WO2005085185A1 - Aniline derivatives as selective androgen receptor modulators - Google Patents

Aniline derivatives as selective androgen receptor modulators Download PDF

Info

Publication number
WO2005085185A1
WO2005085185A1 PCT/US2005/007245 US2005007245W WO2005085185A1 WO 2005085185 A1 WO2005085185 A1 WO 2005085185A1 US 2005007245 W US2005007245 W US 2005007245W WO 2005085185 A1 WO2005085185 A1 WO 2005085185A1
Authority
WO
WIPO (PCT)
Prior art keywords
trifluoromethyl
cyano
phenyl
trifluoroethyl
cyclopropylmethyl
Prior art date
Application number
PCT/US2005/007245
Other languages
French (fr)
Inventor
Philip Stewart Turnbull
Rodolfo Cadilla
David John Cowan
Andrew Lamont Larkin
Istvan Kaldor
Eugene Lee Stewart
Original Assignee
Smithkline Beecham Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smithkline Beecham Corporation filed Critical Smithkline Beecham Corporation
Priority to EP05730067.5A priority Critical patent/EP1725522B1/en
Priority to US10/598,508 priority patent/US7514470B2/en
Priority to JP2007502061A priority patent/JP4805909B2/en
Priority to ES05730067.5T priority patent/ES2523017T3/en
Publication of WO2005085185A1 publication Critical patent/WO2005085185A1/en
Priority to US12/392,687 priority patent/US7723385B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • This invention relates to non-steroidal compounds that are modulators of androgen, glucocorticoid, mineralocorticoid, and progesterone receptors, and also to the methods for the making and use of such compounds.
  • Nuclear receptors are a class of structurally related gene expression modulators that act as ligand-dependent transcription factors (R.M. Evans, Science 240, 889 (1988)).
  • the steroid receptors namely the androgen receptor, the estrogen receptor, the glucocorticoid receptor, the mineralocorticoid receptor, and the progesterone receptor represent a subclass of the nuclear receptor superfamily.
  • Nuclear receptor ligands in this subclass exert their effects by binding to an intracellular steroid hormone receptor. After the receptor-ligand complex is translocated to the nucleus of the cell, the complex binds to recognition sites on DNA, which allows for the modulation of certain genes.
  • tissue selectivity allows a nuclear receptor ligand to function as an agonist in some tissues, while having no effect or even an antagonist effect in other tissues.
  • selective receptor modulator SRM
  • a synthetic compound that binds to an intracellular receptor and mimics the effects of the native hormone is referred to as an agonist.
  • a compound that inhibits the effect of the native hormone is called an antagonist.
  • modulators refers to compounds that have a spectrum of activities ranging from full agonism to partial agonism to full antagonism. The molecular basis for this tissue selective activity is not completely understood.
  • ligands put nuclear receptors in different conformational states. These states dictate the ability of coactivators, corepressors, and other proteins to be recruited by the nuclear receptor ("NR").
  • NR nuclear receptor
  • the unique cofactor-NR ensembles are the gene transcription factors that are thought to modulate tissue selective effects.
  • Ligand-mediated effects through the action of nuclear receptors are not limited to the classical genotropic mechanism outlined above. It is thought that some, if not all, of the separation of anabolic and general homeostatic effects from the stimulation of sexual tissues can be explained by a particular ligand's ability to potentiate non-genotropic pathways.
  • One example of liganded nuclear receptor induction of non-genotropic pathways is found in the work of S. C. Manolagas et al., Cell, 104, 719-730. The action of a sex steroid NR on osteoblasts and other cell types is shown to involve the Src/Shc/ERK signaling pathway.
  • This activity is mediated through the ligand binding domain of the sex steroid nuclear receptor alone.
  • the NR DNA-binding domain is not required to attenuate etoposide-induced apoptosis in HeLa cells.
  • An NR lacking the DNA binding domain cannot function in the classical mode, acting as a transcription factor.
  • Nuclear receptor steroid ligands are known to play important roles in the health of both men and women.
  • testosterone (T) and dihydrotestosterone (DHT) are endogenous steroidal ligands for the androgen receptor that likely play a role in every tissue type found in the mammalian body.
  • DHT dihydrotestosterone
  • androgens play a role in sexual differentiation and development of male sexual organs. Further sexual development is mediated by androgens during puberty. Androgens play diverse roles in the adult including stimulation and maintenance of male sexual accessory organs and maintenance of the musculoskeletal system. Cognitive function, sexuality, aggression, and mood are some of the behavioral aspects mediated by androgens.
  • Androgens affect the skin, bone, and skeletal muscle, as well as blood lipids and blood cells.
  • the study of androgen action and male reproductive dysfunction continues to expand significantly. In fact, only recently has the definition of a disease state been associated with hormonal changes that occur in aging men. This syndrome, previously referred to as Andropause, has more recently been described as Androgen Deficiency in the Aging Male, or "ADAM" (A. Morales and J. L. Tenover, Urologic Clinics of North America (2002 Nov.) 29(4) 975.)
  • ADAM Androgen Deficiency in the Aging Male
  • Testosterone replacement products such as AndroGel® (1% testosterone gel Clll, marketed by Solvay Pharmaceuticals) are emerging as a treatment of choice among physicians. Such products, however, fail to correctly mimic physiological testosterone levels and have potential side effects including exacerbation of pre-existing sleep apnoea, polycythemia, and/or gynaecomastia. Furthermore, the longer-term side effects on target organs such as the prostate or the cardiovascular system are yet to be fully elucidated. Importantly, the potential carcinogenic effects of testosterone on the prostate prevent many physicians from prescribing it to older men (i.e. age > 60 years) who, ironically, stand to benefit most from treatment. Also, all of the existing treatment options have fundamental problems with their delivery mechanism.
  • SARM selective androgen receptor modulator
  • progesterone the endogenous ligand for the progesterone receptor (“PR”)
  • PR progesterone receptor
  • progesterone prepares the endometrium for implantation, regulates the implantation process, and helps maintain pregnancy.
  • progesterone synthetic versions ofprogesterone (progestins) stems from progesterone's ability to regulate endometrial proliferation.
  • progestins are included as part of hormone replacement therapy (“HRT”) in women to reduce the incidence of endometriosis.
  • HRT hormone replacement therapy
  • the effectiveness of therapy is tempered by undesired side-effect profiles. Chronic progestin therapy or continuous estrogen replacement regimens are often associated with increased bleeding. Excessive stimulatory effects on the endometrial vasculature may result in proliferation and fragility.
  • Progesterone receptor antagonists such as mifepristone, also known as RU-486, and other PR modulators can inhibit endometrial proliferation at high estradiol concentrations in primates.
  • Human clinical data with mifepristone supports the efficacy of a PR antagonist in endometriosis (D. R. Grow et. al., J Clin. Endocrin. Metab. 1996, 81).
  • RU-486 also acts as a potent ligand for the glucocorticoid receptor ("GR"). This cross-reactivity with the GR is associated with homeostatic imbalances.
  • modulators of nuclear steroid hormones that are highly specific for one receptor could offer greater benefit with less side effects in the treatment of both female and male related hormone responsive diseases.
  • the present invention includes compounds of formula (I)
  • R 1 is -(Q 1 ) X -R 5 ;
  • Q 1 is alkylene;
  • x is 0 or 1 ;
  • R 5 is H, alkyl, alkenyl, alkynyl, haloalkyl, or cycloalkyl;
  • R 2 is -(Q 3 )-(Q 4 )-R 6 , or -(Q 3 )-CN;
  • Q 3 s alkylene; Q 4 s -C(O)-, -C(S)-, or -C(NR 7 )-; R 7 s H or alkyl; s alkyl, alkenyl, alkynyl, hydroxy, alkoxy, aryloxy, or -N(R 8 )(R 9 ) R 8 and R 9 each independently are H, hydroxy, alkyl, alkenyl, alkynyl, -(Q 5 ) y -cycloalkyl,
  • R 8 and R 9 combine with the nitrogen atom to which they are attached to form an optionally substituted 4 to 8 membered ring that may contain additional heteroatoms and may contain one or more degrees of unsaturation;
  • Q 5 is alkylene;
  • y is 0 or 1 ;
  • R 10 and R 11 each independently are H or alkyl;
  • R 3 is -CN, -NO 2 , or halogen;
  • R 4 is -CN, -NO 2 , halogen, haloalkyl, alkyl, alkenyl, alkynyl, hydroxyl, alkoxy, aryl, aryloxy.
  • alkyl is C C 6 alkyl
  • alkenyl is C r C 6 alkenyl
  • alkynyl is C ⁇ Cg alkynyl
  • haloalkyl is C C 6 haloalkyl
  • cycloalkyl is C 3 -C 6 cycloalkyl
  • alkylene is C C 6 alkylene
  • aryl is phenyl or naphthyl
  • alkoxy is C r C 6 alkoxy
  • aryloxy is phenoxy or benzyloxy.
  • alkylene is d-C 2 alkylene
  • haloalkyl is -CF 3
  • cycloalkyl is cyclopropyl.
  • alkylene is a branched alkylene.
  • a preferred embodiment includes where alkylene is -CH(CH 3 )- or -CH(CH 2 CH 3 )-.
  • R 3 is -CN.
  • R 4 is halogen, haloalkyl, -CN or alkyl.
  • R 4 is haloalkyl. More preferably R 4 is -CF 3 .
  • Q 1 is methylene
  • R 5 is -CF 3 or cyclopropyl.
  • Q 3 is methylene.
  • Q 4 is -C(O)-.
  • R 6 is -N(R 8 )(R 9 ), where R 8 and R 9 each independently are H or d-C 6 alkyl.
  • R 3 is -CN
  • R 4 is -CF 3
  • Q 1 is methylene
  • R 5 is -CF 3
  • Q 3 is methylene
  • Q 4 is -C(O)-
  • R 6 is -N(R 8 )(R 9 )
  • R 8 and R 9 each are H.
  • Another aspect of the present invention includes a compound selected from: 1 ,1-dimethylethyl ⁇ /-[4-cyano-3-(trifluoromethyl)phenyl]- ⁇ /-(cyclopropylmethyl)glycinate; ⁇ /-[4-cyano-3-(trifluoromethyl)phenyl]- ⁇ /-(cyclopropylmethyl)glycine; ⁇ / 2 -[4-cyano-3-(trifluoromethyl)phenyl]- ⁇ / 2 -(cyclopropylmethyl)- ⁇ / 1 -methylglycinamide; ⁇ / 2 -[4-cyano-3-(trifluoromethyl)phenyl]-A/ 2 -(cyclopropylmethyl)glycinamide; 1 ,1-dimethylethyl ⁇ /-[4-cyano-3-(trifluoromethyl)phenyl]- ⁇ /-methylglycinate; 1 , 1 -dimethylethyl
  • Another aspect of the present invention includes a compound substantially as hereinbefore defined with reference to any one of the Examples.
  • Another aspect of the present invention includes a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of the present invention and a pharmaceutically acceptable carrier.
  • Another aspect of the present invention includes a compound of the present invention for use as an active therapeutic substance.
  • Another aspect of the present invention includes a compound of the present invention for use in the treatment or prophylaxis of conditions or disorders that respond to selective androgen receptor modulation.
  • Another aspect of the present invention includes a compound of the present invention for use in the treatment or prophylaxis of osteoporosis, muscle wasting, frailty, cardiovascular disease, breast cancer, uterine cancer, prostate hyperplasia, prostate cancer, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, depression, uterine fibroid disease, aortic smooth muscle cell proliferation, endometriosis, or ADAM.
  • Another aspect of the present invention includes the use of a compound of the present invention in the manufacture of a medicament for use in the treatment or prophylaxis of conditions or disorders that respond to selective androgen receptor modulation.
  • Another aspect of the present invention includes using a compound according to the present invention in the manufacture of a medicament for use in the treatment or prophylaxis of osteoporosis, muscle wasting, frailty, cardiovascular disease, breast cancer, uterine cancer, prostatic hyperplasia, prostate cancer, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, depression, uterine fibroid disease, aortic smooth muscle cell proliferation, endometriosis, or ADAM.
  • Another aspect of the present invention includes a method for the treatment or prophylaxis of conditions or disorders that respond to selective androgen receptor modulation comprising the administration of a compound according to the present invention.
  • Another aspect of the present invention includes a method for the treatment or prophylaxis of osteoporosis, muscle wasting, frailty, cardiovascular disease, breast cancer, uterine cancer, prostatic hyperplasia, prostate cancer, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, depression, uterine fibroid disease, aortic smooth muscle cell proliferation, endometriosis, or ADAM comprising the administration of a compound according to the present invention.
  • the compounds of the present invention modulate the androgen receptor ("AR"). Certain compounds of the present invention also modulate the function of other nuclear hormone receptors. More particularly, the present invention includes compounds that are selective agonists, partial agonists, antagonists, or partial antagonists of the AR. Compounds of the present invention are useful in the treatment of AR-associated diseases and conditions, for example, a disease or condition that is prevented, alleviated, or cured through the modulation of the function or activity of AR. Such modulation may be isolated within certain tissues or widespread throughout the body of the subject being treated.
  • An aspect of the present invention is the use of the compounds of the present invention for the treatment or prophylaxis of a variety of disorders including, but not limited to, osteoporosis and/or the prevention of reduced bone mass, density, or growth, osteoarthritis, acceleration of bone fracture repair and healing, acceleration of healing in joint replacement, periodontal disease, acceleration of tooth repair or growth, Paget's disease, osteochondrodysplasias, muscle wasting, the maintenance and enhancement of muscle strength and function, frailty or age-related functional decline ("ARFD”), dry eye, sarcopenia, chronic fatigue syndrome, chronic myaligia, acute fatigue syndrome, acceleration of wound healing, maintenance of sensory function, chronic liver disease, AIDS, weightlessness, burn and trauma recovery, thrombocytopenia, short bowel syndrome, irritable bowel syndrome, inflammatory bowel disease, Crohn's disease and ulcerative colitis, obesity, eating disorders including anorexia associated with cachexia or aging, hypercortisolism and Cushing's syndrome, cardiovascular disease or
  • alkyl refers to a straight or branched chain hydrocarbon, preferably having from one to twelve carbon atoms, which may be optionally substituted, with multiple degrees of substitution included within the present invention.
  • alkyl as used herein include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, n-butyl, tert-butyl, isopentyl, n-pentyl, and substituted versions thereof.
  • C x- C y alkyl refers to an alkyl group, as herein defined, containing the specified number of carbon atoms. Similar terminology will apply for other preferred terms and ranges as well.
  • alkenyl refers to a straight or branched chain aliphatic hydrocarbon containing one or more carbon-to-carbon double bonds that may be optionally substituted, with multiple degrees of substitution included within the present invention. Examples include, but are not limited to, vinyl and the like and substituted versions thereof.
  • alkynyl refers to a straight or branched chain aliphatic hydrocarbon containing one or more carbon-to-carbon triple bonds that may be optionally substituted, with multiple degrees of substitution included within the present invention. Examples include, but are not limited to, ethynyl and the like and substituted versions thereof.
  • alkylene refers to a straight or branched chain divalent hydrocarbon radical, preferably having from one to ten carbon atoms. Alkylene groups as defined herein may optionally be substituted, with multiple degrees of substitution included within the present invention. Examples of “alkylene” as used herein include, but are not limited to, methylene (-CH 2 -), ethylene (-CH 2 -CH 2 -), and substituted versions thereof.
  • cycloalkyl refers to an optionally substituted non-aromatic cyclic hydrocarbon ring, which optionally includes an alkylene linker through which the cycloalkyl may be attached, with multiple degrees of substitution included within the present invention.
  • exemplary "cycloalkyl” groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and substituted versions thereof.
  • aryl refers to an optionally substituted benzene ring or to an optionally substituted fused benzene ring system, for example anthracene, phenanthrene, or naphthalene ring systems. Multiple degrees of substitution are included within the present definition.
  • aryl groups include, but are not limited to, phenyl, 2-naphthyl, 1- naphthyl, biphenyl, and substituted derivatives thereof.
  • heteroaryl refers to an optionally substituted monocyclic • five to seven membered aromatic ring, or to an optionally substituted fused bicyclic aromatic ring system comprising two of such aromatic rings, which contain one or more nitrogen, sulfur, and/or oxygen atoms, where N-oxides, sulfur oxides, and dioxides are permissible heteroatom substitutions. Multiple degrees of substitution are included within the present definition.
  • heteroaryl groups used herein include, but should not be limited to, furan, thiophene, pyrrole, imidazole, pyrazole, triazole, tetrazole, thiazole, oxazole, isoxazole, oxadiazole, thiadiazole, isothiazole, pyridine, pyridazine, pyrazine, pyrimidine, quinoline, isoquinoline, benzofuran, benzothiophene, indole, indazole, and substituted versions thereof.
  • halogen refers to fluorine, chlorine, bromine, or iodine.
  • haloalkyl refers to an alkyl group, as defined herein that is substituted with at least one halogen.
  • branched or straight chained “haloalkyl” groups useful in the present invention include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, and t-butyl substituted independently with one or more halogens, e.g., fluoro, chloro, bromo, and iodo.
  • haloalkyl should be interpreted to include such groups such as -CF 3 , -CH 2 -CH 2 -F, and the like.
  • hydroxy refers to the group -OH.
  • mercapto refers to the group -SH.
  • alkoxy refers to the group -OR a , where R a is alkyl as defined above.
  • aryloxy refers to the group -OR , where R b is aryl as defined above.
  • nitro refers to the group -NO 2 .
  • cyano refers to the group -CN.
  • amino refers to the group -NH 2
  • substituted amino refers to a group -N(R a )(R b ), where one or both R a and R b are other than H.
  • substituted amino includes the groups -N(CH 3 )(CH 3 ), -N(CH 3 )(CH 2 -CH 3 ), and the like.
  • Exemplary optional substituent groups include acyl; alkyl; alkenyl; alkynyl; alkylsulfonyl; alkoxy; cyano; halogen; haloalkyl; hydroxy; nitro; aryl, which may be further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro; heteroaryl, which may be further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro; arylsulfonyl, which may be further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, halo
  • the compounds of formulas (I) may crystallize in more than one form, a characteristic known as polymorphism, and such polymorphic forms (“polymorphs") are within the scope of formula (I).
  • Polymorphism generally can occur as a response to changes in temperature, pressure, or both. Polymorphism can also result from variations in the crystallization process. Polymorphs can be distinguished by various physical characteristics known in the art such as x-ray diffraction patterns, solubility, and melting point. Certain of the compounds described herein contain one or more chiral centers, or may otherwise be capable of existing as multiple stereoisomers.
  • the scope of the present invention includes mixtures of stereoisomers as well as purified enantiomers or enantiomerically/diastereomerically enriched mixtures. Also included within the scope of the invention are the individual isomers of the compounds represented by formula (I), as well as any wholly or partially equilibrated mixtures thereof. The present invention also includes the individual isomers of the compounds represented by the formulas above as mixtures with isomers thereof in which one or more chiral centers are inverted.
  • salts of the present invention are pharmaceutically acceptable salts.
  • Salts encompassed within the term “pharmaceutically acceptable salts” refer to non-toxic salts of the compounds of this invention. Salts of the compounds of the present invention may comprise acid addition salts.
  • Representative salts include acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium edetate, camsylate, carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isethionate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulfate, monopotassium maleate, mucate, napsylate, nitrate, N-methylglucamine, oxalate, pamo
  • solvate refers to a complex of variable stoichiometry formed by a solute (in this invention, a compound of Formula I, or a salt or physiologically functional derivative thereof) and a solvent.
  • solvents for the purpose of the invention, should not interfere with the biological activity of the solute.
  • suitable solvents include, but are not limited to water, methanol, ethanol, and acetic acid.
  • the solvent used is a pharmaceutically acceptable solvent.
  • suitable pharmaceutically acceptable solvents include water, ethanol, and acetic acid. Most preferably the solvent used is water.
  • physiologically functional derivative refers to any pharmaceutically acceptable derivative of a compound of the present invention that, upon administration to a mammal, is capable of providing (directly or indirectly) a compound of the present invention or an active metabolite thereof.
  • Such derivatives for example, esters and amides, will be clear to those skilled in the art, without undue experimentation.
  • the term "effective amount” means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal, or human that is being sought, for instance, by a researcher or clinician.
  • the biological or medical response may be considered a prophylactic response or a treatment response.
  • therapeutically effective amount means any amount which, as compared to a corresponding subject who has not received such amount, results in improved treatment, healing, prevention, or amelioration of a disease, disorder, or side effect, or a decrease in the rate of advancement of a disease or disorder.
  • therapeutically effective amounts of a compound of formula (I), as well as salts, solvates, and physiological functional derivatives thereof may be administered as the raw chemical. Additionally, the active ingredient may be presented as a pharmaceutical composition.
  • R 1 is -(Q 1 ) X -R 5 ;
  • Q 1 is alkylene; x is 0 or 1 ; R 5 is H, alkyl, alkenyl, alkynyl, haloalkyl, or cycloalkyl;
  • R 2 is -(Q 3 )-(Q 4 )-R 6 ;
  • Q 3 is alkylene
  • Q 4 is -C(O)-, -C(S)-, or-C(NR 7 )-;
  • R 7 is H or alkyl
  • R 6 is alkyl, alkenyl, alkynyl, hydroxy, alkoxy, aryloxy, or -N(R 8 )(R 9 )
  • R 8 and R 9 each independently are H, hydroxy, alkyl, alkenyl, alkynyl, -(Q 5 ) y -cycloalkyl,
  • R 8 and R 9 combine with the nitrogen atom to which they are attached to form an optionally substituted 4 to 8 membered ring that may contain additional heteroatoms and may contain one or more degrees of unsaturation;
  • Q 5 is alkylene;
  • y is 0 or 1 ;
  • R 10 and R 11 each independently are H or alkyl;
  • R 3 is -CN, or -NO 2 ;
  • R 4 is -CN, -NO 2 , halogen, haloalkyl, alkyl, alkenyl, alkynyl, hydroxyl, alkoxy, aryl, aryloxy.
  • preferred compounds of this invention include those in which several of each variable in Formula (I) is selected from the preferred, more preferred, or most preferred groups for each variable. Therefore, this invention is intended to include all combinations of preferred, more preferred, and most preferred groups.
  • the invention further provides pharmaceutical compositions that include effective amounts of compounds of the formula (I) and salts, solvates, and physiological functional derivatives thereof, and one or more pharmaceutically acceptable carriers, diluents, or excipients.
  • the compounds of formula (I) and salts, solvates, and physiologically functional derivatives thereof, are as herein described.
  • the carrier(s), diluent(s) or excipient(s) must be acceptable, in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient of the pharmaceutical composition.
  • a process for the preparation of a pharmaceutical formulation including admixing a compound of the formula (I) or salts, solvates, and physiological functional derivatives thereof, with one or more pharmaceutically acceptable carriers, diluents or excipients.
  • a therapeutically effective amount of a compound of the present invention will depend upon a number of factors. For example, the species, age, and weight of the recipient, the precise condition requiring treatment and its severity, the nature of the formulation, and the route of administration are all factors to be considered. The therapeutically effective amount ultimately should be at the discretion of the attendant physician or veterinarian.
  • an effective amount of a compound of formula (I) for the treatment of humans suffering from frailty generally, should be in the range of 0.1 to 100 mg/kg body weight of recipient (mammal) per day. More usually the effective amount should be in the range of 1 to 10 mg/kg body weight per day. Thus, for a 70 kg adult mammal the actual amount per day would usually be from 70 to 700 mg. This amount may be given in a single dose per day or in a number (such as two, three, four, five, or more) of sub-doses per day such that the total daily dose is the same.
  • An effective amount of a salt, solvate, or physiologically functional derivative thereof may be determined as a proportion of the effective amount of the compound of formula (I) per se.
  • compositions may be presented in unit dose forms containing a predetermined amount of active ingredient per unit dose.
  • a unit may contain, as a non- limiting example, 0.5mg to 1g of a compound of the formula (I), depending on the condition being treated, the route of administration, and the age, weight, and condition of the patient.
  • Preferred unit dosage formulations are those containing a daily dose or sub-dose, as herein above recited, or an appropriate fraction thereof, of an active ingredient.
  • Such pharmaceutical formulations may be prepared by any of the methods well known in the pharmacy art.
  • compositions may be adapted for administration by any appropriate route, for example by an oral (including buccal or sublingual), rectal, nasal, topical (including buccal, sublingual or transdermal), vaginal, or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) route.
  • oral including buccal or sublingual
  • rectal nasal
  • topical including buccal, sublingual or transdermal
  • vaginal or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) route.
  • parenteral including subcutaneous, intramuscular, intravenous or intradermal) route.
  • compositions adapted for oral administration may be presented as discrete units such as capsules or tablets; powders or granules; solutions or suspensions, each with aqueous or non-aqueous liquids; edible foams or whips; or oil-in-water liquid emulsions or water-in-oil liquid emulsions.
  • the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like.
  • powders are prepared by comminuting the compound to a suitable fine size and mixing with an appropriate pharmaceutical carrier such as an edible carbohydrate, as, for example, starch or mannitol. Flavorings, preservatives, dispersing agents, and coloring agents can also be present.
  • Capsules can be made by preparing a powder, liquid, or suspension mixture and encapsulating with gelatin or some other appropriate shell material. Glidants and lubricants such as colloidal silica, talc, magnesium stearate, calcium stearate, or solid polyethylene glycol can be added to the mixture before the encapsulation.
  • a disintegrating or solubilizing agent such as agar-agar, calcium carbonate or sodium carbonate can also be added to improve the availability of the medicament when the capsule is ingested.
  • suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture.
  • suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like.
  • Lubricants useful in these dosage forms include, for example, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like.
  • Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.
  • Tablets can be formulated, for example, by preparing a powder mixture, granulating ' or slugging, adding a lubricant and disintegrant, and pressing into tablets.
  • a powder mixture may be prepared by mixing the compound, suitably comminuted, with a diluent or base as described above.
  • Optional ingredients include binders such as carboxymethylcellulose, aliginates, gelatins, or polyvinyl pyrrolidone, solution retardants such as paraffin, resorption accelerators such as a quaternary salt, and/or absorption agents such as bentonite, kaolin, or dicalcium phosphate.
  • the powder mixture can be wet-granulated with a binder such as syrup, starch paste, acadia mucilage or solutions of cellulosic or polymeric materials, and forcing through a screen.
  • a binder such as syrup, starch paste, acadia mucilage or solutions of cellulosic or polymeric materials
  • the powder mixture can be run through the tablet machine and the result is imperfectly formed slugs broken into granules.
  • the granules can be lubricated to prevent sticking to the tablet forming dies by means of the addition of stearic acid, a stearate salt, talc or mineral oil.
  • the lubricated mixture is then compressed into tablets.
  • the compounds of the present invention can also be combined with a free flowing inert carrier and compressed into tablets directly without going through the granulating or slugging steps.
  • a clear or opaque protective coating consisting of a sealing coat of shellac, a coating of sugar or polymeric material, and
  • Oral fluids such as solutions, syrups, and elixirs can be prepared in dosage unit form so that a given quantity contains a predetermined amount of the compound.
  • Syrups can be prepared, for example, by dissolving the compound in a suitably flavored aqueous solution, while elixirs are prepared through the use of a non-toxic alcoholic vehicle.
  • Suspensions can be formulated generally by dispersing the compound in a non-toxic vehicle.
  • Solubilizers and emulsifiers such as ethoxylated isostearyl alcohols and polyoxy ethylene sorbitol ethers, preservatives; flavor additives such as peppermint oil, or natural sweeteners, saccharin, or other artificial sweeteners; and the like can also be added.
  • dosage unit formulations for oral administration can be microencapsulated.
  • the formulation can also be prepared to prolong or sustain the release as for example by coating or embedding particulate material in polymers, wax or the like.
  • the compounds of formula (I) and salts, solvates, and physiological functional derivatives thereof can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles.
  • liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine,' or phosphatidylcholines.
  • the compounds of formula (I) and salts, solvates, and physiologically functional derivatives thereof may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled.
  • the compounds may also be coupled with soluble polymers asftargetable drug carriers.
  • polymers can include polyvinylpyrrolidone (PVP), pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethyl-aspartamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues.
  • PVP polyvinylpyrrolidone
  • pyran copolymer polyhydroxypropylmethacrylamide-phenol
  • polyhydroxyethyl-aspartamidephenol polyhydroxyethyl-aspartamidephenol
  • polyethyleneoxidepolylysine substituted with palmitoyl residues e.g., palmitoyl residues.
  • the compounds may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug; for example, polylactic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydi
  • compositions adapted for transdermal administration may be presented as discrete patches intended to remain in intimate contact with the epidermis of the recipient for a prolonged period of time.
  • the active ingredient may be delivered from the patch by iontophoresis as generally described in Pharmaceutical Research, 3(6), 318 (1986), incorporated herein by reference as related to such delivery systems.
  • Pharmaceutical formulations adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols, or oils.
  • the formulations may be applied as a topical ointment or cream.
  • the active ingredient When formulated in an ointment, the active ingredient may be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredient may be formulated in a cream with an oil- in-water cream base or a water-in-oil base.
  • compositions adapted for topical administrations to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent.
  • compositions adapted for topical administration in the mouth include lozenges, pastilles, and mouthwashes.
  • compositions adapted for nasal administration where the carrier is a solid, include a coarse powder having a particle size for example in the range 20 to 500 microns.
  • the powder is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
  • Suitable formulations wherein the carrier is a liquid, for administration as a nasal spray or as nasal drops, include aqueous or oil solutions of the active ingredient.
  • Fine particle dusts or mists which may be generated by means of various types of metered dose pressurized aerosols, nebulizers, or insufflators.
  • compositions adapted for rectal administration may be presented as suppositories or as enemas.
  • compositions adapted for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulations.
  • compositions adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • the formulations may be presented in unit-dose or multi- dose containers, for example sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
  • Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, and tablets.
  • the formulations may include other agents conventional in the art having regard to the type of formulation in question.
  • formulations suitable for oral administration may include flavoring or coloring agents.
  • the compounds of the present invention and their salts, solvates, and physiologically functional derivatives thereof may be employed alone or in combination with other therapeutic agents for the treatment of the above-mentioned conditions.
  • combination may be had with other anabolic or osteoporosis therapeutic agents.
  • osteoporosis combination therapies according to the present invention would thus comprise the administration of at least one compound of formula (I) or a salt, solvate, or physiologically functional derivative thereof, and the use of at least one other osteoporosis therapy.
  • combination therapies include the administration of at least one compound of formula (I) or a salt, solvate, or physiologically functional derivative thereof, and at least one other osteoporosis treatment agent, for example, an anti-bone resorption agent.
  • the compound(s) of formula (I) and the other pharmaceutically active agent(s) may be administered together or separately and, when administered separately, administration may occur simultaneously or sequentially, in any order.
  • the amounts of the compound(s) of formula (I) and the other pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect.
  • the administration in combination of a compound of formula (I) salts, solvates, or physiologically functional derivatives thereof with other treatment agents may be in combination by administration concomitantly in: (1 ) a unitary pharmaceutical composition including both compounds; or (2) separate pharmaceutical compositions each including one of the compounds.
  • the combination may be administered separately in a sequential manner wherein one treatment agent is administered first and the other second or vice versa. Such sequential administration may be close in time or remote in time.
  • Bone building agents can lead to increases in parameters such as bone mineral density that are greater than those than can be achieved with anti-resorptive agents. In some cases, such anabolic agents can increase trabecular connectivity leading to greater structural integrity of the bone.
  • Other potential therapeutic combinations include the compounds of the present invention combined with other compounds of the present invention, growth promoting agents, growth hormone secretagogues, growth hormone releasing factor and its analogs, growth hormone and its analogs, somatomedins, alpha-ardenergic agonists, serotonin 5-HT D agonists, agents that inhibit somatostatin or its release, 5- ⁇ -reductase inhibitors, aromatase inhibitors, GnRH agonists or antagonists, parathyroid hormone, bisphosphonates, estrogen, testosterone, SERMs, progesterone receptor agonists or antagonists, and/or with other modulators of nuclear hormone receptors.
  • growth promoting agents include growth hormone secretagogues, growth hormone releasing factor and its analogs, growth hormone and its analogs, somatomedins, alpha-ardenergic agonists, serotonin 5-HT D agonists, agents that inhibit somatostatin or its release, 5- ⁇ -reductase inhibitors, aromatase inhibitors,
  • the compounds of the present invention may be used in the treatment of a variety of disorders and conditions and, as such, the compounds of the present invention may be used in combination with a variety of other suitable therapeutic agents useful in the treatment or prophylaxis of those disorders or conditions.
  • suitable therapeutic agents useful in the treatment or prophylaxis of those disorders or conditions.
  • Non-limiting examples include combinations of the present invention with anti-diabetic agents, anti-osteoporosis agents, anti-obesity agents, anti-inflammatory agents, anti-anxiety agents, anti-depressants, anti-hypertensive agents, anti-platelet agents, anti-thrombotic and thrombolytic agents, cardiac glycosides, cholesterol or lipid lowering agents, mineralocorticoid receptor antagonists, phosphodiesterase inhibitors, kinase inhibitors, thyroid mimetics, anabolic agents, viral therapies, cognitive disorder therapies, sleeping disorder therapies, sexual dysfunction therapies, contraceptives, cytotoxic agents, radiation therapy, anti-proliferative agents, and
  • An aspect of the present invention is the use of the compounds of the present invention for the treatment or prophylaxis of a variety of disorders including, but not limited to, osteoporosis and/or the prevention of reduced bone mass, density, or growth, osteoarthritis, acceleration of bone fracture repair and healing, acceleration of healing in joint replacement, periodontal disease, acceleration of tooth repair or growth, Paget's disease, osteochondrodysplasias, muscle wasting, the maintenance and enhancement of muscle strength and function, frailty or age-related functional decline ("ARFD”), dry eye, sarcopenia, chronic fatigue syndrome, chronic myaligia, acute fatigue syndrome, acceleration of wound healing, maintenance of sensory function, chronic liver disease, AIDS, weightlessness, burn and trauma recovery, thrombocytopenia, short bowel syndrome, irritable bowel syndrome, inflammatory bowel disease, Crohn's disease and ulcerative colitis, obesity, eating disorders including anorexia associated with cachexia or aging, hypercortisolism and Cushing's syndrome, cardiovascular disease or
  • the compounds of the present invention are believed useful, either alone or in combination with other agents, in the treatment of and use as male and female hormone replacement therapy, hypogonadism, osteoporosis, muscle wasting, wasting diseases, cancer cachexia, frailty, prostatic hyperplasia, prostate cancer, breast cancer, menopausal and andropausal vasomotor conditions, urinary incontinence, sexual dysfunction, erectile dysfunction, depression, uterine fibroid disease, and/or endometriosis, treatment of acne, hirsutism, stimulation of hematopoiesis, male contraception, impotence, and as anabolic agents.
  • Another aspect of the present invention thus also provides compounds of formula (I) and salts, solvates, or physiologically functional derivatives thereof, for use in medical therapy.
  • the present invention provides for the treatment or prophylaxis of disorders mediated by androgenic activity. More particularly, the present invention provides through the treatment or prophylaxis of disorders responsive to tissue-selective anabolic and or androgenic activity.
  • a further aspect of the invention provides a method of treatment or prophylaxis of a mammal suffering from a disorder mediated by androgenic activity, which includes administering to said subject an effective amount of a compound of formula (I) or a salt, solvate, or physiologically functional derivative thereof.
  • a further aspect of the invention provides a method of treatment or prophylaxis of a mammal requiring the treatment or prophylaxis of a variety of disorders including, but not limited to, osteoporosis and/or the prevention of reduced bone mass, density, or growth, osteoarthritis, acceleration of bone fracture repair and healing, acceleration of healing in joint replacement, periodontal disease, acceleration of tooth repair or growth, Paget's disease, osteochondrodysplasias, muscle wasting, the maintenance and enhancement of muscle strength and function, frailty or age-related functional decline (“ARFD”), dry eye, sarcopenia, chronic fatigue syndrome, chronic myaligia, acute fatigue syndrome, acceleration of wound healing, maintenance of sensory function, chronic liver disease, AIDS, weightlessness, burn and trauma recovery, thrombocytopenia, short bowel syndrome, irritable bowel syndrome, inflammatory bowel disease, Crohn's disease and ulcerative colitis, obesity, eating disorders including anorexia associated with cachexia or aging, hypercortisolism and
  • the compounds of the present invention are used as male and female hormone replacement therapy or for the treatment or prevention of hypogonadism, osteoporosis, muscle wasting, wasting diseases, cancer cachexia, frailty, prostatic hyperplasia, prostate cancer, breast cancer, menopausal and andropausal vasomotor conditions, urinary incontinence, sexual dysfunction, erectile dysfunction, depression, uterine fibroid disease, and/or endometriosis, treatment of acne, hirsutism, stimulation of hematopoiesis, male contraception, impotence, and as anabolic agents, which use includes administering to a subject an effective amount of a compound of formula (I) or a salt, solvate, or physiologically functional derivative thereof.
  • the mammal requiring treatment with a compound of the present invention is typically a human being.
  • the compounds of this invention may be made by a variety of methods, including well-known standard synthetic methods. Illustrative general synthetic methods are set out below and then specific compounds of the invention are prepared in the working Examples.
  • protecting groups for sensitive or reactive groups are employed where necessary in accordance with general principles of synthetic chemistry.
  • Protecting groups are manipulated according to standard methods of organic synthesis (T. W. Green and P. G. M. Wuts (1991) Protecting Groups in Organic Synthesis, John Wiley & Sons, incorporated by reference with regard to protecting groups). These groups are removed at a convenient stage of the compound synthesis using methods that are readily apparent to those skilled in the art. The selection of processes as well as the reaction conditions and order of their execution shall be consistent with the preparation of compounds of formula (I).
  • the present invention includes all possible stereoisomers and includes not only racemic compounds but the individual enantiomers as well.
  • a compound is desired as a single enantiomer, such may be obtained by stereospecific synthesis or by resolution of the final product or any convenient intermediate. Resolution of the final product, an intermediate, or a starting material may be effected by any suitable method known in the art. See, for example, Stereochemistry of Organic Compounds by E. L. Eliel, S. H. Wilen, and L. N. Mander (Wiley-lnterscience, 1994), incorporated by reference with regard to stereochemistry.
  • Representative AR modulator compounds, agonists, partial agonists, and antagonists according to the current invention include:
  • L (liters); mL (milliliters); ⁇ L (microliters); psi (pounds per square inch); M (molar); mM (millimolar);
  • T r retention time
  • RP reverse phase
  • TEA triefhylamine
  • TFA trifluoroacetic acid
  • TFAA trifluoroacetic anhydride
  • THF tetrahydrofuran
  • CDCI 3 deuterated chloroform
  • CD 3 OD deuterated methanol
  • SiO 2 silicon
  • DMSO dimethylsulfoxide
  • I PA isopropyl alcohol
  • NMO 4-methylmorpholine ⁇ /-oxide
  • DIEA diisopropyl ethylamine
  • DCE 1,2-dichloroethane
  • the secondary anilines required for the synthesis of compounds of formula (I) can be prepared by three different methods (Scheme 1). As exemplified by method A, electron deficient arenes are treated with primary amines, a non-limiting example is 1- cyclopropylmethanamine, in the presence of a base, a non-limiting example of which is potassium carbonate, to afford the corresponding aniline.
  • primary amines a non-limiting example is 1- cyclopropylmethanamine
  • a base a non-limiting example of which is potassium carbonate
  • a second method of synthesizing the requisite secondary anilines is by reductive alkylation of primary anilines using aldehydes or hydrates, a non-limiting example of which is trifluoroacetaldehyde hydrate, and reducing agents, a non-limiting example of which is sodium cyanoborohydride, in the presence of acid such as TFA (method B).
  • the third method of secondary aniline synthesis, method C involves alkylation of primary anilines with alkyl halides, a non-limiting example of which is 1- bromo-2-fluoroethane, in the presence of base, a non-limiting example of which is cesium carbonate.
  • Z CF,, CN, halogen, etc.
  • a mixture of A/-[4-cyano-3-(trifluoromethyl)phenyl]- ⁇ /-(cyclopropylmethyl)glycine (0.298 g, 1 mmol), di-terf-butyl dicarbonate (0.436 g, 2 mmol), pyridine (0.100 g, 1.25 mmol), and ammonium hydrocarbonate (0.160 g, 2.25 mmol) was stirred for 24 h in acetonitrile (8 mL). The solvent was removed under reduced pressure, then water (10 mL) was added to the residue. The resulting solid was filtered, washed with water (3 x 5 mL), and then dried.
  • N 2 -(3-Chloro-4-cyanophenyl)-N 2 -(2,2,2-trifluoroethyl)glycinamide Synthesized in a manner similar to example 4 using N-(3-chloro-4-cyanophenyl)-N-(2,2,2- trifluoroethyl)glycine: MS (ES) m/z 292 (M+1).
  • N 2 -(3-Chloro-4-cyanophenyl)-N 1 -methyl-N 2 -(2,2,2-trifluoroethyl)alaninamide Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N-(2,2,2- trifluoroethyl)alanine: MS (ES) m/z 320 (M+1).
  • N 2 -(3-Chloro-4-cyanophenyl)-N 2 -(cyclopropylmethyl)-N 1 -ethylglycinamide Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N- (cyclopropylmethyl)glycine and ethylamine: MS (ES) m/z 292 (M+1 ).
  • N 2 -(3-Chloro-4-cyanophenyl)-N 2 -(cyclopropylmethyl)-N 1 -ethylalaninamide Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N- (cyclopropylmethyl)alanine and ethylamine: MS (ES) m/z 306 (M+1).
  • N-(3,4-Dicyanophenyl)-N-(2,2,2-trifluoroethyl)alanine Synthesized in a manner similar to example 2 using 1,1-dimethylethyl N-(3,4- dicyanophenyl)-N-(2,2,2-trifluoroethyl)alaninate: MS (ES) m/z 298 (M+1).
  • N 2 -(3,4-Dicyanophenyl)-N 1 -ethyl-N 2 -(2,2,2-trifluoroethyl)alaninamide Synthesized in a manner similar to example 3 using N-(3,4-dicyanophenyl)-N-(2,2,2- trifluoroethyl)glycine and ethylamine: MS (ES) m/z 323 (M-1 ).
  • N 2 -(Cyclopropylmethyl)-N 2 -(3,4-dicyanophenyl)glycinamide Synthesized in a manner similar to example 4 using N-(cyclopropylmethyl)-N-(3,4- dicyanophenyl)glycine: MS (ESI) m/z 255 (M+1).
  • BIOLOGICAL SECTION Compounds of the current invention are modulators of the androgen receptor.
  • Certain compounds of the present invention also modulate the glucocorticoid receptor, the mineralocorticoid receptor, and/or the progesterone receptor. Activity mediated through these oxosteroid nuclear receptors was determined using the following in vitro and in vivo assays. In Vitro Assays:
  • PR Screening Buffer 100 mM potassium phosphate (pH 7.4), 100 ⁇ G/ml bovine gamma globulin, 15% ethylene glycol, 0.02% NaN 3 , 10% glycerol (PanVera Corp Product No P2967) with 0.1% w/v CHAPS
  • GR Screening Buffer 100 mM potassium phosphate (pH 7.4), 200 mM Na 2 MoO 2 , 1 mM
  • Progesterone Receptor Fluorescence Polarization Assay The progesterone receptor fluorescence polarization assay is used to investigate the interaction of the compounds with the progesterone receptor.
  • the androgen receptor fluorescence polarization assay is used to investigate the interaction of the compounds with the androgen receptor.
  • the glucocorticoid receptor fluorescence polarization assay is used to investigate the interaction of the compounds with the glucocorticoid receptor.
  • Fluormone GS Red and GR are defrosted on ice to give a final concentration of 1 nM and 4 nM, respectively.
  • GR screening buffer is chilled to 4 °C prior to addition of DTT to give a final concentration of 1mM.
  • the Fluormone GS Red, and GR in GR Screening Buffer are added to compound plates to give a final volume of 10 ⁇ L.
  • the assay is allowed to incubate at 4 °C for 12 hours.
  • the plates are counted in a Discovery Analyst with suitable 535 nM excitation and 590 nM emission interference filters.
  • Compounds that interact with the GR receptor result in a lower fluorescence polarization reading.
  • Test compounds are dissolved and diluted in DMSO.
  • Compounds are assayed in singlicate, a four parameter curve fit of the following form being applied
  • Cotransfection assays using full-length hAR were performed in CV-1 cells (monkey kidney fibroblasts). The cells were seeded in charcoal-stripped medium in 96-well plates (24,000 cells/well) and incubated overnight. Transient transfections were carried out using the following plasmids: pSG5-AR, MMTV LUC reporter, ⁇ -actin SPAP, and pBluescript (filler DNA). The cell plates were then incubated for 6-20 hours. The transfection mixture was washed away and then the cells were drugged with doses ranging from 10 "10 to 10 "5 . Two replicates were used for each sample. Incubation with drug was continued for 14 hours.
  • a spectrophotometer was used for SPAP measurements, while a topcounter was used to read the results from the luciferase assay.
  • the ratio of luciferase activity to SPAP activity was calculated to normalize the variance in cell number and transfection efficiency.
  • fold activation (( (LU %PAP-SPAP su b strate blank avg.))-basal activation) basal activation*
  • Y ((Vmax*x)/(K+x))+Y2
  • pKb IC 50 of unknown/((1+*conc.*)/ DHT EC 50 average)
  • *conc* concentration of DHT used as the agonist in the medium for the antagonist experiment, expressed in nM. This concentration was set at twice pEC 50 . This would be 0.2 for AR.
  • Muscles like the levator ani and bulbocavernosus, and sexual accessory organs, such as the prostate glands and seminal vesicles have high expression levels of the androgen receptor and are known to respond quickly to exogenous androgen addition or androgen deprivation through testicular ablation. Castration produces dramatic atrophy of muscle and sexual accessory organs; whereas the administration of exogenous androgens to the castrated animal results in effective hypertrophy of these muscles and sexual accessory organs.
  • levator ani muscle also known as the dorsal bulbocavernosus
  • dorsal bulbocavernosus is not 'true skeletal muscle' and definitely sex-linked, it is reasonable to use this muscle to screen muscle anabolic activities of test compounds because of its androgen responsiveness and simplicity of removal.
  • DHT Dihydrotestosterone
  • the rats were euthanized in a CO 2 chamber.
  • the ventral prostate glands(VP), seminal vesicles(SV), levator ani muscle(LA) and bulbocavernosus(BC) were carefully dissected.
  • the tissues were blotted dry, the weights were recorded, and then saved for histological and molecular analysis.
  • the VP and SV weights serve as androgenic indicators and LA and BC are anabolic indicators.
  • the ratio of anabolic to androgenic activities was used to evaluate the test compounds.
  • Serum luteinizing hormone(LH), follicle stimulating hormone(FSH) and other potential serum markers of anabolic activities were also analyzed. In general, desirable compounds show levator ani hypertrophy and very little prostate stimulation
  • Test compounds were employed in free or salt form.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Neurology (AREA)
  • Rheumatology (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Gynecology & Obstetrics (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

This invention relates to non-steroidal compounds that are modulators of androgen, glucocorticoid, mineralocorticoid, and progesterone receptors, and also to the methods for the making and use of such compounds.

Description

ANILINE DERIVATIVES AS SELECTIVE ANDROGEN RECEPTOR MODULATORS
FIELD OF THE INVENTION
This invention relates to non-steroidal compounds that are modulators of androgen, glucocorticoid, mineralocorticoid, and progesterone receptors, and also to the methods for the making and use of such compounds.
BACKGROUND OF THE INVENTION
Nuclear receptors are a class of structurally related gene expression modulators that act as ligand-dependent transcription factors (R.M. Evans, Science 240, 889 (1988)). The steroid receptors, namely the androgen receptor, the estrogen receptor, the glucocorticoid receptor, the mineralocorticoid receptor, and the progesterone receptor represent a subclass of the nuclear receptor superfamily. Nuclear receptor ligands in this subclass exert their effects by binding to an intracellular steroid hormone receptor. After the receptor-ligand complex is translocated to the nucleus of the cell, the complex binds to recognition sites on DNA, which allows for the modulation of certain genes.
Certain substances have demonstrated the ability to exhibit their activity in a tissue selective manner. In other words, tissue selectivity allows a nuclear receptor ligand to function as an agonist in some tissues, while having no effect or even an antagonist effect in other tissues. The term "selective receptor modulator" (SRM) has been given to these molecules. A synthetic compound that binds to an intracellular receptor and mimics the effects of the native hormone is referred to as an agonist. A compound that inhibits the effect of the native hormone is called an antagonist. The term "modulators" refers to compounds that have a spectrum of activities ranging from full agonism to partial agonism to full antagonism. The molecular basis for this tissue selective activity is not completely understood. Without being limited to any particular explanation, particular ligands put nuclear receptors in different conformational states. These states dictate the ability of coactivators, corepressors, and other proteins to be recruited by the nuclear receptor ("NR"). The unique cofactor-NR ensembles are the gene transcription factors that are thought to modulate tissue selective effects.
Ligand-mediated effects through the action of nuclear receptors are not limited to the classical genotropic mechanism outlined above. It is thought that some, if not all, of the separation of anabolic and general homeostatic effects from the stimulation of sexual tissues can be explained by a particular ligand's ability to potentiate non-genotropic pathways. One example of liganded nuclear receptor induction of non-genotropic pathways is found in the work of S. C. Manolagas et al., Cell, 104, 719-730. The action of a sex steroid NR on osteoblasts and other cell types is shown to involve the Src/Shc/ERK signaling pathway. This activity is mediated through the ligand binding domain of the sex steroid nuclear receptor alone. The NR DNA-binding domain is not required to attenuate etoposide-induced apoptosis in HeLa cells. An NR lacking the DNA binding domain cannot function in the classical mode, acting as a transcription factor.
Nuclear receptor steroid ligands are known to play important roles in the health of both men and women. In regard to men's health, testosterone (T) and dihydrotestosterone (DHT), for example, are endogenous steroidal ligands for the androgen receptor that likely play a role in every tissue type found in the mammalian body. During the development of the fetus, androgens play a role in sexual differentiation and development of male sexual organs. Further sexual development is mediated by androgens during puberty. Androgens play diverse roles in the adult including stimulation and maintenance of male sexual accessory organs and maintenance of the musculoskeletal system. Cognitive function, sexuality, aggression, and mood are some of the behavioral aspects mediated by androgens. Androgens affect the skin, bone, and skeletal muscle, as well as blood lipids and blood cells. The study of androgen action and male reproductive dysfunction continues to expand significantly. In fact, only recently has the definition of a disease state been associated with hormonal changes that occur in aging men. This syndrome, previously referred to as Andropause, has more recently been described as Androgen Deficiency in the Aging Male, or "ADAM" (A. Morales and J. L. Tenover, Urologic Clinics of North America (2002 Nov.) 29(4) 975.) The onset of ADAM is unpredictable and its manifestations are subtle and variable. Clinical manifestations of ADAM include fatigue, depression, decreased libido, erectile dysfunction as well as changes in cognition and mood.
Published information indicates that androgen replacement therapy (ART) in men may have benefits in terms of improving body composition parameters (e.g. bone mineral density, increasing muscle mass, and strength) as well as improving libido and mood in some men. Therefore, andrologists and other specialists are increasingly using ART for the treatment of the symptoms of ADAM - though there is due caution given androgen's, like testosterone, potential side effects. Nonetheless, there is increasing scientific rational of and evidence for androgen deficiency and treatment in the aging male. Current testosterone- based ART therapies include injections, skin patches, gel-based formulations, and oral preparations. All of these therapies are somewhat efficacious in the treatment of ADAM, but, due to the dramatic fluctuations in plasma T-levels following treatment, success with these therapies has been variable.
Testosterone replacement products, such as AndroGel® (1% testosterone gel Clll, marketed by Solvay Pharmaceuticals) are emerging as a treatment of choice among physicians. Such products, however, fail to correctly mimic physiological testosterone levels and have potential side effects including exacerbation of pre-existing sleep apnoea, polycythemia, and/or gynaecomastia. Furthermore, the longer-term side effects on target organs such as the prostate or the cardiovascular system are yet to be fully elucidated. Importantly, the potential carcinogenic effects of testosterone on the prostate prevent many physicians from prescribing it to older men (i.e. age > 60 years) who, ironically, stand to benefit most from treatment. Also, all of the existing treatment options have fundamental problems with their delivery mechanism. The need for a novel selective androgen receptor modulator (SARM) is obviated by the potential side effect profile manifested in conventional treatments. A SARM would ideally have all the beneficial effects of endogenous androgens, while sparing sexual accessory organs, specifically the prostate.
In regard to female health, progesterone, the endogenous ligand for the progesterone receptor ("PR"), plays an important role in female reproduction during the various stages of the ovarian cycle and during pregnancy. Among other things, progesterone prepares the endometrium for implantation, regulates the implantation process, and helps maintain pregnancy. The therapeutic use of synthetic versions ofprogesterone (progestins) stems from progesterone's ability to regulate endometrial proliferation. In fact, progestins are included as part of hormone replacement therapy ("HRT") in women to reduce the incidence of endometriosis. Unfortunately, the effectiveness of therapy is tempered by undesired side-effect profiles. Chronic progestin therapy or continuous estrogen replacement regimens are often associated with increased bleeding. Excessive stimulatory effects on the endometrial vasculature may result in proliferation and fragility.
Compounds that modulate the effects of progesterone binding to PR are believed useful in the treatment and/or prophylaxis of endometriosis and uterine fibroid processes. Progesterone receptor antagonists such as mifepristone, also known as RU-486, and other PR modulators can inhibit endometrial proliferation at high estradiol concentrations in primates. Human clinical data with mifepristone supports the efficacy of a PR antagonist in endometriosis (D. R. Grow et. al., J Clin. Endocrin. Metab. 1996, 81). Despite enthusiasm for its use, RU-486 also acts as a potent ligand for the glucocorticoid receptor ("GR"). This cross-reactivity with the GR is associated with homeostatic imbalances.
Thus, modulators of nuclear steroid hormones that are highly specific for one receptor could offer greater benefit with less side effects in the treatment of both female and male related hormone responsive diseases.
SUMMARY OF INVENTION
The present invention includes compounds of formula (I)
Figure imgf000005_0001
including salts, solvates, and physiologically functional derivatives thereof, wherein R1 is -(Q1)X-R5; Q1 is alkylene; x is 0 or 1 ;
R5 is H, alkyl, alkenyl, alkynyl, haloalkyl, or cycloalkyl; R2 is -(Q3)-(Q4)-R6, or -(Q3)-CN;
Q3 s alkylene; Q4 s -C(O)-, -C(S)-, or -C(NR7)-; R7 s H or alkyl; s alkyl, alkenyl, alkynyl, hydroxy, alkoxy, aryloxy, or -N(R8)(R9) R8 and R9 each independently are H, hydroxy, alkyl, alkenyl, alkynyl, -(Q5)y-cycloalkyl,
-N(R 0)(R11), or R8 and R9 combine with the nitrogen atom to which they are attached to form an optionally substituted 4 to 8 membered ring that may contain additional heteroatoms and may contain one or more degrees of unsaturation; Q5 is alkylene; y is 0 or 1 ;
R10 and R11 each independently are H or alkyl; R3 is -CN, -NO2, or halogen; and
R4 is -CN, -NO2, halogen, haloalkyl, alkyl, alkenyl, alkynyl, hydroxyl, alkoxy, aryl, aryloxy. Preferably alkyl is C C6 alkyl, alkenyl is CrC6 alkenyl, alkynyl is C^Cg alkynyl, haloalkyl is C C6 haloalkyl, cycloalkyl is C3-C6 cycloalkyl, alkylene is C C6 alkylene, aryl is phenyl or naphthyl, alkoxy is CrC6 alkoxy, and aryloxy is phenoxy or benzyloxy. In particular embodiments, alkylene is d-C2 alkylene, haloalkyl is -CF3, and cycloalkyl is cyclopropyl.
In one embodiment, preferably alkylene is a branched alkylene. For example, a preferred embodiment includes where alkylene is -CH(CH3)- or -CH(CH2CH3)-. Preferably R3 is -CN.
Preferably R4 is halogen, haloalkyl, -CN or alkyl. Preferably R4 is haloalkyl. More preferably R4 is -CF3.
Preferably Q1 is methylene.
Preferably R5 is -CF3 or cyclopropyl. Preferably Q3 is methylene.
Preferably Q4 is -C(O)-.
Preferably R6 is -N(R8)(R9), where R8 and R9 each independently are H or d-C6 alkyl.
Preferably R3 is -CN, R4 is -CF3, Q1 is methylene, R5 is -CF3, Q3 is methylene, Q4 is -C(O)-, R6 is -N(R8)(R9), and R8 and R9 each are H.
Another aspect of the present invention includes a compound selected from: 1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)glycinate; Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)glycine; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ/1-methylglycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-A/2-(cyclopropylmethyl)glycinamide; 1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-methylglycinate; 1 , 1 -dimethylethyl Λ/-[4-cyano-3-(trif luoromethyl)phenyl]-Λ/-ethylglycinate; Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-ethylglycine; /V2-[4-cyano-3-(trifluoromethyl)phenyl]-A/2-ethylglycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λy2-ethyl-Λ/1-propylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-/V1-(cyclopropylmethyl)-Λ/2-ethylglycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-ethyl-Λy1,Λ/1-dipropylglycinamide; 1 , 1 -dimethylethyl Λ/-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ -(2,2,2-trif luoroethyl)glycinate; A-[4-cyano-3-(trifluoromethyl)phenyl]-A/-(2,2,2-trifluoroethyl)glycine; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(2,2,2-trifluoroethyl)glycinamide; methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)glycinate; 1-methylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]- -(2,2,2-trifluoroethyl)glycinate; A/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-Λ/2-(2,2,2-trifluoroethyl)glycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-ethyl-Λ/2-(2,2,2-trifluoroethyl)glycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-cyclohexyl-Λ/2-(2,2,2-trifluoroethyl)glycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1,/V1-dimethyl-Λ/2-(2,2,2-trifluoroethyl)glycinamide;
2-[4-cyano(2,2,2-trifluoroethyl)-3-(thfluoromethyl)anilino]-Λ/-methylacetohydrazide;
2-[4-cyano(2,2,2-trifluoroethyl)-3-(trifluoromethyl)anilino]-tV,Λ/'-dimethylacetohydrazide; methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)alaninate; Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)alanine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(2,2,2-trifluoroethyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-Λ/2-(2,2,2-trifluoroethyl)alaninamide;
A/2-[4-cyano-3-(trifluoromethyl)phenyl]-V1-ethyl-Λ/2-(2,2,2-trifluoroethyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1,Λ/1-dimethyl-Λ/2-(2,2,2-trifluoroethyl)alaninamide; 1 ,1-dimethylethyl 2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanoate;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanoic acid;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanamide;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-Λ/-methylbutanamide;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-Λ/-ethylbutanamide; 2-[[4-cyano-3-(thfluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-/V,Λ/-dimethylbutanamide;
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-propylglycinate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-propylglycine;
A/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-propylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1,Λ/2-dipropylglycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-(cyclopropylmethyl)-Λ/2-propylglycinamide;
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-2-propen-1-ylglycinate; methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2-fluoroethyl)glycinate;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(2-fluoroethyl)glycinamide;
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2-methylpropyl)glycinate; A/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-isobutylglycine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-isobutylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-W2-isobutyl-Λ/1-methylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-/\/2-(cyclopropylmethyl)-Λ/1-ethylglycinamide;
Λ/ -[4-cyano-3-(trifluoromethyl)phenyl]-W1,Λ/2-bis(cyclopropylmethyl)glycinamide; 1 ,1 -dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)alaninate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)alanine; rV2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-A/1-methylalaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ/1-ethylalaninamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ/1, 1-dimethylalaninamide; 4-[(cyanomethyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile; 4-[(1-cyanoethyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile; methyl 3-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2-methylpropanoate;
4-[(2-cyanopropyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile; N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(2,2-dimethylpropyl)glycine;
N2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-(2,2-dimethylpropyl)glycinamide;
N2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-(2,2,2-trifluoro-1-methylethyl)glycinamide;
N2-[4-cyano-3-(trifluoromethyI)phenyl]-N2-[1-(trifluoromethyl)propyl]glycinamide;
1 ,1-dimethylethyl N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(3,3,3-trifluoropropyl)glycinate; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(3,3,3-trifluoropropyl)glycinamide;
4-[(cyanomethyl)(3,3,3-trifluoropropyl)amino]-2-(trifluoromethyl)benzonithle;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(3,3,3-trifluoropropyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-Λ/2-(3,3,3-trifluoropropyl)alaninamide;
N2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-(1 ,1-dimethylethyl)glycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(1 -methylethy glycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-Λ/2-(1-methylethyl)glycinamide;
4-[(cyanomethyl)(methyl)amino]-2-(trifluoromethyl)benzonitrile;
4-[(2-cyanoethyl)(methyl)amino]-2-(trifluoromethyl)benzonitrile;
1 ,1-dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate; N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)glycine;
N2-(3-chloro-4-cyanophenyl)-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3-chloro-4-cyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3-chloro-4-cyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)glycinamide;
1 , 1 -dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)alaninate; N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)alanine;
N2-(3-chloro-4-cyanophenyl)-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3-chloro-4-cyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3-chloro-4-cyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)alaninamide;
1 ,1-dimethylethyl 2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]butanoate; 2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]butanamide;
2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]-N-methylbutanamide;
2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]-N-ethylbutanamide;
1 ,1-dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)glycinate;
N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)glycine; N -(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)glycinamide; N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-methylglycinamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-ethylglycinamide;
2-chloro-4-[(cyanomethyl)(cyclopropylmethyl)amino]benzonitrile;
1 ,1-dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)alaninate; N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)alanine;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)alaninamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-methylalaninamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-ethylalaninamide;
1 ,1-dimethylethyl 2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanoate; 2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanoic acid;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanamide;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]-N-methylbutanamide;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]-N-ethylbutanamide; methyl Λ/-(3,4-dicyanophenyl)-Λ/-(2,2,2-trifluoroethyl)glycinate; 1 ,1 -dimethylethyl N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate;
N2-(3,4-dicyanophenyl)-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3,4-dicyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3,4-dicyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)glycinamide;
1 ,1-dimethylethyl N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)alaninate; N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)alanine;
N2-(3,4-dicyanophenyl)-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3,4-dicyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3,4-dicyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)alaninamide;
1 , 1 -dimethylethyl 2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanoate; 2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanoic acid;
2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanamide;
2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]-N-methylbutanamide;
2-[(3,4-dicyanophenyl)(2,2,2-thfluoroethyl)amino]-N-ethylbutanamide;
1 ,1-dimethylethyl N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)glycinate; N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)glycine;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)glycinamide;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-methylglycinamide;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-ethylglycinamide;
4-[(cyanomethyl)(cyclopropylmethyl)amino]-1 ,2-benzenedicarbonitrile; 1 ,1 -dimethylethyl N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)alaninate; N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)alanine; N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-methylalaninamide; N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-ethylalaninamide; 1 , 1 -dimethylethyl 2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanoate; 2-t(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanoic acid; 2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanamide; 2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]-N-methylbutanamide; and 2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]-N-ethylbutanamide.
Another aspect of the present invention includes a compound substantially as hereinbefore defined with reference to any one of the Examples.
Another aspect of the present invention includes a pharmaceutical composition comprising a compound of the present invention and a pharmaceutically acceptable carrier.
Another aspect of the present invention includes a compound of the present invention for use as an active therapeutic substance. Another aspect of the present invention includes a compound of the present invention for use in the treatment or prophylaxis of conditions or disorders that respond to selective androgen receptor modulation.
Another aspect of the present invention includes a compound of the present invention for use in the treatment or prophylaxis of osteoporosis, muscle wasting, frailty, cardiovascular disease, breast cancer, uterine cancer, prostate hyperplasia, prostate cancer, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, depression, uterine fibroid disease, aortic smooth muscle cell proliferation, endometriosis, or ADAM.
Another aspect of the present invention includes the use of a compound of the present invention in the manufacture of a medicament for use in the treatment or prophylaxis of conditions or disorders that respond to selective androgen receptor modulation.
Another aspect of the present invention includes using a compound according to the present invention in the manufacture of a medicament for use in the treatment or prophylaxis of osteoporosis, muscle wasting, frailty, cardiovascular disease, breast cancer, uterine cancer, prostatic hyperplasia, prostate cancer, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, depression, uterine fibroid disease, aortic smooth muscle cell proliferation, endometriosis, or ADAM.
Another aspect of the present invention includes a method for the treatment or prophylaxis of conditions or disorders that respond to selective androgen receptor modulation comprising the administration of a compound according to the present invention. Another aspect of the present invention includes a method for the treatment or prophylaxis of osteoporosis, muscle wasting, frailty, cardiovascular disease, breast cancer, uterine cancer, prostatic hyperplasia, prostate cancer, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, depression, uterine fibroid disease, aortic smooth muscle cell proliferation, endometriosis, or ADAM comprising the administration of a compound according to the present invention.
The compounds of the present invention modulate the androgen receptor ("AR"). Certain compounds of the present invention also modulate the function of other nuclear hormone receptors. More particularly, the present invention includes compounds that are selective agonists, partial agonists, antagonists, or partial antagonists of the AR. Compounds of the present invention are useful in the treatment of AR-associated diseases and conditions, for example, a disease or condition that is prevented, alleviated, or cured through the modulation of the function or activity of AR. Such modulation may be isolated within certain tissues or widespread throughout the body of the subject being treated.
An aspect of the present invention is the use of the compounds of the present invention for the treatment or prophylaxis of a variety of disorders including, but not limited to, osteoporosis and/or the prevention of reduced bone mass, density, or growth, osteoarthritis, acceleration of bone fracture repair and healing, acceleration of healing in joint replacement, periodontal disease, acceleration of tooth repair or growth, Paget's disease, osteochondrodysplasias, muscle wasting, the maintenance and enhancement of muscle strength and function, frailty or age-related functional decline ("ARFD"), dry eye, sarcopenia, chronic fatigue syndrome, chronic myaligia, acute fatigue syndrome, acceleration of wound healing, maintenance of sensory function, chronic liver disease, AIDS, weightlessness, burn and trauma recovery, thrombocytopenia, short bowel syndrome, irritable bowel syndrome, inflammatory bowel disease, Crohn's disease and ulcerative colitis, obesity, eating disorders including anorexia associated with cachexia or aging, hypercortisolism and Cushing's syndrome, cardiovascular disease or cardiac dysfunction, congestive heart failure, high blood pressure, malignant tumor cells containing the androgen receptor including breast, brain, skin, ovary, bladder, lymphatic, liver, kidney, uterine, pancreas, endometrium, lung, colon, and prostate, prostatic hyperplasia, hirsutism, acne, seborrhea, androgenic alopecia, anemia, hyperpilosity, adenomas and neoplasis of the prostate, hyperinsulinemia, insulin resistance, diabetes, syndrome X, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, sexual dysfunction, depression, nervousness, irritability, stress, reduced mental energy and low self-esteem, improvement of cognitive function, endometriosis, polycystic ovary syndrome, counteracting preeclampsia, premenstral syndrome, contraception, uterine fibroid disease, aortic smooth muscle cell proliferation, male hormone replacement, or ADAM.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Terms are used within their accepted meanings. The following definitions are meant to clarify, but not limit, the terms defined.
As used herein the term "alkyl" refers to a straight or branched chain hydrocarbon, preferably having from one to twelve carbon atoms, which may be optionally substituted, with multiple degrees of substitution included within the present invention. Examples of
"alkyl" as used herein include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, n-butyl, tert-butyl, isopentyl, n-pentyl, and substituted versions thereof.
As used throughout this specification, the preferred number of atoms, such as carbon atoms, will be represented by, for example, the phrase "Cx-Cy alkyl," which refers to an alkyl group, as herein defined, containing the specified number of carbon atoms. Similar terminology will apply for other preferred terms and ranges as well.
As used herein the term "alkenyl" refers to a straight or branched chain aliphatic hydrocarbon containing one or more carbon-to-carbon double bonds that may be optionally substituted, with multiple degrees of substitution included within the present invention. Examples include, but are not limited to, vinyl and the like and substituted versions thereof. As used herein the term "alkynyl" refers to a straight or branched chain aliphatic hydrocarbon containing one or more carbon-to-carbon triple bonds that may be optionally substituted, with multiple degrees of substitution included within the present invention. Examples include, but are not limited to, ethynyl and the like and substituted versions thereof.
As used herein, the term "alkylene" refers to a straight or branched chain divalent hydrocarbon radical, preferably having from one to ten carbon atoms. Alkylene groups as defined herein may optionally be substituted, with multiple degrees of substitution included within the present invention. Examples of "alkylene" as used herein include, but are not limited to, methylene (-CH2-), ethylene (-CH2-CH2-), and substituted versions thereof.
As used herein, the term "cycloalkyl" refers to an optionally substituted non-aromatic cyclic hydrocarbon ring, which optionally includes an alkylene linker through which the cycloalkyl may be attached, with multiple degrees of substitution included within the present invention. Exemplary "cycloalkyl" groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and substituted versions thereof. As used herein, the term "aryl" refers to an optionally substituted benzene ring or to an optionally substituted fused benzene ring system, for example anthracene, phenanthrene, or naphthalene ring systems. Multiple degrees of substitution are included within the present definition. Examples of "aryl" groups include, but are not limited to, phenyl, 2-naphthyl, 1- naphthyl, biphenyl, and substituted derivatives thereof.
As used herein, the term "heteroaryl" refers to an optionally substituted monocyclic five to seven membered aromatic ring, or to an optionally substituted fused bicyclic aromatic ring system comprising two of such aromatic rings, which contain one or more nitrogen, sulfur, and/or oxygen atoms, where N-oxides, sulfur oxides, and dioxides are permissible heteroatom substitutions. Multiple degrees of substitution are included within the present definition. Examples of "heteroaryl" groups used herein include, but should not be limited to, furan, thiophene, pyrrole, imidazole, pyrazole, triazole, tetrazole, thiazole, oxazole, isoxazole, oxadiazole, thiadiazole, isothiazole, pyridine, pyridazine, pyrazine, pyrimidine, quinoline, isoquinoline, benzofuran, benzothiophene, indole, indazole, and substituted versions thereof.
As used herein the term "halogen" refers to fluorine, chlorine, bromine, or iodine.
As used herein the term "haloalkyl" refers to an alkyl group, as defined herein that is substituted with at least one halogen. Examples of branched or straight chained "haloalkyl" groups useful in the present invention include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, and t-butyl substituted independently with one or more halogens, e.g., fluoro, chloro, bromo, and iodo. The term "haloalkyl" should be interpreted to include such groups such as -CF3, -CH2-CH2-F, and the like.
As used herein the term "hydroxy" refers to the group -OH.
As used herein the term "mercapto" refers to the group -SH. As used herein the term "alkoxy" refers to the group -ORa, where Ra is alkyl as defined above.
As used herein the term "aryloxy" refers to the group -OR , where Rb is aryl as defined above.
As used herein the term "nitro" refers to the group -NO2. As used herein the term "cyano" refers to the group -CN.
As used herein the term "amino" refers to the group -NH2, and "substituted amino" refers to a group -N(Ra)(Rb), where one or both Ra and Rb are other than H. For example, "substituted amino" includes the groups -N(CH3)(CH3), -N(CH3)(CH2-CH3), and the like.
As used herein throughout the present specification, the phrase "optionally substituted" or variations thereof denote an optional substitution, including multiple degrees of substitution, with one or more substituent group. As noted above, terms used throughout this specification should be considered as optionally substituted unless otherwise noted. The phrase should not be interpreted as duplicative of substitution patterns herein described or depicted. Exemplary optional substituent groups include acyl; alkyl; alkenyl; alkynyl; alkylsulfonyl; alkoxy; cyano; halogen; haloalkyl; hydroxy; nitro; aryl, which may be further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro; heteroaryl, which may be further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro; arylsulfonyl, which may be further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro; heteroarylsulfonyl, which may be further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro; aryloxy, which may be further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro; heteroaryloxy, which may be further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro; or -N(R*)2; where for each occurrence R* is independently selected from H, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, aralkyl, heteroaryl, heteroaralkyl, alkylsulfonyl, arylsulfonyl, or heteroarylsulfonyl, where each occurrence of such aryl or heteroaryl may be substituted with one or more acyl, alkoxy, alkyl, alkenyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro, or the two R*s may combine to form a ring, optionally having additional heteroatoms, optionally having one or more degrees of unsaturation, and optionally being further substituted with acyl, alkoxy, alkyl, alkenyl, alkynyl, alkylsulfonyl, cyano, halogen, haloalkyl, hydroxy, or nitro.
The compounds of formulas (I) may crystallize in more than one form, a characteristic known as polymorphism, and such polymorphic forms ("polymorphs") are within the scope of formula (I). Polymorphism generally can occur as a response to changes in temperature, pressure, or both. Polymorphism can also result from variations in the crystallization process. Polymorphs can be distinguished by various physical characteristics known in the art such as x-ray diffraction patterns, solubility, and melting point. Certain of the compounds described herein contain one or more chiral centers, or may otherwise be capable of existing as multiple stereoisomers. The scope of the present invention includes mixtures of stereoisomers as well as purified enantiomers or enantiomerically/diastereomerically enriched mixtures. Also included within the scope of the invention are the individual isomers of the compounds represented by formula (I), as well as any wholly or partially equilibrated mixtures thereof. The present invention also includes the individual isomers of the compounds represented by the formulas above as mixtures with isomers thereof in which one or more chiral centers are inverted.
Typically, but not absolutely, the salts of the present invention are pharmaceutically acceptable salts. Salts encompassed within the term "pharmaceutically acceptable salts" refer to non-toxic salts of the compounds of this invention. Salts of the compounds of the present invention may comprise acid addition salts. Representative salts include acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium edetate, camsylate, carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isethionate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulfate, monopotassium maleate, mucate, napsylate, nitrate, N-methylglucamine, oxalate, pamoate (embonate), palmitate, pantothenate, phosphate/diphosphate, polygalacturonate, potassium, salicylate, sodium, stearate, subacetate, succinate, sulfate, tannate, tartrate, teoclate, tosylate, triethiodide, trimethylammonium, and valerate salts. Other salts, which are not pharmaceutically acceptable, may be useful in the preparation of compounds of this invention and these should be considered to form a further aspect of the invention.
As used herein, the term "solvate" refers to a complex of variable stoichiometry formed by a solute (in this invention, a compound of Formula I, or a salt or physiologically functional derivative thereof) and a solvent. Such solvents, for the purpose of the invention, should not interfere with the biological activity of the solute. Non-limiting examples of suitable solvents include, but are not limited to water, methanol, ethanol, and acetic acid. Preferably the solvent used is a pharmaceutically acceptable solvent. Non-limiting examples of suitable pharmaceutically acceptable solvents include water, ethanol, and acetic acid. Most preferably the solvent used is water.
As used herein, the term "physiologically functional derivative" refers to any pharmaceutically acceptable derivative of a compound of the present invention that, upon administration to a mammal, is capable of providing (directly or indirectly) a compound of the present invention or an active metabolite thereof. Such derivatives, for example, esters and amides, will be clear to those skilled in the art, without undue experimentation. Reference may be made to the teaching of Burger's Medicinal Chemistry And Drug Discovery, 5th Edition, Vol 1 : Principles and Practice, which is incorporated herein by reference to the extent that it teaches physiologically functional derivatives. As used herein, the term "effective amount" means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal, or human that is being sought, for instance, by a researcher or clinician. The biological or medical response may be considered a prophylactic response or a treatment response. The term "therapeutically effective amount" means any amount which, as compared to a corresponding subject who has not received such amount, results in improved treatment, healing, prevention, or amelioration of a disease, disorder, or side effect, or a decrease in the rate of advancement of a disease or disorder. The term also includes within its scope amounts effective to enhance normal physiological function. For use in therapy, therapeutically effective amounts of a compound of formula (I), as well as salts, solvates, and physiological functional derivatives thereof, may be administered as the raw chemical. Additionally, the active ingredient may be presented as a pharmaceutical composition.
In one embodiment of the present invention is a compound of formula (IA)
Figure imgf000016_0001
including salts, solvates, and physiologically functional derivatives thereof, wherein
R1 is -(Q1)X-R5;
Q1 is alkylene; x is 0 or 1 ; R5 is H, alkyl, alkenyl, alkynyl, haloalkyl, or cycloalkyl;
R2 is -(Q3)-(Q4)-R6;
Q3 is alkylene;
Q4 is -C(O)-, -C(S)-, or-C(NR7)-;
R7 is H or alkyl; R6 is alkyl, alkenyl, alkynyl, hydroxy, alkoxy, aryloxy, or -N(R8)(R9)
R8 and R9 each independently are H, hydroxy, alkyl, alkenyl, alkynyl, -(Q5)y-cycloalkyl,
-N(R10)(R11), or R8 and R9 combine with the nitrogen atom to which they are attached to form an optionally substituted 4 to 8 membered ring that may contain additional heteroatoms and may contain one or more degrees of unsaturation; Q5 is alkylene; y is 0 or 1 ;
R10 and R11 each independently are H or alkyl; R3 is -CN, or -NO2; and
R4 is -CN, -NO2, halogen, haloalkyl, alkyl, alkenyl, alkynyl, hydroxyl, alkoxy, aryl, aryloxy.
While the preferred groups for each variable have generally been listed above separately for each variable, preferred compounds of this invention include those in which several of each variable in Formula (I) is selected from the preferred, more preferred, or most preferred groups for each variable. Therefore, this invention is intended to include all combinations of preferred, more preferred, and most preferred groups.
Accordingly, the invention further provides pharmaceutical compositions that include effective amounts of compounds of the formula (I) and salts, solvates, and physiological functional derivatives thereof, and one or more pharmaceutically acceptable carriers, diluents, or excipients. The compounds of formula (I) and salts, solvates, and physiologically functional derivatives thereof, are as herein described. The carrier(s), diluent(s) or excipient(s) must be acceptable, in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient of the pharmaceutical composition. In accordance with another aspect of the invention there is also provided a process for the preparation of a pharmaceutical formulation including admixing a compound of the formula (I) or salts, solvates, and physiological functional derivatives thereof, with one or more pharmaceutically acceptable carriers, diluents or excipients. A therapeutically effective amount of a compound of the present invention will depend upon a number of factors. For example, the species, age, and weight of the recipient, the precise condition requiring treatment and its severity, the nature of the formulation, and the route of administration are all factors to be considered. The therapeutically effective amount ultimately should be at the discretion of the attendant physician or veterinarian. Regardless, an effective amount of a compound of formula (I) for the treatment of humans suffering from frailty, generally, should be in the range of 0.1 to 100 mg/kg body weight of recipient (mammal) per day. More usually the effective amount should be in the range of 1 to 10 mg/kg body weight per day. Thus, for a 70 kg adult mammal the actual amount per day would usually be from 70 to 700 mg. This amount may be given in a single dose per day or in a number (such as two, three, four, five, or more) of sub-doses per day such that the total daily dose is the same. An effective amount of a salt, solvate, or physiologically functional derivative thereof, may be determined as a proportion of the effective amount of the compound of formula (I) per se. Similar dosages should be appropriate for treatment or prophylaxis of the other conditions referred to herein. Pharmaceutical formulations may be presented in unit dose forms containing a predetermined amount of active ingredient per unit dose. Such a unit may contain, as a non- limiting example, 0.5mg to 1g of a compound of the formula (I), depending on the condition being treated, the route of administration, and the age, weight, and condition of the patient. Preferred unit dosage formulations are those containing a daily dose or sub-dose, as herein above recited, or an appropriate fraction thereof, of an active ingredient. Such pharmaceutical formulations may be prepared by any of the methods well known in the pharmacy art.
Pharmaceutical formulations may be adapted for administration by any appropriate route, for example by an oral (including buccal or sublingual), rectal, nasal, topical (including buccal, sublingual or transdermal), vaginal, or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) route. Such formulations may be prepared by any method known in the art of pharmacy, for example by bringing into association the active ingredient with the carrier(s) or excipient(s). Pharmaceutical formulations adapted for oral administration may be presented as discrete units such as capsules or tablets; powders or granules; solutions or suspensions, each with aqueous or non-aqueous liquids; edible foams or whips; or oil-in-water liquid emulsions or water-in-oil liquid emulsions. For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like.
Generally, powders are prepared by comminuting the compound to a suitable fine size and mixing with an appropriate pharmaceutical carrier such as an edible carbohydrate, as, for example, starch or mannitol. Flavorings, preservatives, dispersing agents, and coloring agents can also be present. Capsules can be made by preparing a powder, liquid, or suspension mixture and encapsulating with gelatin or some other appropriate shell material. Glidants and lubricants such as colloidal silica, talc, magnesium stearate, calcium stearate, or solid polyethylene glycol can be added to the mixture before the encapsulation. A disintegrating or solubilizing agent such as agar-agar, calcium carbonate or sodium carbonate can also be added to improve the availability of the medicament when the capsule is ingested. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Examples of suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like. Lubricants useful in these dosage forms include, for example, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.
Tablets can be formulated, for example, by preparing a powder mixture, granulating ' or slugging, adding a lubricant and disintegrant, and pressing into tablets. A powder mixture may be prepared by mixing the compound, suitably comminuted, with a diluent or base as described above. Optional ingredients include binders such as carboxymethylcellulose, aliginates, gelatins, or polyvinyl pyrrolidone, solution retardants such as paraffin, resorption accelerators such as a quaternary salt, and/or absorption agents such as bentonite, kaolin, or dicalcium phosphate. The powder mixture can be wet-granulated with a binder such as syrup, starch paste, acadia mucilage or solutions of cellulosic or polymeric materials, and forcing through a screen. As an alternative to granulating, the powder mixture can be run through the tablet machine and the result is imperfectly formed slugs broken into granules. The granules can be lubricated to prevent sticking to the tablet forming dies by means of the addition of stearic acid, a stearate salt, talc or mineral oil. The lubricated mixture is then compressed into tablets. The compounds of the present invention can also be combined with a free flowing inert carrier and compressed into tablets directly without going through the granulating or slugging steps. A clear or opaque protective coating consisting of a sealing coat of shellac, a coating of sugar or polymeric material, and a polish coating of wax can be provided. Dyestuffs can be added to these coatings to distinguish different unit dosages.
Oral fluids such as solutions, syrups, and elixirs can be prepared in dosage unit form so that a given quantity contains a predetermined amount of the compound. Syrups can be prepared, for example, by dissolving the compound in a suitably flavored aqueous solution, while elixirs are prepared through the use of a non-toxic alcoholic vehicle. Suspensions can be formulated generally by dispersing the compound in a non-toxic vehicle. Solubilizers and emulsifiers such as ethoxylated isostearyl alcohols and polyoxy ethylene sorbitol ethers, preservatives; flavor additives such as peppermint oil, or natural sweeteners, saccharin, or other artificial sweeteners; and the like can also be added. Where appropriate, dosage unit formulations for oral administration can be microencapsulated. The formulation can also be prepared to prolong or sustain the release as for example by coating or embedding particulate material in polymers, wax or the like.
The compounds of formula (I) and salts, solvates, and physiological functional derivatives thereof, can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine,' or phosphatidylcholines.
The compounds of formula (I) and salts, solvates, and physiologically functional derivatives thereof may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled.
The compounds may also be coupled with soluble polymers asftargetable drug carriers. Such polymers can include polyvinylpyrrolidone (PVP), pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethyl-aspartamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues. Furthermore, the compounds may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug; for example, polylactic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates, and cross-linked or amphipathic block copolymers of hydrogels. Pharmaceutical formulations adapted for transdermal administration may be presented as discrete patches intended to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. For example, the active ingredient may be delivered from the patch by iontophoresis as generally described in Pharmaceutical Research, 3(6), 318 (1986), incorporated herein by reference as related to such delivery systems. Pharmaceutical formulations adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols, or oils.
For treatments of the eye or other external tissues, for example mouth and skin, the formulations may be applied as a topical ointment or cream. When formulated in an ointment, the active ingredient may be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredient may be formulated in a cream with an oil- in-water cream base or a water-in-oil base.
Pharmaceutical formulations adapted for topical administrations to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent.
Pharmaceutical formulations adapted for topical administration in the mouth include lozenges, pastilles, and mouthwashes.
Pharmaceutical formulations adapted for nasal administration, where the carrier is a solid, include a coarse powder having a particle size for example in the range 20 to 500 microns. The powder is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose. Suitable formulations wherein the carrier is a liquid, for administration as a nasal spray or as nasal drops, include aqueous or oil solutions of the active ingredient.
Pharmaceutical formulations adapted for administration by inhalation include fine particle dusts or mists, which may be generated by means of various types of metered dose pressurized aerosols, nebulizers, or insufflators.
Pharmaceutical formulations adapted for rectal administration may be presented as suppositories or as enemas.
Pharmaceutical formulations adapted for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulations.
Pharmaceutical formulations adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi- dose containers, for example sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, and tablets. In addition to the ingredients particularly mentioned above, the formulations may include other agents conventional in the art having regard to the type of formulation in question. For example, formulations suitable for oral administration may include flavoring or coloring agents.
The compounds of the present invention and their salts, solvates, and physiologically functional derivatives thereof, may be employed alone or in combination with other therapeutic agents for the treatment of the above-mentioned conditions. For example, in frailty therapy, combination may be had with other anabolic or osteoporosis therapeutic agents. As one example, osteoporosis combination therapies according to the present invention would thus comprise the administration of at least one compound of formula (I) or a salt, solvate, or physiologically functional derivative thereof, and the use of at least one other osteoporosis therapy. As a further example, combination therapies according to the present invention include the administration of at least one compound of formula (I) or a salt, solvate, or physiologically functional derivative thereof, and at least one other osteoporosis treatment agent, for example, an anti-bone resorption agent. The compound(s) of formula (I) and the other pharmaceutically active agent(s) may be administered together or separately and, when administered separately, administration may occur simultaneously or sequentially, in any order. The amounts of the compound(s) of formula (I) and the other pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect. The administration in combination of a compound of formula (I) salts, solvates, or physiologically functional derivatives thereof with other treatment agents may be in combination by administration concomitantly in: (1 ) a unitary pharmaceutical composition including both compounds; or (2) separate pharmaceutical compositions each including one of the compounds. Alternatively, the combination may be administered separately in a sequential manner wherein one treatment agent is administered first and the other second or vice versa. Such sequential administration may be close in time or remote in time.
Another potential osteoporosis treatment agent is a bone building (anabolic) agent. Bone building agents can lead to increases in parameters such as bone mineral density that are greater than those than can be achieved with anti-resorptive agents. In some cases, such anabolic agents can increase trabecular connectivity leading to greater structural integrity of the bone.
Other potential therapeutic combinations include the compounds of the present invention combined with other compounds of the present invention, growth promoting agents, growth hormone secretagogues, growth hormone releasing factor and its analogs, growth hormone and its analogs, somatomedins, alpha-ardenergic agonists, serotonin 5-HTD agonists, agents that inhibit somatostatin or its release, 5-α-reductase inhibitors, aromatase inhibitors, GnRH agonists or antagonists, parathyroid hormone, bisphosphonates, estrogen, testosterone, SERMs, progesterone receptor agonists or antagonists, and/or with other modulators of nuclear hormone receptors. One skilled in the art will acknowledge that although the compounds embodied herein will be used as selective agonists, partial agonists, and antagonists, compounds with mixed steroid activities may also be employed.
The compounds of the present invention may be used in the treatment of a variety of disorders and conditions and, as such, the compounds of the present invention may be used in combination with a variety of other suitable therapeutic agents useful in the treatment or prophylaxis of those disorders or conditions. Non-limiting examples include combinations of the present invention with anti-diabetic agents, anti-osteoporosis agents, anti-obesity agents, anti-inflammatory agents, anti-anxiety agents, anti-depressants, anti-hypertensive agents, anti-platelet agents, anti-thrombotic and thrombolytic agents, cardiac glycosides, cholesterol or lipid lowering agents, mineralocorticoid receptor antagonists, phosphodiesterase inhibitors, kinase inhibitors, thyroid mimetics, anabolic agents, viral therapies, cognitive disorder therapies, sleeping disorder therapies, sexual dysfunction therapies, contraceptives, cytotoxic agents, radiation therapy, anti-proliferative agents, and anti-tumor agents. Additionally, the compounds of the present invention may be combined with nutritional supplements such as amino acids, triglycerides, vitamins, minerals, creatine, piloic acid, carnitine, or coenzyme Q10.
An aspect of the present invention is the use of the compounds of the present invention for the treatment or prophylaxis of a variety of disorders including, but not limited to, osteoporosis and/or the prevention of reduced bone mass, density, or growth, osteoarthritis, acceleration of bone fracture repair and healing, acceleration of healing in joint replacement, periodontal disease, acceleration of tooth repair or growth, Paget's disease, osteochondrodysplasias, muscle wasting, the maintenance and enhancement of muscle strength and function, frailty or age-related functional decline ("ARFD"), dry eye, sarcopenia, chronic fatigue syndrome, chronic myaligia, acute fatigue syndrome, acceleration of wound healing, maintenance of sensory function, chronic liver disease, AIDS, weightlessness, burn and trauma recovery, thrombocytopenia, short bowel syndrome, irritable bowel syndrome, inflammatory bowel disease, Crohn's disease and ulcerative colitis, obesity, eating disorders including anorexia associated with cachexia or aging, hypercortisolism and Cushing's syndrome, cardiovascular disease or cardiac dysfunction, congestive heart failure, high blood pressure, malignant tumor cells containing the androgen receptor including breast, brain, skin, ovary, bladder, lymphatic, liver, kidney, uterine, pancreas, endometrium, lung, colon, and prostate, prostatic hyperplasia, hirsutism, acne, seborrhea, androgenic alopecia, anemia, hyperpilosity, adenomas and neoplasis of the prostate, hyperinsulinemia, insulin resistance, diabetes, syndrome X, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, sexual dysfunction, depression, nervousness, irritability, stress, reduced mental energy and low self-esteem, improvement of cognitive function, endometriosis, polycystic ovary syndrome, counteracting preeclampsia, premenstral syndrome, contraception, uterine fibroid disease, aortic smooth muscle cell proliferation, male hormone replacement, or ADAM. In particular, the compounds of the present invention are believed useful, either alone or in combination with other agents, in the treatment of and use as male and female hormone replacement therapy, hypogonadism, osteoporosis, muscle wasting, wasting diseases, cancer cachexia, frailty, prostatic hyperplasia, prostate cancer, breast cancer, menopausal and andropausal vasomotor conditions, urinary incontinence, sexual dysfunction, erectile dysfunction, depression, uterine fibroid disease, and/or endometriosis, treatment of acne, hirsutism, stimulation of hematopoiesis, male contraception, impotence, and as anabolic agents.
Another aspect of the present invention thus also provides compounds of formula (I) and salts, solvates, or physiologically functional derivatives thereof, for use in medical therapy. Particularly, the present invention provides for the treatment or prophylaxis of disorders mediated by androgenic activity. More particularly, the present invention provides through the treatment or prophylaxis of disorders responsive to tissue-selective anabolic and or androgenic activity. A further aspect of the invention provides a method of treatment or prophylaxis of a mammal suffering from a disorder mediated by androgenic activity, which includes administering to said subject an effective amount of a compound of formula (I) or a salt, solvate, or physiologically functional derivative thereof.
A further aspect of the invention provides a method of treatment or prophylaxis of a mammal requiring the treatment or prophylaxis of a variety of disorders including, but not limited to, osteoporosis and/or the prevention of reduced bone mass, density, or growth, osteoarthritis, acceleration of bone fracture repair and healing, acceleration of healing in joint replacement, periodontal disease, acceleration of tooth repair or growth, Paget's disease, osteochondrodysplasias, muscle wasting, the maintenance and enhancement of muscle strength and function, frailty or age-related functional decline ("ARFD"), dry eye, sarcopenia, chronic fatigue syndrome, chronic myaligia, acute fatigue syndrome, acceleration of wound healing, maintenance of sensory function, chronic liver disease, AIDS, weightlessness, burn and trauma recovery, thrombocytopenia, short bowel syndrome, irritable bowel syndrome, inflammatory bowel disease, Crohn's disease and ulcerative colitis, obesity, eating disorders including anorexia associated with cachexia or aging, hypercortisolism and Cushing's syndrome, cardiovascular disease or cardiac dysfunction, congestive heart failure, high blood pressure, malignant tumor cells containing the androgen receptor including breast, brain, skin, ovary, bladder, lymphatic, liver, kidney, uterine, pancreas, endometrium, lung, colon, and prostate, prostatic hyperplasia, hirsutism, acne, seborrhea, androgenic alopecia, anemia, hyperpilosity, adenomas and neoplasis of the prostate, hyperinsulinemia, insulin resistance, diabetes, syndrome X, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, sexual dysfunction, depression, nervousness, irritability, stress, reduced mental energy and low self-esteem, improvement of cognitive function, endometriosis, polycystic ovary syndrome, counteracting preeclampsia, premenstral syndrome, contraception, uterine fibroid disease, aortic smooth muscle cell proliferation, male hormone replacement, or ADAM. Preferably the compounds of the present invention are used as male and female hormone replacement therapy or for the treatment or prevention of hypogonadism, osteoporosis, muscle wasting, wasting diseases, cancer cachexia, frailty, prostatic hyperplasia, prostate cancer, breast cancer, menopausal and andropausal vasomotor conditions, urinary incontinence, sexual dysfunction, erectile dysfunction, depression, uterine fibroid disease, and/or endometriosis, treatment of acne, hirsutism, stimulation of hematopoiesis, male contraception, impotence, and as anabolic agents, which use includes administering to a subject an effective amount of a compound of formula (I) or a salt, solvate, or physiologically functional derivative thereof. The mammal requiring treatment with a compound of the present invention is typically a human being. The compounds of this invention may be made by a variety of methods, including well-known standard synthetic methods. Illustrative general synthetic methods are set out below and then specific compounds of the invention are prepared in the working Examples.
In all of the schemes described below, protecting groups for sensitive or reactive groups are employed where necessary in accordance with general principles of synthetic chemistry. Protecting groups are manipulated according to standard methods of organic synthesis (T. W. Green and P. G. M. Wuts (1991) Protecting Groups in Organic Synthesis, John Wiley & Sons, incorporated by reference with regard to protecting groups). These groups are removed at a convenient stage of the compound synthesis using methods that are readily apparent to those skilled in the art. The selection of processes as well as the reaction conditions and order of their execution shall be consistent with the preparation of compounds of formula (I).
Those skilled in the art will recognize if a stereocenter exists in compounds of formula (I). Accordingly, the present invention includes all possible stereoisomers and includes not only racemic compounds but the individual enantiomers as well. When a compound is desired as a single enantiomer, such may be obtained by stereospecific synthesis or by resolution of the final product or any convenient intermediate. Resolution of the final product, an intermediate, or a starting material may be effected by any suitable method known in the art. See, for example, Stereochemistry of Organic Compounds by E. L. Eliel, S. H. Wilen, and L. N. Mander (Wiley-lnterscience, 1994), incorporated by reference with regard to stereochemistry. Representative AR modulator compounds, agonists, partial agonists, and antagonists according to the current invention include:
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyi)glycinate; Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-(cyclopropylmethyl)glycine; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ/1-methylglycinamide; A/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)glycinamide; 1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-methylglycinate;
1 , 1 -dimethylethyl A/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-ethylglycinate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-ethylglycine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-ethylglycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-/V2-ethyl-Λ/1-propylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-(cyclopropylmethyl)-/V2-ethylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-ethyl-A/1,Λ/1-dipropylglycinamide;
1,1-dimethylethyl /V-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)glycinate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)glycine; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(2,2,2-trifluoroethyl)glycinamide; methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)glycinate;
1-methylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-(2,2,2-trifluoroethyl)glycinate;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-Λ/2-(2,2,2-trifluoroethyl)glycinamide;
A/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-ethyl-/V2-(2,2,2-trifluoroethyl)glycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-cyclohexyl-Λ/2-(2,2,2-trifluoroethyl)glycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1,Λ/1-dimethyl-Λ/2-(2,2,2-trifluoroethyl)glycinamide;
2-[4-cyano(2,2,2-trifluoroethyl)-3-(trifluoromethyl)anilino]-Λ/-methylacetohydrazide;
2-[4-cyano(2,2,2-trifluoroethyl)-3-(trifluoromethyl)anilino]-Λ/,,/V-dimethylacetohydrazide; methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)alaninate; Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)alanine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(2,2,2-trifluoroethyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-A/2-(2,2,2-trifluoroethyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-ethyl-A/2-(2,2,2-trifluoroethyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1,Λ/1-dimethyl-Λ/2-(2,2,2-trifluoroethyl)alaninamide; 1 ,1-dimethylethyl 2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanoate;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanoic acid;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanamide;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-A/-methylbutanamide;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-Λ/-ethylbutanamide; 2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-Λ/,A/-dimethylbutanamide;
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-propylglycinate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-propylglycine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-propylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-tV1,/V2-dipropylglycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-(cyclopropylmethyl)-Λ/2-propylglycinamide; 1 , 1 -dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-2-propen-1 -ylglycinate; methyl A/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2-fluoroethyl)glycinate;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-/V2-(2-fluoroethyl)glycinamide;
1 ,1-dimethylethyl /V-[4-cyano-3-(trifluoromethyl)phenyl]-/V-(2-methylpropyl)glycinate; A/-[4-cyano-3-(trifluoromethyl)phenyl]-/V-isobutylglycine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-isobutylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-isobutyl-Λ/1-methylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-A/1-ethylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1,A/2-bis(cyclopropylmethyl)glycinamide; 1 ,1 -dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)alaninate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)alanine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/ -(cyclopropylmethyl)alaninamide;
Ay2-[4-cyano-3-(trifluoromethyl)phenyl]-/V2-(cyclopropylmethyl)-A/1-methylalaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λy2-(cyclopropylmethyl)-A/1-ethylalaninamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ/1,Λ/1 -dimethylalaninamide;
4-[(cyanomethyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile;
4-[(1-cyanoethyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile; methyl 3-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2-methylpropanoate;
4-[(2-cyanopropyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile; N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(2,2-dimethylpropyl)glycine;
N2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-(2,2-dimethylpropyl)glycinamide;
N2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-(2,2,2-trifluoro-1-methylethyl)glycinamide;
N -[4-cyano-3-(trifluoromethyl)phenyl]-N2-[1-(trifluoromethyl)propyl]glycinamide;
1 ,1-dimethylethyl N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(3,3,3-trifluoropropyl)glycinate; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λy2-(3,3,3-trifluoropropyl)glycinamide;
4-[(cyanomethyl)(3,3,3-trifluoropropyl)amino]-2-(trifluoromethyl)benzonitrile;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(3,3,3-trifluoropropyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-Λ/2-(3,3,3-trifluoropropyl)alaninamide;
N2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-(1 ,1-dimethylethyl)glycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λy2-(1-methylethyl)glycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-A/1-methyl-Λ/2-(1-methylethyl)glycinamide;
4-[(cyanomethyl)(methyl)amino]-2-(trifluoromethyl)benzonitrile;
4-[(2-cyanoethyl)(methyl)amino]-2-(trifluoromethyl)benzonitrile;
1 , 1 -dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate; N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)glycine; N2-(3-chloro-4-cyanophenyl)-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3-chloro-4-cyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3-chloro-4-cyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)glycinamide;
1 , 1 -dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)alaninate; N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)alanine;
N2-(3-chloro-4-cyanophenyl)-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3-chloro-4-cyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)alaninamide;
N -(3-chloro-4-cyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)alaninamide;
1 ,1 -dimethylethyl 2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]butanoate; 2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]butanamide;
2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]-N-methylbutanamide;
2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]-N-ethylbutanamide;
1 , 1 -dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)glycinate;
N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)glycine; N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)glycinamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-methylglycinamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-ethylglycinamide;
2-chloro-4-[(cyanomethyl)(cyclopropylmethyl)amino]benzonitrile;
1 , 1 -dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)alaninate; N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)alanine;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)alaninamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-methylalaninamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-ethylalaninamide;
1 ,1 -dimethylethyl 2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanoate; 2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanoic acid;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanamide;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]-N-methylbutanamide;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]-N-ethylbutanamide; methyl Λ/-(3,4-dicyanophenyl)-Λ/-(2,2,2-trifluoroethyl)glycinate; 1 ,1 -dimethylethyl N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate;
N2-(3,4-dicyanophenyl)-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3,4-dicyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3,4-dicyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)glycinamide;
1 ,1-dimethylethyl N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)alaninate; N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)alanine; N2-(3,4-dicyanophenyl)-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3,4-dicyanophenyl)-N1-methy|-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3,4-dicyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)alaninamide;
1 , 1 -dimethylethyl 2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanoate; 2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanoic acid;
2-[(3,4-dicyanophenyi)(2,2,2-trifluoroethyl)amino]butanamide;
2-[(3,4-dicyanophenyI)(2,2,2-trifluoroethyl)amino]-N-methylbutanamide;
2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]-N-ethylbutanamide;
1 , 1 -dimethylethyl N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)glycinate; N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)glycine;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)glycinamide;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-methylglycinamide;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-ethylglycinamide;
4-[(cyanomethyl)(cyclopropylmethyl)amino]-1 ,2-benzenedicarbonitrile; 1 ,1 -dimethylethyl N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)alaninate;
N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)alanine;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-methylalaninamide;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-ethylalaninamide;
1 ,1-dimethylethyl 2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanoate; 2-[(cyclopropyImethyl)(3,4-dicyanophenyl)amino]butanoic acid;
2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanamide;
2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]-N-methylbutanamide; and 2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]-N-ethylbutanamide.
ABBREVIATIONS
As used herein the symbols and conventions used in these processes, schemes and examples are consistent with those used in the contemporary scientific literature, for example, the Journal of the American Chemical Society or the Journal of Biological Chemistry. Specifically, the following abbreviations may be used in the examples and throughout the specification: g (grams); mg (milligrams);
L (liters); mL (milliliters); μL (microliters); psi (pounds per square inch); M (molar); mM (millimolar);
Hz (Hertz); MHz (megahertz); mol (moles); mmol (millimoles); rt (room temperature); min (minutes); h (hours); mp (melting point); TLC (thin layer chromatography); CH2CI2 (methylene chloride);
Tr (retention time); RP (reverse phase);
TEA (triefhylamine); TFA (trifluoroacetic acid);
TFAA (trifluoroacetic anhydride); THF (tetrahydrofuran);
CDCI3 (deuterated chloroform); CD3OD (deuterated methanol); SiO2 (silica); DMSO (dimethylsulfoxide);
EtOAc (ethyl acetate); atm (atmosphere);
HCl (hydrochloric acid); CHCI3 (chloroform);
DMF (A/,Λ/-dimethylformamide); Ac (acetyl);
Cs2CO3 (cesium carbonate); Me (methyl); Et (ethyl); EtOH (ethanol);
MeOH (methanol); t-Bu (tert-butyl)
I PA (isopropyl alcohol); NMO (4-methylmorpholine Λ/-oxide);
DIEA (diisopropyl ethylamine); DCE (1 ,2-dichloroethane).
Unless otherwise indicated, all temperatures are expressed in °C (degrees
Centigrade). All reactions conducted under an inert atmosphere at room temperature unless otherwise noted.
1H NMR spectra were recorded on a Varian VXR-300, a Varian Unity-300, a Varian Unity-400 instrument, or a General Electric QE-300. Chemical shifts are expressed in parts per million (ppm, δ units). Coupling constants are in units of hertz (Hz). Splitting patterns describe apparent multiplicities and are designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiple.), or b (broad).
Scheme 1
Method A
Figure imgf000031_0001
Method B
ZγγNH2
YX
Figure imgf000031_0002
Figure imgf000031_0003
x = = F, CI, Br, OTf, etc.
Y = : CN, N02 z = : CF3, CN, halogen, etc.
The secondary anilines required for the synthesis of compounds of formula (I) can be prepared by three different methods (Scheme 1). As exemplified by method A, electron deficient arenes are treated with primary amines, a non-limiting example is 1- cyclopropylmethanamine, in the presence of a base, a non-limiting example of which is potassium carbonate, to afford the corresponding aniline. A second method of synthesizing the requisite secondary anilines is by reductive alkylation of primary anilines using aldehydes or hydrates, a non-limiting example of which is trifluoroacetaldehyde hydrate, and reducing agents, a non-limiting example of which is sodium cyanoborohydride, in the presence of acid such as TFA (method B). The third method of secondary aniline synthesis, method C, involves alkylation of primary anilines with alkyl halides, a non-limiting example of which is 1- bromo-2-fluoroethane, in the presence of base, a non-limiting example of which is cesium carbonate. Scheme 2
Figure imgf000032_0001
X = F, CI, OTf Y = CN, N02
Z = CF3, CN, halogen, etc.
The next step in the synthesis of compounds of formula (I) is accomplished by alkylation of secondary anilines with α-haloesters, a non-limiting example of which is t- butylbromo acetate (Scheme 2). Deprotection with acid or saponification with base affords the corresponding carboxylic acid, which is then coupled with amines by three methods. When alkyl substituted amines are used, a non-limiting example of which is methylamine, then coupling is accomplished with coupling agents, a non-limiting example of which is DCC (Scheme 3, method A). Primary amides are afforded by activation of the corresponding carboxylic acids with di-tert-butylcarbonate followed by treatment with ammonium bicarbonate (Scheme 3, method B). Another method used to generate amides is through synthesis of acid chlorides followed by treatment with amines (Scheme 3, method C).
Scheme 3
Method A
Figure imgf000033_0001
Method B
Figure imgf000033_0002
Method C
Figure imgf000033_0003
Y = CN, N02
Z = CF,, CN, halogen, etc.
EXAMPLES
Representative Procedure for Secondary Aniline Synthesis Method A Example 1
1 ,1 -Dimethylethyl Λ/-[4-cyano-3-(trif luoromethyl)phenyl]-Λ/- (cyclopropylmethyl)glycinate
Figure imgf000033_0004
A. 4-[(Cyclopropylmethyl)amino]-2-(trifluoromethyl)benzonitrile
A mixture of 4-fluoro-2-(trifluoromethyl)benzonitrile (9.45 g, 50 mmol), 1- cyclopropylmethanamine (5.0 g, 70 mmol), and potassium carbonate (10 g) was stirred for 12 hours in acetonitrile (50 mL) at 55 °C. The mixture was cooled to 20 °C, filtered, and the filter-cake was washed with acetonitrile (3 x 25 mL). The filtrate was concentrated under vacuum to obtain 11.9 g (99%) of the title compound as a white solid: 1H NMR (400 MHz, CDCI3) δ 7.53 (d, J = 8.6 Hz, 1 H), 6.83 (d, J = 2.4 Hz, 1 H), 6.65 (dd, J = 8.6, 2.4 Hz, 1 H), 4.62 (bs, 1 H), 3.02 (d, J = 7.1 Hz, 2H), 1.09 (m, 1 H), 0.61 (m, 2H), 0.27 (m, 2H).
Figure imgf000034_0001
B. 1,1 -Dimethylethyl tø-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- (cyclopropylmethyl)glycinate
Sodium hydride (60%, 2.0 g, 50 mmol) was added to a stirred solution of 4- [(cyclopropylmethyl)amino]-2-(trifluoromethyl)benzonitrile (6.0 g, 25 mmol), and tert-butyl bromoacetate (6.82 g, 35 mmol) in 20 mL of DMF at 0 °C over 20 minutes. The mixture was then stirred at 5-10 °C for 30 minutes. Diethyl ether (200 mL) was added to the mixture and the resulting slurry was extracted with water (3 x 50 mL). The organic phase was dried (MgSO4), filtered, and then concentrated under reduced pressure. The residue was purified with silica gel chromatography (eluent: hexane-EtOAc; 3:1) to obtain 6.55g (74%) of the title compound as a white solid: 1H NMR (400 MHz, CDCI3) δ 7.59 (d, J = 8.8 Hz, 1 H), 6.92 (d, J = 2.6 Hz, 1 H), 6.77 (dd, J = 8.8, 2.7 Hz, 1 H), 4.10 (s, 2H), 3.33 (d, J = 6.6 Hz, 2H), 1.43 (s, 9H), 1.05 (m, 1 H), 0.62 (m, 2H), 0.26 (m, 2H).
Example 2
Figure imgf000034_0002
Λf-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)glycine
A mixture of 1 ,1-dimethylethyl /V-[4-cyano-3-(trifluorpmethyl)phenyl]-Λ/- (cyclopropylmethyl)glycinate (5.01g, 14.1 mmol), TFA (50 mL), and triethylsilane (5 mL) in CH2CI2 (50 mL) was stirred at ambient temperature for 3 h. When the TLC indicated no remaining starting material, the solvents were removed under reduced pressure, and the residue was stirred in hexane (50 mL) for 12 hours. The solid precipitate was filtered and dried to obtain 2.9 g (71%) of the title compound as a white solid: 1H NMR (400 MHz, CDCI3) δ 7.61 (d, J = 8.8 Hz, 1 H), 6.97 (d, J = 2.8 Hz, 1 H), 6.78 (dd, J = 8.8, 2.8 Hz, 1 H), 4.29 (s, 2H), 3.34 (d, J = 6.4 Hz, 2H), 1.37 (m, 1 H), 0.64 (m, 2H), 0.27 (m, 2H).
Representative Procedure for Coupling Method A
Example 3
Figure imgf000035_0001
Λ^-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ 1-methylglycinamide
A mixture of Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropyl-methyl)glycine (0.148 g, 0.5 mmol), and resin bounded carbodiimide (PS-Carbodiimide) (1.0 g, 1.26 mmol/g) was shaken in CH2CI2 (15 mL) for 30 min, then methylamine (33% solution in water, 0.1 mL, 1 mmol) was added, and the mixture was shaken for another 12 h. The resin was filtered and washed with CH2CI2 (2 x 10 mL). The resulting filtrate was concentrated under vacuum. The residue was purified via preparative HPLC to obtain 0.036 g (23%) of the title compound as a white foam: 1H NMR (400 MHz, CDCI3) δ 7.54 (d, J = 8.5 Hz, 1 H), 6.99 (bs, 1 H), 6.89 (dd, J = 8.8, 2.6 Hz, 1 H), 6.28 (bs, 1 H), 4.08 (s, 2H), 3.34 (d, J = 6.6 Hz, 2H), 2.80 (d, J = 4.7 Hz, 3H), 1.06 (m, 1 H), 0.65 (m, 2H), 0.31 (m, 2H).
Representative Procedure for Coupling Method B
Example 4
Figure imgf000036_0001
Λ/2-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)glycinamide
A mixture of A/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)glycine (0.298 g, 1 mmol), di-terf-butyl dicarbonate (0.436 g, 2 mmol), pyridine (0.100 g, 1.25 mmol), and ammonium hydrocarbonate (0.160 g, 2.25 mmol) was stirred for 24 h in acetonitrile (8 mL). The solvent was removed under reduced pressure, then water (10 mL) was added to the residue. The resulting solid was filtered, washed with water (3 x 5 mL), and then dried. After drying, the solid was suspended in diethyl ether (10 mL) and stirred for 12 h. The mixture was filtered, washed with diethyl ether (5 mL), and dried to obtain 0.118 g (40%) of the title compound as a white solid: 1H NMR (400 MHz, CDCI3) δ 7.63 (d, J = 8.6 Hz, 1 H), 7.03 (d, J = 2.3 Hz, 1 H), 6.84 (dd, J = 8.8, 2.5 Hz, 1 H), 6.02 (bs, 1 H), 5.57 (bs, 1 H), 4.10 (s, 2H), 3.38 (d, J = 6.6 Hz, 2H), 1.08 (m, 1 H), 0.67 (m, 2H), 0.33 (m, 2H).
Figure imgf000036_0002
1 ,1 -Dimethylethyl W-[4-cyano-3-(trifluoromethyl)phenyl]-W-methylglycinate Synthesized as described in step B of example 1 using 4-(methylamino)-2-
(trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 7.60 (d, J = 8.8 Hz, 1 H), 6.88 (d, J = 2.6 Hz, 1 H), 6.74 (dd, J = 8.8, 2.7 Hz, 1 H), 4.02 (s, 2H), 3.15 (s, 3H), 1.44 (s, 9H). Example 6
1 ,1 -Dimethylethyl /V-[4-cyano-3-(trifluoromethyl)phenyl]-iV-ethylglycinate
Figure imgf000037_0001
A. 4-(Ethylamino)-2-(trifluoromethyl)benzonitrile
Synthesized as described in step A of example 1 using ethylamine: 1H NMR (400 MHz, CDCI3) δ 7.53 (d, J = 8.4 Hz, 1 H), 6.82 (d, J = 2.2 Hz, 1 H), 6.65 (dd, J = 8.6, 2.4 Hz, 1 H), 4.42 (bs, 1H), 3.23 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H).
Figure imgf000037_0002
B. 1 ,1 -Dimethylethyl Λ-[4-cyano-3-(trif luoromethyl)phenyl]-W-ethylglycinate
Synthesized as described in example 1 using 4-(ethylamino)-2-(trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 7.58 (d, J = 8.8 Hz, 1 H), 6.83 (s, 1 H), 6.70 (dd, J = 9.0, 2.4 Hz, 1 H), 3.98 (s, 2H), 3.52 (q, J = 7.2 Hz, 2H), 1.44 (s, 9H), 1.24 (t, J = 7.2 Hz, 3H).
Figure imgf000037_0003
V-[4-Cyano-3-(trifluoromethyl)phenyl]-W-ethylglycine Synthesized as described in example 2 using 1 ,1-dimethylethyl Λ/-[4-cyano-3-
(trifluoromethyl)phenyl]-Λ/-ethylglycinate: 1H NMR (400 MHz, CDCI3) δ 7.60 (d, J = 8.7 Hz, 1H), 6.89 (d, J = 2.6 Hz, 1H), 6.72 (dd, J = 8.7, 2.7 Hz, 1H), 4.16 (s, 2H), 3.53 (q, J = 7.1 Hz, 2H), 1.24(t,J=7.0Hz, 3H).
Figure imgf000038_0001
Λf^-Cyano-S-ftrifluoromethy phenylJ-Λ^-ethylglycinamide
Synthesized as described in example 4 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- ethylglycine: 1H NMR (400 MHz, DMSO-oy δ 7.76 (d, J= 8.6 Hz, 1H), 7.49 (bs, 1H), 7.18 (bs, 1 H), 6.88 (s, 1 H), 6.87 (d, J = 9.3 Hz, 1 H), 4.01 (s, 2H), 3.49 (q, J = 6.9 Hz, 2H), 1.08 (t, J = 6.9Hz, 3H).
Figure imgf000038_0002
Λ^-^-Cyano-S^trifluoromethy phenyll-Λr^-ethyl-iV-propylglycinamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- ethylglycine and propylamine: 1H NMR (400 MHz, CDCI3) δ 7.63 (d, J = 8.8 Hz, 1H), 6.95 (d, J= 2.3 Hz, 1H), 6.77 (dd, J= 8.8, 2.4 Hz, 1H), 5.99 (bs, 1H), 3.96 (s, 2H), 3.54 (q, J = 7.1 Hz, 2H), 3.47 (q, J = 7.0 Hz, 2H), 1.46 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H), 0.83 (t, J = 7.3 Hz, 3H). Example 10
Figure imgf000039_0001
Λf^-^-Cyano-S-^rifluoromethy phenyll-iV^cyclopropylmethy -Λ^-ethylglycinamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- ethylglycine and 1 -cyclopropylmethanamine: 1H NMR (400 MHz, CDCI3) δ 7.63 (d, J = 8.8 Hz, 1 H), 6.96 (d, J = 2.6 Hz, 1 H), 6.79 (dd, J = 8.8, 2.8 Hz, 1 H), 6.06 (bs, 1 H), 3.97 (s, 2H), 3.56 (q, J = 7.1 Hz, 2H), 3.13 (t, J = 6.3 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H), 0.87 (m, 1 H), 0.45 (m,.2H), 0.14 (m, 2H).
Example 11
Figure imgf000039_0002
Λ^-^-Cyano-S-^rifluoromethy phenyll-Λf^-ethyl-iV.Λ/^-dipropylglycinamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- ethylglycine and dipropylamine: 1H NMR (400 MHz, CDCI3) δ 7.55 (d, J = 9.0 Hz, 1 H), 6.76 (d, J = 2.5 Hz, 1 H), 6.65 (dd, J = 8.8, 2.5 Hz, 1 H), 4.14 (s, 2H), 3.51 (m, 2H), 3.31 (t, J = 7.5 Hz, 2H), 3.25 (t, J = 6.7 Hz, 2H), 1.63 (m, 4H), 1.25 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 7.3 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H). Representative Procedure for Secondary Aniline Synthesis Method B
Example 12
1 ,1 -Dimethylethyl Λ/-[4-cyano-3-(trif luoromethyl)phenyl]-ιV-(2,2,2- trifluoroethyl)glycinate
Figure imgf000040_0001
A. 4-[(2,2,2-Trifluoroethyl)amino]-2-(trifluoromethyl)benzonitriIe
To a slurry of 4-amino-2-(trifluoromethyl)benzonitrile (30.09 g, 162 mmol) and NaBH3CN (21.35 g, 340 mmol) in CH2CI2 (160 mL) at ice bath temperature was added neat TFA (160 mL, 2.08 mol), dropwise at a rate such that the internal temperature remained below 5°C (CAUTION: exothermic reaction with hydrogen gas evolution). Trifluoroacetaldehyde hydrate (52.2 g; 405 mmol) was then added over 5 minutes (CAUTION: slightly exothermic reaction, with gas evolution). After 41 h, the mixture was slowly poured into satd NaHCO3 (1 L) at 0°C. The mixture was then completely neutralized by portionwise addition of solid
NaHCO3. The mixture was stirred 30 min and precipitated solids were collected by filtration. Organic and aqueous phases of the filtrate were separated, and the aqueous layer was extracted with CH2CI2 (3 x 150 mL). Combined organic extracts were concentrated to dryness, combined with the solids collected previously, dissolved in EtOAc, washed (H2O, brine), dried over Na2SO4, filtered through a short pad of Celite and concentrated to dryness. Recrystallization from EtOAc/hexanes yielded 32.61 g (95%) of the title compound as slightly tan crystalline plates: 1H NMR (300 MHz, CD3OD) δ 7.59 (d, J = 8.8 Hz, 1 H), 7.05 (d, J = 2.2 Hz, 1 H), 6.92 (dd, J = 8.7, 2.4 Hz, 1 H), 3.92 (q, J = 9.2 Hz, 2H).
Figure imgf000040_0002
B. 1,1 -Dimethylethyl ιV-[4-cyano-3-(trifluoromethyl)phenyl]-W-(2,2,2-trifluoroethyl)glycinate
Synthesized according to step B of example 1 using 4-[(2,2,2-trifluoroethyl)amino]-2- (trifluoromethyl)benzonitrile: 1H NMR (300 MHz, CD3OD) δ 7.70 (d, J = 8.8 Hz, 1 H), 7.01- 7.09 (m, 2H), 4.26 (q, J = 8.9 Hz, 2H), 4.23 (s, 2H, overlapped with 4.26), 1.44 (s, 9H).
Example 13
Figure imgf000041_0001
W-[4-Cyano-3-(trifluoromethyl)phenyl]-W-(2,2,2-trifluoroethyl)glycine Synthesized in a manner similar to example 2 using 1 ,1 -dimethylethyl
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)glycinate: 1H NMR (300 MHz, CD3OD) δ 7.67 (d, J = 8.6 Hz, 1 H), 7.07 (d, J = 2.8 Hz, 1 H), 7.03 (dd, J = 8.6, 2.8 Hz, 1 H), 4.28 (s,' overlapped with 4.24, 2H), 4.24 (q, J = 8.8 Hz, 2H).
Example 14
Figure imgf000041_0002
Λ^-^-Cyano-S-Ctrifluoromethy phenyll-Λ^^^^-trifluoroethy glycinamide
Synthesized in a manner similar to example 4 Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2- trifluoroethyl)glycine: 1H NMR (300 MHz, CD3OD) δ 7.72 (d, J = 8.6 Hz, 1 H), 7.15 (d, J = 2.5 Hz, 1 H), 7.11 (dd, J = 8.8, 2.5 Hz, 1 H), 4.34 (q, J = 8.9 Hz, 2H), 4.27 (s, 2H). Example 15
Figure imgf000042_0001
Methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-iV-(2,2,2-trifluoroethyl)glycinate
Synthesized in a manner similar to step B of example 1 using 4-[(2,2,2-trifluoroethyl)amino]- 2-(trifluoromethyl)benzonitrile and methyl bromoacetate: 1H NMR (400 MHz, CDCI3) δ 7.69 (d, J = 8.8 Hz, 1 H), 7.01 (d, J = 2.4 Hz, 1 H), 6.88 (dd, J = 8.8, 2.6 Hz, 1 H), 4.24 (s, 2H), 4.06 (q, J = 8.5 Hz, 2H), 3.81 (s, 3H).
Example 16
Figure imgf000042_0002
1-Methylethyl V-[4-cyano-3-(trifluoromethyl)phenyl]-V-(2,2,2-trifluoroethyl)glycinate
Synthesized according to example 3 Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-(2,2,2- trifluoroethyl)glycine and isopropanol: 1H NMR (300 MHz, CD3OD) δ 7.81-7.73 (m, 1 H),
7.17-7.09 (m, 2H), 5.04 (sept, J = 6.3 Hz, 1 H), 4.38 (s, 2H, overlapped with 4.35), 4.35 (q, J = 9.0 Hz, overlapped with 4.38, 2H), 1.23 (d, J = 6.1 Hz, 6H).
Example 17
Figure imgf000043_0001
Λ^-^-Cyano-S-^rifluoromethy phenyll-Λ^-methyl-Λr^^^^-trifluoroethy glycinamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2- trifluoroethyl)glycine: 1H NMR (400 MHz, CDCI3) δ 7.68 (d, J = 8.8 Hz, 1 H), 7.04 (d, J = 2.5 Hz, 1 H), 6.90 (dd, J = 8.8, 2.8 Hz, 1 H), 5.80 (bs, 1 H), 4.13 (s, 2H), 4.08 (q, J = 8.6 Hz, 2H), 2.85 (d, J = 4.8 Hz, 3H).
Example 18
Figure imgf000043_0002
Λ^-^-Cyano-S-^rifluoromethy phenyll-i -ethyl-Λ^^^^-trifluoroethy glycinamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2- trifluoroethyl)glycine and ethylamine: 1H NMR (400 MHz, CDCI3) δ 7.68 (d, J = 8.6 Hz, 1 H), 7.03 (d, J = 2.7 Hz, 1 H), 6.91 (dd, J = 8.8, 2.7 Hz, 1 H), 5.78 (bs, 1 H), 4.10 (s, 2H), 4.08 (q, J = 8.6 Hz, 2H), 3.32 (m, 2H), 1.11 (t, J = 7.3 Hz, 3H).
Figure imgf000043_0003
Λ/2-[4-Cyano-3-(trifluoromethyl)phenyl]-yV1-cyclohexyl-Λf?-(2)2,2- trifluoroethyl)glycinamide Synthesized as described in example 3 using A/-[4-cyano-3-(trifluoromethyl)phenyl]-/V-(2,2,2- trifluoroethyl)glycine and cyclohexylamine: 1H NMR (400 MHz, CDCI3) δ 7.68 (d, J = 8.8 Hz, 1 H), 7.03 (d, J = 2.6 Hz, 1 H), 6.92 (dd, J = 8.8, 2.7 Hz, 1 H), 5.81 (d, J = 8.0 Hz, 1 H), 4.12 (s, 2H), 4.10 (q, J = 8.6 Hz, 2H), 3.80 (m, 1 H), 1.83 (m, 2H), 1.63 (m, 3H), 1.32 (m, 2H), 1.08 (m, 3H).
Example 20
Figure imgf000044_0001
/V2-[4-Cyano-3-(trifluoromethyl)phenyl]-/V,,Λ/1-dimethyl-V2-(2,2,2- trifluoroethyl)glycinamide
Synthesized as described in example 3 using A/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-(2,2,2- trifluoroethyl)glycine and dimethylamine: 1H NMR (400 MHz, CDCI3) δ 7.63 (d, J = 8.7 Hz, 1 H), 6.94 (d, J = 2.8 Hz, 1 H), 6.80 (dd, J = 8.8, 2.8 Hz, 1 H), 4.27 (s, 2H), 4.01 (q, J = 8.8 Hz, 2H), 3.10 (s, 3H), 3.01 (s, 3H).
Example 21
Figure imgf000044_0002
2-[4-Cyano(2,2,2-trifluoroethyl)-3-(trifluoromethyl)anilino]-Λ/-methylacetohydrazide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2- trifluoroethyl)glycine and methylhydrazine: 1H NMR (400 MHz, CDCI3) δ 7.62 (d, J = 8.8 Hz, 1 H), 6.97 (d, J = 2.6 Hz, 1 H), 6.83 (dd, J = 8.8, 2.8 Hz, 1 H), 4.62 (s, 2H), 4.25 (bs, 2H), 4.02 (q, J = 8.6 Hz, 2H), 3.24 (s, 3H). Example 22
Figure imgf000045_0001
2-[4-Cyano(2,2,2-trifluoroethyl)-3-(trifluoromethyl)anilino]-Λr,Λr- dimethylacetohydrazide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-(2,2,2- trifluoroethyl)glycine and 1 ,1-dimethylhydrazine: 1H NMR (400 MHz, CD3OD) δ 7.77 (d, J = 9.6 Hz, 1H), 7.14 (bs, 2H), 7.08 (s, 1H), 4.36 (q, J = 9.0 Hz, 2H), 4.26 (s, 2H), 2.69 (s, 3H), 2.61 (s, 3H).
Figure imgf000045_0002
Methyl /V-[4-cyano-3-(trifluoromethyl)phenyl]-W-(2,2,2-trifluoroethyl)alaninate
Synthesized according to step B of example 1 using 4-[(2,2,2-trifluoroethyl)amino]-2- (trifluoromethyl)benzonitrile and methyl 2-bromopropanoate: 1H NMR (400 MHz, CDCI3) δ 7.66 (d, J = 8.8 Hz, 1H), 7.1 (d, J = 2.7 Hz, 1H), 6.95 (dd, J= 8.8, 2.7 Hz, 1H), 4.5 (q, J = 7.3 Hz, 1 H), 4.02-4.13 (m, 2H), 3.74 (s, 3H), 1.64 (d, J = 7.1 Hz, 3H). Example 24
Figure imgf000046_0001
(Λ/-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)alanine
To a solution of methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)alaninate (0.034 g, 0.11 mmol) in THF: methanol (1 :1 ; 3 mL) was added 1 N NaOH (1.1 ml, 1.1 mmol). The solution was heated at 60°C for 30 min. Upon cooling, the solution was treated with 1N HCl (5 mL) and partitioned between ethyl acetate and saturated brine. The organic phase was washed with brine, dried (Na2SO4), and concentrated in vacuo to give 0.031 g (100% yield) of the desired product as a white solid: 1H NMR (400 MHz, CDCI3) δ 7.69 (d, J = 8.8 Hz, 1 H), 7.13 (d, J = 2.7 Hz, 1 H), 6.98 (dd, J= 8.8, 2.7 Hz, 1 H), 4.55 (q, J = 7.2 Hz, 1 H), 4.17-4.01 (m, 2H), 1.69 (d, J = 7.2 Hz, 3H).
Example 25
Figure imgf000046_0002
Λ^-^-Cyano-S-ttrifluoromethy phenyll-Λr^^^^-trifluoroethy alaninamide
Synthesized according to example 4 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-(2,2,2- trifluoroethyl)alanine: 1H NMR (400 MHz, CDCI3) δ 7.66 (d, J = 8.8 Hz, 1 H), 7.13 (d, J = 2.6 Hz, 1 H), 6.99 (dd, J= 8.8, 2.6 Hz, 1 H), 6.0 (bs, 1 H), 5.76 (bs, 1 H), 4.34 (q, j = 7.1 Hz, 1 H), 4.16-4.03 (m, 2H), 1.61 (d, J = 7.1 Hz, 3H). Example 26
Figure imgf000047_0001
Λt2-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-iV2-(2,2,2-trifluoroethyl)alaninamide
Synthesized in a manner similar to example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- (2,2,2-trifluoroethyl)alanine: 1H NMR (400 MHz, CDCI3) δ 7.65 (d, J = 8.8 Hz, 1 H), 7.1 (d, J = 2.6 Hz, 1H), 6.95 (dd, J= 8.8, 2.8 Hz, 1H), 5.95 (bq, 1H), 4.28 (q, J = 7.1 Hz, 1 H), 4.17- 4.02 (m, 2H), 2.81 (d, J = 4.8 Hz, 3H), 1.59 (d, J = 7.1 Hz, 3H).
Figure imgf000047_0002
Λ/2-[4-Cyano-3-(trifluoromethyl)phenyl]-/V1-ethyl-Λ/2-(2,2,2-trifluoroethyl)alaninamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2- trifluoroethyl)alanine and ethylamine: 1H NMR (400 MHz, CDCI3) δ 7.65 (d, J = 8.8 Hz, 1 H), 7.10 (d, J = 2.7 Hz, 1H), 6.96 (dd, J = 8.8, 2.8 Hz, 1H), 5.95 (bs, 1H), 4.26 (q, J = 7.1 Hz, 1 H), 4.10 (m, 2H), 3.28 (m, 2H), 1.58 (d, J = 7.1 Hz, 3H), 1.06 (t, J = 7.4 Hz, 3H).
Example 28
Figure imgf000047_0003
Λ/2-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/1,V1-dimethyl-Λ/2-(2,2,2- trifluoroethyl)alaninamide Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2- trifluoroethyl)alanine and dimethylamine: 1H NMR (400 MHz, CDCI3) δ 7.69 (d, J = 8.8 Hz, 1 H), 7.10 (d, J = 2.7 Hz, 1 H), 7.01 (dd, J = 9.0, 2.7 Hz, 1 H), 4.80 (q, J = 7.0 Hz, 1 H), 4.30 (m, 2H), 3.07 (s, 3H), 2.96 (s, 3H), 1.48 (d, J = 7.0 Hz, 3H).
Figure imgf000048_0001
1, 1 -Dimethylethyl 2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2- trifluoroethyl)amino]butanoate Synthesized as described in step B of example 1 using 4-[(2,2,2-trifluoroethyl)amino]-2- (trifluoromethyl)benzonitrile and tert-butyl 2-bromobutanoate: 1H NMR (400 MHz, CDCI3) δ 7.66 (d, J = 8.8 Hz, 1 H), 7.14 (d, J = 2.7 Hz, 1H), 7.00 (dd, J = 8.8, 2.8 Hz, 1 H), 4.05 (m, 3H), 2.12 (m, 1H), 1.93 (m, 1H), 1.41 (s, 9H), 1.02 (t, J = 7.5 Hz, 3H).
Example 30
Figure imgf000048_0002
2-[[4-Cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanoic acid
Synthesized as described in example 2 using 1 ,1-dimethylethyl 2-[[4-cyano-3- (trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanoate: 1H NMR (400 MHz, CDCI3) δ 7.68 (d, J - 8.8 Hz, 1 H), 7.17 (d, J = 2.8 Hz, 1 H), 7.02 (dd, J = 8.8, 2.8 Hz, 1 H), 4.22 (dd, J ■■ 8.8, 6.3 Hz, 1 H), 4.05 (m, 2H), 2.20 (m, 1 H), 1.98 (m, 1 H), 1.56 (t, J = 7.3 Hz, 3H). Example 31
Figure imgf000049_0001
2-[[4-Cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanamide
Synthesized as described in example 3 using 2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2- trifluoroethyl)amino]butanoic acid and ammonia: 1H NMR (400 MHz, CDCI3) δ 7.60 (d, J = 9.0 Hz, 1 H), 7.17 (d, J = 2.6 Hz, 1 H), 7.03 (dd, J = 9.0, 2.8 Hz, 1 H), 6.38 (bs, 1 H), 6.27 (bs, 1 H), 4.25-4.04 (m, 3H), 2.15 (m, 1 H), 1.91 (m, 1 H), 0.99 (t, J = 7.4 Hz, 3H).
Example 32
Figure imgf000049_0002
2-[[4-Cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-/V-methylbutanamide
Synthesized as described in example 3 using 2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2- trifluoroethyl)amino]butanoic acid: 1H NMR (400 MHz, CDCI3) δ 7.62 (d, J = 8.8 Hz, 1 H),
7.14 (d, J = 2.4 Hz, 1 H), 7.01 (dd, J = 8.8, 2.6 Hz, 1 H), 6.18 (bs, 1 H), 4.20 (m, 1 H), 4.06 (q, J = 7.5 Hz, 2H), 2.80 (d, J = 4.7 Hz, 3H), 2.20 (m, 1 H), 1.88 (m, 1 H), 0.99 (t, J = 7.4 Hz, 3H).
Figure imgf000049_0003
2-[[4-Cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-ιV-ethylbutanamide Synthesized as described in example 3 using 2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2- trifluoroethyl)amino]butanoic acid and ethylamine: 1H NMR (400 MHz, CDCI3) δ 7.64 (d, J = 8.8 Hz, 1 H), 7.14 (d, J = 2.6 Hz, 1 H), 7.01 (dd, J = 8.8, 2.8 Hz, 1 H), 5.99 (bs, 1 H), 4.22 (m, 1H), 4.09 (m, 1H), 4.00 (t, J = 7.4 Hz, 1H), 3.28 (m, 2H), 2.21 (m, 1H), 1.90 (m, 1 H), 1.07 (t, J = 7.4 Hz, 3H), 0.99 (t, J = 7.5 Hz, 3H).
Example 34
Figure imgf000050_0001
2-[[4-Cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-Λ ,iV- dimethylbutanamide
Synthesized as described in example 3 using 2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2- trifluoroethyl)amino]butanoic acid and dimethylamine: 1H NMR (400 MHz, CDCI3) δ 7.70 (d, J = 8.8 Hz, 1 H), 7.17 (d, J = 2.6 Hz, 1 H), 7.05 (dd, J = 8.8, 2.8 Hz, 1 H), 4.51 (dd, J = 8.4, 5.5 Hz, 1H), 4.17 (m, 1H), 4.05 (m, 1H), 2.98 (s, 3H), 2.97 (s, 3H), 2.06 (m, 1 H), 1.67 (m, 1 H), 0.97 (t, = 7.4 Hz, 3H).
Example 35
1 ,1 -Dimethylethyl /V-[4-cyano-3-(trif luoromethyl)phenyl]-Λ/-propylglycinate
Figure imgf000050_0002
A. 4-(Propylamino)-2-(trifluoromethyl)benzonitrile
Synthesized as described in step A of example 1 using n-propylamine: 1H NMR (400 MHz, CDCI3) δ 7.53 (d, J = 8.6 Hz, 1 H), 6.82 (d, J = 2.4 Hz, 1 H), 6.65 (dd, J = 8.6, 2.4 Hz, 1 H), 4.44 (bs, 1 H), 3.15 (t, = 7.1 Hz, 2H), 1.67 (m, 2H), 1.01 (t, J - 7.5 Hz, 3H).
Figure imgf000051_0001
B. 1 ,1 -Dimethylethyl Λ/-[4-cyano-3-(trif luoromethyl)phenyl]-Λ/-propylglycinate
Synthesized as described in step B of example 1 using 4-(propylamino)-2- (trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 7.57 (d, J = 8.8 Hz, 1 H), 6.82 (d, J = 2.6 Hz, 1 H), 6.70 (dd, J = 9.0, 2.8 Hz, 1 H), 3.98 (s, 2H), 3.93 (t, J = 7.5 Hz, 2H), 1.67 (q, J = 7.5 Hz, 2H), 1.44 (s, 9H), 0.97 (t, J = 7.5 Hz, 3H).
Example 36
Figure imgf000051_0002
Λ/-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/-propylglycine
Synthesized as described in example 2 using 1 ,1-dimethylethyl Λ/-[4-cyano-3- (trifluoromethyl)phenyl]-A/-propylglycinate: 1H NMR (400 MHz, CDCI3) δ 7.61 (d, J = 8.7 Hz, 1H), 6.87 (d, J = 2.6 Hz, 1 H), 6.71 (dd, J = 8.8, 2.6 Hz, 1H), 4.18 (s, 2H), 3.41 (t, J = 7.7 Hz, 2H), 1.68 (m, 2H), 0.98 (t, J = 7.5 Hz, 3H).
Example 37
Figure imgf000051_0003
Λ/^-Cyano-S-ftrifluoromethy phenyll-Λ -propylglycinamide Synthesized as described in example 4 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- propylglycine: 1H NMR (400 MHz, DMSO-c/6) δ 7.75 (d, J = 9.3 Hz, 1 H), 7.49 (bs, 1 H), 7.18 (bs, 1H), 6.87 (bs, 2H), 4.03 (s, 2H), 3.39 (t, J - 7.6 Hz, 2H), 1.53 (q, J = 7.4 Hz, 2H), 0.86 (t, J = 7.3 Hz, 3H).
Example 38
Figure imgf000052_0001
Λt2-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ 1,Λ/2-dipropylglycinamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- propylglycine and propylamine: 1H NMR (400 MHz, CDCI3) δ 7.61 (d, J = 8.6 Hz, 1 H), 6.92 (d, J = 2.5 Hz, 1 H), 6.76 (dd, J = 8.8, 2.5 Hz, 1 H), 5.94 (bs, 1 H), 3.98 (s, 2H), 3.41 (t, J = 7.9 Hz, 2H), 3.22 (q, J = 6.8 Hz, 2H), 1.68 (m, 2H), 1.45 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H), 0.82 (t, J = 7.5 Hz, 3H).
Example 39
Figure imgf000052_0002
Λ/2-[4-Cyano-3-(trifluoromethyl)phenyl]-iV1-(cyclopropylmethyl)-iV2-propylglycinamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- propylglycine and 1-cyclopropylmethane amine: 1H NMR (400 MHz, CDCI3) δ 7.62 (d, J = 8.8 Hz, 1 H), 6.93 (d, J = 2.6 Hz, 1 H), 6.77 (dd, J = 8.8, 2.8 Hz, 1 H), 6.00 (bs, 1 H), 3.99 (s, 2H), 3.43 (t, = 7.7 Hz, 2H), 3.12 (t, J = 6.8 Hz, 2H), 1.70 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H), 0.87 (m, 1 H), 0.44 (m, 2H), 0.13 (m, 2H). Example 40
1 ,1 -Dimethylethyl iV-[4-cyano-3-(trif luoromethyl)phenyl]-/V-2-propen-1 -ylglycinate
Figure imgf000053_0001
A. 4-(2-Propen-1 -ylamino)-2-(trifluoromethyl)benzonitrile
Synthesized in a manner similar to step A of example 1 using allylamine: 1H NMR (300 MHz, CD3OD) δ 7.58 (d, J = 8.8 Hz, 1 H), 6.95 (d, J = 1.9 Hz, 1 H), 6.79 (dd, J = 8.6, 2.2 Hz, 1 H), 5.89 (ddt, J = 17.2, 10.3, 5.1 Hz, 1 H), 5.24 (apparent dq, J = 17.2, 1.7 Hz, 1 H), 5.17 (apparent dq, J = 10.4, 1.6 Hz, 1 H), 3.84 (apparent d, J = 5.1 Hz, 2H).
Figure imgf000053_0002
B. 1 ,1 -Dimethylethyl /V-[4-cyano-3-(trif luoromethyl)phenyl]-Λ/-2-propen-1 - ylglycinate Synthesized in a manner similar to step B of example 1 : 1H NMR (300 MHz, CD3OD) δ 7.68 (d, J = 8.7 Hz, 1 H), 6.96 (d, J = 2.4 Hz, 1 H), 6.92 (dd, J = 8.7, 2.6 Hz, 1 H), 5.90 (ddt, J = 17.4, 10.7, 5.1 Hz, 1H), 5.18 (m, =CH2, 2H), 4.18 (s, 2H), 4.09 (apparent d, J = 4.8 Hz, 2H), 1.48 (s, 9H).
Secondary Aniline Synthesis Method C Example 41
Methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-W-(2-fluoroethyl)glycinate
Figure imgf000054_0001
A. 4-[(2-Fluoroethyl)amino]-2-(trifluoromethyl)benzonitrile
To a solution of 4-amino-2-(trifluoromethyl)benzonitrile (0.100 g, 0.54 mmol) in acetonitrile (3 mL) was added cesium carbonate (0.438 g, 1.34 mmol) and 1-bromo-2-fluoroethane (0.340 g, 2.68 mmol). The mixture was heated in a microwave at 120°C for 15 min. Upon cooling, additional 1 -bromo-2-fluoroethane (0.340 g, 2.68 mmol) was added and the reaction was heated in the microwave at 140°C for 20 min. Upon cooling, the solids were filtered off and washed, with ethyl acetate. The filtrate was concentrated in vacuo and the residue was purified by radial chromatography (10-40% ethyl acetate-hexane gradient) to give 0.100 g of a mixture (6:1 ) of the title compound and 4-[bis(2-fluoroethyl)amino]-2-
(trifluoromethyl)benzonitrile as a white solid, which was used as such in the next reaction.
Figure imgf000054_0002
B. Methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ -(2-fluoroethyl)glycinate
To a solution of a 6:1 mixture of 4-[(2-fluoroethyl)amino]-2-(trifluoromethyl)benzonitrile and 4- [bis(2-fluoroethyl)amino]-2-(trifluoromethyl)benzonitrile (0.100 g) in acetonitrile (3 mL) was added Cs2CO3 (0.169 g, 0.52 mmol) and methyl bromoacetate (0.080 g, 0.52 mmol). The mixture was heated at 85°C for 2 h. Upon cooling, additional methyl bromoacetate (0.080 g, 0.52 mmol) was added and heated at 85°C for 8 h. Upon cooling, the mixture was partitioned between ethyl acetate and water. The organic phase was washed with brine, dried (Na2SO ), and concentrated in vacuo. The residue was purified by radial chromatography (10-80% EtOAc-hexanes gradient) to give 0.052 g (50% yield) of the desired product as a white solid: 1H NMR (400 MHz, CDCI3) δ 7.62 (d, J = 8.9 Hz, 1 H), 6.92 (d, J = 2.7 Hz, 1 H), 6.76 (dd, J- 8.9, 2.7 Hz, 1 H), 4.68 (dt, J= 47.0, 4.8 Hz, 2H), 4.21 (s, 2H), 3.81 (dt, J= 25.6, 4.8 Hz, 2H), 3.78 (s, 3H).
Representative Procedure for Coupling Method C
Example 42
Λf?-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ^-(2-fluoroethyl)glycinamide
Figure imgf000055_0001
A. Λ/-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/-(2-fluoroethyl)glycine
Synthesized in a manner similar to example 24 using methyl A/-[4-cyano-3- (trifluoromethyl)phenyl]-Λ/-(2-fluoroethyl)glycinate to give the desired product as a white solid, which was used as such in the next reaction.
Figure imgf000055_0002
B. Λf^-^-Cyano-S-^rifluoromethy phenylJ-Λ^^-fluoroethy glycinamide A suspension of A/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2-fluoroethyl)glycine (0.031 g, 0.11 mmol) in anhydrous CH2CI2 (2 mL), under nitrogen, was cooled in an ice bath and treated with oxalyl chloride (0.017 g, 0.13 mmol) and anhydrous DMF (-0.001 g). The mixture was heated at 50°C for 20 min. Upon cooling, the mixture was added into an aqueous solution of ammonia (30%, 10 mL) and stirred heavily for 5 min. The mixture was partitioned between CH2CI2 (20 mL), water (20 mL) and methanol (5 mL). The aqueous phase was extracted 3 times with CH2CI2/MeOH (-10:1). The combined organic extracts were washed with brine, dried over sodium sulfate and concentrated in vacuo. The residue was crystallized from CH2CI2/MeOH to give 0.012 g (40% yield) of the title compound as a white solid: 1H NMR (400 MHz, DMSO-of6) δ 7.79 (d, J = 8.8 Hz, 1 H), 7.52 (bs, 1 H), 7.21 (bs, 1 H), 6.99 (d, J = 2.4 Hz, 1 H), 6.93 (dd, J= 8.8, 2.4 Hz, 1 H), 4.61 (dt, J= 47.4, 4.9 Hz, 2H), 4.08 (s, 2H), 3.82 (dt, J= 26.0, 4.9 Hz, 2H).
Example 43
1 ,1 -Dimethylethyl Λ/-[4-cyano-3-(trif luoromethyl)phenyl]-/V-(2-methylpropyl)glycinate
Figure imgf000056_0001
A. 4-(lsobutylamino)-2-(trifluoromethyl)benzonitrile Synthesized as described in step A of example 1 using isobutylamine: 1H NMR (400 MHz, CDCI3) δ 7.53 (d, J = 8.6 Hz, 1 H), 6.82 (d, J = 2.4 Hz, 1 H), 6.65 (dd, J = 8.6, 2.4 Hz, 1 H), 4.45 (bs, 1 H), 3.00 (d, J = 7.0 Hz, 2H), 1.90 (m, 1H), 1.00 (d, = 6.8 Hz, 6H).
Figure imgf000056_0002
B. 1,1 -Dimethylethyl W-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2- methylpropyl)glycinate
Synthesized as described in step B of example 1 using 4-(isobutylamino)-2- (trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 7.57 (d, J = 8.8 Hz, 1 H), 6.83 (d, J = 2.5 Hz, 1 H), 6.71 (dd, J = 8.8, 2.8 Hz, 1 H), 4.00 (s, 2H), 3.24 (d, J = 7.5 Hz, 2H), 2.02. (m, 1 H), 1.44 (s, 9H), 0.96 (d, J = 6.6 Hz, 6H). Example 44
Figure imgf000057_0001
Λ/-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/-isobutylglycine
Synthesized as described in example 2 using 1 ,1-dimethylethyl Λ/-[4-cyano-3- (trifluoromethyl)phenyl]-Λ/-(2-methylpropyl)glycinate: 1H NMR (400 MHz, CDCI3) δ 7.59 (d, J = 9.0 Hz, 1 H), 6.90 (d, = 2.6 Hz, 1 H), 6.72 (dd, J = 9.0, 2.7 Hz, 1 H), 4.19 (s, 2H), 3.26 (d, J = 7.5 Hz, 2H), 2.04 (m, 1 H), 0.97 (d, J = 6.6 Hz, 6H).
Example 45
Figure imgf000057_0002
Λf^4-Cyano-3-(trifluoromethyl)phenyl]-Λ/2-isobutylglycinamide
Synthesized as described in example 4 using A/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- isobutylglycine: 1H NMR (400 MHz, DMSO-c6) δ 7.74 (d, J - 9.4 Hz, 1 H), 7.48 (bs, 1 H), 7.18 (bs, 1 H), 6.89 (bs, 2H), 4.05 (s, 2H), 3.28 (d, J = 7.3 Hz, 2H), 1.94 (m, 1 H), 0.86 (d, J = 6.6 Hz, 6H).
Example 46
Figure imgf000057_0003
Λ^-μ-Cyano-S-Ctrifluoromethy phenyπ-Λr^-isobutyl-Λ^-methylglycinamide Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- isobutylglycine: 1H NMR (400 MHz, CDCI3) δ 7.59 (d, J = 8.8 Hz, 1 H), 6.93 (d, J = 2.7 Hz, 1 H), 6.74 (dd, J = 8.8, 2.8 Hz, 1 H), 5.86 (d, J = 4.0 Hz, 1 H), 4.05 (s, 2H), 3.30 (d, J = 7.4 Hz, 2H), 2.80 (d, J = 4.9 Hz, 3H), 2.09 (m, 1 H), 0.97 (d, J = 6.8 Hz, 6H).
Example 47
Figure imgf000058_0001
Λ^-^-Cyano-S- trifluoromethy phenyll-Λr^^cyclopropylmethy -iV-ethylglycinamide
Synthesized as described in example 3 using ethylamine: 1H NMR (400 MHz, CDCI3) δ 7.57 (d, J = 8.8 Hz, 1 H), 7.00 (d, J = 2.5 Hz, 1 H), 6.80 (dd, J = 8.8, 2.6 Hz, 1 H), 6.20 (bs, 1 H), 4.06 (s, 2H), 3.35 (d, J = 6.8 Hz, 2H), 3.29 (m, 2H), 1.07 (t, J = 7.1 Hz, 3H), 1.06 (m, 1 H), 0.66 (m, 2H), 0.32 (m, 2H). '
Example 48
Figure imgf000058_0002
Λ/2-[4-Cyano-3-(trifluoromethyl)phenyl]-/V1,W2-bis(cyclopropylmethyl)glycinamide Synthesized in manner similar to example 3 using 1-cyclopropylmethyl amine: 1H NMR (400 MHz, CDCI3) δ 7.63 (d, J = 8.8 Hz, 1 H), 7.02 (d, J = 2.5 Hz, 1 H), 6.83 (dd, J = 8.8, 2.7 Hz, 1H), 6.18 (bs, 1H), 4.08 (s, 2H), 3.37 (d, J = 6.8 Hz, 2H), 3.12 (t, J = 6.7 Hz, 2H), 1.09 (m, 1 H), 0.86 (m, 1H), 0.67 (m, 2H), 0.45 (m, 2H), 0.34 (m, 2H), 0.13 (m, 2H). Example 49
Figure imgf000059_0001
1 ,1 -Dimethylethyl W-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- (cyclopropylmethyl)alaninate
Synthesized in manner similar to example 1 using 4-[(cyclopropylmethyl)amino]-2- (trifluoromethyl)benzonitrile and 1 ,1-dimethylethyl 2-bromopropanoate: 1H NMR (400 MHz, CDCI3) δ 7.58 (d, J = 8.8 Hz, 1 H), 7.04 (d, J = 2.6 Hz, 1 H), 6.86 (dd, J = 8.9, 2.7 Hz, 1 H), 4.33 (q, J = 7.1 Hz, 1 H), 3.30 (m, 2H), 1.54 (d, J = 7.1 Hz, 3H), 1.39 (s, 9H), 0.99 (m, 1 H), 0.63 (m, 2H), 0.29 (m, 2H).
Example 50
Figure imgf000059_0002
Λ/-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ -(cyclopropylmethyl)alanine
Synthesized as described in example 2 using 1 ,1-dimethylethyl Λ/-[4-cyano-3- (trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)alaninate: 1H NMR (400 MHz, CDCI3) δ 7.61 (d, J = 8.9 Hz, 1 H), 7.09 (d, J = 2.6 Hz, 1 H), 6.88 (dd, J = 8.8, 2.6 Hz, 1 H), 4.56 (q, J = 7.1 Hz, 1H), 3.30 (d, J = 5.8 Hz, 2H), 1.62 (d, J = 7.1 Hz, 3H), 1.00 (m, 1 H), 0.65 (m, 2H), 0.29 (m, 2H). Example 51
Figure imgf000060_0001
Λ^-[4-Cyano-3-(trifluoromethyl)phenyl]-Λ^-(cyclopropylmethyl)alaninamide
Synthesized as described in example 4 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- (cyclopropylmethyl)alanine: 1H NMR (400 MHz, DMSO-d6) δ 7.79 (d, J = 8.8 Hz, 1 H), 7.40 (bs, 1 H), 7.21 (bs, 1H), 7.06 (d, J = 2.1 Hz, 1 H), 7.00 (dd, J = 8.8, 2.2 Hz, 1 H), 4.47 (q, J = 7.0 Hz, 1H), 3.42 (dd, J = 15.5, 5.8 Hz, 1H), 3.28 (dd, J = 15.8, 9.4 Hz, 1H), 1.38 (d, J = 7.0 Hz, 3H), 0.96 (m, 1H), 0.49 (m, 2H), 0.35 (m, 1H), 0.25 (m, 1H).
Example 52
Figure imgf000060_0002
Λ -^-Cyano-S-^rifluoromethy phenyll-Λr^^cyclopropylmethy -Λ^-methylalaninamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-/V- (cyclopropylmethyl)alanine: 1H NMR (400 MHz, CDCI3) δ 7.52 (d, J = 8.8 Hz, 1 H), 7.05 (d, J = 2.7 Hz, 1 H), 6.83 (dd, J = 8.7, 2.7 Hz, 1 H), 6.43 (d, J = 4.4 Hz, 1 H), 4.33 (dd, J = 14.1 , 7.1 Hz, 1 H), 3.38 (dd, J = 15.5, 6.8 Hz, 1 H), 3.23 (dd, J = 15.4, 6.8 Hz, 1 H), 2.79 (d, J = 4.7 Hz, 3H), 1.53 (d, J = 7.1 Hz, 3H), 1.04 (m, 1H), 0.68 (m, 2H), 0.33 (m, 2H). Example 53
Figure imgf000061_0001
Λfa-[4-Cyano-3-(trifluoromethyl)phenyl]-Λf^-(cycIopropylmethyl)-iV1-ethylalaninamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- (cyclopropylmethyl)alanine and ethylamine: 1H NMR (400 MHz, CDCI3) δ 7.53 (d, J = 8.8 Hz, 1 H), 7.04 (d, J = 2.4 Hz, 1 H), 6.84 (dd, J = 8.8, 2.7 Hz, 1 H), 6.33 (bs, 1 H), 4.27 (q, J = 7.2 Hz, 1 H), 3.40-3.20 (m, 4H), 1.51 (d, J = 7.1 Hz, 3H), 1.05 (t, J = 7.3 Hz, 3H), 1.04 (m, 1 H), 0.68 (m, 2H), 0.34 (m, 2H).
Example 54
Figure imgf000061_0002
Λ^-μ-Cyano-S^trifluoromethy phenyll-Λf^^cyclopropylmethy -iV.Λ 1- dimethylalaninamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/- (cyclopropylmethyl)alanine and dimethylamine: 1H NMR (400 MHz, CDCI3) δ 7.64 (d, J = 8.8 Hz, 1 H), 7.10 (d, J = 2.5 Hz, 1 H), 6.95 (dd, J = 8.8, 2.6 Hz, 1 H), 4.63 (q, J = 6.6 Hz, 1 H), 3.19 (m, 2H), 2.98 (s, 3H), 2.90 (s, 3H), 1.38 (d, J = 6.8 Hz, 3H), 0.93 (m, 1 H), 0.57 (m, 2H), 0.26 (m, 2H). Example 55
Figure imgf000062_0001
4-[(Cyanomethyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile
A mixture of Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(2,2,2-trifluoroethyl)glycinamide (0.060 g, 0.18 mmol), CCI (0.5 mL), DCE (4.5 mL) and polymer-supported triphenyl phosphine (3 mmol/g, 0.123 g, 0.36 mmol) was heated at 87°C for 3 h. Upon cooling, the resin was filtered off, washed thoroughly with CHCI3 and the filtrate concentrated in vacuo. The residue was purified by silica gel chromatography (5-40% EtOAc-hexane gradient) and the product was crystallized from CH2CI2-hexanes to give the title compound as a white solid (0.030 g, 55% yield): 1HNMR (400 MHz, CDCI3) δ 7.90 (d, J = 8.6 Hz, 1 H), 7.20 (d, J = 2.6 Hz, 1 H), 7.09 (dd, J = 8.6, 2.6 Hz, 1 H), 4.38 (s, 2H), 4.06 (q, J = 8.2 Hz, 2H); MS (ES) m/z 308 (M+1).
Example 56
Figure imgf000062_0002
4-[(1-Cyanoethyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile
Synthesized as described in example 55 using N2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2- (2,2,2-trifluoroethyl)alaninamide: 1H NMR (400 MHz, CDCI3) δ 7.80 (d, J = 8.8 Hz, 1 H), 7.32 (d, J = 2.6 Hz, 1 H), 7.24 (dd, J = 8.8, 2.6 Hz, 1 H), 4.72 (q, J = 7.2 Hz, 1 H), 4.04 (q, J = 8.0 Hz, 2H), 1.75 (d, J = 7.2 Hz, 3H); MS (ES) m/z 322 (M+1 ). Example 57
Methyl 3-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2- methylpropanoate
Figure imgf000063_0001
A. Methyl 2-{[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2- trifluoroethyl)amino]methyl}acrylate
Synthesized as described in example 2 from 4-[(2,2,2-trifluoroethyl)amino]-2- (trifluoromethyl)benzonitrile and methyl 2-(bromomethyl)acrylate: MS (ES) m/z 367 (M+1 ).
Figure imgf000063_0002
B. Methyl 3-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2- methylpropanoate
A suspension of 5% Pd/C (0.060 g) in EtOAc (3 mL) was stirred under an H2 atmosphere (balloon pressure) for 15 min. A solution of methyl 2-{[[4-cyano-3- (trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]methyl}acrylate (0.090 g, 0.245 mmol) in EtOAc (3 mL) was added and the mixture stirred for 1 hr. The catalyst was filtered off and washed with EtOAc. The filtrate was concentrated and purified by silica gel chromatography to afford 0.056 g (62% yield) of the title compound: MS (ES) m/z 369 (M+1 ). Example 58 4-[(2-Cyanopropyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitriIe
Figure imgf000064_0001
A. 3-[[4-Cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2- methylpropanoic acid
A solution of methyl 3-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2- methylpropanoate (0.056 g, 0.152 mmol) in 1 :1 THF/MeOH (6 mL) was treated with NaOH (1 N, 1 mL, 1.0 mmol) and heated at 75°C for 30 min. Upon cooling, the mixture was partitioned between EtOAc and 0.1 N HCl. The aqueous phase was extracted with EtOAc and the combined organic phases were washed with brine, dried (Na2SO4) and concentrated in vacuo to give the title compound (0.050 g, 94% yield): 1H NMR (400 MHz, CDCI3) δ 7.66 (d, J = 8.8 Hz, 1 H), 7.06 (d, J = 2.6 Hz, 1 H), 6.92 (dd, J = 8.8, 2.6 Hz, 1 H), 4.20-4.02 (m, 2H), 3.87 (dd, J = 15.6, 9.0 Hz, 1 H), 3.56 (dd, J = 15.6, 5.0 Hz, 1 H), 3.0-2.9 (m, 1 H), 1.29 (d, J = 7.1 Hz, 3H).
Figure imgf000064_0002
B. 3-[[4-Cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2- methylpropanamide
To an ice-cold solution of 3-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2- methylpropanoic acid (0.050 g, 0.14 mmol) in CH2CI2 (3 mL), under nitrogen was added oxalyl chloride (0.023 g, 0.18 mmol) and DMF (cat) and the mixture was heated at 42°C for 30 min. Upon cooling, additional oxalyl chloride (0.014 g, 0.11 mmol) and DMF (cat.) were added and heated for 30 min. Upon cooling, NH4OH (30% aqueous solution, 5 mL) was added and the mixture stirred at rt. After 1 h, the mixture was partitioned between CH2CI2 and water. The organic phase was washed with 0.1 N HCl and brine, dried (Na2SO4) and concentrated in vacuo. The residue was purified by silica gel chromatography (1-5% MeOH- CH2CI2 gradient) to give the title compound (0.044 g, 88% yield): 1H NMR (400 MHz, CDCI3) δ 7.58 (d, J = 8.6 Hz, 1 H), 7.01 (d, J = 2.6 Hz, 1 H), 6.89 (dd, J = 8.6, 2.6 Hz, 1 H), 5.70 (bs, NH), 5.54 (bs, NH), 4.22-4.08 (m, 2H), 3.85 (dd, J = 15.4, 10.3 Hz, 1H), 3.54 (dd, J = 15.4, 3.7 Hz, 1 H), 2.80-2.70 (m, 1 H), 1.23 (d, J = 7.0 Hz, 3H).
Figure imgf000065_0001
C. 4-[(2-Cyanopropyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile
A mixture of 3-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2- methylpropanamide (0.044 mg, 0.12 mmol), CCI4 (1.5 mL), DCE (1.5 mL) and polymer- supported triphenyl phosphine (3 mmol/g, 0.089 g, 0.27 mmol) was heated at 87°C for 2 h. Upon cooling, the resin was filtered off, washed thoroughly with CHCI3 and the filtrate concentrated in vacuo. The residue was purified by silica gel chromatography (5-40% EtOAc-hexane gradient) and the product crystallized from CH2CI2-hexanes to give the titie compound as a white solid (0.021 g, 52% yield): 1H NMR (400 MHz, CDCI3) δ 7.72 (d, J = 8.8 Hz, 1 H), 7.03 (d, J = 2.6 Hz, 1 H), 6.94 (dd, J = 8.8, 2.6 Hz, 1 H), 4.31-4.10 (m, 2H), 3.79- 3.68 (m, 2H), 3.10-3.01 (m, 1 H), 1.41 (d, J = 7.2 Hz, 3H); MS (ES) m/z 336 (M+1).
Example 59 N-[4-Cyano-3-(trifluoromethyl)phenyl]-N-(2,2-dimethylpropyl)glycine
Figure imgf000065_0002
A. 4-[(2,2-Dimethylpropyl)amino]-2-(trifluoromethyl)benzonitrile
Synthesized as described in step A of example 1 using neopentylamine: 1H NMR (400 MHz, CDCI3) δ 7.54 (d, J = 8.6 Hz, 1 H), 6.87 (d, J = 2.2 Hz, 1 H), 6.70 (dd, J = 8.6, 2.3 Hz, 1 H), 4.49 (bt, J = 5.8 Hz, 1 H), 2.98 (d, J = 5.9 Hz, 2H), 1.01 (s, 9H).
Figure imgf000066_0001
B. 4-[(2,2-Dimethylpropyl)(2-propen-1-yI)amino]-2-(trifluoromethyl)benzonitrile
To a slurry of hexanes-washed NaH (0.534 g of a 60% suspension in mineral oil, 13.4 mmol) in DMF (10 mL) at 0°C was added a solution of 4-[(2,2-dimethylpropyl)amino]-2- (trifluoromethyl)benzonitrile (1.71 g, 6.68 mmol) in DMF (4 mL), dropwise over 10 min. The resulting solution was stirred 15 min and neat allyl bromide (1.16 mL, 13.4 mmol) was added dropwise over 3 min. The resulting solution was stirred 1 h, poured into water and the whole was extracted with Et2O (x 3). Combined organics were washed (water, brine), dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc/hexanes), affording 1.82 g of the title compound as a colorless syrup: 1H NMR (400 MHz, CDCI3) δ 7.53 (d, J = 8.9 Hz, 1H), 7.02 (d, J = 2.7 Hz, 1 H), 6.83 (dd, J = 8.9, 2.5 Hz, 1 H), 5.73 (ddt, J = 17.2, 10.6, 4.6 Hz, 1 H), 5.23 (app. d, J = 10.6 Hz, 1H), 5.05 (app. d, J = 17.5 Hz, 1H), 4.09 (overlapping ddd, 2H), 3.26 (s, 2H), 1.02 (s, 9H).
Figure imgf000066_0002
C, 4-[(2,2-Dimethylpropyl)(2-oxoethyl)amino]-2-(trifluoromethyl)benzonitrile
To a solution of 4-[(2,2-dimethylpropyl)(2-propen-1-yl)amino]-2-(trifluoromethyl)benzonitrile (1.46 g, 4.95 mmol) in THF/water (20:1 , 45 mL) at rt was added a solution of OsO4 (1.02 g of a 2.5 wt% solution in f-BuOH, 0.10 mmol) in THF/water (20:1 , 5 mL), followed by NMO (1.22 g, 10.4 mmol) in one portion. The resulting mixture was stirred 22 hours at rt, cooled to 0°C and sodium bisulfite (0.300 g) was added in one portion. The mixture was stirred 1 h, filtered through a pad of Celite (EtOAc wash) and the filtrate/washings were partitioned between EtOAc/water (required addition of NaCl to separated layers). The aqueous layer was extracted with EtOAc (x1 ), combined organics were washed with brine and concentrated in vacuo. The residue was dissolved in acetone (50 mL), a solution of NalO4 (2.22 g; 10.4 mmol) in water (20 mL) was added, the mixture was stirred two hours at rt and partially concentrated in vacuo to an aqueous residue. The residue was partitioned between EtOAc/water and the aqueous layer was further extracted with EtOAc (x1 ). Combined organics were washed (water, brine), dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc/hexanes), affording 1.20 g of the title compound as a colorless solid: 1H NMR (400 MHz, CDCI3) δ 9.70 (s, 1H), 7.57 (d, J = 8.8 Hz, 1 H), 6.96 (d, J = 2.5 Hz, 1 H), 6.74 (dd, J = 8.9, 2.7 Hz, 1 H), 4.31 (s, 2H), 3,33 (s, 2H), 1.02 (s, 9H).
Figure imgf000067_0001
D. N-[4-Cyano-3-(trifluoromethyl)phenyl]-N-(2,2-dimethylpropyl)glycine
To a stirred slurry of 4-[(2,2-dimethylpropyl)(2-oxoethyl)amino]-2-(trifluoromethyl)benzonitrile (1.20 g, 4.03 mmol) and 2-methyl-2-butene (4.3 mL, 40 mmol) in .-BuOH (30 mL) at rt was added a solution of NaCIO2 (0.591 g of 80% tech. grade; 5.2 mmol) in NaH2PO4 buffer (6 mL, 1.5 M NaH2PO , adjusted to pH 3.5 with 1 N HCl), dropwise over 5 min (slightly exothermic). After complete dissolution of slurried solids, the flask was stoppered with a rubber septum and placed under balloon pressure of nitrogen for 3 h. Water (100 mL) was added, the whole was adjusted to ca. pH 11 by addition of 15 wt% NaOH, and partially concentrated in vacuo. The aqueous residue was extracted with Et2O (x2), adjusted to ca. pH 1 by addition of 2 N HCl and extracted with EtOAc (x3). The combined EtOAc extracts were washed (brine), dried over Na2SO , filtered and concentrated to dryness, affording 1.16 g of the title compound as a colorless foam: H NMR (400 MHz, CDCI3) δ 7.59 (d, J = 8.9 Hz, 1 H), 7.01 (d, J = 2.2 Hz, 1 H), 6.79 (dd, J = 8.9, 2.5 Hz, 1 H), 4.24 (s, 2H), 3.31 (s, 2H), 1.02 (s, 9H). Example 60 N2-[4-Cyano-3-(trifluoromethyl)phenyl]-N2-(2,2-dimethylpropyl)glycinamide
Figure imgf000068_0001
To a solution of N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(2,2-dimethylpropyl)glycine (1.13 g, 3.58 mmol) in CH2CI2 (10 mL) at 0°C was added oxalyl chloride (0.33 mL, 3.76 mmol), followed by DMF (0.01 mL, 0.2 mmol). The resulting solution was stirred 5 min in the cooling bath, 20 min at rt and 1 h at reflux under N2. After cooling to rt, the solution was slowly poured into NH4OH (10 mL of a 30 wt% solution) at 0°C, stirred 30 min, and the layers were separated. The aqueous layer was extracted with CH2CI2 (x2), combined organics were washed (water, brine), dried over Na2SO , filtered and concentrated in vacuo. The crude product was recrystallized from IPA/hexanes, affording 0.642 g of the title compound as a colorless, amorphous solid. The mother liquor was concentrated and purified by flash chromatography (EtOAc/hexanes), affording an additional 0.241 g of the title compound: 1H NMR (400 MHz, CDCI3) δ 7.61 (d, J = 8.9 Hz, 1 H), 7.07 (d, J = 2.5 Hz, 1 H), 6.85 (dd, J = 8.9, 2.6 Hz, 1 H), 5.70 (bs, 1 H), 5.59 (bs, 1 H), 4.12 (s, 2H), 3.38 (s, 2H), 1.03 (s, 9H).
Example 61 N2-[4-Cyano-3-(trifluoromethyl)phenyl]-N2-(2,2,2-trifluoro-1-methyIethyl)glycinamide
Figure imgf000068_0002
A. 2-(Trif luoromethyI)-4-[(2,2,2-trif luoro-1 -methylethyl)amino]benzonitrile
Synthesized as described in step A of example 12 using 1 ,1 ,1-trifluoroacetone: 1H NMR (400 MHz, CDCI3) δ 7.62 (d, J = 8.6 Hz, 1 H), 6.97 (d, J = 2.2 Hz, 1 H), 6.82 (dd, J = 8.6, 2.2 Hz, 1 H), 4.40 (bd, 8.8 Hz, 1 H), 4.20-4.07 (m, 1 H), 1.48 (d, J = 6.7 Hz, 3H).
Figure imgf000069_0001
B. 4-[2-Propen-1 -yl(2,2,2-trif luoro-1 -methylethyl)amino]-2- (trifluoromethyl)benzonitrile
Synthesized as described in step B of example 59 using 2-(trifluoromethyl)-4-[(2,2,2-trifluoro-
1-methylethyl)amino]benzonitrile: 1H NMR (400 MHz, CDCI3) δ 7.63 (d, J = 8.9 Hz, 1 H), 7.10
(d, J = 2.6 Hz, 1H), 6.96 (dd, J = 9.0, 2.6 Hz, 1H), 5.79 (ddt, J = 17.3, 10.6, 4.6 Hz, 1H), 5.28
(d, J = 10.7 Hz, 1 H), 5.18 (d, J = 17.4 Hz, 1 H), 4.55 (sept, J = 7.0 Hz, 1 H), 4.20-4.00 (m,
2H), 1.54 (J = 6.9 Hz, 3H).
Figure imgf000069_0002
C. 4-[(2-Oxoethyl)(2,2,2-trifluoro-1-methylethyl)amino]-2- (trifluoromethyl)benzonitrile
Synthesized as described in step C of example 59 using 4-[2-propen-1-yl(2,2,2-trifluoro-1- methylethyl)amino]-2-(trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 9.71 (s, 1 H), 7.68 (d, J = 8.8 Hz, 1 H), 6.97 (d, J = 2.2 Hz, 1 H), 6.84 (dd, J = 8.7, 2.5 Hz, 1 H), 4.60 (sept, J = 6.9 Hz, 1 H), 4.34 (d, J = 19.7 Hz, 1 H), 4.26 (d, J = 19.7, 1 H), 1.50 (d, J = 7.0 Hz, 3H).
Figure imgf000070_0001
D. N-[4-Cyano-3-(trifluoromethyl)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)gIycine
Synthesized as described in step D of example 59 using 4-[(2-oxoethyl)(2,2,2-trifluoro-1- methylethyl)amino]-2-(trifluoromethyl)benzonitriIe: 1H NMR (400 MHz, CDCI3) δ 7.69 (d, J = 8.9 Hz, 1 H), 7.04 (d, J = 2.0 Hz, 1 H), 6.91 (dd, J = 8.9, 2.4 Hz, 1 H), 4.58 (sept, J = 6.9 Hz, 1 H), 4.33 (d, J = 19.2 Hz, 1 H), 4.20 (d, J = 19.2 Hz, 1 H), 1.56 (d, J = 6.9 Hz, 3H).
Figure imgf000070_0002
E. N2-[4-Cyano-3-(trifluoromethyl)phenyl]-N2-(2,2,2-trifluoro-1- methylethyl)glycinamide
Synthesized as described in example 60 using N-[4-cyano-3-(trifluoromethyl)phenyl]-N- (2,2,2-trifluoro-1-methylethyl)glycine: 1H NMR (400 MHz, acetone-cY6) δ 7.83 (d, J = 8.9 Hz,
1 H), 7.33 (d, J = 2.4 Hz, 1 H), 7.24 (dd, J = 9.0, 2.7 Hz, 1 H), 7.17 (bs, 1 H), 6.64 (bs, 1 H),
5.20 (sept, J = 7.1 Hz, 1H), 4.33 (d, J = 18.3 Hz, 1 H), 4.12 (d, J = 18.3 Hz, 1 H), 1.61 (d, J =
6.9 Hz, 3H). Example 62
|2
N -[4-Cyano-3-(trifluoromethyl)phenyl]-N2-[1-(trifluoromethyl)propyl]glycinamide
Figure imgf000071_0001
A. 2-(TrifluoromethyI)-4-{[1-(trifluoromethyl)propyl]amino}benzonitrile
Synthesized as described in step A of example 12 using 1 ,1 ,1-trifluorobutanone: 1H NMR (400 MHz, CDCIs) δ 7.62 (d, J = 8.6 Hz, 1 H), 6.98 (d, J = 2.3 Hz, 1 H), 6.83 (dd, J = 8.7, 2.3 Hz, 1 H), 4.35 (bd, J = 9.5 Hz, 1 H), 3.94-3.82 (m, 1 H), 2.09-1.97 (m, 1 H), 1.72-1.58 (m, 1 H), 1.08 (t, = 7.4 Hz, 3H).
Figure imgf000071_0002
B. 4-{2-Propen-1 -yl[1 -(trif luoromethyl)propyl]amino}-2- (trifluoromethyl)benzonitrile
Synthesized as described in step B of example 59 using 2-(trifluoromethyl)-4-{[1-
(trifluoromethyl)propyl]amino}benzonitrile: 1H NMR (400 MHz, CDCI3) δ 7.64 (d, J = 8.9 Hz,
1 H), 7.13 (d, J = 2.6 Hz, 1H), 6.98 (dd, J = 8.9, 2.7 Hz, 1 H), 5.78-5.66 (m, 1 H), 5.32-5.21 (m,
2H), 4.31-4.20 (m, 1 H), 4.10-4.04 (m, 2H), 2.07-1.87 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H).
Figure imgf000071_0003
4-{(2-Oxoethyl)[1-(trifluoromethyl)propyl]amino}-2-(trifluoromethyl)benzonitrile Synthesized as described in step C of example 59 using 4-{2-propen-1-yl[l- (trifluoromethyl)propyl]amino}-2-(trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 9.62 (s, 1 H), 7.69 (d, J = 8.8 Hz, 1 H), 7.03 (d, J = 2.4 Hz, 1 H), 6.90 (dd, J = 8.8, 2.6 Hz, 1 H), 4.40-4.29 (m, 1H), 4.25 (d, J = 19.5 Hz, 1 H), 4.18 (d, J = 19.4 Hz, 1 H), 2.11-1.99 (m, 1 H), 1.89-1.76 (m, 1 H), 1.02 (t, J = 7.4 Hz, 3H).
Figure imgf000072_0001
D. N-[4-Cyano-3-(trifluoromethyl)phenyl]-N-[1-(trifluoromethyl)propyl]glycine
Synthesized as described in step D of example 59 using 4-{(2-oxoethyl)[1- (trifluoromethyl)propyl]amino}-2-(trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 7.69 (d, J = 8ι9 Hz, 1 H), 7.07 (d, J = 2.5 Hz, 1 H), 6.95 (dd, J = 8.8, 2.7 Hz, 1 H), 4.36-4.26 (m, 1 H, partially overlapping 4.27), 4.27 (d, J = 18.9 Hz, 1 H), 4.18 (d, J = 19.0 Hz, 1 H), 2.10- 1.97 (m, 1 H), 1.93-1.79 (m, 1 H), 1.04 (t, J = 7.4 Hz, 3H).
Figure imgf000072_0002
E. N2-[4-Cyano-3-(trifluoromethyl)phenyl]-N2-[1 - (trifluoromethyl)propyl]gIycinamide
Synthesized as described in example 60 using N-[4-cyano-3-(trifluoromethyl)phenyl]-N-[1-
(trifluoromethyl)propyl]glycine: 1H NMR (400 MHz, acetone-ofe) δ 7.83 (d, J = 8.9 Hz, 1 H),
7.40 (s, 1 H), 7.32 (d, J = 9.0 Hz, 1 H), 7.04 (bs, 1 H), 6.63 (bs, 1 H), 5.04-4.92 (m, 1 H), 4.32
(d, J = 18.0 Hz, 1 H), 4.23 (d, J = 18.0 Hz, 1 H), 2.12-1.93 (m, 2H, partially overlapping solvent), 1.08 (t, J = 7.3 Hz, 3H). Example 63
1 ,1 -Dimethylethyl N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(3,3,3- trifluoropropyl)glycinate
Figure imgf000073_0001
A. 2-(Trifluoromethyl)-4-[(3,3,3-trifluoropropyl)amino]benzonitrile
A mixture of 4-fluoro-2-(trifluoromethyl)benzonitrile (0.158 g, 0.84 mmol), (3,3,3- trifluoropropyl)amine hydrochloride (0.125 g, 0.84 mmol) and DIEA (0.326 g, 2.52 mmol) in 1.5 mL of DMSO was heated in a microwave at 200°C for 20 min. Upon cooling, the mixture was partitioned between Et2O and 0.1 N HCl. The organic phase was washed with 0.1 N HCl (x2) and brine, dried over Na2SO and concentrated. The residue was purified by silica gel chromatography (10-80% EtOAc- hexanes gradient) and the product crystallized from Et2O-hexanes to give 0.144 g (61% yield) of the title compound: 1H NMR (400 MHz, CDCI3) δ 7.60 (d, J = 8.6 Hz, 1H), 6.87 (d, J = 2.4 Hz, 1H), 6.71 (dd, J = 8.6, 2.4 Hz, 1H), 4.56 (bs, NH), 3.53 (q, J = 6.5 Hz, 2H), 2.51- 2.40 (m, 2H).
Figure imgf000073_0002
B. 1 ,1 -Dimethylethyl N-[4-cyano-3-(trif luoromethyl)phenyl]-N-(3,3,3- trifluoropropyl)glycinate Synthesized as described in example 1 B using 2-(trifluoromethyl)-4-[(3,3,3- trifluoropropyl)amino]benzonitrile and tert-butyl bromoacetate: 1H NMR (400 MHz, CDCI3) δ 7.64 (d, J = 8.8 Hz, 1 H), 6.84 (d, J = 2.6 Hz, 1 H), 6.73 (dd, J = 8.8, 2.6 Hz, 1 H), 4.03 (s, 2H), 3.74 (t, J = 7.5 Hz, 2H), 2.57-2.45 (m, 2H), 1.45 (s, 9H). Example 64
Λr^-^-Cyano-S-^rifluoromethy phenyll-Λ^-tS.S^-trifluoropropy glycinamide
Figure imgf000074_0001
A. Λ/-[4-Cyano-3-(trifluoromethyl)phenyl]- /-(3,3,3-trifluoropropyl)glycine
Synthesized as described in example 2 using 1 ,1-dimethylethyl Λ/-[4-cyano-3- (trifluoromethyl)phenyl]-N-(3,3,3-trifluoropropyl)glycinate: 1H NMR (400 MHz, CD3OD) δ 7.73 (d, J = 8.8 Hz, 1 H), 6.99 (d, J = 2.2 Hz, 1 H), 6.96 (dd, J = 8.8, 2.2 Hz, 1 H), 4.31 (s, 2H), 3.81 (t, J = 7.4 Hz, 2H), 2.63-2.53 (m, 2H).
Figure imgf000074_0002
B. Λ^-^-Cyano-S-Ctrifluoromethy phenyll-Λ^^S.S.S-trifluoropropy glycinamide
To a suspension of N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(3,3,3-trifluoropropyl)glycine (0.026 g, 0.076 mmol) in carbon tetrachloride/1 ,2-dichloroethane (1 :3,4 mL) was added polymer supported triphenylphosphine (0.051 g, 3 mmol/g, 0.153 mmol) and the mixture was heated at 75°C. After 3 h, additional phosphine resin (0.017 g, 0.051 mmol) was added and heating was continued at 90°C for 30 min. Upon cooling, the resin was filtered off and washed with CHCI3. The filtrate was concentrated and the residue was dissolved in THF (2 mL) and treated with NH4OH (30% solution, 7 mL) for 15 min. The mixture was partitioned between EtOAc and water. The organic phase was washed with brine, dried over Na2SO4 and concentrated. The residue was purified by silica gel chromatrography (0-12% MeOH- CH2CI2 gradient) and the product crystallized from CH2CI2-hexanes to give 0.010 g (40% yield) of the title compound as a white solid: MS (ES) m/z 340 (M+1). Example 65
Figure imgf000075_0001
4-[(Cyanomethyl)(3,3,3-trifluoropropyl)amino]-2-(trifluoromethyl)benzonitrile
Synthesized from Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(3,3, 3- trifluoropropyl)glycinamide as described in example 55: MS (ES) m/z 322 (M+1).
Example 66 Λ^-^-Cyano-S-Ctrifluoromethy phenyπ-Λf^-tS.S.S-trifluoropropy alaninamide
Figure imgf000075_0002
A. 1,1 -Dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(3,3,3- trifluoropropyl)alaninate
Synthesized as described in example 1 B using 2-(trifluoromethyl)-4-[(3,3,3- trifluoropropyl)amino]benzonitrile and 1 ,1-dimethylethyl 2-bromopropanoate. 1H NMR (400 MHz, CDCI3) δ 7.67 (d, J = 8.8 Hz, 1 H), 7.0 (d, J = 2.6 Hz, 1 H), 6.85 (dd, J = 8.8, 2.6 Hz, 1 H), 4.37 (q, j = 7.3 Hz, 1 H), 3.74 (t, J = 8.1 Hz, 2H), 2.62-2.38 (m, 2H), 1.61 (d, J = 7.3 Hz, 3H), 1.45 (s, 9H).
Figure imgf000075_0003
B. W-[4-Cyano-3-(trifluoromethyl)phenyl]-iV-(3,3,3-trifluoropropyl)alanine
Synthesized as described in example 2 using 1 ,1-dimethylethyl Λ/-[4-cyano-3- (trifluoromethyl)phenyl]-Λ/-(3,3,3-trifluoropropyl)alaninate. 1H NMR (400 MHz, CDCI3) δ 7.74 (d, J = 8.8 Hz, 1 H), 7.09 (d, J = 2.4 Hz, 1 H), 7.03 (dd, J = 8.8, 2.4 Hz, 1 H), 4.71 (q, J = 7.1 Hz, 1H), 3.75 (t, J = 8.0 Hz, 2H), 2.70-2.50 (m, 2H), 1.59 (d, J = 7.1 Hz, 3H).
Figure imgf000076_0001
C. Λ -^-Cyano-S-^rifluoromethylJphenyll-Λ^^S.S.S-trifluoropropy alaninamide
To a suspension of N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(3,3,3-trifluoropropyl)alanine (0.020 g, 0.56 mmol) in CH2CI2 (2 mL) was added oxalyl chloride (0.009 g, 0.07 mmol) and a catalytic amount of DMF. The mixture was heated at 45°C for 45 min, cooled to rt and added to NH4OH (30% solution, 3 mL). The mixture was stirred for 30 min and then partitioned between EtOAc and 0.1 N HCl. The organic phase was washed with brine, dried over Na2SO4 and concentrated. The residue was purified by silica gel chromatography (1-8% MeOH- CH2CI2 gradient) and the product was crystallized from CH2CI2-hexanes to give 0.014 g (70% yield) of the title compound as a white solid: MS (ES) m/z 354 (M+1 ).
Figure imgf000076_0002
Λ -^-Cyano-S-ttrifluoromethy phenyll-Λ^-methyl-Λr^-tS.S.S-trifluoropropy alaninamide
Synthesized as described in example 3 using N -[4-cyano-3-(trifluoromethyl)phenyl]-N- (3,3,3-trifluoropropyl)alanine: MS (ES) m/z 368 (M+1). Example 68 N2-[4-Cyano-3-(trifluoromethyl)phenyl]-N2-(1,1-dimethylethyl)glycinamide
Figure imgf000077_0001
A. 4-[(1 ,1 -Dimethylethyl)amino]-2-(trifluoromethyl)benzonitrile
Synthesized as described in step A of example 1 using f-butylamine: 1H NMR (400 MHz, CDCI3) δ 7.52 (d, J = 8.6 Hz, 1H), 6.90 (d, J = 2.2 Hz, 1H), 6.77 (dd, J = 8.7, 2.3 Hz, 1H), 4.49 (bs, 1 H), 1.43 (s, 9H).
Figure imgf000077_0002
B. 4-[(1 ,1 -Dimethylethyl)(2-propen-1 -yl)amino]-2-(trifluoromethyl)benzonitrile
Synthesized as described in step B of example 59 using 4-[(1 ,1-dimethylethyl)amino]-2- (trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 7.55 (d, J = 8.8 Hz, 1 H), 7.28 (d, J = 2.4 Hz, 1 H), 7.11 (dd, J = 8.8, 2.6 Hz, 1 H), 5.87 (ddt, J = 17.1 , 10.5, 4.3 Hz, 1 H), 5.24-5.13 (m, 2H), 4.00 (overlapping ddd, 2H), 1.46 (s, 9H).
Figure imgf000077_0003
C. 4-[(1 ,1 -Dimethylethyl)(2-oxoethyl)amino]-2-(trif luoromethyl)benzonitrile
Synthesized as described in step C of example 59 using 4-[(1 ,1-dimethylethyl)(2-propen-1- yl)amino]-2-(trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 9.72 (s, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.31 (d, J = 2.3 Hz, 1 H), 7.14 (dd, J = 8.6 Hz, 1 H), 4.11 (s, 2H), 1.36 (s, 9H).
Figure imgf000078_0001
D. N-[4-Cyano-3-(trif luoromethyl)phenyl]-N-(1 ,1 -dimethylethyl)glycine
Synthesized as described in step D of example 59 using 4-[(1 ,1-dimethylethyl)(2- oxoethyl)amino]-2-(trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 7.66 (d, J = 8.6 Hz, 1 H), 7.36 (d, J = 2.2 Hz, 1 H), 7.18 (dd, J = 8.7, 2.3 Hz, 1 H), 4.13 (s, 2H), 1.42 (s, 9H).
Figure imgf000078_0002
E. N2-[4-Cyano-3-(trifluoromethyl)phenyl]-N2-(1 ,1 -dimethylethyl)glycinamide Synthesized as described in example 60 using N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(1 ,1- dimethylethyl)glycine: 1H NMR (400 MHz, CDCI3) δ 7.72 (d, J = 8.6 Hz, 1H), 7.45 (d, J = 2.1 Hz, 1H), 7.33 (dd, J = 8.5, 2.1 Hz, 1H), 6.51 (bs, 1H), 5.95 (bs, 1H), 3.90 (s, 2H), 1.33 (s, 9H).
Example 69
Λ^-^-Cyano-S-ttrifluoromethy phenyη-Λr^-tl-methylethy glycinamide
Figure imgf000078_0003
A. N 4-[(1 -Methylethyl)amino]-2-(trifluoromethyl)benzonitrile Synthesized as described in example 1A starting with 4-fluoro-2-(trifluoromethyl)benzonitrile and isopropyl amine: MS (ES) /z 229 (M+1).
Figure imgf000079_0001
B. 4-[(1 -Methylethyl)(2-propen-1 -yl)amino]-2-(trifluoromethyl)benzonitrile
Synthesized as described in example 59B starting with Λ/ 4-[(1-methylethyl)amino]-2- (trifluoromethyl)benzonitrile: MS (ES) m/z 269 (M+1 ).
Figure imgf000079_0002
C. 4-[(1-Methylethyl)(2-oxoethyl)amino]-2-(trifluoromethyl)benzonitrile
Synthesized as described in example 59C starting 4-[(1-methylethyl)(2-propen-1-yl)amino]- 2-(trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3) δ 9.69 (s, 1 H), 7.56 (d, J = 8.8 Hz, 1 H), 6.88 (d, J = 2.6 Hz, 1 H), 6.69 (dd, J = 9.0, 2.8 Hz, 1 H), 4.27 (sept, J = 6.6 Hz, 1 H), 4.09 (s, 2H), 1.22 (d, J = 6.6 Hz, 6H).
Figure imgf000079_0003
D. Λ -[4-Cyano-3-(trifluoromethyl)phenyl]-Λ/-(1-methylethyl)glycine
Synthesized as described in example 59D starting with 4-[(1-methylethyl)(2-oxoethyl)amino]- 2-(trifluoromethyl)benzonitrile: 1H NMR (400 MHz, CDCI3/CD3OD) δ 7.54 (d, J = 8.8 Hz, 1 H), 6.90 (d, J = 2.4 Hz, 1 H), 6.72 (dd, = 8.8, 2.4 Hz, 1 H), 4.18 (sept, J = 6.6 Hz, 1 H), 3.96 (s, 2H), 1.21 (d, J = 6.6 Hz, 6H).
Figure imgf000080_0001
E. Λr^-^-Cyano-S-ttrifluoromethy phenyll-Λ^-tl-methylethylJglycinamide
Synthesized as described in example 4 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(1- methylethyl)glycine: MS (ES) m/z 286 (M+1).
Example 70
Figure imgf000080_0002
Λ^- -Cyano-S-fjrif luoromethyl)phenyl]-Λ/1-methyI-.V2-(1 -methylethyl)glycinamide
Synthesized as described in example 3 using Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(1- methylethyl)glycine: MS (ES) m/z 300 (M+1 ).
Example 71
Figure imgf000080_0003
4-[(Cyanomethyl)(methyl)amino]-2-(trifluoromethyI)benzonitriIe
Synthesized in a manner similar to example 1 A using (methylamino)acetonitrile: MS (API) m/z 240 (M+1 ) Example 72
Figure imgf000081_0001
4-[(2-Cyanoethyl)(methyl)amino]-2-(trifluoromethyl)benzonitrile
Synthesized in a manner similar to example 1 A using 3-(methylamino)propanenitrile: MS (API) m/z 254 (M+1 ).
Example 73
1 ,1 -Dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate
Figure imgf000081_0002
A. 2-Chloro-4-[(2,2,2-trifluoroethyl)amino]benzonitriIe
Synthesized in a manner similar to example 12A using 4-amino-2-chlorobenzonitrile: MS (ES) m/z 235 (M+1 ).
Figure imgf000081_0003
B. 1 ,1 -Dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trif luoroethyl)glycinate
Synthesized in a manner similar to example 1 B using 2-chloro-4-[(2,2,2- trifluoroethyl)amino]benzonitrile: MS (ES) m/z 349 (M+1). Example 74
Figure imgf000082_0001
N-(3-Chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)glycine
Synthesized in a manner similar to example 2 using 1 ,1 -dimethylethyl N-(3-chloro-4- cyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate: MS (ES) m/z 293 (M+1).
Example 75
Figure imgf000082_0002
N2-(3-Chloro-4-cyanophenyl)-N2-(2,2,2-trifluoroethyl)glycinamide Synthesized in a manner similar to example 4 using N-(3-chloro-4-cyanophenyl)-N-(2,2,2- trifluoroethyl)glycine: MS (ES) m/z 292 (M+1).
Example 76
Figure imgf000082_0003
N2-(3-Chloro-4-cyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)glycinamide
Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N-(2,2,2- trifluoroethyl)g lycine: MS (ES) m/z 306 (M+1). Example 77
Figure imgf000083_0001
N2-(3-Chloro-4-cyanophenyl)-N1-ethyl-N2-(2,2,2-trifIuoroethyl)glycinamide
Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N-(2,2,2- trifluoroethyl)glycine and ethylamine: MS (ES) m/z 320 (M+1).
Example 78
Figure imgf000083_0002
1 ,1 -Dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trif luoroethyl)alaninate Synthesized in a manner similar to example 1B using 2-chloro-4-[(2,2,2- trifluoroethyl)amino]benzonitrile and 1,1-dimethylethyl 2-bromopropanoate: MS (ES) m/z 363 (M+1 ).
Example 79
Figure imgf000083_0003
N-(3-Chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)alanine
Synthesized in a manner similar to example 2 using 1 ,1-dimethylethyl N-(3-chloro-4- cyanophenyl)-N-(2,2,2-trifluoroethyl)alaninate: MS (ES) m/z 307 (M+1 ) Example 80
Figure imgf000084_0001
N2-(3-Chloro-4-cyanophenyl)-N2-(2,2,2-trifluoroethyl)alaninamide
Synthesized in a manner similar to example 4 using N-(3-chloro-4-cyanophenyl)-N-(2,2,2- trifluoroethyl)alanine: MS (ES) m/z 305 (M+).
Example 81
Figure imgf000084_0002
N2-(3-Chloro-4-cyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)alaninamide Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N-(2,2,2- trifluoroethyl)alanine: MS (ES) m/z 320 (M+1).
Example 82
Figure imgf000084_0003
N2-(3-Chloro-4-cyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)alaninamide
Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N-(2,2,2- trifluoroethyl)alanine and ethylamine: MS (ES) m/z 334 (M+1). Example 83
Figure imgf000085_0001
1 ,1 -Dimethylethyl 2-[(3-chloro-4-cyanophenyl)(2,2,2-trif luoroethyl)amino]butanoate
Synthesized in a manner similar to example 1 B using 2-chloro-4-[(2,2,2- trifluoroethyl)amino]benzonitrile and tert-butyl 2-bromobutanoate: MS (ES) m/z 377 (M+1).
Example 84 2-[(3-Chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]butanamide
Figure imgf000085_0002
A. 2-[(3-Chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]butanoic acid
Synthesized in a manner similar to example 2 using 1 ,1-dimethylethyl 2-[(3-chloro-4- cyanophenyl)(2,2,2-trifluoroethyl)amino]butanoate: MS (ES) m/z 321 (M+1).
B. 2-[(3-Chioro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]butanamide
Synthesized in a manner similar to example 4 using 2-[(3-chloro-4-cyanophenyl)(2,2,2- trifluoroethyl)amino]butanoic acid: MS (ES) m/z 320 (M+1). Example 85
Figure imgf000086_0001
2-[(3-Chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]-N-methylbutanamide
Synthesized in a manner similar to example 3 using 2-[(3-chloro-4-cyanophenyl)(2,2,2- trifluoroethyl)amino]butanoic acid: MS (ES) m/z 334 (M+1).
Example 86
Figure imgf000086_0002
2-[(3-Chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]-N-ethylbutanamide Synthesized in a manner similar to example 3 using 2-[(3-chloro-4-cyanophenyl)(2,2,2- trifluoroethyl)amino]butanoic acid and ethylamine: MS (ES) m/z 348 (M+1).
Example 87
1 ,1 -Dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(cyclopropyImethyl)glycinate
Figure imgf000086_0003
A. 2-Chloro-4-[(cyclopropylmethyl)amino]benzonitrile
Synthesized in a manner similar to example 1 A using 2-chloro-4-fluorobenzonitrile: MS (ES) m/z 207 (M+1).
Figure imgf000087_0001
B. 1,1 -Dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)glycinate
Synthesized in a manner similar to example 1 B using 2-chloro-4- [(cyclopropylmethyl)amino]benzonitrile: MS (ES) m/z 321 (M+1).
Example 88
Figure imgf000087_0002
N-(3-Chloro-4-cyanophenyl)-N-(cyclopropylmethyl)glycine
Synthesized in a manner similar to example 2 using 1,1-dimethylethyl N-(3-chloro-4- cyanophenyl)-N-(cyclopropylmethyl)glycinate: MS (ES) m/z 265 (M+1).
Example 89
Figure imgf000087_0003
N2-(3-Chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)glycinamide
Synthesized in a manner similar to example 4 using N-(3-chloro-4-cyanophenyl)-N- (cyclopropylmethyl)glycine: MS (ES) m/z 264 (M+1 ). Example 90
Figure imgf000088_0001
N2-(3-Chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-methylgIycinamide
Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N- (cyclopropylmethyl)glycine: MS (ES) m/z 278 (M+1).
Example 91
Figure imgf000088_0002
N2-(3-Chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-ethylglycinamide Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N- (cyclopropylmethyl)glycine and ethylamine: MS (ES) m/z 292 (M+1 ).
Example 92
Figure imgf000088_0003
2-Chloro-4-[(cyanomethyl)(cyclopropylmethyl)amino]benzonitrile
Synthesized in a manner similar to example 55 using N2-(3-chloro-4-cyanophenyl)-N2 (cyclopropylmethyl)glycinamide: MS (ES) m/z 246 (M+1). Example 93
Figure imgf000089_0001
1 ,1 -Dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)alaninate
Synthesized in a manner similar to example 1B using 2-chloro-4- [(cyclopropylmethyl)amino]benzonitrile and 1 ,1 -dimethylethyl 2-bromopropanoate: MS (ES) m/z 335 (M+1).
Example 94
Figure imgf000089_0002
N-(3-Chloro-4-cyanophenyl)-N-(cyclopropylmethyl)alanine
Synthesized in a manner similar to example 2 using 1 ,1-dimethylethyl N-(3-chloro-4- cyanophenyl)-N-(cyclopropylmethyl)alaninate: MS (ES) m/z 279 (M+1).
Example 95
Figure imgf000089_0003
N |2-( In3-CUhIloro-4 A-c ~.yanop Iheny ll\)- KN|2 -(cyclopropylmethyl)alaninamide
Synthesized in a manner similar to example 4 using N-(3-chloro-4-cyanophenyl)-N- (cyclopropylmethyl)alanine: MS (ES) m/z 278 (M+1). Example 96
Figure imgf000090_0001
N2-(3-Chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N -methyIalaninamide
Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N- (cyclopropylmethyl)alanine: MS (ES) m/z 292 (M+1).
Example 97
Figure imgf000090_0002
N2-(3-Chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-ethylalaninamide Synthesized in a manner similar to example 3 using N-(3-chloro-4-cyanophenyl)-N- (cyclopropylmethyl)alanine and ethylamine: MS (ES) m/z 306 (M+1).
Example 98
Figure imgf000090_0003
1,1 -Dimethylethyl 2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanoate
Synthesized in a manner similar to example 1B using 2-chloro-4- [(cyclopropylmethyl)amino]benzonitrile and tert-butyl 2-bromobutanoate: MS (ES) m/z 349 (M+1). Example 99
Figure imgf000091_0001
2-[(3-Chloro-4-cyanophenyl)(cycIopropylmethyl)amino]butanoic acid
Synthesized in a manner similar to example 2 using 1 ,1-dimethylethyl 2-[(3-chloro-4- cyanophenyl)(cyclopropylmethyl)amino]butanoate: MS (ES) m/z 293 (M+1 ).
Example 100
Figure imgf000091_0002
2-[(3-Chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanamide Synthesized in a manner similar to example 4 using 2-[(3-chloro-4- cyanophenyl)(cyclopropylmethyl)amino]butanoic acid: MS (ES) m/z 292 (M+1 ).
Example 101
Figure imgf000091_0003
2-[(3-Chloro-4-cyanophenyl)(cyclopropylmethyl)amino]-N-methyIbutanamide
Synthesized in a manner similar to example 3 using 2-[(3-chloro-4- cyanophenyl)(cyclopropylmethyl)amino]butanoic acid: MS (ES) m/z 306 (M+1 ). Example 102
Figure imgf000092_0001
2-[(3-Chloro-4-cyanophenyl)(cyclopropylmethyl)amino]-N-ethylbutanamide
Synthesized in a manner similar to example 3 using 2-[(3-chloro-4- cyanophenyl)(cyclopropylmethyl)amino]butanoic acid and ethylamine: MS (ES) m/z 320 (M+1).
Example 103
Methyl Λ/-(3,4-dicyanophenyl)-Λ/-(2,2,2-trifluoroethyl)glycinate
Figure imgf000092_0002
A. 4-[(2,2,2-Trifluoroethyl)amino]-1 ,2-benzenedicarbonitrile
Synthesized in a manner similar to example 12 using 4-amino-1 ,2-benzenedicarbonitrile:: 1H NMR (400 MHz, CDCI3) δ 7.59 (d, J = 8.6 Hz, 1 H), 6.99 (d, J = 2.6 Hz, 1 H), 6.90 (dd, J = 8.6, 2.6 Hz, 1H), 4.73 (broad t, NH), 3.86 (q, J = 8.6 Hz, 2H).
Figure imgf000092_0003
B. Methyl W-(3,4-dicyanophenyl)-iV-(2,2,2-trifluoroethyl)glycinate
A solution of 4-[(2,2,2-trifluoroethyl)amino]-1 ,2-benzenedicarbonitrile (0.020 g, 0.089 mmoi) in MeCN (3 mL) was treated with Cs2CO3 (0.078 g, 0.24 mmol) and methyl bromoacetate (0.037 g, 0.24 mmol) and heated at 85°C under nitrogen for 8 h. Upon cooling, the mixture was partitioned between EtOAc and water. The organic phase was washed with brine, dried over Na2SO4and concentrated. The residue was purified by silica gel chromatography (20- 100% CH2CI2-hexanes gradient) and the product crystallized from CH2CI2-hexanes to give 0.015 g (58% yield) of the title compound as a white solid: MS (ES) m/z 296 (M-1 ).
Example 104
Figure imgf000093_0001
1 ,1 -Dimethylethyl N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate
Synthesized in a manner similar to example 1B using 4-[(2,2,2-trifluoroethyl)amino]-1 ,2- benzenedicarbonitrile: MS (ES) m/z 340 (M+1).
Example 105
N2-(3,4-Dicyanophenyl)-N2-(2,2,2-trifluoroethyl)glycinamide
Figure imgf000093_0002
/V-(3,4-Dicyanophenyl)-W-(2,2,2-trifluoroethyl)glycine Synthesized in a manner similar to example 2 using 1 ,1 -dimethylethyl N-(3,4- dicyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate: MS (ESI) m/z 284 (M+1).
Figure imgf000094_0001
B. N2-(3,4-Dicyanophenyl)-N2-(2,2,2-trifluoroethyl)glycinamide
Synthesized in a manner similar to example 4 using N-(3,4-dicyanophenyl)-N-(2,2,2- trifluoroethyl)glycine: MS (ES) m/z 281 (M-1).
Example 106
Figure imgf000094_0002
N2-(3,4-Dicyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)glycinamide
Synthesized in a manner similar to example 3 using N-(3,4-dicyanophenyl)-N-(2,2,2- trifluoroethyl)glycine: MS (ES) m/z 297 (M+1).
Example 107
Figure imgf000094_0003
N2-(3,4-Dicyanophenyl)-N1-ethyl-N2-(2)2,2-trifluoroethyl)glycinamide
Synthesized in a manner similar to example 3 using N-(3,4-dicyanophenyl)-N-(2,2,2- trifluoroethyl)glycine and ethylamine: MS (ES) m/z 311 (M+1). Example 108
Figure imgf000095_0001
1,1 -Dimethylethyl N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)alaninate
Synthesized in a manner similar to example 1B using 4-[(2,2,2-trifluoroethyl)amino]-1 ,2- benzenedicarbonitrile and 1 ,1 -dimethylethyl 2-bromopropanoate: MS (ES) m/z 354 (M+1 ).
Example 109
Figure imgf000095_0002
N-(3,4-Dicyanophenyl)-N-(2,2,2-trifluoroethyl)alanine Synthesized in a manner similar to example 2 using 1,1-dimethylethyl N-(3,4- dicyanophenyl)-N-(2,2,2-trifluoroethyl)alaninate: MS (ES) m/z 298 (M+1).
Example 110
Figure imgf000095_0003
N2-(3,4-Dicyanophenyl)-N2-(2,2,2-trifluoroethyl)alaninamide
Synthesized in a manner similar to example 4 using N-(3,4-dicyanophenyl)-N-(2,2,2- trifluoroethyl)alanine: MS (ES) m/z 297 (M+1). Example 111
Figure imgf000096_0001
N2-(3,4-Dicyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)alaninamide
Synthesized in a manner similar to example 3 using N-(3,4-dicyanophenyl)-N-(2,2,2- trifluoroethyl)alanine: MS (ES) m/z 311 (M+1).
Example 112
Figure imgf000096_0002
N2-(3,4-Dicyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)alaninamide Synthesized in a manner similar to example 3 using N-(3,4-dicyanophenyl)-N-(2,2,2- trifluoroethyl)glycine and ethylamine: MS (ES) m/z 323 (M-1 ).
Figure imgf000096_0003
1,1 -Dimethylethyl 2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanoate
Synthesized in a manner similar to example 1 B using 4-[(2,2,2-trifluoroethyl)amino]-1 ,2- benzenedicarbonitrile and tert-butyl 2-bromobutanoate: MS (ES) m/z 368 (M+1 ). Example 114
Figure imgf000097_0001
2-[(3,4-Dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanoic acid
Synthesized in a manner similar to example 2 using 1 ,1-dimethylethyl 2-[(3,4- dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanoate: MS (ES) m/z 312 (M+1).
Example 115
Figure imgf000097_0002
2-[(3,4-Dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanamide Synthesized in a manner similar to example 4 using 2-[(3,4-dicyanophenyl)(2,2,2- trifluoroethyl)amino]butanoic acid: MS (ES) m/z 311 (M+1 ).
Example 116
Figure imgf000097_0003
2-[(3,4-Dicyanophenyl)(2,2,2-trifluoroethyl)amino]-N-methylbutanamide
Synthesized in a manner similar to example 3 using 2-[(3,4-dicyanophenyl)(2,2,2- trifluoroethyl)amino]butanoic acid: MS (ES) m/z 325 (M+1). Example 117
Figure imgf000098_0001
2-[(3,4-Dicyanophenyl)(2,2,2-trifluoroethyl)amino]-N-ethylbutanamide
Synthesized in a manner similar to example 3 using 2-[(3,4-dicyanophenyl)(2,2,2- trifluoroethyl)amino]butanoic acid and ethylamine: MS (ES) m/z 339 (M+1 ).
Example 118
1 ,1 -Dimethylethyl N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)glycinate
Figure imgf000098_0002
A. 4-[(Cyclopropylmethyl)amino]-1 ,2-benzenedicarbonitrile
Synthesized in a manner similar to example 1A using 4-fluoro-1,2-benzenedicarbonitrile: MS (ES) m/z 198 (M+1).
Figure imgf000098_0003
B. 1,1 -Dimethylethyl N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)glycinate
Synthesized in a manner similar to example 1B using 4-[(cyclopropylmethyl)amino]-1 ,2- benzenedicarbonitrile: MS (ES) m/z 312 (M+1). Example 119
Figure imgf000099_0001
N-(Cyclopropylmethyl)-N-(3,4-dicyanophenyl)glycine
Synthesized in a manner similar to example 2 using 1 ,1-dimethylethyl N-(cyclopropylmethyl)- N-(3,4-dicyanophenyl)glycinate: MS (ES) m/z 256 (M+1).
Example 120
Figure imgf000099_0002
N2-(Cyclopropylmethyl)-N2-(3,4-dicyanophenyl)glycinamide Synthesized in a manner similar to example 4 using N-(cyclopropylmethyl)-N-(3,4- dicyanophenyl)glycine: MS (ESI) m/z 255 (M+1).
Example 121
Figure imgf000099_0003
N2-(Cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-methylglycinamide
Synthesized in a manner similar to example 3 using N-(cyclopropylmethyl)-N-(3,4- dicyanophenyl)glycine: MS (ES) m/z 269 (M+1 ). Example 122
Figure imgf000100_0001
N2-(Cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-ethylglycinamide
Synthesized in a manner similar to example 3 using N-(cyclopropylmethyl)-N-(3,4- dicyanophenyl)glycine and ethylamine: MS (ES) m/z 283 (M+1 ).
Example 123
Figure imgf000100_0002
4-[(Cyanomethyl)(cyclopropylmethyl)amino]-1 ,2-benzenedicarbonitrile Synthesized in a manner similar to example 55 using N2-(cyclopropylmethyl)-N2-(3,4~ dicyanopheny glycinamide: MS (ES) m/z 237 (M+1).
Example 124
Figure imgf000100_0003
1,1 -Dimethylethyl N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)alaninate
Synthesized in a manner similar to example 1 B using 4-[(cyclopropylmethyl)amino]-1 ,2- benzenedicarbonitrile and 1 ,1-dimethylethyl 2-bromopropanoate: MS (ES) m/z 326 (M+1). Example 125
Figure imgf000101_0001
N-(Cyclopropylmethyl)-N-(3,4-dicyanophenyl)alanine
Synthesized in a manner similar to example 2 using 1 ,1-dimethylethyl N-(cyclopropylmethyl)- N-(3,4-dicyanophenyl)alaninate: MS (ES) m/z 270 (M+1 ).
Example 126
Figure imgf000101_0002
N2-(Cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-methylalaninamide Synthesized in a manner similar to example 3 using N-(cyclopropylmethyl)-N-(3,4- dicyanophenyl)alanine: MS (ES) m/z 283 (M+1).
Example 127
Figure imgf000101_0003
N2-(Cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-ethylalaninamide
Synthesized in a manner similar to example 3 using N-(cyclopropylmethyl)-N-(3,4- dicyanophenyl)alanine and ethylamine: MS (ES) m/z 297 (M+1). Example 128
Figure imgf000102_0001
1 ,1 -Dimethylethyl 2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanoate
Synthesized in a manner similar to example 1B using 4-[(cyclopropylmethyl)amino]-1 ,2- benzenedicarbonitrile and tert-butyl 2-bromobutanoate: MS (ES) m/z 340 (M+1 ).
Example 129
Figure imgf000102_0002
2-[(Cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanoic acid Synthesized in a manner similar to example 2 using 1 ,1-dimethylethyl 2-
[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanoate: MS (ES) m/z 284 (M+1).
Example 130
Figure imgf000102_0003
2-[(Cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanamide
Synthesized in a manner similar to example 4 using 2-[(cyclopropylmethyl)(3,4- dicyanophenyl)amino]butanoic acid: MS (ES) m/z 283 (M+1). Example 131
Figure imgf000103_0001
2-[(Cyclopropylmethyl)(3,4-dicyanophenyl)amino]-N-methylbutanamide
Synthesized in a manner similar to example 3 using 2-[(cyclopropylmethyl)(3,4- dicyanophenyl)amino]butanoic acid: MS (ES) m/z 297 (M+1).
Example 132
Figure imgf000103_0002
2-[(Cyclopropylmethyl)(3,4-dicyanophenyl)amino]-N-ethylbutanamide Synthesized in a manner similar to example 3 using 2-[(cyclopropylmethyl)(3,4- dicyanophenyl)amino]butanoic acid and ethylamine: MS (ES) m/z 311 (M+1).
BIOLOGICAL SECTION Compounds of the current invention are modulators of the androgen receptor.
Certain compounds of the present invention also modulate the glucocorticoid receptor, the mineralocorticoid receptor, and/or the progesterone receptor. Activity mediated through these oxosteroid nuclear receptors was determined using the following in vitro and in vivo assays. In Vitro Assays:
The following abbreviations and sources of materials are used
Fluormone PL Red - a commercially available PR fiuoroprobe (PanVera Corp, Product No
P2965)
Fluormone GS Red - a commercially available GR fiuoroprobe (PanVera Corp, Product No P2894) Fluormone AL Green - a commercially available AR fiuoroprobe (PanVera Corp, Product No
P3010)
PR-LBD - Purified human progesterone ligand binding domain tagged with Glutathione
Transferase (PanVera Corp, Product No P2900) GR - purified human glucocorticoid receptor (PanVera Corp, Product No P2812)
AR-LBD- Purified rat androgen ligand binding domain tagged with Glutathione Transferase
(PanVera Corp, Product No P3009)
PR Screening Buffer - 100 mM potassium phosphate (pH 7.4), 100 μG/ml bovine gamma globulin, 15% ethylene glycol, 0.02% NaN3, 10% glycerol (PanVera Corp Product No P2967) with 0.1% w/v CHAPS
AR Screening Buffer - pH 7.5 containing protein stabilizing agents and glycerol (PanVera
Corp Product No P3011)
GR Screening Buffer - 100 mM potassium phosphate (pH 7.4), 200 mM Na2MoO2, 1 mM
EDTA, 20% DMSO (PanVera Corp Product No P2814) with GR stabilizing peptide (100 μM) (PanVera Corp Product No P2815)
DTT - dithiothreitol (PanVera Corp Product No P2325)
Discovery Analyst - is an FP reader
DMSO - dimethylsulphoxide
Progesterone Receptor Fluorescence Polarization Assay: The progesterone receptor fluorescence polarization assay is used to investigate the interaction of the compounds with the progesterone receptor.
Compounds are added to the 384 well black plates to a final volume of 0.5 μl. Sufficient Fluormone PL Red and PR-LBD are defrosted on ice to give a final concentration of 2 nM and 40 nM, respectively. PR screening buffer is chilled to 4°C prior to addition of DTT to give a final concentration of 1 mM. The Fluormone PL Red and PR-LBD in PR Screening Buffer are added to compound plates to give a final volume of 10 μL. The assay is allowed to incubate at 20-22°C for 2 hours. The plates are counted in a Discovery Analyst with suitable 535 nM excitation and 590 nM emission interference filters. Compounds that interact with the PR receptor result in a lower fluorescence polarization reading. Test compounds are dissolved and diluted in DMSO. Compounds are assayed in singlicate, a four parameter curve fit of the following form being applied
Figure imgf000104_0001
where a is the minimum, b is the Hill slope, c is the IC50 and d is the maximum. Maximum and minimum values are compared to adhesion in the absence of compound and in the presence of 10"5 M progesterone. Data is presented as the mean plC50 with the standard error of the mean of n experiments. Compounds with plC50 greater than 5.0 and a % max greater than 50 are considered desirable.
Androgen Receptor Fluorescence Polarization Assay:
The androgen receptor fluorescence polarization assay is used to investigate the interaction of the compounds with the androgen receptor.
Compounds are added to the 384 well black plates to a final volume of 0.5 μl. Sufficient Fluormone AL Green and AR-LBD are defrosted on ice to give a final concentration of 1 nM and 25 nM, respectively. AR screening buffer is chilled to 4 °C prior to addition of DTT to give a final concentration of 1 mM. The Fluormone AL Green and AR- LBD in AR Screening Buffer are added to compound plates to give a final volume of 10 μL. The assay is allowed to incubate at 20 °C for 5 hours. The plates are counted in a Discovery Analyst with suitable 485 nM excitation and 535 nM emission interference filters. Compounds that interact with the AR receptor result in a lower fluorescence polarization reading. Test compounds are dissolved and diluted in DMSO. Compounds are assayed in singlicate, a four parameter curve fit of the following form being applied
Figure imgf000105_0001
where a is the minimum, b is the Hill slope, c is the IC50 and d is the maximum. Maximum and minimum values are compared to adhesion in the absence of compound and in the presence of 10"5 M dihydrotestosterone. Data is presented as the mean plC50 with the standard error of the mean of n experiments. Compounds with plC50 greater than 5.0 and a % max greater than 50 are considered desirable. Glucocorticoid Receptor Fluorescence Polarization Assay
The glucocorticoid receptor fluorescence polarization assay is used to investigate the interaction of the compounds with the glucocorticoid receptor.
Compounds are added to the 384 well black plates to a final volume of 0.5 μi.
Sufficient Fluormone GS Red and GR are defrosted on ice to give a final concentration of 1 nM and 4 nM, respectively. GR screening buffer is chilled to 4 °C prior to addition of DTT to give a final concentration of 1mM. The Fluormone GS Red, and GR in GR Screening Buffer are added to compound plates to give a final volume of 10 μL. The assay is allowed to incubate at 4 °C for 12 hours. The plates are counted in a Discovery Analyst with suitable 535 nM excitation and 590 nM emission interference filters. Compounds that interact with the GR receptor result in a lower fluorescence polarization reading. Test compounds are dissolved and diluted in DMSO. Compounds are assayed in singlicate, a four parameter curve fit of the following form being applied
Figure imgf000106_0001
where a is the minimum, b is the Hill slope, c is the EC50 and d is the maximum. Maximum and minimum values are compared to adhesion in the absence of compound and in the presence of 10"5 M dexamethasone. Data is presented as the mean plC50 with the standard error of the mean of n experiments. Compounds with plC50 greater than 5.0 and a % max greater than 50 are considered desirable.
Transient Transfection Assay:
Cotransfection assays using full-length hAR were performed in CV-1 cells (monkey kidney fibroblasts). The cells were seeded in charcoal-stripped medium in 96-well plates (24,000 cells/well) and incubated overnight. Transient transfections were carried out using the following plasmids: pSG5-AR, MMTV LUC reporter, β-actin SPAP, and pBluescript (filler DNA). The cell plates were then incubated for 6-20 hours. The transfection mixture was washed away and then the cells were drugged with doses ranging from 10"10 to 10"5. Two replicates were used for each sample. Incubation with drug was continued for 14 hours. A spectrophotometer was used for SPAP measurements, while a topcounter was used to read the results from the luciferase assay. The ratio of luciferase activity to SPAP activity was calculated to normalize the variance in cell number and transfection efficiency. Data analysis: Data were reduced using RoboFit99. The results were expressed as percent of maximum as calculated by the following formulas:
fold activation = (((LU%PAP-SPAP substrate blank avg.))-basal activation) basal activation*
*basal activation per plate = (Luc vehicle)/(SPAP vehicle - substrate blank average)
0/ mov — fold activation of unknown; \VH Γ Γ
/o l l ldλ. — ^ 'positive control fold activation avg./Λ ' υu Curves were fit from these data using RoboFit to determine EC50's for agonists and IC50's for antagonists using the following equation:
Y = ((Vmax*x)/(K+x))+Y2 These values were converted to pEC50's and plC50's for posting by using the following equations: pEC-so = -log(EC50) plC-so = -log(ICso) For antagonist assays, the percent maximum response antagonist was calculated by the following formula in which Ymin and Ymax are curve asymptotes at the maximum or minimum concentration tested:
% max. resp. ant. = 100*(1-Ymin/Ymax) For antagonist assays, pKb's were calculated using the following formula: pKb = IC50 of unknown/((1+*conc.*)/ DHT EC50 average) where *conc* = concentration of DHT used as the agonist in the medium for the antagonist experiment, expressed in nM. This concentration was set at twice pEC50. This would be 0.2 for AR.
Compounds with an pXC50 greater than 5.0 are considered desirable.
Castrated Male Rat Model (ORX Rat) The activity of the compounds of the present invention as modulators of the androgen receptor was investigated using a castrated male rat model (ORX) as described in C. D. Kockakian, Pharmac. Therap. B 1(2), 149-177 (1975); C. Tobin and Y. Joubert, Developmental Biology 146,131-138 (1991); J . Antonio, J. D. Wilson and F. W. George, J Appl. Physiol. 87(6) 2016-2019 (1999)) the disclosures of which herein are included by reference.
It has been well defined that androgens play important roles in the maintenance and growth of many tissues in both animals and humans. Muscles, like the levator ani and bulbocavernosus, and sexual accessory organs, such as the prostate glands and seminal vesicles have high expression levels of the androgen receptor and are known to respond quickly to exogenous androgen addition or androgen deprivation through testicular ablation. Castration produces dramatic atrophy of muscle and sexual accessory organs; whereas the administration of exogenous androgens to the castrated animal results in effective hypertrophy of these muscles and sexual accessory organs. Although the levator ani muscle, also known as the dorsal bulbocavernosus, is not 'true skeletal muscle' and definitely sex-linked, it is reasonable to use this muscle to screen muscle anabolic activities of test compounds because of its androgen responsiveness and simplicity of removal.
Male Sprague-Dawley rats weighing 160-180 grams were used in the assay. The rats were singly caged upon receiving and throughout the study. Bilateral orchidectomies were performed in sterilized surgical conditions under isoflurane anesthesia. An ariteroposterior incision was made in the scrotum. The testicles were exteriorized and the spermatic artery and vas deferens were ligated with 4.0 silk 0.5 cm proximal to the ligation site. The testicles then were removed by a surgical scissors distal to the ligation sites. The tissue stumps were returned to the scrotum, the scrotum and overlying skin were closed by a surgical stapler. The Sham-ORX rats underwent all procedures except ligation and scissors cutting. The rats were assigned randomly into study groups 7-10 days post surgery based on the body weight.
Dihydrotestosterone (DHT) was used as a positive control (1-10 mg/kg s.c). Compounds of the current invention were administered subcutaneously or orally for 4-28 days. The rats were weighed daily and doses were adjusted accordingly. The general well being of the animal was monitored throughout the course of the study.
At the end of the study, the rats were euthanized in a CO2 chamber. The ventral prostate glands(VP), seminal vesicles(SV), levator ani muscle(LA) and bulbocavernosus(BC) were carefully dissected. The tissues were blotted dry, the weights were recorded, and then saved for histological and molecular analysis. The VP and SV weights serve as androgenic indicators and LA and BC are anabolic indicators. The ratio of anabolic to androgenic activities was used to evaluate the test compounds. Serum luteinizing hormone(LH), follicle stimulating hormone(FSH) and other potential serum markers of anabolic activities were also analyzed. In general, desirable compounds show levator ani hypertrophy and very little prostate stimulation
Test compounds were employed in free or salt form.
All research complied with the principles of laboratory animal care (NIH publication No. 85-23, revised 1985) and GlaxoSmithKline policy on animal use. Although specific embodiments of the present invention are herein illustrated and described in detail, the invention is not limited thereto. The above detailed descriptions are provided as exemplary of the present invention and should not be construed as constituting any limitation of the invention. Modifications will be obvious to those skilled in the art, and all modifications that do not depart from the spirit of the invention are intended to be included within the scope of the appended claims.

Claims

What is claimed is:
1. A compound of formula (I)
Figure imgf000109_0001
including salts, solvates, and physiologically functional derivatives thereof, wherein
R1 is -(Q1)X-R5;
Q1 is alkylene; x is 0 or 1 ;
R5 is H, alkyl, alkenyl, alkynyl, haloalkyl, or cycloalkyl;
R2 is -(Q3)-(Q4) -R6, or -(Q3)-CN;
Q3 is alkylene;
Q4 is -C(O)-, -C(S)-, or -C(NR7)-,
R7 is H or alkyl;
R6 is alkyl, alkenyl, alkynyl, hydroxy, alkoxy, aryloxy, or -N(R8)(R9)
R8 and R9 each independently are H, hydroxy, alkyl, alkenyl, alkynyl, -(Q5)y-cycloalkyl,
-N(R10)(R11), or R8 and R9 combine with the nitrogen atom to which they are attached to form an optionally substituted 4 to 8 membered ring that may contain additional heteroatoms and may contain one or more degrees of unsaturation;
Q5 is alkylene; y is 0 or 1 ;
R10 and R11 each independently are H or alkyl;
R3 is -CN, -NO2, or halogen; and
R4 is -CN, -NO2, halogen, haloalkyl, alkyl, alkenyl, alkynyl, hydroxyl, alkoxy, aryl, aryloxy.
2. The compound of claim 1 wherein alkyl is
Figure imgf000109_0002
alkyl, alkenyl is C C6 alkenyl, alkynyl is C C6 alkynyl, haloalkyl is C C6 haloalkyl, cycloalkyl is C3-C6 cycloalkyl, alkylene is C C6 alkylene, aryl is phenyl or naphthyl, alkoxy is C-rC6 alkoxy, aryloxy is phenoxy or benzyloxy.
3. The compound of claim 2 wherein alkylene is CrC2 alkylene, haloalkyl is -CF3, cycloalkyl is cyclopropyl.
4. The compound of claim 1 wherein alkylene is branched alkylene.
5. The compound of claim 4 wherein alkylene is -CH(CH3)- or -CH(CH2CH3)-.
6. The compound of claim 1 wherein R2 is -(Q3)-CN.
7. The compound of claim 6 wherein Q3 is methylene.
8. The compound of claim 1 wherein R3 is -CN.
9. The compound of claim 1 wherein R4 is halogen, haloalkyl, -CN or alkyl.
10. The compound of claim 9 wherein R4 is haloalkyl.
11. The compound of claim 10 wherein R4 is -CF3.
12. The compound of claim 1 wherein Q1 is methylene.
13. The compound of claim 1 wherein R5 is -CF3 or cyclopropyl.
14. The compound of claim 1 wherein Q3 is methylene.
15. The compound of claim 1 wherein Q4 is -C(O)-.
16. The compound of claim 1 wherein R6 is -N(R8)(R9), where R8 and R9 each independently are H or Cι-C6 alkyl.
17. The compound of claim 1 wherein R3 is -CN, R4 is -CF3, Q is methylene, R5 is -CF3, Q3 is methylene, Q4 is -C(O)-, R6 is -N(R8)(R9), and R8 and R9 each are H.
18. A compound selected from:
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-
(cyclopropylmethyl)glycinate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-(cyclopropylmethyl)glycine;
A/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ/1-methylglycinamide;
Λ/ -[4-cyano-3-(trifluoromethyl)phenyl]-Λ/ -(cyclopropylmethyl)glycinamide;
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-methylglycinate;
1 , 1 -dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-ethylglycinate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-ethylglycine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-ethylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-ethyl-Λ/1-propylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-(cyclopropylmethyl)-Λ/2-ethylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-/V2-ethyl-Λ/1,A/1-dipropylglycinamide;
1 , 1 -dimethylethyl Λ/-[4-cyano-3~(trifluoromethyl)phenyl]-/V-(2,2,2- trifluoroethyl)glycinate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)glycine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(2,2,2-trifluoroethyl)glycinamide; methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)glycinate;
1-methylethyl rV-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)glycinate;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-N1-methyl-/\/2-(2,2,2-trifluoroethyl)glycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-ethyl-/\/2-(2,2,2-trifluoroethyl)glycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-A/1-cyclohexyl-Λ/2-(2,2,2- trifluoroethyl)glycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1,N1-dimethyl-Λ/2-(2,2,2- trifluoroethyl)glycinamide;
2-[4-cyano(2,2,2-trifluoroethyl)-3-(trifluoromethyl)anilino]-Λ/-methylacetohydrazide;
2-[4-cyano(2,2,2-trifluoroethyl)-3-(trifluoromethyl)anilino]-Λ/,,Λ/,- dimethylacetohydrazide; methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2,2,2-trifluoroethyl)alaninate;
A/-[4-cyano-3-(trifluoromethyl)phenyl]-/V-(2,2,2-trifluoroethyl)alanine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-A/2-(2,2,2-trifluoroethyl)alaninamide; 2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-Λ/2-(2,2,2-trifluoroethyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-N1-ethyl-Λ/2-(2,2,2-trifluoroethyl)alaninamide;
A/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1,Λ/1-dimethyl-Λ/2-(2,2,2- trifluoroethyl)alaninamide;
1 ,1 -dimethylethyl 2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2- trifluoroethyl)amino]butanoate;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanoic acid;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]butanamide;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-Λ/- methylbutanamide;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-Λ/-ethylbutanamide;
2-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-A/,Λ/- dimethylbutanamide;
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-/\/-propylglycinate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-propylglycine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/ -propylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-A/1,Λ/2-dipropylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-(cyclopropylmethyl)-Λ/2-propylglycinamide;
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-2-propen-1 -ylglycinate; methyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2-fluoroethyl)glycinate;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-A/2-(2-fluoroethyl)glycinamide;
1 , 1 -dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(2-methylpropyl)glycinate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-A/-isobutylglycine;
W2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-isobutylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-isobutyl-Λ/1-methylglycinamide; Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ/1-ethylglycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/ ,Λ/2-bis(cyclopropylmethyl)glycinamide;
1 ,1-dimethylethyl Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-
(cyclopropylmethyl)alaninate;
Λ/-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/-(cyclopropylmethyl)alanine;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)alaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ/1-methylalaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-A/1 -ethylalaninamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(cyclopropylmethyl)-Λ/1,Λ/1- dimethylalaninamide;
4-[(cyanomethyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile;
4-[(1-cyanoethyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile; methyl 3-[[4-cyano-3-(trifluoromethyl)phenyl](2,2,2-trifluoroethyl)amino]-2- methylpropanoate;
4-[(2-cyanopropyl)(2,2,2-trifluoroethyl)amino]-2-(trifluoromethyl)benzonitrile;
N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(2,2-dimethylpropyl)glycine;
N2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-(2,2-dimethylpropyl)glycinamide;
N2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-(2,2,2-trifluoro-1-methylethyl)glycinamide;
N2-[4-cyano-3-(trifluoromethyl)phenyl]-N2-[1-(trifluoromethyl)propyl]glycinamide;
1 , 1 -dimethylethyl N-[4-cyano-3-(trifluoromethyl)phenyl]-N-(3,3,3- trifluoropropyl)glycinate;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(3,3,3-trifluoropropyl)glycinamide;
4-[(cyanomethyl)(3,3,3-trifluoropropyl)amino]-2-(trifluoromethyl)benzonitrile;
A/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/2-(3,3,3-trifluoropropyl)alaninamide;
A/2-[4-cyano-3-(trifluoromethyl)phenyl]-Λ/1-methyl-Λ/2-(3,3,3- trifluoropropyl)alaninamide;
N2-[4-cyano-3-(trif luoromethyl)phenyl]-N2-(1 , 1 -dimethylethyl)glycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-A/ -(1-methylethyl)glycinamide;
Λ/2-[4-cyano-3-(trifluoromethyl)phenyl]-A/1-methyl-Λ/2-(1-methylethyl)glycinamide;
4-[(cyanomethyl)(methyl)amino]-2-(trifluoromethyl)benzonitrile;
4-[(2-cyanoethyl)(methyl)amino]-2-(trifluoromethyl)benzonitrile;
1 ,1-dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate;
N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)glycine;
N2-(3-chloro-4-cyanophenyl)-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3-chloro-4-cyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)glycinamide; N2-(3-chloro-4-cyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)glycinamide;
1 , 1 -dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trif luoroethyl)alaninate;
N-(3-chloro-4-cyanophenyl)-N-(2,2,2-trifluoroethyl)alanine;
N2-(3-chloro-4-cyanophenyl)-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3-chloro-4-cyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3-chloro-4-cyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)alaninamide;
1 ,1-dimethylethyl 2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]butanoate;
2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]butanamide;
2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]-N-methylbutanamide;
2-[(3-chloro-4-cyanophenyl)(2,2,2-trifluoroethyl)amino]-N-ethylbutanamide;
1 ,1-dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)glycinate;
N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)glycine;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)glycinamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-methylglycinamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-ethylglycinamide;
2-chloro-4-[(cyanomethyl)(cyclopropylmethyl)amino]benzonitrile;
1 , 1 -dimethylethyl N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)alaninate;
N-(3-chloro-4-cyanophenyl)-N-(cyclopropylmethyl)alanine;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)alaninamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N -methylalaninamide;
N2-(3-chloro-4-cyanophenyl)-N2-(cyclopropylmethyl)-N1-ethylalaninamide;
1 ,1-dimethylethyl 2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanoate;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanoic acid;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]butanamide;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]-N-methylbutanamide;
2-[(3-chloro-4-cyanophenyl)(cyclopropylmethyl)amino]-N-ethylbutanamide; methyl Λ/-(3,4-dicyanophenyl)-Λ/-(2,2,2-trifluoroethyl)glycinate;
1 ,1-dimethylethyl N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)glycinate;
N2-(3,4-dicyanophenyl)-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3,4-dicyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)glycinamide;
N2-(3,4-dicyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)glycinamide;
1 ,1-dimethylethyl N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)alaninate;
N-(3,4-dicyanophenyl)-N-(2,2,2-trifluoroethyl)alanine;
N2-(3,4-dicyanophenyl)-N2-(2,2,2-trifluoroethyl)alaninamide;
N2-(3,4-dicyanophenyl)-N1-methyl-N2-(2,2,2-trifluoroethyl)alaninamide; N2-(3,4-dicyanophenyl)-N1-ethyl-N2-(2,2,2-trifluoroethyl)alaninamide;
1 ,1 -dimethylethyl 2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanoate;
2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanoic acid;
2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]butanamide;
2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]-N-methylbutanamide;
2-[(3,4-dicyanophenyl)(2,2,2-trifluoroethyl)amino]-N-ethylbutanamide;
1 ,1-dimethylethyl N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)glycinate;
N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)glycine;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)glycinamide;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-methylglycinamide;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-ethylglycinamide;
4-[(cyanomethyl)(cyclopropylmethyl)amino]-1 ,2-benzenedicarbonitrile;
1 ,1 -dimethylethyl N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)alaninate;
N-(cyclopropylmethyl)-N-(3,4-dicyanophenyl)alanine;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-methylalaninamide;
N2-(cyclopropylmethyl)-N2-(3,4-dicyanophenyl)-N1-ethylalaninamide;
1 ,1-dimethylethyl 2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanoate;
2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanoic acid;
2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]butanamide;
2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]-N-methylbutanamide; and 2-[(cyclopropylmethyl)(3,4-dicyanophenyl)amino]-N-ethylbutanamide.
19. A compound as claimed in claims 1-18 substantially as hereinbefore defined with reference to any one of the Examples.
20. A pharmaceutical composition comprising a compound according to claims 1 to 18, and a pharmaceutically acceptable carrier.
21. A compound according to claims 1 to 18 for use as an active therapeutic substance.
22. A compound according to claims 1 to 18 for use in the treatment or prophylaxis of conditions or disorders that respond to selective androgen receptor modulation.
23. A compound according to claims 1 to 18 for use in the treatment or prophylaxis of osteoporosis, muscle wasting, frailty, cardiovascular disease, breast cancer, uterine cancer, prostate hyperplasia, prostate cancer, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, depression, uterine fibroid disease, aortic smooth muscle cell proliferation, endometriosis, or ADAM.
24. Use of a compound according to claims 1 to 18 in the manufacture of a medicament for use in the treatment or prophylaxis of conditions or disorders that respond to selective androgen receptor modulation.
25. Use of a compound according to any one of claims 1 to 18 in the manufacture of a medicament for use in the treatment or prophylaxis of osteoporosis, muscle wasting, frailty, cardiovascular disease, breast cancer, uterine cancer, prostatic hyperplasia, prostate cancer, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, depression, uterine fibroid disease, aortic smooth muscle cell proliferation, endometriosis, or ADAM.
26. A method for the treatment or prophylaxis of conditions or disorders that respond to selective androgen receptor modulation comprising the administration of a compound according to any one of claims 1 to 18.
27. A method for the treatment or prophylaxis of osteoporosis, muscle wasting, frailty, cardiovascular disease, breast cancer, uterine cancer, prostatic hyperplasia, prostate cancer, dyslipidemia, menopausal vasomotor conditions, urinary incontinence, artherosclerosis, libido enhancement, depression, uterine fibroid disease, aortic smooth muscle cell proliferation, endometriosis, or ADAM comprising the administration of a compound according to any one of claims 1 to 18.
PCT/US2005/007245 2004-03-03 2005-03-03 Aniline derivatives as selective androgen receptor modulators WO2005085185A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05730067.5A EP1725522B1 (en) 2004-03-03 2005-03-03 Aniline derivatives as selective androgen receptor modulators
US10/598,508 US7514470B2 (en) 2004-03-03 2005-03-03 Aniline derivatives as selective androgen receptor modulators
JP2007502061A JP4805909B2 (en) 2004-03-03 2005-03-03 Aniline derivatives as selective androgen receptor modulators
ES05730067.5T ES2523017T3 (en) 2004-03-03 2005-03-03 Aniline derivatives as selective modulators of androgen receptors
US12/392,687 US7723385B2 (en) 2004-03-03 2009-02-25 Aniline derivatives as selective androgen receptor modulators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54979404P 2004-03-03 2004-03-03
US60/549,794 2004-03-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/598,508 A-371-Of-International US7514470B2 (en) 2004-03-03 2005-03-03 Aniline derivatives as selective androgen receptor modulators
US12/392,687 Continuation US7723385B2 (en) 2004-03-03 2009-02-25 Aniline derivatives as selective androgen receptor modulators

Publications (1)

Publication Number Publication Date
WO2005085185A1 true WO2005085185A1 (en) 2005-09-15

Family

ID=34919539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/007245 WO2005085185A1 (en) 2004-03-03 2005-03-03 Aniline derivatives as selective androgen receptor modulators

Country Status (5)

Country Link
US (2) US7514470B2 (en)
EP (1) EP1725522B1 (en)
JP (1) JP4805909B2 (en)
ES (1) ES2523017T3 (en)
WO (1) WO2005085185A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006113552A3 (en) * 2005-04-15 2007-05-31 Smithkline Beecham Corp Cyanoarylamines
JP2008024602A (en) * 2006-07-18 2008-02-07 Tosoh F-Tech Inc Method for producing fluorine-containing secondary amine compound
WO2008021796A2 (en) 2006-08-09 2008-02-21 Smithkline Beecham Corporation Pyrrolidinone anilines as progesterone receptor modulators
EP1954133A2 (en) * 2005-11-30 2008-08-13 Smithkline Beecham Corporation Pyrrolidineanilines
WO2011091461A1 (en) 2010-01-29 2011-08-04 Planta Naturstoffe Vertriebsges.M.B.H. Compounds for use in the treatment of diseases
US8067448B2 (en) 2008-02-22 2011-11-29 Radius Health, Inc. Selective androgen receptor modulators
US8268872B2 (en) 2008-02-22 2012-09-18 Radius Health, Inc. Selective androgen receptor modulators
US8642632B2 (en) 2010-07-02 2014-02-04 Radius Health, Inc. Selective androgen receptor modulators
US8987319B2 (en) 2010-02-04 2015-03-24 Radius Health, Inc. Selective androgen receptor modulators
US9133182B2 (en) 2010-09-28 2015-09-15 Radius Health, Inc. Selective androgen receptor modulators
US9555014B2 (en) 2010-05-12 2017-01-31 Radius Health, Inc. Therapeutic regimens
US10071066B2 (en) 2014-03-28 2018-09-11 Duke University Method of treating cancer using selective estrogen receptor modulators
US10385008B2 (en) 2017-01-05 2019-08-20 Radius Pharmaceuticals, Inc. Polymorphic forms of RAD1901-2HCL
US10420734B2 (en) 2014-03-28 2019-09-24 Duke University Method of treating cancer using selective estrogen receptor modulators
WO2021097046A1 (en) 2019-11-13 2021-05-20 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds
WO2022204184A1 (en) 2021-03-23 2022-09-29 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds
WO2022235585A1 (en) 2021-05-03 2022-11-10 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds
US11771682B2 (en) 2016-06-22 2023-10-03 Ellipses Pharma Ltd. AR+ breast cancer treatment methods
US11826430B2 (en) 2019-05-14 2023-11-28 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060142387A1 (en) * 2003-06-10 2006-06-29 Rodolfo Cadilla Chemical compounds
WO2005000795A2 (en) * 2003-06-10 2005-01-06 Smithkline Beecham Corporation Aniline derivatived androgen-, glucocorticoid-, mineralcorticoid- and progesterone- receptor modulators
JP5204438B2 (en) * 2007-07-31 2013-06-05 東ソ−・エフテック株式会社 Method for producing fluorine-containing amine compound
AU2009231892A1 (en) * 2008-03-31 2009-10-08 The Trustees Of Columbia University In The City Of New York Methods of diagnosing, preventing and treating bone mass diseases
WO2009136629A1 (en) * 2008-05-09 2009-11-12 あすか製薬株式会社 Prophylactic/therapeutic agent for lifestyle-related diseases
CN106999453A (en) * 2014-10-16 2017-08-01 Gtx公司 The method that urological disorders are treated using SARM
SG11202013177WA (en) 2018-07-04 2021-01-28 Radius Pharmaceuticals Inc Polymorphic forms of rad 1901-2hcl

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022493A2 (en) * 1996-11-22 1998-05-28 Elan Pharmaceuticals, Inc. N-(ARYL/HETEROARYL) AMINO ACID DERIVATIVES, PHARMACEUTICAL COMPOSITIONS COMPRISING SAME, AND METHODS FOR INHIBITING β-AMYLOID PEPTIDE RELEASE AND/OR ITS SYNTHESIS BY USE OF SUCH COMPOUNDS
WO1998022441A2 (en) * 1996-11-22 1998-05-28 Elan Pharmaceuticals, Inc. N-(aryl/heteroaryl) amino acid esters, pharmaceutical compositions, and methods for inhibiting beta-amyloid peptide and/or its synthesis
US20020099096A1 (en) * 2000-08-24 2002-07-25 Dalton James T. Selective androgen receptor modulators and methods of use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506782B1 (en) * 1998-02-27 2003-01-14 Athena Neurosciences, Inc. Heterocyclic compounds, pharmaceutical compositions comprising same, and methods for inhibiting β-amyloid peptide release and/or its synthesis by use of such compounds
EP1292581B1 (en) * 2000-06-06 2005-08-10 Warner-Lambert Company LLC Bicyclic cyclohexylamines and their use as nmda receptor antagonists
CN1176905C (en) * 2002-03-22 2004-11-24 清华大学 Ethylglycinate phthalic nitrile as well as its synthetic method and application
WO2005000795A2 (en) * 2003-06-10 2005-01-06 Smithkline Beecham Corporation Aniline derivatived androgen-, glucocorticoid-, mineralcorticoid- and progesterone- receptor modulators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022493A2 (en) * 1996-11-22 1998-05-28 Elan Pharmaceuticals, Inc. N-(ARYL/HETEROARYL) AMINO ACID DERIVATIVES, PHARMACEUTICAL COMPOSITIONS COMPRISING SAME, AND METHODS FOR INHIBITING β-AMYLOID PEPTIDE RELEASE AND/OR ITS SYNTHESIS BY USE OF SUCH COMPOUNDS
WO1998022441A2 (en) * 1996-11-22 1998-05-28 Elan Pharmaceuticals, Inc. N-(aryl/heteroaryl) amino acid esters, pharmaceutical compositions, and methods for inhibiting beta-amyloid peptide and/or its synthesis
US20020099096A1 (en) * 2000-08-24 2002-07-25 Dalton James T. Selective androgen receptor modulators and methods of use thereof

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
C.B.DAS ET AL.: "Polyaniline supported cobalt (II)-salen catalyst; one -pot synthesis of beta-phenylisoserine derivatives from cinnamoyl amide.", TETRAHEDRON LETTERS, vol. 38, no. 16, 1997, pages 2903 - 2906 *
C.S. DUNKLEY ET AL.: "Synthesis and biological evaluation of a novel phenyl-substituted sydnone series as potential antitumor agents.", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 13, no. 17, 2003, pages 2899 - 2901 *
D.R.TORTOLANI ET AL.: "A convenient synthesis to N-aryl-substituted 4-piperidones.", ORGANIC LETTERS, vol. 1, no. 8, 1999, pages 1261 - 1262 *
DATABASE CAPLUS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002337413, Database accession no. 1999:178216 *
DATABASE CAPLUS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002337414, Database accession no. 1999:462300 *
DATABASE CAPLUS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002337415, Database accession no. 1999:607559 *
DATABASE CAPLUS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002337416, Database accession no. 2001:105630 *
DATABASE CAPLUS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002337417, Database accession no. 2003:692088 *
DATABASE CAPLUS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002337418, Database accession no. 1960:103125 *
DATABASE CAPLUS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002337419, Database accession no. 1997:278007 *
F.Z.GALIN ET AL.: "Synthesis of N-phenylvaline derivatives under phase transfer catalysis.", RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 34, no. 6, 1998, pages 899 *
H. WADA ET AL.: "Synthesis of plant growth substances.", NOGAKU KENKYU, vol. 47, 1959, pages 111 - 113 *
H.F.DOVEY ET AL.: "Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain.", JOURNAL OF NEUROCHEMISTRY, vol. 76, no. 1, 2001, pages 173 - 181 *
J.SARAVANAN ET AL.: "RN-244070-45-5", INDIAN DRUGS, vol. 36, no. 3, 1999, pages 192 - 195 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1871379A4 (en) * 2005-04-15 2010-06-02 Glaxosmithkline Llc Cyanoarylamines
EP1871379A2 (en) * 2005-04-15 2008-01-02 Smithkline Beecham Corporation Cyanoarylamines
WO2006113552A3 (en) * 2005-04-15 2007-05-31 Smithkline Beecham Corp Cyanoarylamines
EP1954133A2 (en) * 2005-11-30 2008-08-13 Smithkline Beecham Corporation Pyrrolidineanilines
EP1954133A4 (en) * 2005-11-30 2010-11-24 Glaxosmithkline Llc Pyrrolidineanilines
JP2009518313A (en) * 2005-11-30 2009-05-07 スミスクライン・ビーチャム・コーポレイション Pyrrolidine aniline
JP2008024602A (en) * 2006-07-18 2008-02-07 Tosoh F-Tech Inc Method for producing fluorine-containing secondary amine compound
EP2049104A4 (en) * 2006-08-09 2009-09-09 Smithkline Beecham Corp Pyrrolidinone anilines as progesterone receptor modulators
WO2008021796A2 (en) 2006-08-09 2008-02-21 Smithkline Beecham Corporation Pyrrolidinone anilines as progesterone receptor modulators
US7816395B2 (en) 2006-08-09 2010-10-19 Glaxosmithkline Llc Pyrrolidinone anilines as progesterone receptor modulators
EP2049104A2 (en) * 2006-08-09 2009-04-22 SmithKline Beecham Corporation Pyrrolidinone anilines as progesterone receptor modulators
US8067448B2 (en) 2008-02-22 2011-11-29 Radius Health, Inc. Selective androgen receptor modulators
US8268872B2 (en) 2008-02-22 2012-09-18 Radius Health, Inc. Selective androgen receptor modulators
US8455525B2 (en) 2008-02-22 2013-06-04 Radius Health, Inc. Selective androgen receptor modulators
US8629167B2 (en) 2008-02-22 2014-01-14 Radius Health, Inc. Selective androgen receptor modulators
EP2965755A1 (en) 2010-01-29 2016-01-13 Inoxia Lifesciences GmbH Compounds for use in the treatment of diseases
WO2011091461A1 (en) 2010-01-29 2011-08-04 Planta Naturstoffe Vertriebsges.M.B.H. Compounds for use in the treatment of diseases
US8987319B2 (en) 2010-02-04 2015-03-24 Radius Health, Inc. Selective androgen receptor modulators
US9555014B2 (en) 2010-05-12 2017-01-31 Radius Health, Inc. Therapeutic regimens
US8642632B2 (en) 2010-07-02 2014-02-04 Radius Health, Inc. Selective androgen receptor modulators
US9920044B2 (en) 2010-09-28 2018-03-20 Radius Pharmaceuticals, Inc. Selective androgen receptor modulators
US9133182B2 (en) 2010-09-28 2015-09-15 Radius Health, Inc. Selective androgen receptor modulators
US10071066B2 (en) 2014-03-28 2018-09-11 Duke University Method of treating cancer using selective estrogen receptor modulators
US10420734B2 (en) 2014-03-28 2019-09-24 Duke University Method of treating cancer using selective estrogen receptor modulators
US11951080B2 (en) 2014-03-28 2024-04-09 Duke University Method of treating cancer using selective estrogen receptor modulators
US11779552B2 (en) 2014-03-28 2023-10-10 Duke University Method of treating cancer using selective estrogen receptor modulators
US11771682B2 (en) 2016-06-22 2023-10-03 Ellipses Pharma Ltd. AR+ breast cancer treatment methods
US10385008B2 (en) 2017-01-05 2019-08-20 Radius Pharmaceuticals, Inc. Polymorphic forms of RAD1901-2HCL
US11826430B2 (en) 2019-05-14 2023-11-28 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds
WO2021097046A1 (en) 2019-11-13 2021-05-20 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds
US11952349B2 (en) 2019-11-13 2024-04-09 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds
WO2022204184A1 (en) 2021-03-23 2022-09-29 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds
US11834458B2 (en) 2021-03-23 2023-12-05 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds
WO2022235585A1 (en) 2021-05-03 2022-11-10 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds
US12006314B2 (en) 2021-05-03 2024-06-11 Nuvation Bio Inc. Anti-cancer nuclear hormone receptor-targeting compounds

Also Published As

Publication number Publication date
JP4805909B2 (en) 2011-11-02
US20090163588A1 (en) 2009-06-25
EP1725522A1 (en) 2006-11-29
US20070191479A1 (en) 2007-08-16
US7723385B2 (en) 2010-05-25
JP2007526336A (en) 2007-09-13
ES2523017T3 (en) 2014-11-20
EP1725522B1 (en) 2014-09-10
US7514470B2 (en) 2009-04-07

Similar Documents

Publication Publication Date Title
US7723385B2 (en) Aniline derivatives as selective androgen receptor modulators
EP1654221A2 (en) Aniline derivatived androgen-, glucocorticoid-, mineralcorticoid- and progesterone- receptor modulators
US20060142387A1 (en) Chemical compounds
US7834063B2 (en) Benzonitryl and nitrobenzyl derivatives that modulate androgen receptors
JP2024028458A (en) Modulators of prostacyclin (pgi2) receptor useful for treatment of disorders related to pgi2 receptor
EP1641748B1 (en) N-alkyl phenylcarboxamide beta-secretase inhibitors for the treatment of alzheimer s disease
US7449599B2 (en) Phenyl carboxamide compounds useful as beta-secretase inhibitors for the treatment of alzheimer's disease
EP2079466B1 (en) Substituted indole compounds
WO2008121602A1 (en) Chemical compounds
JP5670338B2 (en) Acrylamide derivatives useful as inhibitors of mitochondrial permeability transition
WO2006133216A2 (en) 4-substituted arylamine derivatives and their use in pharmaceutical compositions
US20080306036A1 (en) Triphenylethylene Compounds Useful as Selective Estrogen Modulators
JP2010524848A (en) Novel benzamide derivatives as modulators of follicle stimulating hormone
KR20130136504A (en) Substituted 1-benzylcycloalkylcarboxlic acids and use thereof
US6809119B2 (en) Branched chain amino acid-dependent aminotransferase inhibitors and their use in the treatment of neurodegenerative diseases
EP2875013B1 (en) Indolecarbonitriles as selective androgen receptor modulators
US6410743B2 (en) Tetrahydronaphtalene derivatives and their use
WO2008030771A1 (en) Cyclic alkylidene compounds as selective estrogen receptor modulators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007502061

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10598508

Country of ref document: US

Ref document number: 2007191479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005730067

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005730067

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10598508

Country of ref document: US