WO2005093914A1 - Device and method for controlling pumping distribution of solid laser medium - Google Patents

Device and method for controlling pumping distribution of solid laser medium Download PDF

Info

Publication number
WO2005093914A1
WO2005093914A1 PCT/JP2005/005504 JP2005005504W WO2005093914A1 WO 2005093914 A1 WO2005093914 A1 WO 2005093914A1 JP 2005005504 W JP2005005504 W JP 2005005504W WO 2005093914 A1 WO2005093914 A1 WO 2005093914A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
laser medium
state laser
light
excitation
Prior art date
Application number
PCT/JP2005/005504
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Sekine
Osamu Matsumoto
Toshiyuki Kawashima
Takashi Kurita
Tadashi Kanabe
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2005093914A1 publication Critical patent/WO2005093914A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2341Four pass amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping

Definitions

  • the present invention relates to control of an excitation distribution of a solid-state laser medium used in a solid-state laser system.
  • Japanese Patent Application Laid-Open No. 2003-78194 discloses a laser array module having a plurality of laser array units arranged in a line as an excitation light source.
  • a plurality of LD bar packages having a plurality of LDs arranged in a row are stacked.
  • Each LD bar package is fitted with a heat sink to cool the LD.
  • thermal lens effect ⁇ thermal birefringence effect for example, thermal lens effect ⁇ thermal birefringence effect
  • the thermal effect significantly reduces the beam quality of the laser beam. If the beam pattern of the laser beam deteriorates due to the thermal effect, the optical components may be damaged. In addition, since the laser light focusing characteristics are also deteriorated, it becomes difficult for the laser light to pass through the pinhole of the spatial filter arranged in the system, and as a result, the output power is reduced.
  • the present invention provides an apparatus and a method capable of appropriately controlling the excitation distribution of a solid-state laser medium and reducing a thermal effect even when using an excitation light source having a structure in which a number of unit light sources are stacked. As an issue.
  • One aspect of the present invention relates to an apparatus for controlling an excitation distribution of a solid-state laser medium.
  • This device is a solid-state laser medium that is excited by irradiation with excitation light and can stimulate and emit light of a predetermined wavelength, an excitation light source that irradiates the solid-state laser medium with excitation light, and an excitation light source.
  • a moving device that can change the distance between the solid-state laser medium and the excitation light source by moving the solid-state laser medium, a measuring unit that measures the excitation distribution of the solid-state laser medium, and a moving unit that moves according to the excitation distribution measured by the measuring unit
  • a control unit that controls the excitation distribution of the solid-state laser medium by driving the device and adjusting the distance between the solid-state laser medium and the excitation light source.
  • the intensity distribution of the excitation light applied to the solid-state laser medium depends on the distance between the solid-state laser medium and the excitation light source. Therefore, by adjusting this distance, the excitation distribution of the solid-state laser medium can be controlled. The adjustment of the distance can be performed without being affected by the number of unit light sources to be stacked. Therefore, even when using an excitation light source with a structure in which many unit light sources are stacked, it is necessary to appropriately control the excitation distribution of the solid-state laser medium and reduce the thermal effect. Can do.
  • the solid-state laser medium includes first and second end faces, a long upper surface and a bottom surface extending between the end surfaces, and a first and a second surface between the upper surface and the bottom surface. And one end of the second end face having two sides extending to the other and having a length along a direction substantially parallel to the top, bottom and two sides, and substantially parallel to the top and bottom.
  • the medium may be a slab-shaped medium having a height along a direction substantially perpendicular to the direction and a thickness along a direction substantially perpendicular to the two side surfaces.
  • the excitation light source may include first and second unit light sources stacked along the height direction of the solid-state laser medium.
  • the measurement unit has an imaging device that acquires an image of the spontaneous emission light emitted from the first or second end surface of the solid-state laser medium when the excitation light source is irradiated with the excitation light! / ⁇ You can! /
  • the control unit uses the image to determine the intensity distribution of the spontaneous emission light in the height direction of the solid-state laser medium, and finds the intensity distribution between the two peaks corresponding to the emission of the first and second unit light sources, respectively.
  • the moving device may be driven such that the depth of the valley located at the location is minimized.
  • the intensity distribution of spontaneous emission light emitted from the end face of the solid-state laser medium reflects the excitation distribution in the thickness and height directions of the solid-state laser medium.
  • the deeper the valley the more the excitation light from each unit light source is separated, and the higher the non-uniformity of the excitation distribution in the height direction of the solid-state laser medium. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so that the depth of the valley is minimized, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced.
  • the measuring unit includes a condensing device that condenses the light having the predetermined wavelength, which enters the solid-state laser medium through the first end face, propagates on the zigzag optical path, and emits from the second end face.
  • An imaging device for acquiring an image of the beam pattern of the light thus condensed may be provided.
  • the control unit may calculate the area of the beam pattern when the solid-state laser medium is irradiated with the excitation light, and may drive the moving device so that the area is minimized.
  • the light propagating on the zigzag optical path receives a thermal effect from the heat generated in the solid-state laser medium.
  • the light focusing property depends on the excitation distribution of the solid laser medium. Therefore, the light collected by the The light beam pattern reflects the excitation distribution of the solid-state laser medium. The larger the area of the beam pattern, the poorer the light collection. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so that the area of the beam pattern is minimized, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced.
  • the measurement unit is configured to split the inspection light into first and second lights, emit the inspection light into the solid-state laser medium through the first end face, and propagate the first light into the solid-state laser medium and propagate the light on the zigzag optical path.
  • An interference optical system that emits a second end face force and interferes with the second light to generate an interference fringe having a rectangular pattern along the thickness direction and the height direction of the solid-state laser medium.
  • an imaging device for acquiring an image of interference fringes.
  • the control unit sets a reference line parallel to the height direction of the solid-state laser medium in the image of the interference fringe acquired when the excitation light is irradiated on the solid-state laser medium, and sets an image on the reference line.
  • the moving device may be driven such that the number of vibrations of the luminance is counted and the number of vibrations is minimized.
  • the interference fringes reflect the refractive index distribution of the solid-state laser medium along the zigzag optical path.
  • This refractive index distribution is formed by irradiating the solid-state laser medium with excitation light. Therefore, the pattern of interference fringes reflects the excitation distribution of the solid-state laser medium.
  • the greater the number of oscillations of the brightness of the interference fringe image on the reference line the higher the non-uniformity of the excitation distribution in the height direction of the solid-state laser medium. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so as to minimize the number of oscillations, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced.
  • control unit may determine that an image of interference fringes acquired when the solid-state laser medium is not irradiated with the excitation light is substantially parallel to the height direction of the solid-state laser medium.
  • the interference optical system may be adjusted so as to have a bright line.
  • Another aspect of the present invention relates to a method for controlling an excitation distribution of a solid-state laser medium that is excited by irradiation with an excitation light source and is capable of stimulated emission of light having a predetermined wavelength.
  • the method includes measuring an excitation distribution of a solid-state laser medium, moving an excitation light source according to the measured excitation distribution, and adjusting a distance between the solid-state laser medium and the excitation light source.
  • the solid-state laser medium When a plurality of unit light sources are stacked in the excitation light source, the solid-state laser medium The intensity distribution of the excitation light applied to the laser beam depends on the distance between the solid-state laser medium and the excitation light source. Therefore, by adjusting this distance, the excitation distribution of the solid-state laser medium can be controlled. The adjustment of the distance can be performed without being affected by the number of unit light sources to be stacked. Therefore, even when an excitation light source having a structure in which many unit light sources are stacked is used, it is possible to appropriately control the excitation distribution of the solid-state laser medium and reduce the thermal effect.
  • the solid-state laser medium includes first and second end faces, a long upper surface and a bottom surface extending between the end surfaces, and the first and second end surfaces.
  • One of the first and second end faces has two side faces extending to the other, and has a length along a direction substantially parallel to the top face, the bottom face and the two side faces, and a length along the top face and the bottom face.
  • It may be a slab-shaped medium having a height along a direction substantially perpendicular to the two sides and a thickness along a direction substantially perpendicular to the two side surfaces.
  • the excitation light source may include first and second unit light sources stacked along the height direction of the solid-state laser medium.
  • the measurement of the excitation distribution may include acquiring an image of the spontaneous emission light that also emits the first or second end face force when the excitation light source power is being irradiated with the excitation light.
  • the intensity distribution of the spontaneous emission light in the height direction of the solid-state laser medium is obtained using the image, and the intensity distribution is calculated between the two peaks respectively corresponding to the emission of the first and second unit light sources. The distance may be adjusted so that the depth of the valley located at is minimum.
  • the intensity distribution of the spontaneous emission light emitted from the end face of the solid-state laser medium reflects the excitation distribution in the thickness direction and the height direction of the solid-state laser medium.
  • the deeper the valley the more the excitation light from each unit light source is separated, and the higher the non-uniformity of the excitation distribution in the height direction of the solid-state laser medium. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so that the depth of the valley is minimized, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced. .
  • the excitation light when the excitation light is irradiated on the solid-state laser medium, the excitation light enters the solid-state laser medium through the first end face, propagates on a zigzag optical path, and emits the second end face force.
  • Light of the wavelength ⁇ and obtain an image of the beam pattern of the collected light May be included.
  • Adjusting the distance may include calculating the area of the beam pattern and adjusting the distance so that the area is minimized.
  • the light propagating on the zigzag optical path receives a thermal effect from the heat generated in the solid-state laser medium.
  • the light focusing property depends on the excitation distribution of the solid laser medium. Therefore, the beam pattern of the collected light reflects the excitation distribution of the solid-state laser medium. The larger the area of the beam pattern, the poorer the light focusing. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so that the beam pattern area is minimized, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is improved, and the thermal effect is reduced. Is done.
  • the inspection light emitted from a predetermined inspection light source is split into first and second lights, the first light is made incident on the first end face of the solid-state laser medium, and a zigzag optical path is formed. Propagation causes the second end face force to be emitted, interferes with the second light, and generates interference fringes having a rectangular pattern along the thickness and height directions of the solid-state laser medium, and the interference fringes are generated. Acquiring a fringe image may be included.
  • a reference line parallel to the height of the solid-state laser medium is set in the interference fringe image acquired when the solid-state laser medium is irradiated with the excitation light, and the image on the reference line is adjusted. It may also include counting the number of vibrations of the luminance and adjusting the distance so that the number of vibrations is minimized.
  • the interference fringes reflect the temperature distribution of the solid-state laser medium along the zigzag optical path. This temperature distribution is formed by irradiating the solid-state laser medium with excitation light. Therefore, the interference fringe pattern reflects the excitation distribution of the solid-state laser medium. The greater the number of vibrations of the interference fringe image on the reference line, the higher the non-uniformity of the excitation distribution in the height direction of the laser medium. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so as to minimize the number of oscillations, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced.
  • the measurement of the excitation distribution may include generating interference fringes using an interference optical system.
  • an image of interference fringes obtained when the excitation light is irradiated on the solid-state laser medium before the adjustment of the distance is substantially parallel to the height direction of the solid-state laser medium. Adjusting the interference optical system to have a clear bright line.
  • FIG. 1 shows a configuration of a MOPA system according to a first embodiment.
  • FIG. 2 is an enlarged plan view of an excitation light source.
  • FIG. 3 shows the front and back of the excitation light source.
  • FIG. 4 is a cross-sectional view of the main amplifier.
  • FIG. 5 schematically shows amplified light propagating in a solid-state laser medium.
  • FIG. 6 shows excitation distributions in the Y and Z directions.
  • FIG. 7 is a diagram for explaining changes in the shape of the wavefront of the light to be amplified.
  • FIG. 8 schematically shows images of ASE light obtained under various light source distances.
  • FIG. 9 shows Z-direction profiles under various light source distances.
  • FIG. 10 shows a configuration of a MOPA system according to a second embodiment.
  • FIG. 11 schematically shows images of a light-converging pattern obtained under various light source distances.
  • FIG. 12 shows a configuration of a MOPA system according to a third embodiment.
  • FIG. 14 shows one-dimensional profiles of interference fringes under various light source distances.
  • FIG. 1 shows a configuration of a MOPA (Master Oscillator Power Amplifier) system including the excitation distribution control device of the present embodiment.
  • the MOPA system 1 consists of a laser light source 11, a preamplifier 12, a beam expander 13, an optical mask 14, a spatial filter 15, a Faraday rotator 16, a main amplifier 17, and a spatial filter in addition to the excitation distribution controller 10. 18 and a polarizer 19.
  • the MOPA system 1 amplifies and outputs laser light emitted from the laser light source 11.
  • the laser light source 11 is a master oscillator that emits laser light to be amplified.
  • the laser light that also emits power has a wavelength that can be amplified by each of the preamplifier 12 and the main amplifier 17.
  • the laser light source 11 is, for example, a diode-pumped Nd: YLF laser device. This laser device uses a continuous-wave laser diode to excite the Nd: YLF laser medium, amplifies the seed light by Q-switching, and generates a laser beam with energy ⁇ :, beam diameter lmm, and wavelength 1.053 m. Generate
  • the preamplifier 12 receives the amplified light emitted from the laser light source 11, and amplifies the amplified light to 300mi.
  • Light emitted from the preamplifier 12 is reflected by the mirror 21 and sent to the beam eta spanner 13.
  • the beam expander 13 enlarges the beam diameter of the light and emits the light toward the mirror 22. This light is reflected by the mirror 22 and goes to the optical mask 14.
  • the optical mask 14 has an opening for beam shaping. When the light expanded by the beam expander 13 passes through this opening, the spatial distribution shape of the light is shaped into a rectangular shape.
  • the spatial filter 15 has a lens 15a, a lens 15b, and a pinhole plate 15c.
  • the spatial filter 18 has a lens 18a, a lens 18b, and a pinhole plate 18c.
  • the lens 15a and the lens 15b form a confocal optical system of a Keplera inverse telephoto system
  • the lens 18a and the lens 18b also form a confocal optical system of a Keplera inverse telephoto system.
  • These confocal optical systems transfer the pattern (beam pattern) of the cross section of the amplified light formed by the optical mask 14 as an optical image.
  • amplification transfer is performed a total of eight times in four round trips. Bead formed by optical mask 14 By repeatedly transferring the system pattern, the amplified light propagates without causing diffraction.
  • the pinhole 15c is at the focal position between the lens 15a and the lens 15b, and the pinhole plate 18c is at the focal position between the lens 18a and the lens 18b.
  • These pinhole plates 15c and 18c are provided for removing spatial harmonic components. Since the pinhole plates 15c and 18c are provided at the condensing position of the amplified laser light, it is desirable that the material has a high thermal shock resistance and a high material strength. Examples of such a material include ceramics, and among them, alumina, silicon nitride, carbon nitride or boron nitride, or a mixture thereof is particularly preferable.
  • the shape of each of the openings of the pinhole plates 15c and 18c is preferably substantially similar to the shape obtained by Fourier transforming the shape of the opening of the optical mask 14.
  • the main amplifier 17 has a solid-state laser medium 31 and a pair of pumping light sources 32 arranged so as to sandwich the solid-state laser medium 31.
  • Each excitation light source 32 generates excitation light and irradiates the solid laser medium 31 to excite the solid laser medium 31.
  • the configuration of the main amplifier 17 will be described in detail.
  • the solid-state laser medium 31 can form a population inversion in response to the irradiation of the excitation light, and can stimulate and emit light of a specific wavelength.
  • the amplified light that also emits the power of the laser light source 11 has a wavelength that the solid-state laser medium 31 can induce and emit.
  • the solid-state laser medium 31 is Nd-doped glass having a long slab shape.
  • FIG. 5 schematically shows the amplified light 70 propagating in the solid-state laser medium 31.
  • the solid-state laser medium 31 is a parallelepiped having three end faces 3 la and 3 lb, a long top surface 31c and a bottom surface 31d, and long side surfaces 31e and 31f.
  • the amplified light 70 enters the solid-state laser medium 31 through the end faces 3 la and 3 lb parallel to each other, or the amplified light 70 exits from the solid-state laser medium 31.
  • Each of the end face 31a and the end face 31b of the solid-state laser medium 31 is provided with a reflection reduction film.
  • the top surface 31c and the bottom surface 31d extend in parallel between the end surfaces 31a and 31b.
  • the side surfaces 31e and 31f extend in parallel from the end surface 31a to the end surface 31b between the top surface 31c and the bottom surface 31d.
  • the solid-state laser medium 31 has a length along a direction parallel to the top surface 31c, the bottom surface 31d, and the two side surfaces 3le and 3If.
  • the solid-state laser medium 31 has a top surface 31c and a bottom surface 3c. It has a height along a direction substantially perpendicular to Id and a thickness along a direction substantially perpendicular to sides 31e and 31.
  • the X, Y and Z axes shown in the drawing indicate the length direction, thickness direction and height direction of the solid-state laser medium 31, respectively.
  • the amplified light 70 is obliquely incident on the end face 31 a or 31 b of the solid-state laser medium 31, and is repeatedly reflected on the side faces 31 e and 31 f of the solid-state laser medium 31 and travels on a zigzag optical path in the solid-state laser medium 31. proceed.
  • the zigzag optical path extends substantially parallel to the top surface 31c and the bottom surface 31d of the solid-state laser medium 31.
  • the zigzag optical path has a shape that is substantially symmetric with respect to the center line of the thickness of the solid-state laser medium 31.
  • stimulated emission occurs according to the pumping profile (Pump Profile) in the solid-state laser medium 31, and the amplified light 70 is amplified.
  • This excitation distribution is formed according to the intensity distribution of the excitation light.
  • FIG. 2 is an enlarged plan view of the excitation light source 32
  • FIGS. 3A and 3B show a front surface and a rear surface of the excitation light source 32, respectively.
  • each excitation light source 32 has two laser array modules 33 stacked.
  • a plurality of laser array units 34 are arranged one-dimensionally along the length direction (X direction) of the solid-state laser medium 31.
  • Each laser array unit 34 has a plurality of LD bar packages and a heat sink attached to the LD bar packages.
  • the laser array unit 34 has extraction electrodes 36 and 37 electrically connected to the anode and the cathode of the LD bar package, respectively.
  • Each LD bar package has a structure in which LD bars are mounted on a metal heat sink.
  • the LD bar is a laser array including a plurality of LDs (laser diodes) arranged one-dimensionally in a certain direction (the Z direction in FIG. 3), and therefore, a plurality of laser emission spots arranged in a line.
  • LDs laser diodes
  • an LD bar in which a plurality of LDs are monolithically integrated is used.
  • a plurality of stripe waveguides are usually provided by dividing an active layer and an electrode into a plurality of stripes and arranging them in parallel.
  • an LD bar having a structure in which a plurality of independent LD chips are arranged in a line can be used.
  • a plurality of LD bar packages are stacked in a direction perpendicular to the arrangement direction of the LDs (the X direction in FIG. 1). That is, the laser array unit 34 is a laser array having a plurality of LDs and laser emission spots two-dimensionally arranged in a matrix.
  • the substantially rectangular area formed by assembling the light emitting surfaces of the LD bar packages is the light emitting section 34a of the laser array unit 34.
  • the plurality of light emitting parts 34a are arranged so as to form substantially one plane.
  • the excitation light source 32 is arranged such that the light emitting portions 34a face the side surfaces 3 le or 3 If of the solid-state laser medium 31.
  • a cooling manifold is attached.
  • the cooling manifold supplies a coolant to a flow path in a heat sink of the laser array unit 34 to cool the laser array unit 34.
  • the laser array unit 34 and the cooling manifold are housed in housings 38 and 39.
  • the excitation light source 32 is provided with an actuator 40 for moving the laser array unit 34 back and forth in the Y direction.
  • the structure of the actuator 40 will be described later.
  • a fast axis (Fast Axis) and a slow axis (Slow Axis) are defined for an LD.
  • the fast axis is perpendicular to the pn junction of the LD and the slow axis is parallel to the pn junction.
  • LD force The divergence angle of the emitted laser light in the fast axis direction is larger than the divergence angle in the slow axis direction
  • each laser array unit 34 is arranged with the directions of the fast axis and the slow axis mutually aligned. Since the solid-state laser medium 31 is long in the X direction, the laser array unit 34 must be extended along the length direction (X-direction) of the solid-state laser medium 31 in order to increase the irradiation area of the solid-state laser medium 31 with the excitation light. Are preferably arranged. Further, it is preferable that each laser array unit 34 is arranged so that the fast axis direction matches the length direction of the solid-state laser medium 31. This is because the spread angle of the LD light in the fast axis direction is larger than that in the slow axis direction.
  • the excitation light source 32 is arranged so that the fast axis direction of the laser array unit 34 matches the X direction and the slow axis direction matches the Z direction. ing.
  • FIG. 4 is a cross-sectional view of the main amplifier 17. This figure shows a cross section perpendicular to the length direction of the solid-state laser medium 31.
  • the main amplifier 17 has a medium storage section 80 in addition to the solid-state laser medium 31, the pumping light source 32, and the housings 38 and 39 described above.
  • the medium storage section 80 stores the solid-state laser medium 31 inside.
  • a refrigerant passage 80a is also provided inside the medium storage section 80. When the cooling water supplied from the outside flows through the coolant channel 80a, the solid-state laser medium 31 is cooled.
  • a pair of windows 35 are arranged in parallel with each other with the solid-state laser medium 31 interposed therebetween. Each window 35 is a transparent flat plate. These windows 35 are parallel to the side surfaces 31 e and 31 f of the solid-state laser medium 31.
  • the excitation light source 32 is arranged to face the solid-state laser medium 31 through the window 35.
  • the housings 38 and 39 house the excitation light source 32 therein.
  • An opening 38a is provided at the front end of the housing 38.
  • the excitation light emitted from the excitation light source 32 passes through the opening 38a and the window 35 and irradiates the solid-state laser medium 31.
  • the active elements contained in solid laser medium 31 are excited. Thereafter, when light of a predetermined wavelength enters the solid-state laser medium 31, stimulated emission occurs, and the incident light is amplified.
  • the housing 39 holds the laminated laser array unit 34 and the cooling manifold 36 with a vertical force interposed therebetween.
  • a cooling medium passage (not shown) is provided inside the cooling manifold 36.
  • FIG. 1 is referred to again.
  • the amplified light that has entered the end face 31a of the solid-state laser medium 31 from the mirror 23 is amplified while propagating in the solid-state laser medium 31, and then exits from the end face 31b toward the mirror 24.
  • This light is reflected by mirror 24, passes through spatial filter 18, is reflected by mirrors 27 and 28, and travels to mirror 25.
  • the amplified light reflected by the mirror 25 and incident on the end face 31b of the solid-state laser medium 31 is amplified while propagating in the solid-state laser medium 31, and then is emitted from the end face 31a toward the mirror. This light is reflected by mirror 26 and travels to Faraday rotator 16.
  • the Faraday rotator 16 is arranged on the optical path between the spatial filter 15 and the mirror 26.
  • the Faraday rotator 16 is an optical unit that rotates the plane of polarization of the incident light. Goods.
  • the Faraday rotator 16 has a rotation angle of 45 degrees.
  • the Faraday rotator 16 also compensates for thermal birefringence.
  • the polarizer 19 selectively reflects a polarized light component of a specific direction in the light that has passed through the spatial filter 15 from the mirror 23. This reflected light is the output light of MOPA system 1.
  • This MOPA system 1 operates as follows.
  • the amplified light output from the laser light source 11 is amplified by the preamplifier 12, the beam diameter is expanded by the beam expander 13, and is input to the optical mask 14.
  • the light whose beam cross-section is made rectangular by the optical mask 14 is converted into a spatial filter 15, a mirror 23, a main amplifier 17, a mirror 24, a spatial filter 18, a mirror 27, a mirror 28, a spatial filter 18, and a mirror.
  • 25, the main amplifier 17, the mirror 26, the Faraday rotator 16, and the spatial filter 15 arrive at the mirror 29 in this order.
  • the light reflected by the mirror 29 travels in the optical path until the optical mask 14 reaches the mirror 29 in the opposite direction, and reaches the volatilizer 19.
  • the optical path from the optical mask 14 to the mirror 29 will be referred to as the “outbound path”
  • the optical path from the mirror 29 to the polarizer 19 will be referred to as the “return path”.
  • the amplified light passes through the Faraday rotator 16 having a rotation angle of 45 degrees twice when traveling on the outward path and the return path. Therefore, the plane of polarization of the light rotates by 90 degrees in total. Therefore, the light that travels on the return route and reaches the volatilizer 19 is reflected by the volatilizer 19. This reflected light is the output light of the MOPA system 1.
  • the beam pattern of the amplified light at the position of the optical mask 14 is transferred eight times by the spatial filters 15 and 18.
  • the pinhole plates 15c and 18c in the spatial filters 15 and 18 remove spatial harmonic components due to thermal distortion and the like, and thus eliminate spike noise. As a result, damage to the optical components in the MOPA system 1 due to the amplified light can be reduced.
  • the light to be amplified passes through the main amplifier 17 four times while passing through the forward path and the return path.
  • the amplified light passes through the solid-state laser medium 31 excited by the excitation light source 32 and causes stimulated emission.
  • the amplified light is amplified each time it passes through the main amplifier 17.
  • Solid ray The total energy of the excitation light applied to the medium 31 is 48 J, and the excitation efficiency is 0.5. At this time, the energy of the output light radiated through the volatilizer 19 is 10J.
  • a device 10 for controlling the excitation distribution of the solid-state laser medium 31 is provided. This is to eliminate the problem caused by inappropriate excitation distribution of the solid-state laser medium 31.
  • this problem will be described with reference to FIGS.
  • the amplified light 70 travels zigzag in the solid-state laser medium 31.
  • the side surfaces 31e and 31f of the solid-state laser medium 31 are irradiated with excitation light from the excitation light source 32 along the thickness direction (Y direction) of the solid-state laser medium 31.
  • the solid-state laser medium 31 is excited and emits spontaneous emission (Amplified Spontaneous Emission: ASE) light.
  • Reference numeral 71 in FIG. 5 schematically shows a pattern of the ASE light emitted from the end face of the solid-state laser medium 31.
  • the ASE pattern 71 shows the intensity distribution in the cross section of the ASE light beam, and reflects the excitation distribution of the solid-state laser medium 31.
  • the ASE pattern 71 has regions 71a-71d of different intensities. These regions have higher intensity in the order of regions 71a, 71b, 71c and 71d. The higher the intensity, the higher the excitation intensity.
  • the excitation intensity corresponds to the intensity distribution of the excitation light applied to the solid-state laser medium 31.
  • the excitation light source 32 has a structure in which two laser array modules 33 are stacked along the height direction (Z direction) of the solid-state laser medium 31. There is usually a gap of 1 mm or more between the light emitting portions 34a included in the upper and lower laser array modules 33. Due to this interval, the solid-state laser medium 31 may have a non-uniform excitation distribution along the height direction.
  • the excitation light emitted from the upper and lower laser array modules 33 travels toward the solid-state laser medium 31 while diffusing in the Z direction. Therefore, the intensity distribution of the excitation light applied to the solid-state laser medium 31 and the excitation distribution of the solid-state laser medium 31 change according to the distance between the solid-state laser medium 31 and the excitation light source 32.
  • the excitation light from the upper and lower laser array modules 33 is separated in the Z direction and is irradiated on the solid-state laser medium 31.
  • a region 71c having a relatively low intensity is generated and extends so as to divide the region 71b.
  • two high-strength regions 71a respectively appear in the upper and lower portions of the ASE pattern 71 in the Y direction.
  • a region having a higher excitation intensity is irradiated with excitation light having a higher intensity. Therefore, a region having a high excitation intensity generates a large amount of heat and accordingly has a high temperature.
  • the heat generated in the solid-state laser medium 31 may exert a thermal effect on the amplified light 70 such as a thermal lens effect and a thermal birefringence effect.
  • FIGS. 6A and 6B show the excitation distributions in the Y and Z directions corresponding to the ASE pattern 71 shown in FIG. 5, respectively.
  • two peaks appear in both excitation distributions.
  • the amplified light 70 propagates in the solid-state laser medium 31 along the zigzag optical path parallel to the XY plane, it is affected by the entire Y-direction excitation distribution. Therefore, the two peaks of the Y-direction excitation distribution and the valley located therebetween cancel out the thermal effects on the amplified light 70, and as a result, the thermal effects of the Y-direction excitation distribution are averaged.
  • the effect of the excitation distribution in the Z direction perpendicular to the zigzag optical path on the amplified light 70 is integrated as the amplified light 70 propagates. Therefore, the amplified light 70 emitted from the solid-state laser medium 31 receives a non-uniform thermal effect in the Z direction, and the beam quality is significantly deteriorated.
  • FIG. 7 is a diagram for explaining a change in the shape of the wavefront of the light 70 to be amplified.
  • FIG. 7 (a) schematically shows the shape of the wavefront of the amplified light 70 before passing through the solid-state laser medium 31, and
  • FIG. 7 (c) shows the amplified light after passing through the solid-state laser medium 31.
  • 70 schematically shows the shape of the 70 wavefront.
  • FIG. 7B shows an equivalent excitation distribution for the amplified light 70 traveling along the zigzag optical path in the solid-state laser medium 31.
  • the above-mentioned averaging caused by the zigzag optical path makes the excitation distribution in the Y direction uniform.
  • the amplified signals in the pinhole plates 15c and 18c are amplified.
  • the MOPA system 1 has a low transmittance of the light 70, damage to optical components in the MOPA system 1 has increased, and the output of the MOPA system 1 has decreased due to the elliptically polarized light 70 to be amplified. Performance may be greatly reduced. Therefore, in the MOPA system 1 of the present embodiment, a device 10 for controlling the excitation distribution of the solid-state laser medium 31 is provided.
  • the excitation distribution control device 10 achieves an appropriate excitation distribution by adjusting the distance between the solid-state laser medium 31 and the excitation light source 32.
  • the excitation light emitted from each of the upper and lower laser array modules 33 travels toward the solid-state laser medium 31 while diffusing. Therefore, if the distance between the laser array module 33 and the solid-state laser medium 31 changes, the intensity distribution of the excitation light changes, and the excitation distribution of the solid-state laser medium 31 changes accordingly.
  • the excitation distribution control device 10 controls the excitation distribution using this mechanism.
  • the excitation distribution control device 10 includes an actuator 40, a measurement unit 50, and a control unit 60 in addition to the main amplifier 17.
  • the actuator 40 is attached to the excitation light source 32.
  • the actuator 40 can change the distance between the solid-state laser medium 31 and the excitation light source 32 by moving the excitation light source 32 in the thickness direction (Y direction) of the solid-state laser medium 31.
  • the actuator 40 is a screw feed mechanism having a main body 42, a pair of screw components 44, and a pair of motors 46.
  • the main body 42 is attached to the rear of the excitation light source 32.
  • Each screw component 44 has a head portion 44a provided with a gear, and a shaft portion 44b extending in the Y direction from the head portion 44a.
  • a male screw is provided on the outer periphery of the shaft portion 44b.
  • the shaft portion 44b extends into the housing 38 while being screwed with a screw hole provided in the main body 42.
  • the tip of the shaft portion 44b is rotatably supported by a support member 48 provided in the housing 38.
  • the motor 46 has a pinion 46a that engages with the head 44a of the screw product 44, and a shaft portion 46b that extends from the pinion 46a in the Y direction.
  • the drive signal of the motor 46 is supplied from the control unit 60. This drive signal instructs the motor 46 on the amount and direction of rotation.
  • the pin 46a rotates around the shaft portion 46b, and the screw component 44 rotates around the shaft portion 44b in conjunction therewith.
  • the screw component 44 rotates, the main body 42 and the excitation light source 32 translate along the Y direction. Thereby, the distance between the excitation light source 32 and the solid-state laser medium 31 is increased. The separation changes. This distance increases or decreases depending on the direction of rotation of the motor 46.
  • the measuring section 50 includes a CCD camera 52.
  • the CCD camera 52 acquires an image of the ASE light 88 emitted from one end face (the end face 31b in the present embodiment) of the solid-state laser medium 31.
  • the CCD camera 52 has an imaging surface, and converts an optical image incident on the imaging surface into an electrical output signal.
  • the CCD camera 52 is arranged so that its imaging surface is substantially perpendicular to the length direction (X direction) of the solid-state laser medium 31.
  • the CCD camera 52 generates an output signal representing an image of the ASE light 88 and sends it to the control unit 60.
  • the control section 60 has a personal computer 62, an actuator controller 64, and a driving device 66 for the excitation light source 32.
  • the computer 62 performs an operation using the output signal of the measuring section 50, and controls the operation of the actuator controller 64 according to the result.
  • the actuator controller 64 transmits a drive signal to the motor 46 of the actuator 40 under the control of the computer 62 to drive the actuator 40.
  • Actuator controller 64 controls the direction and amount of movement of actuator 40 by instructing the direction and amount of rotation of motor 46.
  • the driving device 66 supplies driving power to the excitation light source 32 under the control of the computer 62, and causes the excitation light source 32 to emit excitation light. Therefore, the computer 62 can excite the solid-state laser medium 31 at a desired timing.
  • the MOPA system 1 of the present embodiment first adjusts the excitation distribution in the solid-state laser medium 31 using the excitation distribution control device 10, and then emits light from the laser light source 11, and converts the light. Amplify.
  • the excitation distribution control device 10 controls the excitation distribution by adjusting the distance between the solid-state laser medium 31 and the excitation light source 32. This adjustment of the distance is performed based on an image of the ASE light emitted from the solid-state laser medium 31. Hereinafter, the adjustment of the distance will be described in detail.
  • the excitation distribution control device 10 acquires an ASE light image using the CCD camera 52.
  • the intensity distribution of the excitation light applied to the solid-state laser medium 31 changes according to the distance between the excitation light source 32 and the solid-state laser medium 31.
  • An excitation distribution is formed in the solid-state laser medium 31 according to the intensity distribution, and ASE light is emitted from the excited part.
  • Excitation intensity The larger the is, the stronger the ASE light is emitted. Therefore, the intensity distribution of the ASE light emitted from the end face of the solid-state laser medium 31 reflects the excitation distribution of the solid-state laser medium 31 in the thickness direction (Y direction) and the height direction (Z direction).
  • FIG. 8 schematically shows ASE light images acquired by the CCD camera 52 when the light emitting section 34a of the excitation light source 32 is arranged at various distances from the solid-state laser medium 31.
  • the ASE light image 72 is a two-dimensional image of the solid-state laser medium 31 along the thickness direction (Y direction) and the height direction (Z direction).
  • the ASE light image 72 has regions 72a to 72d of different luminances. These areas have higher brightness in the order of the areas 72a, 72b, 72c and 72d. The higher the brightness, the higher the intensity of the ASE light. That is, the luminance distribution of the ASE light image 72 indicates the intensity distribution of the ASE light on the YZ plane.
  • FIG. 8A shows an ASE light image 72 when the distance between the light emitting section 34a of the excitation light source 32 and the solid-state laser medium 31 (hereinafter, referred to as “light source distance”) is short.
  • a region 72c having a relatively low luminance is generated in a region 72b having a relatively high luminance, and extends so as to divide the region 72b. This indicates that non-uniform excitation occurs near the center of the solid-state laser medium 31.
  • the ASE light image 72 shown in FIG. 8B is detected, and when the light source distance further increases, the ASE light image 72 shown in FIG. 8C is detected.
  • the region 72b is not divided by the region 72c, and near the center of the solid-state laser medium 31, the uniformity of excitation is increased.
  • the non-uniformity of the excitation distribution in the Y direction does not cause any problem because it is averaged.
  • the non-uniformity in the Z direction is integrated, so that the quality of the output beam of the MOPA system 1 deteriorates. Let it. Therefore, in the present embodiment, the non-uniformity of the excitation distribution in the Z direction is evaluated based on the ASE light image 72, and the light source distance is adjusted according to the result.
  • the output signal of the CCD camera 52 is sent to the computer 62 in the control unit 60.
  • the computer 62 converts the output signal into two-dimensional text data.
  • the two-dimensional text data contains the brightness of the ASE light image acquired by the CCD camera 52 in association with each pixel.
  • Each pixel is assigned a pair of Y and Z direction pixel numbers. That is, the output signal of the CCD camera 52 includes the two-dimensional luminance distribution data of the ASE light emitted from the end face of the solid-state laser medium 31.
  • the computer 62 integrates the luminance distribution of the ASE light image in the Y direction to create the luminance distribution of the ASE light in the Z direction in order to evaluate the non-uniformity of the excitation distribution in the Z direction.
  • the computer 62 uses the above-described two-dimensional text data to calculate the total luminance for each of the pixel rows parallel to the Y direction. Each pixel column has a single Z-direction pixel number.
  • the computer 62 plots the total brightness calculated for each pixel column, and creates a brightness distribution of the ASE light image in the height direction (Z direction) of the solid-state laser medium 31.
  • this luminance distribution is referred to as a “Z-direction profile”.
  • FIG. 9 shows Z-direction profiles under various light source distances.
  • the horizontal axis represents coordinates in the height direction (Z direction) of the solid-state laser medium 31, and the vertical axis represents luminance integrated in the thickness direction (Y direction) of the solid-state laser medium 31.
  • FIGS. 9 (a)-(c) correspond to FIGS. 8 (a) -1 (c), respectively.
  • FIG. 9A at the shortest light source distance, two peaks 84 and a valley 85 located between the peaks 84 appear in the Z-direction profile. These peaks 84 correspond to the emission centers of the laser array modules 33 in the Z direction.
  • the depth of the valley 85 of the Z-direction profile is denoted as ⁇ .
  • the valley 85 indicates the magnitude of the non-uniformity of the excitation distribution in the Z direction.
  • is reduced as shown in FIGS. 9 (b) and 9 (c). This means that the non-uniformity of the excitation distribution has been reduced. Therefore, the computer 62 adjusts the light source distance so that ⁇ I is minimized.
  • the computer 62 controls the actuator controller 64 to drive the actuator 40 to bring the excitation light source 32 sufficiently close to the solid-state laser medium 31 so that a valley 85 appears in the Z-direction profile.
  • the computer 62 controls the driving device 66 to drive the excitation light source 32 to irradiate the solid-state laser medium 31 with the excitation light.
  • the CCD camera 52 acquires an image of the ASE light emitted from the end face 31b of the solid-state laser medium 31, and sends an output signal to the computer 62.
  • the computer 62 uses this output signal to create a Z-direction profile according to the procedure described above.
  • the computer 62 calculates the reference coordinates ⁇ corresponding to the bottom of the valley 85 and the reference coordinates zl corresponding to the top of the valley 85. Is calculated. ⁇ and zl can be determined using any waveform analysis method .
  • the reference coordinates zl are determined according to the brightness 10 corresponding to the top of the valley 85.
  • the luminance 10 may be, for example, the average value of the heights of the two peaks 84 appearing in the Z-direction profile, or may be the height of the peak 84! / ,.
  • the computer 62 moves the excitation light source 32 away from the solid-state laser medium 31 by a predetermined distance, and then drives the excitation light source 32 to irradiate the solid-state laser medium 31 with excitation light.
  • the computer 62 calculates the depth ⁇ based on the acquired Z-direction profile. Specifically, in the Z-direction profile, the luminances corresponding to the reference coordinates ⁇ ⁇ and zl are respectively specified, and the difference between the specified luminances is calculated as ⁇ . Thereafter, the computer 62 repeats the operation of moving the excitation light source 32 away from the solid-state laser medium 31 by a predetermined distance, acquiring a Z-direction profile, and calculating ⁇ .
  • the computer 62 repeats the calculation of ⁇ while increasing the light source distance by a predetermined distance, and checks a change in ⁇ according to the light source distance. As shown in FIGS. 9 (b) and 9 (c), when the light source distance increases, ⁇ ⁇ first decreases and then increases. When the depth ⁇ ⁇ of the valley 85 is the smallest, the non-uniformity of the excitation distribution in the Z direction is minimized.
  • the computer 62 derives a light source distance that minimizes ⁇ ⁇ from ⁇ ⁇ calculated under various light source distances. Then, the computer 62 drives the actuator 40 to arrange the excitation light source 32 at the calculated light source distance.
  • the unevenness of the excitation distribution of the solid-state laser medium 31 in the Z direction can be minimized.
  • the amplified light is amplified by the main amplifier 17 and output from the MOPA system 1. Since the non-uniformity of the excitation distribution in the Z direction is suppressed, the thermal effect on the amplified light can be reduced, and a high-quality output beam can be obtained.
  • two unit light sources ie, the laser array module 33
  • more laser array modules 33 may be stacked.
  • the number of the laser array modules 33 stacked along the height direction (Z direction) of the solid-state laser medium 31 does not affect the adjustment of the distance between the solid-state laser medium 31 and the excitation light source 32. Therefore, even when an excitation light source having a structure in which a larger number of laser array modules 33 are stacked is used, the same method as in the present embodiment is used. By using this, the excitation distribution of the solid-state laser medium 31 can be controlled to reduce the thermal effect.
  • FIG. 10 shows the configuration of the MO PA system according to the present embodiment.
  • This MOPA system la has an excitation distribution control device 10a.
  • the excitation distribution control device 10a controls the excitation distribution of the solid-state laser medium 31 by measuring the condensing pattern 74 of the light amplified by the solid-state laser medium 31 instead of the ASE light image 72.
  • the excitation distribution control device 10a has an actuator 40, a measurement unit 50a, and a control unit 60.
  • the excitation distribution control device 10a differs from the excitation distribution control device 10 of the first embodiment in the configuration of the measurement unit 50a and the operation of the control unit 60.
  • the other configuration is the same as that of the first embodiment, and a duplicate description will be omitted.
  • the measuring section 50a has a condenser lens 54 and a mirror 25 in addition to the CCD camera 52.
  • the mirror 25 forms a part of the optical system for optical amplification as described above.
  • the mirror 25 has a sufficiently high reflectivity.
  • a part of the amplified light passes through the mirror 25.
  • the condenser lens 54 is arranged so as to condense the light to be amplified transmitted through the mirror 25 and emit the light to the CCD camera 52.
  • the CCD camera 52 acquires a beam pattern of the amplified light condensed by the condenser lens 54, that is, an image of the condenser pattern.
  • the CCD camera 52 is arranged so that its imaging surface is substantially perpendicular to the optical axis of the condenser lens 54.
  • control unit 60 controls the light emission timing of the laser light source 11. That is, the laser light source 11 emits amplified light when receiving the light emission command signal from the computer 62.
  • FIG. 11 schematically shows a converging pattern image 74 obtained by the CCD camera 52 when the excitation light source 32 is arranged at various distances from the solid-state laser medium 31.
  • the focusing pattern image 74 is a two-dimensional image of the solid-state laser medium 31 along the thickness direction (Y direction) and the height direction (Z direction).
  • the converging pattern appearing in the image 74 reflects the beam pattern of the amplified light that has been amplified by the solid-state laser medium 31. Since the amplified light is amplified according to the excitation distribution of the solid-state laser medium 31, the beam pattern of the amplified light reflects the excitation distribution. After all, the condensing pattern of the amplified light reverses the excitation distribution of the solid-state laser medium 31. To be reflected.
  • FIG. 11A shows a light-collecting pattern image 74 when the light source distance is too short.
  • a number of light emitting spots 74a are arranged along the Z direction. This indicates that the light collecting property is good. This is due to the non-uniformity of the excitation distribution of the solid-state laser medium 31 in the Z direction.
  • FIG. 11B shows that the number and area of the light-emitting spots 74a in the light-collecting pattern image 74 are reduced, and the light-collecting property is improved.
  • the area of the light emitting spot 74a is enlarged, and the light collecting property is reduced.
  • the non-uniformity of the excitation distribution in the Z direction lowers the light collecting property of the amplified light.
  • the non-uniformity of the excitation distribution in the Z direction is evaluated based on the converging pattern image 74, and the light source distance is adjusted according to the result.
  • the output signal of the CCD camera 52 is sent to the computer 62 in the control unit 60.
  • the computer 62 converts the output signal into two-dimensional text data.
  • the brightness of the converging pattern image acquired by the CCD camera 52 is stored in association with each pixel.
  • Each pixel is assigned a pair of pixel numbers in the Y and Z directions. That is, the output signal of the CCD camera 52 includes the two-dimensional luminance distribution data of the amplified light collected by the condenser lens 54.
  • the computer 62 calculates the area of the converging pattern measured using the CCD camera 52 in order to evaluate the non-uniformity of the excitation distribution in the Z direction. Specifically, the computer 62 uses the two-dimensional text data to count pixels having a luminance equal to or higher than a threshold. In the present embodiment, a luminance corresponding to 10% of the maximum luminance in the converging pattern image 74 is used as the threshold. The ratio of the threshold to the maximum luminance can be set arbitrarily. The computer 62 stores the number of pixels obtained by the counting as the area S of the light-converging pattern.
  • the computer 62 drives the excitation light source 32 while changing the light source distance by a predetermined distance to irradiate the solid-state laser medium 31 with the excitation light, and further sends an emission command signal to the laser light source 11 to emit the amplified light. Let it. As a result, a condensing pattern image 74 of the amplified light amplified by the solid-state laser medium 31 is obtained, and condensed based on the condensing pattern image 74.
  • the area of the pattern that is, the number of pixels having a luminance equal to or greater than the threshold is obtained. For example, with respect to the light-collecting pattern images 74 in FIGS.
  • the computer 62 repeatedly measures the area S of the light-condensing pattern under various light source distances, and examines a change in the area S according to the light source distance. When the area S is the smallest, the non-uniformity of the excitation distribution in the Z direction is most suppressed.
  • the computer 62 derives a light source distance that minimizes the area S from the area S obtained under various light source distances. Then, the computer 62 drives the actuator 40 to dispose the excitation light source 32 at the calculated light source distance. Thereby, the non-uniformity of the excitation distribution of the solid-state laser medium 31 in the Z direction can be minimized.
  • the laser light source 11 emits light to be amplified
  • the light to be amplified is amplified by the main amplifier 17 and output from the MOPA system la. Since the non-uniformity of the excitation distribution in the Z direction is suppressed, thermal effects on the amplified light can be reduced, and a high-quality output beam can be obtained.
  • two unit light sources ie, the laser array module 33
  • more laser array modules 33 may be stacked.
  • the number of the laser array modules 33 stacked along the height direction (Z direction) of the solid-state laser medium 31 does not affect the adjustment of the distance between the solid-state laser medium 31 and the excitation light source 32. Therefore, even when an excitation light source having a structure in which a larger number of laser array modules 33 are stacked is used, the excitation distribution of the solid-state laser medium 31 is controlled using the same method as in the present embodiment to reduce the thermal effect. can do.
  • FIG. 12 shows the configuration of the MOPA system according to the present embodiment.
  • This MOPA system lb has an excitation distribution controller 10b.
  • the excitation distribution control device 10b measures the excitation distribution of the solid-state laser medium 31 by measuring the interference fringe pattern with the light transmitted through the solid-state laser medium 31 instead of the ASE light image 72. Control.
  • the excitation distribution control device 10b includes an actuator 40, a measurement unit 50b, and a control unit 60.
  • the excitation distribution control device 10b differs from the excitation distribution control device 10 of the first embodiment in the configuration of the measurement unit 50b and the operation of the control unit 60.
  • the other configuration is the same as that of the first embodiment, and a duplicate description will be omitted.
  • the measuring section 50b has an inspection light source 55, a Mach-Zehnder interference system 56, and a screen 57 in addition to the CCD camera 52.
  • the inspection light source 55 is a He—Ne laser device that emits inspection light in response to a light emission command signal from the computer 62.
  • the Matsuhatsu Donda interference system 56 is an optical system for generating interference fringes using the inspection light.
  • the Matsuhatsu Honda interferometer 56 includes a beam splitter 56a, a dichroic mirror 56b, a high reflection mirror 56c, a beam splitter 56d, a beam expander 56e, and an optical mask 56f.
  • the Mach-Zehnder interference system 56 propagates the inspection light substantially parallel to the XY plane. As will be described later, the computer 62 can adjust the positions of the high reflection mirror 56c and the beam splitter 56d.
  • the beam expander 56e enlarges the beam diameter of the inspection light and emits it toward the optical mask 56f.
  • the optical mask 56f has an opening for beam shaping.
  • the wavefront of the inspection light is shaped into a rectangular shape. This wavefront has a short side extending in the Y direction and a long side extending in the Z direction, similarly to the amplified light shown in FIG.
  • the beam splitter 56a receives the inspection light from the optical mask 56f, and splits into the first light 86 and the second light 87.
  • the beam splitter 56a transmits the first split light 86 toward the high reflection mirror 56b, and reflects the second split light 87 toward the high reflection mirror 56c.
  • the mirror 56b reflects the first split light beam 86 toward the dichroic mirror 26a.
  • the dichroic mirror 26a reflects the amplified light while transmitting the inspection light. Therefore, the first branch light 86 passes through the dichroic mirror 26a and travels to the solid-state laser medium 31.
  • the first branch light 86 enters the solid-state laser medium 31 through the end face 3 la, propagates on the zigzag optical path of the amplified light, and then exits from the end face 31 b.
  • the dichroic mirror 25b is used as a mirror for receiving the amplified light emitted from the end face 3lb.
  • the first branched light 86 emitted from the solid-state laser medium 31 travels on the optical path of the amplified light and reaches the dichroic mirror 25b.
  • the dichroic mirror 25b reflects the amplified light to the spatial filter 18 while transmitting the first split light 86.
  • the beam splitter 56d is the first branch that has passed through the dichroic mirror 25b. Half of the light 86 reflects off the screen 57.
  • the second split light beam 87 reflected by the beam splitter 56a is reflected by the high reflection mirror 56c and travels to the beam splitter 56d.
  • Half of the second split beam 87 passes through the beam splitter 56d and goes to the screen 57.
  • the interference beam 92 is projected onto the projection surface of the screen 57.
  • interference fringes 75 are formed on the projection surface.
  • the projection surface of the screen 57 is arranged substantially perpendicular to the propagation direction of the interference beam 92.
  • the inspection light and the branched lights 86 and 87 that also generate the inspection light power have rectangular wavefronts along the thickness direction (Y direction) and the height direction (Z direction) of the solid-state laser medium 31. Having. Therefore, the interference fringe 75 also has a rectangular pattern along the Y and Z directions.
  • the CCD camera 52 acquires an image of the interference fringe 75 projected on the projection surface of the screen 57.
  • the non-uniformity of the excitation distribution in the Z direction is evaluated based on the interference fringe image, and the light source distance is adjusted according to the result.
  • this adjustment procedure will be described in detail.
  • the computer 62 in the control unit 60 adjusts the Mach-Zehnder interference system 56.
  • the computer 62 sends a light emission command signal to the inspection light source 55 without driving the excitation light source 32 to emit inspection inspection light, and forms interference fringes 75.
  • the CCD camera 52 obtains an image of the interference fringes 75 and generates an output signal corresponding to the image. This output signal is sent to the computer 62.
  • FIG. 13 (a) schematically shows the interference fringe image 76 thus obtained.
  • the interference fringe image 76 is a two-dimensional image of the solid-state laser medium 31 along the thickness direction (Y direction) and the height direction (Z direction).
  • FIG. 13 (a) also depicts a virtual reference line 77 parallel to the Z direction.
  • the reference line 77 is a center line of the interference fringe image 76 extending parallel to the height direction (Z direction) of the solid-state laser medium 31.
  • the reference line 77 corresponds to the center axis of the zigzag optical path of the amplified light in the solid-state laser medium 31.
  • the high-reflection mirror 56c and the beam splitter 56d are properly arranged when the solid-state laser medium 31 is not irradiated with the excitation light, as shown in FIG. It is possible to obtain an interference fringe image 76 in which bright lines 76a parallel to each other are arranged in the Y direction.
  • the computer 62 adjusts the positions of the high reflection mirror 56c and the beam splitter 56d so as to obtain such an interference fringe image 76.
  • the interference fringe image 76 shown in FIG. 13A is obtained, the positions of the high reflection mirror 56c and the beam splitter 56d are fixed. Thus, the preprocessing is completed.
  • the computer 62 drives the excitation light source 32 to irradiate the solid-state laser medium 31 with the excitation light, and sends a light emission command signal to the inspection light source 55 to emit the inspection light.
  • the interference fringes 75 are formed again and are acquired by the CCD camera 52.
  • FIGS. 13 (b)-(d) schematically show interference fringe images 76 acquired by the CCD camera 52 when the solid-state laser medium 31 is irradiated with excitation light under various light source distances. .
  • the temperature inside the solid-state laser medium 31 rises, and a temperature distribution is formed.
  • This temperature distribution reflects the intensity distribution of the excitation light, and therefore reflects the excitation distribution of the solid-state laser medium 31.
  • the refractive index of the solid-state laser medium 31 changes according to the temperature, a refractive index distribution according to the temperature distribution is formed in the solid-state laser medium 31. That is, the refractive index distribution of the solid-state laser medium 31 reflects the excitation distribution.
  • the non-uniform refractive index distribution distorts the wavefront of the inspection light (first branch light 86) transmitted through the solid-state laser medium 31. This wavefront distortion affects the pattern of the interference fringes 75.
  • the excitation distribution shown in FIGS. 6A and 6B and the refractive index distribution corresponding to this excitation distribution are formed in the solid-state laser medium 31. Since the inspection light propagates in the solid-state laser medium 31 along a zigzag optical path parallel to the XY plane, the influence of the refractive index distribution in the Y direction on the inspection light is averaged. On the other hand, the influence of the refractive index distribution in the Z direction perpendicular to the zigzag optical path on the inspection light is integrated without friction of the inspection light. As a result, as shown in FIGS. 13B and 13D, the bright line 76a in the interference fringe image 76 is curved so as to cross the Z direction. The higher the non-uniformity of the refractive index distribution in the Z direction, the greater the curvature of the bright line 76a, and the more easily the bright line 76a intersects the reference line 77.
  • FIG. 13B shows an interference fringe image 76 when the light source distance is too short.
  • a number of bright lines 76a cross the reference line 77.
  • the luminance of the interference fringe image 76 vibrates many times on the reference line 77. This is due to the non-uniformity of the refractive index distribution of the solid-state laser medium 31 in the Z direction.
  • the number of times of luminance oscillation on the reference line 77 decreases as shown in FIG. This means that the non-uniformity of the refractive index distribution in the Z direction has been reduced.
  • the number of luminance oscillations on the reference line 77 increases as shown in FIG.
  • the CCD camera 52 When the CCD camera 52 acquires an image of the interference fringe 75, it sends an output signal corresponding to the image to the computer 62.
  • Computer 62 converts the output signal into two-dimensional text data.
  • the two-dimensional text data contains the luminance of the interference fringe image 76 acquired by the CCD camera 52 in association with each pixel. Each pixel is assigned a pair of pixel numbers in the Y and Z directions. That is, the output signal of the CCD camera 52 includes the two-dimensional luminance distribution data of the interference fringe generated by the Mach-Zehnder interferometer 56.
  • the computer 62 sets a reference line 77 in the interference fringe image 76 measured using the CCD camera 52, and evaluates the non-uniformity of the excitation distribution in the Z direction. Count the number of brightness oscillations. Specifically, the computer 62 extracts a pixel row located on the reference line 77 from the two-dimensional text data. Subsequently, the computer 62 plots the luminance of each pixel included in the pixel column, and creates a luminance distribution of the interference fringe pattern along the reference line 77. Hereinafter, this luminance distribution is referred to as “one-dimensional profile of interference fringes”.
  • Fig. 14 shows one-dimensional profiles of interference fringes under various light source distances.
  • the horizontal axis indicates the luminance of the interference fringe image 76 on the reference line 77
  • the vertical axis indicates the fixed value.
  • the coordinates in the height direction (Z direction) of the body laser medium 31 are shown.
  • Figures 14 (a)-(c) correspond to Figures 13 (a)-(c), respectively.
  • a waveform corresponding to the luminance fluctuation on the reference line 77 appears.
  • the computer 62 counts the number of luminance oscillations appearing in the one-dimensional profile. This counting is performed using any method. For example, a peak having a luminance equal to or higher than the predetermined threshold II may be detected in the one-dimensional profile, and the peak may be counted. Peak detection is performed using any waveform analysis method.
  • portions of the interference fringe image 76 that are included in the upper and lower 5% of the entire range of the Z coordinate be excluded from the counting of the number of luminance oscillations. Therefore, in the present embodiment, as shown in FIG. 14, the number of luminance oscillations is counted within the range from the coordinate zl to the coordinate z2 in the one-dimensional profile. In addition, a pixel included in the upper and lower 5% of the entire range of the Z coordinate of the interference fringe image 76 is excluded to create a one-dimensional profile, and the luminance of the one-dimensional profile is calculated over the entire range of the Z coordinate. The number of vibrations may be counted.
  • the computer 62 drives the excitation light source 32 while changing the light source distance by a predetermined distance to irradiate the solid-state laser medium 31 with the excitation light, and further sends a light emission command signal to the inspection light source 55 to emit the inspection light. Let it. As a result, the interference fringe image 76 is obtained, and the number of vibrations of the luminance on the reference line 77 along the height direction (Z direction) of the solid-state laser medium 31 is counted. For example, with respect to the interference fringe image 76 shown in FIGS. 13B to 13D, the number of vibrations of 5, 2, and 10, respectively, is obtained.
  • the computer 62 repeatedly counts the number of vibrations of the luminance along the Z direction in the interference fringe image 76 under various light source distances, and checks a change in the number of vibrations. At the lowest frequency, the non-uniformity of the excitation distribution in the Z direction is minimized.
  • the computer 62 derives the light source distance that minimizes the number of vibrations from the number of vibrations obtained under various light source distances. Then, the computer 62 drives the actuator 40 to arrange the excitation light source 32 at the calculated light source distance. Thereby, the non-uniformity of the excitation distribution of the solid-state laser medium 31 in the Z direction can be minimized.
  • the amplified light is amplified by the main amplifier 17 and output from the MOPA system lb. Since the non-uniformity of the excitation distribution in the Z direction is suppressed, a high-quality output You can get the game.
  • two unit light sources ie, the laser array module 33
  • more laser array modules 33 may be stacked.
  • the number of the laser array modules 33 stacked along the height direction (Z direction) of the solid-state laser medium 31 does not affect the adjustment of the distance between the solid-state laser medium 31 and the excitation light source 32. Therefore, even when an excitation light source having a structure in which a larger number of laser array modules 33 are stacked is used, the excitation distribution of the solid-state laser medium 31 is controlled using the same method as in the present embodiment, and the thermal effect is reduced. can do.
  • the present invention has been described in detail based on the embodiments. However, the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof.
  • an interference fringe is formed using the Mach-Zehnder interferometer 56.
  • interference fringes may be formed using any other interference optical system.
  • the excitation distribution of the solid-state laser medium can be appropriately controlled, thereby compensating for the thermal effect.

Abstract

A pumping distribution controller (10) comprising a moving unit (40), a measuring section (50) and a control section (60) in addition to a solid laser medium (31) and a pumping light source (32). The moving unit can alter the distance between the solid laser medium and the pumping light source by moving the pumping light source. The measuring section measures the pumping distribution of the solid laser medium. The control section drives the moving unit depending on the measured pumping distribution to adjust the distance between the solid laser medium and the pumping light source. When a plurality of unit light sources (33) are stacked in the pumping light source, the intensity distribution of the pumping light with which the solid laser medium is irradiated depends on the distance between the solid laser medium and the pumping light source. Consequently, the pumping distribution of the solid laser medium is controlled appropriately by adjusting the distance and the thermal effect can be lessened.

Description

明 細 書  Specification
固体レーザ媒質の励起分布を制御する装置および方法  Apparatus and method for controlling excitation distribution of solid-state laser medium
技術分野  Technical field
[0001] この発明は、固体レーザシステムで使用される固体レーザ媒質の励起分布の制御 に関する。  The present invention relates to control of an excitation distribution of a solid-state laser medium used in a solid-state laser system.
背景技術  Background art
[0002] 近年、 LD励起の固体レーザが注目されて 、る。 LD励起の場合、フラッシュランプ 励起と異なり、レーザ媒質の吸収波長に励起光の波長をマッチングさせることができ る。このため、レーザ媒質中で発生する熱が低減され、レーザ効率が改善される。  [0002] In recent years, attention has been paid to LD-pumped solid-state lasers. In the case of LD pumping, unlike the flash lamp pumping, the wavelength of the pumping light can be matched to the absorption wavelength of the laser medium. Therefore, heat generated in the laser medium is reduced, and the laser efficiency is improved.
[0003] LD励起固体レーザの出力を高めるためには、レーザ媒質への励起光の照射面積 を大きくすればよい。特開 2003— 78194号は、一列に並べた複数のレーザアレイュ ニットを有するレーザアレイモジュールを励起光源として開示している。個々のレーザ アレイユニットでは、一列に並んだ複数の LDを有する LDバーパッケージが複数、積 み重ねられている。各 LDバーパッケージには、 LDを冷却するためのヒートシンクが 取り付けられる。  [0003] In order to increase the output of the LD-excited solid-state laser, the area of the laser medium irradiated with the excitation light may be increased. Japanese Patent Application Laid-Open No. 2003-78194 discloses a laser array module having a plurality of laser array units arranged in a line as an excitation light source. In each laser array unit, a plurality of LD bar packages having a plurality of LDs arranged in a row are stacked. Each LD bar package is fitted with a heat sink to cool the LD.
[0004] 固体レーザシステムの設計では、レーザ媒質中で発生する熱効果 (例えば、熱レン ズ効果ゃ熱複屈折効果)の補償が大きな課題となって!/、る。熱効果はレーザ光のビ ーム品質を著しく低下させるからである。熱効果によってレーザ光のビームパターン が劣化すると、光学部品に損傷を与えるおそれがある。また、レーザ光の集光特性も 劣化するため、システム内に配置されたスペーシャルフィルタのピンホールをレーザ 光が通過しにくくなり、その結果、出力パワーが低下してしまう。  In designing a solid-state laser system, compensation of a thermal effect (for example, thermal lens effect ゃ thermal birefringence effect) generated in a laser medium is a major issue! This is because the thermal effect significantly reduces the beam quality of the laser beam. If the beam pattern of the laser beam deteriorates due to the thermal effect, the optical components may be damaged. In addition, since the laser light focusing characteristics are also deteriorated, it becomes difficult for the laser light to pass through the pinhole of the spatial filter arranged in the system, and as a result, the output power is reduced.
[0005] このような背景から、 Toshiyuki Kawashimaほ力 「慣性核融合エネルギーレーザドラ ィバ用の疑似 CW110kW AlGaAsレーザダイオードアレイモジュール(Quasi- CW 丄丄 OkW AlGaAs Laser Diode Array Module for Inertial Fusion Energy Laser Driver) 」、 Japan Journal of Applied Physics, 日本応用物理学会、 2001年 12月、第 40卷、 第 1部、第 12号、 6852— 6858頁は、固体レーザシステムにおいてスラブ型レーザ 媒質への励起用ビームの照射角度を調整し、レーザ媒質中の熱レンズ効果を削減 する手法を開示している。 [0005] Against this background, Toshiyuki Kawashima Horik "Quasi-CW 丄 丄 OkW AlGaAs Laser Diode Array Module for Inertial Fusion Energy Laser Driver for Inertial Fusion Energy Laser Driver" , Japan Journal of Applied Physics, The Japan Society of Applied Physics, December 2001, Vol. 40, Part 1, Issue 12, pages 6852-6858. Adjust the irradiation angle to reduce the thermal lens effect in the laser medium It discloses a method for doing so.
発明の開示  Disclosure of the invention
[0006] 本発明者らは、大出力の固体レーザシステムを開発するにあたり、複数のレーザァ レイモジュールを積み重ねた励起光源の使用を検討している。しかし、特開 2003— 7 8194号に開示される手法は、多数の単位光源を積み重ねる構成には適さない。こ の手法では、すべての単位光源力 の励起光がレーザ媒質に照射され、なおかつ 個々の単位光源を回転できるように単位光源を配置する必要がある。このため、多数 の単位光源を積み重ねる場合には、これらの単位光源をレーザ媒質を中心として扇 形に配置する必要がある。しかし、このような配置では、積み重ねられる単位光源の 数が自ずと制限されてしまうので、多数の単位光源を積み重ねて使用することは難し い。  [0006] In developing a high-power solid-state laser system, the present inventors are studying the use of an excitation light source in which a plurality of laser array modules are stacked. However, the technique disclosed in JP-A-2003-78194 is not suitable for a configuration in which a large number of unit light sources are stacked. In this method, it is necessary to arrange the unit light sources so that the excitation light of all unit light sources is irradiated on the laser medium and each unit light source can be rotated. Therefore, when a large number of unit light sources are stacked, it is necessary to arrange these unit light sources in a sector around the laser medium. However, in such an arrangement, the number of stacked unit light sources is naturally limited, so that it is difficult to stack and use a large number of unit light sources.
[0007] そこで、本発明は、多数の単位光源を積み重ねた構造の励起光源を使用したとき にも固体レーザ媒質の励起分布を適切に制御して熱効果を削減できる装置および 方法を提供することを課題とする。  [0007] Therefore, the present invention provides an apparatus and a method capable of appropriately controlling the excitation distribution of a solid-state laser medium and reducing a thermal effect even when using an excitation light source having a structure in which a number of unit light sources are stacked. As an issue.
[0008] 本発明の一つの側面は、固体レーザ媒質の励起分布を制御する装置に関する。こ の装置は、励起光が照射されることにより励起され、所定波長の光を誘導放出するこ との可能な固体レーザ媒質と、固体レーザ媒質に励起光を照射する励起光源と、励 起光源を移動させて固体レーザ媒質および励起光源間の距離を変更することの可 能な移動装置と、固体レーザ媒質の励起分布を測定する測定部と、測定部によって 測定された励起分布に応じて移動装置を駆動し、固体レーザ媒質および励起光源 間の距離を調整することにより、固体レーザ媒質の励起分布を制御する制御部とを 備えている。  [0008] One aspect of the present invention relates to an apparatus for controlling an excitation distribution of a solid-state laser medium. This device is a solid-state laser medium that is excited by irradiation with excitation light and can stimulate and emit light of a predetermined wavelength, an excitation light source that irradiates the solid-state laser medium with excitation light, and an excitation light source. A moving device that can change the distance between the solid-state laser medium and the excitation light source by moving the solid-state laser medium, a measuring unit that measures the excitation distribution of the solid-state laser medium, and a moving unit that moves according to the excitation distribution measured by the measuring unit A control unit that controls the excitation distribution of the solid-state laser medium by driving the device and adjusting the distance between the solid-state laser medium and the excitation light source.
[0009] 励起光源において複数の単位光源が積み重ねられている場合、固体レーザ媒質 に照射される励起光の強度分布は、固体レーザ媒質および励起光源間の距離に依 存する。したがって、この距離を調整することにより、固体レーザ媒質の励起分布を制 御することができる。この距離の調整は、積み重ねられる単位光源の数に影響されず に行うことができる。したがって、多数の単位光源を積み重ねた構造の励起光源を使 用したときにも、固体レーザ媒質の励起分布を適切に制御し、熱効果を削減すること ができる。 [0009] When a plurality of unit light sources are stacked in an excitation light source, the intensity distribution of the excitation light applied to the solid-state laser medium depends on the distance between the solid-state laser medium and the excitation light source. Therefore, by adjusting this distance, the excitation distribution of the solid-state laser medium can be controlled. The adjustment of the distance can be performed without being affected by the number of unit light sources to be stacked. Therefore, even when using an excitation light source with a structure in which many unit light sources are stacked, it is necessary to appropriately control the excitation distribution of the solid-state laser medium and reduce the thermal effect. Can do.
[0010] この励起分布制御装置において、固体レーザ媒質は、第 1および第 2の端面と、そ れらの端面間を延在する長尺の上面および底面と、上面および底面の間で第 1およ び第 2の端面の一方力 他方まで延在する二つの側面とを有し、かつ上面、底面お よび二つの側面に実質的に平行な方向に沿った長さと、上面および底面に実質的 に垂直な方向に沿った高さと、二つの側面に実質的に垂直な方向に沿った厚さとを 有するスラブ形状の媒質であってもよい。また、励起光源は、固体レーザ媒質の高さ 方向に沿って積み重ねられた第 1および第 2の単位光源を含んで 、てもよ 、。  [0010] In this excitation distribution control device, the solid-state laser medium includes first and second end faces, a long upper surface and a bottom surface extending between the end surfaces, and a first and a second surface between the upper surface and the bottom surface. And one end of the second end face having two sides extending to the other and having a length along a direction substantially parallel to the top, bottom and two sides, and substantially parallel to the top and bottom. The medium may be a slab-shaped medium having a height along a direction substantially perpendicular to the direction and a thickness along a direction substantially perpendicular to the two side surfaces. Further, the excitation light source may include first and second unit light sources stacked along the height direction of the solid-state laser medium.
[0011] 測定部は、励起光源力 励起光が照射されているときに固体レーザ媒質の第 1また は第 2の端面から発する自然放出光の画像を取得する撮像装置を有して!/ヽてもよ!/、 。制御部は、その画像を用いて固体レーザ媒質の高さ方向における自然放出光の 強度分布を求め、その強度分布において第 1および第 2の単位光源の発光にそれぞ れ対応する二つのピーク間に位置する谷の深さが最小となるように移動装置を駆動 してちよい。  [0011] The measurement unit has an imaging device that acquires an image of the spontaneous emission light emitted from the first or second end surface of the solid-state laser medium when the excitation light source is irradiated with the excitation light! / ヽYou can! / The control unit uses the image to determine the intensity distribution of the spontaneous emission light in the height direction of the solid-state laser medium, and finds the intensity distribution between the two peaks corresponding to the emission of the first and second unit light sources, respectively. The moving device may be driven such that the depth of the valley located at the location is minimized.
[0012] 固体レーザ媒質の端面から発する自然放出光の強度分布は、固体レーザ媒質の 厚さ方向および高さ方向における励起分布を反映する。上記の谷が深いほど、各単 位光源からの励起光が分離しており、固体レーザ媒質の高さ方向における励起分布 の不均一性が高くなる。したがって、谷の深さが最小となるように固体レーザ媒質およ び励起光源間の距離を調整すれば、固体レーザ媒質の高さ方向における励起分布 の均一性が高まり、熱効果が削減される。  [0012] The intensity distribution of spontaneous emission light emitted from the end face of the solid-state laser medium reflects the excitation distribution in the thickness and height directions of the solid-state laser medium. The deeper the valley, the more the excitation light from each unit light source is separated, and the higher the non-uniformity of the excitation distribution in the height direction of the solid-state laser medium. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so that the depth of the valley is minimized, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced. .
[0013] 測定部は、第 1の端面を通じて固体レーザ媒質に入射しジグザグ光路上を伝搬し て第 2の端面から出射する上記所定波長の光を集光する集光装置と、集光装置によ つて集光された光のビームパターンの画像を取得する撮像装置とを有して 、てもよ ヽ 。制御部は、励起光が固体レーザ媒質に照射されているときの上記ビームパターン の面積を算出し、その面積が最小となるように移動装置を駆動してもよい。  [0013] The measuring unit includes a condensing device that condenses the light having the predetermined wavelength, which enters the solid-state laser medium through the first end face, propagates on the zigzag optical path, and emits from the second end face. An imaging device for acquiring an image of the beam pattern of the light thus condensed may be provided. The control unit may calculate the area of the beam pattern when the solid-state laser medium is irradiated with the excitation light, and may drive the moving device so that the area is minimized.
[0014] 励起光が固体レーザ媒質に照射されているとき、ジグザグ光路上を伝搬する光は 固体レーザ媒質内で発した熱から熱効果を受ける。このため、この光の集光性は固 体レーザ媒質の励起分布に依存する。したがって、集光装置によって集光されたこ の光のビームパターンは、固体レーザ媒質の励起分布を反映する。ビームパターン の面積が大きいほど、集光性は良くない。したがって、ビームパターンの面積が最小 となるように固体レーザ媒質および励起光源間の距離を調整すれば、固体レーザ媒 質の高さ方向における励起分布の均一性が高まり、熱効果が削減される。 [0014] When the solid-state laser medium is irradiated with the excitation light, the light propagating on the zigzag optical path receives a thermal effect from the heat generated in the solid-state laser medium. For this reason, the light focusing property depends on the excitation distribution of the solid laser medium. Therefore, the light collected by the The light beam pattern reflects the excitation distribution of the solid-state laser medium. The larger the area of the beam pattern, the poorer the light collection. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so that the area of the beam pattern is minimized, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced.
[0015] 測定部は、検査光を発する検査光源と、検査光を第 1および第 2の光に分岐し、第 1の光を第 1の端面を通じて固体レーザ媒質に入射させジグザグ光路上を伝搬させ て第 2の端面力 出射させ、第 2の光と干渉させて、固体レーザ媒質の厚さ方向およ び高さ方向に沿った矩形状のパターンを有する干渉縞を生成する干渉光学系と、干 渉縞の画像を取得する撮像装置とを有していてもよい。制御部は、励起光が固体レ 一ザ媒質に照射されているときに取得された干渉縞の画像内において固体レーザ媒 質の高さ方向に平行な基準線を設定し、その基準線上における画像の輝度の振動 回数を計数し、その振動回数が最小となるように移動装置を駆動してもよい。  [0015] The measurement unit is configured to split the inspection light into first and second lights, emit the inspection light into the solid-state laser medium through the first end face, and propagate the first light into the solid-state laser medium and propagate the light on the zigzag optical path. An interference optical system that emits a second end face force and interferes with the second light to generate an interference fringe having a rectangular pattern along the thickness direction and the height direction of the solid-state laser medium. And an imaging device for acquiring an image of interference fringes. The control unit sets a reference line parallel to the height direction of the solid-state laser medium in the image of the interference fringe acquired when the excitation light is irradiated on the solid-state laser medium, and sets an image on the reference line. Alternatively, the moving device may be driven such that the number of vibrations of the luminance is counted and the number of vibrations is minimized.
[0016] 干渉縞は、ジグザグ光路に沿った固体レーザ媒質の屈折率分布を反映する。この 屈折率分布は、固体レーザ媒質への励起光の照射によって形成される。したがって 、干渉縞のパターンは、固体レーザ媒質の励起分布を反映する。干渉縞画像の輝度 の上記基準線上における振動回数が多いほど、固体レーザ媒質の高さ方向におけ る励起分布の不均一性が高い。したがって、振動回数が最小となるように固体レーザ 媒質および励起光源間の距離を調整すれば、固体レーザ媒質の高さ方向における 励起分布の均一性が高まり、熱効果が削減される。  [0016] The interference fringes reflect the refractive index distribution of the solid-state laser medium along the zigzag optical path. This refractive index distribution is formed by irradiating the solid-state laser medium with excitation light. Therefore, the pattern of interference fringes reflects the excitation distribution of the solid-state laser medium. The greater the number of oscillations of the brightness of the interference fringe image on the reference line, the higher the non-uniformity of the excitation distribution in the height direction of the solid-state laser medium. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so as to minimize the number of oscillations, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced.
[0017] 制御部は、振動回数を計数する前に、励起光が固体レーザ媒質に照射されていな いときに取得される干渉縞の画像が固体レーザ媒質の高さ方向に実質的に平行な 明線を有するように干渉光学系を調整してもよ 、。  [0017] Before counting the number of vibrations, the control unit may determine that an image of interference fringes acquired when the solid-state laser medium is not irradiated with the excitation light is substantially parallel to the height direction of the solid-state laser medium. The interference optical system may be adjusted so as to have a bright line.
[0018] 本発明の別の側面は、励起光源力 励起光が照射されることにより励起され、所定 波長の光を誘導放出することの可能な固体レーザ媒質の励起分布を制御する方法 に関する。この方法は、固体レーザ媒質の励起分布を測定することと、測定された励 起分布に応じて励起光源を移動させ、固体レーザ媒質および励起光源間の距離を 調整することを備えている。  [0018] Another aspect of the present invention relates to a method for controlling an excitation distribution of a solid-state laser medium that is excited by irradiation with an excitation light source and is capable of stimulated emission of light having a predetermined wavelength. The method includes measuring an excitation distribution of a solid-state laser medium, moving an excitation light source according to the measured excitation distribution, and adjusting a distance between the solid-state laser medium and the excitation light source.
[0019] 励起光源において複数の単位光源が積み重ねられている場合、固体レーザ媒質 に照射される励起光の強度分布は、固体レーザ媒質および励起光源間の距離に依 存する。したがって、この距離を調整することにより、固体レーザ媒質の励起分布を制 御することができる。この距離の調整は、積み重ねられる単位光源の数に影響されず に行うことができる。したがって、多数の単位光源を積み重ねた構造の励起光源を使 用したときにも、固体レーザ媒質の励起分布を適切に制御し、熱効果を削減すること ができる。 When a plurality of unit light sources are stacked in the excitation light source, the solid-state laser medium The intensity distribution of the excitation light applied to the laser beam depends on the distance between the solid-state laser medium and the excitation light source. Therefore, by adjusting this distance, the excitation distribution of the solid-state laser medium can be controlled. The adjustment of the distance can be performed without being affected by the number of unit light sources to be stacked. Therefore, even when an excitation light source having a structure in which many unit light sources are stacked is used, it is possible to appropriately control the excitation distribution of the solid-state laser medium and reduce the thermal effect.
[0020] この励起分布制御方法において、固体レーザ媒質は、第 1および第 2の端面と、そ れらの端面間を延在する長尺の上面および底面と、上面および底面の間で前記第 1 および第 2の端面の一方力 他方まで延在する二つの側面とを有し、かつ前記上面 、底面および二つの側面に実質的に平行な方向に沿った長さと、前記上面および底 面に実質的に垂直な方向に沿った高さと、前記二つの側面に実質的に垂直な方向 に沿った厚さとを有するスラブ形状の媒質であってもよい。また、励起光源は、固体レ 一ザ媒質の高さ方向に沿って積み重ねられた第 1および第 2の単位光源を含んでい てもよい。  [0020] In this excitation distribution control method, the solid-state laser medium includes first and second end faces, a long upper surface and a bottom surface extending between the end surfaces, and the first and second end surfaces. One of the first and second end faces has two side faces extending to the other, and has a length along a direction substantially parallel to the top face, the bottom face and the two side faces, and a length along the top face and the bottom face. It may be a slab-shaped medium having a height along a direction substantially perpendicular to the two sides and a thickness along a direction substantially perpendicular to the two side surfaces. Further, the excitation light source may include first and second unit light sources stacked along the height direction of the solid-state laser medium.
[0021] 励起分布の測定は、励起光源力 励起光が照射されているときに第 1または第 2の 端面力も発する自然放出光の画像を取得することを含んでいてもよい。距離の調整 は、その画像を用いて固体レーザ媒質の高さ方向における自然放出光の強度分布 を求め、その強度分布において第 1および第 2の単位光源の発光にそれぞれ対応す る二つのピーク間に位置する谷の深さが最小となるように距離を調整してもよい。  [0021] The measurement of the excitation distribution may include acquiring an image of the spontaneous emission light that also emits the first or second end face force when the excitation light source power is being irradiated with the excitation light. To adjust the distance, the intensity distribution of the spontaneous emission light in the height direction of the solid-state laser medium is obtained using the image, and the intensity distribution is calculated between the two peaks respectively corresponding to the emission of the first and second unit light sources. The distance may be adjusted so that the depth of the valley located at is minimum.
[0022] 固体レーザ媒質の端面から発する自然放出光の強度分布は、固体レーザ媒質の 厚さ方向および高さ方向における励起分布を反映する。上記の谷が深いほど、各単 位光源からの励起光が分離しており、固体レーザ媒質の高さ方向における励起分布 の不均一性が高くなる。したがって、谷の深さが最小となるように固体レーザ媒質およ び励起光源間の距離を調整すれば、固体レーザ媒質の高さ方向における励起分布 の均一性が高まり、熱効果が削減される。  [0022] The intensity distribution of the spontaneous emission light emitted from the end face of the solid-state laser medium reflects the excitation distribution in the thickness direction and the height direction of the solid-state laser medium. The deeper the valley, the more the excitation light from each unit light source is separated, and the higher the non-uniformity of the excitation distribution in the height direction of the solid-state laser medium. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so that the depth of the valley is minimized, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced. .
[0023] 励起分布の測定は、励起光が固体レーザ媒質に照射されているときに第 1の端面 を通じて固体レーザ媒質に入射しジグザグ光路上を伝搬して第 2の端面力 出射す る上記所定波長の光^^光し、その集光された光のビームパターンの画像を取得す ることを含んでいてもよい。距離の調整は、そのビームパターンの面積を算出し、その 面積が最小となるように距離を調整することを含んで 、てもよ 、。 In the measurement of the excitation distribution, when the excitation light is irradiated on the solid-state laser medium, the excitation light enters the solid-state laser medium through the first end face, propagates on a zigzag optical path, and emits the second end face force. Light of the wavelength ^^, and obtain an image of the beam pattern of the collected light May be included. Adjusting the distance may include calculating the area of the beam pattern and adjusting the distance so that the area is minimized.
[0024] 励起光が固体レーザ媒質に照射されているとき、ジグザグ光路上を伝搬する光は 固体レーザ媒質内で発した熱から熱効果を受ける。このため、この光の集光性は固 体レーザ媒質の励起分布に依存する。したがって、集光されたこの光のビームバタ ーンは、固体レーザ媒質の励起分布を反映する。ビームパターンの面積が大きいほ ど、集光性は良くない。したがって、ビームパターンの面積が最小となるように固体レ 一ザ媒質および励起光源間の距離を調整すれば、固体レーザ媒質の高さ方向にお ける励起分布の均一性が高まり、熱効果が削減される。  When the solid-state laser medium is irradiated with the excitation light, the light propagating on the zigzag optical path receives a thermal effect from the heat generated in the solid-state laser medium. For this reason, the light focusing property depends on the excitation distribution of the solid laser medium. Therefore, the beam pattern of the collected light reflects the excitation distribution of the solid-state laser medium. The larger the area of the beam pattern, the poorer the light focusing. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so that the beam pattern area is minimized, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is improved, and the thermal effect is reduced. Is done.
[0025] 励起分布の測定は、所定の検査光源から発する検査光を第 1および第 2の光に分 岐し、第 1の光を固体レーザ媒質の第 1の端面に入射させジグザグ光路上を伝搬さ せて第 2の端面力 出射させ、第 2の光と干渉させて、固体レーザ媒質の厚さ方向お よび高さ方向に沿った矩形状のパターンを有する干渉縞を生成し、その干渉縞の画 像を取得することを含んでいてもよい。距離の調整は、励起光が固体レーザ媒質に 照射されているときに取得された干渉縞の画像内において固体レーザ媒質の高さ方 向に平行な基準線を設定し、その基準線上における画像の輝度の振動回数を計数 し、その振動回数が最小となるように距離を調整することを含んで 、てもよ 、。  [0025] In the measurement of the excitation distribution, the inspection light emitted from a predetermined inspection light source is split into first and second lights, the first light is made incident on the first end face of the solid-state laser medium, and a zigzag optical path is formed. Propagation causes the second end face force to be emitted, interferes with the second light, and generates interference fringes having a rectangular pattern along the thickness and height directions of the solid-state laser medium, and the interference fringes are generated. Acquiring a fringe image may be included. To adjust the distance, a reference line parallel to the height of the solid-state laser medium is set in the interference fringe image acquired when the solid-state laser medium is irradiated with the excitation light, and the image on the reference line is adjusted. It may also include counting the number of vibrations of the luminance and adjusting the distance so that the number of vibrations is minimized.
[0026] 干渉縞は、ジグザグ光路に沿った固体レーザ媒質の温度分布を反映する。この温 度分布は、固体レーザ媒質への励起光の照射によって形成される。したがって、干 渉縞のパターンは、固体レーザ媒質の励起分布を反映する。干渉縞画像の輝度の 上記基準線上における振動回数が多いほど、レーザ媒質の高さ方向における励起 分布の不均一性が高い。したがって、振動回数が最小となるように固体レーザ媒質 および励起光源間の距離を調整すれば、固体レーザ媒質の高さ方向における励起 分布の均一性が高まり、熱効果が削減される。  [0026] The interference fringes reflect the temperature distribution of the solid-state laser medium along the zigzag optical path. This temperature distribution is formed by irradiating the solid-state laser medium with excitation light. Therefore, the interference fringe pattern reflects the excitation distribution of the solid-state laser medium. The greater the number of vibrations of the interference fringe image on the reference line, the higher the non-uniformity of the excitation distribution in the height direction of the laser medium. Therefore, if the distance between the solid-state laser medium and the excitation light source is adjusted so as to minimize the number of oscillations, the uniformity of the excitation distribution in the height direction of the solid-state laser medium is increased, and the thermal effect is reduced.
[0027] 励起分布の測定は、干渉光学系を用いて干渉縞を生成することを含んでいてもよ い。この励起分布制御方法は、距離の調整の前に、励起光が固体レーザ媒質に照 射されて ヽな ヽときに取得される干渉縞の画像が固体レーザ媒質の高さ方向に実質 的に平行な明線を有するように干渉光学系を調整することをさらに備えていてもよい [0028] 本発明の理解は、下記の詳細な説明と添付図面によって更に深まる。なお、添付 図面は例示に過ぎず、本発明の範囲を限定することを意図したものではない。 [0027] The measurement of the excitation distribution may include generating interference fringes using an interference optical system. In this excitation distribution control method, an image of interference fringes obtained when the excitation light is irradiated on the solid-state laser medium before the adjustment of the distance is substantially parallel to the height direction of the solid-state laser medium. Adjusting the interference optical system to have a clear bright line. [0028] The understanding of the present invention will be better understood from the following detailed description and the accompanying drawings. It should be noted that the attached drawings are merely examples, and are not intended to limit the scope of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]第 1実施形態の MOPAシステムの構成を示している。 FIG. 1 shows a configuration of a MOPA system according to a first embodiment.
[図 2]励起光源の拡大平面図である。  FIG. 2 is an enlarged plan view of an excitation light source.
[図 3]励起光源の正面および背面を示して 、る。  FIG. 3 shows the front and back of the excitation light source.
[図 4]主増幅器の横断面図である。  FIG. 4 is a cross-sectional view of the main amplifier.
[図 5]固体レーザ媒質内を伝搬する被増幅光を模式的に示している。  FIG. 5 schematically shows amplified light propagating in a solid-state laser medium.
[図 6] Y方向および Z方向の励起分布を示している。  FIG. 6 shows excitation distributions in the Y and Z directions.
[図 7]被増幅光の波面の形状の変化を説明するための図である。  FIG. 7 is a diagram for explaining changes in the shape of the wavefront of the light to be amplified.
[図 8]様々な光源距離のもとで取得された ASE光の画像を模式的に示して ヽる。  FIG. 8 schematically shows images of ASE light obtained under various light source distances.
[図 9]様々な光源距離のもとでの Z方向プロファイルを示している。  FIG. 9 shows Z-direction profiles under various light source distances.
[図 10]第 2実施形態の MOPAシステムの構成を示している。  FIG. 10 shows a configuration of a MOPA system according to a second embodiment.
[図 11]様々な光源距離のもとで取得された集光パターンの画像を模式的に示してい る。  FIG. 11 schematically shows images of a light-converging pattern obtained under various light source distances.
[図 12]第 3実施形態の MOPAシステムの構成を示している。  FIG. 12 shows a configuration of a MOPA system according to a third embodiment.
[図 13]様々な干渉縞の画像を模式的に示して!/、る。  [Figure 13] Images of various interference fringes are schematically shown!
[図 14]様々な光源距離のもとでの干渉縞の一次元プロファイルを示している。  FIG. 14 shows one-dimensional profiles of interference fringes under various light source distances.
符号の説明  Explanation of symbols
[0030] 1、 laおよび lb : MOPAシステム、 10、 10aおよび 10b :励起分布制御装置、 31 : 固体レーザ媒質、 32 :励起光源、 40 :ァクチユエータ (移動装置 )、 50 :測定部、 52 : CCDカメラ (撮像装置)、 54 :集光レンズ (集光装置)、 55 :検査光源、 56 :マツハツヱ ンダ干渉系(干渉光学系)、 57 :スクリーン、 60 :制御部、 62 :コンピュータ、 64 :ァク チュエータコントローラ、 66 :励起光源用の駆動装置。  [0030] 1, la and lb: MOPA system, 10, 10a and 10b: excitation distribution control device, 31: solid-state laser medium, 32: excitation light source, 40: actuator (moving device), 50: measuring unit, 52: CCD Camera (Imaging device), 54: Condensing lens (Condensing device), 55: Inspection light source, 56: Matsuhatsu Honda interference system (interference optical system), 57: Screen, 60: Control unit, 62: Computer, 64: Camera Actuator controller, 66: Drive for excitation light source.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面 の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 [0032] 第 1実施形態 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description. [0032] First Embodiment
以下では、図 1一図 5を参照しながら、本発明に係る第 1の実施形態を説明する。 図 1は、本実施形態の励起分布制御装置を含む MOPA (Master Oscillator Power Amplifier)システムの構成を示している。 MOPAシステム 1は、励起分布制御装置 10 に加えて、レーザ光源 11、前置増幅器 12、ビームェクスパンダ 13、光学マスク 14、 スペーシャルフィルタ 15、ファラデーローテータ 16、主増幅器 17、スペーシャルフィ ルタ 18およびポラライザ 19を備える。 MOPAシステム 1は、レーザ光源 11から発す るレーザ光を増幅して出力する。  Hereinafter, a first embodiment according to the present invention will be described with reference to FIGS. FIG. 1 shows a configuration of a MOPA (Master Oscillator Power Amplifier) system including the excitation distribution control device of the present embodiment. The MOPA system 1 consists of a laser light source 11, a preamplifier 12, a beam expander 13, an optical mask 14, a spatial filter 15, a Faraday rotator 16, a main amplifier 17, and a spatial filter in addition to the excitation distribution controller 10. 18 and a polarizer 19. The MOPA system 1 amplifies and outputs laser light emitted from the laser light source 11.
[0033] レーザ光源 11は、被増幅レーザ光を発するマスター発振器である。レーザ光源 11 力も発するレーザ光は、前置増幅器 12および主増幅器 17それぞれにおいて増幅さ れ得る波長を有する。レーザ光源 11は、例えば、ダイオード励起の Nd:YLFレーザ 装置である。このレーザ装置は、連続発振のレーザダイオードを用いて Nd:YLFレ 一ザ媒質を励起し、シード光を Qスィッチ増幅して、エネルギー ΙΙΏ:、ビーム直径 lm mおよび波長 1. 053 mのレーザ光を生成する。  [0033] The laser light source 11 is a master oscillator that emits laser light to be amplified. The laser light that also emits power has a wavelength that can be amplified by each of the preamplifier 12 and the main amplifier 17. The laser light source 11 is, for example, a diode-pumped Nd: YLF laser device. This laser device uses a continuous-wave laser diode to excite the Nd: YLF laser medium, amplifies the seed light by Q-switching, and generates a laser beam with energy ΙΙΏ :, beam diameter lmm, and wavelength 1.053 m. Generate
[0034] 前置増幅器 12は、レーザ光源 11から発した被増幅光を受け取り、 300miまで増幅 する。前置増幅器 12から出射した光は、ミラー 21によって反射され、ビームエタスパ ンダ 13へ送られる。ビームェクスパンダ 13は、この光のビーム径を拡大し、ミラー 22 に向けて出射する。この光は、ミラー 22によって反射され、光学マスク 14に向かう。 光学マスク 14は、ビーム整形用の開口を有している。ビームェクスパンダ 13によって 拡大された光がこの開口を通過することにより、その光の空間分布形状が矩形状に 整形される。  [0034] The preamplifier 12 receives the amplified light emitted from the laser light source 11, and amplifies the amplified light to 300mi. Light emitted from the preamplifier 12 is reflected by the mirror 21 and sent to the beam eta spanner 13. The beam expander 13 enlarges the beam diameter of the light and emits the light toward the mirror 22. This light is reflected by the mirror 22 and goes to the optical mask 14. The optical mask 14 has an opening for beam shaping. When the light expanded by the beam expander 13 passes through this opening, the spatial distribution shape of the light is shaped into a rectangular shape.
[0035] スペーシャルフィルタ 15は、レンズ 15a、レンズ 15bおよびピンホール板 15cを有し ている。同様に、スペーシャルフィルタ 18は、レンズ 18a、レンズ 18bおよびピンホー ル板 18cを有している。レンズ 15aおよびレンズ 15bはケプラ型逆望遠系の共焦点光 学系を構成しており、レンズ 18aおよびレンズ 18bもケプラ型逆望遠系の共焦点光学 系を構成している。これらの共焦点光学系は、光学マスク 14によって形成された被増 幅光の横断面のパターン (ビームパターン)を光学像として転送する。本実施形態で は、 4往復で合計 8回の増幅転送が行われる。光学マスク 14によって形成されたビー ムパターンを繰り返し転送することで、回折を起こすことなく被増幅光が伝搬する。 The spatial filter 15 has a lens 15a, a lens 15b, and a pinhole plate 15c. Similarly, the spatial filter 18 has a lens 18a, a lens 18b, and a pinhole plate 18c. The lens 15a and the lens 15b form a confocal optical system of a Keplera inverse telephoto system, and the lens 18a and the lens 18b also form a confocal optical system of a Keplera inverse telephoto system. These confocal optical systems transfer the pattern (beam pattern) of the cross section of the amplified light formed by the optical mask 14 as an optical image. In the present embodiment, amplification transfer is performed a total of eight times in four round trips. Bead formed by optical mask 14 By repeatedly transferring the system pattern, the amplified light propagates without causing diffraction.
[0036] ピンホール 15cは、レンズ 15aとレンズ 15bとの間の焦点位置にあり、ピンホール板 18cは、レンズ 18aとレンズ 18bとの間の焦点位置にある。これらピンホール板 15cお よび 18cは、空間的な高調波成分を除去するために設けられている。ピンホール板 1 5cおよび 18cは被増幅レーザ光の集光位置に設けられるため、耐熱衝撃抵抗が大 きく硬度が高い材料力もなることが望ましい。このような材料としてはセラミックスを挙 げることができ、そのうちでも特にアルミナ、窒化珪素、窒化炭素もしくは窒化ボロン、 またはこれらの混合物が好ましい。ピンホール板 15cおよび 18cそれぞれの開口の 形状は、光学マスク 14の開口の形状をフーリエ変換した形状と略相似形であるのが 好適である。  [0036] The pinhole 15c is at the focal position between the lens 15a and the lens 15b, and the pinhole plate 18c is at the focal position between the lens 18a and the lens 18b. These pinhole plates 15c and 18c are provided for removing spatial harmonic components. Since the pinhole plates 15c and 18c are provided at the condensing position of the amplified laser light, it is desirable that the material has a high thermal shock resistance and a high material strength. Examples of such a material include ceramics, and among them, alumina, silicon nitride, carbon nitride or boron nitride, or a mixture thereof is particularly preferable. The shape of each of the openings of the pinhole plates 15c and 18c is preferably substantially similar to the shape obtained by Fourier transforming the shape of the opening of the optical mask 14.
[0037] 主増幅器 17は、固体レーザ媒質 31と、固体レーザ媒質 31を挟むように配置された 一対の励起光源 32を有する。各励起光源 32は、励起光を生成して固体レーザ媒質 31に照射し、固体レーザ媒質 31を励起する。以下では、主増幅器 17の構成を詳細 に説明する。  The main amplifier 17 has a solid-state laser medium 31 and a pair of pumping light sources 32 arranged so as to sandwich the solid-state laser medium 31. Each excitation light source 32 generates excitation light and irradiates the solid laser medium 31 to excite the solid laser medium 31. Hereinafter, the configuration of the main amplifier 17 will be described in detail.
[0038] 固体レーザ媒質 31は、励起光の照射に応じて反転分布を形成し、特定の波長の 光を誘導放出することができる。レーザ光源 11力も発する被増幅光は、固体レーザ 媒質 31が誘導放出可能な波長を有している。本実施形態では、固体レーザ媒質 31 は、長尺のスラブ形状を有する Nd添加ガラスである。  [0038] The solid-state laser medium 31 can form a population inversion in response to the irradiation of the excitation light, and can stimulate and emit light of a specific wavelength. The amplified light that also emits the power of the laser light source 11 has a wavelength that the solid-state laser medium 31 can induce and emit. In the present embodiment, the solid-state laser medium 31 is Nd-doped glass having a long slab shape.
[0039] 図 5は、固体レーザ媒質 31内を伝搬する被増幅光 70を模式的に示している。図 5 に示されるように、固体レーザ媒質 31は、端面 3 laおよび 3 lb、長尺の上面 31cおよ び底面 31d、ならびに長尺の側面 31eおよび 31fを有する平行六面体である。互い に平行な端面 3 laおよび 3 lbを通じて固体レーザ媒質 31に被増幅光 70が入射し、 あるいは固体レーザ媒質 31から被増幅光 70が出射する。固体レーザ媒質 31の端 面 31aおよび端面 31bそれぞれには、反射低減膜が設けられている。上面 31cおよ び底面 31dは、端面 31aおよび 31b間を互いに平行に延在する。側面 31eおよび 31 fは、上面 31cおよび底面 31dの間で端面 31aから端面 31bまで互いに平行に延在 する。固体レーザ媒質 31は、上面 31c、底面 31d、および二つの側面 3 le、 3 Ifに平 行な方向に沿った長さを有する。また、固体レーザ媒質 31は、上面 31cおよび底面 3 Idに実質的に垂直な方向に沿った高さと、側面 31eおよび 31に実質的に垂直な方 向に沿った厚さを有する。なお、図面に示される X、 Yおよび Z軸は、それぞれ固体レ 一ザ媒質 31の長さ方向、厚さ方向および高さ方向を示している。 FIG. 5 schematically shows the amplified light 70 propagating in the solid-state laser medium 31. As shown in FIG. 5, the solid-state laser medium 31 is a parallelepiped having three end faces 3 la and 3 lb, a long top surface 31c and a bottom surface 31d, and long side surfaces 31e and 31f. The amplified light 70 enters the solid-state laser medium 31 through the end faces 3 la and 3 lb parallel to each other, or the amplified light 70 exits from the solid-state laser medium 31. Each of the end face 31a and the end face 31b of the solid-state laser medium 31 is provided with a reflection reduction film. The top surface 31c and the bottom surface 31d extend in parallel between the end surfaces 31a and 31b. The side surfaces 31e and 31f extend in parallel from the end surface 31a to the end surface 31b between the top surface 31c and the bottom surface 31d. The solid-state laser medium 31 has a length along a direction parallel to the top surface 31c, the bottom surface 31d, and the two side surfaces 3le and 3If. The solid-state laser medium 31 has a top surface 31c and a bottom surface 3c. It has a height along a direction substantially perpendicular to Id and a thickness along a direction substantially perpendicular to sides 31e and 31. The X, Y and Z axes shown in the drawing indicate the length direction, thickness direction and height direction of the solid-state laser medium 31, respectively.
[0040] 被増幅光 70は、固体レーザ媒質 31の端面 31aまたは 31bに対して斜めに入射し、 固体レーザ媒質 31の側面 31eおよび 31fで繰り返し反射されながら固体レーザ媒質 31内のジグザグ光路上を進行する。このジグザグ光路は、固体レーザ媒質 31の上 面 31cおよび底面 31dに対して実質的に平行に延びている。また、ジグザグ光路は、 固体レーザ媒質 31の厚さの中心線に対して実質的に対称な形状を有している。被 増幅光 70がジグザグ光路に沿って伝搬する間、固体レーザ媒質 31内の励起分布( Pump Profile)に応じて誘導放出が生じ、被増幅光 70が増幅される。この励起分布は 、励起光の強度分布に応じて形成される。  The amplified light 70 is obliquely incident on the end face 31 a or 31 b of the solid-state laser medium 31, and is repeatedly reflected on the side faces 31 e and 31 f of the solid-state laser medium 31 and travels on a zigzag optical path in the solid-state laser medium 31. proceed. The zigzag optical path extends substantially parallel to the top surface 31c and the bottom surface 31d of the solid-state laser medium 31. The zigzag optical path has a shape that is substantially symmetric with respect to the center line of the thickness of the solid-state laser medium 31. During the propagation of the amplified light 70 along the zigzag optical path, stimulated emission occurs according to the pumping profile (Pump Profile) in the solid-state laser medium 31, and the amplified light 70 is amplified. This excitation distribution is formed according to the intensity distribution of the excitation light.
[0041] 以下では、図 2および図 3を参照しながら、励起光源 32を詳細に説明する。図 2は、 励起光源 32の拡大平面図であり、図 3 (a)および (b)は、それぞれ励起光源 32の正 面および背面を示している。図 3に示されるように、各励起光源 32は、積層された二 つのレーザアレイモジュール 33を有する。各レーザアレイモジュール 33では、複数 のレーザアレイユニット 34が固体レーザ媒質 31の長さ方向(X方向)に沿って一次元 的に配列されている。各レーザアレイユニット 34は、複数の LDバーパッケージと、そ れらの LDバーパッケージに取り付けられたヒートシンクを有する。さらに、図 3 (b)に 示されるように、レーザアレイユニット 34は、 LDバーパッケージの陽極および陰極に それぞれ電気的に接続された引出電極 36および 37を有する。  Hereinafter, the excitation light source 32 will be described in detail with reference to FIGS. 2 and 3. FIG. 2 is an enlarged plan view of the excitation light source 32, and FIGS. 3A and 3B show a front surface and a rear surface of the excitation light source 32, respectively. As shown in FIG. 3, each excitation light source 32 has two laser array modules 33 stacked. In each laser array module 33, a plurality of laser array units 34 are arranged one-dimensionally along the length direction (X direction) of the solid-state laser medium 31. Each laser array unit 34 has a plurality of LD bar packages and a heat sink attached to the LD bar packages. Further, as shown in FIG. 3B, the laser array unit 34 has extraction electrodes 36 and 37 electrically connected to the anode and the cathode of the LD bar package, respectively.
[0042] 各 LDバーパッケージは、金属製の放熱板上に LDバーが搭載された構造を有する 。 LDバーは、ある方向(図 3では Z方向)に沿って一次元的に配列された複数の LD ( レーザダイオード)を含むレーザアレイであり、したがって、一列に並んだ複数のレー ザ発光スポットを有する。本実施形態では、複数の LDがモノリシックに集積された L Dバーを使用する。このような LDバーでは、通常、活性層や電極を複数のストライプ に分割して並列に配置することにより、複数のストライプ導波路が設けられている。な お、本発明では、このような構造の LDバーに代えて、独立した複数の LDチップを一 列に並べた構造の LDバーを使用することもできる。 [0043] 各レーザアレイユニット 34では、複数の LDバーパッケージが LDの配列方向と垂直 な方向(図 1では X方向)に積み重ねられている。つまり、レーザアレイユニット 34は、 マトリックス状に二次元配列された複数の LDおよびレーザ発光スポットを有するレー ザアレイである。各 LDバーパッケージの発光面が集合して構成される略長方形の領 域がレーザアレイユニット 34の発光部 34aである。励起光源 32では、複数の発光部 34aがほぼ一平面を成すように配置されている。励起光源 32は、これらの発光部 34 aが固体レーザ媒質 31の側面 3 leまたは 3 Ifと向き合うように配置されて 、る。 [0042] Each LD bar package has a structure in which LD bars are mounted on a metal heat sink. The LD bar is a laser array including a plurality of LDs (laser diodes) arranged one-dimensionally in a certain direction (the Z direction in FIG. 3), and therefore, a plurality of laser emission spots arranged in a line. Have. In the present embodiment, an LD bar in which a plurality of LDs are monolithically integrated is used. In such an LD bar, a plurality of stripe waveguides are usually provided by dividing an active layer and an electrode into a plurality of stripes and arranging them in parallel. In the present invention, instead of the LD bar having such a structure, an LD bar having a structure in which a plurality of independent LD chips are arranged in a line can be used. In each laser array unit 34, a plurality of LD bar packages are stacked in a direction perpendicular to the arrangement direction of the LDs (the X direction in FIG. 1). That is, the laser array unit 34 is a laser array having a plurality of LDs and laser emission spots two-dimensionally arranged in a matrix. The substantially rectangular area formed by assembling the light emitting surfaces of the LD bar packages is the light emitting section 34a of the laser array unit 34. In the excitation light source 32, the plurality of light emitting parts 34a are arranged so as to form substantially one plane. The excitation light source 32 is arranged such that the light emitting portions 34a face the side surfaces 3 le or 3 If of the solid-state laser medium 31.
[0044] これらのレーザアレイユニット 34の後部には、冷却マ-ホールドが取り付けられる。  At the rear of the laser array unit 34, a cooling manifold is attached.
冷却マ-ホールドは、レーザアレイユニット 34のヒートシンク内の流路に冷媒を供給 し、レーザアレイユニット 34を冷却する。レーザアレイユニット 34と冷却マ-ホールド は、ハウジング 38および 39に収納されている。  The cooling manifold supplies a coolant to a flow path in a heat sink of the laser array unit 34 to cool the laser array unit 34. The laser array unit 34 and the cooling manifold are housed in housings 38 and 39.
[0045] 図 2に示されるように、励起光源 32には、レーザアレイユニット 34を Y方向に沿って 前後に移動させるためのァクチユエータ 40が取り付けられて!/、る。ァクチユエータ 40 の構造にっ ヽては後述する。  As shown in FIG. 2, the excitation light source 32 is provided with an actuator 40 for moving the laser array unit 34 back and forth in the Y direction. The structure of the actuator 40 will be described later.
[0046] 一般に、 LDに対しては、速軸(Fast Axis)および遅軸(Slow Axis)が定義される。速 軸は LDの pn接合面に対して垂直であり、遅軸は pn接合面に対して平行である。 LD 力 放射されるレーザ光の速軸方向の拡がり角は、遅軸方向の拡がり角よりも大きい  In general, a fast axis (Fast Axis) and a slow axis (Slow Axis) are defined for an LD. The fast axis is perpendicular to the pn junction of the LD and the slow axis is parallel to the pn junction. LD force The divergence angle of the emitted laser light in the fast axis direction is larger than the divergence angle in the slow axis direction
[0047] 各レーザアレイユニット 34に含まれるすべての LDは、互いの速軸および遅軸の向 きを揃えて配列されている。固体レーザ媒質 31は X方向に沿って長尺なので、固体 レーザ媒質 31に対する励起光の照射面積を拡大するためには、固体レーザ媒質 31 の長さ方向(X方向)に沿ってレーザアレイユニット 34を配列することが好ましい。また 、各レーザアレイユニット 34は、速軸方向を固体レーザ媒質 31の長さ方向に合致さ せて配置することが好まし 、。これは LD光の速軸方向の拡がり角が遅軸方向の拡が り角に比べて大きいことに起因する。つまり、速軸方向を固体レーザ媒質 31の長さ方 向に合致させれば、レーザ光の速軸方向における大きな拡がりを補正する必要がな くなる力らである。以上の理由から、本実施形態では、レーザアレイユニット 34の速軸 方向が X方向に合致し、遅軸方向が Z方向に合致するように励起光源 32が配置され ている。 [0047] All LDs included in each laser array unit 34 are arranged with the directions of the fast axis and the slow axis mutually aligned. Since the solid-state laser medium 31 is long in the X direction, the laser array unit 34 must be extended along the length direction (X-direction) of the solid-state laser medium 31 in order to increase the irradiation area of the solid-state laser medium 31 with the excitation light. Are preferably arranged. Further, it is preferable that each laser array unit 34 is arranged so that the fast axis direction matches the length direction of the solid-state laser medium 31. This is because the spread angle of the LD light in the fast axis direction is larger than that in the slow axis direction. That is, if the fast axis direction is matched with the length direction of the solid-state laser medium 31, the force does not need to correct a large spread of the laser light in the fast axis direction. For the above reasons, in the present embodiment, the excitation light source 32 is arranged so that the fast axis direction of the laser array unit 34 matches the X direction and the slow axis direction matches the Z direction. ing.
[0048] 図 4は、主増幅器 17の横断面図である。この図は、固体レーザ媒質 31の長さ方向 に垂直な断面を示して 、る。  FIG. 4 is a cross-sectional view of the main amplifier 17. This figure shows a cross section perpendicular to the length direction of the solid-state laser medium 31.
[0049] 主増幅器 17は、前述した固体レーザ媒質 31、励起光源 32、ハウジング 38および 3 9に加えて、媒質収納部 80を有する。媒質収納部 80は、固体レーザ媒質 31を内部 に収納する。媒質収納部 80の内部には冷媒流路 80aも設けられている。外部から供 給される冷却水が冷媒流路 80aを流れると、固体レーザ媒質 31が冷却される。媒質 収納部 80の内部には、固体レーザ媒質 31を挟んで一対のウィンドウ 35が互いに平 行に配置されている。各ウィンドウ 35は透明な平板である。これらのウィンドウ 35は、 固体レーザ媒質 31の側面 31eおよび 31fに平行である。励起光源 32は、ウィンドウ 3 5越しに固体レーザ媒質 31と向き合うように配置されている。  The main amplifier 17 has a medium storage section 80 in addition to the solid-state laser medium 31, the pumping light source 32, and the housings 38 and 39 described above. The medium storage section 80 stores the solid-state laser medium 31 inside. A refrigerant passage 80a is also provided inside the medium storage section 80. When the cooling water supplied from the outside flows through the coolant channel 80a, the solid-state laser medium 31 is cooled. Inside the medium accommodating section 80, a pair of windows 35 are arranged in parallel with each other with the solid-state laser medium 31 interposed therebetween. Each window 35 is a transparent flat plate. These windows 35 are parallel to the side surfaces 31 e and 31 f of the solid-state laser medium 31. The excitation light source 32 is arranged to face the solid-state laser medium 31 through the window 35.
[0050] ハウジング 38および 39は、励起光源 32を内部に収納している。ハウジング 38の先 端には開口 38aが設けられている。励起光源 32から発した励起光は、開口 38aおよ びウィンドウ 35を通過して固体レーザ媒質 31に照射される。これに応じて、固体レー ザ媒質 31に含まれる活性元素が励起される。その後、所定波長の光が固体レーザ 媒質 31に入射すると誘導放出が生じて、その入射光が増幅される。ハウジング 39は 、積層されたレーザアレイユニット 34および冷却マ-ホールド 36を上下力も挟んで保 持している。冷却マ-ホールド 36の内部には、図示しない冷媒流路が設けられてい る。  [0050] The housings 38 and 39 house the excitation light source 32 therein. An opening 38a is provided at the front end of the housing 38. The excitation light emitted from the excitation light source 32 passes through the opening 38a and the window 35 and irradiates the solid-state laser medium 31. In response, the active elements contained in solid laser medium 31 are excited. Thereafter, when light of a predetermined wavelength enters the solid-state laser medium 31, stimulated emission occurs, and the incident light is amplified. The housing 39 holds the laminated laser array unit 34 and the cooling manifold 36 with a vertical force interposed therebetween. A cooling medium passage (not shown) is provided inside the cooling manifold 36.
[0051] 再び図 1を参照する。ミラー 23から固体レーザ媒質 31の端面 31aに入射した被増 幅光は、固体レーザ媒質 31内を伝播しながら増幅され、その後、端面 31bから出射 してミラー 24へ向かう。この光は、ミラー 24で反射され、スペーシャルフィルタ 18を通 過し、ミラー 27および 28によって反射されてミラー 25へ向かう。ミラー 25によって反 射されて固体レーザ媒質 31の端面 31bに入射した被増幅光は、固体レーザ媒質 31 内を伝播しながら増幅され、その後、端面 31aから出射してミラー 26へ向かう。この光 はミラー 26によって反射され、ファラデーローテータ 16へ向かう。  FIG. 1 is referred to again. The amplified light that has entered the end face 31a of the solid-state laser medium 31 from the mirror 23 is amplified while propagating in the solid-state laser medium 31, and then exits from the end face 31b toward the mirror 24. This light is reflected by mirror 24, passes through spatial filter 18, is reflected by mirrors 27 and 28, and travels to mirror 25. The amplified light reflected by the mirror 25 and incident on the end face 31b of the solid-state laser medium 31 is amplified while propagating in the solid-state laser medium 31, and then is emitted from the end face 31a toward the mirror. This light is reflected by mirror 26 and travels to Faraday rotator 16.
[0052] ファラデーローテータ 16は、スペーシャルフィルタ 15とミラー 26との間の光路上に 配置されている。ファラデーローテータ 16は、入射光の偏光面を回転させる光学部 品である。本実施形態では、ファラデーローテータ 16は 45度の回転角を有している 。ファラデーローテータ 16は熱複屈折の補償も行う。 The Faraday rotator 16 is arranged on the optical path between the spatial filter 15 and the mirror 26. The Faraday rotator 16 is an optical unit that rotates the plane of polarization of the incident light. Goods. In the present embodiment, the Faraday rotator 16 has a rotation angle of 45 degrees. The Faraday rotator 16 also compensates for thermal birefringence.
[0053] ポラライザ 19は、ミラー 23からスペーシャルフィルタ 15を通過した光のうち特定方 位の偏光成分を選択的に反射する。この反射光が MOPAシステム 1の出力光である The polarizer 19 selectively reflects a polarized light component of a specific direction in the light that has passed through the spatial filter 15 from the mirror 23. This reflected light is the output light of MOPA system 1.
[0054] この MOPAシステム 1は以下のように動作する。レーザ光源 11から出力された被増 幅光は、前置増幅器 12により増幅され、ビームェクスパンダ 13によりビーム径が拡大 されて、光学マスク 14に入力する。この光学マスク 14によりビーム断面形状が矩形状 とされた光は、スペーシャルフィルタ 15、ミラー 23、主増幅器 17、ミラー 24、スぺーシ ャルフィルタ 18、ミラー 27、ミラー 28、スペーシャルフィルタ 18、ミラー 25、主増幅器 17、ミラー 26、ファラデーローテータ 16およびスペーシャルフィルタ 15を順に経て、 ミラー 29に到達する。ミラー 29によって反射された光は、光学マスク 14力もミラー 29 に到るまでの光路を逆向きに進行してボラライザ 19に到達する。以下では、光学マス ク 14力もミラー 29に到るまでの光路を「往路」、ミラー 29からボラライザ 19に到るまで の光路を「復路」と呼ぶことにする。 [0054] This MOPA system 1 operates as follows. The amplified light output from the laser light source 11 is amplified by the preamplifier 12, the beam diameter is expanded by the beam expander 13, and is input to the optical mask 14. The light whose beam cross-section is made rectangular by the optical mask 14 is converted into a spatial filter 15, a mirror 23, a main amplifier 17, a mirror 24, a spatial filter 18, a mirror 27, a mirror 28, a spatial filter 18, and a mirror. 25, the main amplifier 17, the mirror 26, the Faraday rotator 16, and the spatial filter 15 arrive at the mirror 29 in this order. The light reflected by the mirror 29 travels in the optical path until the optical mask 14 reaches the mirror 29 in the opposite direction, and reaches the volatilizer 19. In the following, the optical path from the optical mask 14 to the mirror 29 will be referred to as the “outbound path”, and the optical path from the mirror 29 to the polarizer 19 will be referred to as the “return path”.
[0055] 被増幅光は、往路および復路を進行するとき、回転角 45度のファラデーローテータ 16を 2回通過する。したがって、合計で 90度だけ光の偏光面が回転する。したがつ て、復路を進行してボラライザ 19に到達した光はボラライザ 19により反射される。この 反射光が MOPAシステム 1の出力光である。  [0055] The amplified light passes through the Faraday rotator 16 having a rotation angle of 45 degrees twice when traveling on the outward path and the return path. Therefore, the plane of polarization of the light rotates by 90 degrees in total. Therefore, the light that travels on the return route and reaches the volatilizer 19 is reflected by the volatilizer 19. This reflected light is the output light of the MOPA system 1.
[0056] 被増幅光が往路および復路を進行するとき、光学マスク 14の位置における被増幅 光のビームパターンは、スペーシャルフィルタ 15および 18によって 8回転送される。 このとき、スペーシャルフィルタ 15および 18内のピンホール板 15cおよび 18cによつ て、熱歪み等による空間的な高調波成分が除去され、したがってスパイクノイズが除 去される。この結果、被増幅光が MOPAシステム 1中の光学部品に与える損傷を低 減できる。  When the amplified light travels on the outward path and the return path, the beam pattern of the amplified light at the position of the optical mask 14 is transferred eight times by the spatial filters 15 and 18. At this time, the pinhole plates 15c and 18c in the spatial filters 15 and 18 remove spatial harmonic components due to thermal distortion and the like, and thus eliminate spike noise. As a result, damage to the optical components in the MOPA system 1 due to the amplified light can be reduced.
[0057] 往路および復路を通過する間に、被増幅光は主増幅器 17を 4回通過する。被増幅 光は励起光源 32によって励起された固体レーザ媒質 31中を通過し、誘導放出を引 き起こす。こうして、被増幅光は主増幅器 17を通過するたびに増幅される。固体レー ザ媒質 31に照射される励起光の全エネルギーは 48Jであり、励起効率は 0. 5である 。このとき、ボラライザ 19を通じて放射される出力光のエネルギーは 10Jである。 The light to be amplified passes through the main amplifier 17 four times while passing through the forward path and the return path. The amplified light passes through the solid-state laser medium 31 excited by the excitation light source 32 and causes stimulated emission. Thus, the amplified light is amplified each time it passes through the main amplifier 17. Solid ray The total energy of the excitation light applied to the medium 31 is 48 J, and the excitation efficiency is 0.5. At this time, the energy of the output light radiated through the volatilizer 19 is 10J.
[0058] 本実施形態の MOPAシステム 1には、固体レーザ媒質 31の励起分布を制御する 装置 10が設置されている。これは、固体レーザ媒質 31の不適切な励起分布によつ て引き起こされる問題点を解消するためである。以下では、図 5—図 7を参照しながら 、この問題点を説明する。  In the MOPA system 1 of the present embodiment, a device 10 for controlling the excitation distribution of the solid-state laser medium 31 is provided. This is to eliminate the problem caused by inappropriate excitation distribution of the solid-state laser medium 31. Hereinafter, this problem will be described with reference to FIGS.
[0059] 図 5に示されるように、被増幅光 70は固体レーザ媒質 31内をジグザグに進行する。  As shown in FIG. 5, the amplified light 70 travels zigzag in the solid-state laser medium 31.
固体レーザ媒質 31の側面 31eおよび 31fには、励起光源 32から固体レーザ媒質 31 の厚さ方向 (Y方向)に沿って励起光が照射されている。これにより固体レーザ媒質 3 1は励起され、自然放出(Amplified Spontaneous Emission :ASE)光を発するようにな る。図 5の符号 71は、固体レーザ媒質 31の端面から出射する ASE光のパターンを 模式的に示している。 ASEパターン 71は、 ASE光ビームの横断面における強度分 布を示しており、固体レーザ媒質 31の励起分布を反映する。図 5の ASEパターン 71 は、固体レーザ媒質 31の長さ方向 (X方向)に実質的に垂直な横断面に沿ってとら れている。 ASEパターン 71は、異なる強度の領域 71a— 71dを有する。これらの領 域は、領域 71a、 71b、 71cおよび 71dの順に高い強度を有している。強度の高い領 域ほど、励起強度が高いことになる。励起強度は、固体レーザ媒質 31に照射される 励起光の強度分布に対応して 、る。  The side surfaces 31e and 31f of the solid-state laser medium 31 are irradiated with excitation light from the excitation light source 32 along the thickness direction (Y direction) of the solid-state laser medium 31. As a result, the solid-state laser medium 31 is excited and emits spontaneous emission (Amplified Spontaneous Emission: ASE) light. Reference numeral 71 in FIG. 5 schematically shows a pattern of the ASE light emitted from the end face of the solid-state laser medium 31. The ASE pattern 71 shows the intensity distribution in the cross section of the ASE light beam, and reflects the excitation distribution of the solid-state laser medium 31. The ASE pattern 71 of FIG. 5 is taken along a cross section substantially perpendicular to the length direction (X direction) of the solid-state laser medium 31. The ASE pattern 71 has regions 71a-71d of different intensities. These regions have higher intensity in the order of regions 71a, 71b, 71c and 71d. The higher the intensity, the higher the excitation intensity. The excitation intensity corresponds to the intensity distribution of the excitation light applied to the solid-state laser medium 31.
[0060] 上述のように、励起光源 32は、二つのレーザアレイモジュール 33が固体レーザ媒 質 31の高さ方向(Z方向)に沿って積層された構造を有する。上下のレーザァレイモ ジュール 33に含まれる発光部 34aの間には、通常、 1mm以上の間隔があく。この間 隔が原因で、固体レーザ媒質 31には、高さ方向に沿って不均一な励起分布が生じ ることがある。上下のレーザアレイモジュール 33から発した励起光は、それぞれ Z方 向に拡散しながら固体レーザ媒質 31に向力つて進行する。したがって、固体レーザ 媒質 31に照射される励起光の強度分布、そして固体レーザ媒質 31の励起分布は、 固体レーザ媒質 31と励起光源 32との距離に応じて変化する。この距離が近すぎると 、上下のレーザアレイモジュール 33からの励起光が Z方向に分離されて固体レーザ 媒質 31に照射される。その結果、 ASEパターン 71に示されるように、比較的強度の 高い領域 71b中に、比較的強度の低い領域 71cが生じ、領域 71bを分断するように 延びる。また、 ASEパターン 71の上部および下部に、それぞれ二つの高強度の領 域 71 aが Y方向に並んで現れる。 As described above, the excitation light source 32 has a structure in which two laser array modules 33 are stacked along the height direction (Z direction) of the solid-state laser medium 31. There is usually a gap of 1 mm or more between the light emitting portions 34a included in the upper and lower laser array modules 33. Due to this interval, the solid-state laser medium 31 may have a non-uniform excitation distribution along the height direction. The excitation light emitted from the upper and lower laser array modules 33 travels toward the solid-state laser medium 31 while diffusing in the Z direction. Therefore, the intensity distribution of the excitation light applied to the solid-state laser medium 31 and the excitation distribution of the solid-state laser medium 31 change according to the distance between the solid-state laser medium 31 and the excitation light source 32. If this distance is too short, the excitation light from the upper and lower laser array modules 33 is separated in the Z direction and is irradiated on the solid-state laser medium 31. As a result, as shown in the ASE pattern 71, In the high region 71b, a region 71c having a relatively low intensity is generated and extends so as to divide the region 71b. In addition, two high-strength regions 71a respectively appear in the upper and lower portions of the ASE pattern 71 in the Y direction.
[0061] 励起強度のより高い領域には、より高い強度の励起光が照射されている。そのため 、励起強度の高い領域はそれだけ発熱も大きぐしたがって高い温度を有する。固体 レーザ媒質 31内で発した熱は、被増幅光 70に対して熱レンズ効果ゃ熱複屈折効果 などの熱効果を及ぼすことがある。  [0061] A region having a higher excitation intensity is irradiated with excitation light having a higher intensity. Therefore, a region having a high excitation intensity generates a large amount of heat and accordingly has a high temperature. The heat generated in the solid-state laser medium 31 may exert a thermal effect on the amplified light 70 such as a thermal lens effect and a thermal birefringence effect.
[0062] 図 6 (a)および(b)は、図 5に示される ASEパターン 71に対応する Y方向および Z方 向の励起分布をそれぞれ示している。図 6に示されるように、双方の励起分布におい て二つのピークが現れている。上述のように被増幅光 70は XY平面に平行なジグザ グ光路に沿って固体レーザ媒質 31内を伝搬するため、 Y方向励起分布の全体から 影響を受ける。したがって、 Y方向励起分布の二つのピークとそれらの間に位置する 谷が被増幅光 70に及ぼす熱効果が相殺し、結果として、 Y方向励起分布による熱効 果が平均化される。一方、ジグザグ光路と垂直な Z方向の励起分布が被増幅光 70に 及ぼす影響は、被増幅光 70の伝搬にともない積算されてゆく。そのため、固体レー ザ媒質 31を出射した被増幅光 70は、 Z方向において不均一な熱効果を受けることと なり、ビーム品質が著しく劣化する。  FIGS. 6A and 6B show the excitation distributions in the Y and Z directions corresponding to the ASE pattern 71 shown in FIG. 5, respectively. As shown in FIG. 6, two peaks appear in both excitation distributions. As described above, since the amplified light 70 propagates in the solid-state laser medium 31 along the zigzag optical path parallel to the XY plane, it is affected by the entire Y-direction excitation distribution. Therefore, the two peaks of the Y-direction excitation distribution and the valley located therebetween cancel out the thermal effects on the amplified light 70, and as a result, the thermal effects of the Y-direction excitation distribution are averaged. On the other hand, the effect of the excitation distribution in the Z direction perpendicular to the zigzag optical path on the amplified light 70 is integrated as the amplified light 70 propagates. Therefore, the amplified light 70 emitted from the solid-state laser medium 31 receives a non-uniform thermal effect in the Z direction, and the beam quality is significantly deteriorated.
[0063] 図 7は、被増幅光 70の波面の形状の変化を説明するための図である。図 7 (a)は固 体レーザ媒質 31を通過する前の被増幅光 70の波面の形状を模式的に示しており、 図 7 (c)は固体レーザ媒質 31を通過した後の被増幅光 70の波面の形状を模式的に 示している。図 7 (b)は、固体レーザ媒質 31内をジグザグ光路に沿って進行する被増 幅光 70に対する等価的な励起分布を示している。図 7 (b)では、ジグザグ光路に起 因する上記の平均化によって、 Y方向の励起分布は均一になっている。その一方で 、二つの励起強度のピーク 82が Z方向に沿って並んでいる。これは、図 6 (b)におけ る二つのピークが積算されたものである。このような Z方向に沿って不均一な励起分 布による熱レンズ効果は、図 7 (a)に示される被増幅光 70の平坦な波面 90を、図 7 (c )に示されるような凹凸を有する波面 91に変えてしまう。  FIG. 7 is a diagram for explaining a change in the shape of the wavefront of the light 70 to be amplified. FIG. 7 (a) schematically shows the shape of the wavefront of the amplified light 70 before passing through the solid-state laser medium 31, and FIG. 7 (c) shows the amplified light after passing through the solid-state laser medium 31. 70 schematically shows the shape of the 70 wavefront. FIG. 7B shows an equivalent excitation distribution for the amplified light 70 traveling along the zigzag optical path in the solid-state laser medium 31. In FIG. 7 (b), the above-mentioned averaging caused by the zigzag optical path makes the excitation distribution in the Y direction uniform. On the other hand, two peaks 82 of the excitation intensity are arranged along the Z direction. This is the sum of the two peaks in Fig. 6 (b). The thermal lens effect due to such non-uniform excitation distribution along the Z direction causes the flat wavefront 90 of the amplified light 70 shown in FIG. 7 (a) to become uneven as shown in FIG. 7 (c). To a wavefront 91 with
[0064] ビーム品質がこのように劣化すると、ピンホール板 15cおよび 18cにおける被増幅 光 70の透過率が低下したり、 MOPAシステム 1内の光学部品の損傷が大きくなつた り、被増幅光 70に楕円偏光性が生じて MOPAシステム 1の出力が低下するなど、 M OPAシステム 1の性能が大きく低下するおそれがある。そこで、本実施形態の MOP Aシステム 1には、固体レーザ媒質 31の励起分布を制御するための装置 10が設置さ れている。この励起分布制御装置 10は、固体レーザ媒質 31と励起光源 32との距離 を調整することにより適切な励起分布を達成する。上述のように、上下のレーザアレイ モジュール 33からそれぞれ放射される励起光は拡散しながら固体レーザ媒質 31に 向かう。このため、レーザアレイモジュール 33と固体レーザ媒質 31との距離が変われ ば、励起光の強度分布が変化し、それに応じて固体レーザ媒質 31の励起分布も変 化する。励起分布制御装置 10は、この仕組みを利用して励起分布を制御する。 [0064] When the beam quality deteriorates in this manner, the amplified signals in the pinhole plates 15c and 18c are amplified. The MOPA system 1 has a low transmittance of the light 70, damage to optical components in the MOPA system 1 has increased, and the output of the MOPA system 1 has decreased due to the elliptically polarized light 70 to be amplified. Performance may be greatly reduced. Therefore, in the MOPA system 1 of the present embodiment, a device 10 for controlling the excitation distribution of the solid-state laser medium 31 is provided. The excitation distribution control device 10 achieves an appropriate excitation distribution by adjusting the distance between the solid-state laser medium 31 and the excitation light source 32. As described above, the excitation light emitted from each of the upper and lower laser array modules 33 travels toward the solid-state laser medium 31 while diffusing. Therefore, if the distance between the laser array module 33 and the solid-state laser medium 31 changes, the intensity distribution of the excitation light changes, and the excitation distribution of the solid-state laser medium 31 changes accordingly. The excitation distribution control device 10 controls the excitation distribution using this mechanism.
[0065] 以下では、図 1および図 2を再び参照しながら、励起分布制御装置 10の構成を説 明する。励起分布制御装置 10は、主増幅器 17に加えて、ァクチユエータ 40、測定 部 50および制御部 60を有する。  In the following, the configuration of the excitation distribution control device 10 will be described with reference to FIGS. 1 and 2 again. The excitation distribution control device 10 includes an actuator 40, a measurement unit 50, and a control unit 60 in addition to the main amplifier 17.
[0066] ァクチユエータ 40は、励起光源 32に取り付けられている。ァクチユエータ 40は、励 起光源 32を固体レーザ媒質 31の厚さ方向 (Y方向)に移動させて、固体レーザ媒質 31および励起光源 32間の距離を変更することができる。  The actuator 40 is attached to the excitation light source 32. The actuator 40 can change the distance between the solid-state laser medium 31 and the excitation light source 32 by moving the excitation light source 32 in the thickness direction (Y direction) of the solid-state laser medium 31.
[0067] 図 2に示されるように、ァクチユエータ 40は、本体 42、一対のネジ部品 44および一 対のモータ 46を有するネジ送り機構である。本体 42は励起光源 32の後部に取り付 けられる。各ネジ部品 44は、ギヤが設けられた頭部 44aと、頭部 44aから Y方向に延 びる軸部 44bを有する。軸部 44bの外周には雄ネジが設けられている。軸部 44bは、 本体 42に設けられたネジ孔と螺合しながらハウジング 38内に延びている。軸部 44b の先端は、ハウジング 38内に設けられた支持部品 48によって回転可能に支持され ている。モータ 46は、ネジ咅品 44の頭咅44aと嚙み合うピニオン 46aと、ピニオン 46 aから Y方向に沿って延びる軸部 46bを有する。モータ 46の駆動信号は制御部 60か ら供給される。この駆動信号は、回転量と回転方向をモータ 46に指示する。モータ 4 6が駆動するとピ-オン 46aが軸部 46bの周りに回転し、それに連動してネジ部品 44 が軸部 44bの周りに回転する。ネジ部品 44の回転に伴い、本体 42および励起光源 32が Y方向に沿って並進する。これにより、励起光源 32と固体レーザ媒質 31との距 離が変化する。この距離はモータ 46の回転方向に応じて増加または減少する。 As shown in FIG. 2, the actuator 40 is a screw feed mechanism having a main body 42, a pair of screw components 44, and a pair of motors 46. The main body 42 is attached to the rear of the excitation light source 32. Each screw component 44 has a head portion 44a provided with a gear, and a shaft portion 44b extending in the Y direction from the head portion 44a. A male screw is provided on the outer periphery of the shaft portion 44b. The shaft portion 44b extends into the housing 38 while being screwed with a screw hole provided in the main body 42. The tip of the shaft portion 44b is rotatably supported by a support member 48 provided in the housing 38. The motor 46 has a pinion 46a that engages with the head 44a of the screw product 44, and a shaft portion 46b that extends from the pinion 46a in the Y direction. The drive signal of the motor 46 is supplied from the control unit 60. This drive signal instructs the motor 46 on the amount and direction of rotation. When the motor 46 is driven, the pin 46a rotates around the shaft portion 46b, and the screw component 44 rotates around the shaft portion 44b in conjunction therewith. As the screw component 44 rotates, the main body 42 and the excitation light source 32 translate along the Y direction. Thereby, the distance between the excitation light source 32 and the solid-state laser medium 31 is increased. The separation changes. This distance increases or decreases depending on the direction of rotation of the motor 46.
[0068] 本実施形態の測定部 50は、 CCDカメラ 52から構成されている。 CCDカメラ 52は、 固体レーザ媒質 31の一方の端面 (本実施形態では端面 31b)から放射される ASE 光 88の画像を取得する。 CCDカメラ 52は撮像面を有しており、その撮像面に入射し た光学像を電気的な出力信号に変換する。本実施形態では、 CCDカメラ 52は、そ の撮像面が固体レーザ媒質 31の長さ方向 (X方向)に対して実質的に垂直となるよう に配置されている。 CCDカメラ 52は、 ASE光 88の画像を表す出力信号を生成し、 それを制御部 60に送出する。 The measuring section 50 according to the present embodiment includes a CCD camera 52. The CCD camera 52 acquires an image of the ASE light 88 emitted from one end face (the end face 31b in the present embodiment) of the solid-state laser medium 31. The CCD camera 52 has an imaging surface, and converts an optical image incident on the imaging surface into an electrical output signal. In the present embodiment, the CCD camera 52 is arranged so that its imaging surface is substantially perpendicular to the length direction (X direction) of the solid-state laser medium 31. The CCD camera 52 generates an output signal representing an image of the ASE light 88 and sends it to the control unit 60.
[0069] 制御部 60は、パーソナルコンピュータ 62、ァクチユエ一タコントローラ 64、および励 起光源 32用の駆動装置 66を有する。コンピュータ 62は、測定部 50の出力信号を用 V、て演算を行 、、その結果に応じてァクチユエ一タコントローラ 64の動作を制御する 。ァクチユエ一タコントローラ 64は、コンピュータ 62の制御のもとでァクチユエータ 40 のモータ 46に駆動信号を送信し、ァクチユエータ 40を駆動する。ァクチユエ一タコン トローラ 64は、モータ 46の回転方向および回転量を指示することにより、ァクチユエ ータ 40の移動方向および移動量を制御する。駆動装置 66は、コンピュータ 62の制 御のもとで励起光源 32に駆動電力を供給し、励起光源 32に励起光を放射させる。し たがって、コンピュータ 62は、固体レーザ媒質 31を所望のタイミングで励起すること ができる。 The control section 60 has a personal computer 62, an actuator controller 64, and a driving device 66 for the excitation light source 32. The computer 62 performs an operation using the output signal of the measuring section 50, and controls the operation of the actuator controller 64 according to the result. The actuator controller 64 transmits a drive signal to the motor 46 of the actuator 40 under the control of the computer 62 to drive the actuator 40. Actuator controller 64 controls the direction and amount of movement of actuator 40 by instructing the direction and amount of rotation of motor 46. The driving device 66 supplies driving power to the excitation light source 32 under the control of the computer 62, and causes the excitation light source 32 to emit excitation light. Therefore, the computer 62 can excite the solid-state laser medium 31 at a desired timing.
[0070] 本実施形態の MOPAシステム 1は、まず、励起分布制御装置 10を用いて固体レー ザ媒質 31内の励起分布を調節し、その後、レーザ光源 11を光を出射させて、その光 を増幅する。励起分布制御装置 10は、固体レーザ媒質 31と励起光源 32との距離を 調整することにより励起分布を制御する。この距離の調整は、固体レーザ媒質 31から 発する ASE光の画像に基づいて行われる。以下では、この距離の調整について詳し く説明する。  [0070] The MOPA system 1 of the present embodiment first adjusts the excitation distribution in the solid-state laser medium 31 using the excitation distribution control device 10, and then emits light from the laser light source 11, and converts the light. Amplify. The excitation distribution control device 10 controls the excitation distribution by adjusting the distance between the solid-state laser medium 31 and the excitation light source 32. This adjustment of the distance is performed based on an image of the ASE light emitted from the solid-state laser medium 31. Hereinafter, the adjustment of the distance will be described in detail.
[0071] まず、励起分布制御装置 10は、 CCDカメラ 52を用いて ASE光の画像を取得する 。上述のように、固体レーザ媒質 31に照射される励起光の強度分布は、励起光源 3 2と固体レーザ媒質 31との距離に応じて変化する。その強度分布に応じて固体レー ザ媒質 31に励起分布が形成され、励起された箇所から ASE光が発する。励起強度 が大きい箇所ほど、強い ASE光を発する。したがって、固体レーザ媒質 31の端面か ら発する ASE光の強度分布は、固体レーザ媒質 31の厚さ方向(Y方向)および高さ 方向(Z方向)における励起分布を反映する。 First, the excitation distribution control device 10 acquires an ASE light image using the CCD camera 52. As described above, the intensity distribution of the excitation light applied to the solid-state laser medium 31 changes according to the distance between the excitation light source 32 and the solid-state laser medium 31. An excitation distribution is formed in the solid-state laser medium 31 according to the intensity distribution, and ASE light is emitted from the excited part. Excitation intensity The larger the is, the stronger the ASE light is emitted. Therefore, the intensity distribution of the ASE light emitted from the end face of the solid-state laser medium 31 reflects the excitation distribution of the solid-state laser medium 31 in the thickness direction (Y direction) and the height direction (Z direction).
[0072] 図 8は、励起光源 32の発光部 34aを固体レーザ媒質 31から様々な距離に配置し たときに CCDカメラ 52によって取得される ASE光の画像を模式的に示している。 AS E光画像 72は、固体レーザ媒質 31の厚さ方向(Y方向)および高さ方向(Z方向)に 沿った二次元画像である。 ASE光画像 72は、異なる輝度の領域 72a— 72dを有す る。これらの領域は、領域 72a、 72b、 72cおよび 72dの順に高い輝度を有している。 輝度の高い領域ほど、 ASE光の強度が高い。つまり、 ASE光画像 72の輝度分布は 、 YZ平面上における ASE光の強度分布を示している。  FIG. 8 schematically shows ASE light images acquired by the CCD camera 52 when the light emitting section 34a of the excitation light source 32 is arranged at various distances from the solid-state laser medium 31. The ASE light image 72 is a two-dimensional image of the solid-state laser medium 31 along the thickness direction (Y direction) and the height direction (Z direction). The ASE light image 72 has regions 72a to 72d of different luminances. These areas have higher brightness in the order of the areas 72a, 72b, 72c and 72d. The higher the brightness, the higher the intensity of the ASE light. That is, the luminance distribution of the ASE light image 72 indicates the intensity distribution of the ASE light on the YZ plane.
[0073] 図 8 (a)は、励起光源 32の発光部 34aと固体レーザ媒質 31との距離 (以下、「光源 距離」と呼ぶ)が短いときの ASE光画像 72を示す。この画像では、比較的輝度の高 Vヽ領域 72b中に比較的輝度の低 、領域 72cが生じ、領域 72bを分断するように延び ている。これは、固体レーザ媒質 31の中央付近で不均一な励起が生じていることを 示している。光源距離がより大きくなると、図 8 (b)に示される ASE光画像 72が検出さ れ、光源距離がさらに大きくなると、図 8 (c)に示される ASE光画像 72が検出される。 これらの画像では領域 72bが領域 72cによって分断されておらず、固体レーザ媒質 3 1の中央付近にぉ 、て励起の均一性が高まって 、る。  FIG. 8A shows an ASE light image 72 when the distance between the light emitting section 34a of the excitation light source 32 and the solid-state laser medium 31 (hereinafter, referred to as “light source distance”) is short. In this image, a region 72c having a relatively low luminance is generated in a region 72b having a relatively high luminance, and extends so as to divide the region 72b. This indicates that non-uniform excitation occurs near the center of the solid-state laser medium 31. When the light source distance increases, the ASE light image 72 shown in FIG. 8B is detected, and when the light source distance further increases, the ASE light image 72 shown in FIG. 8C is detected. In these images, the region 72b is not divided by the region 72c, and near the center of the solid-state laser medium 31, the uniformity of excitation is increased.
[0074] 上述のように、励起分布の Y方向の不均一性は平均化されるため問題を生じない 力 Z方向の不均一性は積算されるため MOPAシステム 1の出力ビームの品質を劣 化させる。そこで、本実施形態では、 ASE光画像 72に基づいて励起分布の Z方向の 不均一性を評価し、その結果に応じて光源距離を調整する。  As described above, the non-uniformity of the excitation distribution in the Y direction does not cause any problem because it is averaged. The non-uniformity in the Z direction is integrated, so that the quality of the output beam of the MOPA system 1 deteriorates. Let it. Therefore, in the present embodiment, the non-uniformity of the excitation distribution in the Z direction is evaluated based on the ASE light image 72, and the light source distance is adjusted according to the result.
[0075] CCDカメラ 52の出力信号は、制御部 60内のコンピュータ 62に送られる。コンビュ ータ 62は、その出力信号を二次元のテキストデータに変換する。この二次元テキスト データには、 CCDカメラ 52によって取得された ASE光画像の輝度が各画素に対応 付けて収容されている。各画素には、一対の Y方向および Z方向画素番号が割り当 てられている。つまり、 CCDカメラ 52の出力信号は、固体レーザ媒質 31の端面から 発する ASE光の 2次元輝度分布データを含んで ヽる。 [0076] コンピュータ 62は、励起分布の Z方向の不均一性を評価するために、 ASE光画像 の輝度分布を Y方向に積分し、 Z方向における ASE光の輝度分布を作成する。具体 的に述べると、コンピュータ 62は、上記の二次元テキストデータを用いて、 Y方向に 平行な画素列の各々について輝度の総計を算出する。各画素列は、単一の Z方向 画素番号を有している。コンピュータ 62は、各画素列について算出された輝度の総 計をプロットし、固体レーザ媒質 31の高さ方向(Z方向)における ASE光画像の輝度 分布を作成する。以下では、この輝度分布を「Z方向プロファイル」と呼ぶ。 The output signal of the CCD camera 52 is sent to the computer 62 in the control unit 60. The computer 62 converts the output signal into two-dimensional text data. The two-dimensional text data contains the brightness of the ASE light image acquired by the CCD camera 52 in association with each pixel. Each pixel is assigned a pair of Y and Z direction pixel numbers. That is, the output signal of the CCD camera 52 includes the two-dimensional luminance distribution data of the ASE light emitted from the end face of the solid-state laser medium 31. The computer 62 integrates the luminance distribution of the ASE light image in the Y direction to create the luminance distribution of the ASE light in the Z direction in order to evaluate the non-uniformity of the excitation distribution in the Z direction. Specifically, the computer 62 uses the above-described two-dimensional text data to calculate the total luminance for each of the pixel rows parallel to the Y direction. Each pixel column has a single Z-direction pixel number. The computer 62 plots the total brightness calculated for each pixel column, and creates a brightness distribution of the ASE light image in the height direction (Z direction) of the solid-state laser medium 31. Hereinafter, this luminance distribution is referred to as a “Z-direction profile”.
[0077] 図 9は、様々な光源距離のもとでの Z方向プロファイルを示している。図 9において、 横軸は固体レーザ媒質 31の高さ方向(Z方向)の座標を示し、縦軸は固体レーザ媒 質 31の厚さ方向 (Y方向)に積算された輝度を示している。  FIG. 9 shows Z-direction profiles under various light source distances. In FIG. 9, the horizontal axis represents coordinates in the height direction (Z direction) of the solid-state laser medium 31, and the vertical axis represents luminance integrated in the thickness direction (Y direction) of the solid-state laser medium 31.
[0078] 図 9 (a)—(c)は、それぞれ図 8 (a)一 (c)に対応して!/、る。図 9 (a)に示されるように 、もっとも短い光源距離のもとでは、 Z方向プロファイルに二つのピーク 84と、それら のピーク 84の間に位置する谷 85が現れる。これらのピーク 84は、各レーザァレイモ ジュール 33の Z方向の発光中心に対応する。以下では、 Z方向プロファイルの谷 85 の深さを Δ Ιと表記する。谷 85は、励起分布の Z方向における不均一性の大きさを表 している。光源距離がより長くなると、図 9 (b)および (c)に示されるように Δ Ιが低減さ れる。これは、励起分布の不均一性が軽減されたことを意味する。そこで、コンビユー タ 62は、 Δ Iが最小となるように光源距離を調整する。  FIGS. 9 (a)-(c) correspond to FIGS. 8 (a) -1 (c), respectively. As shown in FIG. 9A, at the shortest light source distance, two peaks 84 and a valley 85 located between the peaks 84 appear in the Z-direction profile. These peaks 84 correspond to the emission centers of the laser array modules 33 in the Z direction. In the following, the depth of the valley 85 of the Z-direction profile is denoted as ΔΙ. The valley 85 indicates the magnitude of the non-uniformity of the excitation distribution in the Z direction. When the light source distance is longer, ΔΙ is reduced as shown in FIGS. 9 (b) and 9 (c). This means that the non-uniformity of the excitation distribution has been reduced. Therefore, the computer 62 adjusts the light source distance so that ΔI is minimized.
[0079] まず、コンピュータ 62は、ァクチユエ一タコントローラ 64を制御してァクチユエータ 4 0を駆動させ、 Z方向プロファイルに谷 85が現れるように励起光源 32を固体レーザ媒 質 31に充分に近づける。続いて、コンピュータ 62は、駆動装置 66を制御して励起光 源 32を駆動し、励起光を固体レーザ媒質 31に照射させる。 CCDカメラ 52は、固体レ 一ザ媒質 31の端面 31bから発する ASE光の画像を取得し、出力信号をコンピュータ 62に送る。コンピュータ 62は、この出力信号を用いて上述の手順により Z方向プロフ アイルを作成する。  First, the computer 62 controls the actuator controller 64 to drive the actuator 40 to bring the excitation light source 32 sufficiently close to the solid-state laser medium 31 so that a valley 85 appears in the Z-direction profile. Subsequently, the computer 62 controls the driving device 66 to drive the excitation light source 32 to irradiate the solid-state laser medium 31 with the excitation light. The CCD camera 52 acquires an image of the ASE light emitted from the end face 31b of the solid-state laser medium 31, and sends an output signal to the computer 62. The computer 62 uses this output signal to create a Z-direction profile according to the procedure described above.
[0080] この Z方向プロファイルに現れる谷 85の深さ Δ Ιを評価するために、コンピュータ 62 は、谷 85の最下部に対応する基準座標 ζθおよび谷 85の最上部に対応する基準座 標 zlを算出する。 ζθおよび zlは、任意の波形解析方法を用いて求めることができる 。基準座標 zlは、谷 85の最上部に対応する輝度 10に応じて決まる。輝度 10は、例え ば、 Z方向プロファイルに現れる二つのピーク 84の高さの平均値であってもよいし、あ るいは、ピーク 84の!、ずれか一方の高さであってもよ!/、。 In order to evaluate the depth Δ 深 of the valley 85 appearing in the Z-direction profile, the computer 62 calculates the reference coordinates ζθ corresponding to the bottom of the valley 85 and the reference coordinates zl corresponding to the top of the valley 85. Is calculated. ζθ and zl can be determined using any waveform analysis method . The reference coordinates zl are determined according to the brightness 10 corresponding to the top of the valley 85. The luminance 10 may be, for example, the average value of the heights of the two peaks 84 appearing in the Z-direction profile, or may be the height of the peak 84! / ,.
[0081] 次に、コンピュータ 62は、励起光源 32を固体レーザ媒質 31から所定の距離だけ遠 ざけた後、励起光源 32を駆動して励起光を固体レーザ媒質 31に照射させ、新たに Z 方向プロファイルを取得する。コンピュータ 62は、この取得された Z方向プロファイル に基づいて深さ Δ Ιを算出する。具体的には、この Z方向プロファイルにおいて上記 の基準座標 ζθおよび zlに対応する輝度をそれぞれ特定し、これらの特定された輝度 の差を Δ Ιとして算出する。この後も、コンピュータ 62は、励起光源 32を固体レーザ 媒質 31から所定の距離だけ遠ざけ、 Z方向プロファイルを取得して Δ Ιを算出すると いう作業を繰り返す。 Next, the computer 62 moves the excitation light source 32 away from the solid-state laser medium 31 by a predetermined distance, and then drives the excitation light source 32 to irradiate the solid-state laser medium 31 with excitation light. Get profile. The computer 62 calculates the depth ΔΙ based on the acquired Z-direction profile. Specifically, in the Z-direction profile, the luminances corresponding to the reference coordinates 基準 θ and zl are respectively specified, and the difference between the specified luminances is calculated as ΔΙ. Thereafter, the computer 62 repeats the operation of moving the excitation light source 32 away from the solid-state laser medium 31 by a predetermined distance, acquiring a Z-direction profile, and calculating ΔΙ.
[0082] このように、コンピュータ 62は、光源距離を所定の距離ずつ増加しながら Δ Ιの算出 を繰り返し、光源距離に応じた Δ Ιの変化を調べる。図 9 (b)および (c)に示されるよう に、光源距離が長くなると、当初、 Δ Ιは低下し、その後、増加する。谷 85の深さ Δ Ιが 最も小さいとき、励起分布の Z方向の不均一性が最も抑えられる。コンピュータ 62は、 様々な光源距離のもとで算出した Δ Ιから、 Δ Ιが最小になる光源距離を導出する。そ して、コンピュータ 62は、ァクチユエータ 40を駆動して、算出した光源距離に励起光 源 32を配置する。これにより、固体レーザ媒質 31の励起分布の Z方向における不均 一性を最小限に抑えることができる。レーザ光源 11が被増幅光を発すると、この被増 幅光は主増幅器 17によって増幅され、 MOPAシステム 1から出力される。励起分布 の Z方向の不均一性が抑えられているため、被増幅光に対する熱効果を削減し、品 質の良い出力ビームを得ることができる。  As described above, the computer 62 repeats the calculation of ΔΙ while increasing the light source distance by a predetermined distance, and checks a change in ΔΙ according to the light source distance. As shown in FIGS. 9 (b) and 9 (c), when the light source distance increases, Δ Ι first decreases and then increases. When the depth Δ の of the valley 85 is the smallest, the non-uniformity of the excitation distribution in the Z direction is minimized. The computer 62 derives a light source distance that minimizes Δ Ι from Δ 算出 calculated under various light source distances. Then, the computer 62 drives the actuator 40 to arrange the excitation light source 32 at the calculated light source distance. Thereby, the unevenness of the excitation distribution of the solid-state laser medium 31 in the Z direction can be minimized. When the laser light source 11 emits amplified light, the amplified light is amplified by the main amplifier 17 and output from the MOPA system 1. Since the non-uniformity of the excitation distribution in the Z direction is suppressed, the thermal effect on the amplified light can be reduced, and a high-quality output beam can be obtained.
[0083] 上記実施形態では、励起光源 32において二つの単位光源、すなわちレーザアレイ モジュール 33が積み重ねられている。し力し、より多数のレーザアレイモジュール 33 が積み重ねられていてもよい。固体レーザ媒質 31の高さ方向(Z方向)に沿って積み 重ねられるレーザアレイモジュール 33の数は、固体レーザ媒質 31および励起光源 3 2間の距離の調整に影響を与えない。したがって、より多数のレーザアレイモジユー ル 33を積み重ねた構造の励起光源を使用したときにも、本実施形態と同様の手法を 用いて固体レーザ媒質 31の励起分布を制御し、熱効果を削減することができる。 In the above embodiment, two unit light sources, ie, the laser array module 33, are stacked in the excitation light source 32. However, more laser array modules 33 may be stacked. The number of the laser array modules 33 stacked along the height direction (Z direction) of the solid-state laser medium 31 does not affect the adjustment of the distance between the solid-state laser medium 31 and the excitation light source 32. Therefore, even when an excitation light source having a structure in which a larger number of laser array modules 33 are stacked is used, the same method as in the present embodiment is used. By using this, the excitation distribution of the solid-state laser medium 31 can be controlled to reduce the thermal effect.
[0084] 第 2実施形態  [0084] Second embodiment
以下では、本発明の第 2の実施形態を説明する。図 10は、本実施形態に係る MO PAシステムの構成を示している。この MOPAシステム laは、励起分布制御装置 10a を有する。励起分布制御装置 10aは、 ASE光画像 72の代わりに、固体レーザ媒質 3 1によって増幅された光の集光パターン 74を測定することにより、固体レーザ媒質 31 の励起分布を制御する。励起分布制御装置 10aは、ァクチユエータ 40、測定部 50a および制御部 60を有する。励起分布制御装置 10aは、測定部 50aの構成および制 御部 60の動作の点で第 1実施形態の励起分布制御装置 10と異なる。他の構成は第 1実施形態と同様なので、重複する説明を省略する。  Hereinafter, a second embodiment of the present invention will be described. FIG. 10 shows the configuration of the MO PA system according to the present embodiment. This MOPA system la has an excitation distribution control device 10a. The excitation distribution control device 10a controls the excitation distribution of the solid-state laser medium 31 by measuring the condensing pattern 74 of the light amplified by the solid-state laser medium 31 instead of the ASE light image 72. The excitation distribution control device 10a has an actuator 40, a measurement unit 50a, and a control unit 60. The excitation distribution control device 10a differs from the excitation distribution control device 10 of the first embodiment in the configuration of the measurement unit 50a and the operation of the control unit 60. The other configuration is the same as that of the first embodiment, and a duplicate description will be omitted.
[0085] 測定部 50aは、 CCDカメラ 52に加えて、集光レンズ 54およびミラー 25を有する。ミ ラー 25は、上述のように光増幅用の光学系の一部を成している。ミラー 25は充分に 高い反射率を有している力 被増幅光の一部はミラー 25を透過する。集光レンズ 54 は、ミラー 25を透過した被増幅光を集光し、 CCDカメラ 52に向けて出射するように配 置されている。 CCDカメラ 52は、集光レンズ 54によって集光された被増幅光のビー ムパターン、すなわち集光パターンの画像を取得する。本実施形態では、 CCDカメ ラ 52は、その撮像面が集光レンズ 54の光軸に対して実質的に垂直となるように配置 されている。  The measuring section 50a has a condenser lens 54 and a mirror 25 in addition to the CCD camera 52. The mirror 25 forms a part of the optical system for optical amplification as described above. The mirror 25 has a sufficiently high reflectivity. A part of the amplified light passes through the mirror 25. The condenser lens 54 is arranged so as to condense the light to be amplified transmitted through the mirror 25 and emit the light to the CCD camera 52. The CCD camera 52 acquires a beam pattern of the amplified light condensed by the condenser lens 54, that is, an image of the condenser pattern. In the present embodiment, the CCD camera 52 is arranged so that its imaging surface is substantially perpendicular to the optical axis of the condenser lens 54.
[0086] 本実施形態では、制御部 60がレーザ光源 11の発光タイミングを制御する。すなわ ち、レーザ光源 11は、コンピュータ 62から発光命令信号を受け取ったときに被増幅 光を発する。  [0086] In the present embodiment, the control unit 60 controls the light emission timing of the laser light source 11. That is, the laser light source 11 emits amplified light when receiving the light emission command signal from the computer 62.
[0087] 図 11は、励起光源 32を固体レーザ媒質 31から様々な距離に配置したときに CCD カメラ 52によって取得される集光パターン画像 74を模式的に示している。集光パタ ーン画像 74は、固体レーザ媒質 31の厚さ方向(Y方向)および高さ方向(Z方向)に 沿った二次元画像である。画像 74に現れる集光パターンは、固体レーザ媒質 31に ぉ 、て増幅された被増幅光のビームパターンを反映する。被増幅光は固体レーザ媒 質 31の励起分布に応じて増幅されるので、被増幅光のビームパターンは励起分布 を反映する。結局、被増幅光の集光パターンは固体レーザ媒質 31の励起分布を反 映すること〖こなる。 FIG. 11 schematically shows a converging pattern image 74 obtained by the CCD camera 52 when the excitation light source 32 is arranged at various distances from the solid-state laser medium 31. The focusing pattern image 74 is a two-dimensional image of the solid-state laser medium 31 along the thickness direction (Y direction) and the height direction (Z direction). The converging pattern appearing in the image 74 reflects the beam pattern of the amplified light that has been amplified by the solid-state laser medium 31. Since the amplified light is amplified according to the excitation distribution of the solid-state laser medium 31, the beam pattern of the amplified light reflects the excitation distribution. After all, the condensing pattern of the amplified light reverses the excitation distribution of the solid-state laser medium 31. To be reflected.
[0088] 図 11 (a)は、光源距離が短すぎるときの集光パターン画像 74を示す。この集光パ ターンでは、 Z方向に沿って多数の発光スポット 74aが並んでいる。これは集光性が 良くな 、ことを示して 、る。これは固体レーザ媒質 31の励起分布の Z方向における不 均一性に起因する。光源距離がより大きくなると、図 11 (b)に示されるように、集光パ ターン画像 74における発光スポット 74aの数および面積が減少し、集光性が高まる。 しかし、光源距離が大きくなりすぎると、図 11 (c)に示されるように、発光スポット 74a の面積が拡大し、集光性が低下する。  FIG. 11A shows a light-collecting pattern image 74 when the light source distance is too short. In this focusing pattern, a number of light emitting spots 74a are arranged along the Z direction. This indicates that the light collecting property is good. This is due to the non-uniformity of the excitation distribution of the solid-state laser medium 31 in the Z direction. When the light source distance is further increased, as shown in FIG. 11B, the number and area of the light-emitting spots 74a in the light-collecting pattern image 74 are reduced, and the light-collecting property is improved. However, if the light source distance is too large, as shown in FIG. 11C, the area of the light emitting spot 74a is enlarged, and the light collecting property is reduced.
[0089] 上述のように、励起分布の Z方向の不均一性は被増幅光の集光性を低下させる。  As described above, the non-uniformity of the excitation distribution in the Z direction lowers the light collecting property of the amplified light.
そこで、本実施形態では、集光パターン画像 74に基づいて Z方向の励起分布の不 均一性を評価し、その結果に応じて光源距離を調整する。  Therefore, in the present embodiment, the non-uniformity of the excitation distribution in the Z direction is evaluated based on the converging pattern image 74, and the light source distance is adjusted according to the result.
[0090] CCDカメラ 52の出力信号は、制御部 60内のコンピュータ 62に送られる。コンビュ ータ 62は、その出力信号を二次元のテキストデータに変換する。この二次元テキスト データには、 CCDカメラ 52によって取得された集光パターン画像の輝度が各画素に 対応付けて収容されている。各画素には、一対の Y方向および Z方向の画素番号が 割り当てられている。つまり、 CCDカメラ 52の出力信号は、集光レンズ 54によって集 光された被増幅光の 2次元輝度分布データを含んでいる。  The output signal of the CCD camera 52 is sent to the computer 62 in the control unit 60. The computer 62 converts the output signal into two-dimensional text data. In the two-dimensional text data, the brightness of the converging pattern image acquired by the CCD camera 52 is stored in association with each pixel. Each pixel is assigned a pair of pixel numbers in the Y and Z directions. That is, the output signal of the CCD camera 52 includes the two-dimensional luminance distribution data of the amplified light collected by the condenser lens 54.
[0091] コンピュータ 62は、励起分布の Z方向の不均一性を評価するために、 CCDカメラ 5 2を用いて測定した集光パターンの面積を算出する。具体的に述べると、コンビユー タ 62は、上記の二次元テキストデータを用いて、閾値以上の輝度を有する画素を計 数する。本実施形態では、集光パターン画像 74における最大輝度の 10%に相当す る輝度を閾値として用いる。なお、最大輝度に対する閾値の比率は任意に設定でき る。コンピュータ 62は、この計数によって求められた画素数を集光パターンの面積 S として記憶する。  [0091] The computer 62 calculates the area of the converging pattern measured using the CCD camera 52 in order to evaluate the non-uniformity of the excitation distribution in the Z direction. Specifically, the computer 62 uses the two-dimensional text data to count pixels having a luminance equal to or higher than a threshold. In the present embodiment, a luminance corresponding to 10% of the maximum luminance in the converging pattern image 74 is used as the threshold. The ratio of the threshold to the maximum luminance can be set arbitrarily. The computer 62 stores the number of pixels obtained by the counting as the area S of the light-converging pattern.
[0092] コンピュータ 62は、光源距離を所定の距離ずつ変えながら励起光源 32を駆動して 励起光を固体レーザ媒質 31に照射させ、さらにレーザ光源 11に発光命令信号を送 つて被増幅光を放射させる。これにより、固体レーザ媒質 31によって増幅された被増 幅光の集光パターン画像 74が取得され、その集光パターン画像 74に基づ 、て集光 パターンの面積、すなわち閾値以上の輝度を有する画素数が取得される。例えば、 図 11 (a)—(c)の集光パターン画像 74について、それぞれ 3000、 500および 1000 0という画素数が集光パターンの面積 Sとして求められる。 [0092] The computer 62 drives the excitation light source 32 while changing the light source distance by a predetermined distance to irradiate the solid-state laser medium 31 with the excitation light, and further sends an emission command signal to the laser light source 11 to emit the amplified light. Let it. As a result, a condensing pattern image 74 of the amplified light amplified by the solid-state laser medium 31 is obtained, and condensed based on the condensing pattern image 74. The area of the pattern, that is, the number of pixels having a luminance equal to or greater than the threshold is obtained. For example, with respect to the light-collecting pattern images 74 in FIGS.
[0093] このように、コンピュータ 62は、様々な光源距離のもとで集光パターンの面積 Sを繰 り返し測定し、光源距離に応じた面積 Sの変化を調べる。面積 Sが最も小さいとき、励 起分布の Z方向の不均一性が最も抑えられる。コンピュータ 62は、様々な光源距離 のもとで取得した面積 Sから、面積 Sが最小になる光源距離を導出する。そして、コン ピュータ 62は、ァクチユエータ 40を駆動して、算出した光源距離に励起光源 32を配 置する。これにより、固体レーザ媒質 31の励起分布の Z方向における不均一性を最 小限に抑えることができる。レーザ光源 11が被増幅光を発すると、この被増幅光は主 増幅器 17によって増幅され、 MOPAシステム laから出力される。励起分布の Z方向 の不均一性が抑えられているため、被増幅光に対する熱効果を削減し、品質の良い 出力ビームを得ることができる。  [0093] As described above, the computer 62 repeatedly measures the area S of the light-condensing pattern under various light source distances, and examines a change in the area S according to the light source distance. When the area S is the smallest, the non-uniformity of the excitation distribution in the Z direction is most suppressed. The computer 62 derives a light source distance that minimizes the area S from the area S obtained under various light source distances. Then, the computer 62 drives the actuator 40 to dispose the excitation light source 32 at the calculated light source distance. Thereby, the non-uniformity of the excitation distribution of the solid-state laser medium 31 in the Z direction can be minimized. When the laser light source 11 emits light to be amplified, the light to be amplified is amplified by the main amplifier 17 and output from the MOPA system la. Since the non-uniformity of the excitation distribution in the Z direction is suppressed, thermal effects on the amplified light can be reduced, and a high-quality output beam can be obtained.
[0094] 上記実施形態では、励起光源 32において二つの単位光源、すなわちレーザアレイ モジュール 33が積み重ねられている。し力し、より多数のレーザアレイモジュール 33 が積み重ねられていてもよい。固体レーザ媒質 31の高さ方向(Z方向)に沿って積み 重ねられるレーザアレイモジュール 33の数は、固体レーザ媒質 31および励起光源 3 2間の距離の調整に影響を与えない。したがって、より多数のレーザアレイモジユー ル 33を積み重ねた構造の励起光源を使用したときにも、本実施形態と同様の手法を 用いて固体レーザ媒質 31の励起分布を制御し、熱効果を削減することができる。  In the above embodiment, two unit light sources, ie, the laser array module 33, are stacked in the excitation light source 32. However, more laser array modules 33 may be stacked. The number of the laser array modules 33 stacked along the height direction (Z direction) of the solid-state laser medium 31 does not affect the adjustment of the distance between the solid-state laser medium 31 and the excitation light source 32. Therefore, even when an excitation light source having a structure in which a larger number of laser array modules 33 are stacked is used, the excitation distribution of the solid-state laser medium 31 is controlled using the same method as in the present embodiment to reduce the thermal effect. can do.
[0095] 第 3実施形態  [0095] Third Embodiment
以下では、本発明の第 3の実施形態を説明する。図 12は、本実施形態に係る MO PAシステムの構成を示している。この MOPAシステム lbは、励起分布制御装置 10 bを有する。励起分布制御装置 10bは、 ASE光画像 72の代わりに、固体レーザ媒質 31を透過した光と透過して 、な 、光との干渉縞パターンを測定することにより、固体 レーザ媒質 31の励起分布を制御する。励起分布制御装置 10bは、ァクチユエータ 4 0、測定部 50bおよび制御部 60を有する。励起分布制御装置 10bは、測定部 50bの 構成および制御部 60の動作の点で第 1実施形態の励起分布制御装置 10と異なる。 他の構成は第 1実施形態と同様なので、重複する説明を省略する。 Hereinafter, a third embodiment of the present invention will be described. FIG. 12 shows the configuration of the MOPA system according to the present embodiment. This MOPA system lb has an excitation distribution controller 10b. The excitation distribution control device 10b measures the excitation distribution of the solid-state laser medium 31 by measuring the interference fringe pattern with the light transmitted through the solid-state laser medium 31 instead of the ASE light image 72. Control. The excitation distribution control device 10b includes an actuator 40, a measurement unit 50b, and a control unit 60. The excitation distribution control device 10b differs from the excitation distribution control device 10 of the first embodiment in the configuration of the measurement unit 50b and the operation of the control unit 60. The other configuration is the same as that of the first embodiment, and a duplicate description will be omitted.
[0096] 測定部 50bは、 CCDカメラ 52に加えて、検査光源 55、マッハツエンダ干渉系 56、 およびスクリーン 57を有する。検査光源 55は、コンピュータ 62からの発光命令信号 に応答して検査光を発する He— Neレーザ装置である。マツハツヱンダ干渉系 56は、 この検査光を用いて干渉縞を生成するための光学系である。マツハツヱンダ干渉系 5 6は、ビームスプリッタ 56a、ダイクロイツクミラー 56b、高反射ミラー 56c、ビームスプリ ッタ 56d、ビームェクスパンダ 56e、および光学マスク 56fを有する。マッハツエンダ干 渉系 56は、検査光を XY平面に実質的に平行に伝搬させる。後述するように、コンビ ユータ 62は、高反射ミラー 56cおよびビームスプリッタ 56dの位置を調整することがで きる。 The measuring section 50b has an inspection light source 55, a Mach-Zehnder interference system 56, and a screen 57 in addition to the CCD camera 52. The inspection light source 55 is a He—Ne laser device that emits inspection light in response to a light emission command signal from the computer 62. The Matsuhatsu Donda interference system 56 is an optical system for generating interference fringes using the inspection light. The Matsuhatsu Honda interferometer 56 includes a beam splitter 56a, a dichroic mirror 56b, a high reflection mirror 56c, a beam splitter 56d, a beam expander 56e, and an optical mask 56f. The Mach-Zehnder interference system 56 propagates the inspection light substantially parallel to the XY plane. As will be described later, the computer 62 can adjust the positions of the high reflection mirror 56c and the beam splitter 56d.
[0097] ビームェクスパンダ 56eは、検査光のビーム径を拡大し、光学マスク 56fに向けて出 射する。光学マスク 56fは、ビーム整形用の開口を有している。ビームェクスパンダ 5 6eによって拡大された検査光がこの開口を通過することにより、検査光の波面が矩 形状に整形される。この波面は、図 5に示される被増幅光と同様に、 Y方向に延びる 短辺と Z方向に延びる長辺を有する。  [0097] The beam expander 56e enlarges the beam diameter of the inspection light and emits it toward the optical mask 56f. The optical mask 56f has an opening for beam shaping. When the inspection light enlarged by the beam expansor 56e passes through this opening, the wavefront of the inspection light is shaped into a rectangular shape. This wavefront has a short side extending in the Y direction and a long side extending in the Z direction, similarly to the amplified light shown in FIG.
[0098] ビームスプリッタ 56aは、光学マスク 56fから検査光を受け取り、第 1の光 86および 第 2の 87に分岐する。ビームスプリッタ 56aは、第 1の分岐光 86を高反射ミラー 56b に向けて透過させ、第 2の分岐光 87を高反射ミラー 56cへ向けて反射する。ミラー 56 bは、第 1の分岐光 86をダイクロイツクミラー 26aに向けて反射する。ダイクロイツクミラ 一 26aは、被増幅光を反射する一方で、検査光を透過させる。したがって、第 1の分 岐光 86は、ダイクロイツクミラー 26aを透過して固体レーザ媒質 31に向かう。第 1の分 岐光 86は、端面 3 laを通って固体レーザ媒質 31に入射し、被増幅光のジグザグ光 路上を伝搬した後、端面 31bから出射する。  [0098] The beam splitter 56a receives the inspection light from the optical mask 56f, and splits into the first light 86 and the second light 87. The beam splitter 56a transmits the first split light 86 toward the high reflection mirror 56b, and reflects the second split light 87 toward the high reflection mirror 56c. The mirror 56b reflects the first split light beam 86 toward the dichroic mirror 26a. The dichroic mirror 26a reflects the amplified light while transmitting the inspection light. Therefore, the first branch light 86 passes through the dichroic mirror 26a and travels to the solid-state laser medium 31. The first branch light 86 enters the solid-state laser medium 31 through the end face 3 la, propagates on the zigzag optical path of the amplified light, and then exits from the end face 31 b.
[0099] 本実施形態では、端面 3 lbから出射した被増幅光を受け取るミラーとしてダイクロイ ックミラー 25bが使用されている。固体レーザ媒質 31から出射した第 1の分岐光 86は 、被増幅光の光路上を進行し、ダイクロイツクミラー 25bに到達する。ダイクロイツクミラ 一 25bは、被増幅光をスペーシャルフィルタ 18へ反射する一方で、第 1の分岐光 86 を透過させる。ビームスプリッタ 56dは、ダイクロイツクミラー 25bを透過した第 1の分岐 光 86の半分をスクリーン 57に向けて反射する。 [0099] In the present embodiment, the dichroic mirror 25b is used as a mirror for receiving the amplified light emitted from the end face 3lb. The first branched light 86 emitted from the solid-state laser medium 31 travels on the optical path of the amplified light and reaches the dichroic mirror 25b. The dichroic mirror 25b reflects the amplified light to the spatial filter 18 while transmitting the first split light 86. The beam splitter 56d is the first branch that has passed through the dichroic mirror 25b. Half of the light 86 reflects off the screen 57.
[0100] 一方、ビームスプリッタ 56aによって反射された第 2の分岐光 87は、高反射ミラー 56 cによって反射され、ビームスプリッタ 56dに向かう。第 2の分岐光 87の半分はビーム スプリッタ 56dを透過し、スクリーン 57に向かう。この結果、固体レーザ媒質 31をジグ ザグ光路に沿って通過した検査光 (すなわち、第 1の分岐光 86)と固体レーザ媒質 3 1を通過していない検査光(すなわち、第 2の分岐光 87)とが干渉し、干渉ビーム 92 が形成される。 [0100] On the other hand, the second split light beam 87 reflected by the beam splitter 56a is reflected by the high reflection mirror 56c and travels to the beam splitter 56d. Half of the second split beam 87 passes through the beam splitter 56d and goes to the screen 57. As a result, the inspection light that has passed through the solid-state laser medium 31 along the zigzag optical path (that is, the first branch light 86) and the inspection light that has not passed through the solid-state laser medium 31 (that is, the second branch light 87) ) And an interference beam 92 is formed.
[0101] 干渉ビーム 92はスクリーン 57の映写面上に照射される。これにより、映写面上に干 渉縞 75が形成される。スクリーン 57の映写面は、干渉ビーム 92の伝搬方向に対して ほぼ垂直に配置されている。上述のように、検査光、ならびにその検査光力も生成さ れる分岐光 86および 87は、固体レーザ媒質 31の厚さ方向(Y方向)および高さ方向 (Z方向)に沿った矩形状の波面を有する。このため、干渉縞 75も Y方向および Z方 向に沿った矩形状のパターンを有する。  [0101] The interference beam 92 is projected onto the projection surface of the screen 57. As a result, interference fringes 75 are formed on the projection surface. The projection surface of the screen 57 is arranged substantially perpendicular to the propagation direction of the interference beam 92. As described above, the inspection light and the branched lights 86 and 87 that also generate the inspection light power have rectangular wavefronts along the thickness direction (Y direction) and the height direction (Z direction) of the solid-state laser medium 31. Having. Therefore, the interference fringe 75 also has a rectangular pattern along the Y and Z directions.
[0102] CCDカメラ 52は、スクリーン 57の映写面に映し出された干渉縞 75の画像を取得す る。本実施形態では、干渉縞画像に基づいて Z方向の励起分布の不均一性を評価 し、その結果に応じて光源距離を調整する。以下では、この調整手順を詳細に説明 する。  [0102] The CCD camera 52 acquires an image of the interference fringe 75 projected on the projection surface of the screen 57. In the present embodiment, the non-uniformity of the excitation distribution in the Z direction is evaluated based on the interference fringe image, and the light source distance is adjusted according to the result. Hereinafter, this adjustment procedure will be described in detail.
[0103] まず、制御部 60内のコンピュータ 62は、マッハツエンダ干渉系 56を調整する。コン ピュータ 62は、励起光源 32を駆動することなく検査光源 55に発光命令信号を送つ て検検査光を放射させ、干渉縞 75を形成する。 CCDカメラ 52は、この干渉縞 75の 画像を取得し、その画像に応じた出力信号を生成する。この出力信号はコンピュータ 62〖こ送られる。  [0103] First, the computer 62 in the control unit 60 adjusts the Mach-Zehnder interference system 56. The computer 62 sends a light emission command signal to the inspection light source 55 without driving the excitation light source 32 to emit inspection inspection light, and forms interference fringes 75. The CCD camera 52 obtains an image of the interference fringes 75 and generates an output signal corresponding to the image. This output signal is sent to the computer 62.
[0104] 図 13 (a)は、こうして取得された干渉縞の画像 76を模式的に示している。干渉縞画 像 76は、固体レーザ媒質 31の厚さ方向(Y方向)および高さ方向(Z方向)に沿った 二次元画像である。図 13 (a)には、 Z方向に平行な仮想の基準線 77も描かれている 。基準線 77は、固体レーザ媒質 31の高さ方向(Z方向)に平行に延在する、干渉縞 画像 76の中心線である。基準線 77は、固体レーザ媒質 31内における被増幅光のジ グザグ光路の中心軸に対応する。 [0105] 固体レーザ媒質 31に励起光が照射されていないときに高反射ミラー 56cおよびビ 一ムスプリッタ 56dが適切に配置されると、図 13 (a)に示されるように、 Z方向に実質 的に平行な明線 76aが Y方向に並んだ干渉縞画像 76を得ることができる。コンビュ ータ 62は、このような干渉縞画像 76が得られるように高反射ミラー 56cおよびビーム スプリッタ 56dの位置を調整する。図 13 (a)に示される干渉縞画像 76が得られたら、 高反射ミラー 56cおよびビームスプリッタ 56dの位置が固定される。こうして前処理が 終了する。 FIG. 13 (a) schematically shows the interference fringe image 76 thus obtained. The interference fringe image 76 is a two-dimensional image of the solid-state laser medium 31 along the thickness direction (Y direction) and the height direction (Z direction). FIG. 13 (a) also depicts a virtual reference line 77 parallel to the Z direction. The reference line 77 is a center line of the interference fringe image 76 extending parallel to the height direction (Z direction) of the solid-state laser medium 31. The reference line 77 corresponds to the center axis of the zigzag optical path of the amplified light in the solid-state laser medium 31. When the high-reflection mirror 56c and the beam splitter 56d are properly arranged when the solid-state laser medium 31 is not irradiated with the excitation light, as shown in FIG. It is possible to obtain an interference fringe image 76 in which bright lines 76a parallel to each other are arranged in the Y direction. The computer 62 adjusts the positions of the high reflection mirror 56c and the beam splitter 56d so as to obtain such an interference fringe image 76. When the interference fringe image 76 shown in FIG. 13A is obtained, the positions of the high reflection mirror 56c and the beam splitter 56d are fixed. Thus, the preprocessing is completed.
[0106] 次に、コンピュータ 62は、励起光源 32を駆動して励起光を固体レーザ媒質 31に照 射させ、さらに検査光源 55に発光命令信号を送って検査光を放射させる。これ〖こより 干渉縞 75が再び形成され、その画像力CCDカメラ 52によって取得される。図 13 (b) - (d)は、様々な光源距離のもとで固体レーザ媒質 31に励起光を照射したときに CC Dカメラ 52によって取得される干渉縞画像 76を模式的に示している。  Next, the computer 62 drives the excitation light source 32 to irradiate the solid-state laser medium 31 with the excitation light, and sends a light emission command signal to the inspection light source 55 to emit the inspection light. From this, the interference fringes 75 are formed again and are acquired by the CCD camera 52. FIGS. 13 (b)-(d) schematically show interference fringe images 76 acquired by the CCD camera 52 when the solid-state laser medium 31 is irradiated with excitation light under various light source distances. .
[0107] 固体レーザ媒質 31へ励起光が照射されると、固体レーザ媒質 31の内部の温度が 上昇し、温度分布が形成される。この温度分布は励起光の強度分布を反映し、した がって固体レーザ媒質 31の励起分布を反映する。温度に応じて固体レーザ媒質 31 の屈折率が変化するので、固体レーザ媒質 31内には温度分布に応じた屈折率分布 が形成される。つまり、固体レーザ媒質 31の屈折率分布は励起分布を反映する。不 均一な屈折率分布は、固体レーザ媒質 31を透過する検査光 (第 1の分岐光 86)の 波面を歪める。この波面の歪みは干渉縞 75のパターンに影響を与える。  When the solid-state laser medium 31 is irradiated with the excitation light, the temperature inside the solid-state laser medium 31 rises, and a temperature distribution is formed. This temperature distribution reflects the intensity distribution of the excitation light, and therefore reflects the excitation distribution of the solid-state laser medium 31. Since the refractive index of the solid-state laser medium 31 changes according to the temperature, a refractive index distribution according to the temperature distribution is formed in the solid-state laser medium 31. That is, the refractive index distribution of the solid-state laser medium 31 reflects the excitation distribution. The non-uniform refractive index distribution distorts the wavefront of the inspection light (first branch light 86) transmitted through the solid-state laser medium 31. This wavefront distortion affects the pattern of the interference fringes 75.
[0108] 光源距離が小さすぎると、図 6 (a)および (b)に示される励起分布、およびこの励起 分布に応じた屈折率分布が固体レーザ媒質 31内に形成される。検査光は XY平面 に平行なジグザグ光路に沿って固体レーザ媒質 31内を伝搬するため、 Y方向の屈 折率分布が検査光に及ぼす影響は平均化される。一方、ジグザグ光路と垂直な Z方 向の屈折率分布が検査光に及ぼす影響は、検査光の伝擦こともない積算される。こ の結果、図 13 (b)—(d)に示されるように、干渉縞画像 76中の明線 76aが Z方向と交 差するように湾曲する。 Z方向屈折率分布の不均一性が高いほど明線 76aの湾曲が 大きぐそれに応じて明線 76aが基準線 77と交差しやすくなる。  If the light source distance is too small, the excitation distribution shown in FIGS. 6A and 6B and the refractive index distribution corresponding to this excitation distribution are formed in the solid-state laser medium 31. Since the inspection light propagates in the solid-state laser medium 31 along a zigzag optical path parallel to the XY plane, the influence of the refractive index distribution in the Y direction on the inspection light is averaged. On the other hand, the influence of the refractive index distribution in the Z direction perpendicular to the zigzag optical path on the inspection light is integrated without friction of the inspection light. As a result, as shown in FIGS. 13B and 13D, the bright line 76a in the interference fringe image 76 is curved so as to cross the Z direction. The higher the non-uniformity of the refractive index distribution in the Z direction, the greater the curvature of the bright line 76a, and the more easily the bright line 76a intersects the reference line 77.
[0109] 図 13 (b)は、光源距離が短すぎるときの干渉縞画像 76を示す。この干渉縞では、 基準線 77を多数の明線 76aが横切っている。言い換えると、干渉縞画像 76の輝度 が基準線 77上において多数回、振動している。これは、固体レーザ媒質 31の Z方向 における屈折率分布の不均一性に起因する。光源距離がより大きくなると、図 13 (c) に示されるように、基準線 77上における輝度の振動回数が減少する。これは、 Z方向 屈折率分布の不均一性が減少したことを意味する。しかし、光源距離が大きくなりす ぎると、図 13 (d)に示されるように、基準線 77上における輝度の振動回数が増加する FIG. 13B shows an interference fringe image 76 when the light source distance is too short. In this interference fringe, A number of bright lines 76a cross the reference line 77. In other words, the luminance of the interference fringe image 76 vibrates many times on the reference line 77. This is due to the non-uniformity of the refractive index distribution of the solid-state laser medium 31 in the Z direction. As the light source distance becomes larger, the number of times of luminance oscillation on the reference line 77 decreases as shown in FIG. This means that the non-uniformity of the refractive index distribution in the Z direction has been reduced. However, if the light source distance is too large, the number of luminance oscillations on the reference line 77 increases as shown in FIG.
[0110] このように、基準線 77上における干渉縞画像 76の輝度の振動回数が少ないほど、 固体レーザ媒質 31の屈折率分布力 ¾方向に沿って均一である。上述のように、この 屈折率分布は、固体レーザ媒質 31の励起分布に対応する。そこで、本実施形態で は、干渉縞画像 76に基づいて Z方向の励起分布の不均一性を評価し、その結果に 応じて光源距離を調整する。 As described above, the smaller the number of oscillations of the luminance of the interference fringe image 76 on the reference line 77, the more uniform the refractive index distribution power of the solid-state laser medium 31 along the negative direction. As described above, this refractive index distribution corresponds to the excitation distribution of the solid-state laser medium 31. Therefore, in the present embodiment, the nonuniformity of the excitation distribution in the Z direction is evaluated based on the interference fringe image 76, and the light source distance is adjusted according to the result.
[0111] CCDカメラ 52は干渉縞 75の画像を取得すると、その画像に応じた出力信号をコン ピュータ 62に送る。コンピュータ 62は、その出力信号を二次元のテキストデータに変 換する。この二次元テキストデータには、 CCDカメラ 52によって取得された干渉縞画 像 76の輝度が各画素に対応付けて収容されている。各画素には、一対の Y方向お よび Z方向の画素番号が割り当てられている。つまり、 CCDカメラ 52の出力信号は、 マッハツエンダ干渉系 56によって生成された干渉縞の 2次元輝度分布データを含ん でいる。  When the CCD camera 52 acquires an image of the interference fringe 75, it sends an output signal corresponding to the image to the computer 62. Computer 62 converts the output signal into two-dimensional text data. The two-dimensional text data contains the luminance of the interference fringe image 76 acquired by the CCD camera 52 in association with each pixel. Each pixel is assigned a pair of pixel numbers in the Y and Z directions. That is, the output signal of the CCD camera 52 includes the two-dimensional luminance distribution data of the interference fringe generated by the Mach-Zehnder interferometer 56.
[0112] コンピュータ 62は、励起分布の Z方向の不均一性を評価するために、 CCDカメラ 5 2を用いて測定した干渉縞画像 76中に基準線 77を設定し、その基準線 77上におけ る輝度の振動回数を計数する。具体的に述べると、コンピュータ 62は、上記の二次 元テキストデータから、基準線 77上に位置する画素列を抽出する。続いて、コンビュ ータ 62は、その画素列に含まれる各画素の輝度をプロットし、基準線 77に沿った干 渉縞パターンの輝度分布を作成する。以下では、この輝度分布を「干渉縞の一次元 プロフアイノレ」と呼ぶ。  [0112] The computer 62 sets a reference line 77 in the interference fringe image 76 measured using the CCD camera 52, and evaluates the non-uniformity of the excitation distribution in the Z direction. Count the number of brightness oscillations. Specifically, the computer 62 extracts a pixel row located on the reference line 77 from the two-dimensional text data. Subsequently, the computer 62 plots the luminance of each pixel included in the pixel column, and creates a luminance distribution of the interference fringe pattern along the reference line 77. Hereinafter, this luminance distribution is referred to as “one-dimensional profile of interference fringes”.
[0113] 図 14は、様々な光源距離のもとでの干渉縞の一次元プロファイルを示している。図 14において、横軸は基準線 77上における干渉縞画像 76の輝度を示し、縦軸は固 体レーザ媒質 31の高さ方向(Z方向)の座標を示している。図 14 (a)—(c)は、それ ぞれ図 13 (a)—(c)に対応している。これらの図に示されるように、干渉縞の一次元 プロファイルには、基準線 77上における輝度の振動に応じた波形が現れる。 [0113] Fig. 14 shows one-dimensional profiles of interference fringes under various light source distances. In FIG. 14, the horizontal axis indicates the luminance of the interference fringe image 76 on the reference line 77, and the vertical axis indicates the fixed value. The coordinates in the height direction (Z direction) of the body laser medium 31 are shown. Figures 14 (a)-(c) correspond to Figures 13 (a)-(c), respectively. As shown in these figures, in the one-dimensional profile of the interference fringes, a waveform corresponding to the luminance fluctuation on the reference line 77 appears.
[0114] コンピュータ 62は、一次元プロファイルに現れる輝度の振動の回数を計数する。こ の計数は任意の方法を用いて行われる。例えば、所定の閾値 II以上の輝度を有す るピークを一次元プロファイル中で検出し、そのピークを計数してもよい。ピークの検 出は、任意の波形解析方法を用いて行われる。  [0114] The computer 62 counts the number of luminance oscillations appearing in the one-dimensional profile. This counting is performed using any method. For example, a peak having a luminance equal to or higher than the predetermined threshold II may be detected in the one-dimensional profile, and the peak may be counted. Peak detection is performed using any waveform analysis method.
[0115] なお、干渉縞画像 76のうち Z座標の全範囲の上下 5%に含まれる部分は、輝度の 振動回数の計数対象から除外することが好ましい。このため、本実施形態では、図 1 4に示されるように、一次元プロファイルにおける座標 zlから座標 z2までの範囲内で 輝度の振動回数を計数する。このほかに、干渉縞画像 76のうち Z座標の全範囲の上 下 5%に含まれる画素を除!、て一次元プロファイルを作成し、その一次元プロフアイ ルの Z座標の全範囲にわたって輝度の振動回数を計数してもよい。  It is preferable that portions of the interference fringe image 76 that are included in the upper and lower 5% of the entire range of the Z coordinate be excluded from the counting of the number of luminance oscillations. Therefore, in the present embodiment, as shown in FIG. 14, the number of luminance oscillations is counted within the range from the coordinate zl to the coordinate z2 in the one-dimensional profile. In addition, a pixel included in the upper and lower 5% of the entire range of the Z coordinate of the interference fringe image 76 is excluded to create a one-dimensional profile, and the luminance of the one-dimensional profile is calculated over the entire range of the Z coordinate. The number of vibrations may be counted.
[0116] コンピュータ 62は、光源距離を所定の距離ずつ変えながら励起光源 32を駆動して 励起光を固体レーザ媒質 31に照射させ、さらに検査光源 55に発光命令信号を送つ て検査光を放射させる。これにより、干渉縞画像 76が取得され、固体レーザ媒質 31 の高さ方向(Z方向)に沿った基準線 77上における輝度の振動回数が計数される。 例えば、図 13 (b)—(d)の干渉縞画像 76について、それぞれ 5回、 2回および 10回 という振動回数が得られる。  [0116] The computer 62 drives the excitation light source 32 while changing the light source distance by a predetermined distance to irradiate the solid-state laser medium 31 with the excitation light, and further sends a light emission command signal to the inspection light source 55 to emit the inspection light. Let it. As a result, the interference fringe image 76 is obtained, and the number of vibrations of the luminance on the reference line 77 along the height direction (Z direction) of the solid-state laser medium 31 is counted. For example, with respect to the interference fringe image 76 shown in FIGS. 13B to 13D, the number of vibrations of 5, 2, and 10, respectively, is obtained.
[0117] このように、コンピュータ 62は、様々な光源距離のもとで干渉縞画像 76における Z 方向に沿った輝度の振動回数を繰り返し計数し、振動回数の変化を調べる。振動回 数が最も少ないとき、励起分布の Z方向の不均一性が最も抑えられる。コンピュータ 6 2は、様々な光源距離のもとで取得した振動回数から、振動回数が最小になる光源 距離を導出する。そして、コンピュータ 62は、ァクチユエータ 40を駆動して、算出した 光源距離に励起光源 32を配置する。これにより、固体レーザ媒質 31の励起分布の Z 方向における不均一性を最小限に抑えることができる。レーザ光源 11が被増幅光を 発すると、この被増幅光は主増幅器 17によって増幅され、 MOPAシステム lbから出 力される。励起分布の Z方向の不均一性が抑えられているため、品質の良い出力ビ ームを得ることができる。 [0117] As described above, the computer 62 repeatedly counts the number of vibrations of the luminance along the Z direction in the interference fringe image 76 under various light source distances, and checks a change in the number of vibrations. At the lowest frequency, the non-uniformity of the excitation distribution in the Z direction is minimized. The computer 62 derives the light source distance that minimizes the number of vibrations from the number of vibrations obtained under various light source distances. Then, the computer 62 drives the actuator 40 to arrange the excitation light source 32 at the calculated light source distance. Thereby, the non-uniformity of the excitation distribution of the solid-state laser medium 31 in the Z direction can be minimized. When the laser light source 11 emits the amplified light, the amplified light is amplified by the main amplifier 17 and output from the MOPA system lb. Since the non-uniformity of the excitation distribution in the Z direction is suppressed, a high-quality output You can get the game.
[0118] 上記実施形態では、励起光源 32において二つの単位光源、すなわちレーザアレイ モジュール 33が積み重ねられている。し力し、より多数のレーザアレイモジュール 33 が積み重ねられていてもよい。固体レーザ媒質 31の高さ方向(Z方向)に沿って積み 重ねられるレーザアレイモジュール 33の数は、固体レーザ媒質 31および励起光源 3 2間の距離の調整に影響を与えない。したがって、より多数のレーザアレイモジユー ル 33を積み重ねた構造の励起光源を使用したときにも、本実施形態と同様の手法を 用いて固体レーザ媒質 31の励起分布を制御し、熱効果を削減することができる。  In the above embodiment, two unit light sources, ie, the laser array module 33, are stacked in the excitation light source 32. However, more laser array modules 33 may be stacked. The number of the laser array modules 33 stacked along the height direction (Z direction) of the solid-state laser medium 31 does not affect the adjustment of the distance between the solid-state laser medium 31 and the excitation light source 32. Therefore, even when an excitation light source having a structure in which a larger number of laser array modules 33 are stacked is used, the excitation distribution of the solid-state laser medium 31 is controlled using the same method as in the present embodiment, and the thermal effect is reduced. can do.
[0119] 以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記 実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々 な変形が可能である。  As described above, the present invention has been described in detail based on the embodiments. However, the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof.
[0120] 上記の第 3実施形態では、マッハツエンダ干渉系 56を用いて干渉縞を形成する。し かし、他の任意の干渉光学系を使用して干渉縞を形成してもよい。  [0120] In the third embodiment, an interference fringe is formed using the Mach-Zehnder interferometer 56. However, interference fringes may be formed using any other interference optical system.
[0121] 上述した発明から明らかなように、本発明の実施形態には様々な方法で変形をカロ えてもよい。このような変形は、本発明の範囲力も逸脱するものではなぐ当業者にと つては明らかなように、このような変形は、すべて下記の請求の範囲内に含まれるよう に意図されている。  As is apparent from the above-described invention, the embodiments of the present invention may be modified in various ways. All such modifications are intended to be included within the scope of the following claims, as will be apparent to those skilled in the art, such modifications do not depart from the scope of the invention.
産業上の利用可能性  Industrial applicability
[0122] 本発明によれば、多数の単位光源を積み重ねた構造の励起光源を使用したときに も固体レーザ媒質の励起分布を適切に制御でき、それによつて熱効果を補償できる [0122] According to the present invention, even when an excitation light source having a structure in which a number of unit light sources are stacked is used, the excitation distribution of the solid-state laser medium can be appropriately controlled, thereby compensating for the thermal effect.

Claims

請求の範囲 The scope of the claims
[1] 励起光が照射されることにより励起され、所定波長の光を誘導放出することの可能 な固体レーザ媒質と、  [1] a solid-state laser medium that is excited by irradiation with the excitation light and is capable of stimulated emission of light of a predetermined wavelength;
前記固体レーザ媒質に前記励起光を照射する励起光源と、  An excitation light source for irradiating the solid-state laser medium with the excitation light,
前記励起光源を移動させて、前記固体レーザ媒質および前記励起光源間の距離 を変更することの可能な移動装置と、  A moving device capable of changing the distance between the solid-state laser medium and the excitation light source by moving the excitation light source;
前記固体レーザ媒質の励起分布を測定する測定部と、  A measuring unit for measuring an excitation distribution of the solid-state laser medium,
前記測定部によって測定された励起分布に応じて前記移動装置を駆動し、前記固 体レーザ媒質および前記励起光源間の距離を調整することにより、前記固体レーザ 媒質の励起分布を制御する制御部と  A control unit that controls the excitation distribution of the solid-state laser medium by driving the moving device according to the excitation distribution measured by the measurement unit and adjusting a distance between the solid-state laser medium and the excitation light source.
を備える励起分布制御装置。  An excitation distribution control device comprising:
[2] 前記固体レーザ媒質は、第 1および第 2の端面と、それらの端面間を延在する長尺 の上面および底面と、前記上面および底面の間で前記第 1および第 2の端面の一方 力 他方まで延在する二つの側面とを有し、かつ前記上面、底面および二つの側面 に実質的に平行な方向に沿った長さと、前記上面および底面に実質的に垂直な方 向に沿った高さと、前記二つの側面に実質的に垂直な方向に沿った厚さとを有する スラブ形状の媒質であり、  [2] The solid-state laser medium includes first and second end surfaces, a long upper surface and a bottom surface extending between the end surfaces, and the first and second end surfaces between the upper surface and the bottom surface. One force has two side surfaces extending to the other, and has a length along a direction substantially parallel to the top surface, the bottom surface and the two side surfaces, and a direction substantially perpendicular to the top surface and the bottom surface. A slab-shaped medium having a height along the direction and a thickness along a direction substantially perpendicular to the two side surfaces,
前記励起光源は、前記固体レーザ媒質の高さ方向に沿って積み重ねられた第 1お よび第 2の単位光源を含んで 、る、  The excitation light source includes first and second unit light sources stacked along a height direction of the solid-state laser medium.
請求項 1に記載の励起分布制御装置。  The excitation distribution control device according to claim 1.
[3] 前記測定部は、前記励起光源から前記励起光が照射されているときに前記固体レ 一ザ媒質の第 1または第 2の端面力 発する自然放出光の画像を取得する撮像装置 を有しており、  [3] The measurement unit has an imaging device for acquiring an image of spontaneous emission light generated by the first or second end face force of the solid-state laser medium when the excitation light source irradiates the excitation light. And
前記制御部は、前記画像を用いて前記固体レーザ媒質の高さ方向における前記 自然放出光の輝度分布を求め、その輝度分布において前記第 1および第 2の単位 光源の発光にそれぞれ対応する二つのピーク間に位置する谷の深さが最小となるよ うに前記移動装置を駆動する、  The control unit obtains a luminance distribution of the spontaneous emission light in a height direction of the solid-state laser medium using the image, and two luminance distributions corresponding to the light emission of the first and second unit light sources, respectively. Driving the moving device so that the depth of the valley located between the peaks is minimized;
請求項 2に記載の励起分布制御装置。 3. The excitation distribution control device according to claim 2.
[4] 前記測定部は、前記第 1の端面を通じて前記固体レーザ媒質に入射しジグザグ光 路上を伝搬して前記第 2の端面から出射する前記所定波長の光を集光する集光装 置と、前記集光装置によって集光された光のビームパターンの画像を取得する撮像 装置とを有しており、 [4] The measuring unit is configured to collect the light having the predetermined wavelength, which is incident on the solid-state laser medium through the first end face, propagates on the zigzag optical path, and emits from the second end face. An imaging device for acquiring an image of a beam pattern of light condensed by the light condensing device,
前記制御部は、前記励起光が前記固体レーザ媒質に照射されているときの前記ビ ームパターンの面積を算出し、その面積が最小となるように前記移動装置を駆動する 請求項 2に記載の励起分布制御装置。  The pump according to claim 2, wherein the control unit calculates an area of the beam pattern when the solid-state laser medium is irradiated with the excitation light, and drives the moving device to minimize the area. Distribution control device.
[5] 前記測定部は、検査光を発する検査光源と、前記検査光を第 1および第 2の光に 分岐し、前記第 1の光を前記第 1の端面を通じて前記固体レーザ媒質に入射させジ グザグ光路上を伝搬させて前記第 2の端面から出射させ、前記第 2の光と干渉させて 、前記固体レーザ媒質の厚さ方向および高さ方向に沿った矩形状のパターンを有す る干渉縞を生成する干渉光学系と、前記干渉縞の画像を取得する撮像装置とを有し ており、 [5] The measurement unit may include an inspection light source that emits inspection light, split the inspection light into first and second lights, and make the first light incident on the solid-state laser medium through the first end surface. The solid-state laser medium has a rectangular pattern along the thickness direction and the height direction of the solid-state laser medium by propagating on the zigzag optical path, emitting from the second end face, and interfering with the second light. An interference optical system that generates interference fringes, and an imaging device that acquires an image of the interference fringes,
前記制御部は、前記励起光が前記固体レーザ媒質に照射されているときに取得さ れた前記干渉縞の画像内において前記高さ方向に平行な基準線を設定し、その基 準線上における前記画像の輝度の振動回数を計数し、その振動回数が最小となるよ うに前記移動装置を駆動する、  The control unit sets a reference line parallel to the height direction in an image of the interference fringe acquired when the excitation light is applied to the solid-state laser medium, and sets the reference line on the reference line. Counting the number of vibrations of the brightness of the image, and driving the moving device so that the number of vibrations is minimized;
請求項 2に記載の励起分布制御装置。  3. The excitation distribution control device according to claim 2.
[6] 前記制御部は、前記振動回数を計数する前に、前記励起光が前記固体レーザ媒 質に照射されていないときに取得される前記干渉縞の画像が前記高さ方向に実質 的に平行な明線を有するように前記干渉光学系を調整する、 [6] Before counting the number of vibrations, the control unit may control the image of the interference fringes acquired when the excitation light is not irradiated on the solid-state laser medium, substantially in the height direction. Adjusting the interference optics to have parallel bright lines,
請求項 5に記載の励起分布制御装置。  6. The excitation distribution control device according to claim 5.
[7] 励起光源力 励起光が照射されることにより励起され、所定波長の光を誘導放出す ることの可能な固体レーザ媒質の励起分布を制御する方法であって、 [7] Excitation light source power A method for controlling the excitation distribution of a solid-state laser medium that is excited by irradiation with excitation light and is capable of stimulated emission of light of a predetermined wavelength,
前記固体レーザ媒質の励起分布を測定し、  Measuring the excitation distribution of the solid state laser medium,
測定された励起分布に応じて前記励起光源を移動させ、前記固体レーザ媒質およ び前記励起光源間の距離を調整する ことを備える方法。 The excitation light source is moved according to the measured excitation distribution, and the distance between the solid-state laser medium and the excitation light source is adjusted. A method comprising:
[8] 前記固体レーザ媒質は、第 1および第 2の端面と、それらの端面間を延在する長尺 の上面および底面と、前記上面および底面の間で前記第 1および第 2の端面の一方 力 他方まで延在する二つの側面とを有し、かつ前記上面、底面および二つの側面 に実質的に平行な方向に沿った長さと、前記上面および底面に実質的に垂直な方 向に沿った高さと、前記二つの側面に実質的に垂直な方向に沿った厚さとを有する スラブ形状の媒質であり、  [8] The solid-state laser medium includes first and second end faces, elongated upper and lower faces extending between the end faces, and the first and second end faces between the upper and bottom faces. One force has two side surfaces extending to the other, and has a length along a direction substantially parallel to the top surface, the bottom surface and the two side surfaces, and a direction substantially perpendicular to the top surface and the bottom surface. A slab-shaped medium having a height along the direction and a thickness along a direction substantially perpendicular to the two side surfaces,
前記励起光源は、前記固体レーザ媒質の高さ方向に沿って積み重ねられた第 1お よび第 2の単位光源を含んで 、る、  The excitation light source includes first and second unit light sources stacked along a height direction of the solid-state laser medium.
請求項 7に記載の方法。  The method of claim 7.
[9] 前記励起分布の測定は、前記励起光源から前記励起光が照射されているときに前 記固体レーザ媒質の第 1または第 2の端面力 発する自然放出光の画像を取得する ことを含んでおり、  [9] The measurement of the excitation distribution includes acquiring an image of the spontaneous emission light generated by the first or second end face force of the solid-state laser medium when the excitation light is irradiated from the excitation light source. And
前記距離の調整は、前記画像を用いて前記固体レーザ媒質の高さ方向における 前記自然放出光の強度分布を求め、その強度分布において前記第 1および第 2の 単位光源の発光にそれぞれ対応する二つのピーク間に位置する谷の深さが最小と なるように前記距離を調整することを含んで ヽる、請求項 8に記載の方法。  The adjustment of the distance is performed by obtaining an intensity distribution of the spontaneous emission light in a height direction of the solid-state laser medium using the image, and determining the intensity distribution of the spontaneous emission light corresponding to the emission of the first and second unit light sources. 9. The method according to claim 8, comprising adjusting the distance such that the depth of a valley located between two peaks is minimized.
[10] 前記励起分布の測定は、前記励起光が前記固体レーザ媒質に照射されているとき に前記第 1の端面を通じて前記固体レーザ媒質に入射しジグザグ光路上を伝搬して 前記第 2の端面から出射する前記所定波長の光を集光し、その集光された光のビー ムパターンの画像を取得することを含んでおり、  [10] The measurement of the excitation distribution is such that, when the solid-state laser medium is irradiated with the excitation light, the excitation light is incident on the solid-state laser medium through the first end face and propagates on a zigzag optical path to form the second end face. Condensing the light of the predetermined wavelength emitted from the device, and acquiring an image of a beam pattern of the condensed light.
前記距離の調整は、前記ビームパターンの面積を算出し、その面積が最小となるよ うに前記距離を調整することを含んで!/ヽる、  Adjusting the distance includes calculating the area of the beam pattern and adjusting the distance so that the area is minimized! / Puru,
請求項 8に記載の方法。  A method according to claim 8.
[11] 前記励起分布の測定は、所定の検査光源から発する検査光を第 1および第 2の光 に分岐し、前記第 1の光を前記固体レーザ媒質の第 1の端面に入射させジグザグ光 路上を伝搬させて前記第 2の端面から出射させ、前記第 2の光と干渉させて、前記固 体レーザ媒質の厚さ方向および高さ方向に沿った矩形状のパターンを有する干渉 縞を生成し、その干渉縞の画像を取得することを含んでおり、 前記距離の調整は、前記励起光が前記固体レーザ媒質に照射されているときに取 得された前記干渉縞の画像内において前記高さ方向に平行な基準線を設定し、そ の基準線上における前記画像の輝度の振動回数を計数し、その振動回数が最小と なるように前記距離を調整することを含んで ヽる、 [11] In the measurement of the excitation distribution, the inspection light emitted from a predetermined inspection light source is branched into first and second lights, and the first light is made incident on a first end face of the solid-state laser medium, and zigzag light is emitted. Propagation on the road, emission from the second end face, interference with the second light, interference having a rectangular pattern along the thickness direction and the height direction of the solid laser medium Generating fringes and obtaining an image of the interference fringes, wherein the adjusting of the distance includes adjusting the distance in the images of the interference fringes obtained when the excitation light is applied to the solid-state laser medium. Setting a reference line parallel to the height direction, counting the number of vibrations of the brightness of the image on the reference line, and adjusting the distance such that the number of vibrations is minimized. ,
請求項 8に記載の方法。 A method according to claim 8.
前記励起分布の測定は、干渉光学系を用いて前記干渉縞を生成することを含んで おり、  The measurement of the excitation distribution includes generating the interference fringes using an interference optical system,
前記距離の調整の前に、前記励起光が前記固体レーザ媒質に照射されていない ときに取得される前記干渉縞の画像が前記高さ方向に実質的に平行な明線を有す るように前記干渉光学系を調整することをさらに備える請求項 11に記載の方法。  Before the adjustment of the distance, an image of the interference fringe obtained when the excitation light is not irradiated on the solid-state laser medium has a bright line substantially parallel to the height direction. The method of claim 11, further comprising adjusting the interference optics.
PCT/JP2005/005504 2004-03-26 2005-03-25 Device and method for controlling pumping distribution of solid laser medium WO2005093914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004092895A JP4473617B2 (en) 2004-03-26 2004-03-26 Apparatus and method for controlling the excitation distribution of a solid-state laser medium
JP2004-092895 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005093914A1 true WO2005093914A1 (en) 2005-10-06

Family

ID=35056511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005504 WO2005093914A1 (en) 2004-03-26 2005-03-25 Device and method for controlling pumping distribution of solid laser medium

Country Status (2)

Country Link
JP (1) JP4473617B2 (en)
WO (1) WO2005093914A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3496215A1 (en) * 2017-12-08 2019-06-12 Csir A controllable laser amplifier apparatus and method
US11217962B2 (en) * 2017-07-13 2022-01-04 Gigaphoton Inc. Laser system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709061B1 (en) 2009-08-19 2022-12-14 Lawrence Livermore National Security, LLC Method of fabricating and method of using a diffractive optic
US8547632B2 (en) * 2009-08-19 2013-10-01 Lawrence Livermore National Security, Llc Method and system for homogenizing diode laser pump arrays
US9197027B2 (en) 2012-07-05 2015-11-24 C2C Link Corporation Method for making laser module
JP5592444B2 (en) * 2012-07-27 2014-09-17 シーツーシー リンク コーポレーション Laser module manufacturing method
JP6173572B2 (en) * 2013-09-23 2017-08-02 中国科学院光▲電▼研究院 Large aperture uniform amplification laser module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214040A (en) * 1996-01-29 1997-08-15 Terumo Corp Continuously variable wavelength laser
JP2002134817A (en) * 2000-10-26 2002-05-10 Fanuc Ltd Ld excited slab type solid-state laser generator
JP2002164596A (en) * 2000-11-24 2002-06-07 Toshiba Corp Solid-state laser device and laser processing device
JP2003078194A (en) * 2001-09-06 2003-03-14 Mitsubishi Heavy Ind Ltd Lens effect correcting device for fixed laser and its lens effect correcting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214040A (en) * 1996-01-29 1997-08-15 Terumo Corp Continuously variable wavelength laser
JP2002134817A (en) * 2000-10-26 2002-05-10 Fanuc Ltd Ld excited slab type solid-state laser generator
JP2002164596A (en) * 2000-11-24 2002-06-07 Toshiba Corp Solid-state laser device and laser processing device
JP2003078194A (en) * 2001-09-06 2003-03-14 Mitsubishi Heavy Ind Ltd Lens effect correcting device for fixed laser and its lens effect correcting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217962B2 (en) * 2017-07-13 2022-01-04 Gigaphoton Inc. Laser system
EP3496215A1 (en) * 2017-12-08 2019-06-12 Csir A controllable laser amplifier apparatus and method

Also Published As

Publication number Publication date
JP4473617B2 (en) 2010-06-02
JP2005285812A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US7277229B2 (en) Linear light beam generating optical system
WO2005093914A1 (en) Device and method for controlling pumping distribution of solid laser medium
JP3589299B2 (en) Beam shaping device
US6999491B2 (en) High intensity and high power solid state laser amplifying system and method
US9847616B1 (en) Laser beam amplification by homogenous pumping of an amplification medium
JP2010114162A (en) Laser gain medium, laser oscillator, and laser amplifier
JP2006100772A (en) One-dimensional illumination apparatus and imaging apparatus
JP6807662B2 (en) Method for manufacturing laser oscillator and excitation light detection structure
JP6208245B2 (en) Device for amplifying laser pulses with improved time contrast
JP6995465B2 (en) Laser oscillator and laser processing equipment
JP2000164958A (en) Oscillation method for ld excitation laser, laser oscillator, and laser machining device
JP2006196882A (en) Optical amplifier, laser oscillator, and mopa laser equipment
JP2022000909A (en) Laser oscillator and laser processing device
JP2009194176A (en) Solid laser device and laser machining method
JP2002232056A (en) Semiconductor laser device, and fastening method of lens position thereof
JP6693040B1 (en) Aberration adjusting method and aberration controlling method for laser processing apparatus
JP2004246158A (en) Semiconductor laser system
JP4824284B2 (en) Semiconductor laser pumped solid-state laser device
JP2022061443A (en) Laser device
US20060256824A1 (en) Semiconductor laser pumped solid device
JPH1032359A (en) Semiconductor laser ray condensing device
JP2006253491A (en) Laser device and laser system
JP3947397B2 (en) Laser light generator
JP2023055378A (en) Laser amplifier and laser amplification system
JPH03263386A (en) Laser oscillator, laser resonator and semiconductor processing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase