WO2005091648A1 - Motion-adaptive 3d y/c separation system and image improving method - Google Patents

Motion-adaptive 3d y/c separation system and image improving method Download PDF

Info

Publication number
WO2005091648A1
WO2005091648A1 PCT/JP2005/004027 JP2005004027W WO2005091648A1 WO 2005091648 A1 WO2005091648 A1 WO 2005091648A1 JP 2005004027 W JP2005004027 W JP 2005004027W WO 2005091648 A1 WO2005091648 A1 WO 2005091648A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
dimensional
separation
motion
luminance signal
Prior art date
Application number
PCT/JP2005/004027
Other languages
French (fr)
Japanese (ja)
Inventor
Masaya Kobayashi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO2005091648A1 publication Critical patent/WO2005091648A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/77Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase
    • H04N9/78Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase for separating the brightness signal or the chrominance signal from the colour television signal, e.g. using comb filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/205Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
    • H04N5/208Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction

Definitions

  • the present invention relates to a system and method for suppressing deterioration of image quality when a luminance signal and a chrominance signal are separated from a composite video signal by a motion adaptive 3D YZC separation process.
  • a motion-adaptive 3D Y / C separation circuit exists as a circuit for separating the luminance signal and the chrominance signal from the composite video signal.
  • the motion-adaptive 3D Y / C separation circuit performs 2D YZC separation (field ⁇ YZC separation) for moving images from the input composite video signal, and 3D Y / C separation for still images (
  • 2D YZC separation field ⁇ YZC separation
  • 3D Y / C separation for still images
  • the motion of the video is detected from the input composite video signal and the luminance signal adapted to the motion detection result.
  • two-dimensional Y / C separation processing for color signals and a circuit for selecting using the result of the three-dimensional Y / C separation processing for example, Japanese Patent Application Laid-Open No. (see paragraph numbers 0000-2 to 010, FIG. 4).
  • video equipment equipped with a motion-adaptive 3D Y / C separation circuit for example, a video display device or video recording device to which a composite video signal is input, such as a television receiver or DVD recorder
  • image quality correction processing such as contour correction to luminance signals separated by a motion-adaptive 3D Y / C separation circuit.
  • Figure 1 is a block diagram showing an example of the configuration of a conventional motion-adaptive 3D YZC separation system (a system in which a contour correction circuit is provided after the motion-adaptive 3D Y / C separation circuit).
  • a / D converter not shown
  • the composite video signal which has been digitally converted by the converter, is converted into a two-dimensional Y / C separation circuit 101 in the motion-adaptive three-dimensional Y / C separation circuit 100, a three-dimensional Y / C separation circuit 102, and a motion detection circuit.
  • Input to 103 and frame memory 104 Input to 103 and frame memory 104.
  • the two-dimensional Y / C separation circuit 101 performs YZc separation processing for moving images using a line-com filter or band-pass filter on the input composite video signal (Y / c separation processing in the field)
  • the circuit that performs The luminance signal Y 2 D separated by the two-dimensional Y / C separation circuit 101 is input to the mixer 105.
  • the color signal C 2 D separated by the two-dimensional Y / C separation circuit 101 is input to the mixer 106.
  • a motion-adaptive 3D ⁇ / C separation circuit for NTSC composite video signals uses a memory that delays the input signal by one frame, and a PAL
  • a memo V that delays the input signal by 2 frames is used.
  • the composite video signal delayed by the frame memory 104 is three-dimensional.
  • the three-dimensional Y / C separation circuit 102 is a circuit that performs YZC separation processing (Y / C separation processing between frames) for still images on the input composite video signal using a framecom filter.
  • the luminance signal Y 3 D separated by the three-dimensional YZC separation circuit 102 is input to the mixer 105.
  • the color signal C 3 D separated by the three-dimensional YZC separation circuit 102 is input to the mixer 106.
  • the motion detection circuit 103 applies a filter to both the input composite video signal and the composite video signal from the frame memory 104, generates temporary luminance signals and color signals, and calculates the difference between them.
  • Video motion based on the detected motion This is a circuit that outputs as a coefficient (a coefficient whose value is '11 1 1, 'when the motion is maximum, and which is' 0 0 0 0' when it is stationary). This motion coefficient is sent as a control signal to mixers 105 and 106, respectively.
  • the mixing ratio of the luminance signal Y2D and the luminance signal Y3D is determined according to the value of the motion coefficient (the ratio of the luminance signal Y2D increases as the value of the motion coefficient increases). Is higher).
  • the mixture ratio of the color signal C 2 D and the color signal C 3 D is similarly selected according to the value of the motion coefficient.
  • the motion-adaptive three-dimensional YZC separation circuit 100 outputs a luminance signal mixed by the mixer 105 and a color signal mixed by the mixer 106.
  • the dancer signal from the mixer 105 is sequentially input to the subsequent vertical contour correction circuit 107 and horizontal contour correction circuit 108 to perform vertical and horizontal contour correction processing. Is done.
  • the line comb filter used in the two-dimensional Y / C separation circuit for moving images uses the phase relationship of the color subcarriers and the vertical correlation of the color signals (the color signal waveforms are approximated between adjacent horizontal lines). Is used to separate the color signals. That is, in the composite video signal of the NTSC system, as shown in Fig. 2 (a), the phase of the chrominance subcarrier is shifted by 180 ° in one horizontal line, so that there is no vertical correlation in the chrominance signal.
  • the color signals can be separated: ⁇ by taking the difference between the matching horizontal lines.
  • Fig. 1 (b) shows a PAL composite video signal.
  • the phase of the color subcarrier is shifted 180 ° between the two horizontal lines, so if there is a vertical correlation between the color signals, the color is obtained by taking the difference between the horizontal lines separated by two horizontal lines. Signals can be separated.However, when the color signals are directly correlated, for example, in an image containing horizontal or diagonal lines, the difference between these horizontal lines can be calculated. As a result, the chrominance signal component leaks into the luminance signal component, thereby deteriorating the signal band.
  • the color signals are separated by a horizontal band-pass filter that passes the carrier frequency of the color subcarrier instead of the line-com filter, degradation of the band in the image containing lines can be prevented. can do.
  • a horizontal non-pass filter it is not possible to determine the diagonal component of the luminance signal, so that in the case of an image containing diagonal lines, the luminance signal component is also the color signal component. O The area will deteriorate due to leakage
  • the PAL method separates two horizontal lines as shown in Fig. 2 (b). Since the difference in the video data is used, the degree of bandwidth degradation is greater than in the NTSC system.o In recent years, with the price reduction of frame memory and line memory, consumer video equipment has become Also
  • Motion adaptive 3D ⁇ / for PAL composite signals Since a separation circuit is often installed, the problem of image quality deterioration when switching between such a moving image and a still image becomes prominent.
  • the luminance signal separated by the motion-adaptive 3D YZC separation circuit is contour-corrected by a vertical contour correction circuit and a horizontal contour correction circuit.
  • contour correction is performed uniformly on both the luminance signal from the two-dimensional Y / C separation circuit and the luminance signal from the three-dimensional Y / C separation circuit.
  • the present invention provides a method of deteriorating image quality when switching between a moving image and a still image when a luminance signal and a color signal are separated from a composite video signal by motion adaptive 3D Y / C separation processing.
  • a motion-adaptive three-dimensional ⁇ / C separation system includes two-dimensional Y / C separation means for separating a luminance signal and a chrominance signal from an input composite video signal; (G) three-dimensional ⁇ / C separation means for separating a luminance signal and a chrominance signal from a video signal, motion detection means for detecting video motion from the composite video signal ', and adaptation to the detection result of the motion detection means Selecting means for selecting a luminance signal and a color signal using the processing results of the two-dimensional Y / C separating means and the three-dimensional YZC separating means; and a luminance signal separated by the two-dimensional Y / C separating means.
  • Image quality correction And a correction differentiating means for limiting the image quality correction processing for the luminance signal separated by the three-dimensional Y / C separating means.
  • a 2D YZC separation process for moving images from an input composite video signal and a still image
  • the three-dimensional Y / C separation process separates the luminance signal and the chrominance signal, and detects the motion of the video from the input composite video signal. are selected using the results of 2D Y / C separation processing and 3D Y / C separation processing.
  • the luminance signal separated by the secondary Y / C separation unit by the correction differentiation unit is subjected to image quality correction processing.
  • the image quality correction processing of is limited.
  • the color signal can compensate for the degradation of the band in the 2D YZC separation process when the vertical correlation of the image is lost, and reduce the difference in the sense of resolution when switching between video and still images. Can be improved.
  • the correction differentiator is configured by an image quality correction circuit to which only the luminance signal separated by the two-dimensional YZC separator is supplied. is there.
  • the selection means is used to select the output signal of the two-dimensional Y_C separation means and the output signal of the three-dimensional Y / C separation means according to the detection result of the motion detection means.
  • a correction differentiating means for supplying the luminance signal mixed by the mixing circuit and the magnitude of the motion detected by the motion detecting means. It is also preferable to configure an image quality correction circuit that lowers the correction level of the image quality correction processing in accordance with the decrease in the image quality. In that case, too, with a slight change to the existing motion-adaptive 3D Y / C separation system as shown in Fig. 1, the sense of resolution when switching between video and still images can be obtained. The difference between the two can be reduced.
  • the capture differentiating means may perform vertical contour correction processing and Z or horizontal contour correction processing as image quality correction processing. It is preferable to configure as follows. As a result, the vertical and horizontal edge portions of the luminance signal separated by the two-dimensional Y / C separation process are different from the vertical and horizontal edge portions of the luminance signal separated by the three-dimensional Y / C separation process. Is emphasized, so that the difference in the sense of resolution when switching between a moving image and a still image can be further eliminated.
  • the image quality improving method comprises a two-dimensional Y / C separation means for separating a luminance signal and a color signal from an input composite video signal, and a luminance signal and a color signal from the composite video signal.
  • Three-dimensional Y / C separation means for separating the image, a motion detection means for detecting the motion of the video from the composite video signal, and a luminance signal and a color signal adapted to the detection result of the motion detection means.
  • the motion-adaptive three-dimensional Y / C separation circuit having the two-dimensional Y / C separation means and the selection means for selecting using the processing results of the three-dimensional YZC separation means performs processing for improving image quality.
  • this 2D YZ C separation means It is characterized in that image quality correction processing is performed on the luminance signal separated by, and the image quality correction processing is restricted on the luminance signal separated by the three-dimensional Y / C separation means.
  • the luminance signal separated by the two-dimensional Y / C separation means in the motion-adaptive three-dimensional Y / C separation circuit is subjected to image quality correction processing.
  • This image quality correction processing is restricted for the luminance signal separated by the three-dimensional Y / C separation means in the Y / C separation circuit.
  • Figure 1 is a block diagram showing a configuration example of a conventional motion-adaptive 3D Y / c separation system.
  • FIG. 2 is a diagram showing the phase relationship of the mouth maker of the composite video signal.
  • FIG. 3 is a block diagram showing a configuration example of a motion adaptive 3D Y / C separation system using the present invention.
  • FIG. 4 is a block diagram illustrating a configuration example of the two-dimensional ⁇ / C separation circuit in FIG.
  • Fig. 5 is a block diagram showing a configuration example of the 3D Y / C separation circuit in Fig. 3.
  • FIG. 6 is a block diagram showing a configuration example of the vertical contour correction circuit of FIG.
  • FIG. 7 is a block diagram showing a configuration example of the horizontal contour correction circuit of FIG.
  • FIG. 8 is a block diagram showing another configuration example of the motion adaptive 3D Y / C separation system to which the present invention is applied.
  • FIG. 9 is a block diagram showing a configuration example of the vertical contour correction circuit of FIG.
  • FIG. 10 is a block diagram showing a configuration example of the horizontal contour correction circuit of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a block diagram showing a configuration example of a motion adaptive 3D Y / C separation system to which the present invention is applied.
  • This motion-adaptive 3D Y / C separation system includes a 2D Y / C separation circuit 1, a 3D YZC separation circuit 2, a motion detection circuit 3, a frame memory 4, and a vertical contour correction circuit. 5, a horizontal contour correction circuit 6, a mixer 7, and a mixer 8.
  • a composite video signal digitally converted by an AZD converter (not shown) is input to a two-dimensional Y / C separation circuit 1, a three-dimensional Y / C separation circuit 2, a motion detection circuit 3, and a frame memory 4.
  • Frame memory 4 is a memory for delaying an input signal by two frames.
  • the composite video signal delayed by the frame memory 4 is sent to a three-dimensional Y / C separation circuit 2 and a motion detection circuit 3.
  • the two-dimensional Y / C separation circuit 1 is a circuit that performs YZc separation processing for moving images (YZc separation processing in a field) on an input composite video signal.
  • Figure 4 shows a configuration example of this two-dimensional Y / C separation circuit 1. Indicates.
  • the input composite video signal (represented as signal S0 in Figure 4) is delayed by two horizontal lines in line memory 11 and then further delayed by two horizontal lines in line memory 12. You.
  • the signal SO, the output signal SI of the line memory 11 (composite video signal two horizontal lines away from the input composite video signal), and the output signal S 2 of the line memory 12 input composite video signal (Composite video signal four horizontal lines away from the composite video signal), the BPF (band pass filter) 13, 14, and 15 remove the frequency components of the color subcarrier other than near the carrier frequency.
  • the output signal of BPF 13 is input to subtractor 16.
  • the output signal of BPF 14 is input to subtractor 16, subtracter 18 and BPF 22.
  • the output signal of BPF 15 is input to subtracter 18.
  • the subtractor 16 subtracts the output signal of the BPF 13 (the component near the carrier frequency of the signal SO) from the output signal of the BPF 14 (the component near the carrier frequency of the signal S 1). .
  • the output signal of the subtracter 16 is adjusted to half the gain by the gain controller 17 so that the color signal (the input composite video signal S0 and the output signal S1 of the line memory 11) is output. “Upper two line color signal”) is required.
  • the output signal of BPF 15 (the component near the carrier frequency of the signal S 2) is subtracted from the output signal of BPF 14. Then, the output signal of the subtracter 16 is adjusted to half the gain by the gain controller 17 so that the color signal (the output signal S 1 of the line memory 11 and the output signal of the line memory 12) is obtained.
  • the “lower two-line color signal” from signal S2 is required.
  • the BPF 22 removes the frequency components other than the carrier frequency of the chrominance subcarrier from the output signal of the BPF 14 (the high-frequency component of the signal S1). Filter by "B
  • the output signals of BPF 13, BPF 14 and BPF 15 are also input to the chroma correlation detector 24.
  • the chroma correlation detection unit 24 detects the vertical correlation of the color signals, and in accordance with the detection result, causes the switching switch 23 to select one of the four types of color signals described above. Circuit o
  • the output signal of 14 is added by the adder 25. And the adder
  • the output signal of 25 is converted into an absolute value by an absolute value circuit 26, smoothed by an LPF (open-path filter) 27, and then input to a comparison circuit 31 and a comparison circuit 32.
  • an absolute value circuit 26 smoothed by an LPF (open-path filter) 27, and then input to a comparison circuit 31 and a comparison circuit 32.
  • the output signal of BPF 14 and the output signal of BPF 15 are added by adder 28. Then, the output signal of the addition 28 is converted into an absolute value by the absolute value circuit 29, smoothed by the LPF 30, and then input to the comparison circuit 32 and the comparison circuit 33.
  • the comparison circuit 31 compares the level A of the input signal from the LP
  • the comparison circuit 31 sends a signal for controlling the selection by the switching switch 23 to the switching control section 35 in accordance with the result of this determination.
  • the comparison circuit 32 compares the level A of the input signal from the LPF 27 with a predetermined reference level R ef, and sends a signal indicating the comparison result to the switching circuit 34.
  • the comparison circuit 33 compares the level B of the input signal from the LPF 30 with the reference level R ef, and switches the signal indicating the comparison result to the switching circuit.
  • the switching circuit 34 is used when both the level A and the level B are lower than the reference level Ref (that is, when the luminance signal is near the carrier frequency). If the high-frequency component is not included), a command to select the BPF color signal ignoring the control signal from the comparison circuit 31 is sent to the switching control section 35. On the other hand, if at least one of the level A or the level B is equal to or higher than the reference level Ref, a command for transferring the control signal from the comparison circuit 31 to the switching switch 23 as it is is Switching control unit 3
  • the switching control unit 35 sends either a control signal for selecting a BPF color signal or a control signal from the comparison circuit 31 to the switching switch 23 according to the command from the switching circuit 34.
  • the switching switch 23 selects one of the four types of input color signals according to the control signal from the switching control section 35.
  • the color signal selected by the switch 23 is output from the two-dimensional separation circuit 1 as a color signal C 2 D separated from the input composite video signal, and is also output by a subtractor 36. Is subtracted from the output signal S 1 of the line memory 11.
  • the output signal of the subtractor 36 is output from the two-dimensional separation circuit 1 as a luminance signal Y 2 D separated from the input composite video signal.
  • the luminance signal Y 2 D separated by the two-dimensional separation circuit 1 is input to the vertical contour correction circuit 5.
  • the color signals C 2 D separated by the two-dimensional separation circuit 1 are input to the mixer 8.
  • the three-dimensional Y / C separation circuit 2 is a circuit that performs Y / C separation processing for still images (Y / C separation processing between frames) using a framecom filter.
  • FIG. 5 shows a configuration example of the three-dimensional Y / C separation circuit 2.
  • the input composite video signal is delayed by two horizontal lines in the line memory 42 to adjust the delay with the luminance signal Y 2 D and the color signal C 2 D from the two-dimensional YZC separation circuit 1 (Fig. 4), and is input to the subtractor 4 3.
  • the composite video signal from the frame memory 4 in FIG. 3 is also input to the subtracter 43 after the same delay adjustment is performed in the line memory 42.
  • the subtractor 43 subtracts the output signal of the line memory 41 from the output signal of the line memory 42.
  • the output signal of the subtractor 43 is adjusted by a gain controller 44 so that the gain is halved, whereby the color signal C 3D is separated.
  • the color signal C 3 D is subtracted from the output signal of the line memory 42 by the subtractor 45. Separates the luminance signal Y3D.
  • the luminance signal Y 3 D separated by the three-dimensional separation circuit 2 is input to the mixer 7.
  • the color signals C 3 D separated by the three-dimensional separation circuit 1 are input to the mixer 8.
  • the motion detection circuit 3 is a circuit that detects video motion based on the difference between the input composite video signal and the composite video signal from the frame memory 4, and uses the existing motion-adaptive 3D YZC separation. It has the same configuration as the motion detection circuit provided in the circuit.
  • the motion detection circuit 3 outputs the detection result as a 4-bit motion coefficient (the value is' 1 1 1 1 'when the motion is maximum, and the value is S' 0 0 0 0, Is output.
  • the motion coefficients are sent to mixers 7 and 8 as control signals.
  • the vertical contour correction circuit 5 is a circuit that performs a vertical contour correction process on the luminance signal.
  • FIG. 6 shows a configuration example of the vertical contour correction circuit 5.
  • the vertical contour emphasis signal AP (the output signal of the gain controller 21 in FIG. 4) from the two-dimensional separation circuit 1 is limited in the horizontal band by the LPF 51, and is cored by the limiter 52. Processing (processing to remove parts where the absolute value of the amplitude level is less than a certain value to prevent emphasis on minute noise components) and Limiter processing (processing to limit the upper limit of the absolute value of the amplitude level) After that, the gain is adjusted by the gain controller 53.
  • the output signal of the gain controller 53 is added to the luminance signal Y 2 D from the two-dimensional separation circuit 1 by the adder 55, so that the vertical edge portion of the luminance signal Y 2 D Be emphasized.
  • the luminance signal subjected to the vertical contour correction processing in the vertical contour correction circuit 5 is input to the horizontal contour correction circuit 6.
  • the horizontal contour correction circuit 6 is a circuit that performs a horizontal contour correction process on the luminance signal.
  • FIG. 7 shows a configuration example of the horizontal contour correction circuit 6.
  • High-frequency components in the horizontal direction are extracted from the input luminance signal by HPF (high-pass filter) 61.
  • HPF high-pass filter
  • the high-frequency component in the horizontal direction can be extracted by using a BPF instead of the HPF.
  • the output signal of the HPF 61 is subjected to coring processing and limiter processing by the limiter 62, and then the gain is adjusted by the gain controller 63.
  • the adder 64 adds the output signal of the gain control port 63 to the input luminance signal, so that the horizontal edge portion of the input luminance signal is emphasized. As shown in FIG. 3, the luminance signal subjected to the horizontal contour correction processing by the horizontal contour correction circuit 6 is input to the mixer 7.
  • the mixing ratio between the luminance signal from the horizontal contour correction circuit 6 and the luminance signal Y3D from the three-dimensional separation circuit 2 is determined according to the value of the motion coefficient (the value of the motion coefficient is' 1 1 1 When the value is 1 ', only the luminance signal from the horizontal contour correction circuit 6 becomes available, and as the value of the motion coefficient decreases, the proportion of the luminance signal Y3D increases, and the value of the motion coefficient becomes Is selected so that only the luminance signal Y3D is present).
  • the mixing ratio between the color signal C 2 D from the two-dimensional separation circuit 1 and the color signal C 3 D from the three-dimensional separation circuit 2 is similarly selected according to the value of the motion coefficient.
  • a luminance signal mixed by the mixer 7 and a color signal mixed by the mixer 8 are output to the outside.
  • the luminance signal Y 2 D separated by the two-dimensional separation circuit 1 and the luminance signal Y 3 D separated by the three-dimensional separation circuit 2 Only the luminance signal Y 2 D is supplied to the vertical contour correction circuit 5 and the horizontal contour correction circuit 6 to perform vertical and horizontal contour correction processing.
  • the luminance signals Y 2 D and 3 By differentiating the contour correction processing for the luminance signal Y 3 D by the dimension Y / C separation processing (here, no contour correction processing is performed for the luminance signal Y 3 D), two-dimensional The vertical and horizontal edge portions of the luminance signal Y 2 D by the YZC separation process are emphasized more than the vertical and horizontal edge portions of the luminance signal Y 3 D by the three-dimensional Y / C separation process.
  • FIG. 8 is a block diagram showing another configuration example of the motion adaptive 3D Y / C separation system to which the present invention is applied.
  • This motion-adaptive 3D Y / C separation system includes a 2D Y / C separation circuit 1, a 3D YZC separation circuit 2, a motion detection circuit 3, a frame memory 4, a mixer 7, It comprises a mixer 8, a vertical contour correction circuit 9, and a horizontal contour correction circuit 10.
  • a composite video signal digitally converted by an AZD converter (not shown) is input to a two-dimensional Y / C separation circuit 1, a three-dimensional YZC separation circuit 2, a motion detection circuit 3, and a frame memory 4.
  • Frame memory 4 is a memory for delaying an input signal by two frames. The composite video signal delayed by the frame memory 4 is sent to the three-dimensional Y / C separation circuit 2 and the motion detection circuit 3.
  • the two-dimensional YZC separation circuit 1 is a circuit that performs Y / C separation processing (field ⁇ YZC separation processing) for a moving image on an input composite video signal, and has a configuration as shown in FIG.
  • the luminance signal Y 2 D separated by the two-dimensional separation circuit 1 is input to the mixer 7.
  • the color signals C 2 D separated by the two-dimensional separation circuit 1 are
  • the three-dimensional Y / C separation circuit 2 is a circuit that performs Y / C separation processing for still images (Y / c separation processing between frames) using a frame-commutator, as shown in FIG. Make up the structure.
  • the luminance signal Y 3 D separated by the three-dimensional separation circuit 2 is input to the mixer 17.
  • the color signals C 3 D separated by the three-dimensional separation circuit 1 are input to the mixer 8.
  • the motion detection circuit 3 detects the motion of the image based on the difference between the input composite video signal and the composite video signal of the frame memory 4 and the like, and uses the detection result as a 4-bit motion coefficient ( The value is '1 1 1 1' when the movement is maximum, and the value is
  • This motion coefficient is sent as a control signal to each of the mixer 7, the mixer 8, the vertical contour correction circuit 9, and the horizontal contour correction circuit 10.
  • the mixing ratio of the luminance signal from the horizontal contour correction circuit 6 and the luminance signal Y3D from the three-dimensional separation circuit 2 is determined according to the value of the motion coefficient (the value of the motion coefficient is' 1 1 When 1 1 ′, only the luminance signal from the horizontal contour correction circuit 6 is provided. As the value of the motion coefficient decreases, the ratio of the luminance signal Y 3 D increases, and the value of the motion coefficient becomes 0 0 0
  • the mixing ratio of the color signal C 2 D from the two-dimensional separation circuit 1 and the color signal C 3 D from the three-dimensional separation circuit 2 is similarly selected according to the value of the motion coefficient. .
  • the luminance signal mixed by the mixer 7 is input to the vertical contour correction circuit 9.
  • the vertical contour correction circuit 9 is a circuit that performs a vertical contour correction process on the luminance signal.
  • FIG. 9 shows an example of the configuration of the vertical contour correction circuit 9, and portions common to the vertical contour correction circuit 5 shown in FIG. 6 are denoted by the same reference numerals.
  • the vertical contour emphasis signal AP (the output signal of the gain controller 21 in Fig. 4) from the two-dimensional separation circuit 1 is limited in the horizontal band by the LPF 51, and is cored by the limiter 52. After the limiter processing, the gain is adjusted by the gain controller 53.
  • the output signal of the gain controller 53 is added to the multiplier 56 by a coefficient X obtained by shifting down the motion coefficient from the motion detection circuit 3 by 4 bits (the value becomes 1 when the motion is maximum. When stationary, a coefficient whose value is 0) is multiplied.
  • the output signal of the multiplier 56 is added to the luminance signal from the mixer 7 by the adder 55, whereby the vertical edge portion of the luminance signal is emphasized.
  • the luminance signal that has been subjected to the vertical contour correction processing by the vertical contour correction circuit 9 is input to the horizontal contour correction circuit 10.
  • the horizontal contour correction circuit 10 is a circuit that performs a horizontal contour correction process on a luminance signal.
  • FIG. 10 shows an example of the configuration of the horizontal contour correction circuit 6, and the same reference numerals are given to portions common to the horizontal contour correction circuit 6 shown in FIG.
  • From the input luminance signal a high frequency component in the horizontal direction is extracted by the HPF 61.
  • the output signal of HPF 61 is subjected to core ring processing and limiter processing by limiter 62, and then the gain is adjusted by gain controller 63.
  • the output signal of the gain controller 63 is multiplied by the multiplier 65 by the same coefficient X as that of the multiplier 56 in the vertical contour correction circuit 9. Then, the output signal of the multiplier 65 is added to the input luminance signal by the adder 64, so that the horizontal edge portion of the input luminance signal is strongly reduced.
  • the luminance signal output from the horizontal contour correction circuit 10 and the color signal mixed by the mixer 8 are output to the outside in the motion adaptive 3D YZC separation system shown in FIG.
  • the luminance signal Y 2 D separated by the two-dimensional separation circuit 1 and the luminance signal Y 3 D separated by the three-dimensional separation circuit 2 are mixed with Kisa 7 dripping! ⁇ Provided to the contour correction circuit 9 and the horizontal contour correction circuit 10, but detected by the motion detector 3 and the positive level detector of the contour correction processing by the vertical contour correction circuit 9 and the horizontal contour correction circuit 10. (The coefficient of motion is' 0 when stationary.
  • the output signal of the gain controller 63 is multiplied by a coefficient X corresponding to the motion coefficient. It has become.
  • the gain itself to be adjusted by the gain controller 63 is changed by a motion coefficient (when the motion coefficient is' 0000, the gain is set to 0). It may be.
  • the configuration of the two-dimensional YZC separation circuit 1 shown in FIG. 4 and the configuration of the three-dimensional Y / C separation circuit 2 shown in FIG. 5 are merely examples, and two-dimensional Y / C
  • the present invention can be applied to a case where a C separation circuit or a three-dimensional Y / C separation circuit is used.
  • each of the above examples is used.
  • a method other than that shown for example, when the luminance signal Y 2 D and the luminance signal Y 3 D are subjected to contour correction processing using separate contour correction circuits, and the correction level of the luminance signal Y 2 D is increased, May be used.
  • the deterioration of the band in the two-dimensional YZC separation processing is compensated by the vertical contour correction and the horizontal contour correction.
  • the present invention is not limited to this, and the degradation of the band in the two-dimensional Y / C separation processing can be compensated only by the vertical contour correction, compensated only by the horizontal contour correction, and image quality other than the contour correction. Compensation may be performed by normal processing (for example, DRC: dynamic resolution conversion processing).
  • the present invention is applied to separate the luminance signal and the chrominance signal from the PAL composite video signal.
  • the luminance signal and the chrominance signal are separated from the NTSC composite video signal.
  • the present invention may be applied to separate a signal from a signal.
  • the present invention when the luminance signal and the chrominance signal are separated from the composite video signal by the motion adaptive 3D YZC separation processing, the case where the vertical correlation of the chrominance signal is impaired is considered. Compensation for the degradation of the band in the 2D YZC separation processing can reduce the difference in the sense of resolution when switching between moving images and still images, so that image quality can be improved. The effect is obtained.

Abstract

A motion-adaptive 3D Y/C separation system includes: 2D Y/C separation means for performing Y/C separation for a moving picture for a composite video signal inputted; 3D Y/C separation means for performing Y/C separation for a still image for the composite video signal; motion detection means for detecting a video motion from the composite video signal; selection means (mixer 7) for selecting a luminance signal and a color signal corresponding to the detection result of the motion detection means, by using the processing result of the 2D Y/C separation means and the 3D Y/C separation means; and correction differentiation means for subjecting the luminance signal isolated by the 2D Y/C separation means to image correction and limiting the image correction for the luminance signal isolated by the 3D Y/C separation means. It is possible to suppress image deterioration caused by switching between a moving picture and a still image when separating the luminance signal and the color signal from the composite video signal by the motion-adaptive 3D Y/C separation.

Description

明 細 書  Specification
動き適応型 3次元 YZ C分離シ ステム及ぴ画質改善方法 技惯分野  Motion adaptive 3D YZC separation system and image quality improvement method
本発明は、 コンポジッ ト ビデオ信号から動き適応型 3次元 YZ C分離処理によって輝度信号と色信号とを分離する際の画質の劣 化を抑制するためのシステム及び方法に関する。 背景技術 '  The present invention relates to a system and method for suppressing deterioration of image quality when a luminance signal and a chrominance signal are separated from a composite video signal by a motion adaptive 3D YZC separation process. Background technology ''
コンポジッ トビデオ信号から輝度信号と色信号とを分離する回 路と して、 動き適応型 3次元 Y/ C 分離回路が存在している。 動 き適応 3次元 Y / C分離回路は、 入力コンポジッ ト ビデオ信号か ら動画用の 2次元 YZ C分離 (フ ィ 一ルド內 YZ C分離) 処理, 静止画用の 3次元 Y/ C分離 (フ レーム間 YZ C分離) 処理によ つてそれぞれ輝度信号と色信号とを分離する と と もに、 入力コン ポジッ ト ビデオ信号から映像の動き を検出し、 こ の動き検出結果 に適応した輝度信号及び色信号を 2 次元 Y/ C分離処理 · 3次元 Y/ C分離処理の結果を用いて選択する回路である (例えば、 日 本国特許庁による特開 2 0 0 2— 3 2 5 2 6 4号公報 (段落番号 0 0 0 2〜 0 0 1 0、 図 4 ) 参照。)。  A motion-adaptive 3D Y / C separation circuit exists as a circuit for separating the luminance signal and the chrominance signal from the composite video signal. The motion-adaptive 3D Y / C separation circuit performs 2D YZC separation (field 內 YZC separation) for moving images from the input composite video signal, and 3D Y / C separation for still images ( In addition to separating the luminance signal and the chrominance signal by processing, the motion of the video is detected from the input composite video signal and the luminance signal adapted to the motion detection result. And two-dimensional Y / C separation processing for color signals and a circuit for selecting using the result of the three-dimensional Y / C separation processing (for example, Japanese Patent Application Laid-Open No. (see paragraph numbers 0000-2 to 010, FIG. 4).
また、動き適応型 3次元 Y/C分離回路を搭載した映像機器(例 えば、 テレビジョ ン受信機や D V D レコーダのよ うな、 コンポジ ッ ト ビデオ信号が入力される映像表示装置や映像記録装置)では、 動き適応型 3次元 Y/ C分離回路で分離した輝度信号に対して、 輪郭補正等の画質捕正処理を施すこ と も広く行われている。  Also, video equipment equipped with a motion-adaptive 3D Y / C separation circuit (for example, a video display device or video recording device to which a composite video signal is input, such as a television receiver or DVD recorder) It is widely practiced to apply image quality correction processing such as contour correction to luminance signals separated by a motion-adaptive 3D Y / C separation circuit.
図 1 は、 従来の動き適応型 3次元 YZ C分離システム (動き適 応型 3次元 Y/C分離回路の後段に輪郭補正回路を設けたシステ ム) の構成例を示すブロ ック図である。 図示しない A/D変換器 によってデジタル変換されたコンポジッ トビデオ信号が、 動き適 応型 3次元 Y/ C分離回路 1 0 0内の 2次元 Y/ C分離回路 1 0 1 , 3次元 Y/ C分離回路 1 0 2, 動き検出回路 1 0 3及ぴフ レ ームメモリ 1 0 4 に入力される。 Figure 1 is a block diagram showing an example of the configuration of a conventional motion-adaptive 3D YZC separation system (a system in which a contour correction circuit is provided after the motion-adaptive 3D Y / C separation circuit). A / D converter not shown The composite video signal, which has been digitally converted by the converter, is converted into a two-dimensional Y / C separation circuit 101 in the motion-adaptive three-dimensional Y / C separation circuit 100, a three-dimensional Y / C separation circuit 102, and a motion detection circuit. Input to 103 and frame memory 104.
2次元 Y/C分離回路 1 0 1 は、 入力コンポジッ ト ビデオ信号 に対して、 ライ ンコムフィルタまたはバン ドパスフィルタによる 動画用の YZc分離処理 (フ ィ ール ド内 Y/c分離処理) を行う 回路である。 2次元 Y/ C分離回路 1 0 1で分離された輝度信号 Y 2 Dは、 ミキサー 1 0 5 に入力される。 また、 2次元 Y/ C分. 離回路 1 0 1 で分離された色信号 C 2 Dは、 ミキサー 1 0 6 に入 力される。  The two-dimensional Y / C separation circuit 101 performs YZc separation processing for moving images using a line-com filter or band-pass filter on the input composite video signal (Y / c separation processing in the field) The circuit that performs The luminance signal Y 2 D separated by the two-dimensional Y / C separation circuit 101 is input to the mixer 105. The color signal C 2 D separated by the two-dimensional Y / C separation circuit 101 is input to the mixer 106.
フ レームメモ リ 1 0 4 と しては 、 N T S C方式のコンポンッ 卜 ビデオ信号用の動き適応型 3次元 Ύ / C分離回路では、 入力信号 を 1 フ レーム分遅延させるメモリ が用いられ、 P A L方式のコン ポジッ トビデォ信号用の動き適応型 3次元 Y/ C分離回路では、 入力信号を 2 フ レ ―ム分遅延させるメモ Vが用レ、 oれる。 フ レ一 ムメモリ 1 0 4で遅延されたコンホンッ 卜ビデォ信号は、 3次元 As the frame memory 104, a motion-adaptive 3D Ύ / C separation circuit for NTSC composite video signals uses a memory that delays the input signal by one frame, and a PAL In the motion adaptive 3D Y / C separation circuit for positive video signals, a memo V that delays the input signal by 2 frames is used. The composite video signal delayed by the frame memory 104 is three-dimensional.
Y/ C分離回路 1 0 2及び動き検出回路 1 0 3 に送られる。 It is sent to the Y / C separation circuit 102 and the motion detection circuit 103.
3次元 Y / C分離回路 1 0 2は、 入力コンポジッ ト ビデオ信号 に対して、 フ レームコムフィルタによる静止画用の YZ C分離処 理 (フレーム間 Y/ C分離処理) を行う回路である。 3次元 YZ C分離回路 1 0 2で分離された輝度信号 Y 3 Dは、 ミキサー 1 0 5 に入力される。 また、 3次元 YZ C分離回路 1 0 2で分離され た色信号 C 3 Dは、 ミキサー 1 0 6 に入力される。  The three-dimensional Y / C separation circuit 102 is a circuit that performs YZC separation processing (Y / C separation processing between frames) for still images on the input composite video signal using a framecom filter. The luminance signal Y 3 D separated by the three-dimensional YZC separation circuit 102 is input to the mixer 105. The color signal C 3 D separated by the three-dimensional YZC separation circuit 102 is input to the mixer 106.
動き検出回路 1 0 3 は、 入力コンポジッ トビデオ信号とフ レー ムメモリ 1 0 4からのコンポジッ ト ビデオ信号との双方に対して フィルターをかけて、 仮の輝度信号、 色信号を生成し、 その差分 に基づいて映像の動きを検出し、 その検出結果を 4 ビッ トの動き 係数 (動きが最大のときには値が ' 1 1 1 1 , となり 、 静止して いるときには値が ' 0 0 0 0 ' となる係数) と して出力する回路 である。 この動き係数は、 ミ キサー 1 0 5, ミ キサー 1 0 6 にそ れぞれ制御信号と して送られる。 The motion detection circuit 103 applies a filter to both the input composite video signal and the composite video signal from the frame memory 104, generates temporary luminance signals and color signals, and calculates the difference between them. Video motion based on the detected motion This is a circuit that outputs as a coefficient (a coefficient whose value is '11 1 1, 'when the motion is maximum, and which is' 0 0 0 0' when it is stationary). This motion coefficient is sent as a control signal to mixers 105 and 106, respectively.
ミキサー 1 0 5では、 輝度信号 Y 2 Dと輝度信号 Y 3 D と の混 合比が、 この動き係数の値に応じて (動き係数の値が増加するに つれて輝度信号 Y 2 Dの割合が高く なるよ う に) 選択 される。 ミ キサー 1 0 6でも、 色信号 C 2 Dと色信号 C 3 Dとの 混合比が、 同様にしてこの動き係数の値に応じて選択される。  In the mixer 105, the mixing ratio of the luminance signal Y2D and the luminance signal Y3D is determined according to the value of the motion coefficient (the ratio of the luminance signal Y2D increases as the value of the motion coefficient increases). Is higher). In the mixer 106 as well, the mixture ratio of the color signal C 2 D and the color signal C 3 D is similarly selected according to the value of the motion coefficient.
動き適応型 3次元 YZ C分離回路 1 0 0からは、 ミ キサー 1 0 5で混合された輝度信号と、 ミキサー 1 0 6で混合さ れた色信号 とが出力される。 このう ち、 ミ キサー 1 0 5からの舞 度信号は、 後段の垂直輪郭補正回路 1 0 7, 水平輪郭補正回路 1 0 8 に順次 入力されて、 垂直方向, 水平方向の輪郭補正処理を施 される。  The motion-adaptive three-dimensional YZC separation circuit 100 outputs a luminance signal mixed by the mixer 105 and a color signal mixed by the mixer 106. Of these, the dancer signal from the mixer 105 is sequentially input to the subsequent vertical contour correction circuit 107 and horizontal contour correction circuit 108 to perform vertical and horizontal contour correction processing. Is done.
ところで、 図 1 に示したよ うな従来の動き適応型 3 次元 YZC 分離回路では、 表示する映像の内容によっては、 静止 した状態か ら動きのある状態に (あるいは逆に動きのある状態か ら静止した 状態に) 推移する ときに、 映像が不自然に見えてしま う こ とがあ る。 その理由は、 次の通り である。  By the way, in the conventional motion-adaptive 3D YZC separation circuit as shown in Fig. 1, depending on the content of the displayed video, it changes from a stationary state to a moving state (or conversely, from a moving state to a stationary state). The video may look unnatural when transitioning. The reasons are as follows.
動画用の 2次元 Y/C分離回路に用いられるライ ン コムフィル タは、 色副搬送波の位相関係と、 色信号の垂直相関 〔 隣り合う水 平ライン同士で色信号の波形が近似するこ と) とを利 用して色信 号を分離する。 すなわち、 N T S C方式のコンポジッ ト ビデオ信 号では、 図 2 ( a ) に示すよ う に色副搬送波の位相が 1水平ライ ンで 1 8 0 ° ずれるので、 色信号に垂直相関があれ ί 、 隣り合う 水平ライン同士の差分をと るこ とによって色信号を:^離するこ と ができる。  The line comb filter used in the two-dimensional Y / C separation circuit for moving images uses the phase relationship of the color subcarriers and the vertical correlation of the color signals (the color signal waveforms are approximated between adjacent horizontal lines). Is used to separate the color signals. That is, in the composite video signal of the NTSC system, as shown in Fig. 2 (a), the phase of the chrominance subcarrier is shifted by 180 ° in one horizontal line, so that there is no vertical correlation in the chrominance signal. The color signals can be separated: ^ by taking the difference between the matching horizontal lines.
また、 P A L方式のコンポジッ ト ビデオ信号でも、 図 1 ( b ) に示すよ つ に色副搬送波の位相が 2水平ラインで 1 8 0 ° ずれる ので、 色信号に垂直相関があれば、 2水平ラィン分離れた水平ラ イン同士の差分をと るこ とによって色信号を分離することができ しかし 例えば横線や斜め線を含む映像のよ う に、 色信号の 直相関が なわれてレ、る場合には、 こ う した水平ライ ン同士の差 分をとるこ とによつて輝度信号成分に色信号成分が漏れ込むので、 信号の帯域が劣化してしま う。 Fig. 1 (b) shows a PAL composite video signal. As shown in the figure, the phase of the color subcarrier is shifted 180 ° between the two horizontal lines, so if there is a vertical correlation between the color signals, the color is obtained by taking the difference between the horizontal lines separated by two horizontal lines. Signals can be separated.However, when the color signals are directly correlated, for example, in an image containing horizontal or diagonal lines, the difference between these horizontal lines can be calculated. As a result, the chrominance signal component leaks into the luminance signal component, thereby deteriorating the signal band.
こ こで ライ ンコムフィルタの代わり に、 色副搬送波のキャ リ ァ周波数を通過させる水平方向のバ ン ドパスフイ ノレタによつて色 信号を分離すれば、 線を含む映像での帯域の劣化を防止するこ とができる。 しカゝし、 こ う した水平方向のノ ン ドパス フ イ ノレタで も、 輝度信号の斜め成分を判別する とはできないので、 斜め線 を含む映像の場合にはやはり輝度信号成分が色信号成分に漏れ込 んで 域が劣化してしま う o  Here, if the color signals are separated by a horizontal band-pass filter that passes the carrier frequency of the color subcarrier instead of the line-com filter, degradation of the band in the image containing lines can be prevented. can do. However, even with such a horizontal non-pass filter, it is not possible to determine the diagonal component of the luminance signal, so that in the case of an image containing diagonal lines, the luminance signal component is also the color signal component. O The area will deteriorate due to leakage
このよ う に、 動画用の 2次元 Y / C分離処理では帯域の劣化を - 招く とがあるが、 これに対し、 静止画用の 3次元 Y / C分離処 理のほうでは帯域の劣化を招く こ とな < Y Z C分離を行う ことが できる o  In this way, the two-dimensional Y / C separation processing for moving images may cause band degradation, while the three-dimensional Y / C separation processing for still images may cause band deterioration. Invitation <YZC separation can be performed o
そのため、 映像が動きのある状 から静止した状態に (あるい は逆に静止した状態から動きのある状態に) 推移する ときに、 2 次元 Y / C分離回路からの出力信号と 3次元 Υ / C分離回路から の出力信号とが切り替わる (図 2の例ではミキサ での両者の出  Therefore, when the video transitions from a moving state to a stationary state (or conversely, from a stationary state to a moving state), the output signal from the two-dimensional Y / C separation circuit and the three-dimensional Υ / The output signal from the C separation circuit is switched. (In the example of Fig. 2, both outputs from the mixer are
-f±f- 力信号の混合比が大き く変化する ) こ とによって 域差が生じる ので 映像を表示する際に解像度感の差が生じて映像が不自然に 見えてし <=£  -f ± f- The mixing ratio of the input signal greatly changes) .Therefore, a difference in resolution occurs when displaying the image, and the image looks unnatural.
特に 2次元 Y / C分離回路にラィンコムフィルタを用いる場 合、 P A L方式では、 図 2 ( b ) に示したよ う に 2水平ライン離 れた映像テータの差分を利用するので、 N T S C方式におけるよ り も帯域の劣化の度合いが大きく なる o そして、 近年はフレ一ム メモリやライ ンメモリ の低価格化に伴つて民生用の映像機器にもIn particular, when a line comb filter is used in the two-dimensional Y / C separation circuit, the PAL method separates two horizontal lines as shown in Fig. 2 (b). Since the difference in the video data is used, the degree of bandwidth degradation is greater than in the NTSC system.o In recent years, with the price reduction of frame memory and line memory, consumer video equipment has become Also
P A L方式のコンポジッ ト信号用の動き適応型 3次元 Υ / 。分離 回路が搭載されるこ とが多く なっているので、 こ う した動画と静 止画との切り替わり時の画質の劣化の問題が顕著になる。 Motion adaptive 3D Υ / for PAL composite signals. Since a separation circuit is often installed, the problem of image quality deterioration when switching between such a moving image and a still image becomes prominent.
なおゝ 図 1 に示した動き適応型 3次元 Y / C分離回路システム では、 動き適応型 3次元 Y Z C分離回路で分離した輝度信号に対 して、 垂直輪郭補正回路, 水平輪郭補正回路で輪郭補正処理を施 している ο しかし 、 2次元 Y / C分離回路力 らの輝度信号と 3次 元 Y / C分離回路からの輝度信号との両方に対して一様に輪郭補 正処理を施しているので、 こ う した動画と静止画との切り替わり 時の画質の劣化の問題は解消されない o  In the motion-adaptive 3D Y / C separation circuit system shown in Fig. 1, the luminance signal separated by the motion-adaptive 3D YZC separation circuit is contour-corrected by a vertical contour correction circuit and a horizontal contour correction circuit. Ο However, contour correction is performed uniformly on both the luminance signal from the two-dimensional Y / C separation circuit and the luminance signal from the three-dimensional Y / C separation circuit. The problem of image quality degradation when switching between video and still images is not solved o
本発明は 、 上述の点に鑑み、 コンポジク ト ビデォ信号から動き 適応型 3次元 Y / C分離処理によって輝度信号と色信号とを分離 る際の 動画と静止画との切り替わ 時の画質の劣化を抑制す ることを 題と してなされたものである ο 発明の開示  In view of the above points, the present invention provides a method of deteriorating image quality when switching between a moving image and a still image when a luminance signal and a color signal are separated from a composite video signal by motion adaptive 3D Y / C separation processing. Ο Disclosure of the invention
この課題を解決するために、 本発明による動き適応型 3次元 Υ / C分離システムは、 入力したコンポジッ トビデオ信号から輝度 信号と色信号とを分離する 2次元 Y / C分離手段と、 このコンポ ジッ ト ビデオ信号から輝度信号と色信号とを分離する 3次元 Υ / C分離手段と、 このコンポジッ トビデオ信号'から映像の動きを検 出する動き検出手段と、 この動き検出手段の検出結果に適応した 輝度信号及ぴ色信号を、 この 2次元 Y / C分離手段及びこの 3次 元 Y Z C分離手段の処理結果を用いて選択する選択手段と、 この 2次元 Y / C分離手段で分離された輝度信号に対して画質補正処 理を施し、 この 3次元 Yノ C分離手段で分離された輝度信号に対 してはこの画質捕正処理を制限する補正差別化手段とを備えたこ とを特徴とする。 In order to solve this problem, a motion-adaptive three-dimensional Υ / C separation system according to the present invention includes two-dimensional Y / C separation means for separating a luminance signal and a chrominance signal from an input composite video signal; (G) three-dimensional Υ / C separation means for separating a luminance signal and a chrominance signal from a video signal, motion detection means for detecting video motion from the composite video signal ', and adaptation to the detection result of the motion detection means Selecting means for selecting a luminance signal and a color signal using the processing results of the two-dimensional Y / C separating means and the three-dimensional YZC separating means; and a luminance signal separated by the two-dimensional Y / C separating means. Image quality correction And a correction differentiating means for limiting the image quality correction processing for the luminance signal separated by the three-dimensional Y / C separating means.
この動き適応型 3次元 Y/ C分離システムでは、 通常の動き適 応型 3次元 Y/ C分離回路におけるのと同様に、 入力コンポジッ ト ビデオ信号から動画用の 2次元 YZ C分離処理, 静止画用の 3 次元 Y/C分離処理によってそれぞれ輝度信号と色信号とが分離 される と と もに、 入力コンポジッ ト ビデオ信号から映像の動きが 検出され、 この動き検出結果に適応した輝度信号及び色信号が 2 次元 Y/C分離処理 · 3次元 Y/ C分離処理の結果を用いて選択 される。  In this motion-adaptive 3D Y / C separation system, as in a normal motion-adaptive 3D Y / C separation circuit, a 2D YZC separation process for moving images from an input composite video signal and a still image The three-dimensional Y / C separation process separates the luminance signal and the chrominance signal, and detects the motion of the video from the input composite video signal. Are selected using the results of 2D Y / C separation processing and 3D Y / C separation processing.
ただし、 この動き適応型 3次 7Ώ Y C分離システムでは、 補正 差別化手段によ り 2次 Y / C分離手段で分離された輝度信号 に対しては画質補正処理が施されるが 3次元 Y Zc分離手段で 分離された輝 信号に対しては の画質補正処理が制限される。  However, in this motion-adaptive cubic 7Ώ YC separation system, the luminance signal separated by the secondary Y / C separation unit by the correction differentiation unit is subjected to image quality correction processing. For the bright signal separated by the separating means, the image quality correction processing of is limited.
このよ う に 2次元 Y / C分離処理によつて分離した輝度信号 と 3次元 Y C分離処理によつて分離した輝度 ifc号とに対する画 質補正処理を差別化するこ とによ り 、 色信号の垂直相関が損なわ れている場合の 2次元 YZ C分離処理での帯域の劣化を補償して、 動画と静止画との切り替わり時の解像度感の差を小さ くするこ と ができるので、 画質を改善するこ とができる。  By differentiating the image quality correction processing between the luminance signal separated by the two-dimensional Y / C separation processing and the luminance ifc separated by the three-dimensional YC separation processing, the color signal Can compensate for the degradation of the band in the 2D YZC separation process when the vertical correlation of the image is lost, and reduce the difference in the sense of resolution when switching between video and still images. Can be improved.
なお、 この動き適応型 3次元 YZ C分離システムにおいて、 一 例と して、 補正差別化手段を、 2次元 YZC分離手段で分離され た輝度信号のみが供給される画質補正回路で構成する好適である。 それによ り、 図 1 に例示したよ うな既存の動き適応型 3次元 Y/ In the motion-adaptive three-dimensional YZC separation system, as an example, it is preferable that the correction differentiator is configured by an image quality correction circuit to which only the luminance signal separated by the two-dimensional YZC separator is supplied. is there. As a result, the existing motion-adaptive 3D Y /
C分離システムに対して僅かな変更を加えるだけで、 動画と静止 画との切り替わり 時の解像度感の差を小さ くするこ とができるよ う になる。 あるいはまた、 この動き適応型 3次元 YZ C分離システムにお いて、 選択手段を、 動き検出手段の検出結果に応じて 2次元 Y_ C分離手段の出力信号と 3次元 Y/ C分離手段の出力信号との混 合比を選択する混合回路で構成する と ともに、補正差別化手段を、 この混合回路で混合された輝度信号が供給される と と もに、 動き 検出手段で検出される動きの大き さの減少に応じて画質補正処理 の補正レベルを低下させる画質捕正回路で構成するこ とも好適で ある。 その場合にも、 やはり 、 図 1 に例示したよ う な既存の動き 適応型 3次元 Y / C分離システムに対して僅かな変更を加えるだ けで、 動画と静止画との切り替わり時の解像度感の差を小さ くす るこ とができるよ う になる。 With a small change to the C separation system, the difference in the sense of resolution when switching between moving images and still images can be reduced. Alternatively, in this motion-adaptive three-dimensional YZC separation system, the selection means is used to select the output signal of the two-dimensional Y_C separation means and the output signal of the three-dimensional Y / C separation means according to the detection result of the motion detection means. And a correction differentiating means for supplying the luminance signal mixed by the mixing circuit and the magnitude of the motion detected by the motion detecting means. It is also preferable to configure an image quality correction circuit that lowers the correction level of the image quality correction processing in accordance with the decrease in the image quality. In that case, too, with a slight change to the existing motion-adaptive 3D Y / C separation system as shown in Fig. 1, the sense of resolution when switching between video and still images can be obtained. The difference between the two can be reduced.
また、 この動き適応型 3次元 Y/C分離システムにおいて、 一 例と して、 捕正差別化手段を、 画質補正処理と して垂直輪郭捕正 処理及ぴ Zまたは水平輪郭補正処理を施すよ う に構成するこ とが 好適である。 それによ り 、 2次元 Y/C分離処理によって分離し た輝度信号の垂直エッジ部分や水平エッジ部分が、 3次元 Y/ C 分離処理によって分離した輝度信号の垂直エッジ部分や水平エツ ジ部分よ り も強調されるので、 動画と静止画との切り替わり 時の 解像度感の差を一層よ く解消することができるよ う になる。  In this motion-adaptive three-dimensional Y / C separation system, as an example, the capture differentiating means may perform vertical contour correction processing and Z or horizontal contour correction processing as image quality correction processing. It is preferable to configure as follows. As a result, the vertical and horizontal edge portions of the luminance signal separated by the two-dimensional Y / C separation process are different from the vertical and horizontal edge portions of the luminance signal separated by the three-dimensional Y / C separation process. Is emphasized, so that the difference in the sense of resolution when switching between a moving image and a still image can be further eliminated.
次に、 本発明による画質改善方法は、 入力したコンポジッ ト ビ デォ信号から輝度信号と色信号とを分離する 2次元 Y/C分離手 段と、 このコンポジッ ト ビデオ信号から輝度信号と色信号とを分 離する 3次元 Y/ C分離手段と、 このコンポジッ ト ビデオ信号か ら映像の動きを検出する動き検出手段と、 この動き検出手段の検 出結果に適応した輝度信号及ぴ色信号を、 この 2次元 Y/ C分離 手段及ぴこの 3次元 YZC分離手段の処理結果を用いて選択する 選択手段とを有する動き適応型 3次元 Y/ C分離回路に、 画質改 善のための処理を施す方法において、 この 2次元 YZ C分離手段 で分離された輝度信号に対して画質補正処理を施し、 この 3次元 Y/C分離手段で分離された輝度信号に対してはこ の画質捕正処 理を制限するこ とを特徴とする。 Next, the image quality improving method according to the present invention comprises a two-dimensional Y / C separation means for separating a luminance signal and a color signal from an input composite video signal, and a luminance signal and a color signal from the composite video signal. Three-dimensional Y / C separation means for separating the image, a motion detection means for detecting the motion of the video from the composite video signal, and a luminance signal and a color signal adapted to the detection result of the motion detection means. The motion-adaptive three-dimensional Y / C separation circuit having the two-dimensional Y / C separation means and the selection means for selecting using the processing results of the three-dimensional YZC separation means performs processing for improving image quality. In the method of applying, this 2D YZ C separation means It is characterized in that image quality correction processing is performed on the luminance signal separated by, and the image quality correction processing is restricted on the luminance signal separated by the three-dimensional Y / C separation means.
こ の画質改善方法によれば、 動き適応型 3次元 Y/ C分離回路 内の 2次元 Y/ C分離手段で分離された輝度信号に対しては画質 補正処理を施すが、 動き適応型 3次元 Y/ C分離回路内の 3次元 Y/ C分離手段で分離された輝度信号に対してはこ の画質補正処 理を制限する。  According to this image quality improvement method, the luminance signal separated by the two-dimensional Y / C separation means in the motion-adaptive three-dimensional Y / C separation circuit is subjected to image quality correction processing. This image quality correction processing is restricted for the luminance signal separated by the three-dimensional Y / C separation means in the Y / C separation circuit.
こ の よ う に、 2次元 Y/ C分離処理によって分離した輝度信号 と 3次元 YZ C分離処理によって分離した輝度信号とに対する画 質補正処理を差別化するこ とによ り 、 色信号の垂直相関が損なわ れている場合の 2次元 Y/ C分離処理での帯域の劣化を補償して、 動画と静止画との切り替わり時の解像度感の差を小さ くするこ と ができるので、 画質を改善するこ とができる。 図面の簡単な説明  In this way, by differentiating the image correction processing between the luminance signal separated by the two-dimensional Y / C separation processing and the luminance signal separated by the three-dimensional YZC separation processing, the vertical It is possible to compensate for the deterioration of the band in the 2D Y / C separation processing when the correlation is lost, and to reduce the difference in the sense of resolution when switching between video and still images. Can be improved. Brief Description of Drawings
図 1 は、 従来の動き適応型 3次元 Y / c分離システムの構成例 を示すブ口 ック図でめる o  Figure 1 is a block diagram showing a configuration example of a conventional motion-adaptive 3D Y / c separation system.
、、  ,,
図 2は、 コンポンク 卜ビデォ信号のク 口マキヤ リ ァの位相関係 を示す図でめ 。  FIG. 2 is a diagram showing the phase relationship of the mouth maker of the composite video signal.
図 3 は、 本発明を m用した動き適応型 3次元 Y/ C分離システ ムの構成例を示すブ Π 、ソク図である o  FIG. 3 is a block diagram showing a configuration example of a motion adaptive 3D Y / C separation system using the present invention.
図 4は、 図 3の 2次元 Ύ / C分離回路の構成例を示すプロ ック 図であ ό。  FIG. 4 is a block diagram illustrating a configuration example of the two-dimensional Ύ / C separation circuit in FIG.
図 5 は、 図 3 の 3次元 Y / C分離回路の構成例を示すブロ ック 図であ  Fig. 5 is a block diagram showing a configuration example of the 3D Y / C separation circuit in Fig. 3.
図 6 は、 図 3 の垂直輪郭補正回路の構成例を示すプロ ック図で ある。 図 7は、 図 3の水平輪郭補正回路の構成例を示すブロ ック図で ある。 FIG. 6 is a block diagram showing a configuration example of the vertical contour correction circuit of FIG. FIG. 7 is a block diagram showing a configuration example of the horizontal contour correction circuit of FIG.
図 8 は、 本発明を適用した動き適応型 3次元 Y/C分離システ ムの別の構成例を示すブロ ック図である。  FIG. 8 is a block diagram showing another configuration example of the motion adaptive 3D Y / C separation system to which the present invention is applied.
図 9は、 図 8の垂直輪郭補正回路の構成例を示すブロ ック図で ある。  FIG. 9 is a block diagram showing a configuration example of the vertical contour correction circuit of FIG.
図 1 0は、 図 8 の水平輪郭補正回路の構成例を示すブロ ック図 である。 発明を実施するための最良の形態  FIG. 10 is a block diagram showing a configuration example of the horizontal contour correction circuit of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 P A L方式のコンポジッ トビデオ信号から輝度信号と色 信号とを分離するために本発明を適用した例について、 図面を用 いて具体的に説明する。  Hereinafter, an example in which the present invention is applied to separate a luminance signal and a chrominance signal from a PAL composite video signal will be specifically described with reference to the drawings.
図 3 は、 本発明を適用した動き適応型 3次元 Y/ C分離システ ムの構成例を示すブロ ック図である。 この動き適応型 3次元 Y/ C分離システムは、 2次元 Y/C分離回路 1 と、 3次元 YZ C分 離回路 2 と 、 動き検出回路 3 と 、 フ レームメ モ リ 4 と 、 垂直輪郭 補正回路 5 と、 水平輪郭補正回路 6 と、 ミ キサー 7 と、 ミ キサー 8 とで構成されている。  FIG. 3 is a block diagram showing a configuration example of a motion adaptive 3D Y / C separation system to which the present invention is applied. This motion-adaptive 3D Y / C separation system includes a 2D Y / C separation circuit 1, a 3D YZC separation circuit 2, a motion detection circuit 3, a frame memory 4, and a vertical contour correction circuit. 5, a horizontal contour correction circuit 6, a mixer 7, and a mixer 8.
図示しない AZD変換器によってデジタル変換されたコンポジ ッ ト ビデオ信号が、 2次元 Y/C分離回路 1, 3次元 Y/ C分離 回路 2, 動き検出回路 3及びフ レームメ モ リ 4 に入力される。  A composite video signal digitally converted by an AZD converter (not shown) is input to a two-dimensional Y / C separation circuit 1, a three-dimensional Y / C separation circuit 2, a motion detection circuit 3, and a frame memory 4.
フ レームメ モ リ 4は、 入力信号を 2 フ レーム分遅延させるメ モ リ である。 フ レームメモリ 4で遅延されたコンポジッ トビデオ信 号は、 3次元 Y/ C分離回路 2及ぴ動き検出回路 3に送られる。  Frame memory 4 is a memory for delaying an input signal by two frames. The composite video signal delayed by the frame memory 4 is sent to a three-dimensional Y / C separation circuit 2 and a motion detection circuit 3.
2次元 Y/ C分離回路 1 は、 入力コンポジッ ト ビデオ信号に対 して動画用の YZc分離処理 (フ ィ ール ド内 YZc分離処理) を 行う 回路である。 図 4は、 こ の 2次元 Y/ C分離回路 1 の構成例 を示す。 入力コンポジッ ト ビデオ信号 (図 4では信号 S 0 と して 表す) が、 ライ ンメモリ 1 1 で 2水平ライ ン分遅延された後、 ラ イ ンメモリ 1 2でさ らに 2水平ライ ン分遅延される。 そして、 信 号 S O , ライ ンメ モリ 1 1 の出力信号 S I (入力コンポジッ ト ビ デォ信号から 2水平ライン離れたコンポジッ トビデオ信号),ライ ンメモ リ 1 2 の出力信号 S 2 (入力コンポジッ ト ビデオ信号から 4水平ライ ン離れたコンポジッ ト ビデオ信号) から、 B P F (バ ン ドパスフィルタ) 1 3, 1 4 , 1 5 によって色副搬送波のキヤ リ ア周波数近傍以外の周波数成分 それぞれ除外される。 The two-dimensional Y / C separation circuit 1 is a circuit that performs YZc separation processing for moving images (YZc separation processing in a field) on an input composite video signal. Figure 4 shows a configuration example of this two-dimensional Y / C separation circuit 1. Indicates. The input composite video signal (represented as signal S0 in Figure 4) is delayed by two horizontal lines in line memory 11 and then further delayed by two horizontal lines in line memory 12. You. Then, the signal SO, the output signal SI of the line memory 11 (composite video signal two horizontal lines away from the input composite video signal), and the output signal S 2 of the line memory 12 (input composite video signal (Composite video signal four horizontal lines away from the composite video signal), the BPF (band pass filter) 13, 14, and 15 remove the frequency components of the color subcarrier other than near the carrier frequency.
B P F 1 3 の出力信号は、 減算器 1 6 に入力される。 B P F 1 4の出力信号は、 減算器 1 6, 減算器 1 8及び B P F 2 2に入力 される。 B P F 1 5の出力信号は、 減算器 1 8に入力される。 減算器 1 6 では、 B P F 1 4の出力信号 (信号 S 1 のキャ リ ア 周波数近傍の成分) から B P F 1 3 の出力信号 (信号 S Oののキ ャ リ ア周波数近傍の成分) が減算される。 そして、 減算器 1 6 の 出力信号がゲインコン トローラ 1 7でゲインを 2分の 1 に調整さ れるこ とによって色信号 (入力コンポジッ ト ビデオ信号 S 0及び ラインメモリ 1 1 の出力信号 S 1 からの 「上 2 ライン色信号」) が 求められる。  The output signal of BPF 13 is input to subtractor 16. The output signal of BPF 14 is input to subtractor 16, subtracter 18 and BPF 22. The output signal of BPF 15 is input to subtracter 18. The subtractor 16 subtracts the output signal of the BPF 13 (the component near the carrier frequency of the signal SO) from the output signal of the BPF 14 (the component near the carrier frequency of the signal S 1). . The output signal of the subtracter 16 is adjusted to half the gain by the gain controller 17 so that the color signal (the input composite video signal S0 and the output signal S1 of the line memory 11) is output. “Upper two line color signal”) is required.
減算器 1 8では、 B P F 1 4の出力信号から B P F 1 5 の出力 信号 (信号 S 2のキャ リ ア周波数近傍の成分) が減算される。 そ して、 減算器 1 6 の出力信号がゲイ ンコン トローラ 1 7でゲイ ン を 2分の 1 に調整されることによって色信号 (ラインメモリ 1 1 の出力信号 S 1及びラインメモリ 1 2の出力信号 S 2からの 「下 2 ライン色信号」) が求められる。  In the subtracter 18, the output signal of BPF 15 (the component near the carrier frequency of the signal S 2) is subtracted from the output signal of BPF 14. Then, the output signal of the subtracter 16 is adjusted to half the gain by the gain controller 17 so that the color signal (the output signal S 1 of the line memory 11 and the output signal of the line memory 12) is obtained. The “lower two-line color signal” from signal S2 is required.
ゲインコン トローラ 1 7の出力信号とゲイ ンコン トローラ 1 9 の出力信号とは.、 加算器 2 0で加算される。 そして、 加算器 2 0 の出力信号がゲイ ンコン トローラ 2 1 でゲインを 2分の 1 に調整 されるこ とによって色信号 (入力コンポジッ ト ビデオ信号 S 0, ライ ンメモ リ 1 1 の出力信号 S 1及ぴライ ンメモ リ 1 2の出力信 号 S 2からの 「 3 ライン色信号」) が求められる。 The output signal of the gain controller 17 and the output signal of the gain controller 19 are added by the adder 20. Then, the output signal of the adder 20 is adjusted to half the gain by the gain controller 21. As a result, a color signal (“3 line color signal” from input composite video signal S 0, output signal S 1 of line memory 11 and output signal S 2 of line memory 12) is obtained. Can be
B P F 2 2では、 B P F 1 4の出力信号 (信号 S 1 の高域成分) から色副搬送波のキヤ リ ァ周波数以外の周波数成分が除外される こ とによつて色信号 (水平方向のバン パスフィルタによる 「 B The BPF 22 removes the frequency components other than the carrier frequency of the chrominance subcarrier from the output signal of the BPF 14 (the high-frequency component of the signal S1). Filter by "B
P S色信号」) が求められる。 PS color signal ”) is required.
ゲイ ンコ ン ト ローラ 1 7, ゲイ ンコン ト ローラ 1 9 , ゲイ ンコ ン ト ロ一ラ 2 1 , B P F 2 2力 ら出力されるこれらの 4種類の色 信号はヽ 4入力 1 出力の切換スィ ツチ 2 3 に入力される。 また、 ゲイ ン ン トローラ 2 1 の出力信号は 、 垂直輪郭捕正回路 5 (図 These four color signals output from the gain controller 17, the gain controller 19, the gain controller 21, and the BPF 22 force can be switched by a 4-input / 1-output switch. Entered in 2 3. The output signal of the gain controller 21 is supplied to the vertical contour detection circuit 5 (see FIG.
3, 図 6 ) にも垂直輪郭強調信号 A P と して送られる。 3, 6) are also sent as the vertical contour emphasis signal AP.
B P F 1 3, B P F 1 4及び B P F 1 5 の出力信号は、 クロマ 相関検出部 2 4 にも入力される。 クロマ相関検出部 2 4は、 色信 号の垂直相関を検出し、 その検出結果に応じて 、 前述の 4種類の 色信号の う ちの 1種類の色信号を切換スイ ッチ 2 3 に選択させる 回路でめる o  The output signals of BPF 13, BPF 14 and BPF 15 are also input to the chroma correlation detector 24. The chroma correlation detection unit 24 detects the vertical correlation of the color signals, and in accordance with the detection result, causes the switching switch 23 to select one of the four types of color signals described above. Circuit o
ク πマ相関検出部 2 4内では、 B P F 1 3の出力信号と B P F The output signal of BPF 13 and the BPF
1 4の出力信号とが、 加算器 2 5で加算される 。 そして、 加算器The output signal of 14 is added by the adder 25. And the adder
2 5 の出力信号が、 絶対値回路 2 6で絶対値化され、 L P F (口 一パスフイルク) 2 7で平滑化された後 、 比較回路 3 1及ぴ比較 回路 3 2 に入力される。 The output signal of 25 is converted into an absolute value by an absolute value circuit 26, smoothed by an LPF (open-path filter) 27, and then input to a comparison circuit 31 and a comparison circuit 32.
また 、 B P F 1 4の出力信号と B P F 1 5の出力信号とが、 加 算器 2 8で加算される。 そして、 加算 2 8の出力信号が、 絶対 値回路 2 9で絶対値化され、 L P F 3 0で平滑化された後、 比較 回路 3 2及び比較回路 3 3 に入力される ο  Further, the output signal of BPF 14 and the output signal of BPF 15 are added by adder 28. Then, the output signal of the addition 28 is converted into an absolute value by the absolute value circuit 29, smoothed by the LPF 30, and then input to the comparison circuit 32 and the comparison circuit 33.
比較回路 3 1 は、 L P F 2 7カ らの入力信号のレベル Aと L P The comparison circuit 31 compares the level A of the input signal from the LP
F 3 0からの入力信号のレベル B とを比較して 、 色信号の垂直相 関を判定する。 この判定方法には、 例えば、 C = B Z ( A + B ) を算出し、 1 / 2 のときには、 Aと B とがほぼ等しいので、 3 ライ ン (入力コンポジッ ト ビデオ信号 S O, ライ ンメモリ 1 1 の出力信号 S 1及びライ ンメモリ 1 2の出力信号 S 2 ) 全てに色 信号の垂直相関がある と判別し、 他方 C 1 のときには、 Aがほ ぼ 0 に近いので、 上 2 ライン (入力コンポジッ ト ビデオ信号 S 0 及びライ ンメ モ リ 1 1 の出力信号 S 1 ) だけに色信号の垂直相関 がある と判別し、他方 C 0のと きには、 B力 Sほぼ 0 に近いので、 下 2 ライ ン (ライ ンメ モ ]) 1 1 の出力信号 S 1 と ライ ンメモリ 1Compare the level B of the input signal from F30 with the vertical phase of the color signal Seki is determined. In this determination method, for example, C = BZ (A + B) is calculated, and when 1/2, A and B are almost equal, so that 3 lines (input composite video signal SO, line memory 1 1 It is determined that all of the output signals S 1 of the line memory 12 and the output signal S 2 of the line memory 12 have a vertical correlation of the color signals. On the other hand, in the case of C 1, the upper two lines (input composite G), it is determined that only the video signal S 0 and the output signal S 1) of the line memory 11 have a vertical correlation of the color signals. 2 line (line note) 1 1 output signal S 1 and line memory 1
2の出力信号 S 2 ) だけに色信号の垂直相関がある と判別する と いう方法がある。 There is a method of determining that only the output signal S 2) of FIG.
そして、 比較回路 3 1 は この判定結果に応じて、 切換スイ ツ チ 2 3 での選択を制御する信号を切換制御部 3 5 に送る。  Then, the comparison circuit 31 sends a signal for controlling the selection by the switching switch 23 to the switching control section 35 in accordance with the result of this determination.
比較回路 3 2は、 L P F 2 7からの入力信号のレベル Aを所定 の基準レべノレ R e f と比較し その比較結果を示す信号を切換回 路 3 4に送る。  The comparison circuit 32 compares the level A of the input signal from the LPF 27 with a predetermined reference level R ef, and sends a signal indicating the comparison result to the switching circuit 34.
比較回路 3 3 は、 L P F 3 0からの入力信号のレベル Bをこの 基準レベル R e f と比較し その比較結果を示す信号を切換回路 The comparison circuit 33 compares the level B of the input signal from the LPF 30 with the reference level R ef, and switches the signal indicating the comparison result to the switching circuit.
3 4 に送る。 Send to 3-4.
切換回路 3 4は、 比較回路 3 2及び比較回路 3 3 の比較結果に 基づき、 レベル Aと レベル B との両方が基準レベル R e f よ り も 低い場合 (すなわち輝度信号にキャ リ ア周波数近傍の高域成分が 含まれていない場合) には 比較回路 3 1 からの制御信号を無視 して B P F色信号を選択させるコマン ドを、 切換制御部 3 5 に送 る 。 他方、 レベル Aまたはレベ レ B の少なく と も一方が基準レべ ル R e f 以上である場 には 比較回路 3 1 からの制御信号をそ のまま切換スィ ツチ 2 3 に転送させるコマン ドを、 切換制御部 3 Based on the comparison results of the comparison circuit 32 and the comparison circuit 33, the switching circuit 34 is used when both the level A and the level B are lower than the reference level Ref (that is, when the luminance signal is near the carrier frequency). If the high-frequency component is not included), a command to select the BPF color signal ignoring the control signal from the comparison circuit 31 is sent to the switching control section 35. On the other hand, if at least one of the level A or the level B is equal to or higher than the reference level Ref, a command for transferring the control signal from the comparison circuit 31 to the switching switch 23 as it is is Switching control unit 3
5 に送る。 切換制御部 3 5 は、 この切換回路 3 4からのコマン ドに従い、 B P F色信号を選択させる制御信号か、 比較回路 3 1 からの制御 信号かのいずれかを切換スィ ッチ 2 3 に送る。 Send to 5. The switching control unit 35 sends either a control signal for selecting a BPF color signal or a control signal from the comparison circuit 31 to the switching switch 23 according to the command from the switching circuit 34.
切換スィ ッチ 2 3 は、 この切換制御部 3 5からの制御信号に従 つて、 入力した 4種類の色信号の う ちのいずれか 1種類の色信号 を選択力する。 切換スィ ッチ 2 3で選択された色信号は、 入力コ ンポジッ ト ビデオ信号から分離した色信号 C 2 D と して 2次元分 離回路 1 から出力される と と もに、 減算器 3 6でラインメモ リ 1 1 の出力信号 S 1 から減算される。 減算器 3 6の出力信号は、 入 力コンポジッ ト ビデオ信号から分離した輝度信号 Y 2 D と して 2 次元分離回路 1 から出力される。 図 3 に示すよ う に、 2次元分離 回路 1 で分離された輝度信号 Y 2 Dは、 垂直輪郭捕正回路 5 に入 力される。また、 2次元分離回路 1 で分離された色信号 C 2 Dは、 ミ キサー 8 に入力される。  The switching switch 23 selects one of the four types of input color signals according to the control signal from the switching control section 35. The color signal selected by the switch 23 is output from the two-dimensional separation circuit 1 as a color signal C 2 D separated from the input composite video signal, and is also output by a subtractor 36. Is subtracted from the output signal S 1 of the line memory 11. The output signal of the subtractor 36 is output from the two-dimensional separation circuit 1 as a luminance signal Y 2 D separated from the input composite video signal. As shown in FIG. 3, the luminance signal Y 2 D separated by the two-dimensional separation circuit 1 is input to the vertical contour correction circuit 5. The color signals C 2 D separated by the two-dimensional separation circuit 1 are input to the mixer 8.
3次元 Y/ C分離回路 2は、 フ レームコムフィルタによる静止 画用の Y/ C分離処理 (フ レーム間 Y/C分離処理) を行う 回路 である。 図 5 は、 3次元 Y/ C分離回路 2の構成例を示す。 入力 コンポジッ ト ビデオ信号が、 ラインメモリ 4 2で 2水平ライ ン分 遅延されるこ とによって 2次元 YZ C分離回路 1 からの輝度信号 Y 2 D及ぴ色信号 C 2 D との遅延合せ (図 4のライ ンメモリ 1 1 との遅延合せ) を行った後、 減算器 4 3 に入力される。 図 3 のフ レームメモリ 4からのコンポジッ ト ビデオ信号も、 ラインメモリ 4 2で同じく遅延合せを行った後、 減算器 4 3 に入力される。 減算器 4 3 では、 ライ ンメモ リ 4 2の出力信号からライ ンメモ リ 4 1 の出力信号が減算される。 そして、 減算器 4 3 の出力信号 がゲインコン ト ローラ 4 4でゲインを 2分の 1 に調整されるこ と によって、 色信号 C 3 Dが分離される。 また、 この色信号 C 3 D が減算器 4 5 でライ ンメモリ 4 2の出力信号から減算されるこ と によ って輝度信号 Y 3 Dが分離される。 図 3 に示すよ うに、 3次 元分離回路 2で分離された輝度信号 Y 3 Dは、 ミキサー 7 に入力 される。 また、 3次元分離回路 1 で分離された色信号 C 3 Dは、 ミキサー 8 に入力される。 The three-dimensional Y / C separation circuit 2 is a circuit that performs Y / C separation processing for still images (Y / C separation processing between frames) using a framecom filter. FIG. 5 shows a configuration example of the three-dimensional Y / C separation circuit 2. The input composite video signal is delayed by two horizontal lines in the line memory 42 to adjust the delay with the luminance signal Y 2 D and the color signal C 2 D from the two-dimensional YZC separation circuit 1 (Fig. 4), and is input to the subtractor 4 3. The composite video signal from the frame memory 4 in FIG. 3 is also input to the subtracter 43 after the same delay adjustment is performed in the line memory 42. The subtractor 43 subtracts the output signal of the line memory 41 from the output signal of the line memory 42. Then, the output signal of the subtractor 43 is adjusted by a gain controller 44 so that the gain is halved, whereby the color signal C 3D is separated. The color signal C 3 D is subtracted from the output signal of the line memory 42 by the subtractor 45. Separates the luminance signal Y3D. As shown in FIG. 3, the luminance signal Y 3 D separated by the three-dimensional separation circuit 2 is input to the mixer 7. The color signals C 3 D separated by the three-dimensional separation circuit 1 are input to the mixer 8.
動 き検出回路 3 は、 入力コンポジッ ト ビデオ信号とフ レームメ モ リ 4からのコンポジッ ト ビデオ信号との差分に基づいて映像の 動き を検出する回路であり 、 既存の動き適応型 3次元 YZ C分離 回路に設けられている動き検出回路と同様の構成をしている。 動 き検出回路 3からは、 検出結果を 4 ビッ ト の動き係数 (動きが最 大の ときには値が ' 1 1 1 1 ' とな り 、 静止している ときには値 力 S ' 0 0 0 0 , となる係数) が出力される。 この動き係数は、 ミ キサー 7, ミ キサー 8 にそれぞれ制御信号と して送られる。  The motion detection circuit 3 is a circuit that detects video motion based on the difference between the input composite video signal and the composite video signal from the frame memory 4, and uses the existing motion-adaptive 3D YZC separation. It has the same configuration as the motion detection circuit provided in the circuit. The motion detection circuit 3 outputs the detection result as a 4-bit motion coefficient (the value is' 1 1 1 1 'when the motion is maximum, and the value is S' 0 0 0 0, Is output. The motion coefficients are sent to mixers 7 and 8 as control signals.
垂直輪郭補正回路 5 は、 輝度信号に対して垂直輪郭捕正処理を 行う 回路である。 図 6 は、 垂直輪郭捕正回路 5の構成例を示す。 2次元分離回路 1 から の垂直輪郭強調信号 A P (図 4のゲイ ンコ ン ト ローラ 2 1 の出力信号) が、 L P F 5 1 で水平方向の帯域を 制限 され、 リ ミ ッタ 5 2でコアリ ング処理 (微小なノイズ成分の 強調を防止するために、 振幅レベルの絶対値が一定以下である部 分を除去する処理) やリ ミ ッタ処理 (振幅レベルの絶対値の上限 を制限する処理) を施された後、 ゲイ ンコン トローラ 5 3でゲイ ンを調整される。  The vertical contour correction circuit 5 is a circuit that performs a vertical contour correction process on the luminance signal. FIG. 6 shows a configuration example of the vertical contour correction circuit 5. The vertical contour emphasis signal AP (the output signal of the gain controller 21 in FIG. 4) from the two-dimensional separation circuit 1 is limited in the horizontal band by the LPF 51, and is cored by the limiter 52. Processing (processing to remove parts where the absolute value of the amplitude level is less than a certain value to prevent emphasis on minute noise components) and Limiter processing (processing to limit the upper limit of the absolute value of the amplitude level) After that, the gain is adjusted by the gain controller 53.
そ して、 加算器 5 5で 2次元分離回路 1 からの輝度信号 Y 2 D にゲイ ンコン トローラ 5 3 の出力信号が加算されるこ とによ り 、 輝度信号 Y 2 Dの垂直エッジ部分が強調される。 図 3 に示すよ う に、 垂直輪郭補正回路 5で垂直輪郭補正処理を施された輝度信号 は、 水平輪郭補正回路 6 に入力される。  Then, the output signal of the gain controller 53 is added to the luminance signal Y 2 D from the two-dimensional separation circuit 1 by the adder 55, so that the vertical edge portion of the luminance signal Y 2 D Be emphasized. As shown in FIG. 3, the luminance signal subjected to the vertical contour correction processing in the vertical contour correction circuit 5 is input to the horizontal contour correction circuit 6.
水平輪郭補正回路 6 は、 輝度信号に対して水平輸郭補正処理を 行う 回路である。 図 7 は、 水平輪郭補正回路 6の構成例を示す。 入力輝度信号から、 H P F (ハイパス フ ィルタ) 6 1 で水平方向 の高域成分が抽出される。 なお、 H P Fの代わり に B P Fを用い ても水平方向の高域成分を抽出することができる。 The horizontal contour correction circuit 6 is a circuit that performs a horizontal contour correction process on the luminance signal. FIG. 7 shows a configuration example of the horizontal contour correction circuit 6. High-frequency components in the horizontal direction are extracted from the input luminance signal by HPF (high-pass filter) 61. The high-frequency component in the horizontal direction can be extracted by using a BPF instead of the HPF.
H P F 6 1 の出力信号は、 リ ミ ッタ 6 2でコアリ ング処理ゃリ ミ ッタ処理を施された後、 ゲインコン トローラ 6 3でゲインを調 整される。 そして、 加算器 6 4で入力輝度信号にゲイ ンコ ン ト口 ーラ 6 3 の出力信号が加算されるこ とによ り、 入力輝度信号.の水 平エッジ部分が強調される。 図 3 に示すよ う に、 水平輪郭補正回 路 6で水平輪郭捕正処理を施された輝度信号は、 ミ キサー 7 に入 力される。  The output signal of the HPF 61 is subjected to coring processing and limiter processing by the limiter 62, and then the gain is adjusted by the gain controller 63. The adder 64 adds the output signal of the gain control port 63 to the input luminance signal, so that the horizontal edge portion of the input luminance signal is emphasized. As shown in FIG. 3, the luminance signal subjected to the horizontal contour correction processing by the horizontal contour correction circuit 6 is input to the mixer 7.
ミ キサー 7では、 水平輪郭補正回路 6からの輝度信号と 3次元 分離回路 2からの輝度信号 Y 3 D との混合比が、 動き係数の値に 応じて (動き係数の値が ' 1 1 1 1 ' のとき水平輪郭補正回路 6 力 らの輝度信号のみになり 、 動き係数の値が小さ く なるにつれて 輝度信号 Y 3 Dの割合が高く なり 、 動き係数の値が ' 0 0 0 0, のとき輝度信号 Y 3 Dのみになるよ う に) 選択される。 ミキサー 8 でも、 2次元分離回路 1 からの色信号 C 2 D と 3次元分離回路 2 からの色信号 C 3 D との混合比が、 同様にしてこの動き係数の 値に応じて選択される。  In the mixer 7, the mixing ratio between the luminance signal from the horizontal contour correction circuit 6 and the luminance signal Y3D from the three-dimensional separation circuit 2 is determined according to the value of the motion coefficient (the value of the motion coefficient is' 1 1 1 When the value is 1 ', only the luminance signal from the horizontal contour correction circuit 6 becomes available, and as the value of the motion coefficient decreases, the proportion of the luminance signal Y3D increases, and the value of the motion coefficient becomes Is selected so that only the luminance signal Y3D is present). In the mixer 8 as well, the mixing ratio between the color signal C 2 D from the two-dimensional separation circuit 1 and the color signal C 3 D from the three-dimensional separation circuit 2 is similarly selected according to the value of the motion coefficient.
図 3 の動き適応型 3次元 YZ C分離システムからは、 ミキサー 7で混合された輝度信号と、 ミキサー 8で混合された色信号とが 外部に出力される。  From the motion-adaptive three-dimensional YZC separation system in FIG. 3, a luminance signal mixed by the mixer 7 and a color signal mixed by the mixer 8 are output to the outside.
以上に示した構成の動き適応型 3次元 YZ C分離システムによ れば、 2次元分離回路 1 で分離した輝度信号 Y 2 D と、 3次元分 離回路 2で分離した輝度信号 Y 3 D との う ち、 輝度信号 Y 2 Dの みが、 垂直輪郭補正回路 5及び水平輪郭補正回路 6 に供給されて 垂直方向及び水平方向の輪郭補正処理を施される。  According to the motion-adaptive three-dimensional YZC separation system configured as described above, the luminance signal Y 2 D separated by the two-dimensional separation circuit 1 and the luminance signal Y 3 D separated by the three-dimensional separation circuit 2 Only the luminance signal Y 2 D is supplied to the vertical contour correction circuit 5 and the horizontal contour correction circuit 6 to perform vertical and horizontal contour correction processing.
このよ う に、 2次元 YZ C分離処理による輝度信号 Y 2 D と 3 次元 Y/ C分離処理による輝度信号 Y 3 D とに対する輪郭補正処 理を差別化する (こ こでは輝度信号 Y 3 Dに対して輪郭補正処理 を全く行わない) こ とによ り 、 2次元 YZ C分離処理による輝度 信号 Y 2 Dの垂直エッジ部分や水平エッジ部分が、 3次元 Y/C 分離処理による輝度信号 Y 3 Dの垂直エッジ部分や水平エッジ部 分よ り も強調される。 Thus, the luminance signals Y 2 D and 3 By differentiating the contour correction processing for the luminance signal Y 3 D by the dimension Y / C separation processing (here, no contour correction processing is performed for the luminance signal Y 3 D), two-dimensional The vertical and horizontal edge portions of the luminance signal Y 2 D by the YZC separation process are emphasized more than the vertical and horizontal edge portions of the luminance signal Y 3 D by the three-dimensional Y / C separation process.
これによ り 、 色信号の垂直相関が損なわれている場合の 2次元 YZ C分離処理での帯域の劣化 (特に、 斜め線を含む映像の場合 のよ う に、 図 4 の B P F 2 2で色信号を分離しても発生してしま う帯域の劣化) 補償して、 動画と静止画との切り替わり 時の解 像度感の差を解消するこ とができるので、 画質を改善するこ とが できる。  As a result, when the vertical correlation of the color signals is impaired, the band is degraded in the two-dimensional YZC separation processing (particularly, as in the case of an image including oblique lines, the BPF 22 in FIG. (Degradation of band that occurs even if color signals are separated) Compensation can be performed to eliminate the difference in resolution when switching between moving images and still images, thus improving image quality. Can be done.
また、 図 1 に示した既存の動き適応型 3次元 Y/ C分離システ ムに対して僅かな変更を加える (こ こでは、 輝度信号を混合する ミキサーと、 垂直輪郭補正回路及び水平輪郭補正回路との配置を 入れ替える) だけで、 動画と静止画との切り替わり 時の解像度感 の差を解消するこ とができる。  Also, slight changes are made to the existing motion-adaptive 3D Y / C separation system shown in Fig. 1 (here, a mixer that mixes luminance signals, a vertical contour correction circuit and a horizontal contour correction circuit). By simply switching the arrangement between the two, it is possible to eliminate the difference in the sense of resolution when switching between moving images and still images.
次に、 図 8 は、 本発明を適用した動き適応型 3次元 Y/ C分離 システムの別の構成例を示すプロ ック図である。 この動き適応型 3次元 Y/ C分離システムの う ち、 図 3 に示した動き適応型 3次 元 Y/ C分離システム と共通する部分には、 図 3 と同一の符号を 付している。 この動き適応型 3次元 Y/C分離システムは、 2次 元 Y/C分離回路 1 と、 3次元 YZ C分離回路 2 と、 動き検出回 路 3 と、 フレームメモリ 4 と、 ミ キサー 7 と、 ミキサー 8 と、 垂 直輪郭補正回路 9 と、水平輪郭補正回路 1 0 とで構成されている。  Next, FIG. 8 is a block diagram showing another configuration example of the motion adaptive 3D Y / C separation system to which the present invention is applied. Of the motion-adaptive 3D Y / C separation system, those parts common to the motion-adaptive 3D Y / C separation system shown in Fig. 3 are denoted by the same reference numerals as in Fig. 3. This motion-adaptive 3D Y / C separation system includes a 2D Y / C separation circuit 1, a 3D YZC separation circuit 2, a motion detection circuit 3, a frame memory 4, a mixer 7, It comprises a mixer 8, a vertical contour correction circuit 9, and a horizontal contour correction circuit 10.
図示しない A Z D変換器によってデジタル変換されたコンポジ ッ ト ビデオ信号が、 2次元 Y/ C分離回路 1 , 3次元 YZ C分離 回路 2, 動き検出回路 3及ぴフ レームメモ リ 4 に入力される。 フ レームメ モ リ 4は、 入力信号を 2 フ レーム分遅延させるメ モ リ である。 フ レームメモリ 4で遅延されたコンポジッ トビデオ信 号は、 3次元 Yノ C分離回路 2及び動き検出回路 3 に送られる。 A composite video signal digitally converted by an AZD converter (not shown) is input to a two-dimensional Y / C separation circuit 1, a three-dimensional YZC separation circuit 2, a motion detection circuit 3, and a frame memory 4. Frame memory 4 is a memory for delaying an input signal by two frames. The composite video signal delayed by the frame memory 4 is sent to the three-dimensional Y / C separation circuit 2 and the motion detection circuit 3.
2次元 Y Z C分離回路 1 は、 入力コンポジッ ト ビデオ信号に対 して動画用の Yノ C分離処理 (フィールド內 Y Z C分離処理) を 行う回路であり 、 図 4に示したよ う な構成している。 2次元分離 回路 1 で分離された輝度信号 Y 2 Dは、ミ キサー 7に入力される。 また、 2次元分離回路 1 で分離された色信号 C 2 Dは、 へ、キサー The two-dimensional YZC separation circuit 1 is a circuit that performs Y / C separation processing (field 內 YZC separation processing) for a moving image on an input composite video signal, and has a configuration as shown in FIG. The luminance signal Y 2 D separated by the two-dimensional separation circuit 1 is input to the mixer 7. The color signals C 2 D separated by the two-dimensional separation circuit 1 are
8に入力される。 Entered in 8.
3次元 Y / C分離回路 2は、 フ レ一ム コ ム フ イ ノレタ による静止 画用の Y / C分離処理 (フ レーム間 Y / c分離処理) を行う回路 であり、 図 5 に示したよ う な構成してレ、る。 3次元分離回路 2で 分離した輝度信号 Y 3 Dは、 ミ キサ一 7 に入力される。 また、 3 次元分離回路 1 で分離した色信号 C 3 Dは、 ミ キサー 8に入力さ れ 。  The three-dimensional Y / C separation circuit 2 is a circuit that performs Y / C separation processing for still images (Y / c separation processing between frames) using a frame-commutator, as shown in FIG. Make up the structure. The luminance signal Y 3 D separated by the three-dimensional separation circuit 2 is input to the mixer 17. The color signals C 3 D separated by the three-dimensional separation circuit 1 are input to the mixer 8.
動き検出回路 3 は、 入力コンポジク 卜 ビデオ信号とフレームメ モ リ 4力、らのコ ンポジッ ト ビデオ信号との差分に基づいて映像の 動きを検出し、 この検出結果を 4 ビッ 卜の動き係数 (動きが最大 のときには値が ' 1 1 1 1 ' となり 、 静止している ときには値が The motion detection circuit 3 detects the motion of the image based on the difference between the input composite video signal and the composite video signal of the frame memory 4 and the like, and uses the detection result as a 4-bit motion coefficient ( The value is '1 1 1 1' when the movement is maximum, and the value is
' 0 0 0 0 ' と なる係数) と して出力する回路である。 この動き 係数は、 ミ キサー 7, ミ キサー 8, 垂直輪郭捕正回路 9 水平輪 郭補正回路 1 0 と にそれぞれ制御信号と して送られる。 '0 0 0 0'). This motion coefficient is sent as a control signal to each of the mixer 7, the mixer 8, the vertical contour correction circuit 9, and the horizontal contour correction circuit 10.
ミキサー 7では 、 水平輪郭補正回路 6 からの輝度信号と 3次元 分離回路 2から の輝度信号 Y 3 D との混合比が、 この動さ係数の 値に応じて (動き係数の値が ' 1 1 1 1 ' のとき水平輪郭補正回 路 6からの輝度信号のみになり 、 動き係数の値が小さ く なるにつ れて輝度信号 Y 3 Dの割合が高く なり 、 動き係数の値が 0 0 0 In the mixer 7, the mixing ratio of the luminance signal from the horizontal contour correction circuit 6 and the luminance signal Y3D from the three-dimensional separation circuit 2 is determined according to the value of the motion coefficient (the value of the motion coefficient is' 1 1 When 1 1 ′, only the luminance signal from the horizontal contour correction circuit 6 is provided. As the value of the motion coefficient decreases, the ratio of the luminance signal Y 3 D increases, and the value of the motion coefficient becomes 0 0 0
0 , のとき輝度信号 Y 3 Dのみになるよ う に) 選択される 。 ミキ サー 8でも、 2次元分離回路 1 からの色信号 C 2 D と 3次元分離 回路 2からの色信号 C 3 D との混合比が、 同様にしてこの動き係 数の値に応じて選択される。 It is selected so that only the luminance signal Y3D is obtained at 0 and. Miki In the circuit 8, the mixing ratio of the color signal C 2 D from the two-dimensional separation circuit 1 and the color signal C 3 D from the three-dimensional separation circuit 2 is similarly selected according to the value of the motion coefficient. .
ミキサー 7 で混合された輝度信号は、 垂直輪郭補正回路 9 に入 力される。 垂直輪郭補正回路 9 は、 輝度信号に対して垂直輪郭補 正処理を行う 回路である。 図 9 は、 垂直輪郭補正回路 9の構成例 を示しており 、 図 6 に示した垂直輪郭補正回路 5 と共通する部分 には同一の符号を付している。 2次元分離回路 1 からの垂直輪郭 強調信号 A P (図 4のゲイ ンコン ト ローラ 2 1 の出力信号) が、 L P F 5 1で水平方向の帯域を制限され、 リ ミ ッタ 5 2でコアリ ング処理ゃリ ミ ッタ処理を施された後、 ゲイ ンコン トローラ 5 3 でゲインを調整される。  The luminance signal mixed by the mixer 7 is input to the vertical contour correction circuit 9. The vertical contour correction circuit 9 is a circuit that performs a vertical contour correction process on the luminance signal. FIG. 9 shows an example of the configuration of the vertical contour correction circuit 9, and portions common to the vertical contour correction circuit 5 shown in FIG. 6 are denoted by the same reference numerals. The vertical contour emphasis signal AP (the output signal of the gain controller 21 in Fig. 4) from the two-dimensional separation circuit 1 is limited in the horizontal band by the LPF 51, and is cored by the limiter 52. After the limiter processing, the gain is adjusted by the gain controller 53.
ゲインコン ト ローラ 5 3 の出力信号には、 乗算器 5 6で、 動き 検出回路 3 力 らの動き係数を 4 ビッ ト シフ トダウンした係数 X (動きが最大のと きには値が 1 とな り、 静止している ときには値 が 0 となる係数) が乗算される。  The output signal of the gain controller 53 is added to the multiplier 56 by a coefficient X obtained by shifting down the motion coefficient from the motion detection circuit 3 by 4 bits (the value becomes 1 when the motion is maximum. When stationary, a coefficient whose value is 0) is multiplied.
そして、 加算器 5 5でミ キサー 7からの輝度信号に乗算器 5 6 の出力信号が加算されるこ とによ り 、 輝度信号の垂直エッジ部分 が強調される。 図 8 に示すよ う に、 垂直輪郭補正回路 9で垂直輪 郭捕正処理を施された輝度信号は、 水平輪郭捕正回路 1 0に入力 される。  Then, the output signal of the multiplier 56 is added to the luminance signal from the mixer 7 by the adder 55, whereby the vertical edge portion of the luminance signal is emphasized. As shown in FIG. 8, the luminance signal that has been subjected to the vertical contour correction processing by the vertical contour correction circuit 9 is input to the horizontal contour correction circuit 10.
水平輪郭補正回路 1 0は、 輝度信号に対して水平輪郭補正処理 を行う回路である。 図 1 0 は、 水平輪郭補正回路 6 の構成例を示 しており、 図 7 に示した水平輪郭補正回路 6 と共通する部分には 同一の符号を付している。 入力輝度信号から、 H P F 6 1で水平 方向の高域成分が抽出される。 H P F 6 1 の出力信号は、 リ ミ ツ タ 6 2でコア リ ング処理ゃリ ミ ッタ処理を施された後、 ゲインコ ン トローラ 6 3でゲイ ンを調整される。 ゲイ ンコン トローラ 6 3 の出力信号には、 乗算器 6 5で、 垂直 輪郭補正回路 9内の乗算器 5 6 と同じ係数 Xが乗算される。 そし て、 加算器 6 4で入力輝度信号に乗算器 6 5の出力信号が加算さ れるこ とによ り、 入力輝度信号の水平ェクジ部分が強 s¾ ォしる。 The horizontal contour correction circuit 10 is a circuit that performs a horizontal contour correction process on a luminance signal. FIG. 10 shows an example of the configuration of the horizontal contour correction circuit 6, and the same reference numerals are given to portions common to the horizontal contour correction circuit 6 shown in FIG. From the input luminance signal, a high frequency component in the horizontal direction is extracted by the HPF 61. The output signal of HPF 61 is subjected to core ring processing and limiter processing by limiter 62, and then the gain is adjusted by gain controller 63. The output signal of the gain controller 63 is multiplied by the multiplier 65 by the same coefficient X as that of the multiplier 56 in the vertical contour correction circuit 9. Then, the output signal of the multiplier 65 is added to the input luminance signal by the adder 64, so that the horizontal edge portion of the input luminance signal is strongly reduced.
図 8 の動き適応型 3次元 YZC分離システム力 らは 、 水平輪郭 補正回路 1 0から出力した輝度信号と、 へ、 キサー 8で混合された 色信号とが外部に出力さ れる。  The luminance signal output from the horizontal contour correction circuit 10 and the color signal mixed by the mixer 8 are output to the outside in the motion adaptive 3D YZC separation system shown in FIG.
以上に示した構成の動き適応型 3次元 Y Z C分離システムによ れば、 2次元分離回路 1 で分離した輝度信号 Y 2 D と 、 3次元分 離回路 2で分離した輝度信号 Y 3 D とが 、、 キサー 7で混合されて 垂!^ 郭補正回路 9及び水平輪郭捕正回路 1 0 に供 されるが、 この垂直輪郭捕正回路 9 及び水平輪郭補正回路 1 0での輪郭補正 処理の 正レべノレカ 、 動き検出回路 3で検出される動きの大き さ の減少に応じて低下する (静止している ときには動さ係数が ' 0 According to the motion-adaptive three-dimensional YZC separation system configured as described above, the luminance signal Y 2 D separated by the two-dimensional separation circuit 1 and the luminance signal Y 3 D separated by the three-dimensional separation circuit 2 ,, mixed with Kisa 7 dripping! ^ Provided to the contour correction circuit 9 and the horizontal contour correction circuit 10, but detected by the motion detector 3 and the positive level detector of the contour correction processing by the vertical contour correction circuit 9 and the horizontal contour correction circuit 10. (The coefficient of motion is' 0 when stationary.
0 0 0 ' となるこ とによ つて垂直輪郭補正回路 9 内の乗算器 5 6 及び水平輪郭補正回路 1 0 内の乗算器 6 5での係数 Xが 0 になる ので、 正レべノレ力 Sゼロ になる)。 Since the coefficient X of the multiplier 56 in the vertical contour correction circuit 9 and the multiplier 65 in the horizontal contour correction circuit 10 becomes 0, the positive level force is obtained. S becomes zero).
このよ う に、 2次元 Y / C分離処理による輝度信号 Y 2 D と 3 次元 Y/ C分離処理によ る輝度信号 Y D 3 とに対する輪郭補正処 理を差別化するこ とに り 、 2次元 Y Z C分離処理による輝度信 号 Y 2 Dの垂直エッジ部分や水平エッジ部分が、 3次元 Y/ C分 離処理による輝度信号 Y 3 Dの垂直エッジ部分や水平エッジ部分 よ り も強調される。  In this way, by differentiating the contour correction processing between the luminance signal Y 2 D by the two-dimensional Y / C separation processing and the luminance signal YD 3 by the three-dimensional Y / C separation processing, the two-dimensional The vertical and horizontal edge portions of the luminance signal Y 2 D obtained by the YZC separation process are emphasized more than the vertical and horizontal edge portions of the luminance signal Y 3 D obtained by the three-dimensional Y / C separation process.
これによ り、 色信号の垂直相関が損なわれている場合 (特に、 斜め線を含む映像の場合) の 2次元 Y/ C分離処理での帯域の劣 化を補償して、 動画と静止画との切り替わり 時の解像度感の差を 解消するこ とができるので、 画質を改善するこ とができる。  As a result, when the vertical correlation of the color signals is impaired (particularly in the case of images containing oblique lines), the deterioration of the band in the two-dimensional Y / C separation processing is compensated for, and video and still images can be compensated. Since the difference in the sense of resolution at the time of switching can be eliminated, the image quality can be improved.
また、 図 1 に示した既存の動き適応型 3次元 Y/ C分離システ ムに対して僅かな変更を加える (こ こでは、 垂直輪郭捕正回路及 ぴ水平輪郭補正回路に乗算器を追加する) だけで、 動画と静止画 との切り替わり時の解像度感の差を解消するこ とができる。 In addition, the existing motion-adaptive 3D Y / C separation system shown in Fig. 1 Only a small change to the video (in this case, a multiplier is added to the vertical contour correction circuit and the horizontal contour correction circuit) to eliminate the difference in the sense of resolution when switching between video and still images. can do.
なお、 図 8及び図 9に示した垂直輪郭捕正回路 9及び水平輪郭 補正回路 1 0の構成例では、 ゲイ ンコン ト ローラ 6 3 の出力信号 に、 動き係数に対応した係数 X を乗算するよ う になっている。 し かし、 別の例と して、 ゲイ ンコン ト ローラ 6 3で調整するゲイ ン そのものを、 動き係数によって変化させる (動き係数が ' 0 0 0 0, である ときにはゲインを 0 にする) よ う にしてもよい。  In the configuration example of the vertical contour correction circuit 9 and the horizontal contour correction circuit 10 shown in FIGS. 8 and 9, the output signal of the gain controller 63 is multiplied by a coefficient X corresponding to the motion coefficient. It has become. However, as another example, the gain itself to be adjusted by the gain controller 63 is changed by a motion coefficient (when the motion coefficient is' 0000, the gain is set to 0). It may be.
また、 図 4に示 した 2次元 YZ C分離回路 1 の構成や図 5 に示 した 3次元 Y/ C分離回路 2の構成はあく まで一例であり 、 それ らとは異なる構成の 2次元 Y/ C分離回路や 3次元 Y/C分離回 路を用いる場合にも本発明を適用できるこ とはもちろんである。  Also, the configuration of the two-dimensional YZC separation circuit 1 shown in FIG. 4 and the configuration of the three-dimensional Y / C separation circuit 2 shown in FIG. 5 are merely examples, and two-dimensional Y / C Of course, the present invention can be applied to a case where a C separation circuit or a three-dimensional Y / C separation circuit is used.
また、 2次元 Y Z C分離処理による輝度信号 Y 2 D と 3次元 Y /C分離処理によ る輝度信号 Y 3 D とに対する輪郭補正処理を差 別化する手法と しては、以上の各例に示した以外の手法(例えば、 輝度信号 Y 2 D と輝度信号 Y 3 D とにそれぞれ別々の輪郭補正回 路で輪郭補正処理を施し、 輝度信号 Y 2 Dのほう の補正レベルを 大き くするといつ た手法) を用いるよ う にしてもよい。  As a method for differentiating the contour correction processing between the luminance signal Y 2 D obtained by the two-dimensional YZC separation processing and the luminance signal Y 3 D obtained by the three-dimensional Y / C separation processing, each of the above examples is used. A method other than that shown (for example, when the luminance signal Y 2 D and the luminance signal Y 3 D are subjected to contour correction processing using separate contour correction circuits, and the correction level of the luminance signal Y 2 D is increased, May be used.
また、 以上の备例では、 2次元 YZ C分離処理での帯域の劣化 を、 垂直輪郭補正及び水平輪郭補正によって補償している。 しか し、 これに限らず、 2次元 Y/ C分離処理での帯域の劣化を、 垂 直輪郭捕正のみによって補償したり 、 水平輪郭捕正のみによって 捕償した り、 輪郭補正以外の画質捕正処理 (例えば D R C : 動的 解像度変換処理) によって補償してもよい。  Further, in the above example, the deterioration of the band in the two-dimensional YZC separation processing is compensated by the vertical contour correction and the horizontal contour correction. However, the present invention is not limited to this, and the degradation of the band in the two-dimensional Y / C separation processing can be compensated only by the vertical contour correction, compensated only by the horizontal contour correction, and image quality other than the contour correction. Compensation may be performed by normal processing (for example, DRC: dynamic resolution conversion processing).
また、 以上の备例では、 P A L方式のコンポジッ ト ビデオ信号 から輝度信号と色信号とを分離するために本発明を適用している が、 N T S C方式のコンポジッ ト ビデオ信号から輝度信号と色信 号とを分離するために本発明を適用してもよい。 Further, in the above example, the present invention is applied to separate the luminance signal and the chrominance signal from the PAL composite video signal. However, the luminance signal and the chrominance signal are separated from the NTSC composite video signal. The present invention may be applied to separate a signal from a signal.
以上のよ う に、 本発明によれば、 コンポジッ ト ビデオ信号から 動き適応型 3次元 Y Z C分離処理によって輝度信号と色信号とを 分離する際に、 色信号の垂直相関が損なわれている場合の 2次元 Y Z C分離処理での帯域の劣化を補償して、 動画と静止画との切 り替わり時の解像度感の差を小さ く するこ とができるので、 画質 を改善するこ とができるとレヽ う効果が得られる。  As described above, according to the present invention, when the luminance signal and the chrominance signal are separated from the composite video signal by the motion adaptive 3D YZC separation processing, the case where the vertical correlation of the chrominance signal is impaired is considered. Compensation for the degradation of the band in the 2D YZC separation processing can reduce the difference in the sense of resolution when switching between moving images and still images, so that image quality can be improved. The effect is obtained.
また、 既存の動き適応型 3次元 Y / C分離システム (動き適応 型 3次元 Y Z C分離回路と画質補正回路との組み合わせ) に対し て儘かな変更を加えるだけで、 動画と静止画との切り替わり 時の 解像度感の差を小さ くするこ とができる という効果も得られる。 また、 2次元 Y / C分離処理によって分離した輝度信号の垂直ェ ッジ部分や水平エッジ部分を、 3次元 Y / C分離処理によって分 離した輝度信号の垂直エッジ部分や水平エッジ部分よ り も強調し て、 動画と静止画との切り替わり 時の解像度感の差を一層よく解 消するこ とができ る という効果も得られる。  In addition, simply changing the existing motion-adaptive 3D Y / C separation system (combination of motion-adaptive 3D YZC separation circuit and image quality correction circuit) can be used when switching between video and still images. This also has the effect of reducing the difference in the sense of resolution. In addition, the vertical and horizontal edge portions of the luminance signal separated by the two-dimensional Y / C separation processing are different from the vertical and horizontal edge parts of the luminance signal separated by the three-dimensional Y / C separation processing. By emphasizing, it is also possible to obtain the effect that the difference in the sense of resolution at the time of switching between a moving image and a still image can be more effectively eliminated.

Claims

請 求 の 範 囲 The scope of the claims
1 . 入力した ンポジッ ト ビデォ信号から 度信号と色信号とを 分離する 2次兀 Y/ C分離手段と、  1. Second order Y / C separation means for separating the degree signal and the color signal from the input composite video signal,
刖 己 3 ンホジッ 卜ビデォ信号から輝度信号と色信号とを分離す る 3次元 Y / C分離手段と、  3 three-dimensional Y / C separation means for separating a luminance signal and a chrominance signal from a self-video video signal;
ー刖記コンポジッ 卜 ビデォ信号力 ら映像の動きを検出する動き検 出手段と、  A motion detecting means for detecting a motion of the video from the composite video signal strength;
前記動き検出手段の検出結果に適応した輝度信号及び色信号を、 前記 2次元 .Y/C分離手段及び前記 3次元 YZ C分離手段の処理 結果を用いて選択する選択手段と、  Selecting means for selecting a luminance signal and a color signal adapted to the detection result of the motion detecting means using the processing results of the two-dimensional .Y / C separating means and the three-dimensional YZC separating means;
前記 2次元 Y/ C分離手段で分離された輝度信号に対して画質 補正処理を施し、 前記 3次元 Y/ C分離手段で分離された輝度信 号に対しては前記画質補正処理を制限する補正差別化手段とを備 えたこ とを特徴とする動き適応型 3次元 YZ C分離システム。  An image quality correction process is performed on the luminance signal separated by the two-dimensional Y / C separation unit, and a correction that limits the image quality correction process on the luminance signal separated by the three-dimensional Y / C separation unit A motion-adaptive three-dimensional YZC separation system characterized by having differentiating means.
2. 前記捕正差別化手段は、 前記 2次元 YZ C分離手段で分離さ れた輝度信号のみが供給される画質補正回路から成るこ とを特徴 とする請求の範囲第.1項記載の動き適応型 3次元 YZ C分離シス テム。 2. The movement according to claim 1, wherein said correction and differentiation means comprises an image quality correction circuit to which only the luminance signal separated by said two-dimensional YZC separation means is supplied. Adaptive 3D YZC separation system.
3. 前記選択手段は、 前記動き検出手段の検出結果に J¾、じて刖記 2次元 Y/C分離手段の出力信号と 記 3次元 Y / C分離手段の 出力信号との混合比を選択する混合回路から成り 、  3. The selecting means selects a mixing ratio between the output signal of the two-dimensional Y / C separating means and the output signal of the three-dimensional Y / C separating means based on the detection result of the motion detecting means. Consisting of a mixing circuit,
前記捕正差別化手段は、 前記混合回路で混合された輝度信号が 供給される と ともに、 前記動き検出手段で検出される動さの大き さの減少に応じて前記画質補正処理の In正レべノレを低下させる画 質捕正回路から成るこ とを特徴とする δ冃求の範囲第 1項記載の動 き適応型 3次元 YZ C分離システム o  The correction and differentiation unit is configured to supply the luminance signal mixed by the mixing circuit and supply the luminance signal mixed by the mixing circuit, and in response to a decrease in the magnitude of the motion detected by the motion detection unit, perform the image quality correction processing. A motion-adaptive three-dimensional YZC separation system according to item 1, which is characterized by comprising a quality correction circuit for reducing slime.
4. 前記補正差別化手段は、 前記画質ネ ffi正処理と して垂直輪郭補 正処理及び/または水平輪享 捕正処理を施すこ とを特徴とする請 求の範囲第 1項記載の動き適応型 3次元 Y Z C分離システム。 4. The correction differentiating means performs a vertical contour correction process and / or a horizontal ring correction process as the image quality correction process. 3. The motion adaptive 3D YZC separation system according to claim 1.
5 . 入力したコンポジッ ト ビデオ信号から輝度信号と色信号とを 分離する 2次元 Y / C分離手段と、 5. Two-dimensional Y / C separation means for separating the luminance signal and the chrominance signal from the input composite video signal,
前記コンポジッ ト ビデオ信号から輝度信号と色信号とを分離す る 3次元 Y Z C分離手段と、  Three-dimensional YZC separating means for separating a luminance signal and a chrominance signal from the composite video signal;
前記コンポジッ ト ビデオ信号から映像の動きを検出する動き検 出手段と、  Motion detection means for detecting video motion from the composite video signal;
m §己 St)き検出手段の検出結果に 応した輝度信号及ぴ色信号を、 前記 2次元 Y / C分離手段及ぴ刖記 3次元 Y / C分離手段の処理 結果を用いて選択する選択手段と  m Selection of selecting a luminance signal and a color signal corresponding to the detection result of the detecting means using the processing results of the two-dimensional Y / C separating means and the three-dimensional Y / C separating means. Means and
を有する動き適応型 3次元 Y / C分離回路に 、 画質改善のための 処理を施す方法において、 In the method of performing processing for improving image quality on a motion adaptive 3D Y / C separation circuit having
前記 2次元 Y / C分離手段で分離された輝度信  The luminance signal separated by the two-dimensional Y / C separation means
号に対して画質捕正処理を施し、 前記 3次元 Y Z C分離手段で分 離された輝度信号に対しては前記画質補正処理を制限する Performs image quality correction processing on the signal, and limits the image quality correction processing on the luminance signal separated by the three-dimensional YZC separation means.
こ とを特徴とする画質改善方法。 An image quality improvement method characterized by this.
6 . 前記 2次元 Y Z C分離手段で分離された輝度信号に対しての み前記画質補正処理を施すこ とを特徴とする請求の範囲第 5項記 載の画質改善方法。  6. The image quality improvement method according to claim 5, wherein the image quality correction processing is performed only on the luminance signal separated by the two-dimensional YZC separation unit.
7 • 選択手段は、 目リ記動き検出手 em 7 • The selection method is a hand movement detection hand em.
の検出結果に応じて刖 d 刖 d according to the detection result of
2次元 Y / C分離手段の出力信号と 記 3次元 Y Z C分離手段の 出力信号との混合比を選択する混合回路から成り、 A mixing circuit for selecting a mixing ratio between the output signal of the two-dimensional Y / C separating means and the output signal of the three-dimensional YZC separating means,
目 U記混合回路で混合された輝度信号に対して前記画質補正処理 を施すと と もに、 前記動き検出手段で検出される動きの大きさの 減少に応じて前記画質補正処理の捕正レベノレを低下させるこ とを 特徴とする請求の範囲第 5項記載の画質改善方法。  The image quality correction processing is performed on the luminance signal mixed by the mixing circuit, and the correction level of the image quality correction processing is adjusted according to a decrease in the magnitude of the motion detected by the motion detection means. 6. The image quality improving method according to claim 5, wherein the image quality is reduced.
8 • Ιυ記画質楠正処理と して垂直輪郭補正処理及ぴ Zまたは水平 郭捕正処理を施すこ とを特徴とするき 求の範囲第 5項記載の画 fZ 8 • Description of image quality according to claim 5, characterized in that vertical contour correction processing and Z or horizontal contour correction processing are performed as the image quality correction processing. fZ
¾ 暴0簡 SOOZdf/ェ:) d 8 60/S00Z OAV ¾ Violation 0 SOOZdf / e :) d 8 60 / S00Z OAV
PCT/JP2005/004027 2004-03-23 2005-03-02 Motion-adaptive 3d y/c separation system and image improving method WO2005091648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004085092A JP2005277562A (en) 2004-03-23 2004-03-23 Motion adaptative type three-dimensional y/c separation system and image quality improvement method
JP2004-085092 2004-03-23

Publications (1)

Publication Number Publication Date
WO2005091648A1 true WO2005091648A1 (en) 2005-09-29

Family

ID=34994080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004027 WO2005091648A1 (en) 2004-03-23 2005-03-02 Motion-adaptive 3d y/c separation system and image improving method

Country Status (2)

Country Link
JP (1) JP2005277562A (en)
WO (1) WO2005091648A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028507A (en) * 2006-07-19 2008-02-07 Sony Corp Image correction circuit, image correction method and image display
JP2008301411A (en) 2007-06-04 2008-12-11 Nec Electronics Corp Pal signal demodulation apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276887A (en) * 1985-09-30 1987-04-08 Hitachi Ltd Signal processing circuit
JPS63108281U (en) * 1986-12-27 1988-07-12
JPH02113672A (en) * 1988-10-24 1990-04-25 Hitachi Ltd Luminance signal processing circuit
JPH03190473A (en) * 1989-12-20 1991-08-20 Nec Home Electron Ltd Video signal processor
JPH06319152A (en) * 1993-05-06 1994-11-15 Mitsubishi Electric Corp Time spatial picture filter
JPH06334902A (en) * 1993-05-20 1994-12-02 Victor Co Of Japan Ltd Picture quality compensating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276887A (en) * 1985-09-30 1987-04-08 Hitachi Ltd Signal processing circuit
JPS63108281U (en) * 1986-12-27 1988-07-12
JPH02113672A (en) * 1988-10-24 1990-04-25 Hitachi Ltd Luminance signal processing circuit
JPH03190473A (en) * 1989-12-20 1991-08-20 Nec Home Electron Ltd Video signal processor
JPH06319152A (en) * 1993-05-06 1994-11-15 Mitsubishi Electric Corp Time spatial picture filter
JPH06334902A (en) * 1993-05-20 1994-12-02 Victor Co Of Japan Ltd Picture quality compensating device

Also Published As

Publication number Publication date
JP2005277562A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US5786872A (en) Motion detection circuit calculates difference between input video signal and one frame-period signal
US4754322A (en) YC-signal separation circuit responsive to magnitude of vertical correlation
US5333054A (en) Apparatus for reducing noise in a video signal by processing a luminance and chrominance component
US20110075042A1 (en) Method and System for Advanced Motion Detection and Decision Mechanism for a Comb Filter in an Analog Video Decoder
US5225899A (en) Correlation adaptive luminance and chrominance signal separating circuit
WO2005091648A1 (en) Motion-adaptive 3d y/c separation system and image improving method
GB2271907A (en) Adaptive chrominance signal separating apparatus
US5365281A (en) Motion signal detecting circuit
JPH11196434A (en) Video overlay circuit and method therefor
US8107011B2 (en) Method and system for video evaluation in the presence of cross-chroma interference
US7224406B2 (en) Digital signal processing system and method applied for chroma transition
JP3749844B2 (en) Video signal processing circuit
JP4935288B2 (en) Signal separation device
JPH07131676A (en) Movement detecting circuit
JPH0314393B2 (en)
JP3350322B2 (en) Video signal processing device
JP2008098917A (en) Signal separator
JP2514221B2 (en) Television receiver
JP2513730B2 (en) Color television signal receiver
JP3102743B2 (en) Motion adaptive Y / C separation circuit
JPH0530530A (en) Movement adaptive brightness signal/chrominance signal separating circuit
JP2689580B2 (en) Motion detection circuit
JP2002354499A (en) Video signal processor
JPH0581118B2 (en)
JPH0783488B2 (en) Signal processing circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase