WO2005089482A2 - Refueling assemblz having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks - Google Patents

Refueling assemblz having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks Download PDF

Info

Publication number
WO2005089482A2
WO2005089482A2 PCT/US2005/009099 US2005009099W WO2005089482A2 WO 2005089482 A2 WO2005089482 A2 WO 2005089482A2 US 2005009099 W US2005009099 W US 2005009099W WO 2005089482 A2 WO2005089482 A2 WO 2005089482A2
Authority
WO
WIPO (PCT)
Prior art keywords
check valve
fuel
fuel receiver
poppet
receiver
Prior art date
Application number
PCT/US2005/009099
Other languages
French (fr)
Other versions
WO2005089482A3 (en
Inventor
Dean E. Mackey
Kenneth V. Jensen
Original Assignee
Mackey Dean E
Jensen Kenneth V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mackey Dean E, Jensen Kenneth V filed Critical Mackey Dean E
Priority to US10/571,445 priority Critical patent/US7591291B2/en
Priority to CA 2560000 priority patent/CA2560000A1/en
Priority to EP20050764697 priority patent/EP1799550A2/en
Priority to AU2005223687A priority patent/AU2005223687B8/en
Publication of WO2005089482A2 publication Critical patent/WO2005089482A2/en
Publication of WO2005089482A3 publication Critical patent/WO2005089482A3/en
Priority to US12/564,915 priority patent/US20100071805A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/025Check valves with guided rigid valve members the valve being loaded by a spring
    • F16K15/026Check valves with guided rigid valve members the valve being loaded by a spring the valve member being a movable body around which the medium flows when the valve is open
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/04Tank inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0209Check valves or pivoted valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7838Plural
    • Y10T137/7842Diverse types
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7838Plural
    • Y10T137/7846Mechanically interconnected
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87917Flow path with serial valves and/or closures
    • Y10T137/88046Biased valve with external operator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87917Flow path with serial valves and/or closures
    • Y10T137/88054Direct response normally closed valve limits direction of flow

Definitions

  • This invention relates generally to refueling systems for high-volume bottom- filled tanks on industrial vehicles and, more specifically, to hose-to-tank connectors which incorporate a fuel receiver and a check valve.
  • Bottom-filled fuel tanks typically have a coupler with female pipe threading welded in the bottom portion thereof.
  • a conventional, normally-closed fuel receiver having male pipe threading, engages the coupler.
  • a specially designed nozzle can be mated with the receiver to fill the tank.
  • Such a nozzle is shown and disclosed in U.S. Pat. No. 3,662,793, which issued on May 16, 1972 to Jay V. Calisher and Ross E. Burbick and was assigned to E. B. Wiggins, Inc. Of Los Angeles, CA.
  • a significant problem associated with conventional fuel receivers is that the receivers tend to wear rather rapidly. When a receiver is worn, it causes the nozzle to leak during the refueling operation. When the leakage becomes serious, the fuel receiver must be replaced.
  • the present invention provides a specially designed fuel receiver and check valve assembly that facilitates replacement of a worn fuel receiver without the need to drain the fuel tank.
  • the fuel receiver has a body with a generally tubular interior open at both ends. There is an annular circumferential shoulder near an exit end thereof.
  • a spring-loaded valve plug operating within a portion of the fuel receiver chamber of conical section has an operculum seal. The valve plug is unseated by the urging of a plug release piston of a fuel nozzle which engages the fuel receiver, thereby permitting fuel to flow through the receiver.
  • the check valve includes a check valve body having a male-pipe-threaded nipple which engages the female- threaded pipe coupling of the fuel tank.
  • the check valve receptacle also has a female-threaded socket that is coaxial with the male-pipe-threaded nipple.
  • An annular securing nut slides over the fuel receiver body, bears against the annular circumferential shoulder and engages the female-threaded socket of the check valve body, thereby securing the fuel receiver body to the check valve body.
  • the check valve also has a spring-biased, normally closed poppet valve assembly that prevents fuel from escaping from the fuel tank even when the fuel receiver is removed from the check valve. Fuel pressure from a refueling pump is sufficient to open the normally-closed check valve.
  • a check valve poppet engagement rod attached to the valve plug of the fuel receiver can mechanically displace the check valve poppet.
  • the check valve is designed to be a generally permanent installation in the fuel tank, having ultra-low-wear components.
  • sealing between the receptacle and the receiver unit is accomplished by an O-ring seal installed in an annular groove on the fuel receiver unit, which is compressed against an inner cylindrical sealing surface on the check valve receptacle.
  • the design of the improved fuel receiver assembly permits removal of the fuel receiver from the check valve receptacle without the leakage of fuel within the tank, as the check valve prevents the escape of fuel even when the fuel receiver unit is removed from the assembly.
  • a special wrench set has been designed to permit removal of the fuel receiver from the assembly.
  • the fuel receiver can be disengaged from the check valve and a check valve drain insert can be installed in place of the fuel receiver.
  • the check valve drain insert has a nose that releases the check valve poppet, thereby allowing fuel to be drained from the fuel tank.
  • Figure 1 is a side elevational view of a complete fuel receiver and check valve assembly
  • Figure 2 is a side elevational view of the fuel receiver body
  • Figure 3 is a cross-sectional view of the fuel receiver body, taken through section line 3 - 3 of Figure 2
  • Figure 4 is an exploded side elevational view of the fuel receiver on which has been installed a fuel receiver securing nut and O-ring
  • Figure 5 is a cross-sectional side view of the fuel receiver valve plug, taken through section line 5 - 5 of Figure 4
  • Figure 6 is a rear elevational view of the fuel receiver valve plug
  • Figure 7 is a front elevational view of the fuel receiver valve plug
  • Figure 8 is a partial cross-sectional view of an assembled fuel receiver in a closed configuration, with only the fuel receiver body and surrounding O-ring shown in cross-sectional format, and the fuel receiver valve guide, the fuel receiver spring, the backing washer and internal snap ring shown installed therein
  • Figure 9 is a parial cross-sectional view of the assembled fuel
  • the fuel receiver and check valve assembly as well as the check valve drain insert, will now be described in detail with reference to the attached drawing figures.
  • the fuel receiver 101 has been secured within the check valve 102 with an annular securing nut 103.
  • the fuel receiver body 201 is radially symmetrical about a central axis 202, and has a cylindrical male coupler portion 203 that is equipped with a tapered annular ridge 204, that is followed by a tapered annular groove 205.
  • a high-flow filler nozzle having a cylindrical female coupler, engages and releaseably locks on to the cylindrical male coupler 203.
  • the fuel receiver body 201 also has an annular shoulder 206 and an O-ring groove 207 near an outlet end 208.
  • the annular securing nut 103 seen in Figure 1 bears against the annular shoulder 206 and secures the outlet end 208 of the fuel receiver body 201 to the check valve 102.
  • the fuel receiver body 201 is fabricated from a tough, wear-resistant metal such as brass, chrome-plated steel or stainless steel. Referring now to Figure 3, this cross-sectional view of the fuel receiver body 201 shows the inner profile thereof, being a generally tubular chamber open at both ends.
  • the male coupler portion 203 of the fuel receiver body 201 has an expanding conically-shaped inlet 301 , which transitions to a generally cylindrical chamber 302. There is a snap ring groove 303 near the outlet end of the generally cylindrical chamber 302. It will be noted that an O-ring 304 has been installed in the O-ring groove 207.
  • this exploded view of the fuel receiver 101 shows the internal components of the fuel receiver 101 , and further shows the sequence in which they are installed within the fuel receiver body 201.
  • a valve plug 401 is first inserted within the fuel receiver body 201 , followed by a fuel receiver coil spring 402, a backing washer 403, and an internal snap ring 404.
  • the snap ring 404 is seated within the snap ring groove 303 and secured the valve plug 401 , the fuel receiver coil spring 402 and the backing washer within the fuel receiver body 201.
  • the valve plug 401 includes a valve plug body 405, a seal retainer 406 and an annular, stepped neoprene rubber operculum seal 407 sandwiched between the valve plug body 405 and the seal retainer 406. Referring now to Figure 5, this cross-sectional view of the valve plug 401 shows additional details of the plug body 405, the seal retainer 406 and the neoprene rubber operculum seal 407.
  • the seal retainer 406 has a cylindrical portion 501 which compresses the neoprene rubber operculum seal 407 against the valve plug body 405.
  • the outer face 502 of cylindrical portion 501 has a central aperture 503, which serves as a guide for the conical end of the nozzle's plug release piston, as the nozzle is coupled to the fuel receiver 101.
  • the inner face 504 of the cylindrical portion 501 has a threaded shaft 505 axially protruding therefrom, which engages a threaded aperture 506 axially positioned within an outer end 507 of the valve plug body 405.
  • the neoprene rubber operculum seal 407 has an annular shoulder 508 that fits into an annular groove 509 in the outer end 507 of the valve plug body 405.
  • the valve plug body 405 has a trio of fins 510 (two of which are visible in this cross-sectional view).
  • the fins 510 are angularly evenly spaced from one another, and the inner end 511 of each fin 510 has a notch 512, which functions as a seat for the end of the fuel receiver coil spring 402.
  • Region 513 of the visible fin 510 is a generally planar surface, while region 514 is a generally concave surface.
  • the inner end 515 of valve plug body 405 may be equipped with an optional threaded aperture 516.
  • valve poppet engagement rod shown in Figure 30.
  • the threaded end of the poppet engagement rod installs in the threaded aperture 516, and mechanically opens the check valve when the valve plug 401 is depressed by the nozzle plug release piston.
  • this view of the inner end 515 of valve plug 401 shows the three fins 510, the threaded aperture 516 and the concave regions 514, as well as additional planar surface regions 601. A portion of the periphery of the neoprene rubber operculum seal 407 can also be seen in this view.
  • FIG 7 in this front view of the fuel receiver valve plug 401 , the seal retainer 406 and its central aperture 503 are visible, as are the three fins 510, and the neoprene rubber operculum seal 407.
  • Figure 8 this view of a fully assembled fuel receiver 101 , with the fuel receiver body 201 in cross-sectional format, shows how the internal components are assembled and positioned when the fuel receiver 101 is closed.
  • the fuel retainer coil spring 402 is compressed between the valve plug 401 and the backing washer 403, the latter being held in place by the internal snap ring 404.
  • valve plug 401 In the closed position, the outer periphery of the neoprene rubber operculum seal 407 is compressed against the conically-shaped inlet 301 of the fuel receiver body 201.
  • valve plug 401 has been moved to the right by a plug release piston 901 , thereby further compressing the fuel receiver coil spring 402 and creating a circumferential gap 902 between the valve plug 401 and the conically-shaped inlet 301.
  • the arrows 903 show the route of flow of fuel into the cylindrical chamber 302 of the fuel receiver 201.
  • the annular securing nut 103 is shown from three different angles.
  • the inside diameter d is sized so the annular securing nut 103 will slide easily over the fuel receiver body 201 and make circumferential contact with the annular shoulder 206 thereof.
  • the male threaded portion 1101 of the annular securing nut 103 is designed to engage the female threaded portion at the entrance end of the check valve 102, as seen in the cross-sectional view thereof in Figure 18.
  • the backing washer 403 is used to provide an planar annular base of 360 degrees so that, in combination with the internal snap ring 404, the fuel receiver coil spring 402 may be securely retained within the fuel receiver body 201.
  • a top view of the internal snap ring 404 is shown.
  • the pair of apertures 1401 may be engaged with the points of a pair of snap ring pliers to compress and then release the internal snap ring 404 so that it may be installed within the snap ring groove 303 within the fuel receiver body 201.
  • the exploded view of the check valve 102 shows all of the internal and external components associated therewith.
  • the check valve 102 includes a check valve body 1501 , a check valve coil spring 1502, a check valve poppet 1503, a laminar neoprene rubber seal 1504, a laminar fender washer 1505, a split-ring lock washer 1506, and an alien-head screw 1507 that secures the split- ring lock washer 1506, the fender washer 1505, and the laminar neoprene rubber seal 1504 to the check valve poppet 1503.
  • the check valve poppet 1503 has three fins 1601 , each of which has a spring retaining tab 1602.
  • the check valve coil spring 1502 is compressed between the spring retaining tabs 1602 and a flanged opening (not shown in this view-see Fig. 18) at the exit end of the check valve body 1501.
  • this outer end view of the check valve poppet 1503 shows a threaded hole 1701 in which the alien-head screw 1507 is secured.
  • Each of the spring retaining tabs 1602 can also be seen in this view.
  • the check valve body 1501 like the fuel receiver body 201 , is also a generally tubular chamber open at both ends.
  • the flanged opening 1801 is visible here.
  • the internal threads 1802 engage the male threaded portion 1101 of the annular securing nut 103.
  • the external threads 1803 are tapered pipe threads and are sized to engage the fuel tank coupling (not shown). Except for the asymmetry created by the threading, the check valve body 1501 is radially symmetrical about it central axis 1804. It will be noted that the check valve body 1501 has an internal cylindrical portion 1805. The O-ring 304 (see Fig. 3) is compressed between this internal cylindrical portion 1805 and the bottom of O-ring groove 207, thereby sealing the connection of the fuel receiver body 201 and the check valve body 1501. Referring now to Figure 19, the generally tubular interior of the check valve body 1501 is readily apparent in this view.
  • the check valve body 1501 is fitted with a generally hexagonal exterior head 1901 so that it can be tightened within the fuel tank coupling using a wrench.
  • the alien-head screw 1507 is seen in a head-end view.
  • the split-ring lock washer 1506 shown in a profile view in Figure 15 is seen in a top or bottom view.
  • the split-ring lock washer 1506 is hardened spring steel.
  • the fender washer 1505 shown in a profile view in Figure 15 is shown here in a top or bottom view.
  • the rubber seal 1504 shown in a profile view in Figure 15 is shown herein a top or bottom view.
  • FIG. 24 this view of a fully assembled check valve 102, with the check valve body 1501 in cross-sectional format, shows how the internal components are assembled and positioned when the check valve 102 is closed.
  • the check valve coil spring 1502 is compressed . between the check valve poppet
  • the flanged opening 1801 is sealed by the laminar neoprene rubber seal 1504 when the fuel pressure within the check valve body 1501 is less than the spring pressure plus the fuel pressure within the fuel tank, thereby cutting fuel flow through the check valve 102.
  • the alien-head screw 1507 secured within the threaded hole 1701
  • the alien-head screw 1507, the split-ring lock washer 1506, the fender washer 1505 and the laminar neoprene rubber seal 1504 and the check valve poppet 1503 are unified as an check valve poppet assembly 2401.
  • check valve 102 of Figure 25 the check valve poppet assembly 2401 has been moved to the right, either by the fuel pressure within the check valve body 1501 being greater than the check valve spring pressure plus the fuel pressure within the fuel tank, or by mechanical movement, thereby further compressing the check valve coil spring 1502 and unseating the laminar neoprene rubber seal 1504 so that fuel can flow through the check valve 102 via route 2501.
  • Figure 26 a complete fuel receiver and check valve assembly 100 is shown in a closed configuration installed within the female-threaded pipe coupling 2601 of the fuel tank 2602 in partial cross-sectional format.
  • the operation of both the fuel receiver assembly 101 and the check valve 102 should now be quite obvious in view of the foregoing description thereof.
  • a check valve drain insert 2700 is shown. The drain insert 2700 is utilized to drain the fuel tank after removal of the fuel receiver assembly 101.
  • the nose 2702 of the check valve drain insert 2700 displaces the check valve poppet assembly 2402, thereby compressing the check valve coil spring 1502 and unseating the laminar neoprene rubber seal 1504 so that fuel can flow from the fuel tank out through both the check valve 102 and the check valve drain insert 1700.
  • the check valve drain insert 2700 is a generally tubular interior open at both ends. Referring now to Figure 28, it will be noted that the check valve drain insert 2700 has internal threads 2801 for the attachment of a hose coupling (not shown).
  • this partial cross-sectional side view shows a check valve drain insert 2700 installed within the check valve 102. It can be seen that the nose 2702 of the check valve drain insert 2700 has displaced the check valve poppet assembly 2402, thereby opening the check valve 102.
  • a fuel receiver valve plug 401 is shown in combination with a check valve poppet engagement rod 3001 , the threaded end 3002 of which screws into the threaded aperture (see item 516 of Fig. 5) of the fuel receiver valve plug body 405, and mechanically displaces the check valve poppet assembly 2402 when the valve plug 401 is depressed by the nozzle plug release piston.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Check Valves (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A fuel receiver assembly, that permits replacement of a worn fuel receiver without draining the fuel tank, includes a check valve receptacle having a male-pipe-threaded nipple which engages the female-threaded pipe coupling of the fuel tank. The check valve receptacle has a spring-biased, normally closed check valve that prevents fuel from escaping from the fuel tank. Fuel pressure from the refueling pump opens the normally-closed check valve. The check valve receptacle is designed to be a relatively permanent installation in the fuel tank, having ultra-low-wear components. The check valve receptacle also has a female-threaded socket that is coaxial with the male-pipe-threaded nipple. A specially-designed male-threaded fuel receiver engages the female-threaded socket. Sealing between the check valve receptacle and the replaceable fuel receiver is accomplished by an O-ring seal installed on the fuel receiver.

Description

REFUELING ASSEMBLY HAVING A CHECK VALVE RECEPTACLE AND A REPLACEABLE FUEL RECEIVER FOR BOTTOM-FILLED FUEL TANKS This application has a priority date based on Provisional Patent Application No. 60/554,434, which has a filing date of March 18, 2004.
BACKGROUND OF THE INVENTION Field of the Invention This invention relates generally to refueling systems for high-volume bottom- filled tanks on industrial vehicles and, more specifically, to hose-to-tank connectors which incorporate a fuel receiver and a check valve. Description of the Prior Art Industrial vehicles, such as ore-hauling trucks used in open pit mines, typically have fuel capacities of several hundred gallons. Time spent for maintenance and refueling is time that is idle and non-productive. Because the idling of equipment usually carries with it the idling of workers, it is in the best interest of the owner of such equipment to minimize maintenance and refueling time, particularly if the minimization can be achieved with no adverse effect on the equipment. Bottom-filled fuel tanks typically have a coupler with female pipe threading welded in the bottom portion thereof. A conventional, normally-closed fuel receiver, having male pipe threading, engages the coupler. A specially designed nozzle can be mated with the receiver to fill the tank. Such a nozzle is shown and disclosed in U.S. Pat. No. 3,662,793, which issued on May 16, 1972 to Jay V. Calisher and Ross E. Burbick and was assigned to E. B. Wiggins, Inc. Of Los Angeles, CA. A significant problem associated with conventional fuel receivers is that the receivers tend to wear rather rapidly. When a receiver is worn, it causes the nozzle to leak during the refueling operation. When the leakage becomes serious, the fuel receiver must be replaced. Although replacement of a conventional worn fuel receiver is a relatively simple, straight forward operation, it must be done when the tank is empty. Unfortunately, it is nearly impossible to empty the tank during operation of the equipment, as the tank will most likely not run dry near refueling equipment. Therefore, the common replacement procedure is to take the vehicle to a service and refueling location, drain the fuel tank, remove the worn fuel receiver, install a new fuel receiver, and then refuel the tank. Thus, a seemly simple task is transformed into a major operation. What is needed is an improved fuel receiver assembly that facilitates replacement of worn parts without the need to drain the fuel tank. Ideally, the improved fuel receiver assembly would require no redesign of the fuel tank and could be retrofitted to existing fuel tanks.
SUMMARY OF THE INVENTION The present invention provides a specially designed fuel receiver and check valve assembly that facilitates replacement of a worn fuel receiver without the need to drain the fuel tank. The fuel receiver has a body with a generally tubular interior open at both ends. There is an annular circumferential shoulder near an exit end thereof. A spring-loaded valve plug operating within a portion of the fuel receiver chamber of conical section has an operculum seal. The valve plug is unseated by the urging of a plug release piston of a fuel nozzle which engages the fuel receiver, thereby permitting fuel to flow through the receiver. The check valve includes a check valve body having a male-pipe-threaded nipple which engages the female- threaded pipe coupling of the fuel tank. The check valve receptacle also has a female-threaded socket that is coaxial with the male-pipe-threaded nipple. An annular securing nut slides over the fuel receiver body, bears against the annular circumferential shoulder and engages the female-threaded socket of the check valve body, thereby securing the fuel receiver body to the check valve body. The check valve also has a spring-biased, normally closed poppet valve assembly that prevents fuel from escaping from the fuel tank even when the fuel receiver is removed from the check valve. Fuel pressure from a refueling pump is sufficient to open the normally-closed check valve. Alternatively, a check valve poppet engagement rod attached to the valve plug of the fuel receiver can mechanically displace the check valve poppet. The check valve is designed to be a generally permanent installation in the fuel tank, having ultra-low-wear components. For a preferred embodiment of the invention, sealing between the receptacle and the receiver unit is accomplished by an O-ring seal installed in an annular groove on the fuel receiver unit, which is compressed against an inner cylindrical sealing surface on the check valve receptacle. The design of the improved fuel receiver assembly permits removal of the fuel receiver from the check valve receptacle without the leakage of fuel within the tank, as the check valve prevents the escape of fuel even when the fuel receiver unit is removed from the assembly. A special wrench set has been designed to permit removal of the fuel receiver from the assembly. In addition, the fuel receiver can be disengaged from the check valve and a check valve drain insert can be installed in place of the fuel receiver. The check valve drain insert has a nose that releases the check valve poppet, thereby allowing fuel to be drained from the fuel tank. By providing a second sealing assembly, the present invention has the following additional advantages over conventional fuel receiver assemblies: it protects workers from being sprayed with fuel during a malfunction of the fuel receiver poppet; it acts as a theft deterrent, in that theft cannot be drained from the tank by merely opening the fuel receiver poppet; and the environment is protected by the minimization of fuel leakage and spillage.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a side elevational view of a complete fuel receiver and check valve assembly; Figure 2 is a side elevational view of the fuel receiver body; Figure 3 is a cross-sectional view of the fuel receiver body, taken through section line 3 - 3 of Figure 2; Figure 4 is an exploded side elevational view of the fuel receiver on which has been installed a fuel receiver securing nut and O-ring; Figure 5 is a cross-sectional side view of the fuel receiver valve plug, taken through section line 5 - 5 of Figure 4; Figure 6 is a rear elevational view of the fuel receiver valve plug; Figure 7 is a front elevational view of the fuel receiver valve plug; Figure 8 is a partial cross-sectional view of an assembled fuel receiver in a closed configuration, with only the fuel receiver body and surrounding O-ring shown in cross-sectional format, and the fuel receiver valve guide, the fuel receiver spring, the backing washer and internal snap ring shown installed therein; Figure 9 is a parial cross-sectional view of the assembled fuel receiver of Figure 8, shown in an open configuration; Figure s an outer end elevational view of the annular securing nut; Figure s a side elevational view of the annular securing nut; Figure s an inner end elevational view of the annular securing nut; Figure s a top or bottom plan view of the backing washer; Figure s a top or bottom plan view of the internal snap ring; Figure s an exploded side elevational view of the check valve; Figure s an inner end elevational view of the check valve poppet; Figure s an outer end elevational view of the check valve poppet; Figure s a cross sectional view of the check valve body, taken through its central axis; Figure 19 is large end elevational view of the check valve body; Figure 20 is an elevational view of the head end of the check valve seal retaining socket-head screw; Figure 21 is a top or bottom plan view of the lock washer used to secure the seal-retaining socket-head screw; Figure 22 is a top or bottom plan view of the fender washer used as a backing for the rubber seal secured to the check valve poppet; Figure 23 is a top or bottom plan view of the rubber seal that is secured to the check valve poppet; Figure 24 is a partial cross-sectional view of an assembled check valve in a closed configuration, with only the check valve body shown in cross-sectional format, and the check valve poppet, check valve spring, seal, fender washer, lock washer and seal-retaining socket-head screw shown installed therein; Figure 25 is a partial cross-sectional view of the assembled check valve of Figure 24, shown in an open configuration; Figure 26 is a partial cross-sectional side view of the complete fuel receiver and check valve assembly of Figure 1 , with only the fuel receiver body, O-ring, annular securing nut and check valve body shown in cross-sectional format, and the other components shown installed therein; Figure 27 is a side elevational view of the check valve drain insert; Figure 28 is a cross sectional view of the check valve drain insert and surrounding O-ring taken through the central axis of the check valve drain insert; Figure 29 is a partial cross-sectional side view of a check valve drain insert installed within the check valve, with only the drain insert, check valve body and O- ring shown in cross section; and Figure 30 is an exploded side elevational view of the fuel receiver valve plug and an optional check valve poppet engagement rod.
PREFERRED EMBODIMENT OF THE INVENTION The fuel receiver and check valve assembly, as well as the check valve drain insert, will now be described in detail with reference to the attached drawing figures. Referring now to the complete fuel receiver and check valve assembly 100 of Figure 1 , the fuel receiver 101 has been secured within the check valve 102 with an annular securing nut 103. Referring now to Figure 2, the fuel receiver body 201 is radially symmetrical about a central axis 202, and has a cylindrical male coupler portion 203 that is equipped with a tapered annular ridge 204, that is followed by a tapered annular groove 205. A high-flow filler nozzle having a cylindrical female coupler, engages and releaseably locks on to the cylindrical male coupler 203. As previously mentioned, such a nozzle is disclosed in U.S. Pat. No. 4,919,174 to Warland. The fuel receiver body 201 also has an annular shoulder 206 and an O-ring groove 207 near an outlet end 208. The annular securing nut 103 seen in Figure 1 bears against the annular shoulder 206 and secures the outlet end 208 of the fuel receiver body 201 to the check valve 102. For a preferred embodiment of the invention, the fuel receiver body 201 is fabricated from a tough, wear-resistant metal such as brass, chrome-plated steel or stainless steel. Referring now to Figure 3, this cross-sectional view of the fuel receiver body 201 shows the inner profile thereof, being a generally tubular chamber open at both ends. The male coupler portion 203 of the fuel receiver body 201 has an expanding conically-shaped inlet 301 , which transitions to a generally cylindrical chamber 302. There is a snap ring groove 303 near the outlet end of the generally cylindrical chamber 302. It will be noted that an O-ring 304 has been installed in the O-ring groove 207. Referring now to Figure 4, this exploded view of the fuel receiver 101 shows the internal components of the fuel receiver 101 , and further shows the sequence in which they are installed within the fuel receiver body 201. A valve plug 401 is first inserted within the fuel receiver body 201 , followed by a fuel receiver coil spring 402, a backing washer 403, and an internal snap ring 404. The snap ring 404 is seated within the snap ring groove 303 and secured the valve plug 401 , the fuel receiver coil spring 402 and the backing washer within the fuel receiver body 201. The valve plug 401 includes a valve plug body 405, a seal retainer 406 and an annular, stepped neoprene rubber operculum seal 407 sandwiched between the valve plug body 405 and the seal retainer 406. Referring now to Figure 5, this cross-sectional view of the valve plug 401 shows additional details of the plug body 405, the seal retainer 406 and the neoprene rubber operculum seal 407. It will be noted that the seal retainer 406 has a cylindrical portion 501 which compresses the neoprene rubber operculum seal 407 against the valve plug body 405. The outer face 502 of cylindrical portion 501 has a central aperture 503, which serves as a guide for the conical end of the nozzle's plug release piston, as the nozzle is coupled to the fuel receiver 101. The inner face 504 of the cylindrical portion 501 has a threaded shaft 505 axially protruding therefrom, which engages a threaded aperture 506 axially positioned within an outer end 507 of the valve plug body 405. It will be noted that the neoprene rubber operculum seal 407 has an annular shoulder 508 that fits into an annular groove 509 in the outer end 507 of the valve plug body 405. It will be further noted that the valve plug body 405 has a trio of fins 510 (two of which are visible in this cross-sectional view). The fins 510 are angularly evenly spaced from one another, and the inner end 511 of each fin 510 has a notch 512, which functions as a seat for the end of the fuel receiver coil spring 402. Region 513 of the visible fin 510 is a generally planar surface, while region 514 is a generally concave surface. The inner end 515 of valve plug body 405 may be equipped with an optional threaded aperture 516. For certain applications, it may be desirable to equip the fuel receiver and check valve assembly 100 with the check valve poppet engagement rod shown in Figure 30. The threaded end of the poppet engagement rod installs in the threaded aperture 516, and mechanically opens the check valve when the valve plug 401 is depressed by the nozzle plug release piston. Referring now to Figure 6, this view of the inner end 515 of valve plug 401 shows the three fins 510, the threaded aperture 516 and the concave regions 514, as well as additional planar surface regions 601. A portion of the periphery of the neoprene rubber operculum seal 407 can also be seen in this view. Referring now to Figure 7, in this front view of the fuel receiver valve plug 401 , the seal retainer 406 and its central aperture 503 are visible, as are the three fins 510, and the neoprene rubber operculum seal 407. Referring now to Figure 8 this view of a fully assembled fuel receiver 101 , with the fuel receiver body 201 in cross-sectional format, shows how the internal components are assembled and positioned when the fuel receiver 101 is closed. The fuel retainer coil spring 402 is compressed between the valve plug 401 and the backing washer 403, the latter being held in place by the internal snap ring 404. In the closed position, the outer periphery of the neoprene rubber operculum seal 407 is compressed against the conically-shaped inlet 301 of the fuel receiver body 201. Referring now to Figure 9, the valve plug 401 has been moved to the right by a plug release piston 901 , thereby further compressing the fuel receiver coil spring 402 and creating a circumferential gap 902 between the valve plug 401 and the conically-shaped inlet 301. The arrows 903 show the route of flow of fuel into the cylindrical chamber 302 of the fuel receiver 201. Referring now to Figures 10 to 12, the annular securing nut 103 is shown from three different angles. The inside diameter d is sized so the annular securing nut 103 will slide easily over the fuel receiver body 201 and make circumferential contact with the annular shoulder 206 thereof. The male threaded portion 1101 of the annular securing nut 103 is designed to engage the female threaded portion at the entrance end of the check valve 102, as seen in the cross-sectional view thereof in Figure 18. Referring now to Figure 13, the backing washer 403 is used to provide an planar annular base of 360 degrees so that, in combination with the internal snap ring 404, the fuel receiver coil spring 402 may be securely retained within the fuel receiver body 201. Referring now to figure 14, a top view of the internal snap ring 404 is shown. The pair of apertures 1401 may be engaged with the points of a pair of snap ring pliers to compress and then release the internal snap ring 404 so that it may be installed within the snap ring groove 303 within the fuel receiver body 201. Referring now to Figure 15, the exploded view of the check valve 102 shows all of the internal and external components associated therewith. The check valve 102 includes a check valve body 1501 , a check valve coil spring 1502, a check valve poppet 1503, a laminar neoprene rubber seal 1504, a laminar fender washer 1505, a split-ring lock washer 1506, and an alien-head screw 1507 that secures the split- ring lock washer 1506, the fender washer 1505, and the laminar neoprene rubber seal 1504 to the check valve poppet 1503. On the check valve poppet 1503 can be seen concave surface regions 1508, concave surface regions 1509 and double concave surface regions 1510. Referring now to Figure 16, the check valve poppet 1503 has three fins 1601 , each of which has a spring retaining tab 1602. The check valve coil spring 1502 is compressed between the spring retaining tabs 1602 and a flanged opening (not shown in this view-see Fig. 18) at the exit end of the check valve body 1501. Referring now to Figure 17, this outer end view of the check valve poppet 1503 shows a threaded hole 1701 in which the alien-head screw 1507 is secured. Each of the spring retaining tabs 1602 can also be seen in this view. Referring now to Figure 18, the check valve body 1501 , like the fuel receiver body 201 , is also a generally tubular chamber open at both ends. The flanged opening 1801 is visible here. The internal threads 1802 engage the male threaded portion 1101 of the annular securing nut 103. The external threads 1803 are tapered pipe threads and are sized to engage the fuel tank coupling (not shown). Except for the asymmetry created by the threading, the check valve body 1501 is radially symmetrical about it central axis 1804. It will be noted that the check valve body 1501 has an internal cylindrical portion 1805. The O-ring 304 (see Fig. 3) is compressed between this internal cylindrical portion 1805 and the bottom of O-ring groove 207, thereby sealing the connection of the fuel receiver body 201 and the check valve body 1501. Referring now to Figure 19, the generally tubular interior of the check valve body 1501 is readily apparent in this view. It will be noted that the check valve body 1501 is fitted with a generally hexagonal exterior head 1901 so that it can be tightened within the fuel tank coupling using a wrench. Referring now to Figure 20, the alien-head screw 1507 is seen in a head-end view. Referring now to Figure 21 , the split-ring lock washer 1506 shown in a profile view in Figure 15 is seen in a top or bottom view. For a preferred embodiment of the invention, the split-ring lock washer 1506 is hardened spring steel. Referring now to Figure 22, the fender washer 1505 shown in a profile view in Figure 15 is shown here in a top or bottom view. Referring now to Figure 23, the rubber seal 1504 shown in a profile view in Figure 15 is shown herein a top or bottom view. Referring now to Figure 24, this view of a fully assembled check valve 102, with the check valve body 1501 in cross-sectional format, shows how the internal components are assembled and positioned when the check valve 102 is closed. The check valve coil spring 1502 is compressed. between the check valve poppet
1503 and the internal annular flange 1801. As the laminar neoprene rubber seal
1504 and fender washer 1505 has larger external diameters than the flanged opening 1801 of the check valve body 1501 , the flanged opening 1801 is sealed by the laminar neoprene rubber seal 1504 when the fuel pressure within the check valve body 1501 is less than the spring pressure plus the fuel pressure within the fuel tank, thereby cutting fuel flow through the check valve 102. With the alien-head screw 1507 secured within the threaded hole 1701 , the alien-head screw 1507, the split-ring lock washer 1506, the fender washer 1505 and the laminar neoprene rubber seal 1504 and the check valve poppet 1503 are unified as an check valve poppet assembly 2401. Referring now to check valve 102 of Figure 25, the check valve poppet assembly 2401 has been moved to the right, either by the fuel pressure within the check valve body 1501 being greater than the check valve spring pressure plus the fuel pressure within the fuel tank, or by mechanical movement, thereby further compressing the check valve coil spring 1502 and unseating the laminar neoprene rubber seal 1504 so that fuel can flow through the check valve 102 via route 2501. Referring now to Figure 26, a complete fuel receiver and check valve assembly 100 is shown in a closed configuration installed within the female-threaded pipe coupling 2601 of the fuel tank 2602 in partial cross-sectional format. A weld or brazing 2603 around the circumference of the pipe coupling 2601 secures and seals the pipe coupling 2601 to the fuel tank 2602. The operation of both the fuel receiver assembly 101 and the check valve 102 should now be quite obvious in view of the foregoing description thereof. Referring now to Figure 27, a check valve drain insert 2700 is shown. The drain insert 2700 is utilized to drain the fuel tank after removal of the fuel receiver assembly 101. As the external threads 2701 of the drain insert engage the internal threads 1802 of the check valve body 1501 , the nose 2702 of the check valve drain insert 2700 displaces the check valve poppet assembly 2402, thereby compressing the check valve coil spring 1502 and unseating the laminar neoprene rubber seal 1504 so that fuel can flow from the fuel tank out through both the check valve 102 and the check valve drain insert 1700. It will be noted that like the fuel receiver body 201 and the check valve body 1501 , the check valve drain insert 2700 is a generally tubular interior open at both ends. Referring now to Figure 28, it will be noted that the check valve drain insert 2700 has internal threads 2801 for the attachment of a hose coupling (not shown). Referring now to Figure 29, this partial cross-sectional side view shows a check valve drain insert 2700 installed within the check valve 102. It can be seen that the nose 2702 of the check valve drain insert 2700 has displaced the check valve poppet assembly 2402, thereby opening the check valve 102. Referring now to Figure 30, a fuel receiver valve plug 401 is shown in combination with a check valve poppet engagement rod 3001 , the threaded end 3002 of which screws into the threaded aperture (see item 516 of Fig. 5) of the fuel receiver valve plug body 405, and mechanically displaces the check valve poppet assembly 2402 when the valve plug 401 is depressed by the nozzle plug release piston. It should be emphasized that this is an alternative embodiment of the invention, as fuel pressure alone, supplied by an external pump, is sufficient to displace the valve poppet assembly 2402. Although only several embodiments of the fuel receiver and check valve assembly 100 have been shown and described herein, it will be obvious to those having ordinary skill in the art that changes and modifications may be made thereto without departing from the scope and the spirit of the invention.

Claims

CLAIMS What is claimed is:
1. A fuel receiver and check valve assembly for installation in a threaded coupling sealably installed at or near the bottom of a bottom-filled fuel tank, the fuel receiver and check valve assembly comprising: a check valve body having external threads sized to engage the threaded coupling, said check valve body having a flow-through chamber with entrance and exit ends, said entrance end having a female-threaded socket; a spring-loaded, normally-closed valve that blocks said flow-through chamber when closed, and is openable with pressure within the chamber; a fuel receiver body having a generally tubular chamber open at both entrance and exit ends, the entrance end of said tubular chamber having a conical portion expansive toward the tubular chamber exit end, the exit end of said tubular chamber being coupleable to said female-threaded socket; a spring-loaded valve plug having an operculum seal operating to seal said conical portion of said generally tubular chamber.
2. The fuel receiver and check valve assembly of claim 1 , wherein said fuel receiver body has an annular circumferential shoulder near said exit end, and said fuel receiver and check valve assembly further comprises an annular securing nut that bears against said annular circumferential shoulder an engages the female-threaded socket so as to couple the fuel receiver body to the check valve body.
3. The fuel receiver and check valve assembly of claim 1 , wherein said spring- loaded, normally-closed valve openable with pressure is a poppet valve having a check valve poppet that, when the poppet valve is closed, is positioned within the check valve body, said poppet valve also having a seal that is secured to an outer end of said check valve poppet, and which seals the exit opening of said flow- through chamber when the poppet valve is closed, said poppet valve being biased to a closed position by a spring that is located entirely within said flow-through chamber, surrounds a major portion of said check valve poppet, and is compressed between an internal flange adjacent the exit end of said flow-through chamber and an inner end of said check valve poppet.
4. The fuel receiver and check valve assembly of claim 1 , wherein a joint between the fuel receiver body and the check valve body is sealed with an O-ring that installs within an O-ring groove radially positioned on the exterior of the fuel receiver body, said O-ring being compressed by an interior cylindrical sealing surface within the check valve body.
5. The fuel receiver and check valve assembly of claim 2, wherein said annular securing nut and said check valve body is each equipped with a wrench-engaging periphery.
6. The fuel receiver and check valve assembly of claim 5, wherein each wrench- engaging periphery is generally hexagonally shaped.
7. The fuel receiver and check valve assembly of claim 1 , wherein the coil spring which biases the valve plug and operculum seal is at all times positioned entirely within said fuel receiver body, and is compressed between an inner end of said valve plug and a snap ring installed within a snap ring groove located adjacent the exit end of said fuel receiver body.
8. The fuel receiver and check valve assembly of claim 1 , wherein said check valve retains any fuel present in said fuel tank when said fuel receiver is removed from said assembly.
9. The fuel receiver and check valve assembly of claim 8, wherein fuel can be drained from the fuel tank when the fuel receiver is removed from said assembly by installing a check valve drain insert within the female-threaded socket of said check valve body, said check valve drain insert having a nose that urges open the spring- loaded, normally-closed valve of the check valve.
10. The fuel receiver and check valve assembly of claim 3, which further comprises a check valve poppet engagement rod that is secured to said valve plug and mechanically couples said' valve plug to said valve poppet, so that when the former is urged to an open position, the latter is also.
11 . A check valve assembly for installation in a threaded coupling sealably installed at or near the bottom of a bottom-filled fuel tank, said check valve assembly comprising: a check valve body having external threads sized to engage the threaded coupling, said check valve body having a flow-through chamber with entrance and exit ends, said entrance end having a female-threaded socket; and a spring-loaded, normally-closed valve that blocks said flow-through chamber when closed, and is openable with pressure within the chamber.
12. The check valve assembly of claim 11 , wherein said spring-loaded, normally- closed valve openable with pressure is a poppet valve having a check valve poppet that, when the poppet valve is closed, is positioned within the check valve body, said poppet valve also having a seal that is secured to an outer end of said check valve poppet, and which seals the exit opening of said flow-through chamber when the poppet valve is closed, said poppet valve being biased to a closed position by a spring that is located entirely within said flow-through chamber, surrounds a major portion of said check valve poppet, and is compressed between an internal flange adjacent the exit end of said flow-through chamber and an inner end of said check valve poppet.
13. The check valve assembly of claim 12, wherein said check valve body is each equipped with a wrench-engaging periphery so that said check valve body may be tightened in said threaded coupling.
14. In combination with the check valve assembly of claim 11 , a fuel receiver assembly which can be coupled to a conventional fuel nozzle, said fuel "receiver comprising: a fuel receiver body having a generally tubular chamber open at both entrance and exit ends, the entrance end of said tubular chamber having a conical portion expansive toward the tubular chamber exit end, the exit end of said tubular chamber being coupleable to said female-threaded socket; a spring-loaded valve plug having an operculum seal operating to seal said conical portion of said generally tubular chamber when no fuel nozzle is coupled to the fuel receiver.
15. The combination of claim 14, wherein said fuel receiver body has an annular circumferential shoulder near said exit end, and said fuel receiver assembly further comprises an annular securing nut that bears against said annular circumferential shoulder an engages the female-threaded socket so as to couple the fuel receiver body to the check valve body.
16. The combination of claim 15, wherein a joint between the fuel receiver body and the check valve body is sealed with an O-ring that installs within an O-ring groove radially positioned on the exterior of the fuel receiver body, said O-ring being compressed by an interior cylindrical sealing surface within the check valve body.
17. The combination of claim 11 , wherein the coil spring which biases the valve plug and operculum seal is at all times positioned entirely within said fuel receiver body, and is compressed between an inner end of said valve plug and a snap ring installed within a snap ring groove located adjacent the exit end of said fuel receiver body.
18. The combination of claim 11 , which further comprises a check valve poppet engagement rod that is secured to said valve plug and mechanically couples said valve plug to said normally-closed valve, so that when the former is urged to an open position, the latter is also.
19. In combination with the check valve assembly of claim 11 , a check valve drain insert which can be installed within the female-threaded socket of said check valve body, said check valve drain insert having a nose that urges open the spring-loaded, normally-closed valve of the check valve, thereby permitting the draining of the fuel tank.
20. The combination of claim 19, wherein said check valve drain insert is equipped with a wrench-engaging periphery so that it may be tightened within said female- threaded socket.
PCT/US2005/009099 2004-03-18 2005-03-17 Refueling assemblz having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks WO2005089482A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/571,445 US7591291B2 (en) 2004-03-18 2005-03-17 Refueling assembly having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks
CA 2560000 CA2560000A1 (en) 2004-03-18 2005-03-17 Refueling assemblz having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks
EP20050764697 EP1799550A2 (en) 2004-03-18 2005-03-17 Refueling assembly having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks
AU2005223687A AU2005223687B8 (en) 2004-03-18 2005-03-17 Refueling assembly having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks
US12/564,915 US20100071805A1 (en) 2004-03-18 2009-09-22 Refueling assembly having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55443404P 2004-03-18 2004-03-18
US60/554,434 2004-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/564,915 Division US20100071805A1 (en) 2004-03-18 2009-09-22 Refueling assembly having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks

Publications (2)

Publication Number Publication Date
WO2005089482A2 true WO2005089482A2 (en) 2005-09-29
WO2005089482A3 WO2005089482A3 (en) 2005-11-17

Family

ID=34994381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/009099 WO2005089482A2 (en) 2004-03-18 2005-03-17 Refueling assemblz having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks

Country Status (7)

Country Link
US (2) US7591291B2 (en)
EP (1) EP1799550A2 (en)
CN (1) CN100548808C (en)
AU (1) AU2005223687B8 (en)
CA (1) CA2560000A1 (en)
WO (1) WO2005089482A2 (en)
ZA (1) ZA200607774B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2147816A1 (en) * 2008-07-22 2010-01-27 DG Tec S.a.r.l. Fuel tank cap for a vehicle with a diesel engine
ITMI20131601A1 (en) * 2013-09-27 2015-03-28 Bosch Gmbh Robert PUMPING GROUP FOR FOOD FUEL, PREFERIBLY GASOIL, FROM A CONTAINMENT TANK TO AN INTERNAL COMBUSTION ENGINE
WO2017175832A1 (en) * 2016-04-07 2017-10-12 日東工器株式会社 Pipe joint member having valve body, and coil spring used in said pipe joint member
US10806853B2 (en) 2013-10-02 2020-10-20 Cook Medical Technologies Llc Therapeutic agents for delivery using a catheter and pressure source

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148179A1 (en) * 2007-06-08 2008-12-11 Wilson Erasmo Rebello Devices against theft of consumer fuel from vehicular tanks
AU2007358160B2 (en) 2007-08-31 2012-11-15 Walnab Pty Ltd Dry-break fuel receiver with integral back-flow prevention
US8316900B2 (en) * 2008-07-03 2012-11-27 Flomax International, Inc. Fluid receiver having removable sleeve
US20110163534A1 (en) * 2010-01-07 2011-07-07 Vincent Peter Biel Solar hot water storage system and dual passageway fitting assembly
US9335198B2 (en) * 2011-05-06 2016-05-10 Saint-Gobain Abrasives, Inc. Method of using a paint cup assembly
US20130126644A1 (en) * 2011-11-22 2013-05-23 Jeremy Popovich Threaded Injector Mount
US20160090776A1 (en) * 2013-05-27 2016-03-31 Michael John BOYDEN A double-glazed window or door assembly
US9610838B2 (en) 2013-10-08 2017-04-04 Flomax International, Inc. Fluid receiver
US9487080B2 (en) * 2014-07-29 2016-11-08 Caterpillar Inc. Draining system for fuel tank
EP3156661B1 (en) * 2015-10-15 2023-12-06 Grundfos Holding A/S Domestic water system or pump with a check valve
WO2017167743A1 (en) * 2016-03-29 2017-10-05 Plastic Omnium Advanced Innovation And Research Blow molded support for inlet check valve
AU2017266442C1 (en) * 2016-05-19 2023-09-07 Walnab Pty Ltd Fluid coupling assembly
MX2023001581A (en) * 2018-06-07 2023-03-08 The Bentley Group Ltd Flow control valve.
CN110395108A (en) * 2019-07-10 2019-11-01 上海未蓝工业技术有限公司 A kind of fuel filling connector with anti-theft function
WO2021035737A1 (en) * 2019-08-30 2021-03-04 深圳市大疆创新科技有限公司 Water tank, valve body assembly, spraying system and unmanned aerial vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662793A (en) 1969-10-29 1972-05-16 Wiggins Inc E B Closed system liquid transfer apparatus with pressure-sensitive shut-off
US4919174A (en) 1986-04-11 1990-04-24 Warland John R Filling means

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2384628A (en) * 1944-06-06 1945-09-11 Wheaton Brass Works Tank truck bottom loading and discharge means
US2522406A (en) * 1946-06-10 1950-09-12 Phillips Petroleum Co Combination valve
US2638916A (en) * 1947-03-29 1953-05-19 Albert T Scheiwer Fueling device
US2905487A (en) * 1956-07-20 1959-09-22 Herbert E Schifter Double valve construction and the like
US3151893A (en) * 1960-05-25 1964-10-06 L & L Mfg Company Tube coupling
US3542063A (en) * 1968-06-06 1970-11-24 Fisher Governor Co Filler valve
DE2616803C2 (en) * 1976-04-15 1984-11-29 Kiefer, Siegfried, 4630 Bochum Valve for draining lubricating oil
DE2754348A1 (en) * 1977-12-07 1979-06-13 Juergen Berger OIL DRAIN AND COLLECTOR
GB2160561B (en) * 1984-06-20 1987-07-29 Nippon Speed Shore An expansion beam for shoring sand guards
US5667195A (en) * 1995-11-13 1997-09-16 Matthew Howard McCormick Fluid drain apparatus
US20030015240A1 (en) * 2001-07-23 2003-01-23 Nelson Donald R. Poppet valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662793A (en) 1969-10-29 1972-05-16 Wiggins Inc E B Closed system liquid transfer apparatus with pressure-sensitive shut-off
US4919174A (en) 1986-04-11 1990-04-24 Warland John R Filling means

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2147816A1 (en) * 2008-07-22 2010-01-27 DG Tec S.a.r.l. Fuel tank cap for a vehicle with a diesel engine
ITMI20131601A1 (en) * 2013-09-27 2015-03-28 Bosch Gmbh Robert PUMPING GROUP FOR FOOD FUEL, PREFERIBLY GASOIL, FROM A CONTAINMENT TANK TO AN INTERNAL COMBUSTION ENGINE
US10806853B2 (en) 2013-10-02 2020-10-20 Cook Medical Technologies Llc Therapeutic agents for delivery using a catheter and pressure source
US11696984B2 (en) 2013-10-02 2023-07-11 Cook Medical Technologies Llc Therapeutic agents for delivery using a catheter and pressure source
WO2017175832A1 (en) * 2016-04-07 2017-10-12 日東工器株式会社 Pipe joint member having valve body, and coil spring used in said pipe joint member
CN108884957A (en) * 2016-04-07 2018-11-23 日东工器株式会社 Helical spring used in pipe fitting component and the pipe fitting component with spool
US11105453B2 (en) 2016-04-07 2021-08-31 Nitto Kohki Co., Ltd. Pipe coupling member having valve element and coil spring for use therein

Also Published As

Publication number Publication date
ZA200607774B (en) 2008-06-25
EP1799550A2 (en) 2007-06-27
WO2005089482A3 (en) 2005-11-17
AU2005223687B8 (en) 2012-03-22
AU2005223687A8 (en) 2012-03-22
AU2005223687A1 (en) 2005-09-29
CA2560000A1 (en) 2005-09-29
CN101005988A (en) 2007-07-25
CN100548808C (en) 2009-10-14
AU2005223687B2 (en) 2012-02-02
US7591291B2 (en) 2009-09-22
US20070062603A1 (en) 2007-03-22
US20100071805A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US7591291B2 (en) Refueling assembly having a check valve receptacle and a replaceable fuel receiver for bottom-filled fuel tanks
US9322498B2 (en) Magnetic breakaway coupling with swivel connection
US9140393B2 (en) Fuel line breakaway connector secured by plurality of individually spaced magnets
US8596297B2 (en) Dry-break fuel receiver with integral back-flow prevention
EP0650005B1 (en) Breakaway concentric hose coupling
US5433410A (en) Drain valve
EP1419808B1 (en) Fluid filter, drain mechanism thereof and draining method of fluid filter
US20130134343A1 (en) Ball valve
US20060290137A1 (en) Threaded coupling for receptacles, such as expansion vessels, tanks and the like
US5346260A (en) Device for connecting a fuel nozzle to a filling hose
US9527379B2 (en) Fill pipe anti-siphon device and method of use
US20120242077A1 (en) Hose Coupling and Protective Hose
US9010355B1 (en) Easy-flow flushing system
US8387646B2 (en) Double-walled contained shear valve, particularly for fueling environments
US8210382B2 (en) Locking mechanism for home heating fuel oil fill port
US3380619A (en) Radiator cap
CA2956828C (en) Breather check valve
CA2927262C (en) Fluid receiver
US20040226604A1 (en) Poppet shear protection apparatus and system
US5207358A (en) Isolation apparatus for a dispenser delivery system
US9581257B2 (en) Fluid evacuation valve with break-away groove
GB1561514A (en) Hose check valve
GB2261043A (en) Quick release pipe couplings with automatically opened valve
FR2974826A1 (en) Connecting device for connecting water meter to water pipeline in hydraulic assembly, has elbow including connection end provided with tight fitting unit fitted into respective housings of equipment bodies
GB2285112A (en) Lockable valve in an hydraulic circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2007062603

Country of ref document: US

Ref document number: 10571445

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2560000

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005223687

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2005223687

Country of ref document: AU

Date of ref document: 20050317

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005223687

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580011817.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 10571445

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005764697

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005764697

Country of ref document: EP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)