WO2005085417A2 - Bacterial system for protein transport in eukaryotic cells - Google Patents

Bacterial system for protein transport in eukaryotic cells Download PDF

Info

Publication number
WO2005085417A2
WO2005085417A2 PCT/DE2005/000330 DE2005000330W WO2005085417A2 WO 2005085417 A2 WO2005085417 A2 WO 2005085417A2 DE 2005000330 W DE2005000330 W DE 2005000330W WO 2005085417 A2 WO2005085417 A2 WO 2005085417A2
Authority
WO
WIPO (PCT)
Prior art keywords
protein
proteins
hpab
transport system
gene
Prior art date
Application number
PCT/DE2005/000330
Other languages
German (de)
French (fr)
Other versions
WO2005085417A3 (en
Inventor
Ulla Bonas
Daniela Büttner
Original Assignee
Martin-Luther-Universität Halle-Wittenberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin-Luther-Universität Halle-Wittenberg filed Critical Martin-Luther-Universität Halle-Wittenberg
Priority to DE112005001016T priority Critical patent/DE112005001016A5/en
Publication of WO2005085417A2 publication Critical patent/WO2005085417A2/en
Publication of WO2005085417A3 publication Critical patent/WO2005085417A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/036Fusion polypeptide containing a localisation/targetting motif targeting to the medium outside of the cell, e.g. type III secretion

Definitions

  • the present invention relates to the targeted transport of proteins into eukaryotic cells by the bacterial type III secretion system (TTSS, "type III secretion system”) using bacterial strains which are mutated in hpaB or homologous genes.
  • TTSS bacterial type III secretion system
  • the TTSS is essential for the infection and colonization of the eukaryotic host organisms.
  • This protein transport system spans both bacterial membranes (inner and outer membrane) and is associated with an extracellular pilus.
  • the TTSS mediates both the secretion of bacterial proteins into the extracellular medium and the translocation of so-called effector proteins into the eukaryotic host cell IM.
  • the TTSS is encoded by hrp ("hypersensitive response and ßathogenicity") genes, which are usually organized as clusters.
  • Hrp genes have been used for many Gram-negative phytopathogenic bacteria such as Erwinia amylovora, Ralstonia solanacearum, Pathovare from Pseudomonas syringae and species of Xanthomonas described 121. Based on the arrangement of the genes and the frrp gene regulation, a distinction is made between bacteria of group 1, for example species of the genera Pseudomonas and Erwinia, and bacteria of group 2, which include Ralstonia solanacearum and species of the genus Xanthomonas 131 ,
  • hrp genes are essential for bacterial pathogenicity and for inducing a hypersensitive response (HR) to resistant host or non-host plants.
  • HR is a rapid, programmed death of plant cells and mostly occurs in connection with plant defense reactions.
  • the induction of HR can be triggered by the direct or indirect recognition of individual bacterial effector proteins - also known as avirulence proteins (Avr proteins) - from corresponding plant resistance proteins / 4 /.
  • Avr proteins avirulence proteins
  • the fact that HR is also induced in transient expression of individual Avr proteins in resistant plants was a first indication that Avr proteins are being transported into the plant cell. Many effector proteins of phytopathogenic bacteria were initially identified due to their avirulence activity in plants with corresponding resistance proteins.
  • the invention specified in claim 1 was based on the problem of developing a protein transport system which enables the specific transport of selected effectors into the plant cell.
  • One possibility for this is the heterologous expression of ⁇ tp gene clusters in non-pathogenic Gram-negative bacteria, which has already been described for Escherichia coli and Pseudomonas fluorescens strains (patent WO0002996 / US2002083489).
  • the /? ⁇ gene cluster of P. syringae pv. Syringae was expressed from the cosmid pHIR11 in both bacterial strains. If the P.
  • AvrB or AvrPto are additionally expressed by introducing a second plasmid, the generated E. coli and P. fluorescens strains induce an AvrB or AvrPto-specific HR / 5,6 in the plant /.
  • AvrB and AvrPto were secreted into the culture medium of E. co // strains that express the ⁇ / p gene cluster of Erwinia chrysanthemi III.
  • the E. chrysanthemi hrp genes are also expressed in complex medium and enable cell contact-independent protein secretion.
  • heterologous TTSS in non-pathogenic bacteria has so far only been possible using the ⁇ gene clusters of Gram-negative bacteria from group 1 (P. syringae and E. chrysanthemi), since only here are the necessary regulatory proteins encoded within the gene cluster.
  • the TTSS of group 1 bacteria cannot translocate effector proteins from group 2 bacteria. It has been shown that the effector protein AvrBs3 from X. campestris pv. Vesicatoria (group 2 bacterium) is not translocated in plant cells by the TTSS from P. syringae (belonging to group 1). For these analyzes, avrBs3 was expressed next to the /? ⁇ gene cluster from P. syringae in P. fluorescens and the resulting bacterial strain was infiltrated in AvrBs3-responsive plants.
  • a general disadvantage when using heterologously expressed ⁇ gene clusters for the targeted transport of individual proteins is that non-pathogenic bacteria such as. B. P. fluorescens and E. co // - Laboratory strains may develop pathogenic properties on eukaryotic organisms by being equipped with a TTSS.
  • This problem was solved according to the invention in that a non-pathogenic strain was generated from the gram-negative plant pathogenic bacterium Xanthomonas campestris pv. Vesicatoria, which is mutated in the hpaB (“ ⁇ -associated” B) gene. HpaB mutants do not translocate significant amounts of effector proteins, but are able to mediate the translocation of proteins that have the secretion signal of a so-called non-effector protein using their own TTSS.
  • the hpaB gene from X. campestris pv. Vesicatoria (GenBank accession AF056246) is located in the ⁇ gene cluster downstream of hrpE1 and encodes a protein that controls the TTSS-dependent protein secretion and translocation.
  • X. campestris pv. Ves / cafot / a strain 85-10 the mutation of hpaB leads to the complete loss of the bacterial ability to grow on susceptible paprika plants and trigger disease symptoms or to induce HR on resistant paprika plants.
  • Strain 85 * is a derivative of strain 85-10 and contains hrpG * , which encodes a constitutively active form of the regulatory protein HrpG.
  • HrpG is a member of the OmpR family of two-component regulators and uses the AraC-type-like transcription activator HrpX to activate the expression of the ⁇ genes in plant 181. The use of? ⁇ G * mutants not only enables ⁇ Gene expression in vitro, but also allows analysis of the type HI-dependent protein secretion in the culture medium.
  • HrpF Since HrpF is essential for pathogenicity and interacts with membranes, this protein is the main component of the type Ill translocon 181.
  • the mutation of xop> 4 leads to a reduction in bacterial pathogenicity on susceptible plants and to the induction of reduced HR on resistant plants / 9 /.
  • XopA is therefore involved in the effector protein translocation. It has been shown that a fusion protein which contains the N-terminal 51 amino acids of XopA fused to AvrBs3 ⁇ 2 is secreted by strain 85 *, but does not induce AvrBs3-specific HR.
  • AvrBs3 ⁇ 2 is an N-terminal deletion derivative of the effector protein AvrBs3, which is no longer secreted by the type III secretion system. AvrBs3 ⁇ 2, however, still induces HR in resistant plants after transient expression in the plant or after fusion to a secretion and translocation signal and is therefore used as a reporter protein for the analysis of type III-dependent protein translocation / 10,11 /.
  • the fact that the Xopa 1-51 - AvrBs3 ⁇ 2 fusion protein * no HR induced after transport through the TTSS of stem 85 on AvrBs3-responsive plants shows that Xopa is not translocated from this bacterial strain.
  • Both XopA and HrpF thus belong to the group of non-effector proteins, which refers to proteins that are secreted by the TTSS but not translocated.
  • the secretion analyzes shown in Figure 2 show that the mutation of hpaB leads to a drastic reduction in the secretion of effector proteins, but does not impair the secretion of non-effector proteins.
  • a “mutation of hpaB” characterizes all base pair exchanges and deletions in the hrp- Gene clusters in the area of the ftpass gene or in the area of ⁇ pass associated promoter elements which prevent expression of the ⁇ pass gene or lead to the expression of a non-functional gene product.
  • the feature “inoperable” also designates all ⁇ pass gene products which lead to a reduced efficiency in the in w ' -ro secretion of effector proteins compared to the corresponding hpass wild-type strain.
  • the mutations in are for the investigation of ⁇ pass mutants to introduce the bacterial genome by means of homologous recombination with the aid of the suicide vector pOK1 / 12 /.
  • HpaB assumes an essential function during the transport of the effector protein by the TTSS.
  • HpaB from X. campestris pv. Vesicatoria is a 162 amino acid protein with an isoelectric point of 4.3 and a leucine content of 13.6%.
  • HpaB thus has typical characteristics of type III secretion chaperones, which rarely show sequence homology with each other, but are usually small, acidic and rich in leucine.
  • Type III secretion chaperones contribute to the stability and / or the efficient secretion of one or more translocon or effector proteins / 13 /.
  • HpaB as a general type III secretion chaperone enables the secretion of effector proteins, while it is not involved in the secretion of non-effectors.
  • the complete loss of pathogenicity of frpdies mutants is due to the fact that the protein amounts of effectors which are still translocated in the absence of HpaB are insufficient for the colonization of susceptible plants and the induction of disease symptoms.
  • Expression vectors containing promoters can contain various combinations of transcription and translation initiation signals. According to the invention, overexpression is also understood to mean the expression of effector genes from the native promoter in an independently replicating expression vector, which leads to an increased number of copies of the corresponding gene compared to the wild-type strain.
  • Examples of expression vectors which contain a replication signal for E. coli and X. campestris pv. Vesicatoria and a marker gene (antibiotic resistance gene) for selection and for Overexpression are pLAFR, pDSK, pUFR and pBBR derivatives.
  • the sequence to be expressed can, for example, be ligated into the vectors at suitable restriction sites.
  • the plasmid obtained can be introduced into E.
  • coli by electroporation and then brought into the desired X. campestris pv. Ves / cator / ' a strains via triparental conjugation or electroporation.
  • E. coli and X. campestris pv. Ves / cator / a strains containing the expression vector are selected on culture medium with appropriate antibiotics.
  • Genes are cloned into expression vectors using known techniques / 14 /.
  • the conjugation of expression plasmids in X. campestris pv. Vesicatoria has been described / 15 /.
  • HrpF and XopA are normally non-effector proteins, ie they are secreted but not translocated in the presence of HpaB.
  • strain 85 * induces which HrpF ⁇ oo-AvrBs3 ⁇ 2 or XopA 1 .
  • 51 -AvrBs3 ⁇ 2 expressed, no HR on AvrBs3-responsive plants, although both fusion proteins can be detected in the culture supernatant (see Figures 3 and 4).
  • the translocation of both proteins in frpledge mutants shows that HpaB controls the type III-dependent protein translocation. HpaB thus inhibits the translocation of non-effectors into the host cell and, at the same time, promotes the transport of effector proteins as a general type III secretion chaperone.
  • a bacterial strain is therefore used which no longer has any pathogenic properties, but is capable of transporting effector proteins into the plant cell after their overexpression or fusion proteins which contain a type III secretion signal for this bacterial strain.
  • the method according to the invention thus offers an inexpensive alternative to the use of heterologous protein transport systems which are based on the expression of the ⁇ gene cluster of a group 1 bacterium in a non-pathogenic strain.
  • a major advantage of the present invention is to have a bacterial strain available whose TTSS no longer translocates significant amounts of endogenous effector proteins. The The risk that ⁇ pass mutant strains develop pathogenic properties is thus almost completely eliminated.
  • the solution according to the invention also extends the spectrum of bacterial transport systems and enables individual proteins to be introduced into eukaryotic cells by the TTSS of group 2 bacteria. This is an enormous advantage, because depending on the protein to be transported, only a certain type of TTSS guarantees an optimal translocation into the target cell.
  • the TTSS of a strain of the same genus can be used for the targeted transport of effector proteins from bacteria of the genus Xanthomonas.
  • the present invention not only applies to the host plants of the ⁇ pass mutants used, but can also be carried out with other dicotyledonous or monocotyledonous plants or other eukaryotic target cells such as, for example, yeast cells.
  • the method according to the invention is used to transport bacterial proteins into eukaryotic cells in order to Modify cellular processes in a targeted manner.
  • all effector proteins can be used according to the invention which influence plant processes such as growth, development and defense / resistance mechanisms or which interfere with fundamental cellular processes in eukaryotic host cells.
  • other proteins can also be transported into eukaryotic cells, provided they are fused to a functional bacterial type III secretion signal.
  • type III secretion signal Any protein or mRNA sequence that enables the secretion of a protein by the TTSS used is referred to as type III secretion signal. Suitable type III secretion signals are typically found in all proteins secreted by the TTSS within the N-terminal 50-100 amino acids.
  • the N-terminal 51 amino acids of XopA can be used according to the invention as a type III secretion signal for the transport of a protein without its own type III secretion signal.
  • fusions between the coding sequence of the type III secretion signal and the protein to be transported are, for. B. prepared by ligation. For the fusion, the two sequences must be in the same reading frame.
  • the ligation must be carried out in a manner that allows an optimal and stable expression of the encoded fusion protein.
  • the resulting fusion construct can be expressed in an expression vector under the control of an endogenous promoter of the bacterium or under the control of a constitutive or inducible promoter in the expression plasmid.
  • the expression and secretion of the constructed fusion protein can be determined using Secretion analyzes and using appropriate antibodies against epitopes of the protein to be analyzed can be checked.
  • the transport of all those proteins that modify cell-specific or heterologously expressed proteins in eukaryotic cells or modify the DNA organization or gene expression is of interest.
  • Another possible application of the invention is the transport of proteins into the extracellular environment of a host cell. Proteins that either have their own type III secretion signal or are fused to a type III secretion signal that is functional in the bacterial system used can be used for this. However, it must be ensured that the proteins to be transported are secreted by the TTSS, but are not translocated into the plant cell. One way to do this is to use ⁇ pass / ⁇ F double mutants. The mutation in hrpF prevents the translocation of type III-dependent secreted proteins into the host cell, but does not impair the protein secretion by the TTSS into the extracellular medium 181 pass-mutants mediate secretion and translocation.
  • a signal can be generated by shortening or deleting in the area of the translocation signal, which in ftppass mutants mediates the secretion but not the translocation.
  • the invention can also be used after in-culture cultivation of the bacteria for protein transport into the extracellular medium.
  • Secreted proteins can be purified after the bacteria have been separated from the culture medium. For this purpose of use, the secretion of the protein to be transported must be guaranteed by the TTSS.
  • the proteins can have their own type III secretion signal or can be fused to a heterologous type III secretion signal, which may be signals which, in hpaB mutants, only mediate secretion by the TTSS or else also translocation.
  • All pathogenic bacteria which express a path ⁇ gene cluster and hpaB or homologous genes can be used as starting material for the method according to the invention.
  • the sequence of hpaB from X. campestris pv. Vesicatoria is available in the database.
  • the invention includes the production of mutants corresponding to the ⁇ pass gene in all Gram-negative bacteria that express hpaB or homologous genes.
  • the invention further relates to the heterologous expression of ⁇ rp gene clusters mutated in hpaB or a homologous gene in non-pathogenic bacteria.
  • hpaB and homologous genes have so far only been found in group 2 bacteria, it should be noted when generating such a heterologous system that in addition to the hrp gene cluster, the regulatory proteins required for ⁇ gene expression (which are not found in group 2 bacteria ft ⁇ gene clusters are encoded) must be expressed or otherwise the expression of the ⁇ genes must be guaranteed.
  • Bacterial strains and plasmids £. coli DH5oc was purchased from Bethesda Research Laboratories, Bethesda, Md.
  • the X. campestris pv. Ves / cator / a strains 85-10, 85 * and 82 * are described in references / 16 / and / 17 /.
  • X. campestris pv. Ves / cafor / a strains were grown at 30 ° C in NYG medium / 18 /.
  • the plasmid pBlueskript (II) KS used for cloning was purchased from Stratagene, Heidelberg, Germany.
  • the expression vectors pDSK604 and pLAFR6 are described in Escolar et al. / 19 / or in Bonas et al. / 20 / described. Plasmids were introduced into E. coli by electroporation and into X. campestris pv. Vesicatoria by conjugation / 21 /. Antibiotics were used in the following concentrations: ampicillin, 100 ⁇ g / ml; Rifampicin, 100 ⁇ g / ml; Spectinomycin, 100 ug / ml and tetracycline, 10 ug / ml.
  • ECW-10R and ECW-30R 1221 pepper cultivars were grown as described in Bonas et al. / 23 / described and infiltrated with X. campestris pv. Ves / cator / a strains. Bacterial suspensions were infiltrated into paprika leaves in concentrations of 2x10 8 bacteria / ml (corresponding to an optical density of 0.2 at a wavelength of 600 nm) in 1 mM MgCl 2 . The occurrence of disease symptoms or HR was analyzed within a period of one to three days after infiltration.
  • the 3.1 kb ⁇ E region was cloned into the EcoRV and X ⁇ ol cleavage site from pBluescript (II) KS.
  • a 420 bp fragment of hpaB was then cut out using Csp45l and the remaining construct was religated.
  • the deletion of the Csp45l fragment leads to the deletion of amino acids 13 to 149 in the ⁇ pass gene product.
  • the resulting 2.7 kb insert was then cloned into the ⁇ HI / Sa / l sites of the suicide vector pOK1 / 12 / and the resulting hpaB deletion construct into the X. campestris pv.
  • HrpF-AvrBs3 ⁇ 2 expression construct a 1.1 kb EcoRI fragment which contains the first 387 codons of hrpF was ligated into the EcoRI site of plasmid pDSF356F / 10 /.
  • HrpF-AvrBs3 ⁇ 2 expression construct In order to produce a second HrpF-AvrBs3 ⁇ 2 expression construct, the first 200 codons of hrpF were PCR by means of the primers HrpF-for (5'- TACTGAATTCGCCTCTATGTCGCTC-3 ') and HrpF-200rev (5'-
  • the first 51 codons of xopA and 680 bp of the region upstream of the translation initiation codon of xopA were PCR and the primers xopAfor (5'-CACCGTACCGTTGTTGTTGCGATG-3 ') and xopAGGGTCTC-3GGAVG (3') 'amplified (5).
  • the resulting PCR product was ligated into the donor vector pENTR / D-TOPO (available from Invitrogen, Carlsbad, Calif.), Which contains aft sites, using a topoisomerase and then recombined into the target vector pL6GW356.
  • pL6GW356 has an aftP reading frame cartridge fused to avrBs3A2 and was described in Noel et al. / 11 /.
  • the X. campestris pv. Ves / cafor / ' a strains 82 * and 82 * ⁇ pass were incubated in secretion medium.
  • the protein total extracts were then separated from the culture supernatants and analyzed by SDS polyacrylamide electrophoresis and immunoblot using antibodies against HrpF and AvrBs3 124,251.
  • HrpF was present in comparable amounts in protein total extracts and culture supernatants of both strains (see Figure 2).
  • AvrBs3 could not be detected in the culture supernatant from strain 82 * AhpaB, although it was detected in protein total extracts from both strains and in the culture supernatant from strain 82 *.
  • avrBs1-c-myc and avrBs Tc-myc expression constructs / 19 / were conjugated into the X. campestris pv. Ves / cafo ⁇ a strains 85 * and 82 * and into the corresponding ftpass mutants.
  • both proteins were detected in the culture supernatant of the ⁇ pass wild-type strain, however, were not or only weakly detectable in the culture supernatant of ⁇ pass mutants (see Figure 2).
  • the immunoblots were incubated with an antibody against the intracellular protein HrcN / 26 /, which was only detected in protein total extracts.
  • HpaB is involved in the secretion of effector proteins, while it presumably has no significant influence on the export of non-effector proteins by the TTSS.
  • the non-effector protein XopA was also detected in comparable amounts in culture supernatants from X. campestris pv. Ves cator / ' a strain 85 * and 85 * ⁇ pass (see Figure 2).
  • the hypothesis was also confirmed by secretion analysis of X. campestris pv. Ves / cator / a strains 85 * and 85 * AhpaB, which contained the fusion proteins HrpF- ⁇ oo-AvrBs3 ⁇ 2 and XopA 1 . 51 -AvrBs3 ⁇ 2 were confirmed. So both HrpF-
  • AvrBs3 and AvrBs3 ⁇ 2 fusion proteins were expressed in the X. campestris pv. Ves / cafor / a strains 85 * and 85 * AhpaB and the bacteria were inoculated into leaves of the pepper cultivar ECW-30R.
  • ECW-30R plants contain the resistance gene Bs3, which mediates the specific recognition of AvrBs3 and then induces defense reactions associated with HR / 22 /.
  • the resistance protein Bs3 also recognizes AvrBs3 ⁇ 2 fusion proteins, provided that these are expressed transiently, for example, via i4gro ⁇ acter / ' um-mediated gene transfer in plant cells or are translocated by X. campestris pv. Vesicatoria.
  • the presence of the nuclear localization sequences in AvrBs3 or AvrBs3 ⁇ 2 fusion proteins is essential for the detection by Bs3. It can be assumed that AvrBs3 and AvrBs3 ⁇ 2 fusion proteins have to be transported into the cell nucleus in order to induce the Bs3-specific HR.
  • Ves / ' cafo / va strain 85 * (pDS300F), which contains the avrßs3 expression construct / 27 /, induces the Bs3-specific HR on ECW-30R plants.
  • 85 * strains induce the HrpF 1 . 387 -AvrBs3 ⁇ 2, HrpF 1 . 200 -AvrBs3 ⁇ 2 or Xopa 1 - 5 expressing AvrBs3 ⁇ 2, disease symptoms ECW 30R plants.
  • HrpF ⁇ - AvrBs3 ⁇ 2 HrpF 1 - 200 -AvrBs3 ⁇ 2 or XopA 1 .
  • 51 -AvrBs3 ⁇ 2 expressed in the ⁇ pass mutant strain 85 * AhpaB, they induce the Bs3-specific HR after infiltration in ECW-30R plants.
  • the N-terminal protein regions of HrpF and XopA are the Can translocate AvrBs3 ⁇ 2 reporter protein in the absence of HpaB.
  • AvrBs3 is also translocated into the plant cell upon overexpression of plamide pDS300F from strain 85 * AhpaB.
  • strain 85 * ⁇ / 7pass induces Bs3-specific HR in ECW-30R plants (see Figure 4).
  • ftpably mutants are able to translocate significant amounts of an effector protein into the plant cell if this effector protein is overexpressed. Amounts of protein that are sufficient to induce complete, non-partial HR in the corresponding resistant plant are termed significant here.
  • hpaB mutants can also translocate fusion proteins which contain the N-terminal protein region of a non-effector protein such as, for example, HrpF or XopA.
  • HrpF type III translocon protein type III-secreted, not translocated
  • XopA 1 51- AvrBs3 ⁇ 2 fusion protein between the N-terminal 51 amino acids of XopA and the deletion derivative AvrBs3 ⁇ 2, which is deleted in the N-terminal 152 amino acids
  • HrpF 1 387 AvrBs3 ⁇ 2 fusion protein between the N-terminal 387 amino acids of HrpF and the deletion derivative AvrBs3 ⁇ 2 HrpF 1 .

Abstract

The aim of the invention is to develop a system for the targeted transport of proteins into eukaryotic cells. The specific transport of proteins into eukaryotic cells is carried out using a type III secretion system, using bacteria strains that are mutated in hpaB or homogenous genes. A non-pathogenic strain is generated from a Gram-negative pathogenic bacteria strain, said non-pathogenic strain being mutated in the hpaB-gen or a homogenous gene which does not mediate any significant translocation of bacterial effector proteins. Over-expressed effector proteins or proteins containing the type 111 secretion signal of a non-effector protein can, however, be translocated into eukaryotic cells using the bacterially inherent TTSS. The inventive bacterial system is used to transport bacterial proteins into eukaryotic cells, in order to influence or modify cellular processes such as gene expression, growth, development and defence/resistance mechanisms.

Description

Bakterielles System zum Proteintransport in eukaryontische ZellenBacterial system for protein transport in eukaryotic cells
Die vorliegende Erfindung betrifft den gezielten Transport von Proteinen in eukaryontische Zellen durch das bakterielle Typ Ill-Sekretionssystem (TTSS, „type III secretion System") unter Verwendung von Bakterienstämmen, die in hpaB oder homologen Genen mutiert sind.The present invention relates to the targeted transport of proteins into eukaryotic cells by the bacterial type III secretion system (TTSS, "type III secretion system") using bacterial strains which are mutated in hpaB or homologous genes.
Das TTSS ist in den meisten Gram-negativen pflanzen- und tierpathogenen Bakterien für die Infektion und Besiedelung der eukaryontischen Wirtsorganismen essentiell. Dieses Proteintransportsystem durchspannt beide bakterielle Membranen (innere und äußere Membran) und ist mit einem extrazellulären Pilus assoziiert. Das TTSS vermittelt sowohl die Sekretion bakterieller Proteine in das extrazelluläre Medium als auch die Translokation von sogenannten Effektorproteinen in die eukaryontische Wirtszelle IM. In pflanzenpathogenen Bakterien wird das TTSS von hrp („hypersensitive response and ßathogenicity")-Genen kodiert, die meist als Cluster organisiert sind. hrp-Gene wurden für viele Gram-negative pflanzenpathogene Bakterien wie beispielsweise Erwinia amylovora, Ralstonia solanacearum, Pathovare von Pseudomonas syringae und Spezies von Xanthomonas beschrieben 121. Basierend auf der Anordnung der Gene sowie der frrp-Genregulation unterscheidet man Bakterien der Gruppe 1 , beispielsweise Spezies der Gattungen Pseudomonas und Erwinia, und Bakterien der Gruppe 2, zu denen Ralstonia solanacearum und Spezies der Gattung Xanthomonas gehören 131.In most Gram-negative plant and animal pathogenic bacteria, the TTSS is essential for the infection and colonization of the eukaryotic host organisms. This protein transport system spans both bacterial membranes (inner and outer membrane) and is associated with an extracellular pilus. The TTSS mediates both the secretion of bacterial proteins into the extracellular medium and the translocation of so-called effector proteins into the eukaryotic host cell IM. In phytopathogenic bacteria, the TTSS is encoded by hrp ("hypersensitive response and ßathogenicity") genes, which are usually organized as clusters. Hrp genes have been used for many Gram-negative phytopathogenic bacteria such as Erwinia amylovora, Ralstonia solanacearum, Pathovare from Pseudomonas syringae and species of Xanthomonas described 121. Based on the arrangement of the genes and the frrp gene regulation, a distinction is made between bacteria of group 1, for example species of the genera Pseudomonas and Erwinia, and bacteria of group 2, which include Ralstonia solanacearum and species of the genus Xanthomonas 131 ,
In pathogenen Bakterien sind hrp-Gene für die bakterielle Pathogenität sowie für die Induktion einer hypersensitiven Reaktion (HR) auf resistenten Wirts- oder NichtWirtspflanzen essentiell. Die HR ist ein schneller, programmierter Tod pflanzlicher Zellen und tritt meist in Verbindung mit pflanzlichen Abwehrreaktionen auf. Die Induktion der HR kann durch die direkte oder indirekte Erkennung individueller bakterieller Effektorproteine - auch als Avirulenzproteine (Avr-Proteine) bezeichnet - von korrespondierenden pflanzlichen Resistenzproteinen ausgelöst werden /4/. Die Tatsache, daß die HR auch bei transienter Expression einzelner Avr-Proteine in resistenten Pflanzen induziert wird, war ein erster Hinweis darauf, daß Avr-Proteine in die pflanzliche Zelle transportiert werden. Viele Effektorproteine von pflanzenpathogenen Bakterien wurden zunächst aufgrund ihrer Avirulenzaktivität in Pflanzen mit entsprechenden Resistenzproteinen identifiziert.In pathogenic bacteria, hrp genes are essential for bacterial pathogenicity and for inducing a hypersensitive response (HR) to resistant host or non-host plants. HR is a rapid, programmed death of plant cells and mostly occurs in connection with plant defense reactions. The induction of HR can be triggered by the direct or indirect recognition of individual bacterial effector proteins - also known as avirulence proteins (Avr proteins) - from corresponding plant resistance proteins / 4 /. The fact that HR is also induced in transient expression of individual Avr proteins in resistant plants was a first indication that Avr proteins are being transported into the plant cell. Many effector proteins of phytopathogenic bacteria were initially identified due to their avirulence activity in plants with corresponding resistance proteins.
Der im Patentanspruch 1 angegebenen Erfindung lag das Problem zu Grunde, ein Proteintransportsystem zu entwickeln, welches den spezifischen Transport ausgewählter Effektoren in die Pflanzenzelle ermöglicht. Eine Möglichkeit hierzu bietet die heterologe Expression von Λtp-Genclustern in nicht-pathogenen Gram-negativen Bakterien, die bereits für Escherichia coli- und Pseudomonas fluorescens-Stämme beschrieben wurde (Patent WO0002996/ US2002083489). Hier wurde das /?φ-Gencluster von P. syringae pv. syringae von dem Cosmid pHIR11 aus in beiden Bakterienstämmen exprimiert. Werden durch Einbringen eines zweiten Plasmids zusätzlich die P. syr/'ngae-Effektorproteine AvrB oder AvrPto exprimiert, so induzieren die generierten E. coli und P. fluorescens-Stämme in der Pflanze eine AvrB- bzw. AvrPto-spezifische HR /5,6/. Nicht möglich war jedoch, AvrB und AvrPto im Kulturmedium von P. syringae, E. coli (pHIR11) oder P. fluorescens (pHIR11) zu detektieren. Dagegen gelang die Sekretion von AvrB und AvrPto in das Kulturmedium von E. co//-Stämmen, die das Λ/p-Gencluster von Erwinia chrysanthemi exprimieren III. Im Gegensatz zum P. syringae Λφ-Gencluster werden die E. chrysanthemi hrp-Gene auch in Komplexmedium exprimiert und ermöglichen eine Zellkontakt-unabhängige Proteinsekretion.The invention specified in claim 1 was based on the problem of developing a protein transport system which enables the specific transport of selected effectors into the plant cell. One possibility for this is the heterologous expression of Λtp gene clusters in non-pathogenic Gram-negative bacteria, which has already been described for Escherichia coli and Pseudomonas fluorescens strains (patent WO0002996 / US2002083489). Here, the /? Φ gene cluster of P. syringae pv. Syringae was expressed from the cosmid pHIR11 in both bacterial strains. If the P. syr / ' ngae effector proteins AvrB or AvrPto are additionally expressed by introducing a second plasmid, the generated E. coli and P. fluorescens strains induce an AvrB or AvrPto-specific HR / 5,6 in the plant /. However, it was not possible to detect AvrB and AvrPto in the culture medium of P. syringae, E. coli (pHIR11) or P. fluorescens (pHIR11). In contrast, AvrB and AvrPto were secreted into the culture medium of E. co // strains that express the Λ / p gene cluster of Erwinia chrysanthemi III. In contrast to the P. syringae Λφ gene cluster, the E. chrysanthemi hrp genes are also expressed in complex medium and enable cell contact-independent protein secretion.
Die Expression heterologer TTSS in nicht-pathogenen Bakterien gelang bisher jedoch nur unter Verwendung der Λφ-Gencluster von Gram-negativen Bakterien der Gruppe 1 (P. syringae und E. chrysanthemi), da nur hier die notwendigen regulatorischen Proteine innerhalb des Genclusters kodiert sind. Das TTSS von Gruppe 1 -Bakterien kann jedoch Effektorproteine aus Bakterien der Gruppe 2 nicht translozieren. So hat sich gezeigt, daß das Effektorprotein AvrBs3 von X. campestris pv. vesicatoria (Gruppe 2-Bakterium) durch das TTSS von P. syringae (zugehörig zu Gruppe 1) nicht in Pflanzenzellen transloziert wird. Für diese Analysen wurde avrBs3 neben dem /?φ-Gencluster von P. syringae in P. fluorescens exprimiert und der enstandene Bakterienstamm in AvrBs3-responsive Pflanzen infiltriert.However, the expression of heterologous TTSS in non-pathogenic bacteria has so far only been possible using the Λφ gene clusters of Gram-negative bacteria from group 1 (P. syringae and E. chrysanthemi), since only here are the necessary regulatory proteins encoded within the gene cluster. However, the TTSS of group 1 bacteria cannot translocate effector proteins from group 2 bacteria. It has been shown that the effector protein AvrBs3 from X. campestris pv. Vesicatoria (group 2 bacterium) is not translocated in plant cells by the TTSS from P. syringae (belonging to group 1). For these analyzes, avrBs3 was expressed next to the /? Φ gene cluster from P. syringae in P. fluorescens and the resulting bacterial strain was infiltrated in AvrBs3-responsive plants.
Ein genereller Nachteil bei der Verwendung heterolog exprimierter Λφ-Gencluster zum gezielten Transport einzelner Proteine besteht darin, dass nicht-pathogene Bakterien wie z. B. P. fluorescens und E. co//-Laborstämme durch die Ausstattung mit einem TTSS möglicherweise pathogene Eigenschaften auf eukaryontischen Organismen entwickeln. Dieses Problem wurde erfindungsgemäß dadurch gelöst, dass ausgehend von dem Gramnegativen pflanzenpathogenen Bakterium Xanthomonas campestris pv. vesicatoria ein nicht- pathogener Stamm generiert wurde, der im hpaB („Λφ-associated" B)-Gen mutiert ist. hpaB- Mutanten translozieren keine signifikanten Mengen von Effektorproteinen, sind jedoch in der Lage, unter Verwendung des eigenen TTSS die Translokation von Proteinen zu vermitteln, die das Sekretionssignal eines sogenannten Nicht-Effektorproteins besitzen.A general disadvantage when using heterologously expressed Λφ gene clusters for the targeted transport of individual proteins is that non-pathogenic bacteria such as. B. P. fluorescens and E. co // - Laboratory strains may develop pathogenic properties on eukaryotic organisms by being equipped with a TTSS. This problem was solved according to the invention in that a non-pathogenic strain was generated from the gram-negative plant pathogenic bacterium Xanthomonas campestris pv. Vesicatoria, which is mutated in the hpaB (“Λφ-associated” B) gene. HpaB mutants do not translocate significant amounts of effector proteins, but are able to mediate the translocation of proteins that have the secretion signal of a so-called non-effector protein using their own TTSS.
Das verwendete hpaB-Gen von X. campestris pv. vesicatoria (GenBank accession AF056246) ist im Λφ-Gencluster stromabwärts von hrpE1 lokalisiert und kodiert ein Protein, welches die TTSS-abhängige Proteinsekretion und -translokation kontrolliert. In X. campestris pv. ves/cafot/a-Stamm 85-10 führt die Mutation von hpaB zum vollständigen Verlust der bakteriellen Fähigkeit, auf suszeptiblen Paprikapflanzen zu wachsen und Krankheitssymptome auszulösen bzw. auf resistenten Paprikapflanzen die HR zu induzieren. Im X. campestris pv. ves/cafo/va-Stamm 85* führt die Mutation von hpaB gleichfalls zum Verlust der Pathogenität auf suszeptiblen Pflanzen, ermöglicht jedoch noch die Induktion einer sehr schwachen, partiellen HR auf resistenten Pflanzen (siehe Abbildung 1). Der Stamm 85* ist ein Derivat von Stamm 85-10 und enthält hrpG*, welches eine konstitutiv aktive Form des regulatorischen Proteins HrpG kodiert. HrpG ist ein Mitglied der OmpR- Familie von Zwei-Komponenten-Regulatoren und aktiviert mit Hilfe des AraC-Typ-ähnlichen Transkriptionsaktivators HrpX die Expression der Λφ-Gene in der Pflanze 181. Die Verwendung von ?φG*-Mutanten ermöglicht nicht nur die Λφ-Genexpression in vitro, sondern erlaubt auch die Analyse der Typ HI-abhängigen Proteinsekretion in das Kulturmedium. Die beschriebenen Phänotypen von 7paß-mutanten Stämmen in suszeptiblen und resistenten Pflanzen sind auf eine stark reduzierte Effizienz im Transport von Effektorproteinen zurückzuführen. So zeigten in wϊro-Sekretionsanalysen, daß im Kulturüberstand von Λpaß-Mutanten die Effektorproteine AvrBs3, AvrBsl und AvrBsT nur in geringfügigen Mengen bzw. gar nicht nachweisbar sind (siehe Abbildung 2). Dagegen wird die Sekretion von HrpF und XopA durch die Mutation von hpaB nicht beeinträchtigt. HrpF und XopA gehören nicht zur Gruppe der Effektorproteine, d. h. sie werden nicht in die Pflanzenzelle transloziert. Da HrpF essentiell für die Pathogenität ist und mit Membranen interagiert, stellt dieses Protein die Hauptkomponente des Typ Ill-Translokons dar 181. Die Mutation von xop>4 führt zu einer Reduktion der bakteriellen Pathogenität auf suszeptiblen Pflanzen sowie zur Induktion einer reduzierten HR auf resistenten Pflanzen /9/. XopA ist daher an der Effektorproteintranslokation beteiligt. Es hat sich gezeigt, dass ein Fusionsprotein, welches die N-terminalen 51 Aminosäuren von XopA fusioniert an AvrBs3Δ2 enthält, von Stamm 85* zwar sekretiert wird, jedoch keine AvrBs3-spezifische HR induziert. AvrBs3Δ2 ist ein N-terminales Deletionsderivat des Effektorproteins AvrBs3, welches vom Typ Ill-Sekretionssystem nicht mehr sekretiert wird. AvrBs3Δ2 induziert jedoch noch die HR in resistenten Pflanzen nach transienter Expression in der Pflanze oder nach Fusion an ein Sekretions- und Translokationssignal und wird daher als Reporterprotein zur Analyse der Typ lll-abhängigen Proteintranslokation eingesetzt /10,11/. Die Tatsache, dass das XopA1-51- AvrBs3Δ2-Fusionsprotein nach Transport durch das TTSS von Stamm 85* keine HR auf AvrBs3-responsiven Pflanzen induziert, zeigt, dass XopA von diesem Bakterienstamm nicht transloziert wird. Sowohl XopA als auch HrpF zählen damit zur Gruppe der Nicht- Effektorproteine, was sich auf Proteine bezieht, die vom TTSS zwar sekretiert, aber nicht transloziert werden. Die in Abbildung 2 dargestellten Sekretionsanalysen zeigen, dass die Mutation von hpaB zu einer drastischen Reduktion in der Sekretion von Effektorproteinen führt, jedoch die Sekretion von Nicht-Effektorproteinen nicht beeinträchtigt. Eine „Mutation von hpaB" kennzeichnet erfindungsgemäß alle Basenpaaraustausche und Deletionen im hrp- Gencluster im Bereich des ftpaß-Gens oder im Bereich von Λpaß-zugehörigen Promotorelementen, die eine Expression des Λpaß-Gens verhindern bzw. zur Expression eines funktionsuntüchtigen Genproduktes führen. Das Merkmal „funktionsuntüchtig" bezeichnet erfindungsgemäß auch alle Λpaß-Genprodukte, die zu einer im Vergleich zum entsprechenden hpaß-Wildtyp-Stamm reduzierten Effizienz in der in w'-ro-Sekretion von Effektorproteinen führen. Zur Untersuchung von Λpaß-Mutanten sind die Mutationen in das bakterielle Genom mittels homologer Rekombination unter Zuhilfenahme des Suizidvektors pOK1 /12/ einzuführen.The hpaB gene from X. campestris pv. Vesicatoria (GenBank accession AF056246) is located in the Λφ gene cluster downstream of hrpE1 and encodes a protein that controls the TTSS-dependent protein secretion and translocation. In X. campestris pv. Ves / cafot / a strain 85-10, the mutation of hpaB leads to the complete loss of the bacterial ability to grow on susceptible paprika plants and trigger disease symptoms or to induce HR on resistant paprika plants. In the X. campestris pv. Ves / cafo / va strain 85 *, the mutation of hpaB also leads to Loss of pathogenicity on susceptible plants, but still allows induction of a very weak, partial HR on resistant plants (see Figure 1). Strain 85 * is a derivative of strain 85-10 and contains hrpG * , which encodes a constitutively active form of the regulatory protein HrpG. HrpG is a member of the OmpR family of two-component regulators and uses the AraC-type-like transcription activator HrpX to activate the expression of the Λφ genes in plant 181. The use of? ΦG * mutants not only enables Λφ Gene expression in vitro, but also allows analysis of the type HI-dependent protein secretion in the culture medium. The described phenotypes of 7pass mutant strains in susceptible and resistant plants are due to a greatly reduced efficiency in the transport of effector proteins. Thus, in wϊro secretion analyzes, the effector proteins AvrBs3, AvrBsl and AvrBsT are only detectable in small amounts or not at all in the culture supernatant of Λpass mutants (see Figure 2). In contrast, the secretion of HrpF and XopA is not affected by the mutation of hpaB. HrpF and XopA do not belong to the group of effector proteins, ie they are not translocated into the plant cell. Since HrpF is essential for pathogenicity and interacts with membranes, this protein is the main component of the type Ill translocon 181. The mutation of xop> 4 leads to a reduction in bacterial pathogenicity on susceptible plants and to the induction of reduced HR on resistant plants / 9 /. XopA is therefore involved in the effector protein translocation. It has been shown that a fusion protein which contains the N-terminal 51 amino acids of XopA fused to AvrBs3Δ2 is secreted by strain 85 *, but does not induce AvrBs3-specific HR. AvrBs3Δ2 is an N-terminal deletion derivative of the effector protein AvrBs3, which is no longer secreted by the type III secretion system. AvrBs3Δ2, however, still induces HR in resistant plants after transient expression in the plant or after fusion to a secretion and translocation signal and is therefore used as a reporter protein for the analysis of type III-dependent protein translocation / 10,11 /. The fact that the Xopa 1-51 - AvrBs3Δ2 fusion protein * no HR induced after transport through the TTSS of stem 85 on AvrBs3-responsive plants shows that Xopa is not translocated from this bacterial strain. Both XopA and HrpF thus belong to the group of non-effector proteins, which refers to proteins that are secreted by the TTSS but not translocated. The secretion analyzes shown in Figure 2 show that the mutation of hpaB leads to a drastic reduction in the secretion of effector proteins, but does not impair the secretion of non-effector proteins. According to the invention, a “mutation of hpaB” characterizes all base pair exchanges and deletions in the hrp- Gene clusters in the area of the ftpass gene or in the area of Λpass associated promoter elements which prevent expression of the Λpass gene or lead to the expression of a non-functional gene product. According to the invention, the feature “inoperable” also designates all Λpass gene products which lead to a reduced efficiency in the in w ' -ro secretion of effector proteins compared to the corresponding hpass wild-type strain. The mutations in are for the investigation of Λpass mutants to introduce the bacterial genome by means of homologous recombination with the aid of the suicide vector pOK1 / 12 /.
Es hat sich somit gezeigt, dass HpaB eine wesentliche Funktion während des Effektorproteintransportes durch das TTSS übernimmt. HpaB von X. campestris pv. vesicatoria ist ein 162 Aminosäuren großes Protein mit einem isoelektrischen Punkt von 4,3 und mit einem Leucin-Anteil von 13,6%. HpaB weist damit typische Merkmale von Typ III- Sekretionschaperonen auf, die untereinander zwar selten Sequenzhomologie zeigen, jedoch meist klein, sauer und Leucin-reich sind. Typ Ill-Sekretionschaperone tragen zur Stabilität und/oder zur effizienten Sekretion von einem oder mehreren Translokon- oder Effektorproteinen bei /13/. HpaB als generelles Typ Ill-Sekretionschaperon ermöglicht die Sekretion von Effektorproteinen, während es an der Sekretion von Nicht-Effektoren nicht beteiligt ist. Der vollständige Verlust der Pathogenität von frpaß-Mutanten ist darauf zurückzuführen, dass die Proteinmengen von Effektoren, die in Abwesenheit von HpaB noch transloziert werden, für eine Besiedelung von suszeptiblen Pflanzen und die Induktion von Krankheitssymptomen nicht ausreichen.It has thus been shown that HpaB assumes an essential function during the transport of the effector protein by the TTSS. HpaB from X. campestris pv. Vesicatoria is a 162 amino acid protein with an isoelectric point of 4.3 and a leucine content of 13.6%. HpaB thus has typical characteristics of type III secretion chaperones, which rarely show sequence homology with each other, but are usually small, acidic and rich in leucine. Type III secretion chaperones contribute to the stability and / or the efficient secretion of one or more translocon or effector proteins / 13 /. HpaB as a general type III secretion chaperone enables the secretion of effector proteins, while it is not involved in the secretion of non-effectors. The complete loss of pathogenicity of frpaß mutants is due to the fact that the protein amounts of effectors which are still translocated in the absence of HpaB are insufficient for the colonization of susceptible plants and the induction of disease symptoms.
Λpaß-Mutanten sind jedoch noch in der Lage, signifikante Mengen an Effektorproteinen in die Pflanzenzelle zu transportieren, wenn diese überexprimiert sind. So induziert X. campestris pv. ves/caforia-Stamm 85*AhpaB (pDSF300), der AvrBs3 unter Kontrolle eines starken /ac-Promotors überexprimiert, in AvrBs3-responsiven Pflanzen die HR (siehe Abbildung 4). Als Überexpression ist erfindungsgemäß die Genexpression von einem im Vergleich zum Wildtyp-Promotor „stärkeren" Promotor zu verstehen, wobei die „Stärke" des Promotors die Transkriptionsrate des zu exprimierenden Gens bestimmt. Promotoren sind DNA-Sequenzen, die die Bindung der RNA-Polymerase und damit die mRNA-Synthese ermöglichen. Expressionsvektoren, die Promotoren enthalten, können verschiedene Kombinationen von Transkriptions- und Translationsinitiationssignalen enthalten. Als Überexpression wird erfindungsgemäß auch die Expression von Effektorgenen vom nativen Promotor in einem selbstständig replizierenden Expressionsvektor verstanden, was zu einer im Vergleich zum Wildtyp-Stamm erhöhten Kopienanzahl des entsprechenden Gens führt. Beispiele für Expressionsvektoren, die ein Replikationssignal für E. coli und X. campestris pv. vesicatoria sowie ein Markergen (Antibiotikaresistenzgen) zur Selektion enthalten und zur Überexpression verwendet werden können, sind pLAFR-, pDSK-, pUFR- und pBBR- Derivaten. Die zu exprimierende Sequenz kann z.B. an passenden Restriktionsschnittstellen in die Vektoren ligiert werden. Das erhaltene Plasmid kann durch Elektroporation in E. coli eingeführt und anschließend über eine triparentale Konjugation oder Elektroporation in die gewünschten X. campestris pv. ves/cator/'a-Stämme gebracht werden. E. coli und X. campestris pv. ves/cator/a-Stämme, die den Expressionsvektor enthalten, werden auf Kulturmedium mit entsprechenden Antibiotika selektiert. Die Klonierung von Genen in Expressionsvektoren erfolgt mittels bekannter Techniken /14/. Die Konjugation von Expressionsplasmiden in X. campestris pv. vesicatoria ist beschrieben /15/.However, pass mutants are still able to transport significant amounts of effector proteins into the plant cell if they are overexpressed. X. campestris pv. Ves / caforia strain 85 * AhpaB (pDSF300), which overexpresses AvrBs3 under the control of a strong / ac promoter, induces HR in AvrBs3-responsive plants (see Figure 4). According to the invention, overexpression is to be understood as the gene expression of a "stronger" promoter compared to the wild-type promoter, the "strength" of the promoter determining the transcription rate of the gene to be expressed. Promoters are DNA sequences that enable the binding of the RNA polymerase and thus the mRNA synthesis. Expression vectors containing promoters can contain various combinations of transcription and translation initiation signals. According to the invention, overexpression is also understood to mean the expression of effector genes from the native promoter in an independently replicating expression vector, which leads to an increased number of copies of the corresponding gene compared to the wild-type strain. Examples of expression vectors which contain a replication signal for E. coli and X. campestris pv. Vesicatoria and a marker gene (antibiotic resistance gene) for selection and for Overexpression can be used are pLAFR, pDSK, pUFR and pBBR derivatives. The sequence to be expressed can, for example, be ligated into the vectors at suitable restriction sites. The plasmid obtained can be introduced into E. coli by electroporation and then brought into the desired X. campestris pv. Ves / cator / ' a strains via triparental conjugation or electroporation. E. coli and X. campestris pv. Ves / cator / a strains containing the expression vector are selected on culture medium with appropriate antibiotics. Genes are cloned into expression vectors using known techniques / 14 /. The conjugation of expression plasmids in X. campestris pv. Vesicatoria has been described / 15 /.
Es konnte ferner gezeigt werden, dass Λpaß-Mutanten neben einzelnen Effektorproteinen, deren korrespondierende kodierende Sequenzen überexprimiert werden, auch Reporterproteine translozieren, sofern diese ein N-terminales Sekretionssignal von einem Nicht-Effektorprotein enthalten. So induziert Stamm 85*AhpaB, der das Fusionsprotein HrpF1.200-AvrBs3Δ2 exprimiert, welches die N-terminalen 200 Aminosäuren von HrpF fusioniert an AvrBs3Δ2 enthält, die AvrBs3-spezifische HR. Ein analoges Ergebnis wurde für Stamm 85*Δ ?paß erzielt, der das Fusionsprotein XopA1.51-AvrBs3Δ2 exprimiert, welches die N-terminalen 50 Aminosäuren von XopA fusioniert an AvrBs3Δ2 enthält. Sowohl HrpF als auch XopA sind normalerweise Nicht-Effektorproteine, d.h. sie werden in Gegenwart von HpaB zwar sekretiert aber nicht transloziert. So induziert Stamm 85*, welcher HrpF^oo- AvrBs3Δ2 oder XopA1.51-AvrBs3Δ2 exprimiert, keine HR auf AvrBs3-responsiven Pflanzen, obwohl beide Fusionsproteine im Kulturüberstand detektierbar sind (siehe Abbildungen 3 und 4). Die Translokation beider Proteine in frpaß-Mutanten zeigt, dass HpaB die Typ III- abhängige Proteintranslokation kontrolliert. So inhibiert HpaB die Translokation von Nicht- Effektoren in die Wirtszelle und fördert gleichzeitig als generelles Typ Ill-Sekretionschaperon den Transport von Effektorproteinen.It was also possible to show that, in addition to individual effector proteins whose corresponding coding sequences are overexpressed, Λpass mutants also translocate reporter proteins if they contain an N-terminal secretion signal from a non-effector protein. Strain 85 * AhpaB, which induces the fusion protein HrpF 1 . 200 -AvrBs3Δ2, which contains the N-terminal 200 amino acids of HrpF fused to AvrBs3Δ2, the AvrBs3-specific HR. An analogous result was obtained for strain 85 * Δ? Pass, which contains the fusion protein XopA 1 . 51 -AvrBs3Δ2, which contains the N-terminal 50 amino acids of XopA fused to AvrBs3Δ2. Both HrpF and XopA are normally non-effector proteins, ie they are secreted but not translocated in the presence of HpaB. Thus strain 85 * induces which HrpF ^ oo-AvrBs3Δ2 or XopA 1 . 51 -AvrBs3Δ2 expressed, no HR on AvrBs3-responsive plants, although both fusion proteins can be detected in the culture supernatant (see Figures 3 and 4). The translocation of both proteins in frpaß mutants shows that HpaB controls the type III-dependent protein translocation. HpaB thus inhibits the translocation of non-effectors into the host cell and, at the same time, promotes the transport of effector proteins as a general type III secretion chaperone.
Erfindungsgemäß wird damit ein Bakterienstamm eingesetzt, der keine pathogenen Eigenschaften mehr besitzt, jedoch in der Lage ist, Effektorproteine nach ihrer Überexpression oder Fusionsproteine, die ein Typ Ill-Sekretionssignal für diesen Bakterienstamm enthalten, in die Pflanzenzelle zu transportieren. Das erfindungsgemäße Verfahren bietet damit eine günstige Alternative zum Gebrauch heterologer Proteintransportsysteme, die auf der Expression des Λφ-Genclusters eines Gruppe 1- Bakteriums in einem nicht-pathogenen Stamm beruhen. Ein wesentlicher Vorteil der vorliegenden Erfindung besteht darin, einen Bakterienstamm zur Verfügung zu haben, dessen TTSS keine signifikanten Mengen endogener Effektorproteine mehr transloziert. Die Gefahr, dass Λpaß-mutante Stämme pathogene Eigenschaften entwickeln, wird somit nahezu ausgeschlossen.According to the invention, a bacterial strain is therefore used which no longer has any pathogenic properties, but is capable of transporting effector proteins into the plant cell after their overexpression or fusion proteins which contain a type III secretion signal for this bacterial strain. The method according to the invention thus offers an inexpensive alternative to the use of heterologous protein transport systems which are based on the expression of the Λφ gene cluster of a group 1 bacterium in a non-pathogenic strain. A major advantage of the present invention is to have a bacterial strain available whose TTSS no longer translocates significant amounts of endogenous effector proteins. The The risk that Λpass mutant strains develop pathogenic properties is thus almost completely eliminated.
Die erfindungsgemäße Lösung erweitert zudem das Spektrum an bakteriellen Transportsystemen und ermöglicht es, einzelne Proteine durch das TTSS von Gruppe 2- Bakterien gezielt in eukaryontische Zellen einzuschleusen. Dies ist ein enormer Vorteil, da je nach zu transportierendem Protein nur ein bestimmter Typ von TTSS eine optimale Translokation in die Zielzelle gewährleistet. So kann erfindungsgemäß für den gezielten Transport von Effektorproteinen aus Bakterien der Gattung Xanthomonas das TTSS eines Stammes derselbigen Gattung verwendet werden.The solution according to the invention also extends the spectrum of bacterial transport systems and enables individual proteins to be introduced into eukaryotic cells by the TTSS of group 2 bacteria. This is an enormous advantage, because depending on the protein to be transported, only a certain type of TTSS guarantees an optimal translocation into the target cell. Thus, according to the invention, the TTSS of a strain of the same genus can be used for the targeted transport of effector proteins from bacteria of the genus Xanthomonas.
Die vorliegende Erfindung findet nicht nur Anwendung auf die Wirtspflanzen der verwendeten Λpaß-Mutanten, sondern kann auch mit anderen dikotylen oder monokotylen Pflanzen bzw. anderen eukaryontischen Zielzellen wie beispielsweise Hefezellen durchgeführt werden Das erfindungsgemäße Verfahren wird zum Transport von bakteriellen Proteinen in eukaryontische Zellen eingesetzt, um zelluläre Prozesse gezielt zu modifizieren. Generell können alle Effektorproteine erfindungsgemäß Anwendung finden, die pflanzliche Prozesse wie Wachstum, Entwicklung und Abwehr-/Resistenzmechanismen beeinflussen oder mit fundamentalen zellulären Prozessen eukaryontischer Wirtszellen interferieren. Neben bakteriellen Effektorproteinen können erfindungsgemäß auch andere Proteine, sofern sie an ein funktionsfähiges bakterieneigenes Typ Ill-Sekretionssignal fusioniert sind, in eukaryontische Zellen transportiert werden. Als Typ Ill-Sekretionssignal wird jede Proteinoder mRNA-Sequenz bezeichnet, die die Sekretion eines Proteins durch das verwendete TTSS ermöglicht. Geeignete Typ Ill-Sekretionssignale finden sich in allen vom TTSS sekretierten Proteinen typischerweise innerhalb der N-terminalen 50-100 Aminosäuren. So können beispielsweise die N-terminalen 51 Aminosäuren von XopA als Typ Ill- Sekretionssignal erfindungsgemäß für den Transport eines Proteins ohne eigenes Typ Ill- Sekretionssignal verwendet werden. Zur Expression von Fusionsproteinen werden Fusionen zwischen der kodierenden Sequenz des Typ Ill-Sekretionssignals und des zu transportierenden Proteins z. B. durch Ligation hergestellt. Für die Fusion müssen sich die zwei Sequenzen im gleichen Leseraster befinden. Zudem muss die Ligation in einer Weise erfolgen, die eine optimale und stabile Expression des kodierten Fusionsproteins erlaubt. Dafür kann zwischen dem Typ Ill-Sekretionssignal und dem zu fusionierenden Gen auch ein Zwischenbereich liegen. Die Expression des entstandenen Fusionskonstruktes kann in einem Expressionsvektor unter Kontrolle eines endogenen Promotors des Bakteriums oder unter der Kontrolle eines konstitutiven oder induzierbaren Promotors im Expressionsplasmid erfolgen. Die Expression und Sekretion des konstruierten Fusionsproteins kann mit Hilfe von Sekretionsanalysen sowie unter Verwendung von geeigneten Antikörpern gegen Epitope des zu analysierenden Proteins überprüft werden.The present invention not only applies to the host plants of the Λpass mutants used, but can also be carried out with other dicotyledonous or monocotyledonous plants or other eukaryotic target cells such as, for example, yeast cells. The method according to the invention is used to transport bacterial proteins into eukaryotic cells in order to Modify cellular processes in a targeted manner. In general, all effector proteins can be used according to the invention which influence plant processes such as growth, development and defense / resistance mechanisms or which interfere with fundamental cellular processes in eukaryotic host cells. In addition to bacterial effector proteins, other proteins can also be transported into eukaryotic cells, provided they are fused to a functional bacterial type III secretion signal. Any protein or mRNA sequence that enables the secretion of a protein by the TTSS used is referred to as type III secretion signal. Suitable type III secretion signals are typically found in all proteins secreted by the TTSS within the N-terminal 50-100 amino acids. For example, the N-terminal 51 amino acids of XopA can be used according to the invention as a type III secretion signal for the transport of a protein without its own type III secretion signal. For the expression of fusion proteins, fusions between the coding sequence of the type III secretion signal and the protein to be transported are, for. B. prepared by ligation. For the fusion, the two sequences must be in the same reading frame. In addition, the ligation must be carried out in a manner that allows an optimal and stable expression of the encoded fusion protein. There may also be an intermediate area between the type III secretion signal and the gene to be fused. The resulting fusion construct can be expressed in an expression vector under the control of an endogenous promoter of the bacterium or under the control of a constitutive or inducible promoter in the expression plasmid. The expression and secretion of the constructed fusion protein can be determined using Secretion analyzes and using appropriate antibodies against epitopes of the protein to be analyzed can be checked.
Anwendungsbeispiele für Proteine, die nach Fusion an ein Typ Ill-Sekretionssignal durch das TTSS von Λpaß-Mutanten transloziert werden könnten, sind solche Proteine, die in wichtige zelluläre Prozesse und Stoffwechselwege eingreifen und dadurch beispielsweise in Pflanzen das Wachstum fördern oder eine Resistenz gegen pathogene Organismen oder Herbizide bewirken. Generell ist erfindungsgemäß der Transport all jener Proteine von Interesse, die zelleigene oder heterolog exprimierte Proteine in eukaryontischen Zellen modizieren oder die DNA-Organisation oder die Genexpression modifizieren.Examples of applications for proteins that could be translocated by TTSS of Λpass mutants after fusion to a type III secretion signal are those proteins which intervene in important cellular processes and metabolic pathways and thereby, for example, promote growth in plants or resistance to pathogenic organisms or herbicides. In general, according to the invention, the transport of all those proteins that modify cell-specific or heterologously expressed proteins in eukaryotic cells or modify the DNA organization or gene expression is of interest.
Eine weitere Anwendungsmöglichkeit der Erfindung besteht im Transport von Proteinen in die extrazelluläre Umgebung einer Wirtszelle. Verwendet werden können hierfür Proteine, die entweder ein eigenes Typ Ill-Sekretionssignal besitzen, oder an ein im verwendeten Bakteriensystem funktionsfähiges Typ Ill-Sekretionssignal fusioniert sind. Dabei muss jedoch gesichert sein, dass die zu transportierenden Proteine zwar vom TTSS sekretiert, aber nicht in die Pflanzenzelle transloziert werden. Eine Möglichkeit hierzu besteht in der Verwendung von Λpaß/ΛφF-Doppelmutanten. Die Mutation in hrpF verhindert die Translokation von Typ lll-abhängig sekretierten Proteinen in die Wirtszelle, beeinträchtigt dagegen die Proteinsekretion durch das TTSS in das extrazelluläre Medium nicht 181. Eine andere Möglichkeit besteht in der sukzessiven Verkürzung des verwendeten Typ III- Sekretionssignals, sofern es in ftpaß-Mutanten die Sekretion und Translokation vermittelt. Im Falle daß Sekretions- und Translokationssignal lokal voneinander getrennt sind, kann durch Verkürzungen bzw. Deletionen im Bereich des Translokationssignals ein Signal generiert werden, welches in ftpaß-Mutanten die Sekretion aber nicht die Translokation vermittelt. Neben den bisher genannten Anwendungsmöglichkeiten kann die Erfindung außerdem nach in wϊra-Kultivierung der Bakterien zum Proteintransport in das extrazelluläre Medium verwendet werden. Sekretierte Proteine können nach Abtrennung der Bakterien aus dem Kulturmedium aufgereinigt werden. Für diesen Zweck der Anwendung muss die Sekretion des zu transportierenden Proteins durch das TTSS gewährleistet sein. Dabei können die Proteine ein eigenes Typ Ill-Sekretionssignal besitzen oder an ein heterologes Typ Ill- Sekretionssignal fusioniert sein, wobei es sich um Signale handeln kann, die in hpaB- Mutanten nur die Sekretion durch das TTSS oder aber auch die Translokation vermitteln.Another possible application of the invention is the transport of proteins into the extracellular environment of a host cell. Proteins that either have their own type III secretion signal or are fused to a type III secretion signal that is functional in the bacterial system used can be used for this. However, it must be ensured that the proteins to be transported are secreted by the TTSS, but are not translocated into the plant cell. One way to do this is to use Λpass / ΛφF double mutants. The mutation in hrpF prevents the translocation of type III-dependent secreted proteins into the host cell, but does not impair the protein secretion by the TTSS into the extracellular medium 181 pass-mutants mediate secretion and translocation. In the event that the secretion and translocation signals are locally separated from one another, a signal can be generated by shortening or deleting in the area of the translocation signal, which in ftppass mutants mediates the secretion but not the translocation. In addition to the previously mentioned possible uses, the invention can also be used after in-culture cultivation of the bacteria for protein transport into the extracellular medium. Secreted proteins can be purified after the bacteria have been separated from the culture medium. For this purpose of use, the secretion of the protein to be transported must be guaranteed by the TTSS. The proteins can have their own type III secretion signal or can be fused to a heterologous type III secretion signal, which may be signals which, in hpaB mutants, only mediate secretion by the TTSS or else also translocation.
Für das erfindungsgemäße Verfahren können alle pathogenen Bakterien als Ausgangsmaterial verwendet werden, die ein Λφ-Gencluster sowie hpaB oder homologe Gene exprimieren. Die Sequenz von hpaB von X. campestris pv. vesicatoria steht in der Datenbank zur Verfügung. Die Erfindung schließt die Herstellung von dem Λpaß-Gen entsprechenden Mutanten in allen Gram-negativen Bakterien, die hpaB oder homologe Gene exprimieren, ein. Die Erfindung bezieht sich desweiteren auf die heterologe Expression von Λrp-Genclustern, die in hpaB oder einem homologen Gen mutiert sind, in nicht-pathogenen Bakterien. Da hpaB und homologe Gene bisher nur in Bakterien der Gruppe 2 gefunden wurden, ist bei der Generierung eines solch heterologen Systems zu beachten, dass zusätzlich zum hrp- Gencluster auch die zur Λφ-Genexpression erforderlichen regulatorischen Proteine (die bei Gruppe 2-Bakterien nicht im ftφ-Gencluster kodiert sind) exprimiert werden müssen oder anderweitig die Expression der Λφ-Gene gewährleistet werden muss.All pathogenic bacteria which express a pathφ gene cluster and hpaB or homologous genes can be used as starting material for the method according to the invention. The sequence of hpaB from X. campestris pv. Vesicatoria is available in the database. The invention includes the production of mutants corresponding to the Λpass gene in all Gram-negative bacteria that express hpaB or homologous genes. The invention further relates to the heterologous expression of Λrp gene clusters mutated in hpaB or a homologous gene in non-pathogenic bacteria. Since hpaB and homologous genes have so far only been found in group 2 bacteria, it should be noted when generating such a heterologous system that in addition to the hrp gene cluster, the regulatory proteins required for Λφ gene expression (which are not found in group 2 bacteria ftφ gene clusters are encoded) must be expressed or otherwise the expression of the Λφ genes must be guaranteed.
Ausführungsbeispieleembodiments
1. Bakterienstämme und Plasmide £. coli DH5oc wurde von der Firma Bethesda Research Laboratories, Bethesda, Md. bezogen. Die X. campestris pv. ves/cator/a-Stämme 85-10, 85* und 82* sind in den Referenzen /16/ und /17/ beschrieben. X. campestris pv. ves/cafor/a-Stämme wurden bei 30°C in NYG-Medium /18/ angezogen. Das zur Klonierung verwendete Plasmid pBlueskript(ll) KS wurde von der Firma Stratagene, Heidelberg, Deutschland erworben. Die Expressionsvektoren pDSK604 und pLAFR6 sind in Escolar et al. /19/ bzw. in Bonas et al. /20/ beschrieben. Plasmide wurden in E. coli durch Elektroporation und in X. campestris pv. vesicatoria durch Konjugation eingebracht /21/. Antibiotika wurden in folgenden Konzentrationen verwendet: Ampicillin, 100 μg/ml; Rifampicin, 100 μg/ml; Spectinomycin, 100 μg/ml und Tetracyclin, 10 μg/ml.1. Bacterial strains and plasmids £. coli DH5oc was purchased from Bethesda Research Laboratories, Bethesda, Md. The X. campestris pv. Ves / cator / a strains 85-10, 85 * and 82 * are described in references / 16 / and / 17 /. X. campestris pv. Ves / cafor / a strains were grown at 30 ° C in NYG medium / 18 /. The plasmid pBlueskript (II) KS used for cloning was purchased from Stratagene, Heidelberg, Germany. The expression vectors pDSK604 and pLAFR6 are described in Escolar et al. / 19 / or in Bonas et al. / 20 / described. Plasmids were introduced into E. coli by electroporation and into X. campestris pv. Vesicatoria by conjugation / 21 /. Antibiotics were used in the following concentrations: ampicillin, 100 μg / ml; Rifampicin, 100 µg / ml; Spectinomycin, 100 ug / ml and tetracycline, 10 ug / ml.
2. Pflanzenmaterial und Infiltrationen2. Plant material and infiltrations
Die Paprika-Kultivare Early Cal Wonder (ECW), ECW-10R and ECW-30R 1221 wurden wie in Bonas et al. /23/ beschrieben angezogen und mit X. campestris pv. ves/cator/a-Stämmen infiltriert. Bakteriensuspensionen wurden in Konzentrationen von 2x108 Bakterien/ml (entsprechend einer optischen Dichte von 0,2 bei einer Wellenlänge von 600 nm) in 1 mM MgCI2 in Paprikablätter infiltriert. Das Auftreten von Krankheitssymptomen bzw. der HR wurde in einem Zeitraum von ein bis drei Tagen nach Infiltration analysiert. Für Untersuchungen des bakteriellen Wachstums in der Pflanze wurden Bakteriensuspensionen in Konzentrationen von 104 cfu/ml in 1 mM MgCI2 in Blätter des Paprika-Kultivars ECW infiltriert /23/. 3. Herstellung einer Λpaß-MutanteThe Early Cal Wonder (ECW), ECW-10R and ECW-30R 1221 pepper cultivars were grown as described in Bonas et al. / 23 / described and infiltrated with X. campestris pv. Ves / cator / a strains. Bacterial suspensions were infiltrated into paprika leaves in concentrations of 2x10 8 bacteria / ml (corresponding to an optical density of 0.2 at a wavelength of 600 nm) in 1 mM MgCl 2 . The occurrence of disease symptoms or HR was analyzed within a period of one to three days after infiltration. For investigations of the bacterial growth in the plant, bacterial suspensions in concentrations of 10 4 cfu / ml in 1 mM MgCl 2 were infiltrated into leaves of the paprika cultivar ECW / 23 /. 3. Production of a Λpass mutant
Zur Herstellung einer Mutation im Λpaß-Gen wurde die 3,1 kb große ΛφE-Region in die EcoRV- und XΛol-Schnittstelle von pBlueskript(ll) KS kloniert. Anschließend wurde ein 420 bp großes Fragment von hpaB mittels Csp45l ausgeschnitten und das verbleibende Konstrukt religiert. Die Deletion des Csp45l-Fragment.es führt zur Deletion der Aminosäuren 13 bis 149 im Λpaß-Genprodukt. Das resultierende 2,7 kb große Insert wurde nun in die ßa HI/Sa/l-Schnittstellen des Suizidvektors pOK1 /12/ kloniert und das entstandene hpaB- Deletionskonstrukt in die X. campestris pv. ves/'cator/a-Stämme 85-10, 85* und 82* konjugiert. Der Austausch des Wildtypgens gegen die Deletion in hpaB durch homologe Rekombination wurde mittels PCR ("polymerase chain reaction", Polymerase- Kettenreaktion)-basierter Analysen unter Verwendung der Primer hpaB-for (5'- CGAATTCGTCCATGTCTCACCACAGATC-3') und hpaB-rev (5'-To create a mutation in the Λpass gene, the 3.1 kb ΛφE region was cloned into the EcoRV and XΛol cleavage site from pBluescript (II) KS. A 420 bp fragment of hpaB was then cut out using Csp45l and the remaining construct was religated. The deletion of the Csp45l fragment leads to the deletion of amino acids 13 to 149 in the Λpass gene product. The resulting 2.7 kb insert was then cloned into the β HI / Sa / l sites of the suicide vector pOK1 / 12 / and the resulting hpaB deletion construct into the X. campestris pv. Ves / ' cator / a strains 85- 10, 85 * and 82 * conjugated. The exchange of the wild-type gene for the deletion in hpaB by homologous recombination was carried out by means of PCR ("polymerase chain reaction") -based analyzes using the primers hpaB-for (5'- CGAATTCGTCCATGTCTCACCACAGATC-3 ') and hpaB-rev ( 5 '
CGAGCTCGGCGCGTAACCACAGATAGTT-3') überprüft. Die entstandenen Λpaß-Mutanten wurde durch phänotypische Analysen charakterisiert. Hierfür wurden bakterielle Suspensionen in Blätter von suszeptiblen und resistenten Pflanzen inokuliert. Wie in Abbildung 1 dargestellt, führt die Deletion von hpaB. in Stamm 85- 10 zum vollständigen Verlust der bakteriellen Pathogenität, d.h. der Fähigkeit auf suszeptiblen Pflanzen zu wachsen und Krankheitssymptome auszulösen. Des Weiteren ist der Stamm 85-10ΔΛpaß nicht mehr in der Lage, in resistenten Pflanzen die HR zu induzieren. Stamm 85*AhpaB ist ebenfalls nicht mehr pathogen auf suszeptiblen Pflanzen, induziert jedoch noch eine partielle HR auf resistenten Pflanzen. Vergleichbare Phänotypen wurden bei Inokulation von Stamm 82*AhpaB in Blätter von entsprechenden suszeptiblen und resistenten Pflanzen beobachtet.CGAGCTCGGCGCGTAACCACAGATAGTT-3 ') checked. The resulting Λpass mutants were characterized by phenotypic analyzes. For this, bacterial suspensions were inoculated into leaves of susceptible and resistant plants. As shown in Figure 1, the deletion of hpaB results. in strain 85-10 for the complete loss of bacterial pathogenicity, ie the ability to grow on susceptible plants and trigger disease symptoms. Furthermore, the strain 85-10ΔΛpass is no longer able to induce HR in resistant plants. Strain 85 * AhpaB is also no longer pathogenic on susceptible plants, but still induces partial HR on resistant plants. Comparable phenotypes were observed when inoculation of strain 82 * AhpaB in leaves of corresponding susceptible and resistant plants.
4. Konstruktion von AvrBs3Δ2-Fusionsproteinen4. Construction of AvrBs3Δ2 fusion proteins
Zur Herstellung eines HrpF-AvrBs3Δ2-Expressionskonstruktes wurde ein 1 ,1 kb großes EcoRI-Fragment, welches die ersten 387 Codons von hrpF enthält, in die EcoRI-Schnittstelle von Plasmid pDSF356F /10/ ligiert. Das entstandene Konstrukt pDhrpFN356, welches HrpF^ 38 -AvrBs3Δ2 exprimiert, wurde in die X. campestris pv. ves/cator/a-Stämme 85* und 85*ΔΛpaß konjugiert. Zur Herstellung eines zweiten HrpF-AvrBs3Δ2-Expressionskonstruktes wurden die ersten 200 Codons von hrpF mittels PCR mit Hilfe der Primer HrpF-for (5'- TACTGAATTCGCCTCTATGTCGCTC-3') und HrpF-200rev (5'-To produce an HrpF-AvrBs3Δ2 expression construct, a 1.1 kb EcoRI fragment which contains the first 387 codons of hrpF was ligated into the EcoRI site of plasmid pDSF356F / 10 /. The resulting construct pDhrpFN356, which expresses HrpF ^ 38 -AvrBs3Δ2, was conjugated into the X. campestris pv. Ves / cator / a strains 85 * and 85 * ΔΛpass. In order to produce a second HrpF-AvrBs3Δ2 expression construct, the first 200 codons of hrpF were PCR by means of the primers HrpF-for (5'- TACTGAATTCGCCTCTATGTCGCTC-3 ') and HrpF-200rev (5'-
CTGTCGAATTCGATCTTGCCGCCGCACTTG-3') amplifiziert und in die EcoRI-Schnittstelle von pDSF356F ligiert. Das entstandene Konstrukt pDS200F356F exprimiert HrpF^oo- AvrBs3Δ2 und wurde ebenfalls in die X. campestris pv. ves/cafo/va-Stämme 85* und 85*ΔΛpaß konjugiert. Zur Herstellung eines XopA1.5rAvrBs3Δ2-Expressionskonstruktes wurden die ersten 51 Codons von xopA sowie 680 bp der Region stromaufwärts des Translationsinitiationscodons von xopA mittels PCR sowie der Primer xopAfor (5'-CACCGTACCGTTGTTGTTGCGATG-3') und xopArev (5'-TGAAAAGATGAACTGGGTCAG-3') amplifiziert. Das resultierende PCR- Produkt wurde in den Donorvektor pENTR/D-TOPO (erhältlich bei Invitrogen, Carlsbad, Calif.), welcher aft -Stellen enthält, mit Hilfe einer Topoisomerase ligiert und anschließend in den Zielvektor pL6GW356 rekombiniert. pL6GW356 besitzt eine aftP-Leserasterkassette, die an avrBs3A2 fusioniert ist, und wurde in Noel et al. /11/ beschrieben. Das resultierende Konstrukt pL6xopA356, welches XopA1-51-AvrBs3Δ2 exprimiert, wurde in die X. campestris pv. ves/cafoπ'a-Stämme 85* und 85* AhpaB konjugiert.CTGTCGAATTCGATCTTGCCGCCGCACTTG-3 ') amplified and ligated into the EcoRI site of pDSF356F. The resulting construct pDS200F356F expresses HrpF ^ oo-AvrBs3Δ2 and was also conjugated into the X. campestris pv. Ves / cafo / va strains 85 * and 85 * ΔΛpass. To make a XopA 1 . 5 rAvrBs3Δ2 expression construct, the first 51 codons of xopA and 680 bp of the region upstream of the translation initiation codon of xopA were PCR and the primers xopAfor (5'-CACCGTACCGTTGTTGTTGCGATG-3 ') and xopAGGGTCTC-3GGAVG (3') 'amplified (5). The resulting PCR product was ligated into the donor vector pENTR / D-TOPO (available from Invitrogen, Carlsbad, Calif.), Which contains aft sites, using a topoisomerase and then recombined into the target vector pL6GW356. pL6GW356 has an aftP reading frame cartridge fused to avrBs3A2 and was described in Noel et al. / 11 /. The resulting construct pL6xopA356 which Xopa 1 - 51 -AvrBs3Δ2 expressed, was conjugated into the X. campestris pv ves / cafoπ 'a-85 strains * and 85 * AhpaB..
5. Typ HI-abhängige Proteinsekretion in Λpaß-Mutanten5. Type HI-dependent protein secretion in Λpass mutants
Für die Analyse der Typ lll-abhängigen Proteinsekretion in Λpaß-Mutanten wurden die X. campestris pv. ves/cafor/'a-Stämme 82* und 82*ΔΛpaß in Sekretionsmedium inkubiert. Anschließend wurden die Proteintotalextrakte von den Kulturüberständen getrennt und durch SDS-Polyacrylamidelektrophorese und Immunoblot unter Verwendung von Antikörpern gegen HrpF und AvrBs3 analysiert 124,251. HrpF war in vergleichbaren Mengen in Proteintotalextrakten und Kulturüberständen beider Stämme vorhanden (siehe Abbildung 2). Dagegen konnte AvrBs3 nicht im Kulturüberstand von Stamm 82*AhpaB nachgewiesen werden, obwohl es in Proteintotalextrakten beider Stämme sowie im Kulturüberstand von Stamm 82* detektiert wurde. Zur Analyse der Sekretion weiterer Effektorproteine wurden avrBs1-c-myc- und avrBs T-c-myc-Expressionskonstrukte /19/ in die X. campestris pv. ves/cafoπa-Stämme 85* und 82* sowie in die entsprechenden ftpaß-Mutanten konjugiert. Da die unter in v/fro-Bedingungen durch das TTSS sekretierten Proteine nur immunologisch im Kulturüberstand nachweisbar sind, ist man bei Sekretionsanalysen auf die Verfügbarkeit von spezifischen Antikörpern gegen Epitope der zu analysierenden Proteine angewiesen. Aus diesem Grund wurden die Effektorproteine AvrBsl und AvrBsT mit einem C-terminalen c- myc Epitop versehen. Sowohl AvrBsl -c-myc sowie AvrBsT-c-myc wurden in die Totalextrakten von /ipaß-Wildtyp- und ftpaß-mutanten Stämmen in vergleichbaren Mengen von einem anti-c-myc-Antikörper (Amersham Pharmacia Biotech, Freiburg, Deutschland) detektiert. Des Weiteren wurden beide Proteine im Kulturüberstand des Λpaß-Wildtyp- Stammes nachgewiesen, waren dagegen im Kulturüberstand von Λpaß-Mutanten nicht oder nur schwach detektierbar (siehe Abbildung 2). Um nachzuweisen, dass die Detektion von Proteinen im Kulturüberstand nicht auf eine Lyse der bakteriellen Zellen zurückzuführen ist, wurden die Immunoblots mit einem Antikörper gegen das intrazelluläre Protein HrcN /26/ inkubiert, welches nur in Proteintotalextrakten nachgewiesen wurde. Die beschriebenen experimentellen Beobachtungen verdeutlichen, daß HpaB an der Sekretion von Effektorproteinen beteiligt ist, während es auf den Export von Nicht- Effektorproteinen durch das TTSS vermutlich keinen signifikanten Einfluß nimmt. So wurde neben HrpF auch das Nicht-Effektorprotein XopA in vergleichbaren Mengen in Kulturüberständen von X. campestris pv. ves cator/'a-Stamm 85* und 85*ΔΛpaß detektiert (siehe Abbildung 2). Die Hypothese konnte zudem durch Sekretionsanalysen von X. campestris pv. ves/cator/a-Stämmen 85* und 85*AhpaB, die die Fusionsproteine HrpF-^oo- AvrBs3Δ2 und XopA1.51-AvrBs3Δ2 exprimierten, bestätigt werden. So wurden sowohl HrpF-|. 200-AvrBs3Δ2 als auch XopAι.5ι-AvrBs3Δ2 in Totalextrakten und Kulturüberständen von Λpaß-Wildtyp- und Λpaß-mutanten Stämmen detektiert (siehe Abbildung 3). Diese Ergebnisse zeigen, daß die N-terminalen Proteinregionen von HrpF und XopA Sekretionssignale enthalten, welche die Λpaß-unabhängige Sekretion des AvrBs3Δ2- Reporterproteins vermitteln. Die Typ lll-abhängige Sekretion des Reporterproteins AvrBs3Δ2 kann also perse unabhängig von der Gegenwart von HpaB erfolgen.For the analysis of type III-dependent protein secretion in Λpass mutants, the X. campestris pv. Ves / cafor / ' a strains 82 * and 82 * ΔΛpass were incubated in secretion medium. The protein total extracts were then separated from the culture supernatants and analyzed by SDS polyacrylamide electrophoresis and immunoblot using antibodies against HrpF and AvrBs3 124,251. HrpF was present in comparable amounts in protein total extracts and culture supernatants of both strains (see Figure 2). In contrast, AvrBs3 could not be detected in the culture supernatant from strain 82 * AhpaB, although it was detected in protein total extracts from both strains and in the culture supernatant from strain 82 *. To analyze the secretion of further effector proteins, avrBs1-c-myc and avrBs Tc-myc expression constructs / 19 / were conjugated into the X. campestris pv. Ves / cafoπa strains 85 * and 82 * and into the corresponding ftpass mutants. Since the proteins secreted by the TTSS under in v / fro conditions can only be detected immunologically in the culture supernatant, one has to rely on the availability of specific antibodies against epitopes of the proteins to be analyzed in secretion analyzes. For this reason, the effector proteins AvrBsl and AvrBsT were provided with a C-terminal c-myc epitope. Both AvrBsl-c-myc and AvrBsT-c-myc were detected in the total extracts of / ipaß wild-type and ftpaß mutant strains in comparable amounts by an anti-c-myc antibody (Amersham Pharmacia Biotech, Freiburg, Germany). Furthermore, both proteins were detected in the culture supernatant of the Λpass wild-type strain, however, were not or only weakly detectable in the culture supernatant of Λpass mutants (see Figure 2). In order to demonstrate that the detection of proteins in the culture supernatant is not due to lysis of the bacterial cells, the immunoblots were incubated with an antibody against the intracellular protein HrcN / 26 /, which was only detected in protein total extracts. The experimental observations described clarify that HpaB is involved in the secretion of effector proteins, while it presumably has no significant influence on the export of non-effector proteins by the TTSS. In addition to HrpF, the non-effector protein XopA was also detected in comparable amounts in culture supernatants from X. campestris pv. Ves cator / ' a strain 85 * and 85 * ΔΛpass (see Figure 2). The hypothesis was also confirmed by secretion analysis of X. campestris pv. Ves / cator / a strains 85 * and 85 * AhpaB, which contained the fusion proteins HrpF- ^ oo-AvrBs3Δ2 and XopA 1 . 51 -AvrBs3Δ2 were confirmed. So both HrpF- |. 200- AvrBs3Δ2 as well as XopAι. 5 ι-AvrBs3Δ2 detected in total extracts and culture supernatants of Λpass wild-type and Λpass mutant strains (see Figure 3). These results show that the N-terminal protein regions of HrpF and XopA contain secretion signals which mediate the Λpass-independent secretion of the AvrBs3Δ2 reporter protein. The type III-dependent secretion of the reporter protein AvrBs3Δ2 can therefore be carried out independently of the presence of HpaB.
6. Analyse der Proteintranslokation in Λpaß-Mutanten6. Analysis of protein translocation in Λpass mutants
Für die Analyse der Proteintranslokation in Λpaß-Mutanten wurden AvrBs3 sowie AvrBs3Δ2- Fusionsproteine in den X. campestris pv. ves/cafor/a-Stämmen 85* und 85*AhpaB exprimiert und die Bakterien in Blätter des Paprikakultivars ECW-30R inokuliert. ECW-30R-Pflanzen enthalten das Resistenzgen Bs3, welches die spezifische Erkennung von AvrBs3 vermittelt und daraufhin Abwehrreaktionen induziert, die mit einer HR einhergehen /22/. Ferner werden durch das Resistenzprotein Bs3 auch AvrBs3Δ2-Fusionsproteine erkannt, sofern diese beispielsweise transient über i4groόacter/'um-vermittelten Gentransfer in Pflanzenzellen exprimiert oder von X. campestris pv. vesicatoria transloziert werden. Die Gegenwart der nuklearen Lokalisierungssequenzen in AvrBs3 oder AvrBs3Δ2-Fusionsproteinen ist dabei für die Erkennung durch Bs3 essentiell. Es ist davon auszugehen, dass AvrBs3 sowie AvrBs3Δ2-Fusionsproteine in den Zellkern transportiert werden müssen, um die Bs3- spezifische HR zu induzieren. X. campestris pv. ves/'cafo/va-Stamm 85*(pDS300F), der das avrßs3-Expressionskonstrukt /27/ enthält, induziert auf ECW-30R-Pflanzen die Bs3-spezifische HR. Dagegen induzieren 85*-Stämme, die HrpF1.387-AvrBs3Δ2, HrpF1.200-AvrBs3Δ2 oder XopA1-5 AvrBs3Δ2 exprimieren, Krankheitssymptome auf ECW-30R-Pflanzen. Dies zeigt, dass die N-terminalen Regionen von HrpF und XopA kein Exportsignal besitzen, welches in Stamm 85* die Translokation des AvrBs3Δ2-Reporters vermittelt (siehe Abbildung 4). Werden HrpF^^- AvrBs3Δ2, HrpF1-200-AvrBs3Δ2 oder XopA1.51-AvrBs3Δ2 dagegen im Λpaß-mutanten Stamm 85*AhpaB exprimiert, so induzieren sie nach Infiltration in ECW-30R-Pflanzen die Bs3- spezifische HR. Dies zeigt, dass die N-terminalen Proteinbereiche von HrpF und XopA die Translokation des AvrBs3Δ2-Reporterproteins in Abwesenheit von HpaB vermitteln können. Neben AvrBs3Δ2-Fusionsproteinen wird auch AvrBs3 bei Überexpression von Plamid pDS300F von Stamm 85*AhpaB in die Pflanzenzelle transloziert. So induziert Stamm 85*Δ/7paß(pDS300F) die Bs3-spezifische HR in ECW-30R-Pflanzen (siehe Abbildung 4). Zusammenfassend hat sich gezeigt, dass ftpaß-Mutanten in der Lage sind, signifikante Mengen eines Effektorproteins in die Pflanzenzelle zu translozieren, sofern dieses Effektorprotein überexprimiert ist. Als signifikant werden hier Proteinmengen bezeichnet, die zur Induktion einer vollständigen, nicht-partiellen HR in der entprechenden resistenten Pflanze ausreichend sind. Neben Effektorproteinen nach Überexpression können hpaB- Mutanten auch Fusionsproteine translozieren, die die N-terminale Proteinregion eines Nicht- Effektorproteins wie beispielsweise HrpF oder XopA enthalten. For the analysis of the protein translocation in Λpass mutants, AvrBs3 and AvrBs3Δ2 fusion proteins were expressed in the X. campestris pv. Ves / cafor / a strains 85 * and 85 * AhpaB and the bacteria were inoculated into leaves of the pepper cultivar ECW-30R. ECW-30R plants contain the resistance gene Bs3, which mediates the specific recognition of AvrBs3 and then induces defense reactions associated with HR / 22 /. Furthermore, the resistance protein Bs3 also recognizes AvrBs3Δ2 fusion proteins, provided that these are expressed transiently, for example, via i4groόacter / ' um-mediated gene transfer in plant cells or are translocated by X. campestris pv. Vesicatoria. The presence of the nuclear localization sequences in AvrBs3 or AvrBs3Δ2 fusion proteins is essential for the detection by Bs3. It can be assumed that AvrBs3 and AvrBs3Δ2 fusion proteins have to be transported into the cell nucleus in order to induce the Bs3-specific HR. X. campestris pv. Ves / ' cafo / va strain 85 * (pDS300F), which contains the avrßs3 expression construct / 27 /, induces the Bs3-specific HR on ECW-30R plants. In contrast, 85 * strains induce the HrpF 1 . 387 -AvrBs3Δ2, HrpF 1 . 200 -AvrBs3Δ2 or Xopa 1 - 5 expressing AvrBs3Δ2, disease symptoms ECW 30R plants. This shows that the N-terminal regions of HrpF and XopA have no export signal, which mediates the translocation of the AvrBs3Δ2 reporter in strain 85 * (see Figure 4). Become HrpF ^^ - AvrBs3Δ2, HrpF 1 - 200 -AvrBs3Δ2 or XopA 1 . 51 -AvrBs3Δ2, however, expressed in the Λpass mutant strain 85 * AhpaB, they induce the Bs3-specific HR after infiltration in ECW-30R plants. This shows that the N-terminal protein regions of HrpF and XopA are the Can translocate AvrBs3Δ2 reporter protein in the absence of HpaB. In addition to AvrBs3Δ2 fusion proteins, AvrBs3 is also translocated into the plant cell upon overexpression of plamide pDS300F from strain 85 * AhpaB. For example, strain 85 * Δ / 7pass (pDS300F) induces Bs3-specific HR in ECW-30R plants (see Figure 4). In summary, it has been shown that ftpaß mutants are able to translocate significant amounts of an effector protein into the plant cell if this effector protein is overexpressed. Amounts of protein that are sufficient to induce complete, non-partial HR in the corresponding resistant plant are termed significant here. In addition to effector proteins after overexpression, hpaB mutants can also translocate fusion proteins which contain the N-terminal protein region of a non-effector protein such as, for example, HrpF or XopA.
Erläuterung der BezugszeichenExplanation of the reference symbols
85-10 X. campestris pv. ves/cator/a-Stamm 85-1085-10 X. campestris pv. Ves / cator / a strain 85-10
85* X. campestris pv. ves/cafora-Stamm 85* 85 * X. campestris pv. Ves / cafora strain 85 *
85-10Δ 7paß Λpaß-Deletionsmutante von X. campestris pv. ves/cafor/a-Stamm 85-85-10Δ 7pass Λpass deletion mutant from X. campestris pv. Ves / cafor / a strain 85-
1010
85*AhpaB Λpaß-Deletionsmutante von X. campestris pv. ves/cator/a-Stamm 85*85 * AhpaB Λpass deletion mutant from X. campestris pv. Ves / cator / a strain 85 *
85-10Δ/7φG nicht-pathogener X. campestris pv. ves/cafor/a-Stamm 85-1 OAhrpG, mit einer Mutation im Regulatorgen hrpG als wässrige Läsionen bekannten Krankheitssymptome keine sichtbaren Krankheitssymptome hr partielle HR (hypersensitive Reaktion)85-10Δ / 7φG non-pathogenic X. campestris pv. Ves / cafor / a strain 85-1 OAhrpG, with a mutation in the regulator gene hrpG known as watery lesions disease symptoms no visible disease symptoms hr partial HR (hypersensitive reaction)
wt Λpaß-Wildtypstammwt wild type strain
AhpaB frpaß-mutanter StammAhpaB frpass-mutant strain
HrpF Typ Ill-Translokonprotein, Typ lll-abhängig sekretiert, nicht transloziertHrpF type III translocon protein, type III-secreted, not translocated
Wildtyp-StammWild-type strain
AvrBs3 Effektorprotein, Typ lll-abhängig sekretiert und transloziert HrcN intrazelluläres Protein des TTSS, nicht sekretiert AvrBsl -c-myc Effektorprotein mit C-terminalen c-myc-Epitop, Typ lll-abhängig sekretiert und transloziertAvrBs3 effector protein, type III-dependent secreted and translocated HrcN intracellular protein of the TTSS, not secreted AvrBsl -c-myc effector protein with C-terminal c-myc epitope, type III-dependent secreted and translocated
AvrBsT-c-myc Effektorprotein mit C-terminalen c-myc-Epitop, Typ lll-abhängig sekretiert und transloziertAvrBsT-c-myc effector protein with C-terminal c-myc epitope, type III-secreted and translocated
XopA potentielles Typ Ill-Translokonprotein, Typ lll-abhängig sekretiert, nicht transloziert im Wildtyp-StammXopA potential type III translocon protein, type III-secreted, not translocated in the wild-type strain
XopA1.51-AvrBs3Δ2 Fusionsprotein zwischen den N-terminalen 51 Aminosäuren von XopA und dem Deletionsderivat AvrBs3Δ2, das in den N-terminalen 152 Aminosäuren deletiert istXopA 1 . 51- AvrBs3Δ2 fusion protein between the N-terminal 51 amino acids of XopA and the deletion derivative AvrBs3Δ2, which is deleted in the N-terminal 152 amino acids
HrpF1.387AvrBs3Δ2 Fusionsprotein zwischen den N-terminalen 387 Aminosäuren von HrpF und dem Deletionsderivat AvrBs3Δ2 HrpF1.200AvrBs3Δ2 Fusionsprotein zwischen den N-terminalen 200 Aminosäuren von HrpF und dem Deletionsderivat AvrBs3Δ2 LiteraturHrpF 1 . 387 AvrBs3Δ2 fusion protein between the N-terminal 387 amino acids of HrpF and the deletion derivative AvrBs3Δ2 HrpF 1 . 200 AvrBs3Δ2 fusion protein between the N-terminal 200 amino acids of HrpF and the deletion derivative AvrBs3Δ2 literature
IM Cornelis und Van Gijsegem (2000) Annu. Rev. Microbiol., 54, 735-774IM Cornelis and Van Gijsegem (2000) Annu. Rev. Microbiol., 54, 735-774
121 Lindgren (1997) Ann. Rev. Phytopathol., 35, 129-152121 Lindgren (1997) Ann. Rev. Phytopathol., 35, 129-152
/3/ Alfano und Collmer (1996) Plant Cell, 8, 1683-1698/ 3 / Alfano and Collmer (1996) Plant Cell, 8, 1683-1698
14/ Dangl und Jones (2001 ) Nature, 411 , 826-83314 / Dangl and Jones (2001) Nature, 411, 826-833
15/ Gopalan et al. (1996) Plant Cell, 8, 1095-110515 / Gopalan et al. (1996) Plant Cell, 8, 1095-1105
/6/ Pirhonen et al. (1996) Mol. Plant-Microbe Interact., 9, 252-260/ 6 / Pirhonen et al. (1996) Mol. Plant-Microbe Interact., 9, 252-260
171 Harn et al. (1998) Proc. Natl. Acad. Sei. USA, 95, 10206-10211171 Harn et al. (1998) Proc. Natl. Acad. Be. USA, 95, 10206-10211
181 Büttner und Bonas (2002) EMBO J., 21 , 5313-5322181 Büttner and Bonas (2002) EMBO J., 21, 5313-5322
19/ Noel et al. (2002) J. Bact., 184, 1340-134819 / Noel et al. (2002) J. Bact., 184, 1340-1348
/10/ Szurek et al. (2002) Mol. Microbiol., 46, 13-23/ 10 / Szurek et al. (2002) Mol. Microbiol., 46, 13-23
/11/ Noel et al. (2003) J. Bact., 185, 7092-7102/ 11 / Noel et al. (2003) J. Bact., 185, 7092-7102
/12/ Huguet et al. (1998) Mol. Microbiol., 29, 1379-1390/ 12 / Huguet et al. (1998) Mol. Microbiol., 29, 1379-1390
/13/ Parsot et al. (2003) Curr. Op. Microbiol., 6, 7-14/ 13 / Parsot et al. (2003) Curr. Op. Microbiol., 6, 7-14
/14/ Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA/ 14 / Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
/15/ Bonas et al. (1989) Mol. Gen. Genet, 218, 127-136/ 15 / Bonas et al. (1989) Mol. Gen. Genet, 218, 127-136
/16/ Canteros (1990) Diversity of plasmids and plasmid-encoded phenotypic traits in Xanthomonas campestris pv. vesicatoria. Dissertation. Universität von Florida/ 16 / Canteros (1990) Diversity of plasmids and plasmid-encoded phenotypic traits in Xanthomonas campestris pv. Vesicatoria. Dissertation. University of Florida
/17/ Wengelnik et al. (1999) J. Bacteriol., 181 , 6828-6831/ 17 / Wengelnik et al. (1999) J. Bacteriol., 181, 6828-6831
/18/ Daniels et al. (1984) EMBO J., 3, 3323-3328/ 18 / Daniels et al. (1984) EMBO J., 3, 3323-3328
/19/ Escolar et al. (2001 ) Mol. Plant Pathol., 2, 287-296/ 19 / Escolar et al. (2001) Mol. Plant Pathol., 2, 287-296
/20/ Bonas et al. (1989) Mol. Gen. Genet, 218, 127-136/ 20 / Bonas et al. (1989) Mol. Gen. Genet, 218, 127-136
/21/ Figurski und Helsinki (1979) Proc. Natl. Acad. Sei., 76, 1648-1652/ 21 / Figurski and Helsinki (1979) Proc. Natl. Acad. Sci., 76, 1648-1652
/22/ Minsavage et al. (1990) Mol. Plant-Microbe Interact, 3, 41-47/ 22 / Minsavage et al. (1990) Mol. Plant-Microbe Interact, 3, 41-47
/23/ Bonas et al. (1991 ) Mol. Plant-Microbe Interact, 4, 81-88/ 23 / Bonas et al. (1991) Mol. Plant-Microbe Interact, 4, 81-88
/24/ Rossier et al. (1999) Proc. Natl. Acad. Sei. USA, 96, 9368-9373/ 24 / Rossier et al. (1999) Proc. Natl. Acad. Be. USA, 96, 9368-9373
/25/ Büttner et al. (2002) J. Bacteriol., 184, 2389-2398/ 25 / Büttner et al. (2002) J. Bacteriol., 184, 2389-2398
/26/ Rossier et al (2000) Mol. Microbiol., 38,828-838/ 26 / Rossier et al (2000) Mol. Microbiol., 38,828-838
/27/ van den Ackerveken et al. (1996) Cell, 87, 1307-1316 / 27 / van den Ackerveken et al. (1996) Cell, 87, 1307-1316

Claims

Patentansprüche claims
1. Bakterielles System zum Proteintransport in eukaryontische Zellen bestehend aus dem Typ Ill-Sekretionssystem und einem /7paß-mutanten Bakterienstamm, wobei hpaB ein Gen im Λφ-Gencluster bezeichnet, oder einem Bakterienstamm, der eine Mutation in einem Λpaß-homologen oder funktionsanalogen Gen enthält.1. Bacterial system for protein transport in eukaryotic cells consisting of the type III secretion system and a / 7pass mutant bacterial strain, where hpaB denotes a gene in the Λφ gene cluster, or a bacterial strain which contains a mutation in a Λpassport homologous or functionally analogous gene ,
2. Transportsystem nach Anspruch 1 , gekennzeichnet dadurch, dass der verwendete Organismus ein Gram-negatives Bakterium ist.2. Transport system according to claim 1, characterized in that the organism used is a Gram-negative bacterium.
3. Transportsystem nach Anspruch 1 , gekennzeichnet dadurch, dass der verwendete Organismus in vitro kultiviert wird.3. Transport system according to claim 1, characterized in that the organism used is cultivated in vitro.
4. Transportsystem nach Anspruch 1 , gekennzeichnet dadurch, dass der verwendete Organismus zusammen mit eukaryontischen Zellen kultiviert wird.4. Transport system according to claim 1, characterized in that the organism used is cultivated together with eukaryotic cells.
5. Transportsystem nach Anspruch 1 , gekennzeichnet dadurch, dass der verwendete Organismus mit Pflanzen z.B. durch Infiltrieren, Dippen oder Sprühen in Kontakt gebracht wird.5. Transport system according to claim 1, characterized in that the organism used with plants e.g. is brought into contact by infiltration, dipping or spraying.
6. Transportsystem nach Anspruch 1 , gekennzeichnet dadurch, dass die Mutation von hpaB oder von einem homologen Gen die Expression des jeweiligen Genproduktes verhindert oder so modifiziert, dass seine Funktionsfähigkeit reduziert bzw. verloren ist.6. Transport system according to claim 1, characterized in that the mutation of hpaB or of a homologous gene prevents the expression of the respective gene product or modifies it so that its functionality is reduced or lost.
7. Transportsystem nach Anspruch 1 , gekennzeichnet dadurch, dass die Mutation von hpaB oder von einem homologen Gen zu einer Reduktion der Sekretion von Effektorproteinen durch das Typ Ill-Sekretionssystem führt.7. Transport system according to claim 1, characterized in that the mutation of hpaB or of a homologous gene leads to a reduction in the secretion of effector proteins by the type III secretion system.
8. Transportsystem nach Anspruch 1 , gekennzeichnet dadurch, dass hpaB oder ein homologes Gen im Genom des verwendeten Bakterienstammes mutiert ist.8. Transport system according to claim 1, characterized in that hpaB or a homologous gene is mutated in the genome of the bacterial strain used.
9. Transportsystem nach Anspruch 1 , gekennzeichnet dadurch, dass die das Typ Ill- Sekretionssystem kodierenden Gene von einem Expressionsplasmid aus exprimiert werden, das eine Mutation in hpaB oder einem homologen Gen enthält. 9. Transport system according to claim 1, characterized in that the genes encoding the type III secretion system are expressed from an expression plasmid which contains a mutation in hpaB or a homologous gene.
10. Transportsystem nach mindestens einem von Anspruch 1 bis 9, gekennzeichnet dadurch, dass der verwendete Bakterienstamm ein rekombinantes Nukleinsäuremolekül enthält, in welchem ein aktiver Promotor operativ an eine Nukleinsäuresequenz verknüpft ist, die ein Effektorprotein kodiert.10. Transport system according to at least one of claims 1 to 9, characterized in that the bacterial strain used contains a recombinant nucleic acid molecule in which an active promoter is operatively linked to a nucleic acid sequence which encodes an effector protein.
11. Transportsystem nach mindestens einem von Anspruch 1 bis 10, gekennzeichnet dadurch, dass das kodierte Effektorprotein ein im verwendeten Bakterienstamm funktionsfähiges Typ Ill-Sekretionssignal enthält.11. Transport system according to at least one of claims 1 to 10, characterized in that the coded effector protein contains a type III secretion signal which is functional in the bacterial strain used.
12. Transportsystem nach mindestens einem von Anspruch 1 bis 9, gekennzeichnet dadurch, dass der verwendete Bakterienstamm ein rekombinantes Nukleinsäuremolekül enthält, in welchem ein aktiver Promotor operativ an eine Nukleinsäuresequenz verknüpft ist, die ein Fusionsprotein zwischen einem Typ Ill- Sekretionssignal und dem zu transportierenden Protein kodiert.12. Transport system according to at least one of claims 1 to 9, characterized in that the bacterial strain used contains a recombinant nucleic acid molecule in which an active promoter is operatively linked to a nucleic acid sequence which is a fusion protein between a type III secretion signal and the protein to be transported coded.
13. Transportsystem nach mindestens einem von Anspruch 1 bis 9 und 12, gekennzeichnet dadurch, dass das Fusionsprotein eine Aminosäuresequenz zwischen dem Typ Ill-Sekretionssignal und dem zu transportierenden Protein enthalten kann. 13. Transport system according to at least one of claims 1 to 9 and 12, characterized in that the fusion protein can contain an amino acid sequence between the type III secretion signal and the protein to be transported.
PCT/DE2005/000330 2004-03-02 2005-02-26 Bacterial system for protein transport in eukaryotic cells WO2005085417A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005001016T DE112005001016A5 (en) 2004-03-02 2005-02-26 Bacterial system for protein transport into eukaryotic cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410010023 DE102004010023A1 (en) 2004-03-02 2004-03-02 Bacterial system for protein transport into eukaryotic cells
DE102004010023.3 2004-03-02

Publications (2)

Publication Number Publication Date
WO2005085417A2 true WO2005085417A2 (en) 2005-09-15
WO2005085417A3 WO2005085417A3 (en) 2006-01-12

Family

ID=34877228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000330 WO2005085417A2 (en) 2004-03-02 2005-02-26 Bacterial system for protein transport in eukaryotic cells

Country Status (2)

Country Link
DE (2) DE102004010023A1 (en)
WO (1) WO2005085417A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064750A1 (en) 2009-11-27 2011-06-03 Basf Plant Science Company Gmbh Chimeric endonucleases and uses thereof
DE112010004584T5 (en) 2009-11-27 2012-11-29 Basf Plant Science Company Gmbh Chimeric endonucleases and applications thereof
EP2612918A1 (en) 2012-01-06 2013-07-10 BASF Plant Science Company GmbH In planta recombination
WO2022038263A1 (en) * 2020-08-20 2022-02-24 Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement Modified xanthomonas and method for evaluating pathogen recognition by plants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002996A2 (en) * 1998-07-10 2000-01-20 Cornell Research Foundation, Inc. Recombinant constructs and systems for secretion of proteins via type iii secretion systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002996A2 (en) * 1998-07-10 2000-01-20 Cornell Research Foundation, Inc. Recombinant constructs and systems for secretion of proteins via type iii secretion systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B]TTNER DANIELA ET AL: "Getting across--bacterial type III effector proteins on their way to the plant cell." THE EMBO JOURNAL. 15 OCT 2002, Bd. 21, Nr. 20, 15. Oktober 2002 (2002-10-15), Seiten 5313-5322, XP002345956 ISSN: 0261-4189 *
B]TTNER DANIELA ET AL: "HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type III-dependent protein secretion." MOLECULAR MICROBIOLOGY. NOV 2004, Bd. 54, Nr. 3, November 2004 (2004-11), Seiten 755-768, XP002345957 ISSN: 0950-382X *
KIM JUNG-GUN ET AL: "Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island." JOURNAL OF BACTERIOLOGY, Bd. 185, Nr. 10, Mai 2003 (2003-05), Seiten 3155-3166, XP002345955 ISSN: 0021-9193 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064750A1 (en) 2009-11-27 2011-06-03 Basf Plant Science Company Gmbh Chimeric endonucleases and uses thereof
DE112010004583T5 (en) 2009-11-27 2012-10-18 Basf Plant Science Company Gmbh Chimeric endonucleases and applications thereof
DE112010004584T5 (en) 2009-11-27 2012-11-29 Basf Plant Science Company Gmbh Chimeric endonucleases and applications thereof
US10316304B2 (en) 2009-11-27 2019-06-11 Basf Plant Science Company Gmbh Chimeric endonucleases and uses thereof
EP2612918A1 (en) 2012-01-06 2013-07-10 BASF Plant Science Company GmbH In planta recombination
WO2013102875A1 (en) 2012-01-06 2013-07-11 Basf Plant Science Company Gmbh In planta recombination
US10876135B2 (en) 2012-01-06 2020-12-29 Basf Plant Science Company Gmbh In planta recombination
WO2022038263A1 (en) * 2020-08-20 2022-02-24 Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement Modified xanthomonas and method for evaluating pathogen recognition by plants

Also Published As

Publication number Publication date
DE102004010023A1 (en) 2005-09-22
WO2005085417A3 (en) 2006-01-12
DE112005001016A5 (en) 2007-05-24

Similar Documents

Publication Publication Date Title
DE69629576T2 (en) METHOD FOR PRODUCING RECOMBINANT PLASMIDES
DE69333980T2 (en) TRIGGER OF SENSITIVITY REACTIONS IN PLANTS
Deresiewicz et al. Mutations affecting the activity of the Shiga-like toxin I A-chain
JPS59501693A (en) Recombinant DNA molecules and their production methods
DE69935313T2 (en) PROOF OF PROOF FOR PEPTIDES
DE102005048828B4 (en) Fluorescence marker and its use
WO2005085417A2 (en) Bacterial system for protein transport in eukaryotic cells
EP1948679B1 (en) Method for preparing recombinant peptide from spider venom and analgesic composition containing the peptide
DE69535705T2 (en) FUNCTIONAL SURVEYS AND / OR EXPRESSION VECTORS IN MYCOBACTERIA
DE69822453T2 (en) REGULATION SYSTEM FOR INDUCIBLE EXPRESSION OF GENE WITH LAMBDA-SIMILAR PROMOTERS
DE69627787T2 (en) Actinomycetes promoter
DE3320339A1 (en) EXPRESSION VECTOR, METHOD FOR THE PRODUCTION THEREOF AND USE OF THE EXPRESSION VECTOR FOR THE PRODUCTION OF A POLYPEPTIDE
EP0882129A1 (en) Recombinant expression of s-layer proteins
DE4344350A1 (en) Bacteria for the production of stable fusion proteins and methods for their detection
DE69832453T2 (en) DNA encoding a serine / threonine kinase
DE10309557A1 (en) A translocation enzyme as a selection marker
EP0627006B1 (en) Hybrid dna that codes for a subunit of a bacterial toxin with a hemolysin
DE10012283A1 (en) Controlling gene expression in gram positive organisms using a phosphate controllable promoter and a phosphate regulation system is useful to express heterologous proteins in gram positive bacteria
DE10155862A1 (en) Production of recombinant antibodies by fusion with elastin-like peptides
DE69929590T2 (en) VECTORS FOR THE CONTROLLED EXPRESSION OF RECOMBINANT GENES IN PROKARYONTIC CELLS
EP2606360A1 (en) Lov-domain protein for photosensitive defunctionalization
EP0289936A2 (en) Method for the preparation of foreign proteins in streptomyces
CAI et al. An inner membrane protein (Imp) of Xanthomonas oryzae pv. oryzicola functions in carbon acquisition, EPS Production, bacterial motility and virulence in rice
DE69532109T2 (en) EXPRESSION OF HETEROLOGICAL PROTEINS IN WEAKENED BACTERIA USING THE HTRA PROMOTOR
DE4342769A1 (en) Isolation and cloning of cDNA encoding RNA binding protein (RBP)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050010163

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REF Corresponds to

Ref document number: 112005001016

Country of ref document: DE

Date of ref document: 20070524

Kind code of ref document: P