WO2005089800A1 - PHARMACEUTICAL COMPOSITION CONTAINING hsHRD3 - Google Patents

PHARMACEUTICAL COMPOSITION CONTAINING hsHRD3 Download PDF

Info

Publication number
WO2005089800A1
WO2005089800A1 PCT/JP2005/005311 JP2005005311W WO2005089800A1 WO 2005089800 A1 WO2005089800 A1 WO 2005089800A1 JP 2005005311 W JP2005005311 W JP 2005005311W WO 2005089800 A1 WO2005089800 A1 WO 2005089800A1
Authority
WO
WIPO (PCT)
Prior art keywords
hshrd3
cells
expression
pharmaceutical composition
composition according
Prior art date
Application number
PCT/JP2005/005311
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Nakajima
Tetsuya Amano
Satoshi Yamasaki
Naoko Yagishita
Ken Sasaki
Yukihiro Kato
Lei Zhang
Original Assignee
Locomogene, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Locomogene, Inc. filed Critical Locomogene, Inc.
Priority to US10/592,918 priority Critical patent/US20070238677A1/en
Priority to JP2006511313A priority patent/JPWO2005089800A1/en
Publication of WO2005089800A1 publication Critical patent/WO2005089800A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to a pharmaceutical composition comprising human Hrd3 ortholog (isHRD3) which forms a complex with synopiolin, in particular, a pharmaceutical composition for diagnosing or treating rheumatism.
  • a pharmaceutical composition comprising human Hrd3 ortholog (isHRD3) which forms a complex with synopiolin, in particular, a pharmaceutical composition for diagnosing or treating rheumatism.
  • RA Rheumatoid arthritis
  • the present inventor has identified the synoviolin gene as a gene essential for abnormal growth of synovial tissue (W document O 02/052007).
  • Synoviolin is a membrane protein present in synovial cells from RA patients, and encodes an E3 upicitin ligase having a RING finger motif. This motif plays an important role in protein ubiquitination, but in fact, it has been shown to have auto-ubiquitination activity and to cause ubiquitination of P4HA1, a protein essential for collagen synthesis (WO 02 Recently, it has been found that synopiolin is also involved in the development of fibrosis, cancer or cranial nerve disease (Genes Dev. 2003 Vol. 17, ⁇ .2436 ⁇ 49).
  • Hrdlp HMG-CoA Reductase Degradation 1
  • a budding yeast ortholog of synopiolin forms a functional complex with the budding yeast Hrd3p (HMG-CoA Reductase Degradation 3). It has been found to be involved in the degradation of abnormal proteins in the endoplasmic reticulum (JCB 2000. Vol.151, ⁇ .69 ⁇ 82). However, the function of Hrd3p is not clear.
  • Interleukin-6 together with interleukin-1 and TNF- ⁇ , is called an inflammatory site, and is a site that causes various inflammatory reactions. Usually produced by cells of the immune system, but various proliferative factors such as rheumatoid synovial cells, leukemia, and myeloma
  • Inflammation of leukin-6 includes differentiation of B cells into antibody-producing cells, increased production of C-reactive protein in liver, induction of platelets in bone marrow, induction of immune system cells to inflammatory sites, leukocytes And the induction of blood vessels through the induction of VEGF.
  • an anti-interleukin-6 receptor antibody which inhibits the binding of interleukin-6 to its receptor, has been produced, and is effective against rheumatism, myeloma, and Crohn's disease. Disclosure of the invention
  • the present invention provides a pharmaceutical composition comprising a substance that suppresses abnormal growth of synovial cells and production of interleukin-6, and a method for suppressing synovial cell growth, which comprises suppressing hsHRD3. As an issue.
  • the present inventor has conducted intensive studies in order to solve the above problems.
  • the Hrdlp protein is unstable and decreased, and it has been reported that the substrate is physiologically stabilized and increased.
  • the human Hrd3p ortholog is also similar to Synoviolin. It was found to be essential for the production of abnormal growth of interleukin-6 in synovial tissue.
  • the present inventors considered that hsHRD3 is effective for suppressing new inflammatory reactions and for developing diagnostic and therapeutic methods for rheumatism, fibrosis, arthropathy, cancer and cranial nerve diseases, and completed the present invention.
  • hsHRD3 is effective for suppressing new inflammatory reactions and for developing diagnostic and therapeutic methods for rheumatism, fibrosis, arthropathy, cancer and cranial nerve diseases, and completed the present invention.
  • the present invention is as follows.
  • a pharmaceutical composition comprising a substance that suppresses the growth of synovial cells.
  • Examples of the substance that suppresses the growth of synovial cells include a Synoviolin expression inhibitor.
  • a substance inhibiting the expression of synoviolin is a substance that suppresses the expression of a gene encoding hsHRD3, preferably a substance that inhibits the expression of a gene encoding hsHRD3. Examples include siRNA (small interfering RNA) or shRNA (sliort hairpin UNA).
  • the gene encoding hsHRD3 contains the following DNA (a) or (b). That is,
  • the siRNA may target a part of the base sequence shown in SEQ ID NO: 1.
  • the pharmaceutical composition of the present invention is used for diagnosing or treating at least one disease selected from rheumatism, fibrosis, arthritis, cancer and cranial nerve disease.
  • a method for suppressing synovial cell proliferation which comprises suppressing the expression of hsHRD3 in synovial cells.
  • a method for inducing apoptosis in synovial cells, cancer cells, leukemias or malignant tumors comprising suppressing the expression of hsHRD3 in synovial cells.
  • a method for suppressing the production of collagen in synovial cells, lung fibrosis or cirrhosis which comprises suppressing the expression of hsHRD3 in synovial cells.
  • a pharmaceutical composition comprising a substance that suppresses interleukin-6 production.
  • Examples of the substance that suppresses the production of interleukin-6 include a substance that inhibits the expression of synoviolin.
  • Examples of the substance inhibiting the expression of synoviolin include a substance that suppresses the expression of a gene encoding hsHRD3, preferably an siRNA or shRNA against a gene encoding hsHRD3.
  • the gene encoding hsHRD3 contains the following DNA (a) or (b). That is, (a) DNA comprising the nucleotide sequence of SEQ ID NO: 1
  • the siRNA may target a partial sequence of the nucleotide sequence of the gene encoding hsHRD3.
  • the pharmaceutical composition of the present invention is used for diagnosing or treating at least one disease selected from rheumatism, multiple myeloma, Castleman's disease, Crohn's disease, systemic juvenile idiopathic arthritis, systemic lupus erythematosus and osteoporosis. used. Further, the pharmaceutical composition of the present invention can also suppress an inflammatory response.
  • FIG. 1 is a diagram showing the domain structures of Hi'd3p and SELlL / hsHRD3.
  • FIG. 2 is a diagram showing that expression of SEIL / hsHRD3 by siRNA was suppressed.
  • FIG. 3 is a diagram showing that the proliferative activity of synovial cells was suppressed by suppressing the expression of SEIL / hsHRD3.
  • FIG. 4 is a diagram showing that apoptosis of synovial cells was induced by suppressing the expression of SEIL / hsHRD3.
  • FIG. 5 shows that apoptosis to synovial cells was induced by suppressing the expression of SEIL / hsHRD3.
  • FIG. 6 is a diagram showing that synoviolin protein in synovial cells was reduced by suppressing the expression of SEIL / hsHRD3.
  • FIG. 7 is a diagram showing that collagen production of synovial cells was suppressed by suppressing the expression of SEIL / hsHRD3.
  • FIG. 8 is a view showing that SEIL / hsHRD3 and synopiolin formed a complex.
  • FIG. 9 is a diagram showing that SEIL / hsHRD3 and synoviolin co-localize in the endoplasmic reticulum.
  • FIG. 10 is a diagram showing that the production of interleukin-6 in synovial cells was suppressed by suppressing the expression of SELlL / hsHRD3.
  • FIG. 11 is a diagram showing that expression of both proteins was suppressed by suppressing expression of SELlL / hsHRD3 and synoviolin.
  • FIG. 12A shows that SELlL / hsHRD3 is unstable in the absence of synoviolin.
  • FIG. 12B shows that SELlL / hsHRD3 is unstable in the absence of Synoviolin.
  • the present invention relates to a pharmaceutical composition effective for diagnosing and treating diseases such as rheumatism, which comprises a substance that suppresses the expression of hsHRD3 and suppresses abnormal growth of synovial cells and production of interleukin-6.
  • Hrdlp a budding yeast ortholog of synoviolin
  • Hrd3p a budding yeast ortholog of synoviolin
  • Hi'dlp was destabilized and decreased, and stabilization and increase of physiological substrates were reported.
  • hsHRD3 human Hrd3p ortholog
  • a homologous search was first performed using the amino acid sequence of budding yeast Hrd3p, and as a result, a known gene called SEL1L was found.
  • the amino acid sequence homology between Hi'd3p and SEL1L is 30%, the similarity is 45%, and the difference is not high, but the specific repeating structure and transmembrane domain are preserved. Therefore, SEL1L was determined to be an ortholog of Hrd3p (FIG. 1).
  • siRNA RNA
  • Fig. 2 double stranded
  • Hrd3p is essential for stabilizing Hrdlp.
  • the Synoviolin protein was detected by Western blot, the Synoviolin protein was significantly reduced under hsHRD3 suppression (Fig. 6).
  • the expression of Synoviolin is suppressed, the amount of collagen production also decreases.
  • the amount of collagen in the cells was measured, it was also reduced compared to the control (Fig. 7).
  • hsHD3 forms a complex with synopiolin in cells (Fig. 8), and both are localized in the endoplasmic reticulum (Fig. 9).
  • Interleukin-6 which plays an important role in synovial cell proliferation, also decreased to 63.2% ( Figure 10).
  • hsHRD3 was significantly reduced (FIG. 11), and was very unstable (FIGS. 12A and 12B).
  • “synovial cells” refers to a series of cells that are abnormally proliferating in a joint site of a rheumatic patient, and includes synovial tissue.
  • hsHRD3 is a human ortholog of a protein called “Hrd3p” that binds to yeast synoviolin Hrdlp to form a functional complex and is involved in the degradation of abnormal proteins in the endoplasmic reticulum.
  • Hrd3p the ortholog of S. cerevisiae, has a homology of 30% homology with the amino acid homology and 45% similarity.A gene called SEL1L, which has a specific repetitive structure and a conserved transmembrane domain, was found. HsHRD3 later Was.
  • This hsHRD3 consists of the nucleotide sequence shown in SEQ ID NO: 1 and a nucleotide sequence substantially identical to such a sequence.
  • a substantially identical nucleotide sequence refers to a nucleotide sequence that hybridizes under stringent conditions with a DNA consisting of a nucleotide sequence complementary to the DNA consisting of SEQ ID NO: 1 and encodes a protein having hsHRD3 activity.
  • “HsHRD3 activity” refers to the activity of degrading abnormal proteins in the endoplasmic reticulum.
  • Such a DNA encoding hsHRD3 is prepared by preparing a probe by using an appropriate fragment by a method known to those skilled in the art, and using this probe for colony hybridization, plaque hybridization, and Southern blot. It can be obtained from a cDNA library and a genomic library by a known hybridization method. Stringent conditions in the above hybridization include, for example, a salt concentration of 100 to 500 mM, preferably 150 to 300 mM during washing in the hybridization, and a temperature of 50 to 70 ° C, preferably 55 to 70 ° C. ⁇ 65 ° C.
  • the amino acid sequence of hsHRD3 is shown in SEQ ID NO: 2, and the amino acid sequence of Hrd3p is shown in SEQ ID NO: 3.
  • synovial cells are cells that serve as normal joint components, and that produce synovial fluid that fills the inner layer of the joint cavity.
  • RNAi RNAi-mediated mutagenesis
  • RNAi is a phenomenon in which dsRNA (double-strand RNA) binds specifically and selectively to a target gene, and the expression of the target gene is efficiently inhibited by cleaving the target gene.
  • dsRNA double-strand RNA
  • siRNA or shRNA for the synoviolin gene may be designed and synthesized, and then used.
  • suppressing the expression of the gene encoding hsHRD3 does not suppress the expression of Synoviolin. it can.
  • siRNA The design criteria for siRNA are as follows.
  • siRNA those having the following nucleotide sequences can be used as siRNA.
  • Sense strand CUUGAUAUGGACCAGCUUUTT (SEQ ID NO: 4)
  • Antisense strand AAAGCUGGUCCAUAUCAAGTT (SEQ ID NO: 5)
  • siRNA synthesized in vitro is ligated to plasmid DNA and introduced into cells
  • a method of annealing double-stranded RNA can be employed.
  • shRNA is an RNA molecule having a stem-loop structure because a part of a single strand forms a complementary strand with another area, which is called a short hairpin RNA.
  • shRNAs can be designed so that part of them form a stem-loop structure. For example, assuming that the sequence of a certain region is sequence A and the complementary strand to sequence A is sequence B, sequence A, spacer, and sequence B are such that these sequences are present in one RNA strand. Ligation is designed so that the total length is 45-60 bases.
  • Sequence A is a sequence of a partial region of the hsHRD3 gene (SEQ ID NO: 1) to be a target, and the target region is not particularly limited, and any region can be a candidate.
  • the length of sequence A is 19 to 25 bases, preferably 19 to 21 bases.
  • site-directed mutagenesis can be used.
  • Site-directed mutagenesis is well known in the art and is commercially available, for example,
  • the present invention provides a method for suppressing the expression of Synoviolin by inhibiting the formation of a complex localized in the endoplasmic reticulum formed by binding of hsHRD3 and Synoviolin.
  • synoviolin expression increases, ERAD is enhanced, Decreased susceptibility to apoptosis due to ER stress, and conversely, suppression of synoviolin expression increases susceptibility to apoptosis. Therefore, when hsHRD3 expression is suppressed, the function of synoviolin also decreases, and as a result, apoptosis increases.
  • synoviolin plays an essential role in collagen synthesis by maintaining its quality as an enzyme through ubiquitination of P4HA1, a protein essential for collagen synthesis.
  • P4HA1 a protein essential for collagen synthesis.
  • the enzymatic activity of P4HA1 decreases, and collagen synthesis decreases. Therefore, when hsHRD3 expression is suppressed, the function of synoviolin also decreases, and as a result, collagen synthesis decreases.
  • hsHRD3 is also essential for abnormal growth of synovial tissue, similar to synopiolin, and by suppressing hsHRD3 expression, suppressing synovial cell proliferation, synovial cells, cancer cells, leukemia or malignant It can induce tumor apoptosis and inhibit the production of collagen in synovial cells, lung fibrosis or cirrhosis, so that new rheumatism, fibrosis, arthropathy, cancer and cranial nerve disease diagnosis, And therapies can be developed.
  • synoviolin expression inhibitory substance which suppresses the proliferation of synovial cells is also a substance which suppresses the production of intitanic Dikin-6.
  • Interleukin-6 not only plays a key role in B lymphocyte proliferation and differentiation, but also plays an important role in the immune response, hematopoietic response, inflammatory response, and proliferation / differentiation of nervous system cells, or their function. Is a typical site power-in to have. Its effects include the induction of platelets in the bone marrow, the induction of immune system cells to sites of inflammation, the contribution of leukocyte resistance to apoptosis, the induction of blood vessels through the induction of VEGF, the differentiation of B cells into antibody-producing cells, Increasing production of C-reactive protein in the liver.
  • Inulin-leukin-6 is normally produced by cells of the immune system, but is also produced by rheumatoid synovial cells, cells that cause various proliferative diseases such as leukemia and myeloma, and is essential for their growth.
  • Diseases involving interleukin-6 include rheumatism, multiple myeloma, Castleman's disease, Crohn's disease, systemic juvenile idiopathic arthritis, systemic lupus erythematosus, and osteoporosis.
  • interleukin-6 plays an important role in the formation of pathological conditions, and abnormal expression of the interleukin-6 gene causes autoimmune diseases such as rheumatism and blood It has been clarified that the onset of multiple myeloma and plasmacytoma such as leukemia caused by the transformation of these cells into cancer is induced.
  • interleukin-6 is significantly increased in synovial fluid in rheumatoid patients, the growth factor of plasmacytoma / multiple myeloma is interleukin-6 itself, and interleukin-6 is myeloid. It acts on leukemia cells, suppresses proliferation, and induces differentiation into macrophages.
  • interleukin-6 in synovial cells, cancer cells, leukemia cells, osteosarcoma cells, malignant tumor cells, immune cells and osteoclasts, these rheumatism It can suppress the onset of autoimmune diseases, multiple myeloma, leukemia, etc., which occur when cells in the blood become cancerous.
  • the above-mentioned substance inhibiting the expression of synopolin that suppresses the proliferation of synovial cells can be used.
  • siRNA or shRNA against the gene encoding hsHRD3, which is a substance that suppresses the expression of the gene encoding hsHRD3, can be used.
  • a pharmaceutical composition comprising a substance that suppresses the growth of synovial cells
  • the diseases to which the pharmaceutical composition of the present invention can be applied include cell proliferative diseases such as rheumatism, fibrosis, arthritis, and cancer, and cranial nerve diseases.
  • the disease can be applied singly or in combination with a plurality of diseases. .
  • the site of application is not particularly limited. Brain tumor, tongue cancer, pharyngeal cancer, lung cancer, breast cancer, esophagus cancer, stomach cancer, knee cancer, biliary tract cancer, gallbladder Cancer, duodenal cancer, colorectal cancer, liver cancer, uterine cancer, ovarian cancer, prostate cancer, renal cancer, bladder cancer, rhabdomyosarcoma, fibrosarcoma, osteosarcoma, chondrosarcoma, skin cancer, various leukemias (eg acute bone marrow Applicable for leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, adult T-cell leukemia, malignant lymphoma), etc.
  • various leukemias eg acute bone marrow Applicable for leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, adult T-cell leukemia,
  • cerebral nervous system disease examples include Alzheimer's disease, Parkinson's disease, and Polydalmin's disease.
  • the diseases to which the pharmaceutical composition of the present invention is applied include rheumatism, multiple myeloma, Castleman's disease, Crohn's disease, systemic juvenile idiopathic arthritis, systemic lupus erythematosus, osteoporosis and the like.
  • Interleukin 6 is also a site that causes many of the symptoms associated with inflammation (pain, fever, etc.). Therefore, the pharmaceutical composition of the present invention can also suppress an inflammatory response.
  • the inflammatory response refers to a local tissue reaction caused by infection, trauma, burns, or allergens in a living body, and also includes a systemic phenomenon associated with the local reaction. Specifically, it is 50 years of inflammation by adding dysfunction to redness, fever, pain, and swelling. These show the gross features of acute inflammation, but this phenomenon is due to local vascular changes: vasodilation, increased permeability, and leukocyte infiltration.
  • the dosage form of the pharmaceutical composition of the present invention containing a substance that suppresses the production of abnormally growing interleukin-6 in synovial tissue as an active ingredient can be any of oral and parenteral administration.
  • oral administration it can be administered as a liquid or in an appropriate dosage form.
  • parenteral administration examples include a pulmonary dosage form (for example, using a nephrizer), a nasal dosage form, a transdermal dosage form (eg, an ointment, a cream), an injection dosage form, and the like.
  • an injection it can be administered systemically or locally, for example, by intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
  • the pharmaceutical composition of the present invention When the pharmaceutical composition of the present invention is used as a gene therapy agent, there are mentioned a method of directly administering the pharmaceutical composition of the present invention by injection, and a method of administering a vector into which a nucleic acid has been incorporated.
  • the above vectors include an adenovirus vector, an adeno-associated virus vector, a herpes virus vector, a vaccinia virus vector, a retrovirus vector, a lentivirus vector, and the like. Can be administered more efficiently.
  • the pharmaceutical composition of the present invention is introduced into phospholipid vesicles such as ribosomes, It is also possible to administer the endoplasmic reticulum.
  • the endoplasmic reticulum retaining the pharmaceutical composition of the present invention is introduced into predetermined cells by the lipofection method. Then, the obtained cells are systemically administered, for example, from a vein or an artery. It can also be administered locally to the brain and the like.
  • a commercially available gene transfer kit for example, AdenoExpress: Clonetech
  • the pharmaceutical composition of the present invention can be formulated according to a conventional method, and may contain a pharmaceutically acceptable carrier or additive.
  • Such carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinylpyrrolidone, lipoxyvinyl polymer, sodium carboxymethylcell sodium, sodium polyacrylate, Sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene lendalicol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, Stearic acid, human serum albumin, mannitol, sorbitol, lactose, surfactants acceptable as pharmaceutical additives and the like.
  • the above-mentioned additives are selected singly or in appropriate combination from the above depending on the dosage form of the therapeutic agent of the present invention.
  • a substance that inhibits the abnormal growth of purified synovial tissue is dissolved in a solvent (eg, physiological saline, buffer, glucose solution, etc.), and Tween 80 and Tween 20 are added.
  • a solvent eg, physiological saline, buffer, glucose solution, etc.
  • Tween 80 and Tween 20 are added.
  • Gelatin, human serum albumin and the like can be used.
  • it may be freeze-dried to give a dosage form that dissolves before use.
  • the lyophilization excipient for example, sugar alcohols and sugars such as mannitol and glucose can be used.
  • the dose of the pharmaceutical composition of the present invention varies depending on age, sex, symptoms, administration route, administration frequency, and dosage form.
  • the administration method is appropriately selected according to the age and symptoms of the patient.
  • the effective dose is Ol / ig lOOmg / kg body weight per dose, preferably l-10g.
  • the above therapeutic agent is not limited to these doses.
  • the dosage in the case of Adenou-virus 10 6 ⁇ per day: a 101 3 or so, is administered at 1-8 week intervals.
  • the pharmaceutical composition of the present invention is limited to these dosages. There is no.
  • the dose is 0.01 to:! 0 zg / ml, preferably 0.1 to 1 II g / ml.
  • a homology search was performed using the amino acid sequence of the budding yeast Hrd3p / Ylr207wp.
  • RNA double-stranded RNA
  • synovial cells isolated from a rheumatic patient were placed on a 6 cm dish, and 1 ⁇ 104 cells were seeded.
  • One dish was seeded for each of the three RNAi oligos and the RNA oligo-free (negative control) sample, for a total of four seeds.
  • the medium used was 3 ml of DMEM (Dulbecco's Modified Eagle's Medium, Sigma D6046) containing 10% FBS (fetal calf serum) and no antibiotic. Twenty-four hours later, the cells were washed once with 3 ml of serum-free and antibiotic-free DMEM, and 1.6 ml of the same DMEM was added.
  • RNAi targeting Gi, hsHRD3, and Synoviolin were dissolved in TE to a final concentration of IOOM.
  • Sense strand of siRNA targeting hsHRD3 CUUGAUAUGGACCAGCUUUTT (SEQ ID NO: 4)
  • Antisense strand of siRNA targeting sHRD3 AAAGCUGGUCCAUAUCAA GTT (SEQ ID NO: 5)
  • Sense siRNA strand targeting GFP GGCUACGUCCAGGAGCGCATT (SEQ ID NO: 6)
  • Antisense strand of siRNA targeting GFP UGCGCUCCUGGACGUAGCCT T (SEQ ID NO: 7)
  • SiRNA C sense strand targeting Synoviolin GGUGUUCUUUGGGCAACU GAGTT (SEQ ID NO: 8)
  • Antisense strand of siRNA targeting synoviolin CUCAGUUGCCCAAAG AACACCTT (SEQ ID NO: 9)
  • the sense strand and antisense strand of the RNA oligo for each gene were mixed at 20 ⁇ M. After heat denaturation at 90 ° C for 2 minutes, both oligos were annealed by gentle cooling at 37 ° C for 1 hour.
  • Solution A was prepared by mixing the annealed 20 z M RNA oligo 101 with 350 l of Optimem.
  • 8 liters of Oligofectamine TM Reagent In vitrogen, Cat. No. l2252-01l
  • Optimen 321 was mixed with Optimen 321 to prepare solution B. After incubating solution A and solution B for 5 minutes, they were mixed and incubated for another 15 minutes. The whole amount of the mixed solution 400 1 was added to each dish in which the medium was replaced. Four hours later, 200/21 FBS was added.
  • SUPERSCRIPT TM One-Step RT-PCT 100 Reactions (Invitogen Cat. No.10928-042) was used. That is, mix 2 x RXN mixture 50 1, RT / Platinum 2 h DEPC water 28 1, each of the following amplification primers 3.2 l / M solution 10 l x 2, total lOO l, 10 l / l 05 005311
  • RNA Dispensed into PCR tubes. Then, 1 / l of RNA was added as RT-PCR type II to start the PCR reaction.
  • Oligomer for hsHRD3 amplification (5 '-> 3 ⁇ : GGCTGAACAGGGCTATG (SEQ ID NO: 10)) Oligomer for hsHRD3 amplification (3'-> 5 '): CCGCTCGAGTTACTGTGGTGGCTGCTG CTC (SEQ ID NO: 11)
  • Oligomers for synoviolin amplification (5,-> 3,): AGCTGGTGTTTGGCTTTGAG (SEQ ID NO: 12)
  • Oligomers for synoviolin amplification (3 '-> 5'): GGGTGGCCCCTGATCCGCAG (SEQ ID NO: 13)
  • hGAPDH Amplification oligomer (5 '-> 3,): AGGTGAAGGTCGGAGTCAACGGA (SEQ ID NO: 14)
  • hGAPDH Amplification oligomer (3 '-> 5'): AGTCCTTCCACGATACCAAAGTTG (SEQ ID NO: 15)
  • RNA 100, 50, 10 ng RNA without RNA oligo and lOOng RNA.
  • the cycle was performed once at 50 ° C for 30 minutes and at 94 ° C for 2 minutes for the cDNA extension reaction, followed by 94 ⁇ 30 seconds, 50 ° C for 30 seconds, and 72 ° C for 30 times for the PCR amplification reaction, and finally at 72 ° C.
  • the mixture was stored at 4 ° C.
  • 21 6X sample buffer was added, and the whole amount was electrophoresed with 0.8% agarose at 100 ports for 30 minutes to detect a PCR product by UV illuminator overnight.
  • RNAi of hsHRD3 reduced the amount of PCR product to the same level as without 10 ng oligo (negative control), indicating that the expression level of hsHRD3 mRNA was suppressed to 10% or less.
  • synoviolin mRNA was at the same level as lOOng of oligo-free GFP RNAi, indicating that suppression of hsHRD3 expression did not affect the transcription of synoviolin.
  • RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and alamarBlue TM was added 48 hours later. After 48 hours, the cell growth activity was measured. In other words, the day before transfusion, synovial cells isolated from rheumatic patients were
  • Each well of a 96-well plate was seeded with 160 cells.
  • the medium contained 10 l of DMEM (Dulbecco's Modified Eagle's Medium, Sigma D6046) containing 10% FBS (fetal calf serum) and no antibiotics. Twenty-four hours later, the cells were washed once with 100 l of DMEM containing neither serum nor antibiotics, and 80 l of the same DMEM was added. Thereafter, 20 ml of the transfection reagent prepared in the same manner as in Example 2 (1) was added to each well in which the medium was replaced. After an additional 4 hours, FBS was added 10/21. Forty-eight hours after the addition of the Transfection Reagent, 10 ml of alamarBlue TM was added to each well. After incubating at 37 ° C for 48 hours, the fluorescence intensity at 590 nm when excited at 560 nm was measured.
  • DMEM Dulbecco's Modified Eagle's Medium, Sigma D6046
  • hsHRD3 like Synoviolin, is important for cell proliferation of RA synovial cells, and suppression of its expression causes a decrease in cell proliferation.
  • RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and the cells were collected 120 hours later. The recovered cells were stained with propidium iodide, and the DNA content was measured by FACS.
  • siRNA double-stranded RNA
  • RNAi oligos were seeded on a 6 cm dish of synovial cells isolated from a rheumatic patient.
  • the medium used was 3 ml of DMEM (Dulbecco, s Modified Eagle's Medium, Sigma D6046) containing 10% FBS (fetal calf serum) and no antibiotics. Twenty-four hours later, the cells were washed once with 3 ml of DMEM containing neither serum nor antibiotics, and 1.6 ml of the same DMEM was added. Thereafter, a total of 400 l of the transfusion reagent prepared in the same manner as in Example 2 (1) was added to each dish in which the medium was replaced. After a further 4 hours, 200 ⁇ 1 of FBS was added.
  • RNAi of hsHI D3 was increased to 30% or more by RNAi of hsHI D3. This ratio was as high as RNAi for synoviolin (Fig. 5). This means that hsHRD3 is an essential gene for synovial cell proliferation like Synoviolin, and its suppression suppresses a high frequency of apoptosis.
  • RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and the cells were collected 48 hours later. The total extract was extracted, and each protein was detected by Western plot.
  • siRNA double-stranded RNA
  • RNAi oligos RNAi oligos
  • no RNA oligo negative control
  • the medium used was 10 ml of DMEM (Dulbecco's Modified Eagle's Medium, Sigma D6046) containing 10% FBS (fetal calf serum) and no antibiotics. Twenty-four hours later, the cells were washed once with 10 ml of serum-free and antibiotic-free DMEM, and 9 ml of the same DMEM was added. Thereafter, 1.2 ml of a three-fold amount of the transfection reagent prepared in the same manner as in Example 2 (1) was added to each dish in which the medium was replaced. Four hours later, 1 ml of FBS was added.
  • DMEM Dulbecco's Modified Eagle's Medium
  • the cells were incubated with a 1000-fold diluted anti-sinopiolin monoclonal antibody (lODa) or anti-CREB-1 antibody (Santa Cruze, Cat. No. sc-58) as a primary antibody for 30 minutes.
  • HRP-conjugated stake-mouse IgG (Amersham Biosciences Cat.No.NA931V) diluted 2000-fold was used as the secondary antibody of the anti-Synoviolin monoclonal antibody, and HRP-conjugated anti-Egret diluted 3000-fold was used as the anti-CREB-1 antibody.
  • Incubation was performed for 30 minutes using IgG (Amersham Biosciences, Cat. No. NA931V).
  • RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and cells were harvested 48 hours later. A total extract was prepared and the amount of intracellular collagen was measured.
  • siRNA double-stranded RNA
  • a transfection and cell extract were prepared in the same manner as in Example 3 (1), 30 g of the extract was adjusted to 100 1 with extraction buffer IV, and then SIRCOL Collagen Assay Kit (QBS / The amount of collagen was measured using Funakoshi Cat. No. S 1111).
  • hsHRD3 promotes collagen production through stabilization of synoviolin protein.
  • the amount of synoviolin protein decreases, and the amount of collagen production can be reduced.
  • HEK293 cells were transfected with plasmids of SP-HA-lisHRD3B and FLAG-Synobiolin. After 48 hours, the cells were collected and the total extract was prepared. Immunoprecipitation was performed with anti-FLAG antibody (a) or anti-HA antibody (b), and Western blotting was performed with each antibody.
  • SP hsHRD3B signal peptide
  • SP-HA-hsHRD3B a plasmid constructed so that an HA-tag is inserted between amino acids 26 and 27 of the amino acid sequence shown in SEQ ID NO: 1 ) was cloned into pcDNA3-vector-1.
  • the extract equivalent to 100 g of protein was adjusted to 1 ml with Extraction Buffer II. At this time, bovine serum albumin was added at a final concentration of 0.5%.
  • 4.9 mg of anti-FLAG antibody M2, SIGMA, Cat. No. F3165 was added to the extract from transfusion (c) (d), and 2.4 g to the extract from (e) (f).
  • mg of anti-HA antibody (12CA5, Roche, Cat. No. 583 816) was added, and the mixture was allowed to infiltrate at 4 ° C. while penetrating. The next day, 60 ⁇ 1 of 50% slurry protein-G Sepharose beads was added, and the mixture was further incubated at 4 ° C for 1 hour.
  • HEK293 cells were transfected with the SP-HA-hsHRD3B and FLAG-Sinovirin plasmids. After 24 hours, the cells were fixed, and immunostained with anti-HA antibody and anti-Sinovirin monoclonal antibody.
  • SELlL / hsHRD3 and Synoviolin were co-localized in the endoplasmic reticulum (Fig. 9).
  • the left column shows the localization of hsHRD3 (green), and the middle column shows the synoviolin.
  • the localization diagram (red) and the right column are the superimposed diagrams (yellow).
  • RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and the medium was replaced with a new one 96 hours later. After a further 24 hours, the medium was recovered, and the amount of ink-leukin-6 contained therein was measured.
  • siRNA double-stranded RNA
  • the medium was replaced with a new one. After culturing for 24 hours, the medium was collected and centrifuged at 14000 rpm for 30 min at 4 ° C. The amount of interleukin-6 protein contained in the supernatant was measured with an ELISA Kit (BIOSOURCE Immunoassay Kit for Human IL'6, Cat. # KHC0061).
  • extraction buffer 111 (10 mM Tris-HCl pH 7.5, 5 mM EDTA, 1% NONIDET P-40, 0.1% SDS, 200 mM NaCl 10 mM N-ethyl maleimide (NEM ), 1 mM phenylmethylsulfonylfluoride (PMSF), 1 mM dithiothreitol, 0.1% apollotinin, 0.5 g / ml leptatin A, 1 ug / ml leptin) and dissolve on ice. Minutes left.
  • extraction buffer 111 10 mM Tris-HCl pH 7.5, 5 mM EDTA, 1% NONIDET P-40, 0.1% SDS, 200 mM NaCl 10 mM N-ethyl maleimide (NEM ), 1 mM phenylmethylsulfonylfluoride (PMSF), 1 mM dithiothreitol, 0.1% apollot
  • Incubation was performed for 30 minutes with a 1000-fold diluted anti-SELlL / hsHRD3 peptide antibody as the primary antibody.
  • HHP-conjugated anti-Egret IgG (Amersham Biosciences, Cat. No. NA934V) diluted 10000-fold was used to incubate for 30 minutes.
  • an ECL plus Western Blotting Detection System (Amersnam Biosciences, Cat. No. RPN2132) was used.
  • the cells were incubated with the 10000-fold diluted anti-HA antibody (3F10, Roche, Cat. No. 867431) as the primary antibody for 30 minutes, and incubated with the 10000-fold diluted HRP-conjugated anti-rat IgG for 30 minutes.
  • an ECL plus Western blotting Detection System (Amersham Cat. No. RPN2132) was used. Detected bands were quantified with ImageJ Software. For an accurate measurement, a standard curve was prepared using two- and four-fold dilutions of the sample at time 0, and the ratio was estimated based on the standard curve.
  • SELlL / hsHRD3 had a half-life of 4.3 hours in the absence of synoviolin. The time was reduced to less than half, 1.8 hours (Fig. 12A, B). In other words, it was found that SELlL / hsHD3 becomes unstable in cells if it cannot form a complex with synoviolin.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a substance that suppresses abnormal growth of synovial cells (including synovial tissue) and production of interleukin-6. Since this substance can suppress abnormal growth of synovial tissue or synovial cells, it can be used to diagnose or treat at least one disease selected from rheumatism, fibrosis, arthropathy, cancer and cranial nerve disease. Useful as a product. Sequence listing free text
  • SEQ ID NO: 4 DNA / RNA binding molecule
  • SEQ ID NO: 5 DNA / RNA binding molecule
  • SEQ ID NO: 6 DNA / RNA binding molecule
  • SEQ ID NO: 7 DNA / RNA binding molecule
  • SEQ ID NO: 8 DNA / RNA binding molecule
  • SEQ ID NO: 9 DNA / RNA binding molecule
  • SEQ ID NO: 10 synthetic DNA
  • SEQ ID NO: 11 synthetic DNA
  • SEQ ID NO: 12 synthetic DNA
  • SEQ ID NO: 14 Synthetic DNA
  • SEQ ID NO: 15 Synthetic DNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Rheumatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Molecular Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Neurosurgery (AREA)
  • Pulmonology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A pharmaceutical composition containing a substance capable of suppressing the multiplication of synovial tissue or synovial cells and the production of interleukin 6. There is provided a pharmaceutical composition capable of suppressing the multiplication of synovial tissue or synovial cells and the production of interleukin 6, which pharmaceutical composition is useful for diagnosing or treating of at least one disease selected from among rheumatism, fibrosis, arthritis, cancer and cranial nerve disorder. Further, there is provided a method of suppressing the multiplication of synovial cells and the production of interleukin 6, characterized in that the expression of hsHRD3 in synovial cells is suppressed.

Description

hsHRD3を含む医薬組成物 技術分野  Pharmaceutical composition containing hsHRD3
本発明は、 シノピオリンと複合体を形成するヒト Hrd3オルソログ 0isHRD3)を 含む医薬組成物、 特にリゥマチを診断又は治療するための医薬組成物に関する。 明  The present invention relates to a pharmaceutical composition comprising human Hrd3 ortholog (isHRD3) which forms a complex with synopiolin, in particular, a pharmaceutical composition for diagnosing or treating rheumatism. Light
背景技術 Background art
関節リウマチ (以下、 RA という)は、 関節の滑膜組織に異常な増殖が見られる 全身性の炎症性疾患である。 本発明者は、 この滑膜組織の異常増殖に必須の遺伝 子としてシノビオリン遺伝子を同定している (W書O 02/052007)。  Rheumatoid arthritis (RA) is a systemic inflammatory disease with abnormal proliferation of synovial tissue in joints. The present inventor has identified the synoviolin gene as a gene essential for abnormal growth of synovial tissue (W document O 02/052007).
シノビオリンは、 RA 患者由来の滑膜細胞に存在する膜タンパク質であり、 RING fingerモチーフを有する E3ュピキチンライゲ一スをコードするものであ る。 このモチーフは、 タンパク質のュビキチン化に重要な役割を果たすが、 実際、 自己ュビキチン化活性を有すること、 P4HA1 というコラーゲン合成に必須の夕 ンパク質のュビキチン化を起こすことが証明されている(WO 02/052007) また、 最近では、 シノピオリンが線維症、 癌又は脳神経疾患の発症にも関与することが 見出されている(Genes Dev. 2003 Vol. 17, ρ.2436·49)。  Synoviolin is a membrane protein present in synovial cells from RA patients, and encodes an E3 upicitin ligase having a RING finger motif. This motif plays an important role in protein ubiquitination, but in fact, it has been shown to have auto-ubiquitination activity and to cause ubiquitination of P4HA1, a protein essential for collagen synthesis (WO 02 Recently, it has been found that synopiolin is also involved in the development of fibrosis, cancer or cranial nerve disease (Genes Dev. 2003 Vol. 17, ρ.2436 · 49).
シノビオリンは酵母からヒトまで高度に保存されており、 出芽酵母において詳 細な解析が行われている。 シノピオリンの出芽酵母オルソログであり、 コレステ ロール還元酵素の分解に関わる遺伝子である Hrdlp (HMG-CoA Reductase Degradation 1)は、 出芽酵母 Hrd3p(HMG-CoA Reductase Degradation 3)と機 能的複合体を形成し、 小胞体における異常タンパク質の分解にかかわることが見 出されている(J.C.B. 2000. Vol.151, ρ.69·82)。 しかしながら、 Hrd3p に関する 機能は明らかではない。  Synoviolin is highly conserved from yeast to humans, and detailed analysis has been performed on budding yeast. Hrdlp (HMG-CoA Reductase Degradation 1), a gene involved in the degradation of cholesterol reductase, a budding yeast ortholog of synopiolin, forms a functional complex with the budding yeast Hrd3p (HMG-CoA Reductase Degradation 3). It has been found to be involved in the degradation of abnormal proteins in the endoplasmic reticulum (JCB 2000. Vol.151, ρ.69 · 82). However, the function of Hrd3p is not clear.
インターロイキン- 6 はインターロイキン- 1、 TNF- αとともに炎症性サイト力 インとよばれ、 種々の炎症反応を引き起こすサイト力インである。 通常免疫系の 細胞により産生されるが、 リウマチ滑膜細胞、 白血病、 骨髄腫など様々な増殖性  Interleukin-6, together with interleukin-1 and TNF-α, is called an inflammatory site, and is a site that causes various inflammatory reactions. Usually produced by cells of the immune system, but various proliferative factors such as rheumatoid synovial cells, leukemia, and myeloma
1 1
II正された 紙 (規則 91) 疾患を引き起こす細胞からも産生され、 それらの増殖に必須である。 イン夕一口 ィキン- 6 が関与する病気として、 リウマチ、 多発骨髄腫、 キャッスルマン病、 クローン病、 全身型若年性特発性関節炎、 全身性エリテマトーデス、 骨粗しょう 症などがある。 インタ一ロイキン- 6 は細胞表面に発現するインターロイキン- 6 レセプターに結合する場合もあれば、 細胞表面から遊離したレセプ夕一と結合し、 レセプターを発現していない細胞に結合することにより、 炎症反応を誘導する場 合もある。 イン夕一ロイキン- 6 の炎症作用として、 B 細胞の抗体産生細胞への 分化、 肝臓における C-反応性タンパク質産生量の増加、 骨髄における血小板の 誘導、 免疫系細胞の炎症部位への誘導、 白血球のアポトーシスへの抵抗性の寄与、 VEGFの誘導を介した血管の誘導などが挙げられる。 最近、 インターロイキン- 6 とレセプターとの結合を阻害する抗ィンターロイキン- 6 レセプ夕一抗体が作ら れるようになり、 リウマチ、 骨髄腫、 クローン病などに効果を発揮している。 発明の開示 II Corrected Paper (Rule 91) It is also produced by disease-causing cells and is essential for their growth. Diseases involving In-Yu-Ichiguchi-6 include rheumatism, multiple myeloma, Castleman's disease, Crohn's disease, systemic juvenile idiopathic arthritis, systemic lupus erythematosus, and osteoporosis. Interleukin-6 may bind to interleukin-6 receptor expressed on the cell surface, or may bind to receptor released from the cell surface and bind to cells that do not express the receptor, resulting in inflammation. In some cases, it induces a reaction. Inflammation of leukin-6 includes differentiation of B cells into antibody-producing cells, increased production of C-reactive protein in liver, induction of platelets in bone marrow, induction of immune system cells to inflammatory sites, leukocytes And the induction of blood vessels through the induction of VEGF. Recently, an anti-interleukin-6 receptor antibody, which inhibits the binding of interleukin-6 to its receptor, has been produced, and is effective against rheumatism, myeloma, and Crohn's disease. Disclosure of the invention
本発明は、 滑膜細胞の異常増殖やインターロイキン- 6の産生を抑制する物質 を含む医薬組成物、 及び hsHRD3 を抑制することを特徴とする滑膜細胞の増殖 を抑制する方法を提供することを課題とする。  The present invention provides a pharmaceutical composition comprising a substance that suppresses abnormal growth of synovial cells and production of interleukin-6, and a method for suppressing synovial cell growth, which comprises suppressing hsHRD3. As an issue.
本発明者は、 上記課題を解決するために鋭意研究を行った。 出芽酵母の hrd3 破壊株において、 Hrdlp タンパク質が不安定かつ減少しており、 基質が生理学 的に安定化かつ増加していることが報告されていることから、 ヒト Hrd3p オル ソログも、 シノビオリンと同様に滑膜組織の異常増殖ゃィンターロイキン- 6の 産生に必須であることがわかった。 そして、 hsHRD3 を用いて、 新たな炎症反 応の抑制、 リウマチ、 線維症、 関節症、 癌及び脳神経疾患等の診断法及び治療法 の開発に有効であると考え、 本発明を完成するに至った。  The present inventor has conducted intensive studies in order to solve the above problems. In the hrd3-disrupted strain of S. cerevisiae, the Hrdlp protein is unstable and decreased, and it has been reported that the substrate is physiologically stabilized and increased.Therefore, the human Hrd3p ortholog is also similar to Synoviolin. It was found to be essential for the production of abnormal growth of interleukin-6 in synovial tissue. The present inventors considered that hsHRD3 is effective for suppressing new inflammatory reactions and for developing diagnostic and therapeutic methods for rheumatism, fibrosis, arthropathy, cancer and cranial nerve diseases, and completed the present invention. Was.
すなわち、 本発明は以下の通りである。  That is, the present invention is as follows.
( 1 ) 滑膜細胞の増殖を抑制する物質を含む医薬組成物。  (1) A pharmaceutical composition comprising a substance that suppresses the growth of synovial cells.
滑膜細胞の増殖を抑制する物質としては、 例えばシノビオリンの発現阻害物質 が挙げられる。 シノビォリンの発現阻害物質は、 hsHRD3 をコードする遺伝子 の発現を抑制する物質、 好ましくは、 hsHRD3 をコードする遺伝子に対する siRNA (small interfering RNA) 又は shRNA(sliort hairpin UNA)を例示する ことができる。 Examples of the substance that suppresses the growth of synovial cells include a Synoviolin expression inhibitor. A substance inhibiting the expression of synoviolin is a substance that suppresses the expression of a gene encoding hsHRD3, preferably a substance that inhibits the expression of a gene encoding hsHRD3. Examples include siRNA (small interfering RNA) or shRNA (sliort hairpin UNA).
具体的には hsHRD3をコードする遺伝子は、 以下の (a)又は (b)の DNAを含む ものである。 すなわち、  Specifically, the gene encoding hsHRD3 contains the following DNA (a) or (b). That is,
(a) 配列番号 1に示される塩基配列からなる DNA (a) DNA comprising the nucleotide sequence of SEQ ID NO: 1
(b) 配列番号 1に示される塩基配列からなる DNAと相補的な塩基配列からなる DNAとストリンジェントな条件下でハイブリダイズし、 かつ hsHRD3活性を有 するタンパク質をコードする DNAである。  (b) DNA that hybridizes with a DNA consisting of a nucleotide sequence complementary to a DNA consisting of the nucleotide sequence of SEQ ID NO: 1 under stringent conditions, and encodes a protein having hsHRD3 activity.
さらに、 siRNA は、 配列番号 1 に示す塩基配列のうち一部の配列を標的とす るものであってもよい。  Furthermore, the siRNA may target a part of the base sequence shown in SEQ ID NO: 1.
本発明の医薬組成物は、 リウマチ、 線維症、 関節炎、 癌及び脳神経疾患から選 ばれる少なくとも 1つの疾患を診断又は治療するために使用される。  The pharmaceutical composition of the present invention is used for diagnosing or treating at least one disease selected from rheumatism, fibrosis, arthritis, cancer and cranial nerve disease.
( 2 ) 滑膜細胞の hsHRD3 の発現を抑制することを特徴とする、 滑膜細胞の増 殖を抑制する方法。  (2) A method for suppressing synovial cell proliferation, which comprises suppressing the expression of hsHRD3 in synovial cells.
( 3 ) 滑膜細胞の hsHRD3 の発現を抑制することを特徴とする、 滑膜細胞、 が ん細胞、 白血病又は悪性腫瘍におけるアポトーシスを誘起させる方法。  (3) A method for inducing apoptosis in synovial cells, cancer cells, leukemias or malignant tumors, comprising suppressing the expression of hsHRD3 in synovial cells.
( 4 ) 滑膜細胞の hsHRD3 の発現を抑制することを特徴とする、 滑膜細胞、 肺 の線維化又は肝硬変におけるコラーゲンの産生を抑制する方法。  (4) A method for suppressing the production of collagen in synovial cells, lung fibrosis or cirrhosis, which comprises suppressing the expression of hsHRD3 in synovial cells.
( 5 ) 滑膜細胞の hsHRD3 の発現を抑制することを特徴とする、 滑膜細胞、 が ん細胞、 白血病細胞、 骨肉種細胞、 悪性腫瘍細胞、 免疫系細胞、 破骨細胞からな る群から選ばれる少なくとも一種の細胞からィン夕ーロイキン- 6の産生を抑制 する方法。  (5) From the group consisting of synovial cells, cancer cells, leukemia cells, osteosarcoma cells, malignant tumor cells, immune system cells, and osteoclasts, characterized by inhibiting the expression of hsHRD3 in synovial cells A method for suppressing the production of insulin-leukin-6 from at least one selected cell.
( 6 ) インターロイキン- 6の産生を抑制する物質を含む医薬組成物。  (6) A pharmaceutical composition comprising a substance that suppresses interleukin-6 production.
ィンターロイキン- 6の産生を抑制する物質としては、 例えばシノビオリンの 発現阻害物質が挙げられる。 シノビォリンの発現阻害物質は、 hsHRD3 をコー ドする遺伝子の発現を抑制する物質、 好ましくは、 hsHRD3 をコードする遺伝 子に対する siRNA又は shRNAを例示することができる。  Examples of the substance that suppresses the production of interleukin-6 include a substance that inhibits the expression of synoviolin. Examples of the substance inhibiting the expression of synoviolin include a substance that suppresses the expression of a gene encoding hsHRD3, preferably an siRNA or shRNA against a gene encoding hsHRD3.
具体的には hsHRD3をコードする遺伝子は、 以下の (a)又は (b)の DNAを含む ものである。 すなわち、 (a) 配列番号 1に示される塩基配列からなる DNA Specifically, the gene encoding hsHRD3 contains the following DNA (a) or (b). That is, (a) DNA comprising the nucleotide sequence of SEQ ID NO: 1
(b) 配列番号 1 に示される塩基配列からなる DNAと相補的な塩基配列からなる DNAとストリンジェントな条件下でハイプリダイズし、 かつ hsHRD3活性を有 するタンパク質をコードする DNAである。  (b) DNA that hybridizes with a DNA consisting of a nucleotide sequence complementary to the DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1 under stringent conditions, and encodes a protein having hsHRD3 activity.
さらに、 siRNA は、 hsHRD3 をコードする遺伝子の塩基配列のうち一部の配 列を標的とするものであってもよい。  Furthermore, the siRNA may target a partial sequence of the nucleotide sequence of the gene encoding hsHRD3.
本発明の医薬組成物は、 リウマチ、 多発骨髄腫、 キャッスルマン病、 クローン 病、 全身型若年性特発性関節炎、 全身性エリテマトーデス及び骨粗しょう症から 選ばれる少なくとも 1つの疾患を診断又は治療するために使用される。 また、 本 発明の医薬組成物は炎症反応を抑制することもできる。  The pharmaceutical composition of the present invention is used for diagnosing or treating at least one disease selected from rheumatism, multiple myeloma, Castleman's disease, Crohn's disease, systemic juvenile idiopathic arthritis, systemic lupus erythematosus and osteoporosis. used. Further, the pharmaceutical composition of the present invention can also suppress an inflammatory response.
上記 (2)〜(5)記載の方法において、 滑膜細胞の hsHRD3の発現抑制は、 例えば hsHRD3とシノビオリンとの結合阻害により行うことができる。 図面の簡単な説明  In the methods described in the above (2) to (5), the expression of hsHRD3 in synovial cells can be suppressed, for example, by inhibiting the binding of hsHRD3 to synoviolin. Brief Description of Drawings
図 1は、 Hi'd3pと SELlL/hsHRD3のドメイン構造を示す図である。  FIG. 1 is a diagram showing the domain structures of Hi'd3p and SELlL / hsHRD3.
図 2は、 siRNA による SEIL/hsHRD3 の発現が抑制されたことを示す図であ る。  FIG. 2 is a diagram showing that expression of SEIL / hsHRD3 by siRNA was suppressed.
図 3は、 SEIL/hsHRD3 の発現抑制により、 滑膜細胞の増殖活性が抑制された ことを示す図である。  FIG. 3 is a diagram showing that the proliferative activity of synovial cells was suppressed by suppressing the expression of SEIL / hsHRD3.
図 4は、 SEIL/hsHRD3 の発現抑制により、 滑膜細胞のアポ卜一シスが誘導さ れたことを示す図である。  FIG. 4 is a diagram showing that apoptosis of synovial cells was induced by suppressing the expression of SEIL / hsHRD3.
図 5は、 SEIL/hsHRD3 の発現抑制により、 滑膜細胞へのアポトーシスが誘導 されたことを示す図である。  FIG. 5 shows that apoptosis to synovial cells was induced by suppressing the expression of SEIL / hsHRD3.
図 6は、 SEIL/hsHRD3 の発現抑制により、 滑膜細胞のシノビオリン夕ンパク 質が減少したことを示す図である。  FIG. 6 is a diagram showing that synoviolin protein in synovial cells was reduced by suppressing the expression of SEIL / hsHRD3.
図 7は、 SEIL/hsHRD3 の発現抑制により、 滑膜細胞のコラーゲン産生が抑制 されたことを示す図である。  FIG. 7 is a diagram showing that collagen production of synovial cells was suppressed by suppressing the expression of SEIL / hsHRD3.
図 8は、 SEIL/hsHRD3 とシノピオリンが複合体を形成したことを示す図であ る。 図 9は、 SEIL/hsHRD3 とシノビォリンが小胞体に共局在することを示す図で ある。 FIG. 8 is a view showing that SEIL / hsHRD3 and synopiolin formed a complex. FIG. 9 is a diagram showing that SEIL / hsHRD3 and synoviolin co-localize in the endoplasmic reticulum.
図 1 0は、 SELlL/hsHRD3 の発現抑制により、 滑膜細胞のインターロイキ ン -6の産生が抑制されたことを示す図である。  FIG. 10 is a diagram showing that the production of interleukin-6 in synovial cells was suppressed by suppressing the expression of SELlL / hsHRD3.
図 1 1は、 SELlL/hsHRD3、 およびシノビォリンの発現抑制により、 両タン パク質の発現が抑制されたことを示す図である。  FIG. 11 is a diagram showing that expression of both proteins was suppressed by suppressing expression of SELlL / hsHRD3 and synoviolin.
図 1 2 Aは、 シノビォリンの非存在下では SELlL/hsHRD3は不安定であるこ とを示す図である。  FIG. 12A shows that SELlL / hsHRD3 is unstable in the absence of synoviolin.
図 1 2 Bは、 シノビオリンの非存在下では SELlL/hsHRD3は不安定であるこ とを示す図である。 発明を実施するための最良の形態  FIG. 12B shows that SELlL / hsHRD3 is unstable in the absence of Synoviolin. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明は、 hsHRD3 の発現を抑制し、 滑膜細胞の異常増殖やインターロイキ ン - 6の産生を抑制する物質を含む、 リウマチ等の疾患の診断、 治療に有効な医 薬組成物に関する。  The present invention relates to a pharmaceutical composition effective for diagnosing and treating diseases such as rheumatism, which comprises a substance that suppresses the expression of hsHRD3 and suppresses abnormal growth of synovial cells and production of interleukin-6.
シノピオリンは酵母からヒトまで高度に保存されており、 出芽酵母において詳 細な解析が行われている。 シノビォリンの出芽酵母オルソログである Hrdlp は、 Hrd3p と機能的な複合体を形成し、 小胞体における異常タンパク質の分解に関 わることが見出されている。 出芽酵母の hrd3 破壊株では Hi'dlp の不安定化と 減少が観察され、 生理学的な基質の安定化と増加が報告されている。 このことは、 ヒト Hrd3p オルソログ (hsHRD3) もシノビォリンと同様に、 滑膜組織の異常 増殖に必須であり、 新たな関節症の診断、 および治療法の開発に有効であること を示している。  Synopiolin is highly conserved from yeast to humans, and detailed analysis has been performed on budding yeast. Hrdlp, a budding yeast ortholog of synoviolin, has been found to form a functional complex with Hrd3p and is involved in the degradation of abnormal proteins in the endoplasmic reticulum. In hrd3-disrupted strains of S. cerevisiae, Hi'dlp was destabilized and decreased, and stabilization and increase of physiological substrates were reported. This suggests that the human Hrd3p ortholog (hsHRD3), like synoviolin, is essential for the abnormal proliferation of synovial tissue and is effective in diagnosing new joint diseases and developing therapeutic methods.
そこで、 本発明において、 まず出芽酵母 Hrd3p のアミノ酸配列を用いてホモ ロジ一検索をした結果、 SEL1L という既知の遺伝子が見出された。 Hi'd3p と SEL1Lとの間においてアミノ酸配列の相同性は 30%、 類似性は 45%であり、 レ ずれも高くはないが、 特異的な繰り返し構造と膜貫通ドメィンが保存されている。 従って、 SEL1Lは Hrd3pのオルソログであると決定した (図 1) 。 次に 2本鎖 RNA (siRNA) を用いて滑膜細胞を処理すると、 hsHRD3 の発現を抑制できる ことを確認した (図 2) 。 この条件下においては、 滑膜細胞の細胞増殖活性は顕 著に減少していた (図 3) 。 また約 30%の細胞がアポト一シスを起こしていた (図 4、 5) 。 Thus, in the present invention, a homologous search was first performed using the amino acid sequence of budding yeast Hrd3p, and as a result, a known gene called SEL1L was found. The amino acid sequence homology between Hi'd3p and SEL1L is 30%, the similarity is 45%, and the difference is not high, but the specific repeating structure and transmembrane domain are preserved. Therefore, SEL1L was determined to be an ortholog of Hrd3p (FIG. 1). Then double stranded It was confirmed that treatment of synovial cells with RNA (siRNA) can suppress hsHRD3 expression (Fig. 2). Under these conditions, the cell proliferation activity of synovial cells was markedly reduced (Fig. 3). Approximately 30% of the cells had apoptosis (Figs. 4 and 5).
出芽酵母において Hrd3pは Hrdlpの安定化に必須である。 そこでシノビオリ ンタンパク質をウェスタンブロットで検出したところ、 シノビオリンタンパク質 は、 hsHRD3抑制下において著しく減少していた (図 6) 。 また、 シノビオリン の発現が抑制されると、 コラーゲン産生量も減少する。 そこで、 細胞内のコラ一 ゲン量を測定したところ、 これもコントロールに比べて減少していた (図 7) 。 さらに、 hsH D3はシノピオリンと細胞内で複合体を形成し (図 8) 、 共に小胞 体に局在している (図 9) ことが明らかとなった。 なお、 滑膜細胞の増殖に重要 な役割を果たしているインターロイキン- 6も 63.2%まで減少していた (図 10) 。 また、 細胞内にシノビオリンタンパク質が存在しないときは、 hsHRD3 は著し く減少し (図 11) 、 非常に不安定であった (図 12A及び図 12B) 。  In budding yeast, Hrd3p is essential for stabilizing Hrdlp. When the Synoviolin protein was detected by Western blot, the Synoviolin protein was significantly reduced under hsHRD3 suppression (Fig. 6). When the expression of Synoviolin is suppressed, the amount of collagen production also decreases. Then, when the amount of collagen in the cells was measured, it was also reduced compared to the control (Fig. 7). Furthermore, it was revealed that hsHD3 forms a complex with synopiolin in cells (Fig. 8), and both are localized in the endoplasmic reticulum (Fig. 9). Interleukin-6, which plays an important role in synovial cell proliferation, also decreased to 63.2% (Figure 10). When no Synoviolin protein was present in the cells, hsHRD3 was significantly reduced (FIG. 11), and was very unstable (FIGS. 12A and 12B).
以上の結果は、 hsHRD3をターゲットとするアプローチは、 RAをはじめとす る関節炎、 線維症、 癌及び脳神経疾患の新たな診断及び治療法の開発に有効であ ることを示している。 特に SELlL/hsHRD3の発現や機能のコントロールを介し て、 シノビオリンの発現や機能を制御するという作用機序に基づいた薬剤の開発 に有用である。  These results indicate that the approach targeting hsHRD3 is effective in developing new diagnostics and therapeutics for RA and other arthritis, fibrosis, cancer and cranial nerve diseases. In particular, it is useful for the development of drugs based on the mechanism of action that controls the expression and function of Synoviolin through the control of the expression and function of SELlL / hsHRD3.
1 . 滑膜細胞の増殖抑制  1. Synovial cell growth inhibition
本発明において、 「滑膜細胞」 とは、 リウマチ患者の関節部位において異常増 殖している一連の細胞群を意味し、 滑膜組織も包含する。  In the present invention, “synovial cells” refers to a series of cells that are abnormally proliferating in a joint site of a rheumatic patient, and includes synovial tissue.
本発明において、 「hsHRD3」 とは、 酵母のシノビオリンである Hrdlp と結 合して機能的複合体を形成し、 小胞体の異常なタンパク質の分解に携わっている 「Hrd3p」 と呼ばれるタンパク質のヒトオルソログをいう。 シノピオリンは、 酵 母からヒ卜まで高度に保存されており、 特に出芽酵母において詳細な解析が行わ れている。 この出芽酵母のオルソログである Hrd3p とアミノ酸のホモロジ一が 相同性で 30%、 類似性で 45 %であり、 特異的な繰返し構造と膜貫通ドメインが 保存されている SEL1L という遺伝子が見いだされ、 これが後に hsHRD3 とさ れた。 この hsHRD3は、 配列番号 1 に示される塩基配列およびそのような配列 と実質的に同一な塩基配列よりなる。 実質的に同一な塩基配列とは、 配列番号 1 からなる DNA に対し相補的な塩基配列よりなる DNA とストリンジェントな条 件でハイブリダィズし、 かつ hsHRD3 活性を有するタンパク質をコードする塩 基配列をいう。 「hsHRD3 活性」 とは、 小胞体において、 異常なタンパク質を 分解する活性をいう。 このような、 hsHRD3をコードする DNAは、 当業者に公 知の方法で適当な断片を用いてプローブを作製し、 このプローブを用いてコロニ —ハイブリダィゼ一シヨン、 プラークハイブリダィゼーシヨン、 サザンブロット 等の公知のハイブリダィゼ一シヨン法により、 cDNA ライブラリーおよびゲノム ライブラリーから得ることができる。 上記ハイブリダィゼ一シヨンにおいてスト リンジェントな条件としては、 たとえば、 ハイブリダィゼーシヨンにおいて洗浄 時の塩濃度が 100〜500mM、 好ましくは 150〜300mMであり、 温度が 50〜70°C、 好ましくは 55〜65°Cの条件が挙げられる。 In the present invention, “hsHRD3” is a human ortholog of a protein called “Hrd3p” that binds to yeast synoviolin Hrdlp to form a functional complex and is involved in the degradation of abnormal proteins in the endoplasmic reticulum. Say. Synopolin is highly conserved from yeast to humans, and detailed analysis has been performed especially on budding yeast. Hrd3p, the ortholog of S. cerevisiae, has a homology of 30% homology with the amino acid homology and 45% similarity.A gene called SEL1L, which has a specific repetitive structure and a conserved transmembrane domain, was found. HsHRD3 later Was. This hsHRD3 consists of the nucleotide sequence shown in SEQ ID NO: 1 and a nucleotide sequence substantially identical to such a sequence. A substantially identical nucleotide sequence refers to a nucleotide sequence that hybridizes under stringent conditions with a DNA consisting of a nucleotide sequence complementary to the DNA consisting of SEQ ID NO: 1 and encodes a protein having hsHRD3 activity. . “HsHRD3 activity” refers to the activity of degrading abnormal proteins in the endoplasmic reticulum. Such a DNA encoding hsHRD3 is prepared by preparing a probe by using an appropriate fragment by a method known to those skilled in the art, and using this probe for colony hybridization, plaque hybridization, and Southern blot. It can be obtained from a cDNA library and a genomic library by a known hybridization method. Stringent conditions in the above hybridization include, for example, a salt concentration of 100 to 500 mM, preferably 150 to 300 mM during washing in the hybridization, and a temperature of 50 to 70 ° C, preferably 55 to 70 ° C. ~ 65 ° C.
hsHRD3のアミノ酸配列を配列番号 2 に、 Hrd3p のアミノ酸配列を配列番号 3に示す。  The amino acid sequence of hsHRD3 is shown in SEQ ID NO: 2, and the amino acid sequence of Hrd3p is shown in SEQ ID NO: 3.
この hsHKD3 の発現を抑制すると、 滑膜細胞の増殖活性が著しく抑制される。 滑膜細胞とは、 通常の関節構成要素となる細胞であって、 関節腔の内側の層を満 たす滑液を産生する細胞である。  When the expression of hsHKD3 is suppressed, the proliferation activity of synovial cells is remarkably suppressed. Synovial cells are cells that serve as normal joint components, and that produce synovial fluid that fills the inner layer of the joint cavity.
シノビオリン遺伝子の発現を抑制するには、 hsHRD3 の発現を抑制する方法 が採用される。 hsHRD3の発現を抑制するには、 RNAiという現象を利用するこ とができるが、 遺伝子工学技術を用いた部位特異的突然変異誘発法、 アンチセン スヌクレオチド、 リポザィムを用いてもよい。  In order to suppress the expression of the Synoviolin gene, a method of suppressing the expression of hsHRD3 is adopted. To suppress the expression of hsHRD3, a phenomenon called RNAi can be used, but site-directed mutagenesis using genetic engineering techniques, antisense nucleotides, and lipozymes may also be used.
RNAi とは、 dsRNA(double-strand RNA)が標的遺伝子に特異的かつ選択的に 結合し、 当該標的遺伝子を切断することによりその発現を効率よく阻害する現象 である。 例えば、 dsRNA を細胞内に導入すると、 その RNA と相同配列の遺伝 子の発現が抑制 (ノックダウン) される。  RNAi is a phenomenon in which dsRNA (double-strand RNA) binds specifically and selectively to a target gene, and the expression of the target gene is efficiently inhibited by cleaving the target gene. For example, when dsRNA is introduced into a cell, expression of a gene having a sequence homologous to that RNA is suppressed (knocked down).
上記 RNAi を起こさせるために、 例えばシノビオリン遺伝子に対する siRNA 又は shRNAを設計及び合成し、 これを作用させればよい。 あるいは、 hsHRD3 をコードする遺伝子の発現を抑制しても、 シノビオリンの発現を抑制することが できる。 In order to cause the above-mentioned RNAi, for example, siRNA or shRNA for the synoviolin gene may be designed and synthesized, and then used. Alternatively, suppressing the expression of the gene encoding hsHRD3 does not suppress the expression of Synoviolin. it can.
siRNAの設計基準は、 以下の通りである。  The design criteria for siRNA are as follows.
(a) シノビオリンをコードする遺伝子の開始コドンから 100ヌクレオチド下流 の領域を選択する。  (a) Select a region 100 nucleotides downstream from the start codon of the gene encoding Synoviolin.
(b) 選択した領域から、 AAで始まる連続する 15〜30塩基、 好ましくは 19塩 基の配列を採し、 その配列の GC含量が 30〜70%、 好ましくは 35〜45 %となる ものを選択する。  (b) From the selected region, take a sequence of 15 to 30 consecutive bases, preferably 19 bases, starting with AA, and select a sequence having a GC content of 30 to 70%, preferably 35 to 45%. select.
具体的には、 以下の塩基配列を有するものを siRNA として使用することがで ぎる。  Specifically, those having the following nucleotide sequences can be used as siRNA.
センス鎖 : CUUGAUAUGGACCAGCUUUTT (配列番号 4) アンチセンス鎖: AAAGCUGGUCCAUAUCAAGTT (配列番号 5) siRNAを滑膜細胞に導入するには、 in vitroで合成した siRNAをプラスミド DNA に連結してこれを細胞に導入する方法、 2本鎖 RNA をァニールする方法 などを採用することができる。  Sense strand: CUUGAUAUGGACCAGCUUUTT (SEQ ID NO: 4) Antisense strand: AAAGCUGGUCCAUAUCAAGTT (SEQ ID NO: 5) In order to introduce siRNA into synovial cells, a method in which siRNA synthesized in vitro is ligated to plasmid DNA and introduced into cells Alternatively, a method of annealing double-stranded RNA can be employed.
このように siRNAで滑膜細胞を処理して、 hsmiD3の発現を抑制する。  Thus, treating the synovial cells with the siRNA suppresses the expression of hsmiD3.
また、 本発明は、 RNAi効果をもたらすために shRNAを使用することもでき る。 shRNA とは、 ショートヘアピン RNA と呼ばれ、 一本鎖の一部の領域が他 の領域と相補鎖を形成するためにステムループ構造を有する RNA分子である。 shRNA は、 その一部がステムループ構造を形成するように設計することがで きる。 例えば、 ある領域の配列を配列 Aとし、 配列 Aに対する相補鎖を配列 ; B とすると、 配列 A、 スぺ一サー、 配列 Bの順でこれらの配列が一本の RNA鎖に 存在するように連結し、 全体で 45〜60塩基の長さとなるように設計する。 配列 A は、 標的となる hsHRD3遺伝子 (配列番号 1) の一部の領域の配列であり、 標的領域は特に限定されるものではなく、 任意の領域を候補にすることが可能で ある。 そして配列 Aの長さは 19〜25塩基、 好ましくは 19〜21塩基である。 滑膜細胞の増殖を測定する方法は、 培養液中に alamarBlueを適当量添加し、 数時間後の 540nm を励起波長としたときの 590nm の蛍光強度を測定すればよ い。  The present invention can also use shRNA to produce an RNAi effect. shRNA is an RNA molecule having a stem-loop structure because a part of a single strand forms a complementary strand with another area, which is called a short hairpin RNA. shRNAs can be designed so that part of them form a stem-loop structure. For example, assuming that the sequence of a certain region is sequence A and the complementary strand to sequence A is sequence B, sequence A, spacer, and sequence B are such that these sequences are present in one RNA strand. Ligation is designed so that the total length is 45-60 bases. Sequence A is a sequence of a partial region of the hsHRD3 gene (SEQ ID NO: 1) to be a target, and the target region is not particularly limited, and any region can be a candidate. The length of sequence A is 19 to 25 bases, preferably 19 to 21 bases. To measure the proliferation of synovial cells, add an appropriate amount of alamarBlue to the culture medium, and measure the fluorescence intensity at 590 nm with the excitation wavelength at 540 nm several hours later.
さらに、 シノビオリン遺伝子又は hsHRD3 をコードする遺伝子の発現を抑制 するために、 部位特異的突然変異誘発法等を使用することができる。 部位特異的 突然変異誘発法は当分野において周知であり、 市販のキッ ト、 例えばFurthermore, suppresses the expression of the synoviolin gene or the gene encoding hsHRD3 For example, site-directed mutagenesis can be used. Site-directed mutagenesis is well known in the art and is commercially available, for example,
GeneTailor™ Site-Directed Mutagenesis System (インビトロジェン社製) 、 TaKaRa Site -Directed Mutagenesis System ( utan-K 、 Mutan- Super Express Km等 (夕カラバイオ社製) ) を使用することができる。 GeneTailor ™ Site-Directed Mutagenesis System (Invitrogen), TaKaRa Site-Directed Mutagenesis System (utan-K, Mutan-Super Express Km, etc. (Yukara Bio Inc.)) can be used.
本発明は、 hsHRD3 とシノビォリンが結合して形成された、 小胞体に局在す る複合体の形成を阻害することにより、 シノビオリンの発現を抑制する方法を提 供する。 The present invention provides a method for suppressing the expression of Synoviolin by inhibiting the formation of a complex localized in the endoplasmic reticulum formed by binding of hsHRD3 and Synoviolin.
sHRD3 とシノピオリンとが結合して複合体を形成すると、 シノピオリンの 発現が上昇する。 この場合、 hsHKD3 とシノピオリンの複合体は小胞体に局在 する。 小胞体内腔における生合成途中のタンパク質は不安定であるため、 種々の 物理化学的ストレス (例えば虚血、 低酸素、 熱ショック、 アミノ酸飢餓、 遺伝子 変異等) に曝される。 このようなストレスを小胞体ストレス (ER ストレス) と いい、 小胞体内に異常な折りたたみ構造を持つタンパク質 (unfolded protein) の出現頻度を上昇させる。 適切な高次構造がとれずに立体構造に異常をきたした 不良又は損傷タンパク質は小胞体を出てゴルジ体に輸送されないため、 そのまま では小胞体内に不良タンパク質等が蓄積されてしまう。 そこで、 これらの ERス ト レ ス に 対 し て 、 細 胞 は UPR(Unfolded Protein Response) 及 び ERAD(Endplasmic Reticulum - Associate d Degradation)と呼ばれる小胞体特異 的なストレス応答機構によって、 不良タンパク質等を分解し、 そのような不良夕 ンパク質が蓄積することによる小胞体のストレスを防ぐことにより、 小胞体の品 質管理を行い、 細胞機能の恒常性を保持している。 出芽酵母の hrd3破壊株にお いては、 Hrdlp タンパク質が不安定かつ減少しており、 基質が生理学的に安定 化かつ増加していることが観察されているため、 ヒトにおいても、 シノビオリン と複合体を形成している hsHRD3 がこの品質管理機能に何らかの関与をしてい ると考えられる。  When sHRD3 and synopiolin combine to form a complex, the expression of synopiolin increases. In this case, the complex of hsHKD3 and synopiolin is located in the endoplasmic reticulum. Proteins undergoing biosynthesis in the lumen of the endoplasmic reticulum are unstable and are exposed to various physicochemical stresses (eg, ischemia, hypoxia, heat shock, amino acid starvation, genetic mutation, etc.). Such stress is called endoplasmic reticulum stress (ER stress) and increases the frequency of the appearance of unfolded proteins with abnormally folded structures in the endoplasmic reticulum. Defective or damaged proteins that have an abnormal conformation due to lack of an appropriate higher-order structure do not exit the endoplasmic reticulum and are not transported to the Golgi apparatus, and as such, defective proteins accumulate in the endoplasmic reticulum. In response to these ER stresses, cells respond to UPR (Unfolded Protein Response) and ERAD (Endplasmic Reticulum-Associated Degradation) by using the endoplasmic reticulum-specific stress response mechanism called defective proteins. By controlling the quality of the endoplasmic reticulum by preventing the endoplasmic reticulum from decomposing and accumulating such defective proteins, it maintains cell function homeostasis. In the hrd3-disrupted strain of S. cerevisiae, Hrdlp protein is unstable and decreased, and the substrate is physiologically stabilized and increased. HsHRD3, which forms a part of this, is considered to be involved in this quality control function.
つまり、 hsHRD3 の発現が抑制されると、 シノビォリンと結合する hsHRD3 が減少し、 その結果シノビオリンの発現も抑制されるのである。  In other words, when the expression of hsHRD3 is suppressed, the amount of hsHRD3 that binds to synoviolin decreases, and as a result, the expression of synoviolin is also suppressed.
また、 シノビォリンの発現が増加すると、 ERAD が亢進されることにより、 ER ストレスによるアポト一シスの感受性が低下し、 反対に、 シノビォリンの発 現が抑制されると、 アポトーシスの感受性が増加する。 したがって、 hsHRD3 の発現が抑制されると、 シノビォリンの機能も低下し、 結果としてアポトーシス が亢進する。 Also, when synoviolin expression increases, ERAD is enhanced, Decreased susceptibility to apoptosis due to ER stress, and conversely, suppression of synoviolin expression increases susceptibility to apoptosis. Therefore, when hsHRD3 expression is suppressed, the function of synoviolin also decreases, and as a result, apoptosis increases.
一方、 コラ一ゲンについては、 シノビオリンは P4HA1 というコラーゲン合成 に必須のタンパク質のュビキチン化を通じて、 その酵素としての品質を保つこと により、 コラーゲン合成に必須の働きをしている。 シノビォリンの発現が抑制さ れると P4HA1 の酵素活性が低下し、 コラーゲン合成が低下する。 したがって hsHRD3 の発現が抑制されると、 シノビォリンの機能も低下し、 結果としてコ ラーゲン合成が低下する。  On the other hand, for collagen, synoviolin plays an essential role in collagen synthesis by maintaining its quality as an enzyme through ubiquitination of P4HA1, a protein essential for collagen synthesis. When synoviolin expression is suppressed, the enzymatic activity of P4HA1 decreases, and collagen synthesis decreases. Therefore, when hsHRD3 expression is suppressed, the function of synoviolin also decreases, and as a result, collagen synthesis decreases.
したがって、 hsHRD3 もシノピオリンと同様に、 滑膜組織の異常増殖に必須 であり、 hsHRD3 の発現を抑制することにより、 滑膜細胞の増殖を抑制するこ と、 滑膜細胞、 癌細胞、 白血病又は悪性腫瘍のアポトーシスを誘起させること、 及び、 滑膜細胞、 肺の繊維化又は肝硬変におけるコラーゲンの産生を抑制するこ とができるため、 新たなリウマチ、 線維症、 関節症、 癌および脳神経疾患の診断、 および治療法を開発することができる。  Therefore, hsHRD3 is also essential for abnormal growth of synovial tissue, similar to synopiolin, and by suppressing hsHRD3 expression, suppressing synovial cell proliferation, synovial cells, cancer cells, leukemia or malignant It can induce tumor apoptosis and inhibit the production of collagen in synovial cells, lung fibrosis or cirrhosis, so that new rheumatism, fibrosis, arthropathy, cancer and cranial nerve disease diagnosis, And therapies can be developed.
上記の滑膜細胞の増殖を抑制するシノビオリンの発現阻害物質は、 ィンタ一口 ィキン- 6の産生を抑制する物質でもある。  The above-mentioned synoviolin expression inhibitory substance which suppresses the proliferation of synovial cells is also a substance which suppresses the production of intitanic Dikin-6.
インターロイキン- 6は B リンパ球の増殖分化のみならず、 広く免疫応答、 造 血反応、 炎症反応、 及び神経系の細胞の増殖 ·分化、 あるいは機能発現に重要な 役割をしている多機能を有する典型的なサイト力インである。 その作用は、 骨髄 における血小板の誘導、 免疫系細胞の炎症部位への誘導、 白血球のアポトーシス への抵抗性の寄与、 VEGF の誘導を介した血管の誘導、 B 細胞の抗体産生細胞 への分化、 肝臓における C-反応性タンパク質産生量の増加などがある。 イン夕 —ロイキン- 6 は、 通常免疫系の細胞により産生されるが、 リウマチ滑膜細胞、 白血病、 骨髄腫など様々な増殖性疾患を引き起こす細胞からも産生され、 それら の増殖に必須である。 インターロイキン- 6 が関与する疾患として、 リウマチ、 多発骨髄腫、 キャッスルマン病、 クローン病、 全身型若年性特発性関節炎、 全身 性エリテマト一デス、 骨粗しょう症などがある。 また、 慢性炎症性増殖性疾患に おいては、 ィンターロイキン- 6が病態を形成するのに重要な役割を演じている ことが知られており、 ィンターロイキン- 6遺伝子の異常発現によりリゥマチ等 の自己免疫疾患や、 血液中の細胞ががん化して起こる多発性骨髄腫及び白血病等 の形質細胞腫の発症が誘導されることが明らかになつている。 例えば、 リウマチ 患者関節液中ではィンターロイキン- 6が著増していること、 形質細胞腫/多発性 骨髄腫の増殖因子がィンターロイキン- 6そのものであること、 インターロイキ ン - 6が、 骨髄性白血病細胞に作用し、 増殖を抑制するとともに、 マクロファー ジへの分化を誘導することなどである。 Interleukin-6 not only plays a key role in B lymphocyte proliferation and differentiation, but also plays an important role in the immune response, hematopoietic response, inflammatory response, and proliferation / differentiation of nervous system cells, or their function. Is a typical site power-in to have. Its effects include the induction of platelets in the bone marrow, the induction of immune system cells to sites of inflammation, the contribution of leukocyte resistance to apoptosis, the induction of blood vessels through the induction of VEGF, the differentiation of B cells into antibody-producing cells, Increasing production of C-reactive protein in the liver. Inulin-leukin-6 is normally produced by cells of the immune system, but is also produced by rheumatoid synovial cells, cells that cause various proliferative diseases such as leukemia and myeloma, and is essential for their growth. Diseases involving interleukin-6 include rheumatism, multiple myeloma, Castleman's disease, Crohn's disease, systemic juvenile idiopathic arthritis, systemic lupus erythematosus, and osteoporosis. In addition, for chronic inflammatory proliferative diseases It is known that interleukin-6 plays an important role in the formation of pathological conditions, and abnormal expression of the interleukin-6 gene causes autoimmune diseases such as rheumatism and blood It has been clarified that the onset of multiple myeloma and plasmacytoma such as leukemia caused by the transformation of these cells into cancer is induced. For example, interleukin-6 is significantly increased in synovial fluid in rheumatoid patients, the growth factor of plasmacytoma / multiple myeloma is interleukin-6 itself, and interleukin-6 is myeloid. It acts on leukemia cells, suppresses proliferation, and induces differentiation into macrophages.
従って、 滑膜細胞、 がん細胞、 白血病細胞、 骨肉種細胞、 悪性腫瘍細胞、 免疫 系細胞及び破骨細胞において、 インタ一ロイキン- 6の産生を抑制することによ り、 これらのリウマチ等の自己免疫疾患や、 血液中の細胞ががん化して起こる多 発性骨髄腫、 又は、 白血病等の発症を抑制することができる。  Therefore, by suppressing the production of interleukin-6 in synovial cells, cancer cells, leukemia cells, osteosarcoma cells, malignant tumor cells, immune cells and osteoclasts, these rheumatism It can suppress the onset of autoimmune diseases, multiple myeloma, leukemia, etc., which occur when cells in the blood become cancerous.
ィンターロイキン- 6の産生を抑制するには、 上記の滑膜細胞の増殖を抑制す るシノピオリンの発現阻害物質を用いることができる。 具体的には、 hsHRD3 をコードする遺伝子の発現を抑制する物質である、 hsHRD3 をコードする遺伝 子に対する siRNA又は shRNAなどを用いることができる。  In order to suppress the production of interleukin-6, the above-mentioned substance inhibiting the expression of synopolin that suppresses the proliferation of synovial cells can be used. Specifically, siRNA or shRNA against the gene encoding hsHRD3, which is a substance that suppresses the expression of the gene encoding hsHRD3, can be used.
2 . 医薬組成物 2. Pharmaceutical composition
( 1 ) 滑膜細胞の増殖を抑制する物質を含む医薬組成物  (1) a pharmaceutical composition comprising a substance that suppresses the growth of synovial cells
本発明の医薬組成物の適用疾患としては、 リウマチ、 線維症、 関節炎、 癌などの 細胞増殖性疾患及び脳神経疾患などが挙げられ、 単独でも複数の疾患が併発して いても適用の対象となる。 The diseases to which the pharmaceutical composition of the present invention can be applied include cell proliferative diseases such as rheumatism, fibrosis, arthritis, and cancer, and cranial nerve diseases.The disease can be applied singly or in combination with a plurality of diseases. .
本発明の医薬組成物を癌の治療剤として使用する場合は、 適用部位は特に限定 されず、 脳腫瘍、 舌癌、 咽頭癌、 肺癌、 乳癌、 食道癌、 胃癌、 膝臓癌、 胆道癌、 胆嚢癌、 十二指腸癌、 大腸癌、 肝癌、 子宮癌、 卵巣癌、 前立腺癌、 腎癌、 膀胱癌、 横紋筋肉腫、 線維肉腫、 骨肉腫、 軟骨肉腫、 皮膚癌、 各種白血病 (例えば急性骨 髄性白血病、 急性リンパ性白血病、 慢性骨髄性白血病、 慢性リンパ性白血病、 成 人型 T細胞白血病、 悪性リンパ腫) 等を対象として適用される。  When the pharmaceutical composition of the present invention is used as a therapeutic agent for cancer, the site of application is not particularly limited. Brain tumor, tongue cancer, pharyngeal cancer, lung cancer, breast cancer, esophagus cancer, stomach cancer, knee cancer, biliary tract cancer, gallbladder Cancer, duodenal cancer, colorectal cancer, liver cancer, uterine cancer, ovarian cancer, prostate cancer, renal cancer, bladder cancer, rhabdomyosarcoma, fibrosarcoma, osteosarcoma, chondrosarcoma, skin cancer, various leukemias (eg acute bone marrow Applicable for leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, adult T-cell leukemia, malignant lymphoma), etc.
上記癌は、 原発巣であっても、 転移したものであっても、 他の疾患と併発した ものであってもよい。 The above cancers, whether they were primary or metastatic, were associated with other diseases It may be something.
脳神経系疾患としては、 例えばアルツハイマー、 パーキンソン病、 ポリダル夕 ミン病が挙げられる。  Examples of the cerebral nervous system disease include Alzheimer's disease, Parkinson's disease, and Polydalmin's disease.
( 2 ) インターロイキン- 6の産生を抑制する物質を含む医薬組成物  (2) a pharmaceutical composition comprising a substance that suppresses interleukin-6 production
本発明の医薬組成物の適用疾患としては、 リウマチ、 多発骨髄腫、 キャッスル マン病、 クローン病、 全身型若年性特発性関節炎、 全身性エリテマトーデス、 骨 粗しょう症などが挙げられる。  The diseases to which the pharmaceutical composition of the present invention is applied include rheumatism, multiple myeloma, Castleman's disease, Crohn's disease, systemic juvenile idiopathic arthritis, systemic lupus erythematosus, osteoporosis and the like.
また、 インタ一ロイキン 6は炎症に伴う多くの症状 (痛み、 発熱など) を引き 起こすサイト力インでもある。 したがって、 本発明の医薬組成物は、 炎症反応を 抑制することもできる。 炎症反応とは、 生体に感染や外傷、 火傷あるいはアレル ゲンなどの刺激により起こる局所的な組織反応をいい、 局所反応に伴う全身的な 現象も含まれる。 具体的には、 発赤、 発熱、 疼痛、 腫脹に機能障害を加えて、 炎 症の五徵という。 これらは急性炎症の肉眼的特徴を示しているが、 この現象は局 所的な血管の変化、 すなわち、 血管の拡張、 透過性の亢進、 白血球の浸潤による ものである。  Interleukin 6 is also a site that causes many of the symptoms associated with inflammation (pain, fever, etc.). Therefore, the pharmaceutical composition of the present invention can also suppress an inflammatory response. The inflammatory response refers to a local tissue reaction caused by infection, trauma, burns, or allergens in a living body, and also includes a systemic phenomenon associated with the local reaction. Specifically, it is 50 years of inflammation by adding dysfunction to redness, fever, pain, and swelling. These show the gross features of acute inflammation, but this phenomenon is due to local vascular changes: vasodilation, increased permeability, and leukocyte infiltration.
本発明の滑膜組織の異常増殖ゃィンターロイキン- 6の産生を抑制する物質を 有効成分として含有する医薬組成物の投与形態は、 経口、 非経口投与のいずれで も可能である。 経口投与の場合は、 液剤として、 または適当な剤型により投与が 可能である。 非経口投与の場合は、 経肺剤型 (例えばネフライザ一などを用いた もの) 、 経鼻投与剤型、 経皮投与剤型 (例えば軟膏、 クリ一ム剤) 、 注射剤型等 が挙げられる。 注射剤型の場合は、 例えば点滴等の静脈内注射、 筋肉内注射、 腹 腔内注射、 皮下注射等により全身又は局部的に投与することができる。  The dosage form of the pharmaceutical composition of the present invention containing a substance that suppresses the production of abnormally growing interleukin-6 in synovial tissue as an active ingredient can be any of oral and parenteral administration. In the case of oral administration, it can be administered as a liquid or in an appropriate dosage form. In the case of parenteral administration, examples include a pulmonary dosage form (for example, using a nephrizer), a nasal dosage form, a transdermal dosage form (eg, an ointment, a cream), an injection dosage form, and the like. . In the case of an injection, it can be administered systemically or locally, for example, by intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
本発明の医薬組成物を遺伝子治療剤として使用する場合は、 本発明の医薬組成 物を注射により直接投与する方法のほか、 核酸が組込まれたベクターを投与する 方法が挙げられる。 上記ベクターとしては、 アデノウイルスベクタ一、 アデノ随 伴ウィルスベクタ一、 ヘルぺスウィルスベクタ一、 ワクシニアウィルスベクタ一、 レトロウイルスベクター、 レンチウィルスベクタ一等が挙げられ、 これらのウイ ルスベクターを用いることにより効率よく投与することができる。  When the pharmaceutical composition of the present invention is used as a gene therapy agent, there are mentioned a method of directly administering the pharmaceutical composition of the present invention by injection, and a method of administering a vector into which a nucleic acid has been incorporated. Examples of the above vectors include an adenovirus vector, an adeno-associated virus vector, a herpes virus vector, a vaccinia virus vector, a retrovirus vector, a lentivirus vector, and the like. Can be administered more efficiently.
また、 本発明の医薬組成物をリボソームなどのリン脂質小胞体に導入し、 その 小胞体を投与することも可能である。 本発明の医薬組成物を保持させた小胞体を リポフエクシヨン法により所定の細胞に導入する。 そして、 得られる細胞を例え ば静脈内、 動脈内等から全身投与する。 脳等に局所投与することもできる。 本発 明の医薬組成物を目的の組織又は器官に導入するために、 市販の遺伝子導入キッ ト (例えばアデノエクスプレス : クローンテック社) を用いることもできる。 本発明の医薬組成物は、 常法にしたがって製剤化することができ、 医薬的に許 容される担体や添加物を含むものであってもよい。 このような担体及び添加物と して、 水、 医薬的に許容される有機溶剤、 コラーゲン、 ポリビニルアルコール、 ポリビニルピロリドン、 力ルポキシビ二ルポリマ一、 カルポキシメチルセル口一 スナトリウム、 ポリアクリル酸ナトリウム、 アルギン酸ナトリウム、 水溶性デキ ストラン、 カルボキシメチルスターチナトリウム、 ぺクチン、 メチルセルロース、 ェチルセルロース、 キサンタンガム、 アラビアゴム、 カゼイン、 寒天、 ポリェチ レンダリコール、 ジグリセリン、 グリセリン、 プロピレングリコール、 ワセリン、 パラフィン、 ステアリルアルコール、 ステアリン酸、 ヒト血清アルブミン、 マン 二トール、 ソルビトール、 ラクト一ス、 医薬添加物として許容される界面活性剤 等が挙げられる。 Further, the pharmaceutical composition of the present invention is introduced into phospholipid vesicles such as ribosomes, It is also possible to administer the endoplasmic reticulum. The endoplasmic reticulum retaining the pharmaceutical composition of the present invention is introduced into predetermined cells by the lipofection method. Then, the obtained cells are systemically administered, for example, from a vein or an artery. It can also be administered locally to the brain and the like. To introduce the pharmaceutical composition of the present invention into a target tissue or organ, a commercially available gene transfer kit (for example, AdenoExpress: Clonetech) can also be used. The pharmaceutical composition of the present invention can be formulated according to a conventional method, and may contain a pharmaceutically acceptable carrier or additive. Such carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinylpyrrolidone, lipoxyvinyl polymer, sodium carboxymethylcell sodium, sodium polyacrylate, Sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene lendalicol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, Stearic acid, human serum albumin, mannitol, sorbitol, lactose, surfactants acceptable as pharmaceutical additives and the like.
上記添加物は、 本発明の治療剤の剤型に応じて上記の中から単独で又は適宜組 み合わせて選ばれる。 例えば、 注射用製剤として使用する場合、 精製された滑膜 組織の異常増殖を抑制する物質を溶剤 (例えば生理食塩水、 緩衝液、 ブドウ糖溶 液等)に溶解し、 これに Tween 80、 Tween 20、 ゼラチン、 ヒト血清アルブミン 等を加えたものを使用することができる。 あるいは、 使用前に溶解する剤形とす るために凍結乾燥したものであってもよい。 凍結乾燥用賦形剤としては、 例えば、 マンニトール、 ブドウ糖等の糖アルコールや糖類を使用することができる。  The above-mentioned additives are selected singly or in appropriate combination from the above depending on the dosage form of the therapeutic agent of the present invention. For example, when used as an injectable preparation, a substance that inhibits the abnormal growth of purified synovial tissue is dissolved in a solvent (eg, physiological saline, buffer, glucose solution, etc.), and Tween 80 and Tween 20 are added. , Gelatin, human serum albumin and the like can be used. Alternatively, it may be freeze-dried to give a dosage form that dissolves before use. As the lyophilization excipient, for example, sugar alcohols and sugars such as mannitol and glucose can be used.
本発明の医薬組成物の投与量は、 年齢、 性別、 症状、 投与経路、 投与回数、 剤 型によって異なる。 投与方法は、 患者の年齢、 症状により適宜選択する。 有効投 与量は、 一回につき体重 1kg あたり O.l /i g lOOmg 好ましくは l〜10 gで ある。 但し、 上記治療剤はこれらの投与量に制限されるものではない。 アデノウ ィルスの場合の投与量は 1 日 1 回あたり 106〜: 1013個程度であり、 1〜8週間隔 で投与される。 但し、 本発明の医薬組成物はこれらの投与量に制限されるもので はない。 siRNAを混合する場合の用量は、 0.01〜: !O z g/ml 好ましくは 0.1〜1 II g/mlである。 The dose of the pharmaceutical composition of the present invention varies depending on age, sex, symptoms, administration route, administration frequency, and dosage form. The administration method is appropriately selected according to the age and symptoms of the patient. The effective dose is Ol / ig lOOmg / kg body weight per dose, preferably l-10g. However, the above therapeutic agent is not limited to these doses. The dosage in the case of Adenou-virus 10 6 ~ per day: a 101 3 or so, is administered at 1-8 week intervals. However, the pharmaceutical composition of the present invention is limited to these dosages. There is no. When the siRNA is mixed, the dose is 0.01 to:! 0 zg / ml, preferably 0.1 to 1 II g / ml.
以下、 実施例により本発明をより具体的に説明する。 ただし、 本発明はこれら 実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
〔実施例 1〕 (Example 1)
出芽酵母 Hrd3pを用いたホモロジ一検索  Homology search using budding yeast Hrd3p
出芽酵母 Hrd3p/Ylr207wp のアミノ酸配列を用いてホモロジ一サーチを実行 した。  A homology search was performed using the amino acid sequence of the budding yeast Hrd3p / Ylr207wp.
その結果、 酵母 Hrd3p のヒトオルソログである配列番号 1 に示す塩基配列に よりコードされるアミノ酸配列に相当するタンパク質を同定し、 SEL1L 遺伝子 が見出された。 Hrd3p のアミノ酸配列を配列番号 3 に示す。 Hrd3p と SEL1L との間においてアミノ酸配列の相同性は 30%、 類似性は 45%であり、 いずれも 高くはないが、 特異的な繰り返し構造と膜貫通ドメインが保存されている。 従つ て、 SEL1Lは Hrd3pのオルソログであると決定した(図 1)。  As a result, a protein corresponding to the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1, which is a human ortholog of yeast Hrd3p, was identified, and the SEL1L gene was found. The amino acid sequence of Hrd3p is shown in SEQ ID NO: 3. The amino acid sequence homology between Hrd3p and SEL1L is 30% and the similarity is 45%. Both are not high, but the specific repeating structure and transmembrane domain are conserved. Therefore, SEL1L was determined to be an ortholog of Hrd3p (Figure 1).
〔実施例 2〕 (Example 2)
SELlL/hsHRD3の発現抑制の検討  Examination of suppression of SELlL / hsHRD3 expression
(DRA滑膜細胞を各遺伝子に対する 2本鎖 RNA(siRNA)でトランスフエクショ ンし、 96 時間後に細胞を回収した。 RNA を抽出し RT-PCR で各遺伝子の発現 量を定量した。 (DRA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and the cells were collected 96 hours later. RNA was extracted and the expression level of each gene was quantified by RT-PCR.
すなわち、 トランスフエクシヨン前日、 リウマチ患者から単離した滑膜細胞を 6cmディッシュ 1枚に付き、 1 X 104個の細胞を播いた。 3種類の RNAi用オリ ゴと RNA オリゴ無し(ネガティブコントロール)の各サンプルに付きディッシュ 1枚、 合計 4枚播いた。 培地は 10%FBS (牛胎児血清)を含み、 抗生物質を含まな い DMEM(Dulbecco's Modified Eagle's Medium, Sigma D6046)を 3ml用いた。 24時間後、 血清も抗生物質も含まない DMEM 3mlで 1 回洗い、 同じ DMEM を 1.6ml加えた。  That is, on the day before the transfusion, synovial cells isolated from a rheumatic patient were placed on a 6 cm dish, and 1 × 104 cells were seeded. One dish was seeded for each of the three RNAi oligos and the RNA oligo-free (negative control) sample, for a total of four seeds. The medium used was 3 ml of DMEM (Dulbecco's Modified Eagle's Medium, Sigma D6046) containing 10% FBS (fetal calf serum) and no antibiotic. Twenty-four hours later, the cells were washed once with 3 ml of serum-free and antibiotic-free DMEM, and 1.6 ml of the same DMEM was added.
その後トランスフエクション試薬を添加した。 トランスフエクション試薬は次 のように調整した。 Gi 、 hsHRD3、 シノビオリンを標的とした RNAi のため に、 下記配列に示した RNAオリゴ (配列番号 4〜 9 )を最終濃度が IOO Mにな るように TEに溶かした。 Thereafter, a transfection reagent was added. The transfection reagent is Was adjusted as follows. For RNAi targeting Gi, hsHRD3, and Synoviolin, the RNA oligos shown in the following sequence (SEQ ID NOs: 4 to 9) were dissolved in TE to a final concentration of IOOM.
hsHRD3 を標的とした siRNA のセンス鎖: CUUGAUAUGGACCAGCUUUTT (配列番号 4)Sense strand of siRNA targeting hsHRD3: CUUGAUAUGGACCAGCUUUTT (SEQ ID NO: 4)
sHRD3を標的とした siRNAのアンチセンス鎖: AAAGCUGGUCCAUAUCAA GTT (配列番号 5)  Antisense strand of siRNA targeting sHRD3: AAAGCUGGUCCAUAUCAA GTT (SEQ ID NO: 5)
GFPを標的とした siRNAのセンス鎖: GGCUACGUCCAGGAGCGCATT (配列 番号 6)  Sense siRNA strand targeting GFP: GGCUACGUCCAGGAGCGCATT (SEQ ID NO: 6)
GFPを標的とした siRNAのアンチセンス鎖: UGCGCUCCUGGACGUAGCCT T (配列番号 7) Antisense strand of siRNA targeting GFP: UGCGCUCCUGGACGUAGCCT T (SEQ ID NO: 7)
シノビオリンを標的とした siRNA C センス鎖: GGUGUUCUUUGGGCAACU GAGTT (配列番号 8) SiRNA C sense strand targeting Synoviolin: GGUGUUCUUUGGGCAACU GAGTT (SEQ ID NO: 8)
シノビオリンを標的とした siRNAのアンチセンス鎖: CUCAGUUGCCCAAAG AACACCTT (配列番号 9) 各遺伝子に対する RNAオリゴのセンス鎖とアンチセンス鎖を 20 x M になる ように混合した。 90°Cで 2分間熱変性した後、 37°Cで 1時間ゆつくり冷却する ことにより、 両オリゴをアニーリングさせた。 アニーリングした 20 z M RNA オリゴ 10 1 をォプティメン(Optimem)350 l と混合し A液を作った。 次に Oligofectamine™ Re a gent (In vitro gen, Cat. No.l2252-01l)8 lをォプティメン 32 1 と混合し B液を作った。 A液と B液を 5分間インキュベート後、 両者を 混合し、 さらに 15 分インキュベートした。 この混合液 400 1 を全量、 培地を 交換した各ディッシュに加えた。 その 4時間後、 FBSを 200 /21添加した。 Antisense strand of siRNA targeting synoviolin: CUCAGUUGCCCAAAG AACACCTT (SEQ ID NO: 9) The sense strand and antisense strand of the RNA oligo for each gene were mixed at 20 × M. After heat denaturation at 90 ° C for 2 minutes, both oligos were annealed by gentle cooling at 37 ° C for 1 hour. Solution A was prepared by mixing the annealed 20 z M RNA oligo 101 with 350 l of Optimem. Next, 8 liters of Oligofectamine ™ Reagent (In vitrogen, Cat. No. l2252-01l) was mixed with Optimen 321 to prepare solution B. After incubating solution A and solution B for 5 minutes, they were mixed and incubated for another 15 minutes. The whole amount of the mixed solution 400 1 was added to each dish in which the medium was replaced. Four hours later, 200/21 FBS was added.
トランスフエクシヨン試薬添加 96 時間後、 細胞からフエノール抽出法で全 RNA を抽出し、 RT-PCH に用いた。 RT-PCR は SUPERSCRIPT™ One-Step RT-PCT 100 Reactions(Invitogen Cat. No.10928-042)を用いた。 すなわち、 2 X RXN混合物 50 1、 RT/Platinum 2 h DEPC水 28 1、 以下に示す増幅用プ ライマ一 3.2 / M溶液の各セット 10 l X 2、 合計 lOO l を混合し、 10 /i lずつ 05 005311 96 hours after the addition of the transfusion reagent, total RNA was extracted from the cells by the phenol extraction method and used for RT-PCH. For RT-PCR, SUPERSCRIPT ™ One-Step RT-PCT 100 Reactions (Invitogen Cat. No.10928-042) was used. That is, mix 2 x RXN mixture 50 1, RT / Platinum 2 h DEPC water 28 1, each of the following amplification primers 3.2 l / M solution 10 l x 2, total lOO l, 10 l / l 05 005311
PCRチューブに分注した。 そして 1 / lの RNAを RT-PCR銬型として添加して PCR反応を開始した。 Dispensed into PCR tubes. Then, 1 / l of RNA was added as RT-PCR type II to start the PCR reaction.
hsHRD3増幅用オリゴマ一 (5'->3ゥ: GGCTGAACAGGGCTATG (配列番号 10) hsHRD3増幅用オリゴマ一 (3'->5'): CCGCTCGAGTTACTGTGGTGGCTGCTG CTC (配列番号 11) Oligomer for hsHRD3 amplification (5 '-> 3 ゥ: GGCTGAACAGGGCTATG (SEQ ID NO: 10)) Oligomer for hsHRD3 amplification (3'-> 5 '): CCGCTCGAGTTACTGTGGTGGCTGCTG CTC (SEQ ID NO: 11)
シノビオリン増幅用オリゴマ一 (5,->3,): AGCTGGTGTTTGGCTTTGAG (配列 番号 12) Oligomers for synoviolin amplification (5,-> 3,): AGCTGGTGTTTGGCTTTGAG (SEQ ID NO: 12)
シノビオリン増幅用オリゴマー (3'-〉5'): GGGTGGCCCCTGATCCGCAG (配列 番号 13) Oligomers for synoviolin amplification (3 '-> 5'): GGGTGGCCCCTGATCCGCAG (SEQ ID NO: 13)
hGAPDH 増幅用オリゴマー (5'->3,): AGGTGAAGGTCGGAGTCAACGGA (配 列番号 14) hGAPDH Amplification oligomer (5 '-> 3,): AGGTGAAGGTCGGAGTCAACGGA (SEQ ID NO: 14)
hGAPDH 増幅用オリゴマー (3'->5'): AGTCCTTCCACGATACCAAAGTTG (配 列番号 15) hGAPDH Amplification oligomer (3 '-> 5'): AGTCCTTCCACGATACCAAAGTTG (SEQ ID NO: 15)
RNAオリゴ無しは 100、 50、 10ng、 その他は lOOngの RNA.を錡型として用 いた。 サイクルは、 cDNA伸長反応として 50°C30分 94°C2分を 1 回、 続けて PCR 増幅反応として 94^30 秒、 50°C 30 秒、 72°C l 分を 30 回行い、 最後に 72°C5分最終伸長反応を行った後 4°Cで保存した。 この PCR反応液に 2 1の 6 Xサンプルバッファ一を加え、 全量を 0.8%ァガロースで 100ポルト 30分泳動 し UVイルミネ一夕一で PCR産物を検出した。  100, 50, 10 ng RNA without RNA oligo and lOOng RNA. The cycle was performed once at 50 ° C for 30 minutes and at 94 ° C for 2 minutes for the cDNA extension reaction, followed by 94 ^ 30 seconds, 50 ° C for 30 seconds, and 72 ° C for 30 times for the PCR amplification reaction, and finally at 72 ° C. After performing a final extension reaction for 5 minutes, the mixture was stored at 4 ° C. To this PCR reaction solution, 21 6X sample buffer was added, and the whole amount was electrophoresed with 0.8% agarose at 100 ports for 30 minutes to detect a PCR product by UV illuminator overnight.
その結果、 siRNA により、 SEIL/hsHRD3 の発現が抑制された (図 2 ) 。 図 2において、 hsHRD3の RNAiにより PCR産物の量が、 10ngのオリゴ無し(ネ ガティブコントロール)と同じレベルに減少したことから、 hsHRD3 の mRNA の発現レベルが 10%以下に抑制されたことが分かった。 またこのときシノビォ リンの mRNAは lOOngのオリゴ無しゃ GFP RNAiと同レベルであったことか ら hsHRD3 の発現抑制はシノピオリンの転写には影響を与えないことが分かつ た。  As a result, the expression of SEIL / hsHRD3 was suppressed by the siRNA (FIG. 2). In Figure 2, RNAi of hsHRD3 reduced the amount of PCR product to the same level as without 10 ng oligo (negative control), indicating that the expression level of hsHRD3 mRNA was suppressed to 10% or less. . At this time, synoviolin mRNA was at the same level as lOOng of oligo-free GFP RNAi, indicating that suppression of hsHRD3 expression did not affect the transcription of synoviolin.
(2) RA滑膜細胞を各遺伝子に対する二本鎖 RNA (siRNA) でトランスフエクシ ョンし、 48時間後に alamarBlue™を添加した。 さらに 48時間後に細胞增殖活 性を測定した。 すなわち、 トランスフエクシヨン前日、 リウマチ患者から単離した滑膜細胞を(2) RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and alamarBlue ™ was added 48 hours later. After 48 hours, the cell growth activity was measured. In other words, the day before transfusion, synovial cells isolated from rheumatic patients were
96-ゥエルプレートの各ゥエルに、 160 個の細胞を播いた。 培地は 10%FBS (牛 胎児血清) を含み、 抗生物質を含まない DMEM(Dulbecco's Modified Eagle's Medium, Sigma D6046)を 100 l用いた。 24時間後、 血清も抗生物質も含まな レ DMEM 100 lで 1回洗い、 同じ DMEMを 80 l加えた。 その後実施例 2 (1)と同様の方法で調製したトランスフエクシヨン試薬を 20 z l ずつ、 培地を交 換した各ゥエルに加えた。 さらに 4時間後、 FBS を 10 /21添加した。 トランス フエクシヨン試薬添加 48時間後に各ゥエルに lO lの alamarBlue™を添加し た。 48時間 37°Cでィンキュベートした後、 560nmで励起したときの 590nmの 蛍光強度を測定した。 Each well of a 96-well plate was seeded with 160 cells. The medium contained 10 l of DMEM (Dulbecco's Modified Eagle's Medium, Sigma D6046) containing 10% FBS (fetal calf serum) and no antibiotics. Twenty-four hours later, the cells were washed once with 100 l of DMEM containing neither serum nor antibiotics, and 80 l of the same DMEM was added. Thereafter, 20 ml of the transfection reagent prepared in the same manner as in Example 2 (1) was added to each well in which the medium was replaced. After an additional 4 hours, FBS was added 10/21. Forty-eight hours after the addition of the Transfection Reagent, 10 ml of alamarBlue ™ was added to each well. After incubating at 37 ° C for 48 hours, the fluorescence intensity at 590 nm when excited at 560 nm was measured.
その結果、 SEIL/hsHRD3 の発現抑制により、 滑膜細胞の増殖活性が約 60% にまで抑制された (図 3 ) 。  As a result, suppression of SEIL / hsHRD3 expression suppressed synovial cell proliferation activity to about 60% (Fig. 3).
このことは、 hsHRD3 はシノビオリン同様に RA 滑膜細胞の細胞増殖に重要 であり、 その発現抑制は細胞の増殖低下を引き起こすことを意味する。  This means that hsHRD3, like Synoviolin, is important for cell proliferation of RA synovial cells, and suppression of its expression causes a decrease in cell proliferation.
(3) RA滑膜細胞を各遺伝子に対する二本鎖 RNA (siRNA) でトランスフエクシ ヨンし 120 時間後に細胞を回収した。 回収した細胞をヨウ化プロピジゥムで染 色し、 FACSで DNA含量を測定した。 (3) RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and the cells were collected 120 hours later. The recovered cells were stained with propidium iodide, and the DNA content was measured by FACS.
すなわち、 トランスフエクシヨン前日、 リウマチ患者から単離した滑膜細胞を 6 cmディッシュ 1枚に、 1 X 104個の細胞を播いた。 三種類の RNAi用オリゴと RNA オリゴ無し (ネガティブコントロール) の各サンプルをそれぞれディッシ ュ 1枚、 合計 4枚播いた。 培地は 10% FBS (牛胎児血清) を含み、 抗生物質を 含まない DMEM(Dulbecco,s Modified Eagle's Medium, Sigma D6046)を 3ml 用いた。 24時間後、 血清も抗生物質も含まない DMEM 3mlで 1回洗い、 同じ DMEM を 1.6ml加えた。 その後実施例 2 (1)と同様の方法で調製したトランス フエクシヨン試薬 400 l を全量、 培地を交換した各ディッシュに加えた。 さら に 4時間後、 FBSを 200 ^ 1添加した。 That is, the day before the transfusion, 1 × 10 4 cells were seeded on a 6 cm dish of synovial cells isolated from a rheumatic patient. Three samples of each of the three RNAi oligos and one without the RNA oligo (negative control) were seeded on one dish each, for a total of four. The medium used was 3 ml of DMEM (Dulbecco, s Modified Eagle's Medium, Sigma D6046) containing 10% FBS (fetal calf serum) and no antibiotics. Twenty-four hours later, the cells were washed once with 3 ml of DMEM containing neither serum nor antibiotics, and 1.6 ml of the same DMEM was added. Thereafter, a total of 400 l of the transfusion reagent prepared in the same manner as in Example 2 (1) was added to each dish in which the medium was replaced. After a further 4 hours, 200 ^ 1 of FBS was added.
トランスフエクシヨン試薬添加 120時間後、 全細胞を回収し、 0.5mlの PBS (- )/0.2 TritonX-100で可溶化した後、 ナイ口ンメッシュを通して、 細胞塊を取り 除いた。 1mlの 50 i g/ml RNase/PBS (-)と lralの 100 i g/mlのヨウ化プロピジ ゥム /PBS (-)を加え、 混合した後、 氷中に保存した。 各細胞の蛍光量を FACSCalibur (BECTON DICKINSON)で計測し、 CELLQuestで解析した。 その結果、 図 4に示すようにアポトーシスを起こしたと考えられる DNA含量 2n以下の細胞群が hsHI D3 の RNAi により 30%以上にまで増加した。 またこ の割合はシノビォリンに対する RNAi と同程度に高かった(図 5 )。 このことは、 hsHRD 3 はシノビオリン同様に滑膜細胞の増殖に必須の遺伝子であり、 その発 現抑制は高頻度のアポトーシスを引き起こすことを意味している。 After 120 hours from the addition of the Transfection reagent, all cells were collected, solubilized with 0.5 ml of PBS (-) / 0.2 Triton X-100, and the cell mass was removed through a mesh. 1 ml of 50 ig / ml RNase / PBS (-) and lral of 100 ig / ml propidium iodide P / PBS (-) was added, mixed, and stored on ice. The amount of fluorescence of each cell was measured by FACSCalibur (BECTON DICKINSON) and analyzed by CELLQuest. As a result, as shown in FIG. 4, the cell group having a DNA content of 2n or less, which is considered to have undergone apoptosis, was increased to 30% or more by RNAi of hsHI D3. This ratio was as high as RNAi for synoviolin (Fig. 5). This means that hsHRD3 is an essential gene for synovial cell proliferation like Synoviolin, and its suppression suppresses a high frequency of apoptosis.
〔実施例 3〕 (Example 3)
(1) SELlL/hsHRD3 の発現抑制下におけるウェスタンプロットを用いたシノビ オリンの検出 (1) Detection of Synoviolin using Western plot under suppression of SELlL / hsHRD3 expression
RA滑膜細胞を各遺伝子に対する二本鎖 RNA(siRNA)でトランスフエクシヨン し、 48 時間後に細胞を回収した。 総抽出液を抽出しウェスタンプロットで各夕 ンパク質を検出した。  RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and the cells were collected 48 hours later. The total extract was extracted, and each protein was detected by Western plot.
すなわち、 トランスフエクシヨン前日、 リウマチ患者から単離した滑膜細胞を 10cmディッシュ 1枚に付き、 9 X 104個の細胞を播いた。 三種類の RNAi用オリ ゴと RNAオリゴ無し (ネガティブコントロール) の各サンプルに付きディッシ ュ 1枚、 合計 4枚播いた。 培地は 10%FBS (牛胎児血清) を含み、 抗生物質を 含まない DMEM(Dulbecco's Modified Eagle's Medium, Sigma D6046)を 10ml 用いた。 24時間後、 血清も抗生物質も含まない DMEM 10mlで 1回洗い、 同じ DMEM を 9ml加えた。 その後実施例 2 (1)と同様の方法で調製したトランスフ ェクシヨン試薬の 3 倍量 1.2ml を、 培地を交換した各ディッシュに加えた。 さ らに 4時間後、 FBSを 1ml添加した。 That is, the day before the transfusion, synovial cells isolated from a rheumatic patient were placed in a 10 cm dish, and 9 × 10 4 cells were seeded. One dish was seeded for each of the three types of RNAi oligos and no RNA oligo (negative control), for a total of four seeds. The medium used was 10 ml of DMEM (Dulbecco's Modified Eagle's Medium, Sigma D6046) containing 10% FBS (fetal calf serum) and no antibiotics. Twenty-four hours later, the cells were washed once with 10 ml of serum-free and antibiotic-free DMEM, and 9 ml of the same DMEM was added. Thereafter, 1.2 ml of a three-fold amount of the transfection reagent prepared in the same manner as in Example 2 (1) was added to each dish in which the medium was replaced. Four hours later, 1 ml of FBS was added.
トランスフエクシヨン試薬添加 48 時間後、 全細胞を回収し、 50 1 の抽出バ ッファー IV (50mM Tris-HCl pH7.5、 2mM EDTA、 0.1% Triton Χ· 100、 1% NP-40、 500mM NaCL lmM PMSF、 0.1% ァプロティニン (Aprotinin)、 0.5 g/ml ぺプス夕チン A(PepstatinA)、 1 g/ml リューぺプチン(Leupeptin))に再 縣濁した後、 氷中に 30分置き、 14000rpm、 4°C、 30分遠心した。 上清 を Bio-Rad DC ProteinAssay Reagent (BIO -RAD Cat. Νο.500·0116)を用いた夕 ンパク質濃度測定に用い、 残り 45 1 に 15 x l の 4 X SDSバッファ一を加え、 100°Cで 5 分加熱した。 lO ^ g相当の細胞抽出液を 7.5%アクリルアミドゲル 2 枚で泳動、 分離し、 ニトロセルロース膜 (OPTITRAN BA-S 85 REINFORCED NC、 Schleicher & SchuelL Cat. No.10 439196) にプロット後、 5%スキムミ ルクで 30分ブロッキングした。 Forty-eight hours after the addition of the Transfection Reagent, harvest all cells and extract 50 1 extraction buffer IV (50 mM Tris-HCl pH 7.5, 2 mM EDTA, 0.1% Triton Χ100, 1% NP-40, 500 mM NaCL lmM After resuspending in PMSF, 0.1% aprotinin, 0.5 g / ml lupeptin A (PepstatinA), 1 g / ml leupeptin), place on ice for 30 minutes, 14000 rpm, 4 Centrifugation was performed at 30 ° C for 30 minutes. The supernatant was transferred to Bio-Rad DC Protein Assay Reagent (BIO-RAD Cat. To measure the protein concentration, 15 xl of 4X SDS buffer was added to the remaining 451, and the mixture was heated at 100 ° C for 5 minutes. The cell extract equivalent to lO ^ g was electrophoresed and separated on two 7.5% acrylamide gels, and plotted on a nitrocellulose membrane (OPTITRAN BA-S 85 REINFORCED NC, Schleicher & SchuelL Cat. No.10 439196). Blocked with Luk for 30 minutes.
一次抗体として 1000 倍希釈した抗シノピオリンモノクローナル抗体 ( lODa) または抗 CREB- 1抗体 (Santa Cruze、 Cat. No.sc-58) で 30分イン キュペートした。 抗シノビオリンモノクローナル抗体の二次抗体には 2000倍希 釈した HRP-結合杭-マウス IgG(Amersham Biosciences Cat. No.NA931V)を、 抗 CREB- 1 抗体には 3000 倍希釈した HRP-結合抗-ゥサギ IgG(Amersham Biosciences , Cat. No.NA931V)を使用し、 30 分インキュベートした。 検出は Home-made ECL(44 l の 90mM クマリン酸、 100 / l の 250mM ルミノール、 6 Ιの過酸化水素水を 20mlの lOOmM Tris pH8.5で混合したもの)を使用した。 その結果、 シノピオリンタンパク質は、 SELlL/hsHRD3 抑制下において著し く減少していた (図 6 ) 。 すなわち、 hsHRD3 の発現抑制はシノピオリンタン パク質の不安定化を引き起こすことが明らかになった。  The cells were incubated with a 1000-fold diluted anti-sinopiolin monoclonal antibody (lODa) or anti-CREB-1 antibody (Santa Cruze, Cat. No. sc-58) as a primary antibody for 30 minutes. HRP-conjugated stake-mouse IgG (Amersham Biosciences Cat.No.NA931V) diluted 2000-fold was used as the secondary antibody of the anti-Synoviolin monoclonal antibody, and HRP-conjugated anti-Egret diluted 3000-fold was used as the anti-CREB-1 antibody. Incubation was performed for 30 minutes using IgG (Amersham Biosciences, Cat. No. NA931V). For the detection, Home-made ECL (44 l of 90 mM coumaric acid, 100 l of 250 mM luminol, 6 ml of hydrogen peroxide mixed with 20 ml of lOOmM Tris pH 8.5) was used. As a result, synopiolin protein was significantly reduced under SELlL / hsHRD3 suppression (Fig. 6). In other words, it was revealed that suppression of hsHRD3 expression causes destabilization of synopiolin protein.
(2)シノビオリンの発現抑制下におけるコラーゲン産生量の検討 (2) Examination of collagen production under suppression of Synoviolin expression
RA 滑膜細胞を各遺伝子に対する二本鎖 RNA (siRNA) でトランスフエクシ ヨンし、 48 時間後に細胞を回収した。 総抽出液を調製し、 細胞内のコラーゲン 量を測定した。  RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and cells were harvested 48 hours later. A total extract was prepared and the amount of intracellular collagen was measured.
すなわち、 実施例 3 (1)と同様な方法でトランスフエクシヨン、 細胞抽出液を 調製し、 30 g 相当の抽出液を抽出バッファー IV で 100 1 に調節した後、 SIRCOL Collagen Assay Kit(QBS社/フナコシ Cat. No. S 1111)でコラーゲン量 を測定した。  That is, a transfection and cell extract were prepared in the same manner as in Example 3 (1), 30 g of the extract was adjusted to 100 1 with extraction buffer IV, and then SIRCOL Collagen Assay Kit (QBS / The amount of collagen was measured using Funakoshi Cat. No. S 1111).
その結果、 hsHRD3をノックアウトした細胞はコントロール (GFP)に比べて、 細胞内コラーゲン量が約 70%にまで減少していた (図 7 ) 。  As a result, cells knocked out of hsHRD3 had an intracellular collagen content reduced to about 70% as compared to the control (GFP) (FIG. 7).
すなわち、 hsHRD3 はシノビオリンタンパク質の安定化を通じて、 コラーゲ ンの産生を促進しており、 hsHRD3 の発現を抑制することにより、 シノビオリ ンタンパク質の量が減少し、 コラーゲン産生量を低下させることができる。 〔実施例 4〕 That is, hsHRD3 promotes collagen production through stabilization of synoviolin protein. By suppressing the expression of hsHRD3, the amount of synoviolin protein decreases, and the amount of collagen production can be reduced. (Example 4)
SELlL/hsHRD3とシノビオリンの細胞内における複合体の形成  Intracellular complex formation of SELlL / hsHRD3 and Synoviolin
HEK293細胞に SP-HA-lisHRD3B と FLAG-シノビオリンのプラスミドを卜 ランスフエクシヨンした。 48 時間後に細胞を回収し、 総抽出液を調整した。 抗 FLAG抗体 (a)、 または抗 HA抗体 (b)で免疫沈降し、 それぞれの抗体でウェス夕 ンブロットを行った。  HEK293 cells were transfected with plasmids of SP-HA-lisHRD3B and FLAG-Synobiolin. After 48 hours, the cells were collected and the total extract was prepared. Immunoprecipitation was performed with anti-FLAG antibody (a) or anti-HA antibody (b), and Western blotting was performed with each antibody.
すなわち、 hsHRD3Bのシグナルペプチド(SP)の直後、 配列番号 1に示された アミノ酸配列の 26番目と 27番目との間に HA-タグが挿入されるように DNA 構築したプラスミド(SP-HA-hsHRD3B)を pcDNA3-ベクタ一にクローニングし た。  That is, immediately after the hsHRD3B signal peptide (SP), a plasmid (SP-HA-hsHRD3B) constructed so that an HA-tag is inserted between amino acids 26 and 27 of the amino acid sequence shown in SEQ ID NO: 1 ) Was cloned into pcDNA3-vector-1.
8 X 105個の HEK293細胞を 10cmディッシュ 4枚に播いた。 24時間後、 以下 の (c)〜(f)の 4種類の組み合わせのプラスミドをトランスフエクションした。  8 × 105 HEK293 cells were seeded on four 10 cm dishes. Twenty-four hours later, four combinations of the following plasmids (c) to (f) were transfected.
(c)10 gの SP-HA-hsHRD3B/pcDNA3と 3 gの pCAGGS-ベクタ一  (c) 10 g of SP-HA-hsHRD3B / pcDNA3 and 3 g of pCAGGS-vector
(d)l0 si の SP-HA-hsH D3B/pcDNA3 と 3 n g の FLAG-シノビオリン /pCAGGS  (d) 10 si of SP-HA-hsH D3B / pcDNA3 and 3 ng of FLAG-Synobiolin / pCAGGS
(e) 10 gの pcDNA3-ベクターと の FLAG-シノビオリン /pCAGGS (e) FLAG-Synobiolin / pCAGGS with 10 g pcDNA3-vector
(f) l0 x g の SP-HA-hsHRD3B/pcDNA3 と 3 g の FLAG-シノビオリン /pCAGGS. トランスフエクシヨン 48 時間後、 細胞を回収し、 200 x l の抽出バッファー 11(10 mM Tris-HCl pH7.5、 150 mM NaCL 0.5% NP'40、 10 mM MgCl210% glycerol 5 mM EGTA、 20 mM NaF、 50 mM ]3 -グリセ口フォスフェート (glycerophosphate), 1 mM Na3V04, 10 mM NEM (Ν'ェチルマレイミド)、 1 mM PMSF、 1 mM DTT、 0.1%ァプロティニン、 0.5 g/mlぺプス夕チン A、 1 x g/ml リューぺプチン)に再縣濁し、 氷上で 30 分インキュベートした後、 14000rpm, 4°C、 30 分遠心した。 タンパク質 100 g相当の抽出物を抽出パッ ファー IIで 1mlに調節した。 このとき同時に牛血清アルブミンを最終濃度 0.5% になるように加えた。 次に、 トランスフエクシヨン (c)(d)由来の抽出物には 4.9mg の抗 FLAG 抗体 (M2、 SIGMA、 Cat. No. F3165)を、 (e)(f)由来の抽出物には 2.4mgの抗 HA抗 体 (12CA5、 Roche, Cat. No.l 583 816)を加え、 4°Cでー晚浸透しながらインキ ュペートした。 翌日、 50%スラリーのプロテイン- Gセファロースビーズを 60 ^ 1 加え、 さらに 4°Cで 1時間インキュベートした。 このビーズを 0.5mlの抽出バッ ファー IIで 2回、 0.5mlの抽出バッファー II +150 mM NaCl (最終濃度 300mM NaCl)で 2回洗い、 30 1の 2 X SDSサンプルバッファーを加え、 100°C、 5分力口 熱することにより、 吸着したタンパク質を溶出した。 実施例 3(1)と同様の方法 で SDS-PAGE、 ウエスタンプロットを行い、 免疫沈降したタンパク質を検出し た。 (f) l0 xg of SP-HA-hsHRD3B / pcDNA3 and 3 g of FLAG-Synobiolin / pCAGGS.After 48 hours of transfection, cells were collected and 200 xl of extraction buffer 11 (10 mM Tris-HCl pH7.5). , 150 mM NaCL 0.5% NP'40, 10 mM MgCl 2 10% glycerol 5 mM EGTA, 20 mM NaF, 50 mM] 3 - glycerin port phosphate (glycerophosphate), 1 mM Na 3 V0 4, 10 mM NEM (Ν 'Ethylmaleimide), 1 mM PMSF, 1 mM DTT, 0.1% aprotinin, 0.5 g / ml leptin A, 1 xg / ml leptin), and incubate on ice for 30 minutes. And centrifuged at 4 ° C for 30 minutes. The extract equivalent to 100 g of protein was adjusted to 1 ml with Extraction Buffer II. At this time, bovine serum albumin was added at a final concentration of 0.5%. Next, 4.9 mg of anti-FLAG antibody (M2, SIGMA, Cat. No. F3165) was added to the extract from transfusion (c) (d), and 2.4 g to the extract from (e) (f). mg of anti-HA antibody (12CA5, Roche, Cat. No. 583 816) was added, and the mixture was allowed to infiltrate at 4 ° C. while penetrating. The next day, 60 ^ 1 of 50% slurry protein-G Sepharose beads was added, and the mixture was further incubated at 4 ° C for 1 hour. Wash the beads twice with 0.5 ml of Extraction Buffer II and twice with 0.5 ml of Extraction Buffer II + 150 mM NaCl (final concentration 300 mM NaCl), add 30 1 2X SDS sample buffer, and heat at 100 ° C. Adsorbed protein was eluted by heating for 5 minutes. SDS-PAGE and Western plot were performed in the same manner as in Example 3 (1) to detect immunoprecipitated proteins.
その結果、 SELlL/hsHKD3 はシノピオリンと細胞内で複合体を形成している ことが判明した (図 8 ) 。  As a result, it was found that SELlL / hsHKD3 forms a complex with synopiolin in cells (Fig. 8).
(2)SELlL/hsHRD3とシノビオリンの細胞内における共局在  (2) Co-localization of SELL / hsHRD3 and Synoviolin in cells
HEK293細胞を SP-HA-hsHRD3B と FLAG-シノビォリンのプラスミドでト ランスフエクシヨンした。 24時間後に細胞を固定し、 抗 HA抗体と抗シノビォ リンモノクローナル抗体で免疫染色した。  HEK293 cells were transfected with the SP-HA-hsHRD3B and FLAG-Sinovirin plasmids. After 24 hours, the cells were fixed, and immunostained with anti-HA antibody and anti-Sinovirin monoclonal antibody.
すなわち、 2000個の HEK293細胞をチャンバ一スライドの各チャンバ一に播 いた。 24時間後、 0.15 /i gの SP-HA-hsHRD3B/pcDNA3 と 0.05 /z gの FLAG- シノビオリンでトランスフエクションした。 卜ランスフエクシヨン 48 時間後、 細胞を 4%パラホルムアルデヒドで 30分固定し、 3% BSA/PBS (-)で 1晚ブロッ キングした。 翌日最終濃度が lng/ lになるように 0.3%BSA/PBS (-)で希釈した 抗 HA抗体 (3F10、 Roche, Cat. No. l 867 431) と 100倍希釈した抗シノビォ リンモノクローナル抗体 (10Da)で染色し、 抗 HA抗体は抗ラット Ig FITC抗体 (DAKO、 Cat.No.F0234)で、 抗シノビオリン抗体は抗マウス Ig TRITC 抗体 (DAKO、 Cat.No.R0270)で検出した。 サンプルの観察、 撮影は共焦点レーザ一 スキャン顕微鏡 LSM510(Carl Zeiss Co.,Ltd.)で、 画像解析は LSM510_v3,0で 行った。  That is, 2000 HEK293 cells were seeded in each chamber of one chamber slide. Twenty-four hours later, transfection was performed with 0.15 / ig SP-HA-hsHRD3B / pcDNA3 and 0.05 / z g FLAG-Synobiolin. 48 hours after the transfusion, the cells were fixed with 4% paraformaldehyde for 30 minutes, and 1% blocked with 3% BSA / PBS (-). The next day, anti-HA antibody (3F10, Roche, Cat.No. l 867 431) diluted with 0.3% BSA / PBS (-) and anti-Sinovirin monoclonal antibody (10 Da) diluted 100-fold to a final concentration of lng / l ), The anti-HA antibody was detected with an anti-rat Ig FITC antibody (DAKO, Cat. No. F0234), and the anti-Synoviolin antibody was detected with an anti-mouse Ig TRITC antibody (DAKO, Cat. No. R0270). Observation and photographing of the samples were performed with a confocal laser scanning microscope LSM510 (Carl Zeiss Co., Ltd.), and image analysis was performed with LSM510_v3,0.
その結果、 SELlL/hsHRD3 とシノビオリンは小胞体に共局在した (図 9 ) 。 図 9において、 左列は hsHRD3 の局在の図 (緑色) 、 中央列はシノビォリンの 局在の図 (赤色) 、 右列は両者を重ね合わせた図 (黄色) である。 As a result, SELlL / hsHRD3 and Synoviolin were co-localized in the endoplasmic reticulum (Fig. 9). In Figure 9, the left column shows the localization of hsHRD3 (green), and the middle column shows the synoviolin. The localization diagram (red) and the right column are the superimposed diagrams (yellow).
これらの結果より、 hsHRD3 はシノビォリンと小胞体において複合体を形成 していることが判明した。 〔実施例 5〕  These results indicated that hsHRD3 forms a complex with synoviolin in the endoplasmic reticulum. (Example 5)
SELlL/hsHRD3の発現抑制下におけるィンタ一ロイキン- 6産生量の検討  Examination of interleukin-6 production under suppression of SELlL / hsHRD3 expression
(1) RA滑膜細胞を各遺伝子に対する二本鎖 RNA(siRNA)でトランスフエクショ ンし、 96時間後に培地を新しいものに交換した。 さらに 24時間後に培地を回収 し、 その中に含まれるィン夕ーロイキン- 6の量を測定した。 (1) RA synovial cells were transfected with double-stranded RNA (siRNA) for each gene, and the medium was replaced with a new one 96 hours later. After a further 24 hours, the medium was recovered, and the amount of ink-leukin-6 contained therein was measured.
すなわち、 トランスフエクシヨン前日に、 リウマチ患者から単離した滑膜細胞 を 6cm ディッシュ 1 枚に付き、 1 X 104個の細胞を播いた。 三種類の RNAi と RNA オリゴ無し (ネガティブコントロール)の各サンプルに付きディッシュ 1 枚、 合計 4 枚播いた。 培地は 10%FBS (牛胎児血清)を含み、 抗生物質を含まない DMEM(Dulbecco's Modified Eagle's Medium, Sigma D6046)を 3ml用いた。 24 時間後、 血清も抗生物質も含まない DMEM 3mlで 1 回洗い、 同じ DMEM を 1.6ml 加えた。 その後実施例 2 (1)と同様の方法で調製したトランスフエクショ ン試薬 400 / lを全量、 培地を交換した各ディッシュに加えた。 さらに 4時間後、 FBSを 200 i l添カロした。 That is, on the day before the transfusion, 1 × 10 4 cells were seeded on a 6 cm dish with synovial cells isolated from a rheumatic patient. One dish was used for each of the three samples without RNAi and no RNA oligo (negative control). A total of four dishes were seeded. The medium used was 3 ml of DMEM (Dulbecco's Modified Eagle's Medium, Sigma D6046) containing 10% FBS (fetal calf serum) and no antibiotics. Twenty-four hours later, the cells were washed once with 3 ml of serum-free and antibiotic-free DMEM, and 1.6 ml of the same DMEM was added. Thereafter, the entire amount of 400 / l of the transfection reagent prepared in the same manner as in Example 2 (1) was added to each dish in which the medium was replaced. After another 4 hours, 200 il of FBS was added.
トランスフエクシヨン試薬添加 96時間後、 培地を新しいものに交換した。 24 時間培養後、 培地を回収し、 14000rpm、 30min、 4°Cで遠心した。 その上清中 に含まれるインターロイキン- 6 タンパク質量を ELISA Kit(BIOSOURCE Immunoassay Kit for Human IL'6, Cat.# KHC0061)で測定した。 同時に細胞も 回収し、 20 Lの抽出バッファ一 111(10 mM Tris-HCl pH7.5, 5 mM EDTA, 1% NONIDET P-40, 0.1% SDS, 200 mM NaCl 10 mM N-ェチルマレイミド(NEM), 1 mM フエ二ルメチルスルフォニルフルオリド (phenylmethylsulfonylfluoride) (PMSF), 1 mMジチオトレイトール, 0.1%アポロティニン, 0.5 g/mlぺプスタ チン A, 1 u g/ml リューぺプチン)に溶かし氷上に 30 分置いた。 14000rpm、 30min、 4^で遠心した後、 上清 を Bio_Rad DC ProteinAssay Reagent (BIO -RAD, Cat. No. 500-0116) を用いたタンパク質濃度測定に用いて、 総タン パク質量を算出した。 培地中のインターロイキン- 6 タンパク質量をこの総タン パク質量で割った値をグラフ化した (図 10) 。 96 hours after the addition of the transfusion reagent, the medium was replaced with a new one. After culturing for 24 hours, the medium was collected and centrifuged at 14000 rpm for 30 min at 4 ° C. The amount of interleukin-6 protein contained in the supernatant was measured with an ELISA Kit (BIOSOURCE Immunoassay Kit for Human IL'6, Cat. # KHC0061). At the same time, cells were collected, and 20 L of extraction buffer 111 (10 mM Tris-HCl pH 7.5, 5 mM EDTA, 1% NONIDET P-40, 0.1% SDS, 200 mM NaCl 10 mM N-ethyl maleimide (NEM ), 1 mM phenylmethylsulfonylfluoride (PMSF), 1 mM dithiothreitol, 0.1% apollotinin, 0.5 g / ml leptatin A, 1 ug / ml leptin) and dissolve on ice. Minutes left. After centrifugation at 14000 rpm for 30 min at 4 ^, the supernatant was used for protein concentration measurement using Bio_Rad DC Protein Assay Reagent (BIO-RAD, Cat. Park mass was calculated. The value obtained by dividing the amount of interleukin-6 protein in the medium by the total protein mass was graphed (FIG. 10).
その結果、 SELlL/hsHRD3の発現抑制により、 インタ一ロイキン- 6タンパク 質の産生量がコント口一ルに比べ、 63.2%にまで減少した (図 10) 。 すなわち SELlL/hsHRD3はインターロイキン- 6の産生に必須な因子であることが明らか になった。  As a result, suppression of the expression of SELlL / hsHRD3 reduced the production of interleukin-6 protein to 63.2% as compared to control (Fig. 10). That is, it became clear that SELlL / hsHRD3 is an essential factor for interleukin-6 production.
(2)上記 (1)で調整した細胞総抽出液 45 /i lに 15 lの 4X SDS バッファーを加え、 37°Cで 10 分加熱した。 相当の細胞抽出液を 7.5%アクリルアミドゲルで 泳動、 分離し、 二トロセルロース膜 (ΟΡΤΠΈΑΝ BA-S 85 REINFORCED NC、 Schleicher & Schuell、 Cat. No. 10 439196)を用いてブロットした後、 5%スキ ムミルクで 30分ブロッキングした。  (2) 15 l of 4X SDS buffer was added to 45 / i l of the total cell extract prepared in the above (1), and the mixture was heated at 37 ° C for 10 minutes. The corresponding cell extract was electrophoresed and separated on a 7.5% acrylamide gel, and blotted using a nitrocellulose membrane (ΟΡΤΠΈΑΝ BA-S 85 REINFORCED NC, Schleicher & Schuell, Cat.No. 10 439196). Blocked with milk for 30 minutes.
一次抗体として 1000倍希釈した抗 SELlL/hsHRD3ペプチド抗体で 30分ィ ンキュペートした。 二次抗体には 10000 倍希釈した HHP-結合抗-ゥサギ IgG (Amersham Biosciences, Cat. No. NA934V)を用いて 30分ィンキュペートした。 検出ま ECL plus Western Blotting Detection System (Amersnam Biosciences, Cat. No. RPN2132) を使用した。  Incubation was performed for 30 minutes with a 1000-fold diluted anti-SELlL / hsHRD3 peptide antibody as the primary antibody. As a secondary antibody, HHP-conjugated anti-Egret IgG (Amersham Biosciences, Cat. No. NA934V) diluted 10000-fold was used to incubate for 30 minutes. For detection, an ECL plus Western Blotting Detection System (Amersnam Biosciences, Cat. No. RPN2132) was used.
検出後、 再度ブロッキングし、 一次抗体として 1000倍希釈した抗シノビオリ ン抗体と 5000 倍希釈した抗 α -チューブリン抗体 (SIGMA Clone Β-5Ί-2) を 用いて 30分ィンキュベ一トした。 二次抗体には 10000倍希釈した HRP-結合抗- マウス IgG(Amersham Biosciences, Cat. No.NA93lV)を用いて 30分インキュ ベー卜した。 検出は ECL plus Western Blotting Detection System (Amersham Biosciences, Cat. No.RPN2132)を使用した。  After detection, blocking was performed again, and incubation was performed for 30 minutes using a 1000-fold diluted anti-Synobiolin antibody and a 5000-fold diluted anti-α-tubulin antibody (SIGMA Clone II-5Β-2) as primary antibodies. HRP-conjugated anti-mouse IgG (Amersham Biosciences, Cat. No. NA93lV) diluted 10000-fold was used as the secondary antibody and incubated for 30 minutes. For detection, an ECL plus Western Blotting Detection System (Amersham Biosciences, Cat. No. RPN2132) was used.
その結果、 SELlL/hsHRD3、 およびシノビオリンの発現抑制により両タンパ ク質は発現が覓られなくなった (図 11) 。 すなわち両タンパク質は相互に安定 化しあっていることが判明した。  As a result, the expression of both proteins was no longer monitored due to the suppression of the expression of SELlL / hsHRD3 and Synoviolin (Fig. 11). That is, it was found that both proteins were mutually stabilized.
〔実施例 6〕 (Example 6)
SELlL/hsHRD3の安定性とシノビオリンとの複合体形成による影響  Stability of SELlL / hsHRD3 and the effect of complex formation with Synoviolin
HEK293 細胞に SP-HA-lisHRD3B とべクタ一、 または FLAG-シノビオリン のプラスミドをトランスフエクシヨンした。 36 時間後にシクロへキシミドを加 えてチェイスアツセィを開始した。 0、 1、 2、 4、 6 時間後に細胞を回収し、 総 抽出液を調整した。 ウェスタンプロットで各タンパク質を検出、 定量した。 Add SP-HA-lisHRD3B and vector or FLAG-Synobiolin to HEK293 cells Was transfection. Thirty-six hours later, cycloheximide was added to start the Chase Atsey. After 0, 1, 2, 4, and 6 hours, cells were collected and the total extract was prepared. Each protein was detected and quantified by Western plot.
すなわち、 2 X 105個の HEK293細胞を 6·ゥエルプレートに播いた。 24時間 後、 以下の (g)、 (li)の 2 種類の組み合わせのプラスミドをトランスフエクシヨン した。  That is, 2 × 105 HEK293 cells were seeded on a 6-well plate. Twenty-four hours later, plasmids of the following two combinations (g) and (li) were transfected.
(g) 0.5 gの SP-HA-hsKRD3B/pcDNA3と 0.25 gの pcDNA3-ベクタ一 (g) 0.5 g of SP-HA-hsKRD3B / pcDNA3 and 0.25 g of pcDNA3-vector
(h) 0.5 z g の SP-HA-hsHRD3B/pcDNA3 と 0.25 の FLAG-シノビオリン /pcDNA3 (h) 0.5 z g SP-HA-hsHRD3B / pcDNA3 and 0.25 FLAG-Synobiolin / pcDNA3
トランスフエクシヨン 36時間後、 培地を新鮮なものに交換した。 さらに 2時 間後、 最終濃度が 30 g/mlになるようにシクロへキシミドを添加した。 0、 1、 2、 4、 6 時間後に細胞を回収し、 50 1 の抽出バッファ一 ΠΙ (10 mM Tris-HCl pH7.5, 5 mM EDTA, 1% NONIDET P-40, 0.1% SDS, 200 mM NaCl 10 mM N. ェチルマレイミ ド(NEM)、 1 mM フエ二ルメチルスルフォニルフルオリ ド (PMSF), 1 mMジチオトレイトール, 0.1%ァプロティニン, 0.5 g/mlぺプス夕 チン A, 1 g/ml リュ一ぺプチン)に溶かし氷上に 30 分置いた。 14000i'pm、 30min、 4°Cで遠心した後、 上清 1 1 を Bio-Rad DC ProteinAssay Reagent (BIO -RAD, Cat. No. 500-0116)を用いたタンパク質濃度測定に用いた。 残り 45 lに 15 1の 4X SDSバッファ一を加え、 37°Cで 10分加熱した。 10 x g相当 の細胞抽出液を 7.5%アクリルアミドゲルで泳動、 分離し、 ニトロセルロース膜 ( OPTITRAN BA-S 85 REINFORCED NC、 Schleicher & Schuell、 Cat. No.10 439196) を用いてブロットした後、 5%スキムミルクで 1晚ブロッキング した。 一次抗体として 10000倍希釈した抗 HA抗体 (3F10、 Roche, Cat.No.l 867 431) で 30 分インキュベートし、 10000 倍希釈した HRP-結合抗-ラット IgGで 30分インキュベートした。 検出は ECL plus Western blotting Detection System(Amersham Cat. No. RPN2132)を用いた。 検出したバンドを ImageJ Softwareで定量した。 正確な測定のために 0時間目のサンプルを 2倍、 4倍希 釈したものを用いて標準曲線を作成し、 それに基づいて両比を推定した。  After 36 hours of transfection, the medium was replaced with fresh one. After a further 2 hours, cycloheximide was added to a final concentration of 30 g / ml. Collect the cells after 0, 1, 2, 4 and 6 hours, and use 50 1 extraction buffer (10 mM Tris-HCl pH 7.5, 5 mM EDTA, 1% NONIDET P-40, 0.1% SDS, 200 mM NaCl 10 mM N.ethylmaleimide (NEM), 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM dithiothreitol, 0.1% aprotinin, 0.5 g / ml peptide A, 1 g / ml ruthenium (Peptin) and placed on ice for 30 minutes. After centrifugation at 14000 i'pm for 30 min at 4 ° C, supernatant 11 was used for protein concentration measurement using Bio-Rad DC Protein Assay Reagent (BIO-RAD, Cat. No. 500-0116). To the remaining 45 l, 151 of 4X SDS buffer was added and heated at 37 ° C for 10 minutes. A 10 xg equivalent of cell extract was electrophoresed and separated on a 7.5% acrylamide gel, and blotted using a nitrocellulose membrane (OPTITRAN BA-S 85 REINFORCED NC, Schleicher & Schuell, Cat.No. 10 439196). Blocked with skim milk for 1 晚. The cells were incubated with the 10000-fold diluted anti-HA antibody (3F10, Roche, Cat. No. 867431) as the primary antibody for 30 minutes, and incubated with the 10000-fold diluted HRP-conjugated anti-rat IgG for 30 minutes. For detection, an ECL plus Western blotting Detection System (Amersham Cat. No. RPN2132) was used. Detected bands were quantified with ImageJ Software. For an accurate measurement, a standard curve was prepared using two- and four-fold dilutions of the sample at time 0, and the ratio was estimated based on the standard curve.
その結果、 SELlL/hsHRD3 はシノビォリンの非存在下では、 半減期が 4.3時 間から 1.8 時間と半分以下に短くなつた (図 1 2 A、 B ) 。 すなわち SELlL/hsH D3 はシノビォリンと複合体を形成できないと、 細胞内で不安定化 することが判明した。 産業上の利用可能性 As a result, SELlL / hsHRD3 had a half-life of 4.3 hours in the absence of synoviolin. The time was reduced to less than half, 1.8 hours (Fig. 12A, B). In other words, it was found that SELlL / hsHD3 becomes unstable in cells if it cannot form a complex with synoviolin. Industrial applicability
本発明により滑膜細胞 (滑膜組織を含む) の異常増殖やインターロイキン- 6 の産生を抑制する物質を含む医薬組成物が提供される。 この物質は、 滑膜組織又 は滑膜細胞の異常増殖を抑制することができるため、 リウマチ、 線維症、 関節症、 癌及び脳神経疾患から選ばれる少なくとも 1 つ疾患の診断用又は治療用医薬組 成物として有用である。 配列表フリーテキスト  The present invention provides a pharmaceutical composition comprising a substance that suppresses abnormal growth of synovial cells (including synovial tissue) and production of interleukin-6. Since this substance can suppress abnormal growth of synovial tissue or synovial cells, it can be used to diagnose or treat at least one disease selected from rheumatism, fibrosis, arthropathy, cancer and cranial nerve disease. Useful as a product. Sequence listing free text
配列番号 4 : DNA/RNA結合分子  SEQ ID NO: 4: DNA / RNA binding molecule
配列番号 5 : DNA/RNA結合分子  SEQ ID NO: 5: DNA / RNA binding molecule
配列番号 6 : DNA/RNA結合分子  SEQ ID NO: 6: DNA / RNA binding molecule
配列番号 7 : DNA/RNA結合分子  SEQ ID NO: 7: DNA / RNA binding molecule
配列番号 8 : DNA/RNA結合分子  SEQ ID NO: 8: DNA / RNA binding molecule
配列番号 9 : DNA/RNA結合分子  SEQ ID NO: 9: DNA / RNA binding molecule
配列番号 10 :合成 DNA  SEQ ID NO: 10: synthetic DNA
配列番号 11 :合成 DNA  SEQ ID NO: 11: synthetic DNA
配列番号 12 :合成 DNA  SEQ ID NO: 12: synthetic DNA
配列番号 13 :合成 DNA  SEQ ID NO: 13: Synthetic DNA
配列番号 14 :合成 DNA  SEQ ID NO: 14: Synthetic DNA
配列番号 15 :合成 DNA  SEQ ID NO: 15: Synthetic DNA

Claims

請 求 の 範 囲 The scope of the claims
1 . 滑膜細胞の増殖を抑制する物質を含む医薬組成物。 1. A pharmaceutical composition comprising a substance that suppresses the growth of synovial cells.
2 . 滑膜細胞の増殖を抑制する物質が、 シノピオリンの発現阻害物質である請求 項 1記載の医薬組成物。  2. The pharmaceutical composition according to claim 1, wherein the substance that suppresses the growth of synovial cells is a synopiolin expression inhibitor.
3 . シノビォリンの発現阻害物質が、 hSHRD3 をコードする遺伝子の発現を抑 制する物質である請求項 2記載の医薬組成物。 3. Expression inhibitors Shinobiorin The pharmaceutical composition of claim 2, wherein the expression of the gene encoding the h S HRD3 a suppression win material.
4 . hsHRD3 をコードする遺伝子の発現を抑制する物質が、 hsHRD3 をコード する遺伝子に対する siRNA又は shRNAである請求項 3記載の医薬組成物。  4. The pharmaceutical composition according to claim 3, wherein the substance that suppresses the expression of the gene encoding hsHRD3 is siRNA or shRNA against the gene encoding hsHRD3.
5 . hsHRD3 をコードする遺伝子が、 以下の (a)又は (b)の DNA を含むものであ る請求項 3又は 4記載の医薬組成物。 5. The pharmaceutical composition according to claim 3, wherein the gene encoding hsHRD3 comprises the following DNA of (a) or (b).
(a) 配列番号 1に示される塩基配列からなる DNA  (a) DNA comprising the nucleotide sequence of SEQ ID NO: 1
(b) 配列番号 1 に示される塩基配列からなる DNAと相補的な塩基配列からな る DNAとストリンジェントな条件下でハイプリダイズし、 かつ hsHRD3活 性を有するタンパク質をコードする DNA  (b) DNA that hybridizes with a DNA consisting of a nucleotide sequence complementary to a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1 under stringent conditions and encodes a protein having hsHRD3 activity
6 . siRNA が、 配列番号 1 に示す塩基配列のうち一部の配列を標的とするもの である請求項 4記載の医薬組成物。  6. The pharmaceutical composition according to claim 4, wherein the siRNA targets a partial sequence of the nucleotide sequence shown in SEQ ID NO: 1.
7 . リウマチ、 線維症、 関節炎、 癌及び脳神経疾患から選ばれる少なくとも 1つ の疾患を診断又は治療するための請求項 1〜 6のいずれか 1項に記載の医薬組 成物。  7. The pharmaceutical composition according to any one of claims 1 to 6, for diagnosing or treating at least one disease selected from rheumatism, fibrosis, arthritis, cancer and cranial nerve disease.
8 . 滑膜細胞の hsHRD3 の発現を抑制することを特徴とする、 滑膜細胞の増殖 を抑制する方法。  8. A method for suppressing synovial cell proliferation, comprising suppressing hsHRD3 expression in synovial cells.
9 . 滑膜細胞の hsHRD3 の発現を抑制することを特徴とする、 滑膜細胞、 がん 細胞、 白血病又は悪 腫瘍のアポトーシスを誘起させる方法。  9. A method for inducing apoptosis of synovial cells, cancer cells, leukemias or bad tumors, comprising suppressing the expression of hsHRD3 in synovial cells.
1 0 . 滑膜細胞の hsHRD3 の発現を抑制することを特徴とする、 滑膜細胞、 肺 の線維化又は肝硬変におけるコラーゲンの産生を抑制する方法。 10. A method for suppressing the production of collagen in synovial cells, lung fibrosis or cirrhosis, which comprises suppressing the expression of hsHRD3 in synovial cells.
1 1 . 滑膜細胞の hsHRD3 の発現を抑制することを特徴とする、 滑膜細胞、 が ん細胞、 白血病細胞、 骨肉種細胞、 悪性腫瘍細胞、 免疫系細胞及び破骨細胞か らなる群から選ばれる少なくとも一種の細胞からインタ一ロイキン- 6の産生 を抑制する方法。 1 1. From the group consisting of synovial cells, cancer cells, leukemia cells, osteosarcoma cells, malignant tumor cells, immune system cells and osteoclasts, characterized by inhibiting the expression of hsHRD3 in synovial cells. Production of interleukin-6 from at least one selected cell How to suppress.
12. hsHRD3 の発現の抑制が、 hSHID3 とシノビォリンとの結合阻害による ものである、 請求項 8〜1 1のいずれか 1項に記載の方法。 12. Inhibition of the expression of hsHRD3 is by inhibition of binding between h S HID3 and Shinobiorin A method according to any one of claims 8-1 1.
1 3. インターロイキン- 6の産生を抑制する物質を含む医薬組成物。  1 3. A pharmaceutical composition comprising a substance that suppresses interleukin-6 production.
14. インターロイキン- 6の産生を抑制する物質がシノビォリンの発現阻害物 質である請求項 1 3記載の医薬組成物。 14. The pharmaceutical composition according to claim 13, wherein the substance that suppresses the production of interleukin-6 is a Synoviolin expression inhibitor.
1 5. シノピオリンの発現阻害物質が、 hsHRD3 をコードする遺伝子の発現を 抑制する物質である請求項 14記載の医薬組成物。  15. The pharmaceutical composition according to claim 14, wherein the synopioline expression inhibitor is a substance that suppresses the expression of a gene encoding hsHRD3.
16. hsHRD3 をコードする遺伝子の発現を抑制する物質が、 hsHRD3 をコ一 ドする遺伝子に対する siRNA又は shRNAである請求項 1 5記載の医薬組成 物。  16. The pharmaceutical composition according to claim 15, wherein the substance that suppresses the expression of the gene encoding hsHRD3 is siRNA or shRNA against the gene encoding hsHRD3.
17. hsHRD3 をコ一ドする遺伝子が、 以下の (a)又は (b)の DNA を含むもので ある請求項 1 5又は 1 6記載の医薬組成物。  17. The pharmaceutical composition according to claim 15 or 16, wherein the gene encoding hsHRD3 comprises the following DNA (a) or (b).
(a) 配列番号 1に示される塩基配列からなる DNA  (a) DNA comprising the nucleotide sequence of SEQ ID NO: 1
(b) 配列番号 1 に示される塩基配列からなる DNA と相補的な塩基配列からな る DNA とストリンジェントな条件下でハイブリダィズし、 かつ hsHRD3 活性を有するタンパク質をコ一ドする DNA  (b) DNA that hybridizes with a DNA consisting of a nucleotide sequence complementary to the DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1 under stringent conditions, and encodes a protein having hsHRD3 activity.
1 8. siRNAが、 配列番号 1 に示す塩基配列のうち一部の配列を標的とするも のである請求項 1 6記載の医薬組成物。  18. The pharmaceutical composition according to claim 16, wherein the siRNA targets a part of the base sequence shown in SEQ ID NO: 1.
19. リウマチ、 多発骨髄腫、 キャッスルマン病、 クローン病、 全身型若年性特 発性関節炎、 全身性エリテマトーデス及び骨粗しょう症からなる群から選ばれ る少なくとも 1つの疾患を診断又は治療するための請求項 1 3〜1 8のいずれ か 1項に記載の医薬組成物。 19. Claim to diagnose or treat at least one disease selected from the group consisting of rheumatism, multiple myeloma, Castleman's disease, Crohn's disease, systemic juvenile idiopathic arthritis, systemic lupus erythematosus and osteoporosis. Item 13. The pharmaceutical composition according to any one of Items 13 to 18.
20. 炎症反応を抑制することができる、 請求項 1 3〜1 8のいずれか 1項に記 載の医薬組成物。 20. The pharmaceutical composition according to any one of claims 13 to 18, which can suppress an inflammatory response.
PCT/JP2005/005311 2004-03-17 2005-03-16 PHARMACEUTICAL COMPOSITION CONTAINING hsHRD3 WO2005089800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/592,918 US20070238677A1 (en) 2004-03-17 2005-03-16 Pharmaceutical Composition Containing Hshrd3
JP2006511313A JPWO2005089800A1 (en) 2004-03-17 2005-03-16 Pharmaceutical composition comprising hsHRD3

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004076931 2004-03-17
JP2004-076931 2004-03-17
JP2004-314364 2004-10-28
JP2004314364 2004-10-28

Publications (1)

Publication Number Publication Date
WO2005089800A1 true WO2005089800A1 (en) 2005-09-29

Family

ID=34993447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005311 WO2005089800A1 (en) 2004-03-17 2005-03-16 PHARMACEUTICAL COMPOSITION CONTAINING hsHRD3

Country Status (3)

Country Link
US (1) US20070238677A1 (en)
JP (1) JPWO2005089800A1 (en)
WO (1) WO2005089800A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137514A1 (en) * 2005-06-23 2006-12-28 Locomogene, Inc. Therapeutic agent for cancer comprising substance capable of inhibiting expression or function of synoviolin as active ingredient and screening method for the therapeutic agent for cancer
WO2007072977A1 (en) * 2005-12-20 2007-06-28 Locomogene, Inc. Pharmaceutical composition for allergic disease
JP2018020991A (en) * 2016-08-05 2018-02-08 学校法人中部大学 Cell proliferation inhibitor
WO2018079753A1 (en) * 2016-10-31 2018-05-03 株式会社バイオミメティクスシンパシーズ Synoviolin expression inhibitor containing mesenchymal stem cell or culture supernatant thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145062A (en) * 1993-09-29 1995-06-06 L T T Kenkyusho:Kk Synovial cell proliferation suppressant and therapeutic agent for chronic articular pheumatism
JPH07324035A (en) * 1994-05-30 1995-12-12 L T T Kenkyusho:Kk Agent for suppressing proliferation of synoviocyte and agent for treatment of rheumatoid arthritis
JPH0873453A (en) * 1994-09-02 1996-03-19 Otsuka Pharmaceut Co Ltd Cytokine-inhibiting agent
WO1997047622A1 (en) * 1996-06-12 1997-12-18 Japan Tobacco Inc. Cytokine production inhibitors, triazepine compounds, and intermediates thereof
WO1999028457A1 (en) * 1997-11-28 1999-06-10 Otsuka Pharmaceutical Co., Ltd. Tsa305 gene
WO2000038693A1 (en) * 1998-12-25 2000-07-06 Toray Industries, Inc. Interleukin-6 production inhibitors
WO2000053194A1 (en) * 1999-03-10 2000-09-14 Takata Seiyaku Co., Ltd. Remedies for joint diseases
JP2001503785A (en) * 1996-12-02 2001-03-21 アンジオテック ファーマシューティカルズ,インコーポレイテッド Compositions and methods for treating or preventing inflammatory diseases
WO2001021793A1 (en) * 1999-09-22 2001-03-29 Nobuyuki Miyasaka p21Cip1 REMEDIES FOR RHEUMATISM
WO2001051480A1 (en) * 2000-01-13 2001-07-19 Takara Bio Inc. Agents correcting gene expression regulatory error
WO2001076630A1 (en) * 2000-04-06 2001-10-18 Kyowa Hakko Kogyo Co., Ltd. Diagnostics and remedies for rheumatoid arthritis
WO2001095921A1 (en) * 2000-06-14 2001-12-20 Gifu Shellac Mfg. Co., Ltd Cytokine production inhibitors, agents for protecting and promoting liver function, anti-inflammatory agents, immunosuppressants, drugs, cosmetics, foods and food materials
JP2002010784A (en) * 2000-06-29 2002-01-15 Teijin Ltd Cytostatic
WO2002052007A1 (en) * 2000-12-22 2002-07-04 Locomogene, Inc. Synovial membrane cell protein
WO2003018033A1 (en) * 2001-08-29 2003-03-06 The University Of British Columbia Use of fucans in the treatment of adhesions, arthritis and psoriasis
JP2003525243A (en) * 2000-02-28 2003-08-26 ザ ユニバーシティ オブ ブリティッシュ コロンビア Compositions and methods for the treatment of inflammatory diseases
WO2005018675A1 (en) * 2003-08-21 2005-03-03 Locomogene, Inc. Therapeutic agent for autoimmune disease

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU724054B2 (en) * 1995-08-17 2000-09-14 Regents Of The University Of California, The Genes and proteins controlling cholesterol synthesis

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145062A (en) * 1993-09-29 1995-06-06 L T T Kenkyusho:Kk Synovial cell proliferation suppressant and therapeutic agent for chronic articular pheumatism
JPH07324035A (en) * 1994-05-30 1995-12-12 L T T Kenkyusho:Kk Agent for suppressing proliferation of synoviocyte and agent for treatment of rheumatoid arthritis
JPH0873453A (en) * 1994-09-02 1996-03-19 Otsuka Pharmaceut Co Ltd Cytokine-inhibiting agent
WO1997047622A1 (en) * 1996-06-12 1997-12-18 Japan Tobacco Inc. Cytokine production inhibitors, triazepine compounds, and intermediates thereof
JP2001503785A (en) * 1996-12-02 2001-03-21 アンジオテック ファーマシューティカルズ,インコーポレイテッド Compositions and methods for treating or preventing inflammatory diseases
WO1999028457A1 (en) * 1997-11-28 1999-06-10 Otsuka Pharmaceutical Co., Ltd. Tsa305 gene
WO2000038693A1 (en) * 1998-12-25 2000-07-06 Toray Industries, Inc. Interleukin-6 production inhibitors
JP2003089647A (en) * 1999-03-10 2003-03-28 Takada Seiyaku Kk Articular disease therapeutic agent
WO2000053194A1 (en) * 1999-03-10 2000-09-14 Takata Seiyaku Co., Ltd. Remedies for joint diseases
WO2001021793A1 (en) * 1999-09-22 2001-03-29 Nobuyuki Miyasaka p21Cip1 REMEDIES FOR RHEUMATISM
WO2001051480A1 (en) * 2000-01-13 2001-07-19 Takara Bio Inc. Agents correcting gene expression regulatory error
JP2003525243A (en) * 2000-02-28 2003-08-26 ザ ユニバーシティ オブ ブリティッシュ コロンビア Compositions and methods for the treatment of inflammatory diseases
WO2001076630A1 (en) * 2000-04-06 2001-10-18 Kyowa Hakko Kogyo Co., Ltd. Diagnostics and remedies for rheumatoid arthritis
WO2001095921A1 (en) * 2000-06-14 2001-12-20 Gifu Shellac Mfg. Co., Ltd Cytokine production inhibitors, agents for protecting and promoting liver function, anti-inflammatory agents, immunosuppressants, drugs, cosmetics, foods and food materials
JP2002010784A (en) * 2000-06-29 2002-01-15 Teijin Ltd Cytostatic
WO2002052007A1 (en) * 2000-12-22 2002-07-04 Locomogene, Inc. Synovial membrane cell protein
WO2003018033A1 (en) * 2001-08-29 2003-03-06 The University Of British Columbia Use of fucans in the treatment of adhesions, arthritis and psoriasis
WO2005018675A1 (en) * 2003-08-21 2005-03-03 Locomogene, Inc. Therapeutic agent for autoimmune disease

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMANO T. ET AL: "Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthopathy.", GENES & DEVELOPMENT., vol. 17, 2003, pages 2436 - 2449, XP002275253 *
CATTANEO M. ET AL: "Identification of a region within SEL1L protein required for tumor growth inhibition.", GENE., vol. 326, 2004, pages 149 - 156, XP004484461 *
GARDNER R.G. ET AL: "Endoplasmic Reticulum Degradation Requires Lumen to Cytosol Signaling: Transmembrane Control of Hrd1p by Hrd3p.", JOURNAL OF CELL BIOLOGY., vol. 151, no. 1, 2000, pages 69 - 82, XP002998209 *
YAGISHITA N. ET AL: "Essential Role of Synoviolin in Embryogenesis.", JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 280, no. 8, 2005, pages 7909 - 7916, XP002998211 *
YAGISHITA N. ET AL: "Kansetsu Rheumatism Hasso no Byoin Bunshi Synoviolin.(Synviolin is a Novel Causative Factor for Arthropathy)", IGAKU NO AYUMI., vol. 211, no. 1, 2 October 2004 (2004-10-02), pages 124 - 128, XP002998210 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137514A1 (en) * 2005-06-23 2006-12-28 Locomogene, Inc. Therapeutic agent for cancer comprising substance capable of inhibiting expression or function of synoviolin as active ingredient and screening method for the therapeutic agent for cancer
WO2007072977A1 (en) * 2005-12-20 2007-06-28 Locomogene, Inc. Pharmaceutical composition for allergic disease
JP2018020991A (en) * 2016-08-05 2018-02-08 学校法人中部大学 Cell proliferation inhibitor
WO2018079753A1 (en) * 2016-10-31 2018-05-03 株式会社バイオミメティクスシンパシーズ Synoviolin expression inhibitor containing mesenchymal stem cell or culture supernatant thereof
JPWO2018079753A1 (en) * 2016-10-31 2019-10-10 株式会社 バイオミメティクスシンパシーズ Synoviolin expression inhibitor containing mesenchymal stem cells or culture supernatant

Also Published As

Publication number Publication date
JPWO2005089800A1 (en) 2008-01-31
US20070238677A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP6023709B2 (en) Apoptosis inducer
US7910723B2 (en) IG20 splice variants therapeutics for cancer
JPWO2005093067A1 (en) Decoy nucleic acid for promoter of Synoviolin gene
JP5341081B2 (en) Pharmaceutical composition and pharmaceutical kit for treating hepatocellular carcinoma
JP2019512543A (en) Compositions and methods for the treatment of β-catenin related diseases or disorders
Zhu et al. miR‐340‐5p mediates cardiomyocyte oxidative stress in diabetes‐induced cardiac dysfunction by targeting Mcl‐1
WO2005089800A1 (en) PHARMACEUTICAL COMPOSITION CONTAINING hsHRD3
JP5406024B2 (en) Cancer therapy using Bcl-XL specific siNA
US9623109B2 (en) Methods of killing cells and use of same in prevention and treatment of cancer
JP5762103B2 (en) Anticancer agent and potentiator for head and neck cancer and esophageal cancer
JP5397692B2 (en) Malignant melanoma antigen expression increasing agent and use thereof
JP5467259B2 (en) Cisplatin effect enhancer and anticancer agent kit
KR20150128044A (en) Novel siRNA suppressing ATF3 gene expression and use thereof
JPWO2006016574A1 (en) Antitumor agent using RNAi
WO2006047635A2 (en) Methods and compositions for seprase inactivation
WO2005018675A1 (en) Therapeutic agent for autoimmune disease
JP5578498B2 (en) Anticancer agent kit and anticancer agent effect enhancer
WO2020237803A1 (en) Use of mrg15 protein or gene as target in treatment and prevention of metabolic diseases
WO2017160797A1 (en) Combination therapy with c-myc nucleic acid inhibitors and selective cdk7 inhibitors
KR102532779B1 (en) Composition for preventing or treating cancer comprising DDIAS inhibitor and death receptor ligand
KR20150123213A (en) Pharmaceutical composition for the treatment of colorectal cancers or inhibition of metastasis containing the expression or activity inhibitors of cadherin―11
WO2024003350A1 (en) Combination therapy for melanoma
KR20110028854A (en) Sensitivity enhancer to anti-cancer drug and growth inhibition of cancer cell by control of canu1 protein
KR20230131703A (en) A composition for preventing or treating SRSF1-related diseases through suppression of expression of USP15 or USP4, and use thereof
CN112716943A (en) Application of ECCA in preparation of anti-tumor medicine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511313

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 10592918

Country of ref document: US

Ref document number: 2007238677

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10592918

Country of ref document: US