WO2005087852A1 - Reactive flame retardant and flame-retardant processed resin obtained with the same - Google Patents

Reactive flame retardant and flame-retardant processed resin obtained with the same Download PDF

Info

Publication number
WO2005087852A1
WO2005087852A1 PCT/JP2004/003207 JP2004003207W WO2005087852A1 WO 2005087852 A1 WO2005087852 A1 WO 2005087852A1 JP 2004003207 W JP2004003207 W JP 2004003207W WO 2005087852 A1 WO2005087852 A1 WO 2005087852A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
flame
retardant
compound
flame retardant
Prior art date
Application number
PCT/JP2004/003207
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Kanno
Asuka Onitsuka
Hironori Yanase
Kiyotaka Shigehara
Tomohiro Nomura
Original Assignee
Fuji Electric Holdings Co. Ltd.
Toho Chemical Industry Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co. Ltd., Toho Chemical Industry Co. Ltd. filed Critical Fuji Electric Holdings Co. Ltd.
Priority to PCT/JP2004/003207 priority Critical patent/WO2005087852A1/en
Priority to JP2006510840A priority patent/JPWO2005087852A1/en
Publication of WO2005087852A1 publication Critical patent/WO2005087852A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Definitions

  • the present invention relates to, for example, a flame retardant used for a resin molded product and the like, and a flame-retardant resin processed product using the same, and more particularly, to a halogen-free non-halogen flame retardant.
  • Thermoplastic resins such as polyester and polyamide, and thermosetting resins such as epoxy have excellent moldability, mechanical strength, and electrical properties as general-purpose resins and engineering plastics. It is widely used in various fields. Products such as resin molded products are required to be flame-retardant from the viewpoint of safety for the purpose of preventing fires due to high temperatures.For example, standards such as UL 94 have been established as flame-retardant grades. Has been.
  • halogen-based flame retardant In general, it is known that the addition of a halogen substance is effective in making such a resin material flame-retardant, and is used by adding it to a resin.
  • the mechanism of the halogen-based flame retardant is that the halogenated radicals are mainly generated by thermal decomposition, and the halogenated radicals capture the organic radicals as the combustion source, thereby stopping the chain reaction of combustion. It is said to exhibit flammability.
  • non-halogen flame retardants inorganic flame retardants such as metal hydrates and red phosphorus, and organic phosphorus flame retardants such as phosphate esters have been studied, but aluminum hydroxide and magnesium hydroxide have been studied.
  • inorganic flame retardants such as metal hydrates and red phosphorus
  • organic phosphorus flame retardants such as phosphate esters
  • aluminum hydroxide and magnesium hydroxide have been studied.
  • the effect of imparting flame retardancy is not so high, so it is necessary to incorporate a large amount into the resin. Therefore, the moldability of the resin deteriorates, and the mechanical strength of the obtained molded product tends to decrease. Is limited.
  • Red phosphorus has a high flame-retardant effect, but impairs electrical properties due to poor dispersion, generates dangerous gases, reduces formability, and easily causes bleeding.
  • JP-A-2002-20394 discloses a piperazine salt of an acidic phosphate ester having a phosphorinane structure or a C1-6 alkylenediamine salt. It is disclosed for use as a flame retardant.
  • Japanese Patent Application Laid-Open No. 2002-80633 discloses a flame retardant for resins containing a salt composed of an aromatic phosphate such as monophenyl phosphate and monotolyl phosphate and an aliphatic amine such as piperazine as main components. It has been disclosed.
  • Japanese Patent Application Laid-Open No. 2002-138096 discloses that a halogen-free flame-retardant formulation exhibits excellent flame-retardant effects, as well as excellent heat resistance and water resistance properties of molded articles, and is used in electric laminates. It is disclosed that a phosphorus-containing phenol compound is used as a flame retardant for obtaining a flame-retardant epoxy resin having excellent adhesion.
  • Japanese Patent Application Laid-Open No. 5-331179 discloses an organic cyclic phosphorus compound having a bifunctional hydroxyl group, which is particularly useful as a stabilizer for a polymer compound and a flame retardant.
  • JP-A-2002-20394, JP-A-2002-80633, and JP-A-2002-138096 described above have poor flame retardancy. It was necessary to mix at a high concentration because it was sufficient.
  • the flame retardant component since there is no reactive group in the molecule to react with the resin component, the flame retardant component easily migrates in the resin, volatilizes during molding and contaminates the mold, There is a problem that the flame retardant bleeds out. For this reason, the thermal, mechanical, and electrical properties of the resin processed product were reduced.
  • the organic cyclic phosphorus compound disclosed in Japanese Patent Application Laid-Open No. 5-331179 functions as a reactive flame retardant in a resin having a reactive group capable of binding to a hydroxyl group, such as an epoxy resin.
  • a resin that does not have a reactive group capable of bonding to a hydroxyl group such as a normal olefin resin, cannot form a crosslink, so that the flame retardant component easily migrates through the resin and volatilizes during molding. Dirty mold There were problems such as dyeing and bleeding out of the flame retardant on the resin surface.
  • an object of the present invention is to provide excellent flame retardancy and heat resistance even when a small amount is added to a resin, and to prevent bleed-out of a flame retardant, etc.
  • mechanical properties, electrical properties, dimensional stability An object of the present invention is to provide a reactive flame retardant excellent in moldability and a flame-retardant resin processed product using the same. Disclosure of the invention
  • the reactive flame retardant of the present invention is a reactive flame retardant having reactivity with a resin, and imparting flame retardancy by binding to the resin by the reaction.
  • each molecule contains at least one PC bond, and ⁇ ⁇ ⁇ and Ar 2 are each a bifunctional aromatic containing 20 or less carbon atoms and free of mobile hydrogen.) Represents a hydrocarbon group, and n is an integer of 0 to 2.
  • —NH—R—NHCO—C (R ′) CH 2 , or an aryl group having 12 or less carbon atoms.
  • R represents an alkylene group having 2 to 5 carbon atoms
  • R ′ represents hydrogen or a methyl group
  • the reactive flame retardant of the present invention since an organic phosphorus compound having at least one terminal unsaturated bond in one molecule is used, the terminal unsaturated bond is bonded to the resin by heat or radiation. To react. As a result, the flame retardant component is stably present in the resin, so that the pre-out of the flame retardant can be prevented, and the flame retardancy can be imparted for a long time even by adding a small amount.
  • one molecule contains two or more phosphorus atoms, the phosphorus content is high.
  • it contains a PC bond that is easily dissociated, it is easy to generate P radicals with high flame retardant effect. Therefore, flame retardancy can be improved.
  • the molecular weight is increased and the energy is stabilized.
  • the thermal decomposition temperature is improved, so that kneading to the resin, vaporization of the flame retardant during molding, and decomposition of the flame retardant due to heat and shear during molding can be prevented, thereby improving moldability.
  • soot is generated and deposited when the resin is decomposed, so that the flame retardancy is improved.
  • the flame-retardant resin processed product of the present invention comprises, after solidifying a resin composition containing the above-described reactive flame retardant and a resin, heating and irradiating the resin with the resin and the reactive flame retardant.
  • the terminal unsaturated bond of the organic phosphorus compound is reacted with the resin by heating or irradiation with radiation, so that the flame retardant component is stably present in the resin. .
  • the resulting resin processed product has chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, and flame retardancy. It is possible to obtain a resin molded product excellent in all of the properties and moldability, and it is possible to particularly improve heat resistance and mechanical strength. Further, thin-wall molding can be performed.
  • the resin composition preferably contains two or more types of the reactive flame retardants, and at least one type is the polyfunctional reactive flame retardant. Good.
  • the reaction rate required for crosslinking can be controlled by the combined use of flame retardants having different reactivities, so that it is possible to prevent the resin from shrinking due to rapid progress of the crosslinking reaction.
  • the inclusion of a polyfunctional flame retardant forms a uniform three-dimensional network structure of the above-mentioned organic phosphorus compound, so that heat resistance and flame retardancy are improved and more stable resin properties are obtained. .
  • the resin composition further contains a flame retardant other than the reactive flame retardant, and the flame retardant has at least one unsaturated group at a terminal. It is preferably a cyclic nitrogen-containing compound.
  • the resin can be cross-linked into a three-dimensional network structure by bonding the flame retardant and the resin. While reducing costs, it is possible to obtain resin molded products that are excellent in chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability of the resulting resin processed products. In addition, since it contains nitrogen, the compatibility with the resin is further improved particularly when a polyamide resin is used as the resin.
  • the resin composition further contains a flame retardant other than the reactive flame retardant, and the flame retardant is an addition-type flame retardant having no reactivity. It is preferred that there be.
  • a non-reactive additive flame retardant such as phosphate ester, melamine, metal hydroxide, silicon, etc.
  • the reactive flame retardant alone due to a synergistic effect
  • the flame retardancy can be further improved as compared with the case (1), and the cost of the flame retardant can be reduced.
  • the resin composition further contains a cross-linking agent having no flame retardancy but having reactivity with the resin, and the cross-linking agent is mainly It is preferably a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the skeleton.
  • the resin can be cross-linked into a three-dimensional network structure by bonding the cross-linking agent and the resin, so that the obtained resin processed product has chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, A resin molded article having excellent flame retardancy and excellent moldability can be obtained. .
  • the inorganic filler in the above-mentioned flame-retardant resin processed product, it is preferable to contain 1 to 35% by mass of the inorganic filler with respect to the whole of the flame-retardant resin processed product.
  • the inorganic filling It is preferable that the composition contains a layered clay in which a silicate layer is laminated as an agent, and the layered clay is contained in an amount of 1 to 10% by mass based on the entire flame-retardant resin processed product. According to this aspect, it is possible to obtain a resin processed product excellent in dimensional stability by suppressing shrinkage and decomposition due to crosslinking.
  • a layered clay formed by laminating a silicate layer is included as an inorganic filler, a nano-ordered layered clay is dispersed in the resin to form a hybrid structure with the resin. . This improves the heat resistance, mechanical strength, and the like of the obtained flame-retardant resin processed product.
  • the resin and the reactive flame retardant are obtained by reacting by irradiation with an electron beam or a beam of a dose of 10 kGy or more. According to this aspect, after the resin is solidified by molding or the like, it can be bridged by radiation, so that a resin processed product can be manufactured with high productivity.
  • the dose By setting the dose within the above range, it is possible to prevent uneven formation of a three-dimensional network structure due to insufficient dose, and to prevent predation due to unreacted crosslinker residue.
  • the irradiation dose is set to 10 to 45 kGy, deformation and shrinkage due to internal distortion of a resin processed product due to oxidative decomposition products generated by excessive dose can be prevented.
  • the resin and the reactive flame retardant are obtained by reacting at a temperature 5 ° C. or more higher than the temperature at which the resin composition is molded.
  • a radiation irradiating device or the like is not required, and it can be suitably used particularly in a resin composition containing a thermosetting resin.
  • the flame-retardant resin processed product is one selected from a molded product, a coating film, and a sealant.
  • the flame-retardant resin processed product of the present invention has excellent flame retardancy as described above and can prevent pre-out, so that it can be applied not only to ordinary resin molded products but also to coatings as coating agents and the like. It is also suitably used as a sealant for semiconductors and liquid crystal materials.
  • the flame-retardant resin processed product it is preferable that the flame-retardant resin processed product is used as an electric component or an electronic component.
  • the flame-retardant resin of the present invention As described above, heat-resistant products have excellent heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability. It is particularly preferably used as a part.
  • the reactive flame retardant of the present invention is a reactive flame retardant having reactivity with a resin, and imparting flame retardancy by binding to the resin by the reaction, and has the following general formula (I) or Is characterized by being an organic phosphorus compound represented by ( ⁇ ).
  • each molecule contains at least one PC bond, and Ar and Ar 2 are each a bifunctional compound containing 20 or less carbon atoms and no mobile hydrogen.
  • R is an alkylene group having 2 to 5 carbon atoms, R, represents a hydrogen or a methyl group, and at least one of ⁇ 1 to!
  • the general formula (I) is a compound having a pentavalent phosphorus
  • the general formula ( ⁇ ) is a compound having a trivalent phosphorus.
  • aryl groups having 12 or less carbon atoms include, for example, one C 6 H 5 (phenyl group), —C 6 H 5 ⁇ H (hydroxyphenyl group), one C 6 H 5 —C 6 H 5 OH (hydroxy group Biphenyl group), —a-C 10 H 7 (hy-naphthyl group), 1_C 10 H 7 (j3-naphthyl group) and the like.
  • a r A r 2 represents a bifunctional aromatic hydrocarbon group containing no mobile hydrogen having 20 or less carbon atoms, and n is an integer of 0 to 2.
  • the mobile hydrogen is easily formed with a hydrogen bond such as -0H (hydroxyl group), -NHC0- (amide bond), -NHC00- (urethane bond), and so forth. It is a highly reactive hydrogen contained in the functional group that easily reacts with room temperature at room temperature to generate hydrogen.
  • the bifunctional aromatic hydrocarbon group refers to, for example, a bifunctional aromatic group such as a 1,4-phenylene group PP-C 6 H 4 —pC 6 H 4 —. not only hydrocarbon groups, such as the above-mentioned hydroxy Hue alkenyl group Ya one P- C 6 H 4 - S 0 2 - p_C 6 H 4 - like, further oxygen or sulfur, etc. in addition to the aromatic hydrocarbon group It is meant to include a group containing a hetero atom.
  • each Ar or Ar 2 is one p—C 6 H 4 —O—, — ⁇ one p—C 6 H 4 — 0 It may contain a P-O bond such as-.
  • n 2
  • each Ar 2 may be the same or different.
  • the content of phosphorus in one molecule is 6 to 20. It is preferable that the W t%.
  • organic phosphorus compound represented by the general formula (I) include compounds represented by the following structural formulas (1-1) to (1-23).
  • (I-1 1) to (1-12) are examples in which n is zero, that is, when there are two phosphorus atoms in one molecule
  • (I-1 13 to (1-20) 1 that is, an example in which there are three phosphorus atoms in one molecule
  • (1-21)-(1-23) are examples in which n force is 2, that is, when there are four phosphorus atoms in one molecule It is.
  • organophosphorus compound represented by the above general formula ( ⁇ ) include compounds represented by the following structural formulas ( ⁇ -1) to ( ⁇ -23). This house,
  • ( ⁇ -1) to (H-12) are examples where n is zero, that is, when there are two phosphorus atoms in one molecule, and (H-13 to ( ⁇ -20), where n is 1, that is, 1 This is an example where the number of phosphorus atoms in the molecule is three, and (H_21) to ( ⁇ 23) are examples where n is 2, that is, four phosphorus atoms in one molecule.
  • the compound of the general formula (I) or ( ⁇ ) has a ridge type in which phosphorus atoms on both sides are bonded via Ar 1 or Ar 2, that is, a PC bond. It has the structure of Further, at least one of the groups attached to the phosphorus atom contains a terminal unsaturated bond.
  • the compound (I-11) is obtained by reacting 4,4′-dichlorobiphenyl as a starting material, reacting it with phosphorus oxychloride, and further reacting it with aryl bromide. It can be synthesized by introducing an unsaturated group into the terminal.
  • the compound ( ⁇ -1) is prepared by reacting 4,4′-dichlorobiphenyl as a starting material, reacting it with phosphorus trichloride, and further reacting it with aryl bromide to obtain an unterminated compound. It can be synthesized by introducing a saturated group.
  • the flame-retardant resin processed product of the present invention is obtained by solidifying a resin composition containing a resin and an organic phosphorus compound represented by the above general formula (I) or (H), and then subjecting the resin composition to heating or irradiation of radiation. Thus, it is obtained by reacting the resin with the reactive flame retardant, and contains the reactive flame retardant in an amount of 1 to 20% by mass based on the entire resin composition.
  • thermoplastic resin and a thermosetting resin can be used and is not particularly limited.
  • thermoplastic resin examples include a polyamide resin, a polybutylene terephthalate resin, a polyester resin such as polyethylene terephthalate, a polyacrylic resin, a polyimide resin, a polycarbonate resin, Polyurethane resin, polystyrene, acrylonitrile-styrene copolymer, polystyrene resin such as acrylonitrile-butadiene styrene copolymer, polyacetal resin, polyolefin resin, polyphenylene oxide resin, polyphenylene sulfide resin, polybutylene resin And the like.
  • polyamide resin polybutylene terephthalate resin, polyethylene terephthalate resin, polycarbonate resin, polyacrylic resin, polyacetyl resin, polyphenylene oxide resin, from the viewpoint of mechanical properties and heat resistance Is preferred.
  • thermosetting resin examples include epoxy resin, resin resin, unsaturated polyester resin, phenol resin, urea resin, melamine resin, alkyd resin, and silicone resin.
  • an epoxy resin, a phenol resin, an unsaturated polyester resin, and a urea resin from the viewpoint of mechanical properties and heat resistance.
  • the content of the reactive flame retardant is preferably from 1 to 20% by mass, more preferably from 1 to 15% by mass, based on the entire resin composition. No. If the content of the reactive flame retardant is less than 1% by mass, the crosslinking by the reaction is insufficient, and the mechanical, thermal, and electrical properties of the obtained resin processed product are not favorable.
  • the amount of the reactive flame retardant becomes excessive, unreacted monomers and decomposed gas of the reactive flame retardant are generated, and the oligomerized product bleeds out, and the mechanical properties of the resin processed product Is undesirably reduced.
  • organophosphorus compounds represented by the above general formula (I) or ( ⁇ ) in the present invention, two or more kinds of compounds having different reactivities, that is, different numbers of the above functional groups in one molecule are used. It is preferable to use two or more compounds in combination. This makes it possible to control the reaction rate required for crosslinking, thereby preventing the resin composition from shrinking due to rapid progress of the crosslinking reaction.
  • organic phosphorus compounds represented by the above general formula (I) or (II) it is preferable to contain at least a polyfunctional reactive flame retardant. Thereby, a uniform three-dimensional network structure is formed by the organic phosphorus compound.
  • an addition-type flame retardant having no reactivity other than the reactive flame retardant may be further contained.
  • a flame retardant a non-halogen flame retardant is preferable, and metal hydrates represented by aluminum hydroxide and magnesium hydroxide, and monophosphoric acids such as triphenyl phosphate and tricresyl phosphate are preferred.
  • Examples thereof include condensed phosphoric acid esters such as (diphenyl) phosphate, ammonium polyphosphate, polyphosphoramide, red phosphorus, guanidine phosphate, etc., derivatives of cyanuric acid or isocyanuric acid, melamine derivatives, and silicon-based flame retardants.
  • condensed phosphoric acid esters such as (diphenyl) phosphate, ammonium polyphosphate, polyphosphoramide, red phosphorus, guanidine phosphate, etc., derivatives of cyanuric acid or isocyanuric acid, melamine derivatives, and silicon-based flame retardants.
  • the flame retardants may be used alone or in combination of two or more.
  • the content of the flame retardant other than the reactive flame retardant is 1 to 20 mass% of the flame retardant other than the reactive flame retardant with respect to the entire resin composition in order to prevent bleeding and deterioration of mechanical properties. %, More preferably 3 to 15% by mass.
  • a flame retardant having a reactivity other than the reactive flame retardant with respect to 1 part by mass of the reactive flame retardant It is more preferable to contain 0.5 to 10 parts by mass of a cyclic nitrogen-containing compound having at least one unsaturated group at a terminal.
  • group having an unsaturated group at the terminal include diacrylate, dimethacrylate, diarylate, triacrylate, trimethacrylate, triarylate, tetraacrylate, tetramethacrylate, tetraarylate, and the like.
  • acrylates such as diacrylate, triacrylate, and tetraacrylate are more preferable.
  • examples of the cyclic nitrogen-containing compound include an isocyanuric ring and a cyanuric ring.
  • cyclic nitrogen-containing compound having at least one unsaturated group at the terminal include the above-mentioned derivatives of sialic acid or isocyanuric acid, for example, isocyanuric acid E ⁇ modified diacrylate, isocyanuric acid Examples thereof include EO-modified triacrylate and triisocyanuryl triacrylate.
  • a crosslinking agent which does not have flame retardancy but has reactivity with the resin may be further contained.
  • a crosslinking agent a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the main skeleton can be used.
  • the cross-linking agent having no flame retardancy but having reactivity with the resin means a cross-linking agent (reactivity) having no cross-linking property (reactivity).
  • reactivity a cross-linking agent having no cross-linking property (reactivity).
  • reactive flame retardants that have both crosslinkability and flame retardance, such as cyclic nitrogen-containing compounds having at least one unsaturated group at the terminal.
  • Examples of such a cross-linking agent include di- to tetra-functional compounds represented by the following general formulas (a) to (c).
  • X is a main skeleton
  • R 6 to R 9 are functional groups having an unsaturated group at the terminal
  • (a) is a bifunctional compound
  • (b) is a trifunctional compound
  • (c) ) Is a tetrafunctional compound.
  • the main skeleton X is an aliphatic alkyl such as glycerin or a pennin erythritol derivative, or a trimellit, pyromellit, tetrahydrofuran, or a trimethylenetrioxane.
  • the structure include an aromatic ring and bisphenol.
  • cross-linking agents include, as bifunctional monomers or oligomers, bisphenol FE-modified diacrylate, bisphenol A-EO-modified diacrylate, and trifunctional monomer or oligomer.
  • Diacrylates such as propylene glycol diacrylate, polypropylene glycol diacrylate, polyethylene glycol diacrylate, and pentaerythritol diacrylate monostearate; and dimethacrylates and diarylates thereof.
  • trifunctional monomer or oligomer examples include triacrylates such as pentaerythritol triacrylate, trimethylolpropane triacrylate, trimethylolpropane PO-modified triacrylate, and trimethylolpropane EO-modified triacrylate. Of trimethacrylate and triarylate.
  • tetrafunctional monomer or oligomer examples include ditrimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, and the like.
  • the above crosslinking agents are used as the main skeleton X: trimellitic acid, pyromellitic acid, tetrahydrofurantetracarboxylic acid, 1, 3, 5 — trihydroxybenzene, glycerin, pentaeristol, 2, 4, 6 — Tris (chloromethyl) — 1, 3, 5 — trioxane, etc., one of which is a functional group having an unsaturated group at the terminal, acrylyl bromide, aryl alcohol, arylamine, methallyl bromide , Methallyl alcohol, methallylamine and the like.
  • the crosslinking agent is preferably contained in an amount of 0.5 to 10 parts by mass based on 1 part by mass of the reactive flame retardant.
  • the resin composition used in the present invention may contain an inorganic filler, a reinforcing fiber, various additives, and the like, in addition to the resin and the flame retardant.
  • an inorganic filler By containing an inorganic filler, the mechanical strength of the resin processed product can be improved and the dimensional stability can be improved.
  • it serves as a substrate on which the reactive flame retardant is adsorbed, so that the reactive flame retardant is uniformly dispersed.
  • the inorganic filler conventionally known ones can be used, and typical ones are metal powders such as copper, iron, nickel, zinc, tin, stainless steel, aluminum, gold, and silver, fumed silica, Aluminum silicate, calcium silicate, silicic acid, hydrated calcium silicate, hydrated aluminum silicate, glass beads, power pump rack, quartz; ⁇ powder, mica, talc, my power, clay, titanium oxide, iron oxide, zinc oxide, carbonate Examples include calcium, magnesium carbonate, magnesium oxide, calcium oxide, magnesium sulfate, potassium titanate, and diatomaceous earth. These fillers may be used alone or in combination of two or more, or may be those treated with a known surface treatment agent.
  • metal powders such as copper, iron, nickel, zinc, tin, stainless steel, aluminum, gold, and silver, fumed silica
  • the content of the inorganic filler is preferably from 1 to 35% by mass, more preferably from 1 to 20% by mass, based on the whole flame-retardant resin product. If the content is less than 1% by mass, the mechanical strength of the flame-retardant resin processed product is insufficient, the dimensional stability is insufficient, and the adsorption of the reactive flame retardant is insufficient. On the other hand, if it exceeds 35% by mass, the flame-retardant resin processed product becomes brittle, which is not preferable.
  • a layered clay obtained by laminating a silicate layer is a clay having a structure in which a silicide layer having a thickness of about Inm and a length of one side of about 100 nm is stacked. Therefore, the layered clay is dispersed in the resin on the order of nanometers to form a hybrid structure with the resin, thereby improving the heat resistance, mechanical strength, and the like of the obtained flame-retardant resin processed product.
  • the average particle size of the layered clay is preferably 100 nm or less.
  • the layered clay examples include montmorillonite, force olinate, and my strength, and montmorillonite is preferred from the viewpoint of excellent dispersibility.
  • the layered clay may be surface-treated in order to improve the dispersibility in the resin.
  • commercially available ones may be used, such as “Nanomer” (trade name, manufactured by Nissho Iwai Bentonite Co., Ltd.) and “Somasif” (trade name, manufactured by Corpo Chemical Co., Ltd.). Can be used.
  • the content of the layered clay is preferably 1 to 10% by mass based on the entire flame-retardant resin processed product. That's right.
  • the layered clay may be used alone or in combination with another inorganic filler.
  • the reinforcing fibers for example, in the case of a molded product, the mechanical strength is improved and the dimensional stability can be improved.
  • the reinforcing fiber include glass fiber, carbon fiber, and metal fiber, and it is preferable to use glass fiber from the viewpoint of strength and adhesion to a resin or an inorganic filler.
  • These reinforcing fibers may be used alone or in combination of two or more kinds, or may be treated with a known surface treatment agent such as a silane coupling agent.
  • the glass fiber is surface-treated and further coated with a resin.
  • a resin e.g., ethylene glycol dimethacrylate
  • the adhesiveness with the thermoplastic polymer can be further improved.
  • a known silane coupling agent can be used. Specifically, at least one alkoxy group selected from the group consisting of a methoxy group and an ethoxy group, an amino group, a vinyl group, Examples thereof include a silane coupling agent having at least one reactive functional group selected from the group consisting of an acrylic group, a methacryl group, an epoxy group, a mercapto group, a halogen atom, and an isocyanate group.
  • the coating resin is not particularly limited, and examples thereof include a urethane resin and an epoxy resin.
  • the compounding amount of the reinforcing fiber is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, based on the whole flame-retardant resin product. If the content is less than 5% by mass, the mechanical strength of the flame-retardant resin processed product is reduced, and the dimensional stability is insufficient. It is not desirable because processing becomes difficult.
  • It contains the above-mentioned inorganic filler and reinforced fiber, and preferably contains 65% by mass or less of the inorganic filler and reinforced fiber with respect to the entire flame-retardant resin product, and 55% by mass or less. More preferably, it is contained.
  • the content of the inorganic filler and the reinforcing fiber exceeds 65% by mass, the ratio of the resin component is reduced, and the moldability is lowered, and the obtained resin processed product becomes brittle and the physical properties are deteriorated. Absent.
  • the resin composition used in the present invention includes various commonly used components other than those described above, such as crystal nuclei, as long as the physical properties such as heat resistance, weather resistance, and impact resistance of the present invention are not significantly impaired.
  • Agents, colorants, antioxidants, release agents, plasticizers, heat stabilizers, lubricants, UV inhibitors And other additives As will be described later, for example, when a resin is reacted with a reactive flame retardant by ultraviolet rays, an ultraviolet initiator or the like can be used.
  • the colorant is not particularly limited, but is preferably one that does not fade by irradiation as described below.
  • inorganic pigments such as red iron black, carbon black, graphite, and metal complexes such as phthalocyanine are preferably used.
  • the flame-retardant resin processed product of the present invention is obtained by solidifying the above-mentioned resin composition, and then reacting the resin with the reactive flame retardant by heating or irradiation with radiation.
  • thermoplastic resin and the reactive flame retardant are melt-kneaded and pelletized, and then the conventional method is used. It can be formed by known injection molding, extrusion molding, vacuum molding, inflation molding or the like. Melt kneading can be carried out using a conventional melt kneading machine such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll.
  • the kneading temperature can be appropriately selected depending on the type of the thermoplastic resin.
  • the kneading is preferably performed at 240 to 280 ° C., and the molding conditions can also be set as appropriate. Not limited. Since no cross-linking has progressed at this stage, the extra spool part during molding can be recycled as a thermoplastic resin.
  • thermosetting resin similarly to the above, after the thermosetting resin and the reactive flame retardant are melt-kneaded and pelletized, for example, conventionally known injection molding, compression molding, transfer molding, and the like. It can be formed by using such as.
  • the resin composition When forming a coating film, the resin composition may be applied as it is, or may be appropriately diluted with a solvent or the like to form a solution or suspension that can be applied, and then dried and formed into a film by a conventionally known method. May be.
  • a coating method such as roller one-coating, spraying, dipping, and spin coating can be used, and is not particularly limited.
  • the unsaturated bond at the terminal of the reactive flame retardant reacts with the resin and undergoes a crosslinking reaction by heating or irradiation with radiation, and is stably present in the resin.
  • the reaction temperature is preferably at least 5 ° C higher than the resin molding temperature, more preferably at least 10 ° C higher. Is more preferable.
  • radiation is used as a means for cross-linking, an electron beam, a ray, an a ray, an X ray, an ultraviolet ray, or the like can be used.
  • the radiation in the present invention means radiation in a broad sense, and specifically includes not only particle beams such as electron beams and ⁇ -rays but also electromagnetic waves such as X-rays and ultraviolet rays.
  • electron beam or r-beam irradiation is preferred.
  • a known electron accelerator or the like can be used, and the acceleration energy is preferably 2.5 MeV or more.
  • Irradiation using a known cobalt 60 radiation source or the like can be used for the irradiation with the alpha rays.
  • Irradiation using a known cobalt 60 radiation source or the like can be used for the irradiation with the alpha rays.
  • r-rays are preferable because they have a higher transmittance than electron beams, so that irradiation is uniform and preferable. However, since the irradiation intensity is high, dose control is necessary to prevent excessive irradiation.
  • the irradiation dose of radiation is preferably 10 kGy or more, more preferably 10 to 45 kGy. Within this range, a crosslinked resin article having excellent physical properties can be obtained. If the irradiation dose is less than 10 kGy, the formation of a three-dimensional network structure due to cross-linking becomes non-uniform, and the unreacted cross-linking agent may be prematurely dropped. On the other hand, if it exceeds 45 kGy, internal distortion of the resin-processed product due to the oxidative decomposition product remains, which is not preferable because deformation or shrinkage occurs.
  • the flame-retardant resin processed product of the present invention obtained as described above has, as a molded product, excellent mechanical properties, electrical properties, dimensional stability, and moldability in addition to heat resistance and flame retardancy. Therefore, electrical or electronic parts that require high heat resistance and flame retardancy, as well as automobile parts and optical parts, such as members for supporting contacts such as electromagnetic switches and breakers, printed circuit boards, etc. It can be suitably used as a substrate, a package for an integrated circuit, a housing for electric components, and the like.
  • Such electrical or electronic components include power receiving boards, switchboards, electromagnetic switches, circuit breakers, transformers, electromagnetic contactors, circuit protectors, relays, transformers, various sensors, and various types of motors. , A diode, a transistor, and a semiconductor device such as an integrated circuit.
  • interior parts such as cooling fans, bumpers, brake covers and panels, sliding parts, sensors, and automobile parts such as motors.
  • the above-described resin composition is sealed to cure the resin, and the above-described reaction by heating or irradiation is performed to seal electronic components and electric elements such as semiconductor chips and ceramic capacitors. It can be used as a flame retardant sealant.
  • sealing method sealing by injection molding, potting, transfer molding, injection molding, compression molding or the like is possible.
  • the electronic components and electrical components to be sealed are not particularly limited, but include, for example, liquid crystals, integrated circuits, transistors, thyristors, diodes, capacitors, and the like.
  • a non-halogen-based reactive flame retardant which is excellent in flame retardancy even when added in a small amount to a resin and can prevent bleed-out and the like, and flame retardancy using the same
  • a resin processed product can be provided. Therefore, this flame-retardant resin processed product can be suitably used for resin molded products such as electric parts and electronic parts, sealing agents for semiconductors and the like, and coating films.
  • the present invention will be described in more detail with reference to Examples, but the present invention is not limited to Examples.
  • the total amount of the above 4,4′-bis (dichlorophosphoryl) biphenyl and distilled THF 30 Om1 were charged into the same reactor as above, and the entire amount of the above arylmagnesium bromide solution was added at 0 to 5 ° C. from a dropping funnel. Added over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and getyl ether was distilled off under reduced pressure. The residue was poured into 1,000 ml of water while adding an acid so that the pH was maintained near neutrality, and extracted five times with 100 ml of ethyl acetate.
  • a 100-m 1-neck flask equipped with a reflux tube with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 147.02 g (0.600 mol) of ⁇ -naphthyl phosphoryl dichloride and distilled THF 30 Om Add 1 and stir while gently flowing nitrogen.Add all the above organolithium compound solution from 0 to 5 ° C over 3 hours from dropping funnel.
  • the reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess ⁇ _naphthylphosphoryl dichloride were distilled off under reduced pressure.
  • a 100.000m four-necked flask equipped with a reflux tube with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 3.75 g (0.3000 mol) of aminostyrene and 30.36 of triethylamine. g (0.300 mol) and 200 ml of THF, and at 0-5 ° C., a solution of the above total amount of 2,2-bis [4- (chloro-naphthylphosphoryl) phenyl] propane in THF 30 Om 1 was dropped.
  • Phosphoryl chloride was replaced by 80.99 g (0.600 mole) of phenylphosphoryl dichloride, and 47.9 g (0.3000 mole) of chloromethylstyrene was replaced by arylmethyl bromide. Except for the use, in the same manner as in Synthesis Example 1, 58.39 g (yield 92%) of the desired compound was obtained.
  • a 100-m flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 2.08 g (0.300 mol) of lithium metal pieces and distilled THF 100 m. Then, a solution of 32.32 g (0.100 mol) of 4,4'-dichloro-1,1, -binaphthyl in 500 ml of distilled THF was added dropwise with vigorous stirring. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour.
  • 4,4′-bis (chlorophenylphosphoryl) biphenyl was prepared in the same manner as in Synthesis Example 1 except that phenylphosphoryl dichloride (1.169 g, 0.600 mol) was used instead of phosphorus oxychloride.
  • the reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the triethylamine hydrochloride was filtered off and evaporated to dryness under reduced pressure to quantitatively obtain 1,5-bis (aryloxycyclophosphoric oxy) naphthalene.
  • the whole amount was put in a 100 Oml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel as a solution of distilled THF40 Om1, stirred, and cooled to 0 to 5 ° C.
  • the reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and getyl ether was distilled off under reduced pressure.
  • the residue was poured into 100 ml of water while adding acid so that the pH was kept near neutral, and extracted five times with 100 ml of ethyl acetate. After washing with water, the ethyl acetate phase was separated, dried over anhydrous sodium sulfate, the desiccant was removed by filtration, and the solution was distilled off under reduced pressure to obtain 36.33 g of the desired compound (yield: 96%). .
  • the desired compound was prepared in the same manner as in Synthesis Example 18 except that a THF 300 ml solution was used.
  • a 100-m 4-neck flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 2.187 g (0.9000 mol) of metal magnesium pieces and distilled 200 ml of 1 ter was added, and while stirring vigorously, a solution of 63.93 g (0.600 mol) of 2-chloroethyl vinyl ether in 300 ml of distilled getyl ether was added dropwise. A gentle boiling point reflux due to the heat of reaction was maintained. After the addition was completed in about 3 hours, the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal magnesium was removed by decantation to prepare a vinyloxyshethylmagnesium chloride solution.
  • a 100-m1 four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 2.187 g (0.900 mol) of metal magnesium pieces and distilled getyl ether 200 ml was added, and while stirring vigorously, a solution of 109.87 g (0.600 mol) of distilled getyl ether 30 Om1 in p-bromostyrene was added dropwise to maintain a gentle reflux of boiling point due to reaction heat. Was. After the addition was completed in about 3 hours, the mixture was refluxed for another 1 hour. After cooling, excess magnesium metal was removed by decantation to prepare a -styrylmagnesium bromide solution.
  • Phenylphosphinyl dichloride 71.39 g (0.600 mol) was used instead of phosphorus trichloride, and ⁇ chloromethylstyrene 45.79 g (0.3000) was used instead of aryl bromide. Mol) was used in the same manner as in Synthesis Example 18 to obtain 5.545 g (92% yield) of the target compound.
  • Synthesis Example 2 8 (Synthesis of Compound ( ⁇ —11)) 2.08 g (0.300 mol) of lithium metal pieces and 100 ml of distilled THF were placed in a 1000 m four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirring device, a nitrogen inlet tube, and a dropping funnel. Under vigorous stirring, a solution of 32.32 g (0.100 mol) of 4,4′-dichloro-1,1, -binaphthyl in 500 ml of distilled THF was added dropwise. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation, and the solvent was concentrated under reduced pressure to about twice the concentration.
  • 4,4'-Bis (chlorophenyl phosphier) biphenyl was prepared in the same manner as in Synthesis Example 18 except that phenylphosphinyl dichloride was used in place of phosphorus trichloride, and the same procedure was repeated, except that phenylphosphinyl dichloride was used. did.
  • a 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping port was charged with 200.13 ml of 82.39 g (0.600 mol) of phosphorus trichloride.
  • the HF solution was added, and the above-mentioned concentrated solution was added at 0 to 5 ° C from a dropping funnel over 3 hours.
  • the reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess phosphorus trichloride were distilled off under reduced pressure.
  • the reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the triethylamine hydrochloride was filtered off and evaporated to dryness under reduced pressure to quantitatively obtain bis (5-chloro-1-naphthoxide) phenylphosphinate.
  • the whole amount was placed in a 100 ml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping port, and stirred with a 400 ml solution of distilled THF. 5.0 g of lithium metal flakes were added over 3 hours while cooling.
  • Triethylamine hydrochloride was removed by filtration and evaporated to dryness under reduced pressure to give quantitatively 1,5-bis (aryloxychlorophosphinoxy) naphthylene. .
  • the whole amount was placed in a 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, stirred as a distilled THF40 Om1 solution, and cooled to 0 to 5 ° C.
  • Nylon as a thermoplastic resin (Ube Industries, Ltd .: 2123B) 56.3 parts by mass, glass fiber with a fiber length of about 3 mm surface-treated with a silane coupling agent as a reinforcing fiber (Asahi Fiberglass Co., Ltd.) : 03.
  • JAFT2Ak25 25 parts by mass, car pump as colorant 0.5 parts by weight of a rack, 0.2 parts by weight of an antioxidant (manufactured by Ciba Geigy Co., Ltd .: Irganoylurganox 10 10), 5 parts by weight of talc having a particle size of 2 as an inorganic filler and a crane having a nano particle size (Nissho Iwai Bentonite Co., Ltd.
  • Nanomat 1.30T 3 parts by mass, and 10 parts by mass of the above compound (1-20) as a reactive flame retardant were blended into a side-flow twin-screw extruder (Nippon Steel Corporation) Resin pellets obtained by kneading at 28 ° C and drying at 105 ° C for 4 hours. The above pellets were resin-sealed at 280 ° C using an injection molding machine (FUNUC: a50C). C, Molded at a mold temperature of 80 ° C.
  • FUNUC injection molding machine
  • thermoplastic resin 66 nylon (Ube Industries, Ltd .: 2020 B) 55.3 parts by mass, glass fiber with a fiber length of about 3 mm surface-treated with a silane coupling agent as a reinforcing fiber (Asahi Fiberglass Corporation: 03 JAFT2Ak 25) 25 parts by mass, 0.5 parts by mass of a car pump rack as a colorant, 0.2 parts by mass of an antioxidant (manufactured by Ciba-Geigy Co., Ltd .: Irganoylurganox 10 10), 2 parts by mass of an inorganic filler having a particle size of 2 5 parts by weight of talc and a nano-sized clay (Nanosho 1.30T manufactured by Nissho Iwai Bentonite Co., Ltd.).
  • the molded article was irradiated with 25 kGy of ⁇ -rays using cobalt 60 as a radiation source to obtain a resin processed article of Example 2.
  • Nylon 66 as thermoplastic resin 57.2 parts by mass of Ube Industries, Ltd .: 2020 B
  • 4 parts by mass of the above talc as an inorganic filler 4 parts by mass of the above talc as an inorganic filler, and clay of nano-particle size (Nissho Iwai Bentonite Co., Ltd. 1.30T) 3 parts by weight, 0.5 parts by weight of a pump rack as a colorant, 8 parts by weight of the above compound (I-13) and 6 parts by weight of a compound (I-1) as a reactive flame retardant, antioxidant 0.3 parts by mass of an agent (manufactured by Ciba-Geigy Co., Ltd .: Irganox 101) was added and mixed.
  • an agent manufactured by Ciba-Geigy Co., Ltd .: Irganox 101
  • Nylon 66 as thermoplastic resin 56.2 parts by mass; Ube Industries, Ltd .: 2020 B) 56.2 parts by mass, 11 parts by mass of the above compound (I_22) as reactive flame retardant and non-reactive organophosphorus flame retardant (Sanko Chemical (BCA)
  • the resin processed product of Example 4 was obtained under the same conditions as in Example 3 except that 5 parts by mass was used.
  • the above mixture was melted using a side-flow type twin-screw extruder set at 280 ° C, and a glass fiber with a fiber length of about 3 mm (Asahi Fiberglass) treated with a silane coupling agent as a reinforcing fiber 20 parts by mass of the compound: 03.JAFT2Ak25) were mixed with the above mixture melted from the side by extrusion kneading to obtain a compound pellet, and the pellet was dried at 105 ° C for 4 hours.
  • the molded product was irradiated with an electron beam having an irradiation voltage of 40 kGy at an acceleration voltage of 4.8 MeV using an accelerator manufactured by Sumitomo Heavy Industries, Ltd. to obtain a resin processed product of Example 6.
  • a molded article was molded under the same conditions as in Example 3 except that 3 parts by mass of a thermal catalyst (NOFMER BC, manufactured by NOF CORPORATION) was further added to the system of Example 3.
  • NOFMER BC manufactured by NOF CORPORATION
  • Example 5 The same procedure as in Example 5 except that 7 parts by mass of an ultraviolet initiator (2: 1 mixture of Irganox 651 and Irganox 369 manufactured by Ciba Geigy) was added to the system of Example 5, t: 0.6 mm thickness) A molded article was molded.
  • an ultraviolet initiator 2: 1 mixture of Irganox 651 and Irganox 369 manufactured by Ciba Geigy
  • the molded article was irradiated with an ultra-high pressure mercury lamp at a wavelength of 365 nm at an illuminance of 15 OmWZcm 2 for 2 minutes to obtain a resin processed article of Example 8.
  • Thermosetting epoxy-based mold resin manufactured by Nagase Chemical Co., Ltd., main agent XNR4012: 100, curing agent XNH4012: 50, curing accelerator FD400: 1) 45 parts by mass of silica dispersed in 45 parts by mass After adding 10 parts by mass of the above compound (I-117) as a flame retardant, a molded article was obtained, and then reacted at 100 ° (for 1 hour) to process the resin processed product of Example 9 (sealing agent).
  • main agent XNR4012 100
  • curing agent XNH4012 50
  • curing accelerator FD400 145 parts by mass of silica dispersed in 45 parts by mass
  • Epoxy resin for semiconductor encapsulation (Shin-Etsu Chemical Co., Ltd .: Semicoat 1 15) After adding 92 parts by mass of the above compound (1-1-5) as a reactive flame retardant, 8 parts by mass to obtain a molded product , 150: The reaction was carried out for 4 hours to obtain a resin processed product of Example 10 (sealing agent). Comparative Example 1-: 0
  • Comparative Example 11 was prepared in the same manner as in Example 5 except that only 20 parts by mass of a non-reactive organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: BCA) was added as the flame retardant. A fat additive was obtained.
  • a non-reactive organophosphorus flame retardant manufactured by Sanko Chemical Co., Ltd .: BCA
  • thermoplastic resin 66 nylon (Ube Industries, Ltd .: 2 123 ⁇ ) 59.3 parts by mass, glass fiber with a fiber length of about 3 mm surface-treated with a silane coupling agent as a reinforcing fiber (Asahi Fiberglass Corporation: 03 JAFT2Ak25) 25 parts by mass, 0.5 parts by mass of a power pump rack as a colorant, 0.2 parts by mass of an antioxidant (manufactured by Ciba Geigy Corporation: 0.2 g) 5 parts by mass of talc with a diameter of 2 m and 10 parts by mass of the above compound ( ⁇ -23) as a reactive flame retardant are mixed and kneaded at 280 ° C with a side-flow twin-screw extruder (manufactured by Nippon Steel Corporation).
  • the above pellets were injected into an injection molding machine (FUNUC Co., Ltd., using resin 500 at a resin temperature of 280 ° C and a mold temperature of 80 ° C). Molded.
  • thermoplastic resin 66 nylon (Ube Industries, Ltd .: 2020 B) 56. 3 parts by mass, glass fiber with a fiber length of approximately 3 mm surface-treated with a silane coupling agent as a reinforcing fiber.
  • a silane coupling agent as a reinforcing fiber.
  • the molded article was irradiated with ⁇ -rays of 25 kGy using cobalt 60 as a radiation source to obtain a resin processed article of Example 12.
  • Nylon 66 as thermoplastic resin (57.2 parts by mass of Ube Industries, Ltd .: 2020 B), 4 parts by mass of the above talc as an inorganic filler, and clay of nano-particle size (Nissho Iwai Bentonite Co., Ltd. 1.30T) 3 parts by mass, 0.5 parts by mass of Ripbon Black as a colorant, 9 parts by mass of the above compound ( ⁇ -20) and 5 parts by mass of compound ( ⁇ -8) as a reactive flame retardant, antioxidant 0.3 parts by mass of an agent (manufactured by Ciba-Geigy Corporation: Irganox 1010) was added and mixed.
  • an agent manufactured by Ciba-Geigy Corporation: Irganox 1010
  • the above mixture was melted using a side-edge type twin-screw extruder set at 280, and a glass fiber with a fiber length of about 3 mm (surface of Asahi Fiber Glass Co., Ltd.) was treated with a silane coupling agent as a reinforcing fiber.
  • Example 15 A resin processed product of Example 14 was obtained under the same conditions as in Example 13 except that 5 parts by mass of photochemical company: BCA) was used.
  • Example 15 56.2 parts by mass of 66 nylon as thermoplastic resin (manufactured by Ube Industries, Ltd .: 2020 B), 11 parts by mass of the above compound ( ⁇ -14) as reactive flame retardant, and non-reactive organophosphorus flame retardant (III A resin processed product of Example 14 was obtained under the same conditions as in Example 13 except that 5 parts by mass of photochemical company: BCA) was used.
  • Example 15 A resin processed product of Example 14 was obtained under the same conditions as in Example 13 except that 5 parts by mass of photochemical company: BCA) was used.
  • the above mixture was melted using a side-flow type twin-screw extruder set at 280 ° C, and glass fibers with a fiber length of about 3 mm (Asahi Fiber Glass Co., Ltd.) were surface-treated with silane coupling agents as reinforcing fibers. After mixing 20 parts by mass of the above mixture melted from the side using extrusion kneading to obtain a compound pellet, the pellets were dried at 105 ° C for 4 hours.
  • Polybutylene terephthalate resin as thermoplastic resin Asray Co., Ltd .: Trecon 1401 X06) 53.3 parts by mass, the above compound ( ⁇ -21) as reactive flame retardant 10 parts by mass, non-reactive organophosphorus 7 parts by mass of flame retardant (manufactured by Sanko Chemical Co., Ltd .: BCA), 2 parts by mass of polyfunctional cyclic compound (manufactured by Toagosei Co., Ltd .: M-315), 4 parts by mass of nano-sized particles of Example 12 as an inorganic additive 20 parts by weight of the glass fiber of Example 11 as a reinforcing agent, 0.5 parts by weight of a power pump rack as a coloring agent, and an antioxidant (manufactured by Ciba-Geigy Corporation; Using 2 parts by mass, kneading at 245 ° C kneading temperature to obtain resin compound pellets, drying at 130 ° C for 3 hours, and changing the cylinder temperature during
  • Example 17 Thereafter, the molded article was irradiated with an electron beam having an irradiation voltage of 40 kGy at an acceleration voltage of 4.8 MeV using an accelerator manufactured by Sumitomo Heavy Industries, Ltd. to obtain a resin processed article of Example 16.
  • Example 17
  • a molded article was molded under the same conditions as in Example 13 except that 3 parts by mass of a thermal catalyst (NOFMER BC, manufactured by NOF CORPORATION) was further added to the system of Example 13.
  • NOFMER BC manufactured by NOF CORPORATION
  • a thin wall (t: 0.6) was obtained in the same manner as in Example 15 except that 7 parts by mass of an ultraviolet initiator (2: 1 mixture of Irganox 651 and Irganox 369 manufactured by Ciba Geigy) was added to the system of Example 15. mm thickness) A molded product was molded.
  • the molded article was irradiated with an ultra-high pressure mercury lamp at a wavelength of 365 nm at an illuminance of 15 OmWXcm 2 for 2 minutes to obtain a resin processed article of Example 18.
  • Thermosetting epoxy mold resin (Nagase Chemical Co., Ltd., main agent XNR4012: 100, curing agent XNH4012: 50, curing accelerator FD400: 1) 45 parts by mass of silica dispersed in 45 parts by mass as a reactive flame retardant After adding 10 parts by mass of the above compound (II-11) to obtain a molded molded product, the molded product was reacted at 100 ° C. for 1 hour to obtain a processed resin product of Example 19 (sealing agent).
  • Epoxy resin for semiconductor encapsulation (Shin-Etsu Chemical Co., Ltd .: Semicoat 1 15) 92 parts by mass of the above compound ( ⁇ -15) as a reactive flame retardant was added 8 parts by mass to obtain a molded product The mixture was reacted at 150 ° C. for 4 hours to obtain a resin processed product (sealing agent) of Example 20.
  • Comparative Examples 12 to 21
  • Comparative Example 22 was prepared in the same manner as in Example 15 except that only 20 parts by mass of a non-reactive ft organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: HCA-HQ) was added as the flame retardant. A resin processed product was obtained.
  • a non-reactive ft organophosphorus flame retardant manufactured by Sanko Chemical Co., Ltd .: HCA-HQ
  • UL One 94-inch test piece (5 inches long, 1/2 inch wide, 3.2 mm thick) and a glow-wire test piece (60 mm square) according to the IEC 60695-2 method (GWF I) , Thickness 1.6 mm), and were subjected to UL 94 test, glow wire test (IEC compliance), and solder heat resistance test. In addition, a pre-out test at 300 ° C for 3 hours was performed for all resin processed products.
  • the test specimen was mounted vertically, and the burning time after flame contact for 10 seconds with a Bunsen burner was recorded. In addition, the second 10-second indirect flame after the fire extinguishing and the burning time after the flame contact is recorded again. It was determined by the presence or absence of an object.
  • nichrome wire component: nickel 80%, chromium 20% bent as a glow wire so that the tip is not broken, and a 0.5mm diameter thermocouple for temperature measurement
  • K Chromel-Alumel
  • the criteria for flammability were based on the fact that the burning time after contact for 30 seconds was within 30 seconds and that the tissue paper under the sample did not ignite.
  • the solder heat resistance test showed the dimensional deformation rate after immersion in a solder bath at 350 ° C for 10 seconds.
  • Comparative Example 110 and Comparative Example 1221 which do not contain the reactive flame retardant of the present invention, It was found that the flame retardancy was insufficient with that of HB, and all were unacceptable in the glow-wire test, and the dimensional deformation rate after the soldering heat test was inferior to that of the examples. Further, in Comparative Examples 11 and 22 in which a non-reactive organophosphorus flame retardant was used as a flame retardant, the flame retardancy was insufficient at V-2, and after 3 hours at 300 ° C. Bleed-out of the flame retardant was observed. Industrial applicability
  • the present invention is suitable as a halogen-free non-octogen flame retardant and a flame-retardant resin processed product for resin molded products such as electric parts and electronic parts, sealing agents for semiconductors and the like, coating films and the like.
  • resin molded products such as electric parts and electronic parts, sealing agents for semiconductors and the like, coating films and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

A reactive flame retardant which imparts excellent flame retardancy to resins even when added in a small amount and can be prevented from bleeding out; and a flame-retardant processed resin obtained with the flame retardant. The reactive flame retardant is, for example, an organophosphorus compound represented by the following general formula (I) wherein R1 to R5 have at least one unsaturated group at an end. The flame-retardant processed resin is obtained by solidifying a resin composition containing this organophosphorus compound and then reacting the compound by heating or irradiation with a radiation.

Description

反応性難燃剤及びそれを用いた難燃性樹脂加工品 技術分野  Reactive flame retardant and flame-retardant resin processed product using the same
本発明は、 例えば、 樹脂成形品等に利用される難燃剤及びそれを用いた難燃性樹 脂加工品に関し、 更に詳しくは、 ハロゲンを含有しない非ハロゲン系の難燃剤に関 する。  The present invention relates to, for example, a flame retardant used for a resin molded product and the like, and a flame-retardant resin processed product using the same, and more particularly, to a halogen-free non-halogen flame retardant.
 Light
細 1  Fine 1
背景技術  Background art
ポリエステルやポリアミド等の熱可塑性樹書脂や、 エポキシ等の熱硬化性樹脂は、 汎用樹脂、 エンジニアリングプラスチックとして優れた成形加工性、 機械的強度、 電気特性を有していることから、 電気、 電子分野等を始めとして広く用いられてい る。 そして、 これらの樹脂成形品等の製品は、 高温による火災防止を目的とした安 全上の観点から難燃性が要求されており、 例えば、 難燃グレードとして U L 9 4の ような規格が設けられている。  Thermoplastic resins such as polyester and polyamide, and thermosetting resins such as epoxy have excellent moldability, mechanical strength, and electrical properties as general-purpose resins and engineering plastics. It is widely used in various fields. Products such as resin molded products are required to be flame-retardant from the viewpoint of safety for the purpose of preventing fires due to high temperatures.For example, standards such as UL 94 have been established as flame-retardant grades. Has been.
一般に、 このような樹脂材料の難燃化としては、 特にハロゲン物質の添加が有効 であることが知られており、 樹脂に添加させて使用されている。 このハロゲン系難 燃剤のメカニズムは、 主に熱分解によりハロゲン化ラジカルが生成し、 このハロゲ ン化ラジカルが燃焼源である有機ラジカルを捕捉することで、 燃焼の連鎖反応を停 止させ、 高難燃性を発現させると言われている。  In general, it is known that the addition of a halogen substance is effective in making such a resin material flame-retardant, and is used by adding it to a resin. The mechanism of the halogen-based flame retardant is that the halogenated radicals are mainly generated by thermal decomposition, and the halogenated radicals capture the organic radicals as the combustion source, thereby stopping the chain reaction of combustion. It is said to exhibit flammability.
しかし、 ハロゲン化合物を大量に含む難燃剤は、 燃焼条件によってはダイォキシ 'ン類が発生する可能性があり、 環境への負荷を低減する観点から、 近年ハロゲン量 を低減させる要求が高まっている。 したがって、 ハロゲン系化合物を含有しない非 ハロゲン系難燃剤が各種検討されている。  However, flame retardants containing a large amount of halogen compounds may generate dioxins depending on the combustion conditions, and in recent years there has been an increasing demand for reducing the amount of halogens from the viewpoint of reducing the burden on the environment. Therefore, various non-halogen flame retardants containing no halogen compound have been studied.
このような非ハロゲン系難燃剤としては、 金属水和物や赤リン等の無機難燃剤、 リン酸エステル等の有機リン系難燃剤等が検討されているが、 水酸化アルミニウム や水酸化マグネシゥムといつた金属水和物の場合、 '難燃性付与効果があまり高くな いので、 樹脂に多量に配合する必要がある。 したがって、 樹脂の成形性が悪くなつ たり、 得られる成形品等の機械的強度が低下しやすく、 使用可能な成形品等の用途 が限定されるという問題がある。 また、 赤りんは、 難燃効果は高いが、 分散不良に より電気特性を阻害したり、 危険ガスが発生したり、 成形性を低下するとともにブ リード現象を起こしやすい。 As such non-halogen flame retardants, inorganic flame retardants such as metal hydrates and red phosphorus, and organic phosphorus flame retardants such as phosphate esters have been studied, but aluminum hydroxide and magnesium hydroxide have been studied. In the case of hydrated metal hydrate, 'the effect of imparting flame retardancy is not so high, so it is necessary to incorporate a large amount into the resin. Therefore, the moldability of the resin deteriorates, and the mechanical strength of the obtained molded product tends to decrease. Is limited. Red phosphorus has a high flame-retardant effect, but impairs electrical properties due to poor dispersion, generates dangerous gases, reduces formability, and easily causes bleeding.
一方、 リン酸エステル等のリン系難燃剤としては、 例えば、 特開 2002— 20 394号公報には、 ホスホリナン構造を有する酸性リン酸エステルのピぺラジン塩 もしくは C 1〜 6のアルキレンジアミン塩を難燃剤として使用することが開示され ている。  On the other hand, as a phosphorus-based flame retardant such as a phosphate ester, for example, JP-A-2002-20394 discloses a piperazine salt of an acidic phosphate ester having a phosphorinane structure or a C1-6 alkylenediamine salt. It is disclosed for use as a flame retardant.
また、 特開 2002— 80633号公報には、 リン酸モノフエニル、 リン酸モノ トリル等の芳香族リン酸エステルとピぺラジン等の脂肪族ァミンとからなる塩を主 成分とする樹脂用難燃剤が開示されている。  Japanese Patent Application Laid-Open No. 2002-80633 discloses a flame retardant for resins containing a salt composed of an aromatic phosphate such as monophenyl phosphate and monotolyl phosphate and an aliphatic amine such as piperazine as main components. It has been disclosed.
更に、 特開 2002— 138096号公報には、 ハロゲンフリーの難燃処方とし て優れた難燃効果を発現させると共に、 成形品の耐熱性、 耐水性の物性に優れ、 ま た電気積層板用途における密着性に優れる難燃エポキシ樹脂を得るための難燃剤と してリン含有フエノール化合物を用いることが開示されている。  Furthermore, Japanese Patent Application Laid-Open No. 2002-138096 discloses that a halogen-free flame-retardant formulation exhibits excellent flame-retardant effects, as well as excellent heat resistance and water resistance properties of molded articles, and is used in electric laminates. It is disclosed that a phosphorus-containing phenol compound is used as a flame retardant for obtaining a flame-retardant epoxy resin having excellent adhesion.
更にまた、 特開平 5— 33 1 179号公報には、 特に高分子化合物の安定剤、 難 燃剤として有用である、 2官能ヒドロキシル基を有する有機環状リン化合物が開示 されている。  Furthermore, Japanese Patent Application Laid-Open No. 5-331179 discloses an organic cyclic phosphorus compound having a bifunctional hydroxyl group, which is particularly useful as a stabilizer for a polymer compound and a flame retardant.
しかしながら、 上記の特開 2002— 203 94号公報、 特開 2002— 806 33号公報、 特開 2002— 138096号公報に用いられているようなリン酸ェ ステル化合物においては、 その難燃性が不充分であるため高濃度で配合する必要が めった。  However, the phosphoric ester compounds used in JP-A-2002-20394, JP-A-2002-80633, and JP-A-2002-138096 described above have poor flame retardancy. It was necessary to mix at a high concentration because it was sufficient.
また、 分子内に樹脂成分と反応するための反応基を有していないために、 難燃剤 •成分が樹脂中を移行しやすく、 成型時に揮発して金型を汚染したり、 樹脂の表面に 難燃剤がブリードアウトするという問題があった。 このため、 樹脂加工品の熱的、 機械的、 電気的特性等を低下する原因となっていた。  In addition, since there is no reactive group in the molecule to react with the resin component, the flame retardant component easily migrates in the resin, volatilizes during molding and contaminates the mold, There is a problem that the flame retardant bleeds out. For this reason, the thermal, mechanical, and electrical properties of the resin processed product were reduced.
更に、 特開平 5— 33 1 179号公報の有機環状リン化合物においては、 ェポキ シ樹脂のようなヒドロキシル基と結合できるような反応基を有する榭脂においては 反応性難燃剤として機能する。 しかし、 例えば、 通常のォレフィン樹脂のようにヒ ドロキシル基と結合できるような反応基を有しない樹脂においては架橋を形成でき ないので、 やはり難燃剤成分が樹脂中を移行しやすく、 成型時に揮発して金型を汚 染したり、 樹脂の表面に難燃剤がブリードアウトするという問題があつた。 Further, the organic cyclic phosphorus compound disclosed in Japanese Patent Application Laid-Open No. 5-331179 functions as a reactive flame retardant in a resin having a reactive group capable of binding to a hydroxyl group, such as an epoxy resin. However, for example, a resin that does not have a reactive group capable of bonding to a hydroxyl group, such as a normal olefin resin, cannot form a crosslink, so that the flame retardant component easily migrates through the resin and volatilizes during molding. Dirty mold There were problems such as dyeing and bleeding out of the flame retardant on the resin surface.
したがって、 本発明の目的は、 樹脂への少量の添加でも難燃性、 耐熱性に優れる とともに難燃剤のブリードアウト等を防止でき、 加えて、 成形品の機械特性、 電気 特性、 寸法安定性、 成形性にも優れる、 反応性難燃剤及びそれを用いた難燃性樹脂 加工品を提供することにある。 発明の開示  Therefore, an object of the present invention is to provide excellent flame retardancy and heat resistance even when a small amount is added to a resin, and to prevent bleed-out of a flame retardant, etc. In addition, mechanical properties, electrical properties, dimensional stability, An object of the present invention is to provide a reactive flame retardant excellent in moldability and a flame-retardant resin processed product using the same. Disclosure of the invention
すなわち、 本発明の反応性難燃剤は、 樹脂との反応性を有し、 該反応により前記 樹脂と結合することによって難燃性を付与する反応性難燃剤であって、 下記の一般 式 (I) 又は (Π) で示される、 末端に不飽和基を有する有機リン化合物を含有す ることを特徴とする。  That is, the reactive flame retardant of the present invention is a reactive flame retardant having reactivity with a resin, and imparting flame retardancy by binding to the resin by the reaction. ) Or (Π), characterized by containing an organic phosphorus compound having an unsaturated group at the terminal.
Figure imgf000005_0001
Figure imgf000005_0001
… (π)… ( Π )
Figure imgf000005_0002
Figure imgf000005_0002
(式 (I) 又は (Π) 中、 1分子中に少なくとも 1つの P— C結合を含み、 Αι^ と Ar2は、 それぞれ炭素数 20以下の易動性水素を含まない二官能性芳香族炭化 水素系基を表し、 nは 0〜2の整数である。 また、 Ri R5はそれぞれ、 一 NHC H2CH = CH2、 一 N(CH2 CH=CH2) 2、 —〇CH2CH=CH2、 — CH2CH = CH2、 —CH2CH2OCH=CH2、 一(C 6H4)— CH= CH2、 —〇(C6H4) 一 CH=CH2、_CH2(C6H4)_CH=CH2、—NH(C6H4)— CH=CH2、 一 N(CH2CH=CH2)— (C6H4)— CH=CH2、 一 O— R—〇 O C _ C (R, ) = CH2.、 -NH-R-NHCO-C (R' ) = CH2、 ないし炭素数 12以下のァリ —ル基より選ばれる。 ここで、 Rは炭素数 2〜5のアルキレン基、 R' は水素また はメチル基を表し、 Ri R5の少なくとも 1つは一 CH=CH2基又は— C(CH3) 二 C H 2基を含む。 ) (In formula (I) or (Π), each molecule contains at least one PC bond, and 結合 ι ^ and Ar 2 are each a bifunctional aromatic containing 20 or less carbon atoms and free of mobile hydrogen.) Represents a hydrocarbon group, and n is an integer of 0 to 2. Ri R 5 is one NHC H 2 CH = CH 2 , one N (CH 2 CH = CH 2 ) 2 , —〇CH 2 CH = CH 2 , — CH 2 CH = CH 2 , —CH 2 CH 2 OCH = CH 2 , one (C 6 H 4 ) —CH = CH 2 , —〇 (C 6 H 4 ) one CH = CH 2 , _CH 2 (C 6 H 4 ) _CH = CH 2 , —NH (C 6 H 4 ) —CH = CH 2 , N (CH 2 CH = CH 2 ) — (C 6 H 4 ) —CH = CH 2 , O—R—〇OC — C (R,) = CH 2. , —NH—R—NHCO—C (R ′) = CH 2 , or an aryl group having 12 or less carbon atoms. R represents an alkylene group having 2 to 5 carbon atoms, R ′ represents hydrogen or a methyl group, and at least one of Ri R 5 is a CH = CH 2 group or —C (CH 3 ) Including two CH 2 groups. )
本発明の反応性難燃剤によれば、 1分子内に少なくとも 1つの末端不飽和結合を 有している有機リン化合物を用いたので、 この末端不飽和結合を、 熱又は放射線に よって樹脂と結合して反応させることができる。 これにより、 難燃剤成分が樹脂中 に安定して存在するので、 難燃剤のプリ一ドアウトを防止して、 少量の添加でも難 燃性を長期間付与できる。  According to the reactive flame retardant of the present invention, since an organic phosphorus compound having at least one terminal unsaturated bond in one molecule is used, the terminal unsaturated bond is bonded to the resin by heat or radiation. To react. As a result, the flame retardant component is stably present in the resin, so that the pre-out of the flame retardant can be prevented, and the flame retardancy can be imparted for a long time even by adding a small amount.
また、 1分子内に 2個以上のリン原子を含んでいるのでリンの含有量が高い。 加 えて、 解離しやすい P— C結合を含んでいるので、 難燃効果の高い Pラジカルを発 生しやすい。 したがって難燃性を向上できる。  Further, since one molecule contains two or more phosphorus atoms, the phosphorus content is high. In addition, since it contains a PC bond that is easily dissociated, it is easy to generate P radicals with high flame retardant effect. Therefore, flame retardancy can be improved.
また、 炭素数 2 0以下の易動性水素を含まない二官能性芳香族炭化水素系基を含 んでいるので分子量が増大し、 エネルギー的にも安定化する。 これにより熱分解温 度が向上するので、 榭脂への混練、 成形時における難燃剤の気化や、 成形時の熱や 剪断による難燃剤の分解を防止でき、 成形性が向上する。 また、 炭素を多く含有す ることで、 樹脂分解時にススが生成、 堆積することによって難燃性が向上する、 い わゆるチヤ一効果も得られる。  Further, since it contains a bifunctional aromatic hydrocarbon group containing no labile hydrogen having 20 or less carbon atoms, the molecular weight is increased and the energy is stabilized. As a result, the thermal decomposition temperature is improved, so that kneading to the resin, vaporization of the flame retardant during molding, and decomposition of the flame retardant due to heat and shear during molding can be prevented, thereby improving moldability. In addition, since a large amount of carbon is contained, soot is generated and deposited when the resin is decomposed, so that the flame retardancy is improved.
一方、 本発明の難燃性樹脂加工品は、 上記の反応性難燃剤と、 樹脂とを含有する 樹脂組成物を固化した後、 加熱又は放射線の照射によって前記樹脂と前記反応性難 燃剤とを反応させて得られる難燃性樹脂加工品であつて、 前記難燃性樹脂加工品全 体に対して、 前記反応性難燃剤を 1〜2 0質量%含有することを特徴とする。  On the other hand, the flame-retardant resin processed product of the present invention comprises, after solidifying a resin composition containing the above-described reactive flame retardant and a resin, heating and irradiating the resin with the resin and the reactive flame retardant. A flame-retardant resin processed product obtained by the reaction, wherein the reactive flame retardant is contained in an amount of 1 to 20% by mass based on the entire flame-retardant resin processed product.
本発明の難燃性樹脂加工品によれば、上記の有機リン化合物の末端不飽和結合を、 加熱又は放射線の照射によって樹脂と反応させたので、 難燃剤成分が樹脂中に安定 して存在する。 これにより難燃剤のブリードアウトを防止して難燃性効果が向上す -るので、 難燃性樹脂加工品全体に対する反応性難燃剤の添加量が 1〜2 0質量%と 少量であっても、 難燃性を長期間付与できる。  According to the flame-retardant resin processed product of the present invention, the terminal unsaturated bond of the organic phosphorus compound is reacted with the resin by heating or irradiation with radiation, so that the flame retardant component is stably present in the resin. . This prevents the bleed-out of the flame retardant and improves the flame retardancy effect. Therefore, even if the addition amount of the reactive flame retardant to the entire flame-retardant resin processed product is as small as 1 to 20% by mass. The flame retardancy can be given for a long time.
また、難燃剤と樹脂との結合によって、樹脂が 3次元網目構造に架橋化するので、 得られる樹脂加工品の化学的安定性、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び成形性の全てに優れる樹脂成形品を得ることができ、 特に耐熱性と機 械強度 ¾向上させることができる。 更に薄肉成形加工も可能になる。  In addition, since the resin is cross-linked into a three-dimensional network structure by the combination of the flame retardant and the resin, the resulting resin processed product has chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, and flame retardancy. It is possible to obtain a resin molded product excellent in all of the properties and moldability, and it is possible to particularly improve heat resistance and mechanical strength. Further, thin-wall molding can be performed.
上記の難燃性樹脂加工品においては、 前記樹脂組成物が、 前記反応性難燃剤を 2 種類以上含有し、 少なくとも 1種類が多官能性の前記反応性難燃剤であることが好 ましい。 In the flame-retardant resin processed product, the resin composition preferably contains two or more types of the reactive flame retardants, and at least one type is the polyfunctional reactive flame retardant. Good.
この態様によれば、 反応性の異なる難燃剤の併用によって架橋に要する反応速度 を制御できるので、 急激な架橋反応の進行による樹脂の収縮等を防止することがで きる。 また、 多官能性の難燃剤の含有によって、 上記の有機リン化合物による均一 な 3次元網目構造が形成されるので、 耐熱性、 難燃性が向上するとともに、 より安 定した樹脂物性が得られる。  According to this aspect, the reaction rate required for crosslinking can be controlled by the combined use of flame retardants having different reactivities, so that it is possible to prevent the resin from shrinking due to rapid progress of the crosslinking reaction. In addition, the inclusion of a polyfunctional flame retardant forms a uniform three-dimensional network structure of the above-mentioned organic phosphorus compound, so that heat resistance and flame retardancy are improved and more stable resin properties are obtained. .
また、 上記の難燃性樹脂加工品においては、 前記樹脂組成物が、 前記反応性難燃 剤以外の難燃剤を更に含有し、 該難燃剤が、 末端に少なくとも 1つの不飽和基を有 する環状の含窒素化合物であることが好ましい。  In the above-described processed flame-retardant resin product, the resin composition further contains a flame retardant other than the reactive flame retardant, and the flame retardant has at least one unsaturated group at a terminal. It is preferably a cyclic nitrogen-containing compound.
この態様によれば、 末端に少なくとも 1つの不飽和基を有する環状の含窒素化合 物によっても、 難燃剤と樹脂との結合によって樹脂が 3次元網目構造に架橋できる ので、 併用によって難燃剤全体のコストダウンを図りつつ、 得られる樹脂加工品の 化学的安定性、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び成形性の 全てに優れる樹脂成形品を得ることができる。 また、 窒素を含有するので、 特に樹 脂としてポリアミド系樹脂を用いた場合に樹脂との相溶性がより向上する。  According to this embodiment, even with a cyclic nitrogen-containing compound having at least one unsaturated group at the terminal, the resin can be cross-linked into a three-dimensional network structure by bonding the flame retardant and the resin. While reducing costs, it is possible to obtain resin molded products that are excellent in chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability of the resulting resin processed products. In addition, since it contains nitrogen, the compatibility with the resin is further improved particularly when a polyamide resin is used as the resin.
また、 上記の難燃性樹脂加工品においては、 前記樹脂組成物が、 前記反応性難燃 剤以外の難燃剤を更に含有し、 該難燃剤が、 反応性を有しない添加型の難燃剤であ ることが好ましい。 上記の反応性難燃剤に、 例えば、 リン酸エステル系、 メラミン 系、 水酸化金属、 シリコン系等の反応性を有しない添加型の難燃剤を併用すること によって、相乗効果により反応性難燃剤単独の場合に比べて難燃性を更に向上でき、 また、 難燃剤のコストダウンを図ることができる。  In the above-mentioned processed flame-retardant resin product, the resin composition further contains a flame retardant other than the reactive flame retardant, and the flame retardant is an addition-type flame retardant having no reactivity. It is preferred that there be. By using a non-reactive additive flame retardant such as phosphate ester, melamine, metal hydroxide, silicon, etc. in combination with the above reactive flame retardant, the reactive flame retardant alone due to a synergistic effect The flame retardancy can be further improved as compared with the case (1), and the cost of the flame retardant can be reduced.
更に、 上記の難燃性樹脂加工品においては、 前記樹脂組成物が、 難燃性を有しな -いが前記樹脂との反応性を有する架橋剤を更に含有し、 該架橋剤が、 主骨格の末端 に不飽和基を有する多官能性のモノマー又はオリゴマーであることが好ましい。 この態様によっても、 架橋剤と樹脂との結合によって、 樹脂が 3次元網目構造に 架橋できるので、 得られる樹脂加工品の化学的安定性、 耐熱性、 機械特性、 電気特 性、 寸法安定性、 難燃性、 及び成形性の全てに優れる樹脂成形品を得ることができ る。 .  Further, in the above-mentioned flame-retardant resin processed product, the resin composition further contains a cross-linking agent having no flame retardancy but having reactivity with the resin, and the cross-linking agent is mainly It is preferably a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the skeleton. Also in this embodiment, the resin can be cross-linked into a three-dimensional network structure by bonding the cross-linking agent and the resin, so that the obtained resin processed product has chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, A resin molded article having excellent flame retardancy and excellent moldability can be obtained. .
また、 上記の難燃性樹脂加工品においては、 前記難燃性樹脂加工品全体に対して 1〜3 5質量%の無機充填剤を含有することが好ましい。 なかでも、 前記無機充填 剤としてシリケート層が積層してなる層状のクレーを含有し、 前記層状のクレーを 前記難燃性樹脂加工品全体に対して 1〜1 0質量%含有することが好ましい。 この 態様によれば、 架橋に伴う収縮や分解を抑え、 寸法安定性に優れる樹脂加工品を得 ることができる。 また、 無機充填剤としてシリケ一ト層が積層してなる層状のクレ 一を含有した場合には、 ナノオーダーで層状のクレーが樹脂中に分散することによ り樹脂とのハイブリット構造を形成する。 これによつて、 得られる難燃性樹脂加工 品の耐熱性、 機械強度等が向上する。 Moreover, in the above-mentioned flame-retardant resin processed product, it is preferable to contain 1 to 35% by mass of the inorganic filler with respect to the whole of the flame-retardant resin processed product. Above all, the inorganic filling It is preferable that the composition contains a layered clay in which a silicate layer is laminated as an agent, and the layered clay is contained in an amount of 1 to 10% by mass based on the entire flame-retardant resin processed product. According to this aspect, it is possible to obtain a resin processed product excellent in dimensional stability by suppressing shrinkage and decomposition due to crosslinking. In addition, when a layered clay formed by laminating a silicate layer is included as an inorganic filler, a nano-ordered layered clay is dispersed in the resin to form a hybrid structure with the resin. . This improves the heat resistance, mechanical strength, and the like of the obtained flame-retardant resin processed product.
更に、 上記の難燃性樹脂加工品においては、 前記難燃性樹脂加工品全体に対して Furthermore, in the above-mentioned flame-retardant resin processed product,
5〜4 0質量%の強化繊維を含有することが好ましい。 この態様によれば、 強化繊 維の含有により、 樹脂加工品の引張り、 圧縮、 曲げ、 衝撃等の機械的強度を向上さ せることができ、 更に水分や温度に対する物性低下を防止することができる。 また、 上記の難燃性樹脂加工品においては、 前記樹脂と前記反応性難燃剤とが、 線量 1 0 k G y以上の電子線又はァ線の照射によって反応して得られることが好ま しい。 この態様によれば、 樹脂を成形等によって固化した後に、 放射線によって架 橋できるので、 樹脂加工品を生産性よく製造できる。 また、 上記範囲の線量とする ことにより、 線量不足による 3次元網目構造の不均一な形成や、 未反応の架橋剤残 留によるプリ一ドアウトを防止できる。 また、 特に、 照射線量を 1 0〜4 5 k G y とすれば、 線量過剰によって生じる酸化分解生成物に起因する、 樹脂加工品の内部 歪みによる変形や収縮等も防止できる。 It is preferable to contain 5 to 40% by mass of reinforcing fibers. According to this aspect, by including the reinforcing fiber, it is possible to improve the mechanical strength of the resin processed product such as tension, compression, bending, impact, and the like, and it is possible to prevent a decrease in physical properties with respect to moisture and temperature. . Further, in the above-mentioned processed flame-retardant resin product, it is preferable that the resin and the reactive flame retardant are obtained by reacting by irradiation with an electron beam or a beam of a dose of 10 kGy or more. According to this aspect, after the resin is solidified by molding or the like, it can be bridged by radiation, so that a resin processed product can be manufactured with high productivity. By setting the dose within the above range, it is possible to prevent uneven formation of a three-dimensional network structure due to insufficient dose, and to prevent predation due to unreacted crosslinker residue. In particular, when the irradiation dose is set to 10 to 45 kGy, deformation and shrinkage due to internal distortion of a resin processed product due to oxidative decomposition products generated by excessive dose can be prevented.
更に、 上記の難燃性樹脂加工品においては、 前記樹脂と前記反応性難燃剤とが、 前記樹脂組成物を成形する温度より 5 °C以上高い温度で反応して得られることも好 ましい。 この態様によれば、 放射線照射装置等が不要であり、 特に熱硬化性樹脂を 含有する樹脂組成物において好適に用いることができる。  Further, in the above-mentioned flame-retardant resin processed product, it is also preferable that the resin and the reactive flame retardant are obtained by reacting at a temperature 5 ° C. or more higher than the temperature at which the resin composition is molded. . According to this aspect, a radiation irradiating device or the like is not required, and it can be suitably used particularly in a resin composition containing a thermosetting resin.
また、 上記の難燃性樹脂加工品においては、 前記難燃性樹脂加工品が、 成形品、 塗膜、 封止剤より選択される 1つであることが好ましい。 本発明の難燃性樹脂加工 品は、上記のように優れた難燃性を有し、しかもプリ一ドアウトを防止できるので、 通常の樹脂成形品のみならず、 コーティング剤等として塗膜化したり、 半導体や液 晶材料等の封止剤としても好適に用いられる。  Further, in the above-mentioned flame-retardant resin processed product, it is preferable that the flame-retardant resin processed product is one selected from a molded product, a coating film, and a sealant. The flame-retardant resin processed product of the present invention has excellent flame retardancy as described above and can prevent pre-out, so that it can be applied not only to ordinary resin molded products but also to coatings as coating agents and the like. It is also suitably used as a sealant for semiconductors and liquid crystal materials.
更に、 上記の難燃性樹脂加工品においては、 前記難燃性樹脂加工品が、 電気部品 又は電子部品として用いられるものであることが好ましい。 本発明の難燃性樹脂加 ェ品は、 上記のように、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び 成形性の全てに優れるので、 特に上記の物性が厳密に要求される、 電気部品、 電子 部品として特に好適に用いられる。 発明を実施するための最良の形態 Further, in the above-mentioned flame-retardant resin processed product, it is preferable that the flame-retardant resin processed product is used as an electric component or an electronic component. The flame-retardant resin of the present invention As described above, heat-resistant products have excellent heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability. It is particularly preferably used as a part. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。 まず、 本発明の反応性難燃剤について説 明する。  Hereinafter, the present invention will be described in detail. First, the reactive flame retardant of the present invention will be described.
本発明の反応性難燃剤は、 樹脂との反応性を有し、 該反応により前記樹脂と結合 することによって難燃性を付与する反応性難燃剤であって、 下記の一般式 (I ) 又 は (Π) で示される有機リン化合物であることを特徴としている。  The reactive flame retardant of the present invention is a reactive flame retardant having reactivity with a resin, and imparting flame retardancy by binding to the resin by the reaction, and has the following general formula (I) or Is characterized by being an organic phosphorus compound represented by (で).
Figure imgf000009_0001
Figure imgf000009_0001
R' R3 R4 R 'R 3 R 4
P-Ar P-Ar ― p  P-Ar P-Ar ― p
… (Π)  … (Π)
R2 n R5 R 2 n R 5
(式 ( I ) 又は (Π) 中、 1分子中に少なくとも 1つの P— C結合を含み、 A r, と A r 2は、 それぞれ炭素数 20以下の易動性水素を含まない二官能性芳香族炭化 水素系基を表し、 nは 0〜2の整数である。 また、 R1 !^5はそれぞれ、 — NHC H2CH=CH2、 一 N(CH2CH=CH2)2、 一〇CH2CH=CH2、 —CH2CH = CH2、 一 CH2CH2OCH = CH2、 —(C 6H4) - CH= CH2、 — 0(C6H4) -CH=CH2, -CH2(C6H4)-CH=CH2, -NH(C6H4)-CH-CH2, 一 N(CH2CH=CH2)— (C6H4)— CH=CH2、 一〇一 R— O〇 C一 C (R ' ) 二 CH2、 -NH-R-NHCO- C (R' ) = CH2、 ないし炭素数 12以下のァリ ール基より選ばれる。 ここで、 Rは炭素数 2〜 5のアルキレン基、 R, は水素また はメチル基を表し、尺1〜!^ 5の少なくとも 1っはー 1"1=(:112基又は—( (( 113) = CH2基を含む。 ) 上記の有機リン化合物のうち、 一般式 (I ) はリンが 5価の化合物であり、 一般 式 (Π) はリンが 3価の化合物である。 (In the formula (I) or (Π), each molecule contains at least one PC bond, and Ar and Ar 2 are each a bifunctional compound containing 20 or less carbon atoms and no mobile hydrogen.) Represents an aromatic hydrocarbon group, and n is an integer of 0 to 2. Also, R 1 ! ^ 5 is — NHCH 2 CH = CH 2 , 1 N (CH 2 CH = CH 2 ) 2 , One CH 2 CH = CH 2 , —CH 2 CH = CH 2 , One CH 2 CH 2 OCH = CH 2 , — (C 6 H 4 )-CH = CH 2 , — 0 (C 6 H 4 ) -CH = CH 2 , -CH 2 (C 6 H 4 ) -CH = CH 2 , -NH (C 6 H 4 ) -CH-CH 2 , N (CH 2 CH = CH 2 ) — (C 6 H 4 ) — CH = CH 2 , 110 R — O〇 C-C (R ') 2 CH 2 , -NH-R-NHCO-C (R') = CH 2 , or aryl having 12 or less carbon atoms Wherein R is an alkylene group having 2 to 5 carbon atoms, R, represents a hydrogen or a methyl group, and at least one of 尺1 to! ^ 5 is 1 "1 = (: 11 2 group or - (((including 11 3) = CH 2 groups). Among the above organic phosphorus compounds, the general formula (I) is a compound having a pentavalent phosphorus, and the general formula (は) is a compound having a trivalent phosphorus.
上記の有機リン化合物は、 少なくとも 1つの末端不飽和結合である、 —CH=C H2基又は— C (CH3) 二 CH2基を有している。 ここで、 — CH=CH2基又は一 C (CH3) =CH2基は、 後述する加熱、 又は放射線等の照射によって樹脂と結合 するための官能基である。 なお、 —CH二 CH2基又は一 C (CH3) =CH2基は 1分子中に 2つ以上有していることが好ましい。 The above organic phosphorus compound has at least one terminal unsaturated bond, —CH = CH 2 group or —C (CH 3 ) 2 CH 2 group. Here, —CH = CH 2 group or 1 C (CH 3 ) = CH 2 group is a functional group for bonding to a resin by heating or irradiation with radiation or the like described below. It is preferable that two or more —CH 2 CH 2 groups or 1 C (CH 3 ) = CH 2 groups be present in one molecule.
炭素数 1 2以下のァリール基としては、 例えば、 一 C6H5 (フエニル基) 、 — C 6H5〇H (ヒドロキシフエニル基) 、 一 C6H5— C6H5OH (ヒドロキシビフエ ニル基) 、 — a- C10H7 (ひ-ナフチル基) 、 一 _C10H7 (j3-ナフチル基) 等 が挙げられる。 Examples of aryl groups having 12 or less carbon atoms include, for example, one C 6 H 5 (phenyl group), —C 6 H 5 〇H (hydroxyphenyl group), one C 6 H 5 —C 6 H 5 OH (hydroxy group Biphenyl group), —a-C 10 H 7 (hy-naphthyl group), 1_C 10 H 7 (j3-naphthyl group) and the like.
A r A r 2は、 それぞれ炭素数 20以下の易動性水素を含まない二官能性芳香 族炭化水素系基を表し、 nは 0〜2の整数である。 ここで、易動性水素とは、 - 0H (水 酸基)、 - NHC0- (アミド結合)、 -NHC00- (ウレタン結合)などの、 水素結合を形成しや すく、 金属ナトリゥムゃ水素化ナトリゥムなどと常温で容易に反応して水素を発生 する官能基に含まれる反応性の高い水素である。 A r A r 2 represents a bifunctional aromatic hydrocarbon group containing no mobile hydrogen having 20 or less carbon atoms, and n is an integer of 0 to 2. Here, the mobile hydrogen is easily formed with a hydrogen bond such as -0H (hydroxyl group), -NHC0- (amide bond), -NHC00- (urethane bond), and so forth. It is a highly reactive hydrogen contained in the functional group that easily reacts with room temperature at room temperature to generate hydrogen.
なお、 本発明において、 二官能性芳香族炭化水素系基とは、 例えば、 1,4-フエ二 レン基ゃ一 P- C6H4— p-C6H4—のような二官能性芳香族炭化水素基のみならず、 例えば上記のヒドロキシフエ二ル基ゃ一 P- C6H4— S 02— p_C6H4—のような、 芳香族炭化水素基に加えて更に酸素や硫黄等のへテロ原子を含んだ基も含む意味で ある。 また、 1 分子中に少なくとも 1つの P— C結合を含んでいれば、 それぞれの Arい A r 2は、 一 p— C6H4— O—、 —〇一 p— C 6 H4— 0—などのように P— O結 合などを含んでいてもよい。 また、 nが 2の場合、 それぞれの A r 2は同一でもよ く異なっていてもよい。 In the present invention, the bifunctional aromatic hydrocarbon group refers to, for example, a bifunctional aromatic group such as a 1,4-phenylene group PP-C 6 H 4 —pC 6 H 4 —. not only hydrocarbon groups, such as the above-mentioned hydroxy Hue alkenyl group Ya one P- C 6 H 4 - S 0 2 - p_C 6 H 4 - like, further oxygen or sulfur, etc. in addition to the aromatic hydrocarbon group It is meant to include a group containing a hetero atom. If at least one PC bond is contained in one molecule, each Ar or Ar 2 is one p—C 6 H 4 —O—, —〇 one p—C 6 H 4 — 0 It may contain a P-O bond such as-. When n is 2, each Ar 2 may be the same or different.
このような A r Ar 2としては、 例えば、 —p- C6H4—、 一 p- C6H4— O—、 —〇—p - C6H4— O -、 — p_C6H4— p-C6H4 -、 _p- C6H4 - CH2— p-C6H 4—、 -p-C6H4-C (CH3) 2— p - C6H4 -、 i_C6H4 - C (=〇) 1 - C6 H4—、.— p- C6H4— S02— p- C6H4_、 2, 6— C10H6く (2, 6—ナフチレ ン基) 等が挙げられる。 Examples of such Ar Ar 2 include —p-C 6 H 4 —, one p-C 6 H 4 —O—, —〇—p-C 6 H 4 —O—, — p_C 6 H 4 - pC 6 H 4 -, _p- C 6 H 4 - CH 2 - pC 6 H 4 -, -pC 6 H 4 -C (CH 3) 2 - pC 6 H 4 -, i_C 6 H 4 - C (= 〇) 1 - C 6 H 4 - , .- p- C 6 H 4 - S0 2 - p- C 6 H 4 _, 2, 6- C 10 H 6 wards (2, 6-Nafuchire emission group) And the like.
また、 一般式( I )又は(Π) における 1分子中のリンの含有量としては 6〜 20 W t %であることが好ましい。 In the general formula (I) or (Π), the content of phosphorus in one molecule is 6 to 20. It is preferable that the W t%.
上記の一般式 ( I ) の有機リン化合物としては、 具体的には、 例えば、 下記の構 造式 (1 - 1) 〜 ( 1 - 23) で示される化合物が挙げられる。 このうち、 ( I一 1) 〜 (1— 12) は nがゼロ、 すなわち 1分子中のリン原子が 2個の場合の例で あり、 ( I一 1 3〜 ( 1— 20) は nが 1、 すなわち 1分子中のリン原子が 3個の 場合の例であり、 ( 1—2 1) 〜 ( 1— 23) は n力 2、 すなわち 1分子中のリン 原子が 4個の場合の例である。  Specific examples of the organic phosphorus compound represented by the general formula (I) include compounds represented by the following structural formulas (1-1) to (1-23). Of these, (I-1 1) to (1-12) are examples in which n is zero, that is, when there are two phosphorus atoms in one molecule, and (I-1 13 to (1-20) 1, that is, an example in which there are three phosphorus atoms in one molecule, and (1-21)-(1-23) are examples in which n force is 2, that is, when there are four phosphorus atoms in one molecule It is.
(1-1)(1-1)
Figure imgf000011_0001
Figure imgf000011_0001
(1-2)(1-2)
Figure imgf000011_0002
Figure imgf000011_0002
(1-3)(1-3)
Figure imgf000011_0003
Figure imgf000011_0003
Figure imgf000011_0004
Figure imgf000011_0004
Figure imgf000012_0001
Figure imgf000012_0001
()Iwl () Iwl
(1-9)
Figure imgf000013_0001
(1-9)
Figure imgf000013_0001
Figure imgf000013_0002
(1-11)
Figure imgf000013_0003
Figure imgf000014_0001
Figure imgf000013_0002
(1-11)
Figure imgf000013_0003
Figure imgf000014_0001
(I一 12)
Figure imgf000014_0002
(I-1 12)
Figure imgf000014_0002
Figure imgf000014_0003
Figure imgf000014_0003
(1-14)
Figure imgf000014_0004
(1-14)
Figure imgf000014_0004
(I一 15)
Figure imgf000015_0001
(I-1 15)
Figure imgf000015_0001
(1-19) (1-19)
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0003
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0003
(1-22)
Figure imgf000016_0004
(1-22)
Figure imgf000016_0004
(1-23) また、 上記の一般式 (Π) の有機リン化合物としては、 具体的には、 例えば、 下 記の構造式 (Π— 1) 〜 (Π— 23) で示される化合物が挙げられる。 このうち、(1-23) Further, specific examples of the organophosphorus compound represented by the above general formula (が) include compounds represented by the following structural formulas (Π-1) to (Π-23). this house,
(Π- 1) 〜 (H— 12) は nがゼロ、 すなわち 1分子中のリン原子が 2個の場合 の例であり、 (H— 13〜 (Π— 20) は nが 1、 すなわち 1分子中のリン原子が 3個の場合の例であり、 (H_21) 〜 (Π— 23) は nが 2、 すなわち 1分子中 のリン原子が 4個の場合の例である。 (Π-1) to (H-12) are examples where n is zero, that is, when there are two phosphorus atoms in one molecule, and (H-13 to (Π-20), where n is 1, that is, 1 This is an example where the number of phosphorus atoms in the molecule is three, and (H_21) to (Π−23) are examples where n is 2, that is, four phosphorus atoms in one molecule.
Figure imgf000017_0001
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0003
Figure imgf000017_0004
Figure imgf000017_0005
Figure imgf000017_0002
Figure imgf000017_0003
Figure imgf000017_0004
Figure imgf000017_0005
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0003
Figure imgf000018_0003
(Π-8) (Π-8)
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0003
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0003
(Π— 11)
Figure imgf000019_0004
(Π— 11)
Figure imgf000019_0004
(Π-12)
Figure imgf000020_0001
(Π-12)
Figure imgf000020_0001
(Π -13)
Figure imgf000020_0002
(Π -13)
Figure imgf000020_0002
(Π-14)
Figure imgf000020_0003
(Π-14)
Figure imgf000020_0003
(Π-15)
Figure imgf000020_0004
(Π-15)
Figure imgf000020_0004
(Π-16) (Π-16)
Figure imgf000021_0001
Figure imgf000021_0001
222 CC〇HCCOOCHHH=222 CC〇HCCOOCHHH =
222C0 CHHHCH〇〇OC= 222C0 CHHHCH〇〇OC =
Figure imgf000022_0001
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0002
(Π -22) (Π -22)
Figure imgf000022_0003
Figure imgf000022_0003
(Π-23) 上記のように、 一般式 (I ) 又は (Π) の化合物は、 両側のリン原子が、 Ar 1 又は A r 2、 すなわち P— C結合を介して結合されているプリッジ型の構造をなし ている。 更に、 リン原子に結合する基の少なくとも 1つは末端不飽和結合を含んで いる。 (Π-23) As described above, the compound of the general formula (I) or (Π) has a ridge type in which phosphorus atoms on both sides are bonded via Ar 1 or Ar 2, that is, a PC bond. It has the structure of Further, at least one of the groups attached to the phosphorus atom contains a terminal unsaturated bond.
上記の化合物の合成は、 例えば、 (I一 1) の化合物は、 4,4' -ジクロルビフエ ニルを出発原料とし、 これをォキシ塩化リンと反応させた後、 更に臭化ァリルと反 応させて末端に不飽和基を導入することによって合成することができる。 また、 例えば、 (Π— 1 ) の化合物は、 4, 4' -ジクロルビフエニルを出発原料と し、 これを三塩化リンと反応させた後、 更に臭化ァリルと反応させて末端に不飽和 基を導入することによって合成することができる。 In the synthesis of the above compound, for example, the compound (I-11) is obtained by reacting 4,4′-dichlorobiphenyl as a starting material, reacting it with phosphorus oxychloride, and further reacting it with aryl bromide. It can be synthesized by introducing an unsaturated group into the terminal. Further, for example, the compound (Π-1) is prepared by reacting 4,4′-dichlorobiphenyl as a starting material, reacting it with phosphorus trichloride, and further reacting it with aryl bromide to obtain an unterminated compound. It can be synthesized by introducing a saturated group.
そして、 臭化ァリルの代わりに、 例えば、 ァリルァミン、 ァリルアルコール、 ジ ァリルアミン等を用いたり、 ォキシ塩化リンの代わりに、 例えば、 ひ-ナフチルホス ホリルジクロリド、 ビフエニルホスホリルジクロリド、 フエニルホスホリルジク ロリド等を用いることにより、 上記の一般式 (I ) 又は (Π ) における!^ 1〜!^ 5を 変更できる。 なお、 (I ) 又は (H ) 式における、 nが 1又は 2の場合等の、 更に 具体的な合成例については、 後述する実施例をもって説明する。 Then, instead of aryl bromide, for example, allylamine, allylic alcohol, diarylamine, or the like is used. In the above general formula (I) or (Π),! ^ 1 ~! ^ 5 can be changed. In addition, more specific synthesis examples, such as the case where n is 1 or 2 in the formula (I) or (H), will be described in Examples described later.
次に、 上記の反応性難燃剤を用いた難燃性樹脂加工品について説明する。  Next, a flame-retardant resin processed product using the reactive flame retardant will be described.
本発明の難燃性樹脂加工品は、 樹脂と、 上記の一般式 (I ) 又は (H ) で示され る有機リン化合物とを含有する樹脂組成物を固化した後、 加熱又は放射線の照射に よつて前記樹脂と前記反応性難燃剤とを反応させて得られ、 樹脂組成物全体に対し て、 上記の反応性難燃剤を 1〜2 0質量%含有することを特徴としている。  The flame-retardant resin processed product of the present invention is obtained by solidifying a resin composition containing a resin and an organic phosphorus compound represented by the above general formula (I) or (H), and then subjecting the resin composition to heating or irradiation of radiation. Thus, it is obtained by reacting the resin with the reactive flame retardant, and contains the reactive flame retardant in an amount of 1 to 20% by mass based on the entire resin composition.
まず、 本発明に用いる樹脂としては、 熱可塑性樹脂、 熱硬化性樹脂のいずれも使 用可能であり特に限定されない。  First, as the resin used in the present invention, any of a thermoplastic resin and a thermosetting resin can be used and is not particularly limited.
熱可塑性樹脂としては、 例えば、 ポリアミド系樹脂、 ポリブチレンテレフタレー ト樹脂、 ポリエチレンテレフタレ一ト等のポリエステル系樹脂、 ポリアクリル系樹 脂、 ポリイミド系樹脂、 ポリ力一ポネ一ト榭脂、 ポリウレタン系樹脂、 ポリスチレ ン、 アクリロニトリル—スチレン共重合体、 アクリロニトリル—ブタジエンースチ レン共重合体等のポリスチレン系樹脂、 ポリアセタール系樹脂、 ポリオレフイン系 樹脂、 ポリフエ二レンォキシド樹脂、 ポリフエ二レンサルファイド樹脂、 ポリブ夕 ジェン樹脂等が挙げられる。 なかでも、 機械特性や耐熱性等の点から、 ポリアミド 系樹脂、 ポリブチレンテレフ夕レート樹脂、 ポリエチレンテレフタレート樹脂、 ポ リカーポネート樹脂、 ポリアクリル系樹脂、 ポリアセ夕一ル系樹脂、 ポリフエニレ ンォキシド樹脂を用いることが好ましい。  Examples of the thermoplastic resin include a polyamide resin, a polybutylene terephthalate resin, a polyester resin such as polyethylene terephthalate, a polyacrylic resin, a polyimide resin, a polycarbonate resin, Polyurethane resin, polystyrene, acrylonitrile-styrene copolymer, polystyrene resin such as acrylonitrile-butadiene styrene copolymer, polyacetal resin, polyolefin resin, polyphenylene oxide resin, polyphenylene sulfide resin, polybutylene resin And the like. Above all, use of polyamide resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polycarbonate resin, polyacrylic resin, polyacetyl resin, polyphenylene oxide resin, from the viewpoint of mechanical properties and heat resistance Is preferred.
熱硬化性樹脂としては、エポキシ榭脂、ゥレ夕ン樹脂、不飽和ポリエステル樹脂、 フエノール樹脂、 ユリア樹脂、 メラミン樹脂、 アルキド樹脂、 ケィ素樹脂等が挙げ られる。なかでも、機械特性や耐熱性等の点から、エポキシ樹脂、 フエノール樹脂、 不飽和ポリエステル樹脂、 ユリア樹脂を用いることが好ましい。 上記反応性難燃剤の含有量は、 前記樹脂組成物全体に対して、 前記反応性難燃剤 を 1〜2 0質量%含有することが好ましく、 1〜 1 5質量%含有することがより好 ましい。 反応性難燃剤の含有量が 1質量%未満の場合、 反応による架橋が不充分で あり、 得られる樹脂加工品の機械的物性、 熱的物性、 電気的物性が好ましくなく、 また、 2 0質量%を超えると、 反応性難燃剤が過剰となり、 反応性難燃剤の未反応 のモノマ一や分解ガスが発生したり、 オリゴマ一化したものがブリードアウトし、 また、 樹脂加工品の機械的特性が低下するので好ましくない。 Examples of the thermosetting resin include epoxy resin, resin resin, unsaturated polyester resin, phenol resin, urea resin, melamine resin, alkyd resin, and silicone resin. Among them, it is preferable to use an epoxy resin, a phenol resin, an unsaturated polyester resin, and a urea resin from the viewpoint of mechanical properties and heat resistance. The content of the reactive flame retardant is preferably from 1 to 20% by mass, more preferably from 1 to 15% by mass, based on the entire resin composition. No. If the content of the reactive flame retardant is less than 1% by mass, the crosslinking by the reaction is insufficient, and the mechanical, thermal, and electrical properties of the obtained resin processed product are not favorable. %, The amount of the reactive flame retardant becomes excessive, unreacted monomers and decomposed gas of the reactive flame retardant are generated, and the oligomerized product bleeds out, and the mechanical properties of the resin processed product Is undesirably reduced.
上記の一般式 ( I ) 又は (Π ) で示される有機リン化合物のうち、 本発明におい ては、 反応性の異なる 2種類以上の化合物、 すなわち、 1分子中の上記官能基の数 が異なる 2種類以上の化合物を併用することが好ましい。 これによつて、 架橋に要 する反応速度を制御できるので、 急激な架橋反応の進行による樹脂組成物の収縮を 防止することができる。  Among the organophosphorus compounds represented by the above general formula (I) or (Π), in the present invention, two or more kinds of compounds having different reactivities, that is, different numbers of the above functional groups in one molecule are used. It is preferable to use two or more compounds in combination. This makes it possible to control the reaction rate required for crosslinking, thereby preventing the resin composition from shrinking due to rapid progress of the crosslinking reaction.
また、 上記の一般式 ( I ) 又は (Π ) で示される有機リン化合物のうち、 少なく とも多官能性の反応性難燃剤を含有することが好ましい。 これによつて、 上記の有 機リン化合物による均一な 3次元網目構造が形成される。  Further, among the organic phosphorus compounds represented by the above general formula (I) or (II), it is preferable to contain at least a polyfunctional reactive flame retardant. Thereby, a uniform three-dimensional network structure is formed by the organic phosphorus compound.
また、 本発明においては、 更に上記反応性難燃剤以外の、 反応性を有しない添加 型の難燃剤を含有していてもよい。 このような難燃剤としては、 非ハロゲン系難燃 剤が好ましく、 水酸化アルミニウムや水酸化マグネシウム等に代表される金属水和 物や、 トリフエニルホスフエ一ト、 トリクレジルホスフェートなどのモノリン酸ェ ステル、 ビスフエノール Aビス (ジフエニル) ホスフェート、 レゾルシノールビス Further, in the present invention, an addition-type flame retardant having no reactivity other than the reactive flame retardant may be further contained. As such a flame retardant, a non-halogen flame retardant is preferable, and metal hydrates represented by aluminum hydroxide and magnesium hydroxide, and monophosphoric acids such as triphenyl phosphate and tricresyl phosphate are preferred. Esters, bisphenol A bis (diphenyl) phosphate, resorcinol bis
(ジフエニル)ホスフェートなどの縮合リン酸エステル、ポリリン酸アンモニゥム、 ポリリン酸アミド、 赤リン、 リン酸グァニジン等、 シァヌル酸又はイソシァヌル酸 の誘導体、 メラミン誘導体、 シリコン系難燃剤等が挙げられる。 Examples thereof include condensed phosphoric acid esters such as (diphenyl) phosphate, ammonium polyphosphate, polyphosphoramide, red phosphorus, guanidine phosphate, etc., derivatives of cyanuric acid or isocyanuric acid, melamine derivatives, and silicon-based flame retardants.
これらの難燃剤は単独で用いてもよく、 また 2種類以上併用することも可能であ る。 この反応性難燃剤以外の難燃剤の含有量は、 ブリードや機械特性の低下を防止 するために、 前記樹脂組成物全体に対して、 前記反応性難燃剤以外の難燃剤を 1〜 2 0質量%含有することが好ましく、 3〜 1 5質量%含有することがより好ましレ^ また、 反応性難燃剤 1質量部に対して、 前記反応性難燃剤以外の反応性を有する 難燃剤として、末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物を 0 . 5〜1 0質量部含有することがより好ましい。 上記の末端に不飽和基を有する基としては、 具体的にはジァクリレート、 ジメ夕 クリレート、 ジァリレート、 卜リアクリレート、 卜リメタクリレート、 トリァリレ ート、 テトラァクリレ一ト、 テトラメ夕クリレート、 テトラァリレート等が挙げら れるが、 反応性の点からはジァクリレート、 トリァクリレート、 テトラァクリレー ト等のァクリレートであることがより好ましい。 These flame retardants may be used alone or in combination of two or more. The content of the flame retardant other than the reactive flame retardant is 1 to 20 mass% of the flame retardant other than the reactive flame retardant with respect to the entire resin composition in order to prevent bleeding and deterioration of mechanical properties. %, More preferably 3 to 15% by mass. Also, as a flame retardant having a reactivity other than the reactive flame retardant with respect to 1 part by mass of the reactive flame retardant, It is more preferable to contain 0.5 to 10 parts by mass of a cyclic nitrogen-containing compound having at least one unsaturated group at a terminal. Specific examples of the group having an unsaturated group at the terminal include diacrylate, dimethacrylate, diarylate, triacrylate, trimethacrylate, triarylate, tetraacrylate, tetramethacrylate, tetraarylate, and the like. However, from the viewpoint of reactivity, acrylates such as diacrylate, triacrylate, and tetraacrylate are more preferable.
また、 環状の含窒素化合物としては、 イソシァヌル環、 シァヌル環等が挙げられ る。  Further, examples of the cyclic nitrogen-containing compound include an isocyanuric ring and a cyanuric ring.
上記の末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物の具体例と しては、 上記のシァヌル酸又はイソシァヌル酸の誘導体が挙げられ、 例えば、 イソ シァヌル酸 E〇変性ジァクリレート、 イソシァヌル酸 E O変性トリァクリレート、 トリイソシァヌ一ルトリァクリレート等が例示できる。  Specific examples of the cyclic nitrogen-containing compound having at least one unsaturated group at the terminal include the above-mentioned derivatives of sialic acid or isocyanuric acid, for example, isocyanuric acid E〇modified diacrylate, isocyanuric acid Examples thereof include EO-modified triacrylate and triisocyanuryl triacrylate.
また、 本発明においては、 難燃性を有しないが前記樹脂との反応性を有する架橋 剤を更に含有してもよい。 このような架橋剤としては、 主骨格の末端に不飽和基を 有する多官能性のモノマ一又はオリゴマーを用いることができる。  Further, in the present invention, a crosslinking agent which does not have flame retardancy but has reactivity with the resin may be further contained. As such a crosslinking agent, a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the main skeleton can be used.
なお、 本発明における難燃性を有しないが前記樹脂との反応性を有する架橋剤と は、 架橋性 (反応性) を有するが、 それ自身は難燃性は有しないものを意味し、 上 記の末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物のように、 架橋 性と難燃性とを同時に有する反応性難燃剤を除くものである。  In the present invention, the cross-linking agent having no flame retardancy but having reactivity with the resin means a cross-linking agent (reactivity) having no cross-linking property (reactivity). Excludes reactive flame retardants that have both crosslinkability and flame retardance, such as cyclic nitrogen-containing compounds having at least one unsaturated group at the terminal.
このような架橋剤としては、 以下の一般式 (a ) 〜 (c ) で表される 2〜4官能 性の化合物が挙げられる。 ここで、 Xは主骨格であり、 R 6〜R 9は末端に不飽和基 を有する官能性基であって、 (a ) は 2官能性化合物、 (b ) は 3官能性化合物、 ( c ) は 4官能性化合物である。 Examples of such a cross-linking agent include di- to tetra-functional compounds represented by the following general formulas (a) to (c). Here, X is a main skeleton, R 6 to R 9 are functional groups having an unsaturated group at the terminal, (a) is a bifunctional compound, (b) is a trifunctional compound, and (c) ) Is a tetrafunctional compound.
R-X-R7 ( a ) RXR 7 (a)
R8 R 8
Ri"X— R7 … (b ) R8 Ri "X—R 7 … ( b) R 8
R-X-R7 (c) RXR 7 (c)
R9 R 9
具体的には、 以下に示すような一般式の、 主骨格 Xが、 グリセリン、 ペン夕エリ スト一ル誘導体等の脂肪族アルキルや、 トリメリット、 ピロメリット、 テトラヒド 口フラン、 トリメチレントリオキサン等の芳香族環、 ビスフエノール等である構造 が挙げられる。 Specifically, in the following general formula, the main skeleton X is an aliphatic alkyl such as glycerin or a pennin erythritol derivative, or a trimellit, pyromellit, tetrahydrofuran, or a trimethylenetrioxane. Examples of the structure include an aromatic ring and bisphenol.
Figure imgf000026_0001
Figure imgf000026_0001
(a-1) (a-1)
Figure imgf000026_0002
Figure imgf000026_0002
(b— 1) (b-2)
Figure imgf000026_0003
(b-1) (b-2)
Figure imgf000026_0003
(b-3) (b— 4) (b-3) (b— 4)
Figure imgf000027_0001
Figure imgf000027_0001
(c- 1 ) (c- 2) 上記の架橋剤の具体例としては、 2官能性のモノマー又はオリゴマーとしては、 ビスフエノール F— E〇変性ジァクリレー卜、 ビスフエノール A— E O変性ジァク リレート、 トリプロピレングリコールジァクリレート、 ポリプロピレングリコール ジァクリレート、 ポリエチレングリコールジァクリレート、 ペンタエリスリト一ル ジァクリレ一トモノステアレート等のジァクリレートゃ、 それらのジメタクリレ一 ト、 ジァリレートが挙げられる。 (c-1) (c-2) Specific examples of the above-mentioned cross-linking agents include, as bifunctional monomers or oligomers, bisphenol FE-modified diacrylate, bisphenol A-EO-modified diacrylate, and trifunctional monomer or oligomer. Diacrylates such as propylene glycol diacrylate, polypropylene glycol diacrylate, polyethylene glycol diacrylate, and pentaerythritol diacrylate monostearate; and dimethacrylates and diarylates thereof.
また、 3官能性のモノマー又はオリゴマーとしては、 ペンタエリスリトールトリ ァクリレート、 トリメチロールプロパントリァクリレート、 トリメチロールプロパ ン P O変性トリァクリレート、 トリメチロールプロパン E O変性トリァクリレート 等のトリァクリレートや、 それらのトリメタクリレート、 トリァリレートが挙げら れる。  Examples of the trifunctional monomer or oligomer include triacrylates such as pentaerythritol triacrylate, trimethylolpropane triacrylate, trimethylolpropane PO-modified triacrylate, and trimethylolpropane EO-modified triacrylate. Of trimethacrylate and triarylate.
また、 4官能性のモノマー又はオリゴマーとしては、 ジトリメチロールプロパン テトラァクリレート、 ペン夕エリスリトールテトラァクリレート等が挙げられる。 上記の架橋剤は、 主骨格 Xとなる、 トリメリット酸、 ピロメリット酸、 テトラヒ ドロフランテトラカルボン酸、 1, 3, 5 —卜リヒドロキシベンゼン、 グリセリン、 ペンタエリストール、 2, 4 , 6 —トリス (クロロメチル) — 1 , 3 , 5 —トリオ キサン等より選ばれる 1種に、 末端に不飽和基を有する官能性基となる、 臭化ァリ ル、 ァリルアルコール、 ァリルァミン、 臭化メタリル、 メタリルアルコール、 メタ リルアミン等より選ばれる 1種を反応させて得られる。  Examples of the tetrafunctional monomer or oligomer include ditrimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, and the like. The above crosslinking agents are used as the main skeleton X: trimellitic acid, pyromellitic acid, tetrahydrofurantetracarboxylic acid, 1, 3, 5 — trihydroxybenzene, glycerin, pentaeristol, 2, 4, 6 — Tris (chloromethyl) — 1, 3, 5 — trioxane, etc., one of which is a functional group having an unsaturated group at the terminal, acrylyl bromide, aryl alcohol, arylamine, methallyl bromide , Methallyl alcohol, methallylamine and the like.
上記の架橋剤は、 前記反応性難燃剤 1質量部に対して、 0 . 5〜 1 0質量部含有 することが好ましい。  The crosslinking agent is preferably contained in an amount of 0.5 to 10 parts by mass based on 1 part by mass of the reactive flame retardant.
本発明に用いる樹脂組成物には、 上記の樹脂と難燃剤の他、 無機充填剤、 強化繊 維、 各種添加剤等を含有していてもよい。 無機充填剤を含有することによって、 樹脂加工品の機械的強度が向上するととも に、 寸法安定性を向上させることができる。 また、 反応性難燃剤を吸着させる基体 となって、 反応性難燃剤の分散を均一化する。 The resin composition used in the present invention may contain an inorganic filler, a reinforcing fiber, various additives, and the like, in addition to the resin and the flame retardant. By containing an inorganic filler, the mechanical strength of the resin processed product can be improved and the dimensional stability can be improved. In addition, it serves as a substrate on which the reactive flame retardant is adsorbed, so that the reactive flame retardant is uniformly dispersed.
無機充填剤としては、従来公知のものが使用可能であり、代表的なものとしては、 銅、 鉄、 ニッケル、 亜鉛、 錫、 ステンレス鋼、 アルミニウム、 金、 銀等の金属粉末、 ヒュームドシリカ、 珪酸アルミニウム、 珪酸カルシウム、 珪酸、 含水珪酸カルシゥ ム、 含水珪酸アルミニウム、 ガラスビ一ズ、 力一ポンプラック、 石英;^末、 雲母、 タルク、 マイ力、 クレー、 酸化チタン、 酸化鉄、 酸化亜鉛、 炭酸カルシウム、 炭酸 マグネシウム、 酸化マグネシウム、 酸化カルシウム、 硫酸マグネシウム、 チタン酸 カリウム、 ケイソゥ土等が挙げられる。 これらの充填剤は、 単独でも、 2種以上を 併用して用いてもよく、 また、 公知の表面処理剤で処理されたものでもよい。 無機充填剤の含有量は、 難燃性樹脂加工品全体に対して 1〜3 5質量%含有する ことが好ましく、 1〜2 0質量%がより好ましい。含有量が 1質量%より少ないと、 難燃性樹脂加工品の機械的強度が不足し、 寸法安定性が不充分であり、 更に反応性 難燃剤の吸着が不充分となるので好ましくない。 また、 3 5質量%を超えると、 難 燃性樹脂加工品が脆くなるので好ましくない。  As the inorganic filler, conventionally known ones can be used, and typical ones are metal powders such as copper, iron, nickel, zinc, tin, stainless steel, aluminum, gold, and silver, fumed silica, Aluminum silicate, calcium silicate, silicic acid, hydrated calcium silicate, hydrated aluminum silicate, glass beads, power pump rack, quartz; ^ powder, mica, talc, my power, clay, titanium oxide, iron oxide, zinc oxide, carbonate Examples include calcium, magnesium carbonate, magnesium oxide, calcium oxide, magnesium sulfate, potassium titanate, and diatomaceous earth. These fillers may be used alone or in combination of two or more, or may be those treated with a known surface treatment agent. The content of the inorganic filler is preferably from 1 to 35% by mass, more preferably from 1 to 20% by mass, based on the whole flame-retardant resin product. If the content is less than 1% by mass, the mechanical strength of the flame-retardant resin processed product is insufficient, the dimensional stability is insufficient, and the adsorption of the reactive flame retardant is insufficient. On the other hand, if it exceeds 35% by mass, the flame-retardant resin processed product becomes brittle, which is not preferable.
上記の無機充填剤のうち、 シリケ一ト層が積層してなる層状のクレーを用いるこ とが特に好ましい。 シリゲート層が積層してなる層状のクレーとは、 厚さが約 I n m、 一辺の長さが約 1 0 0 n mのシリゲート層が積層された構造を有しているクレ 一である。 したがって、 この層状のクレーはナノオーダ一で樹脂中に分散されて樹 脂とのハイブリット構造を形成し、 これによつて、 得られる難燃性樹脂加工品の耐 熱性、 機械強度等が向上する。 層状のクレーの平均粒径は 1 0 0 n m以下であるこ とが好ましい。  Among the above-mentioned inorganic fillers, it is particularly preferable to use a layered clay obtained by laminating a silicate layer. The layered clay formed by stacking the silicide layers is a clay having a structure in which a silicide layer having a thickness of about Inm and a length of one side of about 100 nm is stacked. Therefore, the layered clay is dispersed in the resin on the order of nanometers to form a hybrid structure with the resin, thereby improving the heat resistance, mechanical strength, and the like of the obtained flame-retardant resin processed product. The average particle size of the layered clay is preferably 100 nm or less.
層状のクレーとしては、 モンモリロナイト、 力オリナイ卜、 マイ力等が挙げられ るが、分散性に優れる点からモンモリ口ナイ卜が好ましい。また、層状のクレ一は、 樹脂への分散性を向上させるために表面処理されていてもよい。 このような層状の クレーは市販されているものを用いてもよく、 例えば 「ナノマー」 (商品名、 日商 岩井ベントナイト株式会社製) や、 「ソマシフ」 (商品名、 コーポケミカル社製) などが使用できる。  Examples of the layered clay include montmorillonite, force olinate, and my strength, and montmorillonite is preferred from the viewpoint of excellent dispersibility. Further, the layered clay may be surface-treated in order to improve the dispersibility in the resin. As such a layered clay, commercially available ones may be used, such as “Nanomer” (trade name, manufactured by Nissho Iwai Bentonite Co., Ltd.) and “Somasif” (trade name, manufactured by Corpo Chemical Co., Ltd.). Can be used.
層状のクレーの含有量は、 難燃性樹脂加工品全体に対して 1〜1 0質量%が好ま しい。 なお、 層状のクレ一は単独で使用してもよく、 他の無機充填剤と併用しても よい。 The content of the layered clay is preferably 1 to 10% by mass based on the entire flame-retardant resin processed product. That's right. The layered clay may be used alone or in combination with another inorganic filler.
また、 強化繊維を含有することによって、 例えば成形品の場合には機械的強度が 向上するとともに、 寸法安定性を向上させることができる。 強化繊維としては、 ガ ラス繊維、 炭素繊維、 金属繊維が挙げられ、 強度、 及び樹脂や無機充填剤との密着 性の点からガラス繊維を用いることが好ましい。 これらの強化繊維は、 単独でも、 2種以上を併用して用いてもよく、 また、 シランカップリング剤等の公知の表面処 理剤で処理されたものでもよい。  In addition, by containing the reinforcing fibers, for example, in the case of a molded product, the mechanical strength is improved and the dimensional stability can be improved. Examples of the reinforcing fiber include glass fiber, carbon fiber, and metal fiber, and it is preferable to use glass fiber from the viewpoint of strength and adhesion to a resin or an inorganic filler. These reinforcing fibers may be used alone or in combination of two or more kinds, or may be treated with a known surface treatment agent such as a silane coupling agent.
また、 ガラス繊維は、 表面処理されており、 更に樹脂で被覆されていることが好 ましい。 これにより、 熱可塑性ポリマ一との密着性を更に向上することができる。 表面処理剤としては、 公知のシランカップリング剤を用いることができ、 具体的 には、 メトキシ基及びエトキシ基よりなる群から選択される少なくとも 1種のアル コキシ基と、 アミノ基、 ビニル基、 アクリル基、 メタクリル基、 エポキシ基、 メル カプト基、 ハロゲン原子、 イソシァネート基よりなる群から選択される少なくとも 一種の反応性官能基を有するシランカップリング剤が例示できる。  Further, it is preferable that the glass fiber is surface-treated and further coated with a resin. Thereby, the adhesiveness with the thermoplastic polymer can be further improved. As the surface treatment agent, a known silane coupling agent can be used. Specifically, at least one alkoxy group selected from the group consisting of a methoxy group and an ethoxy group, an amino group, a vinyl group, Examples thereof include a silane coupling agent having at least one reactive functional group selected from the group consisting of an acrylic group, a methacryl group, an epoxy group, a mercapto group, a halogen atom, and an isocyanate group.
また、 被覆樹脂としても特に限定されず、 ウレタン樹脂やエポキシ樹脂等が挙げ られる。  The coating resin is not particularly limited, and examples thereof include a urethane resin and an epoxy resin.
強化繊維の配合量は、 難燃性樹脂加工品全体に対して 5〜4 0質量%含有するこ とが好ましく、 1 0〜3 5質量%がより好ましい。含有量が 5質量%より少ないと、 難燃性樹脂加工品の機械的強度が低下するとともに、 寸法安定性が不充分であるの で好ましくなく、 また、 4 0質量%を超えると、 樹脂の加工が困難になるので好ま しくない。  The compounding amount of the reinforcing fiber is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, based on the whole flame-retardant resin product. If the content is less than 5% by mass, the mechanical strength of the flame-retardant resin processed product is reduced, and the dimensional stability is insufficient. It is not desirable because processing becomes difficult.
• また、上記の無機充填剤及び強化繊維を含有し、難燃性樹脂加工品全体に対して、 無機充填剤及び強化繊維を 6 5質量%以下含有することが好ましく、 5 5質量%以 下含有することがより好ましい。 無機充填剤及び強化繊維の含有量が 6 5質量%を 超えると、 樹脂成分の割合が減少して成形性が低下したり、 得られる樹脂加工品が 脆くなつたりして物性が低下するので好ましくない。  • It contains the above-mentioned inorganic filler and reinforced fiber, and preferably contains 65% by mass or less of the inorganic filler and reinforced fiber with respect to the entire flame-retardant resin product, and 55% by mass or less. More preferably, it is contained. When the content of the inorganic filler and the reinforcing fiber exceeds 65% by mass, the ratio of the resin component is reduced, and the moldability is lowered, and the obtained resin processed product becomes brittle and the physical properties are deteriorated. Absent.
なお、 本発明に用いる樹脂組成物には、 本発明の目的である耐熱性、 耐候性、 耐 衝撃性等の物性を著しく損わない範囲で、 上記以外の常用の各種添加成分、 例えば 結晶核剤、 着色剤、 酸化防止剤、 離型剤、 可塑剤、 熱安定剤、 滑剤、 紫外線防止剤 などの添加剤を添加することができる。 また、 後述するように、 例えば紫外線によ つて樹脂と反応性難燃剤とを反応させる場合には、 紫外線開始剤等を用いることが でさる。 The resin composition used in the present invention includes various commonly used components other than those described above, such as crystal nuclei, as long as the physical properties such as heat resistance, weather resistance, and impact resistance of the present invention are not significantly impaired. Agents, colorants, antioxidants, release agents, plasticizers, heat stabilizers, lubricants, UV inhibitors And other additives. As will be described later, for example, when a resin is reacted with a reactive flame retardant by ultraviolet rays, an ultraviolet initiator or the like can be used.
着色剤としては特に限定されないが、 後述する放射線照射によって褪色しないも のが好ましく、 例えば、 無機顔料である、 ベンガラ、 鉄黒、 カーボン、 黄鉛等や、 フタ口シァニン等の金属錯体が好ましく用いられる。  The colorant is not particularly limited, but is preferably one that does not fade by irradiation as described below.For example, inorganic pigments such as red iron black, carbon black, graphite, and metal complexes such as phthalocyanine are preferably used. Can be
本発明の難燃性樹脂加工品は、 上記の樹脂組成物を固化した後、 加熱又は放射線 の照射によって前記樹脂と前記反応性難燃剤とを反応させて得られる。  The flame-retardant resin processed product of the present invention is obtained by solidifying the above-mentioned resin composition, and then reacting the resin with the reactive flame retardant by heating or irradiation with radiation.
樹脂組成物の固化は従来公知の方法が用いられ、 例えば、 熱可塑性樹脂を含む樹 脂組成物の場合には、 熱可塑性樹脂と反応性難燃剤とを溶融混練してペレツト化し た後、 従来公知の射出成形、 押出成形、 真空成形、 インフレーション成形等によつ て成形することができる。 溶融混練は、 単軸或いは二軸押出機、 バンバリ一ミキサ 一、 ニーダ一、 ミキシングロールなどの通常の溶融混練加工機を使用して行なうこ とができる。 混練温度は熱可塑性樹脂の種類によって適宜選択可能であり、 例えば ポリアミド系樹脂の場合には 2 4 0〜2 8 0 °Cで行なうことが好ましい、 また、 成 形条件も適宜設定可能であり特に限定されない。 なお、 この段階では全く架橋は進 行していないので、 成形時の余分のスプール部は、 熱可塑性樹脂としてのリサイク ルが可能である。  Conventionally known methods are used for solidification of the resin composition.For example, in the case of a resin composition containing a thermoplastic resin, the thermoplastic resin and the reactive flame retardant are melt-kneaded and pelletized, and then the conventional method is used. It can be formed by known injection molding, extrusion molding, vacuum molding, inflation molding or the like. Melt kneading can be carried out using a conventional melt kneading machine such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll. The kneading temperature can be appropriately selected depending on the type of the thermoplastic resin.For example, in the case of a polyamide resin, the kneading is preferably performed at 240 to 280 ° C., and the molding conditions can also be set as appropriate. Not limited. Since no cross-linking has progressed at this stage, the extra spool part during molding can be recycled as a thermoplastic resin.
一方、 熱硬化性樹脂の場合には、 上記と同様に、 熱硬化性樹脂と反応性難燃剤と を溶融混練してペレット化した後、 例えば、 従来公知の射出成形、 圧縮成形、 トラ ンスファー成形等を用いて成形することができる。  On the other hand, in the case of a thermosetting resin, similarly to the above, after the thermosetting resin and the reactive flame retardant are melt-kneaded and pelletized, for example, conventionally known injection molding, compression molding, transfer molding, and the like. It can be formed by using such as.
また、 塗膜化する場合には、 樹脂組成物をそのまま塗布してもよく、 適宜溶剤等 で希釈して塗布可能な溶液又は懸濁液とした後、 従来公知の方法によって乾燥、 塗 膜化してもよい。 塗膜化の方法としては、 ローラ一塗り、 吹き付け、 浸漬、 スピン コート等のコーティング方法等を用いることができ特に限定されない。  When forming a coating film, the resin composition may be applied as it is, or may be appropriately diluted with a solvent or the like to form a solution or suspension that can be applied, and then dried and formed into a film by a conventionally known method. May be. As a method for forming a coating film, a coating method such as roller one-coating, spraying, dipping, and spin coating can be used, and is not particularly limited.
上記の樹脂組成物は、 加熱又は放射線の照射によって、 反応性難燃剤の末端の不 飽和結合が、 樹脂と反応して架橋反応し、 樹脂中に安定に存在する。  In the above resin composition, the unsaturated bond at the terminal of the reactive flame retardant reacts with the resin and undergoes a crosslinking reaction by heating or irradiation with radiation, and is stably present in the resin.
反応性難燃剤と樹脂とを反応させる手段として加熱を用いる場合、 反応させる温 度は、 樹脂の成形温度より 5 °C以上高い温度とすることが好ましく、 1 0 °C以上高 い温度とすることがより好ましい。 また、 架橋の手段として放射線を用いる場合には、 電子線、 線、 ァ線、 X線、 紫外線等が利用できる。 なお、 本発明における放射線とは広義の放射線を意味し、 具体的には、 電子線や α線等の粒子線の他、 X線や紫外線等の電磁波までを含む意 味である。 When heating is used as a means for reacting the reactive flame retardant with the resin, the reaction temperature is preferably at least 5 ° C higher than the resin molding temperature, more preferably at least 10 ° C higher. Is more preferable. When radiation is used as a means for cross-linking, an electron beam, a ray, an a ray, an X ray, an ultraviolet ray, or the like can be used. The radiation in the present invention means radiation in a broad sense, and specifically includes not only particle beams such as electron beams and α-rays but also electromagnetic waves such as X-rays and ultraviolet rays.
上記のうち、 電子線又は r線の照射が好ましい。 電子線照射は公知の電子加速器 等が使用でき、加速エネルギーとしては、 2 . 5 M e V以上であることが好ましい。 ァ線照射は、 公知のコバルト 6 0線源等による照射装置を用いることができる。 ァ線照射は、 公知のコバルト 6 0線源等による照射装置を用いることができる。 r線は電子線に比べて透過性が強いために照射が均一となり好ましいが、 照射強度 が強いため、 過剰の照射を防止するために線量の制御が必要である。  Of the above, electron beam or r-beam irradiation is preferred. For the electron beam irradiation, a known electron accelerator or the like can be used, and the acceleration energy is preferably 2.5 MeV or more. Irradiation using a known cobalt 60 radiation source or the like can be used for the irradiation with the alpha rays. Irradiation using a known cobalt 60 radiation source or the like can be used for the irradiation with the alpha rays. r-rays are preferable because they have a higher transmittance than electron beams, so that irradiation is uniform and preferable. However, since the irradiation intensity is high, dose control is necessary to prevent excessive irradiation.
放射線の照射線量は 1 0 k G y以上であることが好ましく、 1 0〜 4 5 k G yが より好ましい。 この範囲であれば、 架橋によって上記の物性に優れる樹脂加工品が 得られる。 照射線量が 1 0 k G y未満では、 架橋による 3次元網目構造の形成が不 均一となり、未反応の架橋剤がプリ一ドアゥ卜する可能性があるので好ましくない。 また、 4 5 k G yを超えると、 酸化分解生成物による樹脂加工品の内部歪みが残留 し、 これによつて変形や収縮等が発生するので好ましくない。  The irradiation dose of radiation is preferably 10 kGy or more, more preferably 10 to 45 kGy. Within this range, a crosslinked resin article having excellent physical properties can be obtained. If the irradiation dose is less than 10 kGy, the formation of a three-dimensional network structure due to cross-linking becomes non-uniform, and the unreacted cross-linking agent may be prematurely dropped. On the other hand, if it exceeds 45 kGy, internal distortion of the resin-processed product due to the oxidative decomposition product remains, which is not preferable because deformation or shrinkage occurs.
このようにして得られた本発明の難燃性樹脂加工品は、 まず、 成形品として、 耐 熱性、 難燃性に加えて、 機械特性、 電気特性、 寸法安定性、 及び成形性に優れる。 したがって、 高度な耐熱性、 難燃性が要求される電気部品又は電子部品、 更には自 動車部品や光学部品、 例えば、 電磁開閉器やブレーカ一などの接点支持等のための 部材、 プリント基板等の基板、 集積回路のパッケージ、 電気部品のハウジング等と して好適に用いることができる。  The flame-retardant resin processed product of the present invention obtained as described above has, as a molded product, excellent mechanical properties, electrical properties, dimensional stability, and moldability in addition to heat resistance and flame retardancy. Therefore, electrical or electronic parts that require high heat resistance and flame retardancy, as well as automobile parts and optical parts, such as members for supporting contacts such as electromagnetic switches and breakers, printed circuit boards, etc. It can be suitably used as a substrate, a package for an integrated circuit, a housing for electric components, and the like.
- このような電気部品又は電子部品の具体例としては、 受電盤、 配電盤、 電磁開閉 器、 遮断器、 変圧器、 電磁接触器、 サーキットプロテク夕、 リレー、 トランス、 各 種センサ類、 各種モータ一類、 ダイオード、 トランジスタ、 集積回路等の半導体デ バイス等が挙げられる。  -Specific examples of such electrical or electronic components include power receiving boards, switchboards, electromagnetic switches, circuit breakers, transformers, electromagnetic contactors, circuit protectors, relays, transformers, various sensors, and various types of motors. , A diode, a transistor, and a semiconductor device such as an integrated circuit.
また、 冷却ファン、 バンパー、 ブレーキカバー、 パネル等の内装品、 摺動部品、 センサ、. モータ一等の自動車部品としても好適に用いることができる。  It can also be suitably used as interior parts such as cooling fans, bumpers, brake covers and panels, sliding parts, sensors, and automobile parts such as motors.
更に、 成形品のみならず、 上記の成形品や繊維等への難燃性コーティング塗膜と しても用いることもできる。 また、 上記の半導体デバイス等の電子部品又は電気部品の封止、 被覆、 絶縁等と して用いれば、 優れた耐熱性、 難燃性を付与させることができる。 すなわち、 例え ば、 上記の樹脂組成物を封止して樹脂を硬化させ、 更に上記の加熱又は放射線照射 による反応を行なうことにより、 半導体チップやセラミックコンデンサ等の電子部 品や電気素子を封止する難燃性封止剤として用いることができる。 封止の方法とし ては、 注入成形、 ポッティング、 トランスファ一成形、 射出成形、 圧縮成形等によ る封止が可能である。 また、 封止対象となる電子部品、 電気部品としては特に限定 されないが、 例えば、 液晶、 集積回路、 トランジスタ、 サイリスタ、 ダイオード、 コンデンサ等が挙げられる。 Further, it can be used as a flame-retardant coating film on not only molded articles but also the above-mentioned molded articles and fibers. Further, when used as sealing, coating, insulating, etc. of the above-mentioned electronic components or electric components such as semiconductor devices, excellent heat resistance and flame retardancy can be imparted. That is, for example, the above-described resin composition is sealed to cure the resin, and the above-described reaction by heating or irradiation is performed to seal electronic components and electric elements such as semiconductor chips and ceramic capacitors. It can be used as a flame retardant sealant. As a sealing method, sealing by injection molding, potting, transfer molding, injection molding, compression molding or the like is possible. The electronic components and electrical components to be sealed are not particularly limited, but include, for example, liquid crystals, integrated circuits, transistors, thyristors, diodes, capacitors, and the like.
以上説明したように、 本発明によれば、 樹脂への少量の添加でも難燃性に優れ、 更に、 ブリードアウト等を防止できる、 非ハロゲン系の反応性難燃剤及びそれを用 いた難燃性樹脂加工品を提供することができる。 したがって、 この難燃性樹脂加工 品は、 電気部品や電子部品等の樹脂成形品や、 半導体等の封止剤、 コ一ティング塗 膜等に好適に利用できる。 以下、 実施例を用いて本発明を更に詳細に説明するが、 本発明は実施例に限定さ れるものではない。  As described above, according to the present invention, a non-halogen-based reactive flame retardant which is excellent in flame retardancy even when added in a small amount to a resin and can prevent bleed-out and the like, and flame retardancy using the same A resin processed product can be provided. Therefore, this flame-retardant resin processed product can be suitably used for resin molded products such as electric parts and electronic parts, sealing agents for semiconductors and the like, and coating films. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to Examples.
[一般式 (I ) の反応性難燃剤の合成]  [Synthesis of reactive flame retardant of general formula (I)]
合成例 1 (化合物 ( I一 1 ) の合成)  Synthesis Example 1 (Synthesis of Compound (I-I-1))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 500m l 四つ口フラスコに、金属リチウム片 2. 08 g (0. 300モル)と蒸留 THF 100 m 1を入れ、 激しく攪拌しながら 4,4' -ジクロルビフエニル 22. 3 1 g (0. 100モル) の蒸留 THF 200m 1溶液を滴下した。 この際、 反応開始に伴う発 熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で滴下を終 了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカンテ一ショ ンにより取り除いた。  In a 500 ml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, put 2.08 g (0.300 mol) of lithium metal pieces and 100 ml of distilled THF vigorously. A solution of 23.1 g (0.100 mol) of 4,4'-dichlorobiphenyl in 200 ml of distilled THF was added dropwise with stirring. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The dropwise addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 000m 1四つ口フラスコに、 ォキシ塩化リン 91. 99 g (0. 600モル) と蒸留 TH F 30 Om lを入れ、 穏やかに窒素を流通しながらかき混ぜ、 0〜5°Cにて、 上記 の有機リチウム化合物溶液全量を滴下ロートより 3時間かけて加えた。 同温度で 6 時間、 室温で 1 2時間反応させ、 溶媒と過剰のォキシ塩化リンを減圧留去した。 残 渣に 300m lの乾燥酢酸ェチルを加えてかき混ぜ、 溶け残る塩をろ去し、 溶液を 減圧留去して 4, 4' -ビス(ジクロルホスホリル)ビフエニルを調整した。 Put 91.99 g (0.600 mol) of phosphorus oxychloride and 30 mL of distilled THF into a 1 000m four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel. The mixture was stirred while gently flowing nitrogen, and the whole amount of the organolithium compound solution was added at 0 to 5 ° C over 3 hours from a dropping funnel. 6 at the same temperature The reaction was allowed to proceed for 12 hours at room temperature, and the solvent and excess phosphorus oxychloride were distilled off under reduced pressure. 300 ml of dry ethyl acetate was added to the residue and mixed, and the remaining salt was removed by filtration. The solution was distilled off under reduced pressure to prepare 4,4'-bis (dichlorophosphoryl) biphenyl.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 000m 1四つ口フラスコに、 金属マグネシウム片 21. 87 g (0. 900モル) と蒸留 ジェチルエーテル 200m lを入れ、 激しく攪拌しながら臭化ァリル 72. 59 g (0. 600モル) の蒸留ジェチルエーテル 300m 1溶液を滴下し、 反応熱によ る穏やかな沸点還流状態を保った。 約 3時間で滴下終了後、 さらに 1時間沸点還流 した。 冷却後、 過剰の金属マグネシウムをデカンテーシヨンにより取り除いて臭化 ァリルマグネシウム溶液を調整した。  In a 1 000 m 1 four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 21.87 g (0.900 mol) of metal magnesium pieces and 200 ml of distilled getyl ether were placed. A solution of 72.59 g (0.600 mol) of acrylyl bromide in 300 ml of distilled getyl ether was added dropwise with vigorous stirring, and a gentle reflux of boiling point was maintained by the heat of reaction. After the addition was completed in about 3 hours, the mixture was refluxed at the boiling point for 1 hour. After cooling, excess magnesium metal was removed by decantation to prepare a magnesium bromide solution.
上記の 4,4' -ビス(ジクロルホスホリル)ビフエニル全量と蒸留 THF 30 Om 1を先ほどと同様の反応装置に仕込み、 0〜5°Cにて上記の臭化ァリルマグネシゥ ム溶液全量を滴下ロートより 3時間かけて加えた。 同温度で 6時間、 室温で 12時 間反応させ、 ジェチルエーテルを減圧留去した。 残渣を、 pHが中性付近に保たれ るように酸を加えながら 1 000m lの水中に投じ、 100m lの酢酸ェチルにて 5回抽出した。 水洗後、 酢酸ェチル相を分離して無水硫酸ナトリウムで乾燥、 乾燥 剤をろ去し、溶液を減圧留去して目的の化合物を 38. 58 g (収率 94%)得た。  The total amount of the above 4,4′-bis (dichlorophosphoryl) biphenyl and distilled THF 30 Om1 were charged into the same reactor as above, and the entire amount of the above arylmagnesium bromide solution was added at 0 to 5 ° C. from a dropping funnel. Added over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and getyl ether was distilled off under reduced pressure. The residue was poured into 1,000 ml of water while adding an acid so that the pH was maintained near neutrality, and extracted five times with 100 ml of ethyl acetate. After washing with water, the ethyl acetate phase was separated, dried over anhydrous sodium sulfate, the desiccant was removed by filtration, and the solution was distilled off under reduced pressure to obtain 38.58 g (yield 94%) of the desired compound.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( 1— 1) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (1-1) described above.
赤外吸収スペクトル(cm—り : V ring 1605, 1495、 リ OC 1635、 リ P=0 1160〜1250 Infrared absorption spectrum (cm-R: V ring 1605, 1495, ri OC 1635, ri P = 1160-1250
TOF-Massスぺクトル(M/Z) : 412,413 (分子量計算値 = 410.4328) TOF-Mass spectrum (M / Z): 412,413 (Calculated molecular weight = 410.4328)
匪 Rスぺクトル(δ, ppm): CH2=4.6〜4.7(8H), =CH_ 5.5〜5.6 (4H), -CH2- 3.3 (8H) , '芳香族 C- H 6.8〜7.4(8H) Negation R scan Bae spectrum (δ, ppm): CH 2 = 4.6~4.7 (8H), = CH_ 5.5~5.6 (4H), -CH 2 - 3.3 (8H), ' aromatic CH 6.8 to 7.4 (8H )
合成例 2 (化合物 ( I一 2) の合成)  Synthesis Example 2 (Synthesis of Compound (I-I-2))
合成例 1の臭化ァリルマグネシウム溶液の代わりに、 ァリルアルコール 34. 8 Instead of the aryl magnesium bromide solution of Synthesis Example 1, aryl alcohol 34.8
4 g (0. 600モル) とトリエチルァミン 60. 7 1 g (0. 600モル) の T HF 30 Om 1溶液を用いた以外は、 合成例 1と同様にして目的の化合物を 45.The same procedure as in Synthesis Example 1 was repeated except that a solution of 4 g (0.600 mol) and 60.71 g (0.600 mol) of triethylamine in THF30Om1 was used.
54 g . (収率 96 %) 得た。 54 g. (96% yield) was obtained.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (1 _ 2) の構造が確認できた。 赤外吸収スペクトル(cm—1): V ring 1605, 1495, リ OC 1635、 リ P=01160〜1250、 vP-0-C 1220, 1260 The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (1_2) described above. Infrared absorption spectrum (cm- 1 ): V ring 1605, 1495, Li OC 1635, Li P = 01160-1250, vP-0-C 1220, 1260
TOF-Massスぺクトル(M/Z) : 476,477 (分子量計算値 = 474.4328)  TOF-Mass spectrum (M / Z): 476,477 (Calculated molecular weight = 474.4328)
匪 Rスぺクトル(d, ppm): CH2= 5·0〜5.1 (8H), =CH - 5· 8〜5.9 (4Η), -CH2- 3.3 (8Η) , 芳香族 C-H 6.8〜7.4(8H) Negation R scan Bae spectrum (d, ppm): CH 2 = 5 · 0~5.1 (8H), = CH - 5 · 8~5.9 (4Η), -CH 2 - 3.3 (8Η), aromatic CH 6.8 to 7.4 (8H)
合成例 3 (化合物 ( I一 3) の合成)  Synthesis Example 3 (Synthesis of Compound (I-13))
合成例 1の臭化ァリルマグネシウム溶液の代わりに、 ジァリルアミン 5 8. 3 0 g (0. 6 00モル) とトリエチルァミン 60. 7 1 g (0. 6 00モル) の TH F 30 0m 1溶液を用いた以外は、 合成例 1と同様にして目的の化合物を 60. 5 5 g (収率 96 %) 得た。  Instead of the allylic magnesium bromide solution in Synthesis Example 1, 58.30 g (0.600 mol) of diarylamine and 60.71 g (0.600 mol) of triethylamine in THF 300 m1 Except for using the solution, 65.55 g (96% yield) of the target compound was obtained in the same manner as in Synthesis Example 1.
この化合物の赤外吸収スペクトル、 T〇F_Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I一 3) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, T-F_Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-13) described above.
赤外吸収スペクトル(cm—1) : V ring 1603, 1495, v C=C 1635, リ P=01160〜1250 TOF- Massスペクトル(M/Z) : 632, 633 (分子量計算値 = 630.7508) Infrared absorption spectrum (cm- 1 ): V ring 1603, 1495, v C = C 1635, P = 01160-1250 TOF-Mass spectrum (M / Z): 632, 633 (calculated molecular weight = 630.7508)
NMR スぺク トル(δ, ppm) : CH2= 4· 9〜 5.0 (16H), =CH_ 5.8〜5.9(8H), _CH2_ 3.K16H), 芳香族 C-H 6.8〜7.4 (8H) NMR spectrum (δ, ppm): CH 2 = 4.9 ~ 5.0 (16H), = CH_ 5.8 ~ 5.9 (8H), _CH 2 _ 3.K16H), aromatic CH 6.8 ~ 7.4 (8H)
合成例 4 (化合物 (I一 4) の合成)  Synthesis Example 4 (Synthesis of Compound (I-14))
合成例 1の臭化ァリルマグネシウム溶液の代わりに、 ァリルアミン 34. 2 5 g (0. 60 0モル) とトリエチルァミン 60. 7 1 (0. 6 00モル) の THF 3 00m 1溶液を用いた以外は、 合成例 1と同様にして目的の化合物を 45. 1 7 g (収率 9 6 %) 得た。  Instead of the aryl magnesium bromide solution of Synthesis Example 1, a solution of 34.25 g (0.600 mol) of arylamine and 60.71 (0.600 mol) of triethylamine in 300 ml of THF was used. Except for the above, 45.17 g (yield: 96%) of the target compound was obtained in the same manner as in Synthesis Example 1.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I一 4) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-14) described above.
赤外吸収スペクトル(cm—1) : リ NH 3260, δΝΗ 1630, レ ring 1603, 1495、 レ C=C 1635、 vP=0 1160〜1250 Infrared absorption spectrum (cm- 1 ): Re NH 3260, δΝΗ 1630, Le ring 1603, 1495, Le C = C 1635, vP = 1160-1250
TOF-Massスぺクトル(M/Z) : 472, 473 (分子量計算値 = 470.4924)  TOF-Mass spectrum (M / Z): 472, 473 (Calculated molecular weight = 470.4924)
NMRスぺクトル(<5, ppm): CH2= 4.7〜4.8 (8H), =CH- 5.5〜5.7 (4H) , -CH2- 2.8(8H), >NH 3.3(4H), 芳香族 C - H 6.8〜7.4(8H) NMR scan Bae spectrum (<5, ppm): CH 2 = 4.7~4.8 (8H), = CH- 5.5~5.7 (4H), -CH 2 - 2.8 (8H),> NH 3.3 (4H), aromatic C -H 6.8-7.4 (8H)
合成例 5 (化合物 ( I一 5) の合成)  Synthesis Example 5 (Synthesis of Compound (I-I-5))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1000m 1四つ口フラスコに、 金属マグネシウム片 21. 87 g (0. 900モル) と蒸留 ジェチルエーテル 200m lを入れ、激しく攪拌しながら 2-クロロェチルビニルェ 一テル 63. 93 g (0. 600モル) の蒸留ジェチルエーテル 300m 1溶液を 滴下し、 反応熱による穏やかな沸点還流状態を保った。 約 3時間で滴下終了後、 さ らに 1時間沸点還流した。 冷却後、 過剰の金属マグネシウムをデカンテーシヨンに より取り除いて塩化ビニロキシェチルマグネシウム溶液を調整した。 1000m equipped with reflux tube with drying tube, mechanical stirrer, nitrogen inlet tube, dropping funnel 1 In a four-necked flask, add 21.87 g (0.900 mol) of metal magnesium pieces and 200 ml of distilled getyl ether, and stir vigorously to give 2-chloroethylvinyl ether 63.93 g (0.9%). 300 mol) of distilled getyl ether (300 mol) was added dropwise, and a gentle reflux of boiling point due to reaction heat was maintained. After the addition was completed in about 3 hours, the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal magnesium was removed by decantation to prepare a vinyloxyxetil magnesium chloride solution.
この後は、 合成例 1の臭化ァリルマグネシウム溶液の代わりに、 上記の塩化ビニ ロキシェチルマグネシウム溶液全量を用いた以外は合成例 1と同様にして目的の化 合物を 48. 8 1 g (収率 92%) 得た。  Thereafter, the desired compound was prepared in the same manner as in Synthesis Example 1 except that the total amount of the vinyloxyxetyl magnesium chloride solution described above was used instead of the aryl magnesium bromide solution of Synthesis Example 1. g (yield 92%) was obtained.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( 1— 5) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (1-5) described above.
赤外吸収スペクトル(cm一1) : レ ring 1603, 1495、 レ C=C 1635、 リ P=01160〜1250, V C-0-C 1060 Infrared absorption spectrum (cm- 1 ): Les ring 1603, 1495, Les C = C 1635, Les P = 01160-1250, V C-0-C 1060
TOF- Massスぺクトル(M/Z) : 532, 533 (分子量計算値 =530.5400)  TOF-Mass spectrum (M / Z): 532, 533 (Calculated molecular weight = 530.5400)
腿 Rスぺクトル(δ, ppm): CH2= 5.1〜5.2(8H), =CH- 6· 2〜6.3 (4H), -0CH2- 3.2(8H) -CH2P- 2.7(4H), 芳香族 C- H 6.8〜7.4(8H) Thigh R scan Bae spectrum (δ, ppm): CH 2 = 5.1~5.2 (8H), = CH- 6 · 2~6.3 (4H), -0CH 2 - 3.2 (8H) -CH 2 P- 2.7 (4H) , Aromatic C-H 6.8 ~ 7.4 (8H)
合成例 6 (化合物 (I一 6) の合成)  Synthesis Example 6 (Synthesis of Compound (I-I-6))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 50 Om 1 四つ口フラスコに、金属リチウム片 2. 08 g (0. 300モル)と蒸留 THF 1 00 m 1を入れ、激しく攪拌しながらビス(4-クロ口フエニル)エーテル 23.91 g(0. 100モル) の蒸留 THF 20 Om 1溶液を滴下した。 この際、 反応開始に伴う発 熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で滴下を終 了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカンテ一ショ ンにより取り除いた。  In a 50 Om 1 four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 2.08 g (0.300 mol) of lithium metal pieces and 100 ml of distilled THF were placed. A solution of 23.91 g (0.100 mol) of bis (4-chlorophenyl) ether in distilled THF 20 Om1 was added dropwise with vigorous stirring. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The dropwise addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1000m 1四つ口フラスコに、 ォキシ塩化リン 91. 99 g (0. 600モル) と蒸留 TH F 300m lを入れ、 穏やかに窒素を流通しながらかき混ぜ、 0〜5tにて上記の 有機リチウム化合物溶液全量を滴下ロートより 3時間かけて加えた。 同温度で 6時 間、 室温で 12時間反応させ、 溶媒と過剰のォキシ塩化リンを減圧留去した。 残渣 に 30 Om lの乾燥酢酸ェチルを加えてかき混ぜ、 溶け残る塩をろ去し、 溶液を減 圧留去してビス(4-ジクロルホスホリルフエニル)エーテルを調整した。 In a 1000m four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, put 91.99 g (0.600 mol) of phosphorus oxychloride and 300 ml of distilled THF into the flask and gently add The mixture was stirred while flowing nitrogen, and the entire amount of the above-mentioned organolithium compound solution was added from 0 to 5 t from a dropping funnel over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess phosphorus oxychloride were distilled off under reduced pressure. Add 30 Oml of dry ethyl acetate to the residue and stir to remove residual salt and filter out the solution. The pressure was distilled off to prepare bis (4-dichlorophosphorylphenyl) ether.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 0m 1四つ口フラスコに、 金属マグネシウム片 2 1. 8 7 g (0. 900モル) と蒸留 ジェチルェ一テル 2 0 Om lを入れ、激しく攪拌しながら -プロモスチレン 1 0 9. 87 g (0. 6 00モル) の蒸留ジェチルエーテル 3 0 Om 1溶液を滴下し、 反応 熱による穏やかな沸点還流状態を保った。 約 3時間で滴下終了後、 さらに 1時間沸 点還流した。 冷却後、 過剰の金属マグネシウムをデカンテーシヨンにより取り除い て臭化 スチリルマグネシウム溶液を調整した。  In a 1000m four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 2.187 g (0.900 mol) of magnesium metal pieces and distilled Jetil ether 2 Add 0 Oml and add vigorously stirring -promostyrene 1 O 9.87 g (0.600 mol) of distilled getyl ether 30 Om 1 solution dropwise to maintain a gentle boiling point reflux due to reaction heat. Was. After the addition was completed in about 3 hours, the mixture was refluxed for another 1 hour. After cooling, excess metal magnesium was removed by decantation to prepare a styrylmagnesium bromide solution.
この後は、上記のビス(4-ジクロルホスホリルフエニル)エーテル全量と臭化 p -ス チリルマグネシウム溶液全量を用い、合成例 1 と同様にして目的の化合物を 62. 0 7 g (収率 92 %) 得た。  Thereafter, 62.07 g (yield) of the target compound was obtained in the same manner as in Synthesis Example 1 using the entire amount of the above bis (4-dichlorophosphorylphenyl) ether and the entire amount of the p-styrylmagnesium bromide solution. Rate 92%).
この化合物の赤外吸収スペクトル、 T〇F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (I一 6) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, T-F-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-16) described above.
赤外吸収スペクトル(cnf1) : レ ring 1605, 1495、 vC=C 1630、 レ P=01160〜1250 TOF-Massスぺクトル(M/Z) : 676, 677 (分子量計算値 = 674.7160) Infrared absorption spectrum (cnf 1 ): Les ring 1605, 1495, vC = C 1630, Les P = 01160-1250 TOF-Mass spectrum (M / Z): 676, 677 (Calculated molecular weight = 674.7160)
應 Rスペクトル(δ, ppm) : CH2= 4.6〜4.7(8H), =CH- 6.2〜6.3(4H), 芳香族 C-H 6·8〜7.4(24Η) R spectrum (δ, ppm): CH 2 = 4.6 to 4.7 (8H), = CH- 6.2 to 6.3 (4H), aromatic CH 6.8 to 7.4 (24Η)
合成例 7 (化合物 ( I一 7) の合成) '  Synthesis Example 7 (Synthesis of Compound (I-I-7)) ''
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 50 Om 1 四つ口フラスコに、金属リチウム片 2. 08 g (0. 3 0 0モル)と蒸留 THF 1 00 m 1を入れ、激しく攪拌しながらビス(4-クロ口フエニル)メタン 2 3. 7 1 g (0. In a 50 Om 1 four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 2.08 g (0.300 mol) of lithium metal pieces and 100 ml of distilled THF were placed. And add viscous bis (4-chlorophenyl) methane 23.7 1 g (0.
1 00モル) の蒸留 THF 20 Om 1溶液を滴下した。 この際、 反応開始に伴う発 熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で滴下を終 了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカンテ一ショ ンにより取り除いた。 (100 mol) of a distilled THF 20 Om 1 solution was added dropwise. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The dropwise addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 0 0 Om 100 Om equipped with reflux tube with drying tube, mechanical stirrer, nitrogen inlet tube, dropping funnel
1四つ口フラスコに、 フエニルホスホリルジクロリド 1 1 6. 9 9 g (0. 6 0 0 モル) と蒸留 THF 3 0 Om 1を入れ、 穏やかに窒素を流通しながらかき混ぜ、 0 〜 5 °Cにて先の有機リチウム化合物溶液全量を滴下口一トより 3時間かけて加えた。 同温度で 6時間、 室温で 1 2時間反応させ、 溶媒と過剰のフエニルホスホリルジク ロリドを減圧留去した。 残渣に 3 0 Om lの乾燥酢酸ェチルを加えてかき混ぜ、 溶 け残る塩をろ去し、溶液を減圧留去してビス [4- (クロルフエニルホスホリル)フエ二 ル]メタンを調整した。 1 In a four-necked flask, add phenylphosphoryl dichloride (1.169) g (0.600 mol) and distilled THF (30 Om1), stir while gently flowing nitrogen, and mix at 0-5 ° C. , The entire amount of the organolithium compound solution was added from the dropping port over 3 hours. The reaction is carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess phenylphosphoryl The chloride was distilled off under reduced pressure. 30 Oml of dry ethyl acetate was added to the residue and the mixture was stirred, the remaining salt was removed by filtration, and the solution was distilled off under reduced pressure to prepare bis [4- (chlorophenylphosphoryl) phenyl] methane.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 0m 1四つ口フラスコに、 ; J-ヒドロキシスチレン 3 6. 0 5 g (0. 30 0モル) 、 ト リエチルァミン 30. 36 g (0. 3 00モル) 、 THF 2 0 0m lを入れ、 0〜 5°Cにて、 上述のビス [4- (クロルフエニルホスホリル)フエニル]メタン全量の TH F 30 Om 1溶液を滴下した。 同温度で 3時間、 室温で 1 0時間反応後、 溶媒の約 半量を減圧留去して 1 50 0m lの水に投じ、 1 50m lの酢酸ェチルで 5回抽出、 酢酸ェチル相を無水硫酸ナトリウムで乾燥、 ろ過、 減圧留去して、 目的の化合物を 6 0. 7 0 g (収率 9 3 %) 得た。  A 100-m 4-neck flask equipped with a reflux tube with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel; 36.5 g (0.300 mol) of J-hydroxystyrene, triethylamine 30.36 g (0.300 mol) and THF200 ml were added, and at 0 to 5 ° C., the above-mentioned total amount of bis [4- (chlorophenylphosphoryl) phenyl] methane was THF 30 Om 1. The solution was added dropwise. After reacting at the same temperature for 3 hours and at room temperature for 10 hours, about half of the solvent was distilled off under reduced pressure, poured into 1500 ml of water, and extracted with 150 ml of ethyl acetate five times.The ethyl acetate phase was sulfuric anhydride. Drying over sodium, filtration and evaporation under reduced pressure gave 60.70 g (yield 93%) of the desired compound.
この化合物の赤外吸収スぺクトル、 TO F— Ma s sスぺクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( 1— 7) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (1-7) described above.
赤外吸収スペクトル(cm—り : y ring 1605, 1495, v C=C 1630, リ P=01160〜1250, v P-O-C 1220, 1260  Infrared absorption spectrum (cm-ray: y ring 1605, 1495, v C = C 1630, P = 01160-1250, v P-O-C 1220, 1260
TOF- Massスペクトル(M/Z) : 654, 655 (分子量計算値 = 652.6672)  TOF-Mass spectrum (M / Z): 654, 655 (calculated molecular weight = 652.6672)
腿 Rスペクトル(δ, ppm) : CH2= 4.5〜4.7(4H), =CH- 6.2〜6.3 (2H) , フエニル -CH2 - フエニル 2.8(2H), 芳香族 C-H 6·8〜7.4(26Η) Thigh R spectrum (δ, ppm): CH 2 = 4.5 to 4.7 (4H), = CH- 6.2 to 6.3 (2H), phenyl -CH 2 -phenyl 2.8 (2H), aromatic CH 6.8 to 7.4 (26Η) )
合成例 8 (化合物 ( I一 8 ) の合成)  Synthesis Example 8 (Synthesis of Compound (I-18))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 500m l 四つ口フラスコに、金属リチウム片 2. 08 g (0. 3 0 0モル)と蒸留 THF 1 00 m 1を入れ、 激しく攪拌しながら 2, 2-ビス(4-クロ口フエニル)プロパン 2 5. 97 g (0. 1 00モル) の蒸留 THF 2 00m 1溶液を滴下した。 この際、 反応開始 に伴う発熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で 滴下を終了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカン テーシヨンにより取り除いた。  In a 500 ml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 2.08 g (0.3000 mol) of lithium metal pieces and 100 ml of distilled THF were placed. Then, while vigorously stirring, a solution of 2.97 g (0.100 mol) of 2,2-bis (4-chlorophenyl) propane in 200 ml of distilled THF was added dropwise. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 0m 1四つ口フラスコに、 α-ナフチルホスホリルジクロリド 147. 02 g (0. 600 モル) と蒸留 THF 3 0 Om 1を入れ、 穏やかに窒素を流通しながらかき混ぜ、 0 〜5°Cにて、 上記の有機リチウム化合物溶液全量を滴下ロートより 3時間かけて加 えた。 同温度で 6時間、 室温で 1 2時間反応させ、 溶媒と過剰の α_ナフチルホス ホリルジクロリ ドを減圧留去した。 残渣に 30 0m lの乾燥酢酸ェチルを加えてか き混ぜ、 溶け残る塩をろ去し、 溶液を減圧留去して 2, 2-ビス [4- (クロル ひ-ナフチ ルホスホリル)フエニル]プロパンを調整した。 A 100-m 1-neck flask equipped with a reflux tube with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 147.02 g (0.600 mol) of α-naphthyl phosphoryl dichloride and distilled THF 30 Om Add 1 and stir while gently flowing nitrogen.Add all the above organolithium compound solution from 0 to 5 ° C over 3 hours from dropping funnel. Yeah. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess α_naphthylphosphoryl dichloride were distilled off under reduced pressure. 300 ml of dry ethyl acetate is added to the residue and stirred, the remaining salt is removed by filtration, and the solution is distilled off under reduced pressure to give 2,2-bis [4- (chloro-naphthylphosphoryl) phenyl] propane. It was adjusted.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 0m 1四つ口フラスコに、 アミノスチレン 3 5. 75 g (0. 3 0 0モル) 、 トリエ チルァミン 30. 36 g (0. 30 0モル) 、 THF 200m lを入れ、 0〜 5 °C にて、 上述の 2, 2-ビス [4- (クロルひ-ナフチルホスホリル)フエニル]プロパン全量 の THF 30 Om 1溶液を滴下した。 同温度で 3時間、 室温で 1 0時間反応後、 溶 媒の約半量を減圧留去して 1 5 00m lの水に投じ、 1 5 0m lの酢酸ェチルで 5 回抽出、 酢酸ェチル相を無水硫酸ナトリウムで乾燥、 ろ過、 減圧留去して、 目的の 化合物を 7 3. 99 g (収率 9 5%) 得た。  A 100.000m four-necked flask equipped with a reflux tube with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 3.75 g (0.3000 mol) of aminostyrene and 30.36 of triethylamine. g (0.300 mol) and 200 ml of THF, and at 0-5 ° C., a solution of the above total amount of 2,2-bis [4- (chloro-naphthylphosphoryl) phenyl] propane in THF 30 Om 1 Was dropped. After reacting at the same temperature for 3 hours and then at room temperature for 10 hours, about half of the solvent was distilled off under reduced pressure, poured into 1500 ml of water, extracted five times with 150 ml of ethyl acetate, and the ethyl acetate phase was extracted. After drying over anhydrous sodium sulfate, filtration and evaporation under reduced pressure, 73.99 g (yield 95%) of the desired compound was obtained.
この化合物の赤外吸収スペクトル、 T〇F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I一 8) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, T-F-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-18) described above.
赤外吸収スペクトル(cnf1) : v H 3240, δ NH 1640, v ring 1605, 1495、 リ C=C 1630、 vP=0 1160〜1250 Infrared absorption spectrum (cnf 1 ): v H 3240, δ NH 1640, v ring 1605, 1495, C = C 1630, vP = 1160-1250
TOF-Massスぺクトル(M/Z) : 780, 781 (分子量計算値 = 778.8702)  TOF-Mass spectrum (M / Z): 780, 781 (Calculated molecular weight = 778.8702)
NMRスペクトル(<5, ppm) : CH2= 4.5〜4·7(4Η), =CH- 6·1〜6.2(2Η), >NH 3.2(2H), -CH31. (6H) , 芳香族 C_H 6.8〜7.4(30H) NMR spectrum (<5, ppm): CH 2 = 4.5 to 4.7 (4Η), = CH- 6.1 to 6.2 (2Η),> NH 3.2 (2H), -CH 3 1. (6H), aromatic Tribe C_H 6.8 ~ 7.4 (30H)
合成例 9 (化合物 ( I一 9) の合成)  Synthesis Example 9 (Synthesis of Compound (I-19))
ひ-ナフチルホスホリルジクロリドの代わりに -ビフエニルホスホリルジクロリ ド 1 6 2. 6 5 g (0. 600モル) を、 -アミノスチレンの代わりに N -ァリル - アミノスチレン 47. 7 7 g (0. 300モル) を用いた他は、 合成例 8と同様に して目的の目的の化合物を 82. 9 1 g (収率 9 1 %) 得た。  16-2.65 g (0.600 mol) of -biphenylphosphoryl dichloride in place of para-naphthylphosphoryl dichloride and 47.77 g of N-aryl-aminostyrene in place of -aminostyrene Except for using 300 mol), 82.91 g (yield 91%) of the desired target compound was obtained in the same manner as in Synthesis Example 8.
この化合物の赤外吸収スペクトル、 TOF— M a s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (I一 9) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-19) described above.
赤外吸収スペクトル(cnf1) : V ring 1605, 1495, v C=C 1630, レ P=0 1160〜1250 T0F_Massスペクトル(M/Z) : 913, 914 (分子量計算値 = 911.075) Infrared absorption spectrum (cnf 1 ): V ring 1605, 1495, v C = C 1630, P = 0 = 1160-1250 T0F_Mass spectrum (M / Z): 913, 914 (calculated molecular weight = 911.075)
醒 Rスペクトル(δ, ppm) : CH2= 4.4〜4.5および 4.7〜4·8(8Η), -CH- 5.7〜5.8 および 6.1〜6.2(4H), -CH2- 2.8(4H), -CH31.4 (6H) , 芳香族 C - H 6·7〜7·6(34Η) 合成例 1 0 (化合物 ( I 一 1 0) の合成) Awakening: R spectrum (δ, ppm): CH 2 = 4.4~4.5 and 4.7~4 · 8 (8Η), -CH- 5.7~5.8 and 6.1~6.2 (4H), -CH 2 - 2.8 (4H), -CH 3 1.4 (6H), Aromatic C-H6.7-7.6 (34Η) Synthesis Example 10 (Synthesis of Compound (I-I-10))
ォキシ塩化リンの代わりにフエニルホスホリルジクロリ ド 8 0. 9 9 g (0. 6 00モル) を、臭化ァリルの代わりに クロルメチルスチレン 45. 7 9 g (0. 3 0 0モル)を用いた他は、合成例 1と同様にして目的の化合物を 58. 3 9 g (収 率 92%) 得た。  Phosphoryl chloride was replaced by 80.99 g (0.600 mole) of phenylphosphoryl dichloride, and 47.9 g (0.3000 mole) of chloromethylstyrene was replaced by arylmethyl bromide. Except for the use, in the same manner as in Synthesis Example 1, 58.39 g (yield 92%) of the desired compound was obtained.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I一 1 0) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-10) described above.
赤外吸収スペクトル(cnr1) : ring 1605, 1495、 v C=C 1635、 P=0 1160〜1250 TOF- Massスぺクトル(M/Z) : 636, 637 (分子量計算値 = 634.6940) Infrared absorption spectrum (cnr 1 ): ring 1605, 1495, v C = C 1635, P = 0 1160-1250 TOF-Mass spectrum (M / Z): 636, 637 (calculated molecular weight = 634.6940)
匪 Rスぺクトル(δ, ppm): CH2=4.7〜4.8(4H), =CH_ 5.5〜5.6 (2H), -CH2- 3.4(4H), 芳香族 C - H 6.8〜7.4(26H) Negation R scan Bae spectrum (δ, ppm): CH 2 = 4.7~4.8 (4H), = CH_ 5.5~5.6 (2H), -CH 2 - 3.4 (4H), aromatic CH 6.8 to 7.4 (26H)
合成例 1 1 (化合物 ( I一 1 1 ) の合成)  Synthesis Example 1 1 (Synthesis of Compound (I-111))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 0 0 0m 1四つ口フラスコに、 金属リチウム片 2. 0 8 g (0. 3 00モル) と蒸留 THF 1 00m lを入れ、 激しく攪拌しながら 4, 4' -ジクロル- 1,1, -ビナフチル 32. 32 g (0. 1 00モル) の蒸留 THF 500m 1溶液を滴下した。 この際、 反応 開始に伴う発熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時 間で滴下を終了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデ カンテーションにより取り除き、約 2倍の濃度になるように溶媒を減圧濃縮した。 この後、臭化ァリルマグネシウム溶液の代わりに 2-ヒドロキシェチルァクリレー ト 69. 67 g (0. 60 0モル) とトリエチルァミン 6 0. 7 1 g (0. 6 0 0 モル) の THF 3 0 Om 1溶液を用いた他は、 合成例 1と同様にして目的の化合物 —を 7 3. 41 g (収率 9 1 %) 得た。  A 100-m flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 2.08 g (0.300 mol) of lithium metal pieces and distilled THF 100 m. Then, a solution of 32.32 g (0.100 mol) of 4,4'-dichloro-1,1, -binaphthyl in 500 ml of distilled THF was added dropwise with vigorous stirring. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation, and the solvent was concentrated under reduced pressure to about twice the concentration. After this, 69.67 g (0.600 mol) of 2-hydroxyethyl acrylate and 60.71 g (0.6000 mol) of triethylamine are used instead of the allylmagnesium bromide solution. In the same manner as in Synthesis Example 1 except that a THF 30 Om 1 solution of THF was used, 73.41 g (yield 91%) of the desired compound — was obtained.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (I一 1 1) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-11) described above.
赤外吸収スペクトル(cm—1) : リ 001720、 ring 1605, 1500、 リ OC 1635、 v P=0 1160〜1250、 v C-O-C 1060 Infrared absorption spectrum (cm- 1 ): Li 001720, ring 1605, 1500, Li OC 1635, v P = 1160-1250, v COC 1060
TOF - Massスぺクトル(M/Z) : 808,809 (分子量計算値 = 806.7036)  TOF-Mass spectrum (M / Z): 808,809 (Calculated molecular weight = 806.7036)
NMRスペクトル(δ, ppm) : CH2= 5.3〜5.4(8H), =CH - 6.3〜6.5(4H), -COOCH2CH2- 3.3〜3..6(16H), 芳香族 C— H 6.8〜7.7(12H) 合成例 12 (化合物 ( I一 1 2 ) の合成) NMR spectrum (δ, ppm): CH 2 = 5.3~5.4 (8H), = CH - 6.3~6.5 (4H), -COOCH 2 CH 2 - 3.3~3..6 (16H), aromatic CH 6.8 ~ 7.7 (12H) Synthesis Example 12 (Synthesis of Compound (I-I2))
ォキシ塩化リンの代わりにフエニルホスホリルジクロリド 1 1 6. 99 g (0. 600モル)を用いた以外は合成例 1と同様にして、 4,4' -ビス(クロルフエニルホ スホリル)ビフエニルを調整した。  4,4′-bis (chlorophenylphosphoryl) biphenyl was prepared in the same manner as in Synthesis Example 1 except that phenylphosphoryl dichloride (1.169 g, 0.600 mol) was used instead of phosphorus oxychloride.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1000m 1四つ口フラスコに、 N_ (2-アミノエチル)メタクリルアミド 38.45 g(0.300 モル) とトリエチルァミン 30. 36 g (0. 300モル) の THF400m l溶 液を入れ、 0〜5tにて上記の 4,4' -ビス(クロルフエニルホスホリル)ビフエニル 全量の THF 400m 1溶液を 4時間かけて滴下した。 同温度で 4時間、 室温で 1 2時間反応させ、 約半量の溶媒を減圧留去して 200 Om 1の水に投じ、 1 50m 1の酢酸ェチルで 5回抽出した。酢酸ェチル相を無水硫酸ナトリゥムで乾燥、ろ過、 減圧留去して、 目的の化合物を 60. 23 g (収率 92%) 得た。  N_ (2-aminoethyl) methacrylamide 38.45 g (0.300 mol) and triethylamine 30.36 g in a 1000 m four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel (0.300 mol) of THF (400 ml) was added, and a 0,5 t solution of the above 4,4'-bis (chlorophenylphosphoryl) biphenyl in a THF (400 ml) solution was added dropwise over 4 hours. The reaction was carried out at the same temperature for 4 hours and at room temperature for 12 hours. About half of the solvent was distilled off under reduced pressure, poured into 200 Om 1 of water, and extracted five times with 150 mL of ethyl acetate. The ethyl acetate phase was dried over anhydrous sodium sulfate, filtered, and evaporated under reduced pressure to obtain 60.23 g (yield: 92%) of the desired compound.
この化合物の赤外吸収スぺクトル、 TOF-Ma s sスぺクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (I一 12) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-12) described above.
赤外吸収スペクトル(cm—1): リ NH 3260, 3080、アミド- Π 1645, リ ring 1605, 1495、 V C=C 1630、 vP=0 1160〜1250 Infrared absorption spectrum (cm— 1 ): NH 3260, 3080, amide-Π 1645, ring 1605, 1495, VC = C 1630, vP = 1160-1250
TOF-Massスぺクトル(M/Z) : 656, 657 (分子量計算値 = 654.6876)  TOF-Mass spectrum (M / Z): 656, 657 (Calculated molecular weight = 654.6876)
腿 R スぺク トル(δ, ppra) : CH2= 4·7〜5.0(4Η), - CH2- 2.8〜3.4(8H), >NH 3, 1,3.5 (4H), -CH3 1.6(6H), 芳香族 C-H 6.8〜7.4 (18H) Thigh R spectrum (δ, ppra): CH 2 = 4 · 7~5.0 (4Η), - CH 2 - 2.8~3.4 (8H),> NH 3, 1,3.5 (4H), -CH 3 1.6 (6H), aromatic CH 6.8-7.4 (18H)
合成例 13 (化合物 ( I一 1 3) の合成)  Synthesis Example 13 (Synthesis of Compound (I-I-3))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1000m 1四つ口フラスコに、 金属リチウム片 4. 1 6 g (0. 600モル) と蒸留 THF •200m lを入れ、激しく攪拌しながら 4, 4' -ジクロルビフエニル 44. 62 g (0. 200モル) の蒸留 THF 40 Om l溶液を滴下した。 この際、 反応開始に伴う発 熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で滴下を終 了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカンテ一ショ ンにより取り除いた。 この溶液に、 0〜5°Cにてフエニルホスホリルジクロリド 1 9. 50 g (0. 1 00モル) の蒸留 THF 30 Om 1溶液を激しくかき混ぜなが ら滴下ロートより 3時間かけて加えた。同温度で 6時間、室温で 12時間反応させ、 減圧濃縮して約 500m lとした。 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1000m 1四つ口フラスコに、 ォキシ塩化リン 9 1. 99 g (0. 600モル) の 200m 1 THF溶液を入れ、 0〜5°Cにて上記の濃縮溶液を滴下ロートより 3時間かけて 加えた。 同温度で 6時間、 室温で 1 2時間反応させ、 溶媒と過剰のォキシ塩化リン を減圧留去した。 残渣に 300m lの乾燥酢酸ェチルを加えてかき混ぜ、 溶け残る 塩をろ去し、 溶液を減圧留去した。 残渣を 500m 1の THF溶液とし、 合成例 1 と同様に臭化ァリルマグネシウム溶液と反応させ、 同様に処理して、 目的の化合物 を 58. 37 g (収率 85 %) 得た。 In a 1000m four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 4.16 g (0.600 mol) of lithium metal pieces and 200 ml of distilled THF were added. With vigorous stirring, a solution of 44.62 g (0.200 mol) of 4,4'-dichlorobiphenyl in 40 mL of distilled THF was added dropwise. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The dropwise addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation. To this solution was added a solution of 19.50 g (0.100 mol) of phenylphosphoryl dichloride in distilled THF 30 Om1 at 0-5 ° C over 3 hours from the dropping funnel with vigorous stirring. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and concentrated under reduced pressure to about 500 ml. In a 1000 ml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, put a solution of 91.99 g (0.600 mol) of phosphorus oxychloride in 200 ml of THF. At 55 ° C., the above concentrated solution was added from a dropping funnel over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess phosphorus oxychloride were distilled off under reduced pressure. 300 ml of dry ethyl acetate was added to the residue and stirred, and the remaining salt was removed by filtration, and the solution was distilled off under reduced pressure. The residue was converted into a 500 ml THF solution, reacted with an allylmagnesium bromide solution in the same manner as in Synthesis Example 1, and treated in the same manner to obtain 58.37 g of the desired compound (yield: 85%).
この化合物の赤外吸収スペクトル、 TOF—Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I一 1 3) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-13) described above.
赤外吸収スペクトル(cm—1) : V ring 1605, 1495、 レ C=C 1635, v P=0 1160〜1250 TOF- Massスペクトル(M/Z) : 688, 689 (分子量計算値 = 686.7073) Infrared absorption spectrum (cm- 1 ): V ring 1605, 1495, C = C 1635, v P = 0 1160-1250 TOF-Mass spectrum (M / Z): 688, 689 (calculated molecular weight = 686.7073)
丽 Rスぺクトル( , ppm) :CH2=4.6〜4.7(8H), =CH - 5.4〜5.6 (4H) , - CH2- 3.0 (8Η) , 芳香族 C-H 6.6〜7·8(21Η) 丽R scan Bae spectrum (, ppm): CH 2 = 4.6~4.7 (8H), = CH - 5.4~5.6 (4H), - CH 2 - 3.0 (8Η), aromatic CH 6.6~7 · 8 (21Η)
合成例 14 (化合物 ( I一 20 ) の合成)  Synthesis Example 14 (Synthesis of Compound (I-20))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 000m 1四つ口フラスコに、 フエニルホスホニルジクロリド 23. 04 g (0. 100モ ル) の蒸留 THF 30 Om 1を入れて攙拌し、 0〜 5 °Cに冷却しながら 5-クロロ- 1 一ナフトール 35. 72 g (0. 200モル)とトリエチルァミン 25. 30 g (0. 250モル) の蒸留 THF 30 Om 1溶液を 3時間かけて滴下した。 同温度で 6時 間、 室温で 12時間反応させ、 トリェチルァミン塩酸塩をろ去し、 減圧乾固して、 フエニルホスホニルビス(5 -ク口口 -1—ナフトキシド)を定量的に得た。  Distillation of 23.04 g (0.100 mol) of phenylphosphonyl dichloride in 30 000 m 1 four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was added. While stirring and cooling to 0-5 ° C while distilling 35.72 g (0.200 mol) of 5-chloro-1-mononaphthol and 25.30 g (0.250 mol) of triethylamine in THF The 30 Om1 solution was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and then at room temperature for 12 hours. Triethylamine hydrochloride was filtered off and evaporated to dryness under reduced pressure to obtain phenylphosphonylbis (5-kuguchi-1--1-naphthoxide) quantitatively. .
' 全量を蒸留 THF 400m lの溶液として、 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 000m l四つ口フラスコに入れて攪拌し、'' 400 mL of distilled THF as a whole was placed in a 1000 mL four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel.
5. 0 gの金属マグネシウム細片を加えて室温で 6時間、 40°Cにて 6時間反応さ せて、 フエニルホスホニルビス(5-クロロマグネシウム- 1一ナフトキシド)を定量的 に得た。 過剰の金属マグネシウムをデカンテ一シヨンにより取り除き、 ひ〜 5°Cに 冷却しながらォキシ塩化リン 9 1. 99 g (0. 600モル) の 200m l THF 溶液を 3時間かけて滴下した。 同温度で 3時間、 室温で 3時間反応させた後、 溶媒 と過剰のォキシ塩化リンを減圧留去した。 残渣を 50 Om 1の THF溶液とし、 合 成例 1と同様に臭化ァリルマグネシウム溶液と反応させ、 同様に処理して、 目的の 化合物を 62. 44 g (収率 94%) 得た。 5.0 g of metal magnesium strip was added and reacted at room temperature for 6 hours and at 40 ° C. for 6 hours to obtain phenylphosphonylbis (5-chloromagnesium-1-naphthoxide) quantitatively. . Excess magnesium metal was removed by decantation, and a solution of 9.99 g (0.600 mol) of phosphorus oxychloride in 200 ml of THF was added dropwise over 3 hours while cooling to -5 ° C. After reacting at the same temperature for 3 hours and at room temperature for 3 hours, the solvent and excess phosphorus oxychloride were distilled off under reduced pressure. The residue was made up as 50 Om 1 in THF and combined. It was reacted with an aryl magnesium bromide solution in the same manner as in Example 1 and treated in the same manner to obtain 62.44 g (yield 94%) of the desired compound.
この化合物の赤外吸収スペクトル、 TO F—Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I一 20) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TO F-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-120) described above.
赤外吸収スペクトル(cnf1) : V ring 1603, 1495、 v C=C 1635 Infrared absorption spectrum (cnf 1 ): V ring 1603, 1495, v C = C 1635
T0F - Massスペクトル(M/Z) : 668, 669 (分子量計算値 = 666.6314)  T0F-Mass spectrum (M / Z): 668, 669 (Calculated molecular weight = 666.6314)
匪 Rスぺクトル(δ, ρριη): CH2= 4.5〜4.7(8H), =CH— 5.3〜5.6 (4Η), -CH2- 3.0(8H), 芳香族 C - H 6.6〜7.8(17H) Negation R scan Bae spectrum (δ, ρριη): CH 2 = 4.5~4.7 (8H), = CH- 5.3~5.6 (4Η), -CH 2 - 3.0 (8H), aromatic CH 6.6-7.8 (17H )
合成例 1 5 (化合物(I一 21)の合成)  Synthesis Example 15 (Synthesis of Compound (I-21))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 000m 1四つ口フラスコに、 ァリロキシホスホリルジクロリド 52. 48 g (0. 300 モル) の蒸留 THF 300m lを入れて攪拌し、 0〜 5°Cに冷却しながら 1,5_ナフ 夕レンジオール 16. 02 g (0. 1 00モル) とトリェチルァミン 25. 30 g (0. 250モル) の蒸留 THF 30 Om 1溶液を 3時間かけて滴下した。 同温度 で 6時間、 室温で 12時間反応させ、 トリェチルァミン塩酸塩をろ去し、 減圧乾固 して、 1,5-ビス(ァリロキシクロ口ホスホリ口キシ)ナフタレンを定量的に得た。 全量を蒸留 THF40 Om 1の溶液として、 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 Om l四つ口フラスコに入れて攪拌し、 0 〜 5 °Cに冷却しながら 5-クロ口- 1一ナフトール 35. 72 g (0. 200モル) と トリェチルァミン 25. 30 g (0. 2.50モル) の蒸留 THF 30 Om 1溶液を 3時間かけて滴下した。 同温度で 6時間、 室温で 12時間反応させ、 トリェチルァ ミン塩酸塩をろ去し、 減圧乾固して、  300 ml of aryloxyphosphoryl dichloride 52.48 g (0.300 mol) of distilled THF was placed in a 1 000 m four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel. While stirring and cooling to 0-5 ° C, distillation of 1,5_ naphthyl diol diol 16.02 g (0.100 mol) and triethylamine 25.30 g (0.250 mol) THF 30 Om 1 The solution was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the triethylamine hydrochloride was filtered off and evaporated to dryness under reduced pressure to quantitatively obtain 1,5-bis (aryloxycyclophosphoric oxy) naphthalene. The whole amount was put in a 100 Oml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel as a solution of distilled THF40 Om1, stirred, and cooled to 0 to 5 ° C. A solution of 35.72 g (0.200 mol) of 5-chloro-1-1-naphthol and 25.30 g (0.2.50 mol) of triethylamine in distilled THF 30 Om1 was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the triethylamine hydrochloride was removed by filtration.
Cl-Np-0-P (=0) (0CH2CH=CH2) -Ο-Νρ-0-Ρ (=0) (OCH2CH=CHz)-0-Np-Cl (ただし Npは 1, 5- ナフタレン基) を定量的に得た。 Cl-Np-0-P (= 0) (0CH 2 CH = CH 2 ) -Ο-Νρ-0-Ρ (= 0) (OCH 2 CH = CH z ) -0-Np-Cl (where Np is 1 , 5-naphthalene group) were obtained quantitatively.
全量を蒸留 THF 40 Om 1の溶液として、 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 000m l四つ口フラスコに入れて攪拌し、 5. 0 gの金属マグネシウムを加え、 室温で 6時間、 40 で 6時間反応させて、 ClMg-Np.-0-P (=0) (OCH2CH=CH2)-0-Np-0-P (=0) (OCH2CH=CH2)-0-Np-MgCl (ただし Npは 1,5 -ナフタレン基) を定量的に得た。 過剰の金属マグネシウムをデカンテ一シヨン により取り除き、 0〜5°Cに冷却しながらォキシ塩化リン 9 1. 99 g (0. 600 モル) の 2 00m 1 THF溶液を 3時間かけて滴下した。 同温度で 3時間、 室温でThe whole amount was put as a solution in distilled THF 40 Om1 into a 1,000 ml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, and stirred to obtain 5.0 g of metallic magnesium. And reacted at room temperature for 6 hours and at 40 for 6 hours.ClMg-Np.-0-P (= 0) (OCH 2 CH = CH 2 ) -0-Np-0-P (= 0) (OCH 2 CH = CH 2 ) -0-Np-MgCl (where Np is a 1,5-naphthalene group) was obtained quantitatively. Excess metal magnesium is removed by decantation, and while cooling to 0 to 5 ° C, 91.99 g of phosphorus oxychloride (0.600 Mol) in 200 ml of THF was added dropwise over 3 hours. 3 hours at the same temperature, at room temperature
3 時間反応させた後、 溶媒と過剰のォキシ塩化リ ンを減圧留去してAfter reacting for 3 hours, the solvent and excess oxychloride were distilled off under reduced pressure.
C 12P (=0) -Np-0-P (=0) (OCH2CH=CH2) -0-Np-O-P (=0) (0CH2CH=CH2) -O-Np-P (=0) C 12 (ただ し Npは 1, 5-ナフ夕レン基) を定量的に得た。 C 1 2 P (= 0) -Np-0-P (= 0) (OCH 2 CH = CH 2 ) -0-Np-OP (= 0) (0CH 2 CH = CH 2 ) -O-Np-P (= 0) (just Shi Np 1, 5-naphthoquinone evening alkylene group) C 1 2 to quantitatively obtain.
残渣を 5 0 Om lの THF溶液として攪拌し、 0〜 5 °Cに冷却しながらァリルァ ルコール 34. 8 5 g (0. 600モル) とトリエチルァミン 60. 7 2 g (0. The residue was stirred as a solution of 50 Oml in THF and cooled to 0-5 ° C with 34.85 g (0.600 mol) of aryl alcohol and 60.7 2 g of triethylamine (0.
6 00モル) の 20 Om 1 THF溶液を 3時間かけて滴下した。 同温度で 6時間、 室温で 12時間反応させ、 トリェチルァミン塩酸塩をろ去し、 減圧乾固して、 目的 の化合物を 8 5. 24 g (収率 94%) 得た。 (600 mol) in 20 Om 1 THF was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and triethylamine hydrochloride was removed by filtration and dried under reduced pressure to obtain 85.24 g (yield 94%) of the desired compound.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I一 2 1) の構造が確認できた。, 赤外吸収スペクトル(cm—1) : リ ring' 1606, 1500、 レ C=C 1640 The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I-21) described above. , Infrared absorption spectrum (cm— 1 ): Re ring '1606, 1500, C = C 1640
TOF-Massスぺクトル(M/Z) : 974, 975 (分子量計算値 = 972.7976)  TOF-Mass spectrum (M / Z): 974, 975 (Calculated molecular weight = 972.7976)
醒 Rスペクトル(<5, ppm) : CH2= 4.4〜4.7 (12H) , =CH- 5.3〜5.8(6H), -CH2- 3.0Awakening: R spectrum (<5, ppm): CH 2 = 4.4~4.7 (12H), = CH- 5.3~5.8 (6H), -CH 2 - 3.0
〜3.2(12H), 芳香族 C - H 6.6〜7.8(18H) ~ 3.2 (12H), aromatic C-H 6.6 ~ 7.8 (18H)
合成例 1 6 (化合物(I一 22)の合成)  Synthesis Example 16 (Synthesis of Compound (I-122))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下口一トを備えた 1 0 0 0m 1四つ口フラスコに、 ァリルホスホニルジクロリド 47 · 68 g (0. 30 0モル) の蒸留 THF 3 00m lを入れて攪拌し、 0〜 5°Cに冷却しながら p-ヒドロキノン 1 1. 0 1 g (0. 1 00モル) とトリエチルァミン 2 5. 3 0 g (0. 2 5 0モ ル) の蒸留 THF 30 Om l溶液を 3時間かけて滴下した。 同温度で 6時間、 室温 で 12時間反応させ、トリエヂルァミン塩酸塩をろ去し、減圧乾固して、 1, 4-ビス(ァ リルクロ口ホスホニロキシ)ベンゼンを定量的に得た。  Distillation of 47.68 g (0.300 mol) of arylphosphonyl dichloride into a 100-m 4-neck flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping port Add 300 ml of THF, stir, and cool to 0-5 ° C. while cooling p-hydroquinone 11.01 g (0.100 mol) and triethylamine 25.30 g (0.25 mol). A 0 mol) distilled THF 30 Oml solution was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the toluenediamine hydrochloride was filtered off and evaporated to dryness under reduced pressure to obtain quantitatively 1,4-bis (arylcyclophosphonyloxy) benzene.
全量を蒸留 THF 40 Om lの溶液として、 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 0 0 Om 1四つ口フラスコに入れて攪拌し、 0 〜5°Cに冷却しながら 4-ブロモフエノール 34. 2 1 g (0. 200モル) とトリ ェチルァミン 2 5. 3 0 g (0. 2 5 0モル) の蒸留 THF 30 Om 1溶液を 3時 間かけて滴下した。 同温度で 6時間、 室温で 1 2時間反応させ、 トリェチルァミン 塩酸塩をろ去し、 減圧乾固して、  The whole amount was put into a 100-Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel as a solution of 40 Oml of distilled THF, and stirred at 0 to 5 ° C. A solution of 34.2 g (0.200 mol) of 4-bromophenol and 25.30 g (0.250 mol) of triethylamine in THF 30 Om1 was added dropwise over 3 hours while cooling. did. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and triethylamine hydrochloride was removed by filtration.
Br- Φ -0-P (=0) (CH2CH=CH2) -0- -0-P (=0) (CH2CH=CH2) -0- φ -Br (ただし φは 1,4-フ ェニレン基) を定量的に得た。 Br- Φ -0-P (= 0) (CH 2 CH = CH 2 ) -0- -0-P (= 0) (CH 2 CH = CH 2 ) -0- φ -Br (where φ is 1, 4-f (Enylene group) was obtained quantitatively.
全量を蒸留 THF 400m lの溶液として、 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 0 0 0m l四つ口フラスコに入れて攪拌し、 5. 0 gの金属マグネシウム細片を加えた。 室温で 6時間、 40°Cで 6時間反応さ せて、  The whole amount was put into a 100 ml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel as a 400 ml solution of distilled THF. Magnesium strips were added. Reaction for 6 hours at room temperature and 6 hours at 40 ° C,
BrMg- φ -0-P (=0) (CH2CH=CH2) -0- φ -0-Ρ (=0) (CH2CH=CH2) - 0_ φ - MgBr (ただし φ は 1, 4-フエ二レン基) を定量的に得た。 過剰の金属マグネシウムをデカンテーシヨン により取り除き、 0〜5°Cに冷却しながらォキシ塩化リン 9 1. 99 g (0. 60 0 モル) の 2 00m 1 THF溶液を 3時間かけて滴下した。 同温度で 3時間、 室温で 3 時間反応させた後、 溶媒と過剰のォキシ塩化リ ンを減圧留去して 012Ρ-φ-0-Ρ (=0) (CH2CH=CH2)-O- -O-P (=0) (CH2CH=CH2)_0_(i - PC12(ただし φは 1,4_ フエ二レン基) を定量的に得た。 BrMg- φ -0-P (= 0) (CH 2 CH = CH 2 ) -0- φ -0-Ρ (= 0) (CH 2 CH = CH 2 )-0_ φ-MgBr (where φ is 1, 4-phenylene group) was obtained quantitatively. Excess metallic magnesium was removed by decantation, and a solution of 9.99 g (0.600 mol) of phosphorus oxychloride in 200 ml of THF was added dropwise over 3 hours while cooling to 0 to 5 ° C. After reacting at the same temperature for 3 hours and at room temperature for 3 hours, the solvent and excess phosphorus oxychloride were distilled off under reduced pressure.01 2 Ρ-φ-0-Ρ (= 0) (CH 2 CH = CH 2 ) -O- -OP (= 0) (CH 2 CH = CH 2) _0_ (i - is PC1 2 (except φ quantitatively obtain 1,4_ phenylene group).
残渣を 5 00m lの THF溶液として攪拌し、 0〜 5 °Cに冷却しながらァリルァ ミン 34. 26 g (0. 6 0 0モル) とトリェチルアミン 6 0. 72 g (0. 6 00 モル) の 20 Om l THF溶液を 3時間かけて滴下した。 同温度で 6時間、 室温で 1 2時間反応させ、 トリェチルァミン塩酸塩をろ去し、 減圧乾固して、 目的の化合 物を 62. 2 9 g (収率 9 3 %) 得た。  The residue was stirred as a 500 ml THF solution and cooled to 0-5 ° C. with 34.26 g (0.6000 mol) of arylamine and 0.67 g (0.600 mol) of triethylamine. A 20 OmI THF solution was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and triethylamine hydrochloride was removed by filtration and dried under reduced pressure to obtain 62.29 g (yield: 93%) of the desired compound.
この化合物の赤外吸収スペクトル、 TOF— M a s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (1ー 22) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (1-22) described above.
赤外吸収スペクトル(cm—り : V ring 1604, 1496、 v C=C 1635  Infrared absorption spectrum (cm-R: V ring 1604, 1496, v C = C 1635
TOF- Massスぺクトル(M/Z) : 732,733 (分子量計算値 = 730.6546)  TOF-Mass spectrum (M / Z): 732,733 (Calculated molecular weight = 730.6546)
NMRスペクトル(δ, ppm) : CH2= 4· 4〜4· 8 (12H), =CH- 5.1〜5·7(6Η), - CH2- 3.0 -〜 3.7(12H), 芳香族 C_H 6.6〜7.8(12H) NMR spectrum (δ, ppm): CH 2 = 4.4 to 4.8 (12H), = CH- 5.1 to 5.7 (6Η), -CH 2 -3.0-to 3.7 (12H), aromatic C_H 6.6 ~ 7.8 (12H)
合成例 1 7 (化合物(I一 23)の合成)  Synthesis Example 17 (Synthesis of Compound (I-23))
合成例 1 6と同様にして、  In the same manner as in Synthesis Example 16
C12P - φ - 0_P(=0) (CH2CH=CH2)-0 - φ - 0-P(=0) (CH2CH=CH2)_0- - PC12(ただし φは 1,4- フエ二レン基) を定量的に得た。 その後、 ァリルァミンの代わりにジァリルアミン 5 8. .30 g (0. 6 00モル) とトリエチルァミン 6 0. 72 g (0. 60 0モ ル) の 20 Om 1 THF溶液を 3時間かけて滴下した。 同温度で 6時間、 室温で 1 2時間反応させ、 トリェチルァミン塩酸塩をろ去し、 減圧乾固して、 目的の化合物 を 79. 54 g (収率 96 %) 得た。 C1 2 P-φ-0_P (= 0) (CH 2 CH = CH 2 ) -0-φ-0-P (= 0) (CH 2 CH = CH 2 ) _0--PC1 2 (where φ is 1, 4-phenylene group) was obtained quantitatively. Then, instead of arylamine, a solution of 5.8.30 g (0.600 mol) of diarylamine and 60.72 g (0.600 mol) of triethylamine in 20 Om 1 THF was added dropwise over 3 hours. . The reaction was carried out at the same temperature for 6 hours and then at room temperature for 12 hours. Triethylamine hydrochloride was removed by filtration and dried under reduced pressure to obtain the desired compound. 79.54 g (yield 96%) was obtained.
この化合物の赤外吸収スペクトル、 TOF— M a s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (1ー 2 3) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (1-23) described above.
赤外吸収スペクトル(cm—1) : リ ring 1605, 1495、 v C=C 1635 Infrared absorption spectrum (cm— 1 ): ring 1605, 1495, v C = C 1635
TOF- Massスペクトル(M/Z) : 892, 893 (分子量計算値 = 890.9130)  TOF-Mass spectrum (M / Z): 892, 893 (Calculated molecular weight = 890.9130)
匪 Rスペクトル(d, ppm) : CH2= 4.3〜4· 7(20H), =CH- 5.0〜5.6 (10H), _CH2 - 3.0Negation R spectrum (d, ppm): CH 2 = 4.3~4 · 7 (20H), = CH- 5.0~5.6 (10H), _CH 2 - 3.0
〜3.8(20H), 芳香族 C - H 6.6〜7.9(12H) ~ 3.8 (20H), Aromatic C-H 6.6 ~ 7.9 (12H)
[一般式 (Π) の反応性難燃剤の合成]  [Synthesis of reactive flame retardant of general formula (Π)]
合成例 1 8 (化合物 (Π— 1) の合成)  Synthesis Example 18 (Synthesis of Compound (Π—1))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 5 0 Om l 四つ口フラスコに、金属リチウム片 2. 08 g (0. 30 0モル)と蒸留 THF 1 00 m 1を入れ、 激しく攪拌しながら 4,4' -ジクロルビフエニル 2 2. 3 1 g (0. In a 50 Oml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 2.08 g (0.300 mol) of lithium metal pieces and 100 ml of distilled THF were placed. And 4,4'-dichlorobiphenyl 22.3 1 g (0.
1 0 0モル) の蒸留 THF 200m 1溶液を滴下した。 この際、 反応開始に伴う発 熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で滴下を終 了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカンテーショ ンにより取り除いた。 200 mol) of distilled THF was added dropwise. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The dropwise addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下口一トを備えた 1 00 0m 100 m equipped with a reflux tube with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a drip port
1四つ口フラスコに、三塩化リン 82. 3 9 g (0. 6 00モル)と蒸留 THF 3 00 m lを入れ、 穏やかに窒素を流通しながらかき混ぜ、 0〜5°Cにて、 上記の有機リ チウム化合物溶液全量を滴下ロートより 3時間かけて加えた。 同温度で 6時間、 室 温で 1 2時間反応させ、 溶媒と過剰の三塩化リンを減圧留去した。 残渣に 30 0m1 In a four-necked flask, put 82.39 g (0.600 mol) of phosphorus trichloride and 300 ml of distilled THF, stir while gently flowing nitrogen, and at 0-5 ° C, The entire amount of the organic lithium compound solution was added from the dropping funnel over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess phosphorus trichloride were distilled off under reduced pressure. 300 m to residue
1の乾燥酢酸ェチルを加えてかき混ぜ、 溶け残る塩をろ去し、 溶液を減圧留去して 4,4' -ビス(ジクロルホスフィエル)ビフエ二ルを調整した。 The dried ethyl acetate of 1 was added and stirred, the remaining salt was removed by filtration, and the solution was distilled off under reduced pressure to prepare 4,4′-bis (dichlorophosphier) biphenyl.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 0 00m 100 m equipped with a reflux tube with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel
1四つ口フラスコに、 金属マグネシウム片 2 1. 8 7 g (0. 9 00モル) と蒸留 ジェチルエーテル 2 0 Om 1を入れ、 激しく攪拌しながら臭化ァリル 72. 5 9 g1 In a four-necked flask, add 2.1.87 g (0.900 mol) of metal magnesium pieces and distilled getyl ether 20 Om 1 and, with vigorous stirring, 72.5 9 g of aryl bromide
(0. 60 0モル) の蒸留ジェチルエーテル 30 Om 1溶液を滴下し、 反応熱によ る穏やかな沸点還流状態を保った。 約 3時間で滴下終了後、 さらに 1時間沸点還流 した。 冷却後、 過剰の金属マグネシウムをデカンテーシヨンにより取り除いて臭化 ァリルマグネシウム溶液を調整した。 上記の 4,4' -ビス(ジクロルホスフィエル)ビフエ二ル全量と蒸留 THF 3 0 0 m 1を先ほどと同様の反応装置に仕込み、 0〜5°Cにて上記の臭化ァリルマグネシ ゥム溶液全量を滴下ロートより 3時間かけて加えた。 同温度で 6時間、 室温で 1 2 時間反応させ、 ジェチルエーテルを減圧留去した。 残渣を、 pHが中性付近に保た れるように酸を加えながら 1 0 00m lの水中に投じ、 1 00m lの酢酸ェチルに て 5回抽出した。 水洗後、 酢酸ェチル相を分離して無水硫酸ナトリウムで乾燥、 乾 燥剤をろ去し、 溶液を減圧留去して目的の化合物を 3 6. 3 3 g (収率 9 6 %) 得 た。 (0.60 mol) of a distilled acetyl ether 30 Om1 solution was added dropwise, and a gentle boiling point reflux state due to reaction heat was maintained. After the addition was completed in about 3 hours, the mixture was refluxed at the boiling point for 1 hour. After cooling, excess magnesium metal was removed by decantation to prepare a magnesium bromide solution. The total amount of the above 4,4'-bis (dichlorophosphier) biphenyl and 300 ml of distilled THF were charged into the same reactor as above, and the above arylmagnesium bromide was heated at 0 to 5 ° C. The whole amount of the solution was added from a dropping funnel over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and getyl ether was distilled off under reduced pressure. The residue was poured into 100 ml of water while adding acid so that the pH was kept near neutral, and extracted five times with 100 ml of ethyl acetate. After washing with water, the ethyl acetate phase was separated, dried over anhydrous sodium sulfate, the desiccant was removed by filtration, and the solution was distilled off under reduced pressure to obtain 36.33 g of the desired compound (yield: 96%). .
この化合物の赤外吸収スペクトル、 TOF— M a s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 1) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (II-1) described above.
赤外吸収スペクトル(cnf1) : V ring 1605, 1495、 v C=C 1635 . Infrared absorption spectrum (cnf 1 ): V ring 1605, 1495, v C = C 1635.
TOF - Massスぺクトル(M/Z) : 380,381 (分子量計算値 = 378.4328)  TOF-Mass spectrum (M / Z): 380,381 (Calculated molecular weight = 378.4328)
醒 Rスぺクトル(5, ppm): CH2= 4.3〜4.5(8H), =CH - 5.0〜5.1 (4H) , -CH2- 2.6(8H), 芳香族 C-H 6.7〜7.確) Awakening: R scan Bae spectrum (5, ppm):. CH 2 = 4.3~4.5 (8H), = CH - 5.0~5.1 (4H), -CH 2 - 2.6 (8H), aromatic CH from 6.7 to 7 probability)
合成例 1 9 (化合物 (Π_ 2) の合成)  Synthesis Example 1 9 (Synthesis of Compound (Π_2))
合成例 1· 8の臭化ァリルマグネシウム溶液の代わりに、 ァリルアルコール 34. Synthetic Example1.8 Instead of the aryl magnesium bromide solution, aryl alcohol 34.
84 g (0. 6 00モル) とトリエチルァミン 6 0. 7 1 g (0. 60 0モル) の84 g (0.600 mol) and 60.71 g (0.600 mol) of triethylamine
THF 3 0 0m l溶液を用いた以外は、 合成例 1 8と同様にして目的の化合物をThe desired compound was prepared in the same manner as in Synthesis Example 18 except that a THF 300 ml solution was used.
40. 7 0 g (収率 9 2 %) 得た。 40.70 g (92% yield) was obtained.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 2) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (II-2) described above.
赤外吸収スペクトル(cm—1): レ ring 1605, 1495、 レ OC 1635、 vP-0-C 1220, 1260 TOF-Massスぺクトル(M/Z) : 444,445 (分子量計算値 = 442.4328) Infrared absorption spectrum (cm- 1 ): Les ring 1605, 1495, Les OC 1635, vP-0-C 1220, 1260 TOF-Mass spectrum (M / Z): 444,445 (Calculated molecular weight = 442.4328)
腿スぺクトル(δ, ppm) :CH2=4.7〜4.9(8H), =CH - 5.3〜5.4 (4H) , -CH2- 3.2 (8Η) , 芳香族 C_H 6.8〜7.6(8H) Momosupe vector (δ, ppm): CH 2 = 4.7~4.9 (8H), = CH - 5.3~5.4 (4H), -CH 2 - 3.2 (8Η), aromatic C_H 6.8 to 7.6 (8H)
合成例 20 (化合物 (Π - 3) の合成)  Synthesis Example 20 (Synthesis of compound (Π-3))
合成例 18の臭化ァリルマグネシウム溶液の代わりに、ジァリルアミン 5 8. 3 0 g (0. 6 0 0モル) とトリエチルァミン 6 0. 7 1 g (0. 600モル) の TH F 30 0m 1溶液を用いた以外は、 合成例 1 8と同様にして目的の化合物を 5 6. 8 8 g (収率 9 5 %) 得た。 この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 3) の構造が確認できた。 Instead of the arylmagnesium bromide solution of Synthesis Example 18, 58.30 g (0.600 mol) of diarylamine and 60.71 g (0.600 mol) of triethylamine in THF 300 m Except that one solution was used, 56.888 g (yield 95%) of a target compound was obtained in the same manner as in Synthesis Example 18. The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (III-3) described above.
赤外吸収スペクトル(cm—り : リ ring 1603, 1495、 v C=C 1635  Infrared absorption spectrum (cm-RI: ring 1603, 1495, v C = C 1635
TOF-Massスぺクトル(M/Z) : 600,601 (分子量計算値 = 598.7508)  TOF-Mass spectrum (M / Z): 600,601 (Calculated molecular weight = 598.7508)
應 R スぺク トル(δ, ppm) : CH2= 4.5〜4.7(16H), =CH- 5.2〜5.4(8H), -CH 3.1 (16H), 芳香族 C_H 6.8〜7.4(8H) R spectrum (δ, ppm): CH 2 = 4.5 to 4.7 (16H), = CH- 5.2 to 5.4 (8H), -CH 3.1 (16H), aromatic C_H 6.8 to 7.4 (8H)
合成例 2 1 (化合物 (1 - 4) の合成)  Synthesis Example 2 1 (Synthesis of Compound (1-4))
合成例 18の臭化ァリルマグネシウム溶液の代わりに、 ァリルアミン 3 4. 2 5 g (0. 6 0 0モル) とトリエチルァミン 6 0. 7 1 g (0. 6 0 0モル) の TH F 3 0 0m 1溶液を用いた以外は、 合成例 1 8と同様にして目的の化合物を 3 9. 9 0 g (収率 9 1 %) 得た。  Instead of the allylmagnesium bromide solution of Synthesis Example 18, the THF of aryamine 34.25 g (0.600 mol) and triethylamine 60.71 g (0.600 mol) was used. Except that the 300 ml solution was used, 39.90 g (yield 91%) of the desired compound was obtained in the same manner as in Synthesis Example 18.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 4) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (IV-4) described above.
赤外吸収スペクトル(ciif1) : v H 3060, δ NH 1615, v ring 1605, 1495、 v C=C 1635 Infrared absorption spectrum (ciif 1 ): v H 3060, δ NH 1615, v ring 1605, 1495, v C = C 1635
TOF-Massスぺクトル (M/Z) : 440, 441 (分子量計算値 = 438.4924)  TOF-Mass spectrum (M / Z): 440, 441 (Calculated molecular weight = 438.4924)
匪 Rスぺクトル(δ, ppm): CH2= 4.4〜4.6(8H), =CH - 5.2〜5.3 (4H), -CH2- 2.8(8H), >NH 3.3(4H), 芳香族 C - H 6.8〜7.4(8H) Negation R scan Bae spectrum (δ, ppm): CH 2 = 4.4~4.6 (8H), = CH - 5.2~5.3 (4H), -CH 2 - 2.8 (8H),> NH 3.3 (4H), aromatic C -H 6.8-7.4 (8H)
合成例 2 2 (化合物 (Π— 5) の合成)  Synthesis Example 2 2 (Synthesis of Compound (Π-5))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 0 0 0m 1四つ口フラスコに、 金属マグネシウム片 2 1. 8 7 g (0. 9 0 0モル) と蒸留 ジェチルェ一テル 2 0 0m lを入れ、激しく攪拌しながら 2-クロロェチルビニルェ 一テル 6 3. 9 3 g (0. 6 0 0モル) の蒸留ジェチルエーテル 3 0 0m 1溶液を 滴下し、 反応熱による穏やかな沸点還流状態を保った。 約 3時間で滴下終了後、 さ らに 1時間沸点還流した。 冷却後、 過剰の金属マグネシウムをデカンテーシヨンに より取り除いて塩化ビニロキシェチルマグネシゥム溶液を調整した。  A 100-m 4-neck flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 2.187 g (0.9000 mol) of metal magnesium pieces and distilled 200 ml of 1 ter was added, and while stirring vigorously, a solution of 63.93 g (0.600 mol) of 2-chloroethyl vinyl ether in 300 ml of distilled getyl ether was added dropwise. A gentle boiling point reflux due to the heat of reaction was maintained. After the addition was completed in about 3 hours, the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal magnesium was removed by decantation to prepare a vinyloxyshethylmagnesium chloride solution.
この後は、 合成例 18の臭化ァリルマグネシウム溶液の代わりに、 上記の塩化ビ 二ロキシェチルマグネシウム溶液全量を用いた以外は合成例 1 8と同様にして目的 の化合物を 4 5. 8 7 g (収率 9 2 %) 得た。  Thereafter, the target compound was obtained in the same manner as in Synthesis Example 18 except that the above-mentioned total amount of vinyloxyshethyl magnesium chloride solution was used instead of the allylmagnesium bromide solution of Synthesis Example 18. 7 g (92% yield) was obtained.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (H— 5) の構造が確認できた。 赤外吸収スペクトル(cm—り : V ring 1603, 1495、 レ OC 1635、 v C-0-C 1060 T0F - Massスぺクトル(M/Z) : 500, 501 (分子量計算値 = 498.5400) Infrared absorption spectrum, TOF-Mass spectrum, NMR measurement of this compound The results are as follows, and the structure of the above compound (H-5) was confirmed. Infrared absorption spectrum (cm-R: V ring 1603, 1495, Les OC 1635, v C-0-C 1060 T0F-Mass spectrum (M / Z): 500, 501 (Calculated molecular weight = 498.5400)
NMRスペクトル(δ, ppm): CH2= 4.3〜4.5 (8H) , =CH- 5.8〜6.0 (4Η), -0CHr 3.2(8H), -CHZP- 2.7 (4H) , 芳香族 C- Η 6.8〜7.6 (8Η) NMR spectrum (δ, ppm): CH 2 = 4.3~4.5 (8H), = CH- 5.8~6.0 (4Η), -0CH r 3.2 (8H), -CH Z P- 2.7 (4H), aromatic C- Η 6.8-7.6 (8Η)
合成例 2 3 (化合物 (Π— 6) の合成)  Synthesis Example 2 3 (Synthesis of Compound (Π-6))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 5 0 Om l 四つ口フラスコに、金属リチウム片 2. 0 8 g (0. 3 00モル)と蒸留 THF 1 0 0 m 1を入れ、激しく攪拌しながらビス(4-クロ口フエニル)ェ一テル 23. 9 1 g(0. 1 00モル) の蒸留 THF 2 0 Om 1溶液を滴下した。 この際、 反応開始に伴う発 熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で滴下を終 了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカンテーショ ンにより取り除いた。  In a 50 Oml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 2.08 g (0.300 mol) of lithium metal pieces and 100 mL of distilled THF were added. m 1 was added thereto, and a solution of 23.91 g (0.100 mol) of distilled THF 20 Om 1 of bis (4-chlorophenyl) ether was added dropwise with vigorous stirring. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The dropwise addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 Om 1四つ口フラスコに、三塩化リン 8 2. 39 g (0. 6 00モル)と蒸留 THF 3 00 m lを入れ、 穏やかに窒素を流通しながらかき混ぜ、 0〜 5°Cにて上記の有機リチ ゥム化合物溶液全量を滴下ロートより 3時間かけて加えた。 同温度で 6時間、 室温 で 1 2時間反応させ、 溶媒と過剰の三塩化リンを減圧留去した。 残渣に 3 00m l の乾燥酢酸ェチルを加えてかき混ぜ、 溶け残る塩をろ去し、 溶液を減圧留去してビ ス(4-ジクロルホスフィニルフエニル)エーテルを調整した。  In a 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 8.39 g (0.600 mol) of phosphorus trichloride and 300 ml of distilled THF were added. The mixture was stirred while gently flowing nitrogen, and the whole amount of the organic lithium compound solution was added at 0 to 5 ° C over 3 hours from a dropping funnel. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess phosphorus trichloride were distilled off under reduced pressure. The residue was mixed with 300 ml of dry ethyl acetate and stirred, the remaining salt was removed by filtration, and the solution was distilled off under reduced pressure to prepare bis (4-dichlorophosphinylphenyl) ether.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 0m 1四つ口フラスコに、 金属マグネシウム片 2 1. 8 7 g (0. 9 00モル) と蒸留 ジェチルエーテル 2 00m lを入れ、激しく攪拌しながら p -プロモスチレン 1 0 9. 87 g (0. 600モル) の蒸留ジェチルエーテル 3 0 Om 1溶液を滴下し、 反応 熱による穏やかな沸点還流状態を保った。 約 3時間で滴下終了後、 さらに 1時間沸 点還流した。 冷却後、 過剰の金属マグネシウムをデカンテ一シヨンにより取り除い て臭化 -スチリルマグネシウム溶液を調整した。  A 100-m1 four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel was charged with 2.187 g (0.900 mol) of metal magnesium pieces and distilled getyl ether 200 ml was added, and while stirring vigorously, a solution of 109.87 g (0.600 mol) of distilled getyl ether 30 Om1 in p-bromostyrene was added dropwise to maintain a gentle reflux of boiling point due to reaction heat. Was. After the addition was completed in about 3 hours, the mixture was refluxed for another 1 hour. After cooling, excess magnesium metal was removed by decantation to prepare a -styrylmagnesium bromide solution.
この後は、上記のビス(4 -ジクロルホスフィニルフエニル)エーテル全量と臭化 p - スチリルマグネシウム溶液全量を用い、 合成例 18と同様にして目的の化合物を 5 7. 84 g (収率 9 0 %) 得た。 この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 6) の構造が確認できた。 Thereafter, 57.84 g (yield) of the target compound was obtained in the same manner as in Synthesis Example 18 using the total amount of bis (4-dichlorophosphinylphenyl) ether and the total amount of p-styrylmagnesium bromide solution. 90%). The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (II-6) described above.
赤外吸収スペクトル(cm—1) : y ring 1605, 1495、 v C=C 1630 Infrared absorption spectrum (cm— 1 ): y ring 1605, 1495, v C = C 1630
TOF- Massスぺクトル(M/Z) : 644, 645 (分子量計算値 = 642.7160)  TOF-Mass spectrum (M / Z): 644, 645 (Calculated molecular weight = 642.7160)
丽 Rスペクトル(δ, ppm) : CH2= 4.5〜4.6(8H), =CH- 5.9〜6·0(4Η), 芳香族 C - H 6.8〜7·4(24Η) 丽 R spectrum (δ, ppm): CH 2 = 4.5 to 4.6 (8H), = CH- 5.9 to 6.0 (4Η), aromatic C-H 6.8 to 7.4 (24Η)
合成例 24 (化合物 (Π - 7) の合成)  Synthesis Example 24 (Synthesis of compound (Π-7))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 50 Om 1 四つ口フラスコに、金属リチウム片 2. 08 g (0. 300モル)と蒸留 THF 1 00 m 1を入れ、激しく攪拌しながらビス(4-クロ口フエニル)メタン 23. 7 1 g (0. 100モル) の蒸留 THF 200m 1溶液を滴下した。 この際、 反応開始に伴う発 熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で滴下を終 了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカンテ一ショ ンにより取り除いた。  In a 50 Om 1 four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 2.08 g (0.300 mol) of lithium metal pieces and 100 ml of distilled THF were placed. Under vigorous stirring, a solution of 27.1 g (0.100 mol) of bis (4-chlorophenyl) methane in 200 ml of distilled THF was added dropwise. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The dropwise addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 100 Om 1四つ口フラスコに、 フエニルホスフィエルジクロリド 107. 39 g (0. 600 モル) と蒸留 THF 300m lを入れ、 穏やかに窒素を流通しながらかき混ぜ、 0 〜 5 °Cにて先の有機リチウム化合物溶液全量を滴下ロートより 3時間かけて加えた。 同温度で 6時間、 室温で 12時間反応させ、 溶媒と過剰のフエニルホスフィニルジ クロリドを減圧留去した。 残渣に 300m lの乾燥酢酸ェチルを加えてかき混ぜ、 溶け残る塩をろ去し、 溶液を減圧留去してビス [4- (クロルフエニルホスフィニル) フエニル]メタンを調整した。  In a 100-Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 107.39 g (0.600 mol) of phenylphosphieric dichloride and 300 ml of distilled THF were placed. The mixture was stirred while gently flowing nitrogen, and the entire amount of the organolithium compound solution was added at 0 to 5 ° C over 3 hours from a dropping funnel. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess phenylphosphinyl dichloride were distilled off under reduced pressure. 300 ml of dry ethyl acetate was added to the residue and the mixture was stirred, the remaining salt was removed by filtration, and the solution was distilled off under reduced pressure to prepare bis [4- (chlorophenylphosphinyl) phenyl] methane.
• 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 Om 1四つ口フラスコに、 ヒドロキシスチレン 36. 05 g (0. 300モル) 、 ト リエチルァミン 30. 36 g (0. 300モル) 、 THF 200m lを入れ、 0〜 5°Cにて、 上述のビス [4- (クロルフエニルホスフィニル)フエニル]メタン全量の T HF 30 Om 1溶液を滴下した。 同温度で 3時間、 室温で 10時間反応後、 溶媒の 約半量を減圧留去して 1500m lの水に投じ、 1 50m lの酢酸ェチルで 5回抽 出、 酢酸ェチル相を無水硫酸ナトリウムで乾燥、 ろ過、 減圧留去して、 目的の化合 物を 60. 70 g (収率 93%) 得た。 この化合物の赤外吸収スペクトル、 TOF_Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 7) の構造が確認できた。 • In a 100 Om four-necked flask equipped with a reflux tube with a drying tube, mechanical stirrer, nitrogen inlet tube, and dropping funnel, 36.05 g (0.300 mol) of hydroxystyrene, 30.36 g of triethylamine ( 0.3 mol) and 200 ml of THF, and a solution of bis [4- (chlorophenylphosphinyl) phenyl] methane described above in THF30Om1 was added dropwise at 0 to 5 ° C. After reacting at the same temperature for 3 hours and then at room temperature for 10 hours, about half of the solvent was distilled off under reduced pressure, poured into 1500 ml of water, extracted with 150 ml of ethyl acetate five times, and the ethyl acetate phase was dried with anhydrous sodium sulfate. Drying, filtration and evaporation under reduced pressure gave 60.70 g (yield 93%) of the desired compound. The measurements of the compound in the infrared absorption spectrum, TOF_Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (II-7) described above.
赤外吸収スペクトル(cm—1) : V ring 1605, 1495, v C=C 1630, y P-O-C 1220, 1260 TOF-Massスぺクトル(M/Z) : 622, 623 (分子量計算値 = 620.6672) Infrared absorption spectrum (cm- 1 ): V ring 1605, 1495, v C = C 1630, y POC 1220, 1260 TOF-Mass spectrum (M / Z): 622, 623 (Calculated molecular weight = 620.6672)
匪 Rスぺクトル(δ, ppm) : CH2= 4·4〜4.6(4Η), =CH- 5.9〜6.1 (2Η) , フエニル -CH厂 フエニル 2.8(2H), 芳香族 C - H 6.8〜7.4(26H) Marauder R spectrum (δ, ppm): CH 2 = 4.4 ~ 4.6 (4Η), = CH- 5.9 ~ 6.1 (2Η), phenyl -CH factory phenyl 2.8 (2H), aromatic C-H 6.8 ~ 7.4 (26H)
合成例 2 5 (化合物 (H— 8) の合成)  Synthesis Example 25 (Synthesis of Compound (H-8))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 50 Om l 四つ口フラスコに、金属リチウム片 2. 08 g (0. 30 0モル)と蒸留 THF 1 0 0 m 1を入れ、 激しく攪拌しながら 2, 2-ビス(4-クロ口フエニル)プロパン 25. 9 7 g (0. 1 00モル) の蒸留 THF 200m 1溶液を滴下した。 この際、 反応開始 に伴う発熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で 滴下を終了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカン テーシヨンにより取り除いた。  In a 50 Oml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 2.08 g (0.300 mol) of lithium metal and 100 mL of distilled THF were added. Was added, and a solution of 25.97 g (0.100 mol) of 2,2-bis (4-chlorophenyl) propane in 200 ml of distilled THF was added dropwise with vigorous stirring. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 0 00m 1四つ口フラスコに、 ひ-ナフチルホスフィニルジクロリド 1 3 7. 42 g (0. 6 00モル) と蒸留 THF 300m 1を入れ、 穏やかに窒素を流通しながらかき混 ぜ、 0〜5でにて、 上記の有機リチウム化合物溶液全量を滴下ロートより 3時間か けて加えた。 同温度で 6時間、 室温で 1 2時間反応させ、 溶媒と過剰の ひ-ナフチ ルホスフィニルジクロリドを減圧留去した。 残渣に 30 0m lの乾燥酢酸ェチルを 加えてかき混ぜ、溶け残る塩をろ去し、溶液を減圧留去して 2, 2-ビス [4- (クロルひ - ナフチルホスフィエル)フエニル]プロパンを調整した。  In a 100-m 4-neck flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 137.42 g (0.600 mol) of para-naphthylphosphinyl dichloride was added. 300 ml of distilled THF was added thereto, and the mixture was stirred while gently flowing nitrogen, and the whole amount of the organic lithium compound solution was added at 0 to 5 over 3 hours from a dropping funnel. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess sodium naphthylphosphinyl dichloride were distilled off under reduced pressure. Add 300 ml of dry ethyl acetate to the residue and stir to remove residual salts by filtration. Evaporate the solution under reduced pressure to prepare 2,2-bis [4- (chloro-naphthylphosphiel) phenyl] propane. did.
' 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 0 00m 1四つ口フラスコに、 アミノスチレン 3 5. 7 5 g (0. 30 0モル) 、 トリエ チルァミン 30. 3 6 g (0. 3 00モル) 、 THF 20 0m lを入れ、 0〜 5 °C にて、 上述の 2, 2 -ビス [4- (クロル -ナフチルホスフィニル)フエニル]プロパン全 量の THF 300m l溶液を滴下した。 伺温度で 3時間、 室温で 1 0時間反応後、 溶媒の約半量を減圧留去して 1 5 00m lの水に投じ、 1 50m lの酢酸ェチルで 5回抽出、 酢酸ェチル相を無水硫酸ナトリウムで乾燥、 ろ過、 減圧留去して、 目的 の化合物を 6 9. 46 g (収率 9 3 %) 得た。 この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 8) の構造が確認できた。 '' A 3.000-m four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 3.5.75 g (0.300 mol) of aminostyrene and 30. 36 g (0.300 mol) and 200 ml of THF were added, and at 0 to 5 ° C., the total amount of 2,2-bis [4- (chloro-naphthylphosphinyl) phenyl] propane described above was reduced. A 300 ml THF solution was added dropwise. After reacting at the temperature for 3 hours and at room temperature for 10 hours, about half of the solvent was distilled off under reduced pressure and poured into 1500 ml of water, and extracted with 150 ml of ethyl acetate five times.The ethyl acetate phase was sulfuric anhydride. Drying over sodium, filtration and evaporation under reduced pressure gave 69.46 g (yield 93%) of the desired compound. The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (II-8) described above.
赤外吸収スペクトル(cm—1) : レ NH 3240, δ NH 1640, v ring 1605, 1495、 v C=C 1630 Infrared absorption spectrum (cm— 1 ): Le NH 3240, δ NH 1640, v ring 1605, 1495, v C = C 1630
TOF-Massスぺクトル(M/Z) : 748, 749 (分子量計算値 = 746.8702)  TOF-Mass spectrum (M / Z): 748, 749 (Calculated molecular weight = 746.8702)
薩 Rスぺクトル(δ, ppm) : CH2= 4.5〜4.7(4H), =CH - 6.0〜6.2(2H), >NH 3.2(2H), -CH31.4(6H), 芳香族 C- H 6.8〜7.6(30H) R spectrum (δ, ppm): CH 2 = 4.5 to 4.7 (4H), = CH-6.0 to 6.2 (2H),> NH 3.2 (2H), -CH 3 1.4 (6H), aromatic C- H 6.8-7.6 (30H)
合成例 2 6 (化合物 (Π— 9) の合成)  Synthesis Example 26 (Synthesis of Compound (Π-9))
α -ナフチルホスフィニルジクロリドの代わりに ビフエ二ルホスフィニルジク ロリド 1 5 3. 0 5 g (0. 6 0 0モル) を、 アミノスチレンの代わりに N-ァリ ル- jo -アミノスチレン (0. 3 0 0モル) 4 7. 7 7 gを用いた他は、 合成例 2 5と 同様にして目的の目的の化合物を 8 0. 0 0 g (収率 9 1 %) 得た。  13.5.05 g (0.6000 mol) of biphenylphosphinyl dichloride in place of α-naphthylphosphinyl dichloride and N-aryl-jo-aminostyrene in place of aminostyrene (0.3 mol) Except that 47.77 g was used, 80.0 g (yield: 91%) of a target compound was obtained in the same manner as in Synthesis Example 25.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 9) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (II-9) described above.
赤外吸収スペクトル(cm—り : V ring 1605, 1495、 v C=C 1630  Infrared absorption spectrum (cm-R: V ring 1605, 1495, v C = C 1630
TOF-Massスぺクトル(M/Z) : 881, 882 (分子量計算値 = 879.075)  TOF-Mass spectrum (M / Z): 881, 882 (Calculated molecular weight = 879.075)
NMRスペクトル( , ppm) : CH2= 4.4〜4.5 および 4· 7〜4.8 (8H), =CH - 5.4〜5.5 および 5.8〜6.0(4H), -CH2- 2.8(4H), -CH31.4 (6H) , 芳香族 C- H 6.7〜7.6(34H) 合成例 2 7 (化合物 (Π— 1 0) の合成) NMR spectrum (, ppm): CH 2 = 4.4~4.5 and 4 · 7~4.8 (8H), = CH - 5.4~5.5 and 5.8~6.0 (4H), -CH 2 - 2.8 (4H), -CH 3 1.4 (6H), Aromatic C-H 6.7-7.6 (34H) Synthesis Example 2 7 (Synthesis of Compound (Π-10))
三塩化リンの代わりにフエニルホスフィニルジクロリド 7 1. 3 9 g (0. 6 0 0 モル) を、臭化ァリルの代わりに ^クロルメチルスチレン 4 5. 7 9 g (0. 3 0 0 モル) を用いた他は、 合成例 1 8と同様にして目的の化合物を 5 5. 4 5 g (収率 9 2 %) 得た。  Phenylphosphinyl dichloride 71.39 g (0.600 mol) was used instead of phosphorus trichloride, and ^ chloromethylstyrene 45.79 g (0.3000) was used instead of aryl bromide. Mol) was used in the same manner as in Synthesis Example 18 to obtain 5.545 g (92% yield) of the target compound.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 1 0) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (Π-10) described above.
赤外吸収スペクトル(cm—1) : ソ ring 1605, 1495、 v C=C 1635 Infrared absorption spectrum (cm— 1 ): So ring 1605, 1495, v C = C 1635
TOF- Massスペクトル(M/Z) : 604, 605 (分子量計算値 = 602.6940)  TOF-Mass spectrum (M / Z): 604, 605 (Calculated molecular weight = 602.6940)
NMRスペクトル(<5, ppm): CH2= 4· 5〜4· 6 (4H) , =CH- 5.5〜5.6 (2Η) , -CH2- 2.6(4Η), 芳香族 C-H 6.8〜7.4(26Η) NMR spectrum (<5, ppm): CH 2 = 4 · 5~4 · 6 (4H), = CH- 5.5~5.6 (2Η), -CH 2 - 2.6 (4Η), aromatic CH 6.8~7.4 (26Η )
合成例 2 8 (化合物 (Π— 1 1 ) の合成) 乾燥管付き還流管、 機械攙拌装置、 窒素導入管、 滴下ロートを備えた 1000m 1四つ口フラスコに、 金属リチウム片 2. 08 g (0. 300モル) と蒸留 THF 1 00m lを入れ、 激しく攪拌しながら 4,4' -ジクロル- 1,1, -ビナフチル 32. 32 g (0. 1 00モル) の蒸留 THF 500m 1溶液を滴下した。 この際、 反応 開始に伴う発熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時 間で滴下を終了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデ カンテ一ションにより取り除き、約 2倍の濃度になるように溶媒を減圧濃縮した。 Synthesis Example 2 8 (Synthesis of Compound (Π—11)) 2.08 g (0.300 mol) of lithium metal pieces and 100 ml of distilled THF were placed in a 1000 m four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirring device, a nitrogen inlet tube, and a dropping funnel. Under vigorous stirring, a solution of 32.32 g (0.100 mol) of 4,4′-dichloro-1,1, -binaphthyl in 500 ml of distilled THF was added dropwise. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation, and the solvent was concentrated under reduced pressure to about twice the concentration.
この後、臭化ァリルマグネシウム溶液の代わりに 2-ヒドロキシェチルァクリレー ト 69. 67 g (0. 600モル) とトリエチルァミン 60. 7 1 g (0. 600 モル) の THF 30 Om 1溶液を用いた他は、 合成例 18と同様にして目的の化合 物を 70. 50 g (収率 9 1 %) 得た。  After this, 69.67 g (0.600 mol) of 2-hydroxyethyl acrylate and 60.71 g (0.600 mol) of triethylamine in THF 30 Om 70.50 g (yield: 91%) of the desired compound was obtained in the same manner as in Synthesis Example 18 except that one solution was used.
この化合物の赤外吸収スペクトル、 TO F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 1 1) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (II-11) described above.
赤外吸収スペクトル(cnf1): V C=01720, v ring 1605, 1500、 v C=C 1635, v C-O-C 1060 Infrared absorption spectrum (cnf 1 ): VC = 01720, v ring 1605, 1500, v C = C 1635, v COC 1060
TOF-Massスぺクトル(M/Z) : 776,777 (分子量計算値 = 774.7036)  TOF-Mass spectrum (M / Z): 776,777 (Calculated molecular weight = 774.7036)
画 Rスペクトル(<5, ppm) : CH2= 5.1〜5.2(8H), =CH- 6.0〜6.2(4H), -C00CH2CH2- 2.8〜3.6(16H), 芳香族 C-H 6.8〜7.7(12H) Image R spectrum (<5, ppm): CH 2 = 5.1~5.2 (8H), = CH- 6.0~6.2 (4H), -C00CH 2 CH 2 - 2.8~3.6 (16H), aromatic CH 6.8-7.7 ( 12H)
合成例 29 (化合物 (I [一 12) の合成)  Synthesis Example 29 (Synthesis of Compound (I [1-12]))
三塩化リンの代わりにフエニルホスフィニルジクロリド 1 1 6. 99 g (0. 600モル) を用いた以外は合成例 18と同様にして、 4,4' -ビス(クロルフエニル ホスフィエル)ビフエニルを調整した。  4,4'-Bis (chlorophenyl phosphier) biphenyl was prepared in the same manner as in Synthesis Example 18 except that phenylphosphinyl dichloride was used in place of phosphorus trichloride, and the same procedure was repeated, except that phenylphosphinyl dichloride was used. did.
' 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 000m 1四つ口フラスコに、 N- (2 -アミノエチル)メタクリルアミド 38.45 g(0.300 モル) とトリエチルァミン 30. 36 g (0. 300モル) の THF 400m l溶 液を入れ、 0〜 5 :にて上記の 4,4' -ビス(クロルフエニルホスフィエル)ビフエ二 ル全量の THF 400m l溶液を 4時間かけて滴下した。 同温度で 4時間、 室温で 12時間反応させ、 約半量の溶媒を減圧留去して 2000m 1の水に投じ、 1 50 m 1の酢酸ェチルで 5回抽出した。 酢酸ェチル相を無水硫酸ナトリウムで乾燥、 ろ 過、 減圧留去して、 目的の化合物を 57. 9 1 (収率 93%) 得た。 この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 1 2) の構造が確認できた。 '' 38.45 g (0.300 mol) of N- (2-aminoethyl) methacrylamide and 30 ml of triethylamine in a 1 000m four-necked flask equipped with a reflux tube equipped with a drying tube, mechanical stirrer, nitrogen inlet tube, and dropping funnel 36 g (0.300 mol) of 400 ml of THF solution was added, and 0 to 5: 400 ml of THF solution containing 4,4′-bis (chlorophenylphosphier) biphenyl was added. It was dropped over time. The reaction was carried out at the same temperature for 4 hours and at room temperature for 12 hours. About half of the solvent was distilled off under reduced pressure, poured into 2000 ml of water, and extracted five times with 150 ml of ethyl acetate. The ethyl acetate phase was dried over anhydrous sodium sulfate, filtered, and evaporated under reduced pressure to give the desired compound (57.91, yield 93%). The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (II-12) described above.
赤外吸収スペクトル(cm—り: リ NH3240,3080、アミド- H 1645, リ ring 1605, 1495、 vC=C 1630  Infrared absorption spectrum (cm-RI: Li NH3240,3080, Amido-H 1645, Li ring 1605, 1495, vC = C 1630
. TOF- Massスペクトル(M/Z) : 624, 625 (分子量計算値 = 622.6876)  . TOF-Mass spectrum (M / Z): 624, 625 (Calculated molecular weight = 622.6876)
匪 R スぺク トル(δ, ppm) : CH2= 4.6〜5.0(4H), -CH2- 2.6〜3.4(8H), >NH 3, 1,3.5(4H), - CH3 1.5(6H), 芳香族 C - H 6.7〜7·6(18Η) Negation R spectrum (δ, ppm): CH 2 = 4.6~5.0 (4H), -CH 2 - 2.6~3.4 (8H),> NH 3, 1,3.5 (4H), - CH 3 1.5 (6H ), Aromatic C-H 6.7 ~ 7.6 (18Η)
合成例 30 (化合物 (H— 1 3) の合成)  Synthesis Example 30 (Synthesis of compound (H-13))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 000m 1四つ口フラスコに、 金属リチウム片 4. 1 6 g (0. 6 00モル) と蒸留 THF 2 00m lを入れ、激しく攪拌しながら 4,4' -ジクロルビフエニル 44. 6 2 g (0. 200モル) の蒸留 THF 40 0m 1溶液を滴下した。 この際、 反応開始に伴う発 熱で穏やかな沸点還流が保たれるように滴下速度を調節した。 約 3時間で滴下を終 了し、 さらに 1時間沸点還流した。 冷却後、 過剰の金属リチウムをデカンテーショ ンにより取り除いた。 この溶液に、 0〜5°Cにてフエニルホスフィニルジクロリド 1 7. 90 g (0. 1 00モル) の蒸留 THF 30 Om 1溶液を激しくかき混ぜな がら滴下ロートより 3時間かけて加えた。 同温度で 6時間、 室温で 1 2時間反応さ せ、 減圧濃縮して約 500 m 1とした。  In a 1000 ml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 4.16 g (0.600 mol) of lithium metal pieces and 200 ml of distilled THF were placed. Then, a solution of 44.62 g (0.200 mol) of 4,4'-dichlorobiphenyl in 400 ml of distilled THF was added dropwise with vigorous stirring. At this time, the dropping rate was adjusted so that a gentle boiling point reflux was maintained by the heat generated at the start of the reaction. The dropwise addition was completed in about 3 hours, and the mixture was refluxed at the boiling point for 1 hour. After cooling, excess metal lithium was removed by decantation. To this solution, a solution of 1.90 g (0.100 mol) of phenylphosphinyl dichloride in distilled THF 30 Om1 at 0 to 5 ° C. was added from a dropping funnel over 3 hours with vigorous stirring. . The mixture was reacted at the same temperature for 6 hours and at room temperature for 12 hours, and concentrated under reduced pressure to about 500 ml.
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下口一トを備えた 1 00 Om 1四つ口フラスコに、 三塩化リン 82. 3 9 g (0. 60 0モル) の 200m l T HF溶液を入れ、 0〜5°Cにて上記の濃縮溶液を滴下ロートより 3時間かけて加え た。 同温度で 6時間、 室温で 1 2時間反応させ、 溶媒と過剰の三塩化リンを減圧留 -去した。 残渣に 30 0m lの乾燥酢酸ェチルを加えてかき混ぜ、 溶け残る塩をろ去 し、 溶液を減圧留去した。 残渣を 50 Om 1の THF溶液とし、 合成例 1 8と同様 に臭化ァリルマグネシウム溶液と反応させ、同様に処理して、目的の化合物を 5 5. 5 7 g (収率 8 7 ) 得た。  A 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping port was charged with 200.13 ml of 82.39 g (0.600 mol) of phosphorus trichloride. The HF solution was added, and the above-mentioned concentrated solution was added at 0 to 5 ° C from a dropping funnel over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the solvent and excess phosphorus trichloride were distilled off under reduced pressure. 300 ml of dry ethyl acetate was added to the residue and stirred, the remaining salt was removed by filtration, and the solution was distilled off under reduced pressure. The residue was converted to a 50 Om 1 THF solution, reacted with an aryl magnesium bromide solution in the same manner as in Synthesis Example 18 and treated in the same manner to obtain 5.57 g of the desired compound (yield 87). Was.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 1 3) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (III-13) described above.
赤外吸収スペクトル(cur1) : V ring 1605, 1495、 リ OC 1635 Infrared absorption spectrum (cur 1 ): V ring 1605, 1495, Li OC 1635
TOF-Massスぺクトル(M/Z) : 640,641 (分子量計算値 = 638.7073) NMRスぺクトル(δ, ppm): CH2= 4.6〜4.7 (8Η) , =CH- 5.3〜5.6 (4Η), -CH2- 3.0 (8Η) , 芳香族 C-H 6.6〜7.8(21H) TOF-Mass spectrum (M / Z): 640,641 (Calculated molecular weight = 638.7073) NMR scan Bae spectrum (δ, ppm): CH 2 = 4.6~4.7 (8Η), = CH- 5.3~5.6 (4Η), -CH 2 - 3.0 (8Η), aromatic CH 6.6~7.8 (21H)
合成例 3 1 (化合物 (H— 20) の合成)  Synthesis Example 3 1 (Synthesis of Compound (H-20))
乾燥管付き還流管、 機械攆拌装置、 窒素導入管、 滴下ロートを備えた 1 0 00m 1四つ口フラスコに、 フエニルホスフィニルジクロリド 1 7. 90 g (0. 1 00 モル) の蒸留 THF 300m lを入れて攪拌し、 0〜5°Cに冷却しながら 5-クロ口 - 1_ナフトール 35. 72 g (0. 2 0 0モル) とトリエチルァミン 2 5. 30 g (0. 2 5 0モル) の蒸留 THF 30 0m l溶液を 3時間かけて滴下した。 同温度 で 6時間、 室温で 1 2時間反応させ、 トリェチルァミン塩酸塩をろ去し、 減圧乾固 して、 フエニルホスフィン酸ビス(5-クロ口 _1一ナフトキシド)を定量的に得た。 全量を蒸留 THF 400m lの溶液として、 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下口一トを備えた 1 0 00m 1四つ口フラスコに入れて攪拌し、 0 〜 5°Cに冷却しながら 5. 0 gの金属リチウム細片を 3時間かけて加えた。 同温度 で 6時間、室温で 6時間反応させて、 フエニルホスフィン酸ビス(5-リチォ _1_ナフ トキシド)を定量的に得た。 過剰の金属リチウムをデカンテーシヨンにより取り除 き、 0〜5°Cに冷却しながら三塩化リン 8 2. 39 g (0. 6 00モル) の 200 m 1 THF溶液を 3時間かけて滴下した。 同温度で 3時間、 室温で 3時間反応させ た後、 溶媒と過剰の三塩化リンを減圧留去した。 残渣を 50 Om lの THF溶液と し、合成例 1 8と同様に臭化ァリルマグネシウム溶液と反応させ、同様に処理して、 目的の化合物を 58. 7 9 g (収率 9 5%) 得た。  Distillation of 1.90 g (0.100 mol) of phenylphosphinyl dichloride into a 100-m 4-neck flask equipped with a reflux tube equipped with a drying tube, a mechanical stirring device, a nitrogen inlet tube, and a dropping funnel Add 300 ml of THF, stir, cool to 0-5 ° C, and cool 5-5-neck 1-naphthol 35.72 g (0.200 mol) and triethylamine 25.30 g (0. A solution of 250 mol) in 300 ml of distilled THF was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the triethylamine hydrochloride was filtered off and evaporated to dryness under reduced pressure to quantitatively obtain bis (5-chloro-1-naphthoxide) phenylphosphinate. The whole amount was placed in a 100 ml four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping port, and stirred with a 400 ml solution of distilled THF. 5.0 g of lithium metal flakes were added over 3 hours while cooling. The reaction was carried out at the same temperature for 6 hours and at room temperature for 6 hours to obtain quantitatively bis (5-litho_1_naphthoxide) phenylphosphinate. Excess metal lithium was removed by decantation, and a solution of phosphorous trichloride (82.39 g, 0.600 mol) in 200 ml THF was added dropwise over 3 hours while cooling to 0 to 5 ° C. . After reacting at the same temperature for 3 hours and at room temperature for 3 hours, the solvent and excess phosphorus trichloride were distilled off under reduced pressure. The residue was converted to a 50 Oml THF solution, reacted with an allylmagnesium bromide solution in the same manner as in Synthesis Example 18, and treated in the same manner to give 58.779 g of the desired compound (yield 95%). Obtained.
この化合物の赤外吸収スペクトル、 T〇F_Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π - 20) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, T〇F_Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (Π-20) described above.
赤外吸収スペクトル(cm—り : V ring 1606, 1500、 v C=C 1640  Infrared absorption spectrum (cm-R: V ring 1606, 1500, v C = C 1640
TOF_Massスペクトル(M/Z) : 618, 619 (分子量計算値 = 616.6159)  TOF_Mass spectrum (M / Z): 618, 619 (Calculated molecular weight = 616.6159)
NMRスぺクトル(<5, ppm): CH2= 4.6〜4.7 (8H) , =CH - 5.3〜5.6 (4H) , _CH2- 3.0 (8H) , 芳香族 C - H 6.6〜7.8(17H) NMR scan Bae spectrum (<5, ppm): CH 2 = 4.6~4.7 (8H), = CH - 5.3~5.6 (4H), _CH 2 - 3.0 (8H), aromatic CH 6.6~7.8 (17H)
合成例 3 2 (化合物(Π— 2 1)の合成)  Synthesis Example 3 2 (Synthesis of Compound (Π—21))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 Om 1四つ口フラスコに、ァリロキシホスフィニルジクロリド 47. 6 8 g (0. 3 0 0 モル) の蒸留 THF 3 0 Om 1を入れて攪拌し、 0〜 5 °Cに冷却しながら 1, 5 -ナフ 夕レンジオール 16. 02 g (0. 1 00モル) とトリエチルァミン 25. 30 g (0. 2 50モル) の蒸留 THF 300m 1溶液を 3時間かけて滴下した。 同温度 で 6時間、 室温で 12時間反応させ、 トリェチルァミン塩酸塩をろ去し、 減圧乾固 して、 1,5-ビス(ァリロキシクロロホスフイノキシ)ナフ夕レンを定量的に得た。 全量を蒸留 THF40 Om 1の溶液として、 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 100 Om 1四つ口フラスコに入れて攪拌し、 0 〜 5°Cに冷却しながら 5_クロ口- 1一ナフトール 35. 72 g (0. 200モル) と トリェチルァミン 25. 30 g (0. 250モル) の蒸留 THF 30 Om 1溶液を 3時間かけて滴下した。 同温度で 6時間、 室温で 12時間反応させ、 トリェチルァ ミン塩酸塩をろ去し、 減圧乾固して、 In a 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen introduction tube, and a dropping funnel, 47.68 g (0.3000 mol) of aryloxyphosphinyl dichloride was placed. Distillation THF 30 Om 1 is added and stirred, and cooled to 0 to 5 ° C while 1,5-naphthene is added. A solution of 16.02 g (0.100 mol) of evening diol and 25.30 g (0.250 mol) of triethylamine in 300 ml of distilled THF was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours. Triethylamine hydrochloride was removed by filtration and evaporated to dryness under reduced pressure to give quantitatively 1,5-bis (aryloxychlorophosphinoxy) naphthylene. . The whole amount was placed in a 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, stirred as a distilled THF40 Om1 solution, and cooled to 0 to 5 ° C. Then, a solution of 35.72 g (0.200 mol) of 5_cloguchi-1-naphthol and 25.30 g (0.250 mol) of triethylamine in distilled THF 30 Om1 was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours. Triethylamine hydrochloride was removed by filtration, and dried under reduced pressure.
C 1 -Np-0-P (OCH2CH=CH2) -Ο-Νρ-0-Ρ (OCH2CH=CH2) -O-Np-C 1 (ただし Npは 1, 5-ナフタレ ン基) を定量的に得た。 C 1 -Np-0-P (OCH 2 CH = CH 2 ) -Ο-Νρ-0-Ρ (OCH 2 CH = CH 2 ) -O-Np-C 1 (where Np is 1,5-naphthalene group ) Was obtained quantitatively.
全量を蒸留 THF 40 Om lの溶液として、 乾燥管付き還流管、 機械攙拌装置、 窒素導入管、 滴下ロートを備えた 100 Om 1四つ口フラスコに入れて攪拌し、 0 〜5°Cに冷却しながら 5. 0 gの金属リチウム細片を 3時間かけて加えた。 同温度 で 6時間、 室温で 6時間反応させて、  The whole amount was put in a 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen introducing tube, and a dropping funnel as a solution of 40 Oml of distilled THF, and stirred at 0 to 5 ° C. With cooling, 5.0 g of lithium metal flakes were added over 3 hours. Reaction for 6 hours at the same temperature and 6 hours at room temperature
Li-Np-O-P (OCH2CH=CH2)-0-Np-0-P (OCH2CH=CH2) -O-Np-Li (ただし Npは 1, 5-ナフタレ ン基)を定量的に得た。過剰の金属リチウムをデカンテーションにより取り除き、 0 〜 5 °Cに冷却しながら三塩化リン 82. 39 g (0. 600モル) の 20 Om 1 T HF溶液を 3時間かけて滴下した。 同温度で 3時間、 室温で 3時間反応させた後、 溶媒と過剰の三塩化リンを減圧留去して Li-Np-OP (OCH 2 CH = CH 2 ) -0-Np-0-P (OCH 2 CH = CH 2 ) -O-Np-Li (where Np is 1,5-naphthalene group) quantitative I got it. Excess metal lithium was removed by decantation, and a solution of 82.39 g (0.600 mol) of phosphorus trichloride in 20 Om 1 T HF was added dropwise over 3 hours while cooling to 0 to 5 ° C. After reacting at the same temperature for 3 hours and at room temperature for 3 hours, the solvent and excess phosphorus trichloride were distilled off under reduced pressure.
Cl2P-Np-0-P (OCH2CH=CH2)-0-Np-0-P (OCH2CH=CH2) -0-Np-PCl2 (ただし Npは 1, 5_ナフ 夕レン基)を定量的に得た。残渣を 50 Om 1の THF溶液として攪拌し、 0〜 5 °C に冷却しながらァリルアルコール 34. 8 5 g (0. 600モル) とトリエチルァ ミン 60. 72 g (0. 600モル) の 20 Om 1 THF溶液を 3時間かけて滴下 した。 同温度で 6時間、 室温で 12時間反応させ、 トリェチルァミン塩酸塩をろ去 し、 減圧乾固して、 目的の化合物を 85. 24 g (収率 94%) 得た。 Cl 2 P-Np-0-P (OCH 2 CH = CH 2 ) -0-Np-0-P (OCH 2 CH = CH 2 ) -0-Np-PCl 2 (where Np is 1, 5_ Len group) was obtained quantitatively. The residue was stirred as a 50 Om 1 solution in THF and cooled to 0-5 ° C with 34.85 g (0.600 mol) of aryl alcohol and 60.72 g (0.600 mol) of triethylamine in 20 ml. The Om 1 THF solution was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and triethylamine hydrochloride was removed by filtration and dried under reduced pressure to obtain 85.24 g (yield 94%) of the desired compound.
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (I [一 2 1) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (I [121]) described above.
赤外吸収スペクトル(cm—1) : レ ring 1606, 1500、 リ C=C 1640 TOF-Massスぺクトル(M/Z) : 910,911 (分子量計算値 = 908.8024) Infrared absorption spectrum (cm— 1 ): Le ring 1606, 1500, C = C 1640 TOF-Mass spectrum (M / Z): 910,911 (Calculated molecular weight = 908.8024)
画 R スぺク トル(δ, ppm) : CH2= 4.6〜4.7(12H), =CH- 5.3〜5·6(6Η), - CH2 - 3.0(12H), 芳香族 C-H 6·6〜7.8(18Η) Image R spectrum (δ, ppm): CH 2 = 4.6~4.7 (12H), = CH- 5.3~5 · 6 (6Η), - CH 2 - 3.0 (12H), aromatic CH 6 ·. 6 to 7.8 (18Η)
合成例 3 3 (化合物(Π— 2 2)の合成)  Synthesis Example 3 3 (Synthesis of Compound (Π—22))
乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 Om 1四つ口フラスコに、 ァリルホスフィエルジクロリド 42. 8 8 g (0. 30 0モ ル) の蒸留 THF 3 0 0m lを入れて攪拌し、 0〜5°Cに冷却しながら p-ヒドロキ ノン 1 1. O l g (0. 1 00モル) とトリェチルアミン 2 5. 30 g (0. 2 5 0 モル) の蒸留 THF 30 Om 1溶液を 3時間かけて滴下した。 同温度で 6時間、 室 温で 1 2時間反応させ、 トリエヂルァミン塩酸塩をろ去し、 減圧乾固して、 1,4 -ビ ス(ァリルクロロホスフイノキシ)ベンゼンを定量的に得た。  In a 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel, 42.88 g (0.300 mol) of diaryl phosphier dichloride was distilled THF. Add 300 ml, stir, and cool to 0-5 ° C while cooling p-hydroquinone 1 1.O lg (0.100 mol) and triethylamine 25.30 g (0.250 mol) A solution of distilled THF 30 Om1 was added dropwise over 3 hours. The reaction was allowed to proceed at the same temperature for 6 hours and at room temperature for 12 hours, and the toluenediamine hydrochloride was filtered off and dried under reduced pressure to give quantitatively 1,4-bis (arylchlorophosphinoxy) benzene. .
全量を蒸留 THF 40 Om lの溶液として、 乾燥管付き還流管、 機械攪拌装置、 窒素導入管、 滴下ロートを備えた 1 00 Om 1四つ口フラスコに入れて攙拌し、 0 〜 5°Cに冷却しながら 4_ブロモフエノ一ル 34. 2 1 g (0. 200モル) とトリ ェチルァミン 2 5. 3 0 g (0. 2 50モル) の蒸留 THF 30 Om 1溶液を 3時 間かけて滴下した。 同温度で 6時間、 室温で 1 2時間反応させ、 トリェチルァミン 塩酸塩をろ去し、 減圧乾固して、  The whole amount was placed in a 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel as a solution of 40 Oml of distilled THF, and stirred at 0 to 5 ° C. A solution of 34.2 g (0.200 mol) of 4_bromophenol and 25.30 g (0.250 mol) of triethylamine in THF 30 Om1 was added dropwise over 3 hours while cooling the mixture. did. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and triethylamine hydrochloride was removed by filtration.
Br- φ -0-P (CH2CH=CH2) -0- -0-P (CH2CH=CH2) -0- -Br (ただし φは 1,4 -フヱ二レン 基) を定量的に得た。 Br- φ -0-P (CH 2 CH = CH 2 ) -0- -0-P (CH 2 CH = CH 2 ) -0- -Br (φ is 1,4-phenylene group) Obtained quantitatively.
全量を蒸留 THF 40 Om lの溶液として、 乾燥管付き還流管、 機械攙拌装置、 窒素導入管、 滴下ロートを備えた 1 00 Om 1四つ口フラスコに入れて攪拌し、 0 〜5°Cに冷却しながら 5. 0 gの金属リチウム細片を 3時間かけて加えた。 同温度 'で 6時間、 室温で 6時間反応させて、  The whole amount was put into a 100 Om four-necked flask equipped with a reflux tube equipped with a drying tube, a mechanical stirrer, a nitrogen inlet tube, and a dropping funnel as a solution of 40 Oml of distilled THF, and stirred at 0 to 5 ° C. 5.0 g of lithium metal flakes were added over 3 hours while cooling. Reaction at the same temperature for 6 hours and room temperature for 6 hours
L i - -0-P (CH2CH=CH2) -0- φ -0-P (CH2CH=CH2) -0- -L i (ただし φは 1,4-フエ二レン 基) を定量的に得た。 過剰の金属リチウムをデカンテーシヨンにより取り除き、 0 〜 5°Cに冷却しながら三塩化リン 82. 3 9 g (0. 6 0 0モル) の 2 0 Om 1 T HF溶液を 3時間かけて滴下した。 同温度で 3時間、 室温で 3時間反応させた後、 溶媒と過剰の三塩化リンを減圧留去して L i--0-P (CH 2 CH = CH 2 ) -0- φ -0-P (CH 2 CH = CH 2 ) -0- -L i (where φ is 1,4-phenylene group) Was quantitatively obtained. Excess metal lithium is removed by decantation, and a solution of 82.39 g (0.600 mol) of phosphorus trichloride in 20 Om 1 T HF is added dropwise over 3 hours while cooling to 0 to 5 ° C. did. After reacting at the same temperature for 3 hours and at room temperature for 3 hours, the solvent and excess phosphorus trichloride were distilled off under reduced pressure.
C 12Ρ- φ -0-P (CH2CH=CH2) -0- φ -0-P (CH2CH=CH2) -0- -PC 12 (ただし φは 1,4 -フエ二 レン基) を定量的に得た。 残渣を 500m lの THF溶液として攪拌し、 0〜 5 °Cに冷却しながらァリルァ ミン 34. 26 g (0. 6 0 0モル) とトリェチルァミン 6 0. 7 2 g (0. 6 0 0 モル) の 20 Om 1 THF溶液を 3時間かけて滴下した。 同温度で 6時間、 室温で 1 2時間反応させ、 トリェチルァミン塩酸塩をろ去し、 減圧乾固して、 目的の化合 物を 62. 29 g (収率 9 3 %) 得た。 C 1 2 Ρ- φ -0-P (CH 2 CH = CH 2 ) -0- φ -0-P (CH 2 CH = CH 2 ) -0- -PC 1 2 (However, φ is 1,4- Diene group) was obtained quantitatively. The residue is stirred as a 500 ml THF solution and cooled to 0-5 ° C while 34.26 g (0.6000 mol) of arylamine and 0.60.7 g (0.600 mol) of triethylamine are added. Was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the triethylamine hydrochloride was removed by filtration and dried under reduced pressure to obtain 62.29 g of the desired compound (yield: 93%).
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 22) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, TOF-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (II-22) described above.
赤外吸収スペクトル(cnf1) : ring 1604, 1496、 v C=C 1635 Infrared absorption spectrum (cnf 1 ): ring 1604, 1496, v C = C 1635
TOF- Massスペクトル(M/Z) : 668, 669 (分子量計算値 = 666.6546)  TOF-Mass spectrum (M / Z): 668, 669 (Calculated molecular weight = 666.6546)
NMRスペクトル(δ, ppm) : CH2= 4.4〜4.7 (12H) , =CH- 5.2〜5·6(6Η), -CH2- 3.0 〜3.7(12H), 芳香族 C-H 6.6〜7.8(12H) NMR spectrum (δ, ppm): CH 2 = 4.4~4.7 (12H), = CH- 5.2~5 · 6 (6Η), -CH 2 - 3.0 ~3.7 (12H), aromatic CH 6.6~7.8 (12H)
合成例 34 (化合物(Π— 2 3)の合成)  Synthesis Example 34 (Synthesis of compound (Π—23))
合成例 33と同様にして、  Similarly to Synthesis Example 33,
C 12Ρ- φ -0-Ρ (CH2CH=CH2) -0- φ -0-P (CH2CH=CH2) -0- -PC 12 (ただし φ は 1,4 -フエ二 レン基) を定量的に得た。 その後、 7リルァミンの代わりにジァリルアミン 58. 30 g (0. 600モル) とトリエチルァミン 60. 72 g (0. 600モル) の 20 Om 1 THF溶液を 3時間かけて滴下した。 同温度で 6時間、 室温で 1 2時間 反応させ、 トリェチルァミン塩酸塩をろ去し、減圧乾固して、目的の化合物を 7 9. 54 g (収率 96 %) 得た。 C 1 2 Ρ- φ -0-Ρ (CH 2 CH = CH 2 ) -0- φ -0-P (CH 2 CH = CH 2 ) -0- -PC 1 2 (However, φ is 1,4- Diene group) was obtained quantitatively. Thereafter, instead of 7-lylamine, a solution of 58.30 g (0.600 mol) of diarylamine and 60.72 g (0.600 mol) of triethylamine in 20 Om 1 THF was added dropwise over 3 hours. The reaction was carried out at the same temperature for 6 hours and at room temperature for 12 hours, and the triethylamine hydrochloride was filtered off and dried under reduced pressure to obtain 79.54 g (yield 96%) of the desired compound.
この化合物の赤外吸収スペクトル、 T〇F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Π— 2 3) の構造が確認できた。  The measurements of the compound in the infrared absorption spectrum, T-F-Mass spectrum, and NMR resulted in the followings. Thus, the measurements identified the structure of Compound (III-23) described above.
赤外吸収スペクトル(cm—1) : V ring 1605, 1495、 リ OC 1635 Infrared absorption spectrum (cm- 1 ): V ring 1605, 1495, Li OC 1635
' TOF- Massスペクトル(M/Z) : 828, 829 (分子量計算値 = 826.9130) '' TOF-Mass spectrum (M / Z): 828, 829 (Calculated molecular weight = 826.9130)
匿 Rスペクトル(δ, ppm) : CH2= 4.4〜4.7 (20©, =CH- 5.2〜5.6 (10H), -CH2- 3.0 〜3.8(20H), 芳香族 C- H 6.6〜7.8(12H) Anonymous R spectrum (δ, ppm): CH 2 = 4.4~4.7 (20 ©, = CH- 5.2~5.6 (10H), -CH 2 - 3.0 ~3.8 (20H), aromatic CH 6.6-7.8 (12H )
[一般式 (I ) の反応性難燃剤を用いた難燃性樹脂加工品の製造]  [Production of flame-retardant resin products using reactive flame retardants of general formula (I)]
実施例 1  Example 1
熱可塑性樹脂として 6 6ナイロン(宇部興産社製: 2 1 2 3 B) 56. 3質量部、 強化繊維としてシランカップリング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバーグラス社製: 03. JAFT2Ak25) 2 5質量部、 着色剤としてカーポンプ ラック 0. 5質量部、酸化防止剤(チバガイギ一社製:ィルガノィルガノックス 10 1 0) 0. 2質量部、 無機充填剤として粒径 2 のタルク 5質量部とナノ粒径の クレ一 (日商岩井ベントナイト (株) 社製ナノマ一 1.30T) 3質量部、 反応性難燃 剤として上記の化合物 (1 - 20) 10質量部を配合し、 サイドフロー型 2軸押出 機 (日本製鋼社製) で 28 Οΐで混練して榭脂ペレットを得て 1 05°C、 4時間乾 燥した後、 上記ペレットを射出成形機 (FUNUC社製: a 50 C) を用いて樹脂 温度 280°C、 金型温度 80°Cの条件で成形した。 66.3 Nylon as a thermoplastic resin (Ube Industries, Ltd .: 2123B) 56.3 parts by mass, glass fiber with a fiber length of about 3 mm surface-treated with a silane coupling agent as a reinforcing fiber (Asahi Fiberglass Co., Ltd.) : 03. JAFT2Ak25) 25 parts by mass, car pump as colorant 0.5 parts by weight of a rack, 0.2 parts by weight of an antioxidant (manufactured by Ciba Geigy Co., Ltd .: Irganoylurganox 10 10), 5 parts by weight of talc having a particle size of 2 as an inorganic filler and a crane having a nano particle size (Nissho Iwai Bentonite Co., Ltd. Nanomat 1.30T) 3 parts by mass, and 10 parts by mass of the above compound (1-20) as a reactive flame retardant were blended into a side-flow twin-screw extruder (Nippon Steel Corporation) Resin pellets obtained by kneading at 28 ° C and drying at 105 ° C for 4 hours. The above pellets were resin-sealed at 280 ° C using an injection molding machine (FUNUC: a50C). C, Molded at a mold temperature of 80 ° C.
その後、 上記成形品に、 コバルト 60を線源としたァ線を 25 kGy照射して実 施例 1の樹脂加工品を得た。  Thereafter, the molded product was irradiated with 25 kGy of α-ray using cobalt 60 as a radiation source to obtain a resin processed product of Example 1.
実施例 2  Example 2
熱可塑性榭脂として 66ナイロン(宇部興産社製: 2020 B) 55. 3質量部、 強化繊維としてシラン力ップリング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバ一グラス社製: 03. JAFT2Ak 25) 25質量部、 着色剤としてカーポンプ ラック 0. 5質量部、酸化防止剤(チバガイギ一社製:ィルガノィルガノックス 10 10) 0. 2質量部、 無機充填剤として粒径 2 のタルク 5質量部及びナノ粒径 のクレー (日商岩井ベントナイト (株) 社製ナノマ一 1.30T). 3質量部、 反応性難 燃剤として上記の化合物 ( 1— 14) 12質量部を配合し、 サイドフロー型 2軸押 出機 (日本製鋼社製) で 280°Cで混練して樹脂ペレットを得て 105°C、 4時間 乾燥した後、 上記ペレットを射出成形機 (FUNUC社製: Q( 50 C) を用いて樹 脂温度 280 、 金型温度 80°Cの条件で成形した。  As a thermoplastic resin, 66 nylon (Ube Industries, Ltd .: 2020 B) 55.3 parts by mass, glass fiber with a fiber length of about 3 mm surface-treated with a silane coupling agent as a reinforcing fiber (Asahi Fiberglass Corporation: 03 JAFT2Ak 25) 25 parts by mass, 0.5 parts by mass of a car pump rack as a colorant, 0.2 parts by mass of an antioxidant (manufactured by Ciba-Geigy Co., Ltd .: Irganoylurganox 10 10), 2 parts by mass of an inorganic filler having a particle size of 2 5 parts by weight of talc and a nano-sized clay (Nanosho 1.30T manufactured by Nissho Iwai Bentonite Co., Ltd.). 3 parts by weight, and 12 parts by weight of the above compound (1-14) as a reactive flame retardant were blended. After kneading at 280 ° C with a side-flow type twin screw extruder (manufactured by Nippon Steel Corporation) to obtain resin pellets and drying at 105 ° C for 4 hours, the above pellets are injected into an injection molding machine (FUNUC: Q ( Molding was performed using 50 C) at a resin temperature of 280 and a mold temperature of 80 ° C.
その後、 上記成形品に、 コバルト 60を線源とした γ線を 25 kGy照射して実 施例 2の樹脂加工品を得た。  Thereafter, the molded article was irradiated with 25 kGy of γ-rays using cobalt 60 as a radiation source to obtain a resin processed article of Example 2.
- 実施例 3 -Example 3
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 57. 2質量部、 無機充填剤として上記タルク 4質量部及びナノ粒径のクレー (日商岩井べントナイ ト (株) 社製ナノマ一 1.30T) 3質量部、 着色剤として力一ポンプラック 0. 5質 量部、 反応性難燃剤として上記の化合物 ( I一 13) 8質量部及び化合物 ( I一 1) 6質量部、 酸化防止剤 (チバガイギ一社製:ィルガノックス 1 0 1 0) 0. 3質量 部を加えて混合した。  Nylon 66 as thermoplastic resin (57.2 parts by mass of Ube Industries, Ltd .: 2020 B), 4 parts by mass of the above talc as an inorganic filler, and clay of nano-particle size (Nissho Iwai Bentonite Co., Ltd. 1.30T) 3 parts by weight, 0.5 parts by weight of a pump rack as a colorant, 8 parts by weight of the above compound (I-13) and 6 parts by weight of a compound (I-1) as a reactive flame retardant, antioxidant 0.3 parts by mass of an agent (manufactured by Ciba-Geigy Co., Ltd .: Irganox 101) was added and mixed.
280°Cに設定したサイドフロー型 2軸押出し機を用いて上記の混合物を溶融し、 更に、 強化繊維としてシランカツプリング剤で表面処理した繊維長約 3 mmのガラ ス繊維 (旭ファイバ一グラス社製: 03.JAFT2Ak25) 20質量部を、 押出し混練を用 いてサイドから溶融した上記の混合物に混ぜ込みコンパウンドペレツトを得た後、 上記ペレツ卜を 105°Cで 4時間乾燥させた。 Melt the above mixture using a side flow type twin screw extruder set at 280 ° C, Furthermore, 20 parts by mass of glass fiber (Asahi Fiber One Glass Co., Ltd .: 03.JAFT2Ak25) with a fiber length of about 3 mm and surface-treated with a silane coupling agent as a reinforcing fiber was melted from the side by extrusion kneading. After mixing with the mixture to obtain a compound pellet, the pellet was dried at 105 ° C for 4 hours.
射出成形機 (FUNUC社製: α 50 C) を用いてシリンダー温度 280 °C、 金 型温度 80°C、 射出圧力 78. 4MP a、 射出速度 120 mmZ s、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。  Using an injection molding machine (FUNUC: α 50C), a general cylinder temperature of 280 ° C, mold temperature of 80 ° C, injection pressure of 78.4 MPa, injection speed of 120 mmZ s, and cooling time of 15 seconds Under the conditions, electric and electronic parts and molded products for automobiles were molded.
その後、 上記成形品に、 コバルト 60を線源としたァ線を 25 kGy照射して実 施例 3の樹脂加工品を得た。  Thereafter, the molded product was irradiated with 25 kGy of α-ray using cobalt 60 as a radiation source to obtain a resin processed product of Example 3.
実施例 4  Example 4
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 56. 2質量部、 反応性難燃剤として上記の化合物 ( I _22) 1 1質量部及び非反応型の有機りん 系難燃剤 (三光化学社製: BCA) 5質量部を用いた以外は実施例 3と同様の条件で、 実施例 4の樹脂加工品を得た。  Nylon 66 as thermoplastic resin (56.2 parts by mass; Ube Industries, Ltd .: 2020 B) 56.2 parts by mass, 11 parts by mass of the above compound (I_22) as reactive flame retardant and non-reactive organophosphorus flame retardant (Sanko Chemical (BCA) The resin processed product of Example 4 was obtained under the same conditions as in Example 3 except that 5 parts by mass was used.
実施例 5  Example 5
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 55. 2質量部、 無機充填剤として実施例 2で使用のナノ粒径のクレー 4質量部、 着色剤としてカー ポンプラック 0. 5質量部、 反応性難燃剤として上記の化合物 (I一 18) 10質 量部、 多官能環状化合物 (日本化成社製: TAIC) 2質量部、 有機リン系難燃剤 (三 光化学社製、 BCA) 7質量部、 酸化防止剤 (チバガイギ一社製:ィルガノックス 10 10) 0. 3質量部を加えて混合した。  55.2 parts by mass of 66 nylon as thermoplastic resin (manufactured by Ube Industries, Ltd .: 2020 B), 4 parts by mass of nano-sized clay used in Example 2 as an inorganic filler, 0.5 parts by mass of car pump rack as a coloring agent Parts, 10 parts by weight of the above compound (I-18) as a reactive flame retardant, 2 parts by weight of a polyfunctional cyclic compound (TAIC, manufactured by Nippon Kasei Co., Ltd.), and organic phosphorus-based flame retardant (BCA, manufactured by Sanko Chemical Co., Ltd.) 7 Parts by mass, 0.3 parts by mass of an antioxidant (manufactured by Ciba-Geigy Corporation: Irganox 1010) were added and mixed.
280°Cに設定したサイドフロー型 2軸押出し機を用いて上記の混合物を溶融し、 '更に、 強化繊維としてシランカツプリング剤で表面処理した繊維長約 3 mmのガラ ス繊維 (旭ファイバーグラス社製: 03.JAFT2Ak25) 20質量部を、 押出し混練を用 いてサイドから溶融した上記の混合物に混ぜ込みコンパウンドペレツトを得た後、 上記ペレツトを 10 5 °Cで 4時間乾燥させた。  The above mixture was melted using a side-flow type twin-screw extruder set at 280 ° C, and a glass fiber with a fiber length of about 3 mm (Asahi Fiberglass) treated with a silane coupling agent as a reinforcing fiber 20 parts by mass of the compound: 03.JAFT2Ak25) were mixed with the above mixture melted from the side by extrusion kneading to obtain a compound pellet, and the pellet was dried at 105 ° C for 4 hours.
射出成形機 (FUNUC社製: ひ 50 C) を用いてシリンダ一温度 280° ( 、 金 型温度 80°C、 射出圧力 78. 4MP a、 射出速度 120mmZs、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。  Using an injection molding machine (manufactured by FUNUC: 50C), the general conditions of cylinder temperature 280 ° (, mold temperature 80 ° C, injection pressure 78.4MPa, injection speed 120mmZs, cooling time 15 seconds) The company formed electrical and electronic parts and molded products for automobiles.
その後、 上記成形品に、 コバルト 60を線源としたァ線を 25 kGy照射して実 施例 5の樹脂加工品を得た。 After that, the above molded product was irradiated with 25 kGy of α-ray with cobalt 60 A resin processed product of Example 5 was obtained.
実施例 6  Example 6
熱可塑性樹脂としてポリブチレンテレフタレート樹脂 (東レ株式会社製: トレコ ン 1401 X06) 55. 3質量部、 反応性難燃剤として上記の化合物 ( I _ 23 ) 1 0質量部、 非反応型の有機りん系難燃剤 (三光化学社製: BCA) 5質量部、 多官能 環状化合物 (東亜合成社製: M-3 15) 2質量部、 無機添加剤として実施例 2のナ ノ粒径のクレー 4質量部、補強剤として実施例 1のガラス繊維 20質量部、さらに、 着色剤として力一ポンプラック 0. 5質量部、 酸化防止剤 (チバガイギ一社製:ィ ルガノィルガノックス 10 1 0) 0. 2質量部を用い、 混練温度を 245°Cで混練 りして樹脂コンパウンドペレットを得た後、 130°Cで 3時間乾燥させ、 成形時の シリンダ—温度を 250°Cの条件に変更した以外は実施例 3と同様の条件で成形品 を成形した。 55.3 parts by mass of polybutylene terephthalate resin (Toray Industries, Ltd .: Trecon 1401 X06) as a thermoplastic resin, 10 parts by mass of the above compound (I_23) as a reactive flame retardant, non-reactive organophosphorus 5 parts by mass of flame retardant (manufactured by Sanko Chemical Co., Ltd .: BCA), 2 parts by mass of polyfunctional cyclic compound (manufactured by Toagosei Co., Ltd .: M-315), 4 parts by mass of the nano-sized particle clay of Example 2 as an inorganic additive 20 parts by weight of the glass fiber of Example 1 as a reinforcing agent, 0.5 parts by weight of a power pump rack as a coloring agent, an antioxidant (manufactured by Ciba-Geigy Co., Ltd .: Irganoilganox 10 10) 0.2 using mass parts, after obtaining the resin compound pellet kneaded kneading temperature at 245 ° C, dried for 3 hours at 130 ° C, the cylinder at the time of molding - except for changing the temperature condition of 2 50 ° C A molded article was molded under the same conditions as in Example 3.
その後、上記成形品に、住友重機社製の加速器を用い、加速電圧 4. 8Me Vで、 照射線量 40 kGyの電子線を照射して実施例 6の樹脂加工品を得た。  Thereafter, the molded product was irradiated with an electron beam having an irradiation voltage of 40 kGy at an acceleration voltage of 4.8 MeV using an accelerator manufactured by Sumitomo Heavy Industries, Ltd. to obtain a resin processed product of Example 6.
実施例 7  Example 7
実施例 3の系に熱触媒 (日本油脂社製: ノフマー BC) を 3質量部、 更に添加し た以外は実施例 3と同様の条件で成形品を成形した。  A molded article was molded under the same conditions as in Example 3 except that 3 parts by mass of a thermal catalyst (NOFMER BC, manufactured by NOF CORPORATION) was further added to the system of Example 3.
その後、 上記成形品を、 245で、 8時間加熱によって反応して実施例 7の樹脂 加工品を得た。  Thereafter, the molded product was reacted by heating at 245 for 8 hours to obtain a processed resin product of Example 7.
実施例 8  Example 8
実施例 5の系に、 紫外線開始剤 (チバガイギ一社製ィルガノックス 65 1とィル ガノックス 369とを 2 : 1で併用) 7質量部添加した以外は実施例 5と同様の条 -件で薄肉 (t : 0.6mm厚) 成形品を成形した。  The same procedure as in Example 5 except that 7 parts by mass of an ultraviolet initiator (2: 1 mixture of Irganox 651 and Irganox 369 manufactured by Ciba Geigy) was added to the system of Example 5, t: 0.6 mm thickness) A molded article was molded.
その後、 上記成形品を、 超高圧水銀灯で 365 nmの波長で 1 5 OmWZcm2 の照度で 2分間照射して実施例 8の樹脂加工品を得た。 Thereafter, the molded article was irradiated with an ultra-high pressure mercury lamp at a wavelength of 365 nm at an illuminance of 15 OmWZcm 2 for 2 minutes to obtain a resin processed article of Example 8.
実施例 9  Example 9
熱硬化性エポキシ系モ一ルド樹脂 (長瀬ケミカル社製、 主剤 XNR4012: 100、 硬化 剤 XNH4012 : 50、 硬化促進剤 FD400: 1) 45質量部にシリカ 45質量部を分散した 系に、 反応性難燃剤として上記の化合物 ( I一 17) 10質量部を添加してモール ド成形品を得た後、 100° (:、 1時間反応させて実施例 9の樹脂加工品 (封止剤) を得た。 Thermosetting epoxy-based mold resin (manufactured by Nagase Chemical Co., Ltd., main agent XNR4012: 100, curing agent XNH4012: 50, curing accelerator FD400: 1) 45 parts by mass of silica dispersed in 45 parts by mass After adding 10 parts by mass of the above compound (I-117) as a flame retardant, a molded article was obtained, and then reacted at 100 ° (for 1 hour) to process the resin processed product of Example 9 (sealing agent). Got.
実施例 1 0  Example 1 0
半導体封止用エポキシ樹脂 (信越化学社製:セミコート 1 1 5) 92質量部に、 反応性難燃剤として上記の化合物 ( 1— 1 5) 8質量部を添加してモールド成形品 を得た後、 1 50 :、 4時間反応させて実施例 1 0の樹脂加工品(封止剤) を得た。 比較例 1〜: ί 0  Epoxy resin for semiconductor encapsulation (Shin-Etsu Chemical Co., Ltd .: Semicoat 1 15) After adding 92 parts by mass of the above compound (1-1-5) as a reactive flame retardant, 8 parts by mass to obtain a molded product , 150: The reaction was carried out for 4 hours to obtain a resin processed product of Example 10 (sealing agent). Comparative Example 1-: 0
実施例 1〜10において、 本発明の反応性難燃剤を配合しなかった以外は、 実施 例 1〜 10と同様な方法で、 それぞれ比較例 1〜 1 0の樹脂加工品を得た。  In Examples 1 to 10, resin-processed products of Comparative Examples 1 to 10 were obtained in the same manner as in Examples 1 to 10, except that the reactive flame retardant of the present invention was not blended.
比較例 1 1  Comparative Example 1 1
実施例 5に対して、難燃剤として、非反応性の有機りん系難燃剤(三光化学社製: BCA) 20質量部のみ添加した以外は、実施例 5と同様の条件で比較例 1 1の榭脂加 ェ品を得た。  Comparative Example 11 was prepared in the same manner as in Example 5 except that only 20 parts by mass of a non-reactive organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: BCA) was added as the flame retardant. A fat additive was obtained.
[一般式 (Π) の反応性難燃剤を用いた難燃性樹脂加工品の製造]  [Manufacture of flame-retardant resin products using reactive flame retardants of general formula (Π)]
実施例 1 1  Example 11
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2 123 Β) 59. 3質量部、 強化繊維としてシランカップリング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバ一グラス社製: 03. JAFT2Ak25) 25質量部、 着色剤として力一ポンプ ラック 0. 5質量部、酸化防止剤(チバガイギ一社製:ィルガノィルガノックス 1 0 1 0) 0. 2質量部、 無機充填剤として粒径 2 m のタルク 5質量部、 反応性難燃 剤として上記の化合物 (Π— 23) 1 0質量部を配合し、 サイドフロー型 2軸押出 機 (日本製鋼社製) で 280°Cで混練して樹脂ペレットを得て 1 05°C、 4時間乾 燥した後、 上記ペレットを射出成形機 (FUNUC社製: ひ 500 を用いて樹脂 温度 280°C、 金型温度 80°Cの条件で成形した。  As a thermoplastic resin, 66 nylon (Ube Industries, Ltd .: 2 123 Β) 59.3 parts by mass, glass fiber with a fiber length of about 3 mm surface-treated with a silane coupling agent as a reinforcing fiber (Asahi Fiberglass Corporation: 03 JAFT2Ak25) 25 parts by mass, 0.5 parts by mass of a power pump rack as a colorant, 0.2 parts by mass of an antioxidant (manufactured by Ciba Geigy Corporation: 0.2 g) 5 parts by mass of talc with a diameter of 2 m and 10 parts by mass of the above compound (Π-23) as a reactive flame retardant are mixed and kneaded at 280 ° C with a side-flow twin-screw extruder (manufactured by Nippon Steel Corporation). After drying the resin pellets at 105 ° C for 4 hours, the above pellets were injected into an injection molding machine (FUNUC Co., Ltd., using resin 500 at a resin temperature of 280 ° C and a mold temperature of 80 ° C). Molded.
その後、 上記成形品に、 コバルト 60を線源としたァ線を 25 kGy照射して実 施例 1 1の樹脂加工品を得た。  Thereafter, the molded product was irradiated with 25 kGy of α-ray using cobalt 60 as a radiation source to obtain a resin-processed product of Example 11.
実施例 12 .  Example 12.
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 56. 3質量部、 強化繊維としてシランカップリング剤で表面処理した繊維長約 3 mmのガラス繊維 . (旭ファイバ一グラス社製: 03. JAFT2Ak25) 25質量部、 着色剤としてカーポンプ ラック 0. 5質量部、酸化防止剤(チバガイギ一社製:ィルガノィルガノックス 10 1 0) 0. 2質量部、 無機充填剤として粒径 2 m のタルク 5質量部及びナノ粒径 のクレー (日商岩井ベン卜ナイト (株) 社製ナノマー 1.30T) 2質量部、 反応性難 燃剤として上記の化合物 (H— 3) 1 1質量部を配合し、 サイドフロー型 2軸押出 機 (日本製鋼社製) で 280°Cで混練して樹脂ペレットを得て 105° (:、 4時間乾 燥した後、 上記ペレットを射出成形機 (FUNUC社製: CK 50 C) を用いて樹脂 温度 280 、 金型温度 80°Cの条件で成形した。 As a thermoplastic resin, 66 nylon (Ube Industries, Ltd .: 2020 B) 56. 3 parts by mass, glass fiber with a fiber length of approximately 3 mm surface-treated with a silane coupling agent as a reinforcing fiber. (Asahi Fiber One Glass: 03 JAFT2Ak25) 25 parts by mass, 0.5 parts by mass of a car pump rack as a colorant, an antioxidant (manufactured by Ciba-Geigy Co., Ltd .: ilganoilganox 10) 1 0) 0.2 parts by mass, 5 parts by mass of talc having a particle size of 2 m as an inorganic filler, and 2 parts by mass of clay having a nano particle size (Nitamer 1.30T manufactured by Nissho Iwai Bentonite Co., Ltd.), reactivity 11 parts by mass of the above compound (H-3) was blended as a flame retardant, and kneaded at 280 ° C with a side-flow type twin screw extruder (manufactured by Nippon Steel Corporation) to obtain resin pellets, and 105 ° (:, After drying for 4 hours, the pellets were molded using an injection molding machine (manufactured by FUNUC: CK50C) under the conditions of a resin temperature of 280 and a mold temperature of 80 ° C.
その後、 上記成形品に、 コバルト 60を線源とした γ線を 25 kGy照射して実 施例 12の樹脂加工品を得た。  Thereafter, the molded article was irradiated with γ-rays of 25 kGy using cobalt 60 as a radiation source to obtain a resin processed article of Example 12.
実施例 13  Example 13
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 57. 2質量部、 無機充填剤として上記タルク 4質量部及びナノ粒径のクレー (日商岩井べントナイ ト (株) 社製ナノマ一 1.30T) 3質量部、 着色剤として力一ボンブラック 0. 5質 量部、 反応性難燃剤として上記の化合物 (Π— 20) 9質量部及び化合物 (Π— 8) 5質量部、 酸化防止剤 (チバガイギ一社製:ィルガノックス 10 10) 0. 3質量 部を加えて混合した。  Nylon 66 as thermoplastic resin (57.2 parts by mass of Ube Industries, Ltd .: 2020 B), 4 parts by mass of the above talc as an inorganic filler, and clay of nano-particle size (Nissho Iwai Bentonite Co., Ltd. 1.30T) 3 parts by mass, 0.5 parts by mass of Ripbon Black as a colorant, 9 parts by mass of the above compound (Π-20) and 5 parts by mass of compound (Π-8) as a reactive flame retardant, antioxidant 0.3 parts by mass of an agent (manufactured by Ciba-Geigy Corporation: Irganox 1010) was added and mixed.
280でに設定したサイドフ口一型 2軸押出し機を用いて上記の混合物を溶融し、 更に、 強化繊維としてシランカツプリング剤で表面処理した繊維長約 3 mmのガラ ス繊維 (旭ファイバーグラス社製: 03. JAFT2Ak25) 20質量部を、 押出し混練を用 いてサイドから溶融した上記の混合物に混ぜ込みコンパウンドペレツトを得た後、 上記ペレツトを 105°Cで 4時間乾燥させた。  The above mixture was melted using a side-edge type twin-screw extruder set at 280, and a glass fiber with a fiber length of about 3 mm (surface of Asahi Fiber Glass Co., Ltd.) was treated with a silane coupling agent as a reinforcing fiber. Manufacture: 03. JAFT2Ak25) 20 parts by mass were mixed with the above mixture melted from the side using extrusion kneading to obtain a compound pellet, and the pellet was dried at 105 ° C for 4 hours.
射出成形機 (FUNUC社製: 50 C) を用いてシリンダー温度 280°C, 金 型温度 80°C、 射出圧力 78. 4MP a、 射出速度 120mm/ s、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。  General conditions of cylinder temperature 280 ° C, mold temperature 80 ° C, injection pressure 78.4MPa, injection speed 120mm / s, cooling time 15 seconds using an injection molding machine (FUNUC: 50C) The company formed molded products for electric and electronic parts and automobiles.
その後、 上記成形品に、 コバルト 60を線源とした τ線を 25 kGy照射して実 施例 13の樹脂加工品を得た。  Thereafter, the above molded product was irradiated with τ-rays of 25 kGy using cobalt 60 as a radiation source to obtain a resin processed product of Example 13.
実施例 14  Example 14
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 56. 2質量部、 反応性難燃剤として上記の化合物 (Π— 14) 1 1質量部及び非反応型の有機りん 系難燃剤(三光化学社製: BCA) 5質量部を用いた以外は実施例 13と同様の条件で、 実施例 14の樹脂加工品を得た。 実施例 15 56.2 parts by mass of 66 nylon as thermoplastic resin (manufactured by Ube Industries, Ltd .: 2020 B), 11 parts by mass of the above compound (Π-14) as reactive flame retardant, and non-reactive organophosphorus flame retardant (III A resin processed product of Example 14 was obtained under the same conditions as in Example 13 except that 5 parts by mass of photochemical company: BCA) was used. Example 15
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 55. 2質量部、 無機充填剤として実施例 2で使用のナノ粒径のクレー 4質量部、 着色剤としてカー ポンプラック 0. 5質量部、 反応性難燃剤として上記の化合物 (Π— 8) 10質量 部、 多官能環状化合物 (日本化成社製: TAIC) 2質量部、 有機リン系難燃剤 (三光 化学社製、 HCA-HQ) 8質量部、酸化防止剤(チバガイギ一社製:ィルガノックス 10 10) 0. 3質量部を加えて混合した。  55.2 parts by mass of 66 nylon as thermoplastic resin (manufactured by Ube Industries, Ltd .: 2020 B), 4 parts by mass of nano-sized clay used in Example 2 as an inorganic filler, 0.5 parts by mass of car pump rack as a coloring agent Part, 10 parts by weight of the above compound (反 応 -8) as a reactive flame retardant, 2 parts by weight of a polyfunctional cyclic compound (manufactured by Nippon Kasei Co., Ltd .: TAIC), organophosphorus flame retardant (HCA-HQ, manufactured by Sanko Chemical Co., Ltd.) 8 parts by mass and 0.3 parts by mass of an antioxidant (manufactured by Ciba-Geigy Corporation: Irganox 1010) were added and mixed.
280°Cに設定したサイドフロー型 2軸押出し機を用いて上記の混合物を溶融し、 更に、 強化繊維としてシラン力ップリング剤で表面処理した繊維長約 3 mmのガラ ス繊維 (旭ファイバ一グラス社製: 03.JAFT2Ak25) 20質量部を、 押出し混練を用 いてサイドから溶融した上記の混合物に混ぜ込みコンパウンドペレツトを得た後、 上記ペレットを 105 °Cで 4時間乾燥させた。  The above mixture was melted using a side-flow type twin-screw extruder set at 280 ° C, and glass fibers with a fiber length of about 3 mm (Asahi Fiber Glass Co., Ltd.) were surface-treated with silane coupling agents as reinforcing fibers. After mixing 20 parts by mass of the above mixture melted from the side using extrusion kneading to obtain a compound pellet, the pellets were dried at 105 ° C for 4 hours.
射出成形機 (FUNUC社製: 50 C) を用いてシリンダ一温度 280°C、 金 型温度 80°C、 射出圧力 78. 4MP a、 射出速度 120mm/ s、 冷却時間 15 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。  Using an injection molding machine (FUNUC: 50 C), general conditions of cylinder temperature 280 ° C, mold temperature 80 ° C, injection pressure 78.4MPa, injection speed 120mm / s, cooling time 15 seconds The company formed molded products for electric and electronic parts and automobiles.
その後、 上記成形品に、 コバルト 60を線源としたァ線を 25 kGy照射して実 施例 15の樹脂加工品を得た。  Thereafter, the molded product was irradiated with a k-ray of 25 kGy using cobalt 60 as a radiation source to obtain a resin processed product of Example 15.
実施例 16  Example 16
熱可塑性樹脂としてポリブチレンテレフタレート樹脂 (東レ株式会社製: トレコ ン 1401 X 06) 53. 3質量部、 反応性難燃剤として上記の化合物 ( Π— 21 ) 10質量部、 非反応型の有機りん系難燃剤 (三光化学社製: BCA) 7質量部、 多官能 環状化合物 (東亜合成社製: M- 31 5) 2質量部、 無機添加剤として実施例 12の ナノ粒径のクレ一 4質量部、 補強剤として実施例 1 1のガラス繊維 20質量部、 さ らに、 着色剤として力一ポンプラック 0. 5質量部、 酸化防止剤 (チバガイギ一社 製:ィルガノィルガノックス 1 010) 0. 2質量部を用い、 混練温度を 245°C で混練りして樹脂コンパウンドペレットを得た後、 1 30°Cで 3時間乾燥させ、 成 形時のシリンダー温度を 250°Cの条件に変更した以外は実施例 1 3と同様の条件 で成形品を成形した。  Polybutylene terephthalate resin as thermoplastic resin (Toray Co., Ltd .: Trecon 1401 X06) 53.3 parts by mass, the above compound (Π-21) as reactive flame retardant 10 parts by mass, non-reactive organophosphorus 7 parts by mass of flame retardant (manufactured by Sanko Chemical Co., Ltd .: BCA), 2 parts by mass of polyfunctional cyclic compound (manufactured by Toagosei Co., Ltd .: M-315), 4 parts by mass of nano-sized particles of Example 12 as an inorganic additive 20 parts by weight of the glass fiber of Example 11 as a reinforcing agent, 0.5 parts by weight of a power pump rack as a coloring agent, and an antioxidant (manufactured by Ciba-Geigy Corporation; Using 2 parts by mass, kneading at 245 ° C kneading temperature to obtain resin compound pellets, drying at 130 ° C for 3 hours, and changing the cylinder temperature during molding to 250 ° C A molded article was molded under the same conditions as in Example 13 except that the above procedure was performed.
その後、上記成形品に、住友重機社製の加速器を用い、加速電圧 4. 8Me Vで、 照射線量 40 k Gyの電子線を照射して実施例 16の樹脂加工品を得た。 実施例 17 , Thereafter, the molded article was irradiated with an electron beam having an irradiation voltage of 40 kGy at an acceleration voltage of 4.8 MeV using an accelerator manufactured by Sumitomo Heavy Industries, Ltd. to obtain a resin processed article of Example 16. Example 17
実施例 13の系に熱触媒 (日本油脂社製: ノフマー BC) を 3質量部、 更に添加 した以外は実施例 13と同様の条件で成形品を成形した。  A molded article was molded under the same conditions as in Example 13 except that 3 parts by mass of a thermal catalyst (NOFMER BC, manufactured by NOF CORPORATION) was further added to the system of Example 13.
その後、 上記成形品を、 245°C、 8時間加熱によって反応して実施例 1 7の樹 脂加工品を得た。  Thereafter, the molded product was reacted by heating at 245 ° C. for 8 hours to obtain a resin processed product of Example 17.
実施例 18  Example 18
実施例 15の系に、 紫外線開始剤 (チバガイギ一社製ィルガノックス 65 1とィ ルガノックス 369とを 2 : 1で併用) 7質量部添加した以外は実施例 15と同様 の条件で薄肉 (t : 0.6mm厚) 成形品を成形した。  A thin wall (t: 0.6) was obtained in the same manner as in Example 15 except that 7 parts by mass of an ultraviolet initiator (2: 1 mixture of Irganox 651 and Irganox 369 manufactured by Ciba Geigy) was added to the system of Example 15. mm thickness) A molded product was molded.
その後、 上記成形品を、 超高圧水銀灯で 365 nmの波長で 1 5 OmWXcm2 の照度で 2分間照射して実施例 18の樹脂加工品を得た。 Thereafter, the molded article was irradiated with an ultra-high pressure mercury lamp at a wavelength of 365 nm at an illuminance of 15 OmWXcm 2 for 2 minutes to obtain a resin processed article of Example 18.
実施例 19  Example 19
熱硬化性エポキシ系モールド樹脂 (長瀬ケミカル社製、 主剤 XNR4012: 100、 硬化 剤 XNH4012 : 50、 硬化促進剤 FD400: 1) 45質量部にシリカ 45質量部を分散した 系に、 反応性難燃剤として上記の化合物 (Π— 1 1) 10質量部を添加してモール ド成形品を得た後、 l O O 、 1時間反応させて実施例 1 9の樹脂加工品 (封止剤) を得た。  Thermosetting epoxy mold resin (Nagase Chemical Co., Ltd., main agent XNR4012: 100, curing agent XNH4012: 50, curing accelerator FD400: 1) 45 parts by mass of silica dispersed in 45 parts by mass as a reactive flame retardant After adding 10 parts by mass of the above compound (II-11) to obtain a molded molded product, the molded product was reacted at 100 ° C. for 1 hour to obtain a processed resin product of Example 19 (sealing agent).
実施例.20  Example 20
半導体封止用エポキシ樹脂 (信越化学社製:セミコート 1 1 5) 92質量部に、 反応性難燃剤として上記の化合物 (Π— 1 5) 8質量部を添加してモールド成形品 を得た後、 1 50°C、 4時間反応させて実施例 20の樹脂加工品(封止剤)を得た。 比較例 12〜 21  Epoxy resin for semiconductor encapsulation (Shin-Etsu Chemical Co., Ltd .: Semicoat 1 15) 92 parts by mass of the above compound (Π-15) as a reactive flame retardant was added 8 parts by mass to obtain a molded product The mixture was reacted at 150 ° C. for 4 hours to obtain a resin processed product (sealing agent) of Example 20. Comparative Examples 12 to 21
実施例 1 1〜20において、 本発明の反応性難燃剤を配合しなかった以外は、 実 施例 1 1〜20と同様な方法で、 それぞれ比較例 12〜21の樹脂加工品を得た。 比較例 22  In Examples 11 to 20, resin-processed products of Comparative Examples 12 to 21 were obtained in the same manner as in Examples 11 to 20, except that the reactive flame retardant of the present invention was not blended. Comparative Example 22
実施例 15において、 難燃剤として、 非反応 ftの有機りん系難燃剤 (三光化学社 製: HCA- HQ) 20質量部のみ添加した以外は、 実施例 1 5と同様の条件で比較例 2 2の樹脂加工品を得た。  Comparative Example 22 was prepared in the same manner as in Example 15 except that only 20 parts by mass of a non-reactive ft organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: HCA-HQ) was added as the flame retardant. A resin processed product was obtained.
試験例  Test example
実施例 1〜20、 比較例 1〜22の樹脂加工品について、 難燃性試験である UL 一 94に準拠した試験片 (長さ 5インチ、 幅 1/2インチ、 厚さ 3. 2 mm) と、 I EC 60695— 2法(GWF I )に準拠したグロ一ワイヤ試験片( 60 mm角、 厚さ 1. 6mm) を作製し、 UL 94試験、 グロ一ワイヤ試験 ( I EC準拠) 、 は んだ耐熱試験を行なった。 また、 すべての樹脂加工品について 300°CX 3時間の プリ一ドアウト試験を行った。 For the resin processed products of Examples 1 to 20 and Comparative Examples 1 to 22, UL One 94-inch test piece (5 inches long, 1/2 inch wide, 3.2 mm thick) and a glow-wire test piece (60 mm square) according to the IEC 60695-2 method (GWF I) , Thickness 1.6 mm), and were subjected to UL 94 test, glow wire test (IEC compliance), and solder heat resistance test. In addition, a pre-out test at 300 ° C for 3 hours was performed for all resin processed products.
なお、 UL 94試験は、 試験片を垂直に取りつけ, ブンゼンバーナーで 10秒間 接炎後の燃焼時間を記録した。 更に、 消火後 2回目の 10秒間接炎し再び接炎後の 燃焼時間を記録し、 燃焼時間の合計と 2回目消火後の赤熱燃焼 (グロ一^ Γング) 時 間と綿を発火させる滴下物の有無で判定した。  In the UL 94 test, the test specimen was mounted vertically, and the burning time after flame contact for 10 seconds with a Bunsen burner was recorded. In addition, the second 10-second indirect flame after the fire extinguishing and the burning time after the flame contact is recorded again. It was determined by the presence or absence of an object.
また、 グロ一ワイヤ試験は、 グロ一ワイヤとして先端が割けないように曲げた直 径 4mmのニクロム線 (成分:ニッケル 80 %、 クロム 20%) 、 温度測定用熱電対 として直径 0. 5mmのタイプ K (クロメル—アルメル) を用い、 熱電対圧着荷重 1. 0 ±0. 2N、 温度 850 °Cで行った。 なお、 30秒接触後の燃焼時間が 30 秒以内のこと、 サンプルの下のティッシュペーパーが発火しないことをもって燃焼 性 (GWF I) の判定基準とした。  In the glow wire test, a 4mm diameter nichrome wire (component: nickel 80%, chromium 20%) bent as a glow wire so that the tip is not broken, and a 0.5mm diameter thermocouple for temperature measurement The test was performed using K (Chromel-Alumel) at a thermocouple crimping load of 1.0 ± 0.2 N and a temperature of 850 ° C. The criteria for flammability (GWF I) were based on the fact that the burning time after contact for 30 seconds was within 30 seconds and that the tissue paper under the sample did not ignite.
また、 はんだ耐熱試験は、 350°Cのはんだ浴に 1 0秒浸漬後の寸法変形率を示 した。  The solder heat resistance test showed the dimensional deformation rate after immersion in a solder bath at 350 ° C for 10 seconds.
その結果をまとめて表 1、 表 2に示す。 The results are summarized in Tables 1 and 2.
Figure imgf000066_0001
表 2
Figure imgf000066_0001
Table 2
Figure imgf000067_0001
表 1、表 2の結果より、実施例の樹脂加工品においては、難燃性はいずれも V— 0 と優れ、 グロ ワイヤ試験においてもすべて合格しており、 更に、 はんだ耐熱試験 後の寸法変形率も 26 %以下であることがわかる。 また、 300°CX 3時間後にお いても翹燃剤のブリードアウトは認められなかった。
Figure imgf000067_0001
From the results in Tables 1 and 2, the flame retardancy of the resin-processed products of the examples was as excellent as V-0, all passed the glow wire test, and the dimensional deformation after the solder heat test. It can be seen that the rate is less than 26%. Even after 3 hours at 300 ° C, no bleeding out of forsythia was observed.
一方、 本発明の反応性難燃剤を含有しない比較例 1 1 0、 比較例 12 2 1に おいては、 難燃性は H Bと不充分であり、 グロ一ワイヤ試験においてもすべて不合 格、 更に、 はんだ耐熱試験後の寸法変形率も実施例に比べて劣ることがわかる。 また、 難燃剤として非反応型の有機りん系難燃剤を用いた比較例 1 1、 2 2にお いては、 難燃性は V— 2で不充分であり、 3 0 0 °C X 3時間後において難燃剤のブ リードアウトが認められた。 産業上の利用可能性 On the other hand, Comparative Example 110 and Comparative Example 1221, which do not contain the reactive flame retardant of the present invention, It was found that the flame retardancy was insufficient with that of HB, and all were unacceptable in the glow-wire test, and the dimensional deformation rate after the soldering heat test was inferior to that of the examples. Further, in Comparative Examples 11 and 22 in which a non-reactive organophosphorus flame retardant was used as a flame retardant, the flame retardancy was insufficient at V-2, and after 3 hours at 300 ° C. Bleed-out of the flame retardant was observed. Industrial applicability
本発明は、 ハロゲンを含有しない、 非八ロゲン系の難燃剤及び難燃性樹脂加工品 として、 電気部品や電子部品等の樹脂成形品や、 半導体等の封止剤、 コーティング 塗膜等に好適に利用できる。  INDUSTRIAL APPLICABILITY The present invention is suitable as a halogen-free non-octogen flame retardant and a flame-retardant resin processed product for resin molded products such as electric parts and electronic parts, sealing agents for semiconductors and the like, coating films and the like. Available to

Claims

求 の Sought
1. 樹脂との反応性を有し、 該反応により前記樹脂と結合することによって難燃 性を付与する反応性難燃剤であって、 下記の一般式 ( I ) 又は (H) で示される、 末端に不飽和基を有する有機リン化合物を含有することを特徴とする反応性難燃剤 1. A reactive flame retardant having reactivity with a resin and imparting flame retardancy by binding to the resin by the reaction, and represented by the following general formula (I) or (H): Reactive flame retardant characterized by containing an organic phosphorus compound having an unsaturated group at the terminal
Figure imgf000069_0001
Figure imgf000069_0001
R' R3 R4 R 'R 3 R 4
-ΑΓΪ ~~ tpAri ~" P … (Π) -ΑΓΪ ~~ t pAr i ~ "P… (Π)
Rz " R5 R z "R 5
(式 ( I ) 又は (Π) 中、 1分子中に少なくとも 1つの P— C結合を含み、 A と A r 2は、 それぞれ炭素数 20以下の易動性水素を含まない二官能性芳香族炭化 水素系基を表し、 nは 0〜2の整数である。 また、 1〜!^5はそれぞれ、 一 NHC H2CH = CH2、 一 N(CH2CH=CH2)2、 一〇CH2CH二 CH2、 一 CH2CH = CH2、 一 CH2CH2OCH=CH2、 _ (C 6H4)— CH= CH2、 — 0(C6H4) — CH=CH2、—CH2(C6H4)— CH=CH2、—NH(C6H4)— CH=CH2、 一 N(CH2CH=CH2)— (C6H4) CH = CH2、 — O— R - O〇 C— C (R, ) = CH2、 -NH-R-NHCO- C (R' ) = CH2、 ないし炭素数 12以下のァリ '—ル基より選ばれる。 ここで、 Rは炭素数 2〜 5のアルキレン基、 R' は水素また はメチル基を表し、 1〜!^5の少なくとも 1つは一 CH=CH2基又は一 C(CH3) = CH2基を含む。 ) (In the formula (I) or (Π), each molecule contains at least one P—C bond, and A and Ar 2 are each a bifunctional aromatic containing 20 or less carbon atoms and free of mobile hydrogen.) Represents a hydrocarbon group, and n is an integer of 0 to 2. 1 to! ^ 5 are one NHC H 2 CH = CH 2 , one N (CH 2 CH = CH 2 ) 2 , CH 2 CH 2 CH 2 , CH 2 CH = CH 2 , CH 2 CH 2 OCH = CH 2 , _ (C 6 H 4 ) — CH = CH 2 , — 0 (C 6 H 4 ) — CH = CH 2 , —CH 2 (C 6 H 4 ) —CH = CH 2 , —NH (C 6 H 4 ) —CH = CH 2 , N (CH 2 CH = CH 2 ) — (C 6 H 4 ) CH = CH 2 , — O— R-O〇 C— C (R,) = CH 2 , -NH-R-NHCO-C (R ') = CH 2 , or from an aryl group with 12 or less carbon atoms Here, R represents an alkylene group having 2 to 5 carbon atoms, R ′ represents hydrogen or a methyl group, and at least one of 1 to! ^ 5 has one CH = CH 2 group or one C (CH 3 ) = Including CH 2 group.)
2.請求項 1記載の反応性難燃剤と、樹脂とを含有する樹脂組成物を固化した後、 加熱又は放射線の照射によって前記樹脂と前記反応性難燃剤とを反応させて獰られ る難燃性樹脂加工品であって、 前記難燃性樹脂加工品全体に対して、 前記反応性難 燃剤を 1〜20質量%含有することを特徴とする難燃性樹脂加工品。  2. After the resin composition containing the reactive flame retardant according to claim 1 and a resin is solidified, the resin and the reactive flame retardant are reacted with each other by heating or irradiation with radiation, and the flame retardant is ferocious. A flame-retardant resin processed product, comprising the reactive flame retardant in an amount of 1 to 20% by mass based on the entire flame-retardant resin processed product.
3. 前記樹脂組成物が、 前記反応性難燃剤を 2種類以上含有し、 少なくとも 1種 類が多官能性の前記反応性難燃剤である請求項 2に記載の難燃性樹脂加工品。3. The resin composition contains two or more reactive flame retardants, and at least one reactive flame retardant 3. The flame-retardant resin processed product according to claim 2, wherein the class is a polyfunctional reactive flame retardant.
4 . 前記樹脂組成物が、 前記反応性難燃剤以外の難燃剤を更に含有し、 該難燃剤 が、 末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物である請求項 2 又は 3に記載の難燃性樹脂加工品。 4. The resin composition according to claim 2 or 3, wherein the resin composition further contains a flame retardant other than the reactive flame retardant, and the flame retardant is a cyclic nitrogen-containing compound having at least one unsaturated group at a terminal. A flame-retardant resin product as described.
5 . 前記樹脂組成物が、 前記反応性難燃剤以外の難燃剤を更に含有し、 該難燃剤 が、 反応性を有しない添加型の難燃剤である請求項 2〜4のいずれか 1つに記載の 難燃性樹脂加工品。  5. The resin composition according to any one of claims 2 to 4, wherein the resin composition further contains a flame retardant other than the reactive flame retardant, and the flame retardant is an addition-type flame retardant having no reactivity. A flame-retardant resin product as described.
6 . 前記樹脂組成物が、 難燃性を有しないが前記樹脂との反応性を有する架橋剤 を更に含有し、 該架橋剤が、 主骨格の末端に不飽和基を有する多官能性のモノマー 又はオリゴマーである請求項 2〜 5のいずれか 1つに記載の難燃性樹脂加工品。  6. The resin composition further comprises a crosslinking agent having no flame retardancy but having reactivity with the resin, wherein the crosslinking agent has a polyfunctional monomer having an unsaturated group at a terminal of a main skeleton. The flame-retardant resin processed product according to any one of claims 2 to 5, which is an oligomer or an oligomer.
7 . 前記難燃性樹脂加工品全体に対して 1〜3 5質量%の無機充填剤を含有する 請求項 2〜 6のいずれか 1つに記載の難燃性榭脂加工品。  7. The flame-retardant resin processed product according to any one of claims 2 to 6, comprising 1 to 35% by mass of an inorganic filler with respect to the entire flame-retardant resin processed product.
8 . 前記無機充填剤としてシリゲート層が積層してなる層状のクレーを含有し、 前記層状のクレーを前記難燃性樹脂加工品全体に対して 1〜 1 0質量%含有する請 求項 7に記載の難燃性樹脂加工品。  8. The method according to claim 7, wherein the inorganic filler comprises a layered clay formed by laminating a silicide layer, and the layered clay is contained in an amount of 1 to 10% by mass based on the entire flame-retardant resin processed product. A flame-retardant resin product as described.
9 . 前記難燃性樹脂加工品全体に対して 5〜4 0質量%の強化繊維を含有する請 求項 2〜 8のいずれか 1つに記載の難燃性樹脂加工品。  9. The flame-retardant resin processed product according to any one of claims 2 to 8, comprising 5 to 40% by mass of a reinforcing fiber with respect to the whole of the flame-retardant resin processed product.
1 0 . 前記樹脂と前記反応性難燃剤とが、 線量 1 0 k G y以上の電子線又はァ線 の照射によって反応して得られる請求項 2〜 9のいずれか 1つに記載の難燃性樹脂 加工品。  10. The flame retardant according to any one of claims 2 to 9, wherein the resin and the reactive flame retardant are obtained by reacting by irradiation with an electron beam or an α-ray at a dose of 10 kGy or more. Processed resin.
1 1 .前記樹脂と前記反応性難燃剤とが、前記樹脂組成物を成形する温度より 5 °C 以上高い温度で反応して得られる請求項 2〜 9のいずれか 1つに記載の難燃性樹脂 加工品。  11.The flame retardant according to any one of claims 2 to 9, wherein the resin and the reactive flame retardant are obtained by reacting at a temperature 5 ° C or more higher than a temperature at which the resin composition is molded. Processed resin.
1 2 . 前記難燃性樹脂加工品が、 成形品、 塗膜、 封止剤より選択される 1つであ る請求項 2〜 1 1のいずれか 1つに記載の難燃性樹脂加工品。  12. The flame-retardant resin processed product according to any one of claims 2 to 11, wherein the processed flame-retardant resin product is one selected from a molded product, a coating film, and a sealant. .
1 3 . 前記難燃性樹脂加工品が、 電気部品又は電子部品として用いられるもので ある請求項 2〜 1 2のいずれか 1つに記載の難燃性樹脂加工品。  13. The flame-retardant resin processed product according to any one of claims 2 to 12, wherein the processed flame-retardant resin product is used as an electric component or an electronic component.
PCT/JP2004/003207 2004-03-11 2004-03-11 Reactive flame retardant and flame-retardant processed resin obtained with the same WO2005087852A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/003207 WO2005087852A1 (en) 2004-03-11 2004-03-11 Reactive flame retardant and flame-retardant processed resin obtained with the same
JP2006510840A JPWO2005087852A1 (en) 2004-03-11 2004-03-11 Reactive flame retardant and flame retardant resin processed product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003207 WO2005087852A1 (en) 2004-03-11 2004-03-11 Reactive flame retardant and flame-retardant processed resin obtained with the same

Publications (1)

Publication Number Publication Date
WO2005087852A1 true WO2005087852A1 (en) 2005-09-22

Family

ID=34975551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003207 WO2005087852A1 (en) 2004-03-11 2004-03-11 Reactive flame retardant and flame-retardant processed resin obtained with the same

Country Status (2)

Country Link
JP (1) JPWO2005087852A1 (en)
WO (1) WO2005087852A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185231A (en) * 2008-02-08 2009-08-20 Fuji Electric Fa Components & Systems Co Ltd Arc-extinguishing resin processed article and circuit breaker using the same
JP2013249374A (en) * 2012-05-31 2013-12-12 Toho Chem Ind Co Ltd Phosphoric ester compound and flame retardant including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168287A (en) * 1976-07-19 1979-09-18 Nasa Compound oxidized styrylphosphine
JPH09221490A (en) * 1995-09-14 1997-08-26 Great Lakes Chem It Sarl Tetrakis-(2,4-di-t-butylphenyl)-4,4'-biphenylene diphosphonite having new crystal form
JPH1095892A (en) * 1996-09-20 1998-04-14 Nippon Kayaku Co Ltd Sealing resin composition and cured product thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339349A (en) * 1976-09-24 1978-04-11 Asahi Glass Co Ltd Thermosetting resin molding material
JPH11236472A (en) * 1997-12-18 1999-08-31 Chisso Corp Flame-retardant thermoplastic resin composition
JP3875874B2 (en) * 2001-11-02 2007-01-31 キョーワ株式会社 Flame retardant coating agent for mesh sheet and flame retardant coating film of mesh sheet
JP2004051973A (en) * 2002-05-30 2004-02-19 Sekisui Chem Co Ltd Method for roughening resin sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168287A (en) * 1976-07-19 1979-09-18 Nasa Compound oxidized styrylphosphine
JPH09221490A (en) * 1995-09-14 1997-08-26 Great Lakes Chem It Sarl Tetrakis-(2,4-di-t-butylphenyl)-4,4'-biphenylene diphosphonite having new crystal form
JPH1095892A (en) * 1996-09-20 1998-04-14 Nippon Kayaku Co Ltd Sealing resin composition and cured product thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185231A (en) * 2008-02-08 2009-08-20 Fuji Electric Fa Components & Systems Co Ltd Arc-extinguishing resin processed article and circuit breaker using the same
JP4655094B2 (en) * 2008-02-08 2011-03-23 富士電機機器制御株式会社 Arc extinguishing resin processed product and circuit breaker using the same
JP2013249374A (en) * 2012-05-31 2013-12-12 Toho Chem Ind Co Ltd Phosphoric ester compound and flame retardant including the same

Also Published As

Publication number Publication date
JPWO2005087852A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4297453B2 (en) Reactive flame retardant and processed flame retardant resin product using the same
JP4753624B2 (en) Flame-retardant processed resin products
JP4757538B2 (en) Flame-retardant processed resin products
TWI614263B (en) Mixtures of diphosphinic acids and dialkylphosphinic acids, a process for preparation thereof and use thereof
TWI634122B (en) Mixtures of diphosphinic acids and alkylphosphinic acids, a process for preparation thereof and use thereof
CN104093726A (en) Mixtures of diphosphinic acids and alkylphosphonic acids, process for the preparation thereof and the use thereof
JP4295764B2 (en) Reactive flame retardant and processed flame retardant resin product using the same
JP4762034B2 (en) Flame retardant, flame retardant resin composition and flame retardant resin processed product
EP1669398B1 (en) Flame-retardant processed resin obtained with a reactive flame retardant
JP4339314B2 (en) Reactive flame retardant and processed flame retardant resin product using the same
JP2007246637A (en) Flame retardant, flame-retardant resin composition, and flame-retardant resin processed article
JP4210143B2 (en) Resin molded products for electrical parts
JP4331722B2 (en) Flame-retardant processed resin products
JP2004238378A (en) Phosphoric acid ester metal salt composition, method for producing the same, flame retardant and flame retardant resin composition
WO2005087852A1 (en) Reactive flame retardant and flame-retardant processed resin obtained with the same
JP2006089534A (en) Flame-retardant resin processed product
CN101124298A (en) Reactive flame retardant and flame-retardant resin processed article
JP2006225587A (en) Reactive flame retarder and flame-retardant resin processed product given by using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510840

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase