WO2005095696A1 - Strengthening materials, strengthening laminates, and composites comprising these strengthening materials - Google Patents

Strengthening materials, strengthening laminates, and composites comprising these strengthening materials Download PDF

Info

Publication number
WO2005095696A1
WO2005095696A1 PCT/EP2005/003369 EP2005003369W WO2005095696A1 WO 2005095696 A1 WO2005095696 A1 WO 2005095696A1 EP 2005003369 W EP2005003369 W EP 2005003369W WO 2005095696 A1 WO2005095696 A1 WO 2005095696A1
Authority
WO
WIPO (PCT)
Prior art keywords
strengthening
singular
thickness
layer
strengthening material
Prior art date
Application number
PCT/EP2005/003369
Other languages
French (fr)
Inventor
Geert Delandsheer
Original Assignee
Saint-Gobain Syncoglas N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Syncoglas N.V. filed Critical Saint-Gobain Syncoglas N.V.
Priority to EP20050716472 priority Critical patent/EP1745169A1/en
Priority to JP2007505499A priority patent/JP2007530810A/en
Priority to US10/599,528 priority patent/US20080032107A1/en
Publication of WO2005095696A1 publication Critical patent/WO2005095696A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/02Pile fabrics or articles having similar surface features
    • D04B1/04Pile fabrics or articles having similar surface features characterised by thread material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24992Density or compression of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Definitions

  • the present invention relates to strengthening materials suitable for use as reinforcement in composites and to strengthening laminates comprising a stack of said strengthening materials.
  • the present invention relates to composites and/or modelled composites comprising said strengthening materials and a gravmethod for the production of composites.
  • the present invention further relates to the use of a knit for the production of composites.
  • Composites or assembled multilayer structures are applied in the production of for instance boats, aircraft, cars, junction boxes, bathtubs, telephone poles, tubes, profiles and so on. Owing to their mechanical strength, relatively light weight, ability to be modelled, stiffness and resistance to for instance corrosion, composites represent an attractive alternative to for instance metal or stone .
  • the layers from which a composite is constructed are generally single layers of plastic', fibre, glass and/or other materials depending on the desired -application.
  • These layers in a composite can be subdivided into for instance layers which are intended to strengthen or reinforce a composite such as strengthening layers, layers intended to provide a composite with the desired thickness or the desired volume, such as thickness-providing layers, and other layers such as covering layers, for instance for an improved protection, wear resistance, surface structure and so on, and/or finishing layers, such as for instance a paint layer or antistatic layer.
  • a number of the above-mentioned functions may also be combined in one layer, such as for instance a strengthening layer which also serves to prevent or reduce wear.
  • Composites, and particularly modelled composites are traditionally manufactured by applying the different singular layers layer by layer, optionally in a mould, until the desired composite is formed.
  • This production method is however harmful to health due to the use of toxic chemicals and due to the vapours released during curing an applied layer.
  • this method is relatively time-consuming and not sufficiently reproducible in that for instance local irregularities may occur and/or cracks in the applied layer, such as for instance during curing.
  • This traditional manufacturing is therefore unable to provide composites of a constant quality.
  • This method is moreover very labour intensive and time- consuming.
  • These strengthening materials comprise at least one singular thickness-providing layer of a knit of glass fibre and at least one strengthening layer connected to the thickness-providing layer, wherein the thickness-providing layer has less weight per surface area than the strengthening layer.
  • These strengthening materials are particularly suitable for use in the production of modelled composites owing to their excellent deformability, locally of more than 100%.
  • a typical production method for providing a composite wherein use is made of the strengthening material according to EP 0 873 441, comprises of arranging the strengthening material in a mould and subsequent modelling thereof by applying for instance a pressure or a vacuum.
  • the final composite is obtained by for instance curing resins, such as for instance polyester resins, which are impregnated in the knit of the thickness-providing layer and/or the strengthening layers either before, or during, or after modelling of the strengthening material.
  • resins such as for instance polyester resins
  • the use of a knit of glass fibre as thickness-providing layer results' in a relatively high weight of the final composite. This is undesirable because, when composites are used as car components, body armour, sporting articles, and aircraft parts, the objective is to obtain the lightest possible composite.
  • a strengthening material suitable for use as reinforcement in composites comprising at least one singular thickness- providing layer in the form of a knit of glass fibre which knit comprises at least one monofilament, and at least one singular strengthening layer connected to the singular thickness-providing layer.
  • the knit according to the present invention has at the same time a greater resistance to pressure or vacuum, so that the strengthening material .retains its thickness to a greater extent during the modelling and/or impregnation when compared to knits solely of glass fibre.
  • greatly improved strength will be provided with the thickness providing layer according to the present invention as compared to a knit of glass fibre of the same weight, thus resulting in a stronger reinforcement material with the same with weight.
  • a better resin transport is obtained by applying the monofilament, whereby the resin will spread more rapidly and more uniformly in the knit.
  • a monofilament In contrast to glass fibre, a monofilament consists of one filament, usually of a plastic material.
  • plastic materials are polyethylene, polyester, polypropylene and polyamide, although other plastic materials are also possible.
  • Preferred plastic materials are polyester and polyethylene, more preferred is polyethylene Compared to glass fibres, monofilaments provide a greater stiffness at an equal or lower specific weight. This has the result that a significant weight-saving can be realized by using monofilaments in the singular thickness- providing layer.
  • the knit of the singular thickness-providing layer such as for instance a flat knit or other type of knit as long as a maximum thickness is provided per weight per surface area, is obtained by processing glass fibre, such as glass filament and/or glass yarn, together with one or more monofilaments to form one cohesive spatial pattern, wherein use is made of knitting techniques which are known in the prior art, such as for instance by making use of the double flatbed knitting technique.
  • the spatial pattern, the density, the composition, the type of monofilament, the type of glass fibres and the knitting technique used depend on the application of the strengthening material according to the present invention. Some considerations determining this ' are the desired density, the desired stiffness, the desired thickness, the desired compression strength, and combinations of these properties.
  • the singular thickness-providing layer of the strengthening material according to the present invention preferably has a thickness of 0.5 to 20 millimetres, such as 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, of 20 millimetres.
  • Optimal results are obtained with a thickness of the singular thickness-providing layer of 1 to 10 millimetres, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 millimetres.
  • the singular thickness-providing layer of the strengthening material according to the present invention preferably has a weight of 25 to 1500 g/m 2 , such as 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, or 1500 g/m 2 . It is recommended that the singular thickness- providing layer of the strengthening material according to the present invention has a weight of 25 to 1000 g/m 2 , such as 50, 74, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 g/m 2 .
  • the singular strengthening layer according to the present invention can be any material which imparts a mechanical strength or a reinforcement to the strengthening material according to the present -invention.
  • examples of such materials are glass fibre, aramid, carbon, basalt, ceramic, twintex, mixtures of glass and thermoplastics, flax, natural fibres, or combinations hereof.
  • the strengthening material according to the present invention is finally obtained by 'Connecting at least one singular strengthening layer to the singular thickness- providing layer. Many techniques are known which can be used to form such a connection between the singular thickness-providing layer and the singular strengthening layer.
  • Prferred examples hereof are knitting techniques such as the Rachel technique, sewing techniques such as are used in stitching machines in the clothing industry, needle punching techniques such as are used in the textile industry for manufacturing needle felt, and/or combinations thereof. It is particularly recommended in the strengthening material according to the present invention that the singular thickness-providing layer has less weight per unit of volume than the singular strengthening layer. The reason for this is that the flexural stiffness of a final composite also depends on the distance between the different layers in a composite, such as for instance the strengthening layers. It is generally the case that the greater this distance, the greater the stiffness of the final composite. In the strengthening material according to the present invention this distance is provided by the singular thickness-providing layer.
  • the strengthening material according to the present invention comprises at least two singular strengthening layers connected to one singular thickness-providing layer in the form of a knit of glass fibre and at least one monofilament, wherein the singular thickness-providing layer is situated between the two singular strengthening layers.
  • This embodiment thus provides a strengthening material comprising a singular strengthening layer - a singular thickness- providing layer - a singular strengthening layer.
  • the advantageous properties of the above described strengthening materials are obtained by a combination of a knit of glass fibre comprising at least one monofilament and at least one strengthening layer. It will be apparent to the person with ordinary skill in the art that these properties are also obtained if a plurality of these strengthening materials are stacked to form a woven fabric or laminate, wherein the singular strengthening materials are mutually connected, using for instance the above described techniques such as knitting techniques, sewing techniques, needle punching techniques and/or combinations thereof, or using adhesion techniques such as chemical adhesion.
  • the present invention therefore also relates to a stacked strengthening material or strengthening laminate, comprising a stack of two or more of the strengthening materials according to the present invention.
  • the above described strengthening materials can be used for the production of composites, which will result in an advantageous lower weight- of these composites.
  • the present invention therefore also relates to a composite, and in particular a modelled composite, comprising a strengthening material as described above.
  • the present invention also relates to a method for the production of these composites, comprising of forming a strengthening material according -to the present invention into a desired shape, impregnating the strengthening material with a resin, and allowing the resin to cure. Owing to the surprising properties, and especially the improved resin transport, of the knit of glass fibre and monofilament in the thickness-providing, layer, the duration of this method is considerably shortened compared to the analogous methods known from the prior art.
  • the present invention also relates to the use of a knit of glass fibre and at least one monofilament for the production of composites .
  • the present invention will be further elucidated with reference to the following examples, which are only given by way of illustration -and are not intended to limit the invention in any way whatsoever.
  • Comparative example 1 A strengthening material was produced consisting of three layers which were mutually connected according to the Rachel technique (for instance with a maliwatt machine from the Karl Mayer company) , wherein use was made of a knitted net (weight 8 g/m 2 ) of fine-textured, polyester filament of 167 dtex.
  • the used middle layer, or thickness-providing layer is a flat knit composed of a glass filament of glass yarn 136 tex.
  • the middle layer or thickness-providing layer has a thickness of about 4 mm and a weight of about 900 g/m 2 .
  • this middle layer or thickness-providing layer Adhered on both sides to..this middle layer or thickness-providing layer was a glass mat (strengthening layer) , consisting of cut glass fibres of 50 mm length and a thickness of 25 tex, and a weight of 500g/m 2 .
  • the total thickness of the obtained strengthening material was about 5 mm.
  • Comparative example 2 In similar manner as described in comparative example 1, a strengthening material was produced consisting of three layers, the middle layer or thickness-providing layer (900 g/m 2 ) of which consisted of a knit of glass filament and glass yarn, and the two outer layers or strengthening layers (450 g/m 2 ) consisted of a glass mat.
  • the total thickness of the obtained strengthening material was about 4.5 mm.
  • Example 1 A strengthening material according to the present invention was produced consisting of three layers mutually connected according to the Rachel technique (for instance with a maliwatt machine from the Karl Mayer company) , wherein use was made of a knitted net (weight 8 g/m 2 ) of fine- textured polyester filament of 1 ' 67 dtex.
  • This strengthening material can be designated as a "sandwich" construction, such as for instance a honeycomb, wherein the middle layer serves as spacer or thickness- providing layer between the two outer layers, the main function of which is to provide strength or reinforcement.
  • the used middle layer or thickness-providing layer is a flat knit composed of a glass filament, glass yarn 136 tex, and a polyethylene filament (PE) , 33 tex monofilament, in a ratio of 136 glass to 33 PE.
  • the middle layer or thickness- providing layer has a thickness of about 4 mm and a weight of about 280 g/m 2 .
  • Adhered on both sides to .this middle layer or thickness-providing layer was a glass mat (strengthening layer) , consisting of cut glass fibres of 50 mm length and a thickness of 25 tex, and a weight of 500 g/m 2 .
  • the obtained strengthening material is deformable and permits stretch of more than 75%.
  • the total thickness of the obtained strengthening material is about 4.8 mm.
  • Example 2 In similar manner as described in example 1, a strengthening material was produced consisting of three layers, the middle layer or thickness-providing layer of which consisted of a knit of glass filament, glass yarn 136 tex, and a polyethylene filament (PE) , 33 tex monofilament, in a ratio of 136 glass to 33 PE.
  • the middle layer or thickness-providing layer has a thickness of about 4 mm and a weight of about 280 g/m 2 .
  • the two outer layers or strengthening layers (450 g/m 2 ) consisted of a glass mat.
  • the total thickness of the obtained strengthening material was about 4.7 mm.
  • Example 3 In similar manner as described in example 1, strengthening materials 3a to 3k according to table 1 were produced consisting of three layers,, the middle layer or thickness-providing layer of whic . consisted of a knit of glass filament, glass yarn 136 tex, and a polyethylene filament (PE) , 36 tex monofilament. All strengthening materials had a glass polyethylene (PE) . ratio of 1 thread glass to 3 or 4 monofilaments polytheylene and a total thickness varying in the range of 4 to 5 mm. The weights of the thickness providing layers and the strengthening layers are depicted in Table 1.
  • Example 4 The thickness under a determined pressure of the strengthening material according to example 1 and comparative example 1 were compared, and it was found that strengthening material according to the present invention displayed about 7% less compression at the same pressure. The strengthening materials were compared under different pressures (vacuum) and the results hereof are shown in table 2. Table 2
  • Table 2 shows that the strengthening material according to the present invention provides a weight-saving of 620 g/m 2 , and in addition provides less compression under pressure, which will result in a thicker composite and a better resin transport. Improved resistance to compression as compared to similar strengthening materials comprising a thickness providing layer of only a glass knit of the same ' weight were obtained using the strengthening materials 3a to 3k according to example 3.
  • Example 5 A composite, in this case a helmet, was manufactured using the so-called "vacuum technique closed mould system".
  • a first film was placed in a mould and the strengthening material according to example 2 and a polyester resin were placed thereon.
  • a second film was then placed on the strengthening material according to example 2 and, after the edges of the first film and the second film were closed, a vacuum was created between the mpuld and the first foil and between the first and the second film. Under the influence of the vacuum the strengthening material was modelled as according to- the shape of the mould and the resin was simultaneously pressed to the outer ends of the strengthening material. After impregnating the resin in the strengthening material, i.e.
  • Table 3 shows that the strengthening material according to the present invention provides at least three advantages: 1) a shorter production time, 2) a stronger composite (900 g/m 2 against 600 g/m 2 strengthening material) with a lower weight (1188 g/m 2 against 1508 g/m 2 ), and 3) a saving of raw materials and hence a cheaper product. Reduced impregnation times as compared to strengthening materials comprising a thickness providing layer of a glass knit of the same weight were obtained using the strengthening materials 3a to 3k according to example 3.
  • Example 6 A composite was manufactured using the so-called "injection technique closed mould system".
  • the strengthening material according to example 2 was placed in a closed mould, in this case a mould for a helmet, with a cavity of 3 mm. After the mould had been closed, polyester resin was injected under pressure. After impregnation of the resin through the thickness-providing layer and into the strengthening layers, a composite in the form of a helmet was obtained after curing.
  • This method was repeated wherein use was made of the strengthening material according to comparative example 2 instead of the strengthening material of example 2. The time required for a full impregnation of both strengthening materials was measured, and this time is shown in table 3.
  • Table 4 shows that the strengthening material according to the present invention provides at least three advantages: 1) a shorter production time, 2) a stronger composite (900 g/m 2 against 600 g/m 2 strengthening material) with a lower weight (1188 g/m 2 against 1508 g/m 2 ), and 3) a saving of raw materials and hence, a cheaper product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Knitting Of Fabric (AREA)

Abstract

The present invention relates to a strengthening material suitable for use as reinforcement in composites, comprising at least one singular thickness-providing layer in the form of a knit of glass fibre and at least one monofilament, and at least one singular strengthening layer connected to the singular thickness-providing layer. In addition, the present invention relates to strengthening laminates comprising these strengthening materials and to composites comprising these strengthening materials and/or strengthening laminates.

Description

STRENGTHENING MATERIALS, STRENGTHENING -LAMINATES, AND COMPOSITES COMPRISING THESE STRENGTHENING MATERIALS
The present invention relates to strengthening materials suitable for use as reinforcement in composites and to strengthening laminates comprising a stack of said strengthening materials. In addition, the present invention relates to composites and/or modelled composites comprising said strengthening materials and a„method for the production of composites. The present invention further relates to the use of a knit for the production of composites. Composites or assembled multilayer structures are applied in the production of for instance boats, aircraft, cars, junction boxes, bathtubs, telephone poles, tubes, profiles and so on. Owing to their mechanical strength, relatively light weight, ability to be modelled, stiffness and resistance to for instance corrosion, composites represent an attractive alternative to for instance metal or stone . The layers from which a composite is constructed are generally single layers of plastic', fibre, glass and/or other materials depending on the desired -application. These layers in a composite can be subdivided into for instance layers which are intended to strengthen or reinforce a composite such as strengthening layers, layers intended to provide a composite with the desired thickness or the desired volume, such as thickness-providing layers, and other layers such as covering layers, for instance for an improved protection, wear resistance, surface structure and so on, and/or finishing layers, such as for instance a paint layer or antistatic layer. A number of the above-mentioned functions may also be combined in one layer, such as for instance a strengthening layer which also serves to prevent or reduce wear. Composites, and particularly modelled composites, are traditionally manufactured by applying the different singular layers layer by layer, optionally in a mould, until the desired composite is formed. This production method is however harmful to health due to the use of toxic chemicals and due to the vapours released during curing an applied layer. In addition, this method is relatively time-consuming and not sufficiently reproducible in that for instance local irregularities may occur and/or cracks in the applied layer, such as for instance during curing. This traditional manufacturing is therefore unable to provide composites of a constant quality. This method is moreover very labour intensive and time- consuming. These problems can be wholly or partially resolved by making use during the production of composites of so-called strengthening materials as described in the European patent EP 0 873 441. These strengthening materials comprise at least one singular thickness-providing layer of a knit of glass fibre and at least one strengthening layer connected to the thickness-providing layer, wherein the thickness-providing layer has less weight per surface area than the strengthening layer. These strengthening materials are particularly suitable for use in the production of modelled composites owing to their excellent deformability, locally of more than 100%. A typical production method for providing a composite, wherein use is made of the strengthening material according to EP 0 873 441, comprises of arranging the strengthening material in a mould and subsequent modelling thereof by applying for instance a pressure or a vacuum. The final composite is obtained by for instance curing resins, such as for instance polyester resins, which are impregnated in the knit of the thickness-providing layer and/or the strengthening layers either before, or during, or after modelling of the strengthening material. There are however a number of drawbacks associated with the use of the strengthening materials as described in EP 0 873 441. Firstly, the use of a knit of glass fibre as thickness-providing layer results' in a relatively high weight of the final composite. This is undesirable because, when composites are used as car components, body armour, sporting articles, and aircraft parts, the objective is to obtain the lightest possible composite. Simply reducing the weight .by • applying a less compact knit of glass fibre in the thickness-providing layer "is no solution here because the thickness-providing layer hereby becomes too thin and/or allows no or little resin transport during modelling and/or impregnation. In addition, this would also cause a reduction in the flexural stiffness of the cured composite laminate. The relatively compact structure of the knit of glass fibre in the thickness-providing layer has the further drawback that the resin transport through this layer proceeds relatively slowly. This has an adverse effect on the duration of the production of a composite. It also limits the type of resin that can be used, since relatively fast-curing resins will already cure before a uniform distribution has been obtained in the strengthening material. It is therefore an object of the present invention to provide a strengthening material which makes it possible to provide relatively light composites and/or modelled composites which are as strong and/or stiff compared to the composites obtained by making use of the strengthening materials known from the prior art. It is a further object of the present invention to provide stronger and/or stiffer composites and/or modelled composites which are stronger and/or stiffer compared to the composites with a comparable weight obtained by making use of the strengthening materials known from the prior art. It is also an object of the present invention to provide a strengthening material which retains its thickness or volume sufficiently during modelling and/or impregnation. It is an additional object of the present invention to provide a strengthening material in which the resin transport takes place relatively more rapidly and more uniformly during impregnation compared to the resin transport in the strengthening materials known from the prior art. It is also an object of the present invention to provide a strengthening material which can be combined with more types of resin than is possible, at this moment compared to the types of resin which can be used in combination with the prior art strengthening materials. The above stated objectives are achieved with a strengthening material suitable for use as reinforcement in composites, comprising at least one singular thickness- providing layer in the form of a knit of glass fibre which knit comprises at least one monofilament, and at least one singular strengthening layer connected to the singular thickness-providing layer. By using a knit of glass fibre comprising a monofilament it is possible to achieve a considerable weight- saving in comparison with the use of a knit solely of glass fibre. The knit according to the present invention has at the same time a greater resistance to pressure or vacuum, so that the strengthening material .retains its thickness to a greater extent during the modelling and/or impregnation when compared to knits solely of glass fibre. As a consequence, greatly improved strength will be provided with the thickness providing layer according to the present invention as compared to a knit of glass fibre of the same weight, thus resulting in a stronger reinforcement material with the same with weight. In addition, a better resin transport is obtained by applying the monofilament, whereby the resin will spread more rapidly and more uniformly in the knit. In contrast to glass fibre, a monofilament consists of one filament, usually of a plastic material. Examples of such plastic materials are polyethylene, polyester, polypropylene and polyamide, although other plastic materials are also possible. Preferred plastic materials are polyester and polyethylene, more preferred is polyethylene Compared to glass fibres, monofilaments provide a greater stiffness at an equal or lower specific weight. This has the result that a significant weight-saving can be realized by using monofilaments in the singular thickness- providing layer. The knit of the singular thickness-providing layer, such as for instance a flat knit or other type of knit as long as a maximum thickness is provided per weight per surface area, is obtained by processing glass fibre, such as glass filament and/or glass yarn, together with one or more monofilaments to form one cohesive spatial pattern, wherein use is made of knitting techniques which are known in the prior art, such as for instance by making use of the double flatbed knitting technique. The spatial pattern, the density, the composition, the type of monofilament, the type of glass fibres and the knitting technique used depend on the application of the strengthening material according to the present invention. Some considerations determining this' are the desired density, the desired stiffness, the desired thickness, the desired compression strength, and combinations of these properties. The singular thickness-providing layer of the strengthening material according to the present invention preferably has a thickness of 0.5 to 20 millimetres, such as 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, of 20 millimetres. Optimal results are obtained with a thickness of the singular thickness-providing layer of 1 to 10 millimetres, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 millimetres. In addition, the singular thickness-providing layer of the strengthening material according to the present invention preferably has a weight of 25 to 1500 g/m2, such as 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, or 1500 g/m2. It is recommended that the singular thickness- providing layer of the strengthening material according to the present invention has a weight of 25 to 1000 g/m2, such as 50, 74, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 g/m2. The singular strengthening layer according to the present invention, usually in the form of a non-woven, a woven fabric or a membrane, can be any material which imparts a mechanical strength or a reinforcement to the strengthening material according to the present -invention. Examples of such materials are glass fibre, aramid, carbon, basalt, ceramic, twintex, mixtures of glass and thermoplastics, flax, natural fibres, or combinations hereof. The strengthening material according to the present invention is finally obtained by 'Connecting at least one singular strengthening layer to the singular thickness- providing layer. Many techniques are known which can be used to form such a connection between the singular thickness-providing layer and the singular strengthening layer. Prferred examples hereof are knitting techniques such as the Rachel technique, sewing techniques such as are used in stitching machines in the clothing industry, needle punching techniques such as are used in the textile industry for manufacturing needle felt, and/or combinations thereof. It is particularly recommended in the strengthening material according to the present invention that the singular thickness-providing layer has less weight per unit of volume than the singular strengthening layer. The reason for this is that the flexural stiffness of a final composite also depends on the distance between the different layers in a composite, such as for instance the strengthening layers. It is generally the case that the greater this distance, the greater the stiffness of the final composite. In the strengthening material according to the present invention this distance is provided by the singular thickness-providing layer. Partly with a view to the weight of the final composite, it is therefore advantageous if this thickness-providing layer provides the greatest possible thickness at the lowest possible eight. According to a preferred embodiment, the strengthening material according to the present invention comprises at least two singular strengthening layers connected to one singular thickness-providing layer in the form of a knit of glass fibre and at least one monofilament, wherein the singular thickness-providing layer is situated between the two singular strengthening layers. This embodiment thus provides a strengthening material comprising a singular strengthening layer - a singular thickness- providing layer - a singular strengthening layer. This construction of the- strengthening material according to the present invention provides the advantage that composites can be manufactured in one step which combine great strength with a low weight. The advantageous properties of the above described strengthening materials are obtained by a combination of a knit of glass fibre comprising at least one monofilament and at least one strengthening layer. It will be apparent to the person with ordinary skill in the art that these properties are also obtained if a plurality of these strengthening materials are stacked to form a woven fabric or laminate, wherein the singular strengthening materials are mutually connected, using for instance the above described techniques such as knitting techniques, sewing techniques, needle punching techniques and/or combinations thereof, or using adhesion techniques such as chemical adhesion. The present invention therefore also relates to a stacked strengthening material or strengthening laminate, comprising a stack of two or more of the strengthening materials according to the present invention. The above described strengthening materials can be used for the production of composites, which will result in an advantageous lower weight- of these composites. The present invention therefore also relates to a composite, and in particular a modelled composite, comprising a strengthening material as described above. The present invention also relates to a method for the production of these composites, comprising of forming a strengthening material according -to the present invention into a desired shape, impregnating the strengthening material with a resin, and allowing the resin to cure. Owing to the surprising properties, and especially the improved resin transport, of the knit of glass fibre and monofilament in the thickness-providing, layer, the duration of this method is considerably shortened compared to the analogous methods known from the prior art. For reasons already stated above, the present invention also relates to the use of a knit of glass fibre and at least one monofilament for the production of composites . The present invention will be further elucidated with reference to the following examples, which are only given by way of illustration -and are not intended to limit the invention in any way whatsoever.
EXAMPLES
Comparative example 1 A strengthening material was produced consisting of three layers which were mutually connected according to the Rachel technique (for instance with a maliwatt machine from the Karl Mayer company) , wherein use was made of a knitted net (weight 8 g/m2) of fine-textured, polyester filament of 167 dtex. The used middle layer, or thickness-providing layer, is a flat knit composed of a glass filament of glass yarn 136 tex. The middle layer or thickness-providing layer has a thickness of about 4 mm and a weight of about 900 g/m2. Adhered on both sides to..this middle layer or thickness-providing layer was a glass mat (strengthening layer) , consisting of cut glass fibres of 50 mm length and a thickness of 25 tex, and a weight of 500g/m2. The total weight of the strengthening material expressed in weight/m2 is 500 + 900 + 500 + 8 = 1908 g/m2. The total thickness of the obtained strengthening material was about 5 mm.
Comparative example 2 In similar manner as described in comparative example 1, a strengthening material was produced consisting of three layers, the middle layer or thickness-providing layer (900 g/m2) of which consisted of a knit of glass filament and glass yarn, and the two outer layers or strengthening layers (450 g/m2) consisted of a glass mat. The total weight of the strengthening material expressed in weight/m2 is 300 + 900 + 300 + 8 = 1508 g/m2. The total thickness of the obtained strengthening material was about 4.5 mm.
Example 1 A strengthening material according to the present invention was produced consisting of three layers mutually connected according to the Rachel technique (for instance with a maliwatt machine from the Karl Mayer company) , wherein use was made of a knitted net (weight 8 g/m2) of fine- textured polyester filament of 1'67 dtex. This strengthening material can be designated as a "sandwich" construction, such as for instance a honeycomb, wherein the middle layer serves as spacer or thickness- providing layer between the two outer layers, the main function of which is to provide strength or reinforcement. The used middle layer or thickness-providing layer is a flat knit composed of a glass filament, glass yarn 136 tex, and a polyethylene filament (PE) , 33 tex monofilament, in a ratio of 136 glass to 33 PE. The middle layer or thickness- providing layer has a thickness of about 4 mm and a weight of about 280 g/m2. Adhered on both sides to .this middle layer or thickness-providing layer was a glass mat (strengthening layer) , consisting of cut glass fibres of 50 mm length and a thickness of 25 tex, and a weight of 500 g/m2. The obtained strengthening material is deformable and permits stretch of more than 75%. The total weight of the strengthening material expressed in weight/m2 is 500 + 280 + 500 + 8 = 1288 g/m2. The total thickness of the obtained strengthening material is about 4.8 mm.
Example 2 In similar manner as described in example 1, a strengthening material was produced consisting of three layers, the middle layer or thickness-providing layer of which consisted of a knit of glass filament, glass yarn 136 tex, and a polyethylene filament (PE) , 33 tex monofilament, in a ratio of 136 glass to 33 PE. The middle layer or thickness-providing layer has a thickness of about 4 mm and a weight of about 280 g/m2. The two outer layers or strengthening layers (450 g/m2) consisted of a glass mat. The total weight of the strengthening material expressed in weight/m2 is 450 + 280 + 450 + 8 = 1188 g/m2. The total thickness of the obtained strengthening material was about 4.7 mm. Example 3 In similar manner as described in example 1, strengthening materials 3a to 3k according to table 1 were produced consisting of three layers,, the middle layer or thickness-providing layer of whic . consisted of a knit of glass filament, glass yarn 136 tex, and a polyethylene filament (PE) , 36 tex monofilament. All strengthening materials had a glass polyethylene (PE). ratio of 1 thread glass to 3 or 4 monofilaments polytheylene and a total thickness varying in the range of 4 to 5 mm. The weights of the thickness providing layers and the strengthening layers are depicted in Table 1.
Table 1
Figure imgf000013_0001
Example 4 The thickness under a determined pressure of the strengthening material according to example 1 and comparative example 1 were compared, and it was found that strengthening material according to the present invention displayed about 7% less compression at the same pressure. The strengthening materials were compared under different pressures (vacuum) and the results hereof are shown in table 2. Table 2
Figure imgf000014_0001
Table 2 shows that the strengthening material according to the present invention provides a weight-saving of 620 g/m2, and in addition provides less compression under pressure, which will result in a thicker composite and a better resin transport. Improved resistance to compression as compared to similar strengthening materials comprising a thickness providing layer of only a glass knit of the same' weight were obtained using the strengthening materials 3a to 3k according to example 3.
Example 5 A composite, in this case a helmet, was manufactured using the so-called "vacuum technique closed mould system". In summary, a first film was placed in a mould and the strengthening material according to example 2 and a polyester resin were placed thereon. A second film was then placed on the strengthening material according to example 2 and, after the edges of the first film and the second film were closed, a vacuum was created between the mpuld and the first foil and between the first and the second film. Under the influence of the vacuum the strengthening material was modelled as according to- the shape of the mould and the resin was simultaneously pressed to the outer ends of the strengthening material. After impregnating the resin in the strengthening material, i.e. through the thickness- providing layer and into the strengthening layers, and after curing of the resin, a modelled composite was obtained in the form of a helmet. This method was repeated wherein use was made of the strengthening material according to comparative example 2 instead of the strengthening material of example 2. The time required for a full impregnation of both strengthening materials was measured, and this is shown in table 3.
Table 3
Figure imgf000015_0001
Table 3 shows that the strengthening material according to the present invention provides at least three advantages: 1) a shorter production time, 2) a stronger composite (900 g/m2 against 600 g/m2 strengthening material) with a lower weight (1188 g/m2 against 1508 g/m2), and 3) a saving of raw materials and hence a cheaper product. Reduced impregnation times as compared to strengthening materials comprising a thickness providing layer of a glass knit of the same weight were obtained using the strengthening materials 3a to 3k according to example 3.
Example 6 A composite was manufactured using the so-called "injection technique closed mould system". In summary, the strengthening material according to example 2 was placed in a closed mould, in this case a mould for a helmet, with a cavity of 3 mm. After the mould had been closed, polyester resin was injected under pressure. After impregnation of the resin through the thickness-providing layer and into the strengthening layers, a composite in the form of a helmet was obtained after curing. This method was repeated wherein use was made of the strengthening material according to comparative example 2 instead of the strengthening material of example 2. The time required for a full impregnation of both strengthening materials was measured, and this time is shown in table 3.
Table 4
Figure imgf000016_0001
Table 4 shows that the strengthening material according to the present invention provides at least three advantages: 1) a shorter production time, 2) a stronger composite (900 g/m2 against 600 g/m2 strengthening material) with a lower weight (1188 g/m2 against 1508 g/m2), and 3) a saving of raw materials and hence, a cheaper product.

Claims

1. Strengthening material suitable for use- as reinforcement in composites, comprising at least one singular thickness-providing layer in the form of a knit of glass fibre which knit comprises at least one monofilament, and at least one singular strengthening layer connected to the singular thickness-providing layer.
2. Strengthening material as claimed in claim 1, wherein the monofilament is chosen from the group consisting of polyethylene, polyester, polypropylene, polyamide, synthetic materials and combinations thereof.
3. Strengthening material as claimed in claim 1 or 2, wherein the singular thickness-providing layer has a thickness of 0.5 up to and including 20 millimetres.
4. Strengthening material as claimed in any of the claims 1-3, wherein the singular thickness-providing layer has a thickness of 1 up to and including 10 millimetres.
5. Strengthening material as claimed in any of the claims 1-4, wherein the singular thickness-providing layer has a weight of 25 up to and including 1500 g/m2.
6. Strengthening material as claimed in any of the claims 1-5, wherein the singular thickness-providing layer has a weight of 50 up to and including 1000 g/m2.
7. Strengthening material as claimed in any of the claims 1-6, wherein the singular strengthening layer is chosen from the group consisting of glass fibre, aramid, carbon, basalt, ceramic, twintex, mixtures of glass and thermoplastics, flax, natural fibres, and combinations thereof.
8. Strengthening material- as claimed in any of the claims 1-7, wherein the singular strengthening layer is a non-woven, a woven fabric or a membrane.
9. Strengthening material as claimed in any of the claims 1-8, wherein the singular thickness-providing layer has less weight per unit of volume than the singular strengthening layer.
10. Strengthening material as claimed in any of the claims 1-9, wherein the singular thickness-providing layer and the singular strengthening layer .are mutually connected by knitting techniques, sewing techniques, needle punching techniques and/or combinations thereof.
11. Strengthening material as claimed in any of the claims 1-10, comprising at least two- singular strengthening layers connected to one singular thickness-providing layer in the form of a knit of glass fibre and at least one monofilament, wherein the singular thickness-providing layer is situated between the two singular strengthening layers.
12. Strengthening laminate comprising a stack of two or more of the strengthening materials as claimed in any of the claims 1-11.
13. Composite comprising a strengthening material according to any of the claims 1-11 or a strengthening laminate according to claim 12.
14. Method for the production of composites, comprising of forming a strengthening material according to any of the claims 1-11 or a strengthening laminate • according to claim 12 into a desired shape, impregnating the
> strengthening material with a resin, and allowing the resin to cure.
15. Use of a knit of glass fibre comprising at least one polymeric monofilament for the production of composites.
PCT/EP2005/003369 2004-03-30 2005-03-29 Strengthening materials, strengthening laminates, and composites comprising these strengthening materials WO2005095696A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20050716472 EP1745169A1 (en) 2004-03-30 2005-03-29 Strengthening materials, strengthening laminates, and composites comprising these strengthening materials
JP2007505499A JP2007530810A (en) 2004-03-30 2005-03-29 Reinforcing materials, reinforcing laminates, and composite materials having these
US10/599,528 US20080032107A1 (en) 2004-03-30 2005-03-29 Strengthening Materials, Strengthening Laminates, and Composites Comprising These Strengthening Materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1025846A NL1025846C2 (en) 2004-03-30 2004-03-30 Reinforcement materials, reinforcement blankets, and composites comprising these reinforcement materials.
NL1025846 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005095696A1 true WO2005095696A1 (en) 2005-10-13

Family

ID=34963335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003369 WO2005095696A1 (en) 2004-03-30 2005-03-29 Strengthening materials, strengthening laminates, and composites comprising these strengthening materials

Country Status (5)

Country Link
US (1) US20080032107A1 (en)
EP (1) EP1745169A1 (en)
JP (1) JP2007530810A (en)
NL (1) NL1025846C2 (en)
WO (1) WO2005095696A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395548A1 (en) * 1989-04-28 1990-10-31 ETABLISSEMENTS LES FILS D'AUGUSTE CHOMARAT & CIE. Société Anonyme Textil reinforcement for making moulded composite materials and articles with reinforcement
WO2000000688A1 (en) * 1998-06-30 2000-01-06 Etablissements Les Fils D'auguste Chomarat Et Cie Glass fibre knitted fabric, complex and composite textile structures
US20030102604A1 (en) * 2001-07-23 2003-06-05 Mack Patrick E. Three-dimensional spacer fabric resin interlaminar infusion media process and vacuum-induced reinforcing composite laminate structures

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1771216A (en) * 1925-10-26 1930-07-22 Gossler Oscar Insulating body of spun glass
US3669823A (en) * 1969-06-04 1972-06-13 Curlator Corp Non-woven web
US3934064A (en) * 1971-11-24 1976-01-20 E. I. Du Pont De Nemours And Company Composite structures of knitted glass fabric and thermoplastic polyfluoroethylene resin sheet
US4070519A (en) * 1976-04-27 1978-01-24 Huyck Corporation High temperature filter fabrics
US4250221A (en) * 1976-04-29 1981-02-10 Consolidated Fiberglass Products Co. Fiberglass mat
JPS5930688B2 (en) * 1978-10-05 1984-07-28 昭和電工株式会社 Method for producing alkylene glycol ether
US4350727A (en) * 1980-07-09 1982-09-21 Lydall, Inc. Synergistic textile composite
ATE7686T1 (en) * 1980-07-11 1984-06-15 Imperial Chemical Industries Plc FIBROUS COMPOSITE MATERIALS, THEIR PRODUCTION AND USE.
DE3610029A1 (en) * 1986-03-25 1987-10-01 Freudenberg Carl Fa IRONABLE INLAY COMPOSITE
US4892780A (en) * 1987-07-16 1990-01-09 Cochran William H Fiber reinforcement for resin composites
US4911973A (en) * 1988-03-14 1990-03-27 Owens-Corning Fiberglas Corporation Reinforcement blanket formed by sewing together layers of fiber-reinforcement materials
FR2628448B1 (en) * 1988-03-14 1990-11-16 Chomarat & Cie TEXTILE REINFORCEMENT FOR USE IN THE PRODUCTION OF LAMINATED COMPLEXES AND LAMINATED COMPLEXES IN THE FORM COMPRISING SUCH AN ARMATURE
DE3813741C2 (en) * 1988-04-23 1998-12-24 Vorwerk Co Interholding Knitted component and process for its manufacture
DE4100738A1 (en) * 1991-01-12 1992-07-16 Vorwerk Co Interholding COMPONENT BASED ON A DISTANCE FABRIC
DE4228958A1 (en) * 1992-08-31 1994-03-03 Vorwerk Co Interholding Spacer fabric
JPH0711548A (en) * 1993-06-18 1995-01-13 Unitika Ltd Thick knitted fabric
EP0656254A1 (en) * 1993-11-06 1995-06-07 Hoechst Aktiengesellschaft Textile composite material, method for its manufacture and use
JP3913774B2 (en) * 1994-02-23 2007-05-09 ズィーシーエル・コンポジッツ・インコーポレイティッド Spacer fabric
NL9500414A (en) * 1995-03-02 1996-10-01 Syncoglas Sa Nv Reinforcement material.
DE19530928C2 (en) * 1995-08-23 1998-12-03 Mayer Textilmaschf Composite part made of knitted fabric
JP4075197B2 (en) * 1999-03-16 2008-04-16 日東紡績株式会社 Pile network, composite material and manufacturing method thereof
GB9930567D0 (en) * 1999-12-23 2000-02-16 Scott & Fyfe Ltd Reinforced panel structure
EP1432569A1 (en) * 2001-09-17 2004-06-30 Verdant Technologies, Inc. Three-dimensional knit spacer fabric sandwich composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395548A1 (en) * 1989-04-28 1990-10-31 ETABLISSEMENTS LES FILS D'AUGUSTE CHOMARAT & CIE. Société Anonyme Textil reinforcement for making moulded composite materials and articles with reinforcement
WO2000000688A1 (en) * 1998-06-30 2000-01-06 Etablissements Les Fils D'auguste Chomarat Et Cie Glass fibre knitted fabric, complex and composite textile structures
US20030102604A1 (en) * 2001-07-23 2003-06-05 Mack Patrick E. Three-dimensional spacer fabric resin interlaminar infusion media process and vacuum-induced reinforcing composite laminate structures

Also Published As

Publication number Publication date
US20080032107A1 (en) 2008-02-07
NL1025846C2 (en) 2005-10-03
JP2007530810A (en) 2007-11-01
EP1745169A1 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US5529826A (en) Fabric-faced thermoplastic composite panel
US6355584B1 (en) Complex fabric having layers made from glass fibers and tissue paper
AU602573B2 (en) Assembly of several layers comprising one or more reinforcing layers and fiber reinforced plastic article produced therefrom
JP3991439B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
EP0822062B1 (en) Fiber-reinforced plastic using a composite substrate
US20090252916A1 (en) Composite material assembly
US20160273161A1 (en) Pre-impregnated composite material
US7930907B2 (en) Crimp-free infusible reinforcement fabric and composite reinforced material therefrom
US20060121805A1 (en) Non-woven, uni-directional multi-axial reinforcement fabric and composite article
KR100262389B1 (en) a method for manufacturing a laminating reinforced fibre structure and a corresponding reinforced fibre structure
KR102196438B1 (en) Carbon Fiber Grid for Reinforcement And Manufacturing Method Of The Same
JPH01201546A (en) Production of lightweight sandwich structural material
KR101873142B1 (en) Method and apparatus for manufacturing a sandwich component
CA3080917A1 (en) Unidirectional non-crimp fabric and use thereof
US20200180266A1 (en) Composite laminate resin and fiberglass structure
JP2001073241A (en) Composite reinforced raw yarn or string, and knitted fabric and composite material using the same, and production method and structure therefor
JP2004518834A (en) Reinforcement using bulk processed fiber
JP3991440B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
KR101135406B1 (en) Crimp-free infusible reinforcement fabric and composite reinforced material therefrom
US20070010154A1 (en) Reinforcement material
KR20100046174A (en) Needle bonded complex
EP1745169A1 (en) Strengthening materials, strengthening laminates, and composites comprising these strengthening materials
US20070193490A1 (en) Complex matting with a layer of volumized fibers
EP1111110A3 (en) Reinforced panel structure
JP2004115995A (en) Knitted product using conjugated reinforced raw yarn

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505499

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005716472

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005716472

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10599528

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10599528

Country of ref document: US