WO2005095505A1 - Colloidal dispersion of silica coated cerium composition particles, solid compound obtainable from said dispersion and methods for the preparation and the use thereof - Google Patents

Colloidal dispersion of silica coated cerium composition particles, solid compound obtainable from said dispersion and methods for the preparation and the use thereof Download PDF

Info

Publication number
WO2005095505A1
WO2005095505A1 PCT/FR2005/000437 FR2005000437W WO2005095505A1 WO 2005095505 A1 WO2005095505 A1 WO 2005095505A1 FR 2005000437 W FR2005000437 W FR 2005000437W WO 2005095505 A1 WO2005095505 A1 WO 2005095505A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
particles
colloidal dispersion
cerium
colloidal
Prior art date
Application number
PCT/FR2005/000437
Other languages
French (fr)
Inventor
Franck Fajardie
David Fauchadour
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Publication of WO2005095505A1 publication Critical patent/WO2005095505A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/62Coated
    • A61K2800/621Coated by inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/651The particulate/core comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a colloidal dispersion of particles of a cerium compound coated with silica, methods of preparing this dispersion and its uses. It also relates to a solid compound obtained from this dispersion.
  • Colloidal dispersions or cerium soils are well known. They are of great interest in applications, for example for applications, such as anti-UV, in cosmetics or in polymers. More particularly, these floors can be incorporated into paints, and in particular stains and varnishes, which are commonly used for the protection of metals or the protection of wood, in particular in the furniture, carpentry, parquet and of construction, to protect the wood from damage due to light and bad weather in particular. However, there may be interactions between the cerium oxide particles and the medium in which the dispersions are incorporated.
  • cerium oxide can react with extractable elements (tannins, etc.) in the wood, which can cause the color of the stain to vary.
  • extractable elements tannins, etc.
  • the possible reduction of cerium IV to cerium III can induce oxidation of the components of the formulations which can also result in color variations or destabilization of these formulations.
  • Problems of degradation of polymers, for example plastics or fibers can still be encountered when these cerium soils are used as additives in these materials. These problems arise from oxidative catalysis reactions due to the cerium alone or to the cerium in association with impurities contained in these formulations or materials.
  • the object of the invention is to provide a colloidal dispersion of cerium which makes it possible to attenuate or eliminate this interaction problem while retaining the properties of the dispersion, in particular as regards the particle size.
  • the colloidal dispersion of the invention is a dispersion of particles of a cerium compound in a liquid phase which is characterized in that the particles of the cerium compound are coated at least in part with a layer of silica.
  • the invention also relates to the preparation of such a dispersion. According to a first embodiment, the preparation process is characterized in that a colloidal dispersion of the cerium compound is reacted with an alkaline silicate at hot and at a pH of at least 7.
  • the method of the invention is characterized in that a colloidal dispersion of a cerium compound is reacted with a silicon alkoxide.
  • the method of the invention is characterized in that it comprises the following steps:
  • a colloidal dispersion of a cerium compound whose pH is at most 4 is reacted with an alkaline silicate;
  • the dispersion of the invention comprises particles which are encapsulated by silica which therefore reduces or prevents any interaction of the cerium with the medium in which the dispersion is incorporated. Furthermore, the particles of the dispersion retain a size of colloidal dimension and, preferably, remain perfectly individualized and not aggregated, which thus keeps a well dispersed and stable soil. Finally, the optical properties of cerium oxide (property of UV filter) are preserved.
  • colloidal dimensions is meant dimensions between about 1 nm and about 100 nm, more particularly between 1 nm and 85 nm. It will be noted that in such a dispersion, the cerium can be found either, preferably, completely in the form of colloids, or simultaneously in the form of ions and in the form of colloids.
  • the cerium is present in the dispersion generally in the form of oxide and / or hydrated oxide (hydroxide) of cerium, preferably in the form of ceric oxide CeO 2 .
  • the main characteristic of the dispersion of the invention is the fact that the particles of the cerium compound are coated at least in part with a layer of silica.
  • the particles of the cerium compound therefore form a core or a heart which is surrounded by a bark or a silica envelope.
  • the layer or envelope of silica may not be perfectly continuous or homogeneous, this layer however being continuous according to a preferred embodiment.
  • the quantity of silica present in the dispersion, on the particles, must be such that it is possible to obtain, preferably, a complete coating of the particles. This quantity will therefore depend on the size of the particles and it will be all the greater the finer the particles.
  • this quantity expressed by the SiO 2 / CeO 2 mass ratio, is generally at least 0.01, more particularly at least 0.1 and even more particularly at least 0.2 or at least 0.3. In particular, this amount can be between 0.01 and 2, in particular between 0.1 and 1.5, and even more particularly between 0.2 and 0.5.
  • the encapsulation of the particles of the cerium compound by silica can be demonstrated by measuring the zeta potential of the dispersions. When the variation of this potential is measured by varying the pH of a dispersion from an acid value to a basic value, the latter goes from a positive value to a negative value for a dispersion of particles of a composed of non-encapsulated cerium, the change to zero of the potential constituting the isoelectric point.
  • this potential is in fact either always negative or, when there is an isoelectric point, this is offset with respect to the isoelectric point of a dispersion with non-encapsulated particles.
  • the encapsulation can also be demonstrated by transmission electron microscopy (TEM).
  • the particles of the dispersion that is to say the particles of the cerium compound coated with silica, preferably have an average size of at most 85 nm. This average size can in particular be at most 50 nm and more particularly at most 25 nm. This size can be even more particularly at most 20 nm.
  • the particles can have a size between 5 nm and 25 nm or between 5 nm and 20 nm.
  • the sizes given here must be understood as designating the mean hydrodynamic diameter of the particles, as determined on the dispersion by quasi-elastic light scattering (DQEL) according to the method described by Michael L. Me CONNELL in the journal Analytical Chemistry 53, No.
  • these sizes can also be determined by TEM in direct measurement, this technique, in the case of the products of the invention, giving values similar or slightly lower than those obtained by the DQEL technique.
  • the average size values given above apply to particles in suspension in the liquid phase of the dispersion.
  • these particles can be composed of a certain number of coherent domains measured by the RX analysis (elementary particles) of dimension less than 5 nm, from 2 to 3 nm for example , and they are presented in an individualized form, that is to say not aggregated.
  • these particles (so-called secondary particles) correspond to an aggregate of a few primary particles of the above type.
  • the dispersions according to the invention can have a pH in a wide range from 3 to 11 for example, this pH being chosen according to the subsequent use of the dispersions.
  • the dispersions of the invention can have a concentration which also varies over a wide range. This concentration can be at least 1 g / L, in particular at least 10 g / L, more particularly at least 50 g / L and even more particularly at least 100 g / L. This concentration is expressed in mass of particles. It is determined after drying and calcination in air of a given volume of dispersion.
  • the dispersion comprises an organic acid having at least three acid functions and whose third pK is at most 10 or a salt of this acid.
  • the acid interacts with the cerium cation by any type of chemical bond. Therefore, the acid is therefore present on, or within, cerium compound particles but it can also be present in the liquid phase.
  • suitable acid there may be mentioned very particularly citric acid.
  • the acid salt may more particularly be an alkaline salt.
  • the acid level in the dispersion expressed by the mole of acid / moles of cerium ratio can be for example between approximately 0.01 and approximately 1.5, more particularly between 0.2 and 0.5. It should be noted here that this rate depends on the size of the particles of the dispersion, this rate being all the lower as the size of the particles increases. It will also be noted that the lower limit of this rate is that below which the dispersion is no longer stable.
  • the dispersions according to the invention are generally aqueous dispersions, the liquid phase being water.
  • the dispersions of the invention can have a mixed aqueous / organic liquid phase, for example hydroalcoholic based on a mixture of water and alcohol, or else a liquid phase constituted by an organic solvent such as a alcoholic liquid phase. Mention may be made, as possible alcohol, of methanol, ethanol or propanol.
  • organic solvent there may also be mentioned aliphatic hydrocarbons such as hexane, heptane, octane, nonane, inert cycloaliphatic hydrocarbons such as cyclohexane, cyclopentane, cycloheptane, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylenes, liquid naphthenes.
  • aliphatic hydrocarbons such as hexane, heptane, octane, nonane
  • inert cycloaliphatic hydrocarbons such as cyclohexane, cyclopentane, cycloheptane
  • aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylenes, liquid naphthenes.
  • Solvesso type (trademarks registered by the company EXXON), in particular Solvesso 100 which essentially contains a mixture of methylethyl- and trimethyl-benzene, Solvesso 150 which contains a mixture of alkylbenzenes, in particular dimethylbenzene and of tetramethylbenzene and Isopar which essentially contains iso- and cyclo-paraffinic C-11 and C-12 hydrocarbons. It is also possible to use chlorinated hydrocarbons such as chloro- or dichlorobenzene, chlorotoluene.
  • the ethers as well as the aliphatic and cycloaliphatic ketones such as for example diisopropyl ether, dibutyl ether, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, mesityl oxide, can be envisaged.
  • the organic solvent can in particular also be a cosmetically acceptable compound which is immiscible in water and / or miscible in a cosmetically acceptable organic phase.
  • the organic solvent or the organic phase may, for example, be chosen from oils of mineral or vegetable origin and their derivatives, essential oils, silicone oils, waxes, and any other cosmetically acceptable water-immiscible carrier.
  • the process is implemented by hot reaction and at a pH of at least 7, of a colloidal dispersion of the cerium compound with an alkaline silicate.
  • the starting colloidal dispersion may have been obtained for example by the methods described in European patent applications EP 206906, EP 208581, EP 316205, EP 700870 and EP 700871. It is possible to use very particularly the colloidal dispersions obtained by thermohydrolysis of a aqueous solution of a cerium IV salt such as a nitrate, in an acid medium in particular. Such a process is described in European patent applications EP 239477 or EP 208580.
  • a colloidal dispersion of a cerium IV compound is first prepared by reacting an aqueous solution of cerium IV salt with a base, then this dispersion is heat treated, whereby a precipitate is obtained. This precipitate can be resuspended in water and thus give a colloidal dispersion.
  • the dispersion comprises an organic acid, or a salt thereof, having at least three acid functions and whose third pK is at most 10
  • basic pH is meant here a pH greater than 7 and which is preferably between 7.5 and 9.5, more particularly between 7.5 and 9.
  • Such pH values can be obtained by the presence of a base in the dispersion.
  • This base can be ammonia but also an amino. Any type of amine may be suitable, primary, secondary or tertiary. Note that it is possible to use amino alcohols such as for example 2-amino-2-methyl-1-propanol.
  • An acid for example citric acid as defined above is added to the dispersion so as to obtain the necessary pH value. The acid can be added to the starting dispersion first and then the base in a second step. It is however possible to add the acid and the base simultaneously.
  • the dispersions which are suitable for the implementation of this particular embodiment can also be those described in patent application WO 01/38225.
  • a starting dispersion having a high purity is used.
  • a dispersion having a low ionic strength in particular a dispersion with a low nitrate content, for example a dispersion in which the mass ratio NO 3 7CeO 2 is at most 5%.
  • Dispersions of this type are for example those described in EP-A-700870.
  • the alkali silicate can more particularly be a sodium silicate.
  • the amount of alkali silicate used depends on the SiO 2 / CeO 2 ratio desired in the final dispersion.
  • the reaction between the starting dispersion and the silicate is carried out hot. By this is meant a reaction at a temperature of at least 60 ° C, preferably at least 80 ° C and which, generally, can be between 80 ° C and 100 ° C. The reaction must also take place under pH conditions of at least
  • this reaction can be carried out at constant pH, that is to say that the pH is maintained at a value varying by ⁇ 0.5 pH unit around the fixed value, this control pH can be achieved by adding a base or an acid to the reaction medium.
  • the reaction is preferably carried out by introducing the silicate into the dispersion.
  • the dispersion may have been brought to a pH of at least 7 prior to this introduction.
  • a base can be added to the dispersion simultaneously with the introduction of the silicate to obtain a suitable pH value.
  • the base used to adjust the pH can be chosen in particular from alkali or alkaline-earth hydroxides and ammonia.
  • ripening is meant here the maintenance of the medium at a temperature close to, or identical to, that of the medium during the reaction.
  • the medium can be stirred for this ripening. Curing is more particularly useful in the case of the preparation of dispersions with a high concentration of cerium.
  • the duration and the temperature of the ripening depend on the silica content. Generally, the duration is between 10 minutes and 10 hours, this upper limit not being critical and being given as an indication.
  • the temperature is similar to that at which the reaction was carried out, it is preferably at least 60 ° C and it can be between 80 ° C and 100 ° C more particularly.
  • the medium obtained is allowed to cool and a dispersion according to the invention is thus obtained.
  • This dispersion can be washed by adding a volume of water to the dispersion and then be subjected to ultrafiltration to return to the initial volume. The washing step can be repeated if necessary.
  • a concentration of the dispersion can be carried out, if necessary, by any known means, for example by ultrafiltration.
  • a second type of process can be used.
  • the method includes at least one step of reacting a colloidal dispersion of the cerium compound with a silicon alkoxide.
  • the starting colloidal dispersion may be of the type mentioned above in the case of the method according to the first mode.
  • acid dispersions are preferably used, for example those of the type mentioned above and which are obtained by thermohydrolysis of an aqueous solution of a cerium IV salt in an acid medium and described in EP-A-239477 or EP-A- 208580.
  • the acid dispersions preferably have a pH of at most 4, more particularly at most 3 and which can be between 1.5 and 2.5 for example.
  • silicon alkoxide which can be used, mention may in particular be made of tetraethylorthosilicate. The amount of silicon alkoxide used depends on the ratio
  • step (a) a dispersion according to the invention is obtained.
  • step (a) it may be advantageous to complete the method according to the second embodiment with an additional step.
  • step (b) consists in raising the pH of the medium obtained at the end of the reaction between the dispersion and the silicon alkoxide.
  • This pH which is acidic, is brought back to a basic value, ie greater than 7 by addition of a base, for example ammonia.
  • the pH can more particularly be at least 8 and it is generally at most 11. It is possible, at the end of step (a) and before step (b), to undergo a ripening in the medium obtained as in the case of the method according to the first mode.
  • the dispersion can be washed, one or more times, using the same technique as that described above. However, in the case of the method of this second mode, the washing can be carried out before or after step (b). Likewise, the dispersion can be concentrated as indicated in the case of the first embodiment.
  • the invention also relates to a third embodiment of the method which will be described below.
  • the first step of the method according to this third mode is of the same type as that which has been described as the first step either in the first embodiment of the method, or in the second embodiment, step (a), since it is essentially acts of a reaction between a dispersion of a cerium compound and a silicate.
  • the starting dispersion must have a pH of at most 4, preferably at most 2.
  • the second step of the process consists, if necessary, in raising the pH of the medium obtained at the end of the previous step to a basic value, that is to say to a value greater than 7, preferably at least 9 This step can be carried out in the same way as that which has been described for analogous step (b) of the second embodiment.
  • this second step may not be necessary because in certain cases, for a starting dispersion of high purity for example, the reaction between this dispersion and the silicate can lead to a medium having at the end of this reaction a pH already basic.
  • the dispersion can be washed in the same manner as that which has already been described above.
  • the third step of the process consists of a ripening of the same type as that which has been described previously for the other embodiments.
  • a dispersion according to the invention is obtained.
  • a solid / liquid separation can be carried out by any known technique to remove any solid residue which may sediment.
  • the dispersion can be concentrated as indicated in the case of the first embodiment.
  • This latter embodiment has the advantage of easily leading to dispersions of high concentration, in particular greater than 50 g / L.
  • this dispersion can be prepared from an aqueous dispersion as obtained by the methods described above and by adding the organic solvent to the aqueous dispersion then distillation to remove the water.
  • a transfer agent can be introduced into the organic solvent and the transfer agent / organic solvent mixture is then brought into contact with the aqueous sol.
  • WO 01/10545 describes a process for the preparation of an organic soil and of acids (in particular organic acids, amphiphiles, of 10 to 50 carbon atoms) usable as transfer agents.
  • the invention also covers a solid compound, which is characterized in that it is obtained from a dispersion such as described above and by separation of the solid particles of the cerium compound from the liquid phase. This separation can be done by any suitable technique. It is thus possible to carry out the separation by flocculation with a third solvent or also by distillation. Drying can also be done by atomization or lyophilization or in an oven.
  • a solid phase is collected which can be dried and which occurs, depending on the drying level reached, either in the form of a powder or in the form of a paste, which constitutes a solid compound according to the invention.
  • This compound comprises aggregates whose size can vary within wide limits depending on the drying method used. This size, determined by MET, can be between 0.1 ⁇ m and 100 ⁇ m. These aggregates are formed by the particles of the dispersion and these particles retain well, in this compound, their structure with a core of cerium compound and with a silica shell.
  • the dispersions or the solid compound according to the invention can be used in various fields such as cosmetics, polymers, paints, coating materials or fibers.
  • the invention also relates to compositions of matter of the polymer material, cosmetic composition, paint, coating, fiber type, which are characterized in that they comprise or in that there is incorporated, a dispersion or a solid compound according to the invention.
  • the dispersions or the solid compound according to the invention can be used in cosmetic compositions, for example in sun protection formulations, intended to be applied to the skin.
  • These compositions can be formulated in particular in the form of creams, milks, oils, sprays.
  • compositions and formulations as well as the ingredients which can be used (oily and / or aqueous and / or alcoholic vectors, surfactants, viscosity agents, active agents beneficial for the skin, cosmetic sensation agents, stabilizers, perfumes, etc.) for implement them are known to those skilled in the art.
  • the dispersions or the solid compound can be used in these compositions as a sole UV protection agent, or in combination with other sun protection agents, for example other inorganic agents such as dioxide agents. titanium, or organic agents.
  • the other sun protection agents are known to those skilled in the art.
  • the combination of different agents can provide optimal protection over different wavelength ranges (UV-A, UV-B etc).
  • the cosmetic compositions can in particular be formulated in the form of emulsions, water in oil or oil in water.
  • the dispersion or the solid compound may be present in the aqueous phase and / or in the oily phase. If the dispersion is a dispersion in water, the emulsion is preferably a water-in-oil emulsion, the dispersion being present in the aqueous phase. If the dispersion is a dispersion in an organic solvent immiscible with water, the emulsion is preferably an oil-in-water emulsion, the dispersion being present in the oil phase. It is not excluded to combine these last two embodiments of cosmetic compositions.
  • compositions are formulated in the form of a sun oil
  • a dispersion is preferably used in an organic solvent, miscible or immiscible in water, and miscible with the oil used.
  • the dispersions or the solid compound according to the invention can be used as anti-UV protection agent in plastics which can be of the thermoplastic or thermosetting type.
  • thermoplastic polymers examples include polycarbonates such as poly [methane bis (4-phenyl) carbonate], poly [1, 1-ether bis (4-phenyl) carbonate], poly [diphenylmethane bis (4-phenyl) carbonate], poly [1, 1-cyclohexane bis (4-phenyl) carbonate] and polymers of the same family; polyamides such as poly (4-amino butyric acid), poly (hexamethylene adipamide), poly (6-aminohexanoic acid), poly (m-xylylene adipamide), poly (p-xylylene sebacamide), poly ( 2,2,2-trimethylhexamethylene terephthalamide), poly (metaphenylene isophthalamide), poly (p-phenylene terephthalamide), and polymers of the same family; polyesters such as poly (ethylene azelate), poly (ethylene-1,5-naphthalate, poly (1,4-cyclohexane dimethylene terephthalate), poly (ethylene azelate),
  • comonomers used can be cyclic olefins such as 1,4-hexadiene, cyclopentadiene and ethylidenenorbornene.
  • the copolymers can also be a carboxylic acid such as acrylic acid or methacrylic acid.
  • thermoplastic polymers polyethylenes are particularly preferred, including LDPEs (low density polyethylenes), LLDPEs (linear low density polyethylenes), polyethylenes obtained by metallocene synthesis, PVC (polyvinyl chloride), PET (polyethylene terephthalate) , polymethylmethacrylate, copolyolefins such as EVA (polyethylene of vinyl alcohol or ethylene vinyl acetate), mixtures and copolymers based on these (co) polymers, polycarbonate
  • LDPEs low density polyethylenes
  • LLDPEs linear low density polyethylenes
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • EVA polyethylene of vinyl alcohol or ethylene vinyl acetate
  • mixtures and copolymers based on these (co) polymers polycarbonate
  • thermosetting materials mention may be made, for example, phenoplasts, aminoplasts, epoxy resins and thermosetting polyesters.
  • the products of the invention can be introduced for example in the form of a solid powder or in the form of a dispersion in water or in an organic dispersant in the medium for synthesis of the polymer compound, or in a molten thermoplastic polymer in any form.
  • the quantity of product of the invention, expressed by mass of CeO 2 , in the polymer material can be in particular between 0.01% and 10% by mass relative to the total mass of the material, more particularly between 0.1% and 2%. These values are given by way of example only and they may vary depending on the nature of the polymer. The low value is fixed according to the intensity of the desired effect which one wishes to obtain.
  • the high value is not critical, generally one does not exceed the value beyond which an additional quantity does not bring any advantage or additional effect compared to other constraints, for example cost constraints.
  • the dispersions or the solid compound according to the invention can be used in paints, in particular varnishes or stains.
  • paints stains or varnishes
  • alkyd resins the most common of which is called glycerophthalic
  • long or short oil modified resins acrylic resins derived from acrylic (methyl or ethyl) and methacrylic acid esters optionally copolymerized with ethyl acrylate, 2-ethylhexyl or butyl acrylate as well as acrylic-isocyanate resins
  • vinyl resins such as, for example, polyvinyl acetate, polyvinyl chloride, butyralpolyvinyl, formalpolyvinyl, and the copolymers of vinyl chloride and vinyl acetate or vinylidene chloride
  • the aminoplast or phenolic resins most often modified
  • polyester resins polyurethane resins
  • epoxy resins silicone resins
  • the products of the invention are used by simple mixing of the colloidal dispersion or of the solid compound with the paint, in particular the stain or the varnish.
  • the amount of colloidal dispersion or solid compound used depends on the desired final content of cerium oxide in the paint. This content can be arbitrary.
  • the products of the invention are used in an amount such that the content of cerium oxide is at most 25% by weight, preferably at most 10% by weight and even more preferably at most 3% by weight compared to the whole colloidal dispersion or solid compound and paint.
  • the products of the invention are particularly suitable for paints for wood as well as for paints for metals, in particular for cars, trains or boats. Examples will now be given.
  • EXAMPLE 1 This example relates to a dispersion according to the invention prepared by a process according to the first embodiment.
  • This sol is introduced at the bottom of the vessel in the reactor and brought to 90 ° C.
  • the pH changes to a value of 8.
  • the temperature is maintained at 90 ° C. for throughout the test.
  • a colloidal dispersion is obtained, the characteristics of which are have the following: pH: 9 Particle size: 11 nm (DQEL) Concentration: 10 g / L in CeO 2 Measuring the Zeta potential by varying the pH of the dispersion in a range between 9 and 1 gives a potential always negative, there is no isoelectric point. No flocculation is observed up to a pH of 1.
  • EXAMPLE 2 This example relates to a dispersion according to the invention prepared by a process according to the second embodiment.
  • Tetraethylorthosilicate (TEOS) is gradually incorporated at room temperature (25 ° C), with mechanical stirring (300 rpm), into a sol of cerium oxide particles of 10 nm, of acid pH (1.8) and at 10 g / L CeO 2 concentration.
  • the SiO 2 / CeO 2 mass ratio is fixed at 1.05.
  • the mixture then undergoes a one hour maturing step at room temperature (25 ° C) with mechanical stirring (430 rpm).
  • the dispersion is then washed by mixing 100 ml of the sol obtained with 200 ml of water, then ultrafiltration until it returns to a volume of 100 ml.
  • EXAMPLE 3 This example relates to the use of a dispersion of the invention in an aqueous stain.
  • Example 1 The colloidal dispersion of Example 1 is incorporated by simple mixing at a content of 1% of active material (cerium oxide) relative to the total of the formulation.
  • active material cerium oxide
  • the formulations thus produced are applied by brush to oak with a grammage of 150gr / m 2 and are subjected to air conditioning for one week before their evaluation. We see in the photo of Figure 1 the stain obtained by applying the formulation as is.
  • the photo of Figure 2 is that of the stain obtained from the formulation incorporating a dispersion of the invention and the photo of Figure 3 is that of the stain obtained from a formulation incorporating the cerium-based sol of particles not encapsulated by silica. It can be seen that the stain added to the comparative soil undergoes a significant variation in color compared to the stain alone. On the other hand, the stain added with the dispersion according to the invention undergoes practically no variation in coloring, its color is similar to that of the stain alone.
  • EXAMPLE 4 This example relates to the use of a solid compound according to the invention in a PVC resin.
  • the PVC formulation used is as follows:
  • the PVC plates added with the encapsulated cerium oxide according to the invention have a yellow index very much lower than that measured in the case of a non-encapsulated cerium oxide.
  • the value of the yellow index obtained in the case of a encapsulated cerium oxide according to the invention is similar to that obtained with an organic UV absorber conventionally used in PVC application and also close to that of the PVC matrix. reference.
  • EXAMPLE 5 This example relates to the preparation of a dispersion according to the invention by a process according to the third embodiment described above.
  • the following reagents are used: a sol of cerium oxide particles of 10 nm at 82.2 g / L of CeO 2 ; d
  • the dispersion obtained is then washed in the following manner. Centrifuged at 2000 rev / min for 10 minutes then the solid product obtained is redispersed in a volume of water at pH 9 and equal to the volume of water in the dispersion before washing. We repeat this operation once.
  • the washed dispersion is matured for 2 hours at 100 ° C. At the end of ripening, it is observed that a small fraction of solid is deposited at the bottom of the bottle. This fraction is separated by centrifugation at 2000 rpm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Dermatology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Silicon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

The invention relates to a colloidal dispersion of cerium composition particles characterised in that said cerium composition particles are coated at least partially with a silica layer which is obtainable by a hot reaction of a colloidal dispersion of a cerium composition with an alkali silicate at a pH equal to or greater than 7 or by the reaction of said dispersion with a silicon alkoxide or by the reaction of a colloidal dispersion of a cerium composition whose pH is equal or less than 4 with the alkali silicate followed, if necessary, by the pH increase to a basic value or by ageing. The inventive dispersion can be used for cosmetics in the form of an anti-UV agent, in polymers, paints, coating materials or in fibres.

Description

DISPERSION COLLOÏDALE DE PARTICULES D'UN COMPOSE DE CERIUMCOLLOIDAL DISPERSION OF PARTICLES OF A CERIUM COMPOUND
ENROBEES DE SILICE, COMPOSE SOLIDE OBTENU A PARTIR DE CETTE DISPERSION, PROCEDES DE PREPARATION ET UTILISATIONSILICA COATINGS, SOLID COMPOUND OBTAINED FROM THIS DISPERSION, METHODS OF PREPARATION AND USE
La présente invention concerne une dispersion colloïdale de particules d'un composé de cérium enrobées de silice, des procédés de préparation de cette dispersion et ses utilisations. Elle concerne aussi un composé solide obtenu à partir de cette dispersion. Les dispersions colloïdales ou sols de cérium sont bien connus. Ils présentent un grand intérêt dans des applications par exemple pour des applications, comme anti-UV, en cosmétique ou dans les polymères. Plus particulièrement, ces sols peuvent être incorporés dans les peintures, et notamment les lasures et les vernis, qui sont couramment employées pour la protection des métaux ou la protection du bois, notamment dans l'industrie du meuble, de la menuiserie, du parquet et de la construction, pour protéger le bois des dégradations dues à la lumière et aux intempéries en particulier. Toutefois, il peut se produire des interactions entre les particules d'oxyde de cérium et le milieu dans lequel les dispersions sont incorporées. Par exemple, dans le cas des utilisations dans les lasures pour bois, l'oxyde de cérium peut réagir avec les éléments extractibles (tanins...) du bois ce qui peut entraîner une variation de la couleur de la lasure. En cosmétique, la possible réduction du cérium IV en cérium III peut induire une oxydation des composants des formulations qui peut se traduire aussi par des variations de couleur ou des déstabilisations de ces formulations. On peut encore rencontrer des problèmes de dégradation des polymères, par exemple des plastiques ou des fibres, lorsque ces sols de cérium sont utilisés comme additifs dans ces matériaux. Ces problèmes proviennent de réactions de catalyse oxydante dues au cérium seul ou au cérium en association avec des impuretés contenues dans ces formulations ou matériaux. L'objet de l'invention est de fournir une dispersion colloïdale de cérium qui permet d'atténuer ou d'éliminer ce problème d'interaction tout en conservant les propriétés de la dispersion, notamment en ce qui concerne la taille des particules. Dans ce but, la dispersion colloïdale de l'invention est une dispersion de particules d'un composé de cérium dans une phase liquide qui est caractérisée en ce que les particules du composé de cérium sont enrobées au moins en partie par une couche de silice. L'invention concerne aussi la préparation d'une telle dispersion. Selon un premier mode de réalisation, le procédé de préparation est caractérisé en ce qu'on fait réagir à chaud et à pH d'au moins 7, une dispersion colloïdale du composé de cérium avec un silicate alcalin. Selon un seconde mode de réalisation, le procédé de l'invention est caractérisé en ce qu'on fait réagir une dispersion colloïdale d'un composé de cérium avec un alcoxyde de silicium. Selon un troisième mode de réalisation, le procédé de l'invention est caractérisé en ce qu'il comporte les étapes suivantes :The present invention relates to a colloidal dispersion of particles of a cerium compound coated with silica, methods of preparing this dispersion and its uses. It also relates to a solid compound obtained from this dispersion. Colloidal dispersions or cerium soils are well known. They are of great interest in applications, for example for applications, such as anti-UV, in cosmetics or in polymers. More particularly, these floors can be incorporated into paints, and in particular stains and varnishes, which are commonly used for the protection of metals or the protection of wood, in particular in the furniture, carpentry, parquet and of construction, to protect the wood from damage due to light and bad weather in particular. However, there may be interactions between the cerium oxide particles and the medium in which the dispersions are incorporated. For example, in the case of uses in wood stains, cerium oxide can react with extractable elements (tannins, etc.) in the wood, which can cause the color of the stain to vary. In cosmetics, the possible reduction of cerium IV to cerium III can induce oxidation of the components of the formulations which can also result in color variations or destabilization of these formulations. Problems of degradation of polymers, for example plastics or fibers, can still be encountered when these cerium soils are used as additives in these materials. These problems arise from oxidative catalysis reactions due to the cerium alone or to the cerium in association with impurities contained in these formulations or materials. The object of the invention is to provide a colloidal dispersion of cerium which makes it possible to attenuate or eliminate this interaction problem while retaining the properties of the dispersion, in particular as regards the particle size. For this purpose, the colloidal dispersion of the invention is a dispersion of particles of a cerium compound in a liquid phase which is characterized in that the particles of the cerium compound are coated at least in part with a layer of silica. The invention also relates to the preparation of such a dispersion. According to a first embodiment, the preparation process is characterized in that a colloidal dispersion of the cerium compound is reacted with an alkaline silicate at hot and at a pH of at least 7. According to a second embodiment, the method of the invention is characterized in that a colloidal dispersion of a cerium compound is reacted with a silicon alkoxide. According to a third embodiment, the method of the invention is characterized in that it comprises the following steps:
- on fait réagir avec un silicate alcalin une dispersion colloïdale d'un composé de cérium dont le pH est d'au plus 4;- A colloidal dispersion of a cerium compound whose pH is at most 4 is reacted with an alkaline silicate;
- on remonte ensuite, si nécessaire, le pH du milieu obtenu à une valeur basique;- Then, if necessary, the pH of the medium obtained is raised to a basic value;
- on fait subir un mûrissement au milieu obtenu. La dispersion de l'invention comprend des particules qui sont encapsulées par de la silice ce qui donc diminue ou empêche toute interaction du cérium avec le milieu dans lequel la dispersion est incorporée. Par ailleurs, les particules de la dispersion conservent une taille de dimension colloïdale et, de préférence, restent parfaitement individualisées et non agrégées, ce qui permet de garder ainsi un sol bien dispersé et stable. Enfin, les propriétés optiques de l'oxyde de cérium (propriété de filtre UV) sont conservées. D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, des divers exemples concrets mais non limitatifs destinés à l'illustrer ainsi que du dessin annexé dans lequel : - la figure 1 est la photo d'une lasure obtenue à partir d'une formulation connue; - la figure 2 est la photo d'une lasure obtenue à partir d'une formulation incorporant une dispersion selon l'invention; - la figure 3 est la photo d'une lasure obtenue à partir d'une formulation incorporant une dispersion selon l'art antérieur. Les expressions « dispersion colloïdale d'un composé de cérium » ou « sol d'un composé de cérium » désignent tout système constitué de fines particules solides d'un composé du cérium, de dimensions colloïdales, en suspension stable dans une phase liquide. Ces particules peuvent, en outre, éventuellement contenir des quantités résiduelles d'ions liés ou adsorbés tels que par exemple des ions nitrates, acétates ou des ammoniums. Par dimensions colloïdales, on entend des dimensions comprises entre environ 1 nm et environ 100 nm, plus particulièrement entre 1 nm et 85 nm. On notera que dans une telle dispersion, le cérium peut se trouver soit, de préférence, totalement sous la forme de colloïdes, soit simultanément sous la forme d'ions et sous la forme de colloïdes. Le cérium est présent dans la dispersion généralement sous forme d'oxyde et/ou d'oxyde hydraté (hydroxyde) de cérium, de préférence sous forme d'oxyde cérique CeO2. La caractéristique principale de la dispersion de l'invention est le fait que les particules du composé de cérium sont enrobées au moins en partie par une couche de silice. Les particules du composé de cérium forment donc un noyau ou un cœur qui est entouré d'une écorce ou d'une enveloppe en silice. La couche ou enveloppe de silice peut ne pas être parfaitement continue ou homogène, cette couche étant toutefois continue selon un mode de réalisation préférentiel. La quantité de silice présente dans la dispersion, sur les particules, doit être telle que l'on puisse obtenir, de préférence, un enrobage complet des particules. Cette quantité va donc dépendre de la taille des particules et elle sera d'autant plus grande que les particules seront fines. A titre d'exemple, cette quantité, exprimée par le rapport massique SiO2/CeO2, est généralement d'au moins 0,01 , plus particulièrement d'au moins 0,1 et encore plus particulièrement d'au moins 0,2 ou d'au moins 0,3. Notamment, cette quantité peut être comprise entre 0,01 et 2, en particulier entre 0,1 et 1 ,5 et encore plus particulièrement entre 0,2 et 0,5. L'encapsulation des particules du composé de cérium par la silice peut être mise en évidence par la mesure du potentiel zêta des dispersions. Lorsque l'on mesure la variation de ce potentiel en faisant varier le pH d'une dispersion d'une valeur acide à une valeur basique, celui-ci passe d'une valeur positive à une valeur négative pour une dispersion de particules d'un composé de cérium non encapsulées, le passage à la valeur nulle du potentiel constituant le point isoélectrique. Dans le cas d'une dispersion selon l'invention, ce potentiel est en effet soit toujours négatif soit, lorsqu'il y a un point isoélectrique, celui-ci est décalé par rapport au point isoélectrique d'une dispersion à particules non encapsulées. En complément de la mesure du potentiel zêta, l'encapsulation peut aussi être mise en évidence par microscopie électronique à transmission (MET). Les particules de la dispersion, c'est à dire les particules du composé de cérium enrobées de silice, ont de préférence une taille moyenne d'au plus 85 nm. Cette taille moyenne peut être notamment d'au plus 50 nm et plus particulièrement d'au plus 25 nm. Cette taille peut être encore plus particulièrement d'au plus 20 nm. Plus précisément, les particules peuvent présenter une taille comprise entre 5 nm et 25 nm ou entre 5 nm et 20 nm. Les tailles données ici doivent être entendues comme désignant le diamètre hydrodynamique moyen des particules, tel que déterminé sur la dispersion par diffusion quasi-élastique de la lumière (DQEL) selon la méthode décrite par Michael L. Me CONNELL dans la revue Analytical Chemistry 53, n°- the medium obtained is subjected to ripening. The dispersion of the invention comprises particles which are encapsulated by silica which therefore reduces or prevents any interaction of the cerium with the medium in which the dispersion is incorporated. Furthermore, the particles of the dispersion retain a size of colloidal dimension and, preferably, remain perfectly individualized and not aggregated, which thus keeps a well dispersed and stable soil. Finally, the optical properties of cerium oxide (property of UV filter) are preserved. Other characteristics, details and advantages of the invention will appear even more completely on reading the description which follows, the various concrete but nonlimiting examples intended to illustrate it as well as the appended drawing in which: - Figure 1 is the photo of a stain obtained from a known formulation; - Figure 2 is the photo of a stain obtained from a formulation incorporating a dispersion according to the invention; - Figure 3 is the photo of a stain obtained from a formulation incorporating a dispersion according to the prior art. The expressions “colloidal dispersion of a cerium compound” or “sol of a cerium compound” designate any system made up of fine solid particles of a cerium compound, of colloidal dimensions, in stable suspension in a liquid phase. These particles can also optionally contain residual amounts of bound or adsorbed ions such as for example nitrates, acetates or ammonium ions. By colloidal dimensions is meant dimensions between about 1 nm and about 100 nm, more particularly between 1 nm and 85 nm. It will be noted that in such a dispersion, the cerium can be found either, preferably, completely in the form of colloids, or simultaneously in the form of ions and in the form of colloids. The cerium is present in the dispersion generally in the form of oxide and / or hydrated oxide (hydroxide) of cerium, preferably in the form of ceric oxide CeO 2 . The main characteristic of the dispersion of the invention is the fact that the particles of the cerium compound are coated at least in part with a layer of silica. The particles of the cerium compound therefore form a core or a heart which is surrounded by a bark or a silica envelope. The layer or envelope of silica may not be perfectly continuous or homogeneous, this layer however being continuous according to a preferred embodiment. The quantity of silica present in the dispersion, on the particles, must be such that it is possible to obtain, preferably, a complete coating of the particles. This quantity will therefore depend on the size of the particles and it will be all the greater the finer the particles. By way of example, this quantity, expressed by the SiO 2 / CeO 2 mass ratio, is generally at least 0.01, more particularly at least 0.1 and even more particularly at least 0.2 or at least 0.3. In particular, this amount can be between 0.01 and 2, in particular between 0.1 and 1.5, and even more particularly between 0.2 and 0.5. The encapsulation of the particles of the cerium compound by silica can be demonstrated by measuring the zeta potential of the dispersions. When the variation of this potential is measured by varying the pH of a dispersion from an acid value to a basic value, the latter goes from a positive value to a negative value for a dispersion of particles of a composed of non-encapsulated cerium, the change to zero of the potential constituting the isoelectric point. In the case of a dispersion according to the invention, this potential is in fact either always negative or, when there is an isoelectric point, this is offset with respect to the isoelectric point of a dispersion with non-encapsulated particles. In addition to measuring the zeta potential, the encapsulation can also be demonstrated by transmission electron microscopy (TEM). The particles of the dispersion, that is to say the particles of the cerium compound coated with silica, preferably have an average size of at most 85 nm. This average size can in particular be at most 50 nm and more particularly at most 25 nm. This size can be even more particularly at most 20 nm. More specifically, the particles can have a size between 5 nm and 25 nm or between 5 nm and 20 nm. The sizes given here must be understood as designating the mean hydrodynamic diameter of the particles, as determined on the dispersion by quasi-elastic light scattering (DQEL) according to the method described by Michael L. Me CONNELL in the journal Analytical Chemistry 53, No.
8, 1007 A, (1981 ). Ces tailles peuvent aussi être déterminées par MET en mesure directe, cette technique, dans le cas des produits de l'invention, donnant des valeurs similaires ou légèrement inférieures à celles obtenues par la technique DQEL. Les valeurs de la taille moyenne données ci-dessus s'appliquent à des particules en suspension dans la phase liquide de la dispersion. Selon un mode de réalisation préféré, ces particules (particules dites primaires) peuvent être composées d'un certain nombre de domaines cohérents mesurés par l'analyse RX (particules élémentaires) de dimension inférieure à 5 nm, de 2 à 3 nm environ par exemple, et elles se présentent sous une forme individualisée, c'est à dire non agrégée. Selon un autre mode de réalisation, ces particules (particules dites secondaires) correspondent à un agrégat de quelques particules primaires du type ci-dessus. Les dispersions selon l'invention peuvent présenter un pH compris dans une gamme large de 3 à 11 par exemple, ce pH étant choisi en fonction de l'utilisation ultérieure des dispersions. Les dispersions de l'invention peuvent présenter une concentration qui varie aussi dans une large gamme. Cette concentration peut être d'au moins 1 g/L, notamment d'au moins 10 g/L, plus particulièrement d'au moins 50 g/L et encore plus particulièrement d'au moins 100 g/L. Cette concentration est exprimée en masse de particules. Elle est déterminée après séchage et calcination sous air d'un volume donné de dispersion. Selon un mode de réalisation particulier, la dispersion comprend un acide organique ayant au moins trois fonctions acides et dont le troisième pK est d'au plus 10 ou un sel de cet acide. Dans la dispersion selon ce mode de réalisation, l'acide est en interaction avec le cation cérium par tout type de liaison chimique. De ce fait, l'acide est donc présent sur les, ou au sein des, particules de composé de cérium mais il peut aussi être présent dans la phase liquide. Comme acide convenable, on peut citer tout particulièrement l'acide citrique. Le sel de l'acide peut être plus particulièrement un sel alcalin. Le taux d'acide dans la dispersion exprimé par le rapport moles d'acide/moles de cérium peut être compris par exemple entre 0,01 environ et 1 ,5 environ, plus particulièrement entre 0,2 et 0,5. Il faut noter ici que ce taux dépend de la taille des particules de la dispersion, ce taux étant d'autant plus faible que la taille des particules augmente. On notera encore que la limite basse de ce taux est celle en deçà de laquelle on n'a plus de stabilité de la dispersion. La limite haute dépend en fait de la solubilité de l'acide utilisé et aussi de la quantité d'acide maximale au-delà de laquelle on risque de voir la dispersion se transformer en gel. Les dispersions selon l'invention sont généralement des dispersions aqueuses, la phase liquide étant l'eau. Toutefois, selon certaines variantes, les dispersions de l'invention peuvent présenter une phase liquide mixte aqueuse/organique par exemple hydroalcoolique à base d'un mélange d'eau et d'alcool, ou encore une phase liquide constituée par un solvant organique comme une phase liquide alcoolique. On peut citer comme alcool possible, le méthanol, l'éthanol ou le propanol. Comme solvant organique, on peut citer aussi les hydrocarbures aliphatiques comme l'hexane, l'heptane, l'octane, le nonane, les hydrocarbures cycloaliphatiques inertes tels que le cyclohexane, le cyclopentane, le cycloheptane, les hydrocarbures aromatiques tels que le benzène, le toluène, l'éthylbenzene, les xylènes, les naphténes liquides. Conviennent également les coupes pétrolières du type Isopar ou Solvesso (marques déposées par la Société EXXON), notamment Solvesso 100 qui contient essentiellement un mélange de méthyléthyl- et triméthyl-benzène, le Solvesso 150 qui renferme un mélange d'alcoylbenzènes en particulier de diméthylbenzène et de tetramethylbenzene et l'Isopar qui contient essentiellement des hydrocarbures iso- et cyclo-paraffiniques en C-11 et C-12. On peut mettre en œuvre également des hydrocarbures chlorés tels que le chloro- ou le dichloro-benzène, le chlorotoluène. Les éthers ainsi que les cétones aliphatiques et cycloaliphatiques comme par exemple l'éther de diisopropyle, l'éther de dibutyle, la méthyléthylcétone, la méthylisobutylcétone, la diisobutylcétone, l'oxyde de mésityle, peuvent être envisagés. Le solvant organique peut notamment être aussi un composé cosmétiquement acceptable non miscible dans l'eau et/ou miscible dans une phase organique cosmétiquement acceptable. Le solvant organique ou la phase organique peuvent par exemple être choisis parmi les huiles d'origine minérale ou végétales et leurs dérivés, les huiles essentielles, les huiles silcones, les cires, et tout autre vecteur non miscible à l'eau cosmétiquement acceptable. Les procédés de préparation de la dispersion de l'invention vont maintenant être décrits. Selon un premier mode, le procédé est mis en œuvre par réaction à chaud et à pH d'au moins 7, d'une dispersion colloïdale du composé de cérium avec un silicate alcalin. La dispersion colloïdale de départ pourra avoir été obtenue par exemple par les procédés décrits dans les demandes de brevets européens EP 206906, EP 208581 , EP 316205, EP 700870 et EP 700871. On peut utiliser tout particulièrement les dispersions colloïdales obtenues par thermohydrolyse d'une solution aqueuse d'un sel de cérium IV comme un nitrate, en milieu acide notamment. Un tel procédé est décrit dans les demandes de brevets européens EP 239477 ou EP 208580. Dans cette dernière demande par exemple on prépare tout d'abord une dispersion colloïdale d'un composé de cérium IV en faisant réagir une solution aqueuse de sel de cérium IV avec une base, puis on traite thermiquement cette dispersion ce par quoi on obtient un précipité. Ce précipité peut être remis en suspension dans l'eau et donner ainsi une dispersion colloïdale. Dans le cas du mode de réalisation particulier décrit plus haut dans laquelle la dispersion comprend un acide organique, ou un sel de celui-ci, ayant au moins trois fonctions acides et dont le troisième pK est d'au plus 10, on peut partir de dispersions colloïdales du type décrit ci-dessus et à pH basique. Par pH basique on entend ici un pH supérieur à 7 et qui est de préférence compris entre 7,5 et 9,5, plus particulièrement entre 7,5 et 9. De telles valeurs de pH peuvent être obtenues par la présence d'une base dans la dispersion. Cette base peut être l'ammoniaque mais aussi une aminé. Tout type d'aminé peut convenir, primaire, secondaire ou tertiaire. On notera qu'il est possible d'utiliser des amino-alcools comme par exemple le 2-amino-2- méthyl-1 -propanol. On ajoute à la dispersion un acide (par exemple l'acide citrique) tels que définis plus haut de manière à obtenir la valeur de pH nécessaire. L'acide peut être ajouté à la dispersion de départ dans un premier temps puis la base dans un deuxième temps. Il est toutefois possible d'ajouter l'acide et la base simultanément. Les dispersions qui conviennent pour la mise en œuvre de ce mode de réalisation particulier peuvent aussi être celles décrites dans la demande de brevet WO 01/38225. Ces dispersions ont l'avantage d'être stables dans une large gamme de pH ce qui facilite leur mise en œuvre dans le procédé de l'invention. Selon une variante du procédé de préparation selon ce premier mode, on utilise une dispersion de départ présentant une pureté élevée. On entend par là une dispersion présentant une force ionique faible, en particulier une dispersion à faible teneur en nitrate, par exemple une dispersion dans laquelle le rapport massique NO37CeO2 est d'au plus 5%. Des dispersions de ce type sont par exemple celles décrites dans EP-A-700870. Cette variante est intéressante tout particulièrement dans le cas de la préparation de dispersions dont les particules sont fines (de l'ordre de 10 nm) et/ou à concentration élevée (au moins 100 g/L) et/ou à taux de silice important (au moins 0,4). Le silicate alcalin peut être plus particulièrement un silicate de sodium. La quantité de silicate alcalin utilisée est fonction du rapport SiO2/CeO2 désiré dans la dispersion finale. La réaction entre la dispersion de départ et le silicate se fait à chaud. On entend par là une réaction à une température d'au moins 60°C, de préférence d'au moins 80°C et qui, généralement, peut être comprise entre 80°C et 100°C. La réaction doit se faire en outre dans des conditions de pH d'au moins8, 1007 A, (1981). These sizes can also be determined by TEM in direct measurement, this technique, in the case of the products of the invention, giving values similar or slightly lower than those obtained by the DQEL technique. The average size values given above apply to particles in suspension in the liquid phase of the dispersion. According to a preferred embodiment, these particles (so-called primary particles) can be composed of a certain number of coherent domains measured by the RX analysis (elementary particles) of dimension less than 5 nm, from 2 to 3 nm for example , and they are presented in an individualized form, that is to say not aggregated. According to another embodiment, these particles (so-called secondary particles) correspond to an aggregate of a few primary particles of the above type. The dispersions according to the invention can have a pH in a wide range from 3 to 11 for example, this pH being chosen according to the subsequent use of the dispersions. The dispersions of the invention can have a concentration which also varies over a wide range. This concentration can be at least 1 g / L, in particular at least 10 g / L, more particularly at least 50 g / L and even more particularly at least 100 g / L. This concentration is expressed in mass of particles. It is determined after drying and calcination in air of a given volume of dispersion. According to a particular embodiment, the dispersion comprises an organic acid having at least three acid functions and whose third pK is at most 10 or a salt of this acid. In the dispersion according to this embodiment, the acid interacts with the cerium cation by any type of chemical bond. Therefore, the acid is therefore present on, or within, cerium compound particles but it can also be present in the liquid phase. As suitable acid, there may be mentioned very particularly citric acid. The acid salt may more particularly be an alkaline salt. The acid level in the dispersion expressed by the mole of acid / moles of cerium ratio can be for example between approximately 0.01 and approximately 1.5, more particularly between 0.2 and 0.5. It should be noted here that this rate depends on the size of the particles of the dispersion, this rate being all the lower as the size of the particles increases. It will also be noted that the lower limit of this rate is that below which the dispersion is no longer stable. The upper limit in fact depends on the solubility of the acid used and also on the maximum amount of acid beyond which there is a risk of seeing the dispersion transform into a gel. The dispersions according to the invention are generally aqueous dispersions, the liquid phase being water. However, according to certain variants, the dispersions of the invention can have a mixed aqueous / organic liquid phase, for example hydroalcoholic based on a mixture of water and alcohol, or else a liquid phase constituted by an organic solvent such as a alcoholic liquid phase. Mention may be made, as possible alcohol, of methanol, ethanol or propanol. As organic solvent, there may also be mentioned aliphatic hydrocarbons such as hexane, heptane, octane, nonane, inert cycloaliphatic hydrocarbons such as cyclohexane, cyclopentane, cycloheptane, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylenes, liquid naphthenes. Also suitable are petroleum cuts of the Isopar or Solvesso type (trademarks registered by the company EXXON), in particular Solvesso 100 which essentially contains a mixture of methylethyl- and trimethyl-benzene, Solvesso 150 which contains a mixture of alkylbenzenes, in particular dimethylbenzene and of tetramethylbenzene and Isopar which essentially contains iso- and cyclo-paraffinic C-11 and C-12 hydrocarbons. It is also possible to use chlorinated hydrocarbons such as chloro- or dichlorobenzene, chlorotoluene. The ethers as well as the aliphatic and cycloaliphatic ketones such as for example diisopropyl ether, dibutyl ether, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, mesityl oxide, can be envisaged. The organic solvent can in particular also be a cosmetically acceptable compound which is immiscible in water and / or miscible in a cosmetically acceptable organic phase. The organic solvent or the organic phase may, for example, be chosen from oils of mineral or vegetable origin and their derivatives, essential oils, silicone oils, waxes, and any other cosmetically acceptable water-immiscible carrier. The methods for preparing the dispersion of the invention will now be described. According to a first mode, the process is implemented by hot reaction and at a pH of at least 7, of a colloidal dispersion of the cerium compound with an alkaline silicate. The starting colloidal dispersion may have been obtained for example by the methods described in European patent applications EP 206906, EP 208581, EP 316205, EP 700870 and EP 700871. It is possible to use very particularly the colloidal dispersions obtained by thermohydrolysis of a aqueous solution of a cerium IV salt such as a nitrate, in an acid medium in particular. Such a process is described in European patent applications EP 239477 or EP 208580. In this latter application, for example, a colloidal dispersion of a cerium IV compound is first prepared by reacting an aqueous solution of cerium IV salt with a base, then this dispersion is heat treated, whereby a precipitate is obtained. This precipitate can be resuspended in water and thus give a colloidal dispersion. In the case of the particular embodiment described above in which the dispersion comprises an organic acid, or a salt thereof, having at least three acid functions and whose third pK is at most 10, it is possible to start from colloidal dispersions of the type described above and at basic pH. By basic pH is meant here a pH greater than 7 and which is preferably between 7.5 and 9.5, more particularly between 7.5 and 9. Such pH values can be obtained by the presence of a base in the dispersion. This base can be ammonia but also an amino. Any type of amine may be suitable, primary, secondary or tertiary. Note that it is possible to use amino alcohols such as for example 2-amino-2-methyl-1-propanol. An acid (for example citric acid) as defined above is added to the dispersion so as to obtain the necessary pH value. The acid can be added to the starting dispersion first and then the base in a second step. It is however possible to add the acid and the base simultaneously. The dispersions which are suitable for the implementation of this particular embodiment can also be those described in patent application WO 01/38225. These dispersions have the advantage of being stable over a wide pH range, which facilitates their implementation in the process of the invention. According to a variant of the preparation process according to this first mode, a starting dispersion having a high purity is used. By this is meant a dispersion having a low ionic strength, in particular a dispersion with a low nitrate content, for example a dispersion in which the mass ratio NO 3 7CeO 2 is at most 5%. Dispersions of this type are for example those described in EP-A-700870. This variant is particularly advantageous in the case of the preparation of dispersions in which the particles are fine (of the order of 10 nm) and / or at high concentration (at least 100 g / L) and / or with a high silica content. (at least 0.4). The alkali silicate can more particularly be a sodium silicate. The amount of alkali silicate used depends on the SiO 2 / CeO 2 ratio desired in the final dispersion. The reaction between the starting dispersion and the silicate is carried out hot. By this is meant a reaction at a temperature of at least 60 ° C, preferably at least 80 ° C and which, generally, can be between 80 ° C and 100 ° C. The reaction must also take place under pH conditions of at least
7, généralement entre 8 et 11. Plus particulièrement, cette réaction peut être conduite à pH constant, c'est à dire que le pH est maintenu à une valeur variant de ± 0,5 unité de pH autour de la valeur fixée, ce contrôle du pH pouvant se faire par addition d'une base ou d'un acide au milieu réactionnel. La réaction se fait de préférence en introduisant le silicate dans la dispersion. La dispersion peut avoir été amenée à un pH d'au moins 7 préalablement à cette introduction. Une base peut être ajoutée à la dispersion simultanément à l'introduction du silicate pour obtenir une valeur de pH convenable. Dans le cadre du procédé de l'invention la base utilisée pour ajuster le pH peut être notamment choisie parmi les hydroxydes d'alcalins ou d'alcalino- terreux et l'ammoniaque. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. L'ammoniaque peut être utilisé tout particulièrement. A l'issue de la réaction de la dispersion avec le silicate, il est possible de faire subir un mûrissement au milieu obtenu. On entend ici par mûrissement le maintien du milieu à une température voisine de, ou identique à, celle du milieu pendant la réaction. Le milieu peut être maintenu sous agitation pendant ce mûrissement. Le mûrissement est plus particulièrement utile dans le cas de la préparation de dispersions à concentration élevée en cérium. La durée et la température du mûrissement dépendent du taux de silice. Généralement, la durée est comprise entre 10 minutes et 10 heures, cette limite haute n'étant pas critique et étant donnée à titre indicatif. La température est similaire à celle à laquelle la réaction a été conduite, elle est de préférence d'au moins 60°C et elle peut être comprise entre 80°C et 100°C plus particulièrement. A l'issue de la réaction et de l'éventuel mûrissement, on laisse refroidir le milieu obtenu et on obtient ainsi une dispersion selon l'invention. Cette dispersion peut être lavée par addition à la dispersion d'un volume d'eau puis être soumise à une ultrafiltration pour revenir au volume initial. L'étape de lavage peut être renouvelée si nécessaire. Notamment, dans le cas d'une préparation utilisant comme dispersion de départ la dispersion spécifique décrite plus haut comprenant un acide organique, ou un sel de celui-ci, ayant au moins trois fonctions acides et dont le troisième pK est d'au plus 10, plusieurs lavages peuvent être effectués pour diminuer la quantité d'acide organique dans la dispersion finale ou éventuellement l'éliminer. Dans une dernière étape, on peut procéder, si nécessaire, à une concentration de la dispersion, par tout moyen connu, par exemple par ultrafiltration. Un second type de procédé peut être utilisé. Ce procédé comprend au moins une étape qui consiste à faire réagir une dispersion colloïdale du composé de cérium avec un alcoxyde de silicium. La dispersion colloïdale de départ peut être du type de celles mentionnées plus haut dans le cas du procédé selon le premier mode. On utilise cependant de préférence des dispersions acides par exemple celles du type mentioné plus haut et qui sont obtenues par thermohydrolyse d'une solution aqueuse d'un sel de cérium IV en milieu acide et décrites dans EP-A- 239477 ou EP-A-208580. Les dispersions acides présentent de préférence un pH d'au plus 4, plus particulièrement d'au plus 3 et qui peut être compris entre 1 ,5 et 2,5 par exemple. Comme alcoxyde de silicium utilisable, on peut citer notamment le tétraéthylorthosilicate. La quantité d'alcoxyde de silicium utilisée est fonction du rapport7, generally between 8 and 11. More particularly, this reaction can be carried out at constant pH, that is to say that the pH is maintained at a value varying by ± 0.5 pH unit around the fixed value, this control pH can be achieved by adding a base or an acid to the reaction medium. The reaction is preferably carried out by introducing the silicate into the dispersion. The dispersion may have been brought to a pH of at least 7 prior to this introduction. A base can be added to the dispersion simultaneously with the introduction of the silicate to obtain a suitable pH value. In the context of the process of the invention, the base used to adjust the pH can be chosen in particular from alkali or alkaline-earth hydroxides and ammonia. It is also possible to use secondary, tertiary or quaternary amines. Ammonia can be used in particular. At the end of the reaction of the dispersion with the silicate, it is possible to subject the medium obtained to maturing. By ripening is meant here the maintenance of the medium at a temperature close to, or identical to, that of the medium during the reaction. The medium can be stirred for this ripening. Curing is more particularly useful in the case of the preparation of dispersions with a high concentration of cerium. The duration and the temperature of the ripening depend on the silica content. Generally, the duration is between 10 minutes and 10 hours, this upper limit not being critical and being given as an indication. The temperature is similar to that at which the reaction was carried out, it is preferably at least 60 ° C and it can be between 80 ° C and 100 ° C more particularly. At the end of the reaction and of possible ripening, the medium obtained is allowed to cool and a dispersion according to the invention is thus obtained. This dispersion can be washed by adding a volume of water to the dispersion and then be subjected to ultrafiltration to return to the initial volume. The washing step can be repeated if necessary. In particular, in the case of a preparation using as starting dispersion the specific dispersion described above comprising an organic acid, or a salt thereof, having at least three acid functions and whose third pK is at most 10 , several washes can be carried out to reduce the amount of organic acid in the final dispersion or possibly eliminate it. In a final step, a concentration of the dispersion can be carried out, if necessary, by any known means, for example by ultrafiltration. A second type of process can be used. The method includes at least one step of reacting a colloidal dispersion of the cerium compound with a silicon alkoxide. The starting colloidal dispersion may be of the type mentioned above in the case of the method according to the first mode. However, acid dispersions are preferably used, for example those of the type mentioned above and which are obtained by thermohydrolysis of an aqueous solution of a cerium IV salt in an acid medium and described in EP-A-239477 or EP-A- 208580. The acid dispersions preferably have a pH of at most 4, more particularly at most 3 and which can be between 1.5 and 2.5 for example. As silicon alkoxide which can be used, mention may in particular be made of tetraethylorthosilicate. The amount of silicon alkoxide used depends on the ratio
SiO2/CeO2 désiré dans la dispersion finale. La réaction se fait habituellement à température ambiante, par exemple à 25°C. Cette réaction se fait en voie aqueuse ou essentiellement aqueuse. Il faut noter en effet que la réaction concernée est une hydrolyse du silicate qui, outre la silice, produit un alcool qui reste dans le milieu réactionnel. On peut procéder en introduisant l'alcoxyde de silicium dans la dispersion de départ. A l'issue de l'étape qui vient d'être décrite, appelée étape (a) dans la suite de la description, on obtient une dispersion selon l'invention. Toutefois, il peut être avantageux de compléter le procédé selon le second mode de réalisation par une étape supplémentaire. Cela permet d'obtenir plus facilement une dispersion dans laquelle la couche de silice enveloppant les particules du composé de cérium est continue. Cette deuxième étape optionnelle du procédé, appelée étape (b) dans la suite de la description, consiste à remonter le pH du milieu obtenu à la fin de la réaction entre la dispersion et l'alcoxyde de silicium. Ce pH, qui est acide, est ramené à une valeur basique c'est à dire supérieure à 7 par addition d'une base, par exemple de l'ammoniaque. Le pH peut être plus particulièrement d'au moins 8 et il est généralement d'au plus 11. Il est possible, à l'issue de l'étape (a) et avant l'étape (b), de faire subir un mûrissement au milieu obtenu comme dans le cas du procédé selon le premier mode. Ce mûrissement se fait habituellement à température ambiante et sous agitation pendant une durée qui peut aussi être comprise entre 30 minutes et 10 heures. Comme dans le procédé selon le premier mode, la dispersion peut être lavée, une ou plusieurs fois, en utilisant la même technique que celle décrite plus haut. Toutefois, dans le cas du procédé de ce second mode, le lavage peut être effectué avant ou après l'étape (b). De même, on peut concentrer la dispersion comme indiqué dans le cas du premier mode de réalisation. L'invention concerne aussi un troisième mode de réalisation du procédé qui va être décrit ci-dessous. La première étape du procédé selon ce troisième mode est du même type que celle qui a été décrite comme première étape soit dans le premier mode de réalisation du procédé, soit dans le second mode de réalisation, étape (a), puisqu'il s'agit essentiellement d'une réaction entre une dispersion d'un composé de cérium et un silicate. Toutefois ici, la dispersion de départ doit présenter un pH d'au plus 4, de préférence d'au plus 2. Ce qui a été dit précédemment pour les premier et second modes de réalisation s'applique par ailleurs ici. La seconde étape du procédé consiste, si nécessaire, à remonter à une valeur basique le pH du milieu obtenu à l'issue de l'étape précédente, c'est à dire à une valeur supérieure à 7, de préférence d'au moins 9. Cette étape peut être conduite de la même manière que celle qui a été décrite pour l'étape analogue (b) du second mode de réalisation. On notera que cette seconde étape peut ne pas être nécessaire car dans certains cas, pour une dispersion de départ de puretée élevée par exemple, la réaction entre cette dispersion et le silicate peut conduire à un milieu présentant à l'issue de cette réaction un pH déjà basique. On peut réaliser un lavage de la dispersion de la même manière que ce qui a déjà été décrit plus haut. Enfin, la troisième étape du procédé consiste en un mûrissement du même type que ce qui a été décrit précédemment pour les autres modes de réalisation. A l'issue de cette dernière étape, on obtient une dispersion selon l'invention. On peut procéder à une séparation solide/liquide par toute technique connue pour éliminer un éventuel résidu solide pouvant sédimenter. Là encore, on peut concentrer la dispersion comme indiqué dans le cas du premier mode de réalisation. Ce dernier mode de réalisation présente l'avantage de conduire facilement à des dispersions de concentration élevée, notamment supérieure à 50g/L. Dans le cas d'une dispersion dans laquelle la phase liquide n'est pas seulement de l'eau mais un mélange eau/solvant organique ou encore dans laquelle la phase liquide est constituée par un solvant organique, cette dispersion peut être préparée à partir d'une dispersion aqueuse telle qu'obtenue par les procédés décrits ci-dessus et par addition du solvant organique à la dispersion aqueuse puis distillation pour éliminer l'eau. Dans le cas d'un solvant organique non soluble dans l'eau, un agent de transfert peut être introduit dans le solvant organique et le mélange agent de transfert/solvant organique est ensuite mis en contact avec le sol aqueux. On pourra se référer ici à l'enseignement de WO 01/10545 qui décrit un procédé de préparation d'un sol organique et des acides (notamment des acides organiques, amphiphiles, de 10 à 50 atomes de carbone) utilisables comme agents de transfert. Comme indiqué plus haut, l'invention couvre aussi un composé solide, qui est caractérisé en ce qu'il est obtenu à partir d'une dispersion telle que décrite ci-dessus et par séparation des particules solides du composé de cérium de la phase liquide. Cette séparation peut se faire par toute technique convenable. On peut ainsi effectuer la séparation par floculation par un tiers solvant ou encore par distillation. Le séchage peut être fait aussi par atomisation ou lyophilisation ou encore en étuve. On recueille à la suite de cette séparation une phase solide qui peut être séchée et qui se présente, suivant le niveau de séchage atteint soit sous forme de poudre soit sous forme de pâte et qui constitue un composé solide selon l'invention. Ce composé comprend des agrégats dont la taille peut varier dans de larges limites en fonction du mode de séchage utilisé. Cette taille, déterminée par MET, peut être comprise entre 0,1 μm et 100 μm. Ces agrégats sont constitués par les particules de la dispersion et ces particules conservent bien, dans ce composé, leur structure à noyau de composé de cérium et à enveloppe en silice. Les dispersions ou le composé solide selon l'invention peuvent être utilisés dans différents domaines comme la cosmétique, les polymères, les peintures, les matériaux de revêtement ou les fibres. De ce fait, l'invention concerne aussi des compositions de matière du type matériau en polymère, composition cosmétique, peinture, revêtement, fibre, qui sont caractérisées en ce qu'elles comprennent ou en ce qu'on y a incorporé, une dispersion ou un composé solide selon l'invention. Ainsi, les dispersions ou le composé solide selon l'invention peuvent être utilisés dans des compositions cosmétiques, par exemple dans des formulations de protection solaire, destinées à être appliquées sur la peau. Ces compositions peuvent être formulées notamment sous forme de crèmes, de laits, d'huiles, de sprays. De telles compositions et formulations, ainsi que les ingrédients pouvant être utilisés (vecteurs huileux et/ou aqueux et/ou alcooliques, tensioactifs, agents de viscosité, actifs bénéfiques pour la peau, agents de sensation cosmétiques, stabilisants, parfums etc..) pour les mettre en œuvre, sont connus de l'homme du métier. Les dispersions ou le composé solide peuvent être utilisés dans ces compositions à titre d'unique agent de protection contre les UV, ou en combinaison avec d'autres agents de protection solaire, par exemple d'autres agents inorganiques comme les agents à base de dioxyde de titane, ou des agents organiques. Les autres agents de protection solaire sont connus de l'homme du métier. La combinaison de différents agents peut procurer une protection optimale sur les différentes gammes de longueur d'onde (UV-A, UV-B etc). Les compositions cosmétiques peuvent notamment être formulées sous forme d'émulsions, eau dans huile ou huile dans l'eau. La dispersion ou le composé solide peut être présent dans la phase aqueuse et/ou dans la phase huileuse. Si la dispersion est une dispersion dans l'eau, l'émulsion est de préférence une émulsion eau dans huile, la dispersion étant présente dans la phase aqueuse. Si la dispersion est une dispersion dans un solvant organique non miscible à l'eau, l'émulsion est de préférence une émulsion huile dans eau, la dispersion étant présente dans la phase huile. Il n'est pas exclu de combiner ces deux derniers modes de réalisation de compositions cosmétiques. Si les compositions sont formulées sous forme d'huile solaire, on utilise de préférence une dispersion dans un solvant organique, miscible ou non miscible dans l'eau, et miscible avec l'huile utilisée. De même, les dispersions ou le composé solide selon l'invention peuvent être utilisés à titre d'agent de protection anti-UV dans des matières plastiques qui peuvent être du type thermoplastiques ou thermodurcissables. A titre d'exemple de polymères thermoplastiques on peut citer : les polycarbonates comme le poly[méthane bis(4-phényl) carbonate], le poly[1 ,1- éther bis(4-phényl) carbonate], le poly[diphénylméthane bis(4- phényl)carbonate], le poly[1 ,1-cyclohexane bis(4-phényl)carbonate] et les polymères de la même famille; les polyamides comme le poly(acide 4-amino butyrique), le poly(héxaméthylène adipamide), le poly(acide 6- aminohéxanoïque), le poly(m-xylylène adipamide), le poly(p-xylylène sébacamide), le poly(2,2,2-triméthyl héxaméthylène téréphtalamide), le poly(métaphénylène isophtalamide), le poly(p-phénylène téréphtalamide), et les polymères de la même famille; les polyesters comme le poly(éthylène azélate), le poly(éthylène-1 ,5-naphtalate, le poly(1 ,4-cyclohexane diméthylène téréphtalate), le poly(éthylène oxybenzoate), le poly(para-hydroxy benzoate), le poly(1 ,4-cyclohéxylidène diméthylène téréphtalate), le poly(1 ,4- cyclohéxylidène diméthylène téréphtalate), le polyéthylène téréphtalate, le polybutylène téréphtalate et les polymères de la même famille; les polymères vinyliques et leurs copolymères comme l'acétate de polyvinyle, l'alcool polyvinylique, le chlorure de polyvinyle; le polyvinyle butyral, le chlorure de polyvinylidène, les copolymères éthylène- acétate de vinyle, et les polymères de la même famille; les polymères acryliques, les polyacrylates et leurs copolymères comme l'acrylate de polyéthyle, le poly(n-butyl acrylate), le polyméthylméthacrylate, le polyéthyl méthacrylate, le poly(n-butyl méthacrylate), le poly(n-propyl méthacrylate), le polyacrylamide, le polyacrylonitrile, le poly(acide acrylique), les copolymères éthylène- acide acrylique, les copolymères éthylène- alcool vinylique, les copolymères de l'acrylonitrile, les copolymères méthacrylate de méthyle-styrène, les copolymères éthylène-acrylate d'éthyle, les copolymères méthacrylate- butadiène-styrène, l'ABS, et les polymères de la même famille; les polyoléfines comme le poly(éthylène) basse densité, le poly(propylène) et en général les alpha oléfines d'éthylènes et de propylène copolymérisées avec d'autres alpha oléfines telles que les 1 -butène, et 1-hexènes qui peuvent être utilisées jusqu'à moins de 1%. D'autres comonomères utilisés peuvent être des oléfines cycliques telles que le 1 ,4-hexadiène, le cyclopentadiène et l'éthylidènenorbornène. Les copolymères peuvent aussi être un acide carboxylique tel que l'acide acrylique ou l'acide méthacrylique. On peut enfin mentionner le poly(éthylène) chloré basse densité, le poly(4-méthyl-1- pentène), le poly(éthylène), le poly(styrène). Parmi ces polymères thermoplastiques, on préfère tout particulièrement les polyéthylènes dont les PEBD (polyéthylènes basse densité), les LLDPE (polyéthylènes basse densité linéaires), les polyéthylènes obtenus par synthèse métallocene, le PVC (polychlorure de vinyle), le PET (polyethylene téréphtalate), le polyméthylméthacrylate, les copolyoléfines telles que l'EVA (polyethylene d'alcool vinylique ou éthylène vinyl acétate), les mélanges et copolymères à base de ces (co)polymères, le polycarbonate Concernant les matières thermodurcissables, on peut citer, par exemple, les phénoplastes, les aminoplastes, les résines époxy et les polyesters thermodurcissables. Les produits de l'invention peuvent être introduits par exemple sous forme d'une poudre solide ou sous forme d'une dispersion dans de l'eau ou dans un dispersant organique dans le milieu de synthèse du composé polymère, ou dans un polymère thermoplastique fondu sous une forme quelconque. La quantité de produit de l'invention, exprimée en masse de CeO2, dans le matériau polymère peut être comprise notamment entre 0,01 % et 10% en masse par rapport à la masse totale du matériau, plus particulièrement entre 0,1 % et 2%. Ces valeurs sont données à titre d'exemple uniquement et elles peuvent varier en fonction de la nature du polymère. La valeur basse est fixée en fonction de l'intensité de l'effet recherché que l'on désire obtenir. La valeur haute n'est pas critique, généralement on ne dépasse pas la valeur au delà de laquelle une quantité supplémentaire n'apporte pas d'avantage ou d'effet supplémentaire par rapport à d'autres contraintes par exemple des contraintes de coût. Les dispersions ou le composé solide selon l'invention peuvent être utilisés dans des peintures, notamment des vernis ou des lasures. Par peintures, lasures ou vernis on entend les formulations ou compositions désignées habituellement par ce terme dans le domaine technique des peintures et qui sont par exemple à base des résines en émulsion suivantes : résines alkydes dont la plus courante est dénommée glycérophtalique; les résines modifiées à l'huile longue ou courte; les résines acryliques dérivées des esters de l'acide acrylique (méthylique ou éthylique) et méthacrylique éventuellement copolymérisés avec l'acrylate d'éthyle, d'éthyl-2 hexyle ou de butyle ainsi que les résines acryliques-isocyanates; les résines vinyliques comme par exemple l'acétate de polyvinyle, le chlorure de polyvinyle, le butyralpolyvinylique, le formalpolyvinylique, et les copolymères chlorure de vinyle et acétate de vinyle ou chlorure de vinylidène; les résines aminoplastes ou phénoliques le plus souvent modifiées; les résines polyesters; les résines polyuréthannes; les résines époxy; les résines silicones; les résines cellulosiques ou nitrocellulosiques. La mise en œuvre des produits de l'invention se fait par simple mélange de la dispersion colloïdale ou du composé solide avec la peinture, notamment la lasure ou le vernis. La quantité de dispersion colloïdale ou du composé solide utilisée est fonction de la teneur finale souhaitée en oxyde de cérium dans la peinture. Cette teneur peut être quelconque. Généralement, on utilise les produits de l'invention en quantité telle que la teneur en oxyde de cérium est d'au plus 25% en poids, de préférence d'au plus 10% en poids et encore plus préférentiellement d'au plus 3% en poids par rapport à l'ensemble dispersion colloïdale ou composé solide et peinture. Les produits de l'invention conviennent particulièrement bien pour les peintures pour bois ainsi que pour les peintures pour métaux, notamment pour automobiles, trains ou bateaux. Des exemples vont maintenant être donnés.SiO 2 / CeO 2 desired in the final dispersion. The reaction is usually carried out at room temperature, for example at 25 ° C. This reaction takes place in an aqueous or essentially aqueous route. he it should in fact be noted that the reaction concerned is a hydrolysis of the silicate which, in addition to the silica, produces an alcohol which remains in the reaction medium. This can be done by introducing the silicon alkoxide into the starting dispersion. At the end of the step which has just been described, called step (a) in the following description, a dispersion according to the invention is obtained. However, it may be advantageous to complete the method according to the second embodiment with an additional step. This makes it easier to obtain a dispersion in which the silica layer enveloping the particles of the cerium compound is continuous. This second optional step of the process, called step (b) in the following description, consists in raising the pH of the medium obtained at the end of the reaction between the dispersion and the silicon alkoxide. This pH, which is acidic, is brought back to a basic value, ie greater than 7 by addition of a base, for example ammonia. The pH can more particularly be at least 8 and it is generally at most 11. It is possible, at the end of step (a) and before step (b), to undergo a ripening in the medium obtained as in the case of the method according to the first mode. This ripening is usually done at room temperature and with stirring for a period which can also be between 30 minutes and 10 hours. As in the method according to the first mode, the dispersion can be washed, one or more times, using the same technique as that described above. However, in the case of the method of this second mode, the washing can be carried out before or after step (b). Likewise, the dispersion can be concentrated as indicated in the case of the first embodiment. The invention also relates to a third embodiment of the method which will be described below. The first step of the method according to this third mode is of the same type as that which has been described as the first step either in the first embodiment of the method, or in the second embodiment, step (a), since it is essentially acts of a reaction between a dispersion of a cerium compound and a silicate. However, here, the starting dispersion must have a pH of at most 4, preferably at most 2. What has been said previously for the first and second embodiments also applies here. The second step of the process consists, if necessary, in raising the pH of the medium obtained at the end of the previous step to a basic value, that is to say to a value greater than 7, preferably at least 9 This step can be carried out in the same way as that which has been described for analogous step (b) of the second embodiment. It will be noted that this second step may not be necessary because in certain cases, for a starting dispersion of high purity for example, the reaction between this dispersion and the silicate can lead to a medium having at the end of this reaction a pH already basic. The dispersion can be washed in the same manner as that which has already been described above. Finally, the third step of the process consists of a ripening of the same type as that which has been described previously for the other embodiments. At the end of this last step, a dispersion according to the invention is obtained. A solid / liquid separation can be carried out by any known technique to remove any solid residue which may sediment. Here again, the dispersion can be concentrated as indicated in the case of the first embodiment. This latter embodiment has the advantage of easily leading to dispersions of high concentration, in particular greater than 50 g / L. In the case of a dispersion in which the liquid phase is not only water but a water / organic solvent mixture or in which the liquid phase consists of an organic solvent, this dispersion can be prepared from an aqueous dispersion as obtained by the methods described above and by adding the organic solvent to the aqueous dispersion then distillation to remove the water. In the case of an organic solvent which is not soluble in water, a transfer agent can be introduced into the organic solvent and the transfer agent / organic solvent mixture is then brought into contact with the aqueous sol. Reference may be made here to the teaching of WO 01/10545 which describes a process for the preparation of an organic soil and of acids (in particular organic acids, amphiphiles, of 10 to 50 carbon atoms) usable as transfer agents. As indicated above, the invention also covers a solid compound, which is characterized in that it is obtained from a dispersion such as described above and by separation of the solid particles of the cerium compound from the liquid phase. This separation can be done by any suitable technique. It is thus possible to carry out the separation by flocculation with a third solvent or also by distillation. Drying can also be done by atomization or lyophilization or in an oven. Following this separation, a solid phase is collected which can be dried and which occurs, depending on the drying level reached, either in the form of a powder or in the form of a paste, which constitutes a solid compound according to the invention. This compound comprises aggregates whose size can vary within wide limits depending on the drying method used. This size, determined by MET, can be between 0.1 μm and 100 μm. These aggregates are formed by the particles of the dispersion and these particles retain well, in this compound, their structure with a core of cerium compound and with a silica shell. The dispersions or the solid compound according to the invention can be used in various fields such as cosmetics, polymers, paints, coating materials or fibers. As a result, the invention also relates to compositions of matter of the polymer material, cosmetic composition, paint, coating, fiber type, which are characterized in that they comprise or in that there is incorporated, a dispersion or a solid compound according to the invention. Thus, the dispersions or the solid compound according to the invention can be used in cosmetic compositions, for example in sun protection formulations, intended to be applied to the skin. These compositions can be formulated in particular in the form of creams, milks, oils, sprays. Such compositions and formulations, as well as the ingredients which can be used (oily and / or aqueous and / or alcoholic vectors, surfactants, viscosity agents, active agents beneficial for the skin, cosmetic sensation agents, stabilizers, perfumes, etc.) for implement them are known to those skilled in the art. The dispersions or the solid compound can be used in these compositions as a sole UV protection agent, or in combination with other sun protection agents, for example other inorganic agents such as dioxide agents. titanium, or organic agents. The other sun protection agents are known to those skilled in the art. The combination of different agents can provide optimal protection over different wavelength ranges (UV-A, UV-B etc). The cosmetic compositions can in particular be formulated in the form of emulsions, water in oil or oil in water. The dispersion or the solid compound may be present in the aqueous phase and / or in the oily phase. If the dispersion is a dispersion in water, the emulsion is preferably a water-in-oil emulsion, the dispersion being present in the aqueous phase. If the dispersion is a dispersion in an organic solvent immiscible with water, the emulsion is preferably an oil-in-water emulsion, the dispersion being present in the oil phase. It is not excluded to combine these last two embodiments of cosmetic compositions. If the compositions are formulated in the form of a sun oil, a dispersion is preferably used in an organic solvent, miscible or immiscible in water, and miscible with the oil used. Likewise, the dispersions or the solid compound according to the invention can be used as anti-UV protection agent in plastics which can be of the thermoplastic or thermosetting type. Examples of thermoplastic polymers that may be mentioned: polycarbonates such as poly [methane bis (4-phenyl) carbonate], poly [1, 1-ether bis (4-phenyl) carbonate], poly [diphenylmethane bis (4-phenyl) carbonate], poly [1, 1-cyclohexane bis (4-phenyl) carbonate] and polymers of the same family; polyamides such as poly (4-amino butyric acid), poly (hexamethylene adipamide), poly (6-aminohexanoic acid), poly (m-xylylene adipamide), poly (p-xylylene sebacamide), poly ( 2,2,2-trimethylhexamethylene terephthalamide), poly (metaphenylene isophthalamide), poly (p-phenylene terephthalamide), and polymers of the same family; polyesters such as poly (ethylene azelate), poly (ethylene-1,5-naphthalate, poly (1,4-cyclohexane dimethylene terephthalate), poly (ethylene oxybenzoate), poly (para-hydroxy benzoate), poly (1,4-cyclohexylidene dimethylene terephthalate), poly (1,4-cyclohexylidene dimethylene terephthalate), polyethylene terephthalate, polybutylene terephthalate and polymers of the same family; vinyl polymers and their copolymers such as polyvinyl acetate , polyvinyl alcohol, polyvinyl chloride; polyvinyl butyral, polyvinylidene chloride, ethylene-vinyl acetate copolymers, and polymers of the same family; acrylic polymers, polyacrylates and their copolymers such as acrylate polyethyl, poly (n-butyl acrylate), polymethylmethacrylate, polyethyl methacrylate, poly (n-butyl methacrylate), poly (n-propyl methacrylate), polyacrylamide, polyacrylonitrile, poly (acrylic acid), ethylene-acrylic acid copolymers, ethylene-vinyl alcohol copolymers , acrylonitrile copolymers, methyl methacrylate-styrene copolymers, ethylene-ethyl acrylate copolymers, methacrylate-butadiene-styrene copolymers, ABS, and polymers of the same family; polyolefins such as low density poly (ethylene), poly (propylene) and in general the alpha olefins of ethylene and propylene copolymerized with other alpha olefins such as 1-butene, and 1-hexenes which can be used up to less than 1%. Other comonomers used can be cyclic olefins such as 1,4-hexadiene, cyclopentadiene and ethylidenenorbornene. The copolymers can also be a carboxylic acid such as acrylic acid or methacrylic acid. Finally, mention may be made of low density chlorinated poly (ethylene), poly (4-methyl-1-pentene), poly (ethylene), poly (styrene). Among these thermoplastic polymers, polyethylenes are particularly preferred, including LDPEs (low density polyethylenes), LLDPEs (linear low density polyethylenes), polyethylenes obtained by metallocene synthesis, PVC (polyvinyl chloride), PET (polyethylene terephthalate) , polymethylmethacrylate, copolyolefins such as EVA (polyethylene of vinyl alcohol or ethylene vinyl acetate), mixtures and copolymers based on these (co) polymers, polycarbonate As regards thermosetting materials, mention may be made, for example, phenoplasts, aminoplasts, epoxy resins and thermosetting polyesters. The products of the invention can be introduced for example in the form of a solid powder or in the form of a dispersion in water or in an organic dispersant in the medium for synthesis of the polymer compound, or in a molten thermoplastic polymer in any form. The quantity of product of the invention, expressed by mass of CeO 2 , in the polymer material can be in particular between 0.01% and 10% by mass relative to the total mass of the material, more particularly between 0.1% and 2%. These values are given by way of example only and they may vary depending on the nature of the polymer. The low value is fixed according to the intensity of the desired effect which one wishes to obtain. The high value is not critical, generally one does not exceed the value beyond which an additional quantity does not bring any advantage or additional effect compared to other constraints, for example cost constraints. The dispersions or the solid compound according to the invention can be used in paints, in particular varnishes or stains. By paints, stains or varnishes is meant the formulations or compositions usually designated by this term in the technical field of paints and which are for example based on the following emulsion resins: alkyd resins, the most common of which is called glycerophthalic; long or short oil modified resins; acrylic resins derived from acrylic (methyl or ethyl) and methacrylic acid esters optionally copolymerized with ethyl acrylate, 2-ethylhexyl or butyl acrylate as well as acrylic-isocyanate resins; vinyl resins such as, for example, polyvinyl acetate, polyvinyl chloride, butyralpolyvinyl, formalpolyvinyl, and the copolymers of vinyl chloride and vinyl acetate or vinylidene chloride; the aminoplast or phenolic resins most often modified; polyester resins; polyurethane resins; epoxy resins; silicone resins; cellulosic or nitrocellulosic resins. The products of the invention are used by simple mixing of the colloidal dispersion or of the solid compound with the paint, in particular the stain or the varnish. The amount of colloidal dispersion or solid compound used depends on the desired final content of cerium oxide in the paint. This content can be arbitrary. Generally, the products of the invention are used in an amount such that the content of cerium oxide is at most 25% by weight, preferably at most 10% by weight and even more preferably at most 3% by weight compared to the whole colloidal dispersion or solid compound and paint. The products of the invention are particularly suitable for paints for wood as well as for paints for metals, in particular for cars, trains or boats. Examples will now be given.
EXEMPLE 1 Cet exemple concerne une dispersion selon l'invention préparée par un procédé selon le premier mode de réalisation. On part d'un sol basique de pH 9,5 de particules d'oxyde de cérium, de taille de 9 nm, à une concentration de 10 g/L et à faible taux en nitrates (NO3 " /CeO2 de 5% en poids), à température ambiante (25°C). Ce sol est introduit en pied de cuve dans le réacteur et est porté à 90°C. Le pH passe à un valeur de 8. La température est maintenue à 90°C pendant toute la durée de l'essai. Du silicate de sodium (SiO2 = 236 g/L) est ajouté progressivement sous une agitation mécanique de 600 tr/min. La quantité de silicate de sodium déterminée par le rapport massique SiO2/CeO2 est de 0,4. Le pH est maintenu constant pendant l'addition du silicate à une valeur de 8 si nécessaire par de l'ammoniaque ou de l'acide sulfurique. Le mélange subit ensuite une étape de mûrissement à 90°C de 30 minutes sous agitation mécanique (600 tr/min). On laisse ensuite refroidir librement le mélange dans le réacteur. On obtient une dispersion colloïdale dont les caractéristiques sont les suivantes : pH : 9 Taille des particules : 11 nm (DQEL) Concentration : 10 g/L en CeO2 La mesure du potentiel Zêta en faisant varier le pH de la dispersion dans un domaine compris entre 9 et 1 donne un potentiel toujours négatif, il n'y a pas de point isoélectrique. On n'observe pas de floculation jusqu'à un pH de 1.EXAMPLE 1 This example relates to a dispersion according to the invention prepared by a process according to the first embodiment. We start from a basic soil of pH 9.5 of cerium oxide particles, 9 nm in size, at a concentration of 10 g / L and with a low nitrate content (NO 3 " / CeO 2 of 5% by weight), at ambient temperature (25 ° C.) This sol is introduced at the bottom of the vessel in the reactor and brought to 90 ° C. The pH changes to a value of 8. The temperature is maintained at 90 ° C. for throughout the test. Sodium silicate (SiO 2 = 236 g / L) is gradually added with mechanical stirring at 600 rpm The amount of sodium silicate determined by the mass ratio SiO 2 / CeO 2 is 0.4 The pH is kept constant during the addition of the silicate to a value of 8 if necessary with ammonia or sulfuric acid. The mixture then undergoes a maturing step at 90 ° C. minutes with mechanical stirring (600 rpm). The mixture is then allowed to cool freely in the reactor. A colloidal dispersion is obtained, the characteristics of which are have the following: pH: 9 Particle size: 11 nm (DQEL) Concentration: 10 g / L in CeO 2 Measuring the Zeta potential by varying the pH of the dispersion in a range between 9 and 1 gives a potential always negative, there is no isoelectric point. No flocculation is observed up to a pH of 1.
Ceci indique une bonne encapsulation des particules du composé de cérium par la silice.This indicates good encapsulation of the particles of the cerium compound by silica.
EXEMPLE 2 Cet exemple concerne une dispersion selon l'invention préparée par un procédé selon le second mode de réalisation. Du tétraéthylorthosilicate (TEOS) est incorporé progressivement à température ambiante (25°C), sous agitation mécanique (300 tr/min), à un sol de particules d'oxyde de cérium de 10 nm, de pH acide (1 ,8) et à 10 g/L de concentration en CeO2. Le rapport massique SiO2/CeO2 est fixé à 1 ,05. Le mélange subit ensuite une étape de mûrissement d'une heure à température ambiante (25°C) sous agitation mécanique (430 tr/min). On procède ensuite à un lavage de la dispersion par mélange de 100 ml du sol obtenu avec 200 ml d'eau, puis ultrafiltration jusqu'à revenir à un volume de 100 ml. Deux cycles successifs de lavage sont effectués. A l'issue du lavage, on remonte le pH du milieu obtenu à 9 par addition d'ammoniaque sous agitation mécanique (300 tr/min). On obtient une dispersion colloïdale dont les caractéristiques sont les suivantes : pH : 9 Taille des particules : 8nm (DQEL) Concentration : 10 g/L en CeO2 La mesure du potentiel Zêta en faisant varier le pH de la dispersion dans un domaine compris entre 9 et 2,5 donne un potentiel toujours négatif, il n'y a pas de point isoélectrique. On n'observe pas de floculation jusqu'à un pH deEXAMPLE 2 This example relates to a dispersion according to the invention prepared by a process according to the second embodiment. Tetraethylorthosilicate (TEOS) is gradually incorporated at room temperature (25 ° C), with mechanical stirring (300 rpm), into a sol of cerium oxide particles of 10 nm, of acid pH (1.8) and at 10 g / L CeO 2 concentration. The SiO 2 / CeO 2 mass ratio is fixed at 1.05. The mixture then undergoes a one hour maturing step at room temperature (25 ° C) with mechanical stirring (430 rpm). The dispersion is then washed by mixing 100 ml of the sol obtained with 200 ml of water, then ultrafiltration until it returns to a volume of 100 ml. Two successive washing cycles are carried out. At the end of the washing, the pH of the medium obtained is raised to 9 by addition of ammonia with mechanical stirring (300 rpm). A colloidal dispersion is obtained, the characteristics of which are as follows: pH: 9 Particle size: 8nm (DQEL) Concentration: 10 g / L of CeO 2 Measurement of the Zeta potential by varying the pH of the dispersion in a range between 9 and 2.5 gives an always negative potential, there is no isoelectric point. No flocculation is observed up to a pH of
2,5. Ceci indique une bonne encapsulation des particules du composé de cérium par la silice.2.5. This indicates good encapsulation of the particles of the cerium compound by silica.
EXEMPLE 3 Cet exemple concerne l'utilisation d'une dispersion de l'invention dans une lasure aqueuse. On part d'une lasure de formulation industrielle classique pour finition extérieure du type acrylique-polyurethane dispersé ayant pour référence commerciale AZ930 en provenance de la société ARCH COATI NGSEXAMPLE 3 This example relates to the use of a dispersion of the invention in an aqueous stain. We start with a stain of conventional industrial formulation for exterior finish of the dispersed acrylic-polyurethane type having the commercial reference AZ930 from the company ARCH COATI NGS
France. La dispersion colloïdale de l'exemple 1 est incorporée par simple mélange à une teneur de 1% en matière active (oxyde de cérium) par rapport au total de la formulation. Un sol de cérium correspondant à celui utilisé comme produit de départ dans l'exemple 1, donc à base de particules non encapsulées par de la silice, est incorporé de la même manière que précédemment à une teneur de 1 % par rapport au total pour donner une formulation comparative. Les formulations ainsi réalisées sont appliquées à la brosse sur chêne avec un grammage de 150gr/m2 et subissent un conditionnement à l'air pendant une semaine avant leur évaluation. On voit sur la photo de la figure 1 la lasure obtenue en appliquant la formulation telle quelle. La photo de la figure 2 est celle de la lasure obtenue à partir de la formulation incorporant une dispersion de l'invention et la photo de la figure 3 est celle de la lasure obtenue à partir d'une formulation incorporant le sol de cérium à base de particules non encapsulées par de la silice. On constate que la lasure additivée avec le sol comparatif subit une variation de teinte importante par rapport à la lasure seule. En revanche, la lasure additivée avec la dispersion selon l'invention ne subit pratiquement aucune variation de coloration, sa teinte est similaire à celle de la lasure seule.France. The colloidal dispersion of Example 1 is incorporated by simple mixing at a content of 1% of active material (cerium oxide) relative to the total of the formulation. A cerium sol corresponding to that used as the starting product in Example 1, therefore based on particles not encapsulated by silica, is incorporated in the same manner as above at a content of 1% relative to the total to give a comparative formulation. The formulations thus produced are applied by brush to oak with a grammage of 150gr / m 2 and are subjected to air conditioning for one week before their evaluation. We see in the photo of Figure 1 the stain obtained by applying the formulation as is. The photo of Figure 2 is that of the stain obtained from the formulation incorporating a dispersion of the invention and the photo of Figure 3 is that of the stain obtained from a formulation incorporating the cerium-based sol of particles not encapsulated by silica. It can be seen that the stain added to the comparative soil undergoes a significant variation in color compared to the stain alone. On the other hand, the stain added with the dispersion according to the invention undergoes practically no variation in coloring, its color is similar to that of the stain alone.
EXEMPLE 4 Cet exemple concerne l'utilisation d'un composé solide selon l'invention dans une résine PVC. La formulation PVC utilisée est la suivante :EXAMPLE 4 This example relates to the use of a solid compound according to the invention in a PVC resin. The PVC formulation used is as follows:
Figure imgf000019_0001
Figure imgf000019_0001
Conditions de mise en œuvre : Tous les ingrédients de la formulation PVC (exceptés le co-stabilisant organique et l'huile de soja époxydée qui sont liquides) sont mélangés dans un malaxeur de type Papenmeier de 8L de façon à avoir un compound de base de 2,5kg. Le mélange est porté à 112°C par agitation à 2500 tours/min, puis refroidi jusqu'à 40°C à vitesse minimum. Chaque ingrédient est incorporé à une centaine de grammes du compound, y compris le costabilisant organique et l'huile de soja époxydée. Le tout est mélangé 5 minutes à l'aide d'un mélangeur à pales IKA. La mise en feuille se fait en 3 minutes sur calandre Troester à 180°C, l'écart des cylindres étant fixé à la graduation 0,8. La feuille de PVC obtenue est thermocompressée dans un moule deProcessing conditions: All the ingredients of the PVC formulation (except the organic co-stabilizer and the epoxidized soybean oil which are liquid) are mixed in a Papenmeier type mixer of 8L so as to have a base compound of 2.5kg. The mixture is brought to 112 ° C by stirring at 2500 rpm, then cooled to 40 ° C at minimum speed. Each ingredient is incorporated into one hundred grams of the compound, including organic cost-effective and epoxidized soybean oil. The whole is mixed for 5 minutes using an IKA paddle mixer. Sheeting is done in 3 minutes on a Troester calender at 180 ° C, the distance between the cylinders being fixed at the 0.8 scale. The PVC sheet obtained is thermocompressed in a mold of
1mm d'épaisseur, permettant de former des rectangles de 90X50 mm. Cette thermocompression est réalisée avec la presse à plateaux Schwabenthan, à 180°C. Le cycle suivi est : 2 minutes sans pression, 1 minute à 100 bars, 1 minute à 150 bars. Le refroidissement s'effectue en 3 minutes à 150 bars. On réalise quatre plaques, une première de la manière décrite plus haut, une seconde avec en outre un absorbeur UV organique qui est le Tinuvin P326 de la société Ciba en tant qu'additif supplémentaire, une troisième avec un composé solide issu du séchage par atomisation de la dispersion selon l'invention de l'exemple 1 et une quatrième avec le composé solide issu du séchage par atomisation de la dispersion de départ de l'exemple 1 (sol d'oxyde de cérium non encapsulé par de la silice). Ces composés solides et le Tinuvin sont utilisés dans une quantité de 0,2 part en matière active (Tinuvin ou oxyde de cérium). On mesure sur les plaques l'indice de jaune dans le système Yxy avec un spectrocolorimètre Spectra-Magic (B2).1mm thick, allowing to form rectangles of 90X50 mm. This thermocompression is carried out with the Schwabenthan plate press, 180 ° C. The cycle followed is: 2 minutes without pressure, 1 minute at 100 bars, 1 minute at 150 bars. Cooling takes place in 3 minutes at 150 bars. Four plates are produced, a first as described above, a second with an organic UV absorber which is Tinuvin P326 from Ciba as an additional additive, a third with a solid compound resulting from spray drying. of the dispersion according to the invention of Example 1 and a fourth with the solid compound resulting from the spray drying of the starting dispersion of Example 1 (cerium oxide sol not encapsulated with silica). These solid compounds and Tinuvin are used in an amount of 0.2 part in active material (Tinuvin or cerium oxide). The yellow index is measured on the plates in the Yxy system with a Spectra-Magic spectrocolorimeter (B2).
Figure imgf000020_0001
Figure imgf000020_0001
On constate à partir du tableau ci-dessus que les plaques de PVC additivées avec l'oxyde de cérium encapsulé selon l'invention présente un indice de jaune très nettement inférieur à celui mesuré dans le cas d'un oxyde de cérium non encapsulé. De plus, la valeur d'indice de jaune obtenue dans le cas d'un oxyde de cérium en capsulé selon l'invention est similaire à celle obtenue avec un absorbeur UV organique classiquement utilisé en application PVC et également voisine de celle de la matrice PVC de référence.It can be seen from the table above that the PVC plates added with the encapsulated cerium oxide according to the invention have a yellow index very much lower than that measured in the case of a non-encapsulated cerium oxide. In addition, the value of the yellow index obtained in the case of a encapsulated cerium oxide according to the invention is similar to that obtained with an organic UV absorber conventionally used in PVC application and also close to that of the PVC matrix. reference.
EXEMPLE 5 Cet exemple concerne la préparation d'une dispersion selon l'invention par un procédé selon le troisième mode de réalisation décrit plus haut. On utilise les réactifs suivants : - un sol de particules d'oxyde de cérium de 10 nm à 82,2 g/L en CeO2 ; dEXAMPLE 5 This example relates to the preparation of a dispersion according to the invention by a process according to the third embodiment described above. The following reagents are used: a sol of cerium oxide particles of 10 nm at 82.2 g / L of CeO 2 ; d
= 1 ,067, pH = 1 ,5 - un silicate de sodium Na2O = 5,64%; SiO2 = 18,57% - une solution de NH4OH à 28 % soit 14,8 mol/L 22,13 g de la solution de silicate de sodium diluée dans 39 mL d'eau sont ajoutés, sous agitation mécanique de 300 trs/min, à 200 mL du sol de cérium placé dans un réacteur verre de 1 litre, à un débit de 5 mL/min. Le rapport massique visé SiO2 / CeO2 est de 0,25. Le pH en fin d'ajout du silicate de sodium est de 4,9. On ajoute ensuite 1 ,0 mL d'ammoniaque pour obtenir un pH de 9. Le mélange réactionnel est homogénéisé pendant 15 minutes. On procède ensuite à un lavage de la dispersion obtenue de la manière suivante. On centrifuge à 2000 trs/min pendant 10 minutes puis on redisperse le produit solide obtenu dans un volume d'eau à pH 9 et égal au volume d'eau de la dispersion avant lavage. On renouvelle une fois cette opération. La dispersion lavée est mûrie 2 heures à 100°C. A l'issue du mûrissement on observe qu'une faible fraction de solide se dépose au fond du flacon. Cette fraction est séparée par centrifugation à 2000 trs/min. Le surnageant issu de la centrifugation constitue la dispersion de l'invention dont les caractéritiques sont les suivantes : pH = 9,0 Concentration : 51 g/L en CeO2 taille des particules : 82 nm (DQEL) = 1.067, pH = 1.5 - a sodium silicate Na 2 O = 5.64%; SiO 2 = 18.57% - a 28% NH 4 OH solution, i.e. 14.8 mol / L 22.13 g of the sodium silicate solution diluted in 39 mL of water are added, with mechanical stirring of 300 rpm, at 200 mL of the cerium sol placed in a 1 liter glass reactor, at a flow rate of 5 mL / min. The target mass ratio SiO 2 / CeO 2 is 0.25. The pH at the end of the addition of the sodium silicate is 4.9. 1.0 ml of ammonia is then added to obtain a pH of 9. The reaction mixture is homogenized for 15 minutes. The dispersion obtained is then washed in the following manner. Centrifuged at 2000 rev / min for 10 minutes then the solid product obtained is redispersed in a volume of water at pH 9 and equal to the volume of water in the dispersion before washing. We repeat this operation once. The washed dispersion is matured for 2 hours at 100 ° C. At the end of ripening, it is observed that a small fraction of solid is deposited at the bottom of the bottle. This fraction is separated by centrifugation at 2000 rpm. The supernatant resulting from centrifugation constitutes the dispersion of the invention, the characteristics of which are as follows: pH = 9.0 Concentration: 51 g / L of CeO 2 particle size: 82 nm (DQEL)

Claims

REVENDICATIONS
1- Dispersion colloïdale de particules d'un composé de cérium dans une phase liquide, caractérisée en ce que les particules du composé de cérium sont enrobées au moins en partie par une couche de silice.1- Colloidal dispersion of particles of a cerium compound in a liquid phase, characterized in that the particles of the cerium compound are coated at least in part with a layer of silica.
2- Dispersion selon la revendication 1 , caractérisée en ce que les particules enrobées présentent une taille moyenne d'au plus 85 nm, plus particulièrement d'au plus 50 nm.2- Dispersion according to claim 1, characterized in that the coated particles have an average size of at most 85 nm, more particularly at most 50 nm.
3- Dispersion selon la revendication 2, caractérisée en ce que les particules enrobées présentent une taille moyenne d'au plus 25 nm.3- Dispersion according to claim 2, characterized in that the coated particles have an average size of at most 25 nm.
4- Dispersion selon l'une des revendications précédentes, caractérisée en ce qu'elle contient de la silice en une quantité, exprimée par le rapport massique SiO2/CeO2, d'au moins 0,01 , plus particulièrement comprise entre 0,01 et 2.4- Dispersion according to one of the preceding claims, characterized in that it contains silica in an amount, expressed by the mass ratio SiO 2 / CeO 2 , of at least 0.01, more particularly between 0, 01 and 2.
5- Dispersion selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend un acide organique ayant au moins trois fonctions acides et dont le troisième pK est d'au plus 10 ou un sel de cet acide.5- Dispersion according to one of the preceding claims, characterized in that it comprises an organic acid having at least three acid functions and whose third pK is at most 10 or a salt of this acid.
6- Dispersion selon l'une des revendications précédentes, caractérisée en ce que la phase liquide est l'eau.6- Dispersion according to one of the preceding claims, characterized in that the liquid phase is water.
7- Dispersion selon l'une des revendications 1 à 5, caractérisée en ce que la phase liquide est une phase organique.7- Dispersion according to one of claims 1 to 5, characterized in that the liquid phase is an organic phase.
8- Procédé de préparation d'une dispersion selon l'une des revendications 1 à 6, caractérisé en ce qu'on fait réagir à chaud et à pH d'au moins 7, une dispersion colloïdale d'un composé de cérium avec un silicate alcalin.8- A method of preparing a dispersion according to one of claims 1 to 6, characterized in that reacts hot and at pH of at least 7, a colloidal dispersion of a cerium compound with a silicate alkaline.
9- Procédé selon la revendication 8, caractérisé en ce qu'après la réaction de la dispersion colloïdale du composé de cérium avec le silicate alcalin, on fait subir un mûrissement au milieu obtenu. 10- Procédé selon la revendication 8 ou 9, caractérisé en ce qu'on fait réagir la dispersion colloïdale du composé de cérium avec le silicate alcalin en maintenant constant le pH du milieu réactionnel.9- Process according to claim 8, characterized in that after the reaction of the colloidal dispersion of the cerium compound with the alkali silicate, the medium obtained is subjected to ripening. 10- Process according to claim 8 or 9, characterized in that the colloidal dispersion of the cerium compound is reacted with the alkali silicate while keeping the pH of the reaction medium constant.
11- Procédé selon l'une des revendications 8 à 10, caractérisé en ce qu'on fait réagir la dispersion colloïdale du composé de cérium avec le silicate alcalin en introduisant le silicate dans la dispersion.11- Method according to one of claims 8 to 10, characterized in that the colloidal dispersion of the cerium compound is reacted with the alkali silicate by introducing the silicate into the dispersion.
12- Procédé de préparation d'une dispersion selon l'une des revendications 1 à 6, caractérisé en ce qu'on fait réagir une dispersion colloïdale d'un composé de cérium avec un alcoxyde de silicium.12- A method of preparing a dispersion according to one of claims 1 to 6, characterized in that a colloidal dispersion of a cerium compound is reacted with a silicon alkoxide.
13- Procédé selon la revendication 12, caractérisé en ce qu'après la réaction entre la dispersion colloïdale et l'alcoxyde de silicium on remonte ensuite le pH du milieu obtenu à une valeur basique.13- The method of claim 12, characterized in that after the reaction between the colloidal dispersion and the silicon alkoxide is then raised the pH of the medium obtained to a basic value.
14- Procédé selon la revendication 13, caractérisé en ce qu'on remonte le pH du milieu à une valeur d'au moins 9.14- A method according to claim 13, characterized in that the pH of the medium is raised to a value of at least 9.
15- Procédé selon l'une des revendications 12 à 14, caractérisé en ce qu'à l'issue de la réaction entre la dispersion colloïdale et l'alcoxyde de silicium et avant de remonter éventuellement le pH à une valeur basique, on fait subir un mûrissement au milieu obtenu.15- Method according to one of claims 12 to 14, characterized in that at the end of the reaction between the colloidal dispersion and the silicon alkoxide and before possibly raising the pH to a basic value, it is subjected ripening in the middle obtained.
16- Procédé selon l'une des revendications 12 à 15, caractérisé en ce qu'à l'issue de la réaction entre la dispersion colloïdale et l'alcoxyde de silicium ou après avoir remonté le pH à une valeur basique, on fait subir un lavage à la dispersion obtenue.16- Method according to one of claims 12 to 15, characterized in that at the end of the reaction between the colloidal dispersion and the silicon alkoxide or after having raised the pH to a basic value, it is subjected to a dispersion wash obtained.
17- Procédé de préparation d'une dispersion selon l'une des revendications 1 à 6, caractérisé en ce qu'il comporte les étapes suivantes :17- Method for preparing a dispersion according to one of claims 1 to 6, characterized in that it comprises the following steps:
- on fait réagir avec un silicate alcalin une dispersion colloïdale d'un composé de cérium dont le pH est d'au plus 4;- A colloidal dispersion of a cerium compound whose pH is at most 4 is reacted with an alkaline silicate;
- on remonte ensuite, si nécessaire, le pH du milieu obtenu à une valeur basique;- Then, if necessary, the pH of the medium obtained is raised to a basic value;
- on fait subir un mûrissement au milieu obtenu. 18- Composé solide, caractérisé en ce qu'il est obtenu à partir d'une dispersion selon l'une des revendications 1 à 7 par séparation des particules de la phase liquide.- the medium obtained is subjected to ripening. 18- Solid compound, characterized in that it is obtained from a dispersion according to one of claims 1 to 7 by separation of the particles from the liquid phase.
19- Composition de matière du type matériau en polymère, composition cosmétique, peinture, revêtement, fibre, caractérisée en ce qu'elle comprend ou en ce qu'on y a incorporé, une dispersion ou un composé solide selon l'une des revendications 1 à 7 ou 18. 19- Composition of matter of the polymer material type, cosmetic composition, paint, coating, fiber, characterized in that it comprises or in that one has incorporated therein, a dispersion or a solid compound according to one of claims 1 at 7 or 18.
PCT/FR2005/000437 2004-03-02 2005-02-24 Colloidal dispersion of silica coated cerium composition particles, solid compound obtainable from said dispersion and methods for the preparation and the use thereof WO2005095505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0402140 2004-03-02
FR0402140A FR2867181B1 (en) 2004-03-02 2004-03-02 COLLOIDAL DISPERSION OF SILICA-ENHANCED CERIUM COMPOUND PARTICLES, SOLID COMPOUND OBTAINED THEREFROM, PROCESSES FOR PREPARATION AND USE

Publications (1)

Publication Number Publication Date
WO2005095505A1 true WO2005095505A1 (en) 2005-10-13

Family

ID=34854979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/000437 WO2005095505A1 (en) 2004-03-02 2005-02-24 Colloidal dispersion of silica coated cerium composition particles, solid compound obtainable from said dispersion and methods for the preparation and the use thereof

Country Status (2)

Country Link
FR (1) FR2867181B1 (en)
WO (1) WO2005095505A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877392A (en) * 2015-06-11 2015-09-02 景德镇陶瓷学院 Preparation method of silica-coated cerium sulphide red pigment and prepared product thereof
WO2017140991A1 (en) 2016-02-17 2017-08-24 Rhodia Operations Fluid composition for wood protection
WO2019102114A1 (en) 2017-11-24 2019-05-31 Rhodia Operations Cerium oxide/silica particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596442A1 (en) * 1992-11-06 1994-05-11 NIPPON INORGANIC COLOUR & CHEMICAL CO., LTD. Ultraviolet-shielding agent, method for the preparation thereof and cosmetic composition compounded therewith
EP0810181A2 (en) * 1996-05-27 1997-12-03 NIPPON INORGANIC COLOUR & CHEMICAL CO., LTD. Silica-cerium oxide composite particles, method for the preparation thereof and resin composition and cosmetic composition compounded therewith
JP2000203834A (en) * 1998-12-28 2000-07-25 Kose Corp Ultrafine cerium oxide particle and ultrafine metal oxide.cerium oxide particle, its production and resin composition and cosmetic containing the same
EP1055642A2 (en) * 1999-05-25 2000-11-29 Kosé Corporation Metal oxide doped cerium oxides, method for the preparation thereof, resin composition and cosmetic composition therewith
WO2001038225A1 (en) * 1999-11-23 2001-05-31 Rhodia Terres Rares Aqueous colloidal dispersion based on at least a lanthanide compound and a complex-forming agent, preparation method and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596442A1 (en) * 1992-11-06 1994-05-11 NIPPON INORGANIC COLOUR & CHEMICAL CO., LTD. Ultraviolet-shielding agent, method for the preparation thereof and cosmetic composition compounded therewith
EP0810181A2 (en) * 1996-05-27 1997-12-03 NIPPON INORGANIC COLOUR & CHEMICAL CO., LTD. Silica-cerium oxide composite particles, method for the preparation thereof and resin composition and cosmetic composition compounded therewith
JP2000203834A (en) * 1998-12-28 2000-07-25 Kose Corp Ultrafine cerium oxide particle and ultrafine metal oxide.cerium oxide particle, its production and resin composition and cosmetic containing the same
EP1055642A2 (en) * 1999-05-25 2000-11-29 Kosé Corporation Metal oxide doped cerium oxides, method for the preparation thereof, resin composition and cosmetic composition therewith
WO2001038225A1 (en) * 1999-11-23 2001-05-31 Rhodia Terres Rares Aqueous colloidal dispersion based on at least a lanthanide compound and a complex-forming agent, preparation method and use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200061, Derwent World Patents Index; Class A60, AN 2000-630557, XP002305470 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877392A (en) * 2015-06-11 2015-09-02 景德镇陶瓷学院 Preparation method of silica-coated cerium sulphide red pigment and prepared product thereof
CN104877392B (en) * 2015-06-11 2017-12-08 景德镇陶瓷大学 A kind of preparation method of silicon dioxide coating type red pigment cerium sulphide and its obtained product
WO2017140991A1 (en) 2016-02-17 2017-08-24 Rhodia Operations Fluid composition for wood protection
WO2019102114A1 (en) 2017-11-24 2019-05-31 Rhodia Operations Cerium oxide/silica particles

Also Published As

Publication number Publication date
FR2867181B1 (en) 2006-06-16
FR2867181A1 (en) 2005-09-09

Similar Documents

Publication Publication Date Title
FR2721615A1 (en) Process for the preparation of organophilic metal oxide particles
EP1771253B1 (en) Method for grinding mineral materials in the presence of binders, resulting aqueous suspensions and use thereof
EP0910549B1 (en) Titanium dioxide particles, method for their preparation and their use in cosmetics, varnish and surface coating
EP1690884B1 (en) Organosilane-modified polysiloxanes and their use for surface modification
CA2148761C (en) Rare earth sulfide composition containing at least one alkaline element; process for preparing the same and use thereof as a colored pigment
FR2615859A1 (en) ULTRAVIOLET ABSORBENT TITANIUM DIOXIDE ACICULAR PARTICLES HAVING A COATING OF ALUMINUM AND SILICON OXIDES
EP0743923B1 (en) Silicates based on alkaline-earth elements, copper and optionally titanium, blue or purple pigments based on said silicates, preparation method therefor and use thereof
FR3046156A1 (en) METAL OXIDE POWDER, DISPERSION LIQUID AND COSMETIC MATERIAL
EP1157072B1 (en) Organic sol and solid compound based on titanium oxide and an amphiphilic compound and preparation methods
EP0875538B1 (en) Modified porous silica, process for preparing it and its use in paints and as carrier of pigments
WO2005095505A1 (en) Colloidal dispersion of silica coated cerium composition particles, solid compound obtainable from said dispersion and methods for the preparation and the use thereof
WO2003099942A1 (en) Aqueous paint composition, particularly a lacquer or a varnish and an aqueous colloidal dispersion of cerium
WO2021023922A1 (en) Method for manufacturing microcapsules containing a lipophilic active ingredient, microcapsules prepared by said method and the use thereof
FR2639950A1 (en)
CA2477461C (en) Use of an organic sol of cerium in paints, particularly lacquers and varnishes
EP3302406B1 (en) Strippable aqueous cosmetic nail varnish composition containing stabilised polyurethane
FR2472597A1 (en) STABLE PIGMENT DISPERSIONS, COMPRISING AS AGENT DISPERSING THE REACTION PRODUCT OF CERTAIN RESINS SPECIFIED WITH A SILANE
EP2567940B1 (en) Method for preparing clays having novel physico-chemical properties
FR2952302A1 (en) PROCESS FOR INCORPORATING ASSETS IN AN NAIL VARNISH AND NAIL VARNISH SO PREPARED
FR2753980A1 (en) New coated particles of anatase titanium di:oxide, having anti-UV properties
WO2004041942A1 (en) Colloidal dispersion and cerium or cerium and titanium, zirconium, aluminium or rare earth coloured powder, method for preparing same and use thereof
WO2004065473A1 (en) Anti-uv composition based on mineral particles and preparation thereof
WO2004063285A1 (en) Silica-based coloured pigment compositions
WO2014083126A1 (en) Treatment of organic and inorganic pigments by means of a method using natural plant oils
CN116789885A (en) White inkjet ink composition comprising hollow composite particles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1 EPC (EPO FORM 1205A DATED 02.02.2007 )

122 Ep: pct application non-entry in european phase