WO2005096039A1 - Process for producing polarizing film, polarizing film obtained thereby and image display unit utilizing the same - Google Patents

Process for producing polarizing film, polarizing film obtained thereby and image display unit utilizing the same Download PDF

Info

Publication number
WO2005096039A1
WO2005096039A1 PCT/JP2005/005734 JP2005005734W WO2005096039A1 WO 2005096039 A1 WO2005096039 A1 WO 2005096039A1 JP 2005005734 W JP2005005734 W JP 2005005734W WO 2005096039 A1 WO2005096039 A1 WO 2005096039A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing film
stretching
polarizing
light
Prior art date
Application number
PCT/JP2005/005734
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Mizushima
Morimasa Wada
Youichirou Sugino
Tadayuki Kameyama
Ken Aoki
Kenji Shimizu
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2005096039A1 publication Critical patent/WO2005096039A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0034Polarising

Definitions

  • the present invention relates to a method for producing a polarizing film, a polarizing film obtained by the method, and an image display device using the same.
  • a polarizing film used for an image display device needs to have high reproducibility of bright colors and to have high transmittance, high transmittance and high degree of polarization in order to provide an image. It has been.
  • a polarizing film is prepared by dyeing a polyvinyl alcohol (PVA) -based raw film with a dichroic substance such as iodine or dichroic dye having dichroism, and stretching it uniaxially in the MD direction. And manufactured.
  • PVA polyvinyl alcohol
  • a dichroic substance such as iodine or dichroic dye having dichroism
  • a polarizing plate used therein has been required to have higher optical characteristics such as a degree of polarization and in-plane uniformity.
  • the polarizing film used for the polarizing plate is produced by dyeing and uniaxially stretching the raw film, and the unevenness caused by stretching or dyeing causes deterioration of optical characteristics and in-plane uniformity, and the above-described image.
  • the display of the screen becomes uneven, and various attempts have been made to eliminate the unevenness (for example, see Patent Document 1).
  • the method for producing a polarizing film can be roughly classified into a wet method and a dry method.Furthermore, as a method for solving the above-mentioned problem, a method of stretching in the TD direction in a dry method (for example, see Patent Document 2) and a wet method In addition, a method has been proposed in which a spiral rubber roll is used to remove the bend (for example, see Patent Document 3).
  • a method of stretching in the TD direction in a dry method for example, see Patent Document 2
  • a method has been proposed in which a spiral rubber roll is used to remove the bend (for example, see Patent Document 3).
  • it is necessary to increase the size of polarizing plates and polarizing films it becomes more difficult to perform in-plane uniform stretching and dyeing. For this reason, there is a strong demand for the development of a technology for providing a large-size and in-plane uniform polarizing plate.
  • Patent Document 2 JP-A-11-183726
  • Patent Document 3 JP-A-2000-147252
  • the present invention provides a method for producing a polarizing film, which has good in-plane uniformity and excellent optical properties without unevenness, and is effective in increasing the size, in a method for producing a polarizing film produced by a wet method. Further, it is another object of the present invention to provide a polarizing film obtained by the production method of the present invention, an optical film using the same, and an image display device using the polarizing film or the optical film. .
  • the production method of the present invention is a method for producing a polarizing film, which comprises a swelling step, a dyeing step, a crosslinking step, a stretching step, and a washing step.
  • a TD direction stretching step of immersing the polymer film in the treatment liquid and stretching in the TD direction is performed, and the TD direction stretching step has a curvature.
  • This is a manufacturing method in which the film is stretched in the TD direction using a crown roll of 3% or more.
  • the polarizing film of the present invention is a polarizing film obtained by the production method of the present invention.
  • the optical film of the present invention is an optical film obtained by laminating at least one optical layer on the polarizing film of the present invention.
  • the image display device of the present invention is an image display device having the polarizing film of the present invention or the optical film of the present invention.
  • a polarizing film having good optical characteristics and no unevenness can be obtained, and further, a large-sized image display device having good display characteristics without uneven display.
  • a suitable polarizing film can be provided.
  • FIG. 1 is a cross-sectional view of an example of a crown roll used in the present invention.
  • a TD stretching step of stretching in the TD direction while being immersed in the treatment solution wherein the TD stretching step is a step of stretching in the TD direction using a crown roll having a curvature of 3% or more. Is the way. More preferably, the curvature of the crown roll is 3% or more and 35% or less.
  • the curvature (R) is as follows: D1 is the diameter of the end of the crown roll [mm], D2 is the diameter of the center of the crown roll [mm], and L is the roll length [mm]. ] Can be obtained by the following equation.
  • the curvature of the crown roll may be 3% or more, but from the viewpoint of the effect of stretching in the TD direction and the running property during film transport, it is preferably 3% or more and 35% or less. More preferably 3% or more and 30% or less, more preferably 5% or more and 25% or less, and still more preferably 7% or more and 22% or less. If the curvature force is less than S3%, the effect of suppressing shear bending can be obtained, but the effect of stretching in the TD direction may be insufficient. If it exceeds 35%, the running property is deteriorated, so that it is easy to meander, and the stretching at the center of the roll becomes strong, so that it is difficult to obtain a uniform stretching effect in the film plane. However, it is preferable that the curvature is appropriately adjusted according to the thickness and hardness of the film to be conveyed.
  • the stretching ratio in the TD direction at this time is, as in the swelling treatment step or another solution treatment step, that the film is stretched by a crown roll before and after the cross-linking treatment step in a state where the film is swollen and thin.
  • the range of the stretching ratio is preferably 1.13 times or more and 1.40 times or less, more preferably 1.16 times or more and 1.35 times or less. If the stretching in the TD direction is less than 1.13 times, the stretching in the TD direction is insufficient and the effect of making the in-plane uniformity is not obtained. 1.When a crown roll exceeding 40 times is used On the contrary, it is not preferable because the possibility that the in-plane optical characteristic variation becomes large increases.
  • the stretching ratio in the TD direction at this time is 1.03 times or more and 1.26 times. It is more preferably 1.06 times or more and 1.21 times or less. If the stretching in the TD direction is less than 1.03 times, stretching in the TD direction is inadequate and the effect of making the in-plane uniformity is difficult to obtain. 1.When a crown roll exceeding 26 times is used On the contrary, it is not preferable because the possibility of in-plane optical characteristic variation increases.
  • the method for producing a polarizing film of the present invention includes a dyeing step of dyeing a raw film (a strip-shaped polymer film) and a stretching step of stretching the dyed film.
  • the point is to have a stretching process in the TD direction. Therefore, the other steps, ie, the swelling step, the crosslinking step, and the washing step are optional steps. Further, the TD stretching step is performed in at least one of the above-described steps.
  • the thickness of the polarizing film is not particularly limited, but is generally about 5 to 40 / zm.
  • a polarizing plate is obtained by laminating a transparent protective layer on one or both sides of a polarizing film.
  • the polymer film (raw film) is not particularly limited, and various types can be used.
  • PVA-based films partially formalized PVA-based films, polyethylene terephthalate (PET) -based films, ethylene / butyl acetate copolymer-based films, and hydrophilic polymer films such as partially saponified films and cellulose-based films.
  • PET polyethylene terephthalate
  • hydrophilic polymer films such as partially saponified films and cellulose-based films.
  • polyene-based oriented films such as PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • the thickness of the polymer film is preferably about 5 to 100 / ⁇ .
  • the polymerization degree of the polymer as the material of the polymer film is generally 500 to 10,000, preferably in the range of 100 to 6000, more preferably in the range of 1400 to 4000.
  • the degree of saponification is preferably at least 75 mol%, more preferably at least 98 mol%, from the viewpoint of solubility in water. . and more preferably in the range of 8 mol 0/0.
  • the PVA-based film may be produced by any method such as a casting method, a casting method, and an extrusion method of casting a stock solution dissolved in water or an organic solvent. Can be used as appropriate.
  • the phase difference value at this time is preferably 5 nm to 100 nm.
  • the in-plane retardation variation of the PVA-based film as the raw film is preferably as small as possible. In m, it is preferably 10 nm or less, more preferably 5 nm or less.
  • the polarizing film according to the present invention preferably has a single transmittance power of at least 3.0% when measured with the polarizing film alone, and more preferably in the range of 43.0 to 45.0%. .
  • the single transmittance can be measured by the method described in Examples below.
  • a dry stretching method and a wet stretching method are generally used.
  • a wet stretching method is used.
  • an appropriate method can be used according to the conditions.For example, the polymer film as a raw film is swollen, dyed, crosslinked, stretched, washed with water, The drying process is generally performed by a series of manufacturing steps. In each of these treatment steps except for the drying treatment step, each treatment is performed while being immersed in a bath having various solution powers.
  • each of the swelling, dyeing, cross-linking, stretching, washing, and drying treatments are performed in each treatment step, and several treatments are performed simultaneously in one treatment step. Some of the processing need not be performed.
  • the stretching treatment may be performed after the dyeing treatment, or may be performed simultaneously with the swelling / dyeing treatment, or may be performed after the stretching treatment.
  • the stretching process in the MD direction can be performed by any appropriate method without limitation. For example, in the case of roll stretching, a method of performing stretching by a difference in peripheral speed between rolls is used. Further, an additive such as boric acid, borax or potassium iodide may be appropriately added to each treatment.
  • the polarizing film according to the present invention may contain boric acid, zinc sulfate, zinc chloride, potassium iodide, and the like, if necessary. Further, in some of these treatments, a water washing treatment may be performed for each treatment which may be appropriately stretched in the MD or TD direction by a conventionally known method.
  • crowns such as a tapered crown shape and a radial crown shape (for example, see FIG. 1) whose diameter increases with the force S whose outer peripheral surface is directed from both ends toward the center portion are used.
  • a roll when used in pairs with these crown rolls, a crown roll whose diameter decreases toward the center, such as an inverted crown shape, may be used.
  • the material of the crown roll is not particularly limited as long as it is not affected by the solution used and does not adversely affect the film to be conveyed.
  • a metal such as stainless steel, and a synthetic rubber material such as silicon and -tolylbutadiene rubber are preferably used.
  • the surface of the crown roll may be appropriately processed such as grooves and patterns for the purpose of preventing slippage.
  • it is effective to form a slit-shaped groove having a snail shape at an interval of 1 to 10 mm and a depth of 0.1 to 3 mm, or to use a knurling process when a metal crown roll is used.
  • the roll length of the crown roll is preferably at least as long as the width of the film.
  • a force that is about 8 to 60% longer than the width of the film is preferably used.
  • the width of the film exceeds 1000 mm, the width of the film is about 100 mm more on each side than the width of the film.
  • a roll having a length is preferably used.
  • a roll having a length of about 108 to 160 mm is used, and in the case of a film width of 1200 mm, for example, a roll of about 1400 mm is used.
  • the stretching in the TD direction using the crown roll can be performed without limitation at each processing step, and may be performed at any step other than the swelling, dyeing, crosslinking, stretching, washing, and drying treatment steps. You may.
  • the number of times is not limited, and a plurality of times may be performed.
  • it is effective to perform stretching in the TD direction of the present invention before the crosslinking treatment step in which the polymer film is still highly flexible.
  • it is particularly preferable to perform it in the swelling treatment step, which is more preferably performed before the dyeing treatment step.
  • Stretching in the TD direction according to the present invention after the crosslinking treatment hardens the effect of expanding in the TD direction because the polymer film is cured by the crosslinking treatment.However, in order to prevent wrinkles and bending, It is valid. Further, the installation position of the crown roll in each processing step is not limited as long as it is appropriately installed at a position where the stretching in the TD direction can be performed efficiently. It is effective to provide it as a guide hole installed in the polymer film because the polymer film can be easily stretched at the time of immersion in a solution due to the characteristics of the polymer film.
  • the swelling step is performed, for example, by immersing the polymer film in a swelling bath filled with water.
  • a swelling bath filled with water.
  • the polymer film is washed with water, so that dirt on the polymer film surface and an anti-blocking agent can be washed, and the effect of preventing unevenness such as uneven dyeing by swelling the polymer film can be expected.
  • glycemic Phosphorus, potassium iodide and the like may be added as appropriate.
  • the concentration of glycerin is preferably 5% by weight or less and potassium iodide is preferably 10% by weight or less.
  • the temperature of the swelling bath is preferably in the range of 20-45 ° C, more preferably 25-40 ° C.
  • the immersion time in the swelling bath is preferably from 2 to 300 seconds, more preferably from 10 to 180 seconds, particularly preferably from 60 to 150 seconds.
  • the stretching ratio at which the polymer film can be stretched in this swelling bath is about 1.1 to 3.5 times in the MD direction.
  • the polymer film is adsorbed on the polymer film by immersing the polymer film in a solution of the dichroic material in a dye bath containing a dichroic material such as iodine. It is a process.
  • dichroic substance conventionally known substances can be used, and examples thereof include iodine and organic dyes.
  • Organic dyes include, for example, Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Supra Blue G, Supra Blue GL, Supra Orange GL, Direct Sky Blue, Direct First Range S, First Black, etc. can be used.
  • These dichroic substances may be used alone or in combination of two or more.
  • the organic dye it is preferable to combine two or more types from the viewpoint of, for example, reducing the amount of visible light in the visible light range.
  • Specific examples include a combination of Congo I-Red and Supra Blue G, Supra Orange GL and Direct Sky Blue, or a combination of Direct Sky Venorey and First Black.
  • a solution in which the dichroic substance is dissolved in a solvent can be used.
  • Water is generally used as the solvent, but an organic solvent compatible with water may be further added.
  • the concentration of the dichroic substance is 0.010 to: preferably in the range of LO% by weight 0.02 to 5% by weight more preferably in the range of 0.020 to 7% by weight Especially preferred to be! / ,.
  • iodine When iodine is used as the dichroic substance, the dyeing efficiency can be further improved. Therefore, it is preferable to further add iodide.
  • the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide. Titanium and the like can be mentioned.
  • the proportion of these iodides to be added is preferably 0.01 to 10% by weight, more preferably 0.10 to 5% by weight, in the dyeing bath.
  • the ratio of iodine to potassium iodide (weight ratio, iodine: potassium iodide) to which potassium iodide is preferably added is preferably in the range of 1: 5 to 1: 100.
  • the magus is more preferably in the range of 1: 6 to 1:80, particularly preferably in the range of 1: 7 to 1:70.
  • the immersion time of the polymer film in the dyeing bath is not particularly limited, but is preferably 1 to 20 minutes, more preferably 2 to 10 minutes. . Further, the temperature of the dyeing bath is preferably in the range of 5 to 42 ° C, more preferably in the range of 10 to 35 ° C. In addition, when the polymer film is stretched in this dyeing bath, the total stretching ratio at that time is about 1.1 to 3.5 times in the MD direction.
  • the dyeing treatment may be, for example, a method of applying or spraying an aqueous solution containing a dichroic substance to the polymer film, in addition to the method of immersion in the dyeing bath as described above.
  • a dichroic substance may be preliminarily mixed during the formation of the polymer film.
  • the polymer film is immersed in a bath containing a crosslinking agent to perform crosslinking.
  • a crosslinking agent a conventionally known substance can be used.
  • boron compounds such as boric acid and borax, dalioxal, dartalaldehyde and the like can be mentioned. These may be used alone or in combination of two or more.
  • a combination of boric acid and borax is preferred, and the addition ratio (molar ratio, boric acid: borax) is in the range of 4: 6 to 9: 1. Most preferably, the range of 5.5: 4.5.5-7: 3 is more preferably 6: 4.
  • the solution of the crosslinking bath a solution in which the crosslinking agent is dissolved in a solvent can be used.
  • a solvent for example, water can be used, and it may further contain an organic solvent compatible with water.
  • the concentration of the crosslinking agent in the solution is not limited to this, but is preferably in the range of 1 to 10% by weight, more preferably 2 to 6% by weight.
  • An iodide may be added to the cross-linking bath from the viewpoint of obtaining in-plane uniform characteristics of the polarizing film.
  • Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide. Titanium chloride is included, and its content is 0.05 to 15% by weight, more preferably 0.5 to 8% by weight.
  • the ratio of boric acid and potassium iodide (weight ratio, boric acid: potassium iodide) in which the combination of boric acid and potassium iodide is preferred is in the range of 1: 0.1 to 1: 3.5. More preferably, it is in the range of 1: 0.5 to 1: 2.5.
  • the temperature of the crosslinking bath is, for example, in the range of 20 to 70 ° C, and the immersion time of the polymer film is usually in the range of 1 second to 15 minutes, preferably 5 seconds to 10 minutes.
  • the cross-linking treatment may be performed by applying or spraying a solution containing a cross-linking agent, as in the case of the dyeing treatment.
  • the polymer film may be stretched in the MD direction in this cross-linking bath. Is about 1.1 to 3.5 times.
  • the solution of the stretching bath in the stretching step is not particularly limited, and for example, a solution to which various metal salts or compounds of iodine, boron or zinc are added can be used.
  • a solvent for this solution water, ethanol, or various organic solvents are appropriately used.
  • boric acid and Z or potassium iodide are added at about 2 to 18% by weight, respectively.
  • the content ratio (weight ratio, boric acid: potassium iodide) is about 1: 0.1 to 1: 4, more preferably 1: 0. It is preferable to use them at a ratio of about 5 to 1: 3.
  • the temperature of the stretching bath is, for example, preferably in the range of 40 to 67 ° C, more preferably 50 to 62 ° C.
  • the total stretching ratio in the MD direction after this stretching process step is about 3 to 7 times.
  • the washing step for example, by immersing the polymer film in an aqueous solution of a washing bath, unnecessary residues such as boric acid adhered in the previous treatment can be washed away.
  • aqueous solution for example, sodium iodide or potassium iodide, to which iodide may be added, is preferably used.
  • potassium iodide When potassium iodide is added to the water washing bath, its concentration is, for example, 0.1 to 10% by weight, and preferably 3 to 8% by weight.
  • the temperature is preferably from 10 to 60 ° C, more preferably from 15 to 40 ° C.
  • the number of times of the water washing treatment is not particularly limited, and the type and concentration of the additive in each water washing bath may be changed.
  • a known roll such as a pinch roll or the like may be used in order to prevent dripping, or an air knife may be used. Excess water may be removed by, for example, scraping off the water.
  • the drying step an appropriate method such as natural drying, air drying, and heat drying can be used, but usually, heat drying is preferably used.
  • the heating temperature is preferably about 20 to 80 ° C, and the drying time is preferably about 1 to 10 minutes.
  • the final stretching ratio (total stretching ratio) of the polarizing film produced through the above-described processing steps is 3.0 to 7.0 times that of the polymer film before the above treatment. More preferably, it is more preferably 5.5 to 6.2 times. If the total stretching ratio is less than 3.0 times, it is difficult to obtain a polarizing film having a high degree of polarization. If it exceeds 7.0 times, the film is easily broken.
  • the polarizing film may be manufactured by using another manufacturing method without being limited to the above-described manufacturing method.
  • a polymer film such as polyethylene terephthalate (PET) into which a dichroic substance is kneaded, formed into a film, or stretched may be used, or a uniaxially oriented liquid crystal as a host and a dichroic dye as a guest.
  • PET polyethylene terephthalate
  • O-type US Pat. No. 5,523,863, Japanese Patent Application Laid-Open No. 3-503322
  • E-type using a dichroic lyo-pic pick-up liquid crystal US Pat. , 049, 428)
  • the thickness of the polarizing film thus produced is not particularly limited, but is preferably 5 to 40 ⁇ m. When the thickness is 5 m or more, the mechanical strength does not decrease. When the thickness is 40 m or less, the optical characteristics do not decrease, and the thickness can be reduced even when applied to an image display device.
  • polarizing film In the polarizing film according to the present invention, various optical layers can be laminated for practical use.
  • the optical layer is not particularly limited as long as it satisfies the required optical characteristics.
  • a polarizing film may be provided on one or both sides of the polarizing film.
  • Hard coat treatment, anti-reflection treatment, and anti-stating treatment on the transparent protective layer for the purpose of protecting the transparent protective layer, the surface opposite to the surface of the transparent protective layer adhered to the polarizing film, or one or both surfaces of the polarizing film itself.
  • a method of applying a surface treatment for the purpose of diffusion or anti-glare or a method of laminating an oriented liquid crystal layer for the purpose of compensating for a viewing angle or an adhesive layer for laminating another film.
  • a polarization conversion element a reflection plate, a semi-transmission plate, a retardation plate (including a wavelength plate ( ⁇ plate) such as 1Z2 or 1Z4), an image display device such as a viewing angle compensation film, a brightness enhancement film, and the like.
  • ⁇ plate wavelength plate
  • elliptically polarized light obtained by laminating a reflective polarizing plate or a transflective polarizing plate or a transflective polarizing plate obtained by laminating a reflecting plate or a transflective reflecting plate on a polarizing plate obtained by laminating the above polarizing film and a transparent protective layer.
  • a plate or a circularly polarizing plate, a wide viewing angle polarizing plate in which a viewing angle compensation layer or a viewing angle compensation film is laminated, or a polarizing plate in which a brightness enhancement film is laminated is preferable.
  • the timing of laminating the optical layer or the optical film with the transparent protective layer may be after lamination with the polarizing film or before lamination with the polarizing film.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorellose polymers such as diacetinoresenorelose and triacetinoresenorelose, acrylic polymers such as polymethyl methacrylate, polystyrene and Atari mouth-tri- And styrene-based polymers such as styrene copolymer (AS resin) and polycarbonate-based polymers.
  • polyolefins such as polyethylene, polypropylene, polyolefins having a cyclo- or norbornene structure, polyolefin-based polymers such as ethylene-propylene copolymers, amide-based polymers, amide-based polymers such as nylon and aromatic polyamide, and imid-based polymers , Sunolefon-based polymer, polyethenoresnolefone-based polymer, polyetheneoleateno-leketone-based polymer, polyphenylene sulfide-based polymer, vinyl alcohol-based polymer, vinylidene chloride-based polymer, vinyl butyral-based polymer, arylate-based polymer, polyoxymethylene-based polymer , An epoxy-based polymer, or a blend of the above-mentioned polymers are also examples of the polymer forming the transparent protective layer.
  • the transparent protective layer It can also be formed as a cured layer of a thermosetting or ultraviolet curable resin such as an acrylic, urethane, acrylic urethane, epoxy or silicone resin.
  • a thermosetting or ultraviolet curable resin such as an acrylic, urethane, acrylic urethane, epoxy or silicone resin.
  • a triacetyl cellulose film having a surface saponified with an alkali or the like is preferable.
  • a polymer film described in JP-A-2001-343529 for example, (A) a thermoplastic resin having a substituted or Z or unsubstituted imide group in the side chain And a resin composition containing (B) a thermoplastic resin having a substituted or Z- or unsubstituted phenol group and a -tolyl group in the side chain.
  • a resin composition containing an alternating copolymer of methylmaleimide and an acrylonitrile-styrene copolymer is exemplified.
  • a strong film such as a mixed extruded product of a resin composition can be used.
  • the thickness of the transparent protective layer is not particularly limited, but is, for example, 500 m or less, and preferably 1 to 300 Pm. In particular, the thickness is more preferably 5 to 200 ⁇ m. In addition, it is preferable that the surface of the transparent protective layer is subjected to a quenching treatment with an alkali or the like from the viewpoint of improving the polarization characteristics, durability, and adhesion characteristics.
  • a transparent protective layer having a thickness of from +75 nm is preferably used, and by using this, the coloring (optical coloring) of the polarizing plate caused by the transparent protective layer can be almost completely eliminated.
  • Rth is more preferably between 80 and +60 nm, particularly preferably between 70 nm and +45 nm! /.
  • the transparent protective layer is laminated on both sides of the polarizing film, those having different characteristics for each one side may be used.
  • the characteristics are not limited to these, but include, for example, thickness, material, light transmittance, tensile modulus, presence or absence of an optical layer, and the like.
  • the hard coat treatment is performed for the purpose of preventing the surface of a polarizing film or a polarizing plate on which a polarizing film and a transparent protective layer are laminated from being scratched.
  • it can be formed by, for example, a method of adding a hardened film excellent in hardness and sliding properties with an appropriate ultraviolet curable resin such as a silicone resin to the surface of the transparent protective layer.
  • the anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art.
  • the anti-stating treatment is performed for the purpose of preventing adhesion to an adjacent layer.
  • the anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate.
  • the anti-glare treatment is performed by a sand blast method or an embossing method.
  • the transparent protective layer can be formed by giving a fine uneven structure to the surface of the transparent protective layer by an appropriate method such as a surface roughening method or a method of blending transparent fine particles.
  • the fine particles to be included in the formation of the above-mentioned surface fine uneven structure include silica, alumina, titania, zirco-a, tin oxide, indium oxide, cadmium oxide, and oxide having an average particle size of 0.5 to 50 ⁇ m.
  • Transparent fine particles such as inorganic fine particles made of antimony and the like, which may have conductivity, and organic fine particles also having a crosslinked or uncrosslinked polymer and the like are used.
  • the amount of the fine particles used is generally about 2 to 70 parts by weight, and 5 to 50 parts by weight based on 100 parts by weight of the transparent resin forming the fine surface uneven structure.
  • the anti-glare layer may also serve as a diffusion layer (such as a viewing angle expanding function) for diffusing light transmitted through the polarizing plate to increase the viewing angle and the like.
  • optical layers such as the anti-reflection layer, anti-staking layer, diffusion layer and anti-glare layer can be provided on the transparent protective layer itself, or separately provided separately from the transparent protective layer. Talk about this.
  • the bonding treatment is not particularly limited.
  • an adhesive made of a vinyl polymer, or boric acid or borax is used. It can be carried out via an adhesive comprising at least a water-soluble crosslinking agent for a vinyl alcohol-based polymer such as glutaraldehyde, melamine, and oxalic acid.
  • This adhesive layer can be formed as a layer for applying and drying an aqueous solution, but in the preparation of the aqueous solution, other additives and a catalyst such as an acid can be blended if necessary. .
  • the thickness of the adhesive layer is preferably 5 nm or more and 500 nm or less, and more preferably lOnm or more and 300 nm or less, determined by the balance between the adhesive effect and the thickness.
  • the reflective polarizing plate is provided with a reflective layer on the polarizing plate, and is used to form a liquid crystal display device or the like that reflects and reflects incident light from the viewing side (display side).
  • a built-in light source such as a backlight can be omitted, and the thickness of the liquid crystal display device can be easily reduced.
  • the reflection type polarizing plate can be formed by an appropriate method such as a method in which a reflective layer having a strength such as a metal is provided on one side of the polarizing plate via a transparent protective layer or the like as necessary.
  • the reflective polarizing plate include, as necessary, a reflective layer formed by attaching a foil made of a reflective metal such as aluminum to one side of a matte-treated transparent protective layer and a vapor deposition film. Is raised. Further, there may be mentioned a transparent protective layer containing fine particles to form a fine surface unevenness structure, and a reflective layer having a fine unevenness structure formed thereon.
  • the reflection layer having the fine uneven structure described above has an advantage that the incident light is diffused by irregular reflection to prevent a directional glare and to suppress uneven brightness. Further, the transparent protective layer containing fine particles has an advantage that the incident light and the reflected light are diffused when transmitting the light, and the unevenness of brightness and darkness can be further suppressed.
  • the reflection layer having a fine uneven structure reflecting the fine uneven structure on the surface of the transparent protective layer is formed by an appropriate method such as an evaporation method such as a vacuum evaporation method, an ion plating method, or a sputtering method or a plating method.
  • the method can be performed by directly attaching a metal to the surface of the transparent protective layer.
  • the reflective plate can also be used as a reflective sheet or the like in which a reflective layer is provided on an appropriate film according to the transparent film. Since the reflective layer is usually made of metal, its use with its reflective surface covered with a transparent protective layer, a polarizing plate, etc. prevents the reduction of the reflectance due to oxidation and, consequently, maintains the initial reflectance for a long time. This is more preferable in terms of avoiding the additional attachment of the protective layer.
  • the transflective polarizing plate can be obtained by forming a transflective reflective layer such as a half mirror that reflects and transmits light on the reflective layer.
  • the transflective polarizing plate is usually provided on the back side of the liquid crystal cell, and the liquid crystal display device is used in a relatively bright atmosphere. When used, an image is displayed by reflecting the incident light from the viewing side (display side), and the image is displayed on the back side of the transflective polarizing plate.
  • a liquid crystal display device that displays images using a built-in light source such as a backlight can be formed.
  • the transflective polarizing plate can save energy for using a light source such as a knock light in a bright atmosphere, and can be used for forming a liquid crystal display device of a type that can be used with a built-in light source even in a relatively bright atmosphere. Useful.
  • An elliptically polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate will be described.
  • a phase difference plate or the like is used.
  • a so-called 1Z4 wavelength plate (also referred to as a ⁇ 4 plate) is used as a retardation plate that converts linearly polarized light into circularly polarized light or converts circularly polarized light into linearly polarized light.
  • a 1Z2 wavelength plate (also referred to as a ⁇ 2 plate) is generally used to change the polarization direction of linearly polarized light.
  • the elliptically polarizing plate compensates (prevents) the coloring (blue or yellow) caused by the birefringence of the liquid crystal layer of the super twisted nematic (STN) type liquid crystal display device, and displays the colorless black and white. It is used effectively in such cases. Further, the one in which the three-dimensional refractive index is controlled is preferable because it can also compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction.
  • the circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflection type liquid crystal display device that displays an image in color, and also has an antireflection function.
  • the retardation plate examples include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an alignment film obtained by aligning a liquid crystal monomer and then crosslinking and polymerizing the alignment film, an alignment film of a liquid crystal polymer, And a film in which an alignment layer of a liquid crystal polymer is supported by a film.
  • the stretching treatment can be performed by, for example, a roll stretching method, a long gap stretching method, a tenter stretching method, a tubular stretching method, or the like.
  • the stretching ratio is generally about 1.1 to 3 times in the case of uniaxial stretching.
  • the thickness of the retardation plate is not particularly limited either, but is generally 10 to 200 ⁇ m, preferably 20 to: LOO ⁇ m.
  • polymer material examples include polyvinyl alcohol, polyvinyl butyral, polymethyl vinyl ether, polyhydroxyethyl atearylate, hydroxyethyl cellulose, hydroxypropyl cellulose, methinoresenolerose, polycarbonate, and polyaryle.
  • These polymer materials become oriented products (stretched films) by stretching or the like.
  • any of lyotropic and thermopick properties can be used.
  • the workability is preferably a thermopick property.
  • Such a liquid crystal monomer is aligned using a known method as appropriate, for example, a method using heat or light, a method for rubbing on a substrate, a method for adding an alignment aid, and then maintaining the alignment.
  • a method of fixing the orientation by crosslinking and polymerizing with light, heat, an electron beam or the like is preferably used.
  • liquid crystal polymer examples include various types of main chain and side chain in which a conjugated linear group (mesogen) for imparting liquid crystal orientation is introduced into the main chain or side chain of the polymer. And so on.
  • main chain type liquid crystal polymer include a structure in which a mesogen group is bonded at a spacer portion that imparts flexibility, such as a nematic-oriented polyester-based liquid crystal polymer, a discotic polymer, and a cholesteric polymer. And so on.
  • the side-chain type liquid crystalline polymer include polysiloxane, polyacrylate, polymethacrylate or polymalonate as a main chain skeleton, and nematic alignment is provided through a spacer composed of a conjugated atomic group as a side chain. And the like having a mesogen portion that is a unitary force of a para-substituted cyclic compound.
  • These liquid crystal polymers are, for example, those obtained by rubbing the surface of a thin film of polyimide or polyvinyl alcohol formed on a glass plate, or those obtained by obliquely depositing silicon oxide. This is done by developing the solution and heat-treating it.
  • the retardation plate may be a plate having an appropriate retardation according to the intended use, such as, for example, various wavelength plates or those for the purpose of compensating the viewing angle or the like due to birefringence of the liquid crystal layer.
  • a device in which optical characteristics such as phase difference are controlled by laminating more than two kinds of phase difference plates may be used.
  • the elliptically polarizing plate and the reflection type elliptically polarizing plate are obtained by laminating a polarizing plate or a reflection type polarizing plate and a retardation plate in an appropriate combination.
  • the strong elliptically polarizing plate or the like can also be formed by sequentially and separately laminating the (reflection type) polarizing plate and the retardation plate in the manufacturing process of the liquid crystal display device so as to form a combination.
  • an optical film such as an elliptically polarizing plate is excellent in quality stability, laminating workability, and the like, and has an advantage that the production efficiency of a liquid crystal display device and the like can be improved.
  • the viewing angle compensation film is a film for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed in a direction not perpendicular to the screen but slightly oblique.
  • a viewing angle compensating retardation plate for example, a retardation plate, an alignment film such as a liquid crystal polymer, or a support in which an alignment layer such as a liquid crystal polymer is supported on a transparent base material can be used.
  • a common retardation plate is a birefringent polymer film uniaxially stretched in the plane direction, whereas a retardation plate used as a viewing angle compensation film is a biaxially stretched biaxially stretched polymer film.
  • Polymer films with refraction, biaxially stretched films such as uniaxially stretched in the plane direction and also in the thickness direction, birefringent polymers with controlled refractive index in the thickness direction, and bidirectionally stretched films such as obliquely oriented films Is used.
  • the obliquely oriented film include, for example, a film obtained by bonding a heat shrink film to a polymer film and subjecting the polymer film to stretching or Z and shrinkage treatment under the action of the shrinkage force caused by heating, or an obliquely oriented liquid crystal polymer And the like.
  • the raw material polymer for the retardation plate the same polymer as that described for the retardation plate is used, which prevents coloring etc. due to changes in the viewing angle based on the retardation of the liquid crystal cell and enlarges the viewing angle for good visibility. Appropriate ones for the purpose can be used.
  • an optically anisotropic layer composed of a liquid crystal polymer alignment layer, particularly a tilted alignment layer of discotic liquid crystal polymer, is formed of a triacetyl cellulose film.
  • a supported optical compensation retardation plate can be preferably used.
  • the polarization conversion element examples include an anisotropic reflection-type polarization element and an anisotropic scattering-type polarization element.
  • Cholesteric liquid crystal layers especially A film that reflects either left-handed or right-handed circularly polarized light and transmits the other light, such as an oriented film of a steric liquid crystal polymer or one with its oriented liquid crystal layer supported on a film substrate. And at any wavelength in any of its reflection bands
  • linear polarization with a predetermined polarization axis such as a composite with a retardation plate having a 25-fold retardation, or a multilayer laminate of dielectric thin films and thin films with different refractive index anisotropies. It is preferable to show a characteristic of transmitting other light and reflecting other light.
  • a predetermined polarization axis such as a composite with a retardation plate having a 25-fold retardation, or a multilayer laminate of dielectric thin films and thin films with different refractive index anisotropies. It is preferable to show a characteristic of transmitting other light and reflecting other light.
  • the former include a PCF series manufactured by Nitto Denki, and examples of the latter include a DBEF series manufactured by 3M.
  • a reflective grid polarizer can be preferably used as the anisotropic reflective polarizer. Examples include Moxtek's Micro Wires.
  • the anisotropic scattering type polarizing element for example, 3M DRPF and the like can be
  • a polarizing plate obtained by laminating a polarizing plate and a brightness enhancement film is usually used by being provided on the back side of a liquid crystal cell.
  • Brightness-enhancing films exhibit the property of reflecting linearly polarized light with a predetermined polarization axis or circularly polarized light in a predetermined direction when natural light enters due to reflection from the backlight or the back side of a liquid crystal display device, etc., and transmitting other light.
  • the polarizing plate in which the brightness enhancement film is laminated with the polarizing plate receives light from a light source such as a backlight to obtain transmitted light in a predetermined polarization state, and reflects light other than the predetermined polarization state without transmitting. Is done.
  • the light reflected from the surface of the brightness enhancement film is further inverted through a reflection layer or the like provided on the rear side thereof and re-incident on the brightness enhancement film, and a part or all of the light is transmitted as light in a predetermined polarization state, thereby obtaining brightness.
  • the polarization film is supplied with polarized light that is hardly absorbed, thereby increasing the amount of light that can be used for liquid crystal image display and the like, thereby improving luminance.
  • the light is once reflected by the brightness enhancement film, then inverted through the reflective layer, etc., provided behind it, and then re-entered into the brightness enhancement film. Since only polarized light whose polarization direction is such that it can pass through a polarizing plate is transmitted and supplied to the polarizing film, light from a knock light or the like can be efficiently displayed on an image of a liquid crystal display device. It can be used and the screen can be brightened.
  • a diffusion plate may be provided between the brightness enhancement film and the above-mentioned reflection layer or the like.
  • the light in the polarization state reflected by the brightness enhancement film goes to the reflection layer and the like, but the diffusion plate provided diffuses the passing light uniformly, and at the same time, eliminates the polarization state to make the light non-polarized. That is, it returns to the original natural light state.
  • the light in the non-polarized state that is, in the natural light state, repeatedly travels toward the reflection layer and the like, is reflected through the reflection layer and the like, passes through the diffusion plate again, and re-enters the brightness enhancement film.
  • the diffuser for returning to the original natural light state, the brightness of the display screen can be maintained, the unevenness of the brightness of the display screen can be reduced, and a uniform bright screen can be provided.
  • the number of repetitions of the first incident light is increased moderately, and combined with the diffusion function of the diffuser, a uniform bright display screen can be provided. it is conceivable that.
  • linearly polarized light having a predetermined polarization axis is transmitted and other light is reflected, such as a multilayer thin film of a dielectric or a multilayer laminate of thin films having different refractive index anisotropy.
  • Appropriate materials such as those exhibiting characteristics can be used.
  • the transmitted light is directly incident on the polarizing plate with the polarization axis aligned, thereby suppressing absorption loss due to the polarizing plate.
  • the light can be efficiently transmitted.
  • a brightness enhancement film that transmits circularly polarized light such as a cholesteric liquid crystal layer, can be directly incident on a polarizing film.
  • the circularly polarized light is linearly transmitted through a phase difference plate. It is preferable that the light is polarized and incident on a polarizing plate.
  • a 1Z4 wavelength plate as the retardation plate, circularly polarized light can be converted to linearly polarized light.
  • a retardation plate that functions as a 1Z4 wavelength plate in a wide wavelength range such as a visible light region is, for example, a wave plate.
  • a phase difference layer functioning as a 1Z4 wavelength plate and a phase difference layer exhibiting other phase difference characteristics for example, a method of superimposing a phase difference layer functioning as a 1Z2 wavelength plate on monochromatic light having a length of 550 nm can be obtained. it can. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or more retardation layers.
  • the cholesteric liquid crystal layer also has a structure in which two or three or more layers are overlapped by combining those having different reflection wavelengths to reflect circularly polarized light in a wide wavelength range such as a visible light region. Thus, it is possible to obtain the transmitted circularly polarized light in a wide wavelength range.
  • the polarizing plate of the present invention may be formed by laminating a polarizing plate such as the above-mentioned polarized light separating type polarizing plate and two or three or more optical layers. Therefore, a reflective elliptically polarizing plate or a transflective elliptically polarizing plate obtained by combining the above-mentioned reflective polarizing plate, semi-transmissive polarizing plate, and retardation plate may be used.
  • the optical film in which the optical layer is laminated on a polarizing plate can also be formed by a method of sequentially laminating the optical film in the process of manufacturing a liquid crystal display device or the like. They are excellent in quality stability, assembling work, and the like, and have the advantage that the manufacturing process of a liquid crystal display device or the like can be improved.
  • an appropriate adhesive means such as an adhesive layer is used.
  • the polarizing film of the present invention and the laminated optical member may be provided with an adhesive layer for bonding to another member such as a liquid crystal cell.
  • the pressure-sensitive adhesive layer is not particularly limited.
  • the pressure-sensitive adhesive layer can be formed of a conventional pressure-sensitive adhesive such as an acrylic, silicone, polyester, polyurethane, polyether, or rubber. .
  • the pressure-sensitive adhesive is used to prevent foaming and peeling phenomena due to moisture absorption, to prevent deterioration of optical properties due to differences in thermal expansion, to prevent liquid crystal cells from warping, and to form image display devices with high quality and excellent durability.
  • the adhesive layer has a low moisture absorption rate and excellent heat resistance because of its properties and the like. Furthermore, in order to prevent changes in the optical properties of polarizing films, etc. It is preferable to use a material that does not require a long curing process or a long drying time. From such a viewpoint, in the present invention, an acrylic pressure-sensitive adhesive is preferably used. [0082] In addition, an adhesive layer or the like that contains fine particles and exhibits light diffusivity can also be used.
  • the adhesive layer may be provided on a necessary surface as needed.
  • a polarizing plate comprising a polarizing film and a transparent protective layer as in the present invention, if necessary, one side of the protective layer or What is necessary is just to provide an adhesive layer on both surfaces.
  • the thickness of the adhesive layer is not particularly limited, but is preferably from 5 to 35 / zm, and more preferably from 15 to 25 Pm. By setting the thickness of the adhesive layer in this range, the stress accompanying the dimensional behavior of the polarizing film and the polarizing plate can be reduced.
  • the separator is a system in which an appropriate release film such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum-sulfur-based release agent is provided on an appropriate film according to the transparent protective layer or the like. And the like.
  • the transparent protective layer, optical layer, adhesive layer, and other layers forming the above-mentioned polarizing plate and optical member are formed of, for example, a salicylate compound, a benzophenone compound, a benzotriazole compound, and a cyanoacrylate compound.
  • a material having an ultraviolet absorbing ability by an appropriate method such as a method of treating with an ultraviolet ray absorbent such as a nickel complex salt-based compound may be used.
  • the polarizing film of the present invention is preferably used for forming an image display device such as a liquid crystal display device, an electroluminescent (EL) display device, a plasma display (PD), and a field emission display (FED). Can be.
  • an image display device such as a liquid crystal display device, an electroluminescent (EL) display device, a plasma display (PD), and a field emission display (FED).
  • EL electroluminescent
  • PD plasma display
  • FED field emission display
  • the image display device of the present invention is, for example, a liquid crystal display device, an electroluminescent (EL) display device, a plasma display (PD), and a field emission display (FED).
  • EL electroluminescent
  • PD plasma display
  • FED field emission display
  • the polarizing film of the present invention can be preferably used for forming various devices such as a liquid crystal display device.
  • a reflective film or a polarizing plate in which a polarizing film or a polarizing plate is arranged on one side or both sides of a liquid crystal cell can be used. It can be used for a transflective or transmissive / reflective liquid crystal display device.
  • the liquid crystal cell substrate may be either a plastic substrate or a glass substrate.
  • the liquid crystal cell forming the liquid crystal display device is optional, for example, a thin film transistor type
  • a liquid crystal cell of an appropriate type such as an active matrix driving type represented by a simple matrix driving type represented by a twist nematic type or a super twist nematic type may be used.
  • polarizing plates and optical members are provided on both sides of the liquid crystal cell, they may be the same or different. Further, when forming the liquid crystal display device, one or more layers of appropriate components such as a prism array sheet, a lens array sheet, a light diffusing plate, and a backlight can be arranged at appropriate positions.
  • organic electroluminescence device organic EL display device
  • a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially stacked on a transparent substrate to form a light emitting body (organic electroluminescent light emitting body).
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer of a fluorescent organic solid force such as anthracene, or A structure having various combinations such as a laminate of such a light-emitting layer and an electron injection layer having a perylene derivative or a hole injection layer, a light-emitting layer, and an electron injection layer. Is known.
  • an organic EL display device holes and electrons are injected into an organic luminescent layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons is generated. Excites the fluorescent substance and emits light when the excited fluorescent substance returns to the ground state.
  • the mechanism of recombination in the middle is the same as that of a general diode, and as can be expected from this, the current and the emission intensity show a strong nonlinearity accompanying rectification with respect to the applied voltage.
  • At least one electrode must be transparent in order to extract light emitted from the organic light emitting layer, and is usually formed of a transparent conductor such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the used transparent electrode is used as an anode.
  • metal electrodes such as Mg Ag and A1-Li are usually used.
  • the organic light emitting layer is formed of an extremely thin film having a thickness of about lOnm. For this reason, the organic light-emitting layer almost completely emits light similarly to the transparent electrode. It is completely transparent. As a result, the light incident on the surface of the transparent substrate during non-light emission, transmitted through the transparent electrode and the organic light emitting layer, and reflected by the metal electrode was again emitted to the surface side of the transparent substrate, so that external force was also visually recognized. Sometimes, the display surface of the organic EL display device looks like a mirror surface.
  • an organic EL display device including an organic electroluminescent luminous body having a transparent electrode on the front side of an organic luminescent layer that emits light by application of a voltage and a metal electrode on the back side of the organic luminescent layer,
  • a polarizing plate can be provided on the surface side of the electrode, and a retardation film can be provided between the transparent electrode and the polarizing plate.
  • the retardation film and the polarizing film have a function of polarizing light incident from the outside and reflected on the metal electrode, there is an effect that a mirror surface of the metal electrode is not visually recognized from the outside by the polarizing function.
  • the retardation film is composed of a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation film is adjusted to ⁇ Z4, the mirror surface of the metal electrode can be completely shielded.
  • linearly polarized light components of the external light incident on the organic EL display device are transmitted by the polarizing plate.
  • This linearly polarized light generally becomes elliptically polarized light by the retardation film, but it becomes circularly polarized light, especially when the retardation film is a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation film is ⁇ ⁇ 4. .
  • the circularly polarized light transmits through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, passes through the organic thin film, the transparent electrode, and the transparent substrate again, and becomes linearly polarized again by the retardation film. Become.
  • the linearly polarized light is orthogonal to the polarization direction of the polarizing plate, and cannot be transmitted through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
  • the PD generates a discharge in a rare gas enclosed in the panel, especially a gas mainly composed of neon, and the vacuum ultraviolet rays generated at that time cause R, G, By generating the phosphor of B, an image can be displayed.
  • the crown roll was used as a roll near the outlet in the bath, and stretched 1.20 times in the TD direction and 2.5 times in the MD direction.
  • the film width at the outlet of this processing step was 240 mm.
  • the film was immersed in a 3% by weight boric acid + 2% by weight KI aqueous solution (30 ° C.) for 60 seconds.
  • the film was immersed in a 5% by weight KI aqueous solution (25 ° C.) for 15 seconds.
  • the film was dried at 50 ° C. for 1 minute while maintaining the tension.
  • the film width after the swelling process was 220 mm.
  • the single transmittance and the degree of polarization of the obtained polarizing film (106 mm in width) were measured to evaluate unevenness. The results of these measurements are shown in Table 1 below.
  • the curvature R of the crown roll was determined by the following equation.
  • D1 represents the diameter [mm] of the end
  • D2 represents the diameter [mm] of the center
  • L represents the length [mm].
  • the polarizing film produced in the above example or comparative example was cut at a size of 50 mm ⁇ 25 mm at 45 ° with respect to the MD direction, and a spectrophotometer (Murakami Color Research Laboratory: DOT 3) was cut. Measure the single transmittance, parallel transmittance (H) and orthogonal transmittance (H) using
  • the degree of polarization was determined from the value by the following equation. Note that these transmittances are Y values obtained by performing visibility correction using a 2-degree visual field (C light source) of J1S Z8701.
  • TAC triacetylcellulose
  • the polarizing film obtained by the production method of the present invention has good in-plane uniformity and excellent optical characteristics without unevenness even if it is large in size. Therefore, the polarizing film obtained by the production method of the present invention is preferably used for various image display devices such as a liquid crystal display device, an EL display device, a PD and a FED, but its use is not limited and is widely used. Is performed.

Abstract

A process for producing a polarizing film, in which a polarizing film excelling in optical properties and, even when being of large size, excelling in in-plane uniformity can be obtained. There is provided a process wherein in at least one step selected from the group consisting of swelling, dyeing, crosslinking, drawing and water washing steps, a TD-direction drawing operation comprising not only immersing a polymer film in a treating solution but also drawing the same in the TD direction is carried out, and wherein in the TD-direction drawing operation, the TD-direction drawing is performed by means of a crown roll of ≥3% curvature.

Description

明 細 書  Specification
偏光フィルムの製造方法、それにより得られた偏光フィルムおよびそれを 用いた画像表示装置  Method for producing polarizing film, polarizing film obtained by the method, and image display device using the same
技術分野  Technical field
[0001] 本発明は、偏光フィルムの製造方法、それにより得られた偏光フィルムおよびそれ を用いた画像表示装置に関する。  The present invention relates to a method for producing a polarizing film, a polarizing film obtained by the method, and an image display device using the same.
背景技術  Background art
[0002] 画像表示装置 (例えば、液晶表示装置)に使用する偏光フィルムは、明るぐ色の 再現性が良 、画像を提供するために、高 、透過率と高 、偏光度を兼ね備えることが 必要とされている。このような偏光フィルムは、従来、ポリビュルアルコール(PVA)系 の原反フィルムに、二色性を有するヨウ素または二色性染料等の二色性物質により 染色し、 MD方向に一軸延伸することにより配向させ、製造されている。なお、長尺の 原反フィルム(帯状の原反フィルム)にお 、て、 MD (Machinery Direction)方向と は、前記フィルムの長手方向を意味し、 TD (Transverse Direction)方向とは、前 記フィルムの幅方向をあらわす。偏光板は、偏光フィルムに透明保護フィルムを積層 したものである。  [0002] A polarizing film used for an image display device (for example, a liquid crystal display device) needs to have high reproducibility of bright colors and to have high transmittance, high transmittance and high degree of polarization in order to provide an image. It has been. Conventionally, such a polarizing film is prepared by dyeing a polyvinyl alcohol (PVA) -based raw film with a dichroic substance such as iodine or dichroic dye having dichroism, and stretching it uniaxially in the MD direction. And manufactured. In the case of a long raw film (band-shaped raw film), the MD (Machinery Direction) direction refers to the longitudinal direction of the film, and the TD (Transverse Direction) direction refers to the film described above. In the width direction. The polarizing plate is obtained by laminating a transparent protective film on a polarizing film.
[0003] 近年では、画像表示装置の機能向上や精細化および画質の向上に伴い、それに 用いられる偏光板もより高度な偏光度等の光学特性および面内均一性が求められて いる。偏光板に用いられる偏光フィルムは、原反フィルムを染色および一軸延伸する ことにより作製されるが、この延伸または染色により生じるムラが光学特性や面内均一 性を劣化させる原因となるとともに、前記画像表示装置に適用した際に画面の表示 ムラとなるため、これをなくすための様々な工夫が試みられている(例えば、特許文献 1参照)。偏光フィルムの製造方法は、湿式法と乾式法に大別できるが、さらに、前記 問題を解決する方法として、乾式法において TD方向に延伸する方法 (例えば、特許 文献 2参照)や、湿式法にお 、てもスパイラルゴムロールを用いてシヮゃ折れ曲がり を取る方法 (例えば、特許文献 3参照)が提案されている。それに加えて、近年の画 像表示装置の大型化により、偏光板および偏光フィルムに対しても大型化が求めら れて 、るが、大型になるにつれて面内均一な延伸および染色は一層困難なものとな り、このため、大型で面内均一な偏光板を提供する技術の開発が強く求められている 特許文献 1:特開 2001— 290025号公報 [0003] In recent years, with the improvement of functions, definition, and image quality of image display devices, a polarizing plate used therein has been required to have higher optical characteristics such as a degree of polarization and in-plane uniformity. The polarizing film used for the polarizing plate is produced by dyeing and uniaxially stretching the raw film, and the unevenness caused by stretching or dyeing causes deterioration of optical characteristics and in-plane uniformity, and the above-described image. When applied to a display device, the display of the screen becomes uneven, and various attempts have been made to eliminate the unevenness (for example, see Patent Document 1). The method for producing a polarizing film can be roughly classified into a wet method and a dry method.Furthermore, as a method for solving the above-mentioned problem, a method of stretching in the TD direction in a dry method (for example, see Patent Document 2) and a wet method In addition, a method has been proposed in which a spiral rubber roll is used to remove the bend (for example, see Patent Document 3). In addition, with the recent increase in the size of image display devices, it is necessary to increase the size of polarizing plates and polarizing films. However, as the size increases, it becomes more difficult to perform in-plane uniform stretching and dyeing. For this reason, there is a strong demand for the development of a technology for providing a large-size and in-plane uniform polarizing plate. Reference 1: JP 2001-290025
特許文献 2:特開平 11― 183726号公報  Patent Document 2: JP-A-11-183726
特許文献 3 :特開 2000— 147252号公報  Patent Document 3: JP-A-2000-147252
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 前記のようなムラは、近年、原反フィルムが有する微細な凹凸により生じる染色ムラ であることがわかってきた。しかしながら、前記のような方法によるとムラの改善が未だ 不十分である。さらに、上記乾式法では、空気中で TD方向に延伸したフィルムを染 色するため、延伸したフィルムを溶液中に浸漬すると、瞬時に縮み、折れジヮができ てしまうため、均一に染色することが難しい。さらに、 TD方向に延伸する方法としては 、一般にフィルムの端を挟んで TD方向に引っ張るテンター延伸が知られているが、 これは均一な延伸が得られにくい上に、可動部分を有するために溶液中での使用が 困難なものであった。また、前記特許文献 3では、スパイラルゴムロールを用いている 力 シヮ伸ばし程度の効果は有するものの、 TD方向に延伸するという明らかな効果 が得られるものではなかった。  [0004] In recent years, it has been found that such unevenness is dyeing unevenness caused by fine irregularities of the raw film. However, according to the method described above, the improvement of unevenness is still insufficient. Furthermore, in the dry method, since the film stretched in the TD direction in the air is dyed, if the stretched film is immersed in a solution, it shrinks instantaneously and a fold is formed. Is difficult. Further, as a method of stretching in the TD direction, a tenter stretching method in which the film is stretched in the TD direction across the edge of the film is generally known.However, it is difficult to obtain uniform stretching. It was difficult to use inside. Further, in Patent Document 3, although a spiral rubber roll is used, the effect of stretching in the direction of force is obtained, but no clear effect of stretching in the TD direction is obtained.
[0005] したがって、本発明は、湿式法により作製される偏光フィルムの製造方法において 、面内均一性が良好でムラがなぐ光学特性が優れるとともに、大型化に有効な偏光 フィルムの製造方法を提供することを目的とし、さらに、本発明の製造方法により得ら れた偏光フィルム、これを用いた光学フィルム、および前記偏光フィルム若しくは前記 光学フィルムを用いた画像表示装置を提供することを目的とする。 課題を解決するための手段  [0005] Accordingly, the present invention provides a method for producing a polarizing film, which has good in-plane uniformity and excellent optical properties without unevenness, and is effective in increasing the size, in a method for producing a polarizing film produced by a wet method. Further, it is another object of the present invention to provide a polarizing film obtained by the production method of the present invention, an optical film using the same, and an image display device using the polarizing film or the optical film. . Means for solving the problem
[0006] 前記目的を達成するために、本発明の製造方法は、偏光フィルムの製造方法であ つて、膨潤工程、染色工程、架橋工程、延伸工程および水洗工程カゝらなる群力ゝら選 択される少なくとも一つの工程において、ポリマーフィルムを処理液中に浸漬するとと もに TD方向に延伸する TD方向延伸工程を有し、前記 TD方向延伸工程は、曲率が 3%以上のクラウンロールを用いて TD方向に延伸する工程であるという製造方法で ある。 [0006] In order to achieve the above object, the production method of the present invention is a method for producing a polarizing film, which comprises a swelling step, a dyeing step, a crosslinking step, a stretching step, and a washing step. In at least one of the selected steps, a TD direction stretching step of immersing the polymer film in the treatment liquid and stretching in the TD direction is performed, and the TD direction stretching step has a curvature. This is a manufacturing method in which the film is stretched in the TD direction using a crown roll of 3% or more.
[0007] 本発明の偏光フィルムは、前記本発明の製造方法によって得られた偏光フィルム である。  [0007] The polarizing film of the present invention is a polarizing film obtained by the production method of the present invention.
[0008] 本発明の光学フィルムは、前記本発明の偏光フィルムに少なくとも 1層の光学層を 積層した光学フィルムである。  [0008] The optical film of the present invention is an optical film obtained by laminating at least one optical layer on the polarizing film of the present invention.
[0009] 本発明の画像表示装置は、前記本発明の偏光フィルム若しくは前記本発明の光学 フィルムを有する画像表示装置である。 [0009] The image display device of the present invention is an image display device having the polarizing film of the present invention or the optical film of the present invention.
発明の効果  The invention's effect
[0010] 本発明の偏光フィルムの製造方法によれば、光学特性が良好でムラのない偏光フ イルムを得ることができ、さらには、表示ムラがなぐ表示特性の良好な、大型の画像 表示装置に好適な偏光フィルムを提供できる。  [0010] According to the method for producing a polarizing film of the present invention, a polarizing film having good optical characteristics and no unevenness can be obtained, and further, a large-sized image display device having good display characteristics without uneven display. A suitable polarizing film can be provided.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]図 1は、本発明に用いられるクラウンロールの一例の断面図である。  FIG. 1 is a cross-sectional view of an example of a crown roll used in the present invention.
符号の説明  Explanation of symbols
[0012] 1 :クラウンロール  [0012] 1: Crown roll
D1 :クラウンロール端部直径  D1: Crown roll end diameter
D2:クラウンロール中央部直径  D2: Crown roll center diameter
L :クラウンロール長さ  L: Crown roll length
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] つぎに、本発明を詳しく説明する。 Next, the present invention will be described in detail.
[0014] 本発明の偏光フィルムの製造方法は、前述のように、膨潤工程、染色工程、架橋ェ 程、延伸工程および水洗工程力 なる群力 選択される少なくとも一つの工程におい て、ポリマーフィルムを処理液中に浸漬するととも〖こ TD方向に延伸する TD方向延伸 工程を有し、前記 TD方向延伸工程は、曲率が 3%以上のクラウンロールを用いて T D方向に延伸する工程であるという製造方法である。前記クラウンロールの曲率は 3 %以上 35%以下であるとより好ましい。 [0015] 前記曲率 (R)は、例えば、図 1に示すように、 D1をクラウンロール端部の直径 [mm ]、 D2をクラウンロール中央部の直径 [mm]、 Lをロール長さ [mm]としたとき下記式 により求めることができる。 [0014] As described above, in the method for producing a polarizing film of the present invention, in at least one of the steps selected from the group consisting of the swelling step, the dyeing step, the crosslinking step, the stretching step, and the washing step, A TD stretching step of stretching in the TD direction while being immersed in the treatment solution, wherein the TD stretching step is a step of stretching in the TD direction using a crown roll having a curvature of 3% or more. Is the way. More preferably, the curvature of the crown roll is 3% or more and 35% or less. [0015] For example, as shown in FIG. 1, the curvature (R) is as follows: D1 is the diameter of the end of the crown roll [mm], D2 is the diameter of the center of the crown roll [mm], and L is the roll length [mm]. ] Can be obtained by the following equation.
R[%] = ( (D2-D1) /L) X 100  R [%] = ((D2-D1) / L) X 100
[0016] 本発明において、前記クラウンロールの曲率は 3%以上であればよいが、 TD方向 への延伸による効果およびフィルム搬送時の走行性の点から、 3%以上 35%以下で あることが好ましぐ 3%以上 30%以下であることがより好ましぐ 5%以上 25%以下 であることがさらに好ましぐ 7%以上 22%以下であることが特に好ましい。前記曲率 力 S3%未満であると、シヮゃ折れを抑制する効果は得られるが、 TD方向への延伸に よる効果が不十分なものとなる可能性がある。 35%を超えると、走行性が悪くなるた め蛇行しやすくなるとともに、ロール中央部分の延伸が強くなり、フィルム面内の均一 な延伸効果が得られにくい。ただし、この曲率は、搬送するフィルムの厚さや硬さに 応じて適宜調整することが好ま Uヽ。  In the present invention, the curvature of the crown roll may be 3% or more, but from the viewpoint of the effect of stretching in the TD direction and the running property during film transport, it is preferably 3% or more and 35% or less. More preferably 3% or more and 30% or less, more preferably 5% or more and 25% or less, and still more preferably 7% or more and 22% or less. If the curvature force is less than S3%, the effect of suppressing shear bending can be obtained, but the effect of stretching in the TD direction may be insufficient. If it exceeds 35%, the running property is deteriorated, so that it is easy to meander, and the stretching at the center of the roll becomes strong, so that it is difficult to obtain a uniform stretching effect in the film plane. However, it is preferable that the curvature is appropriately adjusted according to the thickness and hardness of the film to be conveyed.
[0017] また、このときの TD方向への延伸倍率としては、膨潤処理工程中またはその他の 溶液処理工程中のように、架橋処理工程前の、フィルムが膨潤しゃすい状態でクラウ ンロールによる延伸を行う場合、フィルムの材質にもよるため一概に言えるものではな いが、例えばポリビュルアルコールフィルムの場合、膨潤により約 10%程度幅が広が る。したがって、前記延伸倍率の範囲としては、 1. 13倍以上 1. 40倍以下であること が好ましぐ 1. 16倍以上 1. 35倍以下であることがより好ましいこととなる。この TD方 向への延伸が 1. 13倍未満であると TD方向への延伸が不十分なため面内を均一と する効果が得られにくぐ 1. 40倍を超えるクラウンロールを用いた場合、逆に面内の 光学特性ばらつきが大きくなる可能性が高まるため好ましくない。  [0017] The stretching ratio in the TD direction at this time is, as in the swelling treatment step or another solution treatment step, that the film is stretched by a crown roll before and after the cross-linking treatment step in a state where the film is swollen and thin. When performing, it cannot be said unconditionally because it depends on the material of the film. For example, in the case of a polybutyl alcohol film, the width is increased by about 10% due to swelling. Therefore, the range of the stretching ratio is preferably 1.13 times or more and 1.40 times or less, more preferably 1.16 times or more and 1.35 times or less. If the stretching in the TD direction is less than 1.13 times, the stretching in the TD direction is insufficient and the effect of making the in-plane uniformity is not obtained. 1.When a crown roll exceeding 40 times is used On the contrary, it is not preferable because the possibility that the in-plane optical characteristic variation becomes large increases.
[0018] 架橋工程後のようにフィルムが膨潤しにくい状態で、クラウンロールによる TD方向 への延伸を行う場合、このときの TD方向への延伸倍率としては、 1. 03倍以上 1. 26 倍以下であることが好ましぐ 1. 06倍以上 1. 21倍以下であることがより好ましい。こ の TD方向への延伸が 1. 03倍未満であると TD方向への延伸が不十分なため面内 を均一とする効果が得られにくぐ 1. 26倍を超えるクラウンロールを用いた場合、逆 に面内の光学特性ばらつきが大きくなる可能性が高まるため好ましくない。 [0019] 本発明の偏光フィルムの製造方法では、原反フィルム(帯状のポリマーフィルム)を 染色する染色工程および染色された前記フィルムを延伸する延伸工程を有するが、 さらに、前記クラウンロールを用いた TD方向延伸工程を有することがポイントである。 したがって、この他の工程である前記膨潤工程、架橋工程および水洗工程は、任意 工程である。また、前記 TD方向延伸工程は、前述の各工程における少なくとも一つ の工程の中で実施されるものである。 When the film is stretched in the TD direction by a crown roll in a state where the film is unlikely to swell, such as after the crosslinking step, the stretching ratio in the TD direction at this time is 1.03 times or more and 1.26 times. It is more preferably 1.06 times or more and 1.21 times or less. If the stretching in the TD direction is less than 1.03 times, stretching in the TD direction is inadequate and the effect of making the in-plane uniformity is difficult to obtain. 1.When a crown roll exceeding 26 times is used On the contrary, it is not preferable because the possibility of in-plane optical characteristic variation increases. The method for producing a polarizing film of the present invention includes a dyeing step of dyeing a raw film (a strip-shaped polymer film) and a stretching step of stretching the dyed film. The point is to have a stretching process in the TD direction. Therefore, the other steps, ie, the swelling step, the crosslinking step, and the washing step are optional steps. Further, the TD stretching step is performed in at least one of the above-described steps.
[0020] 偏光フィルムの厚さは特に限定されるものではないが、一般的に、 5〜40 /z m程度で ある。前述のように、偏光フィルムの片面または両面に透明保護層を積層することに より偏光板となる。  [0020] The thickness of the polarizing film is not particularly limited, but is generally about 5 to 40 / zm. As described above, a polarizing plate is obtained by laminating a transparent protective layer on one or both sides of a polarizing film.
[0021] 前記ポリマーフィルム (原反フィルム)としては、特に限定されることなく各種のものを 使用できる。例えば、 PVA系フィルム、部分ホルマール化 PVA系フィルム、ポリェチ レンテレフタレート(PET)系フィルム、エチレン.酢酸ビュル共重合体系フィルムや、 これらの部分ケン化フィルム、セルロース系フィルム等の親水性高分子フィルムに、 P VAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリェン系配向フィルム等が あげられる。これらの中でも、ヨウ素による染色性に優れることから、 PVA系フィルムを 用いることが好ましい。このポリマーフィルムの厚さとしては、 5〜100 /ζ πι程度のもの が好ましく用いられる。  The polymer film (raw film) is not particularly limited, and various types can be used. For example, PVA-based films, partially formalized PVA-based films, polyethylene terephthalate (PET) -based films, ethylene / butyl acetate copolymer-based films, and hydrophilic polymer films such as partially saponified films and cellulose-based films. And polyene-based oriented films such as PVA dehydrated products and polyvinyl chloride dehydrochlorinated products. Among these, it is preferable to use a PVA-based film because of its excellent dyeability with iodine. The thickness of the polymer film is preferably about 5 to 100 / ζπι.
[0022] 前記ポリマーフィルムの材料であるポリマーの重合度は、一般に 500〜10, 000で あり、 100〜6000の範囲であること力 S好ましく、 1400〜4000の範囲にあること力 Sより 好ましい。さら〖こ、ケンィ匕フィルムの場合、そのケン化度は、例えば、水への溶解性の 点から、 75モル%以上が好ましぐより好ましくは 98モル%以上であり、 98. 3〜99. 8モル0 /0の範囲にあることがより好ましい。 [0022] The polymerization degree of the polymer as the material of the polymer film is generally 500 to 10,000, preferably in the range of 100 to 6000, more preferably in the range of 1400 to 4000. In the case of Sarakoko or Kenyidani film, the degree of saponification is preferably at least 75 mol%, more preferably at least 98 mol%, from the viewpoint of solubility in water. . and more preferably in the range of 8 mol 0/0.
[0023] 前記ポリマーフィルムとして PVA系フィルムを用いる場合、 PVA系フィルムの製法 としては、水または有機溶媒に溶解した原液を流延成膜する流延法、キャスト法、押 出法等任意の方法で成膜されたものを適宜使用することができる。このときの位相差 値は、 5nm〜100nmのものが好ましく用いられる。また、面内均一な偏光フィルムを 得るために、 PVA系フィルム面内の位相差バラツキはできるだけ小さ 、方が好ましく 、原反フィルムとしての PVA系フィルムの面内位相差バラツキは、測定波長 1000η mにおいて 10nm以下であることが好ましぐ 5nm以下であることがより好ましい。 When a PVA-based film is used as the polymer film, the PVA-based film may be produced by any method such as a casting method, a casting method, and an extrusion method of casting a stock solution dissolved in water or an organic solvent. Can be used as appropriate. The phase difference value at this time is preferably 5 nm to 100 nm. Further, in order to obtain an in-plane uniform polarizing film, the in-plane retardation variation of the PVA-based film as the raw film is preferably as small as possible. In m, it is preferably 10 nm or less, more preferably 5 nm or less.
[0024] 本発明による偏光フィルムは、偏光フィルム単体で測定したときの単体透過率力 3 . 0%以上であることが好ましぐ 43. 0〜45. 0%の範囲にあることがより好ましい。な お、この単体透過率は、後述の実施例に示す方法等によって測定できる。 [0024] The polarizing film according to the present invention preferably has a single transmittance power of at least 3.0% when measured with the polarizing film alone, and more preferably in the range of 43.0 to 45.0%. . The single transmittance can be measured by the method described in Examples below.
[0025] 偏光フィルムの製造方法としては、一般に乾式延伸法と湿式延伸法が用いられる 力 本発明では、湿式延伸法を用いる。湿式延伸法による偏光フィルムの製造工程 としては、その条件に応じて適宜な方法を用いることができる力 例えば、原反フィル ムとしての前記ポリマーフィルムを、膨潤、染色、架橋、延伸、水洗および、乾燥処理 工程力 なる一連の製造工程によって製造する方法が一般的である。乾燥処理工程 を除くこれら各処理工程では、各種溶液力もなる浴中に浸漬しながら各処理を行う。 このときの各処理工程における膨潤、染色、架橋、延伸、水洗および乾燥の各処理 の順番、回数および実施の有無は特に限定されるものではなぐいくつかの処理を 一処理工程中で同時に行っても良ぐいくつかの処理を行わなくても良い。例えば、 延伸処理は染色処理後に行ってもよいし、膨潤ゃ染色処理と同時に延伸処理しても よぐまた延伸処理してから染色処理してもよい。また、 MD方向への延伸処理として は、限定されることなく適宜な方法を用いることができるが、例えばロール延伸の場合 、ロール間の周速差によって延伸を行う方法が用いられる。さらに、各処理には適宜 ホウ酸やホウ砂あるいはヨウ化カリウム等の添加剤をカ卩えても良い。したがって、本発 明による偏光フィルムは、必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛、ヨウ化カリウム 等を含んでいてもよい。さらには、これらのいくつかの処理中で、 MD方向もしくは TD 方向に従来公知の方法により適宜延伸しても良ぐ各処理ごとに水洗処理を行っても 良い。 As a method for producing a polarizing film, a dry stretching method and a wet stretching method are generally used. In the present invention, a wet stretching method is used. As a process of manufacturing a polarizing film by a wet stretching method, an appropriate method can be used according to the conditions.For example, the polymer film as a raw film is swollen, dyed, crosslinked, stretched, washed with water, The drying process is generally performed by a series of manufacturing steps. In each of these treatment steps except for the drying treatment step, each treatment is performed while being immersed in a bath having various solution powers. The order, number of times, and whether or not each of the swelling, dyeing, cross-linking, stretching, washing, and drying treatments are performed in each treatment step are not particularly limited, and several treatments are performed simultaneously in one treatment step. Some of the processing need not be performed. For example, the stretching treatment may be performed after the dyeing treatment, or may be performed simultaneously with the swelling / dyeing treatment, or may be performed after the stretching treatment. The stretching process in the MD direction can be performed by any appropriate method without limitation. For example, in the case of roll stretching, a method of performing stretching by a difference in peripheral speed between rolls is used. Further, an additive such as boric acid, borax or potassium iodide may be appropriately added to each treatment. Therefore, the polarizing film according to the present invention may contain boric acid, zinc sulfate, zinc chloride, potassium iodide, and the like, if necessary. Further, in some of these treatments, a water washing treatment may be performed for each treatment which may be appropriately stretched in the MD or TD direction by a conventionally known method.
[0026] 本発明による TD方向への延伸は、外周表面が両端部から中央部に向力うにした 力 Sつて直径が大きくなるテーパークラウン形状やラジアルクラウン形状 (例えば、図 1 参照)等のクラウンロールを用いる。ただし、これらのクラウンロールと対で用いる場合 には、逆クラウン形状のような中央部に向力うにしたがって直径が小さくなるクラウン口 ールを用いても良い。このクラウンロールの材質は、用いる溶液に侵されるものでなく 、搬送するフィルムに悪影響を及ぼすものでなければ特に限定されるものではな 、が 、ステンレス等の金属、シリコン、および-トリルブタジエンゴム等の合成ゴム系の材 質が好ましく用いられる。また、クラウンロール表面には滑り止め等を目的とした溝や 模様等の加工を適宜施しても良い。例えば、スノィラル形状のスリット状の溝を、 1〜 10mm間隔、 0. l〜3mm深さで施すことや、金属のクラウンロールを用いる場合に は、ローレット加工を施すことも有効である。クラウンロールのロール長さとしては、少 なくともフィルムの幅以上であることが好ましい。例えば、フィルムの幅が 1000mm以 下の場合、フィルムの幅よりも 8〜60%程度長いものが好ましく用いられる力 フィル ムの幅が 1000mmを超える場合、フィルムの幅よりも片側 100mmずつ余る程度の 長さを有するロールが好ましく用いられる。具体的には、フィルム幅 100mmの場合、 例えば、長さ 108〜160mm程度のロールが用いられ、フィルム幅 1200mmの場合 、例えば、 1400mm程度のロールが用いられる。 In the stretching in the TD direction according to the present invention, crowns such as a tapered crown shape and a radial crown shape (for example, see FIG. 1) whose diameter increases with the force S whose outer peripheral surface is directed from both ends toward the center portion are used. Use a roll. However, when used in pairs with these crown rolls, a crown roll whose diameter decreases toward the center, such as an inverted crown shape, may be used. The material of the crown roll is not particularly limited as long as it is not affected by the solution used and does not adversely affect the film to be conveyed. , A metal such as stainless steel, and a synthetic rubber material such as silicon and -tolylbutadiene rubber are preferably used. Further, the surface of the crown roll may be appropriately processed such as grooves and patterns for the purpose of preventing slippage. For example, it is effective to form a slit-shaped groove having a snail shape at an interval of 1 to 10 mm and a depth of 0.1 to 3 mm, or to use a knurling process when a metal crown roll is used. The roll length of the crown roll is preferably at least as long as the width of the film. For example, when the width of the film is 1000 mm or less, a force that is about 8 to 60% longer than the width of the film is preferably used.When the width of the film exceeds 1000 mm, the width of the film is about 100 mm more on each side than the width of the film. A roll having a length is preferably used. Specifically, in the case of a film width of 100 mm, for example, a roll having a length of about 108 to 160 mm is used, and in the case of a film width of 1200 mm, for example, a roll of about 1400 mm is used.
[0027] このクラウンロールを用いた TD方向への延伸は、各処理工程時に、限定されること なく実施でき、膨潤、染色、架橋、延伸、水洗および、乾燥処理工程の他、どの工程 で行ってもよい。また、回数も限定されるものではなぐ複数回行っても良い。しかしな 力 Sら本発明のようにムラのな 、偏光フィルムを得るためには、まだポリマーフィルムの 柔軟性が高い架橋処理工程前に、本発明の TD方向への延伸を行うことが効果的で あり、染色処理工程前に行うことがより好ましぐ膨潤処理工程で行うことが特に好ま しい。架橋処理後に本発明による TD方向への延伸を行うことは、架橋処理によりポリ マーフィルムが硬化して 、るため TD方向に拡張する効果は得られにくいが、しわや 折れ曲がりを防止するためには有効である。さらに、このクラウンロールの各処理工 程中における設置位置としては、適宜、効率的に TD方向への延伸を行うことのでき る位置に設置すればよぐ限定されるものではないが、溶液中に設置されたガイド口 ールとして設けることが、前記ポリマーフィルムの特性上、溶液浸漬時に延伸が容易 になるため効果的である。  The stretching in the TD direction using the crown roll can be performed without limitation at each processing step, and may be performed at any step other than the swelling, dyeing, crosslinking, stretching, washing, and drying treatment steps. You may. In addition, the number of times is not limited, and a plurality of times may be performed. However, in order to obtain a polarizing film without unevenness as in the present invention as in the present invention, it is effective to perform stretching in the TD direction of the present invention before the crosslinking treatment step in which the polymer film is still highly flexible. However, it is particularly preferable to perform it in the swelling treatment step, which is more preferably performed before the dyeing treatment step. Stretching in the TD direction according to the present invention after the crosslinking treatment hardens the effect of expanding in the TD direction because the polymer film is cured by the crosslinking treatment.However, in order to prevent wrinkles and bending, It is valid. Further, the installation position of the crown roll in each processing step is not limited as long as it is appropriately installed at a position where the stretching in the TD direction can be performed efficiently. It is effective to provide it as a guide hole installed in the polymer film because the polymer film can be easily stretched at the time of immersion in a solution due to the characteristics of the polymer film.
[0028] 前記膨潤工程は、例えば、水で満たした膨潤浴にポリマーフィルムを浸漬すること で実施する。これによりポリマーフィルムが水洗され、ポリマーフィルム表面の汚れや ブロッキング防止剤を洗浄することができるとともに、ポリマーフィルムを膨潤させるこ とで染色ムラ等の不均一性を防止する効果が期待できる。この膨潤浴中には、グリセ リンやヨウ化カリウム等を適宜加えてもよぐ添加する濃度は、グリセリンは 5重量%以 下、ヨウ化カリウムは 10重量%以下であることが好ましい。膨潤浴の温度は、 20-45 °Cの範囲であることが好ましぐ 25〜40°Cであることがより好ましい。膨潤浴への浸 漬時間は、 2〜300秒間であることが好ましぐ 10〜180秒間であることがより好ましく 、 60〜150秒間であることが特に好ましい。また、この膨潤浴中でポリマーフィルムを 延伸してもよぐそのときの延伸倍率は、 MD方向に 1. 1〜3. 5倍程度である。 [0028] The swelling step is performed, for example, by immersing the polymer film in a swelling bath filled with water. As a result, the polymer film is washed with water, so that dirt on the polymer film surface and an anti-blocking agent can be washed, and the effect of preventing unevenness such as uneven dyeing by swelling the polymer film can be expected. In this swelling bath, glycemic Phosphorus, potassium iodide and the like may be added as appropriate. The concentration of glycerin is preferably 5% by weight or less and potassium iodide is preferably 10% by weight or less. The temperature of the swelling bath is preferably in the range of 20-45 ° C, more preferably 25-40 ° C. The immersion time in the swelling bath is preferably from 2 to 300 seconds, more preferably from 10 to 180 seconds, particularly preferably from 60 to 150 seconds. The stretching ratio at which the polymer film can be stretched in this swelling bath is about 1.1 to 3.5 times in the MD direction.
[0029] 前記染色工程は、例えば、二色性物質の溶液中に前記ポリマーフィルムをヨウ素等 の二色性物質を含む染色浴に浸漬することによって、上記二色性物質をポリマーフ イルムに吸着させる工程である。  In the dyeing step, for example, the polymer film is adsorbed on the polymer film by immersing the polymer film in a solution of the dichroic material in a dye bath containing a dichroic material such as iodine. It is a process.
[0030] 前記二色性物質としては、従来公知の物質が使用でき、例えば、ヨウ素や有機染 料等があげられる。有機染料としては、例えば、レッド BR、レッド LR、レッド R、ピンク LB、ルビン BL、ボルドー GS、スカイブルー LG、レモンイエロー、ブルー BR、ブルー 2R、ネィビー RY、グリーン LG、バイオレット LB、バイオレットおブラック H、ブラック B、ブラック GSP、イェロー 3G、イェロー R、オレンジ LR、オレンジ 3R、スカーレット G L、スカーレット KGL、コンゴ一レッド、ブリリアントバイオレット BK、スプラブルー G、ス プラブルー GL、スプラオレンジ GL、ダイレクトスカイブルー、ダイレクトファーストォレ ンジ S、ファーストブラック、等が使用できる。  [0030] As the dichroic substance, conventionally known substances can be used, and examples thereof include iodine and organic dyes. Organic dyes include, for example, Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Supra Blue G, Supra Blue GL, Supra Orange GL, Direct Sky Blue, Direct First Range S, First Black, etc. can be used.
[0031] これらの二色性物質は、一種類でも良いし、二種類以上を併用しても良い。前記有 機染料を用いる場合は、例えば、可視光領域の-ユートラルイ匕を図る点から、二種類 以上を組み合わせることが好ましい。具体例としては、コンゴ一レッドとスプラブルー G、スプラオレンジ GLとダイレクトスカイブルーまたは、ダイレクトスカイブノレーとファー ストブラックとの組み合わせが挙げられる。  [0031] These dichroic substances may be used alone or in combination of two or more. When the organic dye is used, it is preferable to combine two or more types from the viewpoint of, for example, reducing the amount of visible light in the visible light range. Specific examples include a combination of Congo I-Red and Supra Blue G, Supra Orange GL and Direct Sky Blue, or a combination of Direct Sky Venorey and First Black.
[0032] 前記染色浴の溶液としては、前記二色性物質を溶媒に溶解した溶液が使用できる 。前記溶媒としては、水が一般的に使用されるが、水と相溶性のある有機溶媒がさら に添加されても良い。二色性物質の濃度としては、 0. 010〜: LO重量%の範囲にある ことが好ましぐ 0. 020〜7重量%の範囲にあることがより好ましぐ 0. 025〜5重量 %であることが特に好まし!/、。  [0032] As the solution for the dye bath, a solution in which the dichroic substance is dissolved in a solvent can be used. Water is generally used as the solvent, but an organic solvent compatible with water may be further added. The concentration of the dichroic substance is 0.010 to: preferably in the range of LO% by weight 0.02 to 5% by weight more preferably in the range of 0.020 to 7% by weight Especially preferred to be! / ,.
[0033] また、前記二色性物質としてヨウ素を使用する場合、染色効率をより一層向上でき ることから、さらにヨウ化物を添加することが好ましい。このヨウ化物としては、例えば、 ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ 化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げら れる。これらヨウ化物の添加割合は、前記染色浴において、 0. 010〜10重量%であ ることが好ましぐ 0. 10〜5重量%であることがより好ましい。これらのなかでも、ヨウ 化カリウムを添加することが好ましぐヨウ素とヨウ化カリウムの割合 (重量比、ヨウ素:ョ ゥ化カリウム)は、 1 : 5〜1: 100の範囲にあることが好ましぐ 1 : 6〜1 : 80の範囲にあ ることがより好ましく、 1: 7〜1: 70の範囲にあることが特に好ましい。 When iodine is used as the dichroic substance, the dyeing efficiency can be further improved. Therefore, it is preferable to further add iodide. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide. Titanium and the like can be mentioned. The proportion of these iodides to be added is preferably 0.01 to 10% by weight, more preferably 0.10 to 5% by weight, in the dyeing bath. Among these, the ratio of iodine to potassium iodide (weight ratio, iodine: potassium iodide) to which potassium iodide is preferably added is preferably in the range of 1: 5 to 1: 100. The magus is more preferably in the range of 1: 6 to 1:80, particularly preferably in the range of 1: 7 to 1:70.
[0034] 前記染色浴へのポリマーフィルムの浸漬時間は、これに特に限定されるものではな いが、 1〜20分の範囲であることが好ましぐ 2〜10分であることがより好ましい。また 、染色浴の温度は、 5〜42°Cの範囲にあることが好ましぐ 10〜35°Cの範囲にあるこ とがより好ましい。また、この染色浴中でポリマーフィルムを延伸してもよぐそのときの 総延伸倍率は、 MD方向に 1. 1〜3. 5倍程度である。  [0034] The immersion time of the polymer film in the dyeing bath is not particularly limited, but is preferably 1 to 20 minutes, more preferably 2 to 10 minutes. . Further, the temperature of the dyeing bath is preferably in the range of 5 to 42 ° C, more preferably in the range of 10 to 35 ° C. In addition, when the polymer film is stretched in this dyeing bath, the total stretching ratio at that time is about 1.1 to 3.5 times in the MD direction.
[0035] また、染色処理としては、前述のような染色浴に浸漬する方法以外に、例えば、二 色性物質を含む水溶液を前記ポリマーフィルムに塗布または噴霧する方法であって もよぐまた、前記ポリマーフィルム製膜時に二色性物質をあら力じめ混ぜておいても 良い。  [0035] The dyeing treatment may be, for example, a method of applying or spraying an aqueous solution containing a dichroic substance to the polymer film, in addition to the method of immersion in the dyeing bath as described above. A dichroic substance may be preliminarily mixed during the formation of the polymer film.
[0036] 前記架橋工程としては、例えば、架橋剤を含む浴中にポリマーフィルムを浸漬して 架橋する。上記架橋剤としては、従来公知の物質が使用できる。例えば、ホウ酸、ホ ゥ砂等のホウ素化合物や、ダリオキザール、ダルタルアルデヒド等が挙げられる。これ らは一種類でも良いし、二種類以上を併用しても良い。二種類以上を併用する場合 には、例えば、ホウ酸とホウ砂の組み合わせが好ましぐまた、その添加割合 (モル比 、ホウ酸:ホウ砂)は、 4 : 6〜9 : 1の範囲にあることが好ましぐ 5. 5 :4. 5〜7 : 3の範 囲がより好ましぐ 6 :4であることが最も好ましい。  [0036] In the crosslinking step, for example, the polymer film is immersed in a bath containing a crosslinking agent to perform crosslinking. As the crosslinking agent, a conventionally known substance can be used. For example, boron compounds such as boric acid and borax, dalioxal, dartalaldehyde and the like can be mentioned. These may be used alone or in combination of two or more. When two or more kinds are used in combination, for example, a combination of boric acid and borax is preferred, and the addition ratio (molar ratio, boric acid: borax) is in the range of 4: 6 to 9: 1. Most preferably, the range of 5.5: 4.5.5-7: 3 is more preferably 6: 4.
[0037] 前記架橋浴の溶液としては、前記架橋剤を溶媒に溶解した溶液が使用できる。前 記溶媒としては、例えば水が使用できるが、さらに、水と相溶性のある有機溶媒を含 んでも良い。前記溶液における架橋剤の濃度は、これに限定されるものではないが、 1〜10重量%の範囲にあることが好ましぐ 2〜6重量%であることがより好ましい。 [0038] 前記架橋浴中には、偏光フィルムの面内の均一な特性が得られる点から、ヨウ化物 を添加してもよい。このヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ 化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ョ ゥ化カルシウム、ヨウ化錫、ヨウ化チタンが挙げられ、この含有量は 0. 05〜15重量% 、より好ましくは 0. 5〜8重量%である。なかでも、ホウ酸とヨウ化カリウムの組み合わ せが好ましぐホウ酸とヨウ化カリウムの割合 (重量比、ホウ酸:ヨウ化カリウム)は、 1 : 0 . 1〜1 : 3. 5の範囲にあることが好ましぐ 1 : 0. 5〜1 : 2. 5の範囲にあることがより好 ましい。 [0037] As the solution of the crosslinking bath, a solution in which the crosslinking agent is dissolved in a solvent can be used. As the solvent, for example, water can be used, and it may further contain an organic solvent compatible with water. The concentration of the crosslinking agent in the solution is not limited to this, but is preferably in the range of 1 to 10% by weight, more preferably 2 to 6% by weight. [0038] An iodide may be added to the cross-linking bath from the viewpoint of obtaining in-plane uniform characteristics of the polarizing film. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide. Titanium chloride is included, and its content is 0.05 to 15% by weight, more preferably 0.5 to 8% by weight. Above all, the ratio of boric acid and potassium iodide (weight ratio, boric acid: potassium iodide) in which the combination of boric acid and potassium iodide is preferred is in the range of 1: 0.1 to 1: 3.5. More preferably, it is in the range of 1: 0.5 to 1: 2.5.
[0039] 前記架橋浴の温度は、例えば、 20〜70°Cの範囲であり、ポリマーフィルムの浸漬 時間は通常 1秒〜 15分の範囲であり、好ましくは、 5秒〜 10分である。さらに、架橋 処理も染色処理と同様に、架橋剤含有溶液を塗布または噴霧する方法を用いても良 ぐこの架橋浴中でポリマーフィルムを MD方向に延伸してもよぐそのときの総延伸 倍率は 1. 1〜3. 5倍程度である。  [0039] The temperature of the crosslinking bath is, for example, in the range of 20 to 70 ° C, and the immersion time of the polymer film is usually in the range of 1 second to 15 minutes, preferably 5 seconds to 10 minutes. In addition, the cross-linking treatment may be performed by applying or spraying a solution containing a cross-linking agent, as in the case of the dyeing treatment.The polymer film may be stretched in the MD direction in this cross-linking bath. Is about 1.1 to 3.5 times.
[0040] 前記延伸工程における延伸浴の溶液としては、これに特に限定されるわけではな いが、例えば、各種金属塩や、ヨウ素、ホウ素または亜鉛の化合物を添加した溶液を 用いることができる。この溶液の溶媒としては、水、エタノールあるいは各種有機溶媒 が適宜用いられる。なかでも、ホウ酸および Zまたはヨウ化カリウムをそれぞれ 2〜18 重量%程度添加した溶液を用いることが好ましい。このホウ酸とヨウ化カリウムを同時 に用いる場合には、その含有割合 (重量比、ホウ酸:ヨウ化カリウム)は、 1 : 0. 1〜1: 4程度、より好ましくは、 1 : 0. 5〜1: 3程度の割合で用いることが好ましい。  [0040] The solution of the stretching bath in the stretching step is not particularly limited, and for example, a solution to which various metal salts or compounds of iodine, boron or zinc are added can be used. As a solvent for this solution, water, ethanol, or various organic solvents are appropriately used. Among them, it is preferable to use a solution in which boric acid and Z or potassium iodide are added at about 2 to 18% by weight, respectively. When boric acid and potassium iodide are used at the same time, the content ratio (weight ratio, boric acid: potassium iodide) is about 1: 0.1 to 1: 4, more preferably 1: 0. It is preferable to use them at a ratio of about 5 to 1: 3.
[0041] 前記延伸浴の温度は、例えば、 40〜67°Cの範囲であることが好ましぐ 50〜62°C であることがより好ましい。この延伸処理工程を経た後の、 MD方向への総延伸倍率と しては、 3〜7倍程度となる。  [0041] The temperature of the stretching bath is, for example, preferably in the range of 40 to 67 ° C, more preferably 50 to 62 ° C. The total stretching ratio in the MD direction after this stretching process step is about 3 to 7 times.
[0042] 前記水洗工程としては、例えば、水洗浴の水溶液中にポリマーフィルムを浸漬する ことにより、これより前の処理で付着したホウ酸等の不要残存物を洗い流すことができ る。上記水溶液には、ヨウ化物を添加してもよぐ例えば、ヨウ化ナトリウムやヨウ化カリ ゥムが好ましく用いられる。水洗浴にヨウ化カリウムを添加した場合、その濃度は、例 えば、 0. 1〜10重量%であり、 3〜8重量%であることが好ましい。さらに、水洗浴の 温度は、 10〜60°Cであることが好ましぐ 15〜40°Cであることがより好ましい。また、 水洗処理の回数は特に限定されることなく複数回実施してもよぐ各水洗浴中の添加 物の種類や濃度を変えても良い。 [0042] In the washing step, for example, by immersing the polymer film in an aqueous solution of a washing bath, unnecessary residues such as boric acid adhered in the previous treatment can be washed away. To the aqueous solution, for example, sodium iodide or potassium iodide, to which iodide may be added, is preferably used. When potassium iodide is added to the water washing bath, its concentration is, for example, 0.1 to 10% by weight, and preferably 3 to 8% by weight. In addition, The temperature is preferably from 10 to 60 ° C, more preferably from 15 to 40 ° C. Further, the number of times of the water washing treatment is not particularly limited, and the type and concentration of the additive in each water washing bath may be changed.
[0043] なお、ポリマーフィルムを各処理浴から引き上げる際には、液だれの発生を防止す るために、従来公知であるピンチロール等の液切れロールを用いても良いし、エアー ナイフによって液を削ぎ落とす等の方法により、余分な水分を取り除いても良い。  When the polymer film is pulled out of each treatment bath, a known roll such as a pinch roll or the like may be used in order to prevent dripping, or an air knife may be used. Excess water may be removed by, for example, scraping off the water.
[0044] 前記乾燥工程としては、自然乾燥、風乾、加熱乾燥等、適宜な方法を用いることが できるが、通常、加熱乾燥が好ましく用いられる。加熱乾燥では、例えば、加熱温度 が 20〜80°C程度であり、乾燥時間は 1〜10分間程度であることが好ましい。  As the drying step, an appropriate method such as natural drying, air drying, and heat drying can be used, but usually, heat drying is preferably used. In the heat drying, for example, the heating temperature is preferably about 20 to 80 ° C, and the drying time is preferably about 1 to 10 minutes.
[0045] 以上のような処理工程を経て作製された偏光フィルムの最終的な延伸倍率 (総延 伸倍率)は、上記処理前のポリマーフィルムに対して、 3. 0〜7. 0倍であることが好ま しぐ 5. 5〜6. 2倍の範囲にあることがより好ましい。総延伸倍率が 3. 0倍未満では、 高偏光度の偏光フィルムを得ることが難しぐ 7. 0倍を超えると、フィルムは破断しや すくなる。  [0045] The final stretching ratio (total stretching ratio) of the polarizing film produced through the above-described processing steps is 3.0 to 7.0 times that of the polymer film before the above treatment. More preferably, it is more preferably 5.5 to 6.2 times. If the total stretching ratio is less than 3.0 times, it is difficult to obtain a polarizing film having a high degree of polarization. If it exceeds 7.0 times, the film is easily broken.
[0046] また、本発明は製造方法は、上記の製造方法に限定されることなぐ他の製造方法 を用いて偏光フィルムを製造しても良い。例えば、ポリエチレンテレフタレート(PET) 等のポリマーフィルムに二色性物質を練りこみ、製膜、延伸したようなものでも良いし 、一軸方向に配向した液晶をホストとして、そこに二色性染料をゲストにしたような Oタ イブのもの(米国特許 5, 523, 863号、特表平 3— 503322号公報)、二色性のライ オト口ピック液晶等を用いた Eタイプのもの(米国特許 6, 049, 428号)が挙げられる  In the present invention, the polarizing film may be manufactured by using another manufacturing method without being limited to the above-described manufacturing method. For example, a polymer film such as polyethylene terephthalate (PET) into which a dichroic substance is kneaded, formed into a film, or stretched may be used, or a uniaxially oriented liquid crystal as a host and a dichroic dye as a guest. O-type (US Pat. No. 5,523,863, Japanese Patent Application Laid-Open No. 3-503322) and E-type using a dichroic lyo-pic pick-up liquid crystal (US Pat. , 049, 428)
[0047] このようにして作製された偏光フィルムの厚さは、特に限定されるものではないが、 5 〜40 μ mであることが好ましい。厚さが 5 m以上であれば機械的強度が低下するこ とはなぐまた 40 m以下であれば光学特性が低下せず、画像表示装置に適用して も薄型化を実現できる。 [0047] The thickness of the polarizing film thus produced is not particularly limited, but is preferably 5 to 40 µm. When the thickness is 5 m or more, the mechanical strength does not decrease. When the thickness is 40 m or less, the optical characteristics do not decrease, and the thickness can be reduced even when applied to an image display device.
[0048] 本発明による偏光フィルムには、実用に際して各種光学層を積層して用いることが できる。その光学層については、要求される光学特性を満たすものであれば特に限 定されるものではないが、例えば、偏光フィルムの片面または両面に、偏光フィルム の保護を目的とした透明保護層、前記透明保護層の偏光フィルムと接着する面と反 対の面、あるいは偏光フィルム自体の片面または両面に対して、ハードコート処理や 反射防止処理、ステイツキング防止や、拡散ないしアンチグレアを目的とした表面処 理を施したり、視角補償等を目的とした配向液晶層や、他のフィルムを積層するため の粘着層を積層する方法があげられる。さらに、光学層として、偏光変換素子、反射 板や半透過板、位相差板(1Z2や 1Z4等の波長板(λ板)を含む)、視角補償フィ ルム、輝度向上フィルムなどの画像表示装置等の形成に用いられる光学フィルムを 1 層または 2層以上積層したものもあげられる。特に上記偏光フィルムと透明保護層を 積層した偏光板に、反射板または半透過反射板が積層されてなる反射型偏光板ま たは半透過型偏光板、位相差板が積層されてなる楕円偏光板または円偏光板、視 角補償層または視角補償フィルムが積層されてなる広視野角偏光板、あるいは輝度 向上フィルムが積層されてなる偏光板が好ましい。また、前記光学層あるいは前記光 学フィルムを透明保護層と積層するタイミングは、偏光フィルムと貼りあわせた後でも 良いし、偏光フィルムと貼りあわせる前でも良い。 [0048] In the polarizing film according to the present invention, various optical layers can be laminated for practical use. The optical layer is not particularly limited as long as it satisfies the required optical characteristics.For example, a polarizing film may be provided on one or both sides of the polarizing film. Hard coat treatment, anti-reflection treatment, and anti-stating treatment on the transparent protective layer for the purpose of protecting the transparent protective layer, the surface opposite to the surface of the transparent protective layer adhered to the polarizing film, or one or both surfaces of the polarizing film itself. Or a method of applying a surface treatment for the purpose of diffusion or anti-glare, or a method of laminating an oriented liquid crystal layer for the purpose of compensating for a viewing angle or an adhesive layer for laminating another film. Furthermore, as an optical layer, a polarization conversion element, a reflection plate, a semi-transmission plate, a retardation plate (including a wavelength plate (λ plate) such as 1Z2 or 1Z4), an image display device such as a viewing angle compensation film, a brightness enhancement film, and the like. And those obtained by laminating one or two or more optical films used for forming the film. In particular, elliptically polarized light obtained by laminating a reflective polarizing plate or a transflective polarizing plate or a transflective polarizing plate obtained by laminating a reflecting plate or a transflective reflecting plate on a polarizing plate obtained by laminating the above polarizing film and a transparent protective layer. A plate or a circularly polarizing plate, a wide viewing angle polarizing plate in which a viewing angle compensation layer or a viewing angle compensation film is laminated, or a polarizing plate in which a brightness enhancement film is laminated is preferable. The timing of laminating the optical layer or the optical film with the transparent protective layer may be after lamination with the polarizing film or before lamination with the polarizing film.
前記偏光フィルムの片面または両面に設けられる透明保護層を形成する材料とし ては、透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるものが好 ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエス テノレ系ポリマー、ジァセチノレセノレロースやトリァセチノレセノレロース等のセノレロース系 ポリマー、ポリメチルメタタリレート等のアクリル系ポリマー、ポリスチレンやアタリ口-トリ ル 'スチレン共重合体 (AS榭脂)等のスチレン系ポリマー、ポリカーボネート系ポリマ 一があげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン 構造を有するポリオレフイン、エチレン 'プロピレン共重合体の如きポリオレフイン系ポ リマー、塩ィ匕ビュル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミ ド系ポリマー、スノレホン系ポリマー、ポリエーテノレスノレホン系ポリマー、ポリエーテノレエ ーテノレケトン系ポリマー、ポリフエ二レンスルフイド系ポリマー、ビニルアルコール系ポ リマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、ァリレート系ポリマ 一、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブレン ド物なども前記透明保護層を形成するポリマーの例としてあげられる。透明保護層は 、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化 型、紫外線硬化型の樹脂の硬化層として形成することもできる。これらの中でも本発 明による偏光フィルムと貼り合わせる透明保護層としては、表面をアルカリなどでケン 化処理したトリァセチルセルロースフィルムが好ましい。 As a material for forming the transparent protective layer provided on one or both surfaces of the polarizing film, a material having excellent transparency, mechanical strength, heat stability, moisture shielding property, isotropy and the like is preferable. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorellose polymers such as diacetinoresenorelose and triacetinoresenorelose, acrylic polymers such as polymethyl methacrylate, polystyrene and Atari mouth-tri- And styrene-based polymers such as styrene copolymer (AS resin) and polycarbonate-based polymers. Further, polyolefins such as polyethylene, polypropylene, polyolefins having a cyclo- or norbornene structure, polyolefin-based polymers such as ethylene-propylene copolymers, amide-based polymers, amide-based polymers such as nylon and aromatic polyamide, and imid-based polymers , Sunolefon-based polymer, polyethenoresnolefone-based polymer, polyetheneoleateno-leketone-based polymer, polyphenylene sulfide-based polymer, vinyl alcohol-based polymer, vinylidene chloride-based polymer, vinyl butyral-based polymer, arylate-based polymer, polyoxymethylene-based polymer , An epoxy-based polymer, or a blend of the above-mentioned polymers are also examples of the polymer forming the transparent protective layer. The transparent protective layer It can also be formed as a cured layer of a thermosetting or ultraviolet curable resin such as an acrylic, urethane, acrylic urethane, epoxy or silicone resin. Among these, as the transparent protective layer to be bonded to the polarizing film according to the present invention, a triacetyl cellulose film having a surface saponified with an alkali or the like is preferable.
[0050] また、透明保護層としては、特開 2001— 343529号公報 (WO01Z37007)に記 載のポリマーフィルム、例えば、(A)側鎖に置換および Zまたは非置換イミド基を有 する熱可塑性榭脂と、 (B)側鎖に置換および Zまたは非置換フエ-ル基ならびに-ト リル基を有する熱可塑性榭脂を含有する榭脂組成物が挙げられ、具体例としてはィ ソブテンと N—メチルマレイミド力 なる交互共重合体とアクリロニトリル 'スチレン共重 合体とを含有する榭脂組成物のフィルムが挙げられる。フィルムは榭脂組成物の混 合押出し品など力 なるフィルムを用いることができる。  As the transparent protective layer, a polymer film described in JP-A-2001-343529 (WO01Z37007), for example, (A) a thermoplastic resin having a substituted or Z or unsubstituted imide group in the side chain And a resin composition containing (B) a thermoplastic resin having a substituted or Z- or unsubstituted phenol group and a -tolyl group in the side chain. Specific examples thereof include isobutene and N- A film of a resin composition containing an alternating copolymer of methylmaleimide and an acrylonitrile-styrene copolymer is exemplified. As the film, a strong film such as a mixed extruded product of a resin composition can be used.
[0051] 透明保護層の厚さは特に限定されるものではないが、例えば、 500 m以下であり 、 1〜300 μ mが好ましい。特に 5〜200 μ mとするのがより好ましい。また、偏光特性 や耐久性および接着特性向上等の点より、透明保護層表面をアルカリなどでケンィ匕 処理することが好ましい。  [0051] The thickness of the transparent protective layer is not particularly limited, but is, for example, 500 m or less, and preferably 1 to 300 Pm. In particular, the thickness is more preferably 5 to 200 μm. In addition, it is preferable that the surface of the transparent protective layer is subjected to a quenching treatment with an alkali or the like from the viewpoint of improving the polarization characteristics, durability, and adhesion characteristics.
[0052] また、透明保護層はできるだけ色付きがないことが好ましい。したがって、 Rth= [ ( nx+ny) /2-nz] . d (ただし、 nx、 nyはフィルム平面内の主屈折率、 nzはフィルム 厚み方向の屈折率、 dはフィルムの厚さである)で表されるフィルム厚み方向の位相 差値が 90ηπ!〜 + 75nmである透明保護層が好ましく用いられ、これを使用するこ とにより、透明保護層に起因する偏光板の着色 (光学的な着色)をほぼ解消すること ができる。さらに、 Rthは、 80〜 + 60nmであることがより好ましぐ 70nm〜+45 nmの範囲であると特に好まし!/、。  [0052] Further, it is preferable that the transparent protective layer has as little coloring as possible. Therefore, Rth = [(nx + ny) / 2-nz]. D (where nx and ny are the main refractive indices in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness) Is 90ηπ! A transparent protective layer having a thickness of from +75 nm is preferably used, and by using this, the coloring (optical coloring) of the polarizing plate caused by the transparent protective layer can be almost completely eliminated. In addition, Rth is more preferably between 80 and +60 nm, particularly preferably between 70 nm and +45 nm! /.
[0053] 前記透明保護層を偏光フィルムの両面に積層する場合、その片面ごとにそれぞれ 異なる特性をもつものを用いてもよい。その特性としては、これに限定されるものでは ないが、例えば、厚み、材質、光透過率、引張り弾性率あるいは光学層の有無等が 挙げられる。  [0053] When the transparent protective layer is laminated on both sides of the polarizing film, those having different characteristics for each one side may be used. The characteristics are not limited to these, but include, for example, thickness, material, light transmittance, tensile modulus, presence or absence of an optical layer, and the like.
[0054] ハードコート処理としては、偏光フィルムあるいは、偏光フィルムと透明保護層を積 層した偏光板表面の傷つき防止などを目的に施されるものであり、例えばアクリル系 、シリコーン系などの適宜な紫外線硬化型榭脂による硬度や滑り特性等に優れる硬 化皮膜を透明保護層の表面に付加する方式などにて形成することができる。反射防 止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じ た反射防止膜などの形成により達成することができる。また、ステイツキング防止処理 は隣接層との密着防止を目的に施される。 The hard coat treatment is performed for the purpose of preventing the surface of a polarizing film or a polarizing plate on which a polarizing film and a transparent protective layer are laminated from being scratched. Alternatively, it can be formed by, for example, a method of adding a hardened film excellent in hardness and sliding properties with an appropriate ultraviolet curable resin such as a silicone resin to the surface of the transparent protective layer. The anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art. In addition, the anti-stating treatment is performed for the purpose of preventing adhesion to an adjacent layer.
[0055] また、アンチグレア処理は偏光板の表面で外光が反射して、偏光板透過光の視認 を阻害することの防止等を目的に施されるものであり、例えば、サンドブラスト方式や エンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式に て透明保護層の表面に微細凹凸構造を付与することにより形成することができる。前 記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が 0. 5 〜50 μ mのシリカ、アルミナ、チタ二了、ジルコ -ァ、酸化錫、酸化インジウム、酸化 カドミウム、酸化アンチモン等からなり、導電性を有することもある無機系微粒子、架 橋または未架橋のポリマー等力もなる有機系微粒子などの透明微粒子が用いられる 。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形 成する透明榭脂 100重量部に対して一般的に 2〜70重量部程度であり、 5〜50重 量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するた めの拡散層(視角拡大機能など)をかねるものであってもよい。  The anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate. For example, the anti-glare treatment is performed by a sand blast method or an embossing method. The transparent protective layer can be formed by giving a fine uneven structure to the surface of the transparent protective layer by an appropriate method such as a surface roughening method or a method of blending transparent fine particles. Examples of the fine particles to be included in the formation of the above-mentioned surface fine uneven structure include silica, alumina, titania, zirco-a, tin oxide, indium oxide, cadmium oxide, and oxide having an average particle size of 0.5 to 50 μm. Transparent fine particles such as inorganic fine particles made of antimony and the like, which may have conductivity, and organic fine particles also having a crosslinked or uncrosslinked polymer and the like are used. When forming the fine surface uneven structure, the amount of the fine particles used is generally about 2 to 70 parts by weight, and 5 to 50 parts by weight based on 100 parts by weight of the transparent resin forming the fine surface uneven structure. Is preferred. The anti-glare layer may also serve as a diffusion layer (such as a viewing angle expanding function) for diffusing light transmitted through the polarizing plate to increase the viewing angle and the like.
[0056] なお、前記反射防止層、ステイツキング防止層、拡散層やアンチグレア層等の光学 層は、透明保護層そのものに設けることができるほか、別途、透明保護層とは別体の ちのとして設けることちでさる。  The optical layers such as the anti-reflection layer, anti-staking layer, diffusion layer and anti-glare layer can be provided on the transparent protective layer itself, or separately provided separately from the transparent protective layer. Talk about this.
[0057] 前記偏光フィルムと透明保護層を接着剤層を介して接着する場合、その接着処理 は特に限定されるものではないが、例えば、ビニルポリマーからなる接着剤、あるいは 、ホウ酸やホウ砂、グルタルアルデヒドやメラミン、シユウ酸などのビニルアルコール系 ポリマーの水溶性架橋剤カゝら少なくともなる接着剤などを介して行うことができる。こ の接着剤層は、水溶液の塗布乾燥層などとして形成しうるが、その水溶液の調製に 際しては、必要に応じて、他の添加剤や、酸等の触媒も配合することができる。特に 偏光フィルムとしてポリビュルアルコール系のポリマーフィルムを用いる場合には、ポ リビュルアルコール力もなる接着剤を用いることが、接着性の点力も好ましい。また、 この接着剤層の厚さとしては、その接着効果と厚みのバランスにより決定される力 5 nm以上 500nm以下であることが好ましぐ lOnm以上 300nm以下であることがより 好ましい。 When the polarizing film and the transparent protective layer are bonded via an adhesive layer, the bonding treatment is not particularly limited. For example, an adhesive made of a vinyl polymer, or boric acid or borax is used. It can be carried out via an adhesive comprising at least a water-soluble crosslinking agent for a vinyl alcohol-based polymer such as glutaraldehyde, melamine, and oxalic acid. This adhesive layer can be formed as a layer for applying and drying an aqueous solution, but in the preparation of the aqueous solution, other additives and a catalyst such as an acid can be blended if necessary. . In particular, when a polyvinyl alcohol-based polymer film is used as the polarizing film, it is preferable to use an adhesive that also has a polyvinyl alcohol strength, because of its adhesive force. Also, The thickness of the adhesive layer is preferably 5 nm or more and 500 nm or less, and more preferably lOnm or more and 300 nm or less, determined by the balance between the adhesive effect and the thickness.
[0058] 反射型偏光板は、偏光板に反射層を設けたもので、視認側 (表示側)からの入射光 を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バッ クライト等の光源の内蔵を省略できて、液晶表示装置の薄型化を図りやすいなどの 利点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板 の片面に金属等力 なる反射層を付設する方式などの適宜な方式にて行うことがで きる。  [0058] The reflective polarizing plate is provided with a reflective layer on the polarizing plate, and is used to form a liquid crystal display device or the like that reflects and reflects incident light from the viewing side (display side). In addition, there is an advantage that a built-in light source such as a backlight can be omitted, and the thickness of the liquid crystal display device can be easily reduced. The reflection type polarizing plate can be formed by an appropriate method such as a method in which a reflective layer having a strength such as a metal is provided on one side of the polarizing plate via a transparent protective layer or the like as necessary.
[0059] 反射型偏光板の具体例としては、必要に応じ、マット処理した透明保護層の片面に 、アルミニウム等の反射性金属からなる箔ゃ蒸着膜を付設して反射層を形成したもの などがあげられる。また、前記透明保護層に微粒子を含有させて表面微細凹凸構造 とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前記した微細 凹凸構造の反射層は、入射光を乱反射により拡散させて指向性ゃギラギラした見栄 えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有の透明保護 層は、入射光およびその反射光がそれを透過する際に拡散されて、明暗ムラをより抑 制しうる利点なども有している。透明保護層の表面微細凹凸構造を反映させた微細 凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレーティング方式、ス パッタリング方式等の蒸着方式ゃメツキ方式などの適宜な方式で、金属を透明保護 層の表面に直接付設する方法などにより行うことができる。  [0059] Specific examples of the reflective polarizing plate include, as necessary, a reflective layer formed by attaching a foil made of a reflective metal such as aluminum to one side of a matte-treated transparent protective layer and a vapor deposition film. Is raised. Further, there may be mentioned a transparent protective layer containing fine particles to form a fine surface unevenness structure, and a reflective layer having a fine unevenness structure formed thereon. The reflection layer having the fine uneven structure described above has an advantage that the incident light is diffused by irregular reflection to prevent a directional glare and to suppress uneven brightness. Further, the transparent protective layer containing fine particles has an advantage that the incident light and the reflected light are diffused when transmitting the light, and the unevenness of brightness and darkness can be further suppressed. The reflection layer having a fine uneven structure reflecting the fine uneven structure on the surface of the transparent protective layer is formed by an appropriate method such as an evaporation method such as a vacuum evaporation method, an ion plating method, or a sputtering method or a plating method. The method can be performed by directly attaching a metal to the surface of the transparent protective layer.
[0060] 反射板は、前記偏光板の透明保護層に直接付与する方式に代えて、その透明フィ ルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることも できる。なお、反射層は通常、金属からなるので、その反射面が透明保護層や偏光 板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初 期反射率の長期持続の点や、保護層の別途付設回避の点などにより好ましい。 [0060] Instead of the method of directly applying the reflective plate to the transparent protective layer of the polarizing plate, the reflective plate can also be used as a reflective sheet or the like in which a reflective layer is provided on an appropriate film according to the transparent film. Since the reflective layer is usually made of metal, its use with its reflective surface covered with a transparent protective layer, a polarizing plate, etc. prevents the reduction of the reflectance due to oxidation and, consequently, maintains the initial reflectance for a long time. This is more preferable in terms of avoiding the additional attachment of the protective layer.
[0061] なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハー フミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は 通常、液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使 用する場合には、視認側 (表示側)からの入射光を反射させて画像を表示し、比較的 喑 、雰囲気にぉ 、ては、半透過型偏光板のバックサイドに内蔵されて 、るバックライ ト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる[0061] The transflective polarizing plate can be obtained by forming a transflective reflective layer such as a half mirror that reflects and transmits light on the reflective layer. The transflective polarizing plate is usually provided on the back side of the liquid crystal cell, and the liquid crystal display device is used in a relatively bright atmosphere. When used, an image is displayed by reflecting the incident light from the viewing side (display side), and the image is displayed on the back side of the transflective polarizing plate. A liquid crystal display device that displays images using a built-in light source such as a backlight can be formed.
。すなわち、半透過型偏光板は、明るい雰囲気下では、ノ ックライト等の光源使用の エネルギーを節約でき、比較的明るい雰囲気下においても内蔵光源を用いて使用で きるタイプの液晶表示装置などの形成に有用である。 . In other words, the transflective polarizing plate can save energy for using a light source such as a knock light in a bright atmosphere, and can be used for forming a liquid crystal display device of a type that can be used with a built-in light source even in a relatively bright atmosphere. Useful.
[0062] 偏光板にさらに位相差板が積層されてなる楕円偏光板または円偏光板について説 明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直 線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが 用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変えたりする 位相差板としては、いわゆる 1Z4波長板(λ Ζ4板ともいう)が用いられる。 1Z2波長 板(λ Ζ2板ともいう)は、通常、直線偏光の偏光方向を変える場合に用いられる。  [0062] An elliptically polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate will be described. When changing linearly polarized light to elliptically or circularly polarized light, elliptically or circularly polarized light to linearly polarized light, or changing the polarization direction of linearly polarized light, a phase difference plate or the like is used. In particular, a so-called 1Z4 wavelength plate (also referred to as a λΖ4 plate) is used as a retardation plate that converts linearly polarized light into circularly polarized light or converts circularly polarized light into linearly polarized light. A 1Z2 wavelength plate (also referred to as a λΖ2 plate) is generally used to change the polarization direction of linearly polarized light.
[0063] 楕円偏光板はスーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈 折により生じた着色 (青または黄)を補償 (防止)して、前記着色のな!、白黒表示する 場合などに有効に用いられる。さらに、三次元の屈折率を制御したものは、液晶表示 装置の画面を斜め方向から見た際に生じる着色も補償 (防止)することができて好ま しい。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の 色調を整える場合などに有効に用いられ、また、反射防止の機能も有する。  The elliptically polarizing plate compensates (prevents) the coloring (blue or yellow) caused by the birefringence of the liquid crystal layer of the super twisted nematic (STN) type liquid crystal display device, and displays the colorless black and white. It is used effectively in such cases. Further, the one in which the three-dimensional refractive index is controlled is preferable because it can also compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction. The circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflection type liquid crystal display device that displays an image in color, and also has an antireflection function.
[0064] 位相差板としては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィ ルム、液晶モノマーを配向させた後、架橋、重合させた配向フィルム、液晶ポリマー の配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる 。延伸処理は、例えばロール延伸法、長間隙沿延伸法、テンター延伸法、チューブ ラー延伸法などにより行うことができる。延伸倍率は、一軸延伸の場合には 1. 1〜3 倍程度が一般的である。位相差板の厚さも特に制限されないが、一般的には 10〜2 00 μ m、好ましくは 20〜: LOO μ mである。  Examples of the retardation plate include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an alignment film obtained by aligning a liquid crystal monomer and then crosslinking and polymerizing the alignment film, an alignment film of a liquid crystal polymer, And a film in which an alignment layer of a liquid crystal polymer is supported by a film. The stretching treatment can be performed by, for example, a roll stretching method, a long gap stretching method, a tenter stretching method, a tubular stretching method, or the like. The stretching ratio is generally about 1.1 to 3 times in the case of uniaxial stretching. The thickness of the retardation plate is not particularly limited either, but is generally 10 to 200 μm, preferably 20 to: LOO μm.
[0065] 前記高分子素材としては、例えば、ポリビニルアルコール、ポリビニルブチラール、 ポリメチルビ-ルエーテル、ポリヒドロキシェチルアタリレート、ヒドロキシェチルセル口 ース、ヒドロキシプロピルセルロース、メチノレセノレロース、ポリカーボネート、ポリアリレ ート、ポリスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテ ルスルホン、ポリフエ-レンスルファイド、ポリフエ-レンオキサイド、ポリアリルスルホン 、ポリビニルアルコール、ポリアミド、ポリイミド、ポリオレフイン、ポリ塩化ビニル、セル口 ース系重合体、またはこれらの二元系、三元系各種共重合体、グラフト共重合体、ブ レンド物などがあげられる。これら高分子素材は延伸等により配向物 (延伸フィルム) となる。 [0065] Examples of the polymer material include polyvinyl alcohol, polyvinyl butyral, polymethyl vinyl ether, polyhydroxyethyl atearylate, hydroxyethyl cellulose, hydroxypropyl cellulose, methinoresenolerose, polycarbonate, and polyaryle. , Polysulfone, polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyphenylene sulfide, polyphenylene oxide, polyallyl sulfone, polyvinyl alcohol, polyamide, polyimide, polyolefin, polyvinyl chloride, cellulose polymer And various binary and ternary copolymers, graft copolymers and blends thereof. These polymer materials become oriented products (stretched films) by stretching or the like.
[0066] 前記液晶モノマーとしては、リオトロピック性、サーモト口ピック性のいずれのものも 用いることができる力 作業性の点力もサーモト口ピック性のものが好適であり、例え ば、アタリロイル基、ビニル基やエポキシ基等の官能基を導入したビフヱニル誘導体 、フエ-ルペンゾエート誘導体、スチルベン誘導体などを基本骨格としたもの等が挙 げられる。このような液晶モノマーは、例えば、熱や光による方法、基板上をラビング する方法、配向補助剤を添加する方法等、適宜公知の方法を用いて配向させ、その 後、この配向を維持した状態で、光、熱、電子線等により架橋および重合させることに より配向を固定ィ匕する方法が好ましく用いられる。  [0066] As the liquid crystal monomer, any of lyotropic and thermopick properties can be used. The workability is preferably a thermopick property. For example, an atalyloyl group, a vinyl group And those having a basic skeleton of a biphenyl derivative, a phenolbenzoate derivative, a stilbene derivative or the like into which a functional group such as an epoxy group is introduced. Such a liquid crystal monomer is aligned using a known method as appropriate, for example, a method using heat or light, a method for rubbing on a substrate, a method for adding an alignment aid, and then maintaining the alignment. A method of fixing the orientation by crosslinking and polymerizing with light, heat, an electron beam or the like is preferably used.
[0067] 前記液晶ポリマーとしては、例えば、液晶配向性を付与する共役性の直線状原子 団 (メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種のものな どがあげられる。主鎖型の液晶性ポリマーの具体例としては、屈曲性を付与するスぺ ーサ部でメソゲン基を結合した構造の、例えばネマチック配向性のポリエステル系液 晶性ポリマー、ディスコティックポリマーゃコレステリックポリマーなどがあげられる。側 鎖型の液晶性ポリマーの具体例としては、ポリシロキサン、ポリアタリレート、ポリメタク リレートまたはポリマロネートを主鎖骨格とし、側鎖として共役性の原子団からなるス ぺーサ部を介してネマチック配向付与性のパラ置換環状ィ匕合物単位力 なるメソゲ ン部を有するものなどがあげられる。これら液晶ポリマーは、例えば、ガラス板上に形 成したポリイミドゃポリビュルアルコール等の薄膜の表面をラビング処理したもの、酸 化ケィ素を斜方蒸着したものなどの配向処理面上に液晶性ポリマーの溶液を展開し て熱処理することにより行われる。  [0067] Examples of the liquid crystal polymer include various types of main chain and side chain in which a conjugated linear group (mesogen) for imparting liquid crystal orientation is introduced into the main chain or side chain of the polymer. And so on. Specific examples of the main chain type liquid crystal polymer include a structure in which a mesogen group is bonded at a spacer portion that imparts flexibility, such as a nematic-oriented polyester-based liquid crystal polymer, a discotic polymer, and a cholesteric polymer. And so on. Specific examples of the side-chain type liquid crystalline polymer include polysiloxane, polyacrylate, polymethacrylate or polymalonate as a main chain skeleton, and nematic alignment is provided through a spacer composed of a conjugated atomic group as a side chain. And the like having a mesogen portion that is a unitary force of a para-substituted cyclic compound. These liquid crystal polymers are, for example, those obtained by rubbing the surface of a thin film of polyimide or polyvinyl alcohol formed on a glass plate, or those obtained by obliquely depositing silicon oxide. This is done by developing the solution and heat-treating it.
[0068] 位相差板は、例えば各種波長板や液晶層の複屈折による着色や視角等の補償を 目的としたものなどの使用目的に応じた適宜な位相差を有するものであってよぐ 2 種以上の位相差板を積層して位相差等の光学特性を制御したものなどであってもよ い。 [0068] The retardation plate may be a plate having an appropriate retardation according to the intended use, such as, for example, various wavelength plates or those for the purpose of compensating the viewing angle or the like due to birefringence of the liquid crystal layer. A device in which optical characteristics such as phase difference are controlled by laminating more than two kinds of phase difference plates may be used.
[0069] また上記の楕円偏光板や反射型楕円偏光板は、偏光板または反射型偏光板と位 相差板を適宜な組み合わせで積層したものである。力かる楕円偏光板等は、(反射 型)偏光板と位相差板の組み合わせとなるようにそれらを液晶表示装置の製造過程 で順次別個に積層することによつても形成しうるが、前記のごとくあらかじめ楕円偏光 板等の光学フィルムとしたものは、品質の安定性や積層作業性等に優れて、液晶表 示装置などの製造効率を向上させうる利点がある。  [0069] The elliptically polarizing plate and the reflection type elliptically polarizing plate are obtained by laminating a polarizing plate or a reflection type polarizing plate and a retardation plate in an appropriate combination. The strong elliptically polarizing plate or the like can also be formed by sequentially and separately laminating the (reflection type) polarizing plate and the retardation plate in the manufacturing process of the liquid crystal display device so as to form a combination. As described above, an optical film such as an elliptically polarizing plate is excellent in quality stability, laminating workability, and the like, and has an advantage that the production efficiency of a liquid crystal display device and the like can be improved.
[0070] 視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向 力 見た場合でも、画像が比較的鮮明に見えるように視野角を広げるためのフィルム である。このような視角補償位相差板としては、例えば位相差板、液晶ポリマー等の 配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなど力もなる。 通常の位相差板は、その面方向に一軸延伸された複屈折を有するポリマーフィルム が用いられるのに対し、視角補償フィルムとして用いられる位相差板には、面方向に 二軸に延伸された複屈折を有するポリマーフィルムとか、面方向に一軸に延伸され、 厚さ方向にも延伸された、厚さ方向の屈折率を制御した複屈折を有するポリマーや 傾斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィルムと しては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力 の作用下にポリマーフィルムを延伸処理または Zおよび収縮処理したものや、液晶 ポリマーを斜め配向させたものなどが挙げられる。位相差板の素材原料ポリマーは、 先の位相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差 に基づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目的と した適宜なものを用いうる。  [0070] The viewing angle compensation film is a film for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed in a direction not perpendicular to the screen but slightly oblique. As such a viewing angle compensating retardation plate, for example, a retardation plate, an alignment film such as a liquid crystal polymer, or a support in which an alignment layer such as a liquid crystal polymer is supported on a transparent base material can be used. A common retardation plate is a birefringent polymer film uniaxially stretched in the plane direction, whereas a retardation plate used as a viewing angle compensation film is a biaxially stretched biaxially stretched polymer film. Polymer films with refraction, biaxially stretched films such as uniaxially stretched in the plane direction and also in the thickness direction, birefringent polymers with controlled refractive index in the thickness direction, and bidirectionally stretched films such as obliquely oriented films Is used. Examples of the obliquely oriented film include, for example, a film obtained by bonding a heat shrink film to a polymer film and subjecting the polymer film to stretching or Z and shrinkage treatment under the action of the shrinkage force caused by heating, or an obliquely oriented liquid crystal polymer And the like. As the raw material polymer for the retardation plate, the same polymer as that described for the retardation plate is used, which prevents coloring etc. due to changes in the viewing angle based on the retardation of the liquid crystal cell and enlarges the viewing angle for good visibility. Appropriate ones for the purpose can be used.
[0071] また、良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にデ イスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセル ロースフィルムにて支持した光学補償位相差板が好ましく用いうる。  [0071] Further, from the viewpoint of achieving a wide viewing angle with good visibility, an optically anisotropic layer composed of a liquid crystal polymer alignment layer, particularly a tilted alignment layer of discotic liquid crystal polymer, is formed of a triacetyl cellulose film. A supported optical compensation retardation plate can be preferably used.
[0072] 偏光変換素子としては、例えば、異方性反射型偏光素子や異方性散乱型偏光素 子等があげられる。異方性反射型偏光素子としては、コレステリック液晶層、特にコレ ステリック液晶ポリマーの配向フィルムや、その配向液晶層をフィルム基材上に支持 したもののように、左回りまたは右回りのいずれか一方の円偏光を反射して他の光は 透過する特性を示すものと、その反射帯域のうちのいずれかの任意の波長におけるExamples of the polarization conversion element include an anisotropic reflection-type polarization element and an anisotropic scattering-type polarization element. Cholesteric liquid crystal layers, especially A film that reflects either left-handed or right-handed circularly polarized light and transmits the other light, such as an oriented film of a steric liquid crystal polymer or one with its oriented liquid crystal layer supported on a film substrate. And at any wavelength in any of its reflection bands
0. 25倍の位相差を有する位相差板との複合体、あるいは、誘電体の多層薄膜や屈 折率異方性が相違する薄膜フィルムの多層積層体のように、所定偏光軸の直線偏光 を透過して他の光は反射する特性を示すものが好ましい。前者の例としては、 日東電 ェ製の PCFシリーズ等を挙げることができ、後者の例としては、 3M社製の DBEFシリ 一ズ等を挙げることができる。また、異方性反射型偏光素子として、反射型グリッド偏 光子も好ましく用いうる。その例としては、 Moxtek製の Micro Wires等を挙げること ができる。一方、異方性散乱型偏光素子としては、例えば、 3M社製の DRPF等を挙 げられる。 0.2% linear polarization with a predetermined polarization axis, such as a composite with a retardation plate having a 25-fold retardation, or a multilayer laminate of dielectric thin films and thin films with different refractive index anisotropies. It is preferable to show a characteristic of transmitting other light and reflecting other light. Examples of the former include a PCF series manufactured by Nitto Denki, and examples of the latter include a DBEF series manufactured by 3M. Further, a reflective grid polarizer can be preferably used as the anisotropic reflective polarizer. Examples include Moxtek's Micro Wires. On the other hand, as the anisotropic scattering type polarizing element, for example, 3M DRPF and the like can be mentioned.
偏光板と輝度向上フィルムを貼りあわせた偏光板は、通常液晶セルの裏側サイドに 設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏 側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向 の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光 板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の 透過光を得るとともに、前記所定偏光状態以外の光は透過せずに反射される。この 輝度向上フィルム面で反射した光をさらにその後ろ側に設けられた反射層等を介し 反転させて輝度向上フィルムに再入射させ、その一部または全部を所定偏光状態の 光として透過させて輝度向上フィルムを透過する光の増量を図るとともに、偏光フィル ムに吸収させにくい偏光を供給して、液晶画像表示等に利用しうる光量の増大を図 ることにより輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せず に、バックライトなどで液晶セルの裏側カゝら偏光フィルムを通して光を入射した場合に は、偏光フィルムの偏光軸に一致していない偏光方向を有する光は、ほとんど偏光フ イルムに吸収されてしまい、偏光フィルムを透過してこない。すなわち、用いた偏光フ イルムの特性によっても異なる力 およそ 50%の光が偏光フィルムに吸収されてしま い、その分、液晶画像表示等に利用しうる光量が減少し、画像が暗くなる。輝度向上 フィルムは、偏光フィルムに吸収されるような偏光方向を有する光を偏光フィルムに入 射させずに、輝度向上フィルムでいったん反射させ、さらにその後ろ側に設けられた 反射層等を介して反転させて輝度向上フィルムに再入射させることを繰り返し、この 両者間で反射、反転している光の偏光方向が偏光板を通過しうるような偏光方向に なった偏光のみを透過させて偏光フィルムに供給するので、ノ ックライトなどの光を効 率的に液晶表示装置の画像の表示に使用でき、画面を明るくすることができる。 A polarizing plate obtained by laminating a polarizing plate and a brightness enhancement film is usually used by being provided on the back side of a liquid crystal cell. Brightness-enhancing films exhibit the property of reflecting linearly polarized light with a predetermined polarization axis or circularly polarized light in a predetermined direction when natural light enters due to reflection from the backlight or the back side of a liquid crystal display device, etc., and transmitting other light. The polarizing plate in which the brightness enhancement film is laminated with the polarizing plate receives light from a light source such as a backlight to obtain transmitted light in a predetermined polarization state, and reflects light other than the predetermined polarization state without transmitting. Is done. The light reflected from the surface of the brightness enhancement film is further inverted through a reflection layer or the like provided on the rear side thereof and re-incident on the brightness enhancement film, and a part or all of the light is transmitted as light in a predetermined polarization state, thereby obtaining brightness. In addition to increasing the amount of light transmitted through the enhancement film, the polarization film is supplied with polarized light that is hardly absorbed, thereby increasing the amount of light that can be used for liquid crystal image display and the like, thereby improving luminance. That is, when light is incident through a polarizing film on the back side of a liquid crystal cell with a backlight or the like without using a brightness enhancement film, light having a polarization direction that does not match the polarization axis of the polarizing film is Almost all light is absorbed by the polarizing film and does not pass through the polarizing film. That is, about 50% of the light, which varies depending on the characteristics of the polarizing film used, is absorbed by the polarizing film, and the amount of light available for liquid crystal image display and the like is reduced, and the image becomes darker. The brightness enhancement film enters the polarizing film with light having a polarization direction that is absorbed by the polarizing film. Instead of being reflected, the light is once reflected by the brightness enhancement film, then inverted through the reflective layer, etc., provided behind it, and then re-entered into the brightness enhancement film. Since only polarized light whose polarization direction is such that it can pass through a polarizing plate is transmitted and supplied to the polarizing film, light from a knock light or the like can be efficiently displayed on an image of a liquid crystal display device. It can be used and the screen can be brightened.
[0074] 輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フ イルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散 板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態とする。 すなわち元の自然光状態にもどす。この非偏光状態すなわち自然光状態の光が反 射層等に向かい、反射層等を介して反射して、拡散板を再び通過して輝度向上フィ ルムに再入射することを繰り返す。元の自然光状態に戻す拡散板を設けることにより 、表示画面の明るさを維持しつつ、同時に表示画面の明るさのムラを少なくし、均一 の明るい画面を提供することができる。元の自然光状態に戻す拡散板を設けることに より、初回の入射光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能とあい まって均一の明るい表示画面を提供することができたものと考えられる。  [0074] A diffusion plate may be provided between the brightness enhancement film and the above-mentioned reflection layer or the like. The light in the polarization state reflected by the brightness enhancement film goes to the reflection layer and the like, but the diffusion plate provided diffuses the passing light uniformly, and at the same time, eliminates the polarization state to make the light non-polarized. That is, it returns to the original natural light state. The light in the non-polarized state, that is, in the natural light state, repeatedly travels toward the reflection layer and the like, is reflected through the reflection layer and the like, passes through the diffusion plate again, and re-enters the brightness enhancement film. By providing the diffuser for returning to the original natural light state, the brightness of the display screen can be maintained, the unevenness of the brightness of the display screen can be reduced, and a uniform bright screen can be provided. By providing a diffuser to return to the original natural light state, the number of repetitions of the first incident light is increased moderately, and combined with the diffusion function of the diffuser, a uniform bright display screen can be provided. it is conceivable that.
[0075] 前記輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違 する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は 反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向液 晶層をフィルム基材上に支持したものの如き、左回りまたは右回りのいずれか一方の 円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。  [0075] As the brightness enhancement film, for example, linearly polarized light having a predetermined polarization axis is transmitted and other light is reflected, such as a multilayer thin film of a dielectric or a multilayer laminate of thin films having different refractive index anisotropy. Reflects either left-handed or right-handed circularly polarized light and transmits other light, such as those exhibiting characteristics, such as an alignment film made of cholesteric liquid crystal polymer or an alignment liquid crystal layer supported on a film substrate. Appropriate materials such as those exhibiting characteristics can be used.
[0076] したがって、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィル ムでは、その透過光をそのまま偏光板に偏光軸をそろえて入射させることにより、偏 光板による吸収ロスを抑制しつつ、効率よく透過させることができる。一方、コレステリ ック液晶層の如く円偏光を透過するタイプの輝度向上フィルムでは、そのまま偏光フ イルムに入射させることもできるが、吸収ロスを抑制する点よりその円偏光を位相差板 を介し直線偏光化して偏光板に入射させることが好ましい。なお、その位相差板とし て 1Z4波長板を用いることにより、円偏光を直線偏光に変換することができる。  Therefore, in the above-described brightness enhancement film that transmits linearly polarized light having a predetermined polarization axis, the transmitted light is directly incident on the polarizing plate with the polarization axis aligned, thereby suppressing absorption loss due to the polarizing plate. In addition, the light can be efficiently transmitted. On the other hand, a brightness enhancement film that transmits circularly polarized light, such as a cholesteric liquid crystal layer, can be directly incident on a polarizing film.However, in order to suppress absorption loss, the circularly polarized light is linearly transmitted through a phase difference plate. It is preferable that the light is polarized and incident on a polarizing plate. By using a 1Z4 wavelength plate as the retardation plate, circularly polarized light can be converted to linearly polarized light.
[0077] 可視光域等の広い波長範囲で 1Z4波長板として機能する位相差板は、例えば波 長 550nmの単色光に対して 1Z4波長板として機能する位相差層と他の位相差特 性を示す位相差層、例えば 1Z2波長板として機能する位相差層とを重畳する方式 などにより得ることができる。したがって、偏光板と輝度向上フィルムの間に配置する 位相差板は、 1層または 2層以上の位相差層カゝらなるものであってよい。 [0077] A retardation plate that functions as a 1Z4 wavelength plate in a wide wavelength range such as a visible light region is, for example, a wave plate. A phase difference layer functioning as a 1Z4 wavelength plate and a phase difference layer exhibiting other phase difference characteristics, for example, a method of superimposing a phase difference layer functioning as a 1Z2 wavelength plate on monochromatic light having a length of 550 nm can be obtained. it can. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or more retardation layers.
[0078] なお、コレステリック液晶層についても、反射波長が相違するものの組み合わせに して 2層または 3層以上重畳した配置構造とすることにより、可視光領域等の広い波 長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の 透過円偏光を得ることができる。  [0078] The cholesteric liquid crystal layer also has a structure in which two or three or more layers are overlapped by combining those having different reflection wavelengths to reflect circularly polarized light in a wide wavelength range such as a visible light region. Thus, it is possible to obtain the transmitted circularly polarized light in a wide wavelength range.
[0079] また、本発明の偏光板は、上記の偏光分離型偏光板の如ぐ偏光板と 2層または 3 層以上の光学層とを積層したものからなっていてもよい。したがって、上記の反射型 偏光板や半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過 型楕円偏光板などであってもよ 、。  Further, the polarizing plate of the present invention may be formed by laminating a polarizing plate such as the above-mentioned polarized light separating type polarizing plate and two or three or more optical layers. Therefore, a reflective elliptically polarizing plate or a transflective elliptically polarizing plate obtained by combining the above-mentioned reflective polarizing plate, semi-transmissive polarizing plate, and retardation plate may be used.
[0080] 偏光板に前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で 順次別個に積層する方式にても形成することができるが、あらかじめ積層して光学フ イルムとしたものは、品質の安定性や組立作業等に優れて 、て液晶表示装置などの 製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いう る。前記の偏光板と他の光学層の接着に際し、それらの光学軸は目的とする位相差 特性などに応じて適宜な配置角度とすることができる。  [0080] The optical film in which the optical layer is laminated on a polarizing plate can also be formed by a method of sequentially laminating the optical film in the process of manufacturing a liquid crystal display device or the like. They are excellent in quality stability, assembling work, and the like, and have the advantage that the manufacturing process of a liquid crystal display device or the like can be improved. For the lamination, an appropriate adhesive means such as an adhesive layer is used. When bonding the above-mentioned polarizing plate and other optical layers, their optical axes can have an appropriate arrangement angle according to the target retardation characteristics and the like.
[0081] 本発明の偏光フィルムや、前記の積層光学部材には、液晶セル等の他部材と接着 するための粘着層を設けることもできる。その粘着層は、特に限定されるものではなく 、例えば、アクリル系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系 、ゴム系等の従来に準じた適宜な粘着剤にて形成することができる。この粘着剤とし ては、吸湿による発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低 下や液晶セルの反り防止、ひ 、ては高品質で耐久性に優れる画像表示装置の形成 性等の点により、吸湿率が低くて耐熱性に優れる粘着層であることが好ましぐさらに は、偏光フィルム等の光学特性の変化を防止する点より、硬化や乾燥の際に高温の プロセスを要しな 、ものであり、長時間の硬化処理や乾燥時間を要しな 、ものが好ま しい。このような観点より、本発明では、アクリル系粘着剤が好ましく用いられる。 [0082] また、微粒子を含有して光拡散性を示す粘着層などとすることもできる。粘着層は 必要に応じて必要な面に設ければよぐ例えば、本発明のような偏光フィルムと透明 保護層からなる偏光板について言及するならば、必要に応じて、保護層の片面また は両面に粘着層を設ければよい。 [0081] The polarizing film of the present invention and the laminated optical member may be provided with an adhesive layer for bonding to another member such as a liquid crystal cell. The pressure-sensitive adhesive layer is not particularly limited. For example, the pressure-sensitive adhesive layer can be formed of a conventional pressure-sensitive adhesive such as an acrylic, silicone, polyester, polyurethane, polyether, or rubber. . The pressure-sensitive adhesive is used to prevent foaming and peeling phenomena due to moisture absorption, to prevent deterioration of optical properties due to differences in thermal expansion, to prevent liquid crystal cells from warping, and to form image display devices with high quality and excellent durability. It is preferable that the adhesive layer has a low moisture absorption rate and excellent heat resistance because of its properties and the like.Moreover, in order to prevent changes in the optical properties of polarizing films, etc. It is preferable to use a material that does not require a long curing process or a long drying time. From such a viewpoint, in the present invention, an acrylic pressure-sensitive adhesive is preferably used. [0082] In addition, an adhesive layer or the like that contains fine particles and exhibits light diffusivity can also be used. The adhesive layer may be provided on a necessary surface as needed.For example, when referring to a polarizing plate comprising a polarizing film and a transparent protective layer as in the present invention, if necessary, one side of the protective layer or What is necessary is just to provide an adhesive layer on both surfaces.
[0083] 粘着層の厚さは、特に限定されるものではないが、 5〜35 /z m力好ましく、より好ま しくは 15〜25 μ mであるのがより好ましい。粘着層の厚さをこの範囲にすることによつ て、偏光フィルムおよび偏光板の寸法挙動に伴う応力を緩和することもできる。  [0083] The thickness of the adhesive layer is not particularly limited, but is preferably from 5 to 35 / zm, and more preferably from 15 to 25 Pm. By setting the thickness of the adhesive layer in this range, the stress accompanying the dimensional behavior of the polarizing film and the polarizing plate can be reduced.
[0084] 前記粘着層が表面に露出する場合には、その粘着層を実用に供するまでの間の 汚染防止等を目的としてセパレータにて仮着カバーをすることが好ましい。セパレー タは、上記の透明保護層等に準じた適宜なフィルムに、必要に応じてシリコーン系や 長鎖アルキル系、フッ素系や硫ィ匕モリブデン等の適宜な剥離剤による剥離コートを設 ける方式などにより形成することができる。  When the adhesive layer is exposed on the surface, it is preferable to temporarily cover the adhesive layer with a separator for the purpose of preventing contamination until the adhesive layer is put into practical use. The separator is a system in which an appropriate release film such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum-sulfur-based release agent is provided on an appropriate film according to the transparent protective layer or the like. And the like.
[0085] なお、上記の偏光板や光学部材を形成する透明保護層、光学層や粘着層などの 各層は、例えば、サリチル酸エステル系化合物やベンゾフヱノン系化合物、ベンゾトリ ァゾール系化合物ゃシァノアクリレート系化合物、ニッケル錯塩系化合物等の紫外 線吸収剤で処理する方式などの適宜な方式により紫外線吸収能を持たせたものであ つてもよい。  [0085] The transparent protective layer, optical layer, adhesive layer, and other layers forming the above-mentioned polarizing plate and optical member are formed of, for example, a salicylate compound, a benzophenone compound, a benzotriazole compound, and a cyanoacrylate compound. Alternatively, a material having an ultraviolet absorbing ability by an appropriate method such as a method of treating with an ultraviolet ray absorbent such as a nickel complex salt-based compound may be used.
[0086] 本発明の偏光フィルムは、液晶表示装置、エレクト口ルミネッセンス (EL)表示装置 、プラズマディスプレイ(PD)および電界放出ディスプレイ(FED : Field Emission Display)等の画像表示装置の形成に好ましく用いることができる。  [0086] The polarizing film of the present invention is preferably used for forming an image display device such as a liquid crystal display device, an electroluminescent (EL) display device, a plasma display (PD), and a field emission display (FED). Can be.
[0087] 本発明の画像表示装置は、例えば、液晶表示装置、エレクト口ルミネッセンス (EL) 表示装置、プラズマディスプレイ(PD)および電界放出ディスプレイ(FED : Field E mission Display;等である。  [0087] The image display device of the present invention is, for example, a liquid crystal display device, an electroluminescent (EL) display device, a plasma display (PD), and a field emission display (FED).
[0088] 本発明の偏光フィルムは、液晶表示装置等の各種装置の形成などに好ましく用い ることができ、例えば、偏光フィルムあるいは偏光板を液晶セルの片側あるいは両側 に配置してなる反射型や半透過型、あるいは透過'反射両用型等の液晶表示装置 に用いることができる。液晶セル基板は、プラスチック基板、ガラス基板のいずれでも 良い。液晶表示装置を形成する液晶セルは任意であり、例えば薄膜トランジスタ型に 代表されるアクティブマトリクス駆動型のもの、ツイストネマチック型やスーパーツイスト ネマチック型に代表される単純マトリクス駆動型のものなど適宜なタイプの液晶セル を用いたものであって良い。 [0088] The polarizing film of the present invention can be preferably used for forming various devices such as a liquid crystal display device. For example, a reflective film or a polarizing plate in which a polarizing film or a polarizing plate is arranged on one side or both sides of a liquid crystal cell can be used. It can be used for a transflective or transmissive / reflective liquid crystal display device. The liquid crystal cell substrate may be either a plastic substrate or a glass substrate. The liquid crystal cell forming the liquid crystal display device is optional, for example, a thin film transistor type A liquid crystal cell of an appropriate type such as an active matrix driving type represented by a simple matrix driving type represented by a twist nematic type or a super twist nematic type may be used.
[0089] また、液晶セルの両側に偏光板や光学部材を設ける場合、それらは同じものであつ てもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例 えばプリズムアレイシートやレンズアレイシート、光拡散板やバックライト等の適宜な部 品を適宜な位置に 1層または 2層以上配置することができる。  [0089] When polarizing plates and optical members are provided on both sides of the liquid crystal cell, they may be the same or different. Further, when forming the liquid crystal display device, one or more layers of appropriate components such as a prism array sheet, a lens array sheet, a light diffusing plate, and a backlight can be arranged at appropriate positions.
[0090] 次 、で、有機エレクトロルミネセンス装置 (有機 EL表示装置)につ 、て説明する。一 般に、有機 EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順 に積層して発光体 (有機エレクトロルミネセンス発光体)を形成している。ここで、有機 発光層は、種々の有機薄膜の積層体であり、例えばトリフ ニルァミン誘導体等から なる正孔注入層と、アントラセン等の蛍光性の有機固体力 なる発光層との積層体や 、あるいはこのような発光層とペリレン誘導体等力 なる電子注入層の積層体や、ま たあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組 み合わせを持った構成が知られて 、る。  Next, an organic electroluminescence device (organic EL display device) will be described. In general, in an organic EL display device, a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially stacked on a transparent substrate to form a light emitting body (organic electroluminescent light emitting body). Here, the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer of a fluorescent organic solid force such as anthracene, or A structure having various combinations such as a laminate of such a light-emitting layer and an electron injection layer having a perylene derivative or a hole injection layer, a light-emitting layer, and an electron injection layer. Is known.
[0091] 有機 EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機 発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネ ルギ一が蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射 する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと 同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整 流性に伴う強 ヽ非線形性を示す。  [0091] In an organic EL display device, holes and electrons are injected into an organic luminescent layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons is generated. Excites the fluorescent substance and emits light when the excited fluorescent substance returns to the ground state. The mechanism of recombination in the middle is the same as that of a general diode, and as can be expected from this, the current and the emission intensity show a strong nonlinearity accompanying rectification with respect to the applied voltage.
[0092] 有機 EL表示装置においては、有機発光層での発光を取り出すために、少なくとも 一方の電極が透明でなくてはならず、通常、酸化インジウムスズ (ITO)などの透明導 電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発 光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常 Mg Ag、 A1— Liなどの金属電極を用いている。  [0092] In an organic EL display device, at least one electrode must be transparent in order to extract light emitted from the organic light emitting layer, and is usually formed of a transparent conductor such as indium tin oxide (ITO). The used transparent electrode is used as an anode. On the other hand, it is important to use a material with a small work function for the cathode in order to facilitate electron injection and increase the light emission efficiency, and metal electrodes such as Mg Ag and A1-Li are usually used.
[0093] このような構成の有機 EL表示装置において、有機発光層は、厚さ lOnm程度と極 めて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完 全に透過する。その結果、非発光時に透明基板の表面カゝら入射し、透明電極と有機 発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため 、外部力も視認したとき、有機 EL表示装置の表示面が鏡面のように見える。 [0093] In the organic EL display device having such a configuration, the organic light emitting layer is formed of an extremely thin film having a thickness of about lOnm. For this reason, the organic light-emitting layer almost completely emits light similarly to the transparent electrode. It is completely transparent. As a result, the light incident on the surface of the transparent substrate during non-light emission, transmitted through the transparent electrode and the organic light emitting layer, and reflected by the metal electrode was again emitted to the surface side of the transparent substrate, so that external force was also visually recognized. Sometimes, the display surface of the organic EL display device looks like a mirror surface.
[0094] 電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、 有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を 含む有機 EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これ ら透明電極と偏光板との間に位相差フィルムを設けることができる。  [0094] In an organic EL display device including an organic electroluminescent luminous body having a transparent electrode on the front side of an organic luminescent layer that emits light by application of a voltage and a metal electrode on the back side of the organic luminescent layer, A polarizing plate can be provided on the surface side of the electrode, and a retardation film can be provided between the transparent electrode and the polarizing plate.
[0095] 位相差フィルムおよび偏光フィルムは、外部から入射して金属電極で反射してきた 光を偏光する作用を有するため、その偏光作用によって金属電極の鏡面を外部から 視認させないという効果がある。特に、位相差フィルムを 1Z4波長板で構成し、かつ 偏光板と位相差フィルムとの偏光方向のなす角を π Z4に調整すれば、金属電極の 鏡面を完全に遮蔽することができる。  [0095] Since the retardation film and the polarizing film have a function of polarizing light incident from the outside and reflected on the metal electrode, there is an effect that a mirror surface of the metal electrode is not visually recognized from the outside by the polarizing function. In particular, if the retardation film is composed of a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation film is adjusted to πZ4, the mirror surface of the metal electrode can be completely shielded.
[0096] すなわち、この有機 EL表示装置に入射する外部光は、偏光板により直線偏光成分 のみが透過する。この直線偏光は位相差フィルムにより一般に楕円偏光となるが、特 に位相差フィルムが 1Z4波長板でし力も偏光板と位相差フィルムとの偏光方向のな す角が π Ζ4のときには円偏光となる。  That is, only linearly polarized light components of the external light incident on the organic EL display device are transmitted by the polarizing plate. This linearly polarized light generally becomes elliptically polarized light by the retardation film, but it becomes circularly polarized light, especially when the retardation film is a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation film is π Ζ4. .
[0097] この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再 び有機薄膜、透明電極、透明基板を透過して、位相差フィルムで再び直線偏光とな る。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過 できない。その結果、金属電極の鏡面を完全に遮蔽することができる。  [0097] The circularly polarized light transmits through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, passes through the organic thin film, the transparent electrode, and the transparent substrate again, and becomes linearly polarized again by the retardation film. Become. The linearly polarized light is orthogonal to the polarization direction of the polarizing plate, and cannot be transmitted through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
[0098] PDは、パネル内に封入された希ガス、とくにネオンを主体としたガス中で放電を発 生させ、その際に発生する真空紫外線により、パネルのセルに塗られた R、 G、 Bの蛍 光体を発生させることにより、画像表示が可能となる。  [0098] The PD generates a discharge in a rare gas enclosed in the panel, especially a gas mainly composed of neon, and the vacuum ultraviolet rays generated at that time cause R, G, By generating the phosphor of B, an image can be displayed.
[0099] 上記のような画像表示装置の分野では、価格低減のため、光学フィルム原反の打 ち抜き、そして選別、貼り合わせまでの処理工程を一貫して行うインハウス製造が求 められている。光学フィルムの後加工 (切断)力もセルへの貼り合わせまでを一貫生 産するインハウス製造法では、その不良エリアを即座に測定する必要がある。本発明 において、カットされた偏光板がそのままディスプレイに使用される場合、チップカット された偏光フィルムの大きさは任意である力 一般には縦が 10cm〜130cm、横が 1 0cm〜130cmのものが用いられる。特にディスプレイの大きさにお 、て上限はな!/ヽ 1S 現状作ることのできる透明保護フィルムや、 PVAフィルム等の偏光フィルム用の 基材幅に依存する。したがって、従来はチップカット後に検査工程が必要であり、検 查工程において不良品を除外していた力 本発明では偏光フィルムの面内均一性を 高めたため、チップカット後に検査工程やそのための運送工程、梱包工程、開梱ェ 程を経ることなぐ液晶表示素子や EL表示素子等の画像表示素子に貼り合わせる 工程を 1ラインで行うことができる。 [0099] In the field of image display devices as described above, there is a demand for in-house manufacturing in which the processing steps from punching of the raw optical film to selection and bonding are consistently performed in order to reduce costs. I have. In the in-house manufacturing method, in which the post-processing (cutting) force of the optical film is also integrated until it is bonded to the cell, it is necessary to measure the defective area immediately. In the present invention, when the cut polarizing plate is used as it is for a display, a chip cut The size of the polarizing film is arbitrary. Generally, a film having a length of 10 cm to 130 cm and a width of 10 cm to 130 cm is used. In particular, there is no upper limit to the size of the display! / ヽ 1S It depends on the width of the base material for polarizing films such as transparent protective films and PVA films that can be made at present. Therefore, conventionally, an inspection process was required after the chip cut, and the power of eliminating defective products in the inspection process. In the present invention, the in-plane uniformity of the polarizing film was enhanced. It is possible to perform a single-line bonding and packaging process and a process of bonding to an image display device such as an EL display device without going through an unpacking process.
[0100] つぎに、実施例および比較例を用いて本発明をさらに具体的に説明する。ただし、 本発明は、これら実施例および比較例によって限定されるものではない。 [0100] Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited by these Examples and Comparative Examples.
実施例 1  Example 1
[0101] 厚さ 75 μ m、原反フィルム幅 200mmのポリビュルアルコール(PVA)フィルム ( (株 )クラレ製、重合度 2400)を用いて、膨潤、染色、架橋、延伸、水洗および乾燥処理 工程を経て、厚さ 25 μ mの偏光フィルムを得た。  [0101] Swelling, dyeing, cross-linking, stretching, washing with water, and drying using a polybutyl alcohol (PVA) film (thickness: 75 μm, raw film width: 200 mm, Kuraray Co., Ltd., degree of polymerization: 2400) After that, a polarizing film having a thickness of 25 μm was obtained.
各処理における条件は下記のとおりである。  The conditions in each process are as follows.
[0102] (膨潤処理工程)  [0102] (Swelling treatment step)
前記フィルムに対し、 30°Cの純水中で曲率 R=8. 3% (端部の直径(Dl) = 55m m、中央部の直径(D2) =80mm、長さ(L) = 300mm)のクラウンロールを浴中の出 口付近のロールとして用いて、 TD方向へ 1. 20倍および MD方向へ 2. 5倍の延伸 を行った。この処理工程出口におけるフィルム幅は 240mmであった。  Curvature R = 8.3% in pure water at 30 ° C with respect to the film (end diameter (Dl) = 55 mm, center diameter (D2) = 80 mm, length (L) = 300 mm) The crown roll was used as a roll near the outlet in the bath, and stretched 1.20 times in the TD direction and 2.5 times in the MD direction. The film width at the outlet of this processing step was 240 mm.
[0103] (染色処理工程)  [0103] (Dyeing process)
前記フィルムを、 30°Cの 5重量%ヨウ素水溶液 (IZKI (重量比) = 1Z10) )中で 12 0秒間染色 (染色時間は偏光フィルムの単体透過率が 43 ±0. 1%になるように調整 )した。  The film is dyed in a 5% by weight iodine aqueous solution (IZKI (weight ratio) = 1Z10) at 30 ° C. for 120 seconds (the dyeing time is adjusted so that the single transmittance of the polarizing film becomes 43 ± 0.1%). It was adjusted.
[0104] (架橋処理工程)  [0104] (Cross-linking treatment step)
前記フィルムを、 3重量%ホウ酸 + 2重量%KIの水溶液(30°C)中に 60秒間浸漬し た。  The film was immersed in a 3% by weight boric acid + 2% by weight KI aqueous solution (30 ° C.) for 60 seconds.
[0105] (延伸処理工程) 前記フィルムを、 4重量%ホウ酸 + 3重量%KIの水溶液 (60°C)中で、総延伸倍率 5. 5倍まで延伸した。 (Stretching process) The film was stretched in a 4% by weight boric acid + 3% by weight KI aqueous solution (60 ° C.) to a total stretch ratio of 5.5.
[0106] (水洗処理工程) [0106] (Washing treatment step)
前記フィルムを、 5重量%KI水溶液(25°C)中に 15秒間浸漬した。  The film was immersed in a 5% by weight KI aqueous solution (25 ° C.) for 15 seconds.
[0107] (乾燥処理工程) (Drying process)
前記フィルムを、張力を保持したまま 50°Cで 1分間乾燥した。  The film was dried at 50 ° C. for 1 minute while maintaining the tension.
[0108] このようにして得られた偏光フィルム(幅 115mm)の単体透過率および偏光度を測 定し、ムラを評価した。これらの測定結果を下記表 1に示す。前記単体透過率の測定 、偏光度の測定およびムラの評価 (他の実施例および比較例も含む)は、後述の方 法で行った。 [0108] The single film transmittance and the degree of polarization of the polarizing film (width 115 mm) thus obtained were measured to evaluate unevenness. The results of these measurements are shown in Table 1 below. The measurement of the single transmittance, the measurement of the degree of polarization, and the evaluation of unevenness (including other examples and comparative examples) were performed by the methods described below.
実施例 2  Example 2
[0109] 実施例 1の膨潤処理工程において、曲率 R= 15% (DlZD2 = 55mmZlOOmm 、 L= 300mm)のクラウンロールを実施例 1と同 Cf立置に用いて、 TD方向に 1. 26倍 延伸し、フィルム幅が 252mmとなったこと以外は、実施例 1と同様にして偏光フィル ムを得た。得られた偏光フィルム(幅 121mm)の単体透過率および偏光度を測定し、 ムラを評価した。これらの測定結果を下記表 1に示す。  [0109] In the swelling process of Example 1, a crown roll having a curvature of R = 15% (DlZD2 = 55mmZlOOmm, L = 300mm) was used in the same Cf standing as in Example 1, and stretched 1.26 times in the TD direction. Then, a polarizing film was obtained in the same manner as in Example 1, except that the film width was changed to 252 mm. The single transmittance and the degree of polarization of the obtained polarizing film (width 121 mm) were measured to evaluate unevenness. The results of these measurements are shown in Table 1 below.
実施例 3  Example 3
[0110] 実施例 1の膨潤処理工程において、曲率 R= 21. 7% (D1/D2 = 70mm/140 mm、 L = 300mm)のクラウンロールを実施例 1と同じ位置に用いて、 TD方向に 1. 3 3倍延伸し、フィルム幅が 265mmとなったこと以外は、実施例 1と同様にして偏光フィ ルムを得た。得られた偏光フィルム(幅 127mm)の単体透過率および偏光度を測定 し、ムラを評価した。これらの測定結果を下記表 1に示す。  In the swelling process of Example 1, a crown roll having a curvature R = 21.7% (D1 / D2 = 70 mm / 140 mm, L = 300 mm) was used at the same position as in Example 1, and in the TD direction. A polarizing film was obtained in the same manner as in Example 1 except that the film was stretched 1.3 times and the film width became 265 mm. The single transmittance and degree of polarization of the obtained polarizing film (127 mm width) were measured to evaluate unevenness. The results of these measurements are shown in Table 1 below.
実施例 4  Example 4
[0111] 実施例 1の膨潤処理工程において、曲率 R= 31. 7% (D1/D2 = 55mm/150 mm、 L = 300mm)のクラウンロールを実施例 1と同じ位置に用いて、 TD方向に 1. 3 8倍延伸し、フィルム幅が 275mmとなったこと以外は、実施例 1と同様にして偏光フィ ルムを得た。得られた偏光フィルム(幅 132mm)の単体透過率および偏光度を測定 し、ムラを評価した。これらの測定結果を下記表 1に示す。 [0112] (比較例 1) [0111] In the swelling process of Example 1, a crown roll having a curvature R = 31.7% (D1 / D2 = 55mm / 150mm, L = 300mm) was used at the same position as in Example 1, and in the TD direction. A polarizing film was obtained in the same manner as in Example 1, except that the film was stretched 1.3 times and the film width became 275 mm. The single transmittance and the degree of polarization of the obtained polarizing film (132 mm width) were measured to evaluate unevenness. The results of these measurements are shown in Table 1 below. [0112] (Comparative Example 1)
実施例 1の膨潤処理工程において、曲率 R=0% (DlZD2 = 55mmZ55mm、 L = 300mm)のロールを用いて、 TD方向に延伸せず、他は実施例 1と同様にして偏 光フィルムを得た。膨潤処理工程後のフィルム幅は 220mmであった。得られた偏光 フィルム(幅 106mm)の単体透過率および偏光度を測定し、ムラを評価した。これら の測定結果を下記表 1に示す。  In the swelling process of Example 1, a polarizing film was obtained in the same manner as in Example 1 except that the film was not stretched in the TD direction using a roll having a curvature of R = 0% (DlZD2 = 55 mmZ55 mm, L = 300 mm). Was. The film width after the swelling process was 220 mm. The single transmittance and the degree of polarization of the obtained polarizing film (106 mm in width) were measured to evaluate unevenness. The results of these measurements are shown in Table 1 below.
[0113] (曲率算出方法) [0113] (Method of calculating curvature)
クラウンロールの曲率 Rは下記式により求めた。  The curvature R of the crown roll was determined by the following equation.
R[%] = ( (D2-D1) /L) X 100  R [%] = ((D2-D1) / L) X 100
上記式において、 D1は端部の直径 [mm]、 D2は中央部の直径 [mm]、 Lは長さ [m m]を表す。  In the above formula, D1 represents the diameter [mm] of the end, D2 represents the diameter [mm] of the center, and L represents the length [mm].
[0114] (単体透過率、偏光度測定方法) [0114] (Single transmittance, degree of polarization measurement method)
前記実施例または比較例で作製した偏光フィルムを、 MD方向に対して 45° となる ように 50mm X 25mmの大きさで切断し、分光光度計 (村上色彩技術研究所製: DO T 3)を用いて、単体透過率、平行透過率 (H )および直交透過率 (H )を測定し、  The polarizing film produced in the above example or comparative example was cut at a size of 50 mm × 25 mm at 45 ° with respect to the MD direction, and a spectrophotometer (Murakami Color Research Laboratory: DOT 3) was cut. Measure the single transmittance, parallel transmittance (H) and orthogonal transmittance (H) using
0 90 その値から下記式により偏光度を求めた。なお、これらの透過率は、 J1S Z 8701の 2度視野 (C光源)により、視感度補正を行った Y値である。  The degree of polarization was determined from the value by the following equation. Note that these transmittances are Y values obtained by performing visibility correction using a 2-degree visual field (C light source) of J1S Z8701.
偏光度 (%) = { (H— H ) / (H +H ) }1 2 X 100 Degree of polarization (%) = {(H—H) / (H + H)} 1 2 X 100
0 90 0 90  0 90 0 90
[0115] (ムラ評価方法)  [0115] (Mura evaluation method)
作製した偏光フィルムの両面に厚さ 80 μ mのトリアセチルセルロース(TAC)フィル ムを貼りあわせ、偏光板とした後、 50mm X 50mmの大きさで 2枚切り出した。その偏 光板を MD方向が直交するように重ねた上で、照度 lOOOOcdZm2のバックライト上 に置き、目視にて正面および斜め方向における縞状ムラの有無を確認した。その結 果、ムラのあるものを X、ないものを〇とした。 An 80 μm-thick triacetylcellulose (TAC) film was adhered to both sides of the prepared polarizing film to form a polarizing plate, and two pieces of 50 mm × 50 mm were cut out. The polarizing plate on the superposed as MD direction perpendicular, placed on the backlight illuminance LOOOOcdZm 2, to confirm the presence or absence of striped unevenness in frontal and oblique directions visually. As a result, X was given when there was unevenness, and Δ when there was no unevenness.
[0116] [表 1]
Figure imgf000030_0001
[0116] [Table 1]
Figure imgf000030_0001
[0117] 上記表 1の結果より、従来の製造方法 (比較例 1)では、ムラが確認されたが、それ に対して実施例では、曲率が 3%以上のクラウンロールを用いたことによって、光学 特性が良好で、ムラがなぐ幅広の偏光フィルムを得られることがわかる。 [0117] From the results in Table 1 above, unevenness was confirmed in the conventional manufacturing method (Comparative Example 1). In contrast, in the example, the crown roll having a curvature of 3% or more was used. It can be seen that a wide polarizing film with good optical characteristics and no unevenness can be obtained.
産業上の利用可能性  Industrial applicability
[0118] 本発明の製造方法により得られた偏光フィルムは、大きなサイズであっても、面内均 一性が良好でムラがなぐ光学特性に優れる。したがって、本発明の製造方法により 得られた偏光フィルムは、例えば、液晶表示装置、 EL表示装置、 PDおよび FED等 の各種画像表示装置に好ましく使用されるが、その用途は限定されず、広く使用され る。 [0118] The polarizing film obtained by the production method of the present invention has good in-plane uniformity and excellent optical characteristics without unevenness even if it is large in size. Therefore, the polarizing film obtained by the production method of the present invention is preferably used for various image display devices such as a liquid crystal display device, an EL display device, a PD and a FED, but its use is not limited and is widely used. Is performed.

Claims

請求の範囲 The scope of the claims
[1] 偏光フィルムの製造方法であって、膨潤工程、染色工程、架橋工程、延伸工程お よび水洗工程力もなる群力 選択される少なくとも一つの工程において、ポリマーフィ ルムを処理液中に浸漬するとともに TD方向に延伸する TD方向延伸工程を有し、前 記 TD方向延伸工程は、曲率が 3%以上のクラウンロールを用いて TD方向に延伸す る工程である製造方法。  [1] A method for producing a polarizing film, wherein a swelling step, a dyeing step, a cross-linking step, a stretching step, and a washing step are performed in at least one selected step. And a TD direction stretching step for stretching in the TD direction. The TD direction stretching step is a step of stretching in the TD direction using a crown roll having a curvature of 3% or more.
[2] 前記クラウンロールの曲率が 3%以上 35%以下である請求項 1記載の製造方法。 2. The production method according to claim 1, wherein the curvature of the crown roll is 3% or more and 35% or less.
[3] 少なくとも架橋工程よりも前の工程において、前記 TD方向延伸工程を実施する請 求項 1記載の製造方法。 [3] The production method according to claim 1, wherein the TD direction stretching step is performed at least in a step before the crosslinking step.
[4] 前記膨潤工程において、前記 TD方向延伸工程を実施する請求項 1記載の製造方 法。 [4] The production method according to claim 1, wherein in the swelling step, the TD direction stretching step is performed.
[5] TD方向の延伸倍率が、 1. 13〜: L 4倍の範囲である請求項 4記載の製造方法。  [5] The production method according to claim 4, wherein the stretching ratio in the TD direction is in the range of 1.13 to L4 times.
[6] 前記ポリマーフィルムの幅の長さよりも長いロール長のクラウンロールを使用する請 求項 1記載の製造方法。  [6] The method according to claim 1, wherein a crown roll having a roll length longer than the width of the polymer film is used.
[7] 請求項 1記載の製造方法によって得られた偏光フィルム。 [7] A polarizing film obtained by the production method according to claim 1.
[8] 偏光度が 99. 80%以上である請求項 7記載の偏光フィルム。 [8] The polarizing film according to claim 7, wherein the degree of polarization is 99.80% or more.
[9] 請求項 7記載の偏光フィルムに少なくとも 1層の光学層を積層した光学フィルム。 [9] An optical film obtained by laminating at least one optical layer on the polarizing film according to claim 7.
[10] 請求項 7記載の偏光フィルム若しくは請求項 9記載の光学フィルムを有する画像表 示装置。 [10] An image display device comprising the polarizing film according to claim 7 or the optical film according to claim 9.
PCT/JP2005/005734 2004-03-30 2005-03-28 Process for producing polarizing film, polarizing film obtained thereby and image display unit utilizing the same WO2005096039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004099174A JP2005284047A (en) 2004-03-30 2004-03-30 Method for manufacturing polarizing film, polarizing film and image display device using the same
JP2004-099174 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005096039A1 true WO2005096039A1 (en) 2005-10-13

Family

ID=35063926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005734 WO2005096039A1 (en) 2004-03-30 2005-03-28 Process for producing polarizing film, polarizing film obtained thereby and image display unit utilizing the same

Country Status (3)

Country Link
JP (1) JP2005284047A (en)
TW (1) TW200606470A (en)
WO (1) WO2005096039A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6893292B1 (en) * 2020-12-15 2021-06-23 住友化学株式会社 Polarizing film manufacturing method and manufacturing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021044916A1 (en) * 2019-09-05 2021-03-11

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078208A (en) * 2002-08-02 2004-03-11 Nitto Denko Corp Method for manufacturing polarizing film, polarizing film using the same and optical film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078208A (en) * 2002-08-02 2004-03-11 Nitto Denko Corp Method for manufacturing polarizing film, polarizing film using the same and optical film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6893292B1 (en) * 2020-12-15 2021-06-23 住友化学株式会社 Polarizing film manufacturing method and manufacturing equipment

Also Published As

Publication number Publication date
JP2005284047A (en) 2005-10-13
TW200606470A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP3957700B2 (en) Manufacturing method of polarizing film
US7815972B2 (en) Method for manufacturing polarizing film and polarizing film and optical film manufactured by using the method
JP4827226B2 (en) Manufacturing method of polarizing plate, polarizing plate and image display apparatus using the same
US7968143B2 (en) Method for manufacturing polarizing film, polarizing film obtained by the method, and image display apparatus using the polarizing film
JP2010152374A (en) Polarizer, optical film using the same, and image display device using them
JP3921155B2 (en) Manufacturing method of polarizing plate
JP2003279748A (en) Polarization film and image display
JP2004184809A (en) Method for manufacturing polarizing plate, polarizing plate, and image display device using the same
WO2006077920A1 (en) Method for producing polarizing plate, polarizing plate, optical film and image display employing them
KR100861157B1 (en) Method For Producing Polarizing Film, Polarizing Film and Image Display Using Same
WO2005101068A1 (en) Optical member, method for producing same, and image display employing same
JP4198559B2 (en) Method for producing polarizing film, and polarizing film and optical film using the same
JP2006023573A (en) Manufacturing method of polarizing plate, polarizing plate, and image display apparatus using polarizing plate
JP4975236B2 (en) Polarizer, optical film using the same, and image display device using the same
JP2004093993A (en) Polarizer, optical film using the same, and liquid crystal display using the same as well as electroluminescence display
JP2005266325A (en) Method for manufacturing polarizing film, polarizing film, optical film using same, and image display device
JP4546017B2 (en) Polarizer, polarizing plate and image display device
JP2003307625A (en) Polarizer, polarizing plate, liquid crystal display device, image display device and method for manufacturing polarizer
JP4516391B2 (en) Polarizing film manufacturing method and polarizing film manufacturing apparatus
JP2005266326A (en) Method for manufacturing polarizing film, polarizing film, optical film using the same and image display device
WO2005096039A1 (en) Process for producing polarizing film, polarizing film obtained thereby and image display unit utilizing the same
JP2004338110A (en) Polarizer and its manufacturing method, polarizing plate, optical film and image display device
JP2004125817A (en) Polarizing film, polarizing plate, compensation polarizing plate, display device, and in-house manufacturing method
JP2004125816A (en) Method of manufacturing polarizing film, polarizing plate, compensation polarizing plate and display device, and in-house manufacturing method
JP2005099548A (en) Method for manufacturing polarizing film, polarizing film, and image display device using same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12006502365

Country of ref document: PH

122 Ep: pct application non-entry in european phase