WO2005094052A1 - High speed multiple loop dsl system - Google Patents
High speed multiple loop dsl system Download PDFInfo
- Publication number
- WO2005094052A1 WO2005094052A1 PCT/IB2005/000714 IB2005000714W WO2005094052A1 WO 2005094052 A1 WO2005094052 A1 WO 2005094052A1 IB 2005000714 W IB2005000714 W IB 2005000714W WO 2005094052 A1 WO2005094052 A1 WO 2005094052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- segment
- vectoring
- dsl system
- controller
- coupled
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M11/00—Telephonic communication systems specially adapted for combination with other electrical systems
- H04M11/06—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
- H04M11/062—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/32—Reducing cross-talk, e.g. by compensating
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/46—Monitoring; Testing
- H04B3/487—Testing crosstalk effects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
- H04L1/0019—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
- H04L12/2858—Access network architectures
- H04L12/2859—Point-to-point connection between the data network and the subscribers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
- H04L12/2869—Operational details of access network equipments
- H04L12/287—Remote access server, e.g. BRAS
- H04L12/2874—Processing of data for distribution to the subscribers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
- H04L12/2869—Operational details of access network equipments
- H04L12/2898—Subscriber equipments
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/64—Hybrid switching systems
- H04L12/6418—Hybrid transport
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0272—Arrangements for coupling to multiple lines, e.g. for differential transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0278—Arrangements for impedance matching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0806—Configuration setting for initial configuration or provisioning, e.g. plug-and-play
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/085—Retrieval of network configuration; Tracking network configuration history
- H04L41/0853—Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/142—Network analysis or design using statistical or mathematical methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0823—Errors, e.g. transmission errors
- H04L43/0829—Packet loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
- H04L43/0894—Packet rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/16—Threshold monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/22—Arrangements for supervision, monitoring or testing
- H04M3/26—Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
- H04M3/28—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor
- H04M3/30—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop
- H04M3/302—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop using modulation techniques for copper pairs
- H04M3/304—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop using modulation techniques for copper pairs and using xDSL modems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/64—Hybrid switching systems
- H04L12/6418—Hybrid transport
- H04L2012/6478—Digital subscriber line, e.g. DSL, ADSL, HDSL, XDSL, VDSL
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0823—Errors, e.g. transmission errors
- H04L43/0847—Transmission error
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
- H04L43/0888—Throughput
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/10—Active monitoring, e.g. heartbeat, ping or trace-route
- H04L43/106—Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/22—Arrangements for supervision, monitoring or testing
- H04M3/2209—Arrangements for supervision, monitoring or testing for lines also used for data transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/22—Arrangements for supervision, monitoring or testing
- H04M3/26—Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
- H04M3/28—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor
- H04M3/30—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/22—Arrangements for supervision, monitoring or testing
- H04M3/26—Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
- H04M3/34—Testing for cross-talk
Definitions
- This invention relates generally to methods, systems and apparatus for managing digital communications systems. More specifically, this invention relates to a DSL system using multiple loops in a coordinated manner to provide high speed communications .
- Digital subscriber line (DSL) technologies provide potentially large bandwidth for digital communication over existing telephone subscriber lines (referred to as loops and/or the copper plant). Telephone subscriber lines can provide this bandwidth despite their original design for only voice-band analog communication.
- asymmetric DSL (ADSL) and very-high-speed DSL (VDSL) can adapt to the characteristics of the subscriber line by using a discrete multitone (DMT) line code that assigns a number of bits to each tone (or sub-carrier), which can be adjusted to chamiel conditions determined during initialization and subsequent on-line training known as "bit-swapping" of the modems (typically transceivers that function as both transmitters and receivers) at each end of the subscriber line.
- DMT discrete multitone
- Methods of the present invention include bonding multiple DSL loops to provide a multiple loop segment having a number of communication channels, and vectoring transmissions across the bonded segment. Bonding and vectoring can be performed in various ways, as noted herein. These methods can be implemented in ADSL, VDSL and other communication systems.
- Figure 3 is a schematic block diagram showing the relevant portions of a DSL system implementing one or more methods, systems and/or other embodiments of the present invention.
- Figure 4 is a schematic block diagram showing the relevant portions of another DSL system implementing one or more methods, systems and/or other embodiments of the present invention.
- Figure 5 is a schematic block diagram of a one-sided vectoring system implementable with embodiments of the present invention.
- Embodiments of the present invention can use such a configuration, however, to not only reduce and/or virtually eliminate crosstalk problems, but also to significantly increase the data rate available to the CPE 293 and/or a group of CPEs coupled to the downstream end of the loops 260.
- the phrases "coupled to” and “connected to” and the like are used herein to describe a connection between two elements and/or components and are intended to mean coupled either directly together, or indirectly, for example via one or more intervening elements.
- Figures 3 and 4 show examples of the system of Figure 2 using embodiments of the present invention. These Figures illustrate both structural and apparatus embodiments of the present invention, as well as method embodiments of the present invention. In the following discussion, examples using 4 loops will be presented, though embodiments of the present invention can use 2, 3, 4 or more loops in the systems, methods and techniques described herein. Moreover, the multiple loop segments discussed herein may be referred to as "drops" for ease of explanation but, again, the present invention is not limited solely to drops from pedestal to CPE. The present invention may be applied in any suitable location or site in a DSL topology.
- connections between pedestals can be converted to "supervectored" segments using embodiments of the present invention and coordinating, for example, 8-20 loops to carry several Gbps.
- drops from pedestals, pedestal links and the like are short loops to the CPE, typically 50-100 meters, and certainly less than 300 meters (though the present invention is not limited to short loops only).
- system 300 includes a multiple loop segment 305 comprised of 8 wires 310-0 through 310-7, which are the 8 wires from 4 loops 312-1 through 312-4 (similar to loops 260 of Figure 2).
- Wires 310 are bonded using any suitable means or technique.
- the CVU 322 also can reside in a separate location and be coupled to the CPE device(s) 332 by one or more suitable communication links 333 (for example, wireless connections, Ethernet connections and/or other suitable connections). In some cases a single CPE device may be connected to segment 305 by CVU 322.
- the PVU 324 can be located within a pedestal or other device and is connected to the CO or ONU via fiber (PON or other), copper or other connection as suitably chosen by the service provider.
- the D n matrix is diagonal k x / with zeroed entries to make it non-square when k ⁇ n
- the R n matrix is triangular and monic.
- the receiver processing matrices are then determined from those of the factorization as shown in Figure 5 (* denotes conjugate matrix transpose in the explanation of this illustrative example).
- the matrix H n can be any dimension for this procedure.
- the D matrix will be zero for non-excited input components, so these zero entries are actually also zeroed on the receive side (to avoid dividing by zero) when k > I or some spatial modes of transmission on any frequency are zero for any other reason.
- the G n "scalar" entries are the energies determined by an appropriate energy allocation scheme (for example, water- filling for each of the / excited inputs) to be used in connection with the input dataN , provoke.
- Vectoring is an especially useful tool where, as in the example of Figure 3, all lines are coterminous at both ends and all signals on any of the 7 (2K-1) lines that are used (keeping in mind that not all 7 must be used) are sent/received by a single user CPE 325.
- the channel transfer matrix H can be determined with great precision as can the remaining non-crosstalk-noise power spectra.
- sources of interference that typically would be troublesome (for example, radio signals, RF interference and impulses generated by lighting or household appliances) are mitigated more effectively in the vectored receiver.
- Vectoring when the non-crosstalk- noise spectra are known can be used to eliminate up to (2K-1) independent sources of such noise, thus further enhancing the transmission capacity of the bonded set of loops.
- Wires from loops 312 that normally would be theoretically considered or deemed reference wires (most DSLs are differentially transmitted and received; therefore, calling one of the two wires in a loop the "reference wire” is convenient for theoretical purposes and often done) and therefore would not carry any data (for example, wires 310-2, 310-4, 310-6 that would be the reference wires for loops 312-2, 312-3 and 312-4, respectively, in Figure 3) can be used for data transport as well.
- These extra wires can be employed and combined in the bonded, vectored environment of system 300.
- split-pairs occasionally occur in DSL inadvertently (for example, a mistake made by technical field personnel), but can actually function. The fact that they do, in fact work in these unintentional implementations is an indication of their data carrying capability, fully exploited intentionally in embodiments of the present invention. While these split-pair (or "phantom") circuits may or may not be able to achieve data rates comparable to the other data-bearing wires in segment 305, they nevertheless can contribute to the link's data-rate (that is, the aggregate data-rate) for any CPE(s) on the downstream side of segment 305. As the line lengths become shorter and if the split-pair modes are intentionally well excited, the data-rates possible in these modes approach those of the normal modes.
- MIMC matrix impedance matching circuit
- Equation (4) can be illustrated by a 3 x 6 matrix / of 1 ' s, 0 ' s and - 1 ' s and extends in the straightforward manner to a (2m - 1) x 2 • (2m - 1) matrix.
- a second matrix relation derives from stacking the relations of Equation (4) into 1
- FIG. 4 Another embodiment of the present invention is shown in Figure 4.
- operation of the PVU 424 and CVU 422, as well as other components, if desired, is controlled by a controller 490 that manages system 400.
- controller 490 for example, a dynamic spectrum manager and/or DSM center utilizing a computer system
- CVU 422 includes an MLMC 425 coupled to the customer end of the segment 405.
- Appropriate filters 443 and an analog-to-digital/digital-to-analog converter 445 can also be coupled to the MIMC 425.
- a vector signal processing module 442 is coupled to the customer end of the segment 405 as well.
- the vector signal processing module 442 can be a computer, integrated circuit (or "chip") or other suitable device for processing signals received and/or transmitted on the segment 405.
- module 442 is coupled to the vectoring control means 492 of controller 490, which assists in regulating (for example, one-sided and/or two-sided vectoring) transmissions across the segment and can provide control information and instructions (for example, coefficients used in signal processing for one-sided and/or two- sided vectoring).
- PVU 424 includes an MLMC 427 coupled to the pedestal end of the segment 405.
- Appropriate filters 446 and an analog-to-digital/digital-to-analog converter 447 can also be coupled to the MIMC 427.
- the controller 490 may communicate with a remote location, such as downstream VU 422, via the link 416 rather than directly. Also, the controller 490 may be coupled to the CPE(s) 432 and/or CO(s) 434, if desired, which link may be used for communicating with the respective VUs.
- a remote location such as downstream VU 422
- the controller 490 may be coupled to the CPE(s) 432 and/or CO(s) 434, if desired, which link may be used for communicating with the respective VUs.
- communication with the VUs can be accomplished in a variety of ways using various types of links (including, for example, the DSL system itself, email, ftp (file transfer program) over the internet, or some other "external" communication means, etc.).
- Controller 490 includes segment monitoring means 496, which collects data regarding operation of the system 400 and may provide this data to a history module 495, such as a database.
- Vectoring control means 492 uses this data to generate control signals sent to the vector signal processing modules 442, 444 for VUs 422, 424, respectively.
- module 495 might take the form a database coupled to a computer system.
- Means 492, 494, 496 can be implemented as software, hardware or a combination of both software and hardware (for example, one or more computer systems and/or integrated circuits), as will be appreciated by those skilled in the art.
- a controller implementing one or more embodiments of the present invention can be a dynamic spectrum manager or spectrum management center and can be a computer- implemented device or combination of devices that monitors the appropriate system 400 and data relating thereto. The controller may directly or indirectly dictate/require changes in the operation of system 400 by users and/or equipment coupled to the controller or may only recommend changes.
- the controller can reside in one or more locations, as will be appreciated by those skilled in the art.
- the controller may reside in the CO with to which a CPE is coupled.
- the controller may reside in a pedestal or other intermediate location within the DSL plant.
- the controller may reside in the CPE (for example, in a user-side transceiver, modem or the like).
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Quality & Reliability (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Mathematical Physics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Algebra (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Telephonic Communication Services (AREA)
- Small-Scale Networks (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Advance Control (AREA)
- Control Of Metal Rolling (AREA)
- Farming Of Fish And Shellfish (AREA)
- Complex Calculations (AREA)
- Feedback Control In General (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10182701.2A EP2278785B8 (en) | 2004-03-25 | 2005-03-18 | High Speed Multiple Loop DSL System |
CA2561009A CA2561009C (en) | 2004-03-25 | 2005-03-18 | High speed multiple loop dsl system |
EP05708773.6A EP1733550B2 (en) | 2004-03-25 | 2005-03-18 | High speed multiple loop dsl system |
CN2005800155853A CN1954586B (en) | 2004-03-25 | 2005-03-18 | High speed multiple loop DSL system |
AU2005226164A AU2005226164B2 (en) | 2004-03-25 | 2005-03-18 | High speed multiple loop DSL system |
AT05708773T ATE519328T1 (en) | 2004-03-25 | 2005-03-18 | FAST MULTIPLE LOOP DSL SYSTEM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/808,771 US7639596B2 (en) | 2003-12-07 | 2004-03-25 | High speed multiple loop DSL system |
US10/808,771 | 2004-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005094052A1 true WO2005094052A1 (en) | 2005-10-06 |
Family
ID=34961249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2005/000714 WO2005094052A1 (en) | 2004-03-25 | 2005-03-18 | High speed multiple loop dsl system |
Country Status (8)
Country | Link |
---|---|
US (1) | US7639596B2 (en) |
EP (2) | EP1733550B2 (en) |
CN (1) | CN1954586B (en) |
AT (1) | ATE519328T1 (en) |
AU (1) | AU2005226164B2 (en) |
CA (1) | CA2561009C (en) |
DK (1) | DK2278785T3 (en) |
WO (1) | WO2005094052A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006131791A1 (en) * | 2005-06-10 | 2006-12-14 | Adaptive Spectrum And Signal Alignment, Inc. | Vectored dsl nesting |
WO2007146048A2 (en) * | 2006-06-06 | 2007-12-21 | Adaptive Spectrum And Signal Alignment, Inc. | Vectored dsl system |
EP1914905A1 (en) | 2006-10-20 | 2008-04-23 | Upzide Labs AB | Vectored digital subscriber line system having modular vectoring arrangements |
EP1962544A1 (en) * | 2007-02-20 | 2008-08-27 | Alcatel Lucent | An access node and method for reliable bonding of subscriber lines |
US7773497B2 (en) | 2005-05-09 | 2010-08-10 | Adaptive Spectrum And Signal Alignment, Inc. | Phantom use in DSL systems |
US7774398B2 (en) | 2005-05-10 | 2010-08-10 | Adaptive Spectrum And Signal Alignment, Inc. | Tonal rotors |
US7809996B2 (en) | 2003-12-07 | 2010-10-05 | Adaptive Spectrum And Signal Alignment, Inc. | Adaptive FEC codeword management |
US7813420B2 (en) | 2005-06-02 | 2010-10-12 | Adaptive Spectrum And Signal Alignment, Inc. | Adaptive GDFE |
US7817745B2 (en) | 2005-06-02 | 2010-10-19 | Adaptive Spectrum And Signal Alignment, Inc. | Tonal precoding |
US7852952B2 (en) | 2005-06-10 | 2010-12-14 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system loading and ordering |
US7991122B2 (en) | 2005-06-02 | 2011-08-02 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system training |
US8073135B2 (en) | 2005-05-10 | 2011-12-06 | Adaptive Spectrum And Signal Alignment, Inc. | Binder identification |
US9490872B2 (en) | 2008-07-01 | 2016-11-08 | Ikanos Communications, Inc. | Reduced memory vectored DSL |
WO2017167938A1 (en) | 2016-03-31 | 2017-10-05 | British Telecommunications Public Limited Company | Method and apparatus for transmitting data over a plurality of pairs of wires |
US9941928B2 (en) | 2006-06-06 | 2018-04-10 | Adaptive Spectrum And Signal Alignment, Inc. | Systems, methods, and apparatuses for implementing a DSL system |
Families Citing this family (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7106760B1 (en) * | 2002-03-29 | 2006-09-12 | Centillium Communications, Inc. | Channel bonding in SHDSL systems |
US7590055B2 (en) * | 2004-02-09 | 2009-09-15 | Alcatel Lucent | High availability broadband connections through switching from wireline to diverse wireless network |
US7573943B2 (en) | 2004-08-20 | 2009-08-11 | Adaptive Spectrum And Signal Alignment, Inc. | Interference cancellation system |
US7710979B2 (en) * | 2004-11-12 | 2010-05-04 | Infineon Technologies Ag | ATM bonding |
US20080144484A1 (en) * | 2005-02-16 | 2008-06-19 | Eci Telecom Ltd. | Method and Device for Connecting an Additional Subscriber to a Telephone Exchange |
JP5174315B2 (en) * | 2005-07-12 | 2013-04-03 | 京セラ株式会社 | COMMUNICATION SYSTEM, COMMUNICATION DEVICE, AND LINK USE STOP METHOD |
CN100417137C (en) * | 2005-08-30 | 2008-09-03 | 华为技术有限公司 | Base station switching-in system and base station data transmitting method |
US7769100B2 (en) * | 2005-12-10 | 2010-08-03 | Electronics And Telecommunications Research Institute | Method and apparatus for cancellation of cross-talk signals using multi-dimensional coordination and vectored transmission |
US7924857B2 (en) * | 2006-01-05 | 2011-04-12 | Agere Systems Inc. | Methods and apparatus for reorganizing cells buffered after transmission |
EP2077030A2 (en) * | 2006-10-11 | 2009-07-08 | Adaptive Spectrum and Signal Alignment, Inc. | High speed multiple user multiple loop dsl system |
CN101052030B (en) * | 2007-05-22 | 2010-12-08 | 中兴通讯股份有限公司 | Managing method for digital user line tied up |
CN101562487B (en) * | 2008-04-18 | 2013-09-11 | 华为技术有限公司 | Frequency spectrum optimization method, device and digital user line system |
CN102090026A (en) * | 2008-06-09 | 2011-06-08 | 创世纪技术系统公司 | Bonded interconnection of local networks |
WO2009152188A2 (en) * | 2008-06-10 | 2009-12-17 | Vector Silicon, Inc. | Vectored dsl crosstalk cancellation |
US7933285B2 (en) * | 2008-10-24 | 2011-04-26 | At&T Intellectual Property I, L.P. | Distributed digital subscriber line access multiplexers to increase bandwidth in access networks |
US8275262B2 (en) | 2008-11-10 | 2012-09-25 | At&T Intellectual Property I, L.P. | Methods and apparatus to deploy fiber optic based access networks |
WO2010075556A1 (en) * | 2008-12-23 | 2010-07-01 | Actelis Networks Ltd. | Method and system for installing and operating discrete multi tone repeaters |
US9742905B1 (en) | 2009-07-17 | 2017-08-22 | Adtran, Inc. | Communication systems and methods for using shared channels to increase peak data rates |
US20110026930A1 (en) * | 2009-07-29 | 2011-02-03 | Zhi Cui | Methods and apparatus to upgrade communication services in subscriber distribution areas |
US8675469B2 (en) * | 2009-12-17 | 2014-03-18 | At&T Intellectual Property I, Lp | Monitoring non-managed wire pairs to improve dynamic spectrum management performance |
US8687770B2 (en) * | 2010-04-29 | 2014-04-01 | Ikanos Communications, Inc. | Systems and methods for performing line imbalance measurement and mitigation based on a common mode sensor |
US9288089B2 (en) * | 2010-04-30 | 2016-03-15 | Ecole Polytechnique Federale De Lausanne (Epfl) | Orthogonal differential vector signaling |
US9362962B2 (en) | 2010-05-20 | 2016-06-07 | Kandou Labs, S.A. | Methods and systems for energy-efficient communications interface |
US9106238B1 (en) | 2010-12-30 | 2015-08-11 | Kandou Labs, S.A. | Sorting decoder |
US9401828B2 (en) | 2010-05-20 | 2016-07-26 | Kandou Labs, S.A. | Methods and systems for low-power and pin-efficient communications with superposition signaling codes |
US9479369B1 (en) | 2010-05-20 | 2016-10-25 | Kandou Labs, S.A. | Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage |
US9596109B2 (en) | 2010-05-20 | 2017-03-14 | Kandou Labs, S.A. | Methods and systems for high bandwidth communications interface |
US9246713B2 (en) | 2010-05-20 | 2016-01-26 | Kandou Labs, S.A. | Vector signaling with reduced receiver complexity |
US9985634B2 (en) | 2010-05-20 | 2018-05-29 | Kandou Labs, S.A. | Data-driven voltage regulator |
US9450744B2 (en) | 2010-05-20 | 2016-09-20 | Kandou Lab, S.A. | Control loop management and vector signaling code communications links |
US9564994B2 (en) | 2010-05-20 | 2017-02-07 | Kandou Labs, S.A. | Fault tolerant chip-to-chip communication with advanced voltage |
US8593305B1 (en) | 2011-07-05 | 2013-11-26 | Kandou Labs, S.A. | Efficient processing and detection of balanced codes |
US9300503B1 (en) | 2010-05-20 | 2016-03-29 | Kandou Labs, S.A. | Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication |
US8539318B2 (en) | 2010-06-04 | 2013-09-17 | École Polytechnique Fédérale De Lausanne (Epfl) | Power and pin efficient chip-to-chip communications with common-mode rejection and SSO resilience |
US9077386B1 (en) | 2010-05-20 | 2015-07-07 | Kandou Labs, S.A. | Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication |
US9251873B1 (en) | 2010-05-20 | 2016-02-02 | Kandou Labs, S.A. | Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications |
US9288082B1 (en) | 2010-05-20 | 2016-03-15 | Kandou Labs, S.A. | Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences |
WO2011151469A1 (en) | 2010-06-04 | 2011-12-08 | Ecole Polytechnique Federale De Lausanne | Error control coding for orthogonal differential vector signaling |
US8582425B1 (en) * | 2010-09-29 | 2013-11-12 | Adtran, Inc. | Systems and methods for cancelling crosstalk in satellite access devices |
CN103181092B (en) * | 2010-10-15 | 2015-08-05 | 伊卡诺斯通讯公司 | Dsl alien noise reduction method, DSL line card equipment and vectorial DSL system |
US9667450B2 (en) * | 2010-10-29 | 2017-05-30 | Alcatel Lucent | Detection and correction of impulse noise in communication channel crosstalk estimates |
US8369485B2 (en) | 2010-12-07 | 2013-02-05 | At&T Intellectual Property I, L.P. | Methods, apparatus, and articles of manufacture to trigger preemptive maintenance in vectored digital subscriber line (DSL) systems |
US9275720B2 (en) | 2010-12-30 | 2016-03-01 | Kandou Labs, S.A. | Differential vector storage for dynamic random access memory |
US8537655B2 (en) * | 2011-01-28 | 2013-09-17 | Alcatel Lucent | Multiplicative updating of precoder or postcoder matrices for crosstalk control in a communication system |
US9094174B2 (en) | 2011-03-01 | 2015-07-28 | Adtran, Inc. | Bonding engine configured to prevent data packet feedback during a loopback condition |
EP2681859B1 (en) * | 2011-03-02 | 2017-12-06 | Adtran, Inc. | Systems and methods for handling crosstalk vectoring failures in multi-card vectoring groups |
EP2509250B1 (en) * | 2011-04-08 | 2013-12-11 | Alcatel Lucent | Combination device for DSL phantom mode signals in a telecommunication system |
US8917747B2 (en) * | 2011-06-11 | 2014-12-23 | Ikanos Communications, Inc. | Method and apparatus for DSL back-channel communication |
US9143195B2 (en) | 2011-07-07 | 2015-09-22 | Adtran, Inc. | Systems and methods for communicating among network distribution points |
US8693314B1 (en) | 2011-08-25 | 2014-04-08 | Adtran, Inc. | Systems and methods for protecting bonding groups |
WO2012167537A1 (en) * | 2011-11-03 | 2012-12-13 | 华为技术有限公司 | Method, apparatus and system for reducing interference in digital subscriber line |
US9484984B2 (en) | 2011-12-23 | 2016-11-01 | Actelis Networks (Israel) Inc. | Cable-level crosstalk reduction |
US9268683B1 (en) | 2012-05-14 | 2016-02-23 | Kandou Labs, S.A. | Storage method and apparatus for random access memory using codeword storage |
CN104995612B (en) | 2013-01-17 | 2020-01-03 | 康杜实验室公司 | Inter-chip communication method and system with low synchronous switching noise |
CN105122758B (en) | 2013-02-11 | 2018-07-10 | 康杜实验室公司 | High bandwidth interchip communication interface method and system |
KR102241045B1 (en) | 2013-04-16 | 2021-04-19 | 칸도우 랩스 에스에이 | Methods and systems for high bandwidth communications interface |
US20140358759A1 (en) * | 2013-05-28 | 2014-12-04 | Rivada Networks, Llc | Interfacing between a Dynamic Spectrum Policy Controller and a Dynamic Spectrum Controller |
WO2014210074A1 (en) | 2013-06-25 | 2014-12-31 | Kandou Labs SA | Vector signaling with reduced receiver complexity |
WO2015077608A1 (en) | 2013-11-22 | 2015-05-28 | Kandou Labs SA | Multiwire linear equalizer for vector signaling code receiver |
US9806761B1 (en) | 2014-01-31 | 2017-10-31 | Kandou Labs, S.A. | Methods and systems for reduction of nearest-neighbor crosstalk |
US9369312B1 (en) | 2014-02-02 | 2016-06-14 | Kandou Labs, S.A. | Low EMI signaling for parallel conductor interfaces |
CN110266615B (en) | 2014-02-02 | 2022-04-29 | 康杜实验室公司 | Low-power inter-chip communication method and device with low ISI ratio |
US9363114B2 (en) | 2014-02-28 | 2016-06-07 | Kandou Labs, S.A. | Clock-embedded vector signaling codes |
EP3123618B1 (en) * | 2014-03-25 | 2020-05-27 | Lantiq Beteiligungs-GmbH & Co.KG | Interference mitigation |
US9509437B2 (en) | 2014-05-13 | 2016-11-29 | Kandou Labs, S.A. | Vector signaling code with improved noise margin |
US9148087B1 (en) | 2014-05-16 | 2015-09-29 | Kandou Labs, S.A. | Symmetric is linear equalization circuit with increased gain |
US9852806B2 (en) | 2014-06-20 | 2017-12-26 | Kandou Labs, S.A. | System for generating a test pattern to detect and isolate stuck faults for an interface using transition coding |
US9112550B1 (en) | 2014-06-25 | 2015-08-18 | Kandou Labs, SA | Multilevel driver for high speed chip-to-chip communications |
CN106797352B (en) | 2014-07-10 | 2020-04-07 | 康杜实验室公司 | High signal-to-noise characteristic vector signaling code |
US9432082B2 (en) | 2014-07-17 | 2016-08-30 | Kandou Labs, S.A. | Bus reversable orthogonal differential vector signaling codes |
KR101943048B1 (en) | 2014-07-21 | 2019-01-28 | 칸도우 랩스 에스에이 | Multidrop data transfer |
EP3175592B1 (en) | 2014-08-01 | 2021-12-29 | Kandou Labs S.A. | Orthogonal differential vector signaling codes with embedded clock |
CN105375949A (en) * | 2014-08-21 | 2016-03-02 | 中兴通讯股份有限公司 | Method and device for shortening link establishing time, and local end equipment |
US9674014B2 (en) | 2014-10-22 | 2017-06-06 | Kandou Labs, S.A. | Method and apparatus for high speed chip-to-chip communications |
US20160294441A1 (en) * | 2015-03-30 | 2016-10-06 | Futurewei Technologies, Inc. | Copper-Assisted Fifth Generation (5G) Wireless Access to Indoor |
CN107438987B (en) | 2015-03-31 | 2020-10-23 | 英国电讯有限公司 | Method and system for transmitting data between transmitter and receiver, and transceiver |
WO2016210445A1 (en) | 2015-06-26 | 2016-12-29 | Kandou Labs, S.A. | High speed communications system |
US9557760B1 (en) | 2015-10-28 | 2017-01-31 | Kandou Labs, S.A. | Enhanced phase interpolation circuit |
US9577815B1 (en) | 2015-10-29 | 2017-02-21 | Kandou Labs, S.A. | Clock data alignment system for vector signaling code communications link |
US10055372B2 (en) | 2015-11-25 | 2018-08-21 | Kandou Labs, S.A. | Orthogonal differential vector signaling codes with embedded clock |
US10003315B2 (en) | 2016-01-25 | 2018-06-19 | Kandou Labs S.A. | Voltage sampler driver with enhanced high-frequency gain |
US10003454B2 (en) | 2016-04-22 | 2018-06-19 | Kandou Labs, S.A. | Sampler with low input kickback |
CN109314518B (en) | 2016-04-22 | 2022-07-29 | 康杜实验室公司 | High performance phase locked loop |
US10333741B2 (en) | 2016-04-28 | 2019-06-25 | Kandou Labs, S.A. | Vector signaling codes for densely-routed wire groups |
US10153591B2 (en) | 2016-04-28 | 2018-12-11 | Kandou Labs, S.A. | Skew-resistant multi-wire channel |
US10056903B2 (en) | 2016-04-28 | 2018-08-21 | Kandou Labs, S.A. | Low power multilevel driver |
US9906358B1 (en) | 2016-08-31 | 2018-02-27 | Kandou Labs, S.A. | Lock detector for phase lock loop |
US10411922B2 (en) | 2016-09-16 | 2019-09-10 | Kandou Labs, S.A. | Data-driven phase detector element for phase locked loops |
US10200188B2 (en) | 2016-10-21 | 2019-02-05 | Kandou Labs, S.A. | Quadrature and duty cycle error correction in matrix phase lock loop |
US10200218B2 (en) | 2016-10-24 | 2019-02-05 | Kandou Labs, S.A. | Multi-stage sampler with increased gain |
US10372665B2 (en) | 2016-10-24 | 2019-08-06 | Kandou Labs, S.A. | Multiphase data receiver with distributed DFE |
US10116468B1 (en) | 2017-06-28 | 2018-10-30 | Kandou Labs, S.A. | Low power chip-to-chip bidirectional communications |
US10686583B2 (en) | 2017-07-04 | 2020-06-16 | Kandou Labs, S.A. | Method for measuring and correcting multi-wire skew |
US10203226B1 (en) | 2017-08-11 | 2019-02-12 | Kandou Labs, S.A. | Phase interpolation circuit |
US10326623B1 (en) | 2017-12-08 | 2019-06-18 | Kandou Labs, S.A. | Methods and systems for providing multi-stage distributed decision feedback equalization |
KR102498475B1 (en) | 2017-12-28 | 2023-02-09 | 칸도우 랩스 에스에이 | Synchronously-switched multi-input demodulating comparator |
US10554380B2 (en) | 2018-01-26 | 2020-02-04 | Kandou Labs, S.A. | Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation |
WO2021050942A1 (en) | 2019-09-11 | 2021-03-18 | Newwire Systems, Inc. | Single-ended vectored dsl system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1009154A2 (en) * | 1998-12-07 | 2000-06-14 | Lucent Technologies Inc. | Dynamic configuration of digital subscriber line channels |
US20030086514A1 (en) | 2001-06-01 | 2003-05-08 | The Board Of Trustees Of The Leland Stanford Junior University | Dynamic digital communication system control |
WO2003105339A1 (en) | 2002-06-07 | 2003-12-18 | Tokyo Electron Limited | Multiline transmission in communication systems |
US6678375B1 (en) | 1999-12-14 | 2004-01-13 | Conexant Systems, Inc. | Efficient use of wire for data communication systems |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4177464A (en) * | 1978-11-13 | 1979-12-04 | The United States Of America As Represented By The Secretary Of The Air Force | Multiplexing of multiple loop sidelobe cancellers |
US4392220A (en) * | 1980-05-30 | 1983-07-05 | Nippon Electric Co., Ltd. | Modem to be coupled to a directional transmission line of an SS multiplex communication network |
US5172229A (en) * | 1990-11-26 | 1992-12-15 | Tektronix, Inc. | Sync vector generator for composite vectorscopes |
US5181198A (en) * | 1991-03-12 | 1993-01-19 | Bell Communications Research, Inc. | Coordinated transmission for two-pair digital subscriber lines |
WO1994018781A1 (en) | 1993-02-10 | 1994-08-18 | Bell Communications Research, Inc. | Method and system for compensating for coupling between circuits of quaded cable in a telecommunication transmission system |
US5511119A (en) | 1993-02-10 | 1996-04-23 | Bell Communications Research, Inc. | Method and system for compensating for coupling between circuits of quaded cable in a telecommunication transmission system |
JP3261239B2 (en) * | 1993-07-27 | 2002-02-25 | 富士通株式会社 | Data transfer batch processing method |
GB9614561D0 (en) | 1996-07-11 | 1996-09-04 | 4Links Ltd | Communication system with improved code |
US5901205A (en) | 1996-12-23 | 1999-05-04 | Paradyne Corporation | Adaptive voice and data bandwidth management system for multiple-line digital subscriber loop data communications |
US6535552B1 (en) * | 1999-05-19 | 2003-03-18 | Motorola, Inc. | Fast training of equalizers in discrete multi-tone (DMT) systems |
US7035323B1 (en) * | 1999-08-02 | 2006-04-25 | Globespan, Inc. | System and method for combining multiple digital subscriber line transceivers |
US20020010866A1 (en) * | 1999-12-16 | 2002-01-24 | Mccullough David J. | Method and apparatus for improving peer-to-peer bandwidth between remote networks by combining multiple connections which use arbitrary data paths |
US6507608B1 (en) | 2000-02-23 | 2003-01-14 | 2Wire, Inc. | Multi-line ADSL modulation |
DE60038868D1 (en) * | 2000-03-07 | 2008-06-26 | Alcatel Lucent | Method for determining a property of a channel and discrete wavelet receiver for carrying out the method |
US7058707B1 (en) * | 2000-08-01 | 2006-06-06 | Qwest Communications International, Inc. | Performance modeling in a VDSL network |
US7219124B2 (en) * | 2000-08-01 | 2007-05-15 | Qwest Communications International Inc. | Provisioning system and method for auto-discovering customer premises equipment in activating xDSL |
US6885746B2 (en) * | 2001-07-31 | 2005-04-26 | Telecordia Technologies, Inc. | Crosstalk identification for spectrum management in broadband telecommunications systems |
US6999583B2 (en) * | 2000-08-03 | 2006-02-14 | Telcordia Technologies, Inc. | Crosstalk identification for spectrum management in broadband telecommunications systems |
US7203206B2 (en) * | 2001-02-06 | 2007-04-10 | Tioga Technologies Inc. | Data partitioning for multi-link transmission |
CA2399265C (en) * | 2001-08-29 | 2007-02-06 | At&T Corp. | Multi-frequency data transmission channel power allocation |
US7349401B2 (en) * | 2001-09-05 | 2008-03-25 | Symmetricom, Inc. | Bonded G.shdsl links for ATM backhaul applications |
US6798769B1 (en) * | 2001-09-13 | 2004-09-28 | Pedestal Networks, Inc. | System for enhancing data transfer |
US7453881B2 (en) * | 2001-10-05 | 2008-11-18 | Aware, Inc. | Systems and methods for multi-pair ATM over DSL |
US7181167B2 (en) * | 2001-11-21 | 2007-02-20 | Texas Instruments Incorporated | High data rate closed loop MIMO scheme combining transmit diversity and data multiplexing |
US20030108063A1 (en) * | 2001-12-07 | 2003-06-12 | Joseph Moses S. | System and method for aggregating multiple information channels across a network |
US7126984B2 (en) * | 2001-12-19 | 2006-10-24 | Stmicroelectronics, Inc. | Near-end crosstalk noise minimization and power reduction for digital subscriber loops |
US7103004B2 (en) * | 2001-12-19 | 2006-09-05 | Stmicroelectronics, Inc. | Method and apparatus for application driven adaptive duplexing of digital subscriber loops |
AU2003228236A1 (en) * | 2002-03-01 | 2003-09-16 | Telepulse Technologies Corporation | Dynamic time metered delivery |
WO2004027579A2 (en) * | 2002-09-19 | 2004-04-01 | Tokyo Electron Ltd. | Method and system for split-pair reception in twisted-pair communication systems |
US20040076166A1 (en) * | 2002-10-21 | 2004-04-22 | Patenaude Jean-Marc Guy | Multi-service packet network interface |
US7106833B2 (en) * | 2002-11-19 | 2006-09-12 | Telcordia Technologies, Inc. | Automated system and method for management of digital subscriber lines |
US20040109546A1 (en) * | 2002-12-05 | 2004-06-10 | Fishman Ilya M. | Method and system for transmitting spectrally bonded signals via telephone cables |
US7072449B2 (en) * | 2002-12-13 | 2006-07-04 | Alcatel Canada Inc. | System and method for establishing a power level for a communication signal transmitted in a conductor |
US7512192B2 (en) * | 2003-02-11 | 2009-03-31 | Fishman Ilya M | Phase conjugated vectoring of signals in telephone cables |
US20040223497A1 (en) * | 2003-05-08 | 2004-11-11 | Onvoy Inc. | Communications network with converged services |
JP2007525071A (en) * | 2003-06-24 | 2007-08-30 | グローブスパン ヴィラタ、インコーポレイテッド | Method and apparatus for improving multi-tone transmission in multi-channel |
US7200223B2 (en) * | 2003-07-17 | 2007-04-03 | John Fortier | Electronic circuit to reduce noise in digital subscriber loop and communications over unshielded twisted pair metallic conductors |
US7315592B2 (en) | 2003-09-08 | 2008-01-01 | Aktino, Inc. | Common mode noise cancellation |
US7302379B2 (en) * | 2003-12-07 | 2007-11-27 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system estimation and parameter recommendation |
US7809116B2 (en) * | 2003-12-07 | 2010-10-05 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system estimation including known DSL line scanning and bad splice detection capability |
CA2455303A1 (en) * | 2004-01-16 | 2005-07-16 | Catena Networks Canada, Inc. | Methods to aggregate atm cells transported in an atm bonding group |
US7499487B2 (en) * | 2004-12-01 | 2009-03-03 | Texas Instruments Incorporated | System and method to mitigate interference in DSL systems |
US7688884B2 (en) * | 2005-06-10 | 2010-03-30 | Adaptive Spectrum And Signal Alignment, Inc. | Vectored DSL nesting |
-
2004
- 2004-03-25 US US10/808,771 patent/US7639596B2/en active Active
-
2005
- 2005-03-18 EP EP05708773.6A patent/EP1733550B2/en not_active Not-in-force
- 2005-03-18 EP EP10182701.2A patent/EP2278785B8/en active Active
- 2005-03-18 DK DK10182701.2T patent/DK2278785T3/en active
- 2005-03-18 WO PCT/IB2005/000714 patent/WO2005094052A1/en active Application Filing
- 2005-03-18 AU AU2005226164A patent/AU2005226164B2/en not_active Ceased
- 2005-03-18 CA CA2561009A patent/CA2561009C/en active Active
- 2005-03-18 AT AT05708773T patent/ATE519328T1/en not_active IP Right Cessation
- 2005-03-18 CN CN2005800155853A patent/CN1954586B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1009154A2 (en) * | 1998-12-07 | 2000-06-14 | Lucent Technologies Inc. | Dynamic configuration of digital subscriber line channels |
US6678375B1 (en) | 1999-12-14 | 2004-01-13 | Conexant Systems, Inc. | Efficient use of wire for data communication systems |
US20030086514A1 (en) | 2001-06-01 | 2003-05-08 | The Board Of Trustees Of The Leland Stanford Junior University | Dynamic digital communication system control |
WO2003105339A1 (en) | 2002-06-07 | 2003-12-18 | Tokyo Electron Limited | Multiline transmission in communication systems |
Non-Patent Citations (2)
Title |
---|
"Dynamic Spectrum Management for Next-Generation DSL Systems", IEE COMMUNICATIONS MAGAZINE, October 2002 (2002-10-01), pages 101 - 109 |
"Vectored Transmission for Digital Subscriber Line Systems", IEEE JOURNALS ON SELECTED AREAS IN COMMUNICATIONS, vol. 20, no. 5, June 2002 (2002-06-01), pages 1085 - 1104 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7809996B2 (en) | 2003-12-07 | 2010-10-05 | Adaptive Spectrum And Signal Alignment, Inc. | Adaptive FEC codeword management |
US7773497B2 (en) | 2005-05-09 | 2010-08-10 | Adaptive Spectrum And Signal Alignment, Inc. | Phantom use in DSL systems |
US8310914B2 (en) | 2005-05-09 | 2012-11-13 | Adaptive Spectrum And Signal Alignment, Inc. | Phantom use in DSL system |
US7774398B2 (en) | 2005-05-10 | 2010-08-10 | Adaptive Spectrum And Signal Alignment, Inc. | Tonal rotors |
US8073135B2 (en) | 2005-05-10 | 2011-12-06 | Adaptive Spectrum And Signal Alignment, Inc. | Binder identification |
US8761348B2 (en) | 2005-06-02 | 2014-06-24 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system training |
US7813420B2 (en) | 2005-06-02 | 2010-10-12 | Adaptive Spectrum And Signal Alignment, Inc. | Adaptive GDFE |
US7817745B2 (en) | 2005-06-02 | 2010-10-19 | Adaptive Spectrum And Signal Alignment, Inc. | Tonal precoding |
US7991122B2 (en) | 2005-06-02 | 2011-08-02 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system training |
WO2006131791A1 (en) * | 2005-06-10 | 2006-12-14 | Adaptive Spectrum And Signal Alignment, Inc. | Vectored dsl nesting |
US7688884B2 (en) | 2005-06-10 | 2010-03-30 | Adaptive Spectrum And Signal Alignment, Inc. | Vectored DSL nesting |
US7852952B2 (en) | 2005-06-10 | 2010-12-14 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system loading and ordering |
US8483369B2 (en) | 2006-06-06 | 2013-07-09 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system |
US9941928B2 (en) | 2006-06-06 | 2018-04-10 | Adaptive Spectrum And Signal Alignment, Inc. | Systems, methods, and apparatuses for implementing a DSL system |
WO2007146048A3 (en) * | 2006-06-06 | 2008-03-13 | Adaptive Spectrum & Signal | Vectored dsl system |
WO2007146048A2 (en) * | 2006-06-06 | 2007-12-21 | Adaptive Spectrum And Signal Alignment, Inc. | Vectored dsl system |
EP2337371A1 (en) * | 2006-06-06 | 2011-06-22 | Adaptive Spectrum and Signal Alignment, Inc. | DSL system |
WO2008046714A3 (en) * | 2006-10-20 | 2008-09-04 | Upzide Labs Ab | Vectored digital subscriber line system having modular vectoring arrangements |
US8126137B2 (en) | 2006-10-20 | 2012-02-28 | Ericsson Ab | Vectored digital subscriber line system having modular vectoring arrangements |
AU2007312427B2 (en) * | 2006-10-20 | 2011-03-17 | Ericsson Ab | Vectored digital subscriber line system having modular vectoring arrangements |
WO2008046714A2 (en) * | 2006-10-20 | 2008-04-24 | Emano Ab | Vectored digital subscriber line system having modular vectoring arrangements |
EP1914905A1 (en) | 2006-10-20 | 2008-04-23 | Upzide Labs AB | Vectored digital subscriber line system having modular vectoring arrangements |
EP1962544A1 (en) * | 2007-02-20 | 2008-08-27 | Alcatel Lucent | An access node and method for reliable bonding of subscriber lines |
US9490872B2 (en) | 2008-07-01 | 2016-11-08 | Ikanos Communications, Inc. | Reduced memory vectored DSL |
WO2017167938A1 (en) | 2016-03-31 | 2017-10-05 | British Telecommunications Public Limited Company | Method and apparatus for transmitting data over a plurality of pairs of wires |
Also Published As
Publication number | Publication date |
---|---|
DK2278785T3 (en) | 2020-07-20 |
AU2005226164B2 (en) | 2009-05-28 |
EP1733550B2 (en) | 2017-11-15 |
US20050152385A1 (en) | 2005-07-14 |
CN1954586A (en) | 2007-04-25 |
AU2005226164A1 (en) | 2005-10-06 |
CA2561009C (en) | 2013-07-02 |
EP1733550B1 (en) | 2011-08-03 |
EP2278785A1 (en) | 2011-01-26 |
EP2278785B1 (en) | 2020-05-06 |
US7639596B2 (en) | 2009-12-29 |
CN1954586B (en) | 2012-11-14 |
EP1733550A1 (en) | 2006-12-20 |
CA2561009A1 (en) | 2005-10-06 |
ATE519328T1 (en) | 2011-08-15 |
EP2278785B8 (en) | 2020-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7639596B2 (en) | High speed multiple loop DSL system | |
JP5216581B2 (en) | DSL system training | |
US6965657B1 (en) | Method and apparatus for interference cancellation in shared communication mediums | |
EP1894377B1 (en) | Dsl system loading and ordering | |
US8619843B2 (en) | Alien interference removal in vectored DSL | |
Oksman et al. | The ITU-T's new G. vector standard proliferates 100 Mb/s DSL | |
JP5254237B2 (en) | High-speed multi-user multi-loop DSL system | |
US8000219B2 (en) | Method and apparatus for spectrum management | |
CA2829307A1 (en) | Fext determination system | |
US9386163B2 (en) | Method and arrangement in a digital subscriber line system | |
CN103004099A (en) | Method, apparatus and system for reducing interference in digital subscriber line | |
Guenach et al. | Vectoring in DSL systems: Practices and challenges | |
EP2348644B1 (en) | Upstream power back-off method in digital subscriber line and the device and the system thereof | |
Cota et al. | New technologies for improvement of characteristics in DSL access networks | |
Foster et al. | Realising the potential of access networks using DSL | |
EP1611767B1 (en) | A method in a transceiver for allocating transmission capacity between the two directions of transmission in wire line data communication | |
EP2146473A1 (en) | Method and device for data processing and communication system comprising such device | |
Sjöberg | A vdsl tutorial | |
JACOBSEN | Last Mile Copper Access | |
Akujuobi et al. | VoDSL information management for broadband communication network access | |
Lannion | Vectored DSLs with DSM | |
Dalpathadu et al. | An Analysis of Speed Drop in ADSL Lines in Sri Lanka | |
Ongkapipat | Study on ADSL system in the high speed Internet | |
Krsti et al. | Digital Subscriber Line Technology: Network Architecture, Deployment Problems and Technical Solutions | |
Cherif | Evaluation of receiver performance over VDSL noisy links |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2561009 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005226164 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005708773 Country of ref document: EP Ref document number: 3912/CHENP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580015585.3 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2005226164 Country of ref document: AU Date of ref document: 20050318 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005226164 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005708773 Country of ref document: EP |