WO2005087452A9 - Robot device, behavior control method for the robot device, and moving device - Google Patents

Robot device, behavior control method for the robot device, and moving device

Info

Publication number
WO2005087452A9
WO2005087452A9 PCT/JP2005/004838 JP2005004838W WO2005087452A9 WO 2005087452 A9 WO2005087452 A9 WO 2005087452A9 JP 2005004838 W JP2005004838 W JP 2005004838W WO 2005087452 A9 WO2005087452 A9 WO 2005087452A9
Authority
WO
WIPO (PCT)
Prior art keywords
plane
information
tread
robot apparatus
stair
Prior art date
Application number
PCT/JP2005/004838
Other languages
French (fr)
Japanese (ja)
Other versions
WO2005087452A1 (en
Inventor
Steffen Gutmann
Masaki Fukuchi
Original Assignee
Sony Corp
Steffen Gutmann
Masaki Fukuchi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Steffen Gutmann, Masaki Fukuchi filed Critical Sony Corp
Priority to JP2006511065A priority Critical patent/JP4618247B2/en
Publication of WO2005087452A1 publication Critical patent/WO2005087452A1/en
Publication of WO2005087452A9 publication Critical patent/WO2005087452A9/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/97Determining parameters from multiple pictures

Definitions

  • the present invention relates to a robot apparatus, a moving apparatus, and a method for moving up and down a staircase that have moving means such as legs and that can move up and down a plurality of steps.
  • FIG. 3 there is a method of moving up and down the stairs by installing an infrared sensor on the side of the sole and applying a landmark tape to the stairs (Japanese Patent No. 3330710).
  • this is a paint that absorbs light, such as black paint, by providing multiple light sensor detectors 682 on the left and right side parts of the foot 622R / L of a robot device that can walk on two legs.
  • Landmarker 680 which is a surface area of a predetermined width made up of straight lines, the relative direction with respect to Landmarker 680 is detected by comparing paired sensor outputs. Is.
  • the position of the staircase 690 can be recognized as shown in FIG. 3B.
  • the present invention has been proposed in view of such a conventional situation, and a robot apparatus and a moving apparatus that allow a moving body to acquire information on steps and autonomously move up and down the stairs, and It is an object of the present invention to provide an operation control method for a robot apparatus.
  • a robot apparatus detects one or more planes included in an environment from three-dimensional distance data in a robot apparatus that can be moved by a moving means, and Plane detection means for outputting as information, stair recognition means for recognizing a stair having a movable plane from the plane information, and outputting stair information including tread information and kicking information on the tread of the stair; and Based on the staircase information, it is determined whether or not it is possible to move up and down, and if it is determined that it can be moved up and down, the stair lift control means controls the stair lift operation by positioning autonomously with respect to the tread. It is characterized by having.
  • the sole of the step is placed on the tread from the tread information on the tread of the staircase, for example, the size and position. If it is determined that it is possible to move, it is determined whether it is possible to move to the tread of the height from the information on the kicking up indicating the step of the stairs, By positioning autonomously, it is possible to go up and down stairs.
  • the staircase recognition means is different from the staircase detection means for detecting a step having a movable plane from the given plane information and outputting the pre-integration staircase information in terms of time output from the staircase detection means.
  • the stair detection means recognizes the size and spatial position of the tread based on the plane information, outputs the tread information as a recognition result as the pre-integration stair information, and the stair integration means If a tread group consisting of two or more treads that have an overlap area greater than a predetermined threshold and the relative height difference is less than or equal to a predetermined threshold is detected from the tread information that moves forward and backward, It is possible to integrate so that all treads are included, and at the time of integration, it is possible to obtain recognition results over a wide range by integrating all treads that are selected to be integrated. .
  • the staircase recognition means can recognize the size and spatial position of the tread based on the plane information and use the tread information as the tread information.
  • the tread information is at least in front of the tread with respect to the moving direction.
  • Information on the front edge indicating the boundary of the front and the information on the back edge indicating the boundary on the back side, and the front edge and the back edge of the tread are recognized. Recognize the stairs and make it possible to move up and down.
  • right margin information and left margin information indicating margin areas that are adjacent to the left and right sides of the safety area, which is an area between the front edge and the back edge, and are estimated to have a high probability of being movable
  • Reference point information indicating the center of gravity of the area estimated as the tread based on the plane information described above, and three-dimensional coordinate information of the point group constituting the plane serving as the tread can be included.
  • the staircase recognition means can calculate a polygon by extracting a plane boundary based on the plane information, and can calculate the tread information based on the polygon.
  • the polygon can be a convex polygon area that circumscribes the boundary of the plane extracted based on the plane information, and is actually detected. It can be a region including a plane.
  • the polygon can be a convex polygon area inscribed in the boundary of the plane extracted based on the plane information, and is an area included in the plane that is actually detected.
  • control is performed so that the lifting operation is executed. For example, when the front edge and the back edge overlap, such as a staircase with a small kick-up, the back edge can be moved to the target and moved up and down. Similarly, the front edge may be moved to the target and the lifting operation may be fi.
  • the stair lift control means moves to a predetermined position facing the front edge on the next step surface that is the target of the next lift operation. For example, if you move the floor and detect a staircase, the back edge of the floor may not overlap the front edge of the first step of the staircase. In such a case, it is possible to move up and down by moving to the first stage of the stairs, that is, the front edge of the next tread surface to be lifted.
  • the stair lift control means detects a tread surface to be moved next, and performs a series of operations of moving to a predetermined position facing the tread surface to be moved to perform a lift operation. Each time it moves to a new tread, it can be moved up and down by performing a search 'align' approach on the tread.
  • the above-mentioned stair lift control means searches for the next step to be moved that has been acquired in the past. It is possible to obtain information on the steps up or down several steps in advance, so that the robot device cannot obtain the latest information of its own! Can also be moved up and down.
  • the stair lift control means moves to a predetermined position facing the back edge on the current moving surface, detects the next tread surface to be moved, and moves to a predetermined position facing the front edge on the tread surface. And so as to perform a lifting operation that moves to the tread. Controllable force S.
  • both edges are parallel! /, Na! /, Even if it is a spiral staircase, it can move up and down.
  • the lifting control means can control the lifting operation using a parameter that defines the position of the moving means with respect to the tread surface. It can be determined based on the height. And, it is possible to have a parameter switching means that changes the numerical value of the above parameter between the climbing step and the descending operation, and it is only necessary to change the parameter whether climbing the stairs or descending. It can be controlled similarly.
  • the plane detection means is extracted by the line segment extraction means for extracting a line segment for each distance data point group estimated to be on the same plane in the three-dimensional space, and the line segment extraction means.
  • Plane area expanding means for extracting a plurality of line segments estimated to belong to the same plane from the line segment group and calculating a plane from the plurality of line segments;
  • the line segment extraction means can adaptively extract line segments according to the distribution of distance data points, and the line segment extraction means are arranged on the same straight line when the three-dimensional distance data is on the same plane.
  • the line segment is extracted using this, but at this time, the distribution of the distance data points differs due to the influence of noise, etc., so the line segment is extracted adaptively according to the distribution of this distance data (Adaptive Line Fitting) enables accurate line segment extraction robust to noise, and planes are obtained from a large number of extracted line segments by the line segment expansion method. However, it is possible to accurately extract a plane without using one plane or multiple planes even though there is only one plane.
  • the line segment extracting means extracts a distance data point group estimated to be on the same plane based on the distance between the distance data points, and based on the distribution of the distance data points in the distance data point group, Whether the distance data point group is on the same plane can be estimated again.
  • the distance data point group is once extracted based on the distance of the distance data point in the three-dimensional space, and then based on the distribution of the data points. By estimating again whether or not they are on the same plane, it is possible to make a precise spring.
  • the line segment extraction means extracts a first line segment from the distance data point group estimated to be on the same plane, and the distance from the first line segment in the distance data point group. Is the most When the distance data point is a large point of interest and the distance is less than or equal to a predetermined threshold, the distance data point group force second line segment is extracted, and the distance data point is on one side of the second line segment. It is determined whether or not there is a predetermined number or more. If there is a predetermined number or more, the distance data point group can be divided at the point of interest.
  • a second line segment is generated by, for example, the least square method, and one of the points in the second line segment is generated.
  • the data point group has, for example, a zigzag shape with respect to the line segment, and therefore the extracted data point group is biased. Therefore, it is possible to divide the data point group at the point of interest or the like.
  • the plane area expanding means selects one or more line segments estimated to belong to the same plane, calculates a reference plane, and determines a line segment estimated to belong to the same plane as the reference plane. It is possible to search the segment group as an extension line segment, repeat the process of updating the reference plane with the extension line segment and expanding the area of the reference plane, and output the updated plane as an updated plane.
  • the plane area expansion process and the plane update process can be performed using line segments belonging to the same plane.
  • the distance data point group belonging to the updated plane if there is a distance data point whose distance from the updated plane exceeds a predetermined threshold, this is removed! Since the updated plane is obtained as an average plane of all the line segments belonging to it, the distance data points greatly deviated from this are excluded, and the data point group is obtained again. By obtaining the plane, it is possible to obtain a detection result in which the influence of noise and the like is further reduced.
  • the plane area expanding means can estimate whether or not the line segment belongs to the same plane as the reference plane based on an error between the plane determined by the line segment and the reference plane. Based on the mean square error, etc., it is possible to determine the force that is the effect of noise and whether it is a different plane, and more accurately detect the plane.
  • the motion control method for a robot apparatus is a motion control method for a robot apparatus that can be moved by a moving means.
  • One or more planes included in the environment are detected from three-dimensional distance data and used as plane information.
  • a staircase recognition process that recognizes a staircase having a movable plane and outputs step information on the tread surface of the staircase and kick-up information, and determines whether or not the step can be raised or lowered based on the staircase information.
  • there is a stair lifting / lowering control step for autonomously positioning with respect to the tread and controlling the stair lifting / lowering operation.
  • the moving device is a moving device that can be moved by the moving means, and detects one or a plurality of planes included in the environment from the three-dimensional distance data, and outputs the plane information as plane information.
  • Step recognition means for recognizing a stair with a movable plane from the plane information and outputting step information on the tread of the stair and information on kicking, and whether or not the stair can be raised or lowered based on the stair information.
  • the apparatus has a stair ascending / descending control means for autonomously positioning with respect to the tread and controlling the stair ascending / descending operation.
  • the sole of the tread is the tread. It is determined whether it is possible to move on the surface of the tread from the information on the kicking up that indicates the step difference of the stairs.
  • the power to climb up and down the stairs is S Kanakura.
  • FIG. 1 is a diagram for explaining a conventional lifting operation.
  • FIG. 2 is a diagram for explaining a conventional lifting operation.
  • FIG. 3A and FIG. 3B are diagrams for explaining a conventional lifting operation.
  • FIG. 4 is a perspective view showing an overview of the robot apparatus according to the embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a joint degree-of-freedom configuration included in the robot apparatus.
  • FIG. 6 is a schematic diagram showing a control system configuration of the robot apparatus.
  • FIG. 7 is a functional block diagram showing a system for executing processing from the stereo data until the stair ascending / descending operation is developed from the stereo data.
  • FIG. 8A is a schematic view showing a state where the robot apparatus is photographing the outside world
  • FIG. 8B is a view showing the size of the sole of the robot apparatus.
  • Fig. 9 is a diagram for explaining staircase detection, in which Fig. 9A is a view of the staircase from the front, Fig. 9B is a view of the staircase from the side, and Fig. FIG.
  • FIG. 10 is a diagram for explaining another example of staircase detection.
  • FIG. 10A is a diagram of the stairs viewed from the front
  • FIG. 10B is a diagram of the stairs viewed from the side
  • FIG. 11 is a diagram showing an example of the result of detecting the stairs in FIG. 9.
  • FIG. 11A is a schematic diagram showing an image when the stairs in FIG. 9 is photographed, and FIGS. 11B to 11D are diagrams.
  • FIG. 11B is a diagram showing three-dimensional distance data acquired from the image shown in FIG. 11A.
  • FIG. 12 is a diagram showing an example of the result of detecting the stairs in FIG. 10,
  • FIG. 12A is a schematic diagram showing an image when the stairs in FIG. 10 are photographed, and
  • FIGS. 12B to 12D are
  • FIG. 12B is a diagram showing three-dimensional distance data acquired from the image shown in FIG. 12A.
  • Fig. 13A is a schematic diagram showing an image of a staircase
  • Fig. 13B is a diagram showing the results of detecting four planar areas A, B, C, and D from the 3D distance data obtained from Fig. 13A. Is
  • FIG. 14 is a functional block diagram showing a staircase recognizer.
  • FIG. 15 is a flowchart showing a procedure of staircase detection processing.
  • FIG. 16A and FIG. 16B are schematic diagrams showing polygons.
  • FIG. 17 is a schematic diagram for explaining Melkman's algorithm.
  • FIG. 18A and FIG. 18B are schematic diagrams for explaining a method of obtaining a polygon by Sklansky's algorithm.
  • FIG. 19 is a schematic diagram for explaining a problem that occurs with a non-convex polygonal staircase.
  • FIG. 19A is a diagram showing an input plane
  • FIG. 19B is a convex hull. It is a figure which shows the polygonal representation result of the non-convex polygon-shaped staircase.
  • FIG. 20 is a schematic diagram showing a method for obtaining a polygon that includes an input plane by smoothing.
  • FIG. 20A is a diagram showing an input plane
  • FIG. 20B is a diagram showing a smoothed polygon obtained by removing discontinuous gaps from the polygon showing the input plane
  • FIG. 20C is a diagram. It is a figure which shows the polygon further smoothed by the line fitting with respect to the polygon obtained by 20B.
  • FIG. 21 is a diagram showing a program example of a process for obtaining a polygon including an input plane by gap removal and smoothing by line fitting.
  • FIGS. 22A and 22B are schematic diagrams for explaining the method of calculating the staircase parameters.
  • FIG. 23 is a schematic diagram for explaining the tread surface and the staircase parameters that are finally recognized. is there.
  • FIG. 24A and FIG. 24B are schematic diagrams showing stairs.
  • FIG. 25 is a flowchart showing a method of staircase integration processing.
  • FIG. 26 is a schematic diagram for explaining a process of integrating overlapping staircase data.
  • FIG. 27 is a diagram for explaining an align operation.
  • FIG. 28 is a schematic diagram for explaining an approach operation.
  • FIG. 29 is a flowchart showing the steps of a stair climbing operation.
  • FIG. 30 is a flowchart showing a search “align” approach processing method.
  • FIG. 31 is a flowchart showing a method for a lifting operation process.
  • FIG. 32 is a schematic diagram showing a staircase surface recognized or to be recognized by the robot apparatus.
  • FIG. 33 is a flowchart showing a method of a lifting operation process.
  • FIG. 34 is a flowchart showing a method for a lifting operation process.
  • FIG. 35A is a diagram for explaining the relationship between the tread and the sole recognized by the robot apparatus, and FIG. 35B is a diagram showing the dimensions of each part.
  • FIG. 36 is a diagram obtained by tracing a photograph of the robot apparatus performing the ascending / descending operation.
  • FIG.37 Fig. 37 traces the image of the robot device moving up and down.
  • FIG. 38 is a diagram showing a relationship between a single stepped portion and the sole of the robot apparatus.
  • FIG. 39 is a diagram showing a relationship between a single recess and a sole of the robot apparatus.
  • FIG. 40 is a functional block diagram showing the flat surface detection apparatus in the present modification. 41] FIG. 41 is a diagram for explaining a robot apparatus having means for applying a texture.
  • FIG. 42 is a diagram for explaining the plane detection method by the line segment expansion method in this modification.
  • FIG. 43 is a flowchart showing plane detection processing by a line segment expansion method.
  • FIG. 44 is a flowchart showing details of processing in the line segment extraction unit in the present modification.
  • FIG. 45 is a diagram showing the distribution of distance data points.
  • FIG. 45A shows a case where the data distribution is zigzag with respect to the line segment, and
  • FIG. It is a schematic diagram showing a case where it is uniformly distributed in the vicinity!
  • FIG. 46 is a flowchart showing a Zig-Zag-Shape discrimination method in the present modification.
  • FIG. 47 is a diagram showing a program example of the Zig-Zag-Shape discrimination process.
  • FIG. 48 is a block diagram illustrating a processing unit that performs Zig-Zag-Shape discrimination processing. 49] FIG. 49 is a schematic diagram for explaining the area expansion processing in this modification. FIG. 50 is a flowchart showing the process of searching for a region type and the procedure of the region expansion process in the region expansion unit in this modification.
  • Fig. 51 shows an example in which the mean square error rms of the plane equation is different even if the distance between the end point and the straight line is the same.
  • Fig. 51A shows that the line segment deviates from the plane due to the effects of noise, etc.
  • FIG. 51B is a schematic diagram showing a case where there is another plane to which the line segment belongs.
  • FIG. 52 is a diagram showing a region type selection process.
  • FIG. 53 is a diagram showing an area expansion process.
  • Fig. 54A is a schematic diagram showing the floor surface when the robot device is standing and looking down on the floor surface.
  • the vertical axis is x
  • the horizontal axis is y
  • the z-axis is expressed by the shading of each data point.
  • FIG. 54C is a diagram showing a straight line detected from a group of data points assumed to exist on the plane
  • FIG. 54C is a diagram showing a planar region obtained by the region expansion process from the straight line group shown in FIG. 54B.
  • FIG. 5 5 is a diagram for explaining the difference in results between the plane detection method in the present modification and the conventional plane detection method when a step is placed on the floor surface.
  • 5 5 A is a schematic diagram showing an observed image
  • FIG. 5 5 B is a diagram showing experimental conditions
  • FIG. 5 5 C is a diagram showing a result of plane detection by the plane detection method in this modification
  • FIG. 5D is a diagram showing the result of plane detection by the conventional plane detection method.
  • FIG. 5 6 Fig. 5 6 A is a schematic diagram showing an image of the floor surface, and Fig. 5 6 B and Fig. 5 6 C are three-dimensional distances obtained by imaging the floor surface shown in Fig. 5 6 A.
  • FIG. 11 is a diagram showing a line segment detected by line segment detection of the present modification and a line segment detected by conventional line segment detection from distance data points in the horizontal direction and vertical direction from the data line.
  • the present invention is applied to an autonomously operable robot apparatus equipped with a step recognition device that recognizes a step such as a stair existing in the surrounding environment.
  • the robot apparatus uses distance information obtained by stereo vision or the like.
  • the stairs are recognized from multiple planes extracted from (distance data), and the stairs can be moved up and down using the stairs recognition results.
  • a biped walking type robot device will be described as an example.
  • This robotic device is a practical mouth pot that supports human activities in various situations in the living environment and other daily lives, and can act according to the internal state (anger, sadness, joy, fun, etc.)
  • a bipedal walking robot device will be described as an example, but the staircase recognition device is not limited to a bipedal walking robot device.
  • the raising / lowering operation can be executed.
  • FIG. 4 is a perspective view showing an overview of the robot apparatus according to the present embodiment.
  • the robot apparatus 201 has a head unit 203 connected to a predetermined position of the trunk unit 202, two left and right arm units 204R / L, and two left and right leg units 2.
  • 05R / L is concatenated (where R and L are suffixes indicating right and left, respectively, the same applies hereinafter).
  • FIG. 5 schematically shows the joint degree-of-freedom configuration of the robot apparatus 201.
  • the neck joint that supports the head unit 203 has three degrees of freedom: a neck joint axis 101, a neck joint pitch axis 102, and a neck joint pole axis 103.
  • each arm unit 204R / L constituting the upper limb includes a shoulder joint pitch axis 107, a shoulder joint roll axis 108, a brachial arm axis 109, an elbow joint pitch axis 110, a forearm arm axis 1 11, It comprises a wrist joint pitch axis 1 12, a wrist joint roll wheel 113, and a hand part 114.
  • the hand 114 is actually an articulated multi-degree-of-freedom structure including a plurality of fingers. However, since the movement of the hand 114 has little contribution or influence on the posture control or walking control of the robot apparatus 201, it is assumed in this specification that the degree of freedom is zero for simplicity. Therefore, each arm has 7 degrees of freedom.
  • the trunk unit 202 has three degrees of freedom: the trunk pitch axis 104, the trunk roll axis 105, and the trunk axis 106.
  • Each leg unit 205R / L constituting the lower limb includes a hip joint axis 115, a hip joint pitch axis 116, a hip joint roll axis 117, a knee joint pitch axis 118, and an ankle joint pitch axis 119.
  • the ankle joint roll shaft 120 and the sole 121 are configured.
  • the intersection of the hip joint pitch axis 116 and the hip joint roll axis 117 defines the hip joint position of the robot apparatus 201.
  • the sole 121 of the human body is actually a structure including a multi-joint / multi-degree-of-freedom sole, but in this specification, for the sake of simplicity, the sole of the robot apparatus 201 has zero degrees of freedom. . Therefore, each leg is composed of 6 degrees of freedom.
  • the robot device 201 for entertainment is not necessarily limited to 32 degrees of freedom. It goes without saying that the degree of freedom, that is, the number of joints, can be increased or decreased as appropriate according to the design constraints and required specifications. Absent.
  • Each degree of freedom of the robot apparatus 201 as described above is actually implemented using an actuator. Due to demands such as eliminating external bulges on the exterior and approximating the human body shape, biped walking and leg, and posture control for unstable structures, the actuator is small and lightweight. It is preferable that
  • Such a robot apparatus includes a control system that controls the operation of the entire robot apparatus, for example, the trunk unit 202.
  • FIG. 6 is a schematic diagram showing a control system configuration of the robot apparatus 201. As shown in Fig. 6, the control system controls the whole body coordinated movement of the robot device 201, such as the drive of the thought control module 200 that controls emotional judgment and emotional expression in response to user input, etc., and the actuator 350.
  • the motion control module 300 controls the whole body coordinated movement of the robot device 201, such as the drive of the thought control module 200 that controls emotional judgment and emotional expression in response to user input, etc., and the actuator 350.
  • the thought control module 200 includes a central processing unit (CPU) 211, a random access memory (RAM) 212, a read only memory (ROM) 213, and an external storage device (node, ('Disk' drive etc.) This is an independent information processing device that consists of 214 etc. and can perform self-contained processing within the module.
  • CPU central processing unit
  • RAM random access memory
  • ROM read only memory
  • an external storage device node, ('Disk' drive etc.)
  • This thought control module 200 determines the current emotion and intention of the robot device 201 in accordance with stimuli from the outside, such as image data input from the image input device 251 and sound data input from the sound input device 252. To do. That is, as described above, by recognizing the user's facial expression from the input image data and reflecting the information on the emotion and intention of the robot apparatus 201, it is possible to express an action according to the user's facial expression.
  • the image input device 251 includes a plurality of CCD (Charge Coupled Device) cameras, for example, and can obtain a distance image from images captured by these cameras.
  • the audio input device 252 includes a plurality of microphones, for example.
  • the thought control module 200 issues a command to the motion control module 300 to execute an action or action sequence based on decision making, that is, movement of the limbs.
  • Controls 201 whole body coordination This is an independent drive type information processing apparatus that is composed of a CPU 311, a RAM 312, a ROM 313, an external storage device (hard 'disk' drive, etc.) 314, etc. and can perform self-contained processing in a module. Further, the external storage device 314 can store, for example, walking patterns calculated offline, target ZMP trajectories, and other action plans.
  • the motion control module 300 includes an actuator 350 that realizes the degree of freedom of joints distributed throughout the body of the robot apparatus 201 shown in FIG. 5, and a distance measurement sensor (not shown) that measures the distance to the object.
  • Posture sensor 351 for measuring the posture and inclination of the trunk unit 202
  • ground contact confirmation sensor 352, 353 for detecting the floor or landing of the left and right soles
  • load sensor provided on the sole 121 of the sole 121
  • battery Various powers such as a power supply control device 354 that manages the power source of the power supply S, etc. are connected via a bus interface (I / F) 310.
  • the posture sensor 351 is configured by, for example, a combination of an acceleration sensor and a gyro sensor
  • the grounding confirmation sensors 352 and 353 are configured by a proximity sensor, a micro switch, or the like.
  • Thought control module 200 and motion control module 300 are built on a common platform and are interconnected via bus' interfaces 210 and 310.
  • the motion control module 300 controls the whole body coordinated motion by each of the actuators 350 that embodies the action instructed by the thought control module 200. That is, the CPU 311 extracts an operation pattern corresponding to the action instructed from the thought control module 200 from the external storage device 314, or internally generates an operation pattern. The CPU 311 then sets the foot movement, ZMP trajectory, trunk movement, upper limb movement, waist horizontal position, height, etc. according to the specified movement pattern, and instructs the movement according to these settings. The command value to be transferred is transferred to each actuator 350.
  • the CPU 311 detects the posture and inclination of the trunk unit 202 of the robot device 201 based on the output signal of the posture sensor 351, and each leg unit 205R / L detects the posture of the trunk unit 202 based on the output signals of the grounding confirmation sensors 352 and 353. By detecting whether the leg is a free leg or a standing leg, the whole body cooperative movement of the robot apparatus 201 can be adaptively controlled. Further In addition, the CPU 311 controls the posture and operation of the robot apparatus 201 so that the ZMP position is always directed toward the center of the ZMP stable region.
  • the motion control module 300 returns to the thought control module 200 the power at which the behavior as intended determined by the thought control module 200 is expressed, that is, the processing status.
  • the robot apparatus 201 can determine the self and surrounding conditions based on the control program and can act autonomously.
  • the stereo vision system is mounted on the head unit 203, and the three-dimensional distance information of the outside world can be acquired. Next, it is suitably mounted on such robotic devices, etc., and the plane is detected using the 3D distance data acquired by the surrounding force of the robotic device stereo vision system. A series of processes for recognizing staircases based on the results and performing stair climbing using the staircase recognition results will be described.
  • FIG. 7 is a functional block diagram showing a system for executing a process from the stereo data until the stair ascending / descending operation is manifested from the stereo data.
  • the robot apparatus receives stereo data D1 from stereo vision system 1 (Stereo Vision System) 1 and stereo vision system 1 as distance data measurement means for acquiring 3D distance data.
  • Plane Segmentation / Extractor 2 that detects the plane in the environment from the data D1, Stair Recognition 3 that recognizes the stair from the plane data D2 output from the flat detector 2, and Stair recognition
  • a stair climbing controller (Stair Climber) 4 for outputting an operation control command D5 for performing stair climbing operation using the stair data D4 which is a recognition result recognized by the unit 2 is provided.
  • the robot apparatus first observes the outside world by stereo vision and outputs stereo data D1, which is three-dimensional distance information calculated by binocular parallax, as an image. That is, image input from two left and right cameras corresponding to human eyes is compared for each pixel neighborhood, the distance from the parallax to the target is estimated, and 3D distance information is output as an image (distance image) .
  • stereo data D1 is three-dimensional distance information calculated by binocular parallax, as an image. That is, image input from two left and right cameras corresponding to human eyes is compared for each pixel neighborhood, the distance from the parallax to the target is estimated, and 3D distance information is output as an image (distance image) .
  • the plane detector 2 By detecting a plane from the distance image by the plane detector 2, a plurality of planes existing in the environment can be recognized.
  • the stair recognizer 3 From these planes, the plane on which the robot can move up and down is extracted, the stairs are recognized from the plane, and the stairs
  • FIG. 8A is a schematic diagram showing a state where the robot apparatus 201 is photographing the outside world.
  • the visual field range of the robot apparatus 201 having the image input unit (stereo camera) in the head unit 203 is as follows. 2 This is the predetermined range in front of 01.
  • the robot apparatus 201 has a software configuration in which the CPU 211 described above receives a color image and a parallax image from the image input apparatus 251, sensor data such as all joint angles of each actuator 350, and the like, and executes various processes. Realize.
  • the software in the robot apparatus 201 of the present embodiment is configured in units of objects, recognizes the position, movement amount, surrounding obstacles, environment map, etc. of the robot apparatus, and the action that the robot apparatus should finally take.
  • a coordinates indicating the position of the robot apparatus for example, a world-standard camera coordinate system (hereinafter also referred to as absolute coordinates) having a predetermined position based on a specific object such as a landmark as the origin of the coordinates, Two coordinates are used: a robot center coordinate system (hereinafter also referred to as relative coordinates) centered on the robot device itself (coordinate origin).
  • a robot center coordinate system in which the robot apparatus 201 is fixed at the center by using the joint angle calculated from the sensor data at the time when image data such as a color image and a parallax image from a stereo camera is captured. Is converted to the coordinate system of the image input device 251 provided in the head unit 203.
  • a homogeneous transformation matrix of the camera coordinate system is derived from the robot center coordinate system, and a distance image composed of the homogeneous transformation matrix and the corresponding three-dimensional distance data is output.
  • the robot apparatus can recognize a staircase included in its own field of view, and can use the recognition result (hereinafter referred to as staircase data) to move up and down the staircase. Therefore, for the stair ascending / descending operation, the robot apparatus determines whether the size of the staircase is smaller than the size of its own sole or whether the height of the staircase can be climbed or lowered. It is necessary to make various judgments about the size of the stairs.
  • the size of the sole of the robot apparatus is FIG. 8B. That is, as shown in FIG.
  • the forward direction of the robot device 201 is the X-axis direction and the method that is parallel to the floor surface and orthogonal to the X direction is the y direction
  • the y direction of both feet when the robot device 201 stands upright The width of the feet is the size of the sole
  • the front part from the ankle is the front sole width foot_fr 0 nt_size
  • the rear part from the ankle is the sole behind the sole
  • the width is foot_back_size.
  • Examples of steps detected by the robot apparatus 201 from the environment include those shown in FIG. 9 and FIG. 9A and 10A are views of the stairs viewed from the front, FIGS. 9B and 10B are views of the stairs viewed from the side, and FIGS. 9C and 10C are views of the stairs viewed from an oblique direction.
  • the surface used by humans, robotic devices, etc. to move up and down the stairs is the tread, and the height from one tread to the next tread (stair 1 The height of the step) is called kicking up.
  • the stairs will be counted as the first and second steps as you climb from the side closer to the ground.
  • the staircase ST1 shown in Fig. 9 is a three-step staircase, and the tick height of the stepped up 4cm, 1 and 2 steps is 30cm wide, 10cm deep, only the 3rd step tread, which is the top step, the width It is 30cm and the depth is 21cm.
  • the staircase ST2 shown in Fig. 10 is also a three-step staircase with a kick height of 3 cm, the size of the tread on the 1st and 2nd steps is 33 cm in width, 12 cm in depth, and the third step on the top. Only 33cm wide and 32cm deep. The result of the robot device's recognition of these stairs will be described later.
  • the plane detector 2 detects a plurality of planes existing in the environment from the distance information (stereo data D1) from which the distance measuring instrument force such as stereo vision is also output, and outputs the plane data D2.
  • a plane detection method a well-known plane detection technique using Hough transform can be applied in addition to the line segment expansion method described later.
  • Hough transform can be applied in addition to the line segment expansion method described later.
  • FIG. 11 and FIG. 12 are diagrams showing an example of the result of detecting the stairs.
  • FIGS. 11 and 12 are examples in which plane detection is performed by acquiring three-dimensional distance data from images obtained by capturing the stairs shown in FIGS. 9 and 10 by a plane detection method described later. That is, FIG. FIG. 11B to FIG. 11D are diagrams showing three-dimensional distance data acquired from the image shown in FIG. 11A. 12A is a schematic diagram showing an image when the level of FIG. 10 is photographed, and FIGS. 12B to 12D are diagrams showing three-dimensional distance data acquired from the image shown in FIG. 12A. As shown in Figs. 11 and 12, in all cases, all treads can be detected as flat surfaces.
  • Fig. 11B shows an example in which the treads of the first, second, and third tiers are detected from the bottom.
  • FIG. 12B also shows that a part of the floor is successfully detected as another plane! /.
  • the areas A to D are the floor surface, the first step, the second step, and the third step, respectively, as shown in FIG. 13B. It is detected as a plane indicating the tread surface of the eye. Point groups shown in the same area included in each of the areas A to D indicate distance data point groups estimated to form the same plane.
  • the plane data D2 thus detected by the plane detector 2 is input to the staircase recognizer 3, and the shape of the step, that is, the size of the tread, the height of the staircase (the size of the kick-up), and the like are recognized.
  • the staircase recognizer 3 in the present embodiment is a force that will be described in detail later.
  • the boundary on the near side (side closer to the robot apparatus) of the region (polygon) included in the tread recognized by the robot apparatus 201 (Front Edge) (hereinafter referred to as “Front Edge FE”) and the boundary (Back Edge) (hereinafter referred to as “Back Edge BE”) of the rear side of the tread (the side far from the robotic device) as staircase data recognize.
  • the stair lift controller 4 controls the stair lift operation using the stair data.
  • the stair climbing control method of the robot apparatus will be specifically described.
  • the first is the staircase recognition method of the robot device
  • the second is the stair ascending / descending operation using the recognized staircase
  • the plane detection method by the line segment expansion method as a specific example of the plane detection method. I will explain.
  • FIG. 14 is a functional block diagram showing the staircase recognizer shown in FIG.
  • the staircase recognizer 3 includes a stair extraction 5 that detects staircases from the plane data D2 output from the flat detector 2, and the staircase data detected by the staircase detector 5.
  • Stair Merging 6 that performs D3 time series data, that is, a plurality of staircase data D3 detected at different times, and more accurately recognizes staircases.
  • the staircase data D4 integrated by the integrator becomes the output of the staircase recognizer 3.
  • the staircase detector 5 detects the staircase from the plane data D2 input from the plane detector 2.
  • the plane data D2 input from the plane detector 2 has the following information for each plane, and plane data for each plane detected from the image captured by the stereo vision system 1 is input. Is done.
  • the robot device selects a plane that is substantially horizontal to the grounding surface such as the floor surface or the tread surface on which it is grounded, and calculates the following information (hereinafter referred to as the “step parameter”). That is,
  • the front edge FE and the knock edge BE recognized by the robot device indicate the boundary (line) of the tread surface as described above.
  • the polygonal V and robot The side boundary (front side boundary) is the front edge FE, and the side far away from the robot unit (back side boundary) is the back edge BE.
  • a minimum polygon including all points constituting a plane can be obtained and used as the front or back boundary.
  • the information on the front edge FE and the back edge BE can be information on these end points.
  • information such as the width W (width) of the staircase and the length of the staircase (length) can be obtained from the polygon.
  • the height of the staircase (pick-up) is calculated by using the center point of the plane of the given plane data D2 as the height difference between the center points of the two planes or when obtaining the above polygon. Using the center of gravity of It is possible to make a difference in height.
  • the kick-up may be the difference in height between the back edge BE at the front stage and the front edge FE at the rear stage.
  • an area adjacent to the left and right of the area sandwiched between the front edge FE and the back edge BE (safety area) is movable. Recognize a region with a high probability as a margin (region). How to obtain these will be described later. By obtaining this margin, it is possible to widely recognize the tread area that is estimated to be movable. Furthermore, a set of information (stair parameter) such as the number of data points constituting the tread and the information of the reference point that defines one center of gravity as described above can be used as the staircase data D3.
  • a plane (stair) satisfying the following conditions is extracted from the above staircase data.
  • Stair length L (length) is greater than or equal to the specified threshold
  • FIG. 15 is a flowchart showing the steps of the staircase detection process of the staircase detector 5.
  • the input plane is a plane that can be walked or moved, such as whether or not it is horizontal with the ground plane, for example.
  • Judge (Step Sl).
  • the condition of what plane is horizontal or movable may be set according to the function of the robot apparatus. For example, if the plane vector of the input plane is ⁇ ( ⁇ , ⁇ , n), it is horizontal if
  • X y z — Can be judged as 1 z th.
  • min is a threshold for judging the horizontal plane.
  • min 80 ° in consideration of accuracy such as distance data to be used and plane detection.
  • Step SI No
  • it will output that the detection has failed and the processing will be terminated.
  • the process for the plane data is executed.
  • step SI: Yes processing is performed to recognize the plane boundary (shape).
  • Sklansky's algorithm J. Sklansky, "Measuring concavity on a rectangular mosaic, IEE ⁇ frans and omput.21, 1974, pp.1355-1364
  • Melkman's analogy Melkman A.
  • On-line Construction A polygon that includes the input plane is obtained by a convex hull such as the Convex Hull of a Simple Polygon Information Processing Letters 25, 1987, p. ll) or by smoothing by noise removal (step S2).
  • step parameters such as a front edge and a back edge are obtained from the boundary lines before and after the polygon (step S3).
  • the width W (width) and the length (length) in the plane showing the stepped tread are obtained from the boundary lines of the front edge and the back edge, and these values are larger than a predetermined threshold value.
  • Judge whether it is! / Step S4. If the tread width and length are not more than the predetermined threshold! / (Step S4: No), the robot device is not a movable plane, and the next plane data is processed again from step S1. repeat.
  • Step S4 If the width and length of the plane are greater than or equal to the predetermined threshold (Step S4: No), it is determined that the tread is movable and the left and right margins (Left Margin, Right Margin) are calculated (Step S5). Is output as staircase data D3.
  • FIG. 16 is a schematic diagram showing a convex polygon.
  • FIG. 16A shows that all supporting points determined to belong to one input plane (same plane and included in a continuous area).
  • FIG. 16B shows a convex polygon obtained from the figure shown in FIG. 16A.
  • the convex polygon shown here can be obtained by using a convex hull for obtaining a minimum convex set including a given plane figure (an area including a supporting point).
  • the point indicated by G is used when determining the width W of the tread, and indicates, for example, a point (reference point) such as the center of gravity of the region including the supporting point.
  • FIG. 17 shows Melkman's It is a schematic diagram for demonstrating an algorithm. As shown in Fig. 17, three points PI, P2, and P3 are extracted from a given figure, and line segments connecting ⁇ , ,, and P2 are drawn, and ⁇ , ⁇ , ⁇ 3, ⁇ 2, ⁇ 3 are drawn. Draw a line straight through. As a result, it is divided into five areas AR;! To AR5, including the three points, PI, ⁇ 2, ⁇ 3 forces, and the triangle AR4.
  • the convex polygon is updated by repeating the process of determining which region the next selected dot 4 is included and re-forming the polygon. For example, if ⁇ 4 exists in the area AR1, the area surrounded by the line segments connected in the order of P1, ⁇ 2, ⁇ 4, and ⁇ 3 becomes the updated convex polygon. In addition, when the point ⁇ 4 exists in the areas AR3 and AR4, the areas surrounded by the line segments connected in the order of P1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively, are connected in the order of P1, ⁇ 4, ⁇ 2, and ⁇ 3. The convex polygon is updated as an area surrounded by the line segment.
  • the convex polygon is not updated, and if there is a point P4 in the area AR2, except for the point P3, PI, P2, and P3
  • the convex polygon is updated as an area surrounded by line segments connected in order.
  • the force S is used to generate a convex polygon for all supporting points in consideration of the area included in each point.
  • FIG. 18 is a schematic diagram for explaining a method of obtaining a polygon by Sklansky's algorithm.
  • the polygon extracted by Sklansky's algorithm is a force called Weakly Externally Visible Polygon.
  • the amount of calculation is small compared to the above-mentioned Sklansky's Al ratio, so high-speed computation is possible.
  • a half line is drawn from an arbitrary point X on the boundary of the given figure 131 to a circle 132 containing the figure 131, as shown in FIG. 18A.
  • a half line that does not cross the figure 131 among the half lines drawn from the point X to the circle 132 can be drawn, it is assumed that this point constitutes the boundary of the convex polygon.
  • Fig. 18B when a half line is drawn on a circle 134 including figure 133 from any other point y on the boundary of given figure 133, a half line that does not cross figure 133 is drawn. I can't.
  • the other point y does not constitute a boundary of the convex polygon.
  • the figure as shown in FIG. 16A is obtained.
  • the convex polygon in Figure 16B can be obtained.
  • the convex polygon in Figure 16A in consideration of the accuracy, characteristics, etc. of the stereo vision system 1, as shown in FIG. 16B, the convex circumscribing the figure in FIG. 16A is obtained.
  • a convex polygon inscribed in the figure of FIG. 16A may be obtained in consideration of the accuracy and characteristics of the camera. Also, use these methods according to the degree of inclination of the plane and the surrounding conditions.
  • FIG. 19 is a schematic diagram showing this problem.
  • FIG. 19A is an input plane
  • stepO is a non-convex polygonal step.
  • Figure 19B shows the polygonal representation result of stepO by the convex hull, and there is a big difference from the desired result for the non-convex part.
  • a method of handling such non-convex polygons a method of obtaining polygons by smoothing by gap removal and line fitting can be considered.
  • a method for obtaining a polygon that includes the input plane by gap removal and smoothing by line fitting is described.
  • FIG. 20 is a schematic diagram showing smoothing.
  • FIG. 20 is a schematic diagram showing smoothing.
  • FIG. 20A shows all supporting points determined to belong to one input plane (distances included in a continuous area on the same plane).
  • Figure 20B shows an input polygon that is a region that contains data points
  • Figure 20B shows a smoothed polygon (gap) that removes discontinuous gaps from the polygon that represents the input plane (close gaps).
  • Fig. 20C shows the polygon obtained by smoothing the polygon obtained by line fitting (fit line segments) to the polygon obtained in Fig. 20B (smoothed polygon: smoothed polygon).
  • FIG. 21 is a diagram showing a program example of a process for obtaining a polygon that includes an input plane by gap removal and smoothing by line fitting. Close gaps processing for removing discontinuous gaps from the polygon, and The Fit line segments process is shown in which the obtained polygon is further smoothed by line fitting.
  • the gap removal method will be described. Select three consecutive vertices from the vertices that represent the polygon, and if this central point is far from the straight line connecting the end points, remove this central point. Continue for the remaining vertices until there are no more points to remove.
  • a line fitting method will be described. Three consecutive vertices are selected from the vertices representing the polygon, and a straight line approximating these three points and the error between this straight line and the three points are obtained by the least square method. All the approximate lines and errors obtained are arranged in ascending order of error, and if the error is smaller than a certain threshold, the center point is removed and the position of the end point is recalculated using the approximate line. This process continues until there are no more points to remove.
  • FIG. 22 is a schematic diagram for explaining a method for calculating the stair parameter. As shown in FIG. 22A, it is assumed that the region is surrounded by the obtained polygon 140 force points 141 to 147. Here, when viewed from the robot apparatus 201, the line segment forming the front boundary of the polygon 140 is the front edge FE, and the line segment forming the back boundary is the back edge BE.
  • the width W of the stair tread is the length of the line connecting the center point C of the front edge FE and the reference point G
  • the reference point G should be the approximate center of the tread surface, for example, the center point of all supporting points, the center of gravity of the polygon 140, the end points of the front edge FE and the back edge BE. Or the center of gravity of the safety area 152 shown in FIG. 22B.
  • the length L of the stairs is, for example, the shorter of the lengths of the front edge FE and the back edge BE, or the front edge FE including the left and right margins shown below and the back edge BE including the left and right margins. Use the power S to make the longer one.
  • FIG. 23 is a schematic diagram for explaining the tread surface and the step parameter finally recognized.
  • margins M and M are provided at the left and right end portions of the safety region 152, and the region 151 including the left and right margins M and M is finally formed on the tread.
  • Left and right margins M and M are front edge FE and back edge If polygons protrude outside the safety area 152 specified by BE, first select those points. For example, in Fig. 22A,
  • the point 142 which is the point farthest from the safety area 152, is selected, and a perpendicular is drawn from this point 142 to the front edge FE and the back edge BE. Then, it is assumed that the region 151 surrounded by the perpendicular line, the front edge FE, and the back edge BE is recognized as a tread.
  • the margin may be obtained by simply drawing a line segment that passes through the point 142 and intersects the front edge FE or the back edge BE.
  • the length of the left margin M on the same straight line as the front edge FE is lmf
  • the length of the left margin M on the same straight line as the back edge BE is lbm.
  • rfm and rbm be the length of the right margin M on the same straight line as the front edge FE and knock edge BE, respectively.
  • FIG. 24A and 24B are schematic diagrams showing two types of stairs.
  • FIG. 24A shows a staircase having a rectangular tread surface as shown in FIG. 9 and FIG. 10, while FIG. 24B shows a spiral staircase.
  • the back edge BE is not parallel to the front edge FE. Therefore, for example, an algorithm that simply extracts a rectangular region from a detected plane may not be applicable. Therefore, as in the present embodiment, by obtaining a polygon from the detected plane and obtaining the front edge FE and the back edge BE, the robot apparatus can move up and down even in such a spiral staircase. Become.
  • the staircase integrator 6 inputs the staircase data (stair parameter) D3 detected by the staircase detector 5, and integrates the staircase data D3 over time, so that more accurate and high-level staircase information can be obtained. It is an estimate. For example, when the robot device has a narrow field of view, the entire staircase may not be recognized at a time. In such a case, for example, in the old stair data such as the previous frame and the new stair data such as the current frame, a set of spatially overlapping stairs is searched and overlapped. New by integrating stairs Define a virtual staircase. By continuing this process until there are no overlapping stairs, it is possible to recognize the correct stairs.
  • FIG. 25 is a flowchart showing a method of staircase integration processing in the staircase integrator 6.
  • the current stair data (New Stairs) and the old stair data (Old Stairs) are input (Step S11), and all the new stair data and old stair data are made into one set (ujnion) (Step S12). ).
  • the spatially overlapping staircase data is searched (step S13), and if there are overlapping sets (step S14: Yes), those staircases are searched. And are registered in the staircase data set (step S15).
  • the processing in steps S13 and S14 is continued until there is no spatially overlapping staircase pair (step S14: No), and finally the updated staircase data set is output as staircase data D4.
  • FIG. 26 is a schematic diagram for explaining the processing in step S13 for integrating overlapping staircase data.
  • FIG. 26 shows spatially overlapping staircase data ST11 and ST12.
  • the height difference (distance) at the reference point G of the two staircase data ST11 and ST12 overlaps the tread area including the left and right margins.
  • the size of the area can be used. That is, the difference in height between the centroids G and G of the two stairs is below the threshold (maxdz), and
  • the staircase data ST11 and ST12 are integrated to obtain the center of gravity G.
  • the area of the outer frame including the staircase data ST11 and ST12 is set as step ST13, and the area including the safety area excluding the left and right margins of the staircase data ST11 and the staircase data ST12 before integration is integrated.
  • the new safety area 165 later is set, and the area obtained by removing the safety area 165 from the staircase data ST13 is defined as margins M and M.
  • the integrated front edge FE and back edge BE can be obtained.
  • the two end points of the front edge FE in the combined staircase data ST13 are the left and right ends of the front edge FE of the staircase data ST11 and the front edge FE of the staircase data ST12.
  • the right end point 163 is on the right side
  • the left end point is on the left side.
  • the position of the line of the front edge FE is the line position closer to the robot device (front side) by comparing the front edge FE of the staircase data ST11 and the front edge FE of the staircase data ST12.
  • the position of the back edge BE on the far side is selected, and its left and right end points 161 and 162 are selected so as to spread further left and right.
  • the integration method is not limited to this.
  • the square area determined by the front edge FE and the back edge BE, and the force S that is integrated so that the integrated data ST13 is the largest for example, If the field of view is sufficiently wide or the accuracy of the distance data is sufficiently high, the area obtained by simply combining the two staircase data can be used as the integrated staircase data.
  • the reference point G after integration can be obtained by taking a weighted average according to the ratio of the number of supporting points included in the staircase data ST11 and the staircase data ST12.
  • the stair lift controller 4 performs control for the robot device to actually lift and lower the stair using the stair data D4 integrated and detected by the stair detector and stair integrator 6.
  • This lifting control includes the operation of searching for stairs.
  • the stair-climbing operation realized in this embodiment can be achieved by constructing the following five state machines.
  • FIG. 27 is a diagram for explaining the alignment operation.
  • the robot moves to a target position (hereinafter referred to as an align position) that is a predetermined distance ad (align_distance) in the direction orthogonal to the center point of the front edge FE of the tread 170.
  • an align position a target position
  • ad a predetermined distance ad (align_distance) in the direction orthogonal to the center point of the front edge FE of the tread 170.
  • the current position of the robot device is point 171 and the target align position is point 172, the distance between the two If There there angular difference between the direction facing the direction and mouth bot device perpendicular to the away predetermined threshold 01 _ (s!
  • FIG. 28 is a schematic diagram for explaining the approach operation. As shown in Figure 28,
  • the robot apparatus 201 moves to the alignment position 172, which is the target position separated by Align_distance, and completes the alignment operation, the center point C of the front edge FE of the tread 170 is aligned with the robot apparatus 201 in order to move up and down the stairs. And the distance is a predetermined value ax (
  • approach position Move to the target position (hereinafter referred to as approach position) that is approach.x).
  • the stairs are moved up and down based on the stairs data obtained by stairs recognition. If it moves to the next tread (step) and the next tread is observed, it continues to move up or down. By continuing this operation until the next step is eliminated, the stair climbing operation is realized.
  • FIG. 29 is a flowchart showing the steps of the stair climbing operation.
  • the search (Search) 'Align (Approach) operation searches for the staircase and confronts the searched staircase.
  • the robot moves to the predetermined position (aligned) and executes an approach operation approaching the first step of the stairs (step S21). If this search 'align' approach is successful (step S22: Yes) Go up and down (step S23) and output success. If the approach fails (step S22: No), the failure is output and the process is terminated. In this case, repeat from step S21 again.
  • FIG. 30 is a flowchart showing the search “align approach method”.
  • step S32 when the search “align approach” is started, the search operation (1) is executed (step S32).
  • the head is swung to collect as much information as possible.
  • step S32 it is determined whether there are stairs that can be raised and lowered around.
  • step_min_z if the height satisfies step_min_z ⁇ n ⁇ step_max_z, it is determined that the ascending / descending is possible.
  • step S32 If there is a stair that can be moved up and down (step S32: Yes), in order to avoid recognizing the stair nearby, an align operation is performed to move to a predetermined distance (align_distan Ce ) (step S33). ) Re-recognize the stairs that are going up and down (step S34).
  • the operation in step S34 is the search operation (2).
  • step S35 it is reconfirmed whether or not the stairs can be moved up and down. If the search operation (2) is successful, the stairs that are re-recognized are confronted with a predetermined distance. Check whether or not the movement to the line position has been completed, that is, whether or not the alignment operation in step S33 has been successful (step S36). Steps S35 and S36: Yes), execute an approach to the front edge of the first step (step S37). On the other hand, if there is no stairs that can be moved up and down in step S35, the process returns to step S31, and in step S36, the alignment operation is successful and V ,!
  • step S22 the stair climbing operation in step S22 will be described.
  • Ascending / descending operation is performed when the robot device itself can recognize the upper or lower step (hereinafter referred to as the next step) from the current tread, and when the next step cannot be recognized from the current moving surface.
  • upper stage or lower stage hereinafter referred to as two or more stages ahead
  • FIG. 31, FIG. 33, and FIG. 34 are flowcharts showing the processing methods of the lifting operation processing;!
  • the currently moving stage including the floor
  • step_l the next stage
  • step_2 the next stage is step-m.
  • step-m the next stage is step-m.
  • step S1 the elevating operation process when the tread of the next stage (step-1) can be observed and recognized.
  • step S41 an operation of climbing / descending the stairs (crime operation (1)) is executed (step S41).
  • this climb operation (1) since the height n of the staircase can be recognized in the above step S32, the positive / negative judgment of this height n is made z z
  • the elevation mode is switched. That is, if n ⁇ 0, it is a descending action and z
  • the control parameter value used for the system operation is different. That is, the climbing operation and the descending operation can be switched and executed only by switching the control parameter.
  • step S42 it is determined whether or not the climb operation (1) is successful (step S42). If the climb operation (1) is successful (step S42: Yes), the search operation (3) is executed (step S43).
  • This search operation (3) is a process that moves the head unit equipped with the stereo vision system, acquires the surrounding distance data, and detects the next staircase, and is almost the same as the search operation (2). Operation processing.
  • FIG. 32 is a schematic diagram showing a staircase surface that the robot apparatus recognizes or intends to recognize. As shown in FIG. 32, for example, it is assumed that the sole 121L / R of the currently moving robot apparatus is on the tread 181. In FIG. 32, the safety region between the front edge FE and the back edge BE and the left and right margins M and M adjacent thereto are recognized as the tread. This
  • the robot apparatus can recognize the tread surface 182 of the next next stage (st mark-2).
  • the tread surface 182 of the next next stage (st mark-2).
  • the lifting / lowering operation (1) it is possible to determine whether it is possible to move (climb operation) from the tread 181 of the current stage (st mark-0) to the tread 182 of the next stage (st mark-1). Those that meet the criteria shall be deemed movable.
  • Front edge FE force is also the distance to the rear end of the sole 121L / R.
  • Front_x is specified Control parameter in lift mode front_x_limi is large
  • Back edge BE force is also the distance to the front edge of the sole 121L / R.
  • Back_x is the control parameter in lift mode back_x_limi is large
  • the height zl at the reference point of the tread 18 2 of the next step (step-1) and the next step (st mark-2) From the difference in height z2 at the reference point of tread 183 (z2 ⁇ zl), climbing from tread 182 of the next step (step-l) to tread 18 3 of the next step (st mark-2) It is possible to determine whether the vehicle is down or down. If the tread surface 183 of the second step (step-2) cannot be recognized, the current lifting state may be maintained.
  • the robot apparatus aligns with the back edge BE of the tread 181 at the tread 181 of the current stage (st mark-0). Here, between tread 181 and tread 182
  • step-2 When the gap 184 is large, after moving to the front edge FE of the tread 182 of the next stage (st mark-1), it moves to the next stage and aligns with its back edge BE. In the next climb operation, the alarm is applied to the front edge FE of the tread 183 of the next step (step-2).
  • the climb operation is aligned with the front edge FE of the tread on the next stage, and the climb operation is performed until it aligns with the back edge BE of the moved tread.
  • the climb operation is a process of omitting the process of running to the front edge FE of the next stage and executing the align operation to the back edge BE of the tread moved to the next stage and moved.
  • the above-described lifting operation processing 1 can be applied when the robot apparatus can observe the tread surface of the next movable step (st mark-1) during the lifting operation. For example, if it is a biped walking robot device, it is necessary to have a stereo vision system 1 that can look down on its own feet.
  • the current stage (due to restrictions on the movable angle of the connection between the head unit and the trunk unit of the robotic device)
  • the tread of the next stage (st mark-1) cannot be observed / recognized from the tread at st mark-0), and the next step (st mark-2) or beyond (st mark-m)
  • Lifting process 2 and 3 when the step surface can be recognized will be described.
  • the case where the tread surface of the second step (st mark-2) can be recognized will be described.
  • the search operation ( 4) is executed (step S51).
  • the stereovision system 1 observes and recognizes the tread of the second step (step-2).
  • This search operation (4) is the same processing as step S43 described above, except that the tread of the second step ahead (st mark-2) is recognized.
  • the climb operation (2) is executed (step S52).
  • the climb operation (2) is the same operation as the climb operation (1). In this case as well, switching between climbing and descending stairs in climbing is also determined by the height n of the tread on the next step (step-1).
  • the tread on the next stage is the tread that was moved in time before the tread on the current stage (step-0)! /, And on the tread on the next stage! / It is.
  • step S53 Yes
  • step S54 Yes
  • step S56 the tread of the second step
  • step S55 No
  • the finish operation is executed (Step S55), and the process is terminated.
  • up and down motion 3 when the treads up to multiple steps (hereinafter referred to as m steps) can be observed and recognized will be described as up and down motion 3.
  • the search operation (5) is performed first when the ascending / descending operation is performed when!
  • the search operation (5) is basically the same as step S51, except that the tread surface up to the recognizable m-step ahead (step-m) is the observation target! /.
  • the climb operation (3) is executed for k stages (step S62).
  • the lift mode can be determined from the difference in height between the multiple treads that have been observed to date. In other words, if the height z-z of the i-th and i- 1st treads is negative, the operation goes down the stairs, and if it is 0 or positive, the operation mode should go up the stairs.
  • the information on the tread moving in this climb operation (3) is the data that has been observed m m ahead of the current stage.
  • steps 1 to 3 the steps for climbing and going down the stairs are the same by simply changing the control parameters used for climbing and descending in climbing. Can be executed.
  • the control parameter used for the stair climbing operation is for regulating the position of the sole of the robot device relative to the current tread.
  • FIG. 35A is a diagram for explaining the relationship between the tread and the sole recognized by the robot apparatus.
  • FIG. 35B is a diagram illustrating an example of control parameters used for the climb operation.
  • control parameters shown in FIG. 35A are as follows.
  • step_min Minimum difference in height difference between the current stage and the next stage (kick-up) st mark _max: Height difference (kick-up) between the current stage and the next stage can be raised / lowered Maximum value ad (align_distance): Distance between the front edge FE and the robot device at the alignment position
  • ax (approach_x): Distance between the front edge FE and the robot device at the approach position
  • front_x_limit Limit value of the distance between the front edge FE on the tread and the rear end of the sole 121 ⁇ minimal ⁇ -value
  • back_x_limit Limit value of the distance between the back edge BE on the tread and the front edge of the sole 121 (maximal x-vaiue
  • back_x_desired Desired value of distance between back edge BE and front edge of sole 121
  • step_min_z When climbing stairs, kicked is assumed if step_min_z less not considered there is a step (staircase), kicked is greater than Step_max_ Z judges that stair climbing impossible. Similarly, if you go down the stairs, when kicked up it is greater than the step_max_ Z is, shall not be regarded as stairs, in the case step_min_z greater than, also of the judges that stair climbing are not allowed.
  • align_distan Ce is a parameter that is used only when aligning, and is used when starting up / down stairs operation that performs climbing / descending stairs, that is, when raising / lowering the first stage. . Similarly, it is a parameter used only when approach_x3 ⁇ 4, an approach operation, and is used when starting a stair climbing operation that performs a climbing / descending operation.
  • the front_x_limit and back_x_limit define the relationship between the tread surface that the robot device recognizes! /, and the sole of the robot device.
  • the distance between the back edge BE and front edge FE of the tread surface and the end of the sole In other words, if a large part of the tread when moving to that tread is smaller than these values, it is impossible to move to that tread or even if it can move It is determined that the lifting / lowering operation is impossible.
  • the negative values of front_x_limit and back_x_limit indicate that the tread surface is smaller than the sole! In other words, in climbing motion, even if the tread is smaller than the sole of the foot, it can be moved by half the IJ.
  • back_x_desired indicates the distance between the back edge BE at the position where the robot device wants to align with the back edge BE on the current tread surface and the front end of the sole, as shown in Fig. 35B. If so, back_x_desired is in front of the knock edge BE, and in this embodiment, 15 mm before the back edge BE. On the other hand, if it is descending, the sole protrudes from the back edge BE. In this embodiment, it is a position that protrudes 5 mm. This is because climbing requires a certain distance to move up and move to the next stage, while descending does not require such a distance and seems to protrude from the tread. This is because it is easier to observe / recognize the tread on the next stage or later.
  • FIG. 36 and FIG. 37 are traces of images of the robot apparatus actually performing the ascending / descending operation using the control parameters shown in FIG. Figure 36 shows the movement of the robot device up the stairs.
  • Step S31 search operation (1) Execution state (No. 1), Step S33 alignment operation execution (No. 2), Step S3 2 search operation (2) Execution state (numbered from top to bottom) No. 3), execution of approach operation in step S37 (No. 4), search operation in step S 51 (4) execution (No. 5), climb operation in step S52 (2) execution (No. 6), Continued climb operation (2) of step S52, aligning with the back edge BE of the current tread (No. 7), search operation of step S51 (4) Execution (No. 8), ⁇ If the next step is not observed after performing the search operation (4) (No. 17), perform the stairs lift operation end (finish) operation! /, Shows the state ( ⁇ ⁇ 18).
  • Fig. 37 shows the descending motion. Similar to the climbing motion of Fig. 36, the search motion (No. 1, No. 4, No. 7, No. 10, No. 13, No. 16), climb Repeated operation (including align operation) (No. 5, No. 6, No. 8, No. 9, No. 11, No. 12, No. 14, No. 15) and the next tread is not observed The finish operation is performed at that time (No. 18) End the operation.
  • FIG. 38 is a diagram showing the relationship between a single step and the sole of the robot apparatus.
  • the robot device has a step portion 191 that is the next step (step l).
  • the moving surface of the height ⁇ is currently moved.
  • FIG. 39 is a diagram showing the relationship between a single recess and the sole of the robot apparatus.
  • the concave portion 192 where the robot device is the next stage (step l) is shown. A case of moving from the lower side to the upper side of the paper will be described.
  • ront_x_limit and back_x_limit in the case of the descending motion are both positive values, and the bottom 121 of the robot apparatus is recessed as shown in FIG. It is judged that movement is possible only when it is smaller than 191.
  • a plane that can be determined to be movable, such as horizontal, is extracted from the detected plane, and the tread surface of the polygonal force stair including that area is recognized. Then, using the information on the treads such as the polygonal front edge FE and back edge BE and the staircase information including the height from the floor, the stairs are moved up and down.
  • a search operation is performed on the moving tread, and an align operation is performed on the front edge FE of the tread that has been searched or the back edge BE on the current moving surface, and the next moving surface and the current Judging whether to move up or down based on the difference in height from the moving surface and switching control parameters, it is possible to move up and down not only staircases made of normal rectangular treads but also spiral stairs.
  • the climbing and descending operations can be executed in the same procedure by simply changing the control parameters. Therefore, it is possible to move not only to stairs but also to a single step or a single recess by the same control method.
  • staircase recognition the recognized staircases are integrated over time, so the reason is, for example, that the staircase is larger than the size of the mouth bot device, or that the position of the stereo vision system installed in the robot device is limited. Even in a robotic device with a limited field of view, staircase information can be recognized over a high frequency range. In addition, when moving up and down using this staircase information, even if the next tread cannot be observed or recognized due to the position restriction of the stereo vision system, it has been observed or recognized in the past. Using the staircase information, you can move up and down in the same way.
  • FIG. 40 is a functional block diagram showing the flat panel detector in the present modification.
  • the flat panel detector 100 is a stereo vision system (Stereo Vision System) 1 as a distance data measurement means for acquiring 3D distance data and a distance image composed of 3D distance data. It has a plane detection unit 2 that detects existing planes by the line segment expansion method.
  • Stepo Vision System Stereo Vision System
  • the plane detection unit 2 selects a distance data point group estimated to be in the same plane from the distance data points constituting the image, and extracts a line segment for each distance data point group;
  • An area expansion unit 2b that detects one or a plurality of plane areas existing in the image from a line segment group that includes all line segments extracted by the line segment extraction unit 2a included in the image.
  • the area expansion unit 2b selects any three line segments estimated to exist on the same plane from the line segment group, and obtains a reference plane from these. Then, it is determined whether or not the line segments adjacent to the selected three line segments belong to the same plane as this reference plane. If it is determined that they belong to the same plane, the line segment as the area expansion line segment is determined.
  • the reference plane is updated by and the reference plane area is expanded.
  • the line segment extraction unit 2a extracts a distance data point group that is estimated to be on the same plane in the three-dimensional space in each data column for each column or row in the distance image, and this distance data point group. Generate one or more line segments according to the distribution of distance data points. In other words, if it is determined that the distribution is biased, it is determined that the data point group is not on the same plane, the data point group is divided, and whether the distribution is biased again for each of the divided data point groups. The determination process is repeated, and if there is no bias in the distribution, a line segment is generated from the data point group. The above processing is performed for all data strings, and the generated line segment group D11 is output to the area expansion unit 2b.
  • the area expanding unit 2b selects three line segments estimated to belong to the same plane, and obtains a plane serving as a reference plane from these.
  • the range image is expanded to multiple areas by expanding the area of this plane area by integrating the line segments that belong to the same plane as the area area.
  • plane group D2 is output.
  • the robotic device 201 is an important tool for walking such as staircases, floors, and walls when plane information such as obstacle avoidance and stair climbing is required or by performing these processes periodically. Get face information.
  • parallax refers to the difference between a point in the space that is mapped to the left eye and right eye, and changes according to the distance from the camera.
  • the head unit of the robot apparatus is provided with a stereo camera 11R / L that constitutes a stereo vision system and, for example, infrared light or the like as projection means is also applied to the head unit or the like.
  • a light source 12 for output is provided.
  • This light source 12 projects (irradiates) an object, a wall, and other objects with a random pattern PT by applying a pattern, staircase ST3, and other textures! It works as a pattern giving means.
  • the means for applying the random pattern PT is not limited to a light source that projects infrared light, for example, the robot device itself forms a pattern on the object. Although it may be written, if it is infrared light, it is invisible to the human eye, but it can give a pattern that can be observed by a CCD camera or the like mounted on the robot device.
  • FIG. 42 is a diagram for explaining a plane detection method based on the line segment expansion method.
  • the plane detection by the line segment expansion method as shown in FIG. 42, first, in the image 11 taken from the focal point F, processing is performed on the data column in the row direction or the column direction. For example, in a row of pixels in an image (image row), a distance data point that is estimated to belong to the same plane by using a straight line if the distance data points belong to the same plane. Generate a line segment consisting of. Then, in the obtained line segment group consisting of a plurality of line segments, a plane is estimated and detected based on the line segment group that constitutes the same plane.
  • FIG. 43 is a flowchart showing plane detection processing by the line segment expansion method. Shown in Figure 43 First, a distance image is input (step S71), and a line segment is obtained from data points estimated to belong to the same plane in each pixel column in the row direction (or column direction) of the distance image (step S71). 72). Then, a line segment estimated to belong to the same plane is extracted from these line segment groups, and a plane composed of these line segments is obtained (step S 73). In step S73, first, a region to be a plane seed (hereinafter referred to as a seed region) is selected, and the corresponding region type is selected.
  • a seed region a region to be a plane seed
  • three line segments including one line in the upper and lower adjacent row directions are on the same plane.
  • the plane to which the selected region type consisting of the three line segments belongs is used as a reference plane, and a plane obtained by averaging from the three line segments is obtained.
  • An area composed of three line segments is defined as a reference plane area. Then, it is determined whether the straight line composed of the pixel columns in the row direction (or the column direction) adjacent to the selected region type and the reference plane are the same plane by comparing the spatial distances. If there is, add the adjacent line segment to the reference plane area (area expansion process), update the reference plane to include the added line segment (plane update process), and add this to the plane area.
  • step S74 a plane recalculation process for obtaining a plane again by removing a line segment that deviates from the plane by a predetermined threshold or more from the group of line segments belonging to the obtained plane is further provided as step S74. The details will be described later.
  • the process of detecting line segments from 3D distance data and combining the areas into the same plane as one plane is the plane detection process by the conventional line segment expansion method.
  • the line segment extraction method in step S72 is different from the conventional one. In other words, as described above, even if an attempt is made to generate a line segment so as to fit the distance data point as much as possible, if the threshold value is not changed according to the accuracy of the distance data, an over-segmentation Or under-segmentation, etc.
  • a method for adaptively changing the threshold according to the accuracy of distance data and noise is analyzed by analyzing the distribution of distance data. To do.
  • the line extraction unit (Line Extraction) 2a receives the three-dimensional distance image from the stereo vision system 1 and inputs each column or each row of the distance image on the same plane in the three-dimensional space. Detect the estimated line segment.
  • the problem of over-segmentation and under-segmentation that is, it is recognized as one plane even though it is originally multiple planes.
  • an algorithm Adaptive Line Fitting that adaptively fits line segments according to the distribution of data points is introduced.
  • the line segment extraction unit 2a first extracts a line segment as the first line segment using a relatively large threshold value, and then extracts the data belonging to the extracted first line segment.
  • the distribution of the data point group with respect to the line segment as the second line segment obtained from the point group by the least square method described later is analyzed. In other words, it roughly estimates whether or not they exist on the same plane, extracts a data point cloud, analyzes whether or not there is a bias in the distribution of data points in the extracted data point cloud, and exists on the same plane Rethink whether or not
  • the distribution of the data points is analyzed, and if the data point group applies to the zig-zag-shape described later, the data point group is divided as the distribution is biased.
  • an algorithm that adaptively extracts line segments from noise contained in the data point group shall be used.
  • FIG. 44 is a flowchart showing details of the process in the line segment extraction unit 2a, that is, the process of step S72 in FIG.
  • distance data is input to the line segment extraction unit 2a.
  • a pixel column in the row direction data points that are estimated to exist on the same plane in the three-dimensional space at the data point ⁇ are extracted.
  • the data point group that is estimated to exist above is, for example, a set of data points whose distance in the three-dimensional space between data points is less than a predetermined threshold, such as distance force S of adjacent data points, for example, 6 cm or less.
  • step S81 This is extracted as a data point cloud ( ⁇ [0 ⁇ ⁇ ⁇ ⁇ -1]) (step S81), and this data point cloud ⁇ [0 ⁇ ⁇ ⁇ ⁇ n-1] is checked whether the number of samples n included is the minimum number of samples required for processing (minimum required value) min_n (step S82), and the number of data n is less than the required minimum value min_n V, In the case (S82: YES), an empty set is output as the detection result and the process is terminated.
  • a line segment (string) L1 connecting one end point P [0] of [0 ⁇ ⁇ -1] and the other end point P [n-1] is generated as the first line segment. Then, from the data point group ⁇ [0 ⁇ ⁇ _1], the distance from the line segment L1 is the largest! /, The data point is searched as the point of interest brk, and the distance dist is calculated (step S83). If the maximum distance dist is larger than the data point group division threshold max_d (S84: YES), the data point group data point group ⁇ [0 ⁇ n-1] is assigned to the target point (division point) brk. The data points are divided into two data points ⁇ [0 ⁇ • brk] and P [brk '.. N-1] (step S88).
  • step S86 If it is determined in step S86 that the line segment obtained in step S85 is Zig-Zag-Shape (S86: YES), the process proceeds to step S88 as in step S84 described above, and the distance dist in step S83. At the point of interest brk, the data point cloud is converted into two data point clouds P
  • step S88 When two data point groups are obtained in this step S88, each of them is recursively processed from step S81 again. Then, this process is repeated until all the divided data points are not divided, that is, until all the data point groups have passed through step S87, and as a result, all line segments are registered. Get a list. By such processing, it is possible to accurately detect a line segment group consisting of a plurality of line segments by eliminating the influence of noise from the data point group [0... N-1] force.
  • a line segment L1 connecting the end points of the data point group ⁇ [0 ⁇ ⁇ _1] is generated.
  • the line segment L1 may be obtained from the data point group ⁇ [0 ⁇ ⁇ _1] by least squares as necessary, such as the distribution and properties of the data point group ⁇ [0 ⁇ ⁇ _1].
  • the point of interest brk is one point having the maximum distance from the line segment L1 connecting the end points.For example, the distance from the line segment obtained by the least square as described above is the maximum. If there are multiple points with distances greater than or equal to the data point group division threshold max_d, the data point group ⁇ [0 ⁇ ⁇ _1] should be divided at all those points or at one or more selected points. It may be.
  • step S85 the least squares line segment generation method (Least-Squares Line Fitting) in step S85 will be described. Given n data points ⁇ [0 ⁇ ⁇ -1], we show how to find a straight line equation that best fits the data points.
  • the model of the linear equation is expressed by the following equation (1).
  • the straight line that best fits the data point group can be obtained by minimizing the sum of the errors in equation (2) above.
  • ⁇ and d that minimize Equation (2) can be obtained as shown in (3) below using the mean and variance covariance matrix of data point group P.
  • step S86 the Zig-Zag-Shape discrimination method in step S86 will be described!
  • the data points ⁇ [0 ⁇ ⁇ _1] is the force that intersects the straight line as shown in Fig. 45, and whether the data points are uniformly distributed as a result of noise, for example, as shown in Fig. 45B. It is to be determined.
  • FIG. 46 is a flowchart showing the Zig-Zag-Shape discrimination method.
  • a data point group ⁇ [0 ⁇ ⁇ _1] and a straight line Line, d, ⁇ ) are input (step S90).
  • indicates the standard deviation of the point sequence.
  • This count value is called a count value count.
  • sign (x) is a function that returns the sign (+ or-) of the value of X
  • sdist (i) is calculated as P [i] .xcos a + P [i] .ycos a + d It shows the positive and negative distance from the i-th data point in the straight line. That is, in Val, which side of the straight line is the data point P [0]
  • a count value i of a counter for counting data points (hereinafter referred to as a data point counter, and this count value is referred to as a count value i) is set to 1 (step S93).
  • the count value i of the data point counter is smaller than the number of data n (step S94: YES)
  • the data point P [i] that is the data point of the next data (hereinafter referred to as i-th) is a straight line. Is determined by sing (sdist (P [i])), and the result is assigned to val (step S95).
  • val obtained in step 92 and val obtained in step S95 are compared, and val and val
  • step S96 If different from 0 (step S96: NO), substitute val for val and count value of continuous point counter
  • Substitute 1 for count (step S98), increment the count value i of the data point counter (step S100), and return to the processing from step S94.
  • step S96 YES
  • the points P [i-1] and P [i] are determined to be on the same side with respect to the straight line Line, and the count value count of the continuous point counter is incremented by 1 (step S97). Further, it is determined whether the count value count of the continuous point counter is larger than the minimum number of data points min_c for determining Zig-Zag-Shape (step S99). YES),
  • step S99 judges as Zig-Zag-Shape, output TRUE and end the process.
  • step S99: NO the count value count of the continuous point counter is smaller than the minimum number of data points min_c (step S99: NO)
  • step S100 the count value i of the data point counter (step S 1 00)
  • step S86 When it is determined that the data point group is to be divided, it is determined that the data point group should be divided, and the process proceeds to step S88.
  • the data point group can be divided using the point of interest brk as the division point. Note that the processing from step S91 to step S100 can also be expressed as shown in FIG.
  • FIG. 48 is a block diagram illustrating a processing unit that performs Zig-Zag-Shape discrimination processing. As shown in Fig. 48, the Zig-Zag-Shape discrimination processing unit 20 receives n data point groups P [0 • ⁇ ⁇ ⁇ _1], and sequentially places each data point P [i] on either side of the straight line.
  • the direction discrimination unit 21 that outputs the discrimination result Val, the delay unit 22 for comparing the next data with the result of the direction discrimination unit 21, and the direction discrimination result Val at the data point P [i]
  • the comparison unit 23 that compares the direction discrimination result Val at the data point P [i-1] and the comparison unit 23
  • the comparison unit 25 compares the count value count of the counter 24 with the minimum number of data points min_c read from the minimum number of data points storage unit 26.
  • the operation in this Zig-Zag-Shape discrimination processing unit is as follows. That is, the direction discriminating unit 21 obtains a straight line from the data point group ⁇ [0 ⁇ ⁇ 1] by the least square method, and obtains a positive / negative distance between each data point P [i] and the straight line. , The positive and negative signs are output.
  • the delay unit 2 2 receives data until the timing at which the positive / negative sign of the next data point P [i] is input when the positive / negative sign for the distance to the line Line of the data point P [i-1] is input. Is stored.
  • the comparison unit 23 compares the positive and negative signs of the data point P [i] and the data point P [i ⁇ 1], and outputs a signal for incrementing the count value count of the counter 24 if they are the same sign. If the sign is different, a signal that assigns 1 to the count value count is output.
  • the comparison unit 25 compares the count value count with the minimum number of data points min_c, and if the count value count is greater than the minimum number of data points min_c, the data point group ⁇ [0 ⁇ ⁇ -1] is zigzag. A signal indicating is output.
  • the area extension unit 2b receives the line segment group obtained by the line segment extraction unit 2a as input, determines which plane each of these line segments belongs to by applying a plane sequence to the plane of the point sequence (Plane Fitting), and gives A region composed of line segments is separated into a plurality of planes (planar regions). The following method is used to separate the planes.
  • the plane (reference plane) obtained from these three line segments is the seed of the plane, and the region containing these three line segments is called a seed region.
  • the line segments adjacent to this region type are sequentially judged by whether or not the line segments are in the same plane as the reference plane by applying the plane fitting to the plane of the point sequence (Plane Fitting). If it is determined that it is included, add this line segment to the area type as a line segment for area expansion While enlarging the area, recalculate the equation of the reference plane, including the line segment for enlarging the area. By such processing, all line segments are distributed to any area (plane).
  • FIG. 49 is a schematic diagram for explaining the region expansion processing.
  • a stair 31 composed of a plurality of planes exists in the image 30, for example, three line segments 32a to 32c indicated by bold lines are selected as region types.
  • the region consisting of these three line segments 32a to 32c is the region type.
  • one plane (reference plane) P is obtained from these three line segments 32a to 32c.
  • a line segment that is the same plane as the plane P is selected.
  • it is assumed that the line segment 33a is selected.
  • a plane P ′ composed of these four line segments is obtained, and the reference plane P is updated.
  • the root mean square (RMS) of the plane equation indicating the degree of deviation of the n data point groups from the plane equation can be calculated from the obtained plane equation.
  • residual (hereinafter referred to as rms) can be calculated by the following equation (8).
  • equation (8) is obtained by using the above two moments of n data points.
  • the square mean error rms (p ⁇ ' ⁇ ⁇ ) of the plane equation is 0 if each data point is on the obtained plane. Indicates that the data points fit well on the plane! /.
  • FIG. 50 is a flowchart showing a procedure of region type search processing and region expansion processing. As shown in FIG. 50, in selecting the region type, first, three line segments (1, 1, 1) adjacent to the data column in the row direction or the column direction used for the line segment extraction, The pixel position in each line segment (1, 1), (1, 1) is the above data.
  • a search is made for duplicates in the direction orthogonal to the data row (step S 101).
  • Each data point has an index indicating the pixel position in the image. For example, when the data point is a line segment in the data column in the row direction, whether or not the index is compared is duplicated in the column direction. Compare When this search is successful (step S102: YES), the above formula (1) is calculated using the above formula (7). As a result, the plane parameters n and d can be determined and used to calculate the mean square error (1, 1, 1) of the plane equation shown in the above equation (8).
  • Step S103 The mean square error rms (l, 1, 1) of this plane equation is, for example, lcm
  • the threshold is smaller than the predetermined threshold th 1, select these three line segments as the region type rms
  • Step S104 If it is greater than the predetermined threshold th 1, the process returns to step S101 again.
  • the region is expanded from the selected region type by the line segment expansion method. That is, first, a line segment that is a candidate to be added to the region type region is searched (step S 105). This area includes an updated area type, which will be described later, when the area type has already been updated.
  • the candidate line segment is the line segment (1) adjacent to the line segment (for example, 1) included in the region type region.
  • step S106 YES
  • the mean square error rms (1) of the plane equation is Calculate and determine whether this is less than a predetermined threshold th 2 (step S 107), and a smaller rms
  • step S108 the plane parameter is updated (step S108), and the processing from step S105 is repeated again.
  • the process is repeated until there are no candidate line segments.
  • step S106: NO the process returns to step S101, and the region type is searched again. Then, when there are no region types included in the line segment group (step S102: NO), the plane parameters obtained so far are output and the process is terminated.
  • the region type is searched, whether or not the three line segments belong to the same plane, and whether to belong to the reference plane or the updated plane that has been updated when performing the region expansion process.
  • the above equation (8) is used to determine whether or not. That is, only when the mean square error rms of the plane equation is less than a predetermined threshold value (th_rms), the line segment (group) is estimated to belong to the same plane, and the plane including the line segment is again defined as a plane. Is calculated.
  • FIG. 51 is a diagram showing the effect, and is a schematic diagram showing an example in which the mean square error rms of the plane equation is different even if the distance between the end point and the straight line is equal.
  • the target when the region expansion process is performed, if the value of the distance D between the end point of the target straight line (line segment) and the plane P is smaller than a predetermined threshold, the target When the region expansion process is performed assuming that the line segment is the same plane as the plane P, a straight line La intersecting the plane P (Fig. 51A) and a straight line Lb parallel to the plane P and shifted by a predetermined distance (Fig. 51B) Are used to update the plane P as well.
  • the square mean error rms (La) of the plane equation obtained from the straight line La in Fig. 51A is compared to 2 in the plane equation obtained from the straight line Lb in Fig.
  • the root mean square error rms (Lb) is larger. That is, when the straight line La and the plane P intersect as shown in Fig. 51A, the mean square error rms of the plane equation is relatively small and often has an effect of noise, whereas as shown in Fig. 51B. In this case, the mean square error rm s of the plane equation is large, and there is a high probability that the straight line Lb is not the same plane as the plane P but a different plane P ′.
  • the root mean square error rms of the plane equation is calculated as in this modification.
  • the value is less than a predetermined threshold, it is preferable to determine the same plane.
  • the line segment may be included in the plane, or a combination of these. Good
  • the mean square error rms of the plane equation is updated from the two moment values obtained during line segment extraction for the data point group. It can be easily calculated by the above equation (8).
  • region type selection method can also be expressed as shown in FIG. overlapd, 1) indicates that the position between the end points in the line vectors 1 and 1 included in each image row is a straight line j k j k
  • the line vector 1, 1, 1 is transformed into the plane by A, calculated by the above equation (8).
  • rms (l, 1, 1) is expressed as 2 in the plane equation on all three lines using equation (6) above.
  • lines [i + 2] are divided by lines 1, 1, 1, respectively, which are selected to constitute the region type.
  • a and b are the matrix and vector shown in the above equation (6-1), respectively, and add (A, b, 1) is a straight line between A and b by the above equation (8). It is a function that adds the moment of.
  • select (open) is a function that selects one element arbitrarily, such as the first one, such as the first one.
  • Index (l) is a function that returns an index of 1 in a pixel column or row.
  • neighbor (index) is a function that returns an index adjacent to the given index, for example, ⁇ index-1, index + 1 ⁇ .
  • step S74 the process of calculating the plane equation again (Post processing) is performed in step S74.
  • the above-mentioned The distance data point or line segment that is determined to belong to the plane indicated by the plane equation that is updated and finally obtained is calculated from the plane of the distance data point or line segment. Except for this, the plane equation is updated again, and the effect of noise is further reduced by the force S.
  • step S74 will be described in detail.
  • the data Process to include the point toward the adjacent plane.
  • a data point that does not belong to any plane and has a plane whose distance is less than a relatively large threshold, such as 1.5 cm can be detected, the data point is included in that plane.
  • Fig. 54A is a schematic diagram showing the floor surface when the robot device is standing down
  • Fig. 54B is a graph in which the vertical axis represents x, the horizontal axis represents y, and the z-axis represents the density of each data point.
  • 3D is a diagram showing three-dimensional distance data, and further shows a straight line detected from a data point group that exists in the same plane by line segment extraction processing from a pixel column in the row direction.
  • FIG. 54C shows a planar region obtained by the region expansion process for the straight line group force shown in FIG. 54B.
  • FIG. 55 shows the results when one step is placed on the floor.
  • FIG. 55A on the floor surface F, one step ST3 is placed.
  • FIG. 55B is a diagram showing experimental conditions.
  • the distance force 3 ⁇ 4ax_d between the target point and a straight line (line segment) is exceeded, the data point group is divided.
  • Ma The extraction success / failure indicates the number of successful plane detections using line segment expansion, which performs a total of 10 line segment extractions for each data column in the row direction.
  • Correct extraction indicates success or failure of extraction for each data column in the column direction.
  • No. l to No. 5 are the conditions for plane detection processing by the conventional line segment expansion method that does not incorporate the Zig-Zag-Shape discrimination processing described above, and No. 6 is
  • FIG. 55C and 55D are diagrams showing the results of plane detection by the line segment expansion method.
  • (Comparative example) is shown.
  • Figures 56B and 56C show the case where 3D distance data is acquired from the image of the floor shown in Figure 56B.
  • the left figure shows an example in which a line segment is extracted from a pixel column (distance data string) in the row direction
  • the right figure shows an example in which a line segment is extracted from a pixel column (distance data string) in the column direction.
  • the threshold max_d is decreased, the effect of noise increases, and line segments cannot be detected well, especially in the far field where the effect of noise is large.
  • plane detection can be performed by acquiring three-dimensional distance data from images obtained by photographing different stairs as described above. For example, as shown in FIGS. 11 and 12, all the treads can be detected as planes in any case. In FIG. 12B, a part of the floor is successfully detected as another plane!
  • a large threshold value is initially set. If the line segment is zigzag even if it does not have a data point that exceeds the threshold by Zig-Zag-Shape discrimination processing, the line segment is divided into multiple planes that are not noise. Since it is assumed that the line segment is divided, it is possible to accurately detect a plurality of planes from distance information including noise.
  • the uneven floor composed of a plurality of planes is a plane that can be walked, and the movement of the robot apparatus and the like are further simplified.
  • one or more of the above-described plane detection process, staircase recognition process, and stair climbing control process can be realized by executing a computer program on a computing unit (CPU) even if it is configured with hardware. May be.
  • a computer program it can be provided by being recorded on a recording medium, or can be provided by being transmitted through the Internet or other transmission media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manipulator (AREA)
  • Image Processing (AREA)

Abstract

A robot device observes the external world by a stereo vision system (1) and outputs stereo data (D1) as a distance image, the stereo data (D1) being three-dimensional distance information calculated by a parallax of both eyes. A plane detector (2) detects planes from the distance image to recognize the planes present in the environment. From plane data (D2), a stair recognizer (3) extracts a plane which the robot can climb up and down, recognizes a stair from that plane, and outputs stair data (D4). A stair climb-up/-down controller (4) outputs a behavior control command (D5) for realizing the movement for climbing up and down the stair by using the stair data (D4). This enables a mobile body itself to obtain information on a stair to autonomously perform the movement of stair climb up and down.

Description

明 細 書  Specification
ロボット装置、 及びその動作制御方法、 ¾びに移動装置 技術分野  ROBOT DEVICE, ITS OPERATION CONTROL METHOD, AND MOVING DEVICE TECHNICAL FIELD
[0001] 本発明は、例えば脚部などの移動手段を有し、複数段からなる階段の昇降動作等 を可能とするロボット装置、移動装置、及びその階段昇降方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a robot apparatus, a moving apparatus, and a method for moving up and down a staircase that have moving means such as legs and that can move up and down a plurality of steps.
本出願は、 日本国において 2004年 3月 17日に出願された日本特許出願番号 200 4— 077214を基礎として優先権を主張するものであり、これらの出願は参照すること により、本出願に援用される。  This application claims priority on the basis of Japanese Patent Application No. 2004-077214 filed on March 17, 2004 in Japan, and these applications are incorporated herein by reference. Is done.
背景技術  Background art
[0002] 従来、車輪等の移動手段を有する移動装置を含むロボット装置に対し、段差のある 環境や、階段の昇降動作をさせることを可能とする技術が複数開示されてレ、る。 例えば、対象物体の形状特徴点を認識するため対象物体のノードデータを有した 、図 1に示す既知の階段情報を用いて昇降動作を行う方法 (特許第 3176701号公 報)や、図 2に示すように、多数の接触センサ 602が保護膜 603で被覆されつつマトリ タス状に足平 601の裏面の全面的に貼り付けられた足平を利用して、階段昇降動作 を行う方法がある(特許第 3278467号公報)。更に、図 3に示すように、足底の脇に 赤外センサを装備し、階段にランドマークテープを付与することで、階段昇降動作を 行う方法がある(特許第 3330710号公報)。これは、図 3Aに示すように、 2足歩行可 能なロボット装置の足平 622R/Lの左右の脇部分に複数の光センサ検出部 682を 設け、黒色ペイントなどの光をよく吸収する塗料で描!/、た直線からなる所定幅の面領 域であるランドマーカ 680を利用することで、対になっているセンサ出力を比較するこ とでランドマーカ 680に対する相対的な方角を検出するものである。このような足平 6 22R/Lとランドマーカ 680とを使用することで、図 3Bに示すように、階段 690の位置 を認識することが可能となる。  Conventionally, a plurality of technologies that enable a robot apparatus including a moving apparatus having moving means such as wheels to perform a stepped environment and a stair ascending / descending operation are disclosed. For example, a method of moving up and down using the known staircase information shown in FIG. 1 having node data of the target object for recognizing the shape feature point of the target object (Patent No. 3176701) or FIG. As shown in the figure, there is a method in which a large number of contact sensors 602 are covered with a protective film 603, and the stair ascending / descending operation is performed using a foot that is adhered to the entire back surface of the foot 601 in a matrix shape ( (Patent No. 3278467). Furthermore, as shown in FIG. 3, there is a method of moving up and down the stairs by installing an infrared sensor on the side of the sole and applying a landmark tape to the stairs (Japanese Patent No. 3330710). As shown in Fig. 3A, this is a paint that absorbs light, such as black paint, by providing multiple light sensor detectors 682 on the left and right side parts of the foot 622R / L of a robot device that can walk on two legs. By using Landmarker 680, which is a surface area of a predetermined width made up of straight lines, the relative direction with respect to Landmarker 680 is detected by comparing paired sensor outputs. Is. By using such a foot 622R / L and a land marker 680, the position of the staircase 690 can be recognized as shown in FIG. 3B.
しかしながら、特許第 3176701号公報に記載の技術においては、既知の階段情 報に基づいているため、未知の環境においては適応することができなぐ例えば自律 型のロボット装置などに適用することが困難である。また、特許第 3278467号公報及 び特許第 3330710号公報に記載の技術においては、足裏もしくは足底の脇に設け られた複数のセンサを利用して階段昇降動作を行うため、着床するまで階段の情報 が取得できない。したがって、遠くからの観測が不可能である。このため、ある程度目 の前に階段があることが予測されるときにし力、利用することができない。 However, since the technology described in Japanese Patent No. 3176701 is based on the known staircase information, it is difficult to apply to an autonomous robot device that cannot be adapted in an unknown environment. is there. Japanese Patent No. 3278467 and In the technology described in Japanese Patent No. 3330710, since the stairs are moved up and down using a plurality of sensors provided on the soles or the sides of the soles, the information on the stairs cannot be acquired until the landing. Therefore, observation from a distance is impossible. For this reason, it cannot be used when it is predicted that there will be a staircase in front of you to some extent.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
本発明は、このような従来の実情に鑑みて提案されたものであり、移動体自身が階 段に係る情報を取得して自律的に階段昇降動作を可能とするロボット装置及び移動 装置、並びにロボット装置の動作制御方法を提供することを目的とする。  The present invention has been proposed in view of such a conventional situation, and a robot apparatus and a moving apparatus that allow a moving body to acquire information on steps and autonomously move up and down the stairs, and It is an object of the present invention to provide an operation control method for a robot apparatus.
上述した目的を達成するために、本発明に係るロボット装置は、移動手段により移 動可能なロボット装置において、 3次元の距離データから環境内に含まれる 1又は複 数の平面を検出し、平面情報として出力する平面検出手段と、上記平面情報から移 動可能な平面を有する階段を認識し、該階段の踏面に関する踏面情報及び蹴り上 げ情報を有する階段情報を出力する階段認識手段と、上記階段情報に基づき、階 段昇降可能か否かを判断し、昇降動作が可能であると判断した場合には、その踏面 に対して自律的に位置決めして階段昇降動作を制御する階段昇降制御手段を有す ることを特徴とする。  In order to achieve the above-described object, a robot apparatus according to the present invention detects one or more planes included in an environment from three-dimensional distance data in a robot apparatus that can be moved by a moving means, and Plane detection means for outputting as information, stair recognition means for recognizing a stair having a movable plane from the plane information, and outputting stair information including tread information and kicking information on the tread of the stair; and Based on the staircase information, it is determined whether or not it is possible to move up and down, and if it is determined that it can be moved up and down, the stair lift control means controls the stair lift operation by positioning autonomously with respect to the tread. It is characterized by having.
本発明にお!/、ては、移動手段として例えば脚部などを備えて移動可能なロボット装 置において、階段の踏面の例えば大きさや位置などに関する踏面情報から、その足 底がその踏面に載せることができる大きさか否かを判断したり、階段の段差を示す蹴 り上げの情報からその高さの踏面への移動が可能か否かを判断し、移動可能である と判断した場合には自律的に位置決めすることで階段を登ったり降りたりすることが 可能となる。  In the present invention, in a robot apparatus that can be moved with, for example, legs as a moving means, the sole of the step is placed on the tread from the tread information on the tread of the staircase, for example, the size and position. If it is determined that it is possible to move, it is determined whether it is possible to move to the tread of the height from the information on the kicking up indicating the step of the stairs, By positioning autonomously, it is possible to go up and down stairs.
また、上記 3次元の距離データを取得する距離計測手段を有することができ、階段 を検出した際には自律的に昇降動作が可能となる。  In addition, it is possible to have a distance measuring means for acquiring the three-dimensional distance data, and when the stairs are detected, it is possible to move up and down autonomously.
また、上記階段認識手段は、与えられた平面情報から移動可能な平面を有する階 段を検出して統合前階段情報を出力する階段検出手段と、上記階段検出手段から 出力される時間的に異なる複数の統合前階段情報を統計的に処理することにより統 合した統合済階段情報を上記階段情報として出力する階段統合手段とを有すること ができ、例えば視野が狭!/、ロボット装置であったり、 1度の検出処理ではうまく階段認 識できないような場合であっても、時間的に統計的に統合した統合済階段情報とす ることで、正確かつ高域な認識結果を得ることができる。 Further, the staircase recognition means is different from the staircase detection means for detecting a step having a movable plane from the given plane information and outputting the pre-integration staircase information in terms of time output from the staircase detection means. Statistically processing multiple pre-integrated staircase information Stairs integration means that outputs the combined integrated staircase information as the above staircase information, for example, when the field of view is narrow! /, Robotic devices, etc. Even so, by using integrated staircase information that is statistically integrated temporally, accurate and high-frequency recognition results can be obtained.
更に、上記階段検出手段は、上記平面情報に基づき踏面の大きさ及び空間的な 位置を認識し、この認識結果である踏面情報を上記統合前階段情報として出力し、 上記階段統合手段は、時間的に前後する踏面情報から、所定の閾値より大きい重複 領域を有しかつ相対的な高さの違いが所定の閾値以下である 2以上の踏面からなる 踏面群を検出した場合、当該踏面群を何れをも含む一の踏面となるよう統合すること ができ、統合の際には統合すべきとして選択された踏面を全て含むように統合するこ とで、広い範囲にわたって認識結果を得ることができる。  Further, the stair detection means recognizes the size and spatial position of the tread based on the plane information, outputs the tread information as a recognition result as the pre-integration stair information, and the stair integration means If a tread group consisting of two or more treads that have an overlap area greater than a predetermined threshold and the relative height difference is less than or equal to a predetermined threshold is detected from the tread information that moves forward and backward, It is possible to integrate so that all treads are included, and at the time of integration, it is possible to obtain recognition results over a wide range by integrating all treads that are selected to be integrated. .
更にまた、上記階段認識手段は、上記平面情報に基づき踏面の大きさ及び空間的 な位置を認識し上記踏面情報とすることができ、踏面情報は、少なくとも移動方向に 対して該踏面の手前側の境界を示すフロントエッジ及び奥側の境界を示すバックェ ッジの情報を含むものとすることができ、踏面のフロントエッジ及びバックエッジを認識 するため、例えばスパイラル形状の階段などであっても正確に踏面を認識して階段 昇降動作を可能にする。  Furthermore, the staircase recognition means can recognize the size and spatial position of the tread based on the plane information and use the tread information as the tread information. The tread information is at least in front of the tread with respect to the moving direction. Information on the front edge indicating the boundary of the front and the information on the back edge indicating the boundary on the back side, and the front edge and the back edge of the tread are recognized. Recognize the stairs and make it possible to move up and down.
また、上記フロントエッジ及びバックエッジに挟まれた領域である安全領域の左右 両側に隣接した領域であって移動可能である確率が高いと推定されるマージン領域 を示す右側マージン情報及び左側マージン情報、上記平面情報に基づき踏面と推 定された領域の重心を示す参照点情報、踏面となる平面を構成する点群の 3次元座 標情報などを有することができる。これらの踏面情報を使用することで、階段昇降動 作をより正確に制御することができる。  In addition, right margin information and left margin information indicating margin areas that are adjacent to the left and right sides of the safety area, which is an area between the front edge and the back edge, and are estimated to have a high probability of being movable, Reference point information indicating the center of gravity of the area estimated as the tread based on the plane information described above, and three-dimensional coordinate information of the point group constituting the plane serving as the tread can be included. By using these tread information, the stair climbing operation can be controlled more accurately.
更に、上記階段認識手段は、上記平面情報に基づき平面の境界を抽出して多角 形を算出し、該多角形に基づき上記踏面情報を算出することができ、例えば、視野 が狭い場合、 3次元距離データの信頼性が高いような場合には、上記多角形は、上 記平面情報に基づき抽出された平面の境界に外接する凸多角形領域とすることがで き、実際に検出されている平面を含んだ領域とすることができる。一方、ノイズが多い 距離データなどの場合には、上記多角形は、上記平面情報に基づき抽出された平 面の境界に内接する凸多角形領域とすることができ、実際に検出されている平面に 内包される領域とすることで、ノイズ部分をカットして正確に踏面を検出することができ 更にまた、現在移動中の移動面におけるバックエッジに対峙した所定位置に移動 した後、昇降動作を実行するよう制御することができ、例えば蹴り上げが小さレヽ階段 など、フロントエッジとバックエッジが重なるような場合には、バックエッジを目標に移 動して昇降動作することができる。同様に、フロントエッジを目標に移動して昇降動作 を fiつてもよい。 Further, the staircase recognition means can calculate a polygon by extracting a plane boundary based on the plane information, and can calculate the tread information based on the polygon. For example, when the field of view is narrow, the three-dimensional When distance data is highly reliable, the polygon can be a convex polygon area that circumscribes the boundary of the plane extracted based on the plane information, and is actually detected. It can be a region including a plane. On the other hand, there is a lot of noise In the case of distance data, etc., the polygon can be a convex polygon area inscribed in the boundary of the plane extracted based on the plane information, and is an area included in the plane that is actually detected. In this way, it is possible to accurately detect the tread by cutting the noise part.Furthermore, after moving to a predetermined position facing the back edge on the moving surface that is currently moving, control is performed so that the lifting operation is executed. For example, when the front edge and the back edge overlap, such as a staircase with a small kick-up, the back edge can be moved to the target and moved up and down. Similarly, the front edge may be moved to the target and the lifting operation may be fi.
また、上記階段昇降制御手段は、現在移動中の移動面におけるバックエッジが確 認できない場合は、次に昇降動作の対象となる次段の踏面におけるフロントエッジに 対峙した所定位置に移動した後、昇降動作を実行するよう制御することができ、例え ば床面を移動して!/、て階段を検出した場合、床面のバックエッジが階段初段のフロ ントエッジに重ならない場合があり、そのような場合は階段の初段、すなわち昇降動 作の対象となる次段の踏面のフロントエッジを目標に移動して昇降動作をすることが できる。  If the back edge on the moving surface that is currently moving cannot be confirmed, the stair lift control means moves to a predetermined position facing the front edge on the next step surface that is the target of the next lift operation. For example, if you move the floor and detect a staircase, the back edge of the floor may not overlap the front edge of the first step of the staircase. In such a case, it is possible to move up and down by moving to the first stage of the stairs, that is, the front edge of the next tread surface to be lifted.
また、上記階段昇降制御手段は、次に移動対象となる踏面を検出し、当該移動対 象となる踏面に対峙した所定位置に移動する一連の動作を行って昇降動作を実行 するよう制御すること力 Sでき、新たな踏面に移動する毎に、踏面に対してサーチ'ァラ イン'アプローチ動作を実行することで昇降動作を可能にする。  The stair lift control means detects a tread surface to be moved next, and performs a series of operations of moving to a predetermined position facing the tread surface to be moved to perform a lift operation. Each time it moves to a new tread, it can be moved up and down by performing a search 'align' approach on the tread.
更に、上記階段昇降制御手段は、現在位置から次に移動対象となる次段又は次段 以降の踏面が検出できない場合、過去に取得した階段情報力 当該移動対象となる 次段の踏面を検索することができ、予め数段上又は下の階段情報を取得しておくこと で、ロボット装置が自身の直近の情報が得られな!/、ような構成で視野が狭!/、場合で あっても昇降動作を可能とする。  Furthermore, when the next step or the next step to be moved cannot be detected from the current position, the above-mentioned stair lift control means searches for the next step to be moved that has been acquired in the past. It is possible to obtain information on the steps up or down several steps in advance, so that the robot device cannot obtain the latest information of its own! Can also be moved up and down.
また、上記階段昇降制御手段は、現在の移動面におけるバックエッジに対峙した所 定位置に移動した後、次の移動対象となる踏面を検出し、当該踏面におけるフロント エッジに対峙した所定位置に移動し、当該踏面に移動する昇降動作を実行するよう 制御すること力 Sでき、フロントエッジ及びバックエッジを使用することで、両エッジが平 行して!/、な!/、螺旋状の階段であっても昇降動作を可能とする。 In addition, the stair lift control means moves to a predetermined position facing the back edge on the current moving surface, detects the next tread surface to be moved, and moves to a predetermined position facing the front edge on the tread surface. And so as to perform a lifting operation that moves to the tread. Controllable force S. By using the front edge and back edge, both edges are parallel! /, Na! /, Even if it is a spiral staircase, it can move up and down.
更に、上記昇降制御手段は、踏面に対する上記移動手段の位置を規定したパラメ ータを使用して昇降動作を制御することができ、このパラメータは、例えば上記脚部 の足上げ高さ又は足下げ高さに基づき決定されることができる。そして、階段を登る 動作と降りる動作とで上記パラメータの数値を変更するパラメータ切り替え手段を有 すること力 Sでき、階段を登る動作であっても、降りる動作であってもパラメータ変更す るのみで同様に制御することができる。  In addition, the lifting control means can control the lifting operation using a parameter that defines the position of the moving means with respect to the tread surface. It can be determined based on the height. And, it is possible to have a parameter switching means that changes the numerical value of the above parameter between the climbing step and the descending operation, and it is only necessary to change the parameter whether climbing the stairs or descending. It can be controlled similarly.
また、上記平面検出手段は、 3次元空間で同一平面上にあると推定される距離デ 一タ点群毎に線分を抽出する線分抽出手段と、上記線分抽出手段によって抽出さ れた線分群から同一平面に属すると推定される複数の線分を抽出し該複数の線分 から平面を算出する平面領域拡張手段とを有し、  The plane detection means is extracted by the line segment extraction means for extracting a line segment for each distance data point group estimated to be on the same plane in the three-dimensional space, and the line segment extraction means. Plane area expanding means for extracting a plurality of line segments estimated to belong to the same plane from the line segment group and calculating a plane from the plurality of line segments;
上記線分抽出手段は、距離データ点の分布に応じて適応的に線分を抽出すること ができ、線分抽出手段は、 3次元の距離データが同一平面上にある場合同一直線上 に並ぶことを利用して線分を抽出するが、この際、ノイズなどの影響により距離データ 点の分布に違いが生じるため、この距離データの分布に応じて適応的に線分を抽出 する(Adaptive Line Fitting)ことにより、ノイズに対してロバストに、精確な線分抽出を 可能とし、抽出された多数の線分から線分拡張法により平面を求めるため、ノイズの 影響などにより、本来複数平面が存在するのに 1つの平面としたり、 1つの平面しか 存在しないのに複数平面としたりすることなく精確に平面抽出することができる。 更に、上記線分抽出手段は、上記距離データ点間の距離に基づき同一平面上に あると推定される距離データ点群を抽出し、該距離データ点群における距離データ 点の分布に基づき、当該距離データ点群が同一平面上にあるか否かを再度推定す ることができ、距離データ点の 3次元空間における距離に基づき一旦距離データ点 群を抽出しておき、データ点の分布に基づき再度同一平面上にあるか否力、を推定す ることにより精確に泉分由出することカでさる。  The line segment extraction means can adaptively extract line segments according to the distribution of distance data points, and the line segment extraction means are arranged on the same straight line when the three-dimensional distance data is on the same plane. The line segment is extracted using this, but at this time, the distribution of the distance data points differs due to the influence of noise, etc., so the line segment is extracted adaptively according to the distribution of this distance data (Adaptive Line Fitting) enables accurate line segment extraction robust to noise, and planes are obtained from a large number of extracted line segments by the line segment expansion method. However, it is possible to accurately extract a plane without using one plane or multiple planes even though there is only one plane. Further, the line segment extracting means extracts a distance data point group estimated to be on the same plane based on the distance between the distance data points, and based on the distribution of the distance data points in the distance data point group, Whether the distance data point group is on the same plane can be estimated again. The distance data point group is once extracted based on the distance of the distance data point in the three-dimensional space, and then based on the distribution of the data points. By estimating again whether or not they are on the same plane, it is possible to make a precise spring.
更にまた、上記線分抽出手段は、上記同一平面上にあると推定される距離データ 点群から第 1の線分を抽出し、該距離データ点群のうち該第 1の線分との距離が最も 大きい距離データ点を着目点とし、当該距離が所定の閾値以下である場合に該距 離データ点群力 第 2の線分を抽出し、該第 2の線分の一方側に距離データ点が所 定の数以上連続して存在するか否かを判定し、所定の数以上連続して存在する場 合に該距離データ点群を該着目点にて分割することができ、例えば抽出したデータ 点群の端点を結ぶ線分を第 1の線分とし、上記距離が大きい点が存在する場合には 、例えば最小二乗法により第 2の線分を生成し、この第 2の線分において一方側に連 続して複数のデータ点が存在する場合には、データ点群は例えば線分に対してジグ ザグな形などをとっていることが想定でき、したがって抽出したデータ点群には偏りが あると判断して、上記着目点などにてデータ点群を分割することができる。 Further, the line segment extraction means extracts a first line segment from the distance data point group estimated to be on the same plane, and the distance from the first line segment in the distance data point group. Is the most When the distance data point is a large point of interest and the distance is less than or equal to a predetermined threshold, the distance data point group force second line segment is extracted, and the distance data point is on one side of the second line segment. It is determined whether or not there is a predetermined number or more. If there is a predetermined number or more, the distance data point group can be divided at the point of interest. If the line connecting the end points of the point group is the first line segment, and there is a point with a large distance, a second line segment is generated by, for example, the least square method, and one of the points in the second line segment is generated. When there are multiple data points in succession, it can be assumed that the data point group has, for example, a zigzag shape with respect to the line segment, and therefore the extracted data point group is biased. Therefore, it is possible to divide the data point group at the point of interest or the like.
また、上記平面領域拡張手段は、同一の平面に属すると推定される 1以上の線分 を選択して基準平面を算出し、該基準平面と同一平面に属すると推定される線分を 該線分群から拡張用線分として検索し、該拡張用線分により該基準平面を更新する と共に該基準平面の領域を拡張する処理を繰り返し、更新が終了した平面を更新済 平面として出力することができ、同一平面に属するとされる線分により平面領域拡張 処理及び平面更新処理を行うことができる。  Further, the plane area expanding means selects one or more line segments estimated to belong to the same plane, calculates a reference plane, and determines a line segment estimated to belong to the same plane as the reference plane. It is possible to search the segment group as an extension line segment, repeat the process of updating the reference plane with the extension line segment and expanding the area of the reference plane, and output the updated plane as an updated plane. The plane area expansion process and the plane update process can be performed using line segments belonging to the same plane.
更に、上記更新済平面に属する距離データ点群において、当該更新済平面との距 離が所定の閾値を超える距離データ点が存在する場合、これを除!/、た距離データ点 群から再度平面を算出する平面再算出手段を更に有することができ、更新済平面は それに属する全線分の平均した平面として得られているため、これから大きく外れた 距離データ点を除レ、たデータ点群から再度平面を求めることで、よりノイズなどの影 響を低減した検出結果を得ることができる。  Further, in the distance data point group belonging to the updated plane, if there is a distance data point whose distance from the updated plane exceeds a predetermined threshold, this is removed! Since the updated plane is obtained as an average plane of all the line segments belonging to it, the distance data points greatly deviated from this are excluded, and the data point group is obtained again. By obtaining the plane, it is possible to obtain a detection result in which the influence of noise and the like is further reduced.
更にまた、上記平面領域拡張手段は、線分により定まる平面と上記基準平面との 誤差に基づき当該線分が該基準平面と同一平面に属するか否かを推定することが でき、例えば平面方程式の 2乗平均誤差などに基づきノイズの影響であるの力、、異な る平面なのかを判別して更に正確に平面検出することができる。  Furthermore, the plane area expanding means can estimate whether or not the line segment belongs to the same plane as the reference plane based on an error between the plane determined by the line segment and the reference plane. Based on the mean square error, etc., it is possible to determine the force that is the effect of noise and whether it is a different plane, and more accurately detect the plane.
本発明に係るロボット装置の動作制御方法は、移動手段により移動可能なロボット 装置の動作制御方法において、 3次元の距離データから環境内に含まれる 1又は複 数の平面を検出し、平面情報として出力する平面検出工程と、上記平面情報から移 動可能な平面を有する階段を認識し、該階段の踏面に関する踏面情報及び蹴り上 げ情報を有する階段情報を出力する階段認識工程と、上記階段情報に基づき、階 段昇降可能か否かを判断し、昇降動作が可能であると判断した場合には、その踏面 に対して自律的に位置決めして階段昇降動作を制御する階段昇降制御工程とを有 することを特徴とする。 The motion control method for a robot apparatus according to the present invention is a motion control method for a robot apparatus that can be moved by a moving means. One or more planes included in the environment are detected from three-dimensional distance data and used as plane information. From the plane detection process to output and the plane information A staircase recognition process that recognizes a staircase having a movable plane and outputs step information on the tread surface of the staircase and kick-up information, and determines whether or not the step can be raised or lowered based on the staircase information. When it is determined that the lifting / lowering operation is possible, there is a stair lifting / lowering control step for autonomously positioning with respect to the tread and controlling the stair lifting / lowering operation.
本発明に係る移動装置は、移動手段により移動可能な移動装置において、 3次元 の距離データから環境内に含まれる 1又は複数の平面を検出し、平面情報として出 力する平面検出手段と、上記平面情報から移動可能な平面を有する階段を認識し、 該階段の踏面に関する踏面情報及び蹴り上げ情報を有する階段情報を出力する階 段認識手段と、上記階段情報に基づき、階段昇降可能か否かを判断し、昇降動作が 可能であると判断した場合には、その踏面に対して自律的に位置決めして階段昇降 動作を制御する階段昇降制御手段を有することを特徴とする。  The moving device according to the present invention is a moving device that can be moved by the moving means, and detects one or a plurality of planes included in the environment from the three-dimensional distance data, and outputs the plane information as plane information. Step recognition means for recognizing a stair with a movable plane from the plane information and outputting step information on the tread of the stair and information on kicking, and whether or not the stair can be raised or lowered based on the stair information. When it is determined that the elevating operation is possible, the apparatus has a stair ascending / descending control means for autonomously positioning with respect to the tread and controlling the stair ascending / descending operation.
本発明によれば、移動手段として例えば脚部などを備えて移動可能なロボット装置 及び移動装置にぉレ、て、階段の踏面の例えば大きさや位置などに関する踏面情報 から、その足底がその踏面に載せることができる大きさか否かを判断したり、階段の段 差を示す蹴り上げの情報からその高さの踏面への移動が可能か否かを判断し、移動 可能であると判断した場合には自律的に位置決めすることで階段を登ったり降りたり すること力 S可倉 となる。  According to the present invention, for example, from the tread information on the size and position of the tread of the staircase, the sole of the tread is the tread. It is determined whether it is possible to move on the surface of the tread from the information on the kicking up that indicates the step difference of the stairs. In the case of autonomous positioning, the power to climb up and down the stairs is S Kanakura.
本発明の更に他の目的、本発明によって得られる利点は、以下において図面を参 照して説明される実施に形態から一層明らかにされるであろう。  Still other objects of the present invention and advantages obtained by the present invention will become more apparent from the embodiments described below with reference to the drawings.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、従来の昇降動作を説明する図である。  FIG. 1 is a diagram for explaining a conventional lifting operation.
[図 2]図 2は、従来の昇降動作を説明する図である。 FIG. 2 is a diagram for explaining a conventional lifting operation.
[図 3]図 3A、図 3Bは、従来の昇降動作を説明する図である。 FIG. 3A and FIG. 3B are diagrams for explaining a conventional lifting operation.
園 4]図 4は、本発明の実施の形態におけるロボット装置の概観を示す斜視図である 4] FIG. 4 is a perspective view showing an overview of the robot apparatus according to the embodiment of the present invention.
[図 5]図 5は、ロボット装置が具備する関節自由度構成を模式的に示す図である。 FIG. 5 is a diagram schematically showing a joint degree-of-freedom configuration included in the robot apparatus.
[図 6]図 6は、ロボット装置の制御システム構成を示す模式図である。 [図 7]図 7は、ロボット装置がステレオデータから階段昇降動作を発現するまでの処理 を実行するシステムを示す機能ブロック図である。 FIG. 6 is a schematic diagram showing a control system configuration of the robot apparatus. [FIG. 7] FIG. 7 is a functional block diagram showing a system for executing processing from the stereo data until the stair ascending / descending operation is developed from the stereo data.
[図 8]図 8Aは、ロボット装置が外界を撮影している様子を示す模式図、図 8Bは、ロボ ット装置の足底の大きさを示す図である。  [FIG. 8] FIG. 8A is a schematic view showing a state where the robot apparatus is photographing the outside world, and FIG. 8B is a view showing the size of the sole of the robot apparatus.
[図 9]図 9は、階段検出を説明する図であって、図 9Aは、階段を正面から見た図、図 9Bは、階段を側面から見た図、図 9Cは、階段を斜めから見た図である。  [Fig. 9] Fig. 9 is a diagram for explaining staircase detection, in which Fig. 9A is a view of the staircase from the front, Fig. 9B is a view of the staircase from the side, and Fig. FIG.
[図 10]図 10は、階段検出の他の例を示す説明する図であって、図 10Aは、階段を正 面から見た図、図 10Bは、階段を側面から見た図、図 10Cは、階段を斜めから見た 図である。 [FIG. 10] FIG. 10 is a diagram for explaining another example of staircase detection. FIG. 10A is a diagram of the stairs viewed from the front, FIG. 10B is a diagram of the stairs viewed from the side, and FIG. Is a view of the stairs from an angle.
[図 11]図 11は、図 9の階段を検出した結果の一例を示す図であって、図 11Aは、図 9の階段を撮影した場合の画像を示す模式図、図 11B乃至図 11Dは、図 11Aに示 す画像から取得した 3次元の距離データを示す図である。  FIG. 11 is a diagram showing an example of the result of detecting the stairs in FIG. 9. FIG. 11A is a schematic diagram showing an image when the stairs in FIG. 9 is photographed, and FIGS. 11B to 11D are diagrams. FIG. 11B is a diagram showing three-dimensional distance data acquired from the image shown in FIG. 11A.
[図 12]図 12は、図 10の階段を検出した結果の一例を示す図であって、図 12Aは、 図 10の階段を撮影した場合の画像を示す模式図、図 12B乃至図 12Dは、図 12Aに 示す画像から取得した 3次元の距離データを示す図である。  12 is a diagram showing an example of the result of detecting the stairs in FIG. 10, FIG. 12A is a schematic diagram showing an image when the stairs in FIG. 10 are photographed, and FIGS. 12B to 12D are FIG. 12B is a diagram showing three-dimensional distance data acquired from the image shown in FIG. 12A.
園 13]図 13Aは、階段を撮影した画像を示す模式図、図 13Bは、図 13Aから取得し た 3次元距離データから 4つの平面領域 A、 B、 C、 Dを検出した結果を示す図である13] Fig. 13A is a schematic diagram showing an image of a staircase, and Fig. 13B is a diagram showing the results of detecting four planar areas A, B, C, and D from the 3D distance data obtained from Fig. 13A. Is
。 階段を検出した結果の一例を示す図である。 . It is a figure which shows an example of the result of having detected the stairs.
[図 14]図 14は、階段認識器を示す機能ブロック図である。  FIG. 14 is a functional block diagram showing a staircase recognizer.
[図 15]図 15は、階段検出処理の手順を示すフローチャートである。  FIG. 15 is a flowchart showing a procedure of staircase detection processing.
[図 16]図 16A、図 16Bは、多角形を示す模式図である。  FIG. 16A and FIG. 16B are schematic diagrams showing polygons.
[図 17]図 17は、 Melkmanのアルゴリズムを説明するための模式図である。  FIG. 17 is a schematic diagram for explaining Melkman's algorithm.
[図 18]図 18A、図 18Bは、 Sklanskyのアルゴリズムにより多角形を求める方法を説明 するための模式図である。  FIG. 18A and FIG. 18B are schematic diagrams for explaining a method of obtaining a polygon by Sklansky's algorithm.
[図 19]図 19は、非凸多角形形状の階段について発生する問題を説明するための模 式図であって、図 19Aは、入力される平面を示す図、図 19Bは、凸包による非凸多 角形形状の階段の多角形表現結果を示す図である。  [FIG. 19] FIG. 19 is a schematic diagram for explaining a problem that occurs with a non-convex polygonal staircase. FIG. 19A is a diagram showing an input plane, and FIG. 19B is a convex hull. It is a figure which shows the polygonal representation result of the non-convex polygon-shaped staircase.
園 20]図 20は、平滑化によって入力平面を包含する多角形を求める方法を示す模 式図であって、図 20Aは、入力された平面を示す図、図 20Bは、入力平面を示す多 角形から不連続なギャップを除去し平滑化した多角形を示す図、図 20Cは、図 20B で得られた多角形に対してラインフィッティングにより更に平滑化した多角形を示す 図である。 Fig. 20 is a schematic diagram showing a method for obtaining a polygon that includes an input plane by smoothing. FIG. 20A is a diagram showing an input plane, FIG. 20B is a diagram showing a smoothed polygon obtained by removing discontinuous gaps from the polygon showing the input plane, and FIG. 20C is a diagram. It is a figure which shows the polygon further smoothed by the line fitting with respect to the polygon obtained by 20B.
園 21]図 21は、ギャップ除去とラインフィットによる平滑化によって入力平面を包含す る多角形を求める処理のプログラム例を示す図である。 FIG. 21 is a diagram showing a program example of a process for obtaining a polygon including an input plane by gap removal and smoothing by line fitting.
[図 22]図 22A、図 22Bは、階段パラメータの算出方法を説明するための模式図であ 園 23]図 23は、最終的に認識される踏面及び階段パラメータを説明するための模式 図である。  [FIG. 22] FIGS. 22A and 22B are schematic diagrams for explaining the method of calculating the staircase parameters. FIG. 23 is a schematic diagram for explaining the tread surface and the staircase parameters that are finally recognized. is there.
[図 24]図 24A、図 24Bは、階段を示す模式図である。  FIG. 24A and FIG. 24B are schematic diagrams showing stairs.
[図 25]図 25は、階段統合処理の方法を示すフローチャートである。  FIG. 25 is a flowchart showing a method of staircase integration processing.
[図 26]図 26は、オーバーラップしている階段データを統合する処理を説明するため の模式図である。  FIG. 26 is a schematic diagram for explaining a process of integrating overlapping staircase data.
[図 27]図 27は、ァライン動作を説明するための図である。  FIG. 27 is a diagram for explaining an align operation.
[図 28]図 28は、アプローチ動作を説明するための模式図である。  FIG. 28 is a schematic diagram for explaining an approach operation.
[図 29]図 29は、階段昇降動作の手順を示すフローチャートである。  [FIG. 29] FIG. 29 is a flowchart showing the steps of a stair climbing operation.
[図 30]図 30は、サーチ'ァライン'アプローチ処理方法を示すフローチャートである。  FIG. 30 is a flowchart showing a search “align” approach processing method.
[図 31]図 31は、昇降動作処理の方法を示すフローチャートである。  FIG. 31 is a flowchart showing a method for a lifting operation process.
[図 32]図 32は、ロボット装置が認識しているか又は認識する予定の階段面を示す模 式図である。  [FIG. 32] FIG. 32 is a schematic diagram showing a staircase surface recognized or to be recognized by the robot apparatus.
[図 33]図 33は、昇降動作処理の方法を示すフローチャートである。  [FIG. 33] FIG. 33 is a flowchart showing a method of a lifting operation process.
[図 34]図 34は、昇降動作処理の方法を示すフローチャートである。  FIG. 34 is a flowchart showing a method for a lifting operation process.
園 35]図 35Aは、ロボット装置により認識されている踏面と足底の関係を説明するた めの図であり、図 35Bは、各部の寸法を示す図である。 FIG. 35A is a diagram for explaining the relationship between the tread and the sole recognized by the robot apparatus, and FIG. 35B is a diagram showing the dimensions of each part.
[図 36]図 36は、ロボット装置が昇降動作を行った様子を撮影したものをトレースした 図である。  [FIG. 36] FIG. 36 is a diagram obtained by tracing a photograph of the robot apparatus performing the ascending / descending operation.
[図 37]図 37は、ロボット装置が昇降動作を行った様子を撮影したものをトレースした 図である。 [Fig.37] Fig. 37 traces the image of the robot device moving up and down. FIG.
[図 38]図 38は、単一の段部とロボット装置の足底の関係を示す図である。  FIG. 38 is a diagram showing a relationship between a single stepped portion and the sole of the robot apparatus.
[図 39]図 39は、単一の凹部とロボット装置の足底の関係を示す図である。  FIG. 39 is a diagram showing a relationship between a single recess and a sole of the robot apparatus.
園 40]図 40は、本変形例における平面検出装置を示す機能ブロック図である。 園 41]図 41は、テクスチャを付与する手段を有しているロボット装置を説明するため の図である。 FIG. 40 is a functional block diagram showing the flat surface detection apparatus in the present modification. 41] FIG. 41 is a diagram for explaining a robot apparatus having means for applying a texture.
園 42]図 42は、本変形例における線分拡張法による平面検出方法を説明する図で ある。 42] FIG. 42 is a diagram for explaining the plane detection method by the line segment expansion method in this modification.
[図 43]図 43は、線分拡張法による平面検出処理を示すフローチャートである。  FIG. 43 is a flowchart showing plane detection processing by a line segment expansion method.
[図 44]図 44は、本変形例における線分抽出部における処理の詳細を示すフローチ ヤートである。  FIG. 44 is a flowchart showing details of processing in the line segment extraction unit in the present modification.
[図 45]図 45は、距離データ点の分布の様子を示す図であって、図 45Aは、データの 分布が線分に対してジグザグ形である場合、図 45Bは、ノイズなどにより線分近傍に 一様に分布して!/、る場合を示す模式図である。  [FIG. 45] FIG. 45 is a diagram showing the distribution of distance data points. FIG. 45A shows a case where the data distribution is zigzag with respect to the line segment, and FIG. It is a schematic diagram showing a case where it is uniformly distributed in the vicinity!
[図 46]図 46は、本変形例における Zig-Zag-Shape判別方法を示すフローチャートで ある。  FIG. 46 is a flowchart showing a Zig-Zag-Shape discrimination method in the present modification.
[図 47]図 47は、上記 Zig-Zag-Shape判別処理のプログラム例を示す図である。  FIG. 47 is a diagram showing a program example of the Zig-Zag-Shape discrimination process.
[図 48]図 48は、 Zig-Zag-Shape判別処理を行う処理部を示すブロック図である。 園 49]図 49は、本変形例における領域拡張処理を説明するための模式図である。 園 50]図 50は、本変形例における領域拡張部における領域種を検索する処理及び 領域拡張処理の手順を示すフローチャートである。 FIG. 48 is a block diagram illustrating a processing unit that performs Zig-Zag-Shape discrimination processing. 49] FIG. 49 is a schematic diagram for explaining the area expansion processing in this modification. FIG. 50 is a flowchart showing the process of searching for a region type and the procedure of the region expansion process in the region expansion unit in this modification.
園 51]図 51は、端点と直線との距離が等しくても平面方程式の 2乗平均誤差 rmsが 異なる例を示す図であって、図 51Aは、ノイズなどの影響により線分が平面からずれ ている場合、図 51Bは、線分が属する他の平面が存在する場合を示す模式図である 51] Fig. 51 shows an example in which the mean square error rms of the plane equation is different even if the distance between the end point and the straight line is the same. Fig. 51A shows that the line segment deviates from the plane due to the effects of noise, etc. FIG. 51B is a schematic diagram showing a case where there is another plane to which the line segment belongs.
[図 52]図 52は、領域種の選択処理を示す図である。 FIG. 52 is a diagram showing a region type selection process.
[図 53]図 53は、領域拡張処理を示す図である。 FIG. 53 is a diagram showing an area expansion process.
園 54]図 54Aは、ロボット装置が立った状態で床面を見下ろした際の床面を示す模 式図、 図 5 4 Bは、 縦軸を x、 横軸を y、 各データ点の濃淡で z軸を表現して 3次元距離 データ及び、 行方向の画素列から線分抽出処理にて同一平面に存在するとされるデータ点 群から直線を検出したものを示す図、 図 5 4 Cは、 図 5 4 Bに示す直線群から領域拡張処 理により得られた平面領域を示す図である。 54] Fig. 54A is a schematic diagram showing the floor surface when the robot device is standing and looking down on the floor surface. In the equation diagram, Fig. 5 4B, the vertical axis is x, the horizontal axis is y, and the z-axis is expressed by the shading of each data point. FIG. 54C is a diagram showing a straight line detected from a group of data points assumed to exist on the plane, and FIG. 54C is a diagram showing a planar region obtained by the region expansion process from the straight line group shown in FIG. 54B.
【図 5 5】 図 5 5は、 床面に段差を一段置いたときの本変形例における平面検出方法と従 来の平面検出方法との結果の違いを説明するための図であって、 図 5 5 Aは、 観察された 画像を示す模式図、 図 5 5 Bは、 実験条件を示す図、 図 5 5 Cは、 本変形例における平面 検出方法により平面検出された結果を示す図、 図 5 5 Dは、 従来の平面検出方法により平 面検出された結果を示す図である。  [FIG. 5 5] FIG. 5 5 is a diagram for explaining the difference in results between the plane detection method in the present modification and the conventional plane detection method when a step is placed on the floor surface. 5 5 A is a schematic diagram showing an observed image, FIG. 5 5 B is a diagram showing experimental conditions, FIG. 5 5 C is a diagram showing a result of plane detection by the plane detection method in this modification, and FIG. FIG. 5D is a diagram showing the result of plane detection by the conventional plane detection method.
【図 5 6】 図 5 6 Aは、 床面を撮影した画像を示す模式図、 図 5 6 B及び図 5 6 Cは、 図 5 6 Aに示す床面を撮影して取得した 3次元距離デ一夕から水平方向及び垂直方向の距離 データ点列から、 それぞれ本変形例の線分検出により検出した線分及び従来の線分検出に より検出した線分を示す図である。  [Fig. 5 6] Fig. 5 6 A is a schematic diagram showing an image of the floor surface, and Fig. 5 6 B and Fig. 5 6 C are three-dimensional distances obtained by imaging the floor surface shown in Fig. 5 6 A. FIG. 11 is a diagram showing a line segment detected by line segment detection of the present modification and a line segment detected by conventional line segment detection from distance data points in the horizontal direction and vertical direction from the data line.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を適用した具体的な実施の形態について、 図面を参照しながら詳細に説明 する。 この実施の形態は、 本発明を、 周囲の環境に存在する階段などの段差を認識する段 差認識装置を搭載した自律的に動作可能なロボット装置に適用したものである。  Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In this embodiment, the present invention is applied to an autonomously operable robot apparatus equipped with a step recognition device that recognizes a step such as a stair existing in the surrounding environment.
本実施の形態におけるロボット装置は、 ステレオビジョンなどにより得られた距離情報 The robot apparatus according to the present embodiment uses distance information obtained by stereo vision or the like.
(距離データ) から抽出した複数平面から階段を認識し、 この階段認識結果を利用して階 段昇降動作を可能とするものである。 The stairs are recognized from multiple planes extracted from (distance data), and the stairs can be moved up and down using the stairs recognition results.
( 1 ) ロボッ卜装置  (1) Robot equipment
ここでは、 まず、 このような口ポット装置の一例として 2足歩行タイプのロボット装置 を例にとって説明する。 このロボット装置は、 住環境その他の日常生活上の様々な場面に おける人的活動を支援する実用口ポットであり、 内部状態 (怒り、 悲しみ、 喜び、 楽しみ 等) に応じて行動できるほか、 人間が行う基本的な動作を表出できるエンターティンメン トロボット装置である。 なお、 ここでは、 2足歩行型のロボット装置を例にとって説明す るが、 階段認識装置は、 2足歩行のロボット装置に限らず、 脚式移動型のロボット装置に 搭載すればロボット装置に階段昇降動作を実行させることができる。  Here, as an example of such a mouth pot device, a biped walking type robot device will be described as an example. This robotic device is a practical mouth pot that supports human activities in various situations in the living environment and other daily lives, and can act according to the internal state (anger, sadness, joy, fun, etc.) This is an entertainment robot that can express the basic operations performed by. Here, a bipedal walking robot device will be described as an example, but the staircase recognition device is not limited to a bipedal walking robot device. The raising / lowering operation can be executed.
差替 え 用 紙 (規則 26) 図 4は、本実施の形態におけるロボット装置の概観を示す斜視図である。図 4に示 すように、ロボット装置 201は、体幹部ユニット 202の所定の位置に頭部ユニット 203 が連結されると共に、左右 2つの腕部ユニット 204R/Lと、左右 2つの脚部ユニット 2 05R/Lが連結されて構成されている(ただし、 R及び Lの各々は、右及び左の各々 を示す接尾辞である。以下において同じ。)。 Replacement paper (Rule 26) FIG. 4 is a perspective view showing an overview of the robot apparatus according to the present embodiment. As shown in FIG. 4, the robot apparatus 201 has a head unit 203 connected to a predetermined position of the trunk unit 202, two left and right arm units 204R / L, and two left and right leg units 2. 05R / L is concatenated (where R and L are suffixes indicating right and left, respectively, the same applies hereinafter).
このロボット装置 201が具備する関節自由度構成を図 5に模式的に示す。頭部ュニ ット 203を支持する首関節は、首関節ョー軸 101と、首関節ピッチ軸 102と、首関節口 ール軸 103という 3自由度を有している。  FIG. 5 schematically shows the joint degree-of-freedom configuration of the robot apparatus 201. The neck joint that supports the head unit 203 has three degrees of freedom: a neck joint axis 101, a neck joint pitch axis 102, and a neck joint pole axis 103.
また、上肢を構成する各々の腕部ユニット 204R/Lは、肩関節ピッチ軸 107と、肩 関節ロール軸 108と、上腕ョー軸 109と、肘関節ピッチ軸 110と、前腕ョー軸 1 11と、 手首関節ピッチ軸 1 12と、手首関節ロール輪 113と、手部 114とで構成される。手部 114は、実際には、複数本の指を含む多関節 '多自由度構造体である。ただし、手部 114の動作は、ロボット装置 201の姿勢制御や歩行制御に対する寄与や影響が少な いので、本明細書では簡単のため、ゼロ自由度と仮定する。したがって、各腕部は 7 自由度を有するとする。  In addition, each arm unit 204R / L constituting the upper limb includes a shoulder joint pitch axis 107, a shoulder joint roll axis 108, a brachial arm axis 109, an elbow joint pitch axis 110, a forearm arm axis 1 11, It comprises a wrist joint pitch axis 1 12, a wrist joint roll wheel 113, and a hand part 114. The hand 114 is actually an articulated multi-degree-of-freedom structure including a plurality of fingers. However, since the movement of the hand 114 has little contribution or influence on the posture control or walking control of the robot apparatus 201, it is assumed in this specification that the degree of freedom is zero for simplicity. Therefore, each arm has 7 degrees of freedom.
また、体幹部ユニット 202は、体幹ピッチ軸 104と、体幹ロール軸 105と、体幹ョー 軸 106という 3自由度を有する。  The trunk unit 202 has three degrees of freedom: the trunk pitch axis 104, the trunk roll axis 105, and the trunk axis 106.
また、下肢を構成する各々の脚部ユニット 205R/Lは、股関節ョー軸 115と、股関 節ピッチ軸 1 16と、股関節ロール軸 117と、膝関節ピッチ軸 118と、足首関節ピッチ 軸 119と、足首関節ロール軸 120と、足底 121とで構成される。本明細書中では、股 関節ピッチ軸 1 16と股関節ロール軸 117の交点は、ロボット装置 201の股関節位置 を定義する。人体の足底 121は、実際には多関節 ·多自由度の足底を含んだ構造体 であるが、本明細書においては、簡単のためロボット装置 201の足底は、ゼロ自由度 とする。したがって、各脚部は、 6自由度で構成される。  Each leg unit 205R / L constituting the lower limb includes a hip joint axis 115, a hip joint pitch axis 116, a hip joint roll axis 117, a knee joint pitch axis 118, and an ankle joint pitch axis 119. The ankle joint roll shaft 120 and the sole 121 are configured. In the present specification, the intersection of the hip joint pitch axis 116 and the hip joint roll axis 117 defines the hip joint position of the robot apparatus 201. The sole 121 of the human body is actually a structure including a multi-joint / multi-degree-of-freedom sole, but in this specification, for the sake of simplicity, the sole of the robot apparatus 201 has zero degrees of freedom. . Therefore, each leg is composed of 6 degrees of freedom.
以上を総括すれば、ロボット装置 201全体としては、合計で 3 + 7 X 2 + 3 + 6 X 2 = 32自由度を有することになる。ただし、エンターテインメント向けのロボット装置 201が 必ずしも 32自由度に限定されるわけではない。設計'制作上の制約条件や要求仕 様等に応じて、自由度すなわち関節数を適宜増減することができることはいうまでも ない。 In summary, the robot apparatus 201 as a whole has a total of 3 + 7 X 2 + 3 + 6 X 2 = 32 degrees of freedom. However, the robot device 201 for entertainment is not necessarily limited to 32 degrees of freedom. It goes without saying that the degree of freedom, that is, the number of joints, can be increased or decreased as appropriate according to the design constraints and required specifications. Absent.
上述したようなロボット装置 201がもつ各自由度は、実際にはァクチユエータを用い て実装される。外観上で余分な膨らみを排してヒトの自然体形状に近似させること、 2 足歩行とレ、う不安定構造体に対して姿勢制御を行うこと等の要請から、ァクチユエ一 タは小型かつ軽量であることが好ましい。  Each degree of freedom of the robot apparatus 201 as described above is actually implemented using an actuator. Due to demands such as eliminating external bulges on the exterior and approximating the human body shape, biped walking and leg, and posture control for unstable structures, the actuator is small and lightweight. It is preferable that
このようなロボット装置は、ロボット装置全体の動作を制御する制御システムを例え ば体幹部ユニット 202等に備える。図 6は、ロボット装置 201の制御システム構成を示 す模式図である。図 6に示すように、制御システムは、ユーザ入力等に動的に反応し て情緒判断や感情表現を司る思考制御モジュール 200と、ァクチユエータ 350の駆 動等、ロボット装置 201の全身協調運動を制御する運動制御モジュール 300とで構 成される。  Such a robot apparatus includes a control system that controls the operation of the entire robot apparatus, for example, the trunk unit 202. FIG. 6 is a schematic diagram showing a control system configuration of the robot apparatus 201. As shown in Fig. 6, the control system controls the whole body coordinated movement of the robot device 201, such as the drive of the thought control module 200 that controls emotional judgment and emotional expression in response to user input, etc., and the actuator 350. The motion control module 300
思考制御モジュール 200は、情緒判断や感情表現に関する演算処理を実行する C PU (Central Processing Unit) 211や、 RAM (Random Access Memory) 212、 ROM (Read Only Memory) 213及び外部記憶装置(ノ、ード '·ディスク'ドライブ等) 214等で 構成され、モジュール内で自己完結した処理を行うことができる、独立駆動型の情報 処理装置である。  The thought control module 200 includes a central processing unit (CPU) 211, a random access memory (RAM) 212, a read only memory (ROM) 213, and an external storage device (node, ('Disk' drive etc.) This is an independent information processing device that consists of 214 etc. and can perform self-contained processing within the module.
この思考制御モジュール 200は、画像入力装置 251から入力される画像データや 音声入力装置 252から入力される音声データ等、外界からの刺激等に従って、ロボ ット装置 201の現在の感情や意思を決定する。すなわち、上述したように、入力され る画像データからユーザの表情を認識し、その情報をロボット装置 201の感情や意 思に反映させることで、ユーザの表情に応じた行動を発現することができる。ここで、 画像入力装置 251は、例えば CCD (Charge Coupled Device)カメラを複数備えてお り、これらのカメラにより撮像した画像から距離画像を得ることができる。また、音声入 力装置 252は、例えばマイクロホンを複数備えている。  This thought control module 200 determines the current emotion and intention of the robot device 201 in accordance with stimuli from the outside, such as image data input from the image input device 251 and sound data input from the sound input device 252. To do. That is, as described above, by recognizing the user's facial expression from the input image data and reflecting the information on the emotion and intention of the robot apparatus 201, it is possible to express an action according to the user's facial expression. . Here, the image input device 251 includes a plurality of CCD (Charge Coupled Device) cameras, for example, and can obtain a distance image from images captured by these cameras. The audio input device 252 includes a plurality of microphones, for example.
思考制御モジュール 200は、意思決定に基づいた動作又は行動シーケンス、すな わち四肢の運動を実行するように、運動制御モジュール 300に対して指令を発行す 一方の運動制御モジュール 300は、ロボット装置 201の全身協調運動を制御する CPU311や、 RAM312、 ROM313及び外部記憶装置(ハード'ディスク'ドライブ等 ) 314等で構成され、モジュール内で自己完結した処理を行うことができる独立駆動 型の情報処理装置である。また、外部記憶装置 314には、例えば、オフラインで算出 された歩行パターンや目標とする ZMP軌道、その他の行動計画を蓄積することがで きる。 The thought control module 200 issues a command to the motion control module 300 to execute an action or action sequence based on decision making, that is, movement of the limbs. Controls 201 whole body coordination This is an independent drive type information processing apparatus that is composed of a CPU 311, a RAM 312, a ROM 313, an external storage device (hard 'disk' drive, etc.) 314, etc. and can perform self-contained processing in a module. Further, the external storage device 314 can store, for example, walking patterns calculated offline, target ZMP trajectories, and other action plans.
この運動制御モジュール 300には、図 5に示したロボット装置 201の全身に分散す るそれぞれの関節自由度を実現するァクチユエータ 350、対象物との距離を測定す る距離計測センサ(図示せず)、体幹部ユニット 202の姿勢や傾斜を計測する姿勢セ ンサ 351、左右の足底の離床又は着床を検出する接地確認センサ 352, 353、足底 121の足底 121に設けられる荷重センサ、バッテリ等の電源を管理する電源制御装 置 354等の各種の装置力 S、バス.インターフェース(I/F) 310経由で接続されている 。ここで、姿勢センサ 351は、例えば加速度センサとジャイロ 'センサの組み合わせに よって構成され、接地確認センサ 352, 353は、近接センサ又はマイクロ 'スィッチ等 で構成される。  The motion control module 300 includes an actuator 350 that realizes the degree of freedom of joints distributed throughout the body of the robot apparatus 201 shown in FIG. 5, and a distance measurement sensor (not shown) that measures the distance to the object. , Posture sensor 351 for measuring the posture and inclination of the trunk unit 202, ground contact confirmation sensor 352, 353 for detecting the floor or landing of the left and right soles, load sensor provided on the sole 121 of the sole 121, battery Various powers such as a power supply control device 354 that manages the power source of the power supply S, etc. are connected via a bus interface (I / F) 310. Here, the posture sensor 351 is configured by, for example, a combination of an acceleration sensor and a gyro sensor, and the grounding confirmation sensors 352 and 353 are configured by a proximity sensor, a micro switch, or the like.
思考制御モジュール 200と運動制御モジュール 300は、共通のプラットフォーム上 で構築され、両者間はバス'インターフェース 210, 310を介して相互接続されている Thought control module 200 and motion control module 300 are built on a common platform and are interconnected via bus' interfaces 210 and 310.
Yes
運動制御モジュール 300では、思考制御モジュール 200から指示された行動を体 現すベぐ各ァクチユエータ 350による全身協調運動を制御する。すなわち、 CPU3 11は、思考制御モジュール 200から指示された行動に応じた動作パターンを外部記 憶装置 314から取り出し、又は、内部的に動作パターンを生成する。そして、 CPU3 11は、指定された動作パターンに従って、足部運動、 ZMP軌道、体幹運動、上肢運 動、腰部水平位置及び高さ等を設定するとともに、これらの設定内容に従った動作を 指示する指令値を各ァクチユエータ 350に転送する。  The motion control module 300 controls the whole body coordinated motion by each of the actuators 350 that embodies the action instructed by the thought control module 200. That is, the CPU 311 extracts an operation pattern corresponding to the action instructed from the thought control module 200 from the external storage device 314, or internally generates an operation pattern. The CPU 311 then sets the foot movement, ZMP trajectory, trunk movement, upper limb movement, waist horizontal position, height, etc. according to the specified movement pattern, and instructs the movement according to these settings. The command value to be transferred is transferred to each actuator 350.
また、 CPU311は、姿勢センサ 351の出力信号によりロボット装置 201の体幹部ュ ニット 202の姿勢や傾きを検出するとともに、各接地確認センサ 352, 353の出力信 号により各脚部ユニット 205R/Lが遊脚又は立脚の何れの状態であるかを検出する ことによって、ロボット装置 201の全身協調運動を適応的に制御することができる。更 に、 CPU311は、 ZMP位置が常に ZMP安定領域の中心に向力、うように、ロボット装 置 201の姿勢や動作を制御する。 In addition, the CPU 311 detects the posture and inclination of the trunk unit 202 of the robot device 201 based on the output signal of the posture sensor 351, and each leg unit 205R / L detects the posture of the trunk unit 202 based on the output signals of the grounding confirmation sensors 352 and 353. By detecting whether the leg is a free leg or a standing leg, the whole body cooperative movement of the robot apparatus 201 can be adaptively controlled. Further In addition, the CPU 311 controls the posture and operation of the robot apparatus 201 so that the ZMP position is always directed toward the center of the ZMP stable region.
また、運動制御モジュール 300は、思考制御モジュール 200において決定された 意思通りの行動がどの程度発現された力、、すなわち処理の状況を、思考制御モジュ ール 200に返すようになつている。このようにしてロボット装置 201は、制御プログラム に基づいて自己及び周囲の状況を判断し、自律的に行動すること力 Sできる。  In addition, the motion control module 300 returns to the thought control module 200 the power at which the behavior as intended determined by the thought control module 200 is expressed, that is, the processing status. In this way, the robot apparatus 201 can determine the self and surrounding conditions based on the control program and can act autonomously.
(2)口ポット 置の動作制御方法  (2) Mouth pot device operation control method
上述のロボット装置においては、頭部ユニット 203にステレオビジョンシステムを搭 載し、外界の 3次元距離情報を取得することができる。次に、このようなロボット装置な どに好適に搭載されるものであって、ロボット装置力 ステレオビジョンシステムにより 周囲の環境力 獲得した 3次元距離データを使用して平面を検出し、この平面検出 結果に基づき階段を認識し、この階段認識結果を使用して階段昇降動作を行う一連 の処理について説明する。  In the robot apparatus described above, the stereo vision system is mounted on the head unit 203, and the three-dimensional distance information of the outside world can be acquired. Next, it is suitably mounted on such robotic devices, etc., and the plane is detected using the 3D distance data acquired by the surrounding force of the robotic device stereo vision system. A series of processes for recognizing staircases based on the results and performing stair climbing using the staircase recognition results will be described.
図 7は、ロボット装置がステレオデータから階段昇降動作を発現するまでの処理を 実行するシステムを示す機能ブロック図である。図 7に示すように、ロボット装置は、 3 次元の距離データを取得する距離データ計測手段としてのステレオビジョンシステム (Stereo Vision System) 1と、ステレオビジョンシステム 1からステレオデータ D1が入力 され、このステレオデータ D1から環境内の平面を検出する平面検出器 (Plane Segmentation/Extractor) 2と、平面検出器 2から出力される平面データ D2から階段 を認識する階段認識器(Stair Recognition) 3と、階段認識部 2により認識された認識 結果である階段データ D4を使用して階段昇降動作をするための動作制御指令 D5 を出力する階段昇降制御器 (Stair Climber) 4とを備える。  FIG. 7 is a functional block diagram showing a system for executing a process from the stereo data until the stair ascending / descending operation is manifested from the stereo data. As shown in Fig. 7, the robot apparatus receives stereo data D1 from stereo vision system 1 (Stereo Vision System) 1 and stereo vision system 1 as distance data measurement means for acquiring 3D distance data. Plane Segmentation / Extractor 2 that detects the plane in the environment from the data D1, Stair Recognition 3 that recognizes the stair from the plane data D2 output from the flat detector 2, and Stair recognition A stair climbing controller (Stair Climber) 4 for outputting an operation control command D5 for performing stair climbing operation using the stair data D4 which is a recognition result recognized by the unit 2 is provided.
そして、ロボット装置は、先ず、ステレオビジョンによって外界を観測し、両眼の視差 によって算出される 3次元距離情報であるステレオデータ D1を画像として出力する。 すなわち、人間の両眼に相当する左右 2つのカメラからの画像入力を各画素近傍毎 に比較し、その視差から対象までの距離を推定し、 3次元距離情報を画像として出力 (距離画像)する。この距離画像から平面検出器 2によって平面を検出することで、環 境内に存在する複数の平面を認識することができる。更に、階段認識器 3によって、 これら平面からロボット装置が昇降可能な平面を抽出し、その平面から階段を認識し 階段データ D4を出力する。そして階段昇降制御器 4が階段データ D4を用いて階段 の昇降動作を実現する動作制御指令 D5を出力する。 The robot apparatus first observes the outside world by stereo vision and outputs stereo data D1, which is three-dimensional distance information calculated by binocular parallax, as an image. That is, image input from two left and right cameras corresponding to human eyes is compared for each pixel neighborhood, the distance from the parallax to the target is estimated, and 3D distance information is output as an image (distance image) . By detecting a plane from the distance image by the plane detector 2, a plurality of planes existing in the environment can be recognized. Furthermore, the stair recognizer 3 From these planes, the plane on which the robot can move up and down is extracted, the stairs are recognized from the plane, and the stairs data D4 is output. Then, the stair lift controller 4 uses the stair data D4 to output a motion control command D5 that realizes the stair lift operation.
図 8Aは、ロボット装置 201が外界を撮影している様子を示す模式図である。床面を X— y平面とし、高さ方向を z方向としたとき、図 8Aに示すように、画像入力部 (ステレ ォカメラ)を頭部ユニット 203に有するロボット装置 201の視野範囲は、ロボット装置 2 01の前方の所定範囲となる。  FIG. 8A is a schematic diagram showing a state where the robot apparatus 201 is photographing the outside world. When the floor surface is the XY plane and the height direction is the z direction, as shown in FIG. 8A, the visual field range of the robot apparatus 201 having the image input unit (stereo camera) in the head unit 203 is as follows. 2 This is the predetermined range in front of 01.
ロボット装置 201は、上述した CPU211において、画像入力装置 251からのカラー 画像及び視差画像と、各ァクチユエータ 350の全ての関節角度等のセンサデータと などが入力されて各種の処理を実行するソフトウェア構成を実現する。  The robot apparatus 201 has a software configuration in which the CPU 211 described above receives a color image and a parallax image from the image input apparatus 251, sensor data such as all joint angles of each actuator 350, and the like, and executes various processes. Realize.
本実施の形態のロボット装置 201におけるソフトウェアは、オブジェクト単位で構成 され、ロボット装置の位置、移動量、周囲の障害物、及び環境地図等を認識し、ロボ ット装置が最終的に取るべき行動についての行動列を出力する各種認識処理等を 行うこと力 Sできる。なお、ロボット装置の位置を示す座標として、例えば、ランドマーク 等の特定の物体等に基づく所定位置を座標の原点としたワールド基準系のカメラ座 標系(以下、絶対座標ともいう。)と、ロボット装置自身を中心 (座標の原点)としたロボ ット中心座標系(以下、相対座標ともいう。)との 2つの座標を使用する。  The software in the robot apparatus 201 of the present embodiment is configured in units of objects, recognizes the position, movement amount, surrounding obstacles, environment map, etc. of the robot apparatus, and the action that the robot apparatus should finally take. The ability to perform various recognition processes that output action sequences for As the coordinates indicating the position of the robot apparatus, for example, a world-standard camera coordinate system (hereinafter also referred to as absolute coordinates) having a predetermined position based on a specific object such as a landmark as the origin of the coordinates, Two coordinates are used: a robot center coordinate system (hereinafter also referred to as relative coordinates) centered on the robot device itself (coordinate origin).
ステレオビジョンシステム 1では、カラー画像及びステレオカメラによる視差画像など の画像データが撮像された時間において、センサデータから割り出した関節角を使 用してロボット装置 201が中心に固定されたロボット中心座標系を頭部ユニット 203 に設けられた画像入力装置 251の座標系へ変換する。この場合、本実施の形態に おいては、ロボット中心座標系からカメラ座標系の同次変換行列等を導出し、この同 次変換行列とこれに対応する 3次元距離データからなる距離画像を出力する。  In the stereo vision system 1, a robot center coordinate system in which the robot apparatus 201 is fixed at the center by using the joint angle calculated from the sensor data at the time when image data such as a color image and a parallax image from a stereo camera is captured. Is converted to the coordinate system of the image input device 251 provided in the head unit 203. In this case, in this embodiment, a homogeneous transformation matrix of the camera coordinate system is derived from the robot center coordinate system, and a distance image composed of the homogeneous transformation matrix and the corresponding three-dimensional distance data is output. To do.
本実施の形態におけるロボット装置は、自身の視野内に含まれる階段を認識するこ とができ、その認識結果 (以下、階段データという。)を使用して階段昇降動作を可能 とする。したがって、階段昇降動作のためには、ロボット装置は、階段の大きさが自身 の足底の大きさより小さレ、か、階段の高さが登ることができる又は降りることができる高 さか否かなどの、階段の大きさについて様々な判断を行う必要がある。 ここで、本実施の形態においては、ロボット装置の足底の大きさを図 8Bとした場合 について説明する。すなわち、図 8Bに示すように、ロボット装置 201の前進方向を X 軸方向、床面に平行で X方向と直交する方法を y方向としたとし、ロボット装置 201が 直立した際の両足の y方向の幅を feet base width足底の大きさであて足首(脚部と足 底の接続部)から前側の部分を足底前幅 foot_fr0nt_size、足首から後ろ側の部分を足 底の足底後ろ幅 foot_back_sizeとするものとする。 The robot apparatus according to the present embodiment can recognize a staircase included in its own field of view, and can use the recognition result (hereinafter referred to as staircase data) to move up and down the staircase. Therefore, for the stair ascending / descending operation, the robot apparatus determines whether the size of the staircase is smaller than the size of its own sole or whether the height of the staircase can be climbed or lowered. It is necessary to make various judgments about the size of the stairs. Here, in the present embodiment, a case will be described in which the size of the sole of the robot apparatus is FIG. 8B. That is, as shown in FIG. 8B, assuming that the forward direction of the robot device 201 is the X-axis direction and the method that is parallel to the floor surface and orthogonal to the X direction is the y direction, the y direction of both feet when the robot device 201 stands upright The width of the feet is the size of the sole, the front part from the ankle (joint part of the leg and the sole) is the front sole width foot_fr 0 nt_size, the rear part from the ankle is the sole behind the sole The width is foot_back_size.
ロボット装置 201が環境内から検出する階段としては、例えば図 9、図 10に示すよう なものがある。図 9A、図 10Aは、階段を正面から見た図、図 9B、図 10Bは、階段を 側面から見た図、図 9C、図 10Cは、階段を斜めから見た図である。  Examples of steps detected by the robot apparatus 201 from the environment include those shown in FIG. 9 and FIG. 9A and 10A are views of the stairs viewed from the front, FIGS. 9B and 10B are views of the stairs viewed from the side, and FIGS. 9C and 10C are views of the stairs viewed from an oblique direction.
ここで、人間、ロボット装置などが階段を昇降するために使用する面(足又は可動脚 部を載せる面)を踏面とレ、い、一の踏面からその次の踏面までの高さ(階段 1段の階 段の高さ)を蹴り上げという。また、以下では、階段は、地面に近い方から登るに従つ て 1段目、 2段目とカウントすることとする。  Here, the surface used by humans, robotic devices, etc. to move up and down the stairs (the surface on which the foot or movable leg is placed) is the tread, and the height from one tread to the next tread (stair 1 The height of the step) is called kicking up. In the following, the stairs will be counted as the first and second steps as you climb from the side closer to the ground.
図 9に示す階段 ST1は、段数が 3段の階段であり、蹴り上げ 4cm、 1 , 2段面の踏面 の大きさは幅 30cm、奥行き 10cm、最上段である 3段目の踏面のみ、幅 30cm、奥 行き 21cmとなっている。また、図 10に示す階段 ST2も、段数が 3段の階段であり、蹴 り上げ 3cm、 1 , 2段面の踏面の大きさは幅 33cm、奥行き 12cm、最上段である 3段 目の踏面のみ、幅 33cm、奥行き 32cmとなっている。ロボット装置がこれらの階段を 認識した結果は後述する。  The staircase ST1 shown in Fig. 9 is a three-step staircase, and the tick height of the stepped up 4cm, 1 and 2 steps is 30cm wide, 10cm deep, only the 3rd step tread, which is the top step, the width It is 30cm and the depth is 21cm. The staircase ST2 shown in Fig. 10 is also a three-step staircase with a kick height of 3 cm, the size of the tread on the 1st and 2nd steps is 33 cm in width, 12 cm in depth, and the third step on the top. Only 33cm wide and 32cm deep. The result of the robot device's recognition of these stairs will be described later.
平面検出器 2は、ステレオビジョン等の距離計測器力も出力される距離情報 (ステレ ォデータ D1)から環境内に存在する複数の平面を検出し、平面データ D2を出力す る。平面の検出方法としては後述する線分拡張法の他、ハフ変換を利用した公知の 平面検出技術を適用することができる。ただし、ノイズを含む距離データから階段の ように複数平面を検出するには、後述する線分拡張法などによる平面検出を行うと正 確に平面を検出することができる。  The plane detector 2 detects a plurality of planes existing in the environment from the distance information (stereo data D1) from which the distance measuring instrument force such as stereo vision is also output, and outputs the plane data D2. As a plane detection method, a well-known plane detection technique using Hough transform can be applied in addition to the line segment expansion method described later. However, in order to detect multiple planes like staircases from noise-containing distance data, it is possible to detect planes accurately by performing plane detection using the line segment expansion method described later.
図 11、図 12は、階段を検出した結果の一例を示す図である。図 11及び図 12は、 後述する平面検出方法により、それぞれ図 9及び図 10に示す階段を撮影した画像 から 3次元距離データを取得して平面検出した例である。すなわち、図 11Aは、図 9 の階段を撮影した場合の画像を示す模式図、図 11B乃至図 11Dは、図 11Aに示す 画像から取得した 3次元の距離データを示す図である。また、図 12Aは、図 10の階 段を撮影した場合の画像を示す模式図、図 12B乃至図 12Dは、図 12Aに示す画像 から取得した 3次元の距離データを示す図である。図 11及び図 12に示すように、何 れの場合も全ての踏面を平面として検出できている。図 11Bは、下から 1段目、 2段 目、 3段目の踏面が平面検出されている例を示す。また、図 12Bは、床面の一部も他 の平面として検出成功して!/、ることを示す。 FIG. 11 and FIG. 12 are diagrams showing an example of the result of detecting the stairs. FIGS. 11 and 12 are examples in which plane detection is performed by acquiring three-dimensional distance data from images obtained by capturing the stairs shown in FIGS. 9 and 10 by a plane detection method described later. That is, FIG. FIG. 11B to FIG. 11D are diagrams showing three-dimensional distance data acquired from the image shown in FIG. 11A. 12A is a schematic diagram showing an image when the level of FIG. 10 is photographed, and FIGS. 12B to 12D are diagrams showing three-dimensional distance data acquired from the image shown in FIG. 12A. As shown in Figs. 11 and 12, in all cases, all treads can be detected as flat surfaces. Fig. 11B shows an example in which the treads of the first, second, and third tiers are detected from the bottom. FIG. 12B also shows that a part of the floor is successfully detected as another plane! /.
すなわち、図 13Aに示すように、例えば階段 ST2を撮影した距離画像から平面検 出すると、図 13Bに示すように、領域 A〜Dがそれぞれ、床面、 1段目、 2段目、 3段 目の踏面を示す平面として検出される。各領域 A〜Dに含まれる同一領域に示す点 群は、それぞれ同一平面を構成すると推定された距離データ点群を示している。 階段認識器 3には、こうして平面検出器 2が検出した平面データ D2が入力され、階 段の形状、すなわち踏面の大きさ、階段の高さ(蹴り上げの大きさ)などを認識する。 ここで、本実施の形態における階段認識器 3は、詳細は後述する力 ロボット装置 20 1が認識した踏面に含まれる領域(多角形)の手前側(ロボット装置に距離的に近い 側)の境界(Front Edge) (以下、フロントエッジ FEという。)と、踏面の奥側(ロボット装 置に距離的に遠い側)の境界 (Back Edge) (以下、バックエッジ BEという。)とを階段 データとして認識する。そして、階段昇降制御器 4が階段データを利用して階段昇降 動作を制御する。  That is, as shown in FIG. 13A, for example, when a plane detection is performed from a distance image obtained by capturing the staircase ST2, the areas A to D are the floor surface, the first step, the second step, and the third step, respectively, as shown in FIG. 13B. It is detected as a plane indicating the tread surface of the eye. Point groups shown in the same area included in each of the areas A to D indicate distance data point groups estimated to form the same plane. The plane data D2 thus detected by the plane detector 2 is input to the staircase recognizer 3, and the shape of the step, that is, the size of the tread, the height of the staircase (the size of the kick-up), and the like are recognized. Here, the staircase recognizer 3 in the present embodiment is a force that will be described in detail later. The boundary on the near side (side closer to the robot apparatus) of the region (polygon) included in the tread recognized by the robot apparatus 201 (Front Edge) (hereinafter referred to as “Front Edge FE”) and the boundary (Back Edge) (hereinafter referred to as “Back Edge BE”) of the rear side of the tread (the side far from the robotic device) as staircase data recognize. Then, the stair lift controller 4 controls the stair lift operation using the stair data.
次に、ロボット装置の階段昇降制御方法について具体的に説明する。なお、以下 では、第 1に、ロボット装置の階段認識方法、第 2に認識した階段を利用して行う階段 昇降動作、最後に平面検出方法の具体例として線分拡張法による平面検出方法の 順にて説明する。  Next, the stair climbing control method of the robot apparatus will be specifically described. In the following, the first is the staircase recognition method of the robot device, the second is the stair ascending / descending operation using the recognized staircase, and finally the plane detection method by the line segment expansion method as a specific example of the plane detection method. I will explain.
図 14は、図 7に示す階段認識器を示す機能ブロック図である。図 14に示すように、 階段認識器 3は、平面検出器 2から出力された平面データ D2から階段を検出する階 段検出器 (Stair Extraction) 5と、この階段検出器 5が検出した階段データ D3の時系 列データ、すなわち異なる時間に検出された複数の階段データ D3を統合することで 更に正確に階段を認識する処理を行う階段統合器 (Stair Merging) 6とを有し、階段 統合器にて統合した階段データ D4が階段認識器 3の出力となる。 FIG. 14 is a functional block diagram showing the staircase recognizer shown in FIG. As shown in Figure 14, the staircase recognizer 3 includes a stair extraction 5 that detects staircases from the plane data D2 output from the flat detector 2, and the staircase data detected by the staircase detector 5. Stair Merging 6 that performs D3 time series data, that is, a plurality of staircase data D3 detected at different times, and more accurately recognizes staircases. The staircase data D4 integrated by the integrator becomes the output of the staircase recognizer 3.
階段検出器 5は、平面検出器 2から入力される平面データ D2から階段を検出する が、  The staircase detector 5 detects the staircase from the plane data D2 input from the plane detector 2.
平面検出器 2から入力される平面データ D2は、 1つの平面につき以下に示す複数の 情報を有し、ステレオビジョンシステム 1によって取り込まれた画像から検出された複 数の平面毎の平面データが入力される。 The plane data D2 input from the plane detector 2 has the following information for each plane, and plane data for each plane detected from the image captured by the stereo vision system 1 is input. Is done.
すなわち、平面データ D2は、平面毎に  That is, the plane data D2 is
1— 1:平面を構成する点の数 ^number of supporting point; 1—1: The number of points that make up the plane ^ number of supporting points;
1 2 :平面の中心となる点  1 2: Point at the center of the plane
1 - 3 :平面パラメータ(法線ベクトル、原点からの距離)  1-3: plane parameter (normal vector, distance from origin)
1 -4 :平面を構成する多角形の境界 1 -4: Boundary of polygons composing the plane
から構成される情報を有する。 It has information composed of
この平面データに基づき、ロボット装置は、自身が接地している床面や踏面などの 接地面と略水平な平面を選択し、下記の情報 (以下、階段パラメータという。)を算出 する。すなわち、  Based on this plane data, the robot device selects a plane that is substantially horizontal to the grounding surface such as the floor surface or the tread surface on which it is grounded, and calculates the following information (hereinafter referred to as the “step parameter”). That is,
2—1:フロントエッジ FE、バックエッジ BE  2—1: Front edge FE, Back edge BE
2— 2 :階段の高さ 2—2: Stair height
である。 It is.
ロボット装置が認識するフロントエッジ FE、ノ ックエッジ BEとは、上述した如ぐ階段 の踏面の境界 (線)を示すものであって、ロボット装置が対峙した場合に、多角形にお V、てロボット装置に近!/、側の境界(手前側の境界)をフロントエッジ FE、ロボット装置 から距離が離れている側の境界(奥側の境界)をバックエッジ BEとする。これは、後 述するように、例えば平面を構成する点を全て含む最小の多角形を求め、その手前 側又は奥側の境界とすることができる。フロントエッジ FE及びバックエッジ BEの情報 としては、これらの端点の情報などとすることができる。また、上記多角形から階段の 幅 W (width)、階段の長さ(length)などの情報を得ることができる。また、階段の高さ( 蹴り上げ)は、与えられた平面データ D2の平面の中心点を利用して、 2の平面の中 心点間の高さ差としたり、上記多角形を求めた際の重心点を利用して 2の重心点の 高さの差としたりすること力 Sできる。なお、蹴り上げは、前段のバックエッジ BEと後段 のフロントエッジ FEとの高さの差としたりしてもよい。 The front edge FE and the knock edge BE recognized by the robot device indicate the boundary (line) of the tread surface as described above. When the robot device faces, the polygonal V and robot The side boundary (front side boundary) is the front edge FE, and the side far away from the robot unit (back side boundary) is the back edge BE. As will be described later, for example, a minimum polygon including all points constituting a plane can be obtained and used as the front or back boundary. The information on the front edge FE and the back edge BE can be information on these end points. In addition, information such as the width W (width) of the staircase and the length of the staircase (length) can be obtained from the polygon. The height of the staircase (pick-up) is calculated by using the center point of the plane of the given plane data D2 as the height difference between the center points of the two planes or when obtaining the above polygon. Using the center of gravity of It is possible to make a difference in height. The kick-up may be the difference in height between the back edge BE at the front stage and the front edge FE at the rear stage.
また、本実施の形態においては、フロントエッジ FE及びバックエッジ BEに加えて更 にフロントエッジ FE及びバックエッジ BEに挟まれた領域 (安全領域)の左右に隣接 する領域であって移動可能である確率が高いと推定される領域をマージン (領域)と して認識する。これらの求め方については後述する。このマージンを求めることにより 、移動可能であると推定する踏面の領域を広く認識することができる。更に、踏面を 構成するデータ点群の数や、上述の重心点などを 1つ規定した参照点の情報などの 情報(階段パラメータ)のセットを階段データ D3とすることができる。  Further, in the present embodiment, in addition to the front edge FE and the back edge BE, an area adjacent to the left and right of the area sandwiched between the front edge FE and the back edge BE (safety area) is movable. Recognize a region with a high probability as a margin (region). How to obtain these will be described later. By obtaining this margin, it is possible to widely recognize the tread area that is estimated to be movable. Furthermore, a set of information (stair parameter) such as the number of data points constituting the tread and the information of the reference point that defines one center of gravity as described above can be used as the staircase data D3.
以上の階段データから下記の条件を満たす平面(階段)を抽出する。  A plane (stair) satisfying the following conditions is extracted from the above staircase data.
3— 1 :フロントエッジ FE及びバックエッジ BEの長さが所定の閾値以上 3—1: The length of front edge FE and back edge BE is equal to or greater than the specified threshold.
3- 2 :階段の高さ(height)が所定の閾値以下 3- 2: The height of the stairs is below a predetermined threshold
また、その他、  In addition,
3- 3 :階段の幅 W (width)が所定の閾値以上 3- 3: Stair width W (width) is more than a predetermined threshold
3-4:階段の長さ L (length)が所定の閾値以上 3-4: Stair length L (length) is greater than or equal to the specified threshold
など同時に満たすものを抽出することが好ましい。 It is preferable to extract those satisfying simultaneously.
図 15は、階段検出器 5の階段検出処理の手順を示すフローチャートである。図 15 に示すように、先ず、入力された平面データの平面パラメータなどに基づき、入力さ れた平面が例えば接地面と水平であるか否かなど、歩行又は移動可能である平面か 否かを判断する(ステップ Sl)。ここで、どのような平面が水平であるか又は移動可能 であるかの条件は、ロボット装置の機能に応じて設定すればよい。例えば、入力平面 の平面べクトノレを η (η , η , n )とした場合、 | sin n | >min であれば水平である  FIG. 15 is a flowchart showing the steps of the staircase detection process of the staircase detector 5. As shown in Fig. 15, first, based on the plane parameters of the input plane data, whether or not the input plane is a plane that can be walked or moved, such as whether or not it is horizontal with the ground plane, for example. Judge (Step Sl). Here, the condition of what plane is horizontal or movable may be set according to the function of the robot apparatus. For example, if the plane vector of the input plane is η (η, η, n), it is horizontal if | sin n |> min
X y z — 1 z th と判断すること力できる。ここで、 min は、水平面を判断するための閾値であり、例え  X y z — Can be judged as 1 z th. Here, min is a threshold for judging the horizontal plane.
th  th
ば、使用する距離データ、平面検出など精度を考慮して min = 80° などとして、水 For example, min = 80 ° in consideration of accuracy such as distance data to be used and plane detection.
th  th
平面に対して ± 10° までの傾きであれば水平と判断して検出するなどとすることがで きる。または、例えば、 ± 30° 程度の傾きがあっても歩行または移動可能であれば、 それらの角度範囲の平面を抽出するようにすればよ!/、。ステップ S 1にて水平でな!/、 と判断した場合 (ステップ SI : No)、検出に失敗したことを出力して処理を終了し、次 の平面データについての処理を実行する。 If it is tilted to ± 10 ° with respect to the plane, it can be detected as being horizontal. Or, for example, if you can walk or move even if there is an inclination of about ± 30 °, you can extract the plane of those angular ranges! / ,. If it is determined in step S 1 that it is not horizontal! /, (Step SI: No), it will output that the detection has failed and the processing will be terminated. The process for the plane data is executed.
次に、平面が水平である場合 (ステップ S I : Yes)、平面の境界 (形状)を認識する ための処理を行う。ここでは、例えば Sklanskyのアルゴリズム(J. Sklansky, "Measuring concavity on a rectangular mosaic , IEE ^ frans し omput.21, 1974, pp.1355—1364)や Melkmanのァノレゴリズム (Melkman A., "On-line Construction of the Convex Hull of a Simple Polygon Information Processing Letters 25,1987,p. l l)などの凸包や、ノィ ズ除去による平滑化によって、入力平面を包含する多角形を求める(ステップ S2)。 そして、この多多角形の前後の境界線をフロントエッジ及びバックエッジなどの階段 パラメータを求める(ステップ S3)。そして、フロントエッジ及びバックエッジの両境界 線から、本実施の形態においては、階段踏面を示す平面における幅 W (width)及び 長さし (length)を求め、これらの値が所定の閾値より大き!/、かどうか判断する(ステツ プ S4)。踏面の幅及び長さが所定の閾値以上でな!/、場合 (ステップ S4: No)、ロボッ ト装置が移動可能な平面ではないとし、次の平面データについて再びステップ S 1か らの処理を繰り返す。  Next, if the plane is horizontal (step SI: Yes), processing is performed to recognize the plane boundary (shape). Here, for example, Sklansky's algorithm (J. Sklansky, "Measuring concavity on a rectangular mosaic, IEE ^ frans and omput.21, 1974, pp.1355-1364) and Melkman's analogy (Melkman A.," On-line Construction A polygon that includes the input plane is obtained by a convex hull such as the Convex Hull of a Simple Polygon Information Processing Letters 25, 1987, p. ll) or by smoothing by noise removal (step S2). Then, step parameters such as a front edge and a back edge are obtained from the boundary lines before and after the polygon (step S3). In the present embodiment, the width W (width) and the length (length) in the plane showing the stepped tread are obtained from the boundary lines of the front edge and the back edge, and these values are larger than a predetermined threshold value. Judge whether it is! / (Step S4). If the tread width and length are not more than the predetermined threshold! / (Step S4: No), the robot device is not a movable plane, and the next plane data is processed again from step S1. repeat.
平面の幅及び長さが所定の閾値以上である場合 (ステップ S4: No)、移動可能な 踏面であると判断し左右のマージン(Left Margin, Right Margin)を計算し(ステップ S 5)、これらの情報を階段データ D3として出力する。  If the width and length of the plane are greater than or equal to the predetermined threshold (Step S4: No), it is determined that the tread is movable and the left and right margins (Left Margin, Right Margin) are calculated (Step S5). Is output as staircase data D3.
次に、ステップ S2において凸包によって入力平面を包含する多角形を求める方法 について説明する。図 16は、凸多角形を示す模式図であって、図 16Aは、入力され た一の平面に属すると判断されたサポーティングポイント全て(同一平面であって連 続した領域に含まれるとされる距離データ点群)が含まれる領域を示し、図 16Bは、 図 16Aに示す図形から求めた凸多角形である。ここで示す凸多角形は、与えられた 平面図形 (サポーティングポイントが含まれる領域)を含む最小の凸集合を求める凸 包(convex hull)を利用したものとすることができる。なお、 Gで示す点は、後述するが 、踏面の幅 Wを求める際に使用するもので、例えばサポーティングポイントが含まれ る領域の重心などの点 (参照点)を示す。  Next, a method for obtaining a polygon including the input plane by the convex hull in step S2 will be described. FIG. 16 is a schematic diagram showing a convex polygon. FIG. 16A shows that all supporting points determined to belong to one input plane (same plane and included in a continuous area). FIG. 16B shows a convex polygon obtained from the figure shown in FIG. 16A. The convex polygon shown here can be obtained by using a convex hull for obtaining a minimum convex set including a given plane figure (an area including a supporting point). As will be described later, the point indicated by G is used when determining the width W of the tread, and indicates, for example, a point (reference point) such as the center of gravity of the region including the supporting point.
このような凸包を利用して凸多角形を求めるアルゴリズムの例として、上述したように 、 Melkmanのアルゴリズム、 Sklanskyのアルゴリズムなどがある。図 17は、 Melkmanの アルゴリズムを説明するための模式図である。図 17に示すように、与えられた図形に 含まれる点を 3点 PI , P2, P3抽出し、 ^,ΡΙ , P2を結ぶ線分を引き、 ^,ΡΙ , Ρ3、, Ρ 2, Ρ3を通る直,線を引く。これにより、 3点、 PI , Ρ2, Ρ3力、らなる三角形 AR4を含む 5 つの領域 AR;!〜 AR5に区画される。そして、次に選択した点 Ρ4がどの領域に含ま れるかを判断して多角形を形成しなおすという処理を繰り返して凸多角形を更新して いく。例えば Ρ4が、領域 AR1に存在する場合、 P1 , Ρ2, Ρ4, Ρ3の順序で結んだ線 分に囲まれた領域が更新された凸多角形となる。また、領域 AR3, AR4に点 Ρ4が存 在する場合には、それぞれ P1 , Ρ2, Ρ3, Ρ4の順序で結んだ線分に囲まれた領域, P1 , Ρ4, Ρ2, Ρ3の順序で結んだ線分に囲まれた領域として凸多角形を更新する。 一方、領域 AR4、すなわち凸多角形内部に点 Pが含まれる場合は、凸多角形は更 新せず、また、領域 AR2に点 P4がある場合は、点 P3は除き PI , P2, P3の順序で結 んだ線分に囲まれた領域として凸多角形を更新する。本実施の形態においては、全 てのサポーティングポイントに対して、各点に含まれる領域を考慮して凸多角形を生 成すること力 Sでさる。 Examples of algorithms for obtaining a convex polygon using such a convex hull include Melkman's algorithm and Sklansky's algorithm as described above. Figure 17 shows Melkman's It is a schematic diagram for demonstrating an algorithm. As shown in Fig. 17, three points PI, P2, and P3 are extracted from a given figure, and line segments connecting ^, ,, and P2 are drawn, and ^, ΡΙ, Ρ3, Ρ2, Ρ3 are drawn. Draw a line straight through. As a result, it is divided into five areas AR;! To AR5, including the three points, PI, Ρ2, Ρ3 forces, and the triangle AR4. Then, the convex polygon is updated by repeating the process of determining which region the next selected dot 4 is included and re-forming the polygon. For example, if Ρ4 exists in the area AR1, the area surrounded by the line segments connected in the order of P1, Ρ2, Ρ4, and Ρ3 becomes the updated convex polygon. In addition, when the point Ρ4 exists in the areas AR3 and AR4, the areas surrounded by the line segments connected in the order of P1, Ρ2, Ρ3, and Ρ4, respectively, are connected in the order of P1, Ρ4, Ρ2, and Ρ3. The convex polygon is updated as an area surrounded by the line segment. On the other hand, if the point P is included in the area AR4, that is, the convex polygon, the convex polygon is not updated, and if there is a point P4 in the area AR2, except for the point P3, PI, P2, and P3 The convex polygon is updated as an area surrounded by line segments connected in order. In the present embodiment, the force S is used to generate a convex polygon for all supporting points in consideration of the area included in each point.
図 18は、 Sklanskyのアルゴリズムにより多角形を求める方法を説明するための模式 図である。 Sklanskyのアルゴリズムにより抽出される多角形は、 Weakly Externally Visible Polygonと呼ばれるものである力 上述の Sklanskyのアル比して計算量が少な ぐしたがって高速演算が可能である。  FIG. 18 is a schematic diagram for explaining a method of obtaining a polygon by Sklansky's algorithm. The polygon extracted by Sklansky's algorithm is a force called Weakly Externally Visible Polygon. The amount of calculation is small compared to the above-mentioned Sklansky's Al ratio, so high-speed computation is possible.
与えられた図形を包含する凸多角形を求める場合、図 18Aに示すように、与えられ た図形 131の境界上の任意の点 Xから図形 131を含む円 132に対して半直線を引く 。このとき、点 Xから円 132に引いた半直線のうち、図形 131を横切らない半直線を引 くことができた場合、この点は凸多角形の境界を構成する点であるとする。一方、図 1 8Bに示すように、与えられた図形 133の境界上任意の他の点 yから図形 133を含む 円 134に半直線を引いた場合には、図形 133を横切らない半直線を引くことができ ない。この場合は、この他の点 yは凸多角形の境界を構成しないものとする。以上の ようにして、順次各点が凸多角形の境界を構成するか否力、を判断して選択された点 のみからの図形を求めると、図 16Aに示すような図形が得られる。  When obtaining a convex polygon that includes a given figure, a half line is drawn from an arbitrary point X on the boundary of the given figure 131 to a circle 132 containing the figure 131, as shown in FIG. 18A. At this time, if a half line that does not cross the figure 131 among the half lines drawn from the point X to the circle 132 can be drawn, it is assumed that this point constitutes the boundary of the convex polygon. On the other hand, as shown in Fig. 18B, when a half line is drawn on a circle 134 including figure 133 from any other point y on the boundary of given figure 133, a half line that does not cross figure 133 is drawn. I can't. In this case, the other point y does not constitute a boundary of the convex polygon. As described above, when it is determined whether or not each point sequentially constitutes the boundary of the convex polygon and the figure from only the selected point is obtained, the figure as shown in FIG. 16A is obtained.
この図形を包含する凸多角形を求めることで、図 16Bの凸多角形を得ることができ る。ここで、本実施の形態においては、ステレオビジョンシステム 1の精度、特性など を考慮し、図 16Aから凸多角形を求める場合には、図 16Bに示すように、図 16Aの 図形に外接する凸多角形を求めるものとして説明するが、カメラの精度、特性などを 考慮し、例えば図 16Aの図形に内接する凸多角形を求めるようにしてもよいことは勿 論である。また、これらの方法を平面の傾き度合いや、周囲の状況に応じて使い分け るようにしてあよレヽ。 By calculating the convex polygon that encompasses this figure, the convex polygon in Figure 16B can be obtained. The Here, in this embodiment, when the convex polygon is obtained from FIG. 16A in consideration of the accuracy, characteristics, etc. of the stereo vision system 1, as shown in FIG. 16B, the convex circumscribing the figure in FIG. 16A is obtained. Although the description will be made assuming that a polygon is obtained, it is a matter of course that a convex polygon inscribed in the figure of FIG. 16A may be obtained in consideration of the accuracy and characteristics of the camera. Also, use these methods according to the degree of inclination of the plane and the surrounding conditions.
また、図 15のステップ S2において凸包によって入力平面を包含する多角形を求め た場合、非凸多角形形状の階段について問題が発生する。図 19は、この問題を示 す模式図であって、図 19Aは、入力される平面であり stepOは非凸多角形形状の階 段である。図 19Bは、凸包による stepOの多角形表現結果であり、非凸部分に関して 望ましい結果と大きな乖離が生じている。このような非凸多角形を扱う方法として、ギ ヤップ除去とラインフィットによる平滑化によって多角形を求める方法が考えられる。 ギャップ除去とラインフィットによる平滑化によって入力平面を包含する多角形を求 める方法について説明する。図 20は、平滑化を示す模式図であって、図 20Aは、入 力された一の平面に属すると判断されたサポーティングポイント全て(同一平面であ つて連続した領域に含まれるとされる距離データ点群)が含まれる領域である入力多 角形(input polygon)を示し、図 20Bは、入力平面を示す多角形から不連続なギヤッ プを除去し(close gaps)平滑化した多角形(ギャップ除去多角形: gaps closed polygon)を示し、図 20Cは、図 20Bで得られた多角形に対してラインフィッティングに より(fit line segments)更に平滑化した多角形(平滑化多角形: smoothed polygon)で ある。ここで、図 21は、ギャップ除去とラインフィットによる平滑化によって入力平面を 包含する多角形を求める処理のプログラム例を示す図であり、多角形から不連続な ギャップを除去する Close gaps処理、及び得られた多角形に対してラインフイツティン グにより更に平滑化する Fit line segments処理を示している。  In addition, when a polygon including the input plane is obtained by a convex hull in step S2 in FIG. FIG. 19 is a schematic diagram showing this problem. FIG. 19A is an input plane, and stepO is a non-convex polygonal step. Figure 19B shows the polygonal representation result of stepO by the convex hull, and there is a big difference from the desired result for the non-convex part. As a method of handling such non-convex polygons, a method of obtaining polygons by smoothing by gap removal and line fitting can be considered. A method for obtaining a polygon that includes the input plane by gap removal and smoothing by line fitting is described. FIG. 20 is a schematic diagram showing smoothing. FIG. 20A shows all supporting points determined to belong to one input plane (distances included in a continuous area on the same plane). Figure 20B shows an input polygon that is a region that contains data points, and Figure 20B shows a smoothed polygon (gap) that removes discontinuous gaps from the polygon that represents the input plane (close gaps). Fig. 20C shows the polygon obtained by smoothing the polygon obtained by line fitting (fit line segments) to the polygon obtained in Fig. 20B (smoothed polygon: smoothed polygon). It is. Here, FIG. 21 is a diagram showing a program example of a process for obtaining a polygon that includes an input plane by gap removal and smoothing by line fitting. Close gaps processing for removing discontinuous gaps from the polygon, and The Fit line segments process is shown in which the obtained polygon is further smoothed by line fitting.
まず、ギャップ除去の方法について説明する。多角形を示す頂点から連続する 3つ の頂点を選び、この中央の点が端点を結んだ直線から大きく離れている場合にこの 中央の点を除去する。残った頂点について、この処理を除去する点が無くなるまで続 ける。 次に、ラインフィットの方法について説明する。多角形を示す頂点から連続する 3つ の頂点を選び、最小二乗法によりこれらの 3点を近似する直線とこの直線と 3点の誤 差を求める。求められた全ての近似直線と誤差について、誤差の小さい順に並べ、 誤差がある閾値より小さい場合に、中央の点を除去し、端点の位置を近似直線によ つて再計算する。この処理を除去する点が無くなるまで続ける。 First, the gap removal method will be described. Select three consecutive vertices from the vertices that represent the polygon, and if this central point is far from the straight line connecting the end points, remove this central point. Continue for the remaining vertices until there are no more points to remove. Next, a line fitting method will be described. Three consecutive vertices are selected from the vertices representing the polygon, and a straight line approximating these three points and the error between this straight line and the three points are obtained by the least square method. All the approximate lines and errors obtained are arranged in ascending order of error, and if the error is smaller than a certain threshold, the center point is removed and the position of the end point is recalculated using the approximate line. This process continues until there are no more points to remove.
次に、図 15のステップ S3における処理について説明する。先ず、得られた多角形( 図 16B、図 20C)から上述した階段パラメータを算出する。図 22は、階段パラメータ の算出方法を説明するための模式図である。図 22Aに示すように、得られた多角形 140力 点 141〜点 147により囲まれる領域であるものとする。ここで、ロボット装置 2 01からみて多角形 140の前側の境界を構成する線分がフロントエッジ FE、奥側の境 界を構成する線分がバックエッジ BEである。  Next, the process in step S3 in FIG. 15 will be described. First, the above-mentioned staircase parameters are calculated from the obtained polygons (FIGS. 16B and 20C). FIG. 22 is a schematic diagram for explaining a method for calculating the stair parameter. As shown in FIG. 22A, it is assumed that the region is surrounded by the obtained polygon 140 force points 141 to 147. Here, when viewed from the robot apparatus 201, the line segment forming the front boundary of the polygon 140 is the front edge FE, and the line segment forming the back boundary is the back edge BE.
階段踏面の幅 Wは、フロントエッジ FEの中心点 C と参照点 Gとを結ぶ線分の長さ  The width W of the stair tread is the length of the line connecting the center point C of the front edge FE and the reference point G
FE  FE
を dl、バックエッジ BEの中心点 C と参照点 Gとを結ぶ線分の長さを d2としたとき、 Is dl and the length of the line segment connecting the center point C of the back edge BE and the reference point G is d2.
BE  BE
幅 W = dl + d2とすることができる。 The width can be W = dl + d2.
ここで、参照点 Gは、踏面となる平面の略中心であればよぐ例えば、全サポーティ ングポイントの中心点としたり、多角形 140の重心としたり、フロントエッジ FE及びバッ クエッジ BEの端点を結んだ図 22Bに示す安全領域 152の重心としたりすることがで きる。  Here, the reference point G should be the approximate center of the tread surface, for example, the center point of all supporting points, the center of gravity of the polygon 140, the end points of the front edge FE and the back edge BE. Or the center of gravity of the safety area 152 shown in FIG. 22B.
こうして得られたフロントエッジ FE、バックエッジ BE、参照点 Gに基づき、階段の長 さ L及び幅 Wを求めステップ S4の処理を実行する。階段の長さ Lは、フロントエッジ F E及びバックエッジ BEの長さのうち例えば短い方としたり、以下に示す左右のマージ ンを含めたフロントエッジ FE及び左右のマージンを含めたバックエッジ BEのうち長い 方としたりすること力 Sでさる。  Based on the front edge FE, the back edge BE, and the reference point G obtained in this way, the length L and width W of the stairs are obtained and the process of step S4 is executed. The length L of the stairs is, for example, the shorter of the lengths of the front edge FE and the back edge BE, or the front edge FE including the left and right margins shown below and the back edge BE including the left and right margins. Use the power S to make the longer one.
次に、ステップ S5におけるマージン算出方法について説明する。図 23は、最終的 に認識される踏面及び階段パラメータを説明するための模式図である。本実施の形 態においては、図 22B、図 23に示すように、安全領域 152の左右端部にマージン M , Mを設け、この左右のマージン M , Mを含んだ領域 151を最終的に踏面として Next, the margin calculation method in step S5 will be described. FIG. 23 is a schematic diagram for explaining the tread surface and the step parameter finally recognized. In this embodiment, as shown in FIGS. 22B and 23, margins M and M are provided at the left and right end portions of the safety region 152, and the region 151 including the left and right margins M and M is finally formed on the tread. As
1 2 1 2 1 2 1 2
認識するものとする。左右のマージン M , Mは、フロントエッジ FE及びバックエッジ BEにて規定される安全領域 152の外側に多角形がはみ出している場合、先ず、そ れらの点を選択する。図 22Aにおいて、例えば右マージン Mを求める場合であれば It shall be recognized. Left and right margins M and M are front edge FE and back edge If polygons protrude outside the safety area 152 specified by BE, first select those points. For example, in Fig. 22A,
2  2
、点 142, 143, 146である。安全領域 152の右側に隣接した右マージン Mを求める  Points 142, 143 and 146. Find right margin M adjacent to the right side of safety area 152
2 際は、安全領域 152から最も離れた点である点 142を選択し、この点 142からフロン トエッジ FE、バックエッジ BEに対して垂線を下ろす。そして、これら垂線及びフロント エッジ FE、バックエッジ BEに囲まれる領域 151を踏面として認識するものとする。な お、このマージンの求め方としては、点 142を通り、フロントエッジ FE又はバックエツ ジ BEと交差する線分を引くのみでもよい。  On the other hand, the point 142, which is the point farthest from the safety area 152, is selected, and a perpendicular is drawn from this point 142 to the front edge FE and the back edge BE. Then, it is assumed that the region 151 surrounded by the perpendicular line, the front edge FE, and the back edge BE is recognized as a tread. The margin may be obtained by simply drawing a line segment that passes through the point 142 and intersects the front edge FE or the back edge BE.
ここで、図 22Bに示すように、フロントエッジ FEと同一直線における左マージン M の長さを lmfとし、バックエッジ BEと同一直線における左マージン Mの長さを lbmと する。同様に、フロントエッジ FE, ノ ックエッジ BEとそれぞれ同一直線における右マ 一ジン Mの長さを rfm, rbmとする。  Here, as shown in FIG. 22B, the length of the left margin M on the same straight line as the front edge FE is lmf, and the length of the left margin M on the same straight line as the back edge BE is lbm. Similarly, let rfm and rbm be the length of the right margin M on the same straight line as the front edge FE and knock edge BE, respectively.
2  2
このようにして多角形からフロントエッジ FE、バックエッジ BEを求めて階段を認識す ることの効果について説明しておく。図 24A及び図 24Bは、 2種類の階段を示す模 式図である。図 24Aに示すのは、図 9、図 10に示したような踏面が長方形の形状の 階段であるが、図 24Bは、螺旋(spiral)状の階段である。この図 24Bのような螺旋階 段の場合、フロントエッジ FEに対してバックエッジ BEは平行でない。したがって、例 えば単に検出した平面から長方形領域を抽出してしまうようなアルゴリズムを適用で きない場合がある。したがって、本実施の形態のように、検出した平面から多角形を 求め、フロントエッジ FE及びバックエッジ BEを求めることにより、このような螺旋階段 であってもロボット装置が昇降動作することが可能となる。  The effect of recognizing the stairs by finding the front edge FE and the back edge BE from the polygon in this way will be described. 24A and 24B are schematic diagrams showing two types of stairs. FIG. 24A shows a staircase having a rectangular tread surface as shown in FIG. 9 and FIG. 10, while FIG. 24B shows a spiral staircase. In the spiral stage as shown in Fig. 24B, the back edge BE is not parallel to the front edge FE. Therefore, for example, an algorithm that simply extracts a rectangular region from a detected plane may not be applicable. Therefore, as in the present embodiment, by obtaining a polygon from the detected plane and obtaining the front edge FE and the back edge BE, the robot apparatus can move up and down even in such a spiral staircase. Become.
次に、図 14に示す階段統合器 6について説明する。階段統合器 6は、階段検出器 5によって検出された階段データ(階段パラメータ) D3を入力とし、それらの階段デー タ D3を時間的に統合することで、より正確かつ高域な階段の情報を推定するもので ある。例えば、ロボット装置の視野が狭い場合などにおいて、一度に階段全体を認識 できない場合がある。そのような場合、例えば、例えば前フレームなどの古い階段デ ータと例えば現フレームなどの新しい階段データとの中で、空間的にオーバーラップ している階段の組を探し、オーバーラップしている階段を統合することにより、新しい 仮想的な階段を定義する。この作業をオーバーラップする階段がなくなるまで続ける ことによって正確な階段を認識することが可能となる。 Next, the staircase integrator 6 shown in FIG. 14 will be described. The staircase integrator 6 inputs the staircase data (stair parameter) D3 detected by the staircase detector 5, and integrates the staircase data D3 over time, so that more accurate and high-level staircase information can be obtained. It is an estimate. For example, when the robot device has a narrow field of view, the entire staircase may not be recognized at a time. In such a case, for example, in the old stair data such as the previous frame and the new stair data such as the current frame, a set of spatially overlapping stairs is searched and overlapped. New by integrating stairs Define a virtual staircase. By continuing this process until there are no overlapping stairs, it is possible to recognize the correct stairs.
図 25は、階段統合器 6における階段統合処理の方法を示すフローチャートである。 まず、現在の階段データ(New Stairs)と古い階段データ(Old Stairs)とを入力とし (ス テツプ S 11)、新しい階段データ及び古い階段データの全てを 1つの集合 (ujnion)と する(ステップ S12)。これら合わされた階段データ集合において、空間的にオーバ 一ラップしている階段データを検索し (ステップ S 13)、オーバーラップしている組があ る場合には (ステップ S14 : Yes)、それらの階段を統合して当該階段データ集合に登 録する(ステップ S15)。そして、ステップ S13、 14の処理を空間的にオーバーラップ する階段の組がなくなるまで続け (ステップ S14: No)、最終的に更新された階段デ ータ集合を階段データ D4として出力する。  FIG. 25 is a flowchart showing a method of staircase integration processing in the staircase integrator 6. First, the current stair data (New Stairs) and the old stair data (Old Stairs) are input (Step S11), and all the new stair data and old stair data are made into one set (ujnion) (Step S12). ). In the combined staircase data set, the spatially overlapping staircase data is searched (step S13), and if there are overlapping sets (step S14: Yes), those staircases are searched. And are registered in the staircase data set (step S15). Then, the processing in steps S13 and S14 is continued until there is no spatially overlapping staircase pair (step S14: No), and finally the updated staircase data set is output as staircase data D4.
図 26は、オーバーラップしている階段データを統合するステップ S 13における処理 を説明するための模式図である。図 26は、空間的にオーバーラップしている階段デ ータ ST11 , ST12を示す。空間的にオーバーラップしているかどうかの判断には、例 えば 2つの階段データ ST11 , ST12の参照点 Gにおける高さの差(距離)と、左右の マージンを含めた踏面の領域が重なっている面積の大きさを利用することができる。 すなわち、 2つの階段の重心 G , G の高さの差が閾値 (maxdz)以下であり、かつ、  FIG. 26 is a schematic diagram for explaining the processing in step S13 for integrating overlapping staircase data. FIG. 26 shows spatially overlapping staircase data ST11 and ST12. To determine whether or not there is a spatial overlap, for example, the height difference (distance) at the reference point G of the two staircase data ST11 and ST12 overlaps the tread area including the left and right margins. The size of the area can be used. That is, the difference in height between the centroids G and G of the two stairs is below the threshold (maxdz), and
11 12  11 12
オーバーラップしている面積の大きさが閾値 (minarea)以上ある場合には、これらの 2 つの階段データが示す踏面はオーバーラップして!/、ると判断すること力 Sできる。その 場合には図 26の下図に示すように、階段データ ST11 , ST12を統合して重心 G の If the size of the overlapping area is greater than or equal to the threshold (minarea), it can be determined that the treads indicated by these two staircase data overlap! In this case, as shown in the lower diagram of FIG. 26, the staircase data ST11 and ST12 are integrated to obtain the center of gravity G.
13 階段データ ST13とする。  13 Staircase data ST13.
ここで、統合に際しては、階段データ ST11 , ST12を含む外枠の領域をステップ S T13とし、統合前の階段データ ST11及び階段データ ST12の左右のマージンを除 Vヽた安全領域を含む領域を統合後の新たな安全領域 165とし、階段データ ST13か らこの安全領域 165を除いた領域をマージン M , Mとする。統合後の安全領域 165  Here, when integrating, the area of the outer frame including the staircase data ST11 and ST12 is set as step ST13, and the area including the safety area excluding the left and right margins of the staircase data ST11 and the staircase data ST12 before integration is integrated. The new safety area 165 later is set, and the area obtained by removing the safety area 165 from the staircase data ST13 is defined as margins M and M. Safety area after integration 165
1 2  1 2
により統合されたフロントエッジ FE及びバックエッジ BEを求めることができる。 Thus, the integrated front edge FE and back edge BE can be obtained.
すなわち、統合後の階段データ ST13におけるフロントエッジ FEの両端点は、階段 データ ST11のフロントエッジ FEと階段データ ST12のフロントエッジ FEの左右の端 点を比較し、右端点 163はより右側にある方、左端点はより左側にある方とされる。ま た、フロントエッジ FEのラインの位置は、階段データ ST11のフロントエッジ FEと階段 データ ST12のフロントエッジ FEを比較してよりロボット装置に近い方(手前側)のライ ン位置とされる。同様にバックエッジ BEもより奥側にある方の位置が選択され、より左 右に広がるようにその左右の端点 161 , 162が選択される。 That is, the two end points of the front edge FE in the combined staircase data ST13 are the left and right ends of the front edge FE of the staircase data ST11 and the front edge FE of the staircase data ST12. By comparing the points, the right end point 163 is on the right side, and the left end point is on the left side. In addition, the position of the line of the front edge FE is the line position closer to the robot device (front side) by comparing the front edge FE of the staircase data ST11 and the front edge FE of the staircase data ST12. Similarly, the position of the back edge BE on the far side is selected, and its left and right end points 161 and 162 are selected so as to spread further left and right.
なお、統合方法はこれに限るものではない。本実施の形態においては、ロボット装 置の視界などを考慮してフロントエッジ FE及びバックエッジ BEにより決まる四角形の 領域、統合データ ST13が共に最も大きくなるように統合するものとしている力 S、例え ば、十分視界が広い場合や、距離データの精度が十分高い場合においては、 2つの 階段データを単に合わせた領域を統合後の階段データとするなどしてもょレ、。また、 統合後の参照点 Gは、階段データ ST11と階段データ ST12に含まれるサポーティン グポイントの数の比に応じて重み付き平均をとつて求めることができる。  The integration method is not limited to this. In this embodiment, taking into account the field of view of the robot device, the square area determined by the front edge FE and the back edge BE, and the force S that is integrated so that the integrated data ST13 is the largest, for example, If the field of view is sufficiently wide or the accuracy of the distance data is sufficiently high, the area obtained by simply combining the two staircase data can be used as the integrated staircase data. Further, the reference point G after integration can be obtained by taking a weighted average according to the ratio of the number of supporting points included in the staircase data ST11 and the staircase data ST12.
次に、図 7に示す階段昇降制御器 4について説明する。階段昇降制御器 4は、階 段検出器及び階段統合器 6によって統合されて検出された階段データ D4を用いて 実際にロボット装置が階段の昇降動作を行うための制御を行う。この昇降制御には、 階段を探す動作も含むものとする。  Next, the stair lift controller 4 shown in FIG. 7 will be described. The stair lift controller 4 performs control for the robot device to actually lift and lower the stair using the stair data D4 integrated and detected by the stair detector and stair integrator 6. This lifting control includes the operation of searching for stairs.
本実施の形態において実現した階段昇降動作は、次の 5つのステートマシンとして 構築すること力でさる。  The stair-climbing operation realized in this embodiment can be achieved by constructing the following five state machines.
4- 1 :サーチ (Search)動作  4-1: Search operation
ロボット装置の頭部に搭載されたステレオビジョンシステムにて距離画像を取得する ため、首を振って周囲を見廻し、環境の情報を集める。  In order to acquire a distance image with the stereo vision system mounted on the head of the robotic device, shake the head to look around and collect environmental information.
4 2 :ァライン (Align)動作  4 2: Align operation
階段に対して正対し、かつ、決められた一定量の距離位置に移動する。図 27は、 ァライン動作を説明するための図である。図 27において、領域 170がロボット装置の 認識した階段踏面の 1段目であるとする。ァライン動作においては、踏面 170のフロ ントエッジ FEの中心点から直交する方向に所定距離 ad (align_distance)離れた目的 とする位置(以下、ァライン位置という。)に移動する。この場合、現在のロボット装置 の位置が点 171であって、 目的とするァライン位置が点 172である場合、両者の距離 が所定の閾値 01 _(1以上離れて!/、る場合及びフ口ントエッジ FEに直行する方向と口 ボット装置の向く方向との角度差が所定の閾値 max_a以上ある場合、ロボット装置は 目的とするァライン位置 172に移動を開始し、これらの条件を満たしたとき、ァライン 動作が完了したと判断するものとする。これらの閾値としては、例えば max_d = 3 (cm) 、 max_a = 2° とすること力 Sできる。 It faces the stairs and moves to a certain fixed distance. FIG. 27 is a diagram for explaining the alignment operation. In FIG. 27, it is assumed that the area 170 is the first step of the stair tread recognized by the robot apparatus. In the align operation, the robot moves to a target position (hereinafter referred to as an align position) that is a predetermined distance ad (align_distance) in the direction orthogonal to the center point of the front edge FE of the tread 170. In this case, if the current position of the robot device is point 171 and the target align position is point 172, the distance between the two If There there angular difference between the direction facing the direction and mouth bot device perpendicular to the away predetermined threshold 01 _ (s! /, Ru if and full opening Ntoejji FE is above a predetermined threshold max_ a, the robot object It is determined that the alignment operation has been completed when the movement is started to the alignment position 172, and when these conditions are satisfied, for example, m ax _d = 3 (cm), max_a = 2 ° Force S
4 - 3 :アプローチ (Approach)動作  4-3: Approach operation
アプローチ動作では、ロボット装置が階段の直前まで移動する。図 28は、アブロー チ動作を説明するための模式図である。図 28に示すように、階段と正対し  In the approach operation, the robot apparatus moves to just before the stairs. FIG. 28 is a schematic diagram for explaining the approach operation. As shown in Figure 28,
Align_distanceだけ離れた目的位置であるァライン位置 172に移動してァライン動作 を終了したロボット装置 201は、階段の昇降を行うために、踏面 170のフロントエッジ FEの中心点 C とロボット装置 201とが正対し、かつその距離が所定の値 ax ( When the robot apparatus 201 moves to the alignment position 172, which is the target position separated by Align_distance, and completes the alignment operation, the center point C of the front edge FE of the tread 170 is aligned with the robot apparatus 201 in order to move up and down the stairs. And the distance is a predetermined value ax (
FE  FE
approach.x)となる目的の位置(以下、アプローチ位置という。 )に移動する。 Move to the target position (hereinafter referred to as approach position) that is approach.x).
4— 4 :クライム(Climb)動作  4—4: Climb movement
階段認識によって得られた階段データを元に階段昇降動作をする。次の踏面 (段) に移動した場合であって、次の段の踏面が観測されている場合には、更に昇る又は 下る動作を続ける。この動作を次の段がなくなるまで続けて行うことにより階段昇降動 作が実現される。  The stairs are moved up and down based on the stairs data obtained by stairs recognition. If it moves to the next tread (step) and the next tread is observed, it continues to move up or down. By continuing this operation until the next step is eliminated, the stair climbing operation is realized.
4 - 5 :フィニッシュ(Finish)動作  4-5: Finish operation
クライム動作にて階段を登る動作をした場合は、最上段にいることを確認し、最上段 の中央へ移動する。クライム動作にて降りる動作をした場合、又は図 9に示すような階 段 ST1である場合には例えば向きを変えるなどして降りる動作をした場合には、床面 に降りたことを認識することで階段昇降動作は終了される。  When climbing stairs by climbing, make sure that you are at the top and move to the center of the top. If the climbing operation is performed by climbing, or if it is a step ST1 as shown in Fig. 9, for example, if it is descending by changing the direction, it should be recognized that it has descended to the floor. The stairs ascent and descent operation ends.
以上の階段昇降処理の動作方法について更に詳細に説明する。図 29は、階段昇 降動作の手順を示すフローチャートである。図 29に示すように、階段昇降制御の処 理が開始されると、サーチ(Search) 'ァライン (Align) 'アプローチ(Approach)動作に よって、階段を検索し、検索した階段に対して対峙した所定位置に移動(ァライン)し 、階段の 1段目に近づくアプローチ動作を実行する (ステップ S21)。このサーチ'ァラ イン'アプローチ動作が成功した場合 (ステップ S22 : Yes)、後述する方法にて階段 昇降を行い (ステップ S23)、成功したことを出力する。近づくことに失敗した場合 (ス テツプ S22 : No)、失敗したことを出力して処理を終了する。この場合は、もう一度、ス テツプ S21の処理から繰り返すなどする。 The operation method of the above-described stair climbing process will be described in more detail. FIG. 29 is a flowchart showing the steps of the stair climbing operation. As shown in Fig. 29, when the stair lift control process is started, the search (Search) 'Align (Approach) operation searches for the staircase and confronts the searched staircase. The robot moves to the predetermined position (aligned) and executes an approach operation approaching the first step of the stairs (step S21). If this search 'align' approach is successful (step S22: Yes) Go up and down (step S23) and output success. If the approach fails (step S22: No), the failure is output and the process is terminated. In this case, repeat from step S21 again.
ここで、ステップ S21におけるサーチ 'ァライン ·アプローチのシーケンスは通常ロボ ット装置が物体や目的地に到達するために用いる制御と同じである。具体的には例 えば以下に示すような方法がある。図 30は、サーチ 'ァライン ·アプローチ処理方法 を示すフローチャートである。  Here, the sequence of the search alignment approach in step S21 is the same as the control that is normally used by the robot device to reach the object or destination. For example, there are the following methods. FIG. 30 is a flowchart showing the search “align approach method”.
図 30に示すように、サーチ 'ァライン ·アプローチが開始されると、サーチ動作(1)を 実行する(ステップ S32)。サーチ動作(1)では、首を振りできるだけ広い範囲の情報 を集める動作とする。その結果、周囲に昇降可能な階段があるかどうかを判断する( ステップ S32)。ここで、検出された階段の中で 1段目の踏面を構成する平面の高さ n を利用し、高さが step_min_z<n < step_max_zを満たす場合に、昇降可能であると判 断する。昇降可能な階段があった場合 (ステップ S32 :Yes)、階段を近くで認識しな おすために、階段に対して決められた距離 (align_distanCe)まで移動するァライン動 作を実行し (ステップ S33)、昇降しょうとしている階段を再度認識する (ステップ S34) 。このステップ S34の動作がサーチ動作(2)である。 As shown in FIG. 30, when the search “align approach” is started, the search operation (1) is executed (step S32). In the search operation (1), the head is swung to collect as much information as possible. As a result, it is determined whether there are stairs that can be raised and lowered around (step S32). Here, using the height n of the plane that forms the first tread among the detected stairs, if the height satisfies step_min_z <n <step_max_z, it is determined that the ascending / descending is possible. If there is a stair that can be moved up and down (step S32: Yes), in order to avoid recognizing the stair nearby, an align operation is performed to move to a predetermined distance (align_distan Ce ) (step S33). ) Re-recognize the stairs that are going up and down (step S34). The operation in step S34 is the search operation (2).
そして、昇降可能な階段であるか否力、を再度確認し (ステップ S35)、サーチ動作( 2)が成功している場合には、再認識した階段に対して対峙しかつ所定の距離のァラ イン位置に移動完了できているか否力、、すなわちステップ S33のァライン動作が成功 しているか否かを確認し (ステップ S36)、昇降可能な階段があり、かつァラインされて いる場合には(ステップ S35、 S36 : Yes)、初段の階段のフロントエッジまで進むァプ ローチ動作を実行する (ステップ S37)。一方、ステップ S35にて昇降可能な階段が ない場合にはステップ S31の処理に戻り、ステップ S36にてァライン動作が成功して V、な!/、場合にはステップ S33の処理から繰り返す。  Then, it is reconfirmed whether or not the stairs can be moved up and down (step S35). If the search operation (2) is successful, the stairs that are re-recognized are confronted with a predetermined distance. Check whether or not the movement to the line position has been completed, that is, whether or not the alignment operation in step S33 has been successful (step S36). Steps S35 and S36: Yes), execute an approach to the front edge of the first step (step S37). On the other hand, if there is no stairs that can be moved up and down in step S35, the process returns to step S31, and in step S36, the alignment operation is successful and V ,!
次に、ステップ S22における階段昇降動作について説明する。階段昇降動作は、 一段上又は下の段(以下、次段という。)を現在の踏面からロボット装置自身が認識で きる場合の昇降動作処理 1と、現在の移動面から次段は認識できない場合等であつ て、 2段以上、上の段又は下の段(以下、 2段以上先の段という。)を認識できる場合 の昇降動作処理 2と、複数段の踏面が認識可能な場合の昇降動作処理 3とがある。 図 31、図 33、図 34は、それぞれ昇降動作処理;!〜 3の処理方法を示すフローチヤ ートである。ここで、以下の説明においては、現在移動中の段(床面を含む)を st印- 0 、次段の段を step_l、その更に次の段を step_2、 m段先の段を step-mとする。 Next, the stair climbing operation in step S22 will be described. Ascending / descending operation is performed when the robot device itself can recognize the upper or lower step (hereinafter referred to as the next step) from the current tread, and when the next step cannot be recognized from the current moving surface. If two or more stages, upper stage or lower stage (hereinafter referred to as two or more stages ahead) can be recognized Lifting / lowering motion processing 2 and lifting / lowering motion processing 3 when a plurality of steps can be recognized. FIG. 31, FIG. 33, and FIG. 34 are flowcharts showing the processing methods of the lifting operation processing;! Here, in the following description, the currently moving stage (including the floor) is indicated by st-0, the next stage is step_l, the next stage is step_2, and the next stage is step-m. And
先ず、次段(step-1)の踏面を観測'認識できる場合の昇降動作処理について説明 する。図 31に示すように、昇降動作処理 1が開始されると、階段を登る/降りる動作( クライム動作(1) )を実行する (ステップ S41)。このクライム動作(1)では、上述のステ ップ S32において、階段の高さ nを認識できているため、この高さ nの正負の判断を z z  First, the elevating operation process when the tread of the next stage (step-1) can be observed and recognized will be described. As shown in FIG. 31, when the ascending / descending operation process 1 is started, an operation of climbing / descending the stairs (crime operation (1)) is executed (step S41). In this climb operation (1), since the height n of the staircase can be recognized in the above step S32, the positive / negative judgment of this height n is made z z
することにより、昇降モードを切り替える。すなわち、 n < 0であれば降りる動作であり z By doing so, the elevation mode is switched. That is, if n <0, it is a descending action and z
、 n〉0であれば登る動作となる。登る場合と降りる場合では、後述するように、クライ z  , If n> 0, the climbing operation is performed. When climbing up and down, as described later,
ム動作に使用する制御パラメータの値が異なる。すなわち、制御パラメータを切り替 えるのみで、登る動作と降りる動作を切り替え実行することができる。 The control parameter value used for the system operation is different. That is, the climbing operation and the descending operation can be switched and executed only by switching the control parameter.
そして、クライム動作(1)が成功したか否かを判断し (ステップ S42)、成功した場合 (ステップ S42 :Yes)は、サーチ動作(3)を実行する(ステップ S43)。このサーチ動 作(3)は、ステレオビジョンシステムが搭載された頭部ユニットを動かし、周囲の距離 データを取得して次の階段を検出する処理であり、サーチ動作(2)などとほぼ同様の 動作処理である。  Then, it is determined whether or not the climb operation (1) is successful (step S42). If the climb operation (1) is successful (step S42: Yes), the search operation (3) is executed (step S43). This search operation (3) is a process that moves the head unit equipped with the stereo vision system, acquires the surrounding distance data, and detects the next staircase, and is almost the same as the search operation (2). Operation processing.
そして、ステップ S35と同様、サーチ動作(3)が成功したら(ステップ S44 : Yes)、再 びステップ S41の処理を繰り返す。階段が検索されな力 た場合 (ステップ S44: No )、階段を登り切ったか、又は下りきつたものと判断し、階段面の中央など所定の位置 まで移動するなどのフィニッシュ動作を実行し (ステップ S45)、処理を終了する。 次に、ステップ S41のクライム動作(1)について詳細に説明する。図 32は、ロボット 装置が認識しているか又は認識する予定の階段面を示す模式図である。図 32に示 すように、例えば、現在移動中のロボット装置の足底 121L/Rが踏面 181にあるとす る。また、この図 32においては、フロントエッジ FE及びバックエッジ BEに挟まれる安 全領域及びこれに隣接する左右のマージン M , Mを踏面と認識することとする。こ  Then, as in step S35, when the search operation (3) is successful (step S44: Yes), the processing of step S41 is repeated again. If the stairs is not searched for (Step S44: No), it is judged that the stairs have been climbed up or down, and a finishing operation such as moving to a predetermined position such as the center of the stairs is executed (Step S45), the process is terminated. Next, the climb operation (1) in step S41 will be described in detail. FIG. 32 is a schematic diagram showing a staircase surface that the robot apparatus recognizes or intends to recognize. As shown in FIG. 32, for example, it is assumed that the sole 121L / R of the currently moving robot apparatus is on the tread 181. In FIG. 32, the safety region between the front edge FE and the back edge BE and the left and right margins M and M adjacent thereto are recognized as the tread. This
1 2  1 2
のとき、ロボット装置は、次の次段(st印- 2)の踏面 182を認識できている。ここで、踏 面 181と踏面 182との間にはその蹴り上げなどによりギャップ 184が存在するものと する。昇降動作(1)では、現在の段(st印- 0)の踏面 181から次の段(st印- 1)の踏面 182に移動(クライム動作)可能であるかを判断する力 例えば、以下の基準を満た すものを移動可能と判断するものとする。 In this case, the robot apparatus can recognize the tread surface 182 of the next next stage (st mark-2). Here, it is assumed that there is a gap 184 between the tread 181 and the tread 182 due to the kicking up or the like. To do. In the lifting / lowering operation (1), it is possible to determine whether it is possible to move (climb operation) from the tread 181 of the current stage (st mark-0) to the tread 182 of the next stage (st mark-1). Those that meet the criteria shall be deemed movable.
5— 1 :次段(st印- 1)の踏面 182のフロントエッジ FEに十分近ぐ角度のずれが所定 の閾値以下  5—1: The front edge of the tread 182 of the next stage (st mark-1) The deviation of the angle sufficiently close to the FE is below the predetermined threshold
5— 2 :次段(st印- 1)の踏面 182の大きさが十分に大きい  5-2: The size of the tread 182 of the next stage (st mark-1) is sufficiently large
5— 3:フロントエッジ FE力も足底 121L/Rの後端までの距離 front_xが指定された 昇降モードにおける制御パラメータ front_x_limiはり大きい  5—3: Front edge FE force is also the distance to the rear end of the sole 121L / R. Front_x is specified Control parameter in lift mode front_x_limi is large
5— 4 :バックエッジ BE力も足底 121L/Rの前端までの距離 back_xが昇降モードに おける制御パラメータ back_x_limiはり大きい  5—4: Back edge BE force is also the distance to the front edge of the sole 121L / R. Back_x is the control parameter in lift mode back_x_limi is large
ここで、更に次段(st印- 2)の踏面 183を観測できた場合、次段(step-1)の踏面 18 2の参照点における高さ zlと更に次の段(st印- 2)の踏面 183の参照点における高さ z2の差(z2— zl)から、次段(step-l)の踏面 182からその次の段(st印- 2)の踏面 18 3へのクライム動作が登りであるか下りであるかを判断することができる。なお、 2段先 の段(step-2)の踏面 183が認識できない場合は、現在の昇降状態が維持されるもの とすればよい。  Here, when the tread 183 of the next step (st mark-2) can be observed, the height zl at the reference point of the tread 18 2 of the next step (step-1) and the next step (st mark-2) From the difference in height z2 at the reference point of tread 183 (z2−zl), climbing from tread 182 of the next step (step-l) to tread 18 3 of the next step (st mark-2) It is possible to determine whether the vehicle is down or down. If the tread surface 183 of the second step (step-2) cannot be recognized, the current lifting state may be maintained.
上記の 5—;!〜 5— 4からクライム動作可能と判断した場合は、階段を登る又は降り るクライム動作を実行する。ロボット装置は、現在の段(st印- 0)の踏面 181において、 踏面 181のバックエッジ BEにァラインしている。ここで、踏面 181と踏面 182との間  If it is determined from the above 5— ;! to 5—4 that the climb operation is possible, the climb operation to climb up or down the stairs is executed. The robot apparatus aligns with the back edge BE of the tread 181 at the tread 181 of the current stage (st mark-0). Here, between tread 181 and tread 182
0  0
のギャップ 184が大きい場合には、次段(st印- 1)の踏面 182のフロントエッジ FEに ァラインする動作をした後に、次段に移動し、そのバックエッジ BEにァラインする。そ して、次のクライム動作にて、次の段(step-2)の踏面 183のフロントエッジ FEにァラ When the gap 184 is large, after moving to the front edge FE of the tread 182 of the next stage (st mark-1), it moves to the next stage and aligns with its back edge BE. In the next climb operation, the alarm is applied to the front edge FE of the tread 183 of the next step (step-2).
2 インし、踏面 183に移動し、そのバックエッジ BEにァラインする。すなわち、例えば、  2 in, move to tread 183 and align to back edge BE. That is, for example,
2  2
次の段の踏面のフロントエッジ FEにァラインして、昇降動作し、その移動した踏面の バックエッジ BEにァラインするまでをクライム動作とする。 The climb operation is aligned with the front edge FE of the tread on the next stage, and the climb operation is performed until it aligns with the back edge BE of the moved tread.
また、ギャップ 184が小さい場合には、現在の段(step-0)の踏面 181のバックエツ ジ BEと次段の踏面 182におけるフロントエッジ FEがほぼ一致するものとして、何れ When the gap 184 is small, it is assumed that the back edge BE of the tread 181 of the current step (step-0) and the front edge FE of the tread 182 of the next step substantially coincide with each other.
0 1 0 1
か一方のエッジにのみァライン動作するようにしてもよい。すなわち、現在の踏面 181 のバックエッジ BEにァラインして次段の踏面 182に移動し、そのバックエッジ BEにIt is also possible to perform an align operation only on one of the edges. That is, the current tread 181 Align to the back edge BE and move to the next tread 182.
0 1 ァラインする力、、次段の踏面 182のフロントエッジ FEにァラインして次段の踏面に移 動し、更に次の段の踏面 183のフロントエッジ FEにァラインすればよい。この場合、 クライム動作とは、次段のフロントエッジ FEにァランする処理を省略し、次段に移動し て移動した踏面のバックエッジ BEにァライン動作を実行する処理となる。 0 1 Aligning force, aligning to the front edge FE of the next step tread 182 and moving to the next step tread, and then aligning to the front edge FE of the next step tread 183. In this case, the climb operation is a process of omitting the process of running to the front edge FE of the next stage and executing the align operation to the back edge BE of the tread moved to the next stage and moved.
以上の昇降動作処理 1は、ロボット装置が階段を昇降動作中に次に移動可能な段 (st印- 1)の踏面を観測できる場合に適用することができる。例えば 2足歩行ロボット装 置であれば、自身の足元を見下ろすことが可能なステレオビジョンシステム 1を搭載し ておく必要がある。  The above-described lifting operation processing 1 can be applied when the robot apparatus can observe the tread surface of the next movable step (st mark-1) during the lifting operation. For example, if it is a biped walking robot device, it is necessary to have a stereo vision system 1 that can look down on its own feet.
次に、次段の踏面を観測 ·認識可能な場合の昇降動作処理 1とは異なり、ロボット装 置の頭部ユニットと体幹部ユニットとの接続部の可動角の制約などにより、現在の段( st印- 0)における踏面から次段(st印- 1)の踏面を観測 ·認識することができず、 2段先 (st印- 2)又はそれ以上先の段(st印- m)の段の踏面を認識可能な場合の昇降動作 処理 2、 3について説明する。先ず、 2段先の段(st印- 2)の踏面を認識可能な場合に ついて説明すると、図 32に示すように、昇降動作処理 2が開始されると、上述と同様 に、サーチ動作 (4)を実行する(ステップ S51)。このサーチ動作 (4)では、ステレオビ ジョンシステム 1により 2段先の段(step-2)の踏面を観察.認識する。このサーチ動作 (4)は、 2段先の段(st印- 2)の踏面を認識する以外、上述のステップ S43などと同様 の処理である。  Next, unlike the lifting / lowering process 1 when the tread of the next stage is observable / recognizable, the current stage (due to restrictions on the movable angle of the connection between the head unit and the trunk unit of the robotic device) The tread of the next stage (st mark-1) cannot be observed / recognized from the tread at st mark-0), and the next step (st mark-2) or beyond (st mark-m) Lifting process 2 and 3 when the step surface can be recognized will be described. First, the case where the tread surface of the second step (st mark-2) can be recognized will be described. As shown in FIG. 32, when the lifting / lowering operation process 2 is started, the search operation ( 4) is executed (step S51). In this search operation (4), the stereovision system 1 observes and recognizes the tread of the second step (step-2). This search operation (4) is the same processing as step S43 described above, except that the tread of the second step ahead (st mark-2) is recognized.
そして、クライム動作(2)を実行する(ステップ S 52)。クライム動作(2)は、クライム動 作(1)と同様の動作である。この場合においても、クライム動作における階段を登る動 作と降りる動作の切り替えは、同じく次段(step-1)の踏面の高さ nにより判断すること z  Then, the climb operation (2) is executed (step S52). The climb operation (2) is the same operation as the climb operation (1). In this case as well, switching between climbing and descending stairs in climbing is also determined by the height n of the tread on the next step (step-1).
カできる。次段(st印- 1)の踏面とは、現在の段(step-0)の踏面より時間的に前に移 動して!/、た段の踏面にお!/、て観測された踏面である。 I can do it. The tread on the next stage (st mark-1) is the tread that was moved in time before the tread on the current stage (step-0)! /, And on the tread on the next stage! / It is.
そして、クライム動作が成功した場合(ステップ S53 : Yes)、ステップ S51にてサー チした結果、 2段先の階段(st印- 2)が検出されていれば (ステップ S54 : Yes)、それ を次の階段として更新し(st印- l = st印 -2) (ステップ S56)、ステップ S51からの処理 を繰り返す。ステップ S51のサーチ動作 (4)にて 2段先の段(step-2)の踏面が検出さ れていない場合(ステップ S 55 : No)、フィニッシュ動作を実行し(ステップ S 55)、処 理を終了する。 If the climbing operation is successful (step S53: Yes), if the result of the search in step S51 is that a staircase two steps ahead (st mark-2) is detected (step S54: Yes), it is Update as the next step (st mark-l = st mark -2) (step S56) and repeat the process from step S51. In step S51, the tread of the second step (step-2) is detected in the search operation (4). If not (Step S55: No), the finish operation is executed (Step S55), and the process is terminated.
なお、ここでは 2段先の段の踏面を観測できることとして説明した力 3段以降先の 踏面を観測できる場合であっても同様にして処理すればよい。  In addition, even if it is possible to observe the tread of the third and subsequent steps described here as being able to observe the tread of the second step ahead, the same processing may be performed.
次に、複数段(以下、 m段)先までの踏面が観測 ·認識可能な場合についの昇降動 作を昇降動作 3として説明する。  Next, the up and down motion when the treads up to multiple steps (hereinafter referred to as m steps) can be observed and recognized will be described as up and down motion 3.
図 34に示すように、;!〜 n段が観測 ·認識できている場合に昇降動作を行う場合、ま ず、サーチ動作(5)を実行する。サーチ動作(5)は、基本的には、ステップ S51と同 様であるが、認識可能な m段先の段(step-m)までの踏面を観測対象として!/、る点が 異なる。  As shown in Fig. 34, the search operation (5) is performed first when the ascending / descending operation is performed when! The search operation (5) is basically the same as step S51, except that the tread surface up to the recognizable m-step ahead (step-m) is the observation target! /.
そして、クライム動作(3)を k段分実行する (ステップ S62)。クライム動作(3)におい ても、現在までに観測されてレ、る複数の踏面の高さの差から昇降モードを決定するこ とができる。すなわち、 i番目、 i— 1番目の踏面の高さ z— z が負であれば階段を下 りる動作となり、 0又は正であれば階段を登る動作モードとすればよい。このクライム 動作 (3)において移動する踏面の情報は、現在の段より時間的に m段前にて観測済 みのデータである。  Then, the climb operation (3) is executed for k stages (step S62). In the climb operation (3), the lift mode can be determined from the difference in height between the multiple treads that have been observed to date. In other words, if the height z-z of the i-th and i- 1st treads is negative, the operation goes down the stairs, and if it is 0 or positive, the operation mode should go up the stairs. The information on the tread moving in this climb operation (3) is the data that has been observed m m ahead of the current stage.
そして、昇降動作が成功した場合 (ステップ S63 : Yes)、現在の踏面より先の階段 データが観測できたか否力、、すなわち m+n〉kであるか否かが判定され (ステップ S 64)、 m+n〉kであれば(ステップ S64 : Yes)、 step-(k+l)〜step-(n+m)を、 step_l〜 st印- (m + n— k) (n = m)として、更新し(ステップ S66)、ステップ S61からの処理を 繰り返す。一方、 m< 0であれば (ステップ S64 : No)、次に移動する対象となる踏面 が存在しないため、フィニッシュ動作を実行し (ステップ S65)、処理を終了する。 以上説明したように、階段昇降動作処理 1〜3においては、クライム動作における登 る動作と降りる動作とで使用する制御パラメータを変更するのみで、階段を登ることも 、降りることも同様の手順にて実行することができる。階段昇降動作に使用する制御 パラメータは、ロボット装置の足底の現在の踏面に対する位置を規制するためのもの である。  If the lifting / lowering operation is successful (step S63: Yes), it is determined whether or not the staircase data ahead of the current tread has been observed, that is, whether m + n> k (step S64). , M + n> k (step S64: Yes), step- (k + l) to step- (n + m) are replaced with step_l to st- (m + n— k) (n = m) Update (step S66) and repeat the process from step S61. On the other hand, if m <0 (step S64: No), there is no tread surface to be moved next, so the finish operation is executed (step S65), and the process ends. As explained above, in steps 1 to 3, the steps for climbing and going down the stairs are the same by simply changing the control parameters used for climbing and descending in climbing. Can be executed. The control parameter used for the stair climbing operation is for regulating the position of the sole of the robot device relative to the current tread.
図 35Aは、ロボット装置により認識されている踏面と足底の関係を説明するための 図、図 35Bは、クライム動作に使用する制御パラメータの一例を示す図である。 FIG. 35A is a diagram for explaining the relationship between the tread and the sole recognized by the robot apparatus. FIG. 35B is a diagram illustrating an example of control parameters used for the climb operation.
図 35Aに示す各制御パラメータは、以下を示す。  The control parameters shown in FIG. 35A are as follows.
step_min :現在の段と次段の段との高さの差 (蹴り上げ)の昇降可能最小値 st印 _max :現在の段と次段の段との高さの差 (蹴り上げ)の昇降可能最大値 ad (align_distance):ァライン位置におけるフロントエッジ FEとロボット装置との間の 距離  step_min: Minimum difference in height difference between the current stage and the next stage (kick-up) st mark _max: Height difference (kick-up) between the current stage and the next stage can be raised / lowered Maximum value ad (align_distance): Distance between the front edge FE and the robot device at the alignment position
ax (approach_x):アプローチ位置におけるフロントエッジ FEとロボット装置との間の 距離  ax (approach_x): Distance between the front edge FE and the robot device at the approach position
front_x_limit :踏面におけるフロントエッジ FEと足底 121の後端部との距離の限界値 ^minimal χ-value)  front_x_limit: Limit value of the distance between the front edge FE on the tread and the rear end of the sole 121 ^ minimal χ-value)
back_x_limit:踏面におけるバックエッジ BEと足底 121の前端部との距離の限界値( maximal x-vaiue  back_x_limit: Limit value of the distance between the back edge BE on the tread and the front edge of the sole 121 (maximal x-vaiue
back_x_desired :バックエッジ BEと足底 121の前端部との距離の欲求値 (desired value)  back_x_desired: Desired value of distance between back edge BE and front edge of sole 121
階段を登る場合には、蹴り上げが step_min_zより小さい場合は段差がある(階段)と 見なさないものとし、蹴り上げが step_max_Zより大きい場合には、階段昇降不可と判断 する。同様に、階段を降りる場合には、蹴り上げが step_max_Zより大きい場合には、階 段と見なさないものとし、 step_min_zより大きい場合には、階段昇降不可と判断するも のとする。 When climbing stairs, kicked is assumed if step_min_z less not considered there is a step (staircase), kicked is greater than Step_max_ Z judges that stair climbing impossible. Similarly, if you go down the stairs, when kicked up it is greater than the step_max_ Z is, shall not be regarded as stairs, in the case step_min_z greater than, also of the judges that stair climbing are not allowed.
align_distanCeは、ァライン動作をする場合にのみ使用するパラメータであり、階段を 登る/降りる動作を実行する階段昇降動作処理を開始する場合、すなわち、初段の 段に対する昇降動作を行う場合に使用される。同様に、 approach_x¾,アプローチ動 作をする場合にのみ使用するパラメータであり、階段を登る/降りる動作を実行する 階段昇降動作処理を開始する場合に使用される。 align_distan Ce is a parameter that is used only when aligning, and is used when starting up / down stairs operation that performs climbing / descending stairs, that is, when raising / lowering the first stage. . Similarly, it is a parameter used only when approach_x¾, an approach operation, and is used when starting a stair climbing operation that performs a climbing / descending operation.
front_x_limit及び back_x_limitは、ロボット装置が認識して!/、る踏面と、ロボット装置の 足底の関係を規定するもので、踏面のバックエッジ BE及びフロントエッジ FEと、足底 の端部との距離、すなわちその踏面に移動した場合における踏面のあまり部分がこ れらの値より小さい場合には、その踏面に移動できない、又は移動できたとしても次 の昇降動作が不能であると判断される。ここで、登り動作において、 front_x_limit及び back_x_limitの値が何れも負であることは、踏面が足底より小さ!/、ことを許すことを示す 。すなわち、登り動作においては、踏面は足底より小さい場合であっても移動可能と 半 IJ断すること力 Sでさる。 The front_x_limit and back_x_limit define the relationship between the tread surface that the robot device recognizes! /, and the sole of the robot device. The distance between the back edge BE and front edge FE of the tread surface and the end of the sole In other words, if a large part of the tread when moving to that tread is smaller than these values, it is impossible to move to that tread or even if it can move It is determined that the lifting / lowering operation is impossible. Here, in the climbing operation, the negative values of front_x_limit and back_x_limit indicate that the tread surface is smaller than the sole! In other words, in climbing motion, even if the tread is smaller than the sole of the foot, it can be moved by half the IJ.
back_x_desiredは、現在の踏面におけるバックエッジ BEに対してロボット装置がァラ インしたい位置におけるバックエッジ BEと足底前端部との距離を示すものであり、図 35Bに示すように、通常、登る場合であれば、 back_x_desiredは、ノ ックエッジ BEより も手前、本実施の形態においては、バックエッジ BEから 15mm手前の位置となって おり、一方、降りる動作であれば、バックエッジ BEより足底がはみ出した位置、本実 施の形態においては、 5mmはみ出した位置となる。これは、登る動作であれば、次 段に足上げして移動するまでにある程度の距離が必要であるのに対し、降りる動作 においては、そのような距離が不要であると共に、踏面からはみ出すような位置の方 が次段又はそれ以降の踏面の観測 ·認識が容易となるためである。  back_x_desired indicates the distance between the back edge BE at the position where the robot device wants to align with the back edge BE on the current tread surface and the front end of the sole, as shown in Fig. 35B. If so, back_x_desired is in front of the knock edge BE, and in this embodiment, 15 mm before the back edge BE. On the other hand, if it is descending, the sole protrudes from the back edge BE. In this embodiment, it is a position that protrudes 5 mm. This is because climbing requires a certain distance to move up and move to the next stage, while descending does not require such a distance and seems to protrude from the tread. This is because it is easier to observe / recognize the tread on the next stage or later.
図 36及び図 37は、図 35に示す制御パラメータを使用して実際にロボット装置が昇 降動作を行った様子を撮影したものをトレースした図である。図 36は、ロボット装置が 階段を登る動作を示している。最上段から番号順に、ステップ S31のサーチ動作(1) 実行の様子(No. 1)、ステップ S33のァライン動作実行の様子(No. 2)、ステップ S3 2のサーチ動作(2)実行の様子(No. 3)、ステップ S37のアプローチ動作実行の様 子(No. 4)、ステップ S 51のサーチ動作(4)実行の様子(No. 5)、ステップ S52のク ライム動作(2)実行の様子(No. 6)、ステップ S52のクライム動作(2)の続きであって 現在の踏面のバックエッジ BEにァラインしている様子(No. 7)、ステップ S51のサー チ動作 (4)実行の様子(No. 8)、 · · ·を示し、サーチ動作 (4)をして次段の踏面が観 測されなかった場合 (No. 17)に、階段昇降動作終了(フィニッシュ)動作を行って!/、 る様子(Νο· 18)を示す。  FIG. 36 and FIG. 37 are traces of images of the robot apparatus actually performing the ascending / descending operation using the control parameters shown in FIG. Figure 36 shows the movement of the robot device up the stairs. Step S31 search operation (1) Execution state (No. 1), Step S33 alignment operation execution (No. 2), Step S3 2 search operation (2) Execution state (numbered from top to bottom) No. 3), execution of approach operation in step S37 (No. 4), search operation in step S 51 (4) execution (No. 5), climb operation in step S52 (2) execution (No. 6), Continued climb operation (2) of step S52, aligning with the back edge BE of the current tread (No. 7), search operation of step S51 (4) Execution (No. 8), ································ If the next step is not observed after performing the search operation (4) (No. 17), perform the stairs lift operation end (finish) operation! /, Shows the state (Νο · 18).
図 37は、降りる動作を示すものであり、図 36の登る動作と同様に、サーチ動作 (No . 1、 No. 4、 No. 7、 No. 10、 No. 13、 No. 16)、クライム動作(ァライン動作含む) を繰り返し(No. 5、 No. 6、 No. 8、 No. 9、 No. 11、 No. 12、 No. 14、 No. 15)、 次段の踏面が観測されなくなった時点でフィニッシュ動作を行って (No. 18)、昇降 動作を終了する。 Fig. 37 shows the descending motion. Similar to the climbing motion of Fig. 36, the search motion (No. 1, No. 4, No. 7, No. 10, No. 13, No. 16), climb Repeated operation (including align operation) (No. 5, No. 6, No. 8, No. 9, No. 11, No. 12, No. 14, No. 15) and the next tread is not observed The finish operation is performed at that time (No. 18) End the operation.
次に、本実施の形態における変形例について説明する。以上の説明においては、 階段を登る動作、降りる動作について説明したが、本実施の形態の制御方法に係る アルゴリズムを適用すれば、複数の段からなる階段のみならず、 1段のみからなる段 部や、 1段の凹部が存在しても、その段差が所定の値以下であれば、移動を可能に するものである。  Next, a modification of the present embodiment will be described. In the above description, the operation of climbing up and down the stairs has been described. However, if the algorithm according to the control method of the present embodiment is applied, not only the stairs composed of a plurality of steps but also the steps composed of only one step. In addition, even if there is a single stepped recess, if the step is below a predetermined value, movement is possible.
先ず、単一の段部に登る動作について説明する。図 38は、単一の段部とロボット装 置の足底の関係を示す図である。図 38において、 191で示すのは、床面(z = 0)から の高さが z l = 30である段部を示し、ここでは、ロボット装置が次段(step l )となる段部 191の紙面下側から上側に移動する場合につ!/、て説明する。段部 191に対し紙面 下側における移動面の高さが z0 = 0、紙面上側における移動面の高さが z2 = 0であ る場合であって、現在、高さ ζθの移動面を移動しているとした場合、 z l— z0 = 30〉0 であるので次段の段部 191への移動は登り動作と判断し、 z2— z l =— 30く 0である ので段部 191から次の領域への移動は降りる動作であると判断することができる。こ の判断に応じてクライム動作にお!/、て、上述した制御パラメータの値を変更すればよ い。ここで、図 35Bに示す制御パラメータを使用した場合、登る動作の場合の ront_x_limit及び back_x_limitは、何れも負のィ直であって、ロボット装置の足底 121が図 38に示すように、段部 191からはみ出した状態であっても移動可能と判断することを 示す。  First, the operation of climbing a single step will be described. FIG. 38 is a diagram showing the relationship between a single step and the sole of the robot apparatus. In FIG. 38, reference numeral 191 denotes a step portion whose height from the floor (z = 0) is zl = 30. Here, the robot device has a step portion 191 that is the next step (step l). Explain when moving from the bottom to the top of the page. When the height of the moving surface at the lower side of the paper surface is z0 = 0 and the height of the moving surface at the upper side of the paper surface is z2 = 0 with respect to the step 191, the moving surface of the height ζθ is currently moved. Zl—z0 = 30> 0, so the movement to the next step 191 is judged to be a climbing movement, and z2—zl = —30 to 0, so the next region from step 191 It can be determined that the movement to is an action of getting off. Based on this judgment, the control parameters can be changed! Here, when the control parameters shown in FIG. 35B are used, ront_x_limit and back_x_limit in the case of the climbing motion are both negative and the step 121 of the robot apparatus has a stepped portion as shown in FIG. Indicates that it can be moved even if it is out of 191.
次に、単一の窪み(凹部)に降りる動作について説明する。図 39は、単一の凹部と ロボット装置の足底の関係を示す図である。図 39において、 192で示すのは、床面( z = 0)力、らの高さが z l =— 30である凹部を示し、ここでは、ロボット装置が次段( step l )となる凹部 192の紙面下側から上側に移動する場合について説明する。凹部 192に対し紙面下側における移動面の高さが z0 = 0、紙面上側における異動面の高 さが z2 = 0である場合であって、現在、高さ ζθの移動面を移動しているとした場合、 z 1—ζ0 =— 30く 0であるので次段の凹部 192への移動は降りる動作と判断し、 z2 - z l = 30〉0であるので凹部 192から次の領域への移動は登る動作であると判断する こと力 Sでさる。したがって、段部 191と同様、この判断に応じてクライム動作において、 上述した制御パラメータの値を変更すればよい。ここで、図 35Bに示す制御パラメ一 タを使用した場合、降りる動作の場合の ront_x_limit及び back_x_limitは、何れも正の 値であって、ロボット装置の足底 121が図 39に示すように、凹部 191より小さい場合 にのみ移動可能と判断する。 Next, the operation of descending into a single depression (concave) will be described. FIG. 39 is a diagram showing the relationship between a single recess and the sole of the robot apparatus. In FIG. 39, reference numeral 192 denotes a concave portion having a floor surface (z = 0) force and a height of zl = —30. Here, the concave portion 192 where the robot device is the next stage (step l) is shown. A case of moving from the lower side to the upper side of the paper will be described. The height of the moving surface at the lower side of the paper with respect to the concave portion 192 is z0 = 0, and the height of the moving surface at the upper side of the paper is z2 = 0, and the moving surface at the height ζθ is currently moving. If z 1—ζ0 = —30 to 0, the movement to the next recess 192 is judged to move down, and z2 − zl = 30> 0, so the movement from the recess 192 to the next region It is determined that the movement is a climbing action. Therefore, as in the case of the step 191, in the climb operation according to this judgment, What is necessary is just to change the value of the control parameter mentioned above. Here, when the control parameters shown in FIG. 35B are used, ront_x_limit and back_x_limit in the case of the descending motion are both positive values, and the bottom 121 of the robot apparatus is recessed as shown in FIG. It is judged that movement is possible only when it is smaller than 191.
本実施の形態においては、検出された平面から例えば水平など、移動可能と判断 できる平面を抽出し、その領域を含む多角形力 階段の踏面を認識する。そして、多 角形のフロントエッジ FE及びバックエッジ BEなどの踏面に関する情報と、その床面 からの高さを含む階段情報を利用して階段昇降動作を行う。昇降動作においては、 移動する踏面をサーチ動作を実行し、サーチできた踏面のフロントエッジ FE又は現 在の移動面におけるバックエッジ BEに対してァライン動作を実行し、次段の移動面と 現在の移動面との高さの違いから登る動作か降りる動作かを判断して制御パラメータ を切り替えることにより、通常の矩形の踏面からなる階段のみならず、スパイラル形状 の階段などの昇降動作が可能となると共に、登る動作も降りる動作も制御パラメータ を変更するのみで同一の手順にて実行することができる。したがって、階段のみなら ず、単一の段部や、単一の凹部などへの移動も同一の制御方法にて移動可能となる In the present embodiment, a plane that can be determined to be movable, such as horizontal, is extracted from the detected plane, and the tread surface of the polygonal force stair including that area is recognized. Then, using the information on the treads such as the polygonal front edge FE and back edge BE and the staircase information including the height from the floor, the stairs are moved up and down. In the ascending / descending operation, a search operation is performed on the moving tread, and an align operation is performed on the front edge FE of the tread that has been searched or the back edge BE on the current moving surface, and the next moving surface and the current Judging whether to move up or down based on the difference in height from the moving surface and switching control parameters, it is possible to move up and down not only staircases made of normal rectangular treads but also spiral stairs. At the same time, the climbing and descending operations can be executed in the same procedure by simply changing the control parameters. Therefore, it is possible to move not only to stairs but also to a single step or a single recess by the same control method.
Yes
また、階段認識においては、認識した階段を時間的に統合していくため、例えば口 ボット装置の大きさに対して階段が大きい、ロボット装置に搭載されるステレオビジョン システムの位置の制約などの理由で視野が限られたロボット装置などにおいても、高 域に亘つて階段情報を認識することができる。また、この階段情報を利用して昇降動 作する際、同じくステレオビジョンシステムの位置の制約などの理由で次段の踏面が 観測 ·認識できない場合であっても、過去に観測 ·認識してある階段情報を利用して 昇降動作を同様に行うことができる。  In staircase recognition, the recognized staircases are integrated over time, so the reason is, for example, that the staircase is larger than the size of the mouth bot device, or that the position of the stereo vision system installed in the robot device is limited. Even in a robotic device with a limited field of view, staircase information can be recognized over a high frequency range. In addition, when moving up and down using this staircase information, even if the next tread cannot be observed or recognized due to the position restriction of the stereo vision system, it has been observed or recognized in the past. Using the staircase information, you can move up and down in the same way.
本変形例における平面検出装置は、線分拡張法により、視野内において支配的な 平面だけでなぐ例えば階段など複数の平面が存在する場合であっても確実に複数 平面を検出することができ、平面を検出する際に抽出する線分抽出において、距離 データの点の分布に応じて適応的に線分をフィッティングさせることにより計測ノイズ に対してロバストな平面検出結果を得ることができるものである。 図 40は、本変形例における平面検出装置を示す機能ブロック図である。図 40に示 すように、平面検出装置 100は、 3次元の距離データを取得する距離データ計測手 段としてのステレオビジョンシステム(Stereo Vision System) 1と、 3次元の距離データ からなる距離画像に存在する平面を線分拡張法により検出する平面検出部 2とを有 する。平面検出部 2は、画像を構成する距離データ点から同一平面にあると推定され る距離データ点群を選択し、この距離データ点群毎に線分を抽出する線分抽出部 2 aと、画像内に含まれる、線分抽出部 2aよって抽出された全線分からなる線分群から 、該画像内に存在する 1又は複数の平面領域を検出する領域拡張部 2bとを有する。 領域拡張部 2bは、線分群から同一平面上に存在すると推定される任意の 3本の線 分を選択し、これらから基準平面を求める。そして、選択した 3本の線分に隣接する 線分がこの基準平面と同一平面に属するか否かを判定し、同一平面に属すると判定 した場合にはその領域拡張用線分としての線分により基準平面を更新すると共に基 準平面の領域を拡張する。 The plane detection device in this modification can reliably detect a plurality of planes by the line segment expansion method even when there are a plurality of planes, such as stairs, in addition to the dominant plane in the field of view. In line segment extraction that is performed when a plane is detected, plane detection results that are robust against measurement noise can be obtained by adaptively fitting line segments according to the distribution of the points in the distance data. . FIG. 40 is a functional block diagram showing the flat panel detector in the present modification. As shown in FIG. 40, the flat panel detector 100 is a stereo vision system (Stereo Vision System) 1 as a distance data measurement means for acquiring 3D distance data and a distance image composed of 3D distance data. It has a plane detection unit 2 that detects existing planes by the line segment expansion method. The plane detection unit 2 selects a distance data point group estimated to be in the same plane from the distance data points constituting the image, and extracts a line segment for each distance data point group; An area expansion unit 2b that detects one or a plurality of plane areas existing in the image from a line segment group that includes all line segments extracted by the line segment extraction unit 2a included in the image. The area expansion unit 2b selects any three line segments estimated to exist on the same plane from the line segment group, and obtains a reference plane from these. Then, it is determined whether or not the line segments adjacent to the selected three line segments belong to the same plane as this reference plane. If it is determined that they belong to the same plane, the line segment as the area expansion line segment is determined. The reference plane is updated by and the reference plane area is expanded.
線分抽出部 2aは、その距離画像における列または行毎の各データ列において、 3 次元空間内で同一平面上にあると推定される距離データ点群を抽出し、この距離デ ータ点群から距離データ点群の分布に応じて 1以上の線分を生成する。すなわち、 分布に偏りがあると判断された場合には、データ点群は同一平面上にないと判断し、 データ点群を分割し、分割したデータ点群それぞれについて再度分布に偏りがある かを判断する処理を繰り返し、分布に偏りがない場合にはそのデータ点群から線分 を生成する。全てのデータ列について以上の処理を行い、生成した線分群 D11を領 域拡張部 2bに出力する。  The line segment extraction unit 2a extracts a distance data point group that is estimated to be on the same plane in the three-dimensional space in each data column for each column or row in the distance image, and this distance data point group. Generate one or more line segments according to the distribution of distance data points. In other words, if it is determined that the distribution is biased, it is determined that the data point group is not on the same plane, the data point group is divided, and whether the distribution is biased again for each of the divided data point groups. The determination process is repeated, and if there is no bias in the distribution, a line segment is generated from the data point group. The above processing is performed for all data strings, and the generated line segment group D11 is output to the area expansion unit 2b.
領域拡張部 2bは、この線分群 D11において、同一の平面に属すると推定される線 分を 3本選択し、これらから基準平面としての種となる平面を求める。この種となる平 面の領域 (領域種: seed region)に対して、該領域種と同一平面に属する線分を順次 統合していくことで拡張していく領域拡張によって距離画像を複数の平面に分割し、 平面群 D2を出力する。  In this line segment group D11, the area expanding unit 2b selects three line segments estimated to belong to the same plane, and obtains a plane serving as a reference plane from these. The range image is expanded to multiple areas by expanding the area of this plane area by integrating the line segments that belong to the same plane as the area area. And plane group D2 is output.
ロボット装置 201は、障害物回避や階段昇降など平面の情報が必要なとき、または 定期的にこれらの処理を行うことによって、階段や床面、壁といった歩行に重要な平 面の情報を取得する。 The robotic device 201 is an important tool for walking such as staircases, floors, and walls when plane information such as obstacle avoidance and stair climbing is required or by performing these processes periodically. Get face information.
ここで、このような 3次元距離データをステレオビジョンシステム 1によって取得する ためには、階段 ST2の表面に模様 (テクスチャ)が必要となる。すなわち、 2台のカメラ による視差により得ることができるため、模様がないものは視差が算出できず、正確に 距離を計測することができない。すなわち、ステレオビジョンシステムにおける距離デ ータの計測精度は、計測対象のテクスチャに依存することになる。なお、視差とは、空 間中のある点が左目及び右目に写像される点の違いを示し、そのカメラからの距離 に応じて変化するものである。  Here, in order to acquire such 3D distance data by the stereo vision system 1, a pattern (texture) is required on the surface of the staircase ST2. In other words, since it can be obtained by parallax by two cameras, the parallax cannot be calculated if there is no pattern, and the distance cannot be measured accurately. That is, the measurement accuracy of distance data in a stereo vision system depends on the texture to be measured. Note that parallax refers to the difference between a point in the space that is mapped to the left eye and right eye, and changes according to the distance from the camera.
そこで、図 41に示すように、ロボット装置の頭部ユニットに、ステレオビジョンシステ ムを構成するステレオカメラ 11R/Lを備えると共に、例えば同じく頭部ユニットなど に投射手段としての例えば赤外光などを出力する光源 12を設ける。この光源 12は、 模様がなレ、階段 ST3、その他テクスチャがな!/、か少な!/、物体、壁などの対象物に対 してこれを投射 (照射)し、ランダムなパターン PTを付与する模様付与手段として作 用する。なお、ランダムパターン PTを形成して距離画像を取得できるものであれば、 ランダムパターン PTを付与する手段は赤外光を投射する光源などには限らず、例え ばロボット装置自ら対象物に模様を書いたりしてもよいが、赤外光であれば、人間の 目にはみえないものの、ロボット装置に搭載される CCDカメラなどにおいては観測可 能なパターンを付与することができる。  Therefore, as shown in FIG. 41, the head unit of the robot apparatus is provided with a stereo camera 11R / L that constitutes a stereo vision system and, for example, infrared light or the like as projection means is also applied to the head unit or the like. A light source 12 for output is provided. This light source 12 projects (irradiates) an object, a wall, and other objects with a random pattern PT by applying a pattern, staircase ST3, and other textures! It works as a pattern giving means. In addition, if the random pattern PT can be formed and the distance image can be acquired, the means for applying the random pattern PT is not limited to a light source that projects infrared light, for example, the robot device itself forms a pattern on the object. Although it may be written, if it is infrared light, it is invisible to the human eye, but it can give a pattern that can be observed by a CCD camera or the like mounted on the robot device.
次に、平面検出装置 100の平面検出部 2について説明する。この平面検出部 2は、 線分拡張法を使用して平面を検出するものであり、図 42は、線分拡張法による平面 検出方法を説明する図である。線分拡張法による平面検出では、図 42に示すように 、まず、焦点 Fから撮影された画像 11において、行方向または列方向のデータ列に おける処理をする。画像内の例えば行方向の画素列(image row :イメージロウ)にお いて、距離データ点が同一の平面に属するならば直線となることを利用し、同一平面 に属すると推定される距離データ点からなる線分を生成する。そして、得られた複数 の線分からなる線分群にお!/、て、同一平面を構成するとされる線分群に基づき平面 を推定、検出する方法である。  Next, the plane detection unit 2 of the plane detection apparatus 100 will be described. The plane detection unit 2 detects a plane using the line segment expansion method, and FIG. 42 is a diagram for explaining a plane detection method based on the line segment expansion method. In the plane detection by the line segment expansion method, as shown in FIG. 42, first, in the image 11 taken from the focal point F, processing is performed on the data column in the row direction or the column direction. For example, in a row of pixels in an image (image row), a distance data point that is estimated to belong to the same plane by using a straight line if the distance data points belong to the same plane. Generate a line segment consisting of. Then, in the obtained line segment group consisting of a plurality of line segments, a plane is estimated and detected based on the line segment group that constitutes the same plane.
図 43は、線分拡張法による平面検出処理を示すフローチャートである。図 43に示 すように、先ず、距離画像を入力し (ステップ S71)、距離画像の行方向(又は列方向 )の各画素列において同一平面に属すると推定されるデータ点から線分を求める (ス テツプ S 72)。そして、これらの線分群の中から同一平面に属すると推定される線分を 抽出し、これらの線分からなる平面を求める(ステップ S 73)。このステップ S73では、 まず、平面の種となる領域(以下、領域種(seed region)という。)を選び、該当する領 域種を選択する。この選択においては、上下隣接する行方向(又は左右隣接する列 方向)の 1ラインを含む 3本の線分が同一平面にあることを条件とする。ここで、選択し た 3本の線分からなる領域種が属する平面を基準平面とし、 3本の線分から平均して 求まる平面を求めておく。また、 3本の線分からなる領域を基準平面領域とする。 そして、選択した領域種に隣接する行方向(又は列方向)の画素列からなる直線と 上記基準平面とが同じ平面であるかどうかを空間的な距離を比較することで判断し、 同じ平面である場合には、その隣接する線分を基準平面領域に追加し (領域拡張処 理)、追加した線分を含めたものとして上記基準平面を更新し(平面更新処理)、これ を平面領域に隣接するデータ列に同一平面の線分が存在しなくなるまで繰り返し行 う。そして、以上領域種を検索して平面更新及び領域拡張処理を、種となる領域 (3 本の線分)が存在しなくなるまで繰り返し実行する。最後に、得られた複数の領域群 の中から同一平面を構成するものを連結する。そして、本変形例においては、得られ た平面に属する線分群のうち、平面から所定の閾値以上外れる線分を除いて再度平 面を求める平面再算出処理をステップ S 74として更に設け、最終的な平面とするが、 詳細は後述する。 FIG. 43 is a flowchart showing plane detection processing by the line segment expansion method. Shown in Figure 43 First, a distance image is input (step S71), and a line segment is obtained from data points estimated to belong to the same plane in each pixel column in the row direction (or column direction) of the distance image (step S71). 72). Then, a line segment estimated to belong to the same plane is extracted from these line segment groups, and a plane composed of these line segments is obtained (step S 73). In step S73, first, a region to be a plane seed (hereinafter referred to as a seed region) is selected, and the corresponding region type is selected. In this selection, three line segments including one line in the upper and lower adjacent row directions (or left and right adjacent column directions) are on the same plane. Here, the plane to which the selected region type consisting of the three line segments belongs is used as a reference plane, and a plane obtained by averaging from the three line segments is obtained. An area composed of three line segments is defined as a reference plane area. Then, it is determined whether the straight line composed of the pixel columns in the row direction (or the column direction) adjacent to the selected region type and the reference plane are the same plane by comparing the spatial distances. If there is, add the adjacent line segment to the reference plane area (area expansion process), update the reference plane to include the added line segment (plane update process), and add this to the plane area. Repeat until there is no line segment on the same plane in the adjacent data string. Then, the region type is searched and the plane update and the region expansion process are repeatedly executed until there are no seed regions (three line segments). Finally, from the obtained plurality of region groups, those constituting the same plane are connected. In this modified example, a plane recalculation process for obtaining a plane again by removing a line segment that deviates from the plane by a predetermined threshold or more from the group of line segments belonging to the obtained plane is further provided as step S74. The details will be described later.
ここで、 3次元距離データから線分を検出し、これを同一平面毎にまとめた領域を 1 つの平面とする処理は従来の線分拡張法による平面検出処理であるが、本変形例 においては、ステップ S 72における線分抽出方法が従来とは異なる。すなわち、上述 したように、距離データ点から線分を求めて距離データ点にできるだけフィットするよ うに線分を生成しょうとしても、距離データの精度に応じて閾値を変更しなければ、 over-segmentation又は under-segmentationなど ¾の問題力、生じてしまつ。てこで、本 変形例においては、この線分抽出において、距離データの分布を解析することで、 距離データの精度、ノイズに応じて適応的に閾値を変更する手法を導入するものと する。 Here, the process of detecting line segments from 3D distance data and combining the areas into the same plane as one plane is the plane detection process by the conventional line segment expansion method. In this modification, The line segment extraction method in step S72 is different from the conventional one. In other words, as described above, even if an attempt is made to generate a line segment so as to fit the distance data point as much as possible, if the threshold value is not changed according to the accuracy of the distance data, an over-segmentation Or under-segmentation, etc. In this variation, in this line segment extraction, a method for adaptively changing the threshold according to the accuracy of distance data and noise is analyzed by analyzing the distribution of distance data. To do.
以下、図 43に示す線分拡張法による平面検出方法について更に詳細に説明する 。線分抽出部 (Line Extraction)2aは、上述したように、ステレオビジョンシステム 1から の 3次元距離画像を入力とし、距離画像の各列または各行毎に 3次元空間内で同一 平面上にあると推定される線分を検出する。この線分抽出において、計測ノイズなど による、上; ^しに over-segmentationや under-segmentationの問題、すなわり、本来は 複数の平面であるのに 1つの平面として認識してしまったり、本来は 1つの平面である のに、複数の平面として認識してしまったりする問題を回避するため、データ点の分 布に応じて適応的に線分フィッティングさせるアルゴリズム(Adaptive Line Fitting)を 導入する。 Adaptive Line Fittingは、線分抽出部 2aにおいて、先ず比較的大きい閾 値を使用して大まかに第 1の線分としての線分を抽出し、次に抽出された第 1の線分 に属するデータ点群から後述する最小二乗法によって得られる第 2の線分としての 線分に対する該データ点群の分布を解析する。すなわち、同一平面上に存在するか 否かを大まかに推定してデータ点群を抽出し、抽出したデータ点群におけるデータ 点の分布の偏りがあるか否かを解析して同一平面上に存在しているか否かを再度推 する。  Hereinafter, the plane detection method based on the line segment expansion method shown in FIG. 43 will be described in more detail. As described above, the line extraction unit (Line Extraction) 2a receives the three-dimensional distance image from the stereo vision system 1 and inputs each column or each row of the distance image on the same plane in the three-dimensional space. Detect the estimated line segment. In this line segment extraction, due to measurement noise, etc., the problem of over-segmentation and under-segmentation, that is, it is recognized as one plane even though it is originally multiple planes. In order to avoid the problem of being recognized as multiple planes even though it is a single plane, an algorithm (Adaptive Line Fitting) that adaptively fits line segments according to the distribution of data points is introduced. In Adaptive Line Fitting, the line segment extraction unit 2a first extracts a line segment as the first line segment using a relatively large threshold value, and then extracts the data belonging to the extracted first line segment. The distribution of the data point group with respect to the line segment as the second line segment obtained from the point group by the least square method described later is analyzed. In other words, it roughly estimates whether or not they exist on the same plane, extracts a data point cloud, analyzes whether or not there is a bias in the distribution of data points in the extracted data point cloud, and exists on the same plane Rethink whether or not
本変形例においては、このデータ点の分布を解析し、データ点群が後述するジグ ザグ形(zig-zag-shape)に当てはまる場合には、分布に偏りがあるとしてデータ点群 を分割する処理を行い、これを繰り返すことによって、データ点群に含まれるノイズに 対して適応的に線分の抽出を行うアルゴリズムを使用するものとする。  In this modification, the distribution of the data points is analyzed, and if the data point group applies to the zig-zag-shape described later, the data point group is divided as the distribution is biased. By repeating this process, an algorithm that adaptively extracts line segments from noise contained in the data point group shall be used.
図 44は、線分抽出部 2aにおける処理、すなわち、図 43におけるステップ S72の処 理の詳細を示すフローチャートである。まず、線分抽出部 2aには、距離データが入 力される。入力された距離データのうち、例えば行方向の画素列(データ点歹 にお いて、 3次元空間上で同一平面上に存在すると推定されるデータ点群を抽出する。 3 次元空間上で同一平面上に存在すると推定されるデータ点群は、例えば隣接する データ点の距離力 S、例えば 6cm以下など、データ点間の 3次元空間における距離が 所定の閾値以下のものからなるデータ点の集合などとすることができ、これをデータ 点群 (Ρ [0 · · · η-1] )として抽出する(ステップ S81)。そして、このデータ点群 Ρ [0 · · · n-1]に含まれるサンプル数 nが処理に最低限必要なサンプル数(必要最小値) min_n より多いか否かをチェックし(ステップ S82)、データ数 nが必要最小値 min_nより少な V、場合(S82: YES)には、検出結果として空集合を出力して処理を終了する。 FIG. 44 is a flowchart showing details of the process in the line segment extraction unit 2a, that is, the process of step S72 in FIG. First, distance data is input to the line segment extraction unit 2a. From the input distance data, for example, a pixel column in the row direction (data points that are estimated to exist on the same plane in the three-dimensional space at the data point 歹 are extracted. The same plane in the three-dimensional space. The data point group that is estimated to exist above is, for example, a set of data points whose distance in the three-dimensional space between data points is less than a predetermined threshold, such as distance force S of adjacent data points, for example, 6 cm or less. This is extracted as a data point cloud (Ρ [0 · · · η-1]) (step S81), and this data point cloud Ρ [0 · · · · n-1] is checked whether the number of samples n included is the minimum number of samples required for processing (minimum required value) min_n (step S82), and the number of data n is less than the required minimum value min_n V, In the case (S82: YES), an empty set is output as the detection result and the process is terminated.
一方、サンプル数 nが必要最小値 min_n以上である場合(S82 : NO)、データ点群 P  On the other hand, if the number of samples n is greater than or equal to the required minimum value min_n (S82: NO), the data point group P
[0· · ·η-1]の一方の端点 P [0]と他方の端点 P [n-1]とを結ぶ線分(弦) L1を第 1の線 分として生成する。そして、データ点群 Ρ [0· · ·η_1]から、この線分 L1との距離が最も 大き!/、データ点を着目点 brkとして検索し、その距離 distを算出する(ステップ S83)。 最大距離 distがデータ点群分割の閾値 max_dより大きい場合には(S84 :YES)、デ 一タ点群データ点群 Ρ [0· · · n-1]を着目点(分割点) brkにて 2つのデータ点群 ρ [0· · •brk]及び P[brk' . .n-1]に分割する(ステップ S88)。 A line segment (string) L1 connecting one end point P [0] of [0 ·· η-1] and the other end point P [n-1] is generated as the first line segment. Then, from the data point group Ρ [0 ·· η_1], the distance from the line segment L1 is the largest! /, The data point is searched as the point of interest brk, and the distance dist is calculated (step S83). If the maximum distance dist is larger than the data point group division threshold max_d (S84: YES), the data point group data point group Ρ [0 ··· n-1] is assigned to the target point (division point) brk. The data points are divided into two data points ρ [0 · • brk] and P [brk '.. N-1] (step S88).
一方、最大距離 distがデータ点群分割の閾値 max_dより小さ!/、場合には(S84: NO )、データ点群 Ρ [0· · · n-1]から後述する最小二乗法によって最適な線分の方程式 lineを求め(ステップ S85)、この方程式 lineが示す線分 L2を第 2の線分として生成す る。そして、データ点群 Ρ [0· · ·η-1]がこの線分 L2に対して後述する Zig-Zag-Shape であるかどうかを調べる(ステップ S86)、 Zig-Zag-Shapeでな!/、場合(S86: NO)、得 られた線分の方程式 lineを線分抽出結果リストに追加し (ステップ S87)、処理を終了 する。  On the other hand, if the maximum distance dist is smaller than the data point group division threshold max_d! / (S84: NO), an optimal line is obtained from the data point group Ρ [0 ··· n-1] by the least square method described later. The minute equation line is obtained (step S85), and the line segment L2 indicated by this equation line is generated as the second line segment. Then, it is checked whether the data point group Ρ [0 ·· η−1] is a Zig-Zag-Shape described later for this line segment L2 (step S86). In the case (S86: NO), the obtained line segment equation line is added to the line segment extraction result list (step S87), and the process is terminated.
また、ステップ S86においてステップ S85で求めた線分が Zig-Zag-Shapeである判 断された場合(S86 : YES)、上述のステップ S84と同様、ステップ S88に進み、ステ ップ S83において距離 distを求めた着目点 brkにてデータ点群を 2つのデータ点群 P  If it is determined in step S86 that the line segment obtained in step S85 is Zig-Zag-Shape (S86: YES), the process proceeds to step S88 as in step S84 described above, and the distance dist in step S83. At the point of interest brk, the data point cloud is converted into two data point clouds P
[0· · 'brk]及び P[brk' · ·η-1]に分割する。このステップ S88にて 2つのデータ点群が 得られた場合には、それぞれを再帰的に再度ステップ S81からの処理を行う。そして 、この処理を分割された全てのデータ点について分割されなくなるまで、すなわち全 てのデータ点群がステップ S87を経るまで処理を繰り返し、これにより、全ての線分が 登録された線分抽出結果リストを得る。このような処理によって、データ点群 Ρ [0· · · n-1]力、らノイズの影響を排除し複数の線分からなる線分群を精度よく検出することが できる。 Divide into [0 ·· 'brk] and P [brk' ·· η-1]. When two data point groups are obtained in this step S88, each of them is recursively processed from step S81 again. Then, this process is repeated until all the divided data points are not divided, that is, until all the data point groups have passed through step S87, and as a result, all line segments are registered. Get a list. By such processing, it is possible to accurately detect a line segment group consisting of a plurality of line segments by eliminating the influence of noise from the data point group [0... N-1] force.
なお、ステップ S83にてデータ点群 Ρ [0· · ·η_1]の端点を結ぶ線分 L1を生成するも のとして説明したが、例えばデータ点群 Ρ[0· · ·η_1]の分布、性質など必要に応じて データ点群 Ρ[0···η_1]から最小二乗により線分 L1を求めてもよい。また、本変形例 においては、着目点 brkは、端点を結んだ線分 L1との距離が最大の点 1つとしている 、例えば、上記のように最小二乗により求めた線分との距離が最大の点としたり、距 離がデータ点群分割の閾値 max_d以上のものが複数ある場合はそれら全ての点又は 選択した 1つ以上にてデータ点群 Ρ[0· · ·η_1]を分割するようにしてもよい。 In step S83, a line segment L1 connecting the end points of the data point group Ρ [0 ·· η_1] is generated. However, for example, the line segment L1 may be obtained from the data point group Ρ [0 ·· η_1] by least squares as necessary, such as the distribution and properties of the data point group Ρ [0 ·· η_1]. . In this modification, the point of interest brk is one point having the maximum distance from the line segment L1 connecting the end points.For example, the distance from the line segment obtained by the least square as described above is the maximum. If there are multiple points with distances greater than or equal to the data point group division threshold max_d, the data point group Ρ [0 ·· η_1] should be divided at all those points or at one or more selected points. It may be.
次に、ステップ S85における最小二乗による線分生成方法(Least-Squares Line Fitting)について説明する。ある n個のデータ点群 Ρ[0···η-1]が与とき、データ点群 に最もフィットした直線の方程式を求める方法を示す。直線の方程式のモデルを下 記式(1)で表す。  Next, the least squares line segment generation method (Least-Squares Line Fitting) in step S85 will be described. Given n data points Ρ [0 ··· η-1], we show how to find a straight line equation that best fits the data points. The model of the linear equation is expressed by the following equation (1).
國 cos + ysin + = 0 この場合、 n個のデータ点群 Ρ[0· · ·η_1]の 1点(x,y )において、直線方 程式のモデルとデータ点との誤差の総和は下記式(2)で表すことができる。 Country cos + ysin + = 0 In this case, at one point (x, y) of n data points Ρ [0 ·· η_1], the sum of errors between the model of the linear equation and the data points is It can be expressed by (2).
[数 2] [Equation 2]
Eflt= L(xi∞& + yt sia + d) ...(2) E flt = L ( x i∞ & + y t sia + d) ... (2)
ϊ  ϊ
データ点群に最もフィットした直線は、上記式(2)の誤差の総和を最小化することに よって求められる。上記式(2)を最小にする α及び dは、データ点群 Pの平均及び分 散共分散行列を用いて下記(3)のように求めることができる。  The straight line that best fits the data point group can be obtained by minimizing the sum of the errors in equation (2) above. Α and d that minimize Equation (2) can be obtained as shown in (3) below using the mean and variance covariance matrix of data point group P.
[数 3] [Equation 3]
1 _! -25 一 1 _! -25
^~ 2tan ~ ~ ~ ' d = ~[-x os +ysina) ---(3) ^ ~ 2 tan ~ ~ ~ ' d = ~ [ -x os + y sina ) --- (3)
ただし、  However,
s^ =∑(Xi -x)2s ^ = ∑ (Xi -x) 2 = £
i i 次に、ステップ S86におけるジグザグ形(Zig-Zag-Shape)判別方法につ!/、て説明す る。この Zig-Zag-Shape判別では、ある n個のデータ点群 Ρ[0· · ·η_1]と直線 Line , d)、 xcosa +ycosa +d = 0力 S与えられたとき、そのデータ点群 Ρ[0· · ·η_1]が、図 4 5Αに示すように直線 Lineに対して交差する力、、図 45Bに示すように、例えばノイズな どの影響によりデータ点が一様に分布しているかを判別するものである。基本的には 、直線 Lineの一方にデータ点群 Ρ[0···η-1]が連続して現れる数をカウントし、ある一 定数を超えて連続して現れる場合には、 zig-zag-shapeであると判断することができる 。図 45Aの場合には、データ点群 Ρ[0···η-1]によりよくフィットする直線 Lineを求め るためにデータ点群 P[i]を分割する必要がある。図 46は、 Zig-Zag-Shape判別方法 を示すフローチャートである。 ii Next, the Zig-Zag-Shape discrimination method in step S86 will be described! In this Zig-Zag-Shape discrimination, when n data points Ρ [0 ·· η_1] and line Line, d), xcosa + ycosa + d = 0 force S, the data points 点[0 ··· η_1] is the force that intersects the straight line as shown in Fig. 45, and whether the data points are uniformly distributed as a result of noise, for example, as shown in Fig. 45B. It is to be determined. Basically, the number of data points Ρ [0 · η−1] appearing continuously on one side of the line Line is counted, and if it appears continuously beyond a certain constant, zig-zag -shape can be determined. In the case of Fig. 45A, it is necessary to divide the data point group P [i] in order to obtain a straight line that better fits the data point group Ρ [0 ·· η-1]. FIG. 46 is a flowchart showing the Zig-Zag-Shape discrimination method.
まず、データ点群 Ρ[0· · ·η_1]と直線 Line ,d, σ )とを入力する(ステップ S90)。 ここで、 σは、点列の標準偏差を示す。次に、この標準偏差 σが所定の閾値 th_(jよ り大きいか否かを判断する。この標準偏差 σが閾値 th_(jより小さい場合 (ステップ S9 l:No)は、演算器の浮動小数点演算誤差による誤差検出の影響を回避するため、 判別を終了する。そして、標準偏差 σが閾値 th_(rより大きい場合のみ判別処理を継 続する。次に、データ点群 Ρ[0···η_1]のうちの最初のデータ点 P[0]が直線のどちら 側にある力、を sing(sdist(P[0]》によって判断し、この結果を valに代入すると共に valと  First, a data point group Ρ [0 ·· η_1] and a straight line Line, d, σ) are input (step S90). Here, σ indicates the standard deviation of the point sequence. Next, it is determined whether or not the standard deviation σ is larger than a predetermined threshold th_ (j. If the standard deviation σ is smaller than the threshold th_ (j (step S9 l: No), the floating point of the arithmetic unit is determined. In order to avoid the influence of error detection due to calculation error, the discrimination is terminated. Then, the discrimination processing is continued only when the standard deviation σ is larger than the threshold th_ (r. Next, the data point group Ρ [0 ··· The force that the first data point P [0] of η_1] is on which side of the line is judged by sing (sdist (P [0] >>), and the result is substituted into val and val and
0 0 同じ側にあるデータ点の連続数をカウントするカウンタ(以下、連続点カウンタといい 0 0 Counter that counts the number of consecutive data points on the same side (hereinafter referred to as continuous point counter)
、このカウント値をカウント値 countという。)のカウント値 countを 1に設定する(ステップ S92)。ここで、 sign(x)は、 Xの値の符号(+又は—)を返す関数であり、 sdist(i)は、 P[i] .xcos a + P[i].ycos a +dとして計算された直線 Lineにおいて、 i番目のデータ点との正 負の距離を示す。すなわち、 Valには、データ点 P[0]が直線 Lineのどちら側にあるか This count value is called a count value count. ) Is set to 1 (step S92). Where sign (x) is a function that returns the sign (+ or-) of the value of X, and sdist (i) is calculated as P [i] .xcos a + P [i] .ycos a + d It shows the positive and negative distance from the i-th data point in the straight line. That is, in Val, which side of the straight line is the data point P [0]
0  0
で +又は の符号が代入される。 The sign of + or is substituted by.
次に、データ点をカウントするためのカウンタ(以下、データ点カウンタといい、この カウント値をカウント値 iという。)のカウント値 iを 1とする(ステップ S93)。そして、デー タ点カウンタのカウント値 iがデータ数 nより小さい場合(ステップ S94: YES)、その次 のデータ(以下、 i番目とする。)のデータ点であるデータ点 P[i]が直線のどちら側に あるかを sing(sdist(P[i]))によって判断し、この結果を valに代入する(ステップ S95)。 そして、ステップ 92にて求めた valとステップ S95にて求めた valとを比較し、 valと val Next, a count value i of a counter for counting data points (hereinafter referred to as a data point counter, and this count value is referred to as a count value i) is set to 1 (step S93). When the count value i of the data point counter is smaller than the number of data n (step S94: YES), the data point P [i] that is the data point of the next data (hereinafter referred to as i-th) is a straight line. Is determined by sing (sdist (P [i])), and the result is assigned to val (step S95). Then, val obtained in step 92 and val obtained in step S95 are compared, and val and val
0 0 とが異なる場合(ステップ S96 : NO)、 valに valを代入し、連続点カウンタのカウント値  0 If different from 0 (step S96: NO), substitute val for val and count value of continuous point counter
0  0
countに 1を代入し(ステップ S 98)、データ点カウンタのカウント値 iをインクリメントして (ステップ S 100)ステップ S94からの処理に戻る。 Substitute 1 for count (step S98), increment the count value i of the data point counter (step S100), and return to the processing from step S94.
一方、ステップ S96において、 valと valとが同じ場合(ステップ S96 : YES)、データ  On the other hand, if val and val are the same in step S96 (step S96: YES), the data
0  0
点 P [i— 1 ]と P [i]は、直線 Lineに対して同じ側にあると判断され、連続点カウンタの カウント値 countを 1つインクリメントする(ステップ S 97)。更に、連続点カウンタのカウ ント値 countが Zig-Zag-Shapeと判定されるための最小のデータ点数 min_cより大きい か否か判定し(ステップ S99)、大き!/、場合には(ステップ S99: YES)、 The points P [i-1] and P [i] are determined to be on the same side with respect to the straight line Line, and the count value count of the continuous point counter is incremented by 1 (step S97). Further, it is determined whether the count value count of the continuous point counter is larger than the minimum number of data points min_c for determining Zig-Zag-Shape (step S99). YES),
Zig-Zag-Shapeと判断し、 TRUEを出力して処理を終了する。一方、連続点カウンタの カウント値 countが最小のデータ点数 min_cより小さ!/、場合には(ステップ S99: NO)、 ステップ S 100に進み、データ点カウンタのカウント値 iをインクリメントして(ステップ S 1 00)、ステップ S94からの処理を繰り返す。 Judge as Zig-Zag-Shape, output TRUE and end the process. On the other hand, if the count value count of the continuous point counter is smaller than the minimum number of data points min_c (step S99: NO), proceed to step S100 and increment the count value i of the data point counter (step S 1 00), and repeats the processing from step S94.
そして、このステップ S94からの処理を、データ点カウンタのカウント値 iがデータ点 数 nに到達するまで続け、カウント値 i〉=nとなったところで、 FALSEを出力して処理 を終了する。  The processing from step S94 is continued until the count value i of the data point counter reaches the data point n, and when the count value i> = n, FALSE is output and the processing is terminated.
このようなジグザク形判別処理によって、 n個のデータ点群 Ρ [0 · · · η_1]と直線 Line ( a,d) : xcos a +ycos a + d = 0が与えられたとき、このデータ点群が直線 Lineに対 して zig-zagに交差しているかどうかを判断することができる。これによつて、上述した ように、ステップ S 86にてデータ点群を分割するべきかどうかを判断することができ、 最小二乗により求めた直線に対し、データ点群が zig-zagに交差していると判断した 場合にはデータ点群を分割すべきと判断してステップ S88の処理へ進み、着目点 brkを分割点としてデータ点群を分割することができる。なお、上記ステップ S91〜ス テツプ S 100までの処理は図 47のように表現することも可能である。  With this zigzag discriminant processing, when n data points Ρ [0 · · · η_1] and a straight line Line (a, d): xcos a + ycos a + d = 0 are given, this data point It can be judged whether the group intersects zig-zag with respect to the straight line Line. As a result, as described above, it is possible to determine whether or not the data point cloud should be divided in step S86. The data point cloud intersects zig-zag with respect to the straight line obtained by the least square. If it is determined that the data point group is to be divided, it is determined that the data point group should be divided, and the process proceeds to step S88. The data point group can be divided using the point of interest brk as the division point. Note that the processing from step S91 to step S100 can also be expressed as shown in FIG.
また、このような Zig-Zag-Shape判別処理は、演算器のみならずハードウェアで行う ことも可能である。図 48は、 Zig-Zag-Shape判別処理を行う処理部を示すブロック図 である。図 48に示すように、 Zig-Zag-Shape判別処理部 20は、 n個のデータ点群 P [0 • · · η_1]が入力され、順次各データ点 P[i]が直線 Lineの何れ側に位置するかを判別 し、その判別結果 Valを出力する方向判別部 21と、 1つ後のデータと方向判別部 21 の結果を比較させるための遅延部 22と、データ点 P[i]における方向判別結果 Valとデ ータ点 P[i— 1]における方向判別結果 Valとを比較する比較部 23と、比較部 23にお In addition, such Zig-Zag-Shape discrimination processing can be performed not only by an arithmetic unit but also by hardware. FIG. 48 is a block diagram illustrating a processing unit that performs Zig-Zag-Shape discrimination processing. As shown in Fig. 48, the Zig-Zag-Shape discrimination processing unit 20 receives n data point groups P [0 • · · η_1], and sequentially places each data point P [i] on either side of the straight line. Determine if located The direction discrimination unit 21 that outputs the discrimination result Val, the delay unit 22 for comparing the next data with the result of the direction discrimination unit 21, and the direction discrimination result Val at the data point P [i] The comparison unit 23 that compares the direction discrimination result Val at the data point P [i-1] and the comparison unit 23
0  0
いて Val=Valの場合に、カウント値をインクリメントする連続点カウンタ 24と、連続点 When Val = Val, the continuous point counter 24 increments the count value and the continuous point
0  0
カウンタ 24のカウント値 countと最小データ点数格納部 26から読み出した最小データ 点数 min_cとを比較する比較部 25とを有する。 The comparison unit 25 compares the count value count of the counter 24 with the minimum number of data points min_c read from the minimum number of data points storage unit 26.
この Zig-Zag-Shape判別処理部における動作は以下のようになる。すなわち、方向 判別部 21は、データ点群 Ρ [0 · · · η-1]から最小二乗法により直線 Lineを求め、各デ ータ点 P[i]と直線 Lineとの正負の距離を求め、その正負の符号を出力する。遅延部 2 2は、データ点 P[i— 1]の直線 Lineまでの距離に対する正負の符号が入力されると 1 つ後のデータ点 P[i]の正負の符号が入力されるタイミングまでデータを格納する。 比較部 23は、データ点 P[i]とデータ点 P[i— 1]の上記正負の符号を比較し、同じ符 号である場合にはカウンタ 24のカウント値 countをインクリメントする信号を出力し、正 負の符号が異なればカウント値 countに 1を代入する信号を出力する。比較部 25は、 カウント値 countと最小データ点数 min_cとを比較し、最小データ点数 min_cよりカウント 値 countが大きい場合には、データ点群 Ρ [0 · · · η-1]がジグザグであることを示す信 号を出力する。  The operation in this Zig-Zag-Shape discrimination processing unit is as follows. That is, the direction discriminating unit 21 obtains a straight line from the data point group Ρ [0 ·· η−1] by the least square method, and obtains a positive / negative distance between each data point P [i] and the straight line. , The positive and negative signs are output. The delay unit 2 2 receives data until the timing at which the positive / negative sign of the next data point P [i] is input when the positive / negative sign for the distance to the line Line of the data point P [i-1] is input. Is stored. The comparison unit 23 compares the positive and negative signs of the data point P [i] and the data point P [i−1], and outputs a signal for incrementing the count value count of the counter 24 if they are the same sign. If the sign is different, a signal that assigns 1 to the count value count is output. The comparison unit 25 compares the count value count with the minimum number of data points min_c, and if the count value count is greater than the minimum number of data points min_c, the data point group Ρ [0 ··· η-1] is zigzag. A signal indicating is output.
次に、図 40に示す領域拡張部(Region Growing) 2bについて説明する。領域拡張 部 2bは、線分抽出部 2aによって得られた線分群を入力とし、それらの線分それぞれ がどの平面に属しているかを点列の平面への当てはめ(Plane Fitting)により判断し、 与えられる線分群からなる領域を複数の平面(平面領域)に分離する。複数の平面に 分離するために、以下の手法をとる。  Next, the region expansion unit (Region Growing) 2b shown in FIG. 40 will be described. The area extension unit 2b receives the line segment group obtained by the line segment extraction unit 2a as input, determines which plane each of these line segments belongs to by applying a plane sequence to the plane of the point sequence (Plane Fitting), and gives A region composed of line segments is separated into a plurality of planes (planar regions). The following method is used to separate the planes.
先ず、与えられた線分群から、同じ平面上にあると推定される隣接する 3本の線分 を検索する。この 3本の線分により求められる平面(基準平面)が、平面の種となるも のであり、この 3本の線分が含まれる領域を領域種(seed region)という。そして、この 領域種に隣接する線分を順次、基準平面と同一平面上にある線分か否かを点列の 平面への当てはめ(Plane Fitting)により判断し、隣接する線分が同じ平面に含まれる と判断された場合には、この線分を領域拡大用の線分として領域種に追加してその 領域を拡大すると共に、基準平面の方程式を上記領域拡大用の線分を含めて再度 算出し直す。このような処理によって、全ての線分を何れかの領域(平面)に配分するFirst, three adjacent line segments estimated to be on the same plane are searched from the given line segment group. The plane (reference plane) obtained from these three line segments is the seed of the plane, and the region containing these three line segments is called a seed region. Then, the line segments adjacent to this region type are sequentially judged by whether or not the line segments are in the same plane as the reference plane by applying the plane fitting to the plane of the point sequence (Plane Fitting). If it is determined that it is included, add this line segment to the area type as a line segment for area expansion While enlarging the area, recalculate the equation of the reference plane, including the line segment for enlarging the area. By such processing, all line segments are distributed to any area (plane).
Yes
図 49は、領域拡張処理を説明するための模式図である。図 49に示すように、画像 30内に複数の平面からなる階段 31が存在する場合、例えば太線で示す 32a〜32c の 3本の線分が領域種として選択されたとする。これら 3本の線分 32a〜32cからなる 領域が領域種となる。先ず、この 3つの線分 32a〜32cにより 1つの平面(基準平面) Pを求める。次に、領域種の最も外側の線分 32a又は 32cに領域種外にて隣接する それぞれデータ列 33又は 34において、平面 Pと同一の平面である線分を選択する。 ここでは、線分 33aが選択されるとする。次に、これら 4本の線分群からなる平面 P 'を 求め、基準平面 Pを更新する。次に、線分 34aが選択されれば、 5本の線分群からな る平面 P ' 'を求め、平面 P 'を更新する。これを繰り返すことにより、階段 31の 2段目の 踏面が、破線で囲まれる平面 45として求められる。このようにして、選択された領域 種を種として追加する線分がなくなるまで領域拡大処理する。そして、追加する線分 がなくなった場合、再び画像 30内から領域種となる 3つの線分を検索して領域拡大 処理を実行するというような処理を繰り返し、領域種となる 3つの線分がなくなるまで 図 43のステップ S3の処理を繰り返す。  FIG. 49 is a schematic diagram for explaining the region expansion processing. As shown in FIG. 49, when a stair 31 composed of a plurality of planes exists in the image 30, for example, three line segments 32a to 32c indicated by bold lines are selected as region types. The region consisting of these three line segments 32a to 32c is the region type. First, one plane (reference plane) P is obtained from these three line segments 32a to 32c. Next, in the data string 33 or 34 adjacent to the outermost line segment 32a or 32c of the region type outside the region type, a line segment that is the same plane as the plane P is selected. Here, it is assumed that the line segment 33a is selected. Next, a plane P ′ composed of these four line segments is obtained, and the reference plane P is updated. Next, if the line segment 34a is selected, a plane P ′ ′ composed of five line segments is obtained, and the plane P ′ is updated. By repeating this, the second tread of the stairs 31 is obtained as a plane 45 surrounded by a broken line. In this way, the region enlargement process is performed until there is no line segment to be added using the selected region type as a seed. Then, when there are no more line segments to add, the process of searching for three line segments that are region types from the image 30 again and executing region enlargement processing is repeated, and three line segments that are region types are found. Repeat step S3 in Fig. 43 until no more.
次に、データ点群 Ρ [0 · · · η_1]から構成される平面の方程式を推定する手法 (Plane Fitting)、これを使用して領域種を選択する方法(Selection of seed region)、領域種 から領域を拡大していく領域拡張処理 (Region growing)、及び得られた平面方程式 から誤差が大きいものなどを除いて再度算出する後処理(Post processing)について 説明する。  Next, a method of estimating a plane equation composed of data points Ρ [0 ··· η_1] (Plane Fitting), a method of selecting a region seed (Selection of seed region), a region seed Region growth processing (Region growing) in which the region is expanded from the above, and post processing (Post processing) that recalculates the obtained plane equation except for those with large errors are described.
3次元空間内の点 Pは P = (x , y , z )により表され、平面の方程式はその法線べタト ル n (nx, ny, nz)と非負の定数 dによって下記式(4)で表される。  The point P in the three-dimensional space is represented by P = (x, y, z), and the plane equation is expressed by the following equation (4) by its normal vector n (nx, ny, nz) and the non-negative constant d. It is represented by
[数 4コ xnx + yn„ + znz + d = 0 - - - (4) ここで、ステレオカメラでは、焦点を通る平面を観測することができない、すなわち、 平面は焦点を通らないため、 d≠0とすることができる。したがって、平面は、最小二乗 法により下記式(5)に示す値を最小にする値として求めることができる。 [Expression 4 xn x + yn „+ zn z + d = 0---(4) Here, a stereo camera cannot observe a plane passing through the focal point, that is, Since the plane does not pass through the focal point, d ≠ 0. Therefore, the plane can be obtained as a value that minimizes the value shown in the following equation (5) by the least square method.
[数 5コ fit(n, d) = i (pjn + d)2 - ...(5) 最適解は n = m/ II m II , d=— 1/ || m ||として求まる。ここで、 || · ||は、ベクトル の大きさ、 mは、行列式によって連立一次方程式を解くクラメールの法則(Cramer' s rule)を使用して下記(6— 1)のように容易に得られる線形システムの解である。 [Equation 5: fit (n, d) = i (pjn + d) 2 -... (5) The optimal solution is obtained as n = m / II m II, d = — 1 / || m ||. Where || · || is the size of vector, m is easy as shown in (6-1) below using Cramer's rule to solve simultaneous linear equations by determinants Is the solution of the linear system obtained by
[数 6] [Equation 6]
A m = b - .-(6 - 1) A m = b-.- (6-1)
ここで、  here,
A ¾∑PiPi . b =∑Pi -(6 - 2) この解は、新たなデータ点が加えられたり、又はデータ点削除されたりした場合であ つても、上記式 ½— 2)に示す Aと bの値を更新するのみで、平面パラメータを再計算 すること力 Sできる。更に、本変形例における線分抽出方法の場合は n個のデータ点群 の 2つのモーメント(1次モーメント:平均、 2次モーメント:分散) E (p)、 E (pp )が既知 A ¾ ΣPiPi b = ΣPi -. (6 - 2) This solution or added a new data point or even der connexion when or deleted data points, A represented by the above formula ½- 2) It is possible to recalculate the plane parameters simply by updating the values of and b. Furthermore, in the case of the line segment extraction method in this modification, two moments (first moment: average, second moment: variance) of n data points are known E (p), E (pp)
T  T
であり、これらを使用して、下記(7)に示すように A, bを更新することができ、 n個のデ ータ点群における平面更新処理に拡張することができる。 These can be used to update A and b as shown in (7) below, and can be extended to plane update processing for n data points.
[数 7] [Equation 7]
A A + nE(ppr) , b <- b + «E(p) · .イ 7) AA + nE (pp r ), b <-b + «E (p) · b 7 )
また、一度平面パラメータ n, dを算出すれば、求まった平面方程式から、 n個のデ ータ点群の平面方程式からの外れ度合いを示す平面方程式の 2乗平均誤差 (RMS (root mean square) residual) (以下、 rmsという。 )を下記式 (8)により算出することカ できる。この場合も、 n個のデータ点の上記 2つのモーメントを使用して下記式(8)を 求めること力 Sでさる。  Once the plane parameters n and d are calculated, the root mean square (RMS) of the plane equation indicating the degree of deviation of the n data point groups from the plane equation can be calculated from the obtained plane equation. residual) (hereinafter referred to as rms) can be calculated by the following equation (8). In this case as well, the following equation (8) is obtained by using the above two moments of n data points.
[数 8] (p广 .p„)= )2 >th一 … [Equation 8] (p 广 .p „) =) 2 > th one…
上記(8)に示すように、各データ点が求めた平面上にあれば平面方程式の 2乗平 均誤差 rms(p ·'·ρ )は 0になる値であり、この値が小さいほど各データ点が平面に よくフィットして!/、ることを示す。 As shown in (8) above, the square mean error rms (p · '· ρ) of the plane equation is 0 if each data point is on the obtained plane. Indicates that the data points fit well on the plane! /.
次に、領域種 (seed region)を検索する方法及び領域種から領域を拡大すると供に 平面を更新する方法について説明する。図 50は、領域種を検索する処理及び領域 拡張処理の手順を示すフローチャートである。図 50に示すように、領域種の選択に は、先ず、線分抽出の際に使用した行方向又は列方向のデータ列が隣接する 3つの 線分 (1 , 1 , 1 )であって、互いの線分 (1 , 1 ), (1 , 1 )における画素位置が上記デー Next, a method for searching a seed region and a method for updating a plane while enlarging a region from the region type will be described. FIG. 50 is a flowchart showing a procedure of region type search processing and region expansion processing. As shown in FIG. 50, in selecting the region type, first, three line segments (1, 1, 1) adjacent to the data column in the row direction or the column direction used for the line segment extraction, The pixel position in each line segment (1, 1), (1, 1) is the above data.
1 2 3 1 2 2 3 1 2 3 1 2 2 3
タ列とは直交する方向にて重複したものを検索する (ステップ S 101)。各データ点は 画像内における画素位置を示すインデックス(index)を有しており、例えば行方向の データ列における線分である場合、このインデックスを比較して列方向にて重複して いるか否かを比較する。この検索に成功した場合 (ステップ S102:YES)、上記式(7 )を使用して上記 ½ 1)を算出する。これにより、平面パラメータ n, dを決定でき、こ れを使用して上記式 (8)に示す平面方程式の 2乗平均誤差 (1 , 1 , 1 )を計算する (ス A search is made for duplicates in the direction orthogonal to the data row (step S 101). Each data point has an index indicating the pixel position in the image. For example, when the data point is a line segment in the data column in the row direction, whether or not the index is compared is duplicated in the column direction. Compare When this search is successful (step S102: YES), the above formula (1) is calculated using the above formula (7). As a result, the plane parameters n and d can be determined and used to calculate the mean square error (1, 1, 1) of the plane equation shown in the above equation (8).
1 2 3  one two Three
テツプ S103)。そして、この平面方程式の 2乗平均誤差 rms(l , 1 , 1 )が例えば lcm Step S103). And the mean square error rms (l, 1, 1) of this plane equation is, for example, lcm
1 2 3  one two Three
などの所定の閾値 th 1より小さい場合には、この 3つの線分を領域種として選択す rms If the threshold is smaller than the predetermined threshold th 1, select these three line segments as the region type rms
る(ステップ S104)。所定の閾値 th 1より大きい場合には、再びステップ S101に戻 rms (Step S104). If it is greater than the predetermined threshold th 1, the process returns to step S101 again.
り、上記条件を満たす線分を検索する。また、領域種に選ばれた線分は、線分群のリ ストから除くことで、他の平面拡張などの際に使用されないようにしておく。 Thus, a line segment satisfying the above condition is searched. In addition, the line segment selected as the region type is removed from the list of line segment groups so that it is not used for other plane expansions.
こうして選択された領域種から線分拡張法により領域を拡張する。すなわち、先ず、 領域種の領域に追加する候補となる線分を検索する (ステップ S 105)。なお、この領 域は、領域種が既に更新されている場合の、後述する更新された領域種も含む。候 補となる線分は、領域種の領域に含まれる線分 (例えば 1 )に隣接する線分 (1 )であ  The region is expanded from the selected region type by the line segment expansion method. That is, first, a line segment that is a candidate to be added to the region type region is searched (step S 105). This area includes an updated area type, which will be described later, when the area type has already been updated. The candidate line segment is the line segment (1) adjacent to the line segment (for example, 1) included in the region type region.
1 4 つて、上述同様、これらの線分の画素位置が相互に重なりあうことを条件とする。検索 が成功した場合 (ステップ S106: YES)、その平面方程式の 2乗平均誤差 rms (1 )を 算出し、これが所定の閾値 th 2より小さいか否かを判定し (ステップ S 107)、小さい rms 14 As above, it is necessary that the pixel positions of these line segments overlap each other. If the search is successful (step S106: YES), the mean square error rms (1) of the plane equation is Calculate and determine whether this is less than a predetermined threshold th 2 (step S 107), and a smaller rms
場合には平面パラメータを更新し(ステップ S 108)、再びステップ S 105からの処理を 繰り返す。ここで、候補となる線分がなくなるまで処理を繰り返し、候補となる線分がな くなつたら(ステップ S 106 : NO)、ステップ S 101の処理に戻り、再び領域種を検索す る。そして、線分群に含まれる領域種がなくなった場合 (ステップ S 102 : NO)、今ま で得られている平面パラメータを出力して処理を終了する。 In this case, the plane parameter is updated (step S108), and the processing from step S105 is repeated again. Here, the process is repeated until there are no candidate line segments. When there are no more candidate line segments (step S106: NO), the process returns to step S101, and the region type is searched again. Then, when there are no region types included in the line segment group (step S102: NO), the plane parameters obtained so far are output and the process is terminated.
ここで、本変形例においては、領域種を検索し、 3つの線分が同一平面に属するか 否かの判定、及び領域拡張処理を行う際に基準平面又はこれを更新した更新平面 に属するか否かの判定には、上記式(8)を使用する。すなわち、平面方程式の 2乗 平均誤差 rmsが所定の閾値 (th_rms)未満である場合にのみその線分 (群)を同一平 面に属するものと推定し、その線分を含めた平面として再び平面を算出する。このよ うに平面方程式の 2乗平均誤差 rmsを使用して同一平面に属するか否かを判定する ことにより、更にノイズにロバストでかつ、細かい段差を含んでいるような場合にも正確 に平面を抽出することができる。以下にその理由について説明する。  Here, in this modified example, the region type is searched, whether or not the three line segments belong to the same plane, and whether to belong to the reference plane or the updated plane that has been updated when performing the region expansion process. The above equation (8) is used to determine whether or not. That is, only when the mean square error rms of the plane equation is less than a predetermined threshold value (th_rms), the line segment (group) is estimated to belong to the same plane, and the plane including the line segment is again defined as a plane. Is calculated. By determining whether or not they belong to the same plane using the mean square error rms of the plane equation in this way, it is possible to accurately determine the plane even when it is more robust to noise and includes fine steps. Can be extracted. The reason will be described below.
図 51は、その効果を示す図であって、端点と直線との距離が等しくても平面方程式 の 2乗平均誤差 rmsが異なる例を示す模式図である。ここで、非特許文献 4のように、 領域拡張処理する際、注目の直線 (線分)の端点(end point)と平面 Pとの距離 Dの 値が所定の閾値より小さい場合に、当該注目の線分が平面 Pと同一平面であるとして 領域拡張処理を行うと、平面 Pに交差する直線 La (図 51A)と、平面 Pと平行で所定 距離ずれているような直線 Lb (図 51B)とが同様に平面 Pの更新に使用されることとな る。ここで、平面方程式の 2乗平均誤差 rmsを求めると、図 51Aの直線 Laから求まる 平面方程式の 2乗平均誤差 rms (La)に比して図 5 IBの直線 Lbから求まる平面方程 式の 2乗平均誤差 rms (Lb)の方が大きい。すなわち、図 51Aのように、直線 Laと平 面 Pとが交差する場合は、平面方程式の 2乗平均誤差 rmsが比較的小さくノイズの影 響である場合が多いのに対し、図 51Bのような場合、平面方程式の 2乗平均誤差 rm sが大きく、直線 Lbは平面 Pと同一平面ではなく異なる平面 P 'である確率が高い。し たがって、複数の平面が含まれるような環境から平面を精確に求める必要がある場合 などにおいては、本変形例のように、平面方程式の 2乗平均誤差 rmsを算出し、この 値が所定の閾値未満である場合に同一平面と判断することが好ましい。なお、環境 や距離データの性質に応じて、従来と同様、線分の端点と平面との距離が所定の閾 値以下の場合は当該線分を平面に含めるようににたり、これらを組み合わせてもよいFIG. 51 is a diagram showing the effect, and is a schematic diagram showing an example in which the mean square error rms of the plane equation is different even if the distance between the end point and the straight line is equal. Here, as in Non-Patent Document 4, when the region expansion process is performed, if the value of the distance D between the end point of the target straight line (line segment) and the plane P is smaller than a predetermined threshold, the target When the region expansion process is performed assuming that the line segment is the same plane as the plane P, a straight line La intersecting the plane P (Fig. 51A) and a straight line Lb parallel to the plane P and shifted by a predetermined distance (Fig. 51B) Are used to update the plane P as well. Here, when the root mean square error rms of the plane equation is calculated, the square mean error rms (La) of the plane equation obtained from the straight line La in Fig. 51A is compared to 2 in the plane equation obtained from the straight line Lb in Fig. The root mean square error rms (Lb) is larger. That is, when the straight line La and the plane P intersect as shown in Fig. 51A, the mean square error rms of the plane equation is relatively small and often has an effect of noise, whereas as shown in Fig. 51B. In this case, the mean square error rm s of the plane equation is large, and there is a high probability that the straight line Lb is not the same plane as the plane P but a different plane P ′. Therefore, when it is necessary to accurately determine the plane from an environment that includes multiple planes, the root mean square error rms of the plane equation is calculated as in this modification. When the value is less than a predetermined threshold, it is preferable to determine the same plane. Depending on the environment and the nature of the distance data, if the distance between the end point of the line segment and the plane is less than or equal to the predetermined threshold value, the line segment may be included in the plane, or a combination of these. Good
Yes
また、面パラメータ n, dを一旦算出すれば、平面方程式の 2乗平均誤差 rmsは、デ ータ点群について線分抽出の際に求めた 2つのモーメントの値から平面方程式を更 新し、上記式(8)にて簡単に算出することができる。  Once the surface parameters n and d are calculated, the mean square error rms of the plane equation is updated from the two moment values obtained during line segment extraction for the data point group. It can be easily calculated by the above equation (8).
また、上述の領域種の選択方法は、図 52のようにも表現することができる。 overlapd , 1 )は、各イメージロウに含まれる直線ベクトル 1と 1における端点間の位置が直線べ j k j k  In addition, the above-described region type selection method can also be expressed as shown in FIG. overlapd, 1) indicates that the position between the end points in the line vectors 1 and 1 included in each image row is a straight line j k j k
タトルとは直交する位置にて重なっている場合に trueを出力する関数である。また、 fitPlaned , 1 , 1 )は、上記式(4)〜(7)により Am=bの解を求め平面パラメータ n, dを A tuttle is a function that outputs true when overlapping at an orthogonal position. FitPlaned, 1, 1) finds the solution of Am = b by the above equations (4) to (7) and sets the plane parameters n and d
1 2 3  one two Three
計算し、上記式(8)により算出された A, により、直線ベクトル 1 , 1 , 1を平面にフイツ The line vector 1, 1, 1 is transformed into the plane by A, calculated by the above equation (8).
1 2 3  one two Three
ティングさせる関数である。 Is a function that
rms(l , 1 , 1 )は、上記式(6)を使用して 3本の直線全てにおいて、平面方程式の 2  rms (l, 1, 1) is expressed as 2 in the plane equation on all three lines using equation (6) above.
1 2 3  one two Three
乗平均誤差 rmsの値を算出する関数である。また、 removed , 1 , 1 )は、 lines [i] , lines This function calculates the value of the root mean square error rms. Also, removed, 1, 1) is lines [i], lines
1 2 3  one two Three
[i+l] l , lines [i+2]から領域種を構成するとして選択されたそれぞれ直線 1 , 1 , 1を除 [i + l] l, lines [i + 2] are divided by lines 1, 1, 1, respectively, which are selected to constitute the region type.
2 1 2 3 くことを意味し、これにより、再びこれらの直線が計算に使用されることを防止する。 また、領域拡張処理は、図 53のように表現することもできる。図 53において、 A及び bは、上記式(6— 1)に示すそれぞれ行列及びベクトルである、また、 add(A, b, 1)は、 上記式(8)により、 Aと bに直線 lineのモーメントを加える関数である。 Solve(A, b)は、 Am=bを満たす mを求め、上記式(4)〜(7)により平面パラメータ n, dを計算する。 select(open)は、例えば最初の 1つなど、 openの中力、ら任意に 1つのエレメントを選択 する関数である。また、 index(l )は、画素列又は行における 1のインデックスを返す関 2 1 2 3, which prevents these straight lines from being used again for calculations. Further, the area expansion process can also be expressed as shown in FIG. In Fig. 53, A and b are the matrix and vector shown in the above equation (6-1), respectively, and add (A, b, 1) is a straight line between A and b by the above equation (8). It is a function that adds the moment of. Solve (A, b) calculates m satisfying Am = b, and calculates the plane parameters n and d by the above equations (4) to (7). select (open) is a function that selects one element arbitrarily, such as the first one, such as the first one. Index (l) is a function that returns an index of 1 in a pixel column or row.
1 1  1 1
数である。また、 neighbor(index)は、与えられたインデックスに隣接したインデックス、 例えば {index- 1 , index+ 1}を返す関数である。 Is a number. Also, neighbor (index) is a function that returns an index adjacent to the given index, for example, {index-1, index + 1}.
また、上述したように、本変形例においては、図 43のステップ S73において領域拡 張処理を行って平面方程式を更新した後、ステップ S 74において平面方程式を再度 算出する処理(Post processing)を行う。この再度算出する処理では、例えば上述の ように更新され最終的に得られた平面方程式が示す平面に属するとされた距離デー タ点又は線分の平面からのずれを計算し、所定の値以上平面から外れる距離データ 点又は線分は除き、再度平面方程式を更新することで、ノイズの影響を更に低減す ること力 Sでさる。 Further, as described above, in the present modification, after the region expansion process is performed in step S73 of FIG. 43 to update the plane equation, the process of calculating the plane equation again (Post processing) is performed in step S74. . In this recalculation process, for example, the above-mentioned The distance data point or line segment that is determined to belong to the plane indicated by the plane equation that is updated and finally obtained is calculated from the plane of the distance data point or line segment. Except for this, the plane equation is updated again, and the effect of noise is further reduced by the force S.
次に、このステップ S 74について詳細に説明する。ここでは、 2つのステップにより、 平面方程式を再度算出する方法について説明する。先ず、ステップ S73にて検出さ れた各平面の境界の距離データ点 (pixels)において、現在属している平面よりも、隣 接する平面までの距離が近いデータ点が検出された場合は、当該データ点を隣接 する平面の方に含める処理をする。また、何れの平面にも属していなぐかつ距離が 例えば 1. 5cmなど比較的大きい閾値以下である平面が存在するデータ点が検出で きた場合は、当該データ点をその平面に含める処理をする。これらの処理は各平面 領域の境界近傍のデータ点を検索することで実行することができる。以上の処理が 終了したら、再度平面方程式を算出する。  Next, step S74 will be described in detail. Here, we explain how to calculate the plane equation again in two steps. First, in the distance data point (pixels) of the boundary of each plane detected in step S73, if a data point closer to the adjacent plane than the currently belonging plane is detected, the data Process to include the point toward the adjacent plane. In addition, if a data point that does not belong to any plane and has a plane whose distance is less than a relatively large threshold, such as 1.5 cm, can be detected, the data point is included in that plane. These processes can be executed by searching for data points near the boundary of each planar area. When the above processing is completed, the plane equation is calculated again.
次に、上述のようにして再度算出された平面の各領域の境界近傍において、各デ ータ点と平面との距離が例えば 0. 75cmなど比較的小さい閾値を超える場合は、そ れらのデータ点を捨てる処理を実行する。これにより、その平面領域は若干小さくな るものの更に精確な平面を求めることができる。距離データ点を削除後、再び平面を 求め、この処理を繰り返す。このことにより、極めて精密に平面を求めることができる。 次に各処理によって得られる結果を示す。図 54Aは、ロボット装置が立った状態で 床面を見下ろした際の床面を示す模式図、図 54Bは、縦軸を x、横軸を y、各データ 点の濃淡で z軸を表現して 3次元距離データを示す図であり、更に、行方向の画素列 から線分抽出処理にて同一平面に存在するとされるデータ点群から直線を検出した ものを示す。図 54Bに示す直線群力も領域拡張処理によりえられた平面領域を図 54 Cに示す。このように、ロボット装置の視野内には、 1つの平面(床面)のみが存在する 、すなわち、床面が全て同じ平面として検出されていることがわかる。  Next, when the distance between each data point and the plane exceeds a relatively small threshold, such as 0.75 cm, in the vicinity of the boundary of each area of the plane recalculated as described above, those Execute processing to discard data points. As a result, the plane area is slightly reduced, but a more accurate plane can be obtained. After deleting the distance data point, find the plane again and repeat this process. As a result, the plane can be obtained very precisely. Next, the result obtained by each process is shown. Fig. 54A is a schematic diagram showing the floor surface when the robot device is standing down, and Fig. 54B is a graph in which the vertical axis represents x, the horizontal axis represents y, and the z-axis represents the density of each data point. 3D is a diagram showing three-dimensional distance data, and further shows a straight line detected from a data point group that exists in the same plane by line segment extraction processing from a pixel column in the row direction. FIG. 54C shows a planar region obtained by the region expansion process for the straight line group force shown in FIG. 54B. Thus, it can be seen that there is only one plane (floor surface) in the field of view of the robot apparatus, that is, the floor surfaces are all detected as the same plane.
次に、床面に段差を一段置いたときの結果を図 55に示す。図 55Aに示すように、 床面 Fには、 1段の段差 ST3が載置されている。図 55Bは、実験条件を示す図であり 、着目点と直線 (線分)との距離力 ¾ax_dを超える場合は、データ点群を分割する。ま た、抽出の成否(水平)(correct extraction(horizontal))は、行方向のデータ列毎に、 合計 10回の線分抽出を行う線分拡法による平面検出を行って成功した回数を示し、 抽出の成否(垂直)(correct extraction(vertical))は、列方向のデータ列毎について の抽出の成否を示す。また、 No. l ~No. 5は、上述した Zig-Zag-Shape判別処理を 取り入れていない従来の線分拡張法による平面検出処理の条件、 No. 6は、 Next, Fig. 55 shows the results when one step is placed on the floor. As shown in FIG. 55A, on the floor surface F, one step ST3 is placed. FIG. 55B is a diagram showing experimental conditions. When the distance force ¾ax_d between the target point and a straight line (line segment) is exceeded, the data point group is divided. Ma The extraction success / failure (horizontal) indicates the number of successful plane detections using line segment expansion, which performs a total of 10 line segment extractions for each data column in the row direction. Correct extraction (vertical) indicates success or failure of extraction for each data column in the column direction. No. l to No. 5 are the conditions for plane detection processing by the conventional line segment expansion method that does not incorporate the Zig-Zag-Shape discrimination processing described above, and No. 6 is
Zig-Zag-Shape判別処理を行った本変形例における平面検出方法の条件を示す。 図 55C及び図 55Dは、線分拡張法により平面検出した結果を示す図であって、そ れぞれ本変形例における手法により平面検出した結果、従来の線分拡張法により平 面検出した結果(比較例)を示す。図 55Bに示すように、従来の手法においては、線 分抽出(Line Fitting)において推定のための閾値パラメータ max_dを大きくする( max_d = 25, 30)と検出率が下がり、閾値 max_d小さくする (max_d= 10, 15)と検出率 が向上する。これに対して、本発明のように、ジグザグ形検証処理を導入することによ り、大きな閾値 max_d = 30を設定しても、優れた検出結果を示すことがわかる。 The conditions of the plane detection method in this modified example in which the Zig-Zag-Shape discrimination process is performed are shown. 55C and 55D are diagrams showing the results of plane detection by the line segment expansion method. The results of plane detection by the method in this modification example and the results of plane detection by the conventional line segment expansion method, respectively. (Comparative example) is shown. As shown in Fig. 55B, in the conventional method, when the threshold parameter max_d for estimation is increased (max_d = 25, 30) in line fitting, the detection rate decreases and the threshold max_d is decreased (max_d = 10, 15) and the detection rate is improved. On the other hand, it can be seen that by introducing the zigzag verification processing as in the present invention, an excellent detection result is exhibited even when a large threshold value max_d = 30 is set.
すなわち、閾値 max_dを大きくすると、ノイズの影響が少なくなるものの、線分抽出が 難しくなり、閾値 max_dを小さくすると、ノイズの影響を受けて誤検出が多くなつてしまう 。図 56Bに示す床面を撮影した画像から 3次元距離データを取得した場合を図 56B 及び図 56Cに示す。何れ左図は、行方向の画素列(距離データ列)から線分を抽出 した例、右図は列方向の画素列(距離データ列)から線分を抽出した例を示す。図 5 6Bに示すように、閾値 max_dを小さくすると、ノイズの影響が大きくなり、ノイズの影響 が大きい遠方などにおいては特に、線分をうまく検出することができない。一方、図 5 6Cに示すように、従来の線分抽出に更にジグザグ形判別処理を加えた場合、閾値 max_dを大きくしても、更にノイズの影響が大きい遠方の領域であっても線分が検出さ れていることがわ力、る。  That is, if the threshold value max_d is increased, the influence of noise is reduced, but line segment extraction becomes difficult. If the threshold value max_d is reduced, erroneous detection increases due to the influence of noise. Figures 56B and 56C show the case where 3D distance data is acquired from the image of the floor shown in Figure 56B. The left figure shows an example in which a line segment is extracted from a pixel column (distance data string) in the row direction, and the right figure shows an example in which a line segment is extracted from a pixel column (distance data string) in the column direction. As shown in Fig. 56B, if the threshold max_d is decreased, the effect of noise increases, and line segments cannot be detected well, especially in the far field where the effect of noise is large. On the other hand, as shown in FIG. 56C, when the zigzag discrimination processing is further added to the conventional line segment extraction, even if the threshold max_d is increased, the line segment is detected even in a distant area where the influence of noise is larger. The power that is detected.
これにより、上述した如ぐそれぞれ異なる階段を撮影した画像から 3次元距離デー タを取得して平面検出することができる。例えば、図 11及び図 12に示すように、何れ の場合も全ての踏面を平面として検出できている。なお、図 12Bでは、床面の一部も 他の平面として検出成功して!/、る。  As a result, plane detection can be performed by acquiring three-dimensional distance data from images obtained by photographing different stairs as described above. For example, as shown in FIGS. 11 and 12, all the treads can be detected as planes in any case. In FIG. 12B, a part of the floor is successfully detected as another plane!
本変形例によれば、線分拡張法による平面検出を行う際、始めは大きな閾値を設 定して線分を分割し、次に Zig-Zag-Shape判別処理により、閾値を超えるデータ点を 持たない直線であってもジグザグ形である場合には、ノイズではなぐ複数平面から なる直線であるとして線分を分割するようにしたので、ノイズを含む距離情報から複数 の平面を精度よく検出することが可能となる。 According to this modification, when performing plane detection by the line segment expansion method, a large threshold value is initially set. If the line segment is zigzag even if it does not have a data point that exceeds the threshold by Zig-Zag-Shape discrimination processing, the line segment is divided into multiple planes that are not noise. Since it is assumed that the line segment is divided, it is possible to accurately detect a plurality of planes from distance information including noise.
このように、小さい段差も精度よく検出することができるため、例えばロボット装置が 移動可能な環境内の階段などを認識することができ、二足歩行ロボット装置であれば 、この検出結果を利用して階段昇降動作が可能となる。  In this way, since a small step can be detected with high accuracy, it is possible to recognize, for example, a staircase in an environment in which the robot apparatus can move, and if this is a biped robot apparatus, this detection result can be used. The stairs can be moved up and down.
更に、複数の平面によって構成されている凸凹の床面を歩行可能な平面だと誤認 識することがなくなり、ロボット装置の移動などが更に簡単になる。  Furthermore, it is no longer misidentified that the uneven floor composed of a plurality of planes is a plane that can be walked, and the movement of the robot apparatus and the like are further simplified.
なお、本発明は上述した変形例のみに限定されるものではなぐ本発明の要旨を逸 脱しない範囲において種々の変更が可能であることは勿論である。また、上述した平 面検出処理、階段認識処理、階段昇降制御処理のうち 1以上の任意の処理は、ハー ドウエアで構成しても、演算器 (CPU)にコンピュータプログラムを実行させることで実 現してもよい。コンピュータプログラムとする場合には、記録媒体に記録して提供する ことも可能であり、また、インターネットその他の伝送媒体を介して伝送することにより 提供することも可能である。  Of course, the present invention is not limited to the above-described modifications, and various modifications can be made without departing from the spirit of the present invention. In addition, one or more of the above-described plane detection process, staircase recognition process, and stair climbing control process can be realized by executing a computer program on a computing unit (CPU) even if it is configured with hardware. May be. In the case of a computer program, it can be provided by being recorded on a recording medium, or can be provided by being transmitted through the Internet or other transmission media.

Claims

請求の範囲 The scope of the claims
[1] 1.移動手段により移動可能なロボット装置において、  [1] 1. In robotic devices that can be moved by moving means,
3次元の距離データから環境内に含まれる 1又は複数の平面を検出し、平面情報と して出力する平面検出手段と、  Plane detecting means for detecting one or more planes included in the environment from the three-dimensional distance data and outputting as plane information;
上記平面情報から移動可能な平面を有する階段を認識し、該階段の踏面に関する 踏面情報及び蹴り上げ情報を有する階段情報を出力する階段認識手段と、 上記階段情報に基づき、階段昇降可能か否力、を判断し、昇降動作が可能であると 判断した場合には、その踏面に対して自律的に位置決めして階段昇降動作を制御 する階段昇降制御手段を有する  Stair recognition means for recognizing a stair having a movable plane from the plane information and outputting step information on the tread of the stair and information on kicking, and whether or not the stair can be raised or lowered based on the stair information If it is determined that it is possible to move up and down, it has a stair lift control means that autonomously positions it relative to the tread surface and controls the stair lift operation.
ことを特徴とするロボット装置。  A robot apparatus characterized by that.
[2] 2.上記 3次元の距離データを取得する距離計測手段を有する [2] 2.Has distance measurement means to obtain the above 3D distance data
ことを特徴とする請求の範囲第 1項記載のロボット装置。  The robot apparatus according to claim 1, wherein the robot apparatus is characterized in that:
[3] 3.上記移動手段として脚部を備え、この脚部により移動可能である [3] 3. A leg is provided as the moving means and can be moved by the leg.
ことを特徴とする請求の範囲第 1項記載のロボット装置。  The robot apparatus according to claim 1, wherein the robot apparatus is characterized in that:
[4] 4.上記階段認識手段は、 [4] 4. The above staircase recognition means is
与えられた平面情報から移動可能な平面を有する階段を検出して統合前階段情 報を出力する階段検出手段と、  Stair detection means for detecting a stair having a movable plane from given plane information and outputting the pre-integration stair information;
上記階段検出手段から出力される時間的に異なる複数の統合前階段情報を統計 的に処理することにより統合した統合済階段情報を上記階段情報として出力する階 段統合手段とを有する  And a step integration unit that outputs integrated step information as the step information by statistically processing a plurality of pre-integration step information output from the step detection unit.
ことを特徴とする請求の範囲第 1項記載のロボット装置。  The robot apparatus according to claim 1, wherein the robot apparatus is characterized in that:
[5] 5.上記階段検出手段は、上記平面情報に基づき踏面の大きさ及び空間的な位置を 認識し、この認識結果である踏面情報を上記統合前階段情報として出力し、 上記階段統合手段は、時間的に前後する踏面情報から、所定の閾値より大きい重 複領域を有しかつ相対的な高さの違いが所定の閾値以下である 2以上の踏面からな る踏面群を検出した場合、当該踏面群を何れをも含む一の踏面となるよう統合する ことを特徴とする請求の範囲第 4項記載のロボット装置。 [5] 5. The stair detection means recognizes the size and spatial position of the tread based on the plane information, outputs the tread information as a recognition result as the pre-integration stair information, and the stair integration means. Is a case where a tread group consisting of two or more treads that have overlapping areas that are larger than a predetermined threshold and whose relative height is less than or equal to a predetermined threshold is detected from tread information that fluctuates in time. 5. The robot apparatus according to claim 4, wherein the tread group is integrated so as to become one tread including all of the tread groups.
[6] 6.上記階段認識手段は、上記平面情報に基づき踏面の大きさ及び空間的な位置を 認識し上記踏面情報とする [6] 6. The staircase recognition means determines the size and spatial position of the tread based on the plane information. Recognize and use the above tread information
ことを特徴とする請求の範囲第 1項記載のロボット装置。  The robot apparatus according to claim 1, wherein the robot apparatus is characterized in that:
[7] 7.上記踏面情報は、少なくとも移動方向に対して該踏面の手前側の境界を示すフロ ントエッジ及び奥側の境界を示すバックエッジの情報を含む [7] 7. The above tread information includes at least information on the front edge indicating the front boundary of the tread and the back edge indicating the back boundary with respect to the moving direction.
ことを特徴とする請求の範囲第 6項記載のロボット装置。  The robot apparatus according to claim 6, wherein:
[8] 8.上記踏面情報は、上記フロントエッジ及びバックエッジに挟まれた領域である安全 領域の左右両側に隣接した領域であって移動可能である確率が高いと推定されるマ 一ジン領域を示す右側マージン情報及び左側マージン情報を有する [8] 8. The above tread information is a margin area that is estimated to be movable because it is an area adjacent to the left and right sides of the safety area that is sandwiched between the front edge and the back edge. Right margin information and left margin information indicating
ことを特徴とする請求の範囲第 7項記載のロボット装置。  The robot apparatus according to claim 7, wherein the robot apparatus is characterized in that:
[9] 9.上記踏面情報は、上記平面情報に基づき踏面と推定された領域の重心を示す参 照点情報を有する [9] 9. The tread information includes reference point information indicating the center of gravity of the area estimated as the tread based on the plane information.
ことを特徴とする請求の範囲第 7項記載のロボット装置。  The robot apparatus according to claim 7, wherein the robot apparatus is characterized in that:
[10] 10.上記参照点情報は、上記フロントエッジ及びバックエッジに挟まれた領域を示す 安全領域の重心、該安全領域及びその両側に隣接した領域であって移動可能であ る確率が高!/、と推定されるマージン領域からなる踏面領域の重心、又は踏面となる 平面を構成する点群から求まる中心点の何れ力、からなる参照点の位置情報を有する ことを特徴とする請求の範囲第 9項記載のロボット装置。 [10] 10. The above reference point information has a high probability of being movable because it is the center of gravity of the safety area indicating the area between the front edge and the back edge, and the safety area and areas adjacent to both sides thereof. The position information of the reference point consisting of the center of gravity of the tread area consisting of the margin area estimated as! /, Or any of the center points obtained from the point cloud constituting the tread plane is provided. The robot device according to claim 9 in the range.
[11] 11.上記踏面情報は、踏面となる平面を構成する点群の 3次元座標情報を有する ことを特徴とする請求の範囲第 7項記載のロボット装置。 [11] 11. The robot device according to claim 7, wherein the tread information includes three-dimensional coordinate information of a point group constituting a plane to be a tread.
[12] 12.上記階段認識手段は、上記平面情報に基づき平面の境界を抽出して多角形を 算出し、該多角形に基づき上記踏面情報を算出する [12] 12. The staircase recognition means calculates a polygon by extracting the boundary of the plane based on the plane information, and calculates the tread information based on the polygon.
ことを特徴とする請求の範囲第 1項記載のロボット装置。  The robot apparatus according to claim 1, wherein the robot apparatus is characterized in that:
[13] 13.上記多角形は、上記平面情報に基づき抽出された平面の境界に外接する凸多 角形領域である [13] 13. The polygon is a convex polygon area circumscribing the boundary of the plane extracted based on the plane information.
ことを特徴とする請求の範囲第 12項記載のロボット装置。  13. The robot apparatus according to claim 12, wherein the robot apparatus is characterized in that:
[14] 14.上記多角形は、上記平面情報に基づき抽出された平面の境界に内接する凸多 角形領域である [14] 14. The polygon is a convex polygon region inscribed in the boundary of the plane extracted based on the plane information.
ことを特徴とする請求の範囲第 12項記載のロボット装置。 13. The robot apparatus according to claim 12, wherein the robot apparatus is characterized in that:
[15] 15.上記多角形は、上記平面情報に基づき抽出された平面の境界を平滑化した非 凸多角形領域であることを特徴とする請求の範囲第 12項記載のロボット装置。 15. The robot apparatus according to claim 12, wherein the polygon is a non-convex polygon region obtained by smoothing a boundary of a plane extracted based on the plane information.
[16] 16.上記平面情報は、一の平面毎に、法線ベクトル、境界を示す境界情報、重心位 置を示す重心情報、大きさを示す面積情報、及び平面度から選択される 1以上の情 報を有する  [16] 16. For each plane, the plane information is selected from a normal vector, boundary information indicating the boundary, barycentric information indicating the barycentric position, area information indicating the size, and flatness. Have information on
ことを特徴とする請求の範囲第 1項記載のロボット装置。  The robot apparatus according to claim 1, wherein the robot apparatus is characterized in that:
[17] 17.上記階段昇降制御手段は、現在移動中の移動面におけるバックエッジに対峙し た所定位置に移動した後、昇降動作を実行するよう制御する [17] 17. The above-mentioned stair-climbing control means controls to execute a lifting operation after moving to a predetermined position facing the back edge on the moving surface that is currently moving.
ことを特徴とする請求の範囲第 3項記載のロボット装置。  4. The robot apparatus according to claim 3, wherein
[18] 18.上記階段昇降制御手段は、現在移動中の移動面におけるバックエッジが確認 できない場合は、次に昇降動作の対象となる次段の踏面におけるフロントエッジに対 峙した所定位置に移動した後、昇降動作を実行するよう制御する [18] 18. If the back edge on the moving surface that is currently moving cannot be confirmed, the stair lift control means moves to a predetermined position in front of the front edge on the next step surface that is the target of the next lift operation. And then control to perform the lifting operation
ことを特徴とする請求の範囲第 17項記載のロボット装置。  18. The robot apparatus according to claim 17, wherein the robot apparatus is characterized in that:
[19] 19.上記階段昇降制御手段は、次に移動対象となる踏面を検出し、当該移動対象と なる踏面に対峙した所定位置に移動する一連の動作を行って昇降動作を実行する よう制御する [19] 19. The above-mentioned stair climbing control means detects the tread surface to be moved next, and performs a series of operations of moving to a predetermined position facing the tread surface to be moved to perform the lifting operation. Do
ことを特徴とする請求の範囲第 3項記載のロボット装置。  4. The robot apparatus according to claim 3, wherein
[20] 20.上記階段昇降制御手段は、現在位置から次に移動対象となる次段又は次段以 降の踏面が検出できない場合、過去に取得した階段情報力 当該移動対象となる次 段の踏面を検索する [20] 20. If the next step or next tread surface to be moved next cannot be detected from the current position, the above-mentioned stair climbing control means obtains the stair information power acquired in the past for the next step to be moved. Search for treads
ことを特徴とする請求の範囲第 19項記載のロボット装置。  20. The robot apparatus according to claim 19, wherein the robot apparatus is characterized in that:
[21] 21.上記階段昇降制御手段は、現在の移動面におけるバックエッジに対峙した所定 位置に移動した後、次の移動対象となる踏面を検出し、当該踏面におけるフロントェ ッジに対峙した所定位置に移動し、当該踏面に移動する昇降動作を実行するよう制 御する [21] 21. The stair-climbing control means detects a tread surface to be moved next after moving to a predetermined position facing the back edge on the current moving surface, and detects a predetermined surface facing the front edge on the tread surface. Move to a position and control to move up and down on the tread
ことを特徴とする請求の範囲第 3項記載のロボット装置。  4. The robot apparatus according to claim 3, wherein
[22] 22.上記階段昇降制御手段は、踏面に対する上記移動手段の位置を規定したパラ メータを使用して昇降動作を制御する ことを特徴とする請求の範囲第 3項記載のロボット装置。 [22] 22. The stair lift control means controls the lift operation using a parameter that defines the position of the moving means relative to the tread. 4. The robot apparatus according to claim 3, wherein
[23] 23.上記パラメータは、上記脚部の足上げ高さ又は足下げ高さに基づき決定される ことを特徴とする請求の範囲第 22項記載のロボット装置。 [23] 23. The robot device according to claim 22, wherein the parameter is determined based on a foot raising height or a leg lowering height of the leg portion.
[24] 24.階段を登る動作と降りる動作とで上記パラメータの数値を変更するパラメータ切 り替え手段を有する [24] 24. Has parameter switching means for changing the numerical values of the above parameters depending on the movement up and down the stairs.
ことを特徴とする請求の範囲第 22項記載のロボット装置。  23. The robot apparatus according to claim 22, wherein the robot apparatus is characterized in that:
[25] 25.上記平面検出手段は、 3次元空間で同一平面上にあると推定される距離データ 点群毎に線分を抽出する線分抽出手段と、上記線分抽出手段によって抽出された 線分群から同一平面に属すると推定される複数の線分を抽出し該複数の線分から平 面を算出する平面領域拡張手段とを有し、 [25] 25. The plane detection means is extracted by a line segment extraction means for extracting a line segment for each distance data point group estimated to be on the same plane in a three-dimensional space, and the line segment extraction means. Plane area expanding means for extracting a plurality of line segments estimated to belong to the same plane from the group of line segments and calculating a plane from the plurality of line segments;
上記線分抽出手段は、距離データ点の分布に応じて適応的に線分を抽出する ことを特徴とする請求の範囲第 1項記載のロボット装置。  The robot apparatus according to claim 1, wherein the line segment extraction means adaptively extracts a line segment according to a distribution of distance data points.
[26] 26.上記線分抽出手段は、上記距離データ点間の距離に基づき同一平面上にある と推定される距離データ点群を抽出し、該距離データ点群における距離データ点の 分布に基づき、当該距離データ点群が同一平面上にあるか否力、を再度推定する ことを特徴とする請求の範囲第 25項記載のロボット装置。 [26] 26. The line segment extraction means extracts a distance data point group that is estimated to be on the same plane based on the distance between the distance data points, and determines the distribution of the distance data points in the distance data point group. 26. The robot apparatus according to claim 25, wherein the power of whether or not the distance data point group is on the same plane is estimated again based on the following.
[27] 27.上記線分抽出手段は、上記同一平面上にあると推定される距離データ点群から 線分を抽出し、該距離データ点群のうち該線分との距離が最も大きい距離データ点 を着目点とし、当該距離が所定の閾値以下である場合に該距離データ点群における 距離データ点の分布に偏りがあるか否力、を判別し、該偏りがある場合には該着目点 にて該距離データ点群を分割する [27] 27. The line segment extraction unit extracts a line segment from the distance data point group estimated to be on the same plane, and the distance between the distance data point group and the line segment is the largest. If the data point is a point of interest, and the distance is less than or equal to a predetermined threshold value, it is determined whether or not the distribution of the distance data points in the distance data point group is biased. Divide the distance data point cloud by point
ことを特徴とする請求の範囲第 25項記載のロボット装置。  26. The robot apparatus according to claim 25, wherein
[28] 28.上記線分抽出手段は、上記同一平面上にあると推定される距離データ点群から 第 1の線分を抽出し、該距離データ点群のうち該第 1の線分との距離が最も大きい距 離データ点を着目点とし、当該距離が所定の閾値以下である場合に該距離データ 点群から第 2の線分を抽出し、該第 2の線分の一方側に距離データ点が所定の数以 上連続して存在するか否かを判定し、所定の数以上連続して存在する場合に該距 離データ点群を該着目点にて分割する ことを特徴とする請求の範囲第 25項記載のロボット装置。 [28] 28. The line segment extracting means extracts a first line segment from the distance data point group estimated to be on the same plane, and the first line segment of the distance data point group is extracted. If the distance data point with the largest distance is the point of interest, and the distance is less than or equal to a predetermined threshold, a second line segment is extracted from the distance data point group, and one side of the second line segment is extracted. It is determined whether or not there are more than a predetermined number of distance data points. If there are more than a predetermined number of data points, the distance data point group is divided at the point of interest. 26. The robot apparatus according to claim 25, wherein
[29] 29.上記平面領域拡張手段は、同一の平面に属すると推定される 1以上の線分を選 択して基準平面を算出し、該基準平面と同一平面に属すると推定される線分を該線 分群から拡張用線分として検索し、該拡張用線分により該基準平面を更新すると共 に該基準平面の領域を拡張する処理を繰り返し、更新が終了した平面を更新済平 面として出力する [29] 29. The plane area expanding means selects one or more line segments estimated to belong to the same plane, calculates a reference plane, and calculates a line estimated to belong to the same plane as the reference plane. The segment is retrieved from the line segment group as an extension line segment, the process of updating the reference plane with the extension line segment and expanding the area of the reference plane is repeated, and the updated plane is updated to the updated plane. Output as
ことを特徴とする請求の範囲第 25項記載のロボット装置。  26. The robot apparatus according to claim 25, wherein
[30] 30.上記更新済平面に属する距離データ点群において、当該更新済平面との距離 が所定の閾値を超える距離データ点が存在する場合、これを除!/、た距離データ点群 から再度平面を算出する平面再算出手段を更に有する [30] 30. In the distance data point group belonging to the updated plane, if there is a distance data point whose distance from the updated plane exceeds a predetermined threshold, this is excluded from the distance data point group It further has plane recalculation means for calculating the plane again.
ことを特徴とする請求の範囲第 29項記載のロボット装置。  30. The robot apparatus according to claim 29, wherein
[31] 31.上記平面領域拡張手段は、線分により定まる平面と上記基準平面との誤差に基 づき当該線分が該基準平面と同一平面に属するか否力、を推定する [31] 31. The plane area expanding means estimates whether or not the line segment belongs to the same plane as the reference plane based on an error between the plane determined by the line segment and the reference plane.
ことを特徴とする請求の範囲第 25項記載のロボット装置。  26. The robot apparatus according to claim 25, wherein
[32] 32.移動手段により移動可能なロボット装置の動作制御方法において、 [32] 32. In an operation control method of a robot apparatus movable by a moving means,
3次元の距離データから環境内に含まれる 1又は複数の平面を検出し、平面情報と して出力する平面検出工程と、  A plane detection step of detecting one or more planes included in the environment from the three-dimensional distance data and outputting as plane information;
上記平面情報から移動可能な平面を有する階段を認識し、該階段の踏面に関する 踏面情報及び蹴り上げ情報を有する階段情報を出力する階段認識工程と、 上記階段情報に基づき、階段昇降可能か否力、を判断し、昇降動作が可能であると 判断した場合には、その踏面に対して自律的に位置決めして階段昇降動作を制御 する階段昇降制御工程と  A staircase recognition step for recognizing a staircase having a movable plane from the plane information and outputting step information about the tread surface of the staircase and kicking information, and whether or not the stairs can be raised or lowered based on the staircase information. , And if it is determined that the elevating operation is possible, a stair ascending / descending control process for autonomously positioning with respect to the tread to control the stair ascending / descending operation
を有することを特徴とするロボット装置の動作制御方法。  An operation control method for a robot apparatus, comprising:
[33] 33.上記 3次元の距離データを取得する距離計測工程を有する [33] 33. Having a distance measurement process for acquiring the above three-dimensional distance data
ことを特徴とする請求の範囲第 32項記載のロボット装置の動作制御方法。  33. The operation control method for a robot apparatus according to claim 32, wherein
[34] 34.上記移動手段は、機体脚部である [34] 34. The moving means is a body leg.
ことを特徴とする請求の範囲第 32項記載のロボット装置の動作制御方法。  33. The operation control method for a robot apparatus according to claim 32, wherein
[35] 35.上記階段認識工程は、 与えられた平面情報から移動可能な平面を有する階段を検出して統合前階段情 報を出力する階段検出工程と、 [35] 35. The above staircase recognition process is A staircase detection step of detecting a staircase having a movable plane from given plane information and outputting pre-integration staircase information;
上記階段検出工程にて出力される時間的に異なる複数の統合前階段情報を統計 的に処理することにより統合した統合済階段情報を上記階段情報として出力する階 段統合工程とを有する  A step integration step of outputting the integrated staircase information that is integrated by statistically processing a plurality of pre-integration staircase information that is output in the staircase detection step as the staircase information.
ことを特徴とする請求の範囲第 32項記載のロボット装置の動作制御方法。  33. The operation control method for a robot apparatus according to claim 32, wherein
[36] 36.上記階段検出工程では、上記平面情報に基づき踏面の大きさ及び空間的な位 置を認識し、この認識結果である踏面情報を上記統合前階段情報として出力し、 上記階段統合工程では、時間的に前後する踏面情報から、所定の閾値より大きい 重複領域を有しかつ相対的な高さの違いが所定の閾値以下である 2以上の踏面から なる踏面群を検出した場合、当該踏面群を何れも含む一の踏面となるよう統合する ことを特徴とする請求の範囲第 35項記載のロボット装置の動作制御方法。 [36] 36. In the staircase detection step, the size and spatial position of the tread are recognized based on the plane information, and the tread information that is the recognition result is output as the pre-integration staircase information. In the process, when a tread group consisting of two or more treads having an overlapping area larger than a predetermined threshold and having a relative height difference equal to or less than a predetermined threshold is detected from tread information that moves in time, 36. The operation control method for a robot apparatus according to claim 35, wherein the steps are integrated so as to be one tread including all the tread groups.
[37] 37.上記階段認識工程では、上記平面情報に基づき踏面の大きさ及び空間的な位 置を認識し上記踏面情報とする [37] 37. In the step recognition process, the size and spatial position of the tread are recognized based on the plane information and used as the tread information.
ことを特徴とする請求の範囲第 32項記載のロボット装置の動作制御方法。  33. The operation control method for a robot apparatus according to claim 32, wherein
[38] 38.上記踏面情報は、少なくとも移動方向に対して該踏面の手前側の境界を示すフ ロントエッジ及び奥側の境界を示すバックエッジを示す情報を含む [38] 38. The tread information includes at least information indicating a front edge indicating a front boundary of the tread and a back edge indicating a back boundary with respect to the moving direction.
ことを特徴とする請求の範囲第 37項記載のロボット装置の動作制御方法。  38. The operation control method for a robot apparatus according to claim 37, wherein:
[39] 39.上記階段認識工程では、上記平面情報に基づき平面の境界を抽出して多角形 を算出し、該多角形に基づき上記踏面情報を算出する [39] 39. In the staircase recognition step, a plane boundary is extracted based on the plane information to calculate a polygon, and the tread information is calculated based on the polygon.
ことを特徴とする請求の範囲第 32項記載のロボット装置の動作制御方法。  33. The operation control method for a robot apparatus according to claim 32, wherein
[40] 40.上記階段昇降制御工程では、現在移動中の移動面におけるバックエッジに対 峙した所定位置に移動した後、昇降動作を実行するよう制御する [40] 40. In the above-described stair lift control process, control is performed to execute a lift operation after moving to a predetermined position against the back edge on the currently moving moving surface.
ことを特徴とする請求の範囲第 34項記載のロボット装置の動作制御方法。  35. The operation control method for a robot apparatus according to claim 34, wherein
[41] 41.上記階段昇降制御工程では、現在移動中の移動面におけるバックエッジが確 認できない場合は、次に昇降動作の対象となる次段の踏面におけるフロントエッジに 対峙した所定位置に移動した後、昇降動作を実行するよう制御する [41] 41. If the back edge on the moving surface that is currently being moved cannot be confirmed in the above-mentioned step-up / down control process, move to a predetermined position facing the front edge of the next step surface that is the target of the lifting / lowering operation. And then control to perform the lifting operation
ことを特徴とする請求の範囲第 40項記載のロボット装置の動作制御方法。 41. The operation control method for a robot apparatus according to claim 40, wherein:
[42] 42.上記階段昇降制御工程では、次に移動対象となる踏面を検出し、当該踏面に 対峙した所定位置に移動する一連の動作を行って昇降動作を実行するよう制御する ことを特徴とする請求の範囲第 34項記載のロボット装置の動作制御方法。 [42] 42. In the above-described step-up / down control step, a step surface to be moved next is detected, and a series of operations for moving to a predetermined position facing the step surface is performed to control to perform the up-and-down operation. 35. The operation control method for a robot apparatus according to claim 34.
[43] 43.上記階段昇降制御工程では、現在位置から次に移動対象となる次段又は次段 以降の踏面が検出できない場合、過去に取得した階段情報力 当該移動対象となる 次段の踏面を検索する  [43] 43. In the above-mentioned step up / down control process, if the next step or the next step to be moved cannot be detected from the current position, the stair information force acquired in the past is the next step to be moved. Search for
ことを特徴とする請求の範囲第 42項記載のロボット装置の動作制御方法。  43. The operation control method for a robot apparatus according to claim 42, wherein
[44] 44.上記階段昇降制御工程では、現在の移動面におけるバックエッジに対峙した所 定位置に移動した後、次の移動対象となる踏面を検出し、当該踏面におけるフロント エッジに対峙した所定位置に移動し、当該踏面に移動する昇降動作を実行するよう 制御する  [44] 44. In the above-mentioned step up / down control process, after moving to a predetermined position facing the back edge on the current moving surface, the next tread surface to be moved is detected, and the predetermined step facing the front edge on the tread surface is detected. Move to the position and control to perform the lifting operation to move to the tread
ことを特徴とする請求の範囲第 34項記載のロボット装置の動作制御方法。  35. The operation control method for a robot apparatus according to claim 34, wherein
[45] 45.上記階段昇降制御工程では、踏面に対する移動手段の位置を規定するための ノ ラメータを使用して昇降動作を制御する [45] 45. In the above-mentioned step-up / down control process, the lifting / lowering operation is controlled using a parameter for defining the position of the moving means relative to the tread.
ことを特徴とする請求の範囲第 34項記載のロボット装置の動作制御方法。  35. The operation control method for a robot apparatus according to claim 34, wherein
[46] 46.階段を登る動作と降りる動作とで上記パラメータの数値を変更するパラメータ切 り替え工程を有する [46] 46. Has a parameter switching process that changes the numerical values of the above parameters depending on the movement up and down the stairs.
ことを特徴とする請求の範囲第 45項記載のロボット装置の動作制御方法。  46. The operation control method for a robot apparatus according to claim 45, wherein:
[47] 47.移動手段により移動可能な移動装置において、 [47] 47. In a moving device movable by moving means,
3次元の距離データから環境内に含まれる 1又は複数の平面を検出し、平面情報と して出力する平面検出手段と、  Plane detecting means for detecting one or more planes included in the environment from the three-dimensional distance data and outputting as plane information;
上記平面情報から移動可能な平面を有する階段を認識し、該階段の踏面に関する 踏面情報及び蹴り上げ情報を有する階段情報を出力する階段認識手段と、 上記階段情報に基づき、階段昇降可能か否力、を判断し、昇降動作が可能であると 判断した場合には、その踏面に対して自律的に位置決めして階段昇降動作を制御 する階段昇降制御手段とを有する  Stair recognition means for recognizing a stair having a movable plane from the plane information and outputting step information on the tread of the stair and information on kicking, and whether or not the stair can be raised or lowered based on the stair information , And when it is determined that the elevating operation is possible, it has stair ascending / descending control means for autonomously positioning with respect to the tread and controlling the stair ascending / descending operation.
ことを特徴とする移動装置。  A mobile device characterized by that.
PCT/JP2005/004838 2004-03-17 2005-03-17 Robot device, behavior control method for the robot device, and moving device WO2005087452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511065A JP4618247B2 (en) 2004-03-17 2005-03-17 Robot apparatus and operation control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-077214 2004-03-17
JP2004077214 2004-03-17

Publications (2)

Publication Number Publication Date
WO2005087452A1 WO2005087452A1 (en) 2005-09-22
WO2005087452A9 true WO2005087452A9 (en) 2008-03-13

Family

ID=34975410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004838 WO2005087452A1 (en) 2004-03-17 2005-03-17 Robot device, behavior control method for the robot device, and moving device

Country Status (2)

Country Link
JP (1) JP4618247B2 (en)
WO (1) WO2005087452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034971B2 (en) 2018-11-08 2022-03-14 株式会社東芝 Actuation systems, controls, and programs

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088244A1 (en) 2004-03-17 2005-09-22 Sony Corporation Plane detector, plane detecting method, and robot apparatus with plane detector
JP4929506B2 (en) * 2007-03-29 2012-05-09 本田技研工業株式会社 Legged mobile robot
KR101591471B1 (en) 2008-11-03 2016-02-04 삼성전자주식회사 apparatus and method for extracting feature information of object and apparatus and method for generating feature map
JP5284923B2 (en) * 2009-10-28 2013-09-11 本田技研工業株式会社 Control device for legged mobile robot
JP5417645B2 (en) 2010-03-08 2014-02-19 オプテックス株式会社 Plane estimation method and range image camera in range image
JP5623362B2 (en) * 2011-09-28 2014-11-12 本田技研工業株式会社 Step recognition device
KR101820299B1 (en) 2011-11-23 2018-03-02 삼성전자주식회사 Stairs recognition method for three dimension data image
NL2008490C2 (en) 2012-03-15 2013-09-18 Ooms Otto Bv METHOD, DEVICE AND COMPUTER PROGRAM FOR EXTRACTING INFORMATION ON ONE OR MULTIPLE SPATIAL OBJECTS.
JP2015159827A (en) 2014-02-26 2015-09-07 ブラザー工業株式会社 Embroidery data creation device, embroidery data creation program, and computer-readable storage medium storing embroidery data creation program
CN103879471B (en) * 2014-04-05 2016-04-13 凌昕 Mountain climbing vehicle
US9849926B2 (en) * 2014-07-23 2017-12-26 Boston Dynamics, Inc. Predictively adjustable hydraulic pressure rails
KR101679741B1 (en) * 2015-05-06 2016-11-28 고려대학교 산학협력단 Method for extracting outter static structure of space from geometric data of space
JP6450788B2 (en) 2017-02-21 2019-01-09 ファナック株式会社 Work removal system
US11396101B2 (en) 2018-11-08 2022-07-26 Kabushiki Kaisha Toshiba Operating system, control device, and computer program product
JP7280700B2 (en) 2019-01-21 2023-05-24 株式会社東芝 Holding device, control system and inspection system
US11599128B2 (en) * 2020-04-22 2023-03-07 Boston Dynamics, Inc. Perception and fitting for a stair tracker
US11548151B2 (en) 2019-04-12 2023-01-10 Boston Dynamics, Inc. Robotically negotiating stairs
CN111127497B (en) 2019-12-11 2023-08-04 深圳市优必选科技股份有限公司 Robot and stair climbing control method and device thereof
JP7462466B2 (en) 2020-04-20 2024-04-05 株式会社東芝 Holding device, inspection system, movement method, and inspection method
US20210323618A1 (en) * 2020-04-20 2021-10-21 Boston Dynamics, Inc. Identifying Stairs from Footfalls
US20210331754A1 (en) * 2020-04-22 2021-10-28 Boston Dynamics, Inc. Stair Tracking for Modeled and Perceived Terrain
CN112699734B (en) * 2020-12-11 2024-04-16 深圳银星智能集团股份有限公司 Threshold detection method, mobile robot and storage medium
CN112597857B (en) * 2020-12-16 2022-06-14 武汉科技大学 Indoor robot stair climbing pose rapid estimation method based on kinect
CN114766975B (en) * 2022-04-13 2023-06-02 江苏商贸职业学院 Floor sweeping robot special for cleaning stairs

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192736B2 (en) * 1992-02-10 2001-07-30 本田技研工業株式会社 Recognition method for stairs of moving objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034971B2 (en) 2018-11-08 2022-03-14 株式会社東芝 Actuation systems, controls, and programs

Also Published As

Publication number Publication date
JP4618247B2 (en) 2011-01-26
JPWO2005087452A1 (en) 2008-01-24
WO2005087452A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4618247B2 (en) Robot apparatus and operation control method thereof
JP4636016B2 (en) Plane detection apparatus, plane detection method, and robot apparatus equipped with plane detection apparatus
JP4479372B2 (en) Environmental map creation method, environmental map creation device, and mobile robot device
Lee et al. RGB-D camera based wearable navigation system for the visually impaired
Pérez-Yus et al. Detection and modelling of staircases using a wearable depth sensor
JP3994950B2 (en) Environment recognition apparatus and method, path planning apparatus and method, and robot apparatus
KR101776622B1 (en) Apparatus for recognizing location mobile robot using edge based refinement and method thereof
Pradeep et al. Robot vision for the visually impaired
US7386163B2 (en) Obstacle recognition apparatus and method, obstacle recognition program, and mobile robot apparatus
JP4100239B2 (en) Obstacle detection device and autonomous mobile robot using the same device, obstacle detection method, and obstacle detection program
WO2016210227A1 (en) Aligning 3d point clouds using loop closures
Lee et al. Real-time staircase detection from a wearable stereo system
CN114503043A (en) Restricted mobility mapping
JP2007041656A (en) Moving body control method, and moving body
CN110361026B (en) Humanoid robot path planning method based on 3D point cloud
WO2007102537A1 (en) Posture estimating device and method
Pradeep et al. Piecewise planar modeling for step detection using stereo vision
JP2003271975A (en) Method of extracting plane, extractor therefor, program therefor, recording medium therefor, and robot system mounted with plane extractor
CN114683290B (en) Method and device for optimizing pose of foot robot and storage medium
Schwarze et al. Stair detection and tracking from egocentric stereo vision
CN109164802A (en) A kind of robot maze traveling method, device and robot
Zhang et al. A visual positioning system for indoor blind navigation
Alam et al. Staircase detection systems for the visually impaired people: a review
JP2007041657A (en) Moving body control method, and moving body
JP6786922B2 (en) Information processing equipment, information processing methods and information processing programs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511065

Country of ref document: JP

NENP Non-entry into the national phase in:

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase