明 細 書 Specification
加工対象物切断方法 Processing object cutting method
技術分野 Technical field
[0001] 本発明は、ウェハ状の加工対象物を切断予定ラインに沿って切断する加工対象物 切断方法に関する。 [0001] The present invention relates to a workpiece cutting method for cutting a wafer-like workpiece along a planned cutting line.
背景技術 Background art
[0002] 従来におけるこの種の技術として、下記の特許文献 1には次のようなレーザ加工方 法が記載されている。すなわち、平板状の加工対象物にその表面を保護する部材を 装着し、加工対象物の裏面をレーザ光入射面としてレーザ光を照射することで、切断 予定ラインに沿って加工対象物の内部に改質領域による切断起点領域を形成する。 続いて、加工対象物の裏面に伸張性のフィルムを装着し、その伸張性のフィルムを 伸張させることで、切断起点領域を起点として加工対象物が切断されて生じた複数 の部分を互いに分離する。 [0002] As this type of conventional technology, the following laser processing method is described in Patent Document 1 below. That is, by attaching a member that protects the surface of a flat workpiece to be processed, and irradiating the laser beam with the back surface of the workpiece as the laser beam incident surface, the inside of the workpiece is cut along the planned cutting line. A cutting start region is formed by the modified region. Subsequently, a stretchable film is attached to the back surface of the workpiece, and the stretchable film is stretched to separate a plurality of parts generated by cutting the workpiece from the cutting start region. .
特許文献 1:特開 2004-1076号公報 Patent Document 1: Japanese Patent Laid-Open No. 2004-1076
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0003] ところで、上述したレーザカ卩ェ方法においては、切断起点領域が形成された加工 対象物は切断起点領域を起点として切断され易い状態にあり、し力も、切断起点領 域を起点として加工対象物が切断された場合、それにより生じた複数の部分は互い に密接した状態にある。そのため、例えば、表面を保護する部材として保護フィルム を用いた場合にぉ 、て、切断されて生じた複数の部分にチッビングやクラッキング等 の不具合が発生するのを防止するためには、切断起点領域が形成された加工対象 物を慎重に取り扱う必要がある。 [0003] By the way, in the laser carriage method described above, the object to be processed in which the cutting start region is formed is in a state of being easily cut from the cutting start region, and the force to be processed starts from the cutting start region. When an object is cut, the resulting parts are in close contact with each other. Therefore, for example, when a protective film is used as a member for protecting the surface, in order to prevent a defect such as chipping or cracking from occurring in a plurality of parts generated by cutting, a cutting start region It is necessary to handle the processed object with a caution.
[0004] そこで、本発明は、このような事情に鑑みてなされたものであり、切断起点領域が形 成された加工対象物の取り扱!/ヽを容易化し、且つ切断起点領域を起点として加工対 象物が切断されて生じた複数の部分にチッビングやクラッキング等の不具合が発生 するのを防止することができる加工対象物切断方法を提供することを目的とする。
課題を解決するための手段 [0004] Therefore, the present invention has been made in view of such circumstances, and handles a workpiece to be processed in which a cutting start region is formed! Providing a method for cutting workpieces that can make wrinkles easier and prevent problems such as chipping and cracking from occurring in multiple parts that are generated by cutting the workpiece from the cutting origin area The purpose is to do. Means for solving the problem
[0005] 上記目的を達成するために、本発明に係る加工対象物切断方法は、ウェハ状の加 ェ対象物を切断予定ラインに沿って切断する加工対象物切断方法であって、加工 対象物の表面に形状保持体が取り付けられた状態で、加工対象物の裏面をレーザ 光入射面として加工対象物の内部に集光点を合わせてレーザ光を照射することで改 質領域を形成し、その改質領域によって、切断予定ラインに沿ってレーザ光入射面 カゝら所定距離内側に切断起点領域を形成する工程と、切断起点領域が形成された 加工対象物の裏面に拡張可能フィルムを取り付ける工程と、拡張可能フィルムが取り 付けられた加工対象物の表面から形状保持体を取り外す工程と、拡張可能フィルム を拡張させることで、切断起点領域を起点として加工対象物が切断されて生じた複 数の部分を互いに離間させる工程とを含むことを特徴とする。 In order to achieve the above object, a processing object cutting method according to the present invention is a processing object cutting method for cutting a wafer-shaped processing object along a planned cutting line, and the processing object cutting method With the shape holder attached to the surface of the workpiece, the back surface of the object to be processed is the laser light incident surface, the focused point is set inside the object to be processed, and a laser beam is irradiated to form a modified region. By the modified region, a step of forming a cutting start region within a predetermined distance from the laser light incident surface along the planned cutting line, and an expandable film is attached to the back surface of the workpiece on which the cutting start region is formed The process, the step of removing the shape holder from the surface of the workpiece to which the expandable film is attached, and the expansion of the expandable film result in the workpiece being cut and produced starting from the cutting start region. Characterized in that it comprises a step of separating from each other the portions of the doublet number.
[0006] この加工対象物切断方法においては、加工対象物の裏面をレーザ光入射面として 切断予定ラインに沿って加工対象物の内部に改質領域による切断起点領域を形成 する際中から、その加工対象物の裏面に拡張可能フィルムを取り付けるまでは、加工 対象物の表面に形状保持体が取り付けられている。この形状保持体により、加工対 象物の変形が確実に防止されるため、切断起点領域が形成された加工対象物の取 り扱いを容易化することができる。そして、加工対象物の表面から形状保持体を取り 外し、拡張可能フィルムを拡張させることで、切断起点領域を起点として加工対象物 が切断されて生じた複数の部分を互いに離間させる。これにより、切断起点領域が形 成された加工対象物は、その変形が確実に防止された状態を経て複数の部分に切 断されることになるため、切断されて生じた複数の部分にチッビングやクラッキング等 の不具合が発生するのを防止することができる。ここで、切断起点領域とは、加工対 象物が切断される際に切断の起点となる領域を意味する。この切断起点領域は、改 質領域が連続的に形成されることで形成される場合もあるし、改質領域が断続的に 形成されることで形成される場合もある。また、改質領域は、加工対象物の内部に集 光点を合わせてレーザ光を照射することで、多光子吸収或いはそれと同等の光吸収 を加工対象物の内部で生じさせることにより形成される。 [0006] In this method of cutting an object to be processed, when the back surface of the object to be processed is a laser light incident surface and the cutting start region is formed by the modified region inside the object to be processed along the line to be cut. Until the expandable film is attached to the back of the workpiece, a shape holder is attached to the surface of the workpiece. Since this shape holder reliably prevents deformation of the workpiece, it is possible to facilitate handling of the workpiece on which the cutting start region is formed. Then, the shape holding body is removed from the surface of the object to be processed, and the expandable film is expanded, thereby separating a plurality of portions generated by cutting the object to be processed from the cutting start region. As a result, the workpiece in which the cutting start region is formed is cut into a plurality of parts through a state in which the deformation is reliably prevented. It is possible to prevent problems such as cracking and cracking. Here, the cutting starting point region means a region that becomes a starting point of cutting when a workpiece is cut. The cutting start region may be formed by continuously forming the modified region, or may be formed by intermittently forming the modified region. The modified region is formed by causing multi-photon absorption or equivalent light absorption to occur inside the workpiece by irradiating the laser beam with the light collecting point aligned inside the workpiece. .
[0007] また、切断起点領域を形成する工程は、レーザ加工装置にぉ 、て行われ、形状保
持体を取り外す工程、及び複数の部分を互いに離間させる工程は、フィルム拡張装 置にお 、て行われることが好まし 、。このようにレーザカ卩ェ装置とフィルム拡張装置と を用いることで、各装置の構成を簡易化することができる。そして、レーザ加工装置か らフィルム拡張装置への加工対象物の搬送においては、加工対象物の内部に切断 起点領域が形成されているものの、加工対象物の表面には形状保持体が取り付けら れているため、搬送中に切断起点領域を起点として加工対象物が不意に切断されて しまうというような事態を防止することができる。 [0007] In addition, the step of forming the cutting start region is performed by a laser processing apparatus to maintain the shape. The step of removing the holder and the step of separating the plurality of parts from each other are preferably performed in a film expansion device. In this way, by using the laser carriage device and the film expansion device, the configuration of each device can be simplified. When the workpiece is transported from the laser processing apparatus to the film expanding apparatus, the shape starting body is attached to the surface of the workpiece, although the cutting start area is formed inside the workpiece. For this reason, it is possible to prevent a situation in which the workpiece is unexpectedly cut from the cutting start region during conveyance.
[0008] また、加工対象物がその表面に機能素子が形成された半導体基板である場合には 、半導体基板の表面には形状保持体が取り付けられるため、機能素子を保護するこ とができる。更に、例えば機能素子にレーザ光を反射する部分が存在しても、切断起 点領域を形成する工程では裏面がレーザ光入射面となるため、半導体基板の内部 に切断起点領域を確実に形成することができる。ここで、機能素子とは、例えば、結 晶成長により形成された半導体動作層、フォトダイオード等の受光素子、レーザダイ オード等の発光素子、回路として形成された回路素子等を意味する。 [0008] When the object to be processed is a semiconductor substrate having a functional element formed on its surface, the shape holding body is attached to the surface of the semiconductor substrate, so that the functional element can be protected. Further, for example, even if there is a portion that reflects the laser beam in the functional element, the cutting start region is reliably formed inside the semiconductor substrate because the back surface becomes the laser beam incident surface in the step of forming the cutting start region. be able to. Here, the functional element means, for example, a semiconductor operation layer formed by crystal growth, a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit.
[0009] また、切断起点領域を形成する工程の前に、加工対象物の表面に形状保持体が 取り付けられた状態で、加工対象物の裏面を研磨する工程を含んでもよいし、或い は、切断起点領域を形成する工程と拡張可能フィルムを取り付ける工程との間に、加 ェ対象物の表面に形状保持体が取り付けられた状態で、加工対象物の裏面を研磨 する工程を含んでもよい。これらにより、加工対象物の表面を保護し、且つ加工対象 物の変形を防止しつつ、加工対象物を薄型化することができる。これらは、半導体デ バイスの小型化に伴って半導体基板の薄型化が望まれているため、加工対象物が 半導体基板である場合に特に有効である。ここで、研磨とは、切肖 lj、研肖 lj、ケミカルェ ツチング等を含む意味である。 [0009] In addition, before the step of forming the cutting start region, the method may include a step of polishing the back surface of the workpiece with the shape holder attached to the surface of the workpiece. The step of polishing the back surface of the workpiece may be included between the step of forming the cutting start region and the step of attaching the expandable film with the shape holder attached to the surface of the workpiece. . Accordingly, it is possible to reduce the thickness of the processing object while protecting the surface of the processing object and preventing the deformation of the processing object. These are particularly effective when the object to be processed is a semiconductor substrate because it is desired to reduce the thickness of the semiconductor substrate as the semiconductor device becomes smaller. Here, the term “polishing” includes cutting lj, polishing lj, chemical etching, and the like.
[0010] また、形状保持体は、ガラス製又は榭脂製であり、粘着剤層を介して加工対象物の 表面に取り付けられ、形状保持体を取り外す工程では、形状保持体側から粘着剤層 に電磁波を照射すること、又は粘着剤層を加熱することで粘着剤層の粘着力を低下 させ、加工対象物の表面から形状保持体を取り外すことが好ましい。これにより、加 ェ対象物の表面に対する形状保持体の取り付け、取り外しを容易に行うことができる
発明の効果 [0010] The shape holder is made of glass or resin, and is attached to the surface of the object to be processed via the pressure-sensitive adhesive layer. In the step of removing the shape holder, the shape holder is changed from the shape holder side to the pressure-sensitive adhesive layer. It is preferable to reduce the adhesive strength of the pressure-sensitive adhesive layer by irradiating electromagnetic waves or heating the pressure-sensitive adhesive layer, and to remove the shape holder from the surface of the workpiece. As a result, the shape holder can be easily attached to and removed from the surface of the workpiece. The invention's effect
[0011] 本発明によれば、切断起点領域が形成された加工対象物の取り扱!/ヽを容易化し、 且つ切断起点領域を起点として加工対象物が切断されて生じた複数の部分にチッピ ングゃクラッキング等の不具合が発生するのを防止することができる。 [0011] According to the present invention, it is possible to facilitate handling / wrinkle of a workpiece on which a cutting start area is formed, and to chip a plurality of portions generated by cutting the workpiece on the basis of the cutting start area. It is possible to prevent problems such as cracking.
図面の簡単な説明 Brief Description of Drawings
[0012] [図 1]本実施形態のレーザカ卩ェ方法によるレーザカ卩ェ中の加工対象物の平面図であ る。 [0012] FIG. 1 is a plan view of an object to be processed in a laser cage by the laser cage method of the present embodiment.
[図 2]図 1に示すカ卩ェ対象物の II II線に沿っての断面図である。 FIG. 2 is a cross-sectional view taken along line II-II of the cache object shown in FIG.
[図 3]本実施形態のレーザ加工方法によるレーザ加工後の加工対象物の平面図であ る。 FIG. 3 is a plan view of an object to be processed after laser processing by the laser processing method of the present embodiment.
[図 4]図 3に示すカ卩ェ対象物の IV— IV線に沿っての断面図である。 FIG. 4 is a cross-sectional view taken along line IV-IV of the cache object shown in FIG.
[図 5]図 3に示すカ卩ェ対象物の V— V線に沿っての断面図である。 FIG. 5 is a cross-sectional view taken along line V—V of the cache object shown in FIG. 3.
[図 6]本実施形態のレーザ加工方法により切断された加工対象物の平面図である。 FIG. 6 is a plan view of a processing object cut by the laser processing method of the present embodiment.
[図 7]本実施形態のレーザ加工方法における電界強度とクラックスポットの大きさとの 関係を示すグラフである。 FIG. 7 is a graph showing the relationship between electric field strength and crack spot size in the laser processing method of the present embodiment.
[図 8]本実施形態のレーザ加工方法の第 1工程における加工対象物の断面図である FIG. 8 is a cross-sectional view of an object to be processed in the first step of the laser processing method of the present embodiment.
[図 9]本実施形態のレーザ加工方法の第 2工程における加工対象物の断面図である FIG. 9 is a cross-sectional view of an object to be processed in the second step of the laser processing method of the present embodiment.
[図 10]本実施形態のレーザ加工方法の第 3工程における加工対象物の断面図であ る。 FIG. 10 is a cross-sectional view of an object to be processed in the third step of the laser processing method of the present embodiment.
[図 11]本実施形態のレーザ加工方法の第 4工程における加工対象物の断面図であ る。 FIG. 11 is a cross-sectional view of an object to be processed in a fourth step of the laser processing method of the present embodiment.
[図 12]本実施形態のレーザカ卩ェ方法により切断されたシリコンゥヱハの一部における 断面の写真を表した図である。 FIG. 12 is a view showing a photograph of a cross section of a part of a silicon wafer cut by the laser cage method of the present embodiment.
[図 13]本実施形態のレーザ加工方法におけるレーザ光の波長とシリコン基板の内部 の透過率との関係を示すグラフである。
[図 14]本実施形態の加工対象物切断方法において加工対象物となるシリコンウェハ の平面図である。 FIG. 13 is a graph showing the relationship between the wavelength of laser light and the transmittance inside a silicon substrate in the laser processing method of the present embodiment. FIG. 14 is a plan view of a silicon wafer that is a processing target in the processing target cutting method of the present embodiment.
[図 15]本実施形態の加工対象物切断方法を説明するための模式図であり、 (a)はシ リコンウェハに両面粘着テープを貼り付けた状態、(b)は両面粘着テープに形状保持 プレートを貼り付けた状態、(c)はシリコンウェハを研削している状態である。 FIG. 15 is a schematic diagram for explaining a method of cutting a workpiece according to the present embodiment, where (a) shows a state where a double-sided adhesive tape is attached to a silicon wafer, and (b) shows a shape holding plate on the double-sided adhesive tape. (C) is a state where the silicon wafer is being ground.
[図 16]本実施形態の加工対象物切断方法を説明するための模式図であり、 (a)はシ リコンウェハにレーザ光を照射している状態、(b)はシリコンウェハの内部に切断起点 領域が形成された状態、(c)はシリコンウェハにエキスパンドテープを貼り付けた状態 である。 FIG. 16 is a schematic diagram for explaining the workpiece cutting method of the present embodiment. (A) is a state in which a laser beam is irradiated on a silicon wafer, and (b) is a cutting start point inside the silicon wafer. (C) shows a state in which an expanded tape is attached to a silicon wafer.
[図 17]本実施形態の加工対象物切断方法を説明するための模式図であり、 (a)はフ イルム拡張装置において紫外線を照射している状態、(b)はフィルム拡張装置にお いて押圧部材を上昇させている状態、(c)はフィルム拡張装置において各チップが 互いに離間した状態である。 FIG. 17 is a schematic diagram for explaining a processing object cutting method according to the present embodiment, in which (a) is a state in which ultraviolet rays are irradiated in a film expansion apparatus, and (b) is in a film expansion apparatus. A state in which the pressing member is raised, (c) is a state in which the chips are separated from each other in the film expanding apparatus.
[図 18]本実施形態のフィルム拡張装置の斜視図であり、 (a)はシリコンウェハを装着し た状態、(b)は紫外線を照射している状態である。 FIG. 18 is a perspective view of the film expanding apparatus of the present embodiment, in which (a) shows a state where a silicon wafer is mounted, and (b) shows a state where ultraviolet rays are irradiated.
[図 19]本実施形態のフィルム拡張装置の斜視図であり、 (a)は吸着パッドを形状保持 プレート上に移動した状態、(b)は両面粘着テープ及び形状保持プレートを載置台 上に移動した状態である。 FIG. 19 is a perspective view of the film expansion device of the present embodiment, where (a) is a state where the suction pad is moved onto the shape holding plate, and (b) is a case where the double-sided adhesive tape and shape holding plate are moved onto the mounting table. It is in the state.
[図 20]本実施形態のフィルム拡張装置の斜視図であり、押圧部材を上昇させた状態 である。 FIG. 20 is a perspective view of the film expansion device of the present embodiment, in a state where the pressing member is raised.
[図 21]本実施形態の加工対象物切断方法の変形例を説明するための模式図であり 、(a)はシリコンウェハを研削している状態、(b)は保護フィルム上に保護フィルムを貼 り付けた状態である。 FIG. 21 is a schematic diagram for explaining a modified example of the workpiece cutting method of the present embodiment, where (a) is a state in which a silicon wafer is ground, and (b) is a protective film on the protective film. It is in the pasted state.
[図 22]本実施形態の加工対象物切断方法の変形例を説明するための模式図であり 、(a)はシリコンウェハを研削している状態、(b)は保護フィルム上に形状保持プレー トを貼り付けた状態である。 FIG. 22 is a schematic diagram for explaining a modified example of the workpiece cutting method of the present embodiment, in which (a) is a state in which a silicon wafer is being ground, and (b) is a shape holding plate on a protective film. Is pasted.
符号の説明 Explanation of symbols
1…加工対象物、 3…表面、 5…切断予定ライン、 7…改質領域、 8…切断起点領域
、 11· ··シリコンウェハ(半導体基板)、 13…溶融処理領域、 15…機能素子、 18…形 状保持プレート (形状保持体)、 19· ··エキスパンドテープ (拡張可能フィルム)、 21· ·· 裏面(レーザ光入射面)、 23· "チップ、 25· ··保護フィルム、 60· ··レーザカ卩ェ装置、 7 0…フィルム拡張装置、 L…レーザ光、 P…集光点。 1 ... Workpiece, 3 ... Surface, 5 ... Scheduled line, 7 ... Modified area, 8 ... Cutting origin area 11 ... Silicon wafer (semiconductor substrate), 13 ... Melting area, 15 ... Functional element, 18 ... Shape holding plate (Shape holder), 19 ... Expanded tape (expandable film), 21 ... · Back side (laser beam incident surface), 23 "chip, 25 ··· protective film, 60 ··· laser carriage device, 70 ··· film extension device, L · · · laser beam, P · ·
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明に係る加工対象物切断方法の好適な実施形態について、図面を参 照して詳細に説明する。本実施形態では、加工対象物の内部に改質領域を形成す るために多光子吸収という現象を利用する。そこで、最初に、多光子吸収により改質 領域を形成するためのレーザ加工方法について説明する。 [0014] Hereinafter, a preferred embodiment of a workpiece cutting method according to the present invention will be described in detail with reference to the drawings. In the present embodiment, a phenomenon called multiphoton absorption is used in order to form a modified region inside the workpiece. Therefore, first, a laser processing method for forming a modified region by multiphoton absorption will be described.
[0015] 材料の吸収のバンドギャップ E [0015] Band gap E of material absorption
Gよりも光子のエネルギー h v力 S小さいと光学的に透 明となる。よって、材料に吸収が生じる条件は h v >Eである。しかし、光学的に透明 Photon energy h v force S smaller than G makes it optically transparent. Therefore, the condition for absorption in the material is h v> E. But optically transparent
G G
でも、レーザ光の強度を非常に大きくすると nh v >Eの条件 (n= 2, 3, 4, " で However, if the intensity of the laser beam is very high, the condition of nh v> E (n = 2, 3, 4, "
G G
材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強 度はレーザ光の集光点のピークパワー密度 (WZcm2)で決まり、例えばピークパヮ 一密度が 1 X 108(WZcm2)以上の条件で多光子吸収が生じる。ピークパワー密度 は、(集光点におけるレーザ光の 1パルス当たりのエネルギー) ÷ (レーザ光のビーム スポット断面積 Xパルス幅)により求められる。また、連続波の場合、レーザ光の強度 はレーザ光の集光点の電界強度 (WZcm2)で決まる。 Absorption occurs in the material. This phenomenon is called multiphoton absorption. In the case of a pulse wave, the intensity of the laser beam is determined by the peak power density (WZcm 2 ) at the focal point of the laser beam. For example, multiphoton absorption occurs when the peak density is 1 X 10 8 (WZcm 2 ) or more. . The peak power density is calculated by (energy per pulse of laser beam at the focal point) ÷ (laser beam beam cross-sectional area X pulse width). In the case of a continuous wave, the intensity of the laser beam is determined by the electric field intensity (WZcm 2 ) at the condensing point of the laser beam.
[0016] このような多光子吸収を利用する本実施形態に係るレーザ加工方法の原理につい て、図 1一図 6を参照して説明する。図 1に示すように、ウェハ状 (平板状)の加工対象 物 1の表面 3には、加工対象物 1を切断するための切断予定ライン 5がある。切断予 定ライン 5は直線状に延びた仮想線である。本実施形態に係るレーザ加工方法では 、図 2に示すように、多光子吸収が生じる条件で加工対象物 1の内部に集光点 Pを合 わせてレーザ光 Lを照射して改質領域 7を形成する。なお、集光点 Pとは、レーザ光 L が集光する箇所のことである。また、切断予定ライン 5は、直線状に限らず曲線状で あってもよいし、仮想線に限らずカ卩ェ対象物 1に実際に引かれた線であってもよい。 The principle of the laser processing method according to this embodiment using such multiphoton absorption will be described with reference to FIGS. As shown in FIG. 1, a surface 3 of a wafer-like (flat plate) workpiece 1 has a planned cutting line 5 for cutting the workpiece 1. The cutting scheduled line 5 is a virtual line extending straight. In the laser processing method according to the present embodiment, as shown in FIG. 2, the modified region 7 is irradiated with the laser beam L by aligning the condensing point P inside the workpiece 1 under the condition that multiphoton absorption occurs. Form. In addition, the condensing point P is a location where the laser light L is condensed. Further, the planned cutting line 5 is not limited to a straight line but may be a curved line, or may be a line actually drawn on the cache object 1 without being limited to a virtual line.
[0017] そして、レーザ光 Lを切断予定ライン 5に沿って (すなわち、図 1の矢印 A方向に)相 対的に移動させることにより、集光点 Pを切断予定ライン 5に沿って移動させる。これ
により、図 3—図 5に示すように、改質領域 7が切断予定ライン 5に沿って加工対象物 1の内部に形成され、この改質領域 7が切断起点領域 8となる。本実施形態に係るレ 一ザカ卩ェ方法は、加工対象物 1がレーザ光 Lを吸収することにより加工対象物 1を発 熱させて改質領域 7を形成するものではな ヽ。加工対象物 1にレーザ光 Lを透過させ 加工対象物 1の内部に多光子吸収を発生させて改質領域 7を形成している。よって、 加工対象物 1の表面 3ではレーザ光 Lがほとんど吸収されないので、加工対象物 1の 表面 3が溶融することはな 、。 [0017] Then, the condensing point P is moved along the planned cutting line 5 by relatively moving the laser light L along the planned cutting line 5 (that is, in the direction of arrow A in FIG. 1). . this Thus, as shown in FIG. 3 to FIG. 5, the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 becomes the cutting start region 8. In the laser cleaning method according to the present embodiment, the processing object 1 absorbs the laser light L to cause the processing object 1 to generate heat and form the modified region 7. The modified region 7 is formed by allowing the laser beam L to pass through the workpiece 1 and generating multiphoton absorption inside the workpiece 1. Therefore, since the laser beam L is hardly absorbed on the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted.
[0018] 加工対象物 1の内部に切断起点領域 8を形成すると、この切断起点領域 8を起点と して割れが発生し易くなるため、図 6に示すように、比較的小さな力で加工対象物 1を 切断することができる。よって、加工対象物 1の表面 3に不必要な割れを発生させるこ となぐ加工対象物 1を高精度に切断することが可能になる。 [0018] If the cutting start region 8 is formed inside the workpiece 1, cracks are likely to occur starting from the cutting start region 8, so that the processing target can be processed with a relatively small force as shown in FIG. Item 1 can be cut. Therefore, it is possible to cut the workpiece 1 that causes unnecessary cracks in the surface 3 of the workpiece 1 with high accuracy.
[0019] この切断起点領域 8を起点としたカ卩ェ対象物 1の切断には、次の 2通りが考えられ る。 1つは、切断起点領域 8形成後、加工対象物 1に人為的な力が印加されることに より、切断起点領域 8を起点として加工対象物 1が割れ、加工対象物 1が切断される 場合である。これは、例えば加工対象物 1の厚さが大きい場合の切断である。人為的 な力が印加されるとは、例えば、加工対象物 1の切断起点領域 8に沿ってカ卩ェ対象 物 1に曲げ応力やせん断応力を加えたり、加工対象物 1に温度差を与えることにより 熱応力を発生させたりすることである。他の 1つは、切断起点領域 8を形成することに より、切断起点領域 8を起点として加工対象物 1の断面方向(厚さ方向)に向力つて自 然に割れ、結果的に加工対象物 1が切断される場合である。これは、例えば加工対 象物 1の厚さが小さい場合には、 1列の改質領域 7により切断起点領域 8が形成され ることで可能となり、加工対象物 1の厚さが大きい場合には、厚さ方向に複数列形成 された改質領域 7により切断起点領域 8が形成されることで可能となる。なお、この自 然に割れる場合も、切断する箇所において、切断起点領域 8が形成されていない部 位に対応する部分の表面 3上にまで割れが先走ることがなぐ切断起点領域 8を形成 した部位に対応する部分のみを割断することができるので、割断を制御よくすること ができる。近年、シリコンウェハ等の加工対象物 1の厚さは薄くなる傾向にあるので、 このような制御性のよい割断方法は大変有効である。
[0020] さて、本実施形態に係るレーザ加工方法において、多光子吸収により形成される改 質領域としては、次の(1)一 (3)の場合がある。 [0019] The following two types of cutting of the cleaning object 1 starting from the cutting starting region 8 are conceivable. First, after the cutting start region 8 is formed, an artificial force is applied to the processing target 1, so that the processing target 1 is cracked and the processing target 1 is cut from the cutting start region 8. Is the case. This is, for example, cutting when the workpiece 1 is thick. The artificial force is applied, for example, by applying a bending stress or a shear stress to the workpiece 1 along the cutting start region 8 of the workpiece 1 or giving a temperature difference to the workpiece 1. To generate thermal stress. The other is that by forming the cutting start region 8, it naturally cracks in the cross-sectional direction (thickness direction) of the workpiece 1 starting from the cutting start region 8, resulting in the processing target. This is the case where object 1 is cut. For example, when the thickness of the workpiece 1 is small, this can be achieved by forming the cutting start region 8 by the modified region 7 in one row, and when the thickness of the workpiece 1 is large. This can be achieved by forming the cutting start region 8 by the modified region 7 formed in a plurality of rows in the thickness direction. Even in the case of natural cracking, the part where the cutting start region 8 is formed so that the crack does not run on the surface 3 of the portion corresponding to the portion where the cutting start region 8 is not formed at the part to be cut. Since only the part corresponding to can be cleaved, the cleaving can be controlled well. In recent years, since the thickness of the workpiece 1 such as a silicon wafer tends to be thin, such a cleaving method with good controllability is very effective. [0020] Now, in the laser processing method according to the present embodiment, there are the following cases (1), (1) and (3) as the modified region formed by multiphoton absorption.
[0021] (1)改質領域が 1つ又は複数のクラックを含むクラック領域の場合 [0021] (1) When the modified region is a crack region including one or more cracks
加工対象物(例えばガラスや LiTaOカゝらなる圧電材料)の内部に集光点を合わせ Align the focusing point inside the workpiece (for example, piezoelectric material made of glass or LiTaO)
3 Three
て、集光点における電界強度が 1 X 108 (WZcm2)以上で且つパルス幅が 1 μ s以下 の条件でレーザ光を照射する。このパルス幅の大きさは、多光子吸収を生じさせつ つ加工対象物の表面に余計なダメージを与えずに、加工対象物の内部にのみクラッ ク領域を形成できる条件である。これにより、加工対象物の内部には多光子吸収によ る光学的損傷という現象が発生する。この光学的損傷により加工対象物の内部に熱 ひずみが誘起され、これにより加工対象物の内部にクラック領域が形成される。電界 強度の上限値としては、例えば 1 X 1012 (W/cm2)である。パルス幅は例えば Ins— 200nsが好ましい。なお、多光子吸収によるクラック領域の形成は、例えば、第 45回 レーザ熱加工研究会論文集(1998年. 12月)の第 23頁一第 28頁の「固体レーザー 高調波によるガラス基板の内部マーキング」に記載されて 、る。 Thus, the laser beam is irradiated under the condition that the electric field intensity at the focal point is 1 × 10 8 (WZcm 2 ) or more and the pulse width is 1 μs or less. The magnitude of the pulse width is a condition that allows a crack region to be formed only inside the workpiece without causing extra damage to the surface of the workpiece while causing multiphoton absorption. As a result, a phenomenon called optical damage due to multiphoton absorption occurs inside the workpiece. This optical damage induces thermal strain inside the workpiece, thereby forming a crack region inside the workpiece. The upper limit value of the electric field strength is, for example, 1 × 10 12 (W / cm 2 ). The pulse width is preferably Ins—200 ns, for example. The formation of crack regions by multiphoton absorption is described, for example, in the 45th Laser Thermal Processing Society of Japan Proceedings (December 1998), page 23 to page 28, “Solid Laser Harmonic Internal Glass It is described in “Marking”.
[0022] 本発明者は、電界強度とクラックの大きさとの関係を実験により求めた。実験条件は 次ぎの通りである。 [0022] The present inventor obtained the relationship between the electric field strength and the size of the crack by experiment. The experimental conditions are as follows.
[0023] (A)加工対象物:パイレックス (登録商標)ガラス (厚さ 700 m) [0023] (A) Workpiece: Pyrex (registered trademark) glass (thickness 700 m)
(B)レーザ (B) Laser
光源:半導体レーザ励起 Nd: YAGレーザ Light source: Semiconductor laser excitation Nd: YAG laser
波長: 1064nm Wavelength: 1064nm
レーザ光スポット断面積: 3. 14 X 10— 8cm2 Laser beam spot cross section: 3. 14 X 10— 8 cm 2
発振形態: Qスィッチパルス Oscillation form: Q switch pulse
繰り返し周波数: 100kHz Repeat frequency: 100kHz
パルス幅:30ns Pulse width: 30ns
出力:出力く lmjZパルス Output: Output lmjZ pulse
レーザ光品質: TEM Laser light quality: TEM
00 00
偏光特性:直線偏光 Polarization characteristics: Linear polarization
(C)集光用レンズ
レーザ光波長に対する透過率: 60パーセント (C) Condensing lens Transmittance for laser light wavelength: 60%
(D)加工対象物が載置される載置台の移動速度: lOOmmZ秒 (D) Moving speed of mounting table on which workpiece is mounted: lOOmmZ seconds
[0024] なお、レーザ光品質が TEM とは、集光性が高くレーザ光の波長程度まで集光可 [0024] It should be noted that the laser beam quality is TEM, which is highly condensing and can be focused to the wavelength of the laser beam
00 00
能を意味する。 Means Noh.
[0025] 図 7は上記実験の結果を示すグラフである。横軸はピークパワー密度であり、レー ザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は 1パ ルスのレーザ光により加工対象物の内部に形成されたクラック部分 (クラックスポット) の大きさを示している。クラックスポットが集まりクラック領域となる。クラックスポットの 大きさは、クラックスポットの形状のうち最大の長さとなる部分の大きさである。グラフ 中の黒丸で示すデータは集光用レンズ (C)の倍率が 100倍、開口数 (NA)が 0. 80 の場合である。一方、グラフ中の白丸で示すデータは集光用レンズ (C)の倍率が 50 倍、開口数 (NA)が 0. 55の場合である。ピークパワー密度が lO^WZcm2)程度 からカ卩ェ対象物の内部にクラックスポットが発生し、ピークパワー密度が大きくなるに 従 、クラックスポットも大きくなることが分かる。 FIG. 7 is a graph showing the results of the experiment. The horizontal axis is the peak power density. Since the laser beam is a pulsed laser beam, the electric field strength is expressed by the peak power density. The vertical axis shows the size of the crack part (crack spot) formed inside the workpiece by 1 pulse of laser light. Crack spots gather to form a crack region. The size of the crack spot is the size of the maximum length of the crack spot shape. The data indicated by the black circles in the graph is when the condenser lens (C) has a magnification of 100 and the numerical aperture (NA) is 0.80. On the other hand, the data indicated by white circles in the graph is for the case where the magnification of the condenser lens (C) is 50 times and the numerical aperture (NA) is 0.55. From the peak power density of about lO ^ WZcm 2 ), it can be seen that a crack spot is generated inside the cache object, and the crack spot increases as the peak power density increases.
[0026] 次に、クラック領域形成による加工対象物の切断のメカニズムについて、図 8—図 1 1を参照して説明する。図 8に示すように、多光子吸収が生じる条件で加工対象物 1 の内部に集光点 Pを合わせてレーザ光 Lを照射して切断予定ラインに沿って内部に クラック領域 9を形成する。クラック領域 9は 1つ又は複数のクラックを含む領域である 。このように形成されたクラック領域 9が切断起点領域となる。図 9に示すように、クラッ ク領域 9を起点として (すなわち、切断起点領域を起点として)クラックがさらに成長し 、図 10に示すように、クラックが加工対象物 1の表面 3と裏面 21とに到達し、図 11に 示すように、加工対象物 1が割れることにより加工対象物 1が切断される。加工対象物 1の表面 3と裏面 21とに到達するクラックは自然に成長する場合もあるし、加工対象 物 1に力が印加されることにより成長する場合もある。 [0026] Next, the mechanism of cutting the workpiece by forming a crack region will be described with reference to FIGS. As shown in FIG. 8, under the condition that multiphoton absorption occurs, the condensing point P is aligned inside the workpiece 1 and the laser beam L is irradiated to form a crack region 9 along the planned cutting line. The crack region 9 is a region including one or more cracks. The crack region 9 thus formed becomes a cutting start region. As shown in FIG. 9, the crack further grows starting from the crack region 9 (that is, starting from the cutting start region), and as shown in FIG. As shown in FIG. 11, when the workpiece 1 is cracked, the workpiece 1 is cut. A crack that reaches the front surface 3 and the back surface 21 of the workpiece 1 may grow naturally, or may grow when a force is applied to the workpiece 1.
[0027] (2)改質領域が溶融処理領域の場合 [0027] (2) When the reforming region is a melt processing region
加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集 光点における電界強度が 1 X 108(WZcm2)以上で且つパルス幅が 1 μ s以下の条 件でレーザ光を照射する。これにより加工対象物の内部は多光子吸収によって局所
的に加熱される。この加熱により加工対象物の内部に溶融処理領域が形成される。 溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融 状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域 ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造 において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、 単結晶構造力 非晶質構造に変化した領域、単結晶構造から多結晶構造に変化し た領域、単結晶構造力 非晶質構造及び多結晶構造を含む構造に変化した領域を 意味する。加工対象物がシリコン単結晶構造の場合、溶融処理領域は例えば非晶 質シリコン構造である。電界強度の上限値としては、例えば 1 X 1012 (WZcm2)であ る。パルス幅は例えば Ins— 200nsが好ましい。 Condition where the focusing point is set inside the object to be processed (for example, a semiconductor material such as silicon) and the electric field strength at the focusing point is 1 X 10 8 (WZcm 2 ) or more and the pulse width is 1 μs or less. The laser beam is irradiated with. As a result, the inside of the workpiece is localized by multiphoton absorption. Heated. By this heating, a melt processing region is formed inside the workpiece. The melt treatment region is a region once solidified after melting, a region in a molten state, or a region re-solidified from a molten state, and can also be referred to as a phase-changed region or a region where the crystal structure has changed. The melt-processed region can also be referred to as a region in which one structure is changed to another in a single crystal structure, an amorphous structure, or a polycrystalline structure. In other words, for example, a region changed to a single crystal structural force amorphous structure, a region changed from a single crystal structure to a polycrystalline structure, a region changed to a structure including a single crystal structural force amorphous structure and a polycrystalline structure. means. When the object to be processed has a silicon single crystal structure, the melt processing region has, for example, an amorphous silicon structure. The upper limit value of the electric field strength is, for example, 1 × 10 12 (WZcm 2 ). The pulse width is preferably Ins—200 ns, for example.
[0028] 本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により 確認した。実験条件は次の通りである。 [0028] The inventor has confirmed through experiments that a melt-processed region is formed inside a silicon wafer. The experimental conditions are as follows.
[0029] (A)加工対象物:シリコンウェハ(厚さ 350 μ m、外径 4インチ) [0029] (A) Workpiece: Silicon wafer (thickness 350 μm, outer diameter 4 inches)
(B)レーザ (B) Laser
光源:半導体レーザ励起 Nd: YAGレーザ Light source: Semiconductor laser excitation Nd: YAG laser
波長: 1064nm Wavelength: 1064nm
レーザ光スポット断面積: 3. 14 X 10— 8cm2 Laser beam spot cross section: 3. 14 X 10— 8 cm 2
発振形態: Qスィッチパルス Oscillation form: Q switch pulse
繰り返し周波数: 100kHz Repeat frequency: 100kHz
パルス幅:30ns Pulse width: 30ns
出力: 20 JZパルス Output: 20 JZ pulse
レーザ光品質: TEM Laser light quality: TEM
00 00
偏光特性:直線偏光 Polarization characteristics: Linear polarization
(C)集光用レンズ (C) Condensing lens
倍率: 50倍 Magnification: 50x
N. A. : 0. 55 N. A .: 0.55
レーザ光波長に対する透過率: 60パーセント Transmittance for laser light wavelength: 60%
(D)加工対象物が載置される載置台の移動速度: lOOmmZ秒
[0030] 図 12は、上記条件でのレーザカ卩ェにより切断されたシリコンウェハの一部における 断面の写真を表した図である。シリコンウェハ 11の内部に溶融処理領域 13が形成さ れている。なお、上記条件により形成された溶融処理領域 13の厚さ方向の大きさは 1 00 μ m程度である。 (D) Moving speed of mounting table on which workpiece is mounted: lOOmmZ seconds FIG. 12 is a view showing a photograph of a cross section of a part of a silicon wafer cut by a laser cage under the above conditions. A melt processing region 13 is formed inside the silicon wafer 11. The size in the thickness direction of the melt processing region 13 formed under the above conditions is about 100 μm.
[0031] 溶融処理領域 13が多光子吸収により形成されたことを説明する。図 13は、レーザ 光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコ ン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示し ている。シリコン基板の厚さ tが 50 μ m、 100 μ m、 200 μ m、 500 μ m、 1000 μ mの 各々について上記関係を示した。 [0031] It will be described that the melt processing region 13 is formed by multiphoton absorption. FIG. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate. However, the reflection component on the front side and the back side of the silicon substrate is removed, and the transmittance only inside is shown. The above relationship was shown for each of the silicon substrate thicknesses t of 50 μm, 100 μm, 200 μm, 500 μm, and 1000 μm.
[0032] 例えば、 Nd:YAGレーザの波長である 1064nmにおいて、シリコン基板の厚さが 5 00 m以下の場合、シリコン基板の内部ではレーザ光が 80%以上透過することが分 力る。図 12に示すシリコンウェハ 11の厚さは 350 mであるので、多光子吸収による 溶融処理領域 13はシリコンウェハ 11の中心付近、つまり表面から 175 mの部分に 形成される。この場合の透過率は、厚さ 200 mのシリコンウェハを参考にすると、 90 %以上なので、レーザ光がシリコンウェハ 11の内部で吸収されるのは僅かであり、ほ とんどが透過する。このことは、シリコンウェハ 11の内部でレーザ光が吸収されて、溶 融処理領域 13がシリコンウェハ 11の内部に形成(つまりレーザ光による通常の加熱 で溶融処理領域が形成)されたものではなぐ溶融処理領域 13が多光子吸収により 形成されたことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶 接学会全国大会講演概要第 66集(2000年 4月)の第 72頁一第 73頁の「ピコ秒パル スレーザによるシリコンの加工特性評価」に記載されている。 [0032] For example, when the thickness of the silicon substrate is 500 m or less at the wavelength of 1064 nm of the Nd: YAG laser, it is possible that 80% or more of the laser light is transmitted inside the silicon substrate. Since the thickness of the silicon wafer 11 shown in FIG. 12 is 350 m, the melt processing region 13 by multiphoton absorption is formed near the center of the silicon wafer 11, that is, at a portion of 175 m from the surface. In this case, the transmittance is 90% or more with reference to a silicon wafer having a thickness of 200 m. Therefore, the laser beam is hardly absorbed inside the silicon wafer 11, and almost all is transmitted. This is not the case where the laser beam is absorbed inside the silicon wafer 11 and the melting region 13 is formed inside the silicon wafer 11 (that is, the melting region is formed by normal heating with the laser beam). This means that the melt processing region 13 is formed by multiphoton absorption. The formation of the melt processing region by multiphoton absorption is, for example, “Evaluation of processing characteristics of silicon by picosecond pulse laser” on pages 72 to 73 of the 66th Annual Meeting Summary (April 2000). It is described in.
[0033] なお、シリコンウェハは、溶融処理領域によって形成される切断起点領域を起点と して断面方向に向力つて割れを発生させ、その割れがシリコンウェハの表面と裏面と に到達することにより、結果的に切断される。シリコンウェハの表面と裏面に到達する この割れは自然に成長する場合もあるし、シリコンウェハに力が印加されることにより 成長する場合もある。そして、切断起点領域力 シリコンウェハの表面と裏面とに割れ が自然に成長する場合には、切断起点領域を形成する溶融処理領域が溶融してい る状態から割れが成長する場合と、切断起点領域を形成する溶融処理領域が溶融
している状態から再固化する際に割れが成長する場合とのいずれもある。ただし、ど ちらの場合も溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断 面には、図 12のように内部にのみ溶融処理領域が形成されている。このように、加工 対象物の内部に溶融処理領域によって切断起点領域を形成すると、割断時、切断 起点領域ライン力も外れた不必要な割れが生じにく 、ので、割断制御が容易となる。 [0033] It should be noted that the silicon wafer generates cracks by applying a force in the cross-sectional direction starting from the cutting start region formed by the melt processing region, and the crack reaches the front and back surfaces of the silicon wafer. , Resulting in disconnection. The cracks that reach the front and back surfaces of the silicon wafer may grow spontaneously, or they may grow when force is applied to the silicon wafer. Then, if the crack grows naturally on the front and back surfaces of the silicon wafer, the crack grows from the state where the melt processing area forming the cutting origin area is melted, and the cutting origin area Melt processing area to form a melt There are both cases where cracks grow when resolidifying from the state in which they are being carried out. However, in either case, the melt processing region is formed only inside the silicon wafer, and the melt processing region is formed only inside the cut surface after cutting as shown in FIG. As described above, when the cutting start region is formed in the workpiece by the melt processing region, unnecessary cracking in which the cutting starting region line force is also not easily generated at the time of cleaving, so that the cleaving control becomes easy.
[0034] (3)改質領域が屈折率変化領域の場合 [0034] (3) When the modified region is a refractive index changing region
加工対象物(例えばガラス)の内部に集光点を合わせて、集光点における電界強 度が 1 X 108 (W/cm2)以上で且つパルス幅が Ins以下の条件でレーザ光を照射す る。パルス幅を極めて短くして、多光子吸収を加工対象物の内部に起こさせると、多 光子吸収によるエネルギーが熱エネルギーに転ィ匕せずに、加工対象物の内部には イオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて屈折率 変化領域が形成される。電界強度の上限値としては、例えば 1 X 1012(WZcm2)で ある。パルス幅は例えば Ins以下が好ましぐ lps以下がさらに好ましい。多光子吸収 による屈折率変化領域の形成は、例えば、第 42回レーザ熱加工研究会論文集(19 97年. 11月)の第 105頁一第 111頁の「フェムト秒レーザー照射によるガラス内部へ の光誘起構造形成」に記載されている。 Align the focusing point inside the workpiece (eg glass) and irradiate the laser beam under the condition that the electric field strength at the focusing point is 1 X 10 8 (W / cm 2 ) or more and the pulse width is Ins or less. The When the pulse width is made extremely short and multiphoton absorption is caused to occur inside the workpiece, the energy due to multiphoton absorption does not convert to thermal energy, and the ionic valence changes inside the workpiece, A permanent structural change such as crystallization or polarization orientation is induced to form a refractive index changing region. The upper limit value of the electric field strength is, for example, 1 × 10 12 (WZcm 2 ). For example, the pulse width is preferably less than Ins, more preferably less than lps. The formation of the refractive index change region by multiphoton absorption is described in, for example, “The Femtosecond Laser Irradiation into the Glass” on pages 105-1111 of the 42nd Laser Thermal Processing Workshop Proceedings (November 1997). Photo-induced structure formation ”.
[0035] 以上、多光子吸収により形成される改質領域として(1)一 (3)の場合を説明したが、 ウェハ状の加工対象物の結晶構造やその劈開性などを考慮して切断起点領域を次 のように形成すれば、その切断起点領域を起点として、より一層小さな力で、し力も精 度良く加工対象物を切断することが可能になる。 As described above, the case of (1) one (3) has been described as the modified region formed by multiphoton absorption. However, the cutting origin is considered in consideration of the crystal structure of the wafer-like workpiece and its cleavage property. If the region is formed in the following manner, the workpiece can be cut with a smaller force and a higher accuracy with the cutting starting region as a starting point.
[0036] すなわち、シリコンなどのダイヤモンド構造の単結晶半導体力 なる基板の場合は 、 ( 111)面 (第 1劈開面)や ( 110)面 (第 2劈開面)に沿った方向に切断起点領域を 形成するのが好ましい。また、 GaAsなどの閃亜鉛鉱型構造の III V族化合物半導体 力 なる基板の場合は、(110)面に沿った方向に切断起点領域を形成するのが好ま しい。さら〖こ、サファイア (Al O )などの六方晶系の結晶構造を有する基板の場合は [0036] That is, in the case of a substrate having a single crystal semiconductor force of diamond structure such as silicon, the cutting origin region in the direction along the (111) plane (first cleavage plane) or the (110) plane (second cleavage plane) Is preferably formed. In addition, in the case of a substrate having a zinc-blende structure III V group compound semiconductor such as GaAs, it is preferable to form the cutting origin region in the direction along the (110) plane. In the case of a substrate with a hexagonal crystal structure such as Sarako and sapphire (Al 2 O 3)
2 3 twenty three
、 (0001)面(C面)を主面として( 1120)面(八面)或いは( 1100)面(M面)に沿った 方向に切断起点領域を形成するのが好まし ヽ。 The cutting origin region is preferably formed in the direction along the (1120) plane (eight plane) or the (1100) plane (M plane) with the (0001) plane (C plane) as the main plane.
[0037] なお、上述した切断起点領域を形成すべき方向(例えば、単結晶シリコン基板にお
ける(111)面に沿った方向)、或!、は切断起点領域を形成すべき方向に直交する方 向に沿って基板にオリエンテーションフラットを形成すれば、そのオリエンテーション フラットを基準とすることで、切断起点領域を形成すべき方向に沿った切断起点領域 を容易且つ正確に基板に形成することが可能になる。 [0037] Note that the above-described cutting start region should be formed (for example, on a single crystal silicon substrate). If the orientation flat is formed on the substrate along the direction perpendicular to the direction in which the cutting start region is to be formed, the orientation flat is used as a reference. It becomes possible to easily and accurately form the cutting start region along the direction in which the cutting start region is to be formed on the substrate.
[0038] 以下、本発明に係る加工対象物切断方法の好適な実施形態について説明する。 [0038] Hereinafter, a preferred embodiment of a workpiece cutting method according to the present invention will be described.
なお、図 15—図 17は、図 14のシリコンウェハの XV— XV線に沿っての部分断面図で ある。 15 to 17 are partial cross-sectional views of the silicon wafer in FIG. 14 along the XV-XV line.
[0039] 図 14に示すように、加工対象物となるシリコンウェハ(半導体基板) 11の表面 3には 、複数の機能素子 15がオリエンテーションフラット 16に平行な方向及び垂直な方向 にマトリックス状にパターン形成されて 、る。このようなシリコンウェハ 11を次のようにし て機能素子 15毎に切断する。 As shown in FIG. 14, on the surface 3 of the silicon wafer (semiconductor substrate) 11 to be processed, a plurality of functional elements 15 are patterned in a matrix in a direction parallel to and perpendicular to the orientation flat 16. Formed. Such a silicon wafer 11 is cut for each functional element 15 as follows.
[0040] まず、図 15 (a)に示すように、シリコンウェハ 11の表面 3に両面粘着テープ 17を貼 り付ける。この両面粘着テープ 17のシリコンウェハ 11側の粘着剤層 17aは、紫外線 の照射により粘着力が低下し、且つシリコンウェハ 11との界面にガスが発生すること で、シリコンウェハ 11を自ら剥離させるものである。このような自己剥離型の両面粘着 テープ 17としては、例えば、積水化学工業株式会社の「セルファ(SELFA) (商品名 ;)」がある。そして、図 15 (b)に示すように、両面粘着テープ 17のシリコンウェハ 11と 反対側の粘着剤層 17bにガラス製の形状保持プレート (形状保持体) 18を貼り付け る。このように、機能素子 15が形成されたシリコンウェハ 11の表面 3に形状保持プレ ート 18が取り付けられるため、機能素子 15を保護することができる。 First, as shown in FIG. 15 (a), a double-sided adhesive tape 17 is attached to the surface 3 of the silicon wafer 11. The adhesive layer 17a on the silicon wafer 11 side of the double-sided adhesive tape 17 is one that peels the silicon wafer 11 by itself when the adhesive strength is reduced by irradiation of ultraviolet rays and gas is generated at the interface with the silicon wafer 11. It is. An example of such a self-peeling double-sided adhesive tape 17 is “SELFA (trade name;)” of Sekisui Chemical Co., Ltd. Then, as shown in FIG. 15 (b), a glass shape holding plate (shape holding body) 18 is attached to the pressure-sensitive adhesive layer 17 b on the opposite side of the double-sided pressure-sensitive adhesive tape 17 from the silicon wafer 11. Thus, since the shape-retaining plate 18 is attached to the surface 3 of the silicon wafer 11 on which the functional element 15 is formed, the functional element 15 can be protected.
[0041] 続いて、図 15 (c)に示すように、表面 3に形状保持プレート 18が取り付けられた状 態でシリコンウェハ 11を研削装置 50に搬送し、研削装置 50の加工台 51上に、シリコ ンウェハ 11の裏面 21を上方に向けて形状保持プレート 18を固定する。そして、シリ コンウェハ 11の裏面 21を回転砥石 52により平面研削し、例えば、厚さ 350 mのシ リコンウェハ 11を厚さ 100 /z mに薄型化する。このように形状保持プレート 18を用い ることで、シリコンウェハ 11の表面 3及び表面 3に形成された機能素子 15を保護し、 且つシリコンウェハ 11の変形を防止しつつ、シリコンウェハ 11を薄型化することがで きる。
[0042] 続いて、図 16 (a)に示すように、表面 3に形状保持プレート 18が取り付けられた状 態でシリコンウェハ 11をレーザ加工装置 60に搬送し、レーザカ卩ェ装置 60の加工台 6 1上に、シリコンウェハ 11の裏面 21を上方に向けて形状保持プレート 18を固定する。 そして、隣り合う機能素子 15, 15間を通るように切断予定ライン 5を格子状に設定し( 図 14の二点鎖線参照)、裏面 21をレーザ光入射面としてシリコンウェハ 11の内部に 集光点 Pを合わせて、多光子吸収が生じる条件でレーザ光 Lを照射しながら、加工台 61の移動により切断予定ライン 5に沿って集光点 Pを相対移動させる。これにより、シ リコンウェハ 11の内部には、図 16 (b)に示すように、切断予定ライン 5に沿って溶融 処理領域 13による切断起点領域 8が形成される。このようにシリコンウェハ 11の裏面 21をレーザ光入射面とすることで、例えば機能素子 15にレーザ光 Lを反射する部分 が存在しても、シリコンウェハ 11の内部に切断起点領域 8を確実に形成することがで きる。 Subsequently, as shown in FIG. 15 (c), the silicon wafer 11 is transported to the grinding device 50 in a state where the shape holding plate 18 is attached to the surface 3, and is placed on the work table 51 of the grinding device 50. Then, the shape holding plate 18 is fixed with the back surface 21 of the silicon wafer 11 facing upward. Then, the back surface 21 of the silicon wafer 11 is surface ground by the rotating grindstone 52, and the silicon wafer 11 having a thickness of 350 m is thinned to a thickness of 100 / zm, for example. By using the shape holding plate 18 in this way, the surface 3 of the silicon wafer 11 and the functional element 15 formed on the surface 3 are protected, and the silicon wafer 11 is reduced in thickness while preventing deformation of the silicon wafer 11. can do. Subsequently, as shown in FIG. 16 (a), the silicon wafer 11 is transported to the laser processing apparatus 60 in a state in which the shape holding plate 18 is attached to the surface 3, and the processing table of the laser carriage apparatus 60 is transferred. 6 On the substrate 1, the shape retaining plate 18 is fixed with the back surface 21 of the silicon wafer 11 facing upward. Then, the line 5 to be cut is set in a lattice shape so that it passes between the adjacent functional elements 15 and 15 (see the two-dot chain line in FIG. 14), and the back surface 21 is focused on the inside of the silicon wafer 11 with the laser light incident surface. By combining the point P and irradiating the laser beam L under conditions where multiphoton absorption occurs, the converging point P is relatively moved along the planned cutting line 5 by moving the processing table 61. As a result, inside the silicon wafer 11, as shown in FIG. 16 (b), a cutting start region 8 by the melt processing region 13 is formed along the planned cutting line 5. Thus, by making the back surface 21 of the silicon wafer 11 the laser light incident surface, for example, even if the functional element 15 has a portion that reflects the laser light L, the cutting start region 8 can be reliably formed inside the silicon wafer 11. Can be formed.
[0043] 続いて、形状保持プレート 18が取り付けられたシリコンウェハ 11を加工台 61から取 り外し、図 16 (c)に示すように、テープ貼付機(図示せず)を用いて、シリコンウェハ 1 1の裏面 21に、エキスパンドテープ (拡張可能フィルム) 19を貼り付ける。このエキス パンドテープ 19は、その外周部分がリング状のテープ固定枠 22に貼り付けられて、 このテープ固定枠 22に固定されている。 Subsequently, the silicon wafer 11 to which the shape holding plate 18 is attached is removed from the processing table 61, and as shown in FIG. 16 (c), a silicon wafer is used using a tape applicator (not shown). 1 Affix the expanded tape (expandable film) 19 to the back 21 of 1. The expandable tape 19 is fixed to the tape fixing frame 22 by attaching an outer peripheral portion thereof to a ring-shaped tape fixing frame 22.
[0044] 続いて、図 17 (a)に示すように、裏面 21にエキスパンドテープ 19が貼り付けられた シリコンウェハ 11を、表面 3に形状保持プレート 18が取り付けられた状態でフィルム 拡張装置 70に搬送し、テープ固定枠 22をリング状の受け部材 71とリング状の押え部 材 72とで挟持することで、シリコンウェハ 11をフィルム拡張装置 70に装着する。この 状態で形状保持プレート 18側から紫外線を照射し、粘着剤層 17aの粘着力を低下さ せ、且つシリコンウェハ 11との界面にガスを発生させることで、シリコンウェハ 11の表 面 3から両面粘着テープ 17及び形状保持プレート 18を取り外す。そして、図 17 (b) に示すように、受け部材 71の内側に配置された円柱状の押圧部材 73をエキスパンド テープ 19の下側から上昇させ、図 17 (c)に示すように、エキスパンドテープ 19を拡 張させることで、切断起点領域 8を起点としてシリコンウェハ 11を切断すると共に、切 断されて生じた各チップ 23を互いに離間させる。これにより、各チップ 23を容易且つ
確実にピックアップすることが可能になる。 Subsequently, as shown in FIG. 17 (a), the silicon wafer 11 with the expanded tape 19 attached to the back surface 21 is applied to the film expansion device 70 with the shape retaining plate 18 attached to the front surface 3. The silicon wafer 11 is mounted on the film expansion device 70 by conveying and holding the tape fixing frame 22 between the ring-shaped receiving member 71 and the ring-shaped pressing member 72. In this state, ultraviolet rays are irradiated from the shape-retaining plate 18 side to reduce the adhesive force of the adhesive layer 17a and generate gas at the interface with the silicon wafer 11, so that both sides of the surface 3 of the silicon wafer 11 are exposed. Remove the adhesive tape 17 and the shape retaining plate 18. Then, as shown in FIG. 17 (b), the columnar pressing member 73 disposed inside the receiving member 71 is raised from the lower side of the expanding tape 19, and as shown in FIG. By extending 19, the silicon wafer 11 is cut starting from the cutting start region 8, and the chips 23 generated by the cutting are separated from each other. As a result, each chip 23 can be easily and It is possible to reliably pick up.
[0045] 以上説明したカ卩ェ対象物切断方法においては、シリコンウェハ 11の裏面 21をレー ザ光入射面として切断予定ライン 5に沿ってシリコンウェハ 11の内部に溶融処理領域 13による切断起点領域 8を形成する際中から、そのシリコンウェハ 11の裏面 21にェ キスパンドテープ 19を貼り付けるまでは、シリコンウェハ 11の表面 3に形状保持プレ ート 18が取り付けられている。この形状保持プレート 18により、シリコンウェハ 11の変 形が確実に防止されるため、切断起点領域 8が形成されたシリコンウェハ 11の取り扱 いを容易化することができる。そして、シリコンウェハ 11の表面 3から形状保持プレー ト 18を取り外し、エキスパンドテープ 19を拡張させることで、切断起点領域 8を起点と してシリコンウェハ 11が切断されて生じた複数のチップ 23を互いに離間させる。これ により、切断起点領域 8が形成されたシリコンウェハ 11は、その変形が確実に防止さ れた状態を経て複数のチップ 23に切断されることになるため、切断されて生じた複数 のチップ 23にチッビングやクラッキング等の不具合が発生するのを防止することがで きる。 [0045] In the above-described method of cutting the object to be cut, the cutting start region by the melt processing region 13 is formed inside the silicon wafer 11 along the planned cutting line 5 with the back surface 21 of the silicon wafer 11 as the laser light incident surface. The shape retaining plate 18 is attached to the front surface 3 of the silicon wafer 11 from when the 8 is formed until the expanded tape 19 is attached to the back surface 21 of the silicon wafer 11. Since the shape holding plate 18 reliably prevents the deformation of the silicon wafer 11, the handling of the silicon wafer 11 in which the cutting start region 8 is formed can be facilitated. Then, the shape maintaining plate 18 is removed from the surface 3 of the silicon wafer 11 and the expanded tape 19 is expanded, so that the plurality of chips 23 generated by cutting the silicon wafer 11 from the cutting start region 8 can be connected to each other. Separate. As a result, the silicon wafer 11 on which the cutting start region 8 is formed is cut into a plurality of chips 23 through a state in which the deformation is surely prevented. It is possible to prevent problems such as chipping and cracking.
[0046] また、切断起点領域 8の形成はレーザ加工装置 60にお 、て行われ、形状保持プレ ート 18の取り外し及び各チップ 23の離間はフィルム拡張装置 70において行われる ため、各装置 60, 70の構成を簡易化することができる。そして、レーザ加工装置 60 力もフィルム拡張装置 70へのシリコンウェハ 11の搬送にお!、ては、シリコンウェハ 11 の内部に切断起点領域 8が形成されているものの、シリコンウェハ 11の表面 3には形 状保持プレート 18が取り付けられているため、搬送中に切断起点領域 8を起点として シリコンウェハ 11が不意に切断されてしまうというような事態を防止することができる。 [0046] In addition, the formation of the cutting start region 8 is performed by the laser processing apparatus 60, and the removal of the shape maintaining plate 18 and the separation of the chips 23 are performed by the film expanding apparatus 70. , 70 can be simplified. The laser processing device 60 is also used to transport the silicon wafer 11 to the film expansion device 70. Although the cutting start region 8 is formed inside the silicon wafer 11, the surface 3 of the silicon wafer 11 is Since the shape holding plate 18 is attached, it is possible to prevent a situation in which the silicon wafer 11 is unexpectedly cut from the cutting start region 8 during conveyance.
[0047] 次に、上述したフィルム拡張装置 70の構成について説明する。図 18—図 20に示 すように、フィルム拡張装置 70は、受け部材 71、押え部材 72及び押圧部材 73が設 けられた本体部 74と、この本体部 74に並設された載置台 75とを有している。本体部 74には開閉自在なカバー 79が取り付けられており、このカバー 79の内面には紫外 線ランプ 76が取り付けられている。更に、本体部 74には、吸着パッド 77が先端に固 定された揺動自在なアーム 78が取り付けられて 、る。 Next, the configuration of the film expansion device 70 described above will be described. As shown in FIG. 18 to FIG. 20, the film expansion device 70 includes a main body portion 74 provided with a receiving member 71, a pressing member 72, and a pressing member 73, and a mounting table 75 provided in parallel with the main body portion 74. And have. A cover 79 that can be freely opened and closed is attached to the main body 74, and an ultraviolet ray lamp 76 is attached to the inner surface of the cover 79. Furthermore, a swingable arm 78 having a suction pad 77 fixed to the tip is attached to the main body 74.
[0048] このように構成されたフィルム拡張装置 70の使用方法につ 、て説明する。まず、図
18 (a)に示すように、カバー 79を開放した状態で受け部材 71及び押え部材 72によ りシリコンウェハ 11をフィルム拡張装置 70に装着する。そして、図 18 (b)に示すように 、カバー 79を閉鎖し、この状態で紫外線ランプ 75により形状保持プレート 18側から 紫外線を照射する。これにより、シリコンウェハ 11の表面 3から両面粘着テープ 17及 び形状保持プレート 18が取り外し可能となる。 [0048] A method of using the film expansion device 70 configured as described above will be described. First, figure 18 (a), the silicon wafer 11 is mounted on the film expansion device 70 by the receiving member 71 and the holding member 72 with the cover 79 opened. Then, as shown in FIG. 18 (b), the cover 79 is closed, and in this state, the ultraviolet lamp 75 irradiates ultraviolet rays from the shape maintaining plate 18 side. As a result, the double-sided adhesive tape 17 and the shape retaining plate 18 can be removed from the surface 3 of the silicon wafer 11.
[0049] 続いて、図 19 (a)に示すように、カバー 79を開放し、この状態でアーム 78を揺動さ せて吸着パッド 77を形状保持プレート 18上に移動して、吸着パッド 77により形状保 持プレート 18を吸着する。その後、図 19 (b)に示すように、アーム 78を揺動させて両 面粘着テープ 17及び形状保持プレート 18を載置台 75上に移動する。そして、図 20 に示すように、押圧部材 73をエキスパンドテープ 19の下側から上昇させ、エキスパン ドテープ 19を拡張させることで、切断起点領域を起点としてシリコンウェハ 11が切断 されて生じた各チップ 23を互いに離間させる。 Subsequently, as shown in FIG. 19 (a), the cover 79 is opened, the arm 78 is swung in this state, the suction pad 77 is moved onto the shape holding plate 18, and the suction pad 77 is moved. The shape retaining plate 18 is adsorbed by this. Thereafter, as shown in FIG. 19 (b), the arm 78 is swung to move the double-sided adhesive tape 17 and the shape holding plate 18 onto the mounting table 75. Then, as shown in FIG. 20, by pressing the pressing member 73 from below the expanded tape 19 and expanding the expanded tape 19, each chip generated by cutting the silicon wafer 11 starting from the cutting start region 23 are separated from each other.
[0050] 本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態は、 加工対象物 1の内部で多光子吸収を生じさせて改質領域 7を形成する場合であった 力 加工対象物 1の内部で多光子吸収と同等の光吸収を生じさせて改質領域 7を形 成することができる場合ちある。 [0050] The present invention is not limited to the above embodiment. For example, the embodiment described above is a case where multi-photon absorption is generated inside the workpiece 1 to form the modified region 7. Force inside the workpiece 1 is equivalent to multi-photon absorption. In some cases, the modified region 7 can be formed.
[0051] また、上記実施形態は、エキスパンドテープ 19を拡張させることで、切断起点領域 8を起点としてシリコンウェハ 11を切断すると共に、切断されて生じた各チップ 23を互 いに離間させる場合であった力 本発明は、これに限定されるものではない。例えば 、表面 3に形状保持プレート 18が取り付けられた状態で、切断起点領域 8が形成され たシリコンゥヱハ 11に対して裏面 21側力 熱応力等の外力を印加することで、エキス パンドテープ 19を拡張させる前に、切断起点領域 8を起点としてシリコンウェハ 11を 切断しておいてもよい。 [0051] In the above embodiment, the expanded tape 19 is expanded so that the silicon wafer 11 is cut from the cutting start region 8 and the chips 23 generated by the cutting are separated from each other. The force which was present This invention is not limited to this. For example, the expanded tape 19 can be expanded by applying an external force such as a back surface 21 side force or thermal stress to the silicon wafer 11 in which the cutting start region 8 is formed in a state where the shape retaining plate 18 is attached to the front surface 3. Before the process, the silicon wafer 11 may be cut using the cutting start region 8 as a starting point.
[0052] また、シリコンウェハ 11の内部に切断起点領域 8を形成した後、シリコンウェハ 11の 裏面 21にエキスパンドテープ 19を貼り付ける前に、表面 3に形状保持プレート 18が 取り付けられた状態で、シリコンウェハ 11の裏面 21を研磨し、例えば、厚さ 100 m のシリコンウェハ 11を厚さ 50 μ m— 25 μ mにより一層薄型化してもよい。この場合に も、シリコンウェハ 11の表面 3を保護し、且つシリコンウェハ 11の変形を防止しつつ、
シリコンウェハ 11の更なる薄型化を達成することができる。 [0052] In addition, after forming the cutting start region 8 inside the silicon wafer 11, before attaching the expanded tape 19 to the back surface 21 of the silicon wafer 11, the shape retaining plate 18 is attached to the front surface 3, For example, the silicon wafer 11 having a thickness of 100 m may be further thinned to a thickness of 50 μm to 25 μm by polishing the back surface 21 of the silicon wafer 11. Also in this case, while protecting the surface 3 of the silicon wafer 11 and preventing the deformation of the silicon wafer 11, Further thinning of the silicon wafer 11 can be achieved.
[0053] また、上記実施形態は、形状保持プレート 18がガラス製の場合であつたが、形状保 持プレート 18は、それが取り付けられたシリコンウェハ 11の変形を防止し得る程度の 剛性を有するものであればょ 、(例えば、アクリル榭脂等の榭脂製であってもよ 、)。 ただし、上記実施形態のように、ガラス製の形状保持プレート 18を、粘着剤層 17aを 介してシリコンウェハ 11の表面 3に取り付け、その一方で、形状保持プレート 18側か ら粘着剤層 17aに紫外線を照射することで粘着剤層 17aの粘着力を低下させ、シリコ ンウェハ 11の表面 3から形状保持プレート 18を取り外すようにすれば、シリコンウェハ 11の表面 3に対する形状保持プレート 18の取り付け、取り外しを容易に行うことがで きる。なお、シリコンウェハ 11の表面 3に形状保持プレート 18を取り付けるために介在 させる粘着剤層として、紫外線その他の電磁波の照射又は加熱により粘着力が低下 するものを用いてもよい。これにより、粘着剤層に電磁波を照射すること、又は粘着剤 層を加熱することで粘着剤層の粘着力を低下させ、シリコンウェハ 11の表面 3から形 状保持プレート 18を容易に取り外すことが可能になる。 In the above embodiment, the shape maintaining plate 18 is made of glass. However, the shape maintaining plate 18 has a rigidity that can prevent deformation of the silicon wafer 11 to which the shape maintaining plate 18 is attached. If it is a thing (for example, it may be made of a resin such as acrylic resin). However, as in the above embodiment, the glass shape retaining plate 18 is attached to the surface 3 of the silicon wafer 11 via the adhesive layer 17a, and on the other hand, the adhesive layer 17a is applied from the shape retaining plate 18 side. If the adhesive force of the adhesive layer 17a is reduced by irradiating ultraviolet rays, and the shape retaining plate 18 is removed from the surface 3 of the silicon wafer 11, the shape retaining plate 18 is attached to and detached from the surface 3 of the silicon wafer 11. Can be easily performed. In addition, as the pressure-sensitive adhesive layer interposed for attaching the shape maintaining plate 18 to the surface 3 of the silicon wafer 11, a material whose adhesive strength is reduced by irradiation with ultraviolet rays or other electromagnetic waves or heating may be used. As a result, the adhesive force of the pressure-sensitive adhesive layer is reduced by irradiating the pressure-sensitive adhesive layer with electromagnetic waves or heating the pressure-sensitive adhesive layer, and the shape holding plate 18 can be easily removed from the surface 3 of the silicon wafer 11. It becomes possible.
[0054] また、上記実施形態は、形状保持体が形状保持プレート 18の場合であつたが、形 状保持体は、複数枚の保護フィルムが貼り合わされたものであってもよい。この場合、 図 21 (a)に示すように、シリコンウェハ 11の表面 3に保護フィルム 25を貼り付けた後、 研削装置 50の加工台 51上に、シリコンウェハ 11の裏面 21を上方に向けてシリコンゥ ェハ 11を固定し、シリコンウェハ 11の裏面 21を回転砥石 52により平面研削してシリコ ンウェハ 11を薄型化する。続いて、図 21 (b)に示すように、テープマウンター 80の吸 着台 81上に、シリコンウェハ 11の表面 3を上方に向けてシリコンウェハ 11を固定し、 既に貼り付けられている保護フィルム 25上に、更に 1枚又は複数枚の保護フィルム 2 5を貼り付ける。その後は、貼り合わされることでシリコンウェハ 11の変形を防止し得る 程度の剛性を有することとなった複数枚の保護フィルム 25を形状保持体として、上記 実施形態と同様の工程を実施する。なお、シリコンウェハ 11の表面 3から保護フィル ム 25を剥がし易くするための電磁波 (例えば、紫外線)の照射は、複数枚の保護フィ ルム 25を貼り合わせて力ら、フィルム拡張装置 70においてシリコンウェハ 11の表面 3 力も複数枚の保護フィルム 25を剥がすまでの間であれば、いつ行ってもよい。また、
保護フィルム 25を 1枚ずつ剥がす場合、それぞれ剥がすタイミングで電磁波 (例えば 、紫外線)を照射してもよい。 [0054] In the above embodiment, the shape holding body is the shape holding plate 18. However, the shape holding body may be formed by bonding a plurality of protective films. In this case, as shown in FIG. 21 (a), after the protective film 25 is attached to the front surface 3 of the silicon wafer 11, the back surface 21 of the silicon wafer 11 is directed upward on the processing table 51 of the grinding device 50. The silicon wafer 11 is fixed, and the back surface 21 of the silicon wafer 11 is surface ground with a rotating grindstone 52 to make the silicon wafer 11 thinner. Subsequently, as shown in FIG. 21 (b), the silicon wafer 11 is fixed on the suction table 81 of the tape mounter 80 with the surface 3 of the silicon wafer 11 facing upward, and the protective film already adhered. On top of 25, attach one or more protective films 25. Thereafter, the same process as in the above embodiment is performed using a plurality of protective films 25 that have been bonded to each other and have a rigidity sufficient to prevent deformation of the silicon wafer 11 as a shape holder. Note that the irradiation of electromagnetic waves (for example, ultraviolet rays) for facilitating the removal of the protective film 25 from the surface 3 of the silicon wafer 11 is performed by attaching a plurality of protective films 25 together to force the silicon wafer in the film expansion device 70. The surface 3 of 11 may be applied at any time as long as the protective film 25 is peeled off. Also, When the protective films 25 are peeled one by one, electromagnetic waves (for example, ultraviolet rays) may be irradiated at the timing of peeling.
[0055] 更に、形状保持体は、シリコンウェハ 11の表面 3に貼り付けられる保護フィルム 25と 、形状保持プレート 18とが貼り合わされたものであってもよい。この場合、図 22 (a)に 示すように、シリコンウェハ 11の表面 3に保護フィルム 25を貼り付けた後、研削装置 5 0の加工台 51上に、シリコンウェハ 11の裏面 21を上方に向けてシリコンウェハ 11を 固定し、シリコンウェハ 11の裏面 21を回転砥石 52により平面研削してシリコンウェハ 11を薄型化する。続いて、図 22 (b)に示すように、テープマウンター 80の吸着台 81 上に、シリコンウェハ 11の表面 3を上方に向けてシリコンウェハ 11を固定し、既に貼り 付けられている保護フィルム 25上に、更に形状保持プレート 18を貼り付ける。その後 は、保護フィルム 25及び形状保持プレート 18を形状保持体として、上記実施形態と 同様の工程を実施する。なお、シリコンウェハ 11の表面 3から保護フィルム 25及び形 状保持プレート 18を剥がし易くするための紫外線の照射は、保護フィルム 25上に形 状保持プレート 18を貼り付けてから、フィルム拡張装置 70においてシリコンウェハ 11 の表面 3から保護フィルム 25及び形状保持プレート 18を剥がすまでの間であれば、 いつ行ってもよい。 [0055] Furthermore, the shape holding body may be one in which a protective film 25 attached to the surface 3 of the silicon wafer 11 and a shape holding plate 18 are bonded together. In this case, as shown in FIG. 22 (a), after the protective film 25 is attached to the front surface 3 of the silicon wafer 11, the back surface 21 of the silicon wafer 11 is directed upward on the processing table 51 of the grinding device 50. Then, the silicon wafer 11 is fixed, and the back surface 21 of the silicon wafer 11 is surface ground with a rotating grindstone 52 to make the silicon wafer 11 thinner. Subsequently, as shown in FIG. 22 (b), the silicon wafer 11 is fixed on the suction table 81 of the tape mounter 80 with the front surface 3 of the silicon wafer 11 facing upward, and the protective film 25 already attached. A shape retaining plate 18 is further adhered on top. Thereafter, using the protective film 25 and the shape holding plate 18 as a shape holding body, the same process as in the above embodiment is performed. It should be noted that the irradiation of ultraviolet rays for facilitating the removal of the protective film 25 and the shape holding plate 18 from the surface 3 of the silicon wafer 11 is performed by attaching the shape holding plate 18 on the protective film 25 and then using the film expansion device 70. Any time between the surface 3 of the silicon wafer 11 and the removal of the protective film 25 and the shape retaining plate 18 may be performed.
産業上の利用可能性 Industrial applicability
[0056] 本発明によれば、切断起点領域が形成された加工対象物の取り扱!/ヽを容易化し、 且つ切断起点領域を起点として加工対象物が切断されて生じた複数の部分にチッピ ングゃクラッキング等の不具合が発生するのを防止することができる。
[0056] According to the present invention, it is easy to handle a workpiece having a cutting start region formed thereon, and chipping is performed on a plurality of portions generated by cutting the workpiece from the cutting start region. It is possible to prevent problems such as cracking.