WO2005088318A1 - Acceleration sensor and tire information transmitting device with acceleration sensor - Google Patents

Acceleration sensor and tire information transmitting device with acceleration sensor Download PDF

Info

Publication number
WO2005088318A1
WO2005088318A1 PCT/JP2005/004317 JP2005004317W WO2005088318A1 WO 2005088318 A1 WO2005088318 A1 WO 2005088318A1 JP 2005004317 W JP2005004317 W JP 2005004317W WO 2005088318 A1 WO2005088318 A1 WO 2005088318A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration sensor
magnet
tire
acceleration
spring
Prior art date
Application number
PCT/JP2005/004317
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Ohmori
Yasuo Shimizu
Hideki Nihei
Original Assignee
Citizen Watch Co., Ltd.
Citizen Miyota Co., Ltd.
Yokohama Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd., Citizen Miyota Co., Ltd., Yokohama Rubber Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to JP2006510999A priority Critical patent/JPWO2005088318A1/en
Publication of WO2005088318A1 publication Critical patent/WO2005088318A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/105Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by magnetically sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed

Definitions

  • the present invention relates to an acceleration sensor and a tire information transmitting device with an acceleration sensor, and when a tire attached to a car is subjected to a force that is stolen, the applied force is applied to the tire.
  • the present invention relates to an acceleration sensor capable of measuring generated acceleration and a tire information transmitting device with an acceleration sensor.
  • electronic components can be used for new applications due to their miniaturization and weight reduction, and by adding supplementary new functions to existing electronic components. In some cases, it can be used for new applications.
  • an acceleration sensor using magnetoelectric conversion means.
  • an acceleration sensor is used in a tire condition monitoring device that is attached to a tire wheel of an automobile and detects a physical quantity (for example, air pressure) in a running tire. There are new uses when used.
  • the tire condition monitoring device is a technology disclosed in Japanese Patent Application Laid-Open Nos. 2000-203218 and 2000-203129, and includes, for example, a pressure detection sensor, a transmitter, a battery, a control device, and an acceleration sensor. (Centrifugal switch) and the like.
  • the acceleration sensor is used as a centrifugal switch to detect the centrifugal force acting on the running tire and to operate the tire condition monitoring device only when the vehicle is running, in order to extend the life of the battery. You.
  • the centrifugal switch needs to be reduced in size and weight so that it can be attached to a tire wheel.
  • Patent Document 1 JP-A-6-230023
  • a well-known miniaturized acceleration sensor is a MEMS acceleration sensor.
  • this MEMS acceleration sensor has a problem in that it cannot withstand vibration and impact during traveling when used in a tire.
  • a sensor using the coil panel has a problem that the panel and the case are scraped off by sliding, and these have a problem that they are greatly affected by their life.
  • the present invention solves the above-mentioned problem, and detects acceleration generated in a tire by the applied force even when the tire attached to the vehicle is applied with enough force to be stolen.
  • an acceleration sensor and a tire information transmission device with an acceleration sensor that can be reduced in size so that it can be mounted inside the tire and can withstand the vibrations and shocks of tens of thousands of kilometers of vehicle travel. For the purpose of providing.
  • an acceleration sensor includes a planar spring having at least a base fixed inside a case, a magnet held by a central holding portion of the planar spring, An acceleration sensor including the magnet and a magneto-electric conversion unit that is disposed to face the case via a gap and that detects a magnetic change when the magnet moves, wherein the planar spring has one end connected to the base. It has a plurality of arms connected and the other end is an open end, and the holding portion is provided at an open end of at least two arms of the plurality of arms.
  • a small-sized planar spring having a small panel constant can be obtained. It can be installed in the ground, and can detect acceleration in the range of 0.3-5G.
  • the arm portion of the planar spring has a first arm extending in a radial direction, one end of which is an open end, and the other end force of the first arm. It comprises a second arm extending in the circumferential direction and connected to the base.
  • the panel spring has a panel constant of 0.15-1.25 mN / mm.
  • the acceleration sensor of the present invention has a configuration in which a weight is attached to the magnet.
  • the threshold centrifugal force can be easily set by adjusting the weight of the weight.
  • the acceleration sensor of the present invention has a configuration in which the magnet is held by the sheet spring by holding the open end of the sheet spring by the magnet and the weight attached to the magnet. is there.
  • the center portion (the pinched portion) of the spring can be sandwiched between the magnet and the weight, and the downsized magnet can be attached to the spring. Further, if the clamped portion of the spring is sandwiched between the lower surface of the magnet and the upper surface of the weight (clamping portion) at a free end, the spring is easily elastically deformed, and the panel constant can be reduced. The size can be reduced.
  • the acceleration sensor of the present invention has a configuration in which the outer peripheral portion of the weight is chamfered so that even if the weight moves, only the holding portion of the weight contacts the spring.
  • the acceleration sensor of the present invention is configured such that the planar spring has substantially the same diameter as the main body of the magnetoelectric conversion means.
  • the outer case to which the planar spring is attached is reduced in size, so that the acceleration sensor can be reduced in size.
  • a concave portion may be formed inside the case, and The base of the spring is fitted into the recess.
  • the acceleration sensor of the present invention has a configuration in which a guide for restricting movement of the magnet in a direction orthogonal to the acceleration detection direction is provided inside the case.
  • the acceleration sensor according to the present invention has a configuration in which the magnetic member is arranged at a position where the movement of the magnet is restricted by the magnetic attraction of the magnet while the acceleration acting on the magnet is smaller than a predetermined acceleration. There is.
  • the tire information transmitting device with an acceleration sensor of the present invention is attached to a tire cavity region surrounded by the inner peripheral surface of the tire and the wheel wall surface, and detects atmosphere information in the tire cavity region.
  • a tire information transmission device with an acceleration sensor for wirelessly transmitting the tire information to the outside of the tire cavity area, wherein the acceleration sensor detects a rotation state of the tire and changes transmission information based on the rotation state detection signal. is there.
  • the acceleration sensor can accurately detect the rotation state of the tire, so that malfunction of the tire information transmitting device can be prevented and reliability can be improved. Also, since the acceleration sensor is downsized, the tire information transmitting device can be downsized. The invention's effect
  • the acceleration sensor and the tire information transmitting device with the acceleration sensor according to the present invention use an acceleration sensor in which a magnet is joined to the center of a sheet spring. 1.25mNZmm), the degree to which the tire mounted on the car is stolen Even when a very small force is applied to the tire, it is possible to detect the acceleration (for example, 0.3G-5G) generated in the tire by the applied force. Further, at least two radially extending first arms arranged at regular intervals in the circumferential direction, and a second arm extending in the circumferential direction at the distal end force of the one arm.
  • the magnet attached to the leaf spring by the first arm can move as much as possible on the center axis of the planar spring, and the movement inside the center of the acceleration sensor due to the movement away from the center axis. Wear of the spring itself can be minimized. This makes it possible to withstand the vibrations and impacts of tens of thousands of kilometers of vehicle travel.
  • FIG. 1 is a schematic enlarged view of an acceleration sensor according to an embodiment of the present invention, in which (a) is a top view and (b) is a cross-sectional view along AA.
  • FIG. 2 is a schematic enlarged plan view of a planar spring of an acceleration sensor according to an embodiment of the present invention.
  • FIG. 3 is a schematic enlarged cross-sectional view for explaining an operation state of the acceleration sensor according to the embodiment of the present invention.
  • FIG. 4 is a schematic sectional view of an acceleration sensor according to another embodiment of the present invention.
  • FIG. 5 is a schematic enlarged cross-sectional view for explaining an operation state of an acceleration sensor according to another embodiment of the present invention.
  • FIG. 6 shows a graph for explaining an output voltage curve of an acceleration sensor according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram for explaining a mounting state of a tire information transmitting device with an acceleration sensor according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram for explaining the structure of a tire information transmitting device with an acceleration sensor according to an embodiment of the present invention, where (a) is a cross-sectional view and (b) is a block diagram. .
  • FIG. 9 (A) is a conceptual diagram showing a positional relationship between the tire information transmitting device and the wheel, and is a diagram showing a state where the tire information transmitting device is located at an angle of 0 ° with respect to the wheel center. .
  • FIG. 9 (B) is a conceptual diagram showing the positional relationship between the tire information transmitting device and the wheel
  • FIG. 9 is a diagram showing a state where the tire information transmitting device is located at a position at an angle of 90 ° with respect to the center.
  • FIG. 9 (C) is a conceptual diagram showing the positional relationship between the tire information transmitting device and the wheel, and shows a state where the tire information transmitting device is located at an angle of 180 ° with respect to the center of the wheel. .
  • FIG. 9 (D) is a conceptual diagram showing a positional relationship between the tire information transmitting device and the wheel, and shows a state where the tire information transmitting device is located at an angle of 270 ° with respect to the wheel center. .
  • FIG. 10 is a diagram showing the output level of the acceleration sensor force when the tire is rotating at each position with respect to the wheel center of the tire information transmitting device.
  • FIG. 11 is a flowchart showing a process in the tire information monitoring device.
  • FIG. 1 is a schematic enlarged view of an acceleration sensor according to an embodiment of the present invention.
  • the figure and (b) show the AA cross section.
  • an acceleration sensor 1 includes an outer case 4 provided on a base 3, a planar spring 5 attached to a lower portion of the outer case 4, and a magnet 6 attached to a central portion of the planar spring 5. And a weight 7, and magnetoelectric conversion means 8 attached to the upper part of the outer case 4.
  • the base 3 is a square plate made of non-permeable plastic, ceramic, or non-permeable metal, and has a side length of about 4 mm and a thickness of about lmm.
  • the four corners of the base 3 are formed with through holes 32 each having a stepped portion 33 as viewed from the lower surface side.
  • the notches 41 of the outer case 4 are inserted into the through holes 32. Then, the outer case 4 is fixed to the base 3 by subjecting the leading end of the notch 41 to plastic working by heating and engaging with the stepped portion 33.
  • the method of fixing the outer case 4 is not limited to the method using the notch 41.
  • the outer case 4 is made of a non-magnetically permeable plastic or the like, and has a substantially cubic shape with a side of about 4 mm and a height of about 3 mm on a square upper surface.
  • the outer case 4 has a substantially rectangular recess 42 formed on the upper surface thereof.
  • the recess 42 accommodates the magnetoelectric conversion device main body 82, and further includes a bonding agent between the recess 42 and the magnetoelectric conversion device main body 82. Filling (not shown) causes the magnetoelectric conversion means main body 82 to be embedded in the concave portion 42.
  • a recess 421 into which the bottom of the main body 82 is fitted is formed on the bottom of the recess 42.
  • a notch 422 for passing the external connection terminal 81 of the magnetoelectric conversion means 8 is formed in a part of the wall formed by forming the concave portion 42.
  • the outer case 4 has a three-stage cylinder on the lower surface, the diameter of which is reduced in a stepwise manner as the diameter is directed upward.
  • a magnet storage chamber 43 is formed.
  • An annular spacer 44 for fixing the annular portion 52 of the planar spring 5 (see FIG. 2) is press-fitted into the first cylindrical concave portion 431 having the largest diameter located at the lower stage of the magnet storage chamber 43.
  • the upper surface of the spacer 44 presses the annular portion 52 of the planar spring 5 against the first stepped portion 431a, thereby fixing the planar spring 5 to the outer case 4.
  • the second cylindrical recess 432 located in the middle of the magnet storage chamber 43 is a space for the planar spring 5 to move freely when the magnet 6 moves.
  • the third cylindrical concave portion 433 having the smallest diameter located at the upper stage of the magnet storage chamber 43 is a space for the magnet 6 which has been subjected to the upward (acceleration detecting direction) acceleration to move upward.
  • the third cylindrical concave portion 433 has a depth of about 0.6 mm, and moves upward by about 0.3 mm from a state where the magnet 6 is inserted by about 0.3 mm.
  • the diameter of the third cylindrical concave portion 433 is larger than the diameter of the magnet 6 by about 0.05 mm.
  • the side surface of the third cylindrical concave portion 433 serves as a guide for restricting the movement of the magnet 6 in a direction orthogonal to the acceleration detection direction, so that when an acceleration acts in a direction orthogonal to the acceleration detection direction. Even in this case, the moving distance of the magnet 6 in this direction is limited, and the problem that the planar spring 5 is damaged can be prevented.
  • acceleration acts in the direction perpendicular to the acceleration detection direction is, for example, the case where the acceleration sensor 1 (centrifugal switch) attached to the tire wheel is in the horizontal direction, and the magnet 6 and the weight 7 are In (b), gravitational acceleration acts in the left-right direction.
  • Angular acceleration also acts when the rotating tire suddenly stops due to sudden braking.
  • FIG. 2 is a schematic enlarged plan view of a planar spring of the acceleration sensor according to the embodiment of the present invention.
  • the planar spring 5 includes three leaf springs 51 having a predetermined shape, and an annular portion 52 that connects the ends of the respective leaf springs 51 in the outer circumferential direction.
  • the leaf spring 51 includes a circumferential leaf spring portion 511 formed in the circumferential direction and a radial leaf spring portion 512 formed in the radial direction.
  • the circumferential leaf spring portion 511 and the radial leaf spring portion are provided.
  • the leaf spring 51 has a small panel constant in the acceleration detection direction (thickness direction) and has a low rigidity.
  • the reason for reducing the panel constant is to make the acceleration sensor small and sensitive.
  • the circumferential leaf spring 511 is formed in an arc shape, the spring portion is lengthened, and the panel constant is reduced.
  • the panel constant in the radial direction from the held portion 513 of the leaf spring 51 is set large to increase rigidity.
  • the reason for increasing the panel constant is that the magnet 6 and the weight 7 are prevented from moving in the direction perpendicular to the acceleration detection direction due to external shock and vibration, and the magnet 6 and the weight 7 collide with the inner periphery of the case 4. This is to prevent the case 4 from being worn.
  • the spring width of the circumferential leaf spring 511 is made 15 to 25 times or more larger than the spring thickness, and has a rigidity of 225 to 625 times the panel constant in the thickness direction.
  • the panel constant of the leaf spring 51 is set to 0.15-1.25 mNZmm, and the detected acceleration is 0.3-5G. In areas where the panel constant is small, it is installed inside vehicle-related tires, and is also used for detecting theft of tires.
  • the planar spring 5 is formed by integrating a plurality of leaf springs 51 with each other by an annular annular portion 52 connecting ends of the respective leaf springs 51 in the outer peripheral direction, the leaf springs 51 are formed. Even if the size is reduced, a plurality of leaf springs 51 can be assembled and assembled efficiently. Further, since the annular portion 52 is fitted into the first cylindrical concave portion 431 of the outer case 4, the planar spring 5 can be easily attached, and the magnet 6 can be accurately positioned.
  • planar spring 5 has a structure in which the ends (the pinched portions 513) of the leaf springs 51 in the center direction are not connected to each other. By doing so, for example, although not shown, a space for providing a connecting portion or an annular portion on the center side of the planar spring 5 becomes unnecessary, and the planar spring 5 is reduced in size by this space. be able to.
  • the planar spring 5 has substantially the same diameter as the magnetoelectric conversion means main body 82.
  • the outer case 4 to which the planar spring 5 is attached can be reduced in size, so that the acceleration sensor 1 can be reduced in size.
  • the phrase "the planar spring 5 has substantially the same diameter as the main body 82 of the electromagnetic conversion means” means that the diameter of the main body 82 of the electromagnetic conversion means falls within a range of 0.7 to 1.3 times the diameter of the spring 5 of the planar spring. , Which means that the four corners are located.
  • the planar spring 5 can be formed in various shapes other than the above-mentioned shape, and for example, the connecting portion or the annular portion may be provided.
  • the magnet 6 is a bonded magnet mainly composed of neodymium (Nd) 'iron (Fe) and boron (B), and has a press-fit hole 61 into which a pin 71 of the weight 7 is press-fitted in the center. It has a formed cylindrical shape, the upper surface is an N pole, and the lower surface is an S pole. The outer diameter is about 1.3mm and the height is about 0.6mm.
  • the weight 7 is press-fitted into the magnet 6, and the weight 7 is directly coupled to the magnet 6. Therefore, there is no need for a magnet arrangement case member for installing the magnet. Therefore, the number of parts can be reduced, the cost can be reduced, and the acceleration sensor can be downsized.
  • the method of press-fitting the magnet 6 into the weight 7 makes it easier to achieve coaxiality and increases the assembly accuracy as compared with the method of fixing the magnet and the weight with an adhesive or the like.
  • the magnet 6 of the present embodiment is not limited to a certain force as the bond magnet described above.
  • a permanent magnet such as a ferrite magnet or a rare earth magnet can be used.
  • the size of the magnet 6 is smaller than that of the main body 82 of the magnetoelectric conversion means.
  • the planar spring 5 to which the magnet 6 is attached and the outer case 4 to which the planar spring 5 is fixed can be reduced in size. .
  • the weight 7 is made of a non-magnetically permeable metal, for example, a copper-based metal such as brass, and has a substantially cylindrical base 72, a pin 71 protruding from the center of the upper surface of the base 72, and the pin 71. And the chamfered portion 73 connecting the base 72 and the base 72. The pin portion 71 is pressed into the press-fit hole 61 of the force magnet 6 through the center of the planar spring 5.
  • a non-magnetically permeable metal for example, a copper-based metal such as brass
  • the weight of the weight 7 can be adjusted to freely set the threshold centrifugal force. it can.
  • the clamped portion 513 of the radial leaf spring portion 512 of the planar spring 5 has a gap in the vertical direction between the lower surface of the magnet 6 and the clamp portion 74 of the weight 7. It is pinched in a state. In this way, the clamped portion 513 of the planar spring 5 is connected to the lower surface of the magnet 6 and the clamped portion 7 of the weight 7. 4, the spring constant of the planar spring portion 5 can be reduced as compared with the case where the flat spring portion 5 is supported in a state where there is no gap in the vertical direction (fixed end state). .
  • the clamped portion 513 of the planar spring 5 is clamped with a gap in the vertical direction, but may be supported without a gap in the vertical direction.
  • the acceleration sensor 1 centrifugal switch
  • the acceleration sensor 1 centrifugal switch
  • the tire wheel receives the gravitational force whose direction of action rotates together with the centrifugal force, so that the magnet 6 and the weight 7 incline with the held portion 513 as a fulcrum. Therefore, the posture of the magnet 6 and the weight 7 can be maintained along the central axis of the acceleration sensor 1.
  • the inner diameter of the spacer 44 is about 0.2 mm larger than the outer diameter of the base 72 of the weight 7, and the inner side surface of the spacer 44 is used as a guide.
  • the movement distance of the weight 7 in this direction is limited, so that there is a problem that the planar spring 5 is damaged. Can be prevented.
  • the outer peripheral portion above the weight 7 is chamfered so that the weight 7 does not come into contact with the surface spring 5 excluding the holding portion 74. .
  • the magnetoelectric conversion means 8 has a built-in magnetoelectric conversion element (not shown) for detecting magnetism in the lower surface direction inside the magnetoelectric conversion means main body 82, and four external connections from the magnetoelectric conversion means main body 82. Terminal 81 protrudes.
  • the external connection terminal 81 extends in the horizontal direction from the side surface of the main body 82 of the magnetoelectric conversion means, bends downward when coming out of the outer case 4, and again in the horizontal direction at the same height position as the lower surface of the base 3. It is a bent surface mount type lead. In this way, it is possible to efficiently mount the miniaturized acceleration sensor 1 having dimensions of about 5 mm X 4 mm X 3 mm on the mounting board (not shown) using the surface mounting technology. it can.
  • FIG. 3 is a schematic diagram for explaining an operation state of the acceleration sensor according to the embodiment of the present invention.
  • FIG. 3 shows a substantially enlarged sectional view.
  • FIG. 4 is a sectional view of an acceleration sensor according to another embodiment of the present invention.
  • the difference from the embodiment of FIG. 1 is that the magnetic member 2 is embedded in the base 3.
  • the base 3 has a magnetic member mounting hole 31 having a depth of about 0.5 mm in the center of the lower surface, and the magnetic member 2 is press-fitted into the magnetic member mounting hole 31.
  • the magnetic member 2 pressed into the magnetic member mounting hole 31 is a circular plate having a diameter of about lmm and a plate thickness of about 0.2 mm.
  • the magnetic member 2 is made of a material having magnetic permeability, such as iron. Usually, an iron-nickel alloy (permalloy) and ferrite having excellent magnetic permeability are used. As described above, by using permalloy, which is a ferromagnetic material, the size of the magnetic member 2 can be reduced.
  • permalloy which is a ferromagnetic material
  • the magnitude of the magnetic attraction generated between the magnetic member 2 and the magnet 6 can be set by adjusting the distance, the area, and the like of the magnetic member 2.
  • the magnet 6 can be attracted in the direction of the magnetic member 2 by the action of the magnetic attraction.
  • the acceleration sensor 1 can detect an acceleration equal to or higher than a predetermined acceleration.
  • the magnetic member 2 is provided below the magnet 6, and a magnetoelectric conversion means 8 is provided above the magnet 6. That is, the magnetic member 2 is provided on the opposite side of the magnetoelectric conversion means 8 with the magnet 6 interposed therebetween.
  • the magnetic flux generated from the S pole of the magnet 6 enters the magnetic member 2 in a substantially straight line, and the magnetic flux generated by the magnetoelectric conversion means 8 side (N pole side) is not disturbed. (Not shown), so there is no adverse effect such as disturbance of magnetic flux Stable detection can be performed.
  • the magnetic flux generated from the S pole of the magnet 6 enters the magnetic member 2 in a substantially linear shape, the magnetic attractive force is stabilized, and the measurement accuracy can be further improved.
  • FIG. 5 is a schematic enlarged cross-sectional view for explaining an operation state of the acceleration sensor according to the embodiment of the present invention.
  • FIG. 6 is a graph for explaining an output voltage curve of the acceleration sensor according to the embodiment of the present invention.
  • the acceleration sensor 1 when the acceleration sensor 1 is used on the earth, it always receives a gravitational acceleration (one 1G: a downward acceleration is defined as 1, and an upward acceleration is defined as +). Therefore, when the magnetoelectric conversion means 8 is located above and the magnetic member 2 is located below, the acceleration sensor 1 is configured such that the magnet 6 and the weight 7 receive the gravitational acceleration. Since they are in contact with each other (see Fig. 4), the leaf spring 51 of the planar spring 5 does not bend downward. In this case, the leaf spring 51 is deformed to only one side (between the horizontal direction and the obliquely upward direction), and the acceleration sensor 1 does not move the magnet 6 downward even if the acceleration sensor 1 receives further downward acceleration. Therefore, this acceleration is not detected.
  • a gravitational acceleration one 1G: a downward acceleration is defined as 1, and an upward acceleration is defined as +. Therefore, when the magnetoelectric conversion means 8 is located above and the magnetic member 2 is located below, the acceleration sensor 1 is configured such that the magnet 6 and the weight 7 receive the gravitation
  • the acceleration sensor 1 receives an acceleration in an upward direction (acceleration detection direction), and when the acceleration gradually increases from 0 to +1 G, a force that offsets the gravitational acceleration (-1 G).
  • the acceleration sensor 1 gradually raises the magnet 6 and the weight 7 in a state of being balanced with the spring force of the planar spring 5, and 8 detects the movement of the magnet 6 as acceleration, and the output voltage increases.
  • the acceleration sensor 1 Since the magnet 6 cannot be raised even if the acceleration increases further, the acceleration sensor 1 The voltage is constant.
  • the acceleration sensor 1 can detect acceleration from + (1 + a) G to + (1 + ⁇ + j8) G. Therefore, when the state force is inverted upside down and the magnetoelectric conversion means 8 is located below and the magnetic member 2 is located above, the acceleration sensor 1 causes the magnet 6 and the weight 7 to have a gravitational acceleration of +1 G. Force subject to acceleration This acceleration is not detected.
  • the acceleration sensor 1 when the acceleration sensor 1 is used in the tire condition monitoring device, even if the tire stops in a state where the magnetoelectric conversion means 8 is located below and the magnetic member 2 is located above, the tire rotates at this gravitational acceleration. Since it is not detected as centrifugal force, malfunction can be prevented. Furthermore, by utilizing the magnetic attraction force of the magnet 6, the acceleration sensor 1 can improve measurement accuracy and reliability and can be downsized.
  • FIG. 7 is a schematic diagram for explaining an attached state of the tire information transmitting device with the acceleration sensor according to the embodiment of the present invention.
  • a tire information transmitting device 10 with an acceleration sensor (abbreviated as tire information transmitting device 10 as appropriate) is attached to a tire cavity region 93 surrounded by an inner peripheral surface 91 of a tire 90 and a wheel wall surface 92.
  • FIG. 8 is a schematic diagram for explaining the structure of a tire information transmitting device with an acceleration sensor according to an embodiment of the present invention, in which (a) is a cross-sectional view, and (b) is a block diagram.
  • a tire information transmitting device 10 includes a substrate 11, a battery 12 provided on the lower surface of the substrate 11, a sensor unit 13 mounted on the substrate 11, an analog-to-digital converter 14, Multiprocessor 15, storage unit 16, transmitting unit 17, transmitting antenna 18, receiving unit 17a, receiving antenna 18a and the acceleration sensor 1 used as a centrifugal switch, and the above components 11, 13, 14, 15, 16, 17, 18, 17a, 18a, 1 and Moronored ⁇ 19 are powerful.
  • the mold section 19 has a measurement hole 19a at a position corresponding to the sensor section 13.
  • the multiprocessor 15 includes a sensor unit 13, an analog-to-digital converter 14, a storage unit 16,
  • the communication unit 17, the reception unit 17a, and the acceleration sensor 1 are connected to each other, and control these to detect atmosphere information (generally, pressure, Z or temperature, etc.) in the tire cavity 93, and Transmit wirelessly outside the cavity area.
  • atmosphere information generally, pressure, Z or temperature, etc.
  • FIG. 9 is a conceptual diagram showing the positional relationship between the tire information transmitting device and the wheel.
  • FIG. 9 (A) shows a state in which the tire information transmitting device is located at an angle of 0 ° with respect to the wheel center.
  • FIG. 9 (B) is a view showing a state in which the tire information transmitting device is located at an angle of 90 ° with respect to the wheel center, and
  • FIG. 9 (C) is a view showing an angle of 180 ° with respect to the wheel center.
  • Fig. 9 (D) is a diagram showing a state in which the tire information transmitting device is located at a position of 270 ° with respect to the center of the wheel. It is.
  • FIG. 9 (A) shows a case where the tire information transmitting device 10 is located at an angle of 0 ° with respect to the center of the wheel 92, that is, a case where the tire information transmitting device 10 is located above the wheel 92.
  • the acceleration sensor 1 installed in the tire information transmitting device 10 is as shown in FIG.
  • the weight 7 of the acceleration sensor 1 is in contact with the base 3.
  • FIG. 10 is a diagram showing a change in the output level of the acceleration sensor when the tire rotates at each position with respect to the wheel center of the tire information transmitting device.
  • the upper surface of the magnet 6 of the acceleration sensor 1 is located at the position just before the tire information transmitting device 10 at an angle of 180 ° with respect to the wheel 92, and the bottom surface of the third cylindrical concave portion 433.
  • the output level of the acceleration sensor 1 changes from S "L" to "H".
  • the acceleration sensor 1 When the tire further rotates past 180 °, the acceleration sensor 1 enters a state as shown in FIG. 1, that is, a state in which the weight 7 of the acceleration sensor 1 is in contact with the base 3, and at this time, the acceleration The output level of sensor 1 changes from "H” to "L".
  • the output level of the acceleration sensor 1 is stabilized in the state of "H" at a rotation speed higher than the rotation speed at which the tire rotates at a high speed and the centrifugal force becomes larger than the gravity.
  • the output level of the acceleration sensor 1 changes from “L” ⁇ “H” ⁇ “L” once per rotation.
  • the tire information transmitting device 10 of the present invention transmits a signal indicating that the tire is rotating at a low speed based on the output of the acceleration sensor.
  • a tire information monitoring device (not shown) is provided inside the vehicle on which the tires are mounted, and receives a signal from the tire information transmitting device 10 and notifies the driver and the like. If the tires are running at low speed without the car's induction switch in place, it is determined that the vehicle is stolen and an alarm is issued.
  • FIG. 11 is a flowchart showing processing in the tire information monitoring device.
  • Stepl If the car is in the ON / OFF state when the car's induction switch is ON !, go to Step6. If the car is in the OFF state (OFF), go to Step2.
  • Step 2 If the induction switch is turned on and the state is (OFF), the tire information monitoring device can receive a signal from the tire information transmitting device 10 by a receiving device (not shown). , Step3 @ ko it
  • Step 3 Determine whether the signal received from the tire information transmitting device 10 is a signal indicating that the tire is rotating at a low speed, and if the tire is rotating at a low speed (YES), proceed to Step 4; Return to Stepl.
  • Step4 If the tire is in the state (OFF) and the low speed rotation state is detected without the induction switch, it is determined that the vehicle is stolen, and an alarm is sounded by an alarm device (not shown).
  • Step 5 If a reset signal from the tire information monitoring device or the like is received (YES), the alarm of the alarm device (not shown) is released, and the process returns to Step 1 and returns to Step 5 until the reset signal is received. Wait for reset signal.
  • Step 6 If it is determined in step 1 that the induction switch has entered the ON / OFF state, the tire information monitoring apparatus determines the tire state received from the tire information transmitting apparatus 10, ie, the tire state.
  • the air pressure in the tire cavity 93, the temperature 93 in the tire cavity, and the like are displayed on a display device (not shown). If the air pressure and temperature are out of the range of the normal values, processing such as sounding an alarm by an alarm device (not shown) is performed.
  • the processing in Step 6 is an example, and various applications can be considered.
  • acceleration sensor described in the second embodiment is used as a switch for extending the life of the battery 12 of the tire information transmitting device 10 will be described.
  • the multiprocessor 15 changes the transmission information according to the rotation state detection signal. For example, when the multiprocessor 15 determines that the tire 90 has stopped based on the rotation state detection signal, the multiprocessor 15 stops detecting the atmosphere information and transmitting the detection result so as not to consume the power of the battery 12. Further, the pressure is detected as the atmosphere information in the tire cavity 93 every hour based on the rotation state detection signal, and the pressure is wirelessly transmitted to the outside of the tire cavity. Further, when the multiprocessor 15 determines that the tire 90 is rotating at a high speed based on the rotation state detection signal, the pressure and the temperature are detected every 10 minutes as atmosphere information in the tire cavity area 93, and the tire 90 is detected. Transmit wirelessly outside the cavity area.
  • the acceleration sensor 1 accurately detects the rotation state of the tire 90 regardless of the gravitational acceleration of the person 1G acting every time the tire 90 rotates. Therefore, malfunction of the tire information transmitting device can be prevented and reliability can be improved. Further, since the acceleration sensor 1 is downsized, the tire information transmitting device 90 can be downsized.
  • the transmission information can be changed by the rotation state detection signal from the acceleration sensor 1, so that the atmosphere of the tire 90 according to the driving condition can be effectively used while effectively using the power of the battery 12.
  • Ambient information can be transmitted wirelessly outside the tire cavity area.
  • acceleration sensor and the tire information transmitting device with an acceleration sensor according to the present invention have been described above with reference to the preferred embodiments, the acceleration sensor and the tire information transmitting device with an acceleration sensor according to the present invention have the above-described implementation. It is needless to say that various modifications can be made within the scope of the present invention.
  • the acceleration sensor 1 uses the magnet 6 and the magnetic member 2 as means for generating a magnetic attraction force, when a larger magnetic attraction force is required, a magnet is used instead of the magnetic member 2. May be used.
  • the acceleration sensor 1 reduces the spring force of the planar spring 5 when the magnetoelectric conversion means 8 is located below and the magnetic member 2 is located above.
  • the magnet 6 and the weight 7 can be attracted upward (to the base 3 side) without being used.
  • the planar spring 5 is used as a means for adjusting the posture of the magnet 6 and the weight 7.
  • the tire information transmitting apparatus 10 may have a configuration in which a plurality of acceleration sensors 1 having different detection areas are provided. In this case, the atmosphere information corresponding to the rotation speed of the tire 90 in a wide range can be further improved. It can be transmitted in a finely divided state.
  • the acceleration sensor of the present invention can also be applied as a measurement device such as a displacement sensor using a magnetoelectric conversion unit or an acceleration switch.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Acceleration produced in a tire can be detected even if a small force of the extent occurring when a tire installed on a vehicle is stolen is applied to the tire. An acceleration sensor (1) is constituted of a sheet spring (5) that is installed in the lower section of an outer case (4), a magnet (6) and a weight (7) that are held at a holding section of the sheet spring (5), and magnetism-electricity converting means (8) that is installed in the upper part of the outer case (4). The holding section, holding the magnet (6), of the sheet spring (5) is formed as an arm section with an open end, and the sheet spring (5) is held by the magnet (6) and the weight (7) by clasping the open end of the sheet spring (5) by the magnet (6) and the weight (7).

Description

明 細 書  Specification
加速度センサ及び加速度センサ付きタイヤ情報送信装置  Acceleration sensor and tire information transmission device with acceleration sensor
技術分野  Technical field
[0001] 本発明は、加速度センサ及び加速度センサ付きタイヤ情報送信装置に関し、車に 取り付けられているタイヤが盗難にあう程度の力がタイヤに加わったときでも、その加 えられた力によりタイヤに発生する加速度の測定が可能な加速度センサ及び加速度 センサ付きタイヤ情報送信装置に関する。  The present invention relates to an acceleration sensor and a tire information transmitting device with an acceleration sensor, and when a tire attached to a car is subjected to a force that is stolen, the applied force is applied to the tire. The present invention relates to an acceleration sensor capable of measuring generated acceleration and a tire information transmitting device with an acceleration sensor.
背景技術  Background art
[0002] 一般的に、電子部品は、小型化,軽量化されることにより、新たな用途に使用可能と なることがあり、また、既存の電子部品に補足的な新機能を付加することにより、新た な用途に使用可能となることがある。  [0002] In general, electronic components can be used for new applications due to their miniaturization and weight reduction, and by adding supplementary new functions to existing electronic components. In some cases, it can be used for new applications.
このことは、磁電変換手段を用いた加速度センサにもあてはまり、たとえば、自動車 のタイヤホイールに取り付けられ、走行中のタイヤ内の物理量 (たとえば、空気圧)を 検出するタイヤ状態監視装置に、加速度センサを使用するといつた新たな用途があ る。  This also applies to an acceleration sensor using magnetoelectric conversion means. For example, an acceleration sensor is used in a tire condition monitoring device that is attached to a tire wheel of an automobile and detects a physical quantity (for example, air pressure) in a running tire. There are new uses when used.
[0003] このタイヤ状態監視装置は、特開 2000— 203218号公報及び特開 2000— 20321 9号公報において開示された技術であり、たとえば、圧力検出センサ,発信機,電池 ,制御装置及び加速度センサ (遠心スィッチ)等を備えた構成としてある。この場合の 加速度センサは、電池の寿命を延ばす目的で、走行中のタイヤに作用する遠心力を 検出し、走行しているときだけタイヤ状態監視装置を作動させるための遠心スィッチと して使用される。  [0003] The tire condition monitoring device is a technology disclosed in Japanese Patent Application Laid-Open Nos. 2000-203218 and 2000-203129, and includes, for example, a pressure detection sensor, a transmitter, a battery, a control device, and an acceleration sensor. (Centrifugal switch) and the like. In this case, the acceleration sensor is used as a centrifugal switch to detect the centrifugal force acting on the running tire and to operate the tire condition monitoring device only when the vehicle is running, in order to extend the life of the battery. You.
このため、上記遠心スィッチは、タイヤホイールに取り付けることができるように、小 型化 ·軽量化される必要がある。  Therefore, the centrifugal switch needs to be reduced in size and weight so that it can be attached to a tire wheel.
[0004] ところで、磁電変換手段を使用した様々なセンサ、たとえば、特許文献 1に記載され たセンサが提案されている。この変位検出センサは、外部応力により変位するばね部 を蛇行腕片状に形成して、このばね部を可動部の中心軸に対して軸対称もしくは線 対称に配置してある。そして、上記可動部の中央部に磁石を装着し、その磁石の変 位方向の対向する箇所に磁電変換素子を配置して、磁石の変位にともなう電圧の変 化を変位として検出する構成としてある。 [0004] Various sensors using magnetoelectric conversion means, for example, a sensor described in Patent Document 1 have been proposed. In this displacement detection sensor, a spring portion displaced by external stress is formed in a meandering arm piece shape, and this spring portion is disposed axially or line-symmetrically with respect to the center axis of the movable portion. Then, a magnet is attached to the center of the movable part, and the magnet is changed. A magneto-electric conversion element is arranged at a position opposed in the shift direction, and a change in voltage due to a displacement of the magnet is detected as a displacement.
特許文献 1:特開平 6— 230023号公報  Patent Document 1: JP-A-6-230023
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記特許文献 1の変位検出センサは、加速度センサとして使用したと しても、構造上、小型化が難しいので、たとえば、上記タイヤ状態監視装置に使用可 能な大きさまで小型化できな 、と 、つた問題があった。 [0005] However, even if the displacement detection sensor of Patent Document 1 is used as an acceleration sensor, it is difficult to reduce the size due to its structure. There was a problem that it could not be downsized.
また、小型化可能な加速度センサとして良く知られているものに MEMS加速度セ ンサがある。しかし、この MEMS加速度センサでは、タイヤ内に装着して使用した場 合、走行中の振動、衝撃に耐えることが出来ないという問題があった。  A well-known miniaturized acceleration sensor is a MEMS acceleration sensor. However, this MEMS acceleration sensor has a problem in that it cannot withstand vibration and impact during traveling when used in a tire.
更に、コイルパネを使用した加速度センサも存在する力 このコイルパネを使用した センサは、パネとケースが摺動によって削れるという問題があり、これらは寿命に大き く左右されるという問題があった。  Further, there is also an acceleration sensor using a coil panel. A sensor using the coil panel has a problem that the panel and the case are scraped off by sliding, and these have a problem that they are greatly affected by their life.
[0006] 本発明は、上記問題を解決すベぐ車に取り付けられているタイヤが盗難にあう程 度の力がタイヤに加わったときでも、その加えられた力によりタイヤに発生する加速度 を検出でき、かつ、タイヤ内部に取り付け可能な程度に小型化でき、また、数万キロ におよぶ車の走行に伴う振動'衝撃にも耐えることが可能な加速度センサ及び加速 度センサ付きタイヤ情報送信装置の提供を目的とする。 [0006] The present invention solves the above-mentioned problem, and detects acceleration generated in a tire by the applied force even when the tire attached to the vehicle is applied with enough force to be stolen. Of an acceleration sensor and a tire information transmission device with an acceleration sensor that can be reduced in size so that it can be mounted inside the tire and can withstand the vibrations and shocks of tens of thousands of kilometers of vehicle travel. For the purpose of providing.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するために、本発明の加速度センサは、ケースの内側に少なくとも その基部が固定された面状ばねと、該面状ばねの中央の保持部に保持された磁石 と、該磁石と空隙を介して前記ケースに対向配置されると共に、前記磁石が移動した ときの磁気変化を検出する磁電変換手段とを備えた加速度センサにおいて、前記面 状ばねは、一端が前記基部に接続され他端が開放端である複数本の腕部を有し、 前記保持部は前記複数本の腕部のうち少なくとも 2本の腕部の開放端に設けられた 構成としてある。 [0007] To achieve the above object, an acceleration sensor according to the present invention includes a planar spring having at least a base fixed inside a case, a magnet held by a central holding portion of the planar spring, An acceleration sensor including the magnet and a magneto-electric conversion unit that is disposed to face the case via a gap and that detects a magnetic change when the magnet moves, wherein the planar spring has one end connected to the base. It has a plurality of arms connected and the other end is an open end, and the holding portion is provided at an open end of at least two arms of the plurality of arms.
このようにすると、小型でありながら小さいパネ定数の面状ばねを得ることができ、ケ ース内に配設が可能となり、 0. 3— 5Gの範囲の加速度を検出することができる。 In this way, a small-sized planar spring having a small panel constant can be obtained. It can be installed in the ground, and can detect acceleration in the range of 0.3-5G.
[0008] また、本発明の加速度センサは、前記面状ばねの腕部は、その一端が開放端とな つている半径方向に伸長する第 1の腕と、該第 1の腕の他端力 円周方向に伸長し、 前記基部に接続された第 2の腕で構成されている。 [0008] Further, in the acceleration sensor of the present invention, the arm portion of the planar spring has a first arm extending in a radial direction, one end of which is an open end, and the other end force of the first arm. It comprises a second arm extending in the circumferential direction and connected to the base.
このようにすると、加速度方向と直交する方向の振動や衝撃の影響を減らすことが でき、磁石、重り、パネがケースとぶつ力ることによる肖 IJりかすを発生させない。ひいて は、センサの寿命向上に大きく貢献する。  In this way, the effects of vibrations and shocks in the direction orthogonal to the acceleration direction can be reduced, and the magnet, weight, and panel do not generate the IJ scum due to the force of the case. As a result, it greatly contributes to improving the service life of the sensor.
[0009] また、本発明の加速度センサは、前記面状ばねのパネ定数を 0. 15-1. 25mN/ mmとし 7こ。 Further, in the acceleration sensor of the present invention, the panel spring has a panel constant of 0.15-1.25 mN / mm.
[0010] また、本発明の加速度センサは、前記磁石に重りを取り付けた構成としてある。  [0010] The acceleration sensor of the present invention has a configuration in which a weight is attached to the magnet.
このようにすると、加速度センサを遠心スィッチとして使用するとき、重りの重量を調 整することにより、閾値となる遠心力を容易に設定することができる。  With this configuration, when the acceleration sensor is used as a centrifugal switch, the threshold centrifugal force can be easily set by adjusting the weight of the weight.
[0011] また、本発明の加速度センサは、前記磁石と前記磁石に取り付けた前記重りで前 記面状ばねの開放端を挟持することにより、前記面状ばねに前記磁石を保持させた 構成としてある。 [0011] Further, the acceleration sensor of the present invention has a configuration in which the magnet is held by the sheet spring by holding the open end of the sheet spring by the magnet and the weight attached to the magnet. is there.
このようにすると、ばねの中心部 (被挟持部)を、磁石と重りの間に挟むことができ、 小型化された磁石をばねに取り付けることができる。また、ばねの被挟持部を、磁石 の下面と重りの上面 (挟持部)との間に自由端の状態で挟むと、ばねが弾性変形しや すくなり、パネ定数を小さくすることができ、小型化が可能となる。  With this configuration, the center portion (the pinched portion) of the spring can be sandwiched between the magnet and the weight, and the downsized magnet can be attached to the spring. Further, if the clamped portion of the spring is sandwiched between the lower surface of the magnet and the upper surface of the weight (clamping portion) at a free end, the spring is easily elastically deformed, and the panel constant can be reduced. The size can be reduced.
[0012] また、本発明の加速度センサは、前記重りが移動しても、該重りの挟持部だけが前 記ばねと接触するように、前記重りの外周部を面取りした構成としてある。  [0012] The acceleration sensor of the present invention has a configuration in which the outer peripheral portion of the weight is chamfered so that even if the weight moves, only the holding portion of the weight contacts the spring.
このようにすると、磁石及び重りが上方に移動し、ばねが斜め上方に弾性変形して も、ばねが重りの上部と接触するといつた不具合を防止することができる。  With this configuration, even if the magnet and the weight move upward and the spring elastically deforms obliquely upward, it is possible to prevent a problem that occurs when the spring comes into contact with the upper part of the weight.
[0013] また、本発明の加速度センサは、前記面状ばねを、磁電変換手段の本体とほぼ同 一径とした構成としてある。 [0013] The acceleration sensor of the present invention is configured such that the planar spring has substantially the same diameter as the main body of the magnetoelectric conversion means.
このようにすると、面状ばねの取り付けられる外ケースが小型化されるので、加速度 センサを小型化することができる。  With this configuration, the outer case to which the planar spring is attached is reduced in size, so that the acceleration sensor can be reduced in size.
[0014] また、本発明の加速度センサは、前記ケースの内側に凹部を形成し、前記面状ば ねの基部を該凹部に嵌入した構成としてある。 [0014] In the acceleration sensor according to the present invention, a concave portion may be formed inside the case, and The base of the spring is fitted into the recess.
このようにすると、面状ばねの位置決めを容易に行なうことができるとともに、磁石の 位置精度を向上させることができる。  With this configuration, the positioning of the planar spring can be easily performed, and the positional accuracy of the magnet can be improved.
[0015] また、本発明の加速度センサは、加速度検出方向と直交する方向への前記磁石の 移動を制限するガイドを前記ケースの内側に設けた構成としてある。  [0015] Further, the acceleration sensor of the present invention has a configuration in which a guide for restricting movement of the magnet in a direction orthogonal to the acceleration detection direction is provided inside the case.
このようにすると、加速度検出方向と直交する方向への衝撃 *振動が作用した場合 であっても、この方向への磁石の移動距離が制限されるので、ばねがダメージを受け るといった不具合を防止することができる。  In this way, even if an impact is applied in a direction perpendicular to the acceleration detection direction, even if vibration is applied, the movement distance of the magnet in this direction is limited, thereby preventing problems such as damage to the spring. can do.
[0016] また、本発明の加速度センサは、前記磁石に作用する加速度が所定の加速度より 小さい間は、前記磁石の磁気吸引力によって前記磁石の移動を規制する位置に磁 性部材を配置した構成としてある。 Further, the acceleration sensor according to the present invention has a configuration in which the magnetic member is arranged at a position where the movement of the magnet is restricted by the magnetic attraction of the magnet while the acceleration acting on the magnet is smaller than a predetermined acceleration. There is.
このよう〖こすると、磁石の磁気吸引力を利用して、所定の加速度以上の加速度が作 用したとき、はじめてその加速度を検出することができる。  In this manner, when an acceleration equal to or more than a predetermined acceleration is applied by utilizing the magnetic attraction force of the magnet, the acceleration can be detected for the first time.
なお、磁石を一方向に付勢する方法としては、磁気吸引力を利用する他に、ばね 力などを利用することも考えられるが、小型化された加速度センサにおいては、磁気 吸引力を利用することによって、測定精度及び信頼性を高めることができる。  As a method of urging the magnet in one direction, in addition to using magnetic attraction force, it is conceivable to use spring force or the like.However, in a miniaturized acceleration sensor, magnetic attraction force is used. Thereby, measurement accuracy and reliability can be improved.
[0017] また、本発明の加速度センサ付きタイヤ情報送信装置は、タイヤの内周面及びホイ ール壁面によって囲まれたタイヤ空洞領域に取り付けられ、このタイヤ空洞領域内の 雰囲気情報を検知して、タイヤ空洞領域外へ無線で送信する加速度センサ付きタイ ャ情報送信装置であって、前記加速度センサが前記タイヤの回転状態を検出し、こ の回転状態検出信号により、送信情報を変更する構成としてある。 [0017] The tire information transmitting device with an acceleration sensor of the present invention is attached to a tire cavity region surrounded by the inner peripheral surface of the tire and the wheel wall surface, and detects atmosphere information in the tire cavity region. A tire information transmission device with an acceleration sensor for wirelessly transmitting the tire information to the outside of the tire cavity area, wherein the acceleration sensor detects a rotation state of the tire and changes transmission information based on the rotation state detection signal. is there.
このようにすると、加速度センサがタイヤの回転状態を精度よく検出することができ るので、タイヤ情報送信装置の誤動作を防止し信頼性を高めることができる。また、 加速度センサが小型化されるので、タイヤ情報送信装置を小型化することができる。 発明の効果  By doing so, the acceleration sensor can accurately detect the rotation state of the tire, so that malfunction of the tire information transmitting device can be prevented and reliability can be improved. Also, since the acceleration sensor is downsized, the tire information transmitting device can be downsized. The invention's effect
[0018] 本発明の加速度センサおよび加速度センサ付きタイヤ情報送信装置は、面状ばね の中央に磁石を接合した加速度センサを用いているので、(例えば、面状ばねのバ ネ定数 0. 15-1. 25mNZmm)、車に取り付けられているタイヤが盗難にあう程度 の微小な力がタイヤに加わったときでも、その加えられた力によりタイヤに発生する加 速度 (例えば、 0. 3G— 5G)を検出することができる。また、面状ばねの形状を、円周 方向等間隔に配置された少なくとも 2本の半径方向に伸長する第 1の腕と、該 1の腕 の先端力 円周方向に伸長する第 2の腕で構成したので、第 1の腕により板ばねに 取り付けられた磁石の移動を極力面状ばねの中心軸上とすることができ、中心軸か ら外れるような動きによって加速度センサのケース内部や面状ばね自身を磨耗するこ とを極力避けることができる。これにより、数万キロにおよぶ車の走行に伴う振動 '衝 撃に耐えることが可能となる。 The acceleration sensor and the tire information transmitting device with the acceleration sensor according to the present invention use an acceleration sensor in which a magnet is joined to the center of a sheet spring. 1.25mNZmm), the degree to which the tire mounted on the car is stolen Even when a very small force is applied to the tire, it is possible to detect the acceleration (for example, 0.3G-5G) generated in the tire by the applied force. Further, at least two radially extending first arms arranged at regular intervals in the circumferential direction, and a second arm extending in the circumferential direction at the distal end force of the one arm. Therefore, the magnet attached to the leaf spring by the first arm can move as much as possible on the center axis of the planar spring, and the movement inside the center of the acceleration sensor due to the movement away from the center axis. Wear of the spring itself can be minimized. This makes it possible to withstand the vibrations and impacts of tens of thousands of kilometers of vehicle travel.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の実施形態に力かる加速度センサの概略拡大図であり、(a)は上面図を 、(b)は A— A断面図を示している。 FIG. 1 is a schematic enlarged view of an acceleration sensor according to an embodiment of the present invention, in which (a) is a top view and (b) is a cross-sectional view along AA.
[図 2]本発明の実施形態に力かる加速度センサの面状ばねの概略拡大平面図を示 している。  FIG. 2 is a schematic enlarged plan view of a planar spring of an acceleration sensor according to an embodiment of the present invention.
[図 3]本発明の実施形態に力かる加速度センサの動作状態を説明するための概略拡 大断面図を示している。  FIG. 3 is a schematic enlarged cross-sectional view for explaining an operation state of the acceleration sensor according to the embodiment of the present invention.
[図 4]本発明の他の実施形態に力かる加速度センサの概略断面図を示している。  FIG. 4 is a schematic sectional view of an acceleration sensor according to another embodiment of the present invention.
[図 5]本発明の他の実施形態に力かる加速度センサの動作状態を説明するための概 略拡大断面図を示している。 FIG. 5 is a schematic enlarged cross-sectional view for explaining an operation state of an acceleration sensor according to another embodiment of the present invention.
[図 6]本発明の他の実施形態に力かる加速度センサの出力電圧曲線を説明するため のグラフを示している。  FIG. 6 shows a graph for explaining an output voltage curve of an acceleration sensor according to another embodiment of the present invention.
[図 7]本発明の実施形態に力かる加速度センサ付きタイヤ情報送信装置の取付け状 態を説明するための概略図を示している。  FIG. 7 is a schematic diagram for explaining a mounting state of a tire information transmitting device with an acceleration sensor according to an embodiment of the present invention.
[図 8]本発明の実施形態に力かる加速度センサ付きタイヤ情報送信装置の構造を説 明するための概略図であり、(a)は断面図を、(b)はブロック図を示している。  FIG. 8 is a schematic diagram for explaining the structure of a tire information transmitting device with an acceleration sensor according to an embodiment of the present invention, where (a) is a cross-sectional view and (b) is a block diagram. .
[図 9(A)]タイヤ情報送信装置とホイールとの位置関係を示す概念図であり、ホイール 中心に対して角度 0° の位置にタイヤ情報送信装置が位置している状態を示す図で ある。  FIG. 9 (A) is a conceptual diagram showing a positional relationship between the tire information transmitting device and the wheel, and is a diagram showing a state where the tire information transmitting device is located at an angle of 0 ° with respect to the wheel center. .
[図 9(B)]タイヤ情報送信装置とホイールとの位置関係を示す概念図であり、ホイール 中心に対して角度 90° の位置にタイヤ情報送信装置が位置している状態を示す図 である。 FIG. 9 (B) is a conceptual diagram showing the positional relationship between the tire information transmitting device and the wheel, FIG. 9 is a diagram showing a state where the tire information transmitting device is located at a position at an angle of 90 ° with respect to the center.
[図 9(C)]タイヤ情報送信装置とホイールとの位置関係を示す概念図であり、ホイール 中心に対して角度 180° の位置にタイヤ情報送信装置が位置している状態を示す 図である。  FIG. 9 (C) is a conceptual diagram showing the positional relationship between the tire information transmitting device and the wheel, and shows a state where the tire information transmitting device is located at an angle of 180 ° with respect to the center of the wheel. .
[図 9(D)]タイヤ情報送信装置とホイールとの位置関係を示す概念図であり、ホイール 中心に対して角度 270° の位置にタイヤ情報送信装置が位置している状態を示す 図である。  FIG. 9 (D) is a conceptual diagram showing a positional relationship between the tire information transmitting device and the wheel, and shows a state where the tire information transmitting device is located at an angle of 270 ° with respect to the wheel center. .
[図 10]タイヤ情報送信装置のホイール中心に対する各位置におけるタイヤ回転時の 加速度センサ力もの出力レベルを示す図である。  FIG. 10 is a diagram showing the output level of the acceleration sensor force when the tire is rotating at each position with respect to the wheel center of the tire information transmitting device.
[図 11]タイヤ情報監視装置内の処理をあらわすフローチャートである。  FIG. 11 is a flowchart showing a process in the tire information monitoring device.
符号の説明 Explanation of symbols
1 加速度センサ 1 Accelerometer
2 磁性部材 2 Magnetic material
3 ベース 3 Base
4 外ケース 4 Outer case
5 面状ばね 5 Planar spring
6 磁石 6 magnet
7 重り 7 Weight
8 磁電変換手段  8 Magnetoelectric conversion means
10 タイヤ情報送信装置  10 Tire information transmission device
11 基板  11 Substrate
12 電池  12 batteries
13 センサ部  13 Sensor section
14 アナログ 'デジタル変換器  14 Analog to Digital Converter
15 マノレチプロセッサ 18 送信用アンテナ 15 Manorechi processor 18 Transmitting antenna
17a 受信部  17a receiver
18a 受信用アンテナ  18a receiving antenna
19 モールド  19 Mold
19a 測定孔  19a Measurement hole
31 磁性部材取付け穴  31 Magnetic member mounting hole
32 貫通孔  32 Through hole
33 段付き部  33 Stepped part
41 ノッチ  41 notch
42 凹部  42 recess
43 磁石収納室  43 magnet storage room
44 スぺーサ  44 Spacer
51 板ばね  51 Leaf spring
52 環状部  52 Annular
61 圧入孔  61 Press-fit hole
71 ピン部  71 pin section
72 基部  72 base
73 面取り部  73 Chamfer
74 挟持部  74 Holding part
81 外部接続端子  81 External connection terminal
82 磁電変換手段本体  82 Magnetoelectric converter
90 タイヤ  90 tires
91 内周面  91 Inner circumference
92 ホイール壁面  92 Wheel wall
93 タイヤ空洞領域  93 Tire cavity area
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[実施形態 1]  [Embodiment 1]
図 1は、本発明の実施形態に力かる加速度センサの概略拡大図であり、(a)は上面 図を、(b)は A— A断面図を示している。 FIG. 1 is a schematic enlarged view of an acceleration sensor according to an embodiment of the present invention. The figure and (b) show the AA cross section.
同図において、加速度センサ 1は、ベース 3上に設けられた外ケース 4と、外ケース 4の下部に取り付けられた面状ばね 5と、この面状ばね 5の中央部に取り付けられた 磁石 6及び重り 7と、外ケース 4の上部に取り付けられた磁電変換手段 8とからなって いる。  In FIG. 1, an acceleration sensor 1 includes an outer case 4 provided on a base 3, a planar spring 5 attached to a lower portion of the outer case 4, and a magnet 6 attached to a central portion of the planar spring 5. And a weight 7, and magnetoelectric conversion means 8 attached to the upper part of the outer case 4.
[0022] ベース 3は、非透磁性のプラスチックやセラミックあるいは非透磁性の金属などから なる、一辺の長さが約 4mmかつ板厚が約 lmmの正方形状の板である。  The base 3 is a square plate made of non-permeable plastic, ceramic, or non-permeable metal, and has a side length of about 4 mm and a thickness of about lmm.
ベース 3の四隅には、下面側から見て段付き部 33を有する貫通孔 32が形成されて おり、この貫通孔 32に外ケース 4のノッチ 41が挿入される。そして、このノッチ 41の先 端部に対して、加熱による塑性加工を施し段付き部 33に係止することにより、外ケー ス 4をベース 3に固定する。  The four corners of the base 3 are formed with through holes 32 each having a stepped portion 33 as viewed from the lower surface side. The notches 41 of the outer case 4 are inserted into the through holes 32. Then, the outer case 4 is fixed to the base 3 by subjecting the leading end of the notch 41 to plastic working by heating and engaging with the stepped portion 33.
なお、外ケース 4の固定方法は、ノッチ 41を用いた方法に限定されるものではない  The method of fixing the outer case 4 is not limited to the method using the notch 41.
[0023] 外ケース 4は、非透磁性のプラスチックなど力 なり、正方形状の上面における一辺 の長さが約 4mmかつ高さが約 3mmのほぼ立方体状である。 The outer case 4 is made of a non-magnetically permeable plastic or the like, and has a substantially cubic shape with a side of about 4 mm and a height of about 3 mm on a square upper surface.
また、外ケース 4は、上面にほぼ矩形状の凹部 42が形成されており、この凹部 42に 磁電変換手段本体 82が収納され、さらに、凹部 42と磁電変換手段本体 82の間に接 着剤(図示せず)を充填することによって、磁電変換手段本体 82が凹部 42に埋設さ れる。  The outer case 4 has a substantially rectangular recess 42 formed on the upper surface thereof. The recess 42 accommodates the magnetoelectric conversion device main body 82, and further includes a bonding agent between the recess 42 and the magnetoelectric conversion device main body 82. Filling (not shown) causes the magnetoelectric conversion means main body 82 to be embedded in the concave portion 42.
[0024] ここで、凹部 42の底面に、磁電変換手段本体 82の底部が嵌入されるくぼみ 421を 形成するとよい。このよう〖こすると、磁電変換手段本体 82を精度よく位置決めすること ができる。  Here, it is preferable that a recess 421 into which the bottom of the main body 82 is fitted is formed on the bottom of the recess 42. By doing so, the magnetoelectric conversion means main body 82 can be accurately positioned.
さらに、凹部 42を形成することによって生じた壁の一部に、磁電変換手段 8の外部 接続端子 81を通すための切欠 422を形成してある。このようにすることによって、磁 電変換手段 8の外部接続端子 81を複雑な形状に加工しなくてもすみ、また、外ケー ス 4の上面より低くなる位置に磁電変換手段 8を埋設することができ、磁電変換手段 8 のダメージを防止することができる。  Further, a notch 422 for passing the external connection terminal 81 of the magnetoelectric conversion means 8 is formed in a part of the wall formed by forming the concave portion 42. By doing so, the external connection terminal 81 of the magnetoelectric conversion means 8 does not need to be processed into a complicated shape, and the magnetoelectric conversion means 8 is buried at a position lower than the upper surface of the outer case 4. Therefore, damage to the magnetoelectric conversion means 8 can be prevented.
[0025] また、外ケース 4には、下面に直径が上方に向力つて階段状に小さくなる三段円筒 状の磁石収納室 43が形成してある。 [0025] The outer case 4 has a three-stage cylinder on the lower surface, the diameter of which is reduced in a stepwise manner as the diameter is directed upward. A magnet storage chamber 43 is formed.
磁石収納室 43の下段に位置する最も直径の大きな第一円筒凹部 431には、面状 ばね 5の環状部 52 (図 2参照)を固定する円環状のスぺーサ 44が圧入してあり、スぺ ーサ 44の上面が第一段付き部 431aに面状ばね 5の環状部 52を押さえつけることに よって、面状ばね 5を外ケース 4に固定している。  An annular spacer 44 for fixing the annular portion 52 of the planar spring 5 (see FIG. 2) is press-fitted into the first cylindrical concave portion 431 having the largest diameter located at the lower stage of the magnet storage chamber 43. The upper surface of the spacer 44 presses the annular portion 52 of the planar spring 5 against the first stepped portion 431a, thereby fixing the planar spring 5 to the outer case 4.
[0026] また、磁石収納室 43の中段に位置する第二円筒凹部 432は、磁石 6が移動した際 、面状ばね 5が自由に移動するためのスペースである。 The second cylindrical recess 432 located in the middle of the magnet storage chamber 43 is a space for the planar spring 5 to move freely when the magnet 6 moves.
さらに、磁石収納室 43の上段に位置する最も直径の小さな第三円筒凹部 433は、 上方向(加速度検出方向)への加速度を受けた磁石 6が上方に移動するためのスぺ ースである。この第三円筒凹部 433は、約 0. 6mmの深さを有し、磁石 6が、約 0. 3 mm挿入された状態から、上方に約 0. 3mm移動する。  Further, the third cylindrical concave portion 433 having the smallest diameter located at the upper stage of the magnet storage chamber 43 is a space for the magnet 6 which has been subjected to the upward (acceleration detecting direction) acceleration to move upward. . The third cylindrical concave portion 433 has a depth of about 0.6 mm, and moves upward by about 0.3 mm from a state where the magnet 6 is inserted by about 0.3 mm.
[0027] ここで、好ましくは、第三円筒凹部 433の直径を、磁石 6の直径より約 0. 05mm大 きくするとよい。このようにすると、第三円筒凹部 433の側面が、加速度検出方向と直 交する方向への磁石 6の移動を制限するガイドとなるので、加速度検出方向と直交 する方向への加速度が作用した場合であっても、この方向への磁石 6の移動距離が 制限され、面状ばね 5がダメージを受けるといった不具合を防止することができる。 なお、加速度検出方向と直交する方向へ加速度が作用する場合としては、たとえ ば、タイヤホイールに取り付けられた加速度センサ 1 (遠心スィッチ)力 横向きとなる 場合であり、磁石 6及び重り 7は、図 1 (b)において、左右方向に重力加速度が作用 する。また、急ブレーキによって、回転中のタイヤが急停止する場合にも、角加速度 が作用する。 Here, it is preferable that the diameter of the third cylindrical concave portion 433 is larger than the diameter of the magnet 6 by about 0.05 mm. In this way, the side surface of the third cylindrical concave portion 433 serves as a guide for restricting the movement of the magnet 6 in a direction orthogonal to the acceleration detection direction, so that when an acceleration acts in a direction orthogonal to the acceleration detection direction. Even in this case, the moving distance of the magnet 6 in this direction is limited, and the problem that the planar spring 5 is damaged can be prevented. The case where the acceleration acts in the direction perpendicular to the acceleration detection direction is, for example, the case where the acceleration sensor 1 (centrifugal switch) attached to the tire wheel is in the horizontal direction, and the magnet 6 and the weight 7 are In (b), gravitational acceleration acts in the left-right direction. Angular acceleration also acts when the rotating tire suddenly stops due to sudden braking.
[0028] 図 2は、本発明の実施形態にかかる加速度センサの面状ばねの概略拡大平面図 を示している。  FIG. 2 is a schematic enlarged plan view of a planar spring of the acceleration sensor according to the embodiment of the present invention.
同図において、面状ばね 5は、所定形状の三つの板ばね 51と、各板ばね 51の外 周方向の端部を連結する環状部 52とからなっている。  In the figure, the planar spring 5 includes three leaf springs 51 having a predetermined shape, and an annular portion 52 that connects the ends of the respective leaf springs 51 in the outer circumferential direction.
板ばね 51は、周方向に形成された周方向板ばね部 511と、半径方向に形成された 半径方向板ばね部 512とからなっており、これら周方向板ばね部 511と半径方向板 ばね部 512を連結させ、各板幅や長さ、さら〖こ、折り曲り形状を選択することにより、 必要とするばね特性のばねを製造することができる。 The leaf spring 51 includes a circumferential leaf spring portion 511 formed in the circumferential direction and a radial leaf spring portion 512 formed in the radial direction. The circumferential leaf spring portion 511 and the radial leaf spring portion are provided. By connecting 512 and selecting the width and length of each board, slab, bending shape, A spring having the required spring characteristics can be manufactured.
板ばね 51は、加速度検出方向(厚み方向)のパネ定数を小さく設定し、剛性を弱く している。パネ定数を小さくする理由は、小型で感度の良い加速度センサとするため である。本実施形態の板ばね 51は、周方向板ばね 511を円弧状にしてばね部を長く し、パネ定数を小さくしている。  The leaf spring 51 has a small panel constant in the acceleration detection direction (thickness direction) and has a low rigidity. The reason for reducing the panel constant is to make the acceleration sensor small and sensitive. In the leaf spring 51 of the present embodiment, the circumferential leaf spring 511 is formed in an arc shape, the spring portion is lengthened, and the panel constant is reduced.
一方、板ばね 51の被挟持部 513から半径方向のパネ定数は大きく設定し剛性を 強くしている。パネ定数を大きくする理由は、外部からの衝撃 ·振動による加速度検 出方向と直交する方向への磁石 6、重り 7の移動を防ぎ、ケース 4の内周部に対する 磁石 6、重り 7の衝突によるケース 4の磨耗を防止するためである。本実施形態の板 ばね 51は、周方向板ばね 511のばね幅をばね厚と比較して 15— 25倍以上大きくし 、厚み方向のパネ定数より 225— 625倍の剛性を持たせている。  On the other hand, the panel constant in the radial direction from the held portion 513 of the leaf spring 51 is set large to increase rigidity. The reason for increasing the panel constant is that the magnet 6 and the weight 7 are prevented from moving in the direction perpendicular to the acceleration detection direction due to external shock and vibration, and the magnet 6 and the weight 7 collide with the inner periphery of the case 4. This is to prevent the case 4 from being worn. In the leaf spring 51 of the present embodiment, the spring width of the circumferential leaf spring 511 is made 15 to 25 times or more larger than the spring thickness, and has a rigidity of 225 to 625 times the panel constant in the thickness direction.
板ばね 51のパネ定数は 0. 15-1. 25mNZmmに設定してあり、検出加速度は 0 . 3— 5Gを検出している。パネ定数が小さい領域では、車輛関係のタイヤ内部に配 設し、タイヤの盗難検出用途にも応用される。  The panel constant of the leaf spring 51 is set to 0.15-1.25 mNZmm, and the detected acceleration is 0.3-5G. In areas where the panel constant is small, it is installed inside vehicle-related tires, and is also used for detecting theft of tires.
[0029] また、面状ばね 5は、各板ばね 51の外周方向の端部を連結する円環状の環状部 5 2によって、複数の板ばね 51を一体ィ匕してあるので、板ばね 51を小型化しても、複数 の板ばね 51をまとめて効率よく組み立てることができる。さらに、面状ばね 5は、環状 部 52が外ケース 4の第一円筒凹部 431に嵌入されるので、容易に取り付けることが できるとともに、磁石 6を精度よく位置決めすることができる。 [0029] Further, since the planar spring 5 is formed by integrating a plurality of leaf springs 51 with each other by an annular annular portion 52 connecting ends of the respective leaf springs 51 in the outer peripheral direction, the leaf springs 51 are formed. Even if the size is reduced, a plurality of leaf springs 51 can be assembled and assembled efficiently. Further, since the annular portion 52 is fitted into the first cylindrical concave portion 431 of the outer case 4, the planar spring 5 can be easily attached, and the magnet 6 can be accurately positioned.
また、面状ばね 5は、各板ばね 51の中心方向の端部 (被挟持部 513)どうしを連結 しない構造としてある。このようにすることにより、たとえば、図示してないが、面状ば ね 5の中心部側に連結部や環状部を設けるスペースが不要となり、このスペースの分 だけ面状ばね 5を小型化することができる。  Further, the planar spring 5 has a structure in which the ends (the pinched portions 513) of the leaf springs 51 in the center direction are not connected to each other. By doing so, for example, although not shown, a space for providing a connecting portion or an annular portion on the center side of the planar spring 5 becomes unnecessary, and the planar spring 5 is reduced in size by this space. be able to.
[0030] また、面状ばね 5は、磁電変換手段本体 82とほぼ同一径とするとよい。このようにす ると、面状ばね 5の取り付けられる外ケース 4が小型化できるので、加速度センサ 1を 小型化することができる。なお、「面状ばね 5を、磁電変換手段本体 82とほぼ同一径 とする」とは、面状ばね 5の直径の 0. 7倍から 1. 3倍の範囲に、磁電変換手段本体 8 2の四隅が位置することを意味して 、る。 また、面状ばね 5は、上記形状に限定されるものではなぐ様々な形状とすることが でき、たとえば、上記連結部や環状部を設けてもよい。 Further, it is preferable that the planar spring 5 has substantially the same diameter as the magnetoelectric conversion means main body 82. By doing so, the outer case 4 to which the planar spring 5 is attached can be reduced in size, so that the acceleration sensor 1 can be reduced in size. The phrase "the planar spring 5 has substantially the same diameter as the main body 82 of the electromagnetic conversion means" means that the diameter of the main body 82 of the electromagnetic conversion means falls within a range of 0.7 to 1.3 times the diameter of the spring 5 of the planar spring. , Which means that the four corners are located. Further, the planar spring 5 can be formed in various shapes other than the above-mentioned shape, and for example, the connecting portion or the annular portion may be provided.
[0031] 磁石 6は、ネオジム(Nd) '鉄(Fe) ·ボロン(B)を主成分としたボンド磁石であり、中 央部に、重り 7のピン部 71が圧入される圧入孔 61が形成された円筒状の形状として あり、上面が N極であり、下面が S極としてある。また、外径が約 1. 3mmかつ高さが 約 0. 6mmとしてある。  [0031] The magnet 6 is a bonded magnet mainly composed of neodymium (Nd) 'iron (Fe) and boron (B), and has a press-fit hole 61 into which a pin 71 of the weight 7 is press-fitted in the center. It has a formed cylindrical shape, the upper surface is an N pole, and the lower surface is an S pole. The outer diameter is about 1.3mm and the height is about 0.6mm.
本実施形態では、磁石 6に重り 7が圧入され、磁石 6に重り 7が直接結合される。こ のため、磁石を設置するための磁石配置用ケース部材が必要ない。従って、部品点 数が少なくて済み、コストを削減することができ、また、加速度センサを小型化すること ができる。他方、磁石と重りを接着剤等により固着する方法に比べ、磁石 6を重り 7に 圧入する方法は、同軸度が出やすくなり、組立て精度が高くなる。  In the present embodiment, the weight 7 is press-fitted into the magnet 6, and the weight 7 is directly coupled to the magnet 6. Therefore, there is no need for a magnet arrangement case member for installing the magnet. Therefore, the number of parts can be reduced, the cost can be reduced, and the acceleration sensor can be downsized. On the other hand, the method of press-fitting the magnet 6 into the weight 7 makes it easier to achieve coaxiality and increases the assembly accuracy as compared with the method of fixing the magnet and the weight with an adhesive or the like.
本実施形態の磁石 6は、上記ボンド磁石としてある力 これに限定されるものではなく 、たとえば、フェライト磁石、希土類磁石等の永久磁石を用いることができる。  The magnet 6 of the present embodiment is not limited to a certain force as the bond magnet described above. For example, a permanent magnet such as a ferrite magnet or a rare earth magnet can be used.
[0032] また、好ましくは、磁石 6を、磁電変換手段本体 82より小型化するとよい。このように 、加速度検出を行なうための磁石 6が小型化されると、この磁石 6が取り付けられる面 状ばね 5や、この面状ばね 5を固定する外ケース 4などを小型化することができる。た とえば、磁電変換手段 8によって規定される大きさまで、加速度センサ 1を小型化する ことち可會となる。  Preferably, the size of the magnet 6 is smaller than that of the main body 82 of the magnetoelectric conversion means. As described above, when the magnet 6 for performing the acceleration detection is reduced in size, the planar spring 5 to which the magnet 6 is attached and the outer case 4 to which the planar spring 5 is fixed can be reduced in size. . For example, it is possible to reduce the size of the acceleration sensor 1 to the size specified by the magnetoelectric conversion means 8.
[0033] 重り 7は、非透磁性の金属、たとえば、黄銅などの銅系金属からなり、ほぼ円柱状の 基部 72と、基部 72の上面中央部から突き出たピン部 71と、該ピン部 71と前記基部 7 2を接続する面取り部 73と力もなつている。ピン部 71は、面状ばね 5の中心部を通し て力 磁石 6の圧入孔 61に圧入される。  The weight 7 is made of a non-magnetically permeable metal, for example, a copper-based metal such as brass, and has a substantially cylindrical base 72, a pin 71 protruding from the center of the upper surface of the base 72, and the pin 71. And the chamfered portion 73 connecting the base 72 and the base 72. The pin portion 71 is pressed into the press-fit hole 61 of the force magnet 6 through the center of the planar spring 5.
このように、磁石 6に重り 7を取り付けることにより、加速度センサ 1を遠心スィッチとし て使用する場合は、重り 7の重量を調整することにより、閾値となる遠心力を自由に設 定することができる。  In this way, when the weight 7 is attached to the magnet 6 and the acceleration sensor 1 is used as a centrifugal switch, the weight of the weight 7 can be adjusted to freely set the threshold centrifugal force. it can.
[0034] また、上記圧入により、磁石 6の下面と重り 7の挟持部 74との間に、面状ばね 5の半 径方向板ばね部 512の被挟持部 513が、上下方向に隙間を有する状態で挟持され る。このようにすると、面状ばね 5の被挟持部 513は、磁石 6の下面と重り 7の挟持部 7 4との間に、自由端の状態で挟持されるので、上下方向に隙間を有しない状態(固定 端の状態)で支持されるより、面状ばね部 5のばね定数を小さくすることができる。 [0034] Further, due to the press-fitting, the clamped portion 513 of the radial leaf spring portion 512 of the planar spring 5 has a gap in the vertical direction between the lower surface of the magnet 6 and the clamp portion 74 of the weight 7. It is pinched in a state. In this way, the clamped portion 513 of the planar spring 5 is connected to the lower surface of the magnet 6 and the clamped portion 7 of the weight 7. 4, the spring constant of the planar spring portion 5 can be reduced as compared with the case where the flat spring portion 5 is supported in a state where there is no gap in the vertical direction (fixed end state). .
[0035] なお、本実施形態では、面状ばね 5の被挟持部 513を上下方向に隙間を有する状 態で挟持してあるが、上下方向に隙間を有しない状態で支持してもよい。このように すると、たとえば、タイヤホイールに取り付けられた加速度センサ 1 (遠心スィッチ)は、 遠心力とともに作用方向が回転する重力を受けることによって、磁石 6及び重り 7が被 挟持部 513を支点として傾くといった動きを抑制できるので、磁石 6及び重り 7の姿勢 を加速度センサ 1の中心軸に沿って保つことができる。  [0035] In the present embodiment, the clamped portion 513 of the planar spring 5 is clamped with a gap in the vertical direction, but may be supported without a gap in the vertical direction. By doing so, for example, the acceleration sensor 1 (centrifugal switch) attached to the tire wheel receives the gravitational force whose direction of action rotates together with the centrifugal force, so that the magnet 6 and the weight 7 incline with the held portion 513 as a fulcrum. Therefore, the posture of the magnet 6 and the weight 7 can be maintained along the central axis of the acceleration sensor 1.
[0036] また、好ましくは、スぺーサ 44の内径を、重り 7の基部 72の外径より約 0. 2mm大き くし、スぺーサ 44の内側側面をガイドとして使用するとよい。このようにすると、加速度 検出方向と直交する方向への加速度が作用した場合であっても、この方向への重り 7の移動距離が制限されるので、面状ばね 5がダメージを受けるといった不具合を防 止することができる。また、磁石 6及び重り 7の姿勢が不安定となり、加速度を精度よく 検出できなくなるといった不具合を防止することができる。  [0036] Preferably, the inner diameter of the spacer 44 is about 0.2 mm larger than the outer diameter of the base 72 of the weight 7, and the inner side surface of the spacer 44 is used as a guide. In this way, even when acceleration is applied in a direction orthogonal to the acceleration detection direction, the movement distance of the weight 7 in this direction is limited, so that there is a problem that the planar spring 5 is damaged. Can be prevented. In addition, it is possible to prevent a problem that the postures of the magnet 6 and the weight 7 become unstable, and the acceleration cannot be accurately detected.
[0037] また、重り 7が上方に移動した際、重り 7の挟持部 74を除いた表面力 面状ばね 5と 接触しな ヽように、重り 7の上方の外周部を面取りした構成としてある。  Further, when the weight 7 moves upward, the outer peripheral portion above the weight 7 is chamfered so that the weight 7 does not come into contact with the surface spring 5 excluding the holding portion 74. .
このようにすると、磁石 6及び重り 7が上方に移動し、面状ばね 5の板ばね 51が斜め 上方に弾性変形しても、板ばね 51が重り 7の面取り部 73と接触するといつた不具合 を防止することができる。  In this case, even when the magnet 6 and the weight 7 move upward, and the leaf spring 51 of the planar spring 5 elastically deforms obliquely upward, the leaf spring 51 comes into contact with the chamfered portion 73 of the weight 7. Can be prevented.
[0038] 磁電変換手段 8は、磁電変換手段本体 82の内部に下面方向の磁気を検出する磁 電変換素子(図示せず)を内蔵しており、磁電変換手段本体 82から四本の外部接続 端子 81が突出している。  The magnetoelectric conversion means 8 has a built-in magnetoelectric conversion element (not shown) for detecting magnetism in the lower surface direction inside the magnetoelectric conversion means main body 82, and four external connections from the magnetoelectric conversion means main body 82. Terminal 81 protrudes.
この外部接続端子 81は、磁電変換手段本体 82の側面から水平方向に延び、外ケ ース 4から出たところで下方に折れ曲がり、ベース 3の下面とほぼ同じ高さ位置で、再 び水平方向に折れ曲がった表面実装タイプのリードとしてある。このようにすると、横 X縦 X高さ寸法が約 5mm X 4mm X 3mmの小型化された加速度センサ 1を実装基 板 (図示せず)上に表面実装技術を用いて効率よく実装することができる。  The external connection terminal 81 extends in the horizontal direction from the side surface of the main body 82 of the magnetoelectric conversion means, bends downward when coming out of the outer case 4, and again in the horizontal direction at the same height position as the lower surface of the base 3. It is a bent surface mount type lead. In this way, it is possible to efficiently mount the miniaturized acceleration sensor 1 having dimensions of about 5 mm X 4 mm X 3 mm on the mounting board (not shown) using the surface mounting technology. it can.
[0039] 図 3は、本発明の実施形態に力かる加速度センサの動作状態を説明するための概 略拡大断面図を示している。 FIG. 3 is a schematic diagram for explaining an operation state of the acceleration sensor according to the embodiment of the present invention. FIG. 3 shows a substantially enlarged sectional view.
図 3において、加速度センサ 1は、地球上で使用されるとき、常に重力加速度を受 けている。したがって、加速度センサ 1は、磁電変換手段 8が上に位置する場合(図 1 (b)の状態)には、磁石 6及び重り 7が重力加速度を受け、重り 7の下面がベース 3の 上面と当接する。一方、磁電変換手段 8が磁石 6の下に位置する場合(図 3が 180度 回転した状態)には、磁石 6の上面が第三円筒凹部 433の底面と当接する。  In FIG. 3, when the acceleration sensor 1 is used on the earth, it always receives gravitational acceleration. Accordingly, when the magnetoelectric conversion means 8 is positioned above (the state shown in FIG. 1 (b)), the acceleration sensor 1 receives the gravitational acceleration of the magnet 6 and the weight 7, and the lower surface of the weight 7 is in contact with the upper surface of the base 3. Abut. On the other hand, when the magnetoelectric conversion means 8 is located below the magnet 6 (the state shown in FIG. 3 is rotated by 180 degrees), the upper surface of the magnet 6 contacts the bottom surface of the third cylindrical concave portion 433.
[0040] [実施形態 2] [Embodiment 2]
図 4は、本発明の他の実施形態に力かる加速度センサの断面図を示している。 同 図において、図 1の実施形態との違いは、ベース 3に磁性部材 2を埋設したことである 。ベース 3は、下面中央部に深さ約 0. 5mmの磁性部材取付け穴 31が形成されてお り、この磁性部材取付け穴 31には磁性部材 2が圧入される。  FIG. 4 is a sectional view of an acceleration sensor according to another embodiment of the present invention. In the figure, the difference from the embodiment of FIG. 1 is that the magnetic member 2 is embedded in the base 3. The base 3 has a magnetic member mounting hole 31 having a depth of about 0.5 mm in the center of the lower surface, and the magnetic member 2 is press-fitted into the magnetic member mounting hole 31.
[0041] 上記磁性部材取付け穴 31に圧入される磁性部材 2は、直径約 lmmかつ板厚が約 0. 2mmの円形状の板である。 The magnetic member 2 pressed into the magnetic member mounting hole 31 is a circular plate having a diameter of about lmm and a plate thickness of about 0.2 mm.
また、磁性部材 2には、透磁性を有する鉄などの材料が用いられ、通常、透磁性に 優れた鉄ニッケル合金 (パーマロイ)及びフェライトが使用される。このように、強磁性 材であるパーマロイを用いることにより、磁性部材 2を小型化することができる。  The magnetic member 2 is made of a material having magnetic permeability, such as iron. Usually, an iron-nickel alloy (permalloy) and ferrite having excellent magnetic permeability are used. As described above, by using permalloy, which is a ferromagnetic material, the size of the magnetic member 2 can be reduced.
この磁性部材 2は、磁石 6との距離や面積などを調整することによって、磁石 6との 間に発生する磁気吸引力の大きさを設定することができる。この磁気吸引力が作用 することによって、磁石 6を磁性部材 2の方向に引き付けることができる。  The magnitude of the magnetic attraction generated between the magnetic member 2 and the magnet 6 can be set by adjusting the distance, the area, and the like of the magnetic member 2. The magnet 6 can be attracted in the direction of the magnetic member 2 by the action of the magnetic attraction.
また、上記磁気吸引力 +重力以上の大きさの外力が磁石 6及び重り 7に作用すると 、磁石 6が磁電変換手段 8の方向に移動する。この磁石 6の移動による磁気変化を磁 電変換手段 8が検出することにより、加速度センサ 1は、所定の加速度以上の加速度 を検出することができる。  Also, when an external force having a magnitude equal to or greater than the magnetic attraction force and the gravity acts on the magnet 6 and the weight 7, the magnet 6 moves in the direction of the magnetoelectric conversion means 8. By detecting the magnetic change due to the movement of the magnet 6 by the electromagnetic conversion means 8, the acceleration sensor 1 can detect an acceleration equal to or higher than a predetermined acceleration.
[0042] 磁性部材 2は、磁石 6の下側に設けられ、磁石 6の上側に、磁電変換手段 8が設け てある。すなわち、磁性部材 2は、磁石 6を挟んで磁電変換手段 8の反対側に設けた 構成としてある。このよう〖こすると、磁石 6の S極から発生する磁束が、ほぼ直線状に 磁性部材 2に入り、磁電変換手段 8側 (N極側)力 発生する磁束が乱れることなく磁 電変換素子(図示せず)に入るので、磁束が乱れるといった悪影響を受けることなぐ 安定した検出を行なうことができる。また、磁石 6の S極から発生する磁束が、ほぼ直 線状に磁性部材 2に入るので、磁気吸引力が安定し、測定精度をより高めることがで きる。 [0042] The magnetic member 2 is provided below the magnet 6, and a magnetoelectric conversion means 8 is provided above the magnet 6. That is, the magnetic member 2 is provided on the opposite side of the magnetoelectric conversion means 8 with the magnet 6 interposed therebetween. In this way, the magnetic flux generated from the S pole of the magnet 6 enters the magnetic member 2 in a substantially straight line, and the magnetic flux generated by the magnetoelectric conversion means 8 side (N pole side) is not disturbed. (Not shown), so there is no adverse effect such as disturbance of magnetic flux Stable detection can be performed. Further, since the magnetic flux generated from the S pole of the magnet 6 enters the magnetic member 2 in a substantially linear shape, the magnetic attractive force is stabilized, and the measurement accuracy can be further improved.
[0043] 次に、上記構成の加速度センサ 1の動作について、図面を参照して説明する。  Next, an operation of the acceleration sensor 1 having the above configuration will be described with reference to the drawings.
図 5は、本発明の実施形態に力かる加速度センサの動作状態を説明するための概 略拡大断面図を示している。  FIG. 5 is a schematic enlarged cross-sectional view for explaining an operation state of the acceleration sensor according to the embodiment of the present invention.
また、図 6は、本発明の実施形態に力かる加速度センサの出力電圧曲線を説明す るためのグラフを示している。  FIG. 6 is a graph for explaining an output voltage curve of the acceleration sensor according to the embodiment of the present invention.
図 5において、加速度センサ 1は、地球上で使用されるとき、常に重力加速度 (一 1G :下方向の加速度を一とし、上方向の加速度を +とする。)を受けている。したがって、 加速度センサ 1は、磁電変換手段 8が上で磁性部材 2が下に位置する状態の場合に は、磁石 6及び重り 7が重力加速度を受ける力 重り 7の下面がベース 3の上面と当接 するので(図 4参照)、面状ばね 5の板ばね 51が下方にたわむことはない。このように すると、板ばね 51が片側だけに(水平方向と斜め上方向の間を)変形し、加速度セン サ 1は、さらに下方向の加速度を受けても、磁石 6が下方向に移動しないので、この 加速度を検出することはない。  In FIG. 5, when the acceleration sensor 1 is used on the earth, it always receives a gravitational acceleration (one 1G: a downward acceleration is defined as 1, and an upward acceleration is defined as +). Therefore, when the magnetoelectric conversion means 8 is located above and the magnetic member 2 is located below, the acceleration sensor 1 is configured such that the magnet 6 and the weight 7 receive the gravitational acceleration. Since they are in contact with each other (see Fig. 4), the leaf spring 51 of the planar spring 5 does not bend downward. In this case, the leaf spring 51 is deformed to only one side (between the horizontal direction and the obliquely upward direction), and the acceleration sensor 1 does not move the magnet 6 downward even if the acceleration sensor 1 receives further downward acceleration. Therefore, this acceleration is not detected.
[0044] 加速度センサ 1は、上方向(加速度検出方向)の加速度を受け、この加速度が 0か ら徐々に増加し + 1Gとなると、重力加速度 (一 1G)を相殺する力 磁性部材 2と磁石 6の間には磁気吸引カー a Gが作用している。 The acceleration sensor 1 receives an acceleration in an upward direction (acceleration detection direction), and when the acceleration gradually increases from 0 to +1 G, a force that offsets the gravitational acceleration (-1 G). The magnetic member 2 and the magnet Between 6, the magnetic attraction car a G is acting.
そして、加速度が + 1Gからさらに増加し + ( l + a ) Gとなると、上記磁気吸引力を 相殺し、磁石 6及び重り 7は無重力状態で静止する(図 4参照)。  Then, when the acceleration further increases from + 1G to + (l + a) G, the magnetic attraction force is canceled out, and the magnet 6 and the weight 7 stand still in a zero-gravity state (see FIG. 4).
[0045] 続いて、加速度センサ 1は、加速度が + ( 1 + o Gからさらに増加すると、面状ばね 5のばね力と釣り合う状態で、磁石 6及び重り 7が徐々に上昇し、磁電変換手段 8が磁 石 6の移動を加速度として検出し、出力電圧が増加する。 Subsequently, when the acceleration further increases from + (1 + oG), the acceleration sensor 1 gradually raises the magnet 6 and the weight 7 in a state of being balanced with the spring force of the planar spring 5, and 8 detects the movement of the magnet 6 as acceleration, and the output voltage increases.
加速度センサ 1は、図 5に示すように、磁石 6の上面が第三円筒凹部 433の底面と 当接すると、このときの面状ばね 5のばね力は |8 Gであり、磁石 6及び重り 7には、 + ( 1 + α + β ) Gの加速度が作用して 、る。  As shown in FIG. 5, when the top surface of the magnet 6 abuts on the bottom surface of the third cylindrical concave portion 433, the spring force of the planar spring 5 at this time is | 8 G, and the acceleration of the magnet 6 and the weight 7, the acceleration of + (1 + α + β) G acts.
加速度センサ 1は、これ以上加速度が増加しても磁石 6が上昇できないので、出力 電圧は一定となる。 Since the magnet 6 cannot be raised even if the acceleration increases further, the acceleration sensor 1 The voltage is constant.
[0046] このように、本実施形態に力かる加速度センサ 1は、 + (1 + a ) Gから + (1 + α + j8 ) Gまでの加速度を検出することができる。したがって、加速度センサ 1は、上記状 態力 逆さまに反転して磁電変換手段 8が下で磁性部材 2が上に位置する状態とし た場合には、磁石 6及び重り 7が重力加速度として + 1Gの加速度を受ける力 この加 速度を検出することはない。  As described above, the acceleration sensor 1 according to the present embodiment can detect acceleration from + (1 + a) G to + (1 + α + j8) G. Therefore, when the state force is inverted upside down and the magnetoelectric conversion means 8 is located below and the magnetic member 2 is located above, the acceleration sensor 1 causes the magnet 6 and the weight 7 to have a gravitational acceleration of +1 G. Force subject to acceleration This acceleration is not detected.
すなわち、加速度センサ 1は、上記タイヤ状態監視装置に使用した場合、磁電変換 手段 8が下で磁性部材 2が上に位置する状態でタイヤが停止しても、この重力加速 度をタイヤが回転する遠心力として検出しないので、誤作動を防止することができる。 さらに、加速度センサ 1は、磁石 6の磁気吸引力を利用することによって、測定精度 及び信頼性を高めることができるとともに、小型化することもできる。  That is, when the acceleration sensor 1 is used in the tire condition monitoring device, even if the tire stops in a state where the magnetoelectric conversion means 8 is located below and the magnetic member 2 is located above, the tire rotates at this gravitational acceleration. Since it is not detected as centrifugal force, malfunction can be prevented. Furthermore, by utilizing the magnetic attraction force of the magnet 6, the acceleration sensor 1 can improve measurement accuracy and reliability and can be downsized.
[0047] [加速度センサ付きタイヤ情報送信装置] [Tire Information Transmitter with Acceleration Sensor]
図 7は、本発明の実施形態にかかる加速度センサ付きタイヤ情報送信装置の取付 け状態を説明するための概略図を示している。  FIG. 7 is a schematic diagram for explaining an attached state of the tire information transmitting device with the acceleration sensor according to the embodiment of the present invention.
同図において、加速度センサ付きタイヤ情報送信装置 10 (適宜、タイヤ情報送信 装置 10と略称する。)は、タイヤ 90の内周面 91及びホイール壁面 92によって囲まれ たタイヤ空洞領域 93に取り付けられる。  In the figure, a tire information transmitting device 10 with an acceleration sensor (abbreviated as tire information transmitting device 10 as appropriate) is attached to a tire cavity region 93 surrounded by an inner peripheral surface 91 of a tire 90 and a wheel wall surface 92.
[0048] また、図 8は、本発明の実施形態に力かる加速度センサ付きタイヤ情報送信装置の 構造を説明するための概略図であり、(a)は断面図を、(b)はブロック図を示している 同図において、タイヤ情報送信装置 10は、基板 11と、この基板 11の下面に設けら れた電池 12と、基板 11に実装されたセンサ部 13,アナログ 'デジタル変換器 14,マ ルチプロセッサ 15,記憶部 16,送信部 17,送信用アンテナ 18,受信部 17a,受信 用アンテナ 18a及び遠心スィッチとして使用される上記加速度センサ 1と、前記各部 品 11 , 13, 14, 15, 16, 17, 18, 17a, 18a, 1をモーノレドするモーノレド咅 19と力ら なっている。このモールド部 19は、センサ部 13と対応する位置に測定孔 19aを有し ている。 FIG. 8 is a schematic diagram for explaining the structure of a tire information transmitting device with an acceleration sensor according to an embodiment of the present invention, in which (a) is a cross-sectional view, and (b) is a block diagram. In the figure, a tire information transmitting device 10 includes a substrate 11, a battery 12 provided on the lower surface of the substrate 11, a sensor unit 13 mounted on the substrate 11, an analog-to-digital converter 14, Multiprocessor 15, storage unit 16, transmitting unit 17, transmitting antenna 18, receiving unit 17a, receiving antenna 18a and the acceleration sensor 1 used as a centrifugal switch, and the above components 11, 13, 14, 15, 16, 17, 18, 17a, 18a, 1 and Moronored 咅 19 are powerful. The mold section 19 has a measurement hole 19a at a position corresponding to the sensor section 13.
[0049] マルチプロセッサ 15は、センサ部 13,アナログ 'デジタル変換器 14,記憶部 16,送 信部 17,受信部 17a及び加速度センサ 1と接続されており、これらを制御し、タイヤ 空洞領域内 93の雰囲気情報 (一般的に、圧力及び Z又は温度など)を検知して、タ ィャ空洞領域外へ無線で送信する。 [0049] The multiprocessor 15 includes a sensor unit 13, an analog-to-digital converter 14, a storage unit 16, The communication unit 17, the reception unit 17a, and the acceleration sensor 1 are connected to each other, and control these to detect atmosphere information (generally, pressure, Z or temperature, etc.) in the tire cavity 93, and Transmit wirelessly outside the cavity area.
[0050] 以下、実施形態 1及び 2で示した加速度センサをタイヤ情報送信装置 10に装着し た場合の使用例を、それぞれについて説明する。  Hereinafter, usage examples when the acceleration sensors described in Embodiments 1 and 2 are mounted on the tire information transmitting device 10 will be described.
[0051] [実施形態 1の加速度センサを用 、た例]  [Example in which the acceleration sensor according to the first embodiment is used]
図 9は、タイヤ情報送信装置とホイールとの位置関係を示す概念図であり、図 9 (A) は、ホイール中心に対して角度 0° の位置にタイヤ情報送信装置が位置している状 態を示す図、図 9 (B)は、ホイール中心に対して角度 90° の位置にタイヤ情報送信 装置が位置している状態を示す図、図 9 (C)は、ホイール中心に対して角度 180° の位置にタイヤ情報送信装置が位置している状態を示す図、図 9 (D)は、ホイール中 心に対して角度 270° の位置にタイヤ情報送信装置が位置している状態を示す図 である。  FIG. 9 is a conceptual diagram showing the positional relationship between the tire information transmitting device and the wheel. FIG. 9 (A) shows a state in which the tire information transmitting device is located at an angle of 0 ° with respect to the wheel center. FIG. 9 (B) is a view showing a state in which the tire information transmitting device is located at an angle of 90 ° with respect to the wheel center, and FIG. 9 (C) is a view showing an angle of 180 ° with respect to the wheel center. Fig. 9 (D) is a diagram showing a state in which the tire information transmitting device is located at a position of 270 ° with respect to the center of the wheel. It is.
[0052] 図 9 (A)において、タイヤ情報送信装置 10がホイール 92の中心に対して角度 0° に位置する場所、つまり、タイヤ情報送信装置 10がホイール 92の上部に位置する場 合である。ここで、タイヤが静止状態、すなわちタイヤ情報送信装置 10にタイヤ 90の 回転に伴う遠心力が働いていない場合は、タイヤ情報送信装置 10内に設置された 加速度センサ 1は、図 1に示すように、加速度センサ 1の重り 7がベース 3に接している 状態となっている。  FIG. 9 (A) shows a case where the tire information transmitting device 10 is located at an angle of 0 ° with respect to the center of the wheel 92, that is, a case where the tire information transmitting device 10 is located above the wheel 92. . Here, when the tire is stationary, that is, when centrifugal force due to the rotation of the tire 90 is not acting on the tire information transmitting device 10, the acceleration sensor 1 installed in the tire information transmitting device 10 is as shown in FIG. In addition, the weight 7 of the acceleration sensor 1 is in contact with the base 3.
[0053] 反対に、図 9 (C)に示すように、タイヤ情報送信装置 10がホイール 92の中心に対し て角度 180° に位置する場合は、タイヤ 90が静止状態にあるなしにかかわらず、図 3 に示すように、加速度センサ 1の磁石 6の上面が第三円筒凹部 433の底面と当接す るよつになる。  [0053] Conversely, as shown in FIG. 9 (C), when the tire information transmitting device 10 is positioned at an angle of 180 ° with respect to the center of the wheel 92, regardless of whether the tire 90 is stationary or not. As shown in FIG. 3, the upper surface of the magnet 6 of the acceleration sensor 1 comes into contact with the bottom surface of the third cylindrical concave portion 433.
図 9 (B)および図 9 (D)に示すような場合であって、タイヤが静止状態にある場合は 、タイヤ情報送信装置 10内に設置された加速度センサ 1は、加速度センサ 1の重り 7 がベース 3に接して ヽる状態となって!/、る  In the case shown in FIGS. 9 (B) and 9 (D) and when the tire is in a stationary state, the acceleration sensor 1 installed in the tire information transmitting device 10 Is in contact with the base 3! /
[0054] 図 10は、タイヤ情報送信装置のホイール中心に対する各位置におけるタイヤ回転 時の加速度センサの出力レベル変化を示す図である。 [0055] タイヤの回転が極めて低速である場合は、タイヤ情報送信装置 10がホイール 92に 対して角度 180° の手前のところで、加速度センサ 1の磁石 6の上面が第三円筒凹 部 433の底面と当接するような状態となり、この時点で加速度センサ 1の出力レベル 力 S"L"から" H"に変化する。 FIG. 10 is a diagram showing a change in the output level of the acceleration sensor when the tire rotates at each position with respect to the wheel center of the tire information transmitting device. When the rotation of the tire is extremely low, the upper surface of the magnet 6 of the acceleration sensor 1 is located at the position just before the tire information transmitting device 10 at an angle of 180 ° with respect to the wheel 92, and the bottom surface of the third cylindrical concave portion 433. At this point, the output level of the acceleration sensor 1 changes from S "L" to "H".
[0056] タイヤが更に回転して 180° を過ぎると、加速度センサ 1は、図 1に示すような状態 、すなわち、加速度センサ 1の重り 7がベース 3に接している状態となり、この時点で 加速度センサ 1の出力レベルが" H"から" L"に変化する。  When the tire further rotates past 180 °, the acceleration sensor 1 enters a state as shown in FIG. 1, that is, a state in which the weight 7 of the acceleration sensor 1 is in contact with the base 3, and at this time, the acceleration The output level of sensor 1 changes from "H" to "L".
[0057] タイヤの回転が高速になり、重力より遠心力が大きくなる回転数以上では、加速度 センサ 1の出力レベルは" H"の状態で安定する。  [0057] The output level of the acceleration sensor 1 is stabilized in the state of "H" at a rotation speed higher than the rotation speed at which the tire rotates at a high speed and the centrifugal force becomes larger than the gravity.
[0058] このように、タイヤが低速で回転する場合は、加速度センサ 1の出力レベルが 1回転 で 1回、 "L"→"H"→"L "と変化する。  As described above, when the tire rotates at a low speed, the output level of the acceleration sensor 1 changes from “L” → “H” → “L” once per rotation.
[0059] 本発明のタイヤ情報送信装置 10は、加速度センサの出力に基づいてタイヤが低速 回転状態である信号を送信する。一方、タイヤを装着している車内部には、図示しな いタイヤ情報監視装置が装備してあり、タイヤ情報送信装置 10からの信号を受信し、 ドライバ等に通知する。車のイダ-ッシヨンスィッチが入ってない状態で、タイヤが低 速回転状態になった場合は盗難であると判断し、警報を出す。図 11は、タイヤ情報 監視装置内の処理をあらわすフローチャートである。  [0059] The tire information transmitting device 10 of the present invention transmits a signal indicating that the tire is rotating at a low speed based on the output of the acceleration sensor. On the other hand, a tire information monitoring device (not shown) is provided inside the vehicle on which the tires are mounted, and receives a signal from the tire information transmitting device 10 and notifies the driver and the like. If the tires are running at low speed without the car's induction switch in place, it is determined that the vehicle is stolen and an alarm is issued. FIG. 11 is a flowchart showing processing in the tire information monitoring device.
[0060] Stepl:車のイダ-ッシヨンスィッチが入って!/、る状態(ON)であれば、 Step6へ進 み、イダ-ッシヨスイッチが入っていない状態(OFF)であれば、 Step2に進む。  [0060] Stepl: If the car is in the ON / OFF state when the car's induction switch is ON !, go to Step6. If the car is in the OFF state (OFF), go to Step2.
[0061] Step2:イダ-ッシヨンスィッチが入って 、な 、状態(OFF)であれば、タイヤ情報監 視装置は、タイヤ情報送信装置 10からの信号を、図示しない受信装置で受信できる |g〖こし、 Step3〖こ itむ。 [0061] Step 2: If the induction switch is turned on and the state is (OFF), the tire information monitoring device can receive a signal from the tire information transmitting device 10 by a receiving device (not shown). , Step3 @ ko it
[0062] Step3 :タイヤ情報送信装置 10から受信した信号が、タイヤが低速回転状態である 信号かどうかを判断し、タイヤが低速回転状態 (YES)であれば Step4に進み、そう でなければ、 Steplに戻る。 [0062] Step 3: Determine whether the signal received from the tire information transmitting device 10 is a signal indicating that the tire is rotating at a low speed, and if the tire is rotating at a low speed (YES), proceed to Step 4; Return to Stepl.
[0063] Step4:イダ-ッシヨンスィッチが入ってな 、状態(OFF)で、タイヤが低速回転状態 が検出された場合は、盗難であると判断し、図示しない警報装置により警報を鳴らし[0063] Step4: If the tire is in the state (OFF) and the low speed rotation state is detected without the induction switch, it is determined that the vehicle is stolen, and an alarm is sounded by an alarm device (not shown).
、 Step5に進む。 [0064] Step5:タイヤ情報監視装置等からのリセット信号を受け取った場合 (YES)は、図 示しない警報装置の警報を解除した後、 Steplに戻り、リセット信号を受け取る迄、 S tep5に戻り、リセット信号待ち状態にする。 Go to Step5. Step 5: If a reset signal from the tire information monitoring device or the like is received (YES), the alarm of the alarm device (not shown) is released, and the process returns to Step 1 and returns to Step 5 until the reset signal is received. Wait for reset signal.
[0065] Step6: Steplでイダ-ッシヨンスィッチが入って!/、る状態(ON)であると判断されれ ば、タイヤ情報監視装置は、タイヤ情報送信装置 10から受信するタイヤ状態、すな わち、タイヤ空洞域内 93空気圧やタイヤ空洞域内 93温度等を、図示しない表示装 置に表示する。また、前述した空気圧、温度が正常値の範囲外であれば、図示しな い警報装置により警報を鳴らす等の処理をする。なお、 Step6の処理は一例であり、 色々なアプリケーションが考えられる。  [0065] Step 6: If it is determined in step 1 that the induction switch has entered the ON / OFF state, the tire information monitoring apparatus determines the tire state received from the tire information transmitting apparatus 10, ie, the tire state. The air pressure in the tire cavity 93, the temperature 93 in the tire cavity, and the like are displayed on a display device (not shown). If the air pressure and temperature are out of the range of the normal values, processing such as sounding an alarm by an alarm device (not shown) is performed. The processing in Step 6 is an example, and various applications can be considered.
[0066] [実施形態 2の加速度センサを用いた例]  [Example Using Acceleration Sensor of Second Embodiment]
実施形態 2に示す加速度センサを、タイヤ情報送信装置 10の電池 12の寿命を延 ばすためのスィッチとして活用した例について説明する。  An example in which the acceleration sensor described in the second embodiment is used as a switch for extending the life of the battery 12 of the tire information transmitting device 10 will be described.
[0067] マルチプロセッサ 15は、加速度センサ 1がタイヤ 90の回転状態 (静止状態をも含む 。)を検出すると、この回転状態検出信号により、送信情報を変更する。マルチプロセ ッサ 15は、たとえば、回転状態検出信号によりタイヤ 90が停止していると判断すると 、電池 12の電力を消費しないように、雰囲気情報の検出及び検出結果の送信を停 止する。また、回転状態検出信号により一時間ごとに、タイヤ空洞領域内 93の雰囲 気情報として圧力を検知して、タイヤ空洞領域外へ無線で送信する。さらに、マルチ プロセッサ 15は、回転状態検出信号によりタイヤ 90が高速で回転していると判断す ると、 10分間ごとに、タイヤ空洞領域内 93の雰囲気情報として圧力及び温度を検知 して、タイヤ空洞領域外へ無線で送信する。  When the acceleration sensor 1 detects the rotation state (including the stationary state) of the tire 90, the multiprocessor 15 changes the transmission information according to the rotation state detection signal. For example, when the multiprocessor 15 determines that the tire 90 has stopped based on the rotation state detection signal, the multiprocessor 15 stops detecting the atmosphere information and transmitting the detection result so as not to consume the power of the battery 12. Further, the pressure is detected as the atmosphere information in the tire cavity 93 every hour based on the rotation state detection signal, and the pressure is wirelessly transmitted to the outside of the tire cavity. Further, when the multiprocessor 15 determines that the tire 90 is rotating at a high speed based on the rotation state detection signal, the pressure and the temperature are detected every 10 minutes as atmosphere information in the tire cavity area 93, and the tire 90 is detected. Transmit wirelessly outside the cavity area.
[0068] 本実施形態のタイヤ情報送信装置 10によれば、タイヤ 90がー回転するごとに作用 する士 1Gの重力加速度にかかわらず、加速度センサ 1がタイヤ 90の回転状態を精 度よく検出することができるので、タイヤ情報送信装置の誤動作を防止し信頼性を高 めることができる。また、加速度センサ 1が小型化されるので、タイヤ情報送信装置 90 を小型化することができる。  [0068] According to the tire information transmitting apparatus 10 of the present embodiment, the acceleration sensor 1 accurately detects the rotation state of the tire 90 regardless of the gravitational acceleration of the person 1G acting every time the tire 90 rotates. Therefore, malfunction of the tire information transmitting device can be prevented and reliability can be improved. Further, since the acceleration sensor 1 is downsized, the tire information transmitting device 90 can be downsized.
[0069] さらに、加速度センサ 1からの回転状態検出信号により、送信情報を変更することが できるので、電池 12の電力を有効に利用しながら、運転状況に応じたタイヤ 90の雰 囲気情報をタイヤ空洞領域外へ無線で送信できる。 Further, the transmission information can be changed by the rotation state detection signal from the acceleration sensor 1, so that the atmosphere of the tire 90 according to the driving condition can be effectively used while effectively using the power of the battery 12. Ambient information can be transmitted wirelessly outside the tire cavity area.
[0070] 以上、本発明の加速度センサ及び加速度センサ付きタイヤ情報送信装置について 、好ましい実施形態を示して説明したが、本発明に係る加速度センサ及び加速度セ ンサ付きタイヤ情報送信装置は、上述した実施形態にのみ限定されるものではなぐ 本発明の範囲で種々の変更実施が可能であることは言うまでもない。  Although the acceleration sensor and the tire information transmitting device with an acceleration sensor according to the present invention have been described above with reference to the preferred embodiments, the acceleration sensor and the tire information transmitting device with an acceleration sensor according to the present invention have the above-described implementation. It is needless to say that various modifications can be made within the scope of the present invention.
たとえば、加速度センサ 1は、磁気吸引力を発生させる手段として、磁石 6と磁性部 材 2を使用したが、より大きな磁気吸引力を必要とする場合には、磁性部材 2の代わ りに磁石を使用してもよい。  For example, although the acceleration sensor 1 uses the magnet 6 and the magnetic member 2 as means for generating a magnetic attraction force, when a larger magnetic attraction force is required, a magnet is used instead of the magnetic member 2. May be used.
[0071] また、加速度センサ 1は、磁石 6に作用する磁気吸引力を大きくすると、磁電変換手 段 8が下で磁性部材 2が上に位置する状態のとき、面状ばね 5のばね力を利用しなく ても、磁石 6及び重り 7を上方に (ベース 3側に)吸い付けることができる。このような場 合には、面状ばね 5は、磁石 6及び重り 7の姿勢を整える手段として使用される。  Further, when the magnetic attraction force acting on the magnet 6 is increased, the acceleration sensor 1 reduces the spring force of the planar spring 5 when the magnetoelectric conversion means 8 is located below and the magnetic member 2 is located above. The magnet 6 and the weight 7 can be attracted upward (to the base 3 side) without being used. In such a case, the planar spring 5 is used as a means for adjusting the posture of the magnet 6 and the weight 7.
[0072] さらに、タイヤ情報送信装置 10は、検出領域の異なる複数の加速度センサ 1を設け た構成としてもよぐこのようにすると、タイヤ 90の広範囲の回転数に応じた雰囲気情 報を、より細分ィ匕した状態できめ細力べ送信することができる。  [0072] Furthermore, the tire information transmitting apparatus 10 may have a configuration in which a plurality of acceleration sensors 1 having different detection areas are provided. In this case, the atmosphere information corresponding to the rotation speed of the tire 90 in a wide range can be further improved. It can be transmitted in a finely divided state.
産業上の利用可能性  Industrial applicability
[0073] 本発明の加速度センサは、たとえば、磁電変換手段を使用した変位センサや加速 度スィッチなどの測定装置としても適用することが可能である。 [0073] The acceleration sensor of the present invention can also be applied as a measurement device such as a displacement sensor using a magnetoelectric conversion unit or an acceleration switch.

Claims

請求の範囲 The scope of the claims
[I] ケースの内側に少なくともその基部が固定された面状ばねと、該面状ばねの中央 の保持部に保持された磁石と、該磁石と空隙を介して前記ケースに対向配置される と共に、前記磁石が移動したときの磁気変化を検出する磁電変換手段とを備えたカロ 速度センサにおいて、  [I] A planar spring having at least a base fixed to the inside of the case, a magnet held by a holding portion at the center of the planar spring, and disposed facing the case via a gap with the magnet. A caro speed sensor comprising: a magnetoelectric conversion means for detecting a magnetic change when the magnet moves.
前記面状ばねは、一端が前記基部に接続され他端が開放端である複数本の腕部 を有し、前記保持部は前記複数本の腕部のうち少なくとも 2本の腕部の開放端に設 けられて 、ることを特徴とする加速度センサ。  The planar spring has a plurality of arms each having one end connected to the base and the other end being an open end, and the holding unit includes an open end of at least two of the plurality of arms. An acceleration sensor installed in a vehicle.
[2] 前記面状ばねの腕部は、その一端が開放端となっている半径方向に伸長する第 1 の腕と、該第 1の腕の他端から円周方向に伸長し、前記基部に接続された第 2の腕 で構成されて 、ることを特徴とする請求項 1に記載の加速度センサ。 [2] The arm portion of the planar spring has a first arm extending in a radial direction having an open end at one end thereof, and a circumferentially extending arm extending from the other end of the first arm. The acceleration sensor according to claim 1, comprising a second arm connected to the second arm.
[3] 前記面状ばねは、パネ定数が 0. 15-1. 25mNZmmであることを特徴とする請 求項 1に記載の加速度センサ。 [3] The acceleration sensor according to claim 1, wherein the planar spring has a panel constant of 0.15-1.25 mNZmm.
[4] 前記磁石に重りを取り付けたことを特徴とする請求項 1に記載の加速度センサ。 [4] The acceleration sensor according to claim 1, wherein a weight is attached to the magnet.
[5] 前記磁石と前記磁石に取り付けた前記重りによって前記面状ばねの開放端を挟持 することにより、前記面状ばねに前記磁石を保持させることを特徴とする請求項 4に 記載の加速度センサ。 5. The acceleration sensor according to claim 4, wherein the magnet is held by the sheet spring by holding the open end of the sheet spring by the magnet and the weight attached to the magnet. .
[6] 前記重りの外周部を面取りしたことを特徴とする請求項 5に記載の加速度センサ。  6. The acceleration sensor according to claim 5, wherein an outer peripheral portion of the weight is chamfered.
[7] 前記面状ばねを、前記磁電変換手段の本体とほぼ同一径としたことを特徴とする請 求項 1に記載の加速度センサ。 7. The acceleration sensor according to claim 1, wherein the planar spring has substantially the same diameter as the main body of the magnetoelectric conversion unit.
[8] 前記ケースの内側に凹部を形成し、前記面状ばねの基部を該凹部に嵌入したこと を特徴とする請求項 1に記載の加速度センサ。 [8] The acceleration sensor according to claim 1, wherein a recess is formed inside the case, and a base of the planar spring is fitted into the recess.
[9] 加速度検出方向と直交する方向への前記磁石の移動を制限するガイドを、前記ケ ースの内側に設けたことを特徴とする請求項 1に記載の加速度センサ。 [9] The acceleration sensor according to claim 1, wherein a guide for restricting movement of the magnet in a direction orthogonal to the acceleration detection direction is provided inside the case.
[10] 前記磁石に作用する加速度が所定の加速度より小さい間は、前記磁石の磁気吸 引力によって前記磁石の移動を規制する位置に磁性部材を配置したことを特徴とす る請求項 1に記載の加速度センサ。 10. The magnetic member according to claim 1, wherein a magnetic member is arranged at a position where the movement of the magnet is regulated by a magnetic attraction force of the magnet while the acceleration acting on the magnet is smaller than a predetermined acceleration. Acceleration sensor.
[II] 上記請求項 1一 10のいずれかに記載の加速度センサを有し、タイヤの内周面及び ホイール壁面によって囲まれたタイヤ空洞領域に取り付けられ、このタイヤ空洞領域 内の雰囲気情報を検知して、タイヤ空洞領域外へ無線で送信する加速度センサ付き タイヤ情報送信装置であって、 [II] An acceleration sensor according to any one of claims 1 to 10, wherein the acceleration sensor according to any one of claims 11 to 10, A tire information transmission device with an acceleration sensor, which is attached to a tire cavity region surrounded by a wheel wall surface, detects atmosphere information in the tire cavity region, and wirelessly transmits the outside of the tire cavity region,
前記加速度センサが前記タイヤの回転状態を検出し、この回転状態検出信号によ り、送信情報を変更することを特徴とする加速度センサ付きタイヤ情報送信装置。  A tire information transmitting device with an acceleration sensor, wherein the acceleration sensor detects a rotation state of the tire, and changes transmission information based on the rotation state detection signal.
PCT/JP2005/004317 2004-03-15 2005-03-11 Acceleration sensor and tire information transmitting device with acceleration sensor WO2005088318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510999A JPWO2005088318A1 (en) 2004-03-15 2005-03-11 Acceleration sensor and tire information transmission device with acceleration sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-072414 2004-03-15
JP2004072414 2004-03-15

Publications (1)

Publication Number Publication Date
WO2005088318A1 true WO2005088318A1 (en) 2005-09-22

Family

ID=34975717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004317 WO2005088318A1 (en) 2004-03-15 2005-03-11 Acceleration sensor and tire information transmitting device with acceleration sensor

Country Status (2)

Country Link
JP (1) JPWO2005088318A1 (en)
WO (1) WO2005088318A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176443A (en) * 2007-01-17 2008-07-31 Mitsutoyo Corp Relocation detection device and stationary device
JP2009037402A (en) * 2007-08-01 2009-02-19 Yokohama Rubber Co Ltd:The Data transmitting device
JP2009080328A (en) * 2007-09-26 2009-04-16 Nidec Sankyo Corp Lens drive device
CN101973186A (en) * 2010-09-20 2011-02-16 北京化工大学 Elastic unit integral intelligent safety tire and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151770A (en) * 1988-12-05 1990-06-11 Hitachi Ltd Magnetic acceleration sensor and manufacture thereof
JPH03274464A (en) * 1990-03-23 1991-12-05 Nippondenso Co Ltd Collision detector
JPH0527644U (en) * 1991-09-19 1993-04-09 株式会社東海理化電機製作所 Tire pressure sensor used for tire pressure monitoring device
JPH05333048A (en) * 1992-06-02 1993-12-17 Fujitsu Ltd Magnetic acceleration sensor
JPH07294545A (en) * 1994-04-27 1995-11-10 Sumitomo Electric Ind Ltd Detection body of acceleration detecting device
JPH10123170A (en) * 1996-10-23 1998-05-15 Denso Corp Collision detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151770A (en) * 1988-12-05 1990-06-11 Hitachi Ltd Magnetic acceleration sensor and manufacture thereof
JPH03274464A (en) * 1990-03-23 1991-12-05 Nippondenso Co Ltd Collision detector
JPH0527644U (en) * 1991-09-19 1993-04-09 株式会社東海理化電機製作所 Tire pressure sensor used for tire pressure monitoring device
JPH05333048A (en) * 1992-06-02 1993-12-17 Fujitsu Ltd Magnetic acceleration sensor
JPH07294545A (en) * 1994-04-27 1995-11-10 Sumitomo Electric Ind Ltd Detection body of acceleration detecting device
JPH10123170A (en) * 1996-10-23 1998-05-15 Denso Corp Collision detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176443A (en) * 2007-01-17 2008-07-31 Mitsutoyo Corp Relocation detection device and stationary device
JP2009037402A (en) * 2007-08-01 2009-02-19 Yokohama Rubber Co Ltd:The Data transmitting device
JP2009080328A (en) * 2007-09-26 2009-04-16 Nidec Sankyo Corp Lens drive device
CN101973186A (en) * 2010-09-20 2011-02-16 北京化工大学 Elastic unit integral intelligent safety tire and manufacturing method thereof
CN101973186B (en) * 2010-09-20 2012-08-22 北京化工大学 Elastic unit integral intelligent safety tire and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2005088318A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
CN108528213B (en) Pedal device and preparation method thereof
JP5634697B2 (en) Micro Electro Mechanical System (MEMS) Force Parallel Accelerometer
JP5933510B2 (en) MEMS accelerometer
US20070039396A1 (en) Torque sensor packaging systems and methods
US8176776B2 (en) Pressure sensor mounting method, tire and wheel having pressure sensor, and tire pressure detection device
WO2005088318A1 (en) Acceleration sensor and tire information transmitting device with acceleration sensor
US5969257A (en) Pressure measuring membrane with resonant element vibrating orthogonal to membrane movement
CN110440872B (en) Magnetic induction charge level indicator
WO2006137230A1 (en) Capacitance detection type acceleration sensor
CN214069778U (en) Single-shaft direction horizontal linear vibration motor
US7121154B2 (en) Load sensor having hourglass-shaped coil spring
CN210741516U (en) Resonant sensor
JP2008076263A (en) Compound sensor
US7219552B2 (en) Scalable high sensitivity magnetostrictive pressure sensor
CN102650649B (en) Accelerometer
CN105277740B (en) A kind of metallic flex accelerometer
US7387040B2 (en) Methods and systems for mounting sensors for use in a harsh vibration environment
JP6009426B2 (en) Tire condition monitoring device
CN108988601B (en) Spherical motor, and spherical motor position detection device and method
JP2013539339A (en) Energy harvesting / tire pressure, temperature and tire data transmitter
CN112995861A (en) Sensor and electronic device
JP2011027585A (en) Vibration detector
US20230053006A1 (en) Method and System of a Tire Load Sensor
JPH0742111Y2 (en) Motion impact sensor
KR100569108B1 (en) System for measuring engine power using dual mass flywheel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510999

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase