WO2005092541A1 - Powders of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high conductivity and high rigidity, and method for production thereof - Google Patents

Powders of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high conductivity and high rigidity, and method for production thereof Download PDF

Info

Publication number
WO2005092541A1
WO2005092541A1 PCT/JP2005/006554 JP2005006554W WO2005092541A1 WO 2005092541 A1 WO2005092541 A1 WO 2005092541A1 JP 2005006554 W JP2005006554 W JP 2005006554W WO 2005092541 A1 WO2005092541 A1 WO 2005092541A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper alloy
nanocrystalline
powder
high hardness
Prior art date
Application number
PCT/JP2005/006554
Other languages
French (fr)
Japanese (ja)
Inventor
Harumatsu Miura
Nobuaki Miyao
Kazuo Oda
Masaru Mizutani
Hidenori Ogawa
Munehide Katsumura
Takao Araki
Masayuki Hirota
Keiichi Murakami
Akihiro Murakami
Tsukasa Hirahara
Tadayuki Yano
Toshio Ito
Toru Kishi
Original Assignee
Nano Technology Institute, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Technology Institute, Inc filed Critical Nano Technology Institute, Inc
Publication of WO2005092541A1 publication Critical patent/WO2005092541A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to a powder of a nanocrystalline copper metal and a nanocrystalline copper alloy having high hardness and high conductivity, a high hardness and a strong nanocrystalline copper having high strength and high conductivity ⁇ are copper alloy bulk materials and
  • the present invention relates to a method for producing powders and bulk materials such as a nano-sized copper alloy having a high strength conductive copper or a copper alloy composition and a nano-sized intermetallic compound having a high strength conductive copper or copper alloy composition, and a method for producing the same.
  • the strength and hardness of the metal material increase as the crystal grain size d decreases, as shown by the Hallbeck relation, and this relationship holds true until d is around several tens of nm. Therefore, ultra-fine crystal grain size down to the nanometer level is one of the most important ways to strengthen metallic materials. This is extremely important as a method of strengthening copper alloy materials. In a copper alloy, if hard substances such as intermetallic compounds are precipitated or dispersed in the microcrystalline structure thus obtained, the strength characteristics can be further improved.
  • the crystal grain size d of many metal materials, including copper alloys manufactured by the melting method is usually several micron to several hundred micron, and d is in the nano order even by post-processing.
  • the lower limit of the grain size that can be reached is about 4 to 5 / xm. Therefore, such a conventional method does not provide a material having a fine particle size down to a nanosize.
  • the present invention solves the above problems, and is the following month.
  • the present invention basically relates to (1) a mixed material of each of the components of the copper alloy, (2) a wrought copper alloy material, or (3) a material of (1) and (2).
  • a mixture of materials containing elements or their alloys is processed by mechanical milling (MA) or mechanical milling (MM) using a ball mill or the like to make the crystal grain size ultra-fine to the nano-size level.
  • the object of the present invention is to provide a bulk material of the nanocrystalline copper alloy which retains the properties of the powder by hot solidifying and molding the powder of the nanocrystalline copper alloy. That is, the present invention is a powder material and a bulk material of a nanocrystalline copper alloy having high hardness, high strength and toughness having the following constitution, and a method for producing both materials.
  • Nanocrystalline copper having high hardness and high conductivity characterized in that copper metal powder composed of an aggregate of copper metal nanocrystal particles is composed of nanocrystals having a size of 2 to 100 nm. Metal powder.
  • a copper alloy powder comprising an aggregate of copper alloy nanocrystal particles, the alloy element of which is beryllium, chromium, zirconium, titanium, silver, cobalt, nickel, zinc, iron, cadmium, manganese, aluminum, It is composed of at least one selected from molybdenum, vanadium, tungsten, niobium, tantalum, phosphorus, silicon, and boron. 40% by mass, and when there are two or more alloying elements, the total concentration is 0.05 to 45% by mass, and the nanocrystalline copper alloy powder is made of these alloying elements.
  • a nanocrystalline copper alloy powder having high hardness and high conductivity characterized by solid solution strengthening and crystal grain strengthening to a size of 2 to 100 nm.
  • a copper alloy powder comprising an aggregate of copper alloy nanocrystal particles, as a precipitation / dispersion strengthening substance and a Z or crystal grain growth inhibiting substance, (1) any one selected from the alloy elements according to claim 2. Or more, or (2) a nanocrystalline copper alloy having high hardness and high conductivity, characterized by being present in the presence of at least one kind of a metal tube compound composed of each of the above elements and copper. Powder.
  • Copper or copper alloy powder composed of aggregates of copper or copper alloy nanocrystals is a substance that suppresses the decrease in conductivity due to solid-solution impurities in copper or copper alloy; zinc, cadmium, silicon, phosphorus, or oxygen.
  • a copper or copper alloy powder composed of an aggregate of copper or copper alloy nanocrystals contains oxygen in the form of a metal or metalloid oxide in an amount of 0.05 to 1.0% by mass.
  • the nanocrystalline copper or copper alloy having high hardness and high conductivity according to any one of the preceding items [1] to [4], characterized in that: Powder o
  • the copper metal nanocrystal particles are characterized by being obtained by subjecting a lump, flake, granular, or powdered copper metal material to mechanical milling (MM) using a pole mill or the like.
  • MM mechanical milling
  • the nanocrystalline copper gold) h powder having high hardness and high conductivity according to any one of [1], [4] and [5] above.
  • the copper alloy nanocrystal particles are formed into a block, flake, granule, or powdered copper alloy.
  • nanocrystalline copper alloy powder having high hardness and high electrical conductivity according to any one of the above items [2] to [5], which is obtained by performing (MM).
  • the copper alloy nanocrystal particles are in a lump, flake, granular, powdery copper, beryllium copper, chromium copper, zirconium copper, silver copper, titanium copper, silicon bronze, kelmet alloy, brass, aluminum bronze, Nickel copper, nickel bronze, Corson alloy, copper manganese alloy, phosphor bronze, nickel silver, cupronickel, other alloying elements or alloys
  • One or more copper alloy components selected from two or more Obtained by mechanical milling (MM) or mechanical grooving (MA) using a ball mill or the like, characterized in that the height is as described in any one of the above items [2] to [5].
  • Nanocrystalline particle aggregates obtained by mechanical alloying (MA) or mechanical milling (MM) when copper alloy powder consisting of aggregates of copper or copper alloy nanocrystalline particles is obtained
  • MA mechanical alloying
  • MM mechanical milling
  • titanium, zirconium or vanadium is contained in an amount of 0.01 to 5.0% by mass as an atomic bond promoting substance in the method described in any one of the above items [1] to [9].
  • Spark Plasma S intering hot pressing, sheath rolling (S heath Ro IIing), hot forging, extrusion, hot isostatic pressing (HIP), etc.
  • the atmosphere in which the mechanical milling or mechanical alloying is performed is any one selected from (1) an inert gas such as an argon gas, (2) an N 2 gas, or (3) an NH 3 gas, or ( 4)
  • the above item [12] or [13], wherein the atmosphere in which the mechanical milling or mechanical alloying is performed is a gas atmosphere to which a reducing substance such as a slight amount of H 2 gas is added.
  • the atmosphere in which the mechanical milling or mechanical alloying is performed is a vacuum or a reduced atmosphere in which a reducing substance such as a slight amount of H 2 gas is added in a vacuum or vacuum.
  • the method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity according to [13].
  • the powder is subjected to microwave heating and pressure sintering or low frequency induction heating and pressure sintering.
  • the alloying elements that are constituents of the material are present as micron-sized intermetallic compounds, but the mechanical alloying method is used for such high-strength conductive copper alloy materials. And a substance such as an intermetallic compound close to nano-sized granular or spherical 3 ⁇ 4 ⁇ (Nanocrystalline phase) A very tough powder that is precipitated and dispersed in the (nanocrystalline phase) is obtained. Due to the synergistic effect of the precipitation and dispersion of such substances in the same parent phase, it is possible to produce materials with extremely excellent strength properties that cannot be produced by conventional dissolution methods.
  • the present invention is basically based on a method of mechanically milling (MA) or mechanical milling (MM) a material such as a mixed material of a nanocrystalline copper alloy forming component or a melted copper alloy powder material by using a ball mining or the like. )
  • a material such as a mixed material of a nanocrystalline copper alloy forming component or a melted copper alloy powder material by using a ball mining or the like.
  • MM mechanical milling
  • a material such as a mixed material of a nanocrystalline copper alloy forming component or a melted copper alloy powder material by using a ball mining or the like.
  • MA mechanical milling
  • the MM or MA-treated powder can be easily refined to a crystal grain size of about 5 to 50 nm by the mechanical energy added by the pole mill.
  • the hardness of beryllium copper refined to a particle size of about 15 nm is about 500 to 600.
  • MM and MA treated powder was vacuum-sealed in a stainless steel tube (sheet) with an inner diameter of about 1 Omm, and this was rolled using a rolling mill at a temperature around 700 to 75 ° C.
  • sheet stainless steel tube
  • a rolling mill at a temperature around 700 to 75 ° C.
  • sheath rolling for example, in the case of beryllium copper containing about 2% by mass of beryllium, sheets with a thickness of about 1.5 mm exhibiting a tensile strength of about 1.9 GPa or more can be easily formed. It can be manufactured in In addition, usually up to about 0.5 mass% of oxygen, which is necessarily mixed in the process of MA or MM processing, into the powder of the mechanical alloying (MA) or mechanical milling (MM) process described in the preceding paragraph is a metal or semi-metal.
  • MA mechanical alloying
  • MM mechanical milling
  • a nanocrystalline copper alloy is obtained by subjecting a material such as an elemental powder material of a copper alloy forming component or a melted copper alloy to a mechanical milling (MA) or a mechanical milling (MM) using a ball mill or the like.
  • a material such as an elemental powder material of a copper alloy forming component or a melted copper alloy to a mechanical milling (MA) or a mechanical milling (MM) using a ball mill or the like.
  • MA mechanical milling
  • MM mechanical milling
  • An extremely hard and tough powder material in which nano-sized intermetallic compounds are precipitated and dispersed in the phase can be easily manufactured, and when this material is subjected to solidification molding such as sheath rolling or extrusion, high hardness, high strength and high conductivity are obtained.
  • a nanocrystalline copper alloy bulk material having properties such as toughness and excellent corrosion resistance can be easily produced.
  • powdered nanocrystalline copper alloys such as CU 97.7 Be 2 CO 03 (mass%), CU 99.85 Z ⁇ 0,5 (mass%) and CU S935 C ⁇ .65 (mass%) A bulk material is obtained.
  • Row (MA) atmosphere: Argon gas ZM A time: 200 h
  • Cu S7 A 3 mass%)
  • A Be, Cr, Zr, Ti, Ag, or P
  • Table 1 shows the average crystal grain size d of these MA-treated powders obtained by using the Sierra equation.
  • the addition of about 3% by mass of any element greatly promotes the refinement of crystal grains of copper, and particularly the element having a very low solid solubility in copper and a high melting point. (Zirconium, Chromium, etc.) are more effective.
  • MA Mechanical alloying
  • Cu copper
  • Be beryllium
  • Co cobalt
  • Zr zirconium
  • Cr chromium
  • these alloy powders were vacuum-sealed in a stainless steel tube (sheath) having an inner diameter of about 1 Omm, subjected to hot rolling at 600 ° C, and then cooled with water to obtain a solidified molded sample.
  • This The average crystal grain size d and the Vickers hardness Hv of these solidified copper alloy compacts and the above-mentioned copper alloy MA powder samples are as shown in Table 2. In this table, the value of d was determined using the Sierra equation.
  • the Vickers hardness of the MA-treated powder is a micro-Vickers hardness measured under a load of 100 g.
  • Hardness Hv of MA powder is micro-Vickers hardness measured under a load of 100g
  • MA Mechanical alloying
  • Cu copper
  • Be beryllium
  • C0 cobalt
  • Z zirconium
  • Cr chromium
  • each of the solidified molded articles has extremely excellent strength characteristics that surpass ultrahigh-strength steel having both strength and elongation without significantly impairing the high conductivity of copper.
  • the bulk material of the tough nanocrystalline copper or copper alloy having high hardness, high strength and high conductivity of the present invention can be used as a conductive high-strength spring material for telecommunications equipment, and is lightweight for electric and electronic equipment. And miniaturization.
  • a material such as an elemental mixture of components forming a copper alloy material or a melted copper alloy to mechanical alloying (MA) or mechanical milling (MM)
  • MA mechanical alloying
  • MM mechanical milling
  • Copper crystal grains are ultra-fine to nano size, and finer nano-sized intermetallic compounds etc. are precipitated and dispersed as granular or nearly spherical particles in the same crystal phase. It is possible to produce more excellent nanocrystalline copper alloy materials by strengthening crystal grain refinement at the nano-size level that cannot be achieved and precipitation-dispersion of intermetallic compounds.
  • a rapid heating method using microwaves is used for heating the powder to the solidification molding temperature (even if it is not a dielectric substance, it can be used in the case of metal). If the powder is also a powder, microwave heating (microwave heating) can be applied) and / or if a low-frequency induction heating method is applied, the growth of crystal grains during the heating process is suppressed and the nanocrystalline copper alloy bulk The material can be manufactured more effectively.

Abstract

A nano crystalline copper metal powder, which comprises aggregates of nano crystal grains of copper metal or a copper alloy, wherein the nano crystal grain has a size of 2 to 1000 nm; a bulk material of a nano crystal copper or copper alloy exhibiting high hardness, high strength, high electric conductivity and high toughness, which comprises a great number of above nano crystal grains being firmly bound with one another; and a method for producing the above bulk material of a nano crystal copper or copper alloy exhibiting high hardness, high strength, high electric conductivity and high toughness, which comprises subjecting the above copper powder or copper alloy powder to a solidification forming such as a vacuum hot solidification forming or an explosive forming, for example, a spark plasma sintering at a temperature of 250 to 700°C, hot pressing, sheath rolling, hot forging, extruding or hot isotropic pressure forming (HIP).

Description

明 細 書 高硬度で高導電性を有するナノ結晶銅金属及びナノ結晶銅合金の粉末、 高硬度 ·高強度で 高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材並びにそれらの製造方法  Description Powder of nanocrystalline copper metal and nanocrystalline copper alloy having high hardness and high conductivity, high hardness, high strength and high strength, bulk material of nanocrystalline copper or copper alloy having high conductivity, and methods for producing them
技術分野 Technical field
本発明は、 高硬度で高導電性を有するナノ結晶銅金属及びナノ結晶銅合金の粉末、 高硬 度■高強度で高導電性を有する強靱なナノ結晶銅 ^は銅合金のバルク材並びにそれらの製 造方法に関し、 高力導電性銅又は銅合金組成のナノサイズの金属間化合物の析出,分散強 化型ナノ結晶銅合金等の粉末とバルク材及びそれらの製造方法に関する。  The present invention relates to a powder of a nanocrystalline copper metal and a nanocrystalline copper alloy having high hardness and high conductivity, a high hardness and a strong nanocrystalline copper having high strength and high conductivity ^ are copper alloy bulk materials and The present invention relates to a method for producing powders and bulk materials such as a nano-sized copper alloy having a high strength conductive copper or a copper alloy composition and a nano-sized intermetallic compound having a high strength conductive copper or copper alloy composition, and a method for producing the same.
背景技術 Background art
金属材料の強さや硬さは、 ホールべツチの関係式が示すように、 結晶粒径 dが小さくな るほど増加し、 このような関係は dが数十 n m付近までは同じように成立するので、 結晶 粒径をナノサイズレベルまで超微細化することは、 金属材料の強化する最も重要な手段の 1つになっている。 このことは、 銅系合金の材料の強化方法として極めて重要である。 銅 合金においては、 こうして得られた微細結晶組織の中に金属間化合物などの硬い物質を析 出ないし分散させると、 その強度特性はさらに大きく向上させることができる。  The strength and hardness of the metal material increase as the crystal grain size d decreases, as shown by the Hallbeck relation, and this relationship holds true until d is around several tens of nm. Therefore, ultra-fine crystal grain size down to the nanometer level is one of the most important ways to strengthen metallic materials. This is extremely important as a method of strengthening copper alloy materials. In a copper alloy, if hard substances such as intermetallic compounds are precipitated or dispersed in the microcrystalline structure thus obtained, the strength characteristics can be further improved.
しかし、 実用材料として極めて重要な高力導電性銅合金系の材料については、 ナノ結晶 化のための研究は未だなされていない。 とくに、 電気通信機器類に導電性高力ばね材料と して多く用いられているベリリウ厶銅などでは、 ナノサイズレベルまでの結晶粒微細化に よって、 その強度が格段に高められると、 電気電 機器類の軽量化、 小型化を可能にし、 その実用上の意義は極めて大きい。  However, research on nano-crystallization of high-strength conductive copper alloy materials, which are extremely important as practical materials, has not yet been made. In particular, in the case of beryllium copper, which is widely used as a conductive high-strength spring material in telecommunications equipment, if the strength is significantly increased by refining the crystal grains to the nanometer level, the electric This makes it possible to reduce the weight and size of equipment, and its practical significance is extremely large.
発明の開示 Disclosure of the invention
発明が解決しようとする課題  Problems to be solved by the invention
しかし、溶解法で製造されている銅合金をはじめとする多くの金属材料の結晶粒径 dは、 通常数ミク口ン〜数百ミク口ンであり、 後処理によつても dをナノオーダにすることは難 しく、 例えば、 鋼の結晶粒径微細ィ匕プロセスとして重要な制御圧延の場合でも、 その到達 できる粒径の下限は 4〜5 /x m程度である。 従って、 このような通常の方法では、 ナノサ ィズまでに粒径を微細化した材料は得られない。 課題を解決するための手段 However, the crystal grain size d of many metal materials, including copper alloys manufactured by the melting method, is usually several micron to several hundred micron, and d is in the nano order even by post-processing. For example, even in the case of controlled rolling, which is important as a process for reducing the grain size of steel, the lower limit of the grain size that can be reached is about 4 to 5 / xm. Therefore, such a conventional method does not provide a material having a fine particle size down to a nanosize. Means for solving the problem
本発明は上記課題を解決するものであって、 下記の I 月である。  The present invention solves the above problems, and is the following month.
本発明は、 基本的には、 (1 ) 銅合金構成成分の各物質の混合材料、 (2 ) 溶製した銅合 金材料、 又は (3 ) ( 1 ) 及び (2 ) の物質に他の元素又はその合金などの物質を加えた 混合材料、 をボールミルなどを用いたメカニカルァロイング (M A) 又はメカニカルミリ ング (M M) 処理して、 その結晶粒径のナノサイズレベルまでの超微細化と超高硬度のナ ノサイズの金属間化合物などの析出 ·分散によって達成できるその限界に近い強さ (高強 度) ないし、 硬さ (超硬質) 及び靱性を有する銅合金のナノ結晶粉末となし、 次いでこの ナノ結晶銅合金の粉末の熱間での固化成形によって、 同粉末の有する特性を保持したナノ 結晶銅合金バルク材を提供することである。 すなわち、 本発明は、 下記構成の高硬度 ·高強度で強靱なナノ結晶銅合金の粉末材料と バルク材料及び両材料の製造方法である。  The present invention basically relates to (1) a mixed material of each of the components of the copper alloy, (2) a wrought copper alloy material, or (3) a material of (1) and (2). A mixture of materials containing elements or their alloys is processed by mechanical milling (MA) or mechanical milling (MM) using a ball mill or the like to make the crystal grain size ultra-fine to the nano-size level. Nanocrystalline powder of copper alloy with strength (high strength) close to its limit, which can be achieved by precipitation and dispersion of ultra-hard nanosized intermetallic compounds, etc. Next, the object of the present invention is to provide a bulk material of the nanocrystalline copper alloy which retains the properties of the powder by hot solidifying and molding the powder of the nanocrystalline copper alloy. That is, the present invention is a powder material and a bulk material of a nanocrystalline copper alloy having high hardness, high strength and toughness having the following constitution, and a method for producing both materials.
〔1〕 銅金属ナノ結晶粒子の集合体よりなる銅金属粉末が、 2〜1 0 0 0 n mサイズのナ ノ結晶から構成されることを特徴とする高硬度で高導電性を有するナノ結晶銅金属粉末。 [1] Nanocrystalline copper having high hardness and high conductivity, characterized in that copper metal powder composed of an aggregate of copper metal nanocrystal particles is composed of nanocrystals having a size of 2 to 100 nm. Metal powder.
〔2〕 銅合金ナノ結晶粒子の集合体よりなる銅合金粉末であって、 その合金元素がベリリ ゥ厶、 クロム、 ジルコニウム、 チタン、 銀、 コバルト、 ニッケル、 亜鉛、鉄、 カドミウム、 マンガン、 アルミニウム、 モリプデン、 バナジウム、 タングステン、 ニオブ、 タンタル、 リン、 ケィ素又はホウ素から選ばれるいずれか 1つ以上からなり、 これらの合金元素が 1 つの場合には、 その濃度が銅合金粉末の 0 . 0 5〜4 0質量%を含有し、 また合金元素が 2つ以上の場合には、 その合計濃度が 0 . 0 5〜4 5質量%含有して、 前記ナノ結晶銅合 金粉末がこれらの合金元素による固溶強化と 2〜1 0 0 0 n mサイズレベルまでの結晶粒 微細化強化されてなることを特徴とする高硬度で高導電性を有するナノ結晶銅合金粉末。[2] A copper alloy powder comprising an aggregate of copper alloy nanocrystal particles, the alloy element of which is beryllium, chromium, zirconium, titanium, silver, cobalt, nickel, zinc, iron, cadmium, manganese, aluminum, It is composed of at least one selected from molybdenum, vanadium, tungsten, niobium, tantalum, phosphorus, silicon, and boron. 40% by mass, and when there are two or more alloying elements, the total concentration is 0.05 to 45% by mass, and the nanocrystalline copper alloy powder is made of these alloying elements. A nanocrystalline copper alloy powder having high hardness and high conductivity characterized by solid solution strengthening and crystal grain strengthening to a size of 2 to 100 nm.
〔3〕 銅合金ナノ結晶粒子の集合体よりなる銅合金粉末が、 析出 ·分散強化物質及び Z又 は結晶粒成長抑制物質として、 (1 ) 前記請求項 2に記載の合金元素から選ばれるいずれ か 1種以上、 又は (2 ) 前記各元素と銅からから構成される金属管化合物のいずれか 1種 以上を存在させてなることを特徴とする高硬度で高導電性を有するナノ結晶銅合金粉末。[3] A copper alloy powder comprising an aggregate of copper alloy nanocrystal particles, as a precipitation / dispersion strengthening substance and a Z or crystal grain growth inhibiting substance, (1) any one selected from the alloy elements according to claim 2. Or more, or (2) a nanocrystalline copper alloy having high hardness and high conductivity, characterized by being present in the presence of at least one kind of a metal tube compound composed of each of the above elements and copper. Powder.
〔4〕 銅又は銅合金ナノ結晶の集合体よりなる銅又は銅合金粉末が、 銅又は銅合金中の固 溶不純物による導電率低下を抑制する物質として、 亜鉛、 カドミウム、 ケィ素、 リン又は 酸素のいずれか 1種以上を存在させてなることを特徴とする前項 〔1〕 〜 〔3〕 のいずれ か 1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉末。 [4] Copper or copper alloy powder composed of aggregates of copper or copper alloy nanocrystals is a substance that suppresses the decrease in conductivity due to solid-solution impurities in copper or copper alloy; zinc, cadmium, silicon, phosphorus, or oxygen. The nanocrystalline copper or copper alloy powder having high hardness and high electrical conductivity according to any one of the above items [1] to [3], characterized in that at least one of the above is present.
〔5〕 銅又は銅合金ナノ結晶の集合体よリなる銅又は銅合金粉末が、 金属又は半金属の酸 化物の形態で酸素を 0 . 0 0 5〜1 . 0質量%含有するものであることを特徴とする前項 〔1〕 〜 〔4〕 のいずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金 粉末 o [5] A copper or copper alloy powder composed of an aggregate of copper or copper alloy nanocrystals contains oxygen in the form of a metal or metalloid oxide in an amount of 0.05 to 1.0% by mass. The nanocrystalline copper or copper alloy having high hardness and high conductivity according to any one of the preceding items [1] to [4], characterized in that: Powder o
〔6〕 銅金属ナノ結晶粒子が、 塊状、 片状、 粒状、 粉状の銅金属材料を、 ポールミル等を 用いてメカニカルミリング (MM) することによって得られたものであることを特徴とす る前項 Π〕、 〔4〕、 〔5〕 のいずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅 金) h粉末。  [6] The copper metal nanocrystal particles are characterized by being obtained by subjecting a lump, flake, granular, or powdered copper metal material to mechanical milling (MM) using a pole mill or the like. The nanocrystalline copper gold) h powder having high hardness and high conductivity according to any one of [1], [4] and [5] above.
〔7〕 銅合金ナノ結晶粒子が、 塊状、 片状、 粒状、 粉状の銅合金の形成成分の各物質の混 合材料を、 ボールミル等を用いてメカ二カノレア口イング (MA) 又はメカニカルミリング [7] The copper alloy nanocrystal particles are formed into a block, flake, granule, or powdered copper alloy.
(MM) することによって得られたものであることを特徴とする前項 〔2〕 〜 〔5〕 のい ずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。 The nanocrystalline copper alloy powder having high hardness and high electrical conductivity according to any one of the above items [2] to [5], which is obtained by performing (MM).
〔8〕 銅合金ナノ結晶粒子が、 塊状、 片状、 粒状、 粉状の銅、 ベリリウム銅、 クロム銅、 ジルコニウム銅、 銀銅、 チタン銅、 ケィ素青銅、 ケルメット合金、 黄銅、 アルミニウム青 銅、 ニッケル銅、 ニッケル青銅、 コルソン合金、 銅マンガン合金、 リン青銅、 洋白、 キュ プロニッケル、 他の合金元素又は合金のいずれか 1つ又は 2つ以上の物質から選ばれた銅 合金の構成物質を、 ボールミル等を用いてメカニカルミリング (MM) 又はメカニカルァ 口イング(M A)することによって得られたものであることを特徴とする前項〔2〕 ~〔5〕 のいずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。  [8] The copper alloy nanocrystal particles are in a lump, flake, granular, powdery copper, beryllium copper, chromium copper, zirconium copper, silver copper, titanium copper, silicon bronze, kelmet alloy, brass, aluminum bronze, Nickel copper, nickel bronze, Corson alloy, copper manganese alloy, phosphor bronze, nickel silver, cupronickel, other alloying elements or alloys One or more copper alloy components selected from two or more , Obtained by mechanical milling (MM) or mechanical grooving (MA) using a ball mill or the like, characterized in that the height is as described in any one of the above items [2] to [5]. Nanocrystalline copper alloy powder with high hardness and high conductivity.
〔9〕 メカニカルァロイング (MA) 又はメカニカルミリング (MM) 過程において、 ポ —ルミルなどに用いる粉砕媒体と原料粉末との質量比及び/又はボールミル等の運転エネ ルギ一の選定などにより投入する機械エネルギーを調整することによって、 ナノ結晶粒子 の集合体における (1 ) ナノ結晶銅又は銅合金や銅と他元素とから構成される第 2相など の他の物質の結晶粒径、 (2) これらの第 2相などの他の物質の生成、 又は (3) その生 成量の (1 ) 〜 (3) から選ばれる "1つ以上を制御してなることを特徴とする前項 〔1〕 〜 〔8〕 のいずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。  [9] In the mechanical arranging (MA) or mechanical milling (MM) process, input by selecting the mass ratio of the crushing medium and raw material powder used for the pole mill and / or the operating energy of the ball mill etc. By adjusting the mechanical energy, (1) the crystal grain size of other substances such as nanocrystalline copper or copper alloy or the second phase composed of copper and other elements in the aggregate of nanocrystalline particles, (2) (1) the generation of other substances such as the second phase, or (3) the amount of the generation is controlled by at least one selected from (1) to (3). A nanocrystalline copper alloy powder having high hardness and high electrical conductivity according to any one of the above items [8] to [8].
Π 0〕 銅又は銅合金ナノ結晶粒子の集合体よりなる銅合金粉末が、 メカニカルァロイン グ (MA)又はメカニカルミリング(MM) によって得られるナノ結晶粒子集合体(粉体) 間の固化成形過程での原子的結合促進物質として、 チタン、 ジルコニウム又はバナジウム を 0. 01〜5. 0質量%含有させてなることを特徴とする前項 〔1〕 〜 〔9〕 のいずれ か 1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉末。  Π 0] The solidification molding process between nanocrystalline particle aggregates (powder) obtained by mechanical alloying (MA) or mechanical milling (MM) when copper alloy powder consisting of aggregates of copper or copper alloy nanocrystalline particles is obtained Wherein titanium, zirconium or vanadium is contained in an amount of 0.01 to 5.0% by mass as an atomic bond promoting substance in the method described in any one of the above items [1] to [9]. Nanocrystalline copper or copper alloy powder with high conductivity and hardness.
Π 1〕 前項 〔〗〕 〜 〔〗 0〕 のいずれか〗項に記載のナノ結晶銅又は銅合金粉末の多数 個が固結されてなることを特徴とする高硬度 ·高強度で高導電性を有する強靱なナノ結晶 銅又 銅合金バルク材。  Π 1) High hardness characterized by a large number of nanocrystalline copper or copper alloy powders according to any one of the above items [〗] to [〗 0] being consolidated · High strength and high conductivity A tough nanocrystalline copper or copper alloy bulk material with
〔1 2〕 前項 〔1〕 〜 U 0〕 のいずれか 1項に記載の銅又は銅合金ナノ結晶粒子の粉末 を 250〜 700°Cの温度での放電プラズマ焼結 (S p a r k P l a sma S i n t e r i n g)、 ホッ卜プレス、 シース圧延 (S h e a t h R o I I i n g)、 熱間鍛造、 押出し成形、. 熱間等方圧加圧成形 (H I P) 等の真空熱間固化成形又は爆発成形等の固化 成形することにより、 ナノ結晶銅又は銅合金バルク材となすことを特徴とする高硬度■高 強度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。 [12] Spark plasma sintering of the powder of the copper or copper alloy nanocrystal particles according to any one of [1] to U0] at a temperature of 250 to 700 ° C (Spark Plasma S intering), hot pressing, sheath rolling (S heath Ro IIing), hot forging, extrusion, hot isostatic pressing (HIP), etc., or vacuum hot solidification or solidification such as explosion molding. A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity, which is formed into a nanocrystalline copper or copper alloy bulk material by molding.
〔1 3〕 前項 〔2〕 ~ 〔1 0〕 のいずれか 1項に記載の銅合金ナノ結晶粒子の粉末を 2 5 0〜7 0 0 °Cの温度での放電プラズマ焼結、 ホットプレス、 押出し成形、 熱間鍛造、 熱間 等方圧加圧成形、 圧延等の真空熱間固化成形又は爆発成形などで固化成形して、 ナノ結晶 銅合金バルク材となした後、 同バルク材を 1 0 0〜6 0 0 °Cの温度にて焼なましすること (13) The powder of the copper alloy nanocrystal particles according to any one of the above (2) to (10), spark plasma sintering at a temperature of 250 to 700 ° C, hot pressing, Extrusion molding, hot forging, hot isostatic pressing, rolling and other vacuum hot solidification molding, or solidification molding by explosion molding to form a nanocrystalline copper alloy bulk material. Annealing at a temperature of 0 to 600 ° C
(熱エネルギーの投入) により、 銅と前項 〔2〕 に記載の元素からなる金属間化合物など の物質を析出 ·分散させてなることを特徴とする高硬度 ·高強度で高導電性を有する強靱 なナノ結晶銅合金バルク材の製造方法。 (Hard heat input) to precipitate and disperse copper and other intermetallic compounds consisting of the elements described in [2] above. High hardness · High strength and high toughness with high conductivity Of bulk nanocrystalline copper alloy bulk material.
Π 4〕 メカニカルミリング又はメカニカルァロイングを施す雰囲気が、 (1 ) アルゴン ガスなどの不活性ガス、 (2 ) N2ガス、 又は (3 ) N H 3ガスから選ばれるいずれか 1種、 又は (4 ) ( 1 ) 〜 (3 ) から選ばれる 2種以上の混合ガスの雰囲気であることを特徴と する前項 Π 2〕 又は 〔1 3〕 に記載の高硬度で高導電性を有する強靱なナノ結晶銅又は 銅合金バルク材の製造方法。 [4] The atmosphere in which the mechanical milling or mechanical alloying is performed is any one selected from (1) an inert gas such as an argon gas, (2) an N 2 gas, or (3) an NH 3 gas, or ( 4) The tough nano-structure having high hardness and high conductivity according to the above item [2] or [13], characterized in that the atmosphere is a mixed gas atmosphere of two or more types selected from (1) to (3). Manufacturing method of crystalline copper or copper alloy bulk material.
〔1 5〕 メカニカルミリング又はメカニカルァロイングを施す雰囲気が、 若干の H 2ガス などの還元性物質を加えたガスの雰囲気であることを特徴とする前項〔1 2〕又は〔1 3〕 に記載の高硬度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。〔 1 6〕 メカニカルミリング又はメカニカルァロイングを施す雰囲気が、 真空又は真空中に若 干の H2ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とする 前項 Π 2〕 又は 〔1 3〕 に記載の高硬度,高強度で高導電性を有する強靱なナノ結晶銅 又は銅合金バルク材の製造方法。 [15] The above item [12] or [13], wherein the atmosphere in which the mechanical milling or mechanical alloying is performed is a gas atmosphere to which a reducing substance such as a slight amount of H 2 gas is added. A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness and high conductivity as described above. [16] The atmosphere in which the mechanical milling or mechanical alloying is performed is a vacuum or a reduced atmosphere in which a reducing substance such as a slight amount of H 2 gas is added in a vacuum or vacuum. Or the method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity according to [13].
〔1 7〕 ナノ結晶銅又は銅合金粉末の熱間固化成形温度への急速加熱及び Z又は同熱間固 化成形温度保持のため、 マイクロ波による加熱方式又は低周波誘導加熱方式を用いること を特徴とする高硬度 ·高強度で高導電性を有する強靱なナノ結晶銅又は銅合金バルク材の 製造方法。  [17] Use of a microwave heating method or a low-frequency induction heating method for rapid heating of nanocrystalline copper or copper alloy powder to the hot solidification molding temperature and for maintaining Z or the same hot solidification molding temperature. Features High hardness · A method for manufacturing tough nanocrystalline copper or copper alloy bulk materials with high strength and high conductivity.
〔1 8〕 ナノ結晶銅又は銅合金粉末の迅速な熱間固化成形処理を行うため、 同粉末をマイ ク口波加熱加圧焼結又は低周波誘導加熱加圧焼結することによつて、 ナノ結晶銅又は銅合 金バルク材となすことを特徴とする高硬度■高強度で高導電性を有する強靱なナノ結晶銅 又は銅合金バルク材の製造方法。  [18] In order to perform rapid hot-solidification molding of nanocrystalline copper or copper alloy powder, the powder is subjected to microwave heating and pressure sintering or low frequency induction heating and pressure sintering. A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength, and high conductivity, characterized in that the material is a nanocrystalline copper or copper alloy bulk material.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
. 通常、 銅合金系材料では、 同材料の構成成分である合金元素がミクロンサイズの金属間 化合物として存在しているが、 このような高力導電性銅合金材料にメカニカルァロイング 法を用いると、 ナノサイズの粒状ないし球 ¾ ^に近い金属間化合物のような物質が銅の母相 (ナノ結晶相) に析出 ·分散した極めて強靱な粉末が得られるため、 これを固化成形する と、 銅の母相のナノサイズまでの超微細化と球状に近いナノサイズの金属間化合物のよう な物質の同母相への析出 ·分散による相乗効果によって、 従来の溶解法では製造し得ない 極めて優れた強度特性をもつ材料を作ることができる。 Normally, in copper alloy-based materials, the alloying elements that are constituents of the material are present as micron-sized intermetallic compounds, but the mechanical alloying method is used for such high-strength conductive copper alloy materials. And a substance such as an intermetallic compound close to nano-sized granular or spherical ¾ ^ (Nanocrystalline phase) A very tough powder that is precipitated and dispersed in the (nanocrystalline phase) is obtained. Due to the synergistic effect of the precipitation and dispersion of such substances in the same parent phase, it is possible to produce materials with extremely excellent strength properties that cannot be produced by conventional dissolution methods.
本発明は、 基本的には、 ナノ結晶の銅合金形成成分の混合物質又は溶製した銅合金粉末 材料などの物質をボールミノレ等を用いてメカニカルァロイング (M A) 又はメカ二カルミ リング (M M) の方法により、 超硬質で高導電性を有するナノ結晶銅合金粉末材料を提供 するとともに同粉末を固化成形処理により、 結晶粒径をナノサイズのレベルまで微細化し た場合に達成できるその限界に近い強さ (高強度) ないし硬さ (超硬質) 及び耐食性をも つナノサイズの金属間化合物のような物質の析出 ·分散強化型高導電性銅合金バルク材を 提供することである。 本発明では、 銅に他元素を添加した銅合金形成成分の混合物質又は溶製した銅合金材料 などにボールミル等を用いて、 アルゴンガスなどの雰囲気中にて室温でのメカ二力ルァ口 イング (M A) 又はメカニカルミリング (M M) 処理を施すと、 M M又は M A処理された 粉末は、 ポールミルによって付加された機械的エネルギーにより、 5〜5 0 n m前後の結 晶粒径まで容易に微細化し、 例えば粒径約 1 5 n mまで微細化したベリリウム銅のピツカ ース硬さは 5 0 0〜6 0 0程度となる。  The present invention is basically based on a method of mechanically milling (MA) or mechanical milling (MM) a material such as a mixed material of a nanocrystalline copper alloy forming component or a melted copper alloy powder material by using a ball mining or the like. ) To provide a nanocrystalline copper alloy powder material with ultra-hardness and high conductivity, and to limit the limits that can be achieved when the crystal grain size is reduced to the nanometer level by solidification molding of the powder. It is an object of the present invention to provide a precipitation-dispersion-strengthened high-conductivity copper alloy bulk material having near strength (high strength) or hardness (ultra-hardness) and corrosion resistance, such as a nano-sized intermetallic compound. According to the present invention, a mechanical luer ring at room temperature in an atmosphere such as argon gas using a ball mill or the like for a mixed material of a copper alloy forming component obtained by adding another element to copper or a smelted copper alloy material. (MA) or mechanical milling (MM) treatment, the MM or MA-treated powder can be easily refined to a crystal grain size of about 5 to 50 nm by the mechanical energy added by the pole mill. For example, the hardness of beryllium copper refined to a particle size of about 15 nm is about 500 to 600.
次いで、 そのような M M、 M A処理粉末を約 1 O mm内径のステンレス鋼チューブ (シ ース) に真空封入し、 これを 7 0 0〜 7 5 0 °C付近の温度で圧延機を用いたシース圧延に ょリ固化成形すると、例えばベリリウ厶を約 2質量%含有するベリリウ厶銅の場合は約 1 . 9 G P a以上の引張り強さを示す厚さ 1 . 5 mm程度のシー卜を容易に製造することがで さる。 また、 前項に記載のメカニカルァロイング (M A) 又はメカニカルミリング (M M) 処 理粉末に通常、 M A又は M M処理過程で必然的に混入する 0 . 5質量%程度までの酸素が '金属又は半金属の酸化物の形態で存在して、 同酸化物による結晶粒界のピン止め効果 (P i n n i n g e f f e c t ) により、 固ィ匕成形過程での結晶粒粗大化を抑制する。 本発明では、 銅合金形成成分の元素状粉末材料又は溶製した銅合金などの材料をボール ミル等を用いてメカニカルァロイング (M A) 又はメカニカルミリング (M M) 処理する と、 ナノ結晶銅合金相にナノサイズの金属間化合物が析出 ·分散した極めて硬くて強靱な 粉末材料を容易に製造でき、 これにシース圧延、 押出し加工などの固化成形を施すと、 高 硬度 ·高強度で高導電性を有する強靱かつ優れた耐食性などの特性を具備したナノ結晶銅 合金バルク材料を容易に製造することができる。 その結果、 C U 97.7 B e2C O 03 (質量%)、 C U 99.85 Z Γ 0. ,5 (質量%)及び C US935 C Γθ.65 (質 量%) などのナノ結晶銅合金の粉末材料及びそのバルク材が得られる。 Next, such MM and MA treated powder was vacuum-sealed in a stainless steel tube (sheet) with an inner diameter of about 1 Omm, and this was rolled using a rolling mill at a temperature around 700 to 75 ° C. When solidified by sheath rolling, for example, in the case of beryllium copper containing about 2% by mass of beryllium, sheets with a thickness of about 1.5 mm exhibiting a tensile strength of about 1.9 GPa or more can be easily formed. It can be manufactured in In addition, usually up to about 0.5 mass% of oxygen, which is necessarily mixed in the process of MA or MM processing, into the powder of the mechanical alloying (MA) or mechanical milling (MM) process described in the preceding paragraph is a metal or semi-metal. It exists in the form of a metal oxide and suppresses coarsening of grains during the solidification forming process due to the pinning effect of the grain boundaries caused by the oxide. In the present invention, a nanocrystalline copper alloy is obtained by subjecting a material such as an elemental powder material of a copper alloy forming component or a melted copper alloy to a mechanical milling (MA) or a mechanical milling (MM) using a ball mill or the like. An extremely hard and tough powder material in which nano-sized intermetallic compounds are precipitated and dispersed in the phase can be easily manufactured, and when this material is subjected to solidification molding such as sheath rolling or extrusion, high hardness, high strength and high conductivity are obtained. A nanocrystalline copper alloy bulk material having properties such as toughness and excellent corrosion resistance can be easily produced. As a result, powdered nanocrystalline copper alloys such as CU 97.7 Be 2 CO 03 (mass%), CU 99.85 Z Γ 0,5 (mass%) and CU S935 C Γθ.65 (mass%) A bulk material is obtained.
実施例 1 : Example 1:
銅(Cu)、ベリリウム(B e)、 クロム(C r)、 ジルコニウム(Z r)、チタン(T i )、 銀 (Ag) 又はリン (P) の元素状粉末から、 ポールミルを用いたメカニカルァロイング (MA) (雰囲気:アルゴンガス ZM A時間: 200 h) 処理により、 C uS7A3 (質量%) (A=Be、 C r、 Z r、 T i、 Ag、 又は P) 組成の銅合金及び銅の粉末をつくった。 シエラーの式を用 t \て求めたこれらの M A処理粉末の平均結晶粒径 dは表 1のとおりであ る。 A mechanical mill using a pole mill from an elemental powder of copper (Cu), beryllium (Be), chromium (Cr), zirconium (Zr), titanium (Ti), silver (Ag) or phosphorus (P). Row (MA) (atmosphere: Argon gas ZM A time: 200 h) By processing, Cu S7 A 3 (mass%) (A = Be, Cr, Zr, Ti, Ag, or P) composition Copper alloy and copper powder were made. Table 1 shows the average crystal grain size d of these MA-treated powders obtained by using the Sierra equation.
表 1からみて、 本発明によれば、 どの元素の場合でも 3質量%ほどの添加により銅の結 晶粒微細化は大きく促進され、 特に銅への固溶度が極めて小さく、 融点の高い元素 (ジル コニゥ厶、 クロムなど) ほどその効果は大きいことが解る。  As can be seen from Table 1, according to the present invention, the addition of about 3% by mass of any element greatly promotes the refinement of crystal grains of copper, and particularly the element having a very low solid solubility in copper and a high melting point. (Zirconium, Chromium, etc.) are more effective.
表 1 table 1
Figure imgf000008_0001
Figure imgf000008_0001
*他元素無添加  * No other elements added
* [メカニカルァロイング(MA) した C U97A3 (質量%) (A=B e、 C r、 Z r、 T ί、 Ag、 又は P) 合金粉末の平均結晶粒径 d] * [Mechanical alloying (MA) C U97A3 (% by mass) (A = Be, Cr, Zr, Tί, Ag, or P) Average crystal grain size d of alloy powder]
実施例 2 : Example 2:
銅 (Cu)、 ベリリウム (B e)、 コバルト (C o)、 ジルコニウム (Z r)、又はクロム (C r) の元素状混合粉末から、 ボールミルを用いたメカニカルァロイング (MA) (雰囲気 :アルゴンガス A時間: 200 h) 処理により、 C u97.7B e2C o»3 (質量%)、 C u99.Mechanical alloying (MA) using a ball mill from an elemental mixed powder of copper (Cu), beryllium (Be), cobalt (Co), zirconium (Zr), or chromium (Cr) (atmosphere: argon gas A time:. by 200 h) processing, C u 97 7 B e 2 C o »3 ( wt%), C u 99.
85 Z ro.15 (質量%) 及び Cu 3935 C ro.65 (質量%) 組成の銅合金粉末をつくった。 A copper alloy powder having a composition of 85 Z ro. 15 (% by mass) and Cu 3935 C ro. 65 (% by mass) was prepared.
次いで、 これらの合金粉末を内径約 1 Ommのステンレス鋼チューブ (シース) に真空 封入し、 こらに 600°Cにて熱間圧延加工を施した後、 水冷して固化成形試料を得た。 こ れらの銅合金固化成形体と前記銅合舍 M A粉末試料の平均結晶粒径 d及びビッカース硬さ Hvは表 2のとおリである。本表において、 dの値はシエラ一の式を用いて求めた。また、 M A処理粉末のビッカース硬さは荷重 1 00 gにて測定したマイクロビッカース硬さであ る。 Next, these alloy powders were vacuum-sealed in a stainless steel tube (sheath) having an inner diameter of about 1 Omm, subjected to hot rolling at 600 ° C, and then cooled with water to obtain a solidified molded sample. This The average crystal grain size d and the Vickers hardness Hv of these solidified copper alloy compacts and the above-mentioned copper alloy MA powder samples are as shown in Table 2. In this table, the value of d was determined using the Sierra equation. The Vickers hardness of the MA-treated powder is a micro-Vickers hardness measured under a load of 100 g.
表 2からみて、 本発明によれば、 固化成形過程でかなり大きな結晶粒の成長はみられる が、 成形後もナノ結晶組織は保持された。 また、 MA処理粉末のビッカース硬さ Hvは溶 解法によって作られた各焼なまし材の硬さの約 3〜 5倍ほど大きく、 これらの値は固化成 形処理によって、 更に増大した。 このような Hv値増大の効果は、 ベリリウム銅の場合、 より顕著であることが解る。 表 2  As can be seen from Table 2, according to the present invention, the growth of considerably large crystal grains was observed during the solidification molding process, but the nanocrystalline structure was maintained after the molding. The Vickers hardness Hv of the MA-treated powder was about 3 to 5 times larger than the hardness of each annealed material produced by the melting method, and these values were further increased by the solidification molding treatment. It can be seen that such an effect of increasing the Hv value is more remarkable in the case of beryllium copper. Table 2
Figure imgf000009_0001
Figure imgf000009_0001
* MA粉末の硬さ Hvは、荷重 100gにて測定したマイクロビッカース硬さである  * Hardness Hv of MA powder is micro-Vickers hardness measured under a load of 100g
* [メカニカルァロイング (MA) 処理した、 (a) C U97.TB e2C O O 3 (質量%)、 * [Mechanical alloying (MA) treated, (a) C U97.TB e 2 COO 3 (% by mass),
(b) C U 99.85 Z Γ 0.15 (質量%) 及び (C) C U 99.35 C Γ 0.65 (質量%) 合金粉末とそれらの 熱間固化成形体の平均結晶粒径 d及びビッカース硬さ H V]  (b) C U 99.85 Z ス 0.15 (% by mass) and (C) C U 99.35 C Γ 0.65 (% by mass) alloy powder and average crystal grain size d and Vickers hardness H V of their hot-solidified compacts
実施例 3 : Example 3:
銅(C u)、 ベリリウ厶 (B e)、 コバルト (C 0)、 ジルコニウム (Zに)、 又はクロム (C r) の元素状混合粉末から、 ポールミルを用いたメカニカルァロイング (MA) (雰囲気 :アルゴンガス ZM A時間: 200 h) 処理にょリ、 C u 977 B e2C o。3 (質量%)、 C u 99.Mechanical alloying (MA) using a pole mill from an elemental mixed powder of copper (Cu), beryllium (Be), cobalt (C0), zirconium (to Z), or chromium (Cr) ( Atmosphere: Argon gas ZM A time: 200 h) Treatment, Cu 977 Be 2 Co. 3 (% by mass), Cu 99 .
85 Z Γ 0.15 (質量%) 及び CU93.35C Γ 0.65 (質量%) 組成の銅合金粉末をつくった。 85 Z gamma 0.15 (wt%) and CU 93. 35 C Γ 0.65 (wt%) were made of copper alloy powder composition.
次いで、 この 3種類の合金粉末を前期実施例 2と同様にして 600 °Cにて熱間圧延加工 を施し、これを水冷して得られた固化成形体試料の^ F均結晶粒径 d、ビッカース硬さ H v、 引張り強さ σΒ及び伸び δは表 3のとおリである。 Next, the three types of alloy powders were subjected to hot rolling at 600 ° C. in the same manner as in Example 2 above, and were cooled with water to obtain a ^ F uniform crystal grain diameter d, The Vickers hardness H v, tensile strength σ Β and elongation δ are as shown in Table 3.
表 3からみて、 本発明によれば、 前記の固化成形体は、 いずれも銅の高導電性を大きく 損なうことなく、 強さと伸びを兼ね備えた超高張力鋼をしのぐ極めて優れた強度特性を有 するものとなることが: 表 3 As can be seen from Table 3, according to the present invention, each of the solidified molded articles has extremely excellent strength characteristics that surpass ultrahigh-strength steel having both strength and elongation without significantly impairing the high conductivity of copper. Can be: Table 3
Figure imgf000010_0001
Figure imgf000010_0001
*[ (a) C U 97.7B e2C oo (質量%)、 (b) Cu39.85Z r015 (質量%) 及び (c) Cu C ro (質量%) メカニカルァロイング (MA) 試料の熱間固化成形体 * [(A) CU 97.7B e 2 C oo ( wt%), (b) Cu 39 . 85 Z r 015 ( % by weight) and (c) Cu C ro (wt%) Mechanical § b keying (MA) sample Hot solidified compact
の平均結晶粒径 d、 導電率% l ACS *、 引張り強さび及び伸び ]  Average grain size d, conductivity% l ACS *, tensile rust and elongation]
❖ I n t e r n a t i o n a l An n e a l e d Co p p e r S t a n d a r d  ❖ I n t e r n a t i o n a l An n e a l e d Co p p e r S t a n d a r d
産業上の利用可能性 Industrial applicability
本発明の高硬度 ·高強度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材 は、 電気通信機器類用の導電性高力ばね材料として使用でき、 また電気電子機器類の軽量 化、 小型化を可能にする。  The bulk material of the tough nanocrystalline copper or copper alloy having high hardness, high strength and high conductivity of the present invention can be used as a conductive high-strength spring material for telecommunications equipment, and is lightweight for electric and electronic equipment. And miniaturization.
本発明によれば、 銅合金材料の形成成分の元素状混合物質又は溶製した銅合金などの物 質をメカニカルァロイング(MA)又はメカニカルミリング(MM)処理することにより、 ,母相の銅の結晶粒がナノサイズまで超微細化される上、 同結晶相内にさらに微細なナノサ ィズの金属間化合物などが粒状ないし球状に近い粒子として析出 ·分散するため、 通常の 溶解法では達成できないナノサイズレベルでの結晶粒微細化強化と金属間化合物などの析 出 -分散強化による、 より優れたナノ結晶銅合金材料の製造が実現できる。  According to the present invention, by subjecting a material such as an elemental mixture of components forming a copper alloy material or a melted copper alloy to mechanical alloying (MA) or mechanical milling (MM), Copper crystal grains are ultra-fine to nano size, and finer nano-sized intermetallic compounds etc. are precipitated and dispersed as granular or nearly spherical particles in the same crystal phase. It is possible to produce more excellent nanocrystalline copper alloy materials by strengthening crystal grain refinement at the nano-size level that cannot be achieved and precipitation-dispersion of intermetallic compounds.
また、 本発明によれば、 ナノ結晶銅合金粉末の熱間固化成形において、 同粉末の固化成 形温度への加熱にマイクロ波による急速加熱方式 (誘電体物質でなくても、 金属の場合で も粉末であれば、マイクロ波加熱(m i c r owav e h e a t i n g)が適用できる)、 及び/又は低周波誘導加熱方式を適用すれば、 その加熱過程での結晶粒の成長を抑制して ナノ結晶銅合金バルク材料の製造をよリ効果的に行うことができる。  Further, according to the present invention, in the hot solidification molding of the nanocrystalline copper alloy powder, a rapid heating method using microwaves is used for heating the powder to the solidification molding temperature (even if it is not a dielectric substance, it can be used in the case of metal). If the powder is also a powder, microwave heating (microwave heating) can be applied) and / or if a low-frequency induction heating method is applied, the growth of crystal grains during the heating process is suppressed and the nanocrystalline copper alloy bulk The material can be manufactured more effectively.

Claims

1 . 銅金属ナノ結晶粒子の集合体よりなる銅金属粉末であって、 同ナノ結晶粒子が 2〜1 0 0 0 n mサイズのナノ結晶粒子であることを特徴とする高硬度で高導電性を有するナノ 結晶銅金属粉末。 1. A copper metal powder comprising an aggregate of copper metal nanocrystal particles, wherein the nanocrystal particles are nanocrystal particles having a size of 2 to 100 nm, and have high hardness and high conductivity. Having nanocrystalline copper metal powder.
2 . 銅合金ナノ結晶粒子の集合体よリなる銅合金粉末であつて、 その合金元素がベリリゥ 厶、 クロム、 ジルコニウム、 チタン請、 銀、 コバルト、 ニッケル、 亜鉛、 鉄、 カドミウム、 マンガン、 アルミニウム、 モリブデン、 バナジウム、 タングステン、 ニオブ、 タンタル、 リン、 ケィ素又はホウ素から選ばれるいずれか 1つ以上からなり、 これらの合金元素が 1 の 2. Copper alloy powder consisting of aggregates of copper alloy nanocrystal particles, the alloying elements of which are beryllium, chromium, zirconium, titanium, silver, cobalt, nickel, zinc, iron, cadmium, manganese, aluminum, It is composed of at least one selected from molybdenum, vanadium, tungsten, niobium, tantalum, phosphorus, silicon, and boron.
つの場合には、 その濃度が銅合金粉末の 0 . 0 5〜4 0質量%を含有し、 また合金元素が 2つ以上の場合には、 その合計濃度が 0 . 0 5〜4 5質量%含有して、 前記ナノ結晶銅合 金粉末がこれらの合金元素による固溶強化と 2〜 1 0囲 0 0 n mサイズレベルまでの結晶粒 微細化強化されてなることを特徴とする高硬度で高導電性を有するナノ結晶銅合金粉末。 In the case of two, the concentration contains 0.05 to 40% by mass of the copper alloy powder, and when there are two or more alloying elements, the total concentration is 0.05 to 45% by mass. Containing, said nanocrystalline copper alloy powder is solid solution strengthened by these alloy elements and crystal grain refinement strengthened to a size level of 2 to 100 nm to 100 nm, and is characterized by high hardness and high hardness. Nanocrystalline copper alloy powder with conductivity.
3 - 銅合金ナノ結晶粒子の集合体よリなる銅合金粉末が、 析出 ·分散強化物質及び Z又は 結晶粒成長抑制物質として、 (1 ) ベリリウム、 クロム、 ジルコニウム、 チタン、 銀、 コ バル卜、 ニッケル、 亜鉛、 鉄、 カドミウム、 マンガン、 アルミニウム、 モリブデン、 バナ ジゥ厶、 タングステン、 ニオブ、 タンタル、 リン、 ケィ素又はホウ素から選ばれるいずれ か 1つ以上の合金元素から選ばれるいずれか 1種以上、 又は (2 ) 前記各元素と銅からか ら構成される金属間化合物のいずれか 1種以上を存在させてなるものであることを特徴と する高硬度で高導電性を有するナノ結晶銅合金粉末。 3-Copper alloy powder consisting of aggregates of copper alloy nanocrystal particles is used as precipitation / dispersion strengthening material and Z or crystal grain growth inhibiting material. (1) Beryllium, chromium, zirconium, titanium, silver, cobalt, At least one selected from one or more alloying elements selected from nickel, zinc, iron, cadmium, manganese, aluminum, molybdenum, vanadium, tungsten, niobium, tantalum, phosphorus, silicon and boron; Or (2) a nanocrystalline copper alloy powder having high hardness and high electrical conductivity, characterized in that at least one of the above-mentioned intermetallic compounds composed of each element and copper is present. .
4 . 銅又は銅合金ナノ結晶粒子の集合体よリなる銅又は銅合金粉末が、 銅又は銅合金中の 固溶不純物による導電率低下を抑制する物質として、 亜鉛、 カドミウム、 ケィ素、 リン又 は酸素のいずれか 1種以上を存在させてなるものであることを特徴とする請求の範囲第 1 項〜第 3項のいずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉 末。 4. Copper or copper alloy powder consisting of aggregates of copper or copper alloy nanocrystal particles is used as a substance that suppresses the decrease in conductivity due to solid solution impurities in copper or copper alloy, as zinc, cadmium, silicon, phosphorus, or phosphorus. The nanocrystalline copper having high hardness and high electrical conductivity according to any one of claims 1 to 3, wherein at least one of oxygen is present. Or copper alloy powder.
5 ..銅又は銅合金ナノ結晶粒子の集合体よリなる銅又は銅合金粉末が、 金属又は半金属の 酸化物の形態で酸素を 0 . 0 0 5〜1 . 0質量%含有するものであることを特徴とする請 求の範囲第 1項〜第 4項のいずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅又 は銅合金粉末。 5. Copper or copper alloy powder consisting of an aggregate of copper or copper alloy nanocrystal particles containing oxygen in the form of a metal or metalloid oxide in an amount of 0.05 to 1.0% by mass. 5. The nanocrystalline copper or copper alloy powder having high hardness and high electrical conductivity according to any one of claims 1 to 4, wherein the powder is characterized in that the powder comprises:
6 . 銅金属ナノ結晶粒子が、 塊状、 片状、 粒状、 粉状の銅金属材料を、 ボールミル等を用 いてメカニカルミリング (M M) することによって得られたものであることを特徴とする 請求の範囲第 1項、 第 4項、 第 5項のいずれか 1項に記載の高硬度で高導電性を有するナ ノ結晶銅金属粉末。 6. The copper metal nanocrystal particles are obtained by mechanically milling (MM) a lump, flake, granular, or powdered copper metal material using a ball mill or the like. Item 6. The nanocrystalline copper metal powder having high hardness and high conductivity according to any one of Items 1, 4 and 5.
7 .銅合金ナノ結晶粒子が、塊状、片状、粒 ¾ 粉状の銅合金の形成成分材料の混合物を、 ポールミル等を用いてメカニカルァロイング (M A) 又はメカニカルミリング (M M) す ることによって得られたものであることを特徴とする請求の範囲第 2項〜第 5項のいずれ か 1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。 7. The copper alloy nanocrystal particles are in a lump, flake, or granular form. A mixture of the constituent materials of the copper alloy is mechanically milled (MA) or mechanically milled (MM) using a pole mill or the like. 6. The nanocrystalline copper alloy powder having high hardness and high conductivity according to any one of claims 2 to 5, characterized in that the powder is obtained by the method described above.
8 . 銅合金ナノ結晶粒子が、 塊状、 片状、 粒状、 粉状の銅、 ベリリウム銅、 クロム銅、 ジ ルコニゥ厶銅、銀銅、チタン銅、 ケィ素青銅、 ケルメッ卜合金、黄銅、 アルミニウム青銅、 ニッケル銅、 ニッケル青銅、 コルソン合金、 銅、 マンガン合金、 リン青銅、 洋白、 キュプ 口ニッケル、 他の合金元素又は合金のいずれか 1つ又は 2つ以上の物質から選ばれた銅合 金の構成材料を、 ボールミル等を用いてメカニカルミリング (M M) 又はメカニカルァロ イング (M A) することによって得られたものであることを特徴とする請求の範囲第 2項 〜第 5項のいずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。 8. The copper alloy nanocrystal particles are aggregated, flake, granular, powdered copper, beryllium copper, chromium copper, zirconia copper, silver copper, titanium copper, silicon bronze, kelmet alloy, brass, aluminum bronze , Nickel copper, nickel bronze, Corson alloy, copper, manganese alloy, phosphor bronze, nickel silver, cupper nickel, other alloying elements or alloys. The method according to any one of claims 2 to 5, wherein the constituent material is obtained by mechanical milling (MM) or mechanical alloying (MA) using a ball mill or the like. A nanocrystalline copper alloy powder having high hardness and high conductivity according to the description.
9 . メカニカルァロイング (M A) 又はメカニカルミリング (M M) ^程において、 ボー ルミルなどに用いる粉碎媒体と原料粉末との質量比及び Z又はボールミル等の運転エネル ギ一の選定などによリ投入する機械エネルギーを調整することによって、 ナノ結晶粒子の 集合体における (1 ) ナノ結晶銅又は銅合金や銅と他元素とから構成される第 2相などの 他の物質の結晶粒径、 ( 2 ) これらの第 2相などの他の物質の生成、 又は (3 ) その生成 量、 の (1 ) 〜 (3 ) から選ばれる 1つ以上を制御してなる;:とを特徴とする請求の範囲 第 1項〜第 8項のいずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅合金粉末。 9. In the mechanical alloying (MA) or mechanical milling (MM) process, input by selecting the mass ratio of the grinding media to the raw material powder used in ball mills and the like, and selecting the operating energy such as Z or ball mills. By adjusting the mechanical energy to be applied, the crystal grain size of other substances such as (2) nanocrystalline copper or a copper alloy or the second phase composed of copper and other elements in the aggregate of nanocrystalline particles, And / or (3) controlling the production of other substances such as the second phase, or (3) the amount of the production, at least one of (1) to (3); Range The nanocrystalline copper alloy powder having high hardness and high conductivity according to any one of Items 1 to 8.
1 0 . 銅又は銅合金ナノ結晶粒子の集合体よリなる銅合金粉末が、 メカニカルァロイング (M A) 又はメカニカルミリング (M M) によって得られるナノ結晶粒子集合体 (粉体) 間の固化成形過程での原子的結合促進物質として、 チタン、 ジルコニウム又はバナジウム を 0 . 0 1〜5 . 0質量%含有させてなることを特徴とする請求の範囲第〗項〜第 9項の いずれか 1項に記載の高硬度で高導電性を有するナノ結晶銅又は銅合金粉末。 10. Solidification molding between nanocrystal particle aggregate (powder) obtained by mechanical alloying (MA) or mechanical milling (MM) when copper alloy powder consisting of aggregate of copper or copper alloy nanocrystal particles is obtained 10. The method according to any one of claims 1 to 9, wherein titanium, zirconium or vanadium is contained in the process in an amount of 0.01 to 5.0% by mass. 4. A nanocrystalline copper or copper alloy powder having high hardness and high electrical conductivity according to 1.
1 1 · 請求の範囲第 1項〜第 Ί 0項のいずれか 1項に記載のナノ結晶銅又は銅合金粉末の 多数個が固結されてなることを特徴とする高硬度 ·高強度で高導電性を有する強 なナノ 結晶銅又は銅合金のバルク材。 1 1 · High hardness characterized by a large number of nanocrystalline copper or copper alloy powders according to any one of claims 1 to 0 being claimed · High strength and high strength Strong conductive nanocrystalline copper or copper alloy bulk material.
1 2. 請求の範囲第 1項〜第 1 0項のいずれか 1項に記載の銅粉末又は銅合金粉末を 25 0〜700°Cの温度での放電プラズマ焼結 (S p a r k P l a sma S i n t e r i n g)、 ホッ卜プレス、 シース圧延 (S h e a t h R o I I i n g)、 熱間鍛造、 押出し 成形、 熱間等方圧加圧成形 (H I P) 等の真空熱間固化成形又は爆発成形等の固化成形す ることにより、 ナノ結晶銅又は銅合金のバルク材となすことを特徴とする高硬度 ·高強度 で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材の製造方法。 1 2. Spark plasma sintering of the copper powder or the copper alloy powder according to any one of claims 1 to 10 at a temperature of 250 to 700 ° C (S park Plasma S intering), Hot pressing, Sheath rolling (S heath Ro IIing), Hot forging, Extrusion molding, Hot isostatic pressing (HIP), etc. A method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity, characterized in that the bulk material is a nanocrystalline copper or copper alloy bulk material.
1 3. 請求の範囲第 2項〜第 1 0項のいずれか 1項に記載の銅合金粉末を 250~700 °Cの温度での放電プラズマ焼結、 ホットプレス、 押出し成形、 熱間鍛造、 熱間等方圧加圧 成形、 圧延等の真空熱間固化成形又は爆発成形などで固化成形して、 ナノ結晶銅合金バル ク材となした後、 同バルク材を 1 00〜600°Cの温度にて焼なましすること (熱ェネル ギ一の投入) を特徴とする高硬度 ·高強度で高導電性を有する強靱なナノ結晶銅合金バル ク材の製造方法。 1 3. Discharge plasma sintering of the copper alloy powder according to any one of claims 2 to 10 at a temperature of 250 to 700 ° C, hot pressing, extrusion molding, hot forging, After forming into a nanocrystalline copper alloy bulk material by solidifying by hot isostatic pressing, rolling or other vacuum hot solidification molding or explosion molding, the bulk material is heated to 100 to 600 ° C. A method for producing a tough nanocrystalline copper alloy bulk material with high hardness, high strength and high conductivity, characterized by annealing at a temperature (input of thermal energy).
1 4. メカニカルミリング又はメカニカルァロイングを施す雰囲気が、 (1 ) アルゴンガ スなどの不活性ガス、 (2) N2ガス、 又は (3) NH3ガスから選ばれるいずれか 1種、 又 は (4) (1 ) 〜 (3) から選ばれる 2種以上の混合ガスの雰囲気であることを特徴とす る請求項 1 2又は 1 3に記載の高硬度で高導電性を有する強靱なナノ結晶銅又は銅合金の バルク材の製造方法。 1 4. The atmosphere in which mechanical milling or mechanical alloying is performed is selected from the group consisting of (1) an inert gas such as argon gas, (2) N 2 gas, and (3) NH 3 gas. (4) The tough nanoparticle having high hardness and high conductivity according to claim 12 or 13, wherein the atmosphere is a mixed gas atmosphere of two or more kinds selected from (1) to (3). Manufacturing method of bulk material of crystalline copper or copper alloy.
1 5. メカニカルミリング又はメカニカルァロイングを施す雰囲気が、 若干の H2ガスな どの還元性物質を加えたガスの雰囲気であることを特徴とする請求の範囲第 1 2項又は第 1 3項に記載の高硬度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材の製造 方法。 15. The mechanical milling or mechanical alloying atmosphere is a gas atmosphere to which a reducing substance such as a slight amount of H 2 gas is added. 4. A method for producing a bulk material of tough nanocrystalline copper or copper alloy having high hardness and high electrical conductivity according to 1).
1 6. メカニカルミリング又はメカニカルァロイ グを施す雰囲気が、 真空又は真空中に 若干の H 2ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とする請 求の範囲第 1 2項又は第 1 3項に記載の高硬度 ·高強度で高導電性を有する強靱なナノ結 晶銅又は銅合金のバルク材の製造方法。 1 6. The scope of the request, characterized in that the atmosphere in which the mechanical milling or the mechanical alloying is performed is a vacuum or a reduced atmosphere in which a reducing substance such as H 2 gas is added in a vacuum or a vacuum. 4. The method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness and high strength and high conductivity according to item 2 or 13.
1 7. 請求の範囲第 1項〜第 1 0項のいずれか 1項に記載のナノ結晶銅又は銅合金の粉末 の熱間固化成形温度への急速加熱及び Z又は同熱間固化成形温度保持のため、 マイクロ波 による加熱方式又は低周波誘導加熱方式を用いることを特徴とする高硬度■高強度で高導 電性を有する強靱なナノ結晶銅又は銅合金バルク材の製造方法。 Ί 8 . 請求の範囲第 1項〜第 1 0項のいずれか 1 3;頁に記載のナノ結晶銅又は銅合金粉末の 迅速な熱間固化成形処理を行うため、 同粉末をマイクロ波加熱加圧焼結又は低周波誘導加 熱加圧焼結することによつて、 ナノ結晶銅又は銅合金のバルク材となすことを特徴とする 高硬度■高強度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材の製造方法。 1 7. Rapid heating of the powder of nanocrystalline copper or copper alloy according to any one of claims 1 to 10 to the hot solidification molding temperature and holding of Z or the same hot solidification molding temperature Therefore, a method for producing a tough nanocrystalline copper or copper alloy bulk material having high hardness, high strength and high conductivity, characterized by using a microwave heating method or a low-frequency induction heating method. Ί 8. In order to perform rapid hot solidification molding of the nanocrystalline copper or copper alloy powder described in any of paragraphs 1 to 10 of Claims 1 to 10; High hardness ■ High strength, high conductivity, tough nanocrystals characterized by being made into bulk material of nanocrystalline copper or copper alloy by pressure sintering or low frequency induction heating and pressure sintering A method for producing a copper or copper alloy bulk material.
PCT/JP2005/006554 2004-03-29 2005-03-29 Powders of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high conductivity and high rigidity, and method for production thereof WO2005092541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-097162 2004-03-29
JP2004097162 2004-03-29

Publications (1)

Publication Number Publication Date
WO2005092541A1 true WO2005092541A1 (en) 2005-10-06

Family

ID=35056041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006554 WO2005092541A1 (en) 2004-03-29 2005-03-29 Powders of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high conductivity and high rigidity, and method for production thereof

Country Status (1)

Country Link
WO (1) WO2005092541A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985521A1 (en) * 2012-01-09 2013-07-12 Le Bronze Ind Producing copper alloy used in aeronautics, comprises fragmenting initial alloy to obtain elemental fragments, mechanically synthesizing fragments by grinding the fragments in ball mill with high energy and flash sintering obtained powders
KR20150053822A (en) * 2012-11-01 2015-05-18 엔지케이 인슐레이터 엘티디 Copper alloy and process for manufacturing same
CN113334611A (en) * 2021-03-26 2021-09-03 上犹京禾纳米科技有限公司 Manufacturing method and application of nano-copper antibacterial and antiviral melt-blown fabric master batch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286501A (en) * 1987-04-29 1988-11-24 フリード・クルツプ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Production of material having nano-crystal structure, secondary powder and molded body
JPH10511071A (en) * 1994-12-29 1998-10-27 ニルス クラウセン Manufacture of aluminide-containing ceramic compacts
JPH1150105A (en) * 1997-07-28 1999-02-23 Shigeru Mashita Production of nonequilibrium solid solution bulk material and nonequilibrium solid solution bulk material
JP2001271101A (en) * 2000-03-24 2001-10-02 Injex Corp Method for producing sintered body and sintered body
JP2002088404A (en) * 2000-09-13 2002-03-27 Sumitomo Coal Mining Co Ltd Method and apparatus for high-speed temperature rise sintering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286501A (en) * 1987-04-29 1988-11-24 フリード・クルツプ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Production of material having nano-crystal structure, secondary powder and molded body
JPH10511071A (en) * 1994-12-29 1998-10-27 ニルス クラウセン Manufacture of aluminide-containing ceramic compacts
JPH1150105A (en) * 1997-07-28 1999-02-23 Shigeru Mashita Production of nonequilibrium solid solution bulk material and nonequilibrium solid solution bulk material
JP2001271101A (en) * 2000-03-24 2001-10-02 Injex Corp Method for producing sintered body and sintered body
JP2002088404A (en) * 2000-09-13 2002-03-27 Sumitomo Coal Mining Co Ltd Method and apparatus for high-speed temperature rise sintering

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985521A1 (en) * 2012-01-09 2013-07-12 Le Bronze Ind Producing copper alloy used in aeronautics, comprises fragmenting initial alloy to obtain elemental fragments, mechanically synthesizing fragments by grinding the fragments in ball mill with high energy and flash sintering obtained powders
KR20150053822A (en) * 2012-11-01 2015-05-18 엔지케이 인슐레이터 엘티디 Copper alloy and process for manufacturing same
EP2915890A4 (en) * 2012-11-01 2016-06-15 Ngk Insulators Ltd Copper alloy and process for manufacturing same
KR101718257B1 (en) 2012-11-01 2017-03-20 엔지케이 인슐레이터 엘티디 Copper alloy and process for manufacturing same
US10017840B2 (en) 2012-11-01 2018-07-10 Ngk Insulators, Ltd. Copper alloy and method for manufacturing the same
CN113334611A (en) * 2021-03-26 2021-09-03 上犹京禾纳米科技有限公司 Manufacturing method and application of nano-copper antibacterial and antiviral melt-blown fabric master batch
CN113334611B (en) * 2021-03-26 2022-08-09 上犹京禾纳米科技有限公司 Manufacturing method and application of nano-copper antibacterial and antiviral melt-blown fabric master batch

Similar Documents

Publication Publication Date Title
JP2005314806A (en) Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof
Kumar et al. Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots
JP4969008B2 (en) Powder mixtures and composite powders, methods for their production and their use in composite materials
WO2004029313A1 (en) Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness , and method for production thereof
Fang et al. Microstructures and mechanical properties of spark plasma sintered Cu–Cr composites prepared by mechanical milling and alloying
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
JP6199897B2 (en) Powder mixture for producing nickel-titanium-rare earth metal (Ni-Ti-RE) sintered alloys
Wang et al. Microstructures and mechanical properties of extruded 2024 aluminum alloy reinforced by FeNiCrCoAl3 particles
Sahani et al. Structural investigation of vacuum sintered Cu–Cr and Cu–Cr–4% SiC nanocomposites prepared by mechanical alloying
WO2005102568A2 (en) Binary rhenium alloys
Yu et al. Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W-4.9 (Ni, Co)-2.1 Fe alloy
Oksiuta et al. Microstructure and thermal properties of mechanically alloyed W-1% TiC powder consolidated via two-step HIPping
WO2005092543A1 (en) Nano crystalline white cast iron powder having high hardness and nano crystalline white cast iron bulk material having high hardness, high strength and high toughness, and method for production thereof
Kumar et al. Structural investigations of nanocrystalline Cu-Cr-Mo alloy prepared by high-energy ball milling
Chen et al. Microstructure, properties and strengthening mechanism of Cu-TiB2-Al2O3 composite prepared by liquid phase in-situ reaction casting
Mineta et al. Structure and mechanical properties of nanocrystalline silver prepared by spark plasma sintering
Chen et al. Effect of molybdenum addition on microstructure and mechanical properties of 90% tungsten heavy alloys
JP2006274323A (en) Nanocrystal alloy steel powder having high hardness and excellent corrosion resistance and nanocrystal alloy steel bulk material having high strength/toughness and excellent corrosion resistance and production method thereof
WO2005092541A1 (en) Powders of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high conductivity and high rigidity, and method for production thereof
WO2005092542A1 (en) High carbon nano crystalline iron alloy powder and bulk material having high hardness, and method for production thereof
Sahoo et al. Microstructure and sintering behavior of nanostructured W-10–20 wt.% Ti alloys synthesized by a soft chemical approach
Lee et al. Changes in the microstructure and mechanical properties of (Ti0. 88W0. 12) C and (Ti0. 88W0. 12)(C0. 7N0. 3)–20Ni upon Mo addition
Salem et al. Bulk behavior of ball milled AA2124 nanostructured powders reinforced with TiC
Guo et al. Two-step hydrogen reduction of oxides for making FeCoNiCu high entropy alloy: Part I–Process and mechanical properties
KR102191865B1 (en) Boron-nitride nanoplatelets/metal nanocomposite powder and method of manufacturing thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase