WO2005096675A1 - Method for manufacturing luminous panel - Google Patents

Method for manufacturing luminous panel Download PDF

Info

Publication number
WO2005096675A1
WO2005096675A1 PCT/JP2005/005647 JP2005005647W WO2005096675A1 WO 2005096675 A1 WO2005096675 A1 WO 2005096675A1 JP 2005005647 W JP2005005647 W JP 2005005647W WO 2005096675 A1 WO2005096675 A1 WO 2005096675A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plastic substrate
manufacturing
temperature
emitting panel
Prior art date
Application number
PCT/JP2005/005647
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Nagayama
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2005096675A1 publication Critical patent/WO2005096675A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a method for manufacturing a light-emitting panel, and more particularly to a method for manufacturing an organic EL panel (organic electorescent luminescent panel) using a plastic substrate.
  • an organic EL element including a light-emitting body made of an organic material is formed on a substrate. Since the organic EL element deteriorates when exposed to moisture, oxygen, and the like, a protective film (passivation film) is formed to cover and seal the entire organic EL element that should be shielded from the outside air.
  • the protective film includes a dense film having high blocking performance against the permeation of impurities to improve sealing performance. If the protective film has a defect, the impurities transmitted through the defect promote oxidation of the constituent materials of the device, and deteriorate the organic EL device. This kind of deterioration causes the generation and expansion of dark spots (non-light emitting points) in the light emitting surface, shortens the life of the organic EL element, and lowers the yield.
  • the protective film, the barrier film, and the organic EL element are formed by either a wet process using a solvent or a dry process without using a solvent.
  • the wet process includes a spin coating method, a blade coating method, a roll coating method, a dive method and various printing methods, and the dry process includes a CVD method (chemical vapor deposition method) or a PVD method (physical vapor phase method). Growth method).
  • a solvent containing a precursor is applied to the underlying surface to form a precursor film.
  • a thin film is formed by, for example, heating the precursor film.
  • the heating temperature for heating the precursor film is low, the solvent does not evaporate sufficiently and remains in the thin film, so that the solvent remaining in the thin film changes into a volatile gas and reaches the organic EL element.
  • the heating temperature should be set higher.1S If this heating temperature is set higher than the heat resistance temperature of the plastic substrate, the characteristics of the plastic substrate, for example, optical characteristics such as light transmittance, or flexibility or Deterioration of mechanical properties such as tensile strength causes problems. Disclosure of the invention
  • a main object of the present invention is to provide a method for manufacturing a light emitting panel capable of improving sealing performance for a light emitting body such as an organic EL element without deteriorating the characteristics of a plastic substrate.
  • a method of manufacturing a light-emitting panel including a light-emitting body formed on a plastic substrate comprising: (a) lowering a glass transition temperature of the plastic substrate. Forming the luminous body at a low processing temperature; and (b) forming a structure near the luminous body at a processing temperature lower than the glass transition temperature of the plastic substrate. It is characterized by including.
  • a method of manufacturing a light-emitting panel including a light-emitting body formed on a plastic substrate comprising: (a) a processing temperature lower than a heat-resistant temperature indicating long-term heat resistance of the plastic substrate (B) forming a structure in the vicinity of the luminous body at a processing temperature lower than a heat-resistant temperature indicating the long-term heat resistance of the plastic substrate; It is characterized by including.
  • FIG. 1 is a diagram schematically showing a cross section of an organic EL panel according to an embodiment of the present invention.
  • FIG. 2 is a sectional view schematically showing an example of the organic functional layer.
  • the organic EL panel (light emitting panel) 1 includes a plastic substrate 10 and a barrier film 11 formed on the plastic substrate 10. Next, a first electrode layer 12, an insulating film 13, an organic functional layer 14, and a second electrode layer 15 are formed in this order.
  • the organic EL element (luminous body) 17 includes a first electrode layer 12, an organic functional layer 14, and a second electrode layer 15. Further, the organic EL element 17 is sealed with a protective film (passivation film) 16.
  • the organic EL panel 1 includes, in addition to the components shown in FIG. 1, a color filter, a plurality of partitions for dividing the organic EL element 17, or a driving circuit including a TFT (thin film transistor) and a capacitor.
  • TFT thin film transistor
  • a capacitor may include components.
  • a Noria film 11, an insulating film 13, a protective film 16, and a plurality of partitions formed on the plastic substrate 10 and near the organic EL element 17 are referred to as "structures". Shall be referred to.
  • the plastic substrate 10 has a film shape and has flexibility.
  • the present invention focuses on the glass transition temperature (Tg), which indicates short-term heat resistance, and the UL standard heat-resistant temperature, which indicates long-term heat resistance, as standards for the heat resistance of the plastic substrate 10.
  • Tg glass transition temperature
  • UL standard heat-resistant temperature which indicates long-term heat resistance
  • rated temperature refers to the physical properties of a test piece (bow I tensile strength or Izod strength) when the test piece is exposed to the air at a certain temperature for 100,000 hours at a constant temperature. It is defined as the temperature at which the mechanical properties such as impact strength or electrical properties) are reduced by half from the initial values.
  • heat resistant temperature the rated temperature of the mechanical characteristics of UL746B standard, that is, RTI (Relative Thermal Index) is adopted.
  • plastic substrate 10 requires translucency, use an amorphous plastic material. If the plastic substrate 10 does not require translucency, use a relatively heat-resistant crystalline plastic material. Good. 05 005647
  • RTI is about 105 ° C for a PET sample with a thickness of 25 ⁇
  • RTI is about 120 ° C for a sample of PET with a thickness of 50 ⁇ m.
  • the RTI is about 160 ° C
  • the RTI is 200 ° C
  • the RTI is 230 °.
  • RTI is about 180 ° C for a 50 m thick PES sample, 170 ° C for a 50 ⁇ m thick ⁇ sample, and 130 RTI for a 50 ⁇ m thick PAr sample.
  • RTI is about 160 ° C for PPS samples with a thickness of 12 ° m or more at ° C.
  • an organic EL element 17 and structures such as a barrier film 11, an insulating film 13, and a protective film 16 are formed in the element forming region on the plastic substrate 10.
  • the organic EL element 17 and the structure are formed at a processing temperature in a temperature range lower than the glass transition temperature (Tg) or the heat resistance temperature (RTI) of the constituent material of the plastic substrate 10, and
  • Tg glass transition temperature
  • RTI heat resistance temperature
  • the organic EL element 17 is formed from a material whose characteristics do not deteriorate at a processing temperature in a temperature range. This reliably prevents the optical or mechanical properties of the film-shaped plastic substrate 10 from irreversibly changing in the process of forming the organic EL element 17 and the structure, thereby improving the yield and improving the quality of the organic EL element.
  • Panel 1 can be provided.
  • the glass transition temperature (Tg) of the constituent material of the plastic substrate 10 is low. While it is preferable to form the organic EL element 17 and the structure at a processing temperature in the temperature range, if the plastic substrate 10 is made of a crystalline plastic such as PET, the structure of the plastic substrate 10 It is preferable to form the organic EL element 17 and the structure at a processing temperature in a temperature range lower than the heat resistance temperature (RTI) of the material.
  • TTI heat resistance temperature
  • the plastic substrate 10 may be formed by depositing a non-crystalline ester-based resin on the surface of a PET substrate which is a crystalline plastic.
  • a non-crystalline ester-based resin on the surface of a PET substrate which is a crystalline plastic.
  • the plastic substrate 10 is made of a crystalline plastic and an amorphous plastic, the smaller of the heat resistance temperature (RTI) of the crystalline plastic and the glass transition temperature (Tg) of the amorphous plastic.
  • RTI heat resistance temperature
  • Tg glass transition temperature
  • the organic EL element 17 and the structure are preferably formed at a processing temperature in a temperature range lower than the above temperature.
  • the barrier film 11 has a function of preventing impurities such as moisture and oxygen from permeating into the organic EL element 17 of the plastic substrate 10.
  • the NOR film 11 can be formed by a dry process such as a CVD method or a PVD method, or a wet process such as a spin coating method and a dive method.
  • the insulating material of the ceramic film 11 include metal oxides such as silicon oxide (Si ⁇ 2 ), metal nitrides such as silicon nitride, metal nitride oxides such as silicon nitride (SiON), and the like.
  • An organic insulating material such as a polyimide resin may be used.
  • a silicon nitride film is formed on the surface of the plastic substrate 10 by a CVD method, and then a photocurable resin is applied on the silicon nitride film by a spin coating method and cured to form a resin film.
  • This resin film is a silicon nitride film due to mechanical stress.
  • the Noria film 11 is formed by a wet process, first, a solution obtained by dissolving a precursor in a solvent (solvent) is applied on a plastic substrate 10 to form a precursor film. Next, by heating the precursor film, the solvent in the precursor film evaporates, and the barrier film 11 is formed. As described above, when the solvent remains in the Noria film 11, it changes into a volatile gas and deteriorates the characteristics of the organic EL element 17. In order to avoid this, it is preferable to set the temperature at which the precursor film is heated to be higher than the boiling point of the solvent.
  • Solvents used in the wet process include PGME (Propylene Glycol Monomethyl Ether Acetate), PGMEA (Propylene Glycol Monomethyl Ether Acetate), PGMEA (Propylene Glycol Monomethyl Ether Acetate), Ethylene Lactate, and DMAc (DMAc).
  • More than one species can be used.
  • the boiling point of the solvent for example, the boiling point of toluene is 110.4 to 110.6 ° C, the boiling point of benzene is 80.1 ° C, the boiling point of dichlorobenzene is 172 to 173 ° C, and the boiling point of ⁇ 26 ° C, tetralin has a boiling point of 206.5-207.6 ° C, xylene has a boiling point of 139 ° C, aesole has a boiling point of 153.8-155 ° C, and dichloromethane has a boiling point of 39.8-40.
  • ⁇ -butyrolactone has a boiling point of 198 to 208 ° C
  • butyl cellosolve has a boiling point of 168.4 to 172 ° C
  • cyclohexane has a boiling point of 80.7 to 81.4 ° C
  • NMP N-methyl (2-pyrrolidone
  • dimethyl sulfoxide has a boiling point of 189 ° C
  • cyclohexanone has a boiling point of 115.6 to 155.7 ° C
  • dioxane has a boiling point of 101 to: L01.
  • THF tetrahydrofuran
  • PGME a boiling point of 119 to 120 ° C
  • PGMEA a boiling point of 145.8 ° C
  • Echinoleate lactate has a boiling point of 154.5 ° C
  • MEK boiling point . 79. 57 ⁇ 79 6 ° C the boiling point of the MIBK is 116. 7 ⁇ 118 ° C,; . ⁇ Eighth boiling 82-82 4 ° C, ethanol boiling, is ⁇ 8 3 ° C..
  • the first electrode layer 12 can be formed by depositing a conductive material on the nori film 11 by an evaporation method or a CVD method and patterning the conductive material. Further, it is desirable that the first electrode layer 12 be subjected to a surface treatment such as organic cleaning and UV-zone cleaning. When the first electrode layer 12 is an anode, it is preferable that the first electrode layer 12 be a conductive material having a large work function in terms of hole injection into the organic functional layer 14.
  • a transparent conductive material such as ITO (Indium Tin Oxide), ⁇ (Indium Zinc Oxide) or tin oxide, or a conductive material such as polythiophene or polyaniline is used. Molecular materials.
  • insulating films 13 and 13 are formed so as to cover the edges at both ends of the first electrode layer 12.
  • the insulating films 13 and 13 have a function of being used as a mask in the step of forming the organic functional layer 14 or of preventing a short circuit between the first electrode layer 12 and the second electrode layer 15.
  • Insulating film The layers 13 and 13 may be formed by depositing and lettering an insulating material by a CVD method or a vacuum evaporation method, or may be used in the step of forming the barrier film 11 by a wet process.
  • the insulating films 13 and 13 can be formed by using a solution obtained by dissolving the precursor in the same solvent as the solvent.
  • FIG. 2 is a cross-sectional view schematically showing an example of the organic functional layer 14.
  • the organic functional layer 14 is formed by sequentially forming a hole injection layer 20, a hole transport layer 21, a light emitting layer 22, and an electron injection layer 23.
  • a hole injection layer 20 When holes are injected from the first electrode layer 12 by the applied voltage and electrons are injected from the second electrode layer 15, the holes and electrons move in the organic functional layer 14 and have a predetermined probability in the light emitting layer 22. Rejoin.
  • the energy of the recombination is released through one or both of the singlet excited state and the triplet excited state of the organic molecules constituting the light-emitting layer 22, and emits fluorescence or phosphorescence, or both fluorescence and phosphorescence. Will be done.
  • the layers 20 to 23 constituting the organic functional layer 14 are made of a low molecular material or a polymer material, and the layer made of the low molecular material is formed by a dry process such as a vacuum evaporation method. It is generally formed by a wet process such as spin coating, blade coating, divebing, or printing.
  • the organic functional layer 14 is formed by a wet process such as a spin coating method, toluene, benzene, chlorobenzene, dichloromethane, chlorophonolem, tetralin, xylene, anisolone, dichloromethane, ⁇ - founded ratataton, butyl cell
  • solvents such as Solve, cyclohexane, ⁇ ( ⁇ -methyl-2-pyrrolidone), dimethylsulfoxide, cyclohexanone, dioxane or THF (tetrahydrofuran) are used as a solvent, and A solution obtained by dissolving the precursor can be used as a coating liquid.
  • a precursor film is formed by applying a solvent obtained by dissolving a precursor in a solvent, and the precursor film is heated to evaporate the solvent.
  • the temperature at which the precursor film is heated is preferably set higher than the boiling point of the solvent so that the solvent does not remain in the organic functional layer 14 and deteriorate the characteristics of the organic EL element 17.
  • the constituent materials of the hole injection layer 20 and the hole transport layer 21 include copper phthalocyanine and TPD (a dimer of tripheninoleamine), or polythiophene and polyaniline.
  • the light-emitting materials that constitute the light-emitting layer 22 include Al (aluminoquinolinol complex), ⁇ 1 (almiquinolinol complex), DPVBi (distyrylarylene derivative), EM2 (oxadiazol derivative), and BMA—nT (oligothiophene). Derivatives; n is a positive integer) and the like.
  • the constituent material of the electron injection layer 23 is, for example, Li 2 O (lithium oxide).
  • the organic functional layer 14 is a four-layer element, but instead, the organic functional layer 14 may be a single-layer element including only the light-emitting layer 22, or the light-emitting layer 22, the hole transport layer 21, and the hole.
  • a three-layer device including the injection layer 20 may be used.
  • a second electrode layer 15 is formed by depositing and patterning a conductive material on the organic functional layer 14 by a vacuum evaporation method or the like.
  • the second electrode layer 15 is a cathode, it is preferable that the second electrode layer 15 be made of a conductive material having a small work function and being relatively stable chemically from the viewpoint of electron injection into the organic functional layer 14.
  • the conductive material include an MgAg alloy, magnesium, aluminum, and an aluminum alloy.
  • the electrode patterns of the first electrode layer 12 and the second electrode layer 15 are not explicitly shown in the figure, the first electrode layer 12 and the second electrode layer 15 may be formed in a strip shape so as to be orthogonal to each other. Good.
  • a protective film 16 is formed so as to cover the organic EL element 17 by a dry process or a wet process.
  • the insulating material forming the protective film 16 include metals such as aluminum, magnesium and copper, metal oxides such as silicon oxide (Si ⁇ 2 ) and magnesium oxide, metal nitrides such as silicon nitride, and the like. Examples include metal nitrides such as silicon nitride oxide (SiON) and organic insulating materials such as polyimide resin.
  • a precursor film is formed by applying a solution obtained by dissolving the precursor in a solvent, and the precursor film is heated to evaporate the solvent.
  • the temperature at which the precursor film is heated is preferably set to be higher than the boiling point of the solvent so that the solvent does not remain in the protective film 16 and deteriorate the characteristics of the organic EL element 17.
  • the organic EL element 17 and the barrier film are processed at a processing temperature in a temperature range lower than the glass transition temperature (Tg) or the heat resistance temperature (RTI) of the constituent material of the plastic substrate 10.
  • the organic EL element 17 is formed from a material that does not deteriorate its characteristics at a processing temperature within this temperature range, and the temperature range is determined by the boiling point of the solvent used in the wet process. Is also set to a higher range. For this reason, it is possible to provide the organic EL panel 1 having high sealing performance and good light emission characteristics without deteriorating the mechanical characteristics and optical characteristics of the plastic substrate 10.

Abstract

A method for manufacturing a luminous panel containing a luminous article formed on a plastic substrate, characterized in that it comprises a step of forming the above luminous article at a treating temperature lower than the glass transition temperature or the heat resistance temperature representing the long term heat resistance of the above plastic substrate, and a step of forming a structure such as a barrier film in the vicinity of the above luminous article at a treating temperature lower than the glass transition temperature or the heat resistance temperature representing the long term heat resistance of the above plastic substrate. The above method can improve the performance capability for sealing the luminous article, without detriment to characteristics of the plastic substrate.

Description

P2005/005647  P2005 / 005647
1 明細書 発光パネルの製造方法 技術分野  1 Description Method of manufacturing light-emitting panel
本発明は、発光パネルの製造方法などに関し、特にプラスチック基板を用いた有機 ELパネル(有機エレクト口ルミネッセントパネル)の製造方法に関する。 背景技術  The present invention relates to a method for manufacturing a light-emitting panel, and more particularly to a method for manufacturing an organic EL panel (organic electorescent luminescent panel) using a plastic substrate. Background art
有機 ELパネルでは、有機材料力 なる発光体を含む有機 EL素子が基板上に形成 されている。この有機 EL素子は水分や酸素などに曝されると劣化するため、外気から 遮断すベぐ有機 EL素子全体を被覆し封止する保護膜 (パッシベーシヨン膜)が形成 されている。前記保護膜は、封止性能の向上のために、緻密で、不純物の透過に対 する阻止性能の高い膜を含むのが一般的である。前記保護膜に欠陥があると、この欠 陥を通じて透過した不純物が素子構成材料の酸化などを促進させ、有機 EL素子を劣 化させる。この種の劣化は、発光面中のダークスポット (非発光点)の発生とその拡大、 有機 EL素子の短寿命化並びに歩留まりの低下を招来してしまう。  In an organic EL panel, an organic EL element including a light-emitting body made of an organic material is formed on a substrate. Since the organic EL element deteriorates when exposed to moisture, oxygen, and the like, a protective film (passivation film) is formed to cover and seal the entire organic EL element that should be shielded from the outside air. In general, the protective film includes a dense film having high blocking performance against the permeation of impurities to improve sealing performance. If the protective film has a defect, the impurities transmitted through the defect promote oxidation of the constituent materials of the device, and deteriorate the organic EL device. This kind of deterioration causes the generation and expansion of dark spots (non-light emitting points) in the light emitting surface, shortens the life of the organic EL element, and lowers the yield.
また、有機 ELパネルの薄型化と軽量化に伴い、ガラス基板の代わりにフィルム状の 可撓性のプラスチック基板が使用されてレ、る力 フィルム状のプラスチック基板は、ガラ ス基板と比べると不純物を透過しやすく、有機 EL素子の特性劣化を招来しやすい。そ こで、プラスチック基板側からの不純物の透過を阻止するために、プラスチック基板の 表面にバリア膜を成膜することが行われている。なお、保護膜やバリア膜に関連する技 P2005/005647 In addition, as organic EL panels have become thinner and lighter, film-shaped flexible plastic substrates have been used instead of glass substrates. Film-shaped plastic substrates have more impurities than glass substrates. And easily deteriorate the characteristics of the organic EL element. Therefore, in order to prevent the transmission of impurities from the plastic substrate side, a barrier film is formed on the surface of the plastic substrate. Note that technologies related to protective films and barrier films P2005 / 005647
2 術は、たとえば、特開 2001— 307873号公報およぴ特開 2002— 134268号公報に 開示されている。  The two techniques are disclosed in, for example, JP-A-2001-307873 and JP-A-2002-134268.
上記保護膜,バリア膜および有機 EL素子は、溶剤を使用するウエットプロセスと溶剤 を使用しないドライプロセスとのいずれかによつて形成される。ウエットプロセスとしては、 スピンコート法,ブレードコート法,ロールコート法、デイツビング法または各種の印刷 法などが挙げられ、ドライプロセスとしては、 CVD法(化学蒸着法)または PVD法(物 理的気相成長法)などが挙げられる。  The protective film, the barrier film, and the organic EL element are formed by either a wet process using a solvent or a dry process without using a solvent. The wet process includes a spin coating method, a blade coating method, a roll coating method, a dive method and various printing methods, and the dry process includes a CVD method (chemical vapor deposition method) or a PVD method (physical vapor phase method). Growth method).
ウエットプロセスでは、まず、前駆体を含む溶剤を下地表面に塗工し前駆体膜を形成 する。次いで、前駆体膜を加熱するなどして薄膜が形成される。ここで、前駆体膜を加 熱する加熱温度が低いと、溶剤が充分に蒸発せずに薄膜中に残存するため、薄膜中 に残存した溶剤が揮発ガスに変化して有機 EL素子に達し、有機 EL素子の特性を劣 化させるという問題が生ずる。この問題を避けるには加熱温度を高く設定すればよい 1S この加熱温度をプラスチック基板の耐熱温度よりも高く設定すると、プラスチック基 板の特性、たとえば、光透過率などの光学特性、または柔軟性もしくは引張強度など の機械特性が劣化するとレ、う問題が起きる。 発明の開示  In the wet process, first, a solvent containing a precursor is applied to the underlying surface to form a precursor film. Next, a thin film is formed by, for example, heating the precursor film. Here, if the heating temperature for heating the precursor film is low, the solvent does not evaporate sufficiently and remains in the thin film, so that the solvent remaining in the thin film changes into a volatile gas and reaches the organic EL element. There is a problem that the characteristics of the organic EL element are deteriorated. To avoid this problem, the heating temperature should be set higher.1S If this heating temperature is set higher than the heat resistance temperature of the plastic substrate, the characteristics of the plastic substrate, for example, optical characteristics such as light transmittance, or flexibility or Deterioration of mechanical properties such as tensile strength causes problems. Disclosure of the invention
本発明の主な目的は、プラスチック基板の特性を劣化させずに、有機 EL素子などの 発光体に対する封止性能を向上させ得る発光パネルの製造方法を提供する点にあ る。  A main object of the present invention is to provide a method for manufacturing a light emitting panel capable of improving sealing performance for a light emitting body such as an organic EL element without deteriorating the characteristics of a plastic substrate.
本発明の第 1のアスペクトによれば、プラスチック基板上に形成された発光体を含む 発光パネルの製造方法であって、 (a)前記プラスチック基板のガラス転移温度よりも低 い処理温度の下で、前記発光体を形成する工程と、(b)前記プラスチック基板のガラス 転移温度よりも低い処理温度の下で、前記発光体の近辺に構造体を形成する工程と、 を含むことを特徴としている。 本発明の第 2のアスペクトによれば、プラスチック基板上に形成された発光体を含む 発光パネルの製造方法であって、 (a)前記プラスチック基板の長期耐熱性を示す耐熱 温度よりも低い処理温度の下で、前記発光体を形成する工程と、(b)前記プラスチック 基板の長期耐熱性を示す耐熱温度よりも低い処理温度の下で、前記発光体の近辺に 構造体を形成する工程と、を含むことを特徴としている。 According to a first aspect of the present invention, there is provided a method of manufacturing a light-emitting panel including a light-emitting body formed on a plastic substrate, the method comprising: (a) lowering a glass transition temperature of the plastic substrate. Forming the luminous body at a low processing temperature; and (b) forming a structure near the luminous body at a processing temperature lower than the glass transition temperature of the plastic substrate. It is characterized by including. According to a second aspect of the present invention, there is provided a method of manufacturing a light-emitting panel including a light-emitting body formed on a plastic substrate, comprising: (a) a processing temperature lower than a heat-resistant temperature indicating long-term heat resistance of the plastic substrate (B) forming a structure in the vicinity of the luminous body at a processing temperature lower than a heat-resistant temperature indicating the long-term heat resistance of the plastic substrate; It is characterized by including.
図面の簡単な説明 図 1は本発明に係る実施例である有機 ELパネルの断面を概略的に示す図である。 図 2は有機機能層の一例を概略的に示す断面図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically showing a cross section of an organic EL panel according to an embodiment of the present invention. FIG. 2 is a sectional view schematically showing an example of the organic functional layer.
発明を実施するための形態 以下、本発明に係る実施例について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments according to the present invention will be described.
図 1に示されるように、この有機 ELパネル (発光パネル) 1は、プラスチック基板 10と、 このプラスチック基板 10上に形成されたノくリア膜 11とを備えており、このバリア膜 11の 上に、第 1電極層 12、絶縁膜 13、有機機能層 14および第 2電極層 15がこの順で成膜 されている。  As shown in FIG. 1, the organic EL panel (light emitting panel) 1 includes a plastic substrate 10 and a barrier film 11 formed on the plastic substrate 10. Next, a first electrode layer 12, an insulating film 13, an organic functional layer 14, and a second electrode layer 15 are formed in this order.
有機 EL素子 (発光体) 17は、第 1電極層 12,有機機能層 14およぴ第 2電極層 15から 構成される。さらに、この有機 EL素子 17は、保護膜 (パッシベーシヨン膜) 16で封止さ れている。 なお、有機 ELパネル 1は、図 1に示される構成要素の他に、カラーフィルタ、有機 EL 素子 17を分断する複数の隔壁、または TFT (薄膜トランジスタ)およびキャパシタなど を含む駆動回路とレ、つた図示されなレ、構成要素を含んでもょレ、。この明細書にぉレ、て は、プラスチック基板 10の上であって有機 EL素子 17の近辺に形成されるノリア膜 11, 絶縁膜 13,保護膜 16および複数の隔壁などを「構造体」と称することとする。 The organic EL element (luminous body) 17 includes a first electrode layer 12, an organic functional layer 14, and a second electrode layer 15. Further, the organic EL element 17 is sealed with a protective film (passivation film) 16. The organic EL panel 1 includes, in addition to the components shown in FIG. 1, a color filter, a plurality of partitions for dividing the organic EL element 17, or a driving circuit including a TFT (thin film transistor) and a capacitor. Dare, may include components. In this specification, a Noria film 11, an insulating film 13, a protective film 16, and a plurality of partitions formed on the plastic substrate 10 and near the organic EL element 17 are referred to as "structures". Shall be referred to.
プラスチック基板 10はフィルム状で可撓性を有している。本発明では、プラスチック 基板 10の耐熱性の基準として、短期耐熱性を示すガラス転移温度 (Tg)と、長期耐熱 性を示す UL規格の耐熱温度とに着目している。 UL規格は、米国の機関  The plastic substrate 10 has a film shape and has flexibility. The present invention focuses on the glass transition temperature (Tg), which indicates short-term heat resistance, and the UL standard heat-resistant temperature, which indicates long-term heat resistance, as standards for the heat resistance of the plastic substrate 10. UL standards are a US agency
(Underwriters Laboratories Inc.)によって策定された公知の安全規格である。この UL 規格において、「定格温度」とは、被試験体が 10万時間に亘つて、一定の温度下で大 気中に暴露された場合に被試験体の物性値 (弓 I張強度もしくはアイゾット衝撃強度な どの機械特性,または電気特性)が初期値から半減したときの温度と定義されている。 この明細書では、プラスチック基板 10の「耐熱温度」として、 UL746B規格の機械特性 の定格温度すなわち RTI (Relative Thermal Index)が採用される。 (Underwriters Laboratories Inc.). In this UL standard, “rated temperature” refers to the physical properties of a test piece (bow I tensile strength or Izod strength) when the test piece is exposed to the air at a certain temperature for 100,000 hours at a constant temperature. It is defined as the temperature at which the mechanical properties such as impact strength or electrical properties) are reduced by half from the initial values. In this specification, as the “heat resistant temperature” of the plastic substrate 10, the rated temperature of the mechanical characteristics of UL746B standard, that is, RTI (Relative Thermal Index) is adopted.
このようなプラスチック基板 10の構成材料としては、結晶性プラスチックと非結晶性プ ラスチックのいずれも使用され得る。非結晶性プラスチック材料としては、 PMMA (ポリ メタクリル酸ェチル; Tg= 100〜105°C)などのアクリル系樹脂, PC (ポリカーボネー ト; Tg= 143〜150°C) , PES (ポリエーテルスルホン; Tg= 230°C), PAr (ポリアリレ ート; Tg= 190°C), PEI (ポリエーテノレイミド; Tg= 215〜220°C)または PI (ポリイミド; Tg=323〜340°C)などの樹脂が挙げられ、結晶性プラスチック材料としては、 PBT (ポリブチレンテレフタレート; Tg=66°C), PET (ポリエチレンテレフタレート; Tg= 73 〜78°C) , PPS (ポリフエ-レンスルフイド; Tg = 85。C), PEEK (ポリエーテルエーテル ケトン; Tg= 140°C)または PEN (ポリエチレンナフタレート; Tg= 121°C)などの樹脂 が挙げられる。プラスチック基板 10に透光性を要求する場合は、非結晶性プラスチッ ク材料を採用し、プラスチック基板 10に透光性を要求しない場合は、比較的耐熱性の 高い結晶性プラスチック材料を採用すればよい。 05 005647 As a constituent material of such a plastic substrate 10, any of a crystalline plastic and an amorphous plastic can be used. Non-crystalline plastic materials include acrylic resins such as PMMA (polyethyl methacrylate; Tg = 100-105 ° C), PC (polycarbonate; Tg = 143-150 ° C), PES (polyether sulfone; Tg = 230 ° C), PAr (polyarylate; Tg = 190 ° C), PEI (polyethenoleimide; Tg = 215-220 ° C) or PI (polyimide; Tg = 323-340 ° C) Examples of the crystalline plastic material include PBT (polybutylene terephthalate; Tg = 66 ° C.), PET (polyethylene terephthalate; Tg = 73 to 78 ° C.), and PPS (polyphenylene sulfide; Tg = 85.C). ), PEEK (polyetheretherketone; Tg = 140 ° C) or PEN (polyethylene naphthalate; Tg = 121 ° C). If the plastic substrate 10 requires translucency, use an amorphous plastic material.If the plastic substrate 10 does not require translucency, use a relatively heat-resistant crystalline plastic material. Good. 05 005647
5 また、耐熱温度に関しては、たとえば、厚みが 25 μ πιの PETのサンプルでは RTIが 約 105°C、厚みが 50 μ mの PETのサンプノレでは RTIが約 120°C、厚みが 25 / m以 上の PENのサンプルでは RTIが約 160°C、厚みが 7. 6 μ m〜25 μ mの PIのサンプ ルでは RTIが 200°C、厚みが 50 μ mの PIのサンプルでは RTIが 230° (:、厚みが 50 mの PESのサンプルでは RTIが約 180°C、厚みが 50 μ mの ΡΕΙのサンプルでは RTI が約 170°C、厚みが 50 μ mの PArのサンプノレでは RTIが約 130°C、厚みが 12 μ m以 上の PPSのサンプルでは RTIが約 160°Cである。  5 Regarding the heat resistance temperature, for example, RTI is about 105 ° C for a PET sample with a thickness of 25 μπι, and RTI is about 120 ° C for a sample of PET with a thickness of 50 μm. For the PEN sample above, the RTI is about 160 ° C, for the 7.6 μm to 25 μm PI sample, the RTI is 200 ° C, and for the 50 μm PI sample, the RTI is 230 °. (: RTI of about 180 ° C for a 50 m thick PES sample, 170 ° C for a 50 µm thick ΡΕΙ sample, and 130 RTI for a 50 µm thick PAr sample. RTI is about 160 ° C for PPS samples with a thickness of 12 ° m or more at ° C.
後述するように、上記プラスチック基板 10上の素子形成領域には、有機 EL素子 17 と、バリア膜 11,絶縁膜 13および保護膜 16などの構造体とが形成される。これらの有 機 EL素子 17と構造体とは、プラスチック基板 10の構成材料のガラス転移温度 (Tg)ま たは耐熱温度 (RTI)よりも低い温度域にある処理温度で形成され、且つ、この温度域 にある処理温度で、特性が劣化しない材料から有機 EL素子 17を形成することが一つ の特徴である。これにより、有機 EL素子 17と構造体の成膜工程において、フィルム状 のプラスチック基板 10の光学特性または機械特性が不可逆に変化することが確実に 防止され、歩留まりが向上し、高品質の有機 ELパネル 1を提供することが可能となる。 ここで、プラスチック基板 10の特性劣化を防止する観点からは、プラスチック基板 10 力 spcなどの非結晶性プラスチック力も構成される場合は、プラスチック基板 10の構成 材料のガラス転移温度 (Tg)よりも低レヽ温度域にある処理温度で有機 EL素子 17およ び構造体を形成するのが好ましぐ一方、プラスチック基板 10が PETなどの結晶性プ ラスチックから構成される場合は、プラスチック基板 10の構成材料の耐熱温度 (RTI) よりも低い温度域にある処理温度で有機 EL素子 17および構造体を形成するのが好ま しい。  As described later, an organic EL element 17 and structures such as a barrier film 11, an insulating film 13, and a protective film 16 are formed in the element forming region on the plastic substrate 10. The organic EL element 17 and the structure are formed at a processing temperature in a temperature range lower than the glass transition temperature (Tg) or the heat resistance temperature (RTI) of the constituent material of the plastic substrate 10, and One feature is that the organic EL element 17 is formed from a material whose characteristics do not deteriorate at a processing temperature in a temperature range. This reliably prevents the optical or mechanical properties of the film-shaped plastic substrate 10 from irreversibly changing in the process of forming the organic EL element 17 and the structure, thereby improving the yield and improving the quality of the organic EL element. Panel 1 can be provided. Here, from the viewpoint of preventing the characteristic deterioration of the plastic substrate 10, when an amorphous plastic force such as the spc force is also configured, the glass transition temperature (Tg) of the constituent material of the plastic substrate 10 is low. While it is preferable to form the organic EL element 17 and the structure at a processing temperature in the temperature range, if the plastic substrate 10 is made of a crystalline plastic such as PET, the structure of the plastic substrate 10 It is preferable to form the organic EL element 17 and the structure at a processing temperature in a temperature range lower than the heat resistance temperature (RTI) of the material.
さらに、たとえば、結晶性プラスチックである PETの基板表面に、非結晶性のエステ ル系樹脂を成膜してプラスチック基板 10を形成してもよい。このように、プラスチック基 板 10が結晶性プラスチックと非結晶性プラスチックとからなる場合は、結晶性プラスチ ックの耐熱温度 (RTI)と非結晶性プラスチックのガラス転移温度 (Tg)とのうち小さい方 の温度よりも低い温度域にある処理温度で、有機 EL素子 17および構造体を形成する のが好ましい。 Further, for example, the plastic substrate 10 may be formed by depositing a non-crystalline ester-based resin on the surface of a PET substrate which is a crystalline plastic. Thus, when the plastic substrate 10 is made of a crystalline plastic and an amorphous plastic, the smaller of the heat resistance temperature (RTI) of the crystalline plastic and the glass transition temperature (Tg) of the amorphous plastic. One The organic EL element 17 and the structure are preferably formed at a processing temperature in a temperature range lower than the above temperature.
バリア膜 11は、プラスチック基板 10の側力 有機 EL素子 17へ水分や酸素などの不 純物が透過することを阻止する機能を有する。ノ^ァ膜 11は、 CVD法や PVD法など のドライプロセス、またはスピンコート法ゃデイツビング法などのウエットプロセスによって 形成され得る。このノくリア膜 11の絶縁材料としては、酸化シリコン (Si〇2)などの金属酸 化物、シリコン窒化物などの金属窒化物、窒化酸ィ匕シリコン(SiON)などの金属窒化 酸化物、またはポリイミド系樹脂などの有機絶縁材料が挙げられる。たとえば、 CVD法 により、プラスチック基板 10の表面にシリコン窒化膜を形成し、その後、スピンコート法 により、前記シリコン窒化膜の上に光硬化性樹脂を塗工し硬化させることで樹脂膜を形 成することによってノくリア膜 11を形成することができる。この樹脂膜は、機械的ストレス によりシリコン窒化膜 The barrier film 11 has a function of preventing impurities such as moisture and oxygen from permeating into the organic EL element 17 of the plastic substrate 10. The NOR film 11 can be formed by a dry process such as a CVD method or a PVD method, or a wet process such as a spin coating method and a dive method. Examples of the insulating material of the ceramic film 11 include metal oxides such as silicon oxide (Si〇 2 ), metal nitrides such as silicon nitride, metal nitride oxides such as silicon nitride (SiON), and the like. An organic insulating material such as a polyimide resin may be used. For example, a silicon nitride film is formed on the surface of the plastic substrate 10 by a CVD method, and then a photocurable resin is applied on the silicon nitride film by a spin coating method and cured to form a resin film. By doing so, the ceramic film 11 can be formed. This resin film is a silicon nitride film due to mechanical stress.
にクラックが発生することを防止する機能を有してレ、る。 It has a function to prevent the occurrence of cracks.
ノリア膜 11をウエットプロセスで形成する場合は、まず、前駆体を溶剤 (溶媒)に溶解 して得た溶液をプラスチック基板 10の上に塗工することで前駆体膜を形成する。次い で、この前駆体膜を加熱することで前駆体膜中の溶剤が蒸発し、バリア膜 11が形成さ れる。上述した通り、ノリア膜 11に溶剤が残存すると、これが揮発ガスに変化して有機 EL素子 17の特性を劣化させる。これを避けるために、前駆体膜を加熱する温度を溶 剤の沸点よりも高く設定することが好ましい。  When the Noria film 11 is formed by a wet process, first, a solution obtained by dissolving a precursor in a solvent (solvent) is applied on a plastic substrate 10 to form a precursor film. Next, by heating the precursor film, the solvent in the precursor film evaporates, and the barrier film 11 is formed. As described above, when the solvent remains in the Noria film 11, it changes into a volatile gas and deteriorates the characteristics of the organic EL element 17. In order to avoid this, it is preferable to set the temperature at which the precursor film is heated to be higher than the boiling point of the solvent.
前記ウエットプロセスで使用する溶剤としては、 PGME (プロピレングリコールモノメチ ノレエーテノレ; Propylene Glycol Monomethyl Ether) , PGMEA (プロピレングリコールモ ノメチノレエーテノレアセテート; Propylene Glycol Monomethyl Ether Acetate) ,乳酸ェチ ノレ, DMAc (N, N ?ジメチルァセトアミド; N,N- Dimethylacetamide) , MEK (メチルェ チルケトン; Methyl Ethyl Ketone) , ΜΙΒΚ (メチノレイソプチルケトン; Methyl Isobutyl Ketone) , IPA (イソプロピノレアルコール; Isopropyl Alcohol),エタノール,トルエン,ベ ンゼン,クロ口ベンゼン,ジクロロベンゼン,クロロホノレム,テトラリン,キシレン,ァニソ一 ノレ,ジクロロメタン, y プチ口ラタトン,ブチルセルソルブ,シクロへキサン, ΝΜΡ (Ν— メチルー 2—ピロリドン),ジメチルスルホキシド,シクロへキサノン,ジォキサンおょぴ Τ HF (テトラヒドロフラン)など力 選択した 1種または複数種を使用することができる。 溶剤の沸点に関し、たとえば、トルエンの沸点は 110. 4〜110. 6°C,ベンゼンの沸 点は 80. 1°C,ジクロロベンゼンの沸点は 172〜173°C,クロ口ホルムの沸点は 61· 2 6°C,テトラリンの沸点は 206. 5—207. 6°C,キシレンの沸点は 139°C,ァエソールの 沸点は 153. 8〜155°C,ジクロロメタンの沸点は 39. 8—40. 2°C, γ プチロラクトン の沸点は 198〜208°C,ブチルセルソルブの沸点は 168. 4〜172°C,シクロへキサン の沸点は 80. 7〜81. 4°C, NMP (N—メチル一2—ピロリドン)の沸点は197〜20 2°C,ジメチルスルホキシドの沸点は 189°C,シクロへキサノンの沸点は 115. 6〜155. 7°C,ジォキサンの沸点は 101〜: L01. 6°C, THF (テトラヒドロフラン)の沸点は 64〜6 6°C, PGMEの沸点は 119〜120°C, PGMEAの沸点は 145. 8°C,乳酸ェチノレの沸 点は 154. 5°C, DMAcの沸点は 165〜166. 1°C, MEKの沸点は 79. 57〜79. 6°C, MIBKの沸点は 116. 7~118°C,;^八の沸点は82〜82. 4°C,エタノールの沸 、はァ8. 3°Cである。 Solvents used in the wet process include PGME (Propylene Glycol Monomethyl Ether Acetate), PGMEA (Propylene Glycol Monomethyl Ether Acetate), PGMEA (Propylene Glycol Monomethyl Ether Acetate), Ethylene Lactate, and DMAc (DMAc). N, N-Dimethylacetamide; N, N-Dimethylacetamide), MEK (Methyl Ethyl Ketone), ΜΙΒΚ (Methyl Isobutyl Ketone), IPA (Isopropyl Alcohol), Ethanol , Toluene, benzene, benzene, dichlorobenzene, chlorophonolem, tetralin, xylene, Nore, dichloromethane, y- mouth ratataton, butylcellosolve, cyclohexane, ΝΜΡ (Ν-methyl-2-pyrrolidone), dimethylsulfoxide, cyclohexanone, dioxane ぴ HF (tetrahydrofuran), etc. More than one species can be used. Regarding the boiling point of the solvent, for example, the boiling point of toluene is 110.4 to 110.6 ° C, the boiling point of benzene is 80.1 ° C, the boiling point of dichlorobenzene is 172 to 173 ° C, and the boiling point of · 26 ° C, tetralin has a boiling point of 206.5-207.6 ° C, xylene has a boiling point of 139 ° C, aesole has a boiling point of 153.8-155 ° C, and dichloromethane has a boiling point of 39.8-40. 2 ° C, γ-butyrolactone has a boiling point of 198 to 208 ° C, butyl cellosolve has a boiling point of 168.4 to 172 ° C, and cyclohexane has a boiling point of 80.7 to 81.4 ° C, NMP (N-methyl (2-pyrrolidone) has a boiling point of 197 to 202 ° C, dimethyl sulfoxide has a boiling point of 189 ° C, cyclohexanone has a boiling point of 115.6 to 155.7 ° C, and dioxane has a boiling point of 101 to: L01. ° C, THF (tetrahydrofuran) has a boiling point of 64 to 66 ° C, PGME has a boiling point of 119 to 120 ° C, PGMEA has a boiling point of 145.8 ° C, and Echinoleate lactate has a boiling point of 154.5 ° C, DMAc Boiling point of 166-16.1 ° C, MEK boiling point . 79. 57~79 6 ° C, the boiling point of the MIBK is 116. 7 ~ 118 ° C,; . ^ Eighth boiling 82-82 4 ° C, ethanol boiling, is § 8 3 ° C..
第 1電極層 12は、蒸着法または CVD法により導電材料をノ リア膜 11の上に堆積し、 パターニングして形成され得る。さらに第 1電極層 12には、有機洗浄および紫外線ォ ゾン洗浄などの表面処理を施すことが望ましい。第 1電極層 12が陽極である場合は、 第 1電極層 12は、有機機能層 14への正孔注入の観点力 大きな仕事関数を有する 導電材料力 なることが好ましレヽ。その導電材料として、たとえば、 ITO (酸ィ匕インジゥ ム錫; Indium Tin Oxide) , ΙΖΟ (酸化亜鉛; Indium Zinc Oxide)もしくは酸化スズなどの 透明導電材料、またはポリチォフェンもしくはポリア二リンなどの導電性高分子材料が 挙げられる。  The first electrode layer 12 can be formed by depositing a conductive material on the nori film 11 by an evaporation method or a CVD method and patterning the conductive material. Further, it is desirable that the first electrode layer 12 be subjected to a surface treatment such as organic cleaning and UV-zone cleaning. When the first electrode layer 12 is an anode, it is preferable that the first electrode layer 12 be a conductive material having a large work function in terms of hole injection into the organic functional layer 14. As the conductive material, for example, a transparent conductive material such as ITO (Indium Tin Oxide), ΙΖΟ (Indium Zinc Oxide) or tin oxide, or a conductive material such as polythiophene or polyaniline is used. Molecular materials.
また、第 1電極層 12の両端のエッジを被覆するように絶縁膜 13, 13が形成されてい る。絶縁膜 13, 13は、有機機能層 14を形成する工程でマスクとして使用されたり、あ るいは、第 1電極層 12と第 2電極層 15との間の短絡を防止する機能を有する。絶縁膜 13, 13は、 CVD法または真空蒸着法などによって絶縁材料を堆積レターニングす ることで形成してもよいし、あるいは、ウエットプロセスにより、上記パリア膜 11の成膜ェ 程で用レ、た溶媒と同じ溶媒に前駆体を溶解して得た溶液を用レ、て絶縁膜 13, 13を形 成することちできる。 Further, insulating films 13 and 13 are formed so as to cover the edges at both ends of the first electrode layer 12. The insulating films 13 and 13 have a function of being used as a mask in the step of forming the organic functional layer 14 or of preventing a short circuit between the first electrode layer 12 and the second electrode layer 15. Insulating film The layers 13 and 13 may be formed by depositing and lettering an insulating material by a CVD method or a vacuum evaporation method, or may be used in the step of forming the barrier film 11 by a wet process. The insulating films 13 and 13 can be formed by using a solution obtained by dissolving the precursor in the same solvent as the solvent.
上記第 1電極層 12および絶縁膜 13, 13の上には有機機能層 14が形成される。図 2 は、有機機能層 14の一例を概略的に示す断面図である。この有機機能層 14は、正孔 注入層 20,正孔輸送層 21,発光層 22および電子注入層 23を順次成膜して構成され てレ、る。印加電圧により第 1電極層 12から正孔が注入され第 2電極層 15から電子が注 入されると、正孔と電子は有機機能層 14中を移動し、発光層 22において所定の確率 で再結合する。再結合のエネルギーは、発光層 22を構成する有機分子の一重項励 起状態および三重項励起状態のうち一方または双方を介して放出され、蛍光もしくは りん光、または蛍光およびりん光の双方が発せられることとなる。  An organic functional layer 14 is formed on the first electrode layer 12 and the insulating films 13 and 13. FIG. 2 is a cross-sectional view schematically showing an example of the organic functional layer 14. The organic functional layer 14 is formed by sequentially forming a hole injection layer 20, a hole transport layer 21, a light emitting layer 22, and an electron injection layer 23. When holes are injected from the first electrode layer 12 by the applied voltage and electrons are injected from the second electrode layer 15, the holes and electrons move in the organic functional layer 14 and have a predetermined probability in the light emitting layer 22. Rejoin. The energy of the recombination is released through one or both of the singlet excited state and the triplet excited state of the organic molecules constituting the light-emitting layer 22, and emits fluorescence or phosphorescence, or both fluorescence and phosphorescence. Will be done.
有機機能層 14を構成する層 20〜23は、低分子材料または高分子材料からなり、低 分子材料からなる層は、真空蒸着法などのドライプロセスによって形成され、高分子材 料力 なる層は、スピンコート法,ブレードコート法、デイツビング法もしくは印刷法など のウエットプロセスによって形成されるのが一般的である。有機機能層 14をスピンコー ト法などのウエットプロセスで形成する場合は、トルエン,ベンゼン,クロ口ベンゼン,ジ クロ口ベンゼン,クロロホノレム,テトラリン,キシレン,ァニソ一ノレ,ジクロロメタン, γ プチ 口ラタトン,ブチルセルソルブ,シクロへキサン, ΝΜΡ (Ν—メチルー 2—ピロリドン),ジ メチルスルホキシド,シクロへキサノン,ジォキサンまたは THF (テトラヒドロフラン)な どカゝら選ばれた 1種または複数種を溶剤とし、この溶剤に前駆体を溶解して得た溶液 を塗工液として使用することができる。 The layers 20 to 23 constituting the organic functional layer 14 are made of a low molecular material or a polymer material, and the layer made of the low molecular material is formed by a dry process such as a vacuum evaporation method. It is generally formed by a wet process such as spin coating, blade coating, divebing, or printing. When the organic functional layer 14 is formed by a wet process such as a spin coating method, toluene, benzene, chlorobenzene, dichloromethane, chlorophonolem, tetralin, xylene, anisolone, dichloromethane, γ- petit ratataton, butyl cell One or more selected solvents such as Solve, cyclohexane, ΝΜΡ (Ν-methyl-2-pyrrolidone), dimethylsulfoxide, cyclohexanone, dioxane or THF (tetrahydrofuran) are used as a solvent, and A solution obtained by dissolving the precursor can be used as a coating liquid.
有機機能層 14をウエットプロセスで形成する場合は、前駆体を溶剤に溶解して得た 溶剤を塗工することで前駆体膜を形成し、この前駆体膜を加熱して溶剤を蒸発させる。 有機機能層 14の中に溶剤が残存して有機 EL素子 17の特性を劣化させなレ、ように、 前駆体膜を加熱する温度を溶剤の沸点よりも高く設定することが好ましい。 正孔注入層 20および正孔輸送層 21の構成材料としては、銅フタロシアニンおよび T PD (トリフエニノレアミンの 2量体)、または、ポリチォフェンおょぴポリア二リンが挙げられ る。発光層 22を構成する発光材料としては、 Al (アルミキノリノール錯体)、 ΒΑ1 (ァ ルミキノリノール錯体)、 DPVBi (ジスチリルァリーレン誘導体)、 EM2 (ォキサジァゾ一 ル誘導体)、 BMA— nT (オリゴチォフェン誘導体; nは正整数)などが挙げられる。そし て電子注入層 23の構成材料としては Li2O (酸化リチウム)などが挙げられる。 When the organic functional layer 14 is formed by a wet process, a precursor film is formed by applying a solvent obtained by dissolving a precursor in a solvent, and the precursor film is heated to evaporate the solvent. The temperature at which the precursor film is heated is preferably set higher than the boiling point of the solvent so that the solvent does not remain in the organic functional layer 14 and deteriorate the characteristics of the organic EL element 17. The constituent materials of the hole injection layer 20 and the hole transport layer 21 include copper phthalocyanine and TPD (a dimer of tripheninoleamine), or polythiophene and polyaniline. The light-emitting materials that constitute the light-emitting layer 22 include Al (aluminoquinolinol complex), ΒΑ1 (almiquinolinol complex), DPVBi (distyrylarylene derivative), EM2 (oxadiazol derivative), and BMA—nT (oligothiophene). Derivatives; n is a positive integer) and the like. The constituent material of the electron injection layer 23 is, for example, Li 2 O (lithium oxide).
なお、上記有機機能層 14は 4層型素子であるが、この代わりに、有機機能層 14が、 発光層 22のみからなる単層型素子、または発光層 22と正孔輸送層 21と正孔注入層 2 0とからなる 3層型素子でもよい。  Note that the organic functional layer 14 is a four-layer element, but instead, the organic functional layer 14 may be a single-layer element including only the light-emitting layer 22, or the light-emitting layer 22, the hole transport layer 21, and the hole. A three-layer device including the injection layer 20 may be used.
上記有機機能層 14を形成した後は、真空蒸着法などにより有機機能層 14の上に導 電材料を堆積 パターニングすることで第 2電極層 15が形成される。第 2電極層 15が 陰極である場合は、有機機能層 14への電子注入の観点から小さな仕事関数を有し且 つ化学的に比較的安定してレ、る導電材料からなることが好ましい。その導電材料とし ては、たとえば、 MgAg合金、マグネシウム、アルミニウムまたはアルミニウム合金など が挙げられる。なお、第 1電極層 12と第 2電極層 15の電極パターンは図に明示されて いないが、第 1電極層 12と第 2電極層 15は、互いに直交するように帯状に形成されて いてもよい。  After the formation of the organic functional layer 14, a second electrode layer 15 is formed by depositing and patterning a conductive material on the organic functional layer 14 by a vacuum evaporation method or the like. When the second electrode layer 15 is a cathode, it is preferable that the second electrode layer 15 be made of a conductive material having a small work function and being relatively stable chemically from the viewpoint of electron injection into the organic functional layer 14. Examples of the conductive material include an MgAg alloy, magnesium, aluminum, and an aluminum alloy. Although the electrode patterns of the first electrode layer 12 and the second electrode layer 15 are not explicitly shown in the figure, the first electrode layer 12 and the second electrode layer 15 may be formed in a strip shape so as to be orthogonal to each other. Good.
上記有機 EL素子 17を形成した後は、ドライプロセスまたはウエットプロセスにより、有 機 EL素子 17を被覆するように保護膜 16が形成される。保護膜 16を構成する絶縁材 料としては、たとえば、アルミニウム,マグネシウムもしくは銅などの金属、酸化シリコン (Si〇2),酸ィ匕マグネシウムなどの金属酸化物、シリコン窒化物などの金属窒化物、窒 化酸化シリコン (SiON)などの金属窒化酸ィ匕物、またはポリイミド系樹脂などの有機絶 縁材料が挙げられる。 After the formation of the organic EL element 17, a protective film 16 is formed so as to cover the organic EL element 17 by a dry process or a wet process. Examples of the insulating material forming the protective film 16 include metals such as aluminum, magnesium and copper, metal oxides such as silicon oxide (Si〇 2 ) and magnesium oxide, metal nitrides such as silicon nitride, and the like. Examples include metal nitrides such as silicon nitride oxide (SiON) and organic insulating materials such as polyimide resin.
ここで、保護膜 16をウエットプロセスで形成する場合は、前駆体を溶剤に溶解して得 た溶液を塗工することで前駆体膜を形成し、この前駆体膜を加熱して溶剤を蒸発させ る。保護膜 16の中に溶剤が残存して有機 EL素子 17の特性を劣化させないように、前 駆体膜を加熱する温度を溶剤の沸点よりも高く設定することが好ましい。 Here, when the protective film 16 is formed by a wet process, a precursor film is formed by applying a solution obtained by dissolving the precursor in a solvent, and the precursor film is heated to evaporate the solvent. Let The The temperature at which the precursor film is heated is preferably set to be higher than the boiling point of the solvent so that the solvent does not remain in the protective film 16 and deteriorate the characteristics of the organic EL element 17.
以上の通り、上記有機 ELパネル 1によれば、プラスチック基板 10の構成材料のガラ ス転移温度 (Tg)または耐熱温度 (RTI)よりも低い温度域にある処理温度で有機 EL 素子 17とバリア膜 11などの構造体とを形成し、且つこの温度域にある処理温度で特 性が劣化しない材料から有機 EL素子 17を形成し、さらに、前記温度域をウエットプロ セスで使用する溶剤の沸点よりも高い範囲に設定している。このため、プラスチック基 板 10の機械特性や光学特性を劣化させずに、高い封止性能を有し且つ発光特性の 良好な有機 ELパネル 1を提供することが可能である。  As described above, according to the organic EL panel 1, the organic EL element 17 and the barrier film are processed at a processing temperature in a temperature range lower than the glass transition temperature (Tg) or the heat resistance temperature (RTI) of the constituent material of the plastic substrate 10. The organic EL element 17 is formed from a material that does not deteriorate its characteristics at a processing temperature within this temperature range, and the temperature range is determined by the boiling point of the solvent used in the wet process. Is also set to a higher range. For this reason, it is possible to provide the organic EL panel 1 having high sealing performance and good light emission characteristics without deteriorating the mechanical characteristics and optical characteristics of the plastic substrate 10.
本出願は日本国出願第 2004— 103602号に基いており、本願の開示に組み入れ られる。  This application is based on Japanese Patent Application No. 2004-103602, and is incorporated in the present disclosure.

Claims

Π 請求の範囲 範 囲 Claims
1.プラスチック基板上に形成された発光体を含む発光パネルの製造方法であって、 ω前記プラスチック基板のガラス転移温度よりも低い処理温度の下で、前記発光体 を形成する工程と、  1. A method for manufacturing a light-emitting panel including a light-emitting body formed on a plastic substrate, the method comprising: forming the light-emitting body at a processing temperature lower than a glass transition temperature of the plastic substrate;
(b)前記プラスチック基板のガラス転移温度よりも低い処理温度の下で、前記発光体 の近辺に構造体を形成する工程と、を含むことを特徴とする発光パネルの製造方 法。  (b) forming a structure near the light-emitting body at a processing temperature lower than the glass transition temperature of the plastic substrate.
2.請求項 1記載の発光パネルの製造方法であって、前記工程(a)および (b)におい て、前記処理温度は、前記プラスチック基板の長期耐熱性を示す耐熱温度よりも低 V、範囲にあることを特徴とする発光パネルの製造方法。  2. The method for manufacturing a light-emitting panel according to claim 1, wherein in the steps (a) and (b), the processing temperature is lower than a heat resistance temperature indicating a long-term heat resistance of the plastic substrate by a range of V. A method for manufacturing a light-emitting panel, comprising:
3.プラスチック基板上に形成された発光体を含む発光パネルの製造方法であって、 3. A method of manufacturing a light-emitting panel including a light-emitting body formed on a plastic substrate,
(a)前記プラスチック基板の長期耐熱性を示す耐熱温度よりも低い処理温度の下で、 前記発光体を形成する工程と、 (a) a step of forming the luminous body under a processing temperature lower than a heat resistance temperature indicating long-term heat resistance of the plastic substrate,
(b)前記プラスチック基板の長期耐熱性を示す耐熱温度よりも低い処理温度の下で、 前記発光体の近辺に構造体を形成する工程と、を含むことを特徴とする発光パネル の製造方法。  (b) forming a structure near the light-emitting body at a processing temperature lower than a heat-resistant temperature indicating the long-term heat resistance of the plastic substrate.
4.請求項 2または請求項 3記載の発光パネルの製造方法であって、前記耐熱温度は、 前記プラスチック基板が 10万時間に亘つて一定の温度下で大気中に暴露された場 合に前記プラスチック基板の機械強度が半減するときの温度であることを特徴とする 発光パネルの製造方法。  4.The method for manufacturing a light-emitting panel according to claim 2 or claim 3, wherein the heat-resistant temperature is set when the plastic substrate is exposed to the air at a constant temperature for 100,000 hours. A method for manufacturing a light-emitting panel, wherein the temperature is a temperature at which the mechanical strength of a plastic substrate is reduced by half.
5.請求項 4記載の発光パネルの製造方法であって、前記耐熱温度は、 UL746B規 格に従って規定されることを特徴とする発光パネルの製造方法。 5. The method for manufacturing a light emitting panel according to claim 4, wherein the heat-resistant temperature is specified according to UL746B standard.
6.請求項 1から請求項 5のうちのいずれか 1項に記載の発光パネルの製造方法であ つて、前記工程 (a)は、溶剤を用いたウエットプロセスで単数または複数の膜を形成 する工程を含み、前記処理温度は、さらに、前記溶剤の沸点よりも高い範囲内にあ ることを特徴とする発光パネルの製造方法。 6. The method for manufacturing a light emitting panel according to any one of claims 1 to 5, wherein the step (a) comprises forming one or more films by a wet process using a solvent. A method for producing a light-emitting panel, comprising a step, wherein the processing temperature is further in a range higher than a boiling point of the solvent.
7.請求項 1から請求項 5のうちのいずれか 1項に記載の発光パネルの製造方法であ つて、前記工程 (b)は、溶剤を用いたウエットプロセスで単数または複数の膜を形成 する工程を含み、前記処理温度は、さらに、前記溶剤の沸点よりも高い範囲内にあ ることを特徴とする発光パネルの製造方法。 7. The method for manufacturing a light-emitting panel according to any one of claims 1 to 5, wherein in the step (b), one or more films are formed by a wet process using a solvent. A method for producing a light-emitting panel, comprising a step, wherein the processing temperature is further in a range higher than a boiling point of the solvent.
8.請求項 1から請求項 7のうちのいずれか 1項に記載の発光パネルの製造方法であ つて、前記工程 (b)は、前記発光体を被覆する保護膜を前記構造体として形成する 工程を含むことを特徴とする発光パネルの製造方法。  8. The method for manufacturing a light emitting panel according to any one of claims 1 to 7, wherein in the step (b), a protective film covering the light emitting body is formed as the structure. A method for manufacturing a light-emitting panel, comprising the steps of:
9.請求項 1から請求項 8のうちのいずれか 1項に記載の発光パネルの製造方法であ つて、前記工程 (b)は、前記工程 (a)の前に、前記プラスチック基板と前記発光体と の間に介在して不純物の透過を阻止するパリア膜を前記構造体として形成するェ 程を含むことを特徴とする発光パネルの製造方法。  9. The method for manufacturing a light-emitting panel according to any one of claims 1 to 8, wherein the step (b) is performed before the step (a). Forming a barrier film interposed between the substrate and a barrier film for preventing transmission of impurities as the structure.
10.請求項 1から請求項 9のうちのいずれか 1項に記載の発光パネルの製造方法であ つて、前記発光体は、有機エレクト口ルミネッセント素子であることを特徴とする発光 パネルの製造方法。  10. The method for manufacturing a light-emitting panel according to any one of claims 1 to 9, wherein the light-emitting body is an organic electorescent luminescent element. .
PCT/JP2005/005647 2004-03-31 2005-03-22 Method for manufacturing luminous panel WO2005096675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004103602 2004-03-31
JP2004-103602 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005096675A1 true WO2005096675A1 (en) 2005-10-13

Family

ID=35064164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005647 WO2005096675A1 (en) 2004-03-31 2005-03-22 Method for manufacturing luminous panel

Country Status (2)

Country Link
TW (1) TWI271116B (en)
WO (1) WO2005096675A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455283B2 (en) 2009-03-13 2013-06-04 Konica Minolta Holdings, Inc. Organic electronic element and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI653313B (en) 2018-03-06 2019-03-11 大陸商優爾材料工業(深圳)有限公司 Structure having cold light label

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329715A (en) * 1998-04-02 1999-11-30 Cambridge Display Technol Ltd Flexible substrate for organic device, and organic device and production of the same
JP2001052861A (en) * 1999-08-06 2001-02-23 Sharp Corp Coating liquid for forming organic layer in organic led display and manufacture of organic led display
JP2002025768A (en) * 2000-07-12 2002-01-25 Morio Taniguchi Organic electroluminescent display device
JP2003272827A (en) * 2002-03-13 2003-09-26 Matsushita Electric Ind Co Ltd Organic light emitting element, and manufacturing method of the same
JP2003292657A (en) * 2002-04-05 2003-10-15 Dainippon Printing Co Ltd Substrate and color filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329715A (en) * 1998-04-02 1999-11-30 Cambridge Display Technol Ltd Flexible substrate for organic device, and organic device and production of the same
JP2001052861A (en) * 1999-08-06 2001-02-23 Sharp Corp Coating liquid for forming organic layer in organic led display and manufacture of organic led display
JP2002025768A (en) * 2000-07-12 2002-01-25 Morio Taniguchi Organic electroluminescent display device
JP2003272827A (en) * 2002-03-13 2003-09-26 Matsushita Electric Ind Co Ltd Organic light emitting element, and manufacturing method of the same
JP2003292657A (en) * 2002-04-05 2003-10-15 Dainippon Printing Co Ltd Substrate and color filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455283B2 (en) 2009-03-13 2013-06-04 Konica Minolta Holdings, Inc. Organic electronic element and its manufacturing method

Also Published As

Publication number Publication date
TW200541380A (en) 2005-12-16
TWI271116B (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4040850B2 (en) Light emitting element
US6781148B2 (en) Light emitting device
Burrows et al. Gas permeation and lifetime tests on polymer-based barrier coatings
US8389983B2 (en) Organic light emitting apparatus and method of manufacturing organic light emitting apparatus
US7005798B2 (en) Flexible organic electronic device with improved resistance to oxygen and moisture degradation
US9054345B2 (en) Pixel defining layer, preparation method thereof, organic light-emitting diode substrate and display
US20100164369A1 (en) Apparatus of organic light emitting diode and packaging method of the same
US8053023B2 (en) Conductive layer and organic electroluminescent device including the same
KR20120104637A (en) Flexible substrate
JP2010147027A (en) Flat panel display device, and manufacturing method thereof
JP2000323273A (en) Electroluminescent element
CN1893108B (en) Flat panel display and method of fabricating the same
JP5266532B2 (en) Light emitting element
US20070048895A1 (en) Method of manufacturing an organic electronic device
TWI512966B (en) An organic EL device, and an organic EL device
US20050123801A1 (en) Donor substrate for laser transfer and organic electroluminescence display device manufactured using the same
JP5549448B2 (en) Barrier film, method for producing barrier film, and organic electronic device
JP2004072049A (en) Organic tft element and method of manufacturing same
WO2005096675A1 (en) Method for manufacturing luminous panel
JP2007287613A (en) Organic electroluminescence element and its manufacturing method
JP4217086B2 (en) Organic active element, method for manufacturing the same, and display device
JP5099472B2 (en) Gas barrier laminate and display substrate comprising the laminate
JP2015080855A (en) Sealing film, method for producing the same and functional element sealed with sealing film
JP2005310469A (en) Organic light emitting element
JP2004181793A (en) Gas barrier laminated material and its manufacturing process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP