促進剤は、哺乳動物の骨髄細胞と、 1用量当り 5, 000— 50, 000国際単位 Z体重 60kgのエリスロポエチンを含有するエリスロポェ チン製剤とを含むことを特徴とする。 [0007] Further, nuclei exist in erythroblasts, and in the process of erythroblast maturation, the nuclei are removed (denucleated) by subendothelial macrophages around the microvessels of the bone marrow, At the same time as enucleation, intranuclear force moves through the gaps in the vascular endothelium, and enucleated erythroblasts (reticulocytes) move into the blood vessels. In other words, macrophages (in some of the CD14-positive cells) under the blood vessels of the blood vessels play a role in moving the reticulocytes into the blood vessels while taking the cell nuclei from the mature erythroblasts! This suggests that erythroblasts attract blood vessels by mechanisms such as cytodynamic in secretion, but do not come into direct contact with new blood vessels, and mediation by CD14-positive cells is necessary. It is induced in the erythroid hematopoiesis together with the new blood vessels by the cytodynamic force secreted by the blasts, and after induction, the CD14 positive cells adhere directly to the mature erythroblasts and directly to the vascular endothelium of the new blood vessels. To do. By stimulating these cell adhesions, it is expected that CD14 positive cells secrete various site force-ins and angiogenesis occurs as a whole of their temporal arrangement and spatial positional relationship. Therefore, efficient angiogenesis can be promoted by simultaneously administering bone marrow cells and erythropoietin with macrophage colony-stimulating factor (M-CSF), which is a site force-in for proliferating and activating CD14-positive cells. As a result, the present invention has been conceived. [0008] The angiogenesis-promoting agent according to claim 1 of the present invention comprises mammalian bone marrow cells and an erythropoietin preparation containing 5,000-50,000 international units Z body weight 60 kg of erythropoietin per dose. It is characterized by that.
[0009] 本発明の請求項 2記載の血管新生促進剤は、請求項 1において、マクロファージ. コロニー刺激因子をさらに含むことを特徴とする。  [0009] The angiogenesis promoter according to claim 2 of the present invention is characterized in that in claim 1, it further comprises a macrophage colony stimulating factor.
[0010] 本発明の請求項 3記載の血管新生促進剤は、請求項 1にお 、て、前記エリスロポェ チンが、天然由来のエリスロポエチン,改変されたエリスロポエチン又はその誘導体 であることを特徴とする。  [0010] The angiogenesis-promoting agent according to claim 3 of the present invention is characterized in that, in claim 1, the erythropoietin is a naturally-derived erythropoietin, a modified erythropoietin or a derivative thereof.
[0011] 本発明の請求項 4記載の血管新生促進剤は、請求項 1において、前記骨髄細胞が[0011] The angiogenesis promoting agent according to claim 4 of the present invention is the angiogenesis promoting agent according to claim 1, wherein the bone marrow cells are
、自家由来もしくは組織適合抗原が一致または一部不一致の哺乳動物由来であるこ とを特徴とする。 It is characterized in that it is derived from a mammal whose autologous or histocompatibility antigen is identical or partially mismatched.
[0012] 本発明の請求項 5記載の血管新生促進剤は、請求項 1にお 、て、アンプル類,シリ ンジ類又はバイアル類の剤形であることを特徴とする。  [0012] The angiogenesis-promoting agent according to claim 5 of the present invention is characterized in that, in claim 1, it is a dosage form of ampoules, syringes or vials.
[0013] 本発明の請求項 6記載の血管新生促進剤は、骨髄,末梢血,臍帯血又はその他の 細胞資源に由来する赤芽球と、 CD14陽性細胞と、 1用量当り 5, 000— 50, 000国 際単位 Z体重 60kgのエリスロポエチンを含有するエリスロポエチン製剤とを含むこと を特徴とする。 [0013] The angiogenesis-promoting agent according to claim 6 of the present invention comprises erythroblasts derived from bone marrow, peripheral blood, umbilical cord blood or other cell resources, CD14-positive cells, and 5,000-50 per dose. , 000 international unit Z erythropoietin preparation containing 60 kg erythropoietin.
[0014] 本発明の請求項 7記載の血管新生促進剤は、請求項 6において、マクロファージ' コロニー刺激因子をさらに含むことを特徴とする。  [0014] The angiogenesis promoter according to claim 7 of the present invention is characterized in that in claim 6, it further comprises a macrophage colony-stimulating factor.
[0015] 本発明の請求項 8記載の血管新生促進剤は、請求項 6にお 、て、前記エリスロポェ チンが、天然由来のエリスロポエチン,改変されたエリスロポエチン又はその誘導体 であることを特徴とする。  [0015] The angiogenesis promoter according to claim 8 of the present invention is characterized in that, in claim 6, the erythropoietin is a naturally derived erythropoietin, a modified erythropoietin or a derivative thereof.
[0016] 本発明の請求項 9記載の血管新生促進剤は、請求項 6において、前記骨髄,末梢 血,臍帯血又はその他の細胞資源が、自家由来もしくは組織適合抗原が一致または 一部不一致の哺乳動物由来であることを特徴とする。 [0016] The angiogenesis promoting agent according to claim 9 of the present invention is the angiogenesis promoting agent according to claim 6, wherein the bone marrow, peripheral blood, umbilical cord blood or other cell resources are identical or partially mismatched with autologous or histocompatibility antigens. It is derived from a mammal.
[0017] 本発明の請求項 10記載の血管新生促進剤は、請求項 6において、前記末梢血, 臍帯血又はその他の細胞資源に由来する赤芽球は、体外増殖によって得られたも のであることを特徴とする。 [0018] 本発明の請求項 11記載の血管新生促進剤は、請求項 6にお 、て、アンプル類,シ リンジ類又はノ ィアル類の剤形であることを特徴とする。 [0017] The angiogenesis promoting agent according to claim 10 of the present invention is the angiogenesis promoting agent according to claim 6, wherein the erythroblast derived from the peripheral blood, umbilical cord blood or other cell resources is obtained by in vitro proliferation. It is characterized by that. [0018] The angiogenesis-promoting agent according to claim 11 of the present invention is characterized in that, in claim 6, it is a dosage form of ampoules, syringes or nominals.
[0019] 本発明の請求項 12記載の血管新生療法は、虚血性疾患を有する哺乳動物にお いて血管新生を促進するための血管新生療法であって、前記請求項 1乃至請求項 1[0019] The angiogenesis therapy according to claim 12 of the present invention is an angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease.
1のいずれか 1つに記載の血管新生促進剤を虚血部位に筋肉内投与することを特徴 とする。 The angiogenesis promoting agent according to any one of 1 is administered intramuscularly to an ischemic site.
[0020] 本発明の請求項 13記載の血管新生療法は、請求項 12において、前記虚血性疾 患が、末梢動脈疾患であることを特徴とする。  [0020] The angiogenesis therapy according to claim 13 of the present invention is characterized in that, in claim 12, the ischemic disease is a peripheral arterial disease.
[0021] 本発明の請求項 14記載の血管新生療法は、虚血性疾患を有する哺乳動物にお いて血管新生を促進するための血管新生療法であって、前記請求項 1乃至請求項 1 1のいずれか 1つに記載の血管新生促進剤を、遠隔部位の血管より血管内力テーテ ルを導入し虚血部位に経血管的に到達させて投与することを特徴とする。  [0021] The angiogenesis therapy according to claim 14 of the present invention is an angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease. Any one of the angiogenesis promoters described in any one of the above may be administered by introducing an intravascular force tail from a blood vessel at a remote site to reach the ischemic site transvascularly.
[0022] 本発明の請求項 15記載の血管新生療法は、請求項 14において、前記虚血性疾 患が、末梢動脈疾患であることを特徴とする。  [0022] The angiogenesis therapy according to claim 15 of the present invention is characterized in that, in claim 14, the ischemic disease is a peripheral arterial disease.
発明の効果  The invention's effect
[0023] 本発明の請求項 1記載の血管新生促進剤によれば、簡単に適用でき、エリスロポェ チンによって誘導された赤血球系造血細胞が血管増殖向性サイト力インを分泌し強 い血管新生作用を促進することができる。  [0023] According to the angiogenesis promoting agent of claim 1 of the present invention, the angiogenesis action can be easily applied, and the erythroid hematopoietic cells induced by erythropoietin secrete vascular growth tropic site force in. Can be promoted.
[0024] 本発明の請求項 2記載の血管新生促進剤によれば、マクロファージ 'コロニー刺激 因子は、マクロファージを増殖'活性ィ匕するサイト力インであるので、血管新生作用を さらに促進することができる。 [0024] According to the angiogenesis-promoting agent according to claim 2 of the present invention, the macrophage 'colony stimulating factor is a site force-in that activates the growth of macrophages, and therefore can further promote the angiogenesis action. it can.
[0025] 本発明の請求項 3記載の血管新生促進剤によれば、改変されたエリスロポエチン 又はその誘導体を用いることによって、主作用の増強や副作用の低減等の種々の優 れた効果が期待できる。 [0025] According to the angiogenesis promoter of claim 3 of the present invention, various excellent effects such as enhancement of main effects and reduction of side effects can be expected by using modified erythropoietin or a derivative thereof. .
[0026] 本発明の請求項 4記載の血管新生促進剤によれば、同種 (ヒト対ヒト、マウス対マウ スなど)の細胞資源を用いる場合にぉ 、ても容易に骨髄細胞資源を入手することが できる。 [0026] According to the angiogenesis-promoting agent of claim 4, the bone marrow cell resource can be easily obtained even when the same type (human vs. human, mouse vs. mouse, etc.) cell resource is used. be able to.
[0027] 本発明の請求項 5記載の血管新生促進剤によれば、簡単に適用可能である。 [0028] 本発明の請求項 6記載の血管新生促進剤によれば、簡単に適用でき、エリスロポェ チンによって誘導された赤血球系造血細胞が血管増殖向性サイト力インを分泌し強 い血管新生作用を促進することができる。 [0027] The angiogenesis promoter according to claim 5 of the present invention can be easily applied. [0028] According to the angiogenesis-promoting agent of claim 6 of the present invention, it can be easily applied, and the erythroid hematopoietic cell induced by erythropoietin secretes vascular growth-trophic site force-in and has a strong angiogenesis action. Can be promoted.
[0029] 本発明の請求項 7記載の血管新生促進剤によれば、マクロファージ 'コロニー刺激 因子は、マクロファージを増殖'活性ィ匕するサイト力インであるので、血管新生作用を さらに促進することができる。 [0029] According to the angiogenesis promoting agent according to claim 7 of the present invention, the macrophage 'colony stimulating factor is a site force-in that activates the growth of macrophages, and therefore can further promote the angiogenesis action. it can.
[0030] 本発明の請求項 8記載の血管新生促進剤によれば、改変されたエリスロポエチン 又はその誘導体を用いることによって、主作用の増強や副作用の低減等の種々の優 れた効果が期待できる。 [0030] According to the angiogenesis-promoting agent according to claim 8 of the present invention, various excellent effects such as enhancement of main effects and reduction of side effects can be expected by using modified erythropoietin or a derivative thereof. .
[0031] 本発明の請求項 9記載の血管新生促進剤によれば、同種 (ヒト対ヒト、マウス対マウ スなど)の細胞資源を用いる場合においても容易に骨髄,末梢血,臍帯血又はその 他の細胞資源を入手することができる。 [0031] According to the angiogenesis promoting agent of claim 9 of the present invention, bone marrow, peripheral blood, umbilical cord blood or the like can be easily obtained even when the same type of cell resource (human vs. human, mouse vs. mouse, etc.) is used. Other cellular resources can be obtained.
[0032] 本発明の請求項 10記載の血管新生促進剤によれば、体外増殖によって容易に赤 芽球を得ることができる。 [0032] According to the angiogenesis promoter of claim 10 of the present invention, erythroblasts can be easily obtained by in vitro growth.
[0033] 本発明の請求項 11記載の血管新生促進剤によれば、簡単に適用可能である。 [0033] The angiogenesis promoter according to claim 11 of the present invention can be easily applied.
[0034] 本発明の請求項 12記載の血管新生療法によれば、血管新生作用を増強すること で治療効果を高めることが可能である。 [0034] According to the angiogenesis therapy of claim 12 of the present invention, it is possible to enhance the therapeutic effect by enhancing the angiogenesis action.
[0035] 本発明の請求項 13記載の血管新生療法によれば、血管新生作用を増強すること で治療効果を高めることが可能である。 [0035] According to the angiogenesis therapy of the thirteenth aspect of the present invention, it is possible to enhance the therapeutic effect by enhancing the angiogenesis action.
[0036] 本発明の請求項 14記載の血管新生療法によれば、血管新生作用を増強すること で治療効果を高めることが可能である。 [0036] According to the angiogenesis therapy of claim 14 of the present invention, it is possible to enhance the therapeutic effect by enhancing the angiogenesis action.
[0037] 本発明の請求項 15記載の血管新生療法によれば、血管新生作用を増強すること で治療効果を高めることが可能である。 [0037] According to the angiogenesis therapy of claim 15 of the present invention, it is possible to enhance the therapeutic effect by enhancing the angiogenesis action.
図面の簡単な説明  Brief Description of Drawings
[0038] [図 1]本発明の試験例 1における虚血肢のチアノーゼ力 の回復曲線(図 1-1)、及び 虚血肢の生存曲線(図 1-2)を示すグラフである。  [0038] Fig. 1 is a graph showing a recovery curve (Fig. 1-1) of cyanosis force in an ischemic limb and a survival curve (Fig. 1-2) of an ischemic limb in Test Example 1 of the present invention.
[図 2]本発明の試験例 2における虚血肢のチアノーゼ力 の回復曲線(図 2-1)、及び 虚血肢の生存曲線(図 2-2)を示すグラフである。 [図 3]本発明の試験例 3における血流比の結果を示すグラフである。 FIG. 2 is a graph showing a recovery curve (FIG. 2-1) of cyanosis force of ischemic limbs and a survival curve (FIG. 2-2) of ischemic limbs in Test Example 2 of the present invention. FIG. 3 is a graph showing the results of blood flow ratio in Test Example 3 of the present invention.
[図 4]本発明の試験例 4における血管内皮細胞のみよりなる微小血管の数(図 4-1)、 血管平滑筋を伴った細動脈の数(図 4-2)、血管内皮細胞のみよりなる微小血管の 総面積 (図 4- 3)、血管平滑筋を伴った細動脈の総面積 (図 4- 4)、血管内皮細胞の みよりなる微小血管の一本あたりの平均面積(図 4-5)、及び血管平滑筋を伴った細 動脈の一本あたりの平均面積(図 4-6)の結果を示すグラフである。  [Fig. 4] Number of microvessels consisting only of vascular endothelial cells in Test Example 4 of the present invention (Fig. 4-1), number of arterioles with vascular smooth muscle (Fig. 4-2), only from vascular endothelial cells The total area of microvessels (Fig. 4-3), the total area of arterioles with vascular smooth muscle (Fig. 4-4), and the average area per microvessel consisting only of vascular endothelial cells (Fig. 4) -5) and the average area per arteriole with vascular smooth muscle (Figure 4-6).
[図 5]本発明の試験例 5におけるヒ Hn vitro血管新生培養標本の示す顕微鏡写真( 図 5-1— 6)である。  FIG. 5 is a photomicrograph (FIGS. 5-1-6) showing a cultivated Hn vitro angiogenic sample in Test Example 5 of the present invention.
[図 6]本発明の試験例 5における BFU— e, CFU— c,又は EPO添加(図 6-1)、 VEG F, P1GF1, P1GF2, Angl,又は EPO添加(図 6- 2)、 sFltl, sKDR又は BFU— e 添カ卩(図 6-3)時の血管面積比を示すグラフである。  [Fig. 6] BFU-e, CFU-c, or EPO added (Fig. 6-1), VEG F, P1GF1, P1GF2, Angl, or EPO added (Fig. 6-2), sFltl, Fig. 6 is a graph showing the ratio of blood vessel area when sKDR or BFU-e is added (Figure 6-3).
[図 7]本発明の試験例 5の ELISA法で測定した培養上清中の VEGF (図 7-1)と P1G F (図 7-2)の分泌量の結果を示すグラフである。  FIG. 7 is a graph showing the results of secretion amounts of VEGF (FIG. 7-1) and P1GF (FIG. 7-2) in the culture supernatant measured by ELISA in Test Example 5 of the present invention.
[図 8]本発明の試験例 6における ELISA法による分泌タンパク質量(図 8-1— 2)、及 び定量 PCR法による mRNA量(図 8-3— 4)の測定結果を示すグラフである。  FIG. 8 is a graph showing the measurement results of the amount of secreted protein (FIG. 8-1-2) by ELISA and the amount of mRNA (FIG. 8-3-4) by quantitative PCR in Test Example 6 of the present invention. .
[図 9]本発明の試験例 7のエリスロポエチン投与量変化における脾臓の重量(図 9- 1) 、ヘモグロビンの量(図 9-2)、へマトクリット値(図 9-3)の結果を示すグラフである。 発明を実施するための最良の形態  FIG. 9 is a graph showing the results of spleen weight (FIG. 9-1), hemoglobin amount (FIG. 9-2), and hematocrit value (FIG. 9-3) in erythropoietin dose change in Test Example 7 of the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 以下、本発明について詳細に説明する。 [0039] Hereinafter, the present invention will be described in detail.
[0040] 本発明の血管新生促進剤および血管新生療法を適応する虚血性疾患は、主とし て末梢動脈疾患(閉塞性動脈硬化症,ビュルガー病,虚血性心疾患,脳血管障害な ど)である。ただし、動脈の狭窄部位が太い動脈に限局し、この太い動脈に比べ末梢 の動脈血流が比較的に保たれている症例に関しては、自己血管の移植あるいは人 ェ血管の移植などの外科的治療を優先し、末梢血管に血流不全の主病変が認めら れる症例において、本発明の血管新生促進剤および血管新生療法を適応すること が好ましい。  [0040] Ischemic diseases to which the angiogenesis-promoting agent and angiogenesis therapy of the present invention are applied are mainly peripheral arterial diseases (obstructive arteriosclerosis, Buerger's disease, ischemic heart disease, cerebrovascular disease, etc.). is there. However, in cases where the arterial stenosis is confined to a thick artery and the peripheral arterial blood flow is relatively maintained compared to this thick artery, surgical treatment such as autologous or human blood vessel transplantation It is preferable to apply the angiogenesis-promoting agent and the angiogenesis therapy of the present invention in cases in which main lesions of blood flow failure are observed in peripheral blood vessels.
[0041] 本明細書中で哺乳動物とは、ヒトを含む任意の哺乳動物を意味し、具体的には、ヒ ト,ゥサギ,ネズミ,モルモット,チンパンジー,サル等の種々の哺乳動物が挙げられ る。 In the present specification, the mammal means any mammal including humans, and specific examples include various mammals such as human, rabbit, mouse, guinea pig, chimpanzee, monkey and the like. The
[0042] 哺乳動物の骨髄細胞としては、哺乳動物を全身麻酔し骨盤の一部 (腸骨,大腿骨 など)力も採取される骨髄細胞が用いられる。また、骨髄細胞が自家 (患者自身)の骨 髄細胞、または血管新生促進剤が投与される哺乳動物の血縁動物から採取される 骨髄細胞,組織適合抗原 (HLA抗原)型の一致したまたは一部不一致の非血縁動 物からの採取される骨髄細胞などであってもよ 、。採取された骨髄細胞を比重遠心 法などの公知の方法により有核細胞成分あるいは低比重細胞成分を分離し細胞浮 遊液としたものを本発明の血管新生促進剤に用いる。なお、骨髄細胞から得られる 細胞浮遊液中には、赤芽球 (CD235a陽性細胞)や単球 ·マクロファージ (CD14陽 性細胞)やこれらの前駆細胞および幹細胞および血管内皮前駆細胞を含む細胞集 団(CD34陽性細胞)が含まれて 、る。  [0042] As the bone marrow cells of mammals, bone marrow cells obtained by general anesthesia of mammals and collecting pelvic force (such as iliac and femoral bones) are also used. In addition, bone marrow cells are collected from autologous bone marrow cells of the patient (the patient's own), or bone marrow cells collected from mammalian relatives to whom an angiogenesis-promoting agent is administered, or matched or partially of histocompatibility antigen (HLA antigen) type. May be bone marrow cells collected from unmatched unrelated animals. The collected bone marrow cells are separated into nucleated cell components or low density cell components by a known method such as specific gravity centrifugation, and used as a cell floating solution for the angiogenesis promoter of the present invention. The cell suspension obtained from bone marrow cells contains cell populations containing erythroblasts (CD235a positive cells), monocytes / macrophages (CD14 positive cells), their progenitor cells, stem cells, and vascular endothelial progenitor cells. (CD34 positive cells).
[0043] 哺乳動物の骨髄由来の赤芽球としては、哺乳動物を全身麻酔し骨盤の一部 (腸骨 ,大腿骨など)カゝら採取される骨髄カゝら例えば免疫磁気ビーズ法などによって精製さ れた赤芽球の細胞浮遊液を用いてもよい。さらに、哺乳動物の末梢血由来の赤芽球 としては、例えばリューカフェレーシス(Leukapheresis)により採取される末梢血単核 細胞力 免疫磁気ビーズ法によって精製した造血幹細胞を体外において各種造血 サイト力インとともに液体培養して得られる赤芽球の細胞浮遊液を用いてもょ 、。また 、哺乳動物の臍帯血由来の赤芽球としては、例えばヒト臍帯および胎盤より得られた 臍帯血力 免疫磁気ビーズ法によって精製した造血幹細胞を体外にぉ 、て、各種造 血サイト力インとともに液体培養して得られる赤芽球の細胞浮遊液を用いてもょ ヽ。  [0043] As erythroblasts derived from the bone marrow of mammals, bone marrow and the like collected from a part of the pelvis (such as the iliac and femur) after general anesthesia of the mammal, such as by immunomagnetic bead method Purified erythroblast cell suspension may be used. Furthermore, as erythroblasts derived from mammalian peripheral blood, for example, peripheral blood mononuclear cell force collected by Leukapheresis, hematopoietic stem cells purified by immunomagnetic bead method can be used in vitro. You can also use cell suspension of erythroblasts obtained by liquid culture. In addition, as erythroblasts derived from mammalian umbilical cord blood, for example, umbilical cord blood force obtained from human umbilical cord and placenta, hematopoietic stem cells purified by immunomagnetic bead method are used outside the body, and together with various hematopoietic site power-in. Use cell suspension of erythroblasts obtained by liquid culture.
[0044] CD14陽性細胞の分取方法としては、哺乳動物の骨髄,末梢血又は臍帯血より分 取した細胞から、例えば免疫磁気ビーズ法などを用いて、 CD14陽性細胞を分取し てもよい。さらには、哺乳動物の骨髄,末梢血又は臍帯血より免疫磁気ビーズ法など によって精製した造血幹細胞を体外にお!、て、各種造血サイト力インとともに液体培 養して得られる CD14陽性細胞の細胞浮遊液を用いてもょ 、。  [0044] As a method for sorting CD14-positive cells, CD14-positive cells may be sorted from cells collected from mammalian bone marrow, peripheral blood or umbilical cord blood using, for example, an immunomagnetic bead method. . In addition, hematopoietic stem cells purified from mammalian bone marrow, peripheral blood, or umbilical cord blood by the immunomagnetic bead method are in vitro! Use floating liquid.
[0045] なお、哺乳動物の骨髄,末梢血又は臍帯血は、自家 (患者自身)のものに限らず、 例えば、血管新生促進剤が投与される哺乳動物の血縁動物力 採取される骨髄また は末梢血,組織適合抗原 (HLA抗原)型の一致したまたは一部不一致の非血縁動 物からの採取される骨髄または末梢血,あるいは血縁動物及び Z又は非血縁動物 の新生児力 採取した臍帯血などであってもよい。なお、自己の細胞資源を用いる場 合には組織適合抗原は完全に一致するが、同種 (ヒト対ヒト、マウス対マウスなど)の 細胞資源を用いる場合には、完全に組織適合抗原の一致した細胞資源を入手する ことは容易ではなぐまた必ずしも必要ではないことから、明細書中の組織適合抗原([0045] It should be noted that the bone marrow, peripheral blood or umbilical cord blood of a mammal is not limited to that of its own (patient itself), but, for example, bone marrow or blood of a mammal to which an angiogenesis-promoting agent is administered is collected. Peripheral blood, histocompatibility antigen (HLA antigen) type matched or partially mismatched unrelated It may be bone marrow or peripheral blood collected from an object, or neonatal force of related animals and Z or unrelated animals. The histocompatibility antigens are completely the same when using their own cell resources, but the histocompatibility antigens are completely the same when using cell resources of the same species (human vs. human, mouse vs. mouse, etc.). Obtaining cellular resources is not easy and is not necessary, so histocompatibility antigens (
HLA抗原)型の一部不一致には、組織適合抗原が一座または複数座異なった同種 個体の細胞資源が含まれる。また、本発明の血管新生促進剤において、哺乳動物の 骨髄,末梢血,臍帯血又はその他の細胞資源に由来する赤芽球を使用する場合、 厳密な抗原適合性は必要としないため、例えば、血液バンクからの非自己の血液か ら分離した造血幹細胞を体外にぉ 、て、各種造血サイト力インとともに液体培養して 得られる赤芽球または CD14陽性細胞の細胞浮遊液を利用してもよい。 The partial mismatch of the (HLA antigen) type includes cell resources of allogeneic individuals that differ in one or more histocompatibility antigens. In addition, in the angiogenesis promoter of the present invention, when using erythroblasts derived from mammalian bone marrow, peripheral blood, umbilical cord blood or other cell resources, strict antigen compatibility is not required. A cell suspension of erythroblasts or CD14-positive cells obtained by culturing hematopoietic stem cells isolated from non-self blood from a blood bank outside the body and liquid culture with various hematopoietic site force-in may be used. .
[0046] エリスロポエチン (EPO)は、赤血球系前駆細胞の分化、増殖を促進する酸性糖タ ンパク質ホルモンであり、主として腎臓力も産生されている。血液中に最も豊富に存 在する赤血球は、一定期間機能した後に脾臓などで破壊されるが、骨髄から絶えず 供給されること〖こよって、正常な状態では末梢の全赤血球数は常に一定に保たれて いる。エリスロポエチンは、このような生体の赤血球の恒常性維持において中心的な 役割を担っていることが一般に知られている。また、エリスロポエチンのヒトへの投与 は、保険収載の「腎性貧血に対するエリスロポエチン投与による貧血の改善」によつ て多数の患者に既に行われており、その投与の安全性などの問題が十分に確認さ れていることから、虚血患者への実際の投与に関しては倫理的問題がないと思われ る。 [0046] Erythropoietin (EPO) is an acidic glycoprotein hormone that promotes the differentiation and proliferation of erythroid progenitor cells, and mainly produces kidney strength. The most abundant red blood cells in the blood are destroyed in the spleen after functioning for a certain period of time, but are constantly supplied from the bone marrow, so that the total number of peripheral red blood cells is always kept constant under normal conditions. It is leaning. It is generally known that erythropoietin plays a central role in maintaining homeostasis of erythrocytes in the living body. In addition, the administration of erythropoietin to humans has already been performed on a large number of patients due to the “improvement of anemia caused by erythropoietin administration for renal anemia” listed in insurance, and there are sufficient problems such as the safety of the administration. As it has been confirmed, there seems to be no ethical problem regarding actual administration to patients with ischemia.
[0047] 本発明の血管新生促進剤に使用するエリスロポエチン製剤に含有されるエリスロボ ェチンは、哺乳動物、特にヒトのエリスロポエチンと実質的に同じ生物学的活性を有 するものであり、天然由来のエリスロポエチン,改変されたエリスロポエチン及び z又 はその誘導体を含む。改変されたエリスロポエチンには、 in vitroで酵素などを用い て修飾する手法により糖鎖の置換 ·削除 '付加などの糖鎖修飾を行った糖鎖構造改 変エリスロポエチン,遺伝子組換え法などにより天然型エリスロポエチンのアミノ酸配 列の一つまたは複数を欠失、置換、付加してアミノ酸配列を改変したアミノ酸改変ェ リスロポェチン,又はジスルフイド結合の改変などで得られたエリスロポエチン誘導体 などの改変されたエリスロポエチンで、且つこれらの改変されたエリスロポエチンがヒト のエリスロポエチンと実質的に同じ生物学的活性を有するものを含む。これらの改変 されたエリスロポエチンを用いることにより、例えば主作用を増強し、副作用を軽減す ることができるなどの利点を有する。また、エリスロポエチンは親水性物質であるため 投与されても排出されてしま 、体内に残りにく 、が、改変されたエリスロポエチン (具 体的には、へノ リン結合ドメインを付加した改変されたエリスロポエチンなど)を用いる ことによって、体内により長く留まることが可能であり、より優れた効果を発揮すること ができる。 [0047] The erythropoietin contained in the erythropoietin preparation used for the angiogenesis-promoting agent of the present invention has substantially the same biological activity as that of mammals, particularly human erythropoietin, and is naturally derived erythropoietin. , Modified erythropoietin and z or its derivatives. The modified erythropoietin is a natural-type erythropoietin that has undergone sugar modification, such as sugar chain substitution and deletion 'addition, etc.' by means of modification with enzymes, etc. in vitro. Amino acid alterations that modify the amino acid sequence by deleting, substituting, or adding one or more of the amino acid sequences of erythropoietin. Modified erythropoietin such as lyslopoietin or erythropoietin derivatives obtained by modification of disulfide bond, etc., and those modified erythropoietin having substantially the same biological activity as human erythropoietin. By using these modified erythropoietins, there are advantages that, for example, main effects can be enhanced and side effects can be reduced. In addition, erythropoietin is a hydrophilic substance that is excreted even when administered, but remains in the body, but is modified erythropoietin (specifically, a modified erythropoietin with an addition of a henolin-binding domain). Etc.) can be used for a longer period of time in the body and more effective.
[0048] また、エリスロポエチンの製造方法は、 、かなる方法で製造されたものであってもよ ぐ周知の遺伝子工学手法により大腸菌,イースト菌,チャイニーズハムスター卵巣細 胞あるいは霊長類の細胞株などに産生させ種々の方法で抽出し、分離精製したもの が用いられる。さらには、これを酵素処理'化学処理などによって、糖鎖構造などを変 更したものが用いられる。  [0048] In addition, the erythropoietin can be produced in Escherichia coli, yeast, Chinese hamster ovary cells, primate cell lines, etc. by well-known genetic engineering techniques, which may be manufactured by any method. Extracted by various methods, separated and purified are used. Furthermore, the sugar chain structure etc. which were changed by enzymatic treatment or chemical treatment are used.
[0049] 本発明に使用されるエリスロポエチン製剤とは、上述のようにして得られるエリスロボ ェチンを含有する溶液製剤であり、エリスロポエチンの他に、通常溶液製剤に添加さ れる安定化剤等の成分、例えば、ポリエチレングリコール,糖類,無機塩類,有機塩 類,アミノ酸類などを含んでいてもよい。巿場カも入手できるエリスロポエチン製剤とし ては、商品名を記載すると例えば、ェポジン注シリンジ,同アンプル 750 (中外製薬( 株)製),ェポジン注シリンジ,同アンプル 1500· 3000 (中外製薬 (株)製),ェポジン 注シリンジ,同アンプル 6000 (中外製薬 (株)製),ェポジン注シリンジ,同アンプル 9 000 ' 12000 (中外製薬 (株)製),エスポー皮下用 24000シリンジ(ェポェチン α (遺 伝子組換え)、 24000国際単位 0. 5mLl筒、キリン (株)),エスポー皮下用 12000 シリンジ (ェポェチンひ(遺伝子組換え)、 12000国際単位 0. 5mLl筒、キリン (株)) などが挙げられる。  [0049] The erythropoietin preparation used in the present invention is a solution preparation containing erythropoietin obtained as described above. In addition to erythropoietin, components such as a stabilizer usually added to the solution preparation, For example, polyethylene glycol, saccharides, inorganic salts, organic salts, amino acids and the like may be included. As erythropoietin preparations that can also be obtained from Kayabacho, the product names are described, for example, Epogin Injection Syringe, Ampoule 750 (manufactured by Chugai Pharmaceutical Co., Ltd.), Epogin Injection Syringe, Ampoule Injection 1500, 3000 (Chugai Pharmaceutical Co., Ltd.) Epogin Injection Syringe, Ampoule 6000 (manufactured by Chugai Pharmaceutical Co., Ltd.), Epoegin Injection Syringe, Ampoule 9 000 '12000 (manufactured by Chugai Pharmaceutical Co., Ltd.), Espoo Subcutaneous 24000 Syringe (Epoetin α (gene) Recombination), 24000 international units 0.5 mL cylinder, Kirin Co., Ltd.), Espoo subcutaneous 12000 syringe (epoetin (genetical recombination), 12000 international units 0.5 mL cylinder, Kirin Co.).
[0050] また、エリスロポエチン製剤中に含まれるエリスロポエチンの量は、治療すべき疾患 の種類、疾患の重症度、患者の年齢などに応じて決定できる力 エリスロポエチン製 剤が 1用量当り 5, 000— 50, 000国際単位 Z体重 60kgのエリスロポエチンを含有 することが好ましい。本明細書でいう 1用量とは、一日 1回の投与量を意味し、投与回 数は 1一 6日間、より好ましくは 5— 6日間連続で投与することが好ましい。具体的に は、 1用量当り 6, 000国際単位 Z体重 60kgを、 5— 6日間連続で投与することが好 ましい。エリスロポエチンは投与局所部位に留まりにくい親水性物質であるため、この ように分割投与することによってより効果を持続させることができる。なお、 1用量当り 5 , 000— 50, 000国際単位 Z体重 60kgは、体重 60kgの患者に換算した値であって 、体重 lkg当りに換算すると 1用量当り 83. 3— 833. 3国際単位 Z体重 lkgである。 体重が 60kgより多 、あるいは少な 、場合、患者の体重に換算した用量を投与する のが望ましい。 [0050] The amount of erythropoietin contained in the erythropoietin preparation can be determined according to the type of disease to be treated, the severity of the disease, the age of the patient, etc. , 000 International Units Z Contains 60 kg erythropoietin It is preferable to do. As used herein, one dose means a dose once a day, and the number of administration is preferably 1 to 6 days, more preferably 5 to 6 days continuously. Specifically, it is preferable to administer 6,000 international units Z body weight 60 kg per dose for 5-6 consecutive days. Since erythropoietin is a hydrophilic substance that hardly stays at the site of administration, it is possible to maintain the effect by performing divided administration in this way. In addition, 5,000-50,000 international units Z per dose Z body weight 60 kg is a value converted to a patient with a body weight of 60 kg, and when converted to a weight per kg body weight 83.3-833.3 international unit Z Weight is 1kg. If the body weight is greater than or less than 60 kg, it is desirable to administer a dose converted to the patient's body weight.
[0051] エリスロポエチンの 1用量当り 5, 000— 50, 000国際単位 Z体重 60kgの投与量は 、多血症などの副作用を誘発しない投与量であって、 1用量当り 50, 000国際単位 Z体重 60kgを超えると多血症を発現させる可能性があり、 1用量当り 5, 000国際単 位 Z体重 60kg未満では十分な主作用を増強することができない。  [0051] Erythropoietin 5,000-50,000 international units per body dose Z body weight 60kg is a dosage that does not induce side effects such as polycythemia, and 50,000 international units per body weight Z body weight Above 60 kg, polycythemia may occur, and 5,000 international units per dose Z Body weight less than 60 kg cannot fully enhance the main effects.
[0052] 本発明に使用されるマクロファージ'コロニー刺激因子(M— CSF)は、単球'マクロ ファージ系(CD14陽性細胞)の細胞およびその前駆細胞に作用し、分化'増殖を促 進するものである。また、 M— CSFのヒトへの投与は、保険収載の(商品名:ロイコプロ ール (登録商標))によって多数の患者に既に行われており、その投与の安全性など の問題が十分に確認されていることから、虚血患者への実際の投与に関しては倫理 的問題がないと思われる。 M— CSFと、骨髄細胞と,エリスロポエチンとを同時に投与 することで効率のよい血管新生を促進できる。 M— CSFとしては、 M— CSF製剤(ミリ モスチム)を用いることができる。巿場カも入手できる M— CSF製剤としては、商品名 を記載すると例えば、「ロイコプロール (登録商標)」(協和発酵 (株)製)などが挙げら れる。また、 M— CSF製剤の量は、疾患の重症度、患者の年齢などに応じて決定でき る力 好ましくは 1用量当り 2 X 106— 20 X 106単位/体重 60kgである。 [0052] The macrophage 'colony stimulating factor (M-CSF) used in the present invention acts on monocyte' macrophage cell (CD14 positive cell) and its progenitor cells, and promotes differentiation 'proliferation. It is. In addition, administration of M-CSF to humans has already been performed on a large number of patients by insurance (Trade name: Leukopro (registered trademark)), and problems such as safety of administration have been sufficiently confirmed. Therefore, there seems to be no ethical problem regarding actual administration to ischemic patients. Efficient angiogenesis can be promoted by administering M-CSF, bone marrow cells, and erythropoietin simultaneously. As M-CSF, an M-CSF preparation (Millimostim) can be used. Examples of M-CSF preparations that can be obtained from Kayabacho include, for example, “Leukoprol (registered trademark)” (manufactured by Kyowa Hakko Co., Ltd.). The amount of M-CSF preparation is a force that can be determined according to the severity of the disease, the age of the patient, etc., preferably 2 × 10 6 — 20 × 10 6 units / weight 60 kg per dose.
[0053] 本発明の血管新生促進剤は、通常密封、滅菌されたプラスチック又はガラス容器 中に収納されている。容器の形態としては、アンプル類,シリンジ類又はバイアル類 を挙げることができる。  [0053] The angiogenesis promoter of the present invention is usually housed in a sealed or sterilized plastic or glass container. Examples of the container form include ampoules, syringes, and vials.
[0054] 本発明の血管新生促進剤によれば、簡単に適用でき、エリスロポエチンによって誘 導された赤芽球が血管増殖向性サイト力インを分泌し強い血管新生作用を促進する ことができる。さらに、この血管新生作用がエリスロポエチンの存在下で増強されるの で、さらなる血管新生作用を促進することでき、虚血疾患の病態'症状の基幹をなす 血流不全とそれによる虚血を改善し臨床効果を改善することができる。また、血管内 皮細胞からなる微小血管の数および面積を増加させるだけでなぐ血管平滑筋を伴 つた細動脈の面積を増大させ、より大きな血管、すなわち血液供給量の多い動脈を 誘導させることができる。 [0054] According to the angiogenesis promoting agent of the present invention, it can be easily applied and induced by erythropoietin. The induced erythroblasts secrete vascular growth-directing site force-in and can promote a strong angiogenic action. Furthermore, since this angiogenic action is enhanced in the presence of erythropoietin, it can promote further angiogenic action, improving the blood flow failure and the resulting ischemia that are the basis of the pathology of ischemic disease. Clinical effect can be improved. In addition, by increasing the number and area of microvessels consisting of vascular endothelium, the arteriole with vascular smooth muscles can be increased to induce larger blood vessels, that is, arteries with high blood supply. it can.
[0055] 次に、本発明の血管新生療法について説明する。本発明の血管新生療法は、虚 血性疾患を有する哺乳動物において血管新生を促進するための血管新生療法であ つて、本発明の血管新生促進剤を虚血部位の数力所力 数十力所に筋肉内投与す ることを包含する。さらに、本発明の血管新生促進剤を、遠隔部位の血管より血管内 カテーテルを導入し虚血部位に経血管的に到達させて投与することを包含する。本 製剤の投与経路として、(1)経皮的直接的に虚血部位に本製剤を筋肉内投与する; (2)経皮経血管的にカテーテルを虚血部位の近傍に到達させ、そこ力ゝら本製剤を注 入することが可能である。具体的には、四肢虚血に対しては直接に虚血部位に筋肉 内投与できるが、心筋梗塞に対しては、全身麻酔下に開胸して直接的に梗塞部位に 筋肉内投与する経路と、別の方法として、全身麻酔下の開胸はせずに、通常の心臓 カテーテル検査の要領で、鼠径部などの血管を穿刺してカテーテルを挿入し、カテ 一テルの先端を心臓内(心室内または冠血管内)に到達させて、そこ力も薬剤を注入 してもよい。特に心臓や脳などの深部臓器に対しては、後者の方が局所麻酔のみで 簡便に行うことができる。  [0055] Next, the angiogenesis therapy of the present invention will be described. The angiogenesis therapy of the present invention is an angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease, and the angiogenesis promoting agent of the present invention is applied to the ischemic site at several tens of strengths. Intramuscular administration is included. Further, the present invention includes an angiogenesis-promoting agent of the present invention, which is administered by introducing an intravascular catheter from a blood vessel at a remote site to reach an ischemic site transvascularly. The route of administration of this preparation is as follows: (1) The preparation is intramuscularly administered directly to the ischemic site percutaneously; (2) The catheter is allowed to reach the ischemic site percutaneously transvascularly, and In addition, it is possible to inject this product. Specifically, for limb ischemia, it can be administered intramuscularly directly to the ischemic site, but for myocardial infarction, the chest is opened under general anesthesia and directly administered intramuscularly to the infarcted site. Alternatively, instead of performing thoracotomy under general anesthesia, the catheter can be inserted by puncturing a blood vessel such as the groin, and the tip of the catheter inside the heart ( The drug may also be injected into the ventricle (intraventricular or coronary). Especially for deep organs such as the heart and brain, the latter can be performed simply by local anesthesia alone.
[0056] さらに、本発明の血管新生療法は、哺乳動物から骨髄細胞を採取する工程と、前 記骨髄細胞を虚血部位に虚血部位に筋肉内投与、または遠隔部位の血管より血管 内カテーテルを導入し虚血部位に経血管的に到達させて投与するとともにエリスロボ ェチン製剤を虚血部位に筋肉内投与する工程とを包含してもよい。また、本発明の 血管新生療法は、哺乳動物から骨髄,末梢血または臍帯血を採取する工程と、前記 骨髄,末梢血または臍帯血に含有される造血幹細胞を分取し、前記造血幹細胞に 造血サイト力インを添加して液体培養する工程と、前記液体培養によって得られる培 養液から赤芽球及び CD14陽性細胞を分取する工程と、前記赤芽球及び CD14陽 性細胞を虚血部位の数力所力 数十力所に筋肉内投与、または遠隔部位の血管より 血管内カテーテルを導入し虚血部位に経血管的に到達させて投与するとともにエリ スロポェチン製剤またはエリスロポエチン製剤と M— CSF製剤を虚血部位の数力所か ら数十力所に筋肉内投与、または遠隔部位の血管より血管内カテーテルを導入し虚 血部位に経血管的に到達させて投与する工程とを包含してもよい。 [0056] Further, the angiogenesis therapy of the present invention comprises a step of collecting bone marrow cells from a mammal, and administering the bone marrow cells to the ischemic site intramuscularly at the ischemic site, or an intravascular catheter from a blood vessel at a remote site. And administering the erythrobotin preparation intramuscularly to the ischemic site, while administering it after transvascularly reaching the ischemic site. In addition, the angiogenesis therapy of the present invention includes a step of collecting bone marrow, peripheral blood or umbilical cord blood from a mammal, fractionating hematopoietic stem cells contained in the bone marrow, peripheral blood or umbilical cord blood, and hematopoietic into the hematopoietic stem cells. The process of liquid culture with the addition of site force-in and the culture obtained by the liquid culture The step of separating erythroblasts and CD14 positive cells from the nutrient solution, and the erythroblasts and CD14 positive cells are administered intramuscularly at several strengths and several strengths at the ischemic site, or from blood vessels at remote sites. Intravascular catheter was introduced and transvascularly reached to the ischemic site for administration, and erythropoietin preparation or erythropoietin preparation and M-CSF preparation were administered intramuscularly from several to several tens of places in the ischemic site. Alternatively, the method may include a step of introducing an intravascular catheter from a blood vessel at a remote site and transvascularly reaching the ischemic site for administration.
[0057] 本発明の血管新生療法によれば、虚血性疾患の血管新生療法としての従来技術 である骨髄または末梢血細胞の虚血部位への投与にぉ 、て、投与部位にエリスロボ ェチン製剤を同時投与するという技術的改善策によってその血管新生効果を著しく 高めることができ、患者の病態 ·症状の基幹をなす血流不全とそれによる虚血を改善 し臨床効果を改善することができる。さらに、虚血部位にのみ投与するので、他への 副作用の虞が少ない。また、虚血部位への数力所力 数十力所の投与から、虚血部 位に万遍なく製剤が広まり治癒効果を促進することができる。さらに、虚血部位にの み投与するので、他の部位への副作用などの虞が少な 、。  [0057] According to the angiogenesis therapy of the present invention, an erythrobotin preparation is simultaneously added to the administration site in the bone marrow or peripheral blood cells, which is a conventional technique as an angiogenesis therapy for an ischemic disease. The technical improvement measures of administration can significantly enhance the angiogenic effect, and improve the clinical effect by improving the blood flow failure and the resulting ischemia that form the basis of the patient's pathology and symptoms. Furthermore, since it is administered only to the ischemic site, there is little risk of side effects to others. In addition, administration of several strengths and several tens of strengths to the ischemic site can spread the formulation evenly in the ischemic site and promote the healing effect. Furthermore, since it is administered only to the ischemic site, there is little risk of side effects on other sites.
[0058] さらに、本発明の血管新生療法によれば、血管内皮細胞のみよりなる微小血管の 数および面積を増加させるのみならず、血管平滑筋を伴った細動脈の面積を増大さ せ、より大きな血管、すなわち血液供給量の多い動脈を誘導させることができる。  [0058] Furthermore, according to the angiogenesis therapy of the present invention, not only the number and area of microvessels composed solely of vascular endothelial cells are increased, but also the area of arterioles with vascular smooth muscles is increased, and more Large blood vessels, that is, arteries with high blood supply can be induced.
[0059] また、血管新生促進剤を用いた本発明の血管新生療法によれば、血管新生促進 剤に赤芽球,エリスロポエチン, CD14陽性細胞, M— CSFなどが一つの製剤中に 含まれているため、骨髄細胞と、エリスロポエチン製剤とをそれぞれ患者に投与する のと比較して、簡単に投与でき、患者や医療スタッフに対する負担を軽減することが できる。  [0059] In addition, according to the angiogenesis therapy of the present invention using an angiogenesis promoter, the angiogenesis promoter contains erythroblasts, erythropoietin, CD14-positive cells, M-CSF and the like in one preparation. Therefore, compared to administering bone marrow cells and erythropoietin preparations to patients, it can be administered easily, and the burden on patients and medical staff can be reduced.
[0060] 以下、本発明を試験例及び実施例を挙げて具体的に説明するが、本発明はこれら に限定されるものではない。  [0060] Hereinafter, the present invention will be specifically described with reference to test examples and examples, but the present invention is not limited thereto.
試験例 1  Test example 1
[0061] ヒト虚血性疾患患者に対する実際の臨床技術をシミュレーションする目的で、 ICR マウスの下肢虚血モデルを用いた実験を行った。  [0061] For the purpose of simulating actual clinical techniques for patients with human ischemic disease, experiments were conducted using a lower limb ischemia model of ICR mice.
[0062] (方法) 8週齢のォス ICRマウスの左下肢大腿部を切開し、大腿動脈群をすベて結 紮切除して下肢虚血モデルを作成した。同系マウスの大腿骨より骨髄を採取し、細 胞浮遊液とした後、マウス 1虚血肢あたり 1 X 107個の骨髄細胞を含有する細胞浮遊 液を、左下肢大腿筋内に 4力所に分けて筋肉内投与した。また、 1用量当り 400国際 単位 Z体重 (kg)のエリスロポエチン製剤を 6日間連日で筋肉内投与した。 [0062] (Method) An incision was made in the left lower limb thigh of an 8-week-old male ICR mouse and all the femoral artery groups were connected. A model of lower limb ischemia was prepared by resection of the heel. After collecting bone marrow from the femur of a syngeneic mouse and using it as a cell suspension, a cell suspension containing 1 x 10 7 bone marrow cells per mouse ischemic limb is applied to the left lower limb thigh muscle at four locations. Intramuscular administration. In addition, 400 international units Z body weight (kg) erythropoietin preparation per dose was administered intramuscularly for 6 days.
[0063] (比較試験)虚血肢に対して何も投与しな 、対照群 (C) ,骨髄細胞を投与した群 (B ) ,免疫学的手法により赤芽球を取り除いた後の骨髄細胞を投与した群 (N) ,エリス ロポェチン製剤のみを投与した群 (E) ,および骨髄細胞とともにエリスロポエチン製 剤を同時に投与した群 (BE)の 5群をそれぞれ 13個体ずつ用いて比較検討した。  [0063] (Comparative test) No administration to the ischemic limb, control group (C), bone marrow cell administration group (B), bone marrow cells after removal of erythroblasts by immunological technique A group (N) that received erythropoietin, a group that received erythropoietin alone (E), and a group that received erythropoietin at the same time as bone marrow cells (BE) were compared using 13 individuals each.
[0064] (結果)投与後の肉眼所見: C群, E群および N群の個体では下肢の壊死脱落が主 に観察された。 B群では一部の個体で下肢の壊死脱落を免れたが、チアノーゼ (血 流不全による皮膚の青色調)を残す個体が目立った。 BE群では下肢の壊死脱落を 免れた個体が多ぐまたチアノ一ゼを呈さない良好な回復が観察された。また、虚血 肢のチアノーゼからの回復曲線のグラフを図 1の 1に示し、虚血肢の生存曲線のダラ フを図 1の 2に示す。なお、下肢の全部もしくは一部の壊死脱落をもって下肢の死と 定義した。図 1の 1より、 C, E及び N群に比べ BE群はチアノーゼ力 の回復がより良 好であることが認められた。図 1の 2より、 C, E及び N群に比べ BE群は有意な下肢の 生存延長が認められた。  [0064] (Results) Macroscopic findings after administration: In the individuals in Groups C, E and N, necrosis of the lower limbs was mainly observed. In group B, some individuals were able to escape the necrosis of the lower limbs, but individuals who remained cyanosis (skin blue due to blood flow failure) were conspicuous. In the BE group, there were many individuals who escaped from necrosis of the lower limbs, and a good recovery without cyanosis was observed. In addition, a graph of the recovery curve from cyanosis in the ischemic limb is shown in Fig. 1-1, and a graph of the survival curve in the ischemic limb is shown in Fig. 1. The death of the lower limb was defined as the necrosis of all or part of the lower limb. From 1 in Fig. 1, it was confirmed that the recovery of cyanosis was better in the BE group than in the C, E and N groups. Based on 2 in Fig. 1, the BE group showed significant prolongation of lower limb survival compared to the C, E, and N groups.
[0065] この結果から、マウス下肢虚血モデルにおいて、骨髄細胞とエリスロポエチン製剤と を同時投与することで患側下肢を著しく改善することができ、下肢の生存を高めること が示された。また、骨髄細胞投与による血管新生には、骨髄中に含まれる赤芽球が 必要であること、さらにはエリスロポエチン製剤の単独投与のみでは効果が少ないこ と力示された。また、骨髄細胞とエリスロポエチン製剤との同時投与が従来技術の不 十分な効果を著しく改善することを、 in vitroにおける効果メカニズムの解明と、さらに 、 in vivoでの実際の治療効果をもって証明した。  [0065] From this result, it was shown that in the mouse lower limb ischemia model, simultaneous administration of bone marrow cells and erythropoietin preparation can significantly improve the affected lower limb and increase the survival of the lower limb. It was also shown that angiogenesis by bone marrow cell administration requires erythroblasts contained in the bone marrow, and that the erythropoietin preparation alone is less effective. In addition, elucidation of the effect mechanism in vitro and the actual therapeutic effect in vivo have demonstrated that co-administration of bone marrow cells and erythropoietin preparation significantly improves the inadequate effect of the prior art.
試験例 2  Test example 2
[0066] 上記試験例 1と同様の方法にて、骨髄から精製した赤芽球成分のみを投与した群 ( T) ,骨髄から精製した赤芽球成分と CD14陽性細胞を同時に投与した群 (TM)の 2 群をそれぞれ 13個体ずつで比較検討した。 [0067] (結果)虚血肢のチアノーゼからの回復曲線のグラフを図 2の 1に示し、虚血肢の生 存曲線のグラフを図 2の 2に示す。なお、下肢の全部もしくは一部の壊死脱落をもつ て下肢の死と定義した。図 2の 1及び 2より、赤芽球成分と CD14陽性細胞を同時に 投与した TM群は、チアノーゼからの回復が認められ、また下肢の生存延長が認めら れた。この結果から、 CD14陽性細胞の存在しない環境では、赤芽球は十分な血管 新生能力を示すことができないことがわ力 た。また、 CD14陽性細胞を増殖'活性 化するサイト力インであるマクロファージ 'コロニー刺激因子 (M— CSF)を、骨髄細胞 及びエリスロポエチンと同時投与することにより、さらに血管新生能力を高めることが できる。 [0066] In the same manner as in Test Example 1 above, the group receiving only the erythroblast component purified from bone marrow (T), the group receiving the erythroblast component purified from bone marrow and CD14 positive cells simultaneously (TM The two groups were compared for 13 individuals. [0067] (Results) A graph of the recovery curve from cyanosis of the ischemic limb is shown in 1 of FIG. 2, and a graph of the survival curve of the ischemic limb is shown in 2 of FIG. The death of the lower limb was defined as the necrosis of all or part of the lower limb. From 1 and 2 in Fig. 2, TM group to which erythroblast component and CD14 positive cells were administered simultaneously showed recovery from cyanosis and prolonged survival of lower limbs. From this result, it was found that erythroblasts cannot show sufficient angiogenic ability in an environment where CD14 positive cells do not exist. In addition, the ability of angiogenesis can be further enhanced by co-administering a bone marrow cell and erythropoietin with a macrophage colony-stimulating factor (M-CSF), which is a site force-in that proliferates and activates CD14 positive cells.
試験例 3  Test example 3
[0068] ヒト虚血性疾患患者に対する実際の臨床技術をシミュレーションする目的で、 ICR マウスの下肢虚血モデルを用いてレーザー ·ドップラー法による虚血肢の血流を測定 した。  [0068] For the purpose of simulating actual clinical techniques for patients with human ischemic disease, the blood flow of the ischemic limb was measured by the laser Doppler method using the ICR mouse lower limb ischemia model.
[0069] (方法)上記試験例 1と基本的に同様の方法 (但し、下肢の脱落壊死を避ける目的 で、大腿動脈群をすベて結紮するのみで切除は行わな力つた)で作成したモデルマ ウスを同様の方法で治療した。虚血作成 6日後の個体でレーザー 'ドップラー法によ る虚血肢の血流を測定した。  [0069] (Method) Prepared by basically the same method as in Test Example 1 (however, the femoral artery group was all ligated to remove it for the purpose of avoiding fallen-out necrosis of the lower limbs). Model mice were treated in a similar manner. The blood flow in the ischemic limb was measured by laser 'Doppler method' in an individual 6 days after ischemia creation.
[0070] (比較試験)虚血肢に対して何も投与しな 、対照群 (C) ,エリスロポエチン製剤のみ を投与した群 (E) ,骨髄細胞を投与した群 (B) ,および骨髄細胞とともにエリスロポェ チン製剤を同時に投与した群 (BE)の 4群それぞれ 5— 7個体ずつ用いて比較検討 した。  [0070] (Comparative study) Control group (C), group administered only erythropoietin preparation (E), group administered bone marrow cells (B), and bone marrow cells A comparative study was conducted using 5 to 7 individuals in each of the 4 groups in the group (BE) to which erythropoietin was administered simultaneously.
[0071] (結果)投与後の肉眼所見:健常側下肢と比較して虚血肢では血流の低下または 血流の不在が観察され、 BE群でもっとも良い血流の回復が観察された。各 4群 (C, E, B及び BE)における血流比のグラフを図 3に示す。 BE群でのみ有意(pく 0. 05) な血流の改善がみられた。この結果から、マウス下肢虚血モデルにおいて、骨髄細 胞とエリスロポエチン製剤とを同時投与することで虚血下肢の血流を改善することが 示された。  (Results) Macroscopic findings after administration: Decreased blood flow or absence of blood flow was observed in the ischemic limb compared to the healthy lower limb, and the best recovery of blood flow was observed in the BE group. A graph of blood flow ratio in each of the 4 groups (C, E, B and BE) is shown in FIG. Only the BE group showed a significant improvement (p 0. 05) in blood flow. From this result, it was shown in the mouse lower limb ischemia model that the blood flow in the ischemic limb was improved by simultaneous administration of bone marrow cells and erythropoietin preparation.
試験例 4 [0072] ヒト虚血性疾患患者に対する実際の臨床技術をシミュレーションする目的で、 ICR マウスの下肢虚血モデルの筋肉組織標本を作製し、画像処理ソフトを用いて血管数 と血管面積を計算した。 Test example 4 [0072] For the purpose of simulating actual clinical techniques for patients with human ischemic disease, muscle tissue specimens of ICR mouse lower limb ischemia models were prepared, and the number of blood vessels and the area of blood vessels were calculated using image processing software.
[0073] (方法)上記試験例 3で血流量を測定した個体をそのまま屠殺し、虚血肢の大腿二頭 筋を採取し筋肉組織標本を作製した。抗 CD31抗体を用いて血管内皮を染色した。 また、抗 aSMA抗体を用いて血管平滑筋を染色した。標本カゝらビデオシステム付き 顕微鏡を用いてデジタル画像を作成し、画像処理ソフトを用いて血管数と血管面積( μ m )を計算した。  (Method) The individual whose blood flow rate was measured in Test Example 3 was sacrificed as it was, and the biceps femoris of the ischemic limb was collected to prepare a muscle tissue sample. Vascular endothelium was stained with anti-CD31 antibody. In addition, vascular smooth muscle was stained with an anti-aSMA antibody. A digital image was created using a microscope with a video system, and the number of blood vessels and the blood vessel area (μm) were calculated using image processing software.
[0074] (比較試験)上記試験例 3と同様の方法にて比較検討した。  (Comparative Test) A comparative study was performed in the same manner as in Test Example 3 above.
[0075] (結果)図 4に結果を示す。なお、図 4の 1, 3, 5 (左列)は血管内皮集団の比較を示 し、図 4の 2, 4, 6 (右列)は血管平滑筋集団の比較を示す。血管内皮細胞のみよりな る微小血管の数(EC number) (図 4の 1): B群(pく 0. 05)および BE群(pく 0. 00 1)で有意な血管数の増加がみられ、 BE群の血管増加作用は B群に比し有意 (p< 0 . 05)に高かった。血管平滑筋を伴った細動脈の数(SMC number) (図 4の 2):血 管平滑筋を伴う血管は、新生血管のごく一部であった。血管内皮細胞のみよりなる微 小血管の総面積(EC area) (図 4の 3): BE群でのみ有意(p< 0. 001)な血管総面 積の増加がみられた。血管平滑筋を伴った細動脈の総面積 (SMC area) (図 4の 4 ): BE群でのみ有意 (p< 0. 001)な血管平滑筋総面積の増加がみられ、この効果は B群に比しても有意 (pく 0. 01)に高力つた。血管内皮細胞のみよりなる微小血管の 一本あたりの平均面積(Mean EC area) (図 4の 5):血管一本あたりの平均面積で は各群で差がな力つた。これは新生血管の多くが、血管平滑筋を伴わない微小血管 のためであると考えられる。血管平滑筋を伴った細動脈の一本あたりの平均面積 (M ean SMC area) (図 4の 6):—方、血管平滑筋を伴う大きな血管に関しては、 BE 群で有意 (P< 0. 001)な血管平滑筋平均面積の増加がみられ、この効果は B群に 比しても有意 (p< 0. 05)に高力つた。この結果から、骨髄細胞投与の単独効果に比 してこれにエリスロポエチン製剤を同時投与することによって、より強い血管新生効果 が得られることがわかるが、その原因はエリスロポイエチン製剤を同時投与することに よって微小血管数をさらに増カロさせる(血管内皮増殖因子 (VEGF)の効果に類似) とともに、血管平滑筋を伴う大きな血管の血管径を増大させ (胎盤増殖因子 (P1GF) の効果に類似)、より有効な血流を再建していることが示された。 [0075] (Results) FIG. 4 shows the results. In Fig. 4, 1, 3, 5 (left column) shows a comparison of vascular endothelial populations, and 2, 4, 6 (right column) of Fig. 4 shows a comparison of vascular smooth muscle populations. Number of microvessels consisting only of vascular endothelial cells (EC number) (1 in Fig. 4): Significant increase in the number of blood vessels in group B (p <0.05) and BE group (p <0.001) As seen, the blood vessel increasing effect in the BE group was significantly higher (p <0.05) than in the B group. Number of arterioles with vascular smooth muscle (SMC number) (2 in Fig. 4): Blood vessels with vascular smooth muscle were a small part of new blood vessels. Total area of microvessels consisting only of vascular endothelial cells (EC area) (Fig. 4-3): Significant (p <0.001) increase in total vascular area was observed only in BE group. Total arteriole area with vascular smooth muscle (SMC area) (Figure 4-4): Significant (p <0.001) increase in total vascular smooth muscle area was observed only in BE group. Compared with the group, it was significantly higher (p 0.01). Mean area per microvessel consisting only of vascular endothelial cells (Mean EC area) (5 in Fig. 4): There was no difference in the average area per blood vessel in each group. This is probably because most of the new blood vessels are microvessels without vascular smooth muscle. Mean SMC area per arteriole with vascular smooth muscle (Figure 4-6): On the other hand, for large blood vessels with vascular smooth muscle, significant in the BE group (P <0. 001) increased vascular smooth muscle mean area, and this effect was significantly higher (p <0. 05) than group B. This result shows that a stronger angiogenic effect can be obtained by co-administering an erythropoietin preparation compared to the single effect of bone marrow cell administration, but the cause is the simultaneous administration of an erythropoietin preparation. Increases the number of microvessels (similar to the effect of vascular endothelial growth factor (VEGF)) At the same time, it was shown that the diameter of large blood vessels with vascular smooth muscle was increased (similar to the effect of placental growth factor (P1GF)), and more effective blood flow was reconstructed.
試験例 5  Test Example 5
[0076] 本発明の効果に関する理論的裏付けを示す目的で、ヒト末梢血細胞,ヒト血管内皮 細胞およびヒト線維芽を用いた in vitro実験を行った。  [0076] In order to demonstrate theoretical support for the effects of the present invention, in vitro experiments using human peripheral blood cells, human vascular endothelial cells and human fibroblasts were performed.
[0077] (方法)ヒ Hn vitro血管新生培養開始の 2週間前に健常人末梢血よりエリスロポェ チン存在下に赤芽球系コロニー(BFU— e)、および G— CSF存在下に白血球系コロ ニー (CFU— c)の培養を開始した。血管新生培養開始の直前に、作成した BFU— e および CFU— cをつり上げ、ヒ Hn vitro血管新生培養に添加して、その効果を観察し た。ヒ Hn vitro血管新生培養開始の 9日目に培養標本を回収し、固定染色を行った 。上記試験例 4と同様の方法により血管を染色しデジタル画像処理によって評価した 。また一部の標本は血管(VIIIRAg:緑色蛍光にて発色)と BFU— e (CD235a:赤色 蛍光にて発色)を二色同時染色し共焦点レーザー顕微鏡で観察した。また、培養上 清中の VEGFと P1GFを ELISA法で測定した。  [0077] (Method) 2 weeks before the start of Hn in vitro angiogenesis culture, erythropoietic colony (BFU-e) in the presence of erythropoietin and leukocyte colony in the presence of G-CSF from peripheral blood of healthy subjects Culture of (CFU-c) was started. Immediately before the start of angiogenic culture, the prepared BFU-e and CFU-c were lifted and added to HI Hn vitro angiogenic culture, and the effect was observed. On day 9 after the start of Hn in vitro angiogenesis culture, the culture specimen was collected and fixed-stained. Blood vessels were stained by the same method as in Test Example 4 and evaluated by digital image processing. Some specimens were stained with two colors of blood vessels (VIIIRAg: colored with green fluorescence) and BFU-e (CD235a: colored with red fluorescence) and observed with a confocal laser microscope. In addition, VEGF and P1GF in the culture supernatant were measured by ELISA.
[0078] (比較試験)何も添カ卩しな 、コントロール、 BFU— eを添カ卩したもの、 CFU— cを添カロ したもの、各種血管増殖向性サイト力インを直接添加したものと比較した。  [0078] (Comparative test) No supplementation, control, supplemented with BFU-e, supplemented with CFU-c, direct addition of various vascular growth tropic site force-in Compared.
[0079] (結果)結果を図 5及び図 6に示す。血管内皮細胞が増殖しつつチューブ様構造を とり、弱拡大で糸状にみえる血管様構造物が伸展し血管ネットワークを形成した。何 も添加しないコントロール(図 5の 1)ではわずかに血管新生を認め、血管内皮増殖因 子 (VEGF)を添カ卩(図 5の 2)すると多数の血管新生を観察した。 BFU— eの添カロ(図 5の 3)により著しい血管新生が誘導された。この BFU— eの添カ卩による血管新生は弱 拡大 (図 5の 3)でみると新生血管の大きな集落が多数観察され、この集落像を拡大( 図 5の 4)すると集落の中心に細胞集団が見られた。これを血管(白色網状構造)と赤 芽球集団 (灰色細胞集塊)の二重染色(図 5の 5及び 6)で観察すると血管集落が BF U— eを中心に発育していることがわかった。  (Results) The results are shown in FIG. 5 and FIG. The vascular endothelial cells proliferated and took a tube-like structure, and the vascular-like structures that looked like filaments with weak expansion expanded to form a vascular network. In the control without any addition (1 in Fig. 5), angiogenesis was slightly observed, and when vascular endothelial growth factor (VEGF) was added (2 in Fig. 5), many angiogenesis was observed. Significant angiogenesis was induced by adding BFU-e (3 in Fig. 5). The angiogenesis caused by this BFU-e supplementation is seen to be slightly enlarged (Fig. 5-3), and many large colonies of the new blood vessels are observed. When this image is enlarged (Fig. 5-4), cells are located at the center of the village. A group was seen. When this is observed by double staining (5 and 6 in Fig. 5) of blood vessels (white network structure) and erythroblast populations (gray cell conglomerates), it can be seen that the blood vessel colonies are centered on BF U-e. all right.
[0080] 図 6の 1から示されるように、 BFU— eを 3個添カ卩した場合より 10個添カ卩した場合の ほうがより多数の血管新生がおこり(容量依存性)、さらに BFU— eにエリスロポエチン (EPO)を共添加することでこの作用が増強された。また、 CFU— cの添加〖こよる効果 は微弱であった。図 6の 2から示されるように、血管増殖向性サイト力インのうち、血管 内皮増殖因子 (VEGF)やアンギオポェチン 1 (Angl)は強 、血管新生作用を示す 力 胎盤増殖因子(P1GF1, P1GF2)、 16国際単位 (IU) Zmlのエリスロポエチン (E PO)、及び 80国際単位 (IU) Zmlのエリスロポエチン (EPO)それ自体の血管新生 作用は微弱であった。図 6の 3から示されるように、 BFU— eの添カ卩および非添カ卩によ る血管新生作用は、 VEGF受容体である sFlt 1又は sKDRの添カ卩によって著しく阻 害された。 [0080] As shown from 1 in Fig. 6, more angiogenesis occurs in the case of adding 10 BFU-e than in the case of adding 3 BFU-e (capacity dependence). This effect was enhanced by co-addition of erythropoietin (EPO) to e. Also, the effect of adding CFU-c Was weak. As shown in Figure 6-2, vascular endothelial growth factor (VEGF) and angiopoietin 1 (Angl) are strong in vascular growth-directing site force-in, and force that exhibits angiogenic action Placental growth factor (P1GF1, P1GF2) 16 international units (IU) Zml of erythropoietin (EPO), and 80 international units (IU) Zml of erythropoietin (EPO) itself had a weak angiogenic effect. As shown in Fig. 6-3, the angiogenic action of BFU-e supplemented and non-supplemented substances was significantly inhibited by the addition of sFlt 1 or sKDR VEGF receptors.
[0081] また、 ELISA法で測定した培養上清中の VEGFと P1GFの分泌量を図 7に示す。 B FU— eの添カ卩により VEGF (図 7の 1参照)や P1GF (図 7の 2参照)を分泌し、この作用 はエリスロポエチンの添カ卩によってさらに増強された。  [0081] Fig. 7 shows the secretion amounts of VEGF and P1GF in the culture supernatant measured by ELISA. B FU-e supplementation secreted VEGF (see Figure 7-1) and P1GF (see Figure 7-2), and this effect was further enhanced by erythropoietin supplementation.
[0082] ヒト血管内皮細胞を用いた in vitro血管新生実験において、ヒト末梢血由来のエリ スロポェチンの存在下で作成した赤芽球系コロニーの添カ卩により新生血管が著しく 増加し、また新生血管がこの赤芽球系コロニーの周囲に新生することが観察され、さ らにこの効果がエリスロポエチン製剤のさらなる添カ卩により増強することが観察された 。この結果から、ヒ Hn vitro血管新生培養において、ヒト末梢血より作成した赤芽球 系コロニーは血管新生を強く誘導し、またエリスロポエチン製剤の同時添カ卩によりそ の効果がさらに増大できることが示された。  [0082] In an in vitro angiogenesis experiment using human vascular endothelial cells, the number of new blood vessels increased significantly due to the addition of erythroblast colonies prepared in the presence of erythropoietin derived from human peripheral blood. Was observed around this erythroblast colony, and it was further observed that this effect was enhanced by further supplementation of the erythropoietin preparation. This result shows that erythroblast colonies prepared from human peripheral blood strongly induce angiogenesis in Hn vitro angiogenesis culture, and that the effect can be further increased by simultaneous addition of erythropoietin preparation. It was.
[0083] また、エリスロポエチンの造血幹細胞に及ぼす生物活性は主に、 1.骨髄'末梢血' 臍帯血その他の造血前駆細胞および幹細胞から赤芽球を誘導し、 2.誘導された赤 芽球を増殖させ、 3.増殖している赤芽球を分化誘導及び活性化することであること が知られている。したがって、本試験例の結果から明らかなように、エリスロポエチン の血管新生に対する作用点は、 1.骨髄 ·末梢血 ·臍帯血その他力もエリス口ポェチ ンによって誘導された赤芽球が強力な血管新生作用を有し、 2.さらにこの赤芽球が エリスロポエチンの刺激によってさらに強い血管新生作用を発揮するという少なくとも この 2点にお!/、て作用して 、ることが考えられる。 [0083] In addition, the biological activity of erythropoietin on hematopoietic stem cells is mainly: 1. Inducing erythroblasts from bone marrow 'peripheral blood' umbilical cord blood and other hematopoietic progenitor cells and stem cells, and 2. 3. It is known to induce differentiation and activate proliferating erythroblasts. Therefore, as is clear from the results of this test example, the action point of erythropoietin on angiogenesis is as follows: 1. Bone marrow, peripheral blood, umbilical cord blood and other forces are induced by erythropoietin and erythroblasts have a strong angiogenic action. 2. Furthermore, it is considered that this erythroblast acts at least at these two points that it exerts a stronger angiogenic effect by stimulation of erythropoietin!
試験例 6  Test Example 6
[0084] 本発明の効果に関する理論的裏付けを示す目的で、ヒト骨髄細胞を用いた in vitro実験を行った。 [0085] (方法)健康人骨髄細胞から赤芽球と非赤芽球細胞を免疫磁気ビーズ法によりそ れぞれ分離し 4日間浮遊培養した。 2日後と 4日後に培養液と培養細胞を採取し、培 養液から VEGF, P1GFのタンパク量を ELISA法で、細胞から VEGF, P1GFの mR NAを定量 PCR法で測定した。 [0084] In order to demonstrate theoretical support for the effects of the present invention, in vitro experiments using human bone marrow cells were performed. [0085] (Method) Erythroblasts and non-erythroblasts were isolated from healthy human bone marrow cells by immunomagnetic bead method and cultured in suspension for 4 days. Two days and four days later, the culture solution and the cultured cells were collected, and the protein amounts of VEGF and P1GF were measured from the culture solution by ELISA, and the mRNA of VEGF and P1GF were measured from the cells by quantitative PCR.
[0086] (比較試験)分離前の総骨髄有核細胞 (MNC)、分離した赤芽球 (GPA+)、および 非赤芽球有核細胞 (GPA-)で比較した。また、培養系にエリスロポエチン (EPO)を 添加した場合の効果も比較した。  [0086] (Comparative test) Total bone marrow nucleated cells (MNC) before separation, isolated erythroblasts (GPA +), and non-erythroblast nucleated cells (GPA-) were compared. We also compared the effects of adding erythropoietin (EPO) to the culture system.
[0087] (結果)血管増殖向性サイト力イン (血管内皮増殖因子 (VEGF)および胎盤増殖因 子 (P1GF) )を産生 ·分泌する主な細胞が赤芽球であり、この効果がエリスロポエチン 製剤のさらなる添カ卩により増強されることが観察された。結果を図 8に示す。図 8の 1 及び 2は、 ELISA法による分泌タンパク質量の測定結果を示すグラフである。また、 図 8の 3及び 4は、定量 PCR法による mRNA量の測定結果を示すグラフである。この 結果から、血管増殖向性サイト力イン (血管内皮増殖因子 (VEGF)および胎盤増殖 因子 (P1GF) )を産生'分泌する主な細胞が赤芽球系細胞であり、この効果がエリス口 ポェチン製剤のさらなる添カ卩により増強されることを示した。  [0087] (Results) The main cell that produces and secretes vascular growth tropic cytoforce-in (vascular endothelial growth factor (VEGF) and placental growth factor (P1GF)) is erythroblast, and this effect is an erythropoietin preparation It was observed that it was enhanced by further supplementation. The results are shown in FIG. 1 and 2 in FIG. 8 are graphs showing the measurement results of the amount of secreted protein by ELISA. Further, 3 and 4 in FIG. 8 are graphs showing the measurement results of the mRNA amount by the quantitative PCR method. From these results, it is clear that the main cells that produce and secrete vascular growth tropic cytoforce-in (vascular endothelial growth factor (VEGF) and placental growth factor (P1GF)) are erythroblasts, and this effect is due to the effect of erythroid poetin. It was shown to be enhanced by further supplementation of the formulation.
試験例 7  Test Example 7
[0088] エリスロポエチンの含有量を変化させたエリスロポエチン製剤を、それぞれ無処置 の正常マウスへ投与し実験を行った。  [0088] An erythropoietin preparation in which the content of erythropoietin was changed was administered to untreated normal mice.
[0089] (方法)下肢虚血を作成しない無処置のマウスに、 1用量当りそれぞれ 40, 400, 4 000国際単位 Z体重 (kg)のエリスロポエチン製剤を筋肉内投与した。  [0089] (Method) An erythropoietin preparation of 40, 400, 4 000 international units Z body weight (kg) was administered intramuscularly to each untreated mouse without creating limb ischemia.
[0090] (比較試験)何も投与しな 、対照群 (コントロール), 1用量当り 40国際単位 Z体重( kg)のエリスロポエチン製剤を 6日間連日で筋肉内投与した群, 1用量当り 400国際 単位 Z体重 (kg)のエリスロポエチン製剤を 6日間連日で筋肉内投与した群, 1用量 当り 4, 000国際単位 Z体重 (kg)のエリスロポエチン製剤を 6日間連日で筋肉内投 与した群の 4群をそれぞれ 8個体ずつ用いて比較検討した。  [0090] (Comparative study) No administration, control group (control), 40 international units per dose Group of erythropoietin with Z body weight (kg) administered intramuscularly for 6 days, 400 international units per dose Four groups were administered: intramuscularly administered Z body weight (kg) erythropoietin for 6 days daily, 4,000 international units per dose, and intramuscularly administered erythropoietin for Z body weight (kg) for 6 days daily. A comparative study was conducted using 8 individuals each.
[0091] (結果)結果を図 9に示す。 1用量当り 400国際単位 Z体重 (kg) (体重 60kgのヒト 成人に換算すると 24, 000国際単位 Z体重 60kg)のエリスロポエチン製剤を投与し た群においては、中等度の多血症の副作用が観察された。また、 1用量当り 40国際 単位 Z体重 (kg)のエリスロポエチン製剤を投与した群にぉ 、ては、一定の血液量に 対する赤血球の割合 (容積)をパーセントで表したへマトクリット値がコントロールとほ ぼ同一の値を示し、多血症等の副作用がほとんど観察されな力つた。さらに、 1用量 当り 4, 000国際単位 Z体重 (kg)のエリスロポエチン製剤を投与した群においては、 著 、多血症の副作用が観察された。 [0091] (Results) The results are shown in FIG. Adverse effects of moderate polycythemia were observed in the group administered 400 erythropoietin preparations of 400 international units Z body weight (kg) per dose (24,000 international units Z body weight 60 kg when converted to 60 kg human adult) It was done. Also 40 international per dose In the group that received the erythropoietin preparation with a unit of Z body weight (kg), the hematocrit value, which is the ratio (volume) of red blood cells to a certain blood volume, was almost the same as the control. Most of the side effects such as polycythemia were not observed. In addition, significant symptomatic side effects were observed in the group receiving 4,000 international units Z body weight (kg) erythropoietin per dose.
試験例 8  Test Example 8
[0092] 虚血性疾患を有するヒトの患者に、 1 X 108個 Z体重 (kg)の骨髄細胞を含有する 細胞浮遊液を治療第一日目に、 1用量当り 6000国際単位 Z体重 60kgのエリスロボ ェチン製剤を治療第一日目力 5日目までの 5日間連日で投与した。なお、この試験 例における 1用量当り 6, 000国際単位 Z体重 60kgのエリスロポエチンの投与量は、 上記試験例 7で副作用の多血症が無視しうる範囲であった 1用量当り 24, 000国際 単位 Z体重 60kgに、さらに安全性を見越してマウス投与より少なめに投与するため 安全率 1Z4をかけて算出した値である。 [0092] A human patient with ischemic disease was treated with a cell suspension containing 1 x 10 8 bone marrow (kg) bone marrow cells on the first day of treatment, 6000 international units per dose Z weight 60 kg The erythrobotin preparation was administered for 5 consecutive days up to the 5th day on the first day of treatment. The dose of erythropoietin with a dose of 6,000 international units and Z body weight of 60 kg in this test example was within the range where the side effects of polycythemia were negligible in Test Example 7 above, and 24,000 international units per dose. This is a value calculated by multiplying a Z body weight of 60kg by taking a safety factor of 1Z4 in order to administer it in a smaller amount than that of mice in anticipation of further safety.
[0093] その結果、血管新生が観察され、多血症等の副作用は観察されな力つた。  As a result, angiogenesis was observed, and side effects such as polycythemia were not observed.
上記試験例 7及び 8より、エリスロポエチンの一回投与量としては実際の患者で有効 かつ副作用のない 6, 000国際単位 Z体重 60kgの近傍(5, 000国際単位 Z体重 6 0kg)を最低量とすることが望ましいことがわ力つた。また、臨床効果は投与するエリス ロポェチンの量に依存するため、投与量上限値を最低量の十倍量 (すなわち、 50, 0 00国際単位 Z体重 60kg)とすることができる。  From Test Examples 7 and 8 above, the minimum dose for erythropoietin is 6,000 international units Z weight 60 kg (5,000 international units Z weight 60 kg), which is effective in actual patients and has no side effects. I found it desirable to do it. In addition, since the clinical effect depends on the amount of erythropoietin to be administered, the upper limit of the dose can be 10 times the minimum dose (ie, 50,000 international units Z body weight 60 kg).
実施例 1  Example 1
[0094] (製剤例) [0094] (Formulation example)
無菌的操作によって得られた 5 X 109個のヒト骨髄細胞を含有する無菌的細胞浮遊 液【こ、 6, 000国際単位/体重 60kgある! ま 24, 000国際単位/体重 60kgのエリ スロポェチン製剤 (薬局方記載)を加え、これを無菌的シリンジに充填することで、血 管新生促進剤を得た。 Aseptic cell suspension containing 5 x 10 9 human bone marrow cells obtained by aseptic manipulation [This is 6,000 international units / 60 kg body weight! Also, 24,000 international units / 60 kg erythropoietin preparation (Described in the pharmacopoeia) was added, and this was filled into a sterile syringe to obtain an angiogenesis promoting agent.
実施例 2  Example 2
[0095] (製剤例) [0095] (Formulation example)
無菌的操作によって得られた 5 X 109個のヒト骨髄細胞を含有する無菌的細胞浮遊 液【こ、 6, 000国際単位/体重 60kgある! ま 24, 000国際単位/体重 60kgのエリ スロポェチン製剤(薬局方記載)と 8, 000, 000単位の M— CSF製剤(ミリモスチム: 薬局方記載)を加え、これを無菌的シリンジに充填することで、血管新生促進剤を得 た。 Aseptic cell suspension containing 5 x 10 9 human bone marrow cells obtained by aseptic manipulation Liquid [This is 6,000 international units / 60 kg body weight!] 24,000 international units / 60 kg erythropoietin preparation (pharmacopoeia description) and 8,000,000 units M-CSF preparation (millimostim: pharmacopoeia description) ) Was added and filled into a sterile syringe to obtain an angiogenesis-promoting agent.
実施例 3  Example 3
[0096] (製剤例) [0096] (Formulation example)
リューカフェレーシスによって得られたヒト末梢血単核細胞カゝら免疫磁気ビーズ法に よって精製した造血幹細胞を体外にぉ ヽて各種造血サイト力インとともに液体培養し 、赤芽球浮遊液を得た。細胞を洗浄ののち 6, 000国際単位 Z体重 60kgあるいは 2 4, 000国際単位 Z体重 60kgの遺伝子組換えエリスロポエチンを含有するエリスロボ ェチン製剤 (薬局方記載)を加え、これを無菌的シリンジに充填することで、血管新生 促進剤を得た。  Hematopoietic stem cells purified by immunomagnetic bead method, such as human peripheral blood mononuclear cells obtained by Leu Caffelesis, are spread outside the body and liquid-cultured with various hematopoietic site-in to obtain erythroblast suspension. It was. After washing the cells, add erythrobotin preparation (described in Pharmacopeia) containing 6,000 international units Z body weight 60 kg or 2 4,000 international units Z body weight 60 kg genetically modified erythropoietin, and fill this into a sterile syringe Thus, an angiogenesis promoter was obtained.
実施例 4  Example 4
[0097] (製剤例) [0097] (Formulation example)
リューカフェレーシスによって得られたヒト末梢血単核細胞カゝら免疫磁気ビーズ法に よって精製した造血幹細胞を体外にぉ ヽて各種造血サイト力インとともに液体培養し 、赤芽球と CD14陽性細胞の混合浮遊液を得た。細胞を洗浄ののち 6, 000国際単 位 Z体重 60kgある!/、は 24, 000国際単位 Z体重 60kgの遺伝子組換えエリスロポ ェチンを含有するエリスロポエチン製剤(薬局方記載)と 8, 000, 000単位の M— CS F製剤 (ミリモスチム:薬局方記載)を加え、これを無菌的シリンジに充填することで、 血管新生促進剤を得た。  Hematopoietic stem cells purified by immunomagnetic bead method, such as human peripheral blood mononuclear cells obtained by Leucaulacesis, are spread outside the body and liquid-cultured with various hematopoietic site-in, erythroblasts and CD14 positive cells A mixed suspension was obtained. After washing the cells 6,000 international units Z body weight is 60 kg! /, Is 24,000 international units Z body weight 60 kg erythropoietin preparation containing genetically modified erythropoietin (described in pharmacopoeia) and 8,000, 000 units An angiogenesis-promoting agent was obtained by adding M-CSF preparation (Millimostim: described in the pharmacopoeia) and filling this into a sterile syringe.
実施例 5  Example 5
[0098] (製剤例) [0098] (Formulation example)
ヒト臍帯および胎盤より得られた臍帯血力も免疫磁気ビーズ法によって精製した造 血幹細胞を体外において各種造血サイト力インとともに液体培養し、赤芽球浮遊液を 得た。細胞を洗浄ののち 6, 000国際単位 Z体重 60kgあるいは 24, 000国際単位 Z体重 60kgのエリスロポエチン製剤 (薬局方記載)を加え、これを無菌的シリンジに 充填することで、血管新生促進剤を得た。 実施例 6 Umbilical cord blood force obtained from human umbilical cord and placenta was also cultured in vitro with hematopoietic stem cells purified by immunomagnetic bead method together with various hematopoietic site force ins to obtain erythroblast suspension. After washing the cells, add an erythropoietin preparation (described in the pharmacopoeia) of 6,000 international units Z body weight 60 kg or 24,000 international units Z body weight 60 kg, and fill this into a sterile syringe to obtain an angiogenesis promoter. It was. Example 6
(製剤例)  (Formulation example)
ヒト臍帯および胎盤より得られた臍帯血力も免疫磁気ビーズ法によって精製した造 血幹細胞を体外において各種造血サイト力インとともに液体培養し、赤芽球と CD14 陽性細胞の混合浮遊液を得た。細胞を洗浄ののち 6, 000国際単位 Z体重 60kgあ るいは 24, 000国際単位 Z体重 60kgのエリスロポエチン製剤 (薬局方記載)と 8, 00 0, 000単位の M— CSF製剤(ミリモスチム:薬局方記載)を加え、これを無菌的シリン ジに充填することで、血管新生促進剤を得た。  Hematopoietic stem cells purified from human umbilical cord and placenta by immunomagnetic bead method were also cultured in liquid together with various hematopoietic site-in in vitro to obtain a mixed suspension of erythroblasts and CD14 positive cells. After washing the cells 6,000 international units Z body weight 60kg or 24,000 international units Z body weight 60kg erythropoietin preparation (pharmacopoeia description) and 8,000 0,000 units M-CSF preparation (Millimostim: Pharmacopoeia) And an angiogenesis-promoting agent was obtained by filling this into a sterile syringe.

Claims

請求の範囲 The scope of the claims
[I] 哺乳動物の骨髄細胞と、 1用量当り 5, 000— 50, 000国際単位 Z体重 60kgのエリ スロポェチンを含有するエリスロポエチン製剤とを含むことを特徴とする血管新生促 進剤。  [I] An angiogenesis-promoting agent comprising a mammalian bone marrow cell and an erythropoietin preparation containing erythropoietin having a weight of 5,000-50,000 international units Z body weight of 60 kg per dose.
[2] マクロファージ 'コロニー刺激因子をさらに含むことを特徴とする請求項 1記載の血管 新生促進剤。  [2] The angiogenesis promoter according to [1], further comprising a macrophage 'colony stimulating factor.
[3] 前記エリスロポエチン力 S、天然由来のエリスロポエチン,改変されたエリスロポエチン 又はその誘導体であることを特徴とする請求項 1記載の血管新生促進剤。  [3] The angiogenesis promoter according to [1], which is the erythropoietin power S, naturally-derived erythropoietin, modified erythropoietin or a derivative thereof.
[4] 前記骨髄細胞が、自家由来もしくは組織適合抗原が一致または一部不一致の哺乳 動物由来であることを特徴とする請求項 1記載の血管新生促進剤。  [4] The angiogenesis promoter according to [1], wherein the bone marrow cells are derived from a mammal that is autologous or has a matched or partially mismatched histocompatibility antigen.
[5] アンプル類,シリンジ類又はバイアル類の剤形であることを特徴とする請求項 1記載 の血管新生促進剤。  [5] The angiogenesis-promoting agent according to claim 1, which is in the form of ampoules, syringes or vials.
[6] 哺乳動物の骨髄,末梢血,臍帯血又はその他の細胞資源に由来する赤芽球と、 CD 14陽性細胞と、 1用量当り 5, 000— 50, 000国際単位 Z体重 60kgのエリスロポェ チンを含有するエリスロポエチン製剤とを含むことを特徴とする血管新生促進剤。  [6] erythroblasts derived from mammalian bone marrow, peripheral blood, umbilical cord blood or other cellular resources, CD 14 positive cells, 5,000-50,000 international units per dose Z erythropoietin weighing 60 kg And an erythropoietin preparation containing an angiogenesis promoter.
[7] マクロファージ 'コロニー刺激因子をさらに含むことを特徴とする請求項 6記載の血管 新生促進剤。  [7] The angiogenesis promoter according to [6], further comprising a macrophage 'colony stimulating factor.
[8] 前記エリスロポエチン力 S、天然由来のエリスロポエチン,改変されたエリスロポエチン 又はその誘導体であることを特徴とする請求項 6記載の血管新生促進剤。  [8] The angiogenesis promoter according to [6], which is the erythropoietin power S, naturally derived erythropoietin, modified erythropoietin or a derivative thereof.
[9] 前記骨髄,末梢血,臍帯血又はその他の細胞資源が、自家由来もしくは組織適合抗 原が一致または一部不一致の哺乳動物由来であることを特徴とする請求項 6記載の 血管新生促進剤。  [9] The angiogenesis promotion according to claim 6, wherein the bone marrow, peripheral blood, umbilical cord blood, or other cell resources are derived from a mammal that is autologous or has a matched or partially mismatched histocompatibility antigen. Agent.
[10] 前記末梢血,臍帯血又はその他の細胞資源に由来する赤芽球は、体外増殖によつ て得られたものであることを特徴とする請求項 6記載の血管新生促進剤。  10. The angiogenesis promoter according to claim 6, wherein the erythroblasts derived from the peripheral blood, umbilical cord blood or other cell resources are obtained by in vitro proliferation.
[II] アンプル類,シリンジ類又はバイアル類の剤形であることを特徴とする請求項 6記載 の血管新生促進剤。  [II] The angiogenesis-promoting agent according to claim 6, which is a dosage form of ampoules, syringes or vials.
[12] 虚血性疾患を有する哺乳動物において血管新生を促進するための血管新生療法で あって、前記請求項 1乃至請求項 11のいずれか 1つに記載の血管新生促進剤を虚 血部位に筋肉内投与することを特徴とする血管新生療法。 [12] An angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease, wherein the angiogenesis promoter according to any one of claims 1 to 11 is disabled. An angiogenesis therapy characterized by intramuscular administration to a blood site.
[13] 前記虚血性疾患が、末梢動脈疾患であることを特徴とする請求項 12記載の血管新 生療法。  13. The angiogenesis therapy according to claim 12, wherein the ischemic disease is a peripheral arterial disease.
[14] 虚血性疾患を有する哺乳動物において血管新生を促進するための血管新生療法で あって、前記請求項 1乃至請求項 11のいずれか 1つに記載の血管新生促進剤を、 遠隔部位の血管より血管内カテーテルを導入し虚血部位に経血管的に到達させて 投与することを特徴とする血管新生療法。  [14] An angiogenesis therapy for promoting angiogenesis in a mammal having an ischemic disease, wherein the angiogenesis promoting agent according to any one of claims 1 to 11 is used at a remote site. An angiogenesis therapy characterized by introducing an intravascular catheter from a blood vessel and transvascularly reaching an ischemic site for administration.
[15] 前記虚血性疾患が、末梢動脈疾患であることを特徴とする請求項 14の血管新生療 法。  15. The angiogenesis treatment according to claim 14, wherein the ischemic disease is a peripheral arterial disease.
PCT/JP2005/003333 2004-03-30 2005-02-28 Angiogenesis promoter and angiogenic therapy WO2005097170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-099394 2004-03-30
JP2004099394A JP2007217283A (en) 2004-03-30 2004-03-30 Angiogenesis promoter and angiogenic therapy

Publications (1)

Publication Number Publication Date
WO2005097170A1 true WO2005097170A1 (en) 2005-10-20

Family

ID=35124840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003333 WO2005097170A1 (en) 2004-03-30 2005-02-28 Angiogenesis promoter and angiogenic therapy

Country Status (2)

Country Link
JP (1) JP2007217283A (en)
WO (1) WO2005097170A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047859A1 (en) * 2006-06-07 2009-04-15 The University of Tokushima Treatment of ischemic disease using erythropoietin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013807A1 (en) * 1992-01-10 1993-07-22 Georgetown University A method of administering genetically engineered endothelial cells to sites of angiogenesis for effecting genetic therapy
JP2001503427A (en) * 1996-11-08 2001-03-13 セント エリザベス メディカル センター オブ ボストン インク. How to control angiogenesis
JP2001511650A (en) * 1997-02-10 2001-08-14 ザ・プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Methods for regulating hematopoiesis and angiogenesis
WO2001087314A1 (en) * 2000-05-18 2001-11-22 Genetix Pharmaceuticals, Inc. Methods and compositions for promoting angiogenesis using monocytes
JP2002515880A (en) * 1996-08-27 2002-05-28 ヘモソル インク. Enhanced stimulation of erythropoiesis
US20040009158A1 (en) * 2002-07-11 2004-01-15 Washington University Promotion of neovascularization using bone marrow-derived endothelial-progenitor cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013807A1 (en) * 1992-01-10 1993-07-22 Georgetown University A method of administering genetically engineered endothelial cells to sites of angiogenesis for effecting genetic therapy
JP2002515880A (en) * 1996-08-27 2002-05-28 ヘモソル インク. Enhanced stimulation of erythropoiesis
JP2001503427A (en) * 1996-11-08 2001-03-13 セント エリザベス メディカル センター オブ ボストン インク. How to control angiogenesis
JP2001511650A (en) * 1997-02-10 2001-08-14 ザ・プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Methods for regulating hematopoiesis and angiogenesis
WO2001087314A1 (en) * 2000-05-18 2001-11-22 Genetix Pharmaceuticals, Inc. Methods and compositions for promoting angiogenesis using monocytes
US20040009158A1 (en) * 2002-07-11 2004-01-15 Washington University Promotion of neovascularization using bone marrow-derived endothelial-progenitor cells

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
AICHER A. ET AL: "Mobilizing endothelial progenitor cells", HYPERTENSION, vol. 45, no. 3, March 2005 (2005-03-01), pages 321 - 325, XP002992696 *
BUEMI M. ET AL: "Recombinant Human Erythropoietin Influences Revascularization and Healing in a Rat Model of Random Ischaemic Flaps", ACTA DERM. VENEREOL, vol. 82, no. 6, 2002, pages 411 - 417, XP002993404 *
CHONG Z.Z. ET AL: "Erythropoietin is a Novel Vascular Protectant Through Activation of Akt1 and Mitochondrial Modulation of Cysteine Proteases", CIRCULATION, vol. 106, no. 23, 2002, pages 2973 - 2979, XP002993402 *
HEESCHEN C. ET AL: "Erythropoietin is a Potent Physiologic Stimulus for Endothelial Progenitor Cell Mobilization", BLOOD, vol. 102, no. 4, 2003, pages 1340 - 1346, XP002993403 *
KOURY M.J. ET AL: "Erythropoietin Retards DNA Breakdown and Prevents Programmed Death in Erythroid Progenitor Cells", SCIENCE, vol. 248, no. 4953, 1990, pages 378 - 381, XP002993401 *
MINAGAWA S. ET AL: "Kotsuzui Saibo Ishoku ni yoru Kekkan Shinsei no Kisoteki Kento, -Sekigakyukei Saibo no Hatasu Yakuwari-", SAISEI IRYO, vol. 4, 10 February 2005 (2005-02-10), pages 199, XP002992697 *
NISHIKAWA H. ET AL: "Kashi Kyoketsu Model Mouse o Mochiita Kotsuzui Saibo Ishoku (BMI) ni yoru Kekkan Shinsei no Kento", NIIGATA IGAKKAI ZASSHI, vol. 118, no. 8, 15 August 2004 (2004-08-15), pages 402 - 410, XP002992698 *
PELLETIER L. ET AL: "An in Vitro Model for the Study of Human Bone Marrow Angiogenesis: Role of Hematopoietic Cytokines", LAB.INVEST., vol. 80, no. 4, 2000, pages 501 - 511, XP002992699 *
TORDJMAN R. ET AL: "Erythroblasts are a Source of Angiogenic factors", BLOOD, vol. 97, no. 7, 2001, pages 1968 - 1974, XP002992700 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047859A1 (en) * 2006-06-07 2009-04-15 The University of Tokushima Treatment of ischemic disease using erythropoietin
EP2047859A4 (en) * 2006-06-07 2010-05-05 Univ Tokushima Treatment of ischemic disease using erythropoietin
AU2007255717B2 (en) * 2006-06-07 2013-07-11 Chugai Seiyaku Kabushiki Kaisha Treatment of ischemic disease using erythropoietin

Also Published As

Publication number Publication date
JP2007217283A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
US20200016210A1 (en) Methods of Reducing Teratoma Formation During Allogeneic Stem Cell Therapy
AU2005205917B2 (en) Use of low-dose erythropoietin for stimulation of endothelial progenitor cells, for organ regeneration and for slowing the progression of end-organ damage
WO2004009767A2 (en) Cell therapy for regeneration
JP6796143B2 (en) Composition for treating chronic lung disease containing exosomes derived from thrombin-treated stem cells
JP2017214426A (en) Ischemic tissue cell therapy
EP3479831A1 (en) Composition comprising thrombin-treated stem cell-derived exosome for treating skin wound
EP2902483B1 (en) Method for in vitro proliferation of cell population containing cells suitable for treatment of ischemic disease
CA2457694A1 (en) Platelet-derived growth factor protection of cardiac myocardium
JPWO2006041088A1 (en) Brain transitional bone marrow progenitor cells
Hayon et al. The role of platelets and their microparticles in rehabilitation of ischemic brain tissue
US20200030380A1 (en) Stimulation of therapeutic angiogenesis by t regulatory cells
KR101894486B1 (en) Multilayer cell sheet of neural crest stem cells and method for preparing the same
US20150050259A1 (en) Nutraceutical modulators of stem cell activity
CN110974847A (en) Method for treating lower limb ischemic diseases by using stem cells
CN113633663A (en) Application of EPC derived from induced pluripotent stem cell differentiation in preparation of cerebral apoplexy therapeutic agent
Monteiro et al. Biologic strategies for intra-articular treatment and cartilage repair
JP7089283B2 (en) Cell product and method for manufacturing cell product
Jeon et al. Synergistic effect of sustained delivery of basic fibroblast growth factor and bone marrow mononuclear cell transplantation on angiogenesis in mouse ischemic limbs
KR20190074720A (en) A composition for promoting bone marrow engraftment
AU2007341179B2 (en) Cellular preparations for use as a revascularisation stimulating agent
WO2005097170A1 (en) Angiogenesis promoter and angiogenic therapy
JP4554940B2 (en) Medicament containing mesenchymal cells derived from human placenta and method for producing VEGF using the cells
JP2023513370A (en) Treatment of cerebral palsy with fibroblasts
Yang et al. Mesenchymal Stem Cells: A Promising Treatment for Thymic Involution
US20190382728A1 (en) Menstrual Blood Derived Angiogenesis Stimulatory Cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP