WO2005088376A1 - Beam shaping lens - Google Patents

Beam shaping lens Download PDF

Info

Publication number
WO2005088376A1
WO2005088376A1 PCT/JP2005/004333 JP2005004333W WO2005088376A1 WO 2005088376 A1 WO2005088376 A1 WO 2005088376A1 JP 2005004333 W JP2005004333 W JP 2005004333W WO 2005088376 A1 WO2005088376 A1 WO 2005088376A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction term
lens
term
even function
beam shaping
Prior art date
Application number
PCT/JP2005/004333
Other languages
French (fr)
Japanese (ja)
Inventor
Norihisa Sakagami
Hiroyuki Takeuchi
Original Assignee
Nalux Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalux Co., Ltd. filed Critical Nalux Co., Ltd.
Priority to JP2006511006A priority Critical patent/JPWO2005088376A1/en
Publication of WO2005088376A1 publication Critical patent/WO2005088376A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses

Definitions

  • the present invention relates to a lens having a beam shaping function and used for an optical pickup device, an optical coupler, and the like.
  • Edge-emitting type semiconductor lasers The emitted light beams have different spread angles in the vertical and horizontal directions with respect to the semiconductor laser layer. That is, the divergence angle in the vertical direction with respect to the semiconductor laser layer is larger than the divergence angle in the horizontal direction with respect to the semiconductor laser layer.
  • the light spot has an elliptical shape. It is desirable that the shape of the light spot be a perfect circle. When the degree of the desired ellipse increases, the recording / reproducing function deteriorates.
  • beam shaping is performed to make the cross-sectional shape of the light beam of the semiconductor laser power close to a perfect circular shape.
  • a method of performing beam shaping with a single lens a method of using an anamorphic 'lens that is rotationally asymmetric with respect to the optical axis is known (for example, Patent Documents 1 to 3 described later).
  • the conventional single lens that performs beam shaping does not have sufficient measures against so-called side lobes which are inevitably caused by making the cross-sectional shape of a light beam close to a perfect circle. For this reason, for example, in optical pickups such as Blu-ray, DVD, and CD, crosstalk may occur due to side lobes when reading data.
  • the power described in the optical pickup as an example and other fields are also semiconductor lasers.
  • the processing laser also has a similar dose.
  • the light source may be a light emitting diode or the like instead of a semiconductor laser.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-208171 (Paragraph 60, FIGS. 2 and 3, etc.)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-292783 (10th paragraph, FIG. 1, etc.)
  • the beam shaping lens of the present invention reduces crosstalk when reading data in optical pickups such as Blu-ray, DVD and CD.
  • the beam shaping lens of the present invention when used in the collimator portion of an F-lens, improves black streaks accompanying charge generation on the photosensitive drum due to the influence of side lobes.
  • the beam shaping lens of the present invention improves the coupling efficiency of the optical coupler that couples the light of the semiconductor laser to the optical fiber.
  • the beam shaping lens of the present invention improves the finish of a processed surface in semiconductor laser processing.
  • the beam shaping condenser lens according to the present invention has a structure in which, in the XYZ coordinate system, an incident beam having a different object numerical aperture in the X and Y directions with the Z axis as an optical axis,
  • the beam is shaped so that a region where the intensity in a cross section perpendicular to the traveling direction is equal to or more than a predetermined ratio with respect to the peak intensity becomes a perfect circle.
  • the coefficients of each correction term can be determined independently of each other.
  • the distance between the light source of the incident beam and the side of the lens light source is FF (mm)
  • the back focus of the lens is BF (mm)
  • the circularity error is the ratio of the diameter of the cross section in the X direction to the diameter in the Y direction.
  • the object numerical aperture in the X direction is NAX
  • the object numerical aperture in the Y direction is NAY
  • the object numerical aperture is
  • NAR NAX / NAY
  • the ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%)
  • the coefficient of the term representing the aspherical surface and the coefficient of the correction term are determined so that
  • the beam shaping condenser lens has a correction term in which the correction term fe (x, y) is an even function of X, fe (X) and a correction term in which the even function of Y, fe (y) is also Term and an even function of X
  • correction term fe (X) consisting of is also a term power of one or more even powers of X
  • the correction term fe (y) force consisting of an even function of Y is also one or more term powers of even powers of Y.
  • the beam shaping condenser lens has a correction term in which the correction term fe (x, y) also has an even function fe (X) force of X and a correction term in which the even function fe (y) force of Y also exists.
  • the correction term fe (X) consists of one or more term forces including the trigonometric function of X, and the correction term fe (y) force consisting of the even function of Y also becomes one or more term forces including the trigonometric function of Y .
  • the correction term is obtained by multiplying the power of X and the power of Y.
  • the magnitude of the correction of Y can be changed according to the magnitude of X. Therefore, it is advantageous when designing a beam shaping condenser lens having a large numerical aperture.
  • the beam shaping collimating lens according to the present invention is such that, in the XYZ coordinate system, the transmitted collimating beam has no aberration with respect to an incident beam having a different object numerical aperture in the X and Y directions with the Z axis as the optical axis.
  • the beam is shaped so that the area where the intensity of the condensed beam in a cross section perpendicular to the traveling direction is equal to or more than a predetermined ratio with respect to the peak intensity becomes a perfect circle.
  • the circularity error which is the ratio of the diameter of the cross section in the X direction to the diameter in the Y direction
  • the object numerical aperture in the X direction is NAX
  • the object numerical aperture in the Y direction is NAY
  • the object numerical aperture is
  • NAR NAX / NAY
  • the ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%)
  • the coefficient of the term representing the aspherical surface and the coefficient of the correction term are determined so that [0022] Therefore, the coefficient of each correction term is determined so that the difference between the curvature in the X direction and the curvature in the Y direction is as small as possible.
  • the ratio SR (%) of the maximum side lobe intensity to the intensity can be reduced.
  • the beam shaping collimating lens according to an embodiment of the present invention has a correction term in which the correction term fe (X, y) also has an even function fe (x) force and a correction term in which the Y even function fe (y) force also has And the even of X
  • the correction term fe (X) is one or more even powers of X
  • the correction term fe (y) consisting of an even function of Y is one or more even powers of Y. .
  • the beam shaping collimating lens according to one embodiment of the present invention has a correction term in which the correction term fe (X, y) also has an even function fe (x) force and a correction term in which the even function fe (y) force of Y also has And the even of X
  • the correction term fe (X), which is also a functional force, is also one or more term forces including trigonometric functions of X
  • the correction term fe (y) force, which is an even function of Y is one or more term forces including trigonometric functions of Y.
  • the beam shaping collimator 'lens according to one embodiment of the present invention has a profile of the entrance side and the exit side, where
  • the correction term is a product of the power of X and the power of Y, for example, the magnitude of the correction of Y can be changed according to the magnitude of X. Therefore, it is advantageous when designing a beam shaping condenser lens having a large numerical aperture.
  • FIG. 1 shows a cross-sectional view along the XZ plane of a beam shaping / condensing integrated lens according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the YZ plane of a beam shaping / condensing integrated lens according to an embodiment of the present invention. Show.
  • FIG. 3 is a cross-sectional view of an XZ plane of a beam shaping collimator 'lens according to one embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the beam shaping collimator ′ lens according to one embodiment of the present invention, taken along the YZ plane.
  • FIG. 5 shows a point image intensity distribution diagram of the integrated beam shaping / condensing lens according to one embodiment of the present invention.
  • FIG. 6 shows a spot cross-sectional view including a peak of the integrated beam shaping / condensing lens according to one embodiment of the present invention.
  • FIG. 7 shows a point image intensity distribution diagram of a beam shaping / condensing integrated lens according to a conventional technique.
  • FIG. 8 shows a cross-sectional view of a spot including a peak of a conventional integrated beam shaping / condensing lens.
  • FIG. 9 shows a point image intensity distribution diagram of a beam shaping / condensing integrated lens according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a spot including a peak of a beam shaping / condensing integrated lens according to another embodiment of the present invention.
  • FIG. 11 shows a point image intensity distribution diagram of a beam shaping / condensing integrated lens according to a conventional technique.
  • FIG. 12 shows a spot cross section including a peak of a conventional beam shaping / condensing integrated lens.
  • FIG. 1 is a cross-sectional view on the XZ plane of the integrated beam shaping / condensing lens according to one embodiment of the present invention
  • FIG. 2 is a cross-sectional view on the YZ plane.
  • the divergence angle in the YZ plane is larger than the divergence angle in the XZ plane. Therefore, on the object side surface (S1 surface), the roundness is adjusted by setting + power (direction to converge) in the Y direction, and -power (direction to diverge) in the X direction.
  • FIG. 3 shows a cross-sectional view in the XZ plane of the beam shaping collimator ′ lens according to an embodiment of the present invention
  • FIG. 4 shows a cross-sectional view in the YZ plane.
  • the divergence angle in the YZ plane is larger than the divergence angle in the XZ plane. Therefore, on the object side surface (S1 surface) of the lens, The roundness is adjusted by setting the positive power to the convergence direction and the negative power to the divergence direction in the X direction. Note that the image side surface of the lens is called an S2 surface.
  • Table 1 shows the initial conditions for the design of the beam shaping / condensing integrated lens.
  • LD-S1 plane indicates the distance between the semiconductor laser light source and the S1 plane of the lens.
  • BF indicates the back focus of the lens.
  • the aperture ratio is determined from the following equation.
  • Aperture ratio object side numerical aperture in the X direction Object side numerical aperture in the ZY direction
  • the object-side numerical aperture in the Y direction is 0.4
  • the aperture ratio is 0.36
  • the wavelength used is 408 nm
  • the distance between the semiconductor laser light source and the SI surface of the lens is 1. Omm
  • the lens center thickness Is 3.4 mm and the back focus is 100 mm.
  • Table 2 shows the initial conditions for the design of the beam shaping collimator 'lens.
  • the LD-S1 plane and aperture ratio are defined as in Table 1. Collimated light is focused by an ideal lens without aberration. According to Table 2, the numerical aperture on the object side in the Y direction is 0.4, the aperture ratio is 0.36, the operating wavelength is 408 ⁇ m, and the distance between the semiconductor laser light source and the SI surface on the light source side of the lens is 1. Omm The center thickness of the lens is 3.4 mm, and the focal length of the ideal lens is 4 mm.
  • the intensity distribution of the beam from the semiconductor laser light source is a Gaussian distribution. Also, based on the light intensity distribution reproducing the semiconductor laser light source and the point spread intensity distribution calculated from the wavefront aberration force, the region having an intensity of 13.5% (1 / e 2 ) or more of the peak value was obtained. , The spot diameter in the X and Y directions are determined, and the roundness is determined from the following equation.
  • the value of the side lobe is the percentage of the highest value of the side lobe to the peak value in the point image intensity distribution.
  • the light acquisition efficiency is set to 94% or more, and the roundness is set to 95% or more.
  • the wavefront aberration is set to 3 m RMS or less.
  • the virtual image angles in the X and Y directions should be aligned.
  • the virtual image angle in the X direction is the angle between the outermost ray of the light beam and the optical axis on the XZ plane including the image point.
  • the virtual image angle in the Y direction is the angle formed by the outermost ray of the ray bundle with the optical axis on the YZ plane including the image point.
  • the unit is degree.
  • the refractive index of the lens is determined by the wavelength. For example, at 408 nm, 1.5056, at 780 nm,! /, And at 1,4855.
  • CODE V of Optical Research Associate, USA was used. However, the present invention can be applied to a case where other design software is used.
  • Tables 3 to 5 show the distance between the semiconductor laser light source and the S1 surface of the lens when the force other than the knock focus is changed and when the object-side numerical aperture in the Y direction is changed to 0.45.
  • the lens center thickness was changed to 3 mm
  • the wavelength used was changed to 780 nm
  • the aperture ratio was changed to 0.53, and the aperture ratio was 0.59.
  • Tables 6 to 9 show the coefficient of the term representing the aspherical surface and the coefficient of the correction term when the design is performed under the above various design conditions. However, the curvature of the S1 surface is omitted because it is shown in Tables 3-5.
  • ⁇ ( ⁇ ) ——— ⁇ '' + R [(l-AP) x 2 + (1 + AP) y 2 ] 2 + l + ⁇ l- (l + k x ) (c x 2 x 2 )- (l + k y ) (c y 2 y 2 )
  • Z is the sag amount of the plane parallel to the Z axis (the optical axis direction)
  • C and C are the curvatures in the XZ plane and the YZ plane
  • K and K are in the XZ plane and the YZ plane.
  • R, AP, BP, CP, and DP represent correction factors.
  • Tables 10 to 12 show that when the force other than the back force is changed, the object side numerical aperture in the X direction is changed to 0.45.
  • the aperture ratio was 0.53.
  • Tables 13 to 16 show the coefficient of the term representing the aspherical surface and the coefficient of the correction term when the design is performed under the above various design conditions. However, the curvature of the S1 surface is shown in Tables 10 to 12 and is omitted because it is! /.
  • the distance between the light source of the incident beam and the side of the light source of the lens is FF (mm)
  • the back force of the lens is BF (mm)
  • the roundness error is
  • the object numerical aperture in the X direction is NA
  • the object numerical aperture in the Y direction is NA
  • NAR NA / NA
  • the ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%)
  • the values of the side lobes under the conditions of Tables 3 to 5 are the values of the side lobes under the corresponding conditions of Tables 10 to 12 according to the conventional anamorphic equation. Less than.
  • Equation 1 the coefficients A and B of each correction term are independent of each other.
  • Equation 2i 2i By defining them independently of each other, the difference between the curvature C in the X direction and the curvature C in the Y direction of the term representing the aspheric surface in Equation 1 can be minimized. However, in Equation 2, AP
  • Equation 2 The form of the conventional anamorphic equation (Equation 2) corresponds to the form of the following aspherical equation.
  • the DP term and the DP term indicate the difference between the amount of sag on the X axis and the amount of sag on the Y axis, and can easily correspond to astigmatism. For this reason, the conventional anamorphic equation (Equation 2) has been generally used.
  • the beam shaping condenser lens converts the beam from the semiconductor laser light source having different divergence angles in the X and ⁇ directions from the intensity of the focused beam.
  • the side lobe can be reduced as compared with the conventional anamorphic lens.
  • the correction term may include a trigonometric function term!
  • the trigonometric function has a large change in curvature! /, So it can be designed with a higher degree of freedom by combining it appropriately.
  • a design example of a correction term including a trigonometric function will be described later.
  • the correction term may include a term obtained by multiplying a power of X and a power of Y. If this correction term is used, for example, the magnitude of Y correction can be changed according to the magnitude of X. Therefore, it is advantageous when designing a beam shaping condenser lens having a large numerical aperture.
  • a design example of a correction term including a term obtained by multiplying the power of X and the power of Y will be described later.
  • Table 17 shows the results of designing according to the following formula, which is an embodiment of the present invention, by variously changing the design conditions of the beam shaping collimator lens from the initial conditions in Table 2.
  • Table 17 shows that the distance between the semiconductor laser light source and the S1 surface of the lens is obtained when the initial condition is not changed, when the object-side numerical aperture in the X direction is changed to 0.45, and Was changed to 1.5 mm, the lens center thickness was changed to 3 mm, the wavelength used was changed to 780 nm, the aperture ratio was changed to 0.53, and the aperture ratio was set to 0.59.
  • Tables 17 to 20 the circled numbers in the tables indicate The above seven cases are shown, respectively.
  • Table 18 shows the coefficients other than the curvature of the term representing the aspheric surface and the coefficients of the correction term when the design is performed under the above various design conditions.
  • Table 19 shows that the distance between the semiconductor laser light source and the S1 surface of the lens was obtained when the initial conditions were not changed and the object-side numerical aperture in the X direction was changed to 0.45.
  • the lens center thickness was changed to 3 mm
  • the wavelength used was changed to 780 nm
  • the aperture ratio was changed to 0.53
  • the aperture ratio was set to 0.59.
  • Table 20 shows the case where the design was performed under the above various design conditions. The following shows the coefficients other than the curvature of the term representing the aspheric surface and the coefficients of the correction term.
  • the object numerical aperture in the X direction is NA
  • the object numerical aperture in the Y direction is NA
  • NAR NA / NA
  • the ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%)
  • the value of the side lobe under each condition in Table 17 is smaller than the value of the side lobe under the corresponding condition in Table 19 according to the conventional anamorphic equation.
  • the beam shaping collimator 'lens is capable of converting a beam from a semiconductor laser light source having different divergence angles in the X and Y directions from the intensity of the focused beam.
  • sidelobes can be reduced as compared to a conventional anamorphic lens.
  • FIGS. 5 and 6 show the design results (in the case of numerical aperture of 0.4 in the Y direction) of one embodiment of the present invention.
  • FIGS. 9 and 1 show a design result (in the case of a numerical aperture of 0.45 in the ⁇ direction) of one embodiment of the present invention
  • Table 23 shows the results of designing under the conditions of Tables 1 and 2 according to the following equation using a trigonometric function as a correction term.
  • a in the correction term of the above equation is a constant for adjustment.
  • the unit of the angle is radian.
  • Table 23 shows the design results for the collimated type and the converging type with a back force of 100 mm, 50 mm and 20 mm, respectively.
  • Table 24 shows the coefficients of the equation when the design was performed under the above design conditions.
  • the evaluation function EF2 satisfies the following condition.
  • the value of the side lobe under each condition of Table 23 is smaller than the value of the side lobe under the corresponding conditions of Tables 10 and 19 by the conventional anamorphic equation. small.
  • Table 26 shows the results of designing under the conditions of Tables 1 and 2 according to the following equations.
  • Table 25 shows the role of the coefficient Cj of the correction term in the above equation. Specifically, Table 26 shows the design results for the collimated type with the integrated focusing type and the back focus of 100 mm, 50 mm and 20 mm, respectively. Table 27 shows the coefficients of the equation when the design was performed under the above design conditions.
  • the evaluation function EF2 satisfies the following conditions. EF2 ⁇ 0.02
  • the value of the side lobe under each condition of Table 26 is smaller than the value of the side lobe under the corresponding conditions of Tables 10 and 19 according to the conventional anamorphic equation.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)
  • Lenses (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A beam shaping/focusing lens for shaping an incident beam for which the object numerical apertures in the X- and Y- directions are different from each other when the optical axis is made the Z-axis in order that the area where the ratio of the intensity of the focused beam at the cross section perpendicular to the direction in which the beam travels to the peak intensity is a predetermined value or above may be a true circle. The profiles of the incident and exit surfaces of the lens are expressed by [Eq. 16] (1) The coefficients of the terms can be determined independently. The coefficients are determined so as to satisfy |CX-CY|2×SR2×log10(BF)×CE×NAR4×FF<0.04 Where FF (mm) is the distance between the light source of the incident beam and the surface of the lens on the light source side, BF (mm) is the back focus of the lens, CE=|100-curclalrity| (%) is the error of the circularity which is the ratio of the diameter in the X-direction of the cross section to that in the Y-direction, NAR=NAX/NAY is the object numerical aperture, and SR(%) is the ratio of the designed peak intensity to the maximum side robe intensity.

Description

明 細 書  Specification
ビーム整形レンズ 技術分野  Beam shaping lens technology
[0001] 本発明は、光ピックアップ装置や光結合器などに使用される、ビーム整形機能を備 えたレンズに関する。  The present invention relates to a lens having a beam shaping function and used for an optical pickup device, an optical coupler, and the like.
背景技術  Background art
[0002] 端面発光型の半導体レーザ力 射出される光線は、半導体レーザの層に対して垂 直および水平方向の拡がり角が異なる。すなわち、半導体レーザの層に対して垂直 方向の拡がり角が、半導体レーザの層に対して水平方向の拡がり角よりも大きくなる  [0002] Edge-emitting type semiconductor lasers The emitted light beams have different spread angles in the vertical and horizontal directions with respect to the semiconductor laser layer. That is, the divergence angle in the vertical direction with respect to the semiconductor laser layer is larger than the divergence angle in the horizontal direction with respect to the semiconductor laser layer.
[0003] たとえば、光ピックアップにおいて、半導体レーザ光源からの光束を光ディスク上に 光スポットとして集光させた場合、光スポットの形状は楕円形状となる。光スポットの形 状は真円形状であるのが望ましぐ楕円の程度が高くなると記録'再生機能が低下す る。 [0003] For example, in an optical pickup, when a light beam from a semiconductor laser light source is condensed as a light spot on an optical disc, the light spot has an elliptical shape. It is desirable that the shape of the light spot be a perfect circle. When the degree of the desired ellipse increases, the recording / reproducing function deteriorates.
[0004] 光スポットの形状を真円形状に近づけるために、たとえば、半導体レーザの層に対 して垂直方向の一部を遮光することが考えられる。し力し、この方法では、エネルギ 一ロスが大きくなる。  [0004] In order to make the shape of the light spot close to a perfect circle, for example, it is conceivable to shield a part of the semiconductor laser layer in the vertical direction from light. In this method, the energy loss is large.
[0005] このため、半導体レーザ力 の光束の断面形状を真円形状に近づけるためのビー ム整形が行われる。ビーム整形を単一レンズで行う方法として、光軸に関して回転非 対称なアナモルフィック 'レンズを使用する方法が知られている(たとえば、後述の特 許文献 1乃至 3)。  [0005] For this reason, beam shaping is performed to make the cross-sectional shape of the light beam of the semiconductor laser power close to a perfect circular shape. As a method of performing beam shaping with a single lens, a method of using an anamorphic 'lens that is rotationally asymmetric with respect to the optical axis is known (for example, Patent Documents 1 to 3 described later).
[0006] しかしながら、従来のビーム整形を行う単一レンズは、光束の断面形状を真円形状 に近づけることによって必然的に生じる、いわゆるサイドローブに対する十分な対策 を備えていなかった。このため、たとえば、ブルーレイ、 DVDおよび CDなどの光ピッ クアップにおいては、データ読み出しの際に、サイドローブに起因してクロストークが 生じる可能性があった。  [0006] However, the conventional single lens that performs beam shaping does not have sufficient measures against so-called side lobes which are inevitably caused by making the cross-sectional shape of a light beam close to a perfect circle. For this reason, for example, in optical pickups such as Blu-ray, DVD, and CD, crosstalk may occur due to side lobes when reading data.
[0007] なお、光ピックアップを例として説明した力 その他の分野にぉ 、ても、半導体レー ザからの光束の断面形状を真円形状に近づけるためのビーム整形のニーズが存在 する。たとえば、半導体レーザの光を光ファイバ一に結合する光結合器においても、 結合効率を高めるために、半導体レーザからの光束の断面形状を真円形状に近づ けるためのビーム整形のニーズがある。さらに、加工用レーザにおいても、同様の- ーズがある。また、光源は、半導体レーザではなく発光ダイオードなどであってもよい 特許文献 1 :特開 2003-66325号公報 (第 39および 56段落、図 4他) [0007] It should be noted that the power described in the optical pickup as an example and other fields are also semiconductor lasers. There is a need for beam shaping to make the cross-sectional shape of the light beam from the laser closer to a perfect circle. For example, in an optical coupler that couples light from a semiconductor laser to an optical fiber, there is a need for beam shaping to make the cross-sectional shape of the light beam from the semiconductor laser closer to a perfect circle in order to increase the coupling efficiency. . Further, the processing laser also has a similar dose. Further, the light source may be a light emitting diode or the like instead of a semiconductor laser. Patent Document 1: JP-A-2003-66325 (Paragraphs 39 and 56, FIG. 4 and others)
特許文献 2:特開 2002— 208171号公報 (第 60段落、図 2および 3他)  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-208171 (Paragraph 60, FIGS. 2 and 3, etc.)
特許文献 3 :特開 2000-292783号公報 (第 10段落、図 1他)  Patent Document 3: Japanese Patent Application Laid-Open No. 2000-292783 (10th paragraph, FIG. 1, etc.)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 光束の断面形状を所定の真円形状に近づけながらサイドローブをできるだけ小さく するビーム整形レンズに対するニーズがある。 [0008] There is a need for a beam shaping lens that reduces the side lobe as much as possible while making the cross-sectional shape of the light flux close to a predetermined perfect circular shape.
[0009] 本発明のビーム整形レンズは、ブルーレイ、 DVDおよび CDなどの光ピックアップ においては、データ読み出しの際のクロストークを減少させる。 [0009] The beam shaping lens of the present invention reduces crosstalk when reading data in optical pickups such as Blu-ray, DVD and CD.
[0010] 本発明のビーム整形レンズは、 F Θレンズのコリメータ部に使用される場合に、サイ ドローブの影響による感光体ドラム上での電荷発生に伴う黒筋を改善する。 [0010] The beam shaping lens of the present invention, when used in the collimator portion of an F-lens, improves black streaks accompanying charge generation on the photosensitive drum due to the influence of side lobes.
[0011] 本発明のビーム整形レンズは、半導体レーザの光を光ファイバ一に結合する光結 合器の結合効率を向上させる。  [0011] The beam shaping lens of the present invention improves the coupling efficiency of the optical coupler that couples the light of the semiconductor laser to the optical fiber.
[0012] 本発明のビーム整形レンズは、半導体レーザ加工において、加工面の仕上がりを 向上させる。 The beam shaping lens of the present invention improves the finish of a processed surface in semiconductor laser processing.
課題を解決するための手段  Means for solving the problem
[0013] 本発明によるビーム整形集光レンズは、 XYZ座標系にお 、て、 Z軸を光軸として、 X、 Y方向の物体開口数が異なる入射ビームに対して、集光されたビームの、進行方 向に垂直な断面における強度が、ピーク強度に対して所定の比率以上である領域が 真円となるようにビームを整形する。レンズの入射側面と出射側面とのプロファイルが 、非球面を表す項と、 fe (x, y) =fe (-x, y)を満たす fe (x, y)で表せる複数の補正 項とを含む式 [数 1] cxx + cyy [0013] The beam shaping condenser lens according to the present invention has a structure in which, in the XYZ coordinate system, an incident beam having a different object numerical aperture in the X and Y directions with the Z axis as an optical axis, The beam is shaped so that a region where the intensity in a cross section perpendicular to the traveling direction is equal to or more than a predetermined ratio with respect to the peak intensity becomes a perfect circle. The profile of the entrance and exit sides of the lens includes a term representing the aspheric surface and multiple correction terms represented by fe (x, y) that satisfy fe (x, y) = fe (-x, y) formula [Equation 1] c x x + c y y
z  z
1 + Jl"- (1 + kx )(cx 2x2 ) - (1 + ky ){cy 2y2) 1 + Jl "-(1 + k x ) (c x 2 x 2 )-(1 + k y ) {c y 2 y 2 )
によって表され、各補正項の係数は互いに独立して定めることができる。入射ビーム の光源とレンズの光源側面との距離を FF(mm)、レンズのバックフォーカスを BF(mm) 、前記断面の X方向の径と Y方向の径との比である真円度のエラーを And the coefficients of each correction term can be determined independently of each other. The distance between the light source of the incident beam and the side of the lens light source is FF (mm), the back focus of the lens is BF (mm), and the circularity error is the ratio of the diameter of the cross section in the X direction to the diameter in the Y direction. To
CE = I 100-真円度 I (%)  CE = I 100-roundness I (%)
X方向の物体開口数を NAX、 Y方向の物体開口数を NAY、物体開口比を  The object numerical aperture in the X direction is NAX, the object numerical aperture in the Y direction is NAY, and the object numerical aperture is
NAR =NAX/NAY  NAR = NAX / NAY
設計上のピーク強度に対する最大サイドローブ強度の比率を SR(%)として、  The ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%),
I C C I 2 X SR2 X log (BF) X CE X NAR4X FF < 0.04 ICCI 2 X SR 2 X log (BF) X CE X NAR 4 X FF <0.04
X Υ 10  X Υ 10
となるように、非球面を表す項の係数および補正項の係数を定めている。  The coefficient of the term representing the aspherical surface and the coefficient of the correction term are determined so that
[0014] したがって、各補正項の係数を、 X方向の曲率と Υ方向の曲率との差をできるだけ 小さくなるように定めることによって、真円度エラーを一定範囲としながら、設計上のピ ーク強度に対する最大サイドローブ強度の比率 SR(%)を小さくすることができる。  [0014] Therefore, by setting the coefficient of each correction term so that the difference between the curvature in the X direction and the curvature in the で き る だ け direction is made as small as possible, it is possible to keep the roundness error within a certain range while maintaining a peak in design. The ratio SR (%) of the maximum side lobe intensity to the intensity can be reduced.
[0015] 本発明の一実施形態によるビーム整形集光レンズは、補正項 fe (x, y)が Xの偶関 数 fe (X)力もなる補正項と Yの偶関数 fe (y)力もなる補正項とからなり、 Xの偶関数 The beam shaping condenser lens according to one embodiment of the present invention has a correction term in which the correction term fe (x, y) is an even function of X, fe (X) and a correction term in which the even function of Y, fe (y) is also Term and an even function of X
1 2 1 2
からなる補正項 fe (X)が、 1または複数の Xの偶数乗の項力もなり、 Yの偶関数から なる補正項 fe (y)力 1または複数の Yの偶数乗の項力もなる。  The correction term fe (X) consisting of is also a term power of one or more even powers of X, and the correction term fe (y) force consisting of an even function of Y is also one or more term powers of even powers of Y.
2  2
[0016] したがって、補正項の式が簡単になり、取り扱いやすい。  [0016] Therefore, the equation of the correction term is simplified and is easy to handle.
[0017] 本発明の一実施形態によるビーム整形集光レンズは、補正項 fe (x, y)が Xの偶関 数 fe (X)力もなる補正項と Yの偶関数 fe (y)力もなる補正項とからなり、 Xの偶関数 The beam shaping condenser lens according to one embodiment of the present invention has a correction term in which the correction term fe (x, y) also has an even function fe (X) force of X and a correction term in which the even function fe (y) force of Y also exists. Term and an even function of X
1 2 1 2
からなる補正項 fe (X)が、 Xの三角関数を含む 1または複数の項力もなり、 Yの偶関 数からなる補正項 fe (y)力 Yの三角関数を含む 1または複数の項力もなる。  The correction term fe (X) consists of one or more term forces including the trigonometric function of X, and the correction term fe (y) force consisting of the even function of Y also becomes one or more term forces including the trigonometric function of Y .
2  2
[0018] したがって、補正項の式が簡単になり、取り扱いやすい。  [0018] Therefore, the equation of the correction term is simplified and is easy to handle.
[0019] 本発明の一実施形態によるビーム整形集光レンズは、入射側面と出射側面とのプ 口ファイルが、式 The beam shaping condenser lens according to one embodiment of the present invention includes Mouth file has the formula
[数 2]  [Number 2]
Figure imgf000006_0001
によって表される。
Figure imgf000006_0001
Is represented by
[0020] 補正項は、 Xの累乗と Yの累乗とを乗じたものなので、たとえば、 Xの大きさに応じて Yの補正の大きさを変えることができる。したがって、開口数が大きなビーム整形集光 レンズを設計する場合に有利である。  [0020] The correction term is obtained by multiplying the power of X and the power of Y. For example, the magnitude of the correction of Y can be changed according to the magnitude of X. Therefore, it is advantageous when designing a beam shaping condenser lens having a large numerical aperture.
[0021] 本発明によるビーム整形コリメート'レンズは、 XYZ座標系において、 Z軸を光軸とし て、 X、 Y方向の物体開口数が異なる入射ビームに対して、透過コリメート'ビームを 収差のない理想レンズによって集光した場合に、集光されたビームの、進行方向に 垂直な断面における強度が、ピーク強度に対して所定の比率以上である領域が真円 となるようにビームを整形する。入射側面と出射側面とのプロファイル力 非球面を表 す項と、 fe (x, y) = fe (-x, y)を満たす fe (x, y)で表せる複数の補正項とを含む式 [数 3]
Figure imgf000006_0002
によって表され、各補正項の係数は互いに独立して定めることができる。前記断面の X方向の径と Y方向の径との比である真円度のエラーを
[0021] The beam shaping collimating lens according to the present invention is such that, in the XYZ coordinate system, the transmitted collimating beam has no aberration with respect to an incident beam having a different object numerical aperture in the X and Y directions with the Z axis as the optical axis. When condensed by an ideal lens, the beam is shaped so that the area where the intensity of the condensed beam in a cross section perpendicular to the traveling direction is equal to or more than a predetermined ratio with respect to the peak intensity becomes a perfect circle. The profile force between the entrance side and the exit side An equation that includes a term representing the aspheric surface and multiple correction terms that can be represented by fe (x, y) satisfying fe (x, y) = fe (-x, y) [ Number 3]
Figure imgf000006_0002
And the coefficients of each correction term can be determined independently of each other. The circularity error, which is the ratio of the diameter of the cross section in the X direction to the diameter in the Y direction,
CE = I 100-真円度 I (%)  CE = I 100-roundness I (%)
X方向の物体開口数を NAX、 Y方向の物体開口数を NAY、物体開口比を  The object numerical aperture in the X direction is NAX, the object numerical aperture in the Y direction is NAY, and the object numerical aperture is
NAR =NAX/NAY  NAR = NAX / NAY
設計上のピーク強度に対する最大サイドローブ強度の比率を SR(%)として、  The ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%),
I C C I 2 X SR2 X CE X NAR4 < 0.02 ICCI 2 X SR 2 X CE X NAR 4 <0.02
X Y  X Y
となるように、非球面を表す項の係数および補正項の係数を定めている。 [0022] したがって、各補正項の係数を、 X方向の曲率と Y方向の曲率との差をできるだけ 小さくなるように定めることによって、真円度エラーを一定範囲としながら、設計上のピ ーク強度に対する最大サイドローブ強度の比率 SR(%)を小さくすることができる。 The coefficient of the term representing the aspherical surface and the coefficient of the correction term are determined so that [0022] Therefore, the coefficient of each correction term is determined so that the difference between the curvature in the X direction and the curvature in the Y direction is as small as possible. The ratio SR (%) of the maximum side lobe intensity to the intensity can be reduced.
[0023] 本発明の一実施形態によるビーム整形コリメート ·レンズは、補正項 fe (X, y)が の 偶関数 fe (x)力もなる補正項と Yの偶関数 fe (y)力もなる補正項とからなり、 Xの偶  The beam shaping collimating lens according to an embodiment of the present invention has a correction term in which the correction term fe (X, y) also has an even function fe (x) force and a correction term in which the Y even function fe (y) force also has And the even of X
1 2  1 2
関数力 なる補正項 fe (X)が、 1または複数の Xの偶数乗の項力 なり、 Yの偶関数 からなる補正項 fe (y)が、 1または複数の Yの偶数乗の項力もなる。  The correction term fe (X) is one or more even powers of X, and the correction term fe (y) consisting of an even function of Y is one or more even powers of Y. .
2  2
[0024] したがって、補正項の式が簡単になり、取り扱いやすい。  [0024] Therefore, the equation of the correction term is simplified, and it is easy to handle.
[0025] 本発明の一実施形態によるビーム整形コリメート ·レンズは、補正項 fe (X, y)が の 偶関数 fe (x)力もなる補正項と Yの偶関数 fe (y)力もなる補正項とからなり、 Xの偶  [0025] The beam shaping collimating lens according to one embodiment of the present invention has a correction term in which the correction term fe (X, y) also has an even function fe (x) force and a correction term in which the even function fe (y) force of Y also has And the even of X
1 2  1 2
関数力もなる補正項 fe (X)が、 Xの三角関数を含む 1または複数の項力もなり、 Yの 偶関数からなる補正項 fe (y)力 Yの三角関数を含む 1または複数の項力もなる。  The correction term fe (X), which is also a functional force, is also one or more term forces including trigonometric functions of X, and the correction term fe (y) force, which is an even function of Y, is one or more term forces including trigonometric functions of Y. Become.
2  2
[0026] したがって、補正項の式が簡単になり、取り扱いやすい。  [0026] Therefore, the equation of the correction term is simplified, and it is easy to handle.
[0027] 本発明の一実施形態によるビーム整形コリメート'レンズは、入射側面と出射側面と のプロファイルが、式  [0027] The beam shaping collimator 'lens according to one embodiment of the present invention has a profile of the entrance side and the exit side, where
[数 4]  [Number 4]
Figure imgf000007_0001
によって表される。
Figure imgf000007_0001
Is represented by
[0028] 補正項は、 Xの累乗と Yの累乗とを乗じたものなので、たとえば、 Xの大きさに応じて Yの補正の大きさを変えることができる。したがって、開口数が大きなビーム整形集光 レンズを設計する場合に有利である。  Since the correction term is a product of the power of X and the power of Y, for example, the magnitude of the correction of Y can be changed according to the magnitude of X. Therefore, it is advantageous when designing a beam shaping condenser lens having a large numerical aperture.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]本発明の 1実施形態によるビーム整形集光一体型レンズの XZ平面の断面図を 示す。  FIG. 1 shows a cross-sectional view along the XZ plane of a beam shaping / condensing integrated lens according to an embodiment of the present invention.
[図 2]本発明の 1実施形態によるビーム整形集光一体型レンズの YZ平面の断面図を 示す。 FIG. 2 is a cross-sectional view taken along the YZ plane of a beam shaping / condensing integrated lens according to an embodiment of the present invention. Show.
[図 3]本発明の 1実施形態によるビーム整形コリメート'レンズの XZ平面の断面図を示 す。  FIG. 3 is a cross-sectional view of an XZ plane of a beam shaping collimator 'lens according to one embodiment of the present invention.
[図 4]本発明の 1実施形態によるビーム整形コリメート'レンズの YZ平面の断面図を示 す。  FIG. 4 is a cross-sectional view of the beam shaping collimator ′ lens according to one embodiment of the present invention, taken along the YZ plane.
[図 5]本発明の一実施形態によるビーム整形集光一体型レンズの、点像強度分布図 を示す。  FIG. 5 shows a point image intensity distribution diagram of the integrated beam shaping / condensing lens according to one embodiment of the present invention.
[図 6]本発明の一実施形態によるビーム整形集光一体型レンズの、ピークを含むスポ ット断面図を示す。  FIG. 6 shows a spot cross-sectional view including a peak of the integrated beam shaping / condensing lens according to one embodiment of the present invention.
[図 7]従来技術によるビーム整形集光一体型レンズの、点像強度分布図を示す。  FIG. 7 shows a point image intensity distribution diagram of a beam shaping / condensing integrated lens according to a conventional technique.
[図 8]従来技術によるビーム整形集光一体型レンズの、ピークを含むスポット断面図 を示す。  FIG. 8 shows a cross-sectional view of a spot including a peak of a conventional integrated beam shaping / condensing lens.
[図 9]本発明の別の実施形態によるビーム整形集光一体型レンズの、点像強度分布 図を示す。  FIG. 9 shows a point image intensity distribution diagram of a beam shaping / condensing integrated lens according to another embodiment of the present invention.
[図 10]本発明の別の実施形態によるビーム整形集光一体型レンズの、ピークを含む スポット断面図を示す。  FIG. 10 is a cross-sectional view of a spot including a peak of a beam shaping / condensing integrated lens according to another embodiment of the present invention.
[図 11]従来技術によるビーム整形集光一体型レンズの、点像強度分布図を示す。  FIG. 11 shows a point image intensity distribution diagram of a beam shaping / condensing integrated lens according to a conventional technique.
[図 12]従来技術によるビーム整形集光一体型レンズの、ピークを含むスポット断面図 を示す。  FIG. 12 shows a spot cross section including a peak of a conventional beam shaping / condensing integrated lens.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 図 1は、本発明の 1実施形態によるビーム整形集光一体型レンズの XZ平面の断面 図を示し、図 2は、 YZ平面の断面図を示す。 YZ平面の拡がり角が、 XZ平面の拡がり 角に比較して大きい。したがって、物体側面(S1面)において、 Y方向については + パワー(収束させる方向)とし、 X方向につ!、ては-パワー (発散させる方向)とすること で真円度を調整する。 FIG. 1 is a cross-sectional view on the XZ plane of the integrated beam shaping / condensing lens according to one embodiment of the present invention, and FIG. 2 is a cross-sectional view on the YZ plane. The divergence angle in the YZ plane is larger than the divergence angle in the XZ plane. Therefore, on the object side surface (S1 surface), the roundness is adjusted by setting + power (direction to converge) in the Y direction, and -power (direction to diverge) in the X direction.
[0031] 図 3は、本発明の 1実施形態によるビーム整形コリメート'レンズの XZ平面の断面図 を示し、図 4は、 YZ平面の断面図を示す。 YZ平面の拡がり角が、 XZ平面の拡がり角 に比較して大きい。したがって、レンズの物体側面(S1面)において、 Y方向につい ては +パワー(収束させる方向)とし、 X方向にっ 、ては-パワー (発散させる方向)と することで真円度を調整する。なお、レンズの像側面を S2面と呼称する。 FIG. 3 shows a cross-sectional view in the XZ plane of the beam shaping collimator ′ lens according to an embodiment of the present invention, and FIG. 4 shows a cross-sectional view in the YZ plane. The divergence angle in the YZ plane is larger than the divergence angle in the XZ plane. Therefore, on the object side surface (S1 surface) of the lens, The roundness is adjusted by setting the positive power to the convergence direction and the negative power to the divergence direction in the X direction. Note that the image side surface of the lens is called an S2 surface.
[0032] 表 1は、ビーム整形集光一体型レンズの設計の初期条件を示す。 LD— S1面は、半 導体レーザ光源とレンズの S1面との間の距離を示す。 BFは、レンズのバックフォー カスを示す。開口比は、以下の式から定める。  [0032] Table 1 shows the initial conditions for the design of the beam shaping / condensing integrated lens. LD-S1 plane indicates the distance between the semiconductor laser light source and the S1 plane of the lens. BF indicates the back focus of the lens. The aperture ratio is determined from the following equation.
[0033] 開口比 = X方向物体側開口数 ZY方向物体側開口数  [0033] Aperture ratio = object side numerical aperture in the X direction Object side numerical aperture in the ZY direction
表 1によれば、 Y方向物体側開口数は 0. 4、開口比は 0. 36、使用波長は 408nm、 半導体レーザ光源とレンズの SI面との間の距離は 1. Omm、レンズ中心厚は 3. 4m m、バックフォーカスは 100mmである。  According to Table 1, the object-side numerical aperture in the Y direction is 0.4, the aperture ratio is 0.36, the wavelength used is 408 nm, the distance between the semiconductor laser light source and the SI surface of the lens is 1. Omm, and the lens center thickness Is 3.4 mm and the back focus is 100 mm.
[0034] 表 2は、ビーム整形コリメート'レンズの設計の初期条件を示す。 LD— S1面と開口 比は、表 1と同様に定義する。コリメート光を、収差のない理想レンズによって集光す る。表 2によれば、 Y方向物体側開口数は 0. 4、開口比は 0. 36、使用波長は 408η m、半導体レーザ光源とレンズの光源側の SI面との間の距離は 1. Omm、レンズ中 心厚は 3. 4mm、理想レンズの焦点距離は 4mmである。  [0034] Table 2 shows the initial conditions for the design of the beam shaping collimator 'lens. The LD-S1 plane and aperture ratio are defined as in Table 1. Collimated light is focused by an ideal lens without aberration. According to Table 2, the numerical aperture on the object side in the Y direction is 0.4, the aperture ratio is 0.36, the operating wavelength is 408 ηm, and the distance between the semiconductor laser light source and the SI surface on the light source side of the lens is 1. Omm The center thickness of the lens is 3.4 mm, and the focal length of the ideal lens is 4 mm.
[表 1]  [table 1]
Figure imgf000009_0001
Figure imgf000009_0001
[表 2] Y方向 0.4 [Table 2] Y direction 0.4
物体側開口数  Object side numerical aperture
光線定義 X方向 0.1 4  Ray definition X direction 0.1 4
開口比 x/ y 0.36  Aperture ratio x / y 0.36
使用波長 nm 408  Working wavelength nm 408
LD ~ S 1面 mm 1  LD ~ S 1 side mm 1
レンズ中心厚 mm 3.4  Lens center thickness mm 3.4
理想レンズ焦点距離 mm 4  Ideal lens focal length mm 4
[0035] 半導体レーザ光源からのビームの強度分布はガウス分布とする。また、半導体レー ザ光源を再現した光強度分布と波面収差力 計算された点像強度分布にぉ 、て、ピ ーク値の 13. 5% (1/e2)以上の強度を有する領域について、 X方向および Y方向の スポット径を求め、以下の式から真円度を定める。 [0035] The intensity distribution of the beam from the semiconductor laser light source is a Gaussian distribution. Also, based on the light intensity distribution reproducing the semiconductor laser light source and the point spread intensity distribution calculated from the wavefront aberration force, the region having an intensity of 13.5% (1 / e 2 ) or more of the peak value was obtained. , The spot diameter in the X and Y directions are determined, and the roundness is determined from the following equation.
[0036] 真円度(%) =X方向のスポット径 ZY方向のスポット径 X 100  [0036] Roundness (%) = spot diameter in X direction Spot diameter in ZY direction X 100
また、サイドローブの値は、点像強度分布におけるサイドローブの最も高い値のピー ク値に対する比率をパーセントで表したものである。  The value of the side lobe is the percentage of the highest value of the side lobe to the peak value in the point image intensity distribution.
[0037] 設計に当たっては、光取得効率を 94%以上とし、真円度を 95%以上とするように 行う。また、波面収差は、 3m RMS以下とするようにする。また、 X方向と Y方向の虚 像角を揃えるようにする。 X方向虚像角は、結像点を含む XZ面において、光線束の 最も外側の光線が光軸となす角度である。 Y方向虚像角は、結像点を含む YZ面に おいて、光線束の最も外側の光線が光軸となす角度である。単位は、ともに度である 。なお、レンズの屈折率は、波長によって定める。たとえば、 408nmにおいては、 1. 5056、 780nmにお!/、ては、 1. 4855とする。設計ソフトとしては、米国 Optical Research Associate社の CODE V を使用した。しカゝし、他の設計ソフトを使用した 場合にも、本発明を適用することができる。  [0037] In the design, the light acquisition efficiency is set to 94% or more, and the roundness is set to 95% or more. Also, the wavefront aberration is set to 3 m RMS or less. Also, the virtual image angles in the X and Y directions should be aligned. The virtual image angle in the X direction is the angle between the outermost ray of the light beam and the optical axis on the XZ plane including the image point. The virtual image angle in the Y direction is the angle formed by the outermost ray of the ray bundle with the optical axis on the YZ plane including the image point. The unit is degree. Note that the refractive index of the lens is determined by the wavelength. For example, at 408 nm, 1.5056, at 780 nm,! /, And at 1,4855. As the design software, CODE V of Optical Research Associate, USA was used. However, the present invention can be applied to a case where other design software is used.
[0038] ビーム整形集光一体型レンズの設計条件を、表 1の初期条件から様々に変化させ て、レンズの両面の形状を本発明の一実施形態である以下の式にしたがって設計し た結果を表 3及至 5に示す。 [数 5]
Figure imgf000011_0001
ここで Zは、 Z軸(光軸方向)に平行な、面のサグ量、 C、 Cは、 XZ面内および YZ 面内の曲率、 K、Kは XZ面内および YZ面内の形状の円錐係数、 A 、 B は補正係
[0038] The results of designing the shape of both surfaces of the lens according to the following formula, which is one embodiment of the present invention, by changing the design conditions of the beam shaping / condensing integrated lens variously from the initial conditions in Table 1 are shown. The results are shown in Tables 3-5. [Number 5]
Figure imgf000011_0001
Where Z is the sag amount of the surface parallel to the Z axis (optical axis direction), C and C are the curvatures in the XZ and YZ planes, and K and K are the shapes in the XZ and YZ planes. Conic coefficients, A and B are correction factors
2i 2j 数を表す。具体的に表 3乃至 5は、ノ ックフォーカス以外を変化させな力つた場合、 Y 方向の物体側開口数を 0. 45に変化させた場合、半導体レーザ光源とレンズの S1面 との間の距離を 1. 5mmに変化させた場合、レンズ中心厚を 3mmに変化させた場合 、使用波長を 780nmに変化させた場合、開口比を 0. 53に変化させた場合および開 口比を 0. 59に変化させた場合について、バックフォーカスをそれぞれ 100mm (初 期条件)、 50mmおよび 20mmとした場合の設計結果を示す。表 6乃至 9は、上記の 様々な設計条件で設計を行った場合の、非球面を表す項の係数と補正項の係数と を示す。ただし、 S1面の曲率については、表 3至 5に示しているので省略している。  2i represents a 2j number. Specifically, Tables 3 to 5 show the distance between the semiconductor laser light source and the S1 surface of the lens when the force other than the knock focus is changed and when the object-side numerical aperture in the Y direction is changed to 0.45. Was changed to 1.5 mm, the lens center thickness was changed to 3 mm, the wavelength used was changed to 780 nm, the aperture ratio was changed to 0.53, and the aperture ratio was 0.59. The design results when the back focus is set to 100 mm (initial condition), 50 mm, and 20 mm, respectively, are shown. Tables 6 to 9 show the coefficient of the term representing the aspherical surface and the coefficient of the correction term when the design is performed under the above various design conditions. However, the curvature of the S1 surface is omitted because it is shown in Tables 3-5.
[表 3] [Table 3]
初期条件において BFを NAを 0.45にして BFを変 LD〜S1面を 1.5(mm)にし 項目 単位等 In the initial condition, change BF to NA of 0.45 and change BF LD-S1 surface to 1.5 (mm) Item Unit, etc.
変化 化 て BFを変化 物体側 Y方向 0.4 < - <一 0.45 く- < - 0.4 く- く- 開口数 X方向 0.14 < - < - 0.17 <一 < - 0.14 < - < - 光線  Change BF Change object side Y direction 0.4 <-<one 0.45 ku-<-0.4 ku-ku-Numerical aperture X direction 0.14 <-<-0.17 <one <-0.14 <-<-ray
開口比 x/y 0-36 0.36 0.36 0.37 0.37 0.37 0.36 0.36 0.36 定義  Aperture ratio x / y 0-36 0.36 0.36 0.37 0.37 0.37 0.36 0.36 0.36 Definition
X方向 0.56 1.12 2.38 0.66 1.32 3.19 0.64 1.28 3.13 虚像角  X direction 0.56 1.12 2.38 0.66 1.32 3.19 0.64 1.28 3.13 Virtual image angle
Y方向 0.56 1.12 2.89 0.66 1.30 3.32 0.66 1.32 3.28 使用波長 Crm) 408 <一 <一 く- く- く- < - <一 < - 光取得効率 % 94.3 94.3 94.4 94.7 94.8 94.7 94.5 94.5 94.5 Y direction 0.56 1.12 2.89 0.66 1.30 3.32 0.66 1.32 3.28 Wavelength used Crm) 408 <one <one <-one-<-<one <-light acquisition efficiency% 94.3 94.3 94.4 94.7 94.8 94.7 94.5 94.5 94.5
LD〜S1 面 (mm) 1 1 1 1 1 1 1.5 1.5 1.5 レンズ中心厚 (mm) 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4LD to S1 surface (mm) 1 1 1 1 1 1 1.5 1.5 1.5 Lens center thickness (mm) 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
BF (mm) 100 50 20 100 50 20 100 50 20BF (mm) 100 50 20 100 50 20 100 50 20
S1 面 Y曲率 0.83 0.83 0.79 0.81 0.81 0.80 0.73 0.73 0.7S1 surface Y curvature 0.83 0.83 0.79 0.81 0.81 0.80 0.73 0.73 0.7
S1 面 X曲率 -1.21 -1.22 -1.37 -1.24 -1.26 -1.37 -1.14 -1.16 -1.27S1 surface X curvature -1.21 -1.22 -1.37 -1.24 -1.26 -1.37 -1.14 -1.16 -1.27
S1 面曲率変化量 2.04 2.06 2.16 2.05 2.07 2.17 1,87 1.89 1.97 S1 surface curvature change 2.04 2.06 2.16 2.05 2.07 2.17 1,87 1.89 1.97
X方向 39.74 19.91 7.70 34.35 17.18 6.88 34.70 17.27 6.71 スポット径  X direction 39.74 19.91 7.70 34.35 17.18 6.88 34.70 17.27 6.71 Spot diameter
Y方向 40.83 20.49 7.93 35.06 17.51 7.00 35.53 17.64 6.88 像面 真円度 x/y (¾) 97.34 97.17 97.09 97.99 98.12 98.19 97.66 97.86 97.57 評価 真円エラー (%) 2.66 2.83 2.91 2.01 1.88 1.81 2.34 2.14 2.43  Y direction 40.83 20.49 7.93 35.06 17.51 7.00 35.53 17.64 6.88 Image plane Roundness x / y (¾) 97.34 97.17 97.09 97.99 98.12 98.19 97.66 97.86 97.57 Evaluation Roundness error (%) 2.66 2.83 2.91 2.01 1.88 1.81 2.34 2.14 2.43
サイドローブ 0.23 0.25 0.31 0.21 0.25 0.38 0.26 0.28 0.30 波面収差 m A RMS 0.22 0.22 0.30 1.45 1.61 1.94 1.5 2.08 2.55 評価関数 EF 0.020 0.021 0.029 0.014 0.016 0.029 0.028 0.026 0.037  Side lobe 0.23 0.25 0.31 0.21 0.25 0.38 0.26 0.28 0.30 Wavefront aberration m A RMS 0.22 0.22 0.30 1.45 1.61 1.94 1.5 2.08 2.55 Evaluation function EF 0.020 0.021 0.029 0.014 0.016 0.029 0.028 0.026 0.037
[表 4] [Table 4]
レンズ中心厚を 3(mm)にして使用波長を 780(nm)にして BFを 項目 単位等 Set the lens center thickness to 3 (mm), use wavelength 780 (nm), and set BF to item unit etc.
BFを変化 変化  Change BF Change
物体側開口 Y方向 0.4 <_ <_ 0.4 <一 < - 数 X方向 0.14 < - < - 0.14 < - < - 線  Object side aperture Y direction 0.4 <_ <_ 0.4 <one <-number X direction 0.14 <-<-0.14 <-<-line
開口比 x/y 0.36 0.36 0.36 0.36 0.36 0.36 定義  Aperture ratio x / y 0.36 0.36 0.36 0.36 0.36 0.36 Definition
X方向 0.53 1.07 2.68 0.57 1.14 2.79 虚像角  X direction 0.53 1.07 2.68 0.57 1.14 2.79 Virtual image angle
Y方向 0.54 1.08 2.73 0.56 1.14 2.84 使用波長 nm < - ぐ - <_ 780 <_ < - 光取得効率 94.4 94.4 94.4 94.3 94.4 94.3 Y direction 0.54 1.08 2.73 0.56 1.14 2.84 Operating wavelength nm <---<_ 780 <_ <-Light acquisition efficiency 94.4 94.4 94.4 94.3 94.4 94.3
LD~S1 面 mm 1 1 1 1 1 1 レンズ中心厚 3 3 3 3.4 3.4 3.4LD ~ S1 surface mm 1 1 1 1 1 1 Lens center thickness 3 3 3 3.4 3.4 3.4
BF mm 100 50 20 100 50 20BF mm 100 50 20 100 50 20
S1 面 Y曲率 0.88 0.87 0.85 0.86 0.85 0.85S1 surface Y curvature 0.88 0.87 0.85 0.86 0.85 0.85
S1 面 X曲率 -1.33 -1.35 - 1.45 -1.24 -1.27 -1.35S1 surface X curvature -1.33 -1.35-1.45 -1.24 -1.27 -1.35
S1 面曲率変化量 2.20 2.22 2.30 2.10 2.12 2.20 S1 surface curvature change 2.20 2.22 2.30 2.10 2.12 2.20
X方向 41.89 20.88 8.24 75.65 37.46 15.07 スポット径  X direction 41.89 20.88 8.24 75.65 37.46 15.07 Spot diameter
Y方向 43.08 21.49 8.49 77.67 38.47 15.51 隊面 真円度 x/y (%) 97.23 97.15 97.16 97.40 97.37 97.21 評価 真円エラ一 (%) 2.77 2.85 2.84 2.60 2.63 2.79  Y direction 43.08 21.49 8.49 77.67 38.47 15.51 Unit roundness x / y (%) 97.23 97.15 97.16 97.40 97.37 97.21 Evaluated perfect circularity (%) 2.77 2.85 2.84 2.60 2.63 2.79
サイドローブ 0.23 0.24 0.30 0.24 0.24 0.34 波面収差 mA RMS 0.26 0.30 0.42 0.14 0.14 0.14 評価関数 EF 0.024 0.023 0.030 0.022 0.019 0.034  Side lobe 0.23 0.24 0.30 0.24 0.24 0.34 Wavefront aberration mA RMS 0.26 0.30 0.42 0.14 0.14 0.14 Evaluation function EF 0.024 0.023 0.030 0.022 0.019 0.034
[表 5] 光源の ΧΥ開口比を 0.53にし光源の XY開口比を 0.59にして 項目 単位等 [Table 5] Set the 比 aperture ratio of the light source to 0.53 and the XY aperture ratio of the light source to 0.59 Item Unit etc.
て BFを変化 BFを変化 物体側 Y方向 0.4 <_ < - 0.4 0.4 0.4 開口数 X方向 0.21 < - ぐ - 0.234 0.234 0.234 光線  Change BF Change BF Object side Y direction 0.4 <_ <-0.4 0.4 0.4 Numerical aperture X direction 0.21 <-G-0.234 0.234 0.234 Ray
開口比 x/y 0.53 0.53 0.53 0.59 0.59 0.59 定義  Aperture ratio x / y 0.53 0.53 0.53 0.59 0.59 0.59 Definition
X方向 0.57 1.14 3.00 0.59 1.18 3.07 虚像角  X direction 0.57 1.14 3.00 0.59 1.18 3.07 Virtual image angle
Y方向 0.57 1.14 2.91 0.59 1.18 3.00 使用波長 nm 408 <一 < - 408 < - <一 光取得効率 94.4 94.3 94.7 95.9 95.83 96.10 Y direction 0.57 1.14 2.91 0.59 1.18 3.00 Wavelength used nm 408 <1 <-408 <-<Light acquisition efficiency 94.4 94.3 94.7 95.9 95.83 96.10
LD~S1 面 mm 1 1 1 1 1 1 レンズ中心厚 3.4 3.4 3.4 3.4 3.4 3.4LD ~ S1 side mm 1 1 1 1 1 1 Lens center thickness 3.4 3.4 3.4 3.4 3.4 3.4
BF mm 100 50 20 100 50 20BF mm 100 50 20 100 50 20
S1 面 Y曲率 0.82 0.80 0.76 0.78 0.76 0.71S1 surface Y curvature 0.82 0.80 0.76 0.78 0.76 0.71
S1 面 X曲率 -0.25 -0.26 -0.21 -0.11 -0.11 -0.10S1 surface X curvature -0.25 -0.26 -0.21 -0.11 -0.11 -0.10
S1面曲率変化量 1.07 1.06 0.97 0.88 0.87 0.81 S1 surface curvature change 1.07 1.06 0.97 0.88 0.87 0.81
X方向 39.32 19.54 7.56 39.75 19.78 7.70 スポット径  X direction 39.32 19.54 7.56 39.75 19.78 7.70 Spot diameter
Y方向 40.40 20.02 7.71 38.66 19.20 7.39 像面 真円度 x/y (%) 97.33 97.59 98.03 102.82 103.02 104.10 評価 真円エラー (%) 2.67 2.41 1.97 2.82 3.02 4.10  Y direction 40.40 20.02 7.71 38.66 19.20 7.39 Image plane Roundness x / y (%) 97.33 97.59 98.03 102.82 103.02 104.10 Evaluation Roundness error (%) 2.67 2.41 1.97 2.82 3.02 4.10
サイドローブ 0.24 0.23 0.25 0.19 0.19 0.25 波面収差 m λ RMS 0.44 0.40 0.50 0.61 0.56 0.56 評価関数 EF 0.028 0.019 0.012 0.019 0.017 0.026  Side lobe 0.24 0.23 0.25 0.19 0.19 0.25 Wavefront aberration m λ RMS 0.44 0.40 0.50 0.61 0.56 0.56 Evaluation function EF 0.028 0.019 0.012 0.019 0.017 0.026
[表 6] [Table 6]
Figure imgf000015_0001
Figure imgf000015_0001
/vu/ O εεεさ osooifcld 9/880SOSAV / vu / O εεεsa osooifcld 9 / 880SOSAV
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000017_0001
光源開口比 0.53 Iこ変更 光源開口比 0.59に変更 Light source aperture ratio changed to 0.53 I Light source aperture ratio changed to 0.59
100 50 20 100 50 20 100 50 20 100 50 20
KX -22.8497 -26.6845 -51.7997 -120.6219 -125.9646 -215.6601KX -22.8497 -26.6845 -51.7997 -120.6219 -125.9646 -215.6601
KY -2.0494 -2.0719 -2.1479 -2.1072 -2.1396 -2.2606KY -2.0494 -2.0719 -2.1479 -2.1072 -2.1396 -2.2606
A4 -0.1203 -0.1989 0.5715 -0.0768 -0.1201 - 0.3551A4 -0.1203 -0.1989 0.5715 -0.0768 -0.1201-0.3551
A6 -0.0041 -0.0295 -0.1311 0.0130 0.0161 0.0335A6 -0.0041 -0.0295 -0.1311 0.0130 0.0161 0.0335
S1 面 S1 side
A8 0.2277 0.4688 1.2449 0.0643 0.1222 0.5090 A8 0.2277 0.4688 1.2449 0.0643 0.1222 0.5090
B4 0.0 Ϊ 24 0.0142 0.0163 0.0091 0.0117 0.0163B4 0.0 Ϊ 24 0.0142 0.0163 0.0091 0.0117 0.0163
B6 0.0009 0.0005 -0.0001 0.0016 0.0009 -0.0005B6 0.0009 0.0005 -0.0001 0.0016 0.0009 -0.0005
B8 -0.0002 -0.0001 0.0000 -0.0003 -0.0002 0.0000 フリ一フォーム面 B8 -0.0002 -0.0001 0.0000 -0.0003 -0.0002 0.0000 Free foam surface
KX -0.5830 -0.5685 -0.4872 -0.5335 -0.5225 -0.4816 KX -0.5830 -0.5685 -0.4872 -0.5335 -0.5225 -0.4816
KY 3.8558 3.1200 1.1572 1.5436 1.3320 0.4494KY 3.8558 3.1200 1.1572 1.5436 1.3320 0.4494
A4 -0.0040 -0.0049 -0.0108 -0.0027 -0.0032 -0.0076A4 -0.0040 -0.0049 -0.0108 -0.0027 -0.0032 -0.0076
A6 -0.0008 -0.0010 0.0012 -0.0005 -0.0006 0.0006A6 -0.0008 -0.0010 0.0012 -0.0005 -0.0006 0.0006
S2面 S2 surface
A8 0.0001 0.0003 -0.0001 0.0001 0.0002 0.0001 A8 0.0001 0.0003 -0.0001 0.0001 0.0002 0.0001
B4 0.0377 0.0378 0.0356 0.0308 0.0309 0.0294B4 0.0377 0.0378 0.0356 0.0308 0.0309 0.0294
B6 0.0066 0.0072 0.0072 0.0048 0.0054 0.0057B6 0.0066 0.0072 0.0072 0.0048 0.0054 0.0057
B8 0.0000 0.0005 0.0011 -0.0001 0.0003 0.0009B8 0.0000 0.0005 0.0011 -0.0001 0.0003 0.0009
CY -0.19 -0.22 - 0.31 -0.22 -0.25 -0.34CY -0.19 -0.22-0.31 -0.22 -0.25 -0.34
CX -0.54 -0.56 -0.61 - 0.52 -0.54 -0.59 CX -0.54 -0.56 -0.61-0.52 -0.54 -0.59
[0040] ビーム整形集光一体型レンズの設計条件を、表 1の初期条件から様々に変化させ て、レンズ両面の形状を従来技術による以下の式 (アナモルフィック式)にしたがって 設計した結果を表 10乃至 12に示す。 [0040] The design conditions of the integrated beam shaping / condensing lens were variously changed from the initial conditions in Table 1, and the results of designing the shape of both surfaces of the lens according to the following formula (anamorphic formula) according to the conventional technology are shown. 10 to 12 show.
[数 6]  [Number 6]
Ζ(χ) =—— χ' ' + R[(l - AP)x2 + (1 + AP)y2 ]2 + l + ^l-(l + kx)(cx 2x2)-(l + ky)(cy 2y2) Ζ (χ) = —— χ '' + R [(l-AP) x 2 + (1 + AP) y 2 ] 2 + l + ^ l- (l + k x ) (c x 2 x 2 )- (l + k y ) (c y 2 y 2 )
BR[(l― BP)x2 + (1 + BP)y2f + CR[(1― CP)x2 + (1 + CP)y2 ]4 + DR[(\― DP)x2 + (1 + DP)y2 ]5 BR [(l-BP) x 2 + (1 + BP) y 2 f + CR [(1-CP) x 2 + (1 + CP) y 2 ] 4 + DR [(\-DP) x 2 + ( 1 + DP) y 2 ] 5
(2)  (2)
[0041] ここで Zは、 Z軸(光軸方向)に平行な、面のサグ量、 C、 Cは、 XZ面内および YZ 面内の曲率、 K、 Kは XZ面内および YZ面内の形状の円錐係数、 AR、 BR、 CR、 D[0041] Here, Z is the sag amount of the plane parallel to the Z axis (the optical axis direction), C and C are the curvatures in the XZ plane and the YZ plane, and K and K are in the XZ plane and the YZ plane. Conical coefficients of the shape, AR, BR, CR, D
R、 AP、 BP、 CP、 DPは補正係数を表す。具体的に表 10乃至 12は、バックフォー力 ス以外を変化させな力つた場合、 X方向の物体側開口数を 0.45に変化させた場合 、半導体レーザ光源とレンズの SI面との間の距離を 1.5mmに変化させた場合、レ ンズ中心厚を 3mmに変化させた場合、使用波長を 780nmに変化させた場合、開口 比を 0.53に変化させた場合および開口比を 0.59に変化させた場合について、バッ クフォーカスをそれぞれ 100mm (初期条件)、 50mmおよび 20mmとした場合の設 計結果を示す。表 13乃至 16は、上記の様々な設計条件で設計を行った場合の、非 球面を表す項の係数と補正項の係数とを示す。ただし、 S1面の曲率については、表 10乃至 12に示して!/、るので省略して!/、る。 R, AP, BP, CP, and DP represent correction factors. Specifically, Tables 10 to 12 show that when the force other than the back force is changed, the object side numerical aperture in the X direction is changed to 0.45. When the distance between the semiconductor laser light source and the SI surface of the lens was changed to 1.5 mm, when the lens center thickness was changed to 3 mm, when the wavelength used was changed to 780 nm, the aperture ratio was 0.53. The design results when the back focus was set to 100 mm (initial condition), 50 mm, and 20 mm, respectively, when the aperture ratio was changed and when the aperture ratio was changed to 0.59. Tables 13 to 16 show the coefficient of the term representing the aspherical surface and the coefficient of the correction term when the design is performed under the above various design conditions. However, the curvature of the S1 surface is shown in Tables 10 to 12 and is omitted because it is! /.
[表 10] 初期条件において BFを NAを 0.45にして BFを変 LD〜S1面を 1.5(mm)にし 項目 単位等 [Table 10] Under initial conditions, change BF to NA 0.45 and change BF LD-S1 surface to 1.5 (mm) Item Unit etc.
変化 化 て BFを変化 物体側開口 Y方向 0.4 < - < - 0.45 < - ぐ- 0.4 < - < - 数 X方向 0.14 く - < - 0.17 <_ < - 0.14 < - < - 光  Change BF due to change Object side aperture Y direction 0.4 <-<-0.45 <-g-0.4 <-<-number X direction 0.14 く-<-0.17 <_ <-0.14 <-<-Light
開口比 x/ y 0.36 0.36 0.36 0.37 0.37 0.37 0.36 0.36 0.36 定義  Aperture ratio x / y 0.36 0.36 0.36 0.37 0.37 0.37 0.36 0.36 0.36 Definition
X方向 0.53 1.04 2.81 0.65 1.25 3.24 0.61 1.17 3.20 虚像角  X direction 0.53 1.04 2.81 0.65 1.25 3.24 0.61 1.17 3.20 Virtual image angle
Y方向 0.56 1.12 2.B9 0.73 1.38 3.27 0.66 1.32 3.28 使用波長 nm 408 < - ぐ - < - く - ぐ - ぐ - < - < - 光取得効率 94.5 94.6 94.5 94.フ 94.8 94.9 94.5 94.5 94.3 Y direction 0.56 1.12 2.B9 0.73 1.38 3.27 0.66 1.32 3.28 Operating wavelength nm 408 <-G-<-K-G--G-<-<-Light acquisition efficiency 94.5 94.6 94.5 94.F 94.8 94.9 94.5 94.5 94.3
LD~S1 面 mm 1 1 1 1 1 1.5 1.5 1.5 レンズ中心厚 3,4 3,4 34 3.4 3.4 3.4 3.4 3.4 3.4LD ~ S1 side mm 1 1 1 1 1 1.5 1.5 1.5 Lens center thickness 3,4 3,4 34 3.4 3.4 3.4 3.4 3.4 3.4
BF mm 100 50 20 100 50 20 100 50 20BF mm 100 50 20 100 50 20 100 50 20
S1 面 Y曲率 0.96 0.99 0.76 0.94 0.97 0.66 0.86 0.Θ1 0.65S1 surface Y curvature 0.96 0.99 0.76 0.94 0.97 0.66 0.86 0.Θ1 0.65
S1 面 X曲率 -1.18 -1.19 -1.66 -1.49 -1.34 -1.82 -1.09 -1.09 -1.40S1 surface X curvature -1.18 -1.19 -1.66 -1.49 -1.34 -1.82 -1.09 -1.09 -1.40
S1 面曲率変化量 2J4 2.19 2.42 2.43 2.32 2.47 1.95 2.00 2.05 S1 surface curvature change 2J4 2.19 2.42 2.43 2.32 2.47 1.95 2.00 2.05
X方向 42.02 21.06 7.64 34.18 17.79 6.56 37.2 18.70 6.82 スポット径  X direction 42.02 21.06 7.64 34.18 17.79 6.56 37.2 18.70 6.82 Spot diameter
Y方向 43.47 21.99 7.89 35.70 18.56 6.76 38.43 19.56 6.94 像面 真円度 Xノ y ί%) 96.65 95.77 96.87 95.75 95.89 97.04 96.81 95.61 98.13 評価 真円エラ一 (%) 3.35 4.23 3.13 4.25 4.11 2.96 3.19 4.39 1.82  Y direction 43.47 21.99 7.89 35.70 18.56 6.76 38.43 19.56 6.94 Image plane Roundness X y y y%) 96.65 95.77 96.87 95.75 95.89 97.04 96.81 95.61 98.13 Evaluation True circular error (%) 3.35 4.23 3.13 4.25 4.11 2.96 3.19 4.39 1.82
サイド口一ブ 0.34 0.41 0.63 0.39 0.38 0.8 0.37 0.44 0.43 波面収差 mA RMS 0.5 0.5 1.3 1.3 0.8 7.8 0.34 2.0 2.97 評価関数 EF 0.059 0.097 0.159 0.140 0.099 0.277 0.084 0.145 0.046 [表 11] Side mouth 0.34 0.41 0.63 0.39 0.38 0.8 0.37 0.44 0.43 Wavefront aberration mA RMS 0.5 0.5 1.3 1.3 0.8 7.8 0.34 2.0 2.97 Evaluation function EF 0.059 0.097 0.159 0.140 0.099 0.277 0.084 0.145 0.046 [Table 11]
Figure imgf000020_0001
Figure imgf000020_0001
[表 12] 光源の XY開口比を 0.53にし光源の ΧΥ開口比を 0.59にして 項目 単位等 [Table 12] Set the XY aperture ratio of the light source to 0.53 and the ΧΥ aperture ratio of the light source to 0.59 Item Unit, etc.
て BFを変化 BFを変化 物体側 Y方向 0.4 く - < - 0.4 0.4 0.4 開口数 X方向 0.21 く- ぐ - 0.234 0.234 0.234 線  Change BF Change BF Object side Y direction 0.4 dots-<-0.4 0.4 0.4 Numerical aperture X direction 0.21 dots-0.234 0.234 0.234 line
開口比 x/y 0.53 0.53 0.53 0.59 0.59 0.59 定義  Aperture ratio x / y 0.53 0.53 0.53 0.59 0.59 0.59 Definition
X方向 0.59 1.21 2.75 0.62 1.22 3.03 虚像角  X direction 0.59 1.21 2.75 0.62 1.22 3.03 Virtual image angle
Y方向 0.57 1.14 3.00 0.59 1.18 3.00 使用波長 nm 408 く - く 408 く - <- 光取得効率 94.9 94.8 94.9 95.9 95.3 95.7 Y direction 0.57 1.14 3.00 0.59 1.18 3.00 Wavelength used nm 408--408--<-Light acquisition efficiency 94.9 94.8 94.9 95.9 95.3 95.7
LD-S1 面 mm 1 1 1 1 1 1 レンズ中心厚 3.4 3.4 3.4 3.4 3.4 3.4LD-S1 side mm 1 1 1 1 1 1 Lens center thickness 3.4 3.4 3.4 3.4 3.4 3.4
BF mm too 50 20 100 50 20BF mm too 50 20 100 50 20
S1 面 Y曲率 0.64 0.60 0.90 0.63 0.63 0.63S1 surface Y curvature 0.64 0.60 0.90 0.63 0.63 0.63
S1 面 X曲率 -0.46 -0.52 -0.31 -0.26 -0.27 -0.32S1 surface X curvature -0.46 -0.52 -0.31 -0.26 -0.27 -0.32
S1 面曲率変化量 1.10 1.12 1.22 0.90 0.90 0.95 S1 surface curvature change 1.10 1.12 1.22 0.90 0.90 0.95
X方向 37. Ϊ6 18.21 7.83 37.94 19.08 7.57 スポット径  X direction 37. Ϊ6 18.21 7.83 37.94 19.08 7.57 Spot diameter
Y方向 37.74 18.50 8.12 36.69 18.28 7.27 像面 真円度 x/y (%) 98.49 98.45 96.36 103.40 104.40 104.18 評価 真円エラー C%) 1.51 1.55 3.64 3.40 4.40 4.18 サイドローブ 0.55 0.68 0.45 0.47 0.5 0.44 波面収差 mA RMS 2.8 4.1 5.1 1.03 0.81 5.09 評価関数 EF 0.086 0.118 0.110 0.141 0.179 0.111  Y direction 37.74 18.50 8.12 36.69 18.28 7.27 Image plane Roundness x / y (%) 98.49 98.45 96.36 103.40 104.40 104.18 Evaluation Roundness error C%) 1.51 1.55 3.64 3.40 4.40 4.18 Sidelobe 0.55 0.68 0.45 0.47 0.5 0.44 Wavefront aberration mA RMS 2.8 4.1 5.1 1.03 0.81 5.09 Evaluation function EF 0.086 0.118 0.110 0.141 0.179 0.111
[表 13] /vu/ O εεεさ osooifcld 9/880sosAV [Table 13] / vu / O εεεsa osooifcld 9 / 880sosAV
Figure imgf000022_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000023_0001
S16 S16
Figure imgf000024_0001
Figure imgf000024_0001
光源開口比 0.53に変更 光源開口比 0.59に変更 Light source aperture ratio changed to 0.53 Light source aperture ratio changed to 0.59
100 50 20 100 50 20 100 50 20 100 50 20
KX -1.9276 -1.6073 -15.1489 -4.7345 -4.3271 -2.9793KX -1.9276 -1.6073 -15.1489 -4.7345 -4.3271 -2.9793
KY 0.4232 0.7647 -1.8575 0.3303 0.3305 0.3160KY 0.4232 0.7647 -1.8575 0.3303 0.3305 0.3160
AR -0.0093 -00075 -0.0063 -0.0090 -0.009D -0.0094AR -0.0093 -00075 -0.0063 -0.0090 -0.009D -0.0094
BR 0.0009 0.0000 0.0000 0.0000 0.0002 0.0009BR 0.0009 0.0000 0.0000 0.0000 0.0002 0.0009
S1面 S1 side
CR 0.0000 0,0000 -D.0121 ο.αοοο 0.0000 00000 CR 0.0000 0,0000 -D.0121 ο.αοοο 0.0000 00000
AP 0.9645 0.7044 1.1919 1.1562 1.1619 1.2127AP 0.9645 0.7044 1.1919 1.1562 1.1619 1.2127
BP -0.5363 6.9836 12.6178 -20172 -1.1730 -0.0596 アナモルフィック CP 3.8257 4.5186 D.5400 3.7163 37125 3.6972 非球面 KX -0.4936 -0.5243 -0.5934 -0.4951 -0.5239 - 0.6184 BP -0.5363 6.9836 12.6178 -20172 -1.1730 -0.0596 Anamorphic CP 3.8257 4.5186 D.5400 3.7163 37125 3.6972 Aspheric surface KX -0.4936 -0.5243 -0.5934 -0.4951 -0.5239-0.6184
KY 0.2212 0.0833 -1.4570 G.3562 -0.4004 -0,5741 KY 0.2212 0.0833 -1.4570 G.3562 -0.4004 -0,5741
AR 0.0074 0.0076 0,0034 0.0063 0.0064 0.0060AR 0.0074 0.0076 0,0034 0.0063 0.0064 0.0060
BR 0.0010 0.0001 - 0.0026 0.0010 0.0010 0.0010BR 0.0010 0.0001-0.0026 0.0010 0.0010 0.0010
S2面 S2 surface
CR 0.0007 0.0010 00002 0.0004 0.0004 0.0003 CR 0.0007 0.0010 00002 0.0004 0.0004 0.0003
AP 1.0507 1.0447 1.7861 1.0Π7 1.0025 1.0013AP 1.0507 1.0447 1.7861 1.0Π7 1.0025 1.0013
BP 0.9700 1.2293 08099 0.9143 0.9144 0.9228BP 0.9700 1.2293 08099 0.9143 0.9144 0.9228
CP 1.1133 1.0550 1.0755 1.0410 1.0292 0.9596CP 1.1133 1.0550 1.0755 1.0410 1.0292 0.9596
CY -0.29 -0.33 -0.21 -0.29 -0.31 - 0.38 cx -0.57 -0.60 -0.93 -0.54 -0.56 -0.63 CY -0.29 -0.33 -0.21 -0.29 -0.31-0.38 cx -0.57 -0.60 -0.93 -0.54 -0.56 -0.63
[0042] 入射ビームの光源とレンズの光源側面との距離を FF(mm)、レンズのバックフォー力 スを BF(mm)、真円度エラーを The distance between the light source of the incident beam and the side of the light source of the lens is FF (mm), the back force of the lens is BF (mm), and the roundness error is
CE= | 100-真円度 I (%)  CE = | 100-roundness I (%)
X方向の物体開口数を NA、 Y方向の物体開口数を NA、物体開口比を  The object numerical aperture in the X direction is NA, the object numerical aperture in the Y direction is NA, and the object numerical aperture is
X Y X Y
NAR =NA /NA NAR = NA / NA
X Υ  X Υ
設計上のピーク強度に対する最大サイドローブ強度の比率を SR(%)として、  The ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%),
I C C I 2XSR2Xlog (BF) XCEXNAR4XFF ICCI 2 XSR 2 Xlog (BF) XCEXNAR 4 XFF
X Υ 10  X Υ 10
を評価関数 EF1とする。  Is the evaluation function EF1.
[0043] 本発明の一実施形態による設計結果を表す表 3乃至 5において、上記全ての設計 条件において、評価関数 EF1は以下の条件を満たす。  In Tables 3 to 5 showing the design results according to the embodiment of the present invention, the evaluation function EF1 satisfies the following conditions under all the above design conditions.
EF1 < 0.04 [0044] 他方、アナモルフィック非球面式による設計結果を表す表 10乃至 12において、上 記全ての設計条件において、評価関数 EF1は以下の条件を満たす。 EF1 <0.04 On the other hand, in Tables 10 to 12, which show the design results based on the anamorphic aspherical formula, the evaluation function EF1 satisfies the following conditions under all the above design conditions.
EF1 > 0.04  EF1> 0.04
[0045] また、本発明の一実施形態による、表 3乃至 5の各条件におけるサイドローブの値 は、従来のアナモルフィック式による、表 10乃至 12の対応する条件におけるサイド口 ーブの値よりも小さい。  Further, according to one embodiment of the present invention, the values of the side lobes under the conditions of Tables 3 to 5 are the values of the side lobes under the corresponding conditions of Tables 10 to 12 according to the conventional anamorphic equation. Less than.
[0046] 上記の結果は、以下の理由によるものと考えられる。相対的に大きなサイドローブ は、 XZ断面の周辺部において発生する。 XZ断面について考えると、ビーム整形させ るために発散させるべき面のパワーが大きくなる中心付近にぉ 、て、非球面を表す 項の 2乗項の支配力が強いので、相対的に強い発散が生じる。このため、中心付近 が粗となり、逆に周辺部分が密となり、サイドローブが増加すると考えられる。したがつ て、サイドローブを小さくするには、非球面を表す項において、 X方向の曲率 Cと Y方 向の曲率 Cとの差をできるだけ小さくするのが好ま 、と考えられる。  [0046] The above results are considered to be due to the following reasons. Relatively large side lobes occur at the periphery of the XZ section. Considering the XZ cross section, since the power of the surface to be diverged for beam shaping becomes large near the center where the power of the square term of the term representing the aspheric surface is strong, a relatively strong divergence is obtained. Occurs. Therefore, it is considered that the area near the center becomes coarse and the area around the center becomes dense, and the side lobes increase. Therefore, in order to reduce the side lobe, it is considered preferable to minimize the difference between the curvature C in the X direction and the curvature C in the Y direction in a term representing an aspheric surface.
[0047] 他方、本発明の一実施形態による式 (式 1)と従来のアナモルフィック式 (式 2)とは、 補正項が異なっている。式 1においては、各補正項の係数 A 、B を互いに独立して  On the other hand, the correction term is different between the equation (Equation 1) according to the embodiment of the present invention and the conventional anamorphic equation (Equation 2). In Equation 1, the coefficients A and B of each correction term are independent of each other.
2i 2i  2i 2i
定めることができる。したがって、本実施形態においては、各補正項の係数 A 、 B を  Can be determined. Therefore, in the present embodiment, the coefficients A and B of each correction term are
2i 2i 互いに独立して定めることによって、式 1の非球面を表す項の X方向の曲率 Cと Y方 向の曲率 Cとの差をできるだけ小さくすることができる。しかし、式 2においては、 AP 2i 2i By defining them independently of each other, the difference between the curvature C in the X direction and the curvature C in the Y direction of the term representing the aspheric surface in Equation 1 can be minimized. However, in Equation 2, AP
、 BP、 CP、 DPなどの係数が複数の補正項に共通しているため、互いに独立して定 めることができず、非球面を表す項の X方向の曲率 Cと Y方向の曲率 Cとの差を、本 発明のように小さくすることができな!/、。 , BP, CP, DP, etc., are common to multiple correction terms, and cannot be determined independently of each other.The curvature C in the X direction and the curvature C in the Y direction of the aspherical term Cannot be reduced as in the present invention! /.
[0048] 従来のアナモルフィック式 (式 2)の形は、以下の非球面の式の形に対応して 、る。  [0048] The form of the conventional anamorphic equation (Equation 2) corresponds to the form of the following aspherical equation.
[数 7]  [Number 7]
2 2
Z = ^ °' + Y aip2n Z = ^ ° '+ Y aip 2n
1 + ^/1— (1 +ん) c2r2 1 + ^ / 1— (1 + n) c 2 r 2
[0049] ここで、 rおよび pは、光軸からの距離である。実際、式 2において、 cx=cy、 kx=k y、 AP = BP = CP = DP = 0とすると、上記の非球面の式と同じになる。 AP、 BP、 CP および DP項は、 X軸のサグ量と Y軸のサグ量との差を示し、非点収差との対応がとり やすい。このような理由から、従来のアナモルフィック式 (式 2)が一般的に使用されて きた。 [0049] Here, r and p are distances from the optical axis. In fact, in Equation 2, if cx = cy, kx = ky, AP = BP = CP = DP = 0, the result is the same as that of the above-mentioned aspheric surface. AP, BP, CP The DP term and the DP term indicate the difference between the amount of sag on the X axis and the amount of sag on the Y axis, and can easily correspond to astigmatism. For this reason, the conventional anamorphic equation (Equation 2) has been generally used.
[0050] 上記のように、本発明の一実施形態による、ビーム整形集光レンズは、半導体レー ザ光源からの、 X方向と Υ方向の拡がり角が異なるビームを、集光されるビームの強 度分布が所定の真円度を達成するようにビームを整形する場合に、従来のアナモル フィック 'レンズと比較してサイドローブを小さくすることができる。  [0050] As described above, the beam shaping condenser lens according to one embodiment of the present invention converts the beam from the semiconductor laser light source having different divergence angles in the X and Υ directions from the intensity of the focused beam. When shaping the beam so that the power distribution achieves a predetermined circularity, the side lobe can be reduced as compared with the conventional anamorphic lens.
[0051] 一般的に、レンズの対称性を考慮すると、補正項 fe (X, y)は、  [0051] In general, considering the symmetry of the lens, the correction term fe (X, y) is
fe (x, y) =ie、— x,— y)  fe (x, y) = ie, — x, — y)
を満たす必要がある。  Need to be satisfied.
[0052] 補正項は、三角関数の項を含んでもよ!、。三角関数は、曲率の変化が大き!/、ので 適切に組み合わせることにより、より自由度の高い設計ができる。三角関数を含む補 正項の設計例にっ 、ては後で説明する。  [0052] The correction term may include a trigonometric function term! The trigonometric function has a large change in curvature! /, So it can be designed with a higher degree of freedom by combining it appropriately. A design example of a correction term including a trigonometric function will be described later.
[0053] 補正項は、 Xの累乗と Yの累乗とを乗じた項を含んでもよい。この補正項を使用すれ ば、たとえば、 Xの大きさに応じて Yの補正の大きさを変えることができる。したがって 、開口数が大きなビーム整形集光レンズを設計する場合に有利である。 Xの累乗と Y の累乗とを乗じた項を含む補正項の設計例については後で説明する。  [0053] The correction term may include a term obtained by multiplying a power of X and a power of Y. If this correction term is used, for example, the magnitude of Y correction can be changed according to the magnitude of X. Therefore, it is advantageous when designing a beam shaping condenser lens having a large numerical aperture. A design example of a correction term including a term obtained by multiplying the power of X and the power of Y will be described later.
[0054] ビーム整形コリメート ·レンズの設計条件を、表 2の初期条件から様々に変化させて 、本発明の一実施形態である以下の式にしたがって設計した結果を表 17に示す。  Table 17 shows the results of designing according to the following formula, which is an embodiment of the present invention, by variously changing the design conditions of the beam shaping collimator lens from the initial conditions in Table 2.
[数 8]
Figure imgf000027_0001
[Equation 8]
Figure imgf000027_0001
[0055] 具体的に表 17は、初期条件を変化させな力つた場合、 X方向の物体側開口数を 0 . 45に変化させた場合、半導体レーザ光源とレンズの S1面との間の距離を 1. 5mm に変化させた場合、レンズ中心厚を 3mmに変化させた場合、使用波長を 780nmに 変化させた場合、開口比を 0. 53に変化させた場合および開口比を 0. 59に変化さ せた場合の設計結果を示す。表 17乃至 20において、表中の丸で囲った数字は、そ れぞれ、上記の 7個のケースを示す。表 18は、上記の様々な設計条件で設計を行つ た場合の、非球面を表す項の曲率以外の係数と補正項の係数とを示す。 [0055] Specifically, Table 17 shows that the distance between the semiconductor laser light source and the S1 surface of the lens is obtained when the initial condition is not changed, when the object-side numerical aperture in the X direction is changed to 0.45, and Was changed to 1.5 mm, the lens center thickness was changed to 3 mm, the wavelength used was changed to 780 nm, the aperture ratio was changed to 0.53, and the aperture ratio was set to 0.59. The design results when changing are shown. In Tables 17 to 20, the circled numbers in the tables indicate The above seven cases are shown, respectively. Table 18 shows the coefficients other than the curvature of the term representing the aspheric surface and the coefficients of the correction term when the design is performed under the above various design conditions.
[表 17][Table 17]
Figure imgf000028_0001
Figure imgf000028_0001
[表 18] ① ② ③ ④ ⑤ ⑥ ⑦[Table 18] ① ② ③ ④ ⑤ ⑥ ⑦
KX -0.8123 -0.8041 -0.7532 -0.7634 -0.7901 -22.7868 -140.5968KX -0.8123 -0.8041 -0.7532 -0.7634 -0.7901 -22.7868 -140.5968
KY -1 .1 168 -1 .1263 -1.2915 -1 .1 604 -1 .0665 -2.0410 -2.1048KY -1.1 168 -1.1263 -1.2915 -1.1 604 -1.0665 -2.0410 -2.1048
A4 - 0.5702 -0.5474 -0.3488 -0.6362 - 0.6032 -0.0876 -0.0640A4-0.5702 -0.5474 -0.3488 -0.6362-0.6032 -0.0876 -0.0640
A6 -2.3072 -2.5250 -0.9916 -2.7573 -2.6010 0.0026 0.0127A6 -2.3072 -2.5250 -0.9916 -2.7573 -2.6010 0.0026 0.0127
S1 面 S1 side
A8 -4.231 7 -5.7562 -1.6361 -5.9845 -4.9857 0.1 51 9 0.0544 A8 -4.231 7 -5.7562 -1.6361 -5.9845 -4.9857 0.1 51 9 0.0544
B4 -0.0440 -0.0368 -0.01 10 - 0.0374 -0.0501 0.01 1 9 0.0092B4 -0.0440 -0.0368 -0.01 10-0.0374 -0.0501 0.01 1 9 0.0092
B6 0.0147 0.01 10 0.0041 0.0147 0.01 61 0.001 0 0.0015B6 0.0147 0.01 10 0.0041 0.0147 0.01 61 0.001 0 0.0015
B8 -0.0023 -0.0014 - 0.0004 -0.0023 -0.0025 -0.0002 - 0.0003 フリーフォーム面 B8 -0.0023 -0.0014-0.0004 -0.0023 -0.0025 -0.0002-0.0003 Freeform surface
KX -0.3253 -0.3267 -0.3644 - 0.3478 -0.3430 -0.6034 -0.5654 KX -0.3253 -0.3267 -0.3644-0.3478 -0.3430 -0.6034 -0.5654
KY 6.7296 5.2018 28.3452 13.3083 6.2441 5.1314 2.1879KY 6.7296 5.2018 28.3452 13.3083 6.2441 5.1314 2.1879
A4 0.001 1 0.001 5 0.0003 0.0007 0.001 1 -0.0040 -0.0032A4 0.001 1 0.001 5 0.0003 0.0007 0.001 1 -0.0040 -0.0032
A6 -0.0005 - 0.0007 -0.0005 -0.0010 -0.0006 -0.0007 -0.0005A6 -0.0005-0.0007 -0.0005 -0.0010 -0.0006 -0.0007 -0.0005
S2面 S2 surface
A8 0.0002 0.0002 0.0000 0.0002 0.0002 0.0001 0.0001 A8 0.0002 0.0002 0.0000 0.0002 0.0002 0.0001 0.0001
B4 0.0438 0.0420 0.0380 0.0596 0.0461 0.0379 0.031 1B4 0.0438 0.0420 0.0380 0.0596 0.0461 0.0379 0.031 1
B6 0.0081 0.0091 0.0052 0.01 24 0.0091 0.0062 0.0047B6 0.0081 0.0091 0.0052 0.01 24 0.0091 0.0062 0.0047
B8 -0.0020 -0.0020 -0.001 2 -0.0035 -0.0021 -0.0003 -0.0002B8 -0.0020 -0.0020 -0.001 2 -0.0035 -0.0021 -0.0003 -0.0002
CY -0.16 -0.18 -0.08 -0.13 -0.1 7 -0.1 7 -0.1 9CY -0.16 -0.18 -0.08 -0.13 -0.1 7 -0.1 7 -0.1 9
CX -0.63 -0.63 -0.61 -0.70 -0.65 -0.52 -0.49 ビーム整形コリメート'レンズの設計条件を、表 2の初期条件から様々に変化させて 、従来技術による以下の式 (アナモルフィック式)にしたがって設計した結果を表 19 に示す。 CX -0.63 -0.63 -0.61 -0.70 -0.65 -0.52 -0.49 By changing the design conditions of the beam shaping collimator lens variously from the initial conditions in Table 2, the following formula (anamorphic formula) based on the conventional technology is used. Therefore, the design results are shown in Table 19.
[数 9] c + c y [Equation 9] c + cy
■ + R[(l - ΑΡ)χΔ + Q + AP)y2 f + l + ^l - (l + kx X )— (l +ん y ){C;y l ) ■ + R [(l-ΑΡ) χ Δ + Q + AP) y 2 f + l + ^ l-(l + k x X) — (l + n y ) { C ; y l )
BR[(l― BP)x2 + (1 + BP)y2 ]3 + CR[(1一 CP)x2 + (1 + CP)y2 ]4 + DR[(l - DP)x2 + (1 + DP)y2 BR [(l-BP) x 2 + (1 + BP) y 2 ] 3 + CR [(1 CP) x 2 + (1 + CP) y 2 ] 4 + DR [(l-DP) x 2 + (1 + DP) y 2
(2) 具体的に表 19は、初期条件を変化させな力つた場合、 X方向の物体側開口数を 0 . 45に変化させた場合、半導体レーザ光源とレンズの S1面との間の距離を 1. 5mm に変化させた場合、レンズ中心厚を 3mmに変化させた場合、使用波長を 780nmに 変化させた場合、開口比を 0. 53に変化させた場合および開口比を 0. 59に変化さ せた場合の設計結果を示す。表 20は、上記の様々な設計条件で設計を行った場合 の、非球面を表す項の曲率以外の係数と補正項の係数とを示す。 (2) Specifically, Table 19 shows that the distance between the semiconductor laser light source and the S1 surface of the lens was obtained when the initial conditions were not changed and the object-side numerical aperture in the X direction was changed to 0.45. Was changed to 1.5 mm, the lens center thickness was changed to 3 mm, the wavelength used was changed to 780 nm, the aperture ratio was changed to 0.53, and the aperture ratio was set to 0.59. The design results when changing are shown. Table 20 shows the case where the design was performed under the above various design conditions. The following shows the coefficients other than the curvature of the term representing the aspheric surface and the coefficients of the correction term.
[表 19] [Table 19]
Figure imgf000030_0001
Figure imgf000030_0001
[表 20] ① ② ③ ④ ⑤ ⑥ ⑦ [Table 20] ① ② ③ ④ ⑤ ⑥ ⑦
KX -0.3649 2.4392 0.4517 -0.4555 -0.0856 -2.0478 -4.2244 KX -0.3649 2.4392 0.4517 -0.4555 -0.0856 -2.0478 -4.2244
KY -2.2732 -2.0345 -2.4986 -2.1591 -2.1472 0.3814 0.0850KY -2.2732 -2.0345 -2.4986 -2.1591 -2.1472 0.3814 0.0850
AR 0.0086 0.0081 -0.0090 -0.0021 0.0065 -0.0096 -0.0089AR 0.0086 0.0081 -0.0090 -0.0021 0.0065 -0.0096 -0.0089
BR 0.0026 0.0002 0.0029 0.0035 0.0042 0.0009 -0.0001BR 0.0026 0.0002 0.0029 0.0035 0.0042 0.0009 -0.0001
S1面 S1 side
CR -0.0009 0.0000 -0.0001 -0.0009 0.0000 0.0000 0.0000 CR -0.0009 0.0000 -0.0001 -0.0009 0.0000 0.0000 0.0000
AP -1.7945 -0.0845 -2.5032 - 1.4227 -2.3539 1.0191 1.3303AP -1.7945 -0.0845 -2.5032-1.4227 -2.3539 1.0191 1.3303
BP 0.1926 -0.2713 0.0451 0.6201 -0.1832 -0.1795 -2.0666 アナモルフィック CP -0.0944 -1.6930 1.6484 0.3839 0.8780 3.7913 2.9994 非球面 KX -0.4541 -0.2729 -1.6869 -0.4612 -0.4639 -0.4607 -0.4551 BP 0.1926 -0.2713 0.0451 0.6201 -0.1832 -0.1795 -2.0666 Anamorphic CP -0.0944 -1.6930 1.6484 0.3839 0.8780 3.7913 2.9994 Aspheric surface KX -0.4541 -0.2729 -1.6869 -0.4612 -0.4639 -0.4607 -0.4551
KY 15.6245 -25.9128 25.8019 295.4299 2.1947 0.3394 -0.6086 KY 15.6245 -25.9128 25.8019 295.4299 2.1947 0.3394 -0.6086
AR 0.0026 0.0050 -0.0095 0.0015 0.0072 0.0072 0.0065 AR 0.0026 0.0050 -0.0095 0.0015 0.0072 0.0072 0.0065
S2面 BR 0.0001 0.0010 0.0000 0.0021 0.0001 0.0010 0.0012S2 surface BR 0.0001 0.0010 0.0000 0.0021 0.0001 0.0010 0.0012
CR 0.0001 0.0000 -0.0001 0.0002 0.0000 0.0006 0.0003CR 0.0001 0.0000 -0.0001 0.0002 0.0000 0.0006 0.0003
AP 1.4417 0.2761 -1.5830 1.0030 1.1666 1.0640 0.9904AP 1.4417 0.2761 -1.5830 1.0030 1.1666 1.0640 0.9904
-0.2827 0.1705 13.8995 0.6500 0.2389 0.9880 0.8331-0.2827 0.1705 13.8995 0.6500 0.2389 0.9880 0.8331
BPBP
CP 1.2442 -1.6344 -ΐ.22δ7 1.2474 1.6812 1.1165 1.0039CP 1.2442 -1.6344 -ΐ.22δ7 1.2474 1.6812 1.1165 1.0039
CY -0.04 0.12 -0,10 0.02 -0.11 -0.27 -0.26CY -0.04 0.12 -0,10 0.02 -0.11 -0.27 -0.26
CX -0.62 -0.60 -0.73 -0.69 -0.65 -0.55 -0.52 CX -0.62 -0.60 -0.73 -0.69 -0.65 -0.55 -0.52
[0058] 真円度エラーを [0058] The roundness error
CE= | 100-真円度 I (%)  CE = | 100-roundness I (%)
X方向の物体開口数を NA、 Y方向の物体開口数を NA、物体開口比を  The object numerical aperture in the X direction is NA, the object numerical aperture in the Y direction is NA, and the object numerical aperture is
X Y X Y
NAR =NA /NA NAR = NA / NA
X Υ  X Υ
設計上のピーク強度に対する最大サイドローブ強度の比率を SR(%)として、  The ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%),
I C -C  I C -C
X Y I 2XSR2XCEXNAR4 XYI 2 XSR 2 XCEXNAR 4
を評価関数 EF2とする。  Is the evaluation function EF2.
[0059] 本発明の一実施形態による設計結果を表す表 17において、上記全ての設計条件 において、評価関数 EF2は以下の条件を満たす。  [0059] In Table 17 showing the design result according to the embodiment of the present invention, the evaluation function EF2 satisfies the following condition under all the above design conditions.
EF2 < 0.02  EF2 <0.02
[0060] 他方、アナモルフィック非球面式による設計結果を表す表 19において、上記全て の設計条件において、評価関数 EF2は以下の条件を満たす。  [0060] On the other hand, in Table 19 showing the design result by the anamorphic aspherical formula, the evaluation function EF2 satisfies the following condition under all the above design conditions.
EF2 > 0.02 [0061] また、本発明の一実施形態による、表 17の各条件におけるサイドローブの値は、従 来のアナモルフィック式による、表 19の対応する条件におけるサイドローブの値よりも 小さい。 EF2> 0.02 [0061] Further, according to the embodiment of the present invention, the value of the side lobe under each condition in Table 17 is smaller than the value of the side lobe under the corresponding condition in Table 19 according to the conventional anamorphic equation.
[0062] 表 17乃至 20についての上記の結果の理由は、表 3乃至 16の結果についての理 由と同様と考えられる。  [0062] The reasons for the above results for Tables 17 to 20 are considered to be the same as the reasons for the results for Tables 3 to 16.
[0063] このように、本発明の一実施形態による、ビーム整形コリメート'レンズは、半導体レ 一ザ光源からの、 X方向と Y方向の拡がり角が異なるビームを、集光されるビームの 強度分布が所定の真円度を達成するようにビームを整形する場合に、従来のアナモ ルフィック 'レンズと比較してサイドローブを小さくすることができる。  [0063] Thus, the beam shaping collimator 'lens according to one embodiment of the present invention is capable of converting a beam from a semiconductor laser light source having different divergence angles in the X and Y directions from the intensity of the focused beam. When shaping the beam so that the distribution achieves a predetermined roundness, sidelobes can be reduced as compared to a conventional anamorphic lens.
[0064] 本発明の一実施形態によるビーム整形集光一体型レンズの、表 3乃至 6に示した設 計例の内、下記の設計例(表 21)について、点像強度分布図およびピークを含むス ポット断面図(図 5および 6、図 9および 10)を示す。  [0064] Among the design examples shown in Tables 3 to 6 of the integrated beam shaping condensing lens according to the embodiment of the present invention, the following design examples (Table 21) include a point image intensity distribution diagram and peaks. The cross section of the spot (Figures 5 and 6, 9 and 10) is shown.
[表 21]  [Table 21]
NA (Y方向) 0.4 0.45 NA (Y direction) 0.4 0.45
NA (X方向) 0.14 0.17  NA (X direction) 0.14 0.17
S1面 Y曲率 0.79 0.80  S1 surface Y curvature 0.79 0.80
S1面 X曲率 •1.37 - 1.37  S1 surface X curvature1.37-1.37
S 1面曲率変化量 2.16 2.17  S 1 surface curvature change 2.16 2.17
X方向スポッ ト径 7.7 6.88  X direction spot diameter 7.7 6.88
Y方向スポッ ト径 7.93 7.00  Spot diameter in Y direction 7.93 7.00
サイ ドローブ 0.31 0.38  Sidelobe 0.31 0.38
BF 20 20  BF 20 20
EF 0.029 0.029  EF 0.029 0.029
PSF図 Fig. 5 Fig.9  PSF diagram Fig. 5 Fig. 9
スポッ ト断面図 Fig.6 Fig.10 従来技術によるビーム整形集光一体型レンズの、表 10乃至 12に示した設計例の 内、下記の設計例(表 22)について、点像強度分布図およびピークを含むスポット断 面図(図 7および 8、図 11および 12)を示す。 Spot cross section Fig.6 Fig.10 Among the design examples shown in Tables 10 to 12 of the beam shaping condensing integrated lens according to the prior art, for the following design example (Table 22), a spot cross-sectional view including a point image intensity distribution diagram and a peak (FIG. 7 and FIG. 8, Figures 11 and 12) are shown.
[表 22]  [Table 22]
Figure imgf000033_0001
Figure imgf000033_0001
[0066] 本発明の一実施形態の設計結果 (Y方向開口数 0. 4の場合)を示す図 5および 6とFIGS. 5 and 6 show the design results (in the case of numerical aperture of 0.4 in the Y direction) of one embodiment of the present invention.
、従来技術の設計結果を示す図 7および 8とを比較すると、従来技術と比較して本発 明の場合のサイドローブが減少して 、る。 When comparing FIGS. 7 and 8 showing the design results of the prior art, the side lobes in the case of the present invention are reduced as compared with the prior art.
[0067] 本発明の一実施形態の設計結果 (Υ方向開口数 0. 45の場合)を示す図 9および 1FIGS. 9 and 1 show a design result (in the case of a numerical aperture of 0.45 in the Υ direction) of one embodiment of the present invention
0と、従来技術の設計結果を示す図 11および 12とを比較すると、従来技術と比較し て本発明の場合のサイドローブが減少して 、る。 When 0 is compared with FIGS. 11 and 12 showing the design results of the conventional technique, the side lobe in the case of the present invention is reduced as compared with the conventional technique.
[0068] つぎに、補正項として三角関数を使用する以下の式にしたがって、表 1および表 2 の条件の下で設計した結果を表 23に示す。 Next, Table 23 shows the results of designing under the conditions of Tables 1 and 2 according to the following equation using a trigonometric function as a correction term.
[数 10] Q X ~~ C V m " [Number 10] QX ~~ CV m "
z =—— x y +Y X (l-cos( /a)') + Y5. x (1 cos( / ゾ) l + ^l-(l + ^)(CtV)-(l + ^)( V) -=i z = —— xy + Y X (l-cos (/ a) ') + Y5. x (1 cos (/ zo) l + ^ l- (l + ^) ( Ct V)-(l + ^) ( V)-= i
(3) ここで、上記の式の補正項中における aは、調整用の定数である。角度の単位は、 ラジアンである。具体的に表 23は、コリメート型の場合、集光一体型でバックフォー力 スをそれぞれ 100mm、 50mmおよび 20mmとした場合の設計結果を示す。表 24は 、上記の設計条件で設計を行った場合の式の係数を示す。  (3) Here, a in the correction term of the above equation is a constant for adjustment. The unit of the angle is radian. Specifically, Table 23 shows the design results for the collimated type and the converging type with a back force of 100 mm, 50 mm and 20 mm, respectively. Table 24 shows the coefficients of the equation when the design was performed under the above design conditions.
[表 23] 物体側開口 X方向 0.4 < - < - < - 数 Y方向 0.14 < - < - < - 開口比 x/y 0.36 0.36 0.36 0.36 定義 [Table 23] Object side aperture X direction 0.4 <-<-<-Number Y direction 0.14 <-<-<-Aperture ratio x / y 0.36 0.36 0.36 0.36 Definition
X方向 14.13 0.57 1.15 2.91 虚像角  X direction 14.13 0.57 1.15 2.91 Virtual image angle
Y方向 14.20 0.57 1.15 2.93 使用波長 nm 408 408 408 408 光取得効率 94.3 94.3 94.3 94.3 し。〜 S1面 mm 1 1 1 1  Y direction 14.20 0.57 1.15 2.93 Wavelength used nm 408 408 408 408 Light acquisition efficiency 94.3 94.3 94.3 94.3 ~ S1 side mm 1 1 1 1
レンズ中心厚 3.4 3.4 3.4 3.4  Lens center thickness 3.4 3.4 3.4 3.4
BF mm CO 100 50 20 BF mm CO 100 50 20
S1面 Y曲率 0.83 0.82 0.81 0.80 S1 surface Y curvature 0.83 0.82 0.81 0.80
S1面 X曲率 -1.22 -1.23 -1.26 -1.35  S1 surface X curvature -1.22 -1.23 -1.26 -1.35
S1面曲率変化量 2.05 2.05 2.07 2.14  S1 surface curvature change 2.05 2.05 2.07 2.14
X方向 1.59 39.45 19.53 7.69 スポット径  X direction 1.59 39.45 19.53 7.69 Spot diameter
Y方向 1.64 40.46 20.06 7.88 像面 真円度 y/x (%) 97.31 97.51 97.37 97.50 評価真円補正比 (%) 2.69 2.49 2.63 2.50  Y direction 1.64 40.46 20.06 7.88 Image plane roundness y / x (%) 97.31 97.51 97.37 97.50 Evaluation roundness correction ratio (%) 2.69 2.49 2.63 2.50
サイド口 —ブ 0.25 0.23 0.23 0.26 波面収差 mARMS 0.49 0.6 0.73 0.99 評価関数 EF 0.012 0.019 0.017 0.017 [表 24] 0.25 0.23 0.23 0.26 Wavefront aberration mARMS 0.49 0.6 0.73 0.99 Evaluation function EF 0.012 0.019 0.017 0.017 [Table 24]
Figure imgf000035_0001
Figure imgf000035_0001
[0070] 表 23において、集光一体型の設計条件において、評価関数 EF1は以下の条件を 満たす。 [0070] In Table 23, the evaluation function EF1 satisfies the following conditions under the integrated light-collecting design condition.
EF1 < 0.04  EF1 <0.04
[0071] また、コリメート型の設計条件において、評価関数 EF2は以下の条件を満たす。  In the collimating design condition, the evaluation function EF2 satisfies the following condition.
EF2く 0.02  EF2 0.02
[0072] また、本発明の一実施形態による、表 23の各条件におけるサイドローブの値は、従 来のアナモルフィック式による、表 10および表 19の対応する条件におけるサイドロー ブの値よりも小さい。  Further, according to the embodiment of the present invention, the value of the side lobe under each condition of Table 23 is smaller than the value of the side lobe under the corresponding conditions of Tables 10 and 19 by the conventional anamorphic equation. small.
[0073] つぎに、以下の式にしたがって、表 1および表 2の条件の下で設計した結果を表 26 に示す。 [数 11] z = ~~ x y y ^ + ^ Cj xx2my2n (4) Next, Table 26 shows the results of designing under the conditions of Tables 1 and 2 according to the following equations. [ Equation 11] z = ~~ xyy ^ + ^ Cj xx 2m y 2n (4)
l + ^l-O + ^ ){cx 2x2 )-{\ + ky ){cy 2y2 ) ゾ=, l + ^ lO + ^) { c x 2 x 2) - {\ + k y) {c y 2 y 2) zone =,
j = [(m + n)2 + m + 3n]/2 , m+n≤ 5 ここで、上記の式の補正項の係数 Cjの役割を以下の表 25に示す。具体的に表 26 は、コリメート型の場合、集光一体型でバックフォーカスをそれぞれ 100mm、 50mm および 20mmとした場合の設計結果を示す。表 27は、上記の設計条件で設計を行 つた場合の式の係数を示す。 j = [(m + n) 2 + m + 3n] / 2, m + n≤5 Table 25 below shows the role of the coefficient Cj of the correction term in the above equation. Specifically, Table 26 shows the design results for the collimated type with the integrated focusing type and the back focus of 100 mm, 50 mm and 20 mm, respectively. Table 27 shows the coefficients of the equation when the design was performed under the above design conditions.
[表 25][Table 25]
Figure imgf000036_0001
Figure imgf000036_0001
[表 26] [Table 26]
物体側 X方向 0.4 ぐ - < - < - 開口数 Y方向 0.14 <_ < - < - 光線 Object side 0.4 direction x-<-<-numerical aperture Y direction 0.14 <_ <-<-ray
開口比 x/y 0.36 0.36 0.36 0.36 定義  Aperture ratio x / y 0.36 0.36 0.36 0.36 Definition
X方向 deg 14.18 0.56 1.12 2.87 虚像角  X direction deg 14.18 0.56 1.12 2.87 Virtual image angle
Y方向 deg 14.15 0.56 1.12 2.89 使用波長 nm 408 408 408 408 光取得効率 % 94.3 94.4 94.3 94.4 Y direction deg 14.15 0.56 1.12 2.89 Operating wavelength nm 408 408 408 408 Light acquisition efficiency% 94.3 94.4 94.3 94.4
LD〜S1面 mm 1 1 1 1 レンズ中心厚 mm 3.4 3.4 3.4 3.4LD to S1 side mm 1 1 1 1 Lens center thickness mm 3.4 3.4 3.4 3.4
BF mm Co 100 50 20BF mm Co 100 50 20
S1面 Y曲率 0.83 0.83 0.83 0.79S1 surface Y curvature 0.83 0.83 0.83 0.79
S1面 X曲率 -1.2 -1.21 -1.22 -1.37S1 surface X curvature -1.2 -1.21 -1.22 -1.37
S1面曲率変化量 2.03 2.04 2.05 2.16 S1 surface curvature change 2.03 2.04 2.05 2.16
X方向 um 1.6 39.81 19.93 7.71 スポット径  X direction um 1.6 39.81 19.93 7.71 Spot diameter
Y方向 um 1.64 40.85 20.51 7.93 像面 真円度 % 97.56 97.45 97.17 97.23 評価 真円補正比 2.44 2.55 2.63 2.77  Y direction um 1.64 40.85 20.51 7.93 Image plane Roundness% 97.56 97.45 97.17 97.23 Evaluation Roundness correction ratio 2.44 2.55 2.63 2.77
サイドローブ % 0.23 0.25 0.26 0.3 波面収差 m A RMS 0.22 0.21 0.23 0.28 評価関数 EF 0.009 0.022 0.021 0.025  Side lobe% 0.23 0.25 0.26 0.3 Wavefront aberration m A RMS 0.22 0.21 0.23 0.28 Evaluation function EF 0.009 0.022 0.021 0.025
[表 27] [Table 27]
BF Co 100 50 20 BF Co 100 50 20
kx -0.7982 -0.7650 -0.8493 -0.7673 ky -1.1 159 -1.0402 -1.2044 -0.8170  kx -0.7982 -0.7650 -0.8493 -0.7673 ky -1.1 159 -1.0402 -1.2044 -0.8170
C3 -0.5736 -0.6008 -0.5799 -0.6942  C3 -0.5736 -0.6008 -0.5799 -0.6942
C4 0.0013 0.0012 -0.0002 -0.0064  C4 0.0013 0.0012 -0.0002 -0.0064
C5 -0.0439 -0.0491 -0.0383 -0.0600  C5 -0.0439 -0.0491 -0.0383 -0.0600
C6 - 2.1512 -2.0153 -1.9575 -4.2737  C6-2.1512 -2.0153 -1.9575 -4.2737
Cフ 0.3015 0.3190 0.3105 0.4593  C 0.3015 0.3190 0.3105 0.4593
S1面  S1 side
C8 0.0100 0.0095 0.0109 0.0203  C8 0.0100 0.0095 0.0109 0.0203
C9 0.0147 0.0149 0.0142 0.0133  C9 0.0147 0.0149 0.0142 0.0133
C10 -1.9651 -1.9683 -1.4683 3.4094  C10 -1.9651 -1.9683 -1.4683 3.4094
C1 1 0.7166 0.5933 0.5302 1.4727  C1 1 0.7166 0.5933 0.5302 1.4727
C12 -0.1228 -0.1285 -0.1298 -0.2022  C12 -0.1228 -0.1285 -0.1298 -0.2022
C13 -0.0051 -0.0052 -0.0054 -0.0090  C13 -0.0051 -0.0052 -0.0054 -0.0090
C14 -0.0023 -0.0023 -0.0023 -0.0022  C14 -0.0023 -0.0023 -0.0023 -0.0022
フリーフォ  Freefo
kx -0.3367 -0.3636 -0.3909 -0.4637  kx -0.3367 -0.3636 -0.3909 -0.4637
—ム クロ  —Muro
ky 6.5033 4.7235 3.5652 0.9168  ky 6.5033 4.7235 3.5652 0.9168
スタ一ム面  Sturm surface
C3 0.0007 0.001 1 0.0019 0.0040  C3 0.0007 0.001 1 0.0019 0.0040
C4 -0.0004 -0.0003 -0.0003 -0.0009  C4 -0.0004 -0.0003 -0.0003 -0.0009
C5 0.0437 0.0436 0.0439 0.0379  C5 0.0437 0.0436 0.0439 0.0379
C6 -0.0004 -0.0003 -0.0001 -0.0005  C6 -0.0004 -0.0003 -0.0001 -0.0005
Cフ 0.0010 0.0010 0.001 1 0.001 1  Coff 0.0010 0.0010 0.001 1 0.001 1
C8 0.0004 0.0005 0.0005 0.0002  C8 0.0004 0.0005 0.0005 0.0002
S2面  S2 surface
C9 0.0082 0.0083 0.0080 0.0066  C9 0.0082 0.0083 0.0080 0.0066
C10 0.0002 0.0002 0.0002 0.0005  C10 0.0002 0.0002 0.0002 0.0005
C1 1 0.0000 0.0001 0.0001 - 0.0001  C1 1 0.0000 0.0001 0.0001-0.0001
C12 0.001 1 0.001 1 0.001 1 0.001 1  C12 0.001 1 0.001 1 0.001 1 0.001 1
C13 0.0003 0.0003 0.0002 0.0004  C13 0.0003 0.0003 0.0002 0.0004
C14 -0.0021 - 0.0020 -0.0023 -0.001 1  C14 -0.0021-0.0020 -0.0023 -0.001 1
CY -0.1625 -0.1843 -0.2023 -0.2903  CY -0.1625 -0.1843 -0.2023 -0.2903
CX -0.6286 -0.6496 -0.6705 -0.7404  CX -0.6286 -0.6496 -0.6705 -0.7404
[0075] 表 26において、集光一体型の設計条件において、評価関数 EF1は以下の条件を 満たす。 [0075] In Table 26, the evaluation function EF1 satisfies the following condition under the condensing-integrated design condition.
EF1 < 0.04  EF1 <0.04
[0076] また、コリメート型の設計条件において、評価関数 EF2は以下の条件を満たす。 EF2 < 0.02 [0076] In the collimating design conditions, the evaluation function EF2 satisfies the following conditions. EF2 <0.02
また、本発明の一実施形態による、表 26の各条件におけるサイドローブの値は、従 来のアナモルフィック式による、表 10および表 19の対応する条件におけるサイドロー ブの値よりも小さい。  Further, according to an embodiment of the present invention, the value of the side lobe under each condition of Table 26 is smaller than the value of the side lobe under the corresponding conditions of Tables 10 and 19 according to the conventional anamorphic equation.

Claims

請求の範囲 The scope of the claims
XYZ座標系において、 Ζ軸を光軸として、 X、 Υ方向の物体開口数が異なる入射ビ ームに対して、集光されたビームの、進行方向に垂直な断面における強度力 ピーク 強度に対して所定の比率以上である領域が真円となるようにビームを整形するビー ム整形集光レンズであって、入射側面と出射側面とのプロファイルが、非球面を表す 項と、 fe (x, y) =fe (-x, y)を満たす fe (x, y)で表せる複数の補正項とを含む式 [数 12]
Figure imgf000040_0001
によって表され、各補正項の係数は互いに独立して定めることができ、入射ビームの 光源とレンズの光源側面との距離を FF(mm)、レンズのバックフォーカスを BF(mm)、 前記断面の X方向の径と Y方向の径との比である真円度のエラーを
In the XYZ coordinate system, with the Ζ axis as the optical axis, for an incident beam with a different object numerical aperture in the X and Υ directions, the intensity of the focused beam in the cross section perpendicular to the traveling direction Beam-shaping condenser lens for shaping the beam so that an area having a predetermined ratio or more becomes a perfect circle, wherein the profile of the incident side surface and the outgoing side surface represents an aspheric surface, and fe (x, y) = fe (-x, y) An expression containing multiple correction terms represented by fe (x, y) that satisfies [feature 12]
Figure imgf000040_0001
The coefficient of each correction term can be determined independently of each other, the distance between the light source of the incident beam and the side of the light source of the lens is FF (mm), the back focus of the lens is BF (mm), The roundness error, which is the ratio of the diameter in the X direction to the diameter in the Y direction,
CE = I 100-真円度 I (%)  CE = I 100-roundness I (%)
X方向の物体開口数を NAX、 Y方向の物体開口数を NAY、物体開口比を  The object numerical aperture in the X direction is NAX, the object numerical aperture in the Y direction is NAY, and the object numerical aperture is
NAR =NAX/NAY  NAR = NAX / NAY
設計上のピーク強度に対する最大サイドローブ強度の比率を SR(%)として、  The ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%),
I C C I 2 X SR2 X log (BF) X CE X NAR4X FF < 0.04 ICCI 2 X SR 2 X log (BF) X CE X NAR 4 X FF <0.04
X Υ 10  X Υ 10
となるように、非球面を表す項の係数および補正項の係数を定めたビーム整形集光 レンズ。  A beam shaping condenser lens in which the coefficient of the term representing the aspheric surface and the coefficient of the correction term are determined so that
[2] 補正項 fe (x, y)が Xの偶関数 fe (x)カゝらなる補正項と Yの偶関数 fe (y)からなる  [2] The correction term fe (x, y) consists of a correction term consisting of an even function of X, fe (x), and an even function of Y, fe (y)
1 2  1 2
補正項とからなり、 Xの偶関数力 なる補正項 fe (X)が、 1または複数の Xの偶数乗 の項力 なり、 Yの偶関数力 なる補正項 fe (y)が、 1または複数の Yの偶数乗の項  The correction term fe (X) is an even function of X, and the correction term fe (Y) is one or more even powers of X, and the correction term fe (y) is one or more. Term of even power of Y
2  2
力 なる請求項 1に記載のビーム整形集光レンズ。  The beam shaping condenser lens according to claim 1, wherein
[3] 補正項 fe (x, y)が Xの偶関数 fe (x)カゝらなる補正項と Yの偶関数 fe (y)からなる [3] The correction term fe (x, y) consists of a correction term consisting of an even function of X, fe (x), and an even function of Y, fe (y)
1 2  1 2
補正項とからなり、 Xの偶関数力もなる補正項 fe (X)が、 Xの三角関数を含む 1また は複数の項力もなり、 Yの偶関数力もなる補正項 fe (y)力 Yの三角関数を含む 1ま たは複数の項力 なる請求項 1に記載のビーム整形集光レンズ c The correction term fe (X), which consists of a correction term and also has an even function force of X, becomes one or more term forces including trigonometric functions of X, and the correction term fe (y) which also has the even function force of Y 1 including trigonometric functions The beam shaping condenser lens c according to claim 1, wherein
[4] 入射側面と出射側面とのプロファイルが、式  [4] The profile of the entrance side and exit side is
[数 13]
Figure imgf000041_0001
j = [(m + n)2 +m + 3«]/2 , m+n≤ 5 によって表される請求項 1に記載のビーム整形集光レンズ。
[Number 13]
Figure imgf000041_0001
The beam-shaping condenser lens according to claim 1, wherein j = [(m + n) 2 + m + 3 «] / 2, m + n≤5.
[5] XYZ座標系において、 Z軸を光軸として、 X Y方向の物体開口数が異なる入射ビ ームに対して、透過コリメート'ビームを収差のない理想レンズによって集光した場合 に、集光されたビームの、進行方向に垂直な断面における強度力 ピーク強度に対 して所定の比率以上である領域が真円となるようにビームを整形するビーム整形コリ メート'レンズであって、入射側面と出射側面とのプロファイル力 非球面を表す項と、 fe(x, y)=fe(-x, y)を満たす fe(x, y)で表せる複数の補正項とを含む式  [5] In the XYZ coordinate system, when the transmitted collimated beam is focused by an ideal lens with no aberration for the incident beam with different object numerical apertures in the XY directions with the Z axis as the optical axis, A beam shaping collimator 'lens that shapes the beam so that an area having a predetermined ratio or more with respect to the peak intensity in a cross section perpendicular to the traveling direction of the formed beam becomes a perfect circle, Expression that includes a term representing the aspheric surface and a plurality of correction terms represented by fe (x, y) satisfying fe (x, y) = fe (-x, y)
[数 14]  [Number 14]
2 2 twenty two
cxx c ++ccyvyy ^ , c x xc ++ cc yv yy ^,
z = , ノ + fe (ズ, y) z =, no + f e (z, y)
l + \-(\ + kx )(cx 2x2 )-(l + ky )(c2 vy2) l + \ - (\ + k x) (c x 2 x 2) - (l + k y) (c 2 v y 2)
によって表され、各補正項の係数は互いに独立して定めることができ、前記断面の X 方向の径と Y方向の径との比である真円度のエラーを The coefficient of each correction term can be determined independently of each other, and the error of the circularity, which is the ratio of the diameter of the cross section in the X direction to the diameter in the Y direction, is represented by
CE= I 100-真円度 I (%)  CE = I 100-roundness I (%)
X方向の物体開口数を NAX Y方向の物体開口数を NAY、物体開口比を  The object numerical aperture in the X direction is NAX, the object numerical aperture in the Y direction is NAY, and the object numerical aperture is
NAR =NAX/NAY  NAR = NAX / NAY
設計上のピーク強度に対する最大サイドローブ強度の比率を SR(%)として、  The ratio of the maximum sidelobe intensity to the designed peak intensity is SR (%),
I C C I 2XSR2XCEXNAR4 < 0.02 ICCI 2 XSR 2 XCEXNAR 4 <0.02
X Y  X Y
となるように、非球面を表す項の係数および補正項の係数を定めたビーム整形コリメ ート'レンズ。 [6] 補正項 fe (x, y)が Xの偶関数 fe (x)カゝらなる補正項と Yの偶関数 fe (y)からなる A beam shaping collimating lens in which the coefficient of the term representing the aspheric surface and the coefficient of the correction term are determined so that [6] The correction term fe (x, y) consists of a correction term consisting of an even function fe (x) of X and an even function fe (y) of Y
1 2 補正項とからなり、 Xの偶関数力 なる補正項 fe (X)が、 1または複数の Xの偶数乗 の項力 なり、 Yの偶関数力 なる補正項 fe (y)が、 1または複数の Yの偶数乗の項  1 2 The correction term fe (X), which is the even function of X, is one or more even powers of X, and the correction term fe (y), which is the even function of Y, is 1 Or several even power terms of Y
2  2
力 なる請求項 5に記載のビーム整形コリメート ·レンズ。  A beam shaping collimating lens according to claim 5.
[7] 補正項 fe (x, y)が Xの偶関数 fe (x)カゝらなる補正項と Yの偶関数 fe (y)からなる [7] The correction term fe (x, y) consists of a correction term consisting of an even function of X, fe (x), and an even function of Y, fe (y)
1 2 補正項とからなり、 Xの偶関数力もなる補正項 fe (X)が、 Xの三角関数を含む 1また は複数の項力もなり、 Yの偶関数力もなる補正項 fe (y)力 Yの三角関数を含む 1ま  1 2 The correction term fe (X), which consists of the correction term and also has the even function force of X, becomes one or more term forces including the trigonometric function of X, and the correction term fe (y) that also has the even function force of Y 1 including trigonometric functions of Y
2  2
たは複数の項力 なる請求項 5に記載のビーム整形コリメート'レンズ。  The beam shaping collimator 'lens according to claim 5, wherein the lens has a plurality of powers.
[8] 入射側面と出射側面とのプロファイルが、式 [8] The profile of the entrance side and the exit side is
[数 15]  [Number 15]
Figure imgf000042_0001
によって表される請求項 5に記載のビーム整形コリメート ·レンズ,
Figure imgf000042_0001
The beam shaping collimating lens of claim 5, represented by:
PCT/JP2005/004333 2004-03-12 2005-03-11 Beam shaping lens WO2005088376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511006A JPWO2005088376A1 (en) 2004-03-12 2005-03-11 Beam shaping lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004071281 2004-03-12
JP2004-071281 2004-03-12

Publications (1)

Publication Number Publication Date
WO2005088376A1 true WO2005088376A1 (en) 2005-09-22

Family

ID=34975735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004333 WO2005088376A1 (en) 2004-03-12 2005-03-11 Beam shaping lens

Country Status (2)

Country Link
JP (1) JPWO2005088376A1 (en)
WO (1) WO2005088376A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659211A (en) * 1992-08-05 1994-03-04 Asahi Glass Co Ltd Lens for shaping luminous flux section and higher harmonic generator with the same
JPH09258099A (en) * 1996-03-21 1997-10-03 Matsushita Electric Ind Co Ltd Anisotropic refracting power single lens, and optical head device, information recording and reproducing device, scanning optical device, image forming device and coupling device for optical fiber using the anisotropic refracting power single lens
JP2002208171A (en) * 2000-11-10 2002-07-26 Ricoh Co Ltd Optical pickup device and optical information processing device
JP2003215486A (en) * 2002-01-18 2003-07-30 Pentax Corp Scanning optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659211A (en) * 1992-08-05 1994-03-04 Asahi Glass Co Ltd Lens for shaping luminous flux section and higher harmonic generator with the same
JPH09258099A (en) * 1996-03-21 1997-10-03 Matsushita Electric Ind Co Ltd Anisotropic refracting power single lens, and optical head device, information recording and reproducing device, scanning optical device, image forming device and coupling device for optical fiber using the anisotropic refracting power single lens
JP2002208171A (en) * 2000-11-10 2002-07-26 Ricoh Co Ltd Optical pickup device and optical information processing device
JP2003215486A (en) * 2002-01-18 2003-07-30 Pentax Corp Scanning optical system

Also Published As

Publication number Publication date
JPWO2005088376A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
US20200400928A1 (en) Projection Lens
US9851546B2 (en) Microscope objective lens
TWI487935B (en) Mobile device and optical imaging lens thereof
JPWO2012026239A1 (en) Microscope objective lens
JPH01293311A (en) Collimator lens for optical memory
JP2013068926A (en) Zoom lens
JP2003121735A (en) Super wide angle lens
WO2005088376A1 (en) Beam shaping lens
US7206141B2 (en) Image pick-up lens system
CN108292046B (en) Beam intensity conversion optical system and beam intensity conversion lens
JPH0694990A (en) Condensing optical system for semiconductor
US9329395B2 (en) Green laser zoom beam expanding system and laser processing equipment
US9069170B1 (en) Ultraviolet laser zoom beam expanding system and laser processing equipment
WO2011136690A1 (en) Projection lens
JP2012098553A (en) Imaging optical system
WO2005091041A1 (en) Beam shaping element and optical pickup employing it
CN100412598C (en) Beam shaping element and optical pickup employing it
CN1605100A (en) Optical scanning device
JP2008102295A (en) Long operation distance objective lens for microscope
JP2013029748A (en) Aspherical homogenizer and method of designing aspherical lens for homogenizer
JP4111802B2 (en) Coupling optics
JP2018105935A (en) Microscope objective optical system and aberration correction method for the same
CN116990943B (en) Optical lens
CN114859529B (en) Collimating lens
CN114236829B (en) Optical system and head-mounted display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511006

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase