WO2005085137A1 - Complex oxide - Google Patents

Complex oxide Download PDF

Info

Publication number
WO2005085137A1
WO2005085137A1 PCT/JP2005/003994 JP2005003994W WO2005085137A1 WO 2005085137 A1 WO2005085137 A1 WO 2005085137A1 JP 2005003994 W JP2005003994 W JP 2005003994W WO 2005085137 A1 WO2005085137 A1 WO 2005085137A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
composite
temperature
salt
surface area
Prior art date
Application number
PCT/JP2005/003994
Other languages
French (fr)
Japanese (ja)
Inventor
Eisaku Suda
Naotaka Otake
Bernard Pacaud
Lianxin Dai
Original Assignee
Anan Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anan Kasei Co., Ltd. filed Critical Anan Kasei Co., Ltd.
Priority to JP2006510786A priority Critical patent/JP4974674B2/en
Publication of WO2005085137A1 publication Critical patent/WO2005085137A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2096Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying apparatus for purifying an exhaust gas discharged from an engine, for example, an internal combustion engine of an automobile or the like, in which energy supplied by combustion of a complex oxide, particularly gasoline or light oil, serves as a driving force. It relates to a co-catalyst for a dani catalyst.
  • Exhaust gas emitted from internal combustion engines such as automobiles contains hydrocarbons, carbon monoxide, and nitrogen oxides that are harmful to the human body or the environment.
  • so-called three-way catalysts which oxidize carbon monoxide and hydrocarbons to carbon dioxide and water and reduce nitrogen oxides to nitrogen and water, are used as exhaust gas purifying catalysts.
  • the three-way catalyst has, for example, a structure in which an oxide or composite oxide containing a noble metal of platinum, palladium, or rhodium as a main catalyst and cerium oxide as a co-catalyst is supported on a catalyst carrier such as alumina or cordierite. Has become.
  • the co-catalyst states that the contained cerium absorbs oxygen by changing its valence from trivalent to tetravalent under an oxidizing atmosphere, and releases oxygen by changing its valence from tetravalent to trivalent under a reducing atmosphere. It has properties, so-called redox ability. This oxidation-reduction capability can mitigate sudden changes in the atmosphere of exhaust gas due to acceleration and deceleration of the engine, and the main catalyst can purify exhaust gas with high efficiency.
  • a complex iris containing cerium and zirconium hereinafter referred to as "Ce-Zr-based complex iris" is widely used.
  • the Ce-Zr-based composite oxides currently used do not have sufficient oxidation reduction ability at low temperatures of 300 ° C or lower, so when the engine temperature is low, such as when starting an engine,
  • the exhaust gas purification efficiency of the main catalyst which does not have the effect of mitigating the above-mentioned change in atmosphere, is low.
  • the oxidation-reduction ability of the Ce-Zr-based composite oxide is determined by the reaction between the gas-phase exhaust gas and the solid-gas interface of the co-catalyst as the solid phase. Surface area has a significant effect. Therefore, it is important for the Ce-Zr-based composite oxide to maintain a high specific surface area even after being exposed to a high temperature of 900 ° C or more.
  • Patent Document 1 discloses that cerium oxide and zirconium oxide are used as co-catalysts of a three-way catalyst. It is disclosed to use a composite oxidized product composed of oxidized bismuth. The composite oxide has a high oxidation reduction ability in a low temperature range of 300 ° C or less even after being used as a promoter of an exhaust gas purification catalyst at 1000 ° C or more. It is described that it can purify the exhaust gas discharged from the catalyst and is suitable as a promoter having excellent heat resistance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-238159
  • the composite oxide disclosed in Patent Document 1 certainly has an oxidizing and reducing ability at a temperature of 300 ° C or lower, but has a small specific surface area, so that the activity of the oxidation-reduction reaction is low. There are few points, and there is a possibility that sufficient performance as a promoter of a three-way catalyst cannot be exhibited.
  • the present invention has been made in view of its power, and an object of the present invention is to provide an exhaust gas purifying catalyst that has a large ratio even after being exposed to a high temperature of around 900 ° C.
  • An object of the present invention is to provide a composite oxide having a surface area and exhibiting excellent oxidation-reduction ability in a low-temperature region of 300 ° C. or lower and having excellent heat resistance and low-temperature activity.
  • the composite oxide of the present invention has the general formula (CeZr) (AB) O (where x, y, z, and ⁇ are
  • A includes at least one metal element selected from the group consisting of Bi, V, Ti, Nb, W, Fe, Pr, Tb, and Eu. Ba, Sr, Ca, Mg,
  • A is a metal element that activates an oxidation-reduction reaction in a low temperature range of 300 ° C. or less.
  • B is a metal element that can increase the heat resistance of the composite oxidized product.
  • the composite oxide of the present invention has a peak at a temperature of 300 ° C. or lower in a temperature-reduction spectrum, and has a specific surface area of 20 m 2 Zg or more after calcining at 900 ° C. for 4 hours. Is preferred.
  • the composite oxide of the present invention further comprises at least one selected from the group consisting of rare earth elements (excluding Ce, Tb, Eu, La and Pr), Ni, Cu, Al, Si and Be. May be included Yes.
  • rare earth elements excluding Ce, Tb, Eu, La and Pr
  • A preferably contains at least Bi
  • B preferably contains at least Ba! /.
  • the composite oxide of the present invention has a large specific surface area even after being exposed to a high temperature of around 900 ° C as a cocatalyst of an exhaust gas purifying catalyst, and has excellent oxidation even in a low temperature region of 300 ° C or less. It can exhibit a reducing ability.
  • FIG. 1 is a temperature-reduction spectrum diagram of a composite oxidized product in Example 1.
  • FIG. 2 is a temperature-reduction spectrum diagram of a complex oxidized product in Example 2.
  • FIG. 3 is a temperature-reduction spectrum diagram of a composite oxidized product in Comparative Example 1.
  • FIG. 4 is a temperature-reduction spectrum chart of a composite oxidized product in Comparative Example 2.
  • FIG. 5 is a temperature-reduction spectrum diagram of a composite oxidized product in Comparative Example 3.
  • the complex oxidized product is represented by the general formula (CeZr) (AB) O (where x, yl- ⁇ x1z1-yyz ⁇
  • z, and ⁇ are numbers that satisfy 0.055 x ⁇ 0.95, 0.01 ⁇ y ⁇ 0.99, 0.01 ⁇ z ⁇ 0.3, 1.3 65 ⁇ ⁇ ⁇ 1.995, respectively ).
  • the element A is selected from Bi, V, Ti, Nb, W, Fe, Pr, Tb, and Eu, and these can be used alone or as a mixture of two or more. Then, by adding the element A to the composite oxide, both the ionic conductivity and the electronic conductivity are exhibited in the composite oxide, and the oxidizing and reducing ability of Ce at a low temperature is improved. In some cases, the element A itself has a redox ability. And, as the element A, it is preferable that the complex oxidized product contains Bi, V, Ti, and Nb.
  • the element B is a basic element that can be a cation having a valence of 2 or more, and is selected from Ba, Sr, Ca, Mg, and La. These can be used alone or in combination of two or more.
  • the composite oxide according to the present embodiment includes the element A and the element described above. Since it contains element B, it has a large specific surface area even after being exposed to a high temperature of around 900 ° C, and exhibits excellent oxidation reduction ability even in a low temperature region of 300 ° C or less.
  • the element B can suppress a decrease in the heat resistance of the composite oxidized product produced by the addition of the element A. It is believed that the element B acts as an impurity in the composite oxide in the embodiment, and therefore may prevent the growth of particles at a high temperature of around 900 ° C. In addition, among the elements B listed as specific examples, there are elements that function to further enhance the action of the element A to activate the redox reaction at low temperatures.
  • the composite oxides indicated by the numbers have practically sufficient heat resistance and oxidation-reduction ability.
  • X satisfies 0.25 ⁇ 0.75
  • its heat resistance and oxidation-reduction ability are improved
  • y force ⁇ 01 ⁇ y ⁇ 0.
  • a composite oxide satisfying 99 has practically sufficient heat resistance and low-temperature activity. And, the heat resistance and low-temperature activity are improved in the composite oxide where y satisfies 0.l ⁇ y ⁇ 0.9, and in the composite oxide where y satisfies 0.2 ⁇ y ⁇ 0.8. The properties and low temperature activity are better.
  • z satisfies 0.01 ⁇ z ⁇ 0.3.
  • the composite oxide has low-temperature activity, oxidation-reduction ability and heat resistance sufficiently high for practical use.
  • satisfies 0.01 ⁇ ⁇ ⁇ 0.2
  • its low-temperature activity, redox activity and heat resistance are improved
  • is a number satisfying 0.01 ⁇ ⁇ ⁇ 0.1.
  • the composite oxide its low-temperature activity, oxidation reduction ability, and heat resistance are further improved.
  • the composite oxide in the present embodiment is at least one selected from the group consisting of rare earth elements (excluding Ce, Tb, Eu, La and Pr), Ni, Cu, Al, Si and Be. They may also be included. These metal elements are appropriately selected depending on the characteristics required for the composite oxide. For example, the addition of rare earth elements (except Ce, Tb, Eu, La and Pr), Al, Si and Be further improves the heat resistance of the composite oxide, and the addition of Ni and Cu adds the composite oxide. This further enhances the exhaust gas purifying effect.
  • rare earth elements excluding Ce, Tb, Eu, La and Pr
  • Ni, Cu Al, Si and Be
  • Ni and Cu adds the composite oxide. This further enhances the exhaust gas purifying effect.
  • the composite oxide of the present embodiment remains large even after being exposed to a high temperature of around 900 ° C. As long as it has a high specific surface area and exhibits excellent oxidation-reduction performance even in a low temperature range of 300 ° C. or lower, it may contain an element other than the above-mentioned metal elements as long as it exhibits an effect.
  • the composite oxide in the present embodiment can be produced by a known synthesis method, but is preferably produced by a coprecipitation method in order to achieve the purpose of increasing the specific surface area. More preferably, a coprecipitation method including a step of heat-treating a raw salt aqueous solution is used as described in Examples below.
  • the heat resistance of the composite oxide in the present embodiment is evaluated based on the specific surface area after firing at 900 ° C. for 4 hours, and the specific surface area is measured using the BET method.
  • This method of evaluating heat resistance is a method generally performed to evaluate the heat resistance of a promoter material.
  • the specific surface area after firing for 4 hours at 900 ° C. is 20 m 2 / g or more, preferably 25 m 2 / g or more, more preferably 30 m 2 / g or more.
  • a composite oxide of 2 / g or more can maintain excellent oxidation-reduction ability as a promoter of an exhaust gas purification catalyst. The details of the method for measuring the specific surface area will be described later in Examples.
  • the oxidation-reduction reaction of the composite oxide as a cocatalyst of the exhaust gas purifying catalyst in the present embodiment can be estimated by using a Temperature Programmed Reduction Spectra.
  • the temperature-reduced reduction spectrum is a method in which the sample is heated at a constant rate while flowing a reducing gas such as hydrogen gas to the sample, and the amount of reducing gas used for reduction at each temperature is measured. Therefore, the temperature-reduced reduction spectrum is a spectrum showing the temperature dependence of the reducing ability of the test substance, and the reducing ability at a lower temperature than that of the substance whose peak appears on the lower temperature side.
  • the dimethyl salt may contain several weight percent of hafnium (Hf), and the molar amount of the dimethyl includes the molar amount of hafnium. .
  • the prepared aqueous solution was subjected to a heat treatment at 100 ° C.
  • a composite oxide of Ba) O was obtained.
  • cerium (IV) salt, zirconium salt, bismuth salt and barium salt were mixed with Ce, Zr, Bi and Ba in the form of 6:21 ::: 6: 6 & 0.2375: 0.7125: 0.025: 0.025.
  • 3 L of an acidic aqueous solution was prepared by adjusting the conversion concentration of the dagger to 50 gZL. Then, according to the method for synthesizing the complex acidified product used in Example 1, the composition formula (Ce Zr) (Bi
  • a composite oxide of Ba) O was obtained.
  • Cerium (IV) salt, zirconium salt, bismuth salt and strontium salt are converted into mono-ktt force of Ce, Zr, Bi and Sr SCe:
  • Zr: Bi: Sr 0.475: 0.475: 0.025: 0.025, 3 L of an acidic aqueous solution was prepared by adjusting the reduced concentration to 50 gZL. Then, according to the method for synthesizing the composite oxidized product used in Example 1, the composition formula (Ce Zr) (Bi
  • cerium (IV) salt, zirconium salt, bismuth salt and calcium salt are converted to Ce, Zr, Bi and Ji & 6:21 :::: 61: J & 0.475: 0.475: 0.025: 0.025, 3 L of an acidic aqueous solution was prepared by adjusting so that the conversion concentration of the acid solution was 50 gZL. Then, according to the method for synthesizing the complex acidified product used in Example 1, the composition formula (Ce Zr) (Bi
  • a composite oxide of Ca) O was obtained.
  • a composite oxide of Ba) O was obtained.
  • a composite oxide of Ba) O was obtained.
  • 3 L of an acidic aqueous solution was prepared by adjusting the reduced concentration to 50 gZL. Thereafter, according to the method for synthesizing the composite oxidized product used in Example 1, the composition formula (Ce Zr) (N
  • a composite oxide of 0.5 0.5 0.95 b Sr) O was obtained.
  • a composite oxide of 0.50 rO was obtained.
  • each composite oxide was placed in a magnetic crucible with a maximum volume of 30 ml. At this time, only one kind of the composite iris was placed in one magnetic crucible. Then, a magnetic crucible containing 5 g of each composite oxide was placed in an electric furnace previously set to a temperature of 900 ° C. Four hours later, the electric crucible was taken out of the electric furnace and cooled to room temperature. After cooling, 200 mg of each complex oxide was squeezed out, and the specific surface area was measured by BET method (Brunauer-Emmett-Teller method) using Flow Soap # 2300 (manufactured by Micrometrics).
  • BET method Brunauer-Emmett-Teller method
  • An automatic thermal desorption spectrometer TP5000 (manufactured by Oshoku Riken) was used for measurement of the thermal reduction spectrum. Specifically, 500 mg of each composite oxide heated in air at 900 ° C for 4 hours is filled into a U-shaped quartz tube, and the quartz tube is filled with 90% Ar gas and 10% H gas.
  • the measurement was performed from a temperature range of 50 ° C. to 1000 ° C. at a heating rate of 10 ° C./min. While flowing a mixed gas composed of 30 ml Zmin. ⁇ Measurement results>
  • Tables 1 to 3 show the values of the specific surface area (unit: m 2 / g) of each composite oxidized product and the value of the temperature at the peak appearing on the lowest temperature side in the heating-up reduction spectrum (hereinafter, referred to as the following). , “Peak temperature”!). 1 to 5 show the temperature-reduction spectra of the composite oxidized products shown in Table 1, respectively.
  • the value of the specific surface area of the composite oxides of Examples 1 and 2 is about 3.5 times larger than the value of the specific surface area of the composite oxide of Comparative Example 1. Further, the value of the specific surface area of the composite oxide of Example 2 is larger than that of the composite oxide of Example 1. Then, the specific surface area of each composite oxidized product after firing at 900 ° C. for 4 hours is measured. As described above, the heat resistance of the composite oxidized product is enhanced by adding Ba.
  • the specific surface area of the composite oxidized product of Example 2 and the specific surface area of the composite oxidized product of Comparative Example 2 show values, for example. Since the composite oxidized product of Comparative Example 2 does not contain Bi, even if the composite oxidized product of Comparative Example 2 is baked at 900 ° C for 4 hours, the specific surface area may not be reduced by Bi. Absent. On the other hand, since the composite oxide of Example 2 contains Bi, firing the composite oxide of Example 2 at 900 ° C. for 4 hours results in a decrease in specific surface area.
  • the complex oxide containing Ba can completely prevent the specific surface area from decreasing at high temperatures due to the Bi-added mash, and as a result, the specific surface area has a practically useful size. .
  • the specific surface areas of the composite oxidized products of Examples 3 to 9 are 20 m 2 Zg or more, which are practically very useful.
  • Nb or V Even if Sr or Ca is used as the element B, the specific surface area can be made a practically useful size.
  • any of the composite oxides shown in Table 2 has a specific surface area of 20 m 2 / g or more, the combination of the elements A and B is not particularly limited.
  • the specific surface area of each of the composite oxidized products of Examples 10 and 11 is 20 m 2 / g or more, which is a very useful size for practical use. Therefore, even in the case of a composite acid product to which Ni or A1 is added, the specific surface area of the composite acid product can be made a very useful size for practical use.
  • the peak temperatures of the temperature-reduced reduction sprouts of the composite oxides of Examples 3 to 9 are 300 ° C or lower. Therefore, the composite oxides of Examples 3 to 9 also act as cocatalysts of the exhaust gas purification catalyst even at 300 ° C or lower. In other words, regardless of whether Nb or V is used as the element A or Sr or Ca is used as the element B, the composite oxide acts as a cocatalyst of the exhaust gas purification catalyst even at 300 ° C. or lower. Further, since any of the composite oxides shown in Table 2 shows a peak temperature of 300 ° C. or lower, the combination of element A and element B is not particularly limited.
  • the peak temperature of the temperature-reduced reduction spectrum of the composite oxidized products of Examples 10 and 11 is 300 ° C. or lower. Therefore, even a composite oxide to which Ni or A1 has been added acts as a co-catalyst for an exhaust gas purification catalyst even at 300 ° C or lower.
  • the results of Examples 1 to 4 show that even if the molar ratio between Ce and Zr in the composite oxidized product is different, the value of the peak temperature of the temperature-reduction reduction spectrum does not change so much at 300 ° C. In the following, it also acts as a promoter of the exhaust gas purification catalyst.
  • the following can be said in the measurement results of the temperature-reduction spectrum and the measurement result of the specific surface area.
  • Comparing Example 1 with Comparative Example 1 the peak specific temperatures were all 300 ° C or less.
  • the specific surface area of the composite oxidized product of Comparative Example 1 contained Ba. It shows a remarkably small value of 2m 2 Zg.
  • the specific surface area was 30 m 2 / g or more even in the case of deviation. Because it does not contain, it shows extremely high temperature of 550 ° C.
  • the above measurement results also correspond to a case where the measurement results of Example 2 are compared with the measurement results of Comparative Example 1 or Comparative Example 2.
  • the composite oxide which has Ce, Zr and Bi and does not contain Ba like the composite oxidized product of Comparative Example 1 has a small specific surface area! Therefore, it cannot be used practically as a promoter for exhaust gas purification catalysts. Therefore, as in the composite oxidation catalyst of Comparative Example 2, the composite oxidation containing Ce, Zr, and Ba but not Bi. It is practically used as an exhaust gas purifying catalyst because it does not exhibit the catalytic ability of an exhaust gas purifying catalyst in a low temperature range below 300 ° C. Cannot be used for That is, for the first time, by adding both bismuth oxide and barium oxide to the Ce—Zr-based composite oxide, even when the specific surface area is 20 m 2 / g or more and 300 ° C. or less, the exhaust gas purification catalyst can be used. The catalyst exhibits a very useful catalytic ability as a promoter.
  • the composite oxides described in Table 2 exhibit substantially the same effects as those of the composite oxides of Examples 1 and 2. Therefore, even if niobium oxide or vanadium oxide is added to the Ce—Zr-based composite oxide instead of bismuth oxide, and calcium oxide or strontium oxide is added instead of barium oxide, the composite oxide does not have a specific ratio. Even when the surface area is not less than 20 m 2 Zg and not more than 300 ° C., the catalyst exhibits practically very useful catalytic ability as a promoter of an exhaust gas purification catalyst.
  • the composite oxides shown in Table 3 exhibit substantially the same effects as those of the composite oxides of Examples 1 and 2. Therefore, even in the case of a complex oxidized product to which Ni or A1 is added, Even when the surface area is not less than 20 m 2 Zg and not more than 300 ° C., the catalyst exhibits practically very useful catalytic ability as a catalyst for an exhaust gas purification catalyst.
  • the specific surface area When the specific surface area is 25 m 2 Zg or more, it has more active sites for oxidation-reduction reaction, so that the specific surface area is preferably 25 m 2 / g or more. Further, if the peak temperature is lower than 280 ° C, it can act as a promoter of the exhaust gas purification catalyst at a lower temperature.
  • Bi, V, and Nb are used as examples of the element A
  • Ba, Ca, and Sr are used as examples of the element B.
  • the elements A and B are not limited thereto.
  • the element A may include at least one metal element selected from the group consisting of Bi, V, Ti, Nb, W, Fe, Pr, Tb, and Eu.
  • Ba, Sr, Ca, Mg, and La may include at least one selected from the group consisting of the forces. Therefore, for example, a composite iris made of Ce, Zr, Bi, V, Ba, and Sr may be used as the composite iris in this embodiment.
  • composition formula of the composite oxide is (Ce Zr) (AB) O (where x, y, z, and ⁇ are, respectively, 0.05 ⁇ x ⁇ 0.95 and 0.01 ⁇ y ⁇ 0.99, 0.01 ⁇ z ⁇ 0.3, 1. 365 ⁇ ⁇ ⁇ 1.995) can be used.
  • the specific surface area is 20 m 2 Zg or more and 300 ° C. or less, the composite oxide exhibits practically very useful catalytic activity as a cocatalyst of an exhaust gas purification catalyst.
  • an element other than the above metal element may be added.
  • cerium (IV) salt, zirconium salt, bismuth salt, barium salt, and the like used in synthesizing the composite oxidized product in the present example are not particularly limited, and are not particularly limited. It may be an inorganic salt such as salt chloride, nitrate or the like, or may be an organic salt such as acetyl acetonato complex.
  • the composite oxide was synthesized using a coprecipitation method including a step of heat-treating the raw salt aqueous solution.
  • a coprecipitation method including a step of heat-treating the raw salt aqueous solution.
  • the present invention is not limited thereto.
  • Known synthesis methods such as a reaction method and a hydrolysis method can be used.
  • the firing step for synthesizing the composite oxide may be performed in a reducing atmosphere even in an oxidizing atmosphere.
  • the atmosphere may be changed, or the atmosphere may be changed alternately and repeatedly.
  • the present invention is intended to purify exhaust gas discharged from the power of an engine, for example, an internal combustion engine of an automobile or the like, which is driven by energy supplied by the combustion of complex oxides, particularly gasoline and light oil. It can be used as a cocatalyst for an exhaust gas purifying catalyst, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Disclosed is a complex oxide represented by the general formula: (Ce1-xZrx)1-z(A1-yBy)zOδ (wherein x, y, z and δ represent numbers respectively satisfying 0.05 ≤ x ≤ 0.95, 0.01 ≤ y ≤ 0.99, 0.01 ≤ z ≤ 0.3 and 1.365 ≤ δ ≤ 1.995), wherein A contains at least one metal element selected from the group consisting of Bi, V, Ti, Nb, W, Fe, Pr, Tb and Eu, and B contains at least one element selected from the group consisting of Ba, Sr, Ca, Mg and La.

Description

複合酸化物  Complex oxide
技術分野  Technical field
[0001] 本発明は、複合酸化物、特にガソリンや軽油の燃焼により供給されるエネルギーが 駆動力となるエンジン、例えば自動車などの内燃機関カゝら排出される排気ガスを浄 化する排気ガス浄ィ匕触媒の助触媒に関するものである。  The present invention relates to an exhaust gas purifying apparatus for purifying an exhaust gas discharged from an engine, for example, an internal combustion engine of an automobile or the like, in which energy supplied by combustion of a complex oxide, particularly gasoline or light oil, serves as a driving force. It relates to a co-catalyst for a dani catalyst.
背景技術  Background art
[0002] 自動車などの内燃機関の排出する排気ガスには、人体又は環境に有害である炭化 水素、一酸化炭素、窒素酸化物が含まれている。現在、一酸化炭素及び炭化水素を 炭酸ガスと水に酸化し、窒素酸ィ匕物を窒素と水に還元する、いわゆる三元触媒が排 気ガス浄化用触媒として使用されている。三元触媒は、例えば主触媒である白金、パ ラジウム、ロジウムの貴金属と助触媒である酸化セリウムを含有する酸化物又は複合 酸ィ匕物がアルミナ、コージエライト等の触媒担体に担持された構成となっている。助 触媒は、含有されるセリウムが、酸化雰囲気下で 3価から 4価に価数を変えて酸素を 吸収し、還元雰囲気下で 4価から 3価に価数を変えて酸素を放出するという特性、い わゆる酸化還元能を有する。この酸化還元能により、エンジンの加速、減速による排 気ガスの急激な雰囲気変化を緩和して、主触媒は高!ヽ効率で排気ガスを浄化するこ とができる。助触媒としては、セリウムとジルコニウムを含有する複合酸ィ匕物(以下「Ce -Zr系複合酸ィ匕物」という。)が広く使用されている。現在使用されている Ce-Zr系複 合酸ィ匕物は、 300°C以下という低温下における酸ィ匕還元能が十分でない為、ェンジ ン始動時のようにエンジンの温度が低いときは、上述した雰囲気変化を緩和する効 果が無ぐ主触媒の排気ガス浄化効率は低い。また、 Ce-Zr系複合酸化物の酸化還 元能は、気相である排気ガスと固相である助触媒の固気界面の反応による為、 Ce-Z r系複合酸ィ匕物の比表面積が大きく影響する。そこで、 Ce-Zr系複合酸ィ匕物は、 900 °C以上の高温に曝された後においても、高い比表面積を維持することが重要である  [0002] Exhaust gas emitted from internal combustion engines such as automobiles contains hydrocarbons, carbon monoxide, and nitrogen oxides that are harmful to the human body or the environment. At present, so-called three-way catalysts, which oxidize carbon monoxide and hydrocarbons to carbon dioxide and water and reduce nitrogen oxides to nitrogen and water, are used as exhaust gas purifying catalysts. The three-way catalyst has, for example, a structure in which an oxide or composite oxide containing a noble metal of platinum, palladium, or rhodium as a main catalyst and cerium oxide as a co-catalyst is supported on a catalyst carrier such as alumina or cordierite. Has become. The co-catalyst states that the contained cerium absorbs oxygen by changing its valence from trivalent to tetravalent under an oxidizing atmosphere, and releases oxygen by changing its valence from tetravalent to trivalent under a reducing atmosphere. It has properties, so-called redox ability. This oxidation-reduction capability can mitigate sudden changes in the atmosphere of exhaust gas due to acceleration and deceleration of the engine, and the main catalyst can purify exhaust gas with high efficiency. As a co-catalyst, a complex iris containing cerium and zirconium (hereinafter referred to as "Ce-Zr-based complex iris") is widely used. The Ce-Zr-based composite oxides currently used do not have sufficient oxidation reduction ability at low temperatures of 300 ° C or lower, so when the engine temperature is low, such as when starting an engine, The exhaust gas purification efficiency of the main catalyst, which does not have the effect of mitigating the above-mentioned change in atmosphere, is low. The oxidation-reduction ability of the Ce-Zr-based composite oxide is determined by the reaction between the gas-phase exhaust gas and the solid-gas interface of the co-catalyst as the solid phase. Surface area has a significant effect. Therefore, it is important for the Ce-Zr-based composite oxide to maintain a high specific surface area even after being exposed to a high temperature of 900 ° C or more.
[0003] 一方、特許文献 1には、三元触媒の助触媒として酸ィ匕セリウムと酸ィ匕ジルコニウムと 酸ィ匕ビスマスとで構成される複合酸ィ匕物を用いることが開示されている。そして、この 複合酸化物は、 1000°C以上において排気ガス浄化触媒の助触媒として使用した後 も、 300°C以下という低温領域において高い酸ィ匕還元能を有するため、エンジン始 動直後からエンジンが排出する排気ガスを浄ィ匕することができ、耐熱性に優れた助 触媒として好適である、と記載されている。 [0003] On the other hand, Patent Document 1 discloses that cerium oxide and zirconium oxide are used as co-catalysts of a three-way catalyst. It is disclosed to use a composite oxidized product composed of oxidized bismuth. The composite oxide has a high oxidation reduction ability in a low temperature range of 300 ° C or less even after being used as a promoter of an exhaust gas purification catalyst at 1000 ° C or more. It is described that it can purify the exhaust gas discharged from the catalyst and is suitable as a promoter having excellent heat resistance.
特許文献 1:特開 2003— 238159号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-238159
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、特許文献 1に開示されている複合酸化物は、確かに 300°C以下にお いて酸ィ匕還元能を有するが、比表面積が小さいため、酸化還元反応の活性点が少 なく三元触媒の助触媒として充分な性能を発揮し得ない虞がある。  [0004] However, the composite oxide disclosed in Patent Document 1 certainly has an oxidizing and reducing ability at a temperature of 300 ° C or lower, but has a small specific surface area, so that the activity of the oxidation-reduction reaction is low. There are few points, and there is a possibility that sufficient performance as a promoter of a three-way catalyst cannot be exhibited.
[0005] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、排気ガ ス浄化触媒の助触媒として、 900°C付近の高温に曝された後も大きな比表面積を有 するとともに 300°C以下という低温領域において優れた酸ィ匕還元能を呈することがで きる耐熱性及び低温活性に優れた複合酸化物を提供することにある。  [0005] The present invention has been made in view of its power, and an object of the present invention is to provide an exhaust gas purifying catalyst that has a large ratio even after being exposed to a high temperature of around 900 ° C. An object of the present invention is to provide a composite oxide having a surface area and exhibiting excellent oxidation-reduction ability in a low-temperature region of 300 ° C. or lower and having excellent heat resistance and low-temperature activity.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の複合酸化物は、一般式 (Ce Zr ) (A B ) O (式中、 x, y, z, δはそ [0006] The composite oxide of the present invention has the general formula (CeZr) (AB) O (where x, y, z, and δ are
δ  δ
れぞれ、 0. 05≤x≤0. 95、 0. 01≤y≤0. 99、 0. 01≤z≤0. 3、 1. 365≤ δ≤1 0,05≤x≤0.95, 0.011≤y≤0.99, 0.011≤z≤0.3, 1.365≤δ≤1, respectively
. 995を満たす数字である)で表され、 Aは、 Bi, V, Ti, Nb, W, Fe, Pr, Tb及び Eu 力 なる群より選ばれた少なくとも一つの金属元素を含み、 Bは、 Ba, Sr, Ca, Mg,Where A includes at least one metal element selected from the group consisting of Bi, V, Ti, Nb, W, Fe, Pr, Tb, and Eu. Ba, Sr, Ca, Mg,
Laからなる群より選ばれた少なくとも一つを含む。 Including at least one selected from the group consisting of La.
[0007] ここで、 Aは、 300°C以下と!/、う低温領域における酸化還元反応を活性化する金属 元素である。 Bは、複合酸ィ匕物の耐熱性を高めることができる金属元素である。 Here, A is a metal element that activates an oxidation-reduction reaction in a low temperature range of 300 ° C. or less. B is a metal element that can increase the heat resistance of the composite oxidized product.
[0008] また、本発明の複合酸化物は、昇温還元スペクトルにおいて 300°C以下にピークを 有し、且つ、 900°Cにおいて 4時間焼成した後の比表面積が 20m2Zg以上であるこ とが好ましい。 Further, the composite oxide of the present invention has a peak at a temperature of 300 ° C. or lower in a temperature-reduction spectrum, and has a specific surface area of 20 m 2 Zg or more after calcining at 900 ° C. for 4 hours. Is preferred.
[0009] また、本発明の複合酸化物は、希土類元素(Ce, Tb, Eu, La及び Prを除く)、 Ni、 Cu、 Al、 Si並びに Beからなる群より選ばれた少なくとも一つをさらに含んでいてもよ い。 [0009] The composite oxide of the present invention further comprises at least one selected from the group consisting of rare earth elements (excluding Ce, Tb, Eu, La and Pr), Ni, Cu, Al, Si and Be. May be included Yes.
[0010] また、本発明の複合酸化物では、 Aは、少なくとも Biを含んでおり、 Bは、少なくとも Baを含んで!/、ることが好まし!/、。  [0010] Further, in the composite oxide of the present invention, A preferably contains at least Bi, and B preferably contains at least Ba! /.
発明の効果  The invention's effect
[0011] 本発明の複合酸化物は、排気ガス浄化触媒の助触媒として、 900°C付近の高温に 曝された後も大きな比表面積を有するとともに 300°C以下という低温領域においても 優れた酸化還元能を呈することができる。  [0011] The composite oxide of the present invention has a large specific surface area even after being exposed to a high temperature of around 900 ° C as a cocatalyst of an exhaust gas purifying catalyst, and has excellent oxidation even in a low temperature region of 300 ° C or less. It can exhibit a reducing ability.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、実施例 1における複合酸ィ匕物の昇温還元スペクトル図である。  FIG. 1 is a temperature-reduction spectrum diagram of a composite oxidized product in Example 1.
[図 2]図 2は、実施例 2における複合酸ィ匕物の昇温還元スペクトル図である。  [FIG. 2] FIG. 2 is a temperature-reduction spectrum diagram of a complex oxidized product in Example 2.
[図 3]図 3は、比較例 1における複合酸ィ匕物の昇温還元スペクトル図である。  [FIG. 3] FIG. 3 is a temperature-reduction spectrum diagram of a composite oxidized product in Comparative Example 1.
[図 4]図 4は、比較例 2における複合酸ィ匕物の昇温還元スペクトル図である。  FIG. 4 is a temperature-reduction spectrum chart of a composite oxidized product in Comparative Example 2.
[図 5]図 5は、比較例 3における複合酸ィ匕物の昇温還元スペクトル図である。  FIG. 5 is a temperature-reduction spectrum diagram of a composite oxidized product in Comparative Example 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、実施形態として、複合酸化物の組成及びその複合酸化物の排気ガス浄化触 媒の助触媒としての性能を評価する方法を説明する。 Hereinafter, as an embodiment, a method of evaluating the composition of a composite oxide and the performance of the composite oxide as a promoter of an exhaust gas purifying catalyst will be described.
[0014] 本実施形態における複合酸ィ匕物は、一般式 (Ce Zr ) (A B ) O (式中、 x, y l-χ x 1 z 1 - y y z δ [0014] In the present embodiment, the complex oxidized product is represented by the general formula (CeZr) (AB) O (where x, yl-χx1z1-yyz δ
, z, δはそれぞれ、 0. 05≤x≤0. 95、 0. 01≤y≤0. 99、 0. 01≤z≤0. 3、 1. 3 65≤ δ≤1. 995を満たす数字である)で表される。  , z, and δ are numbers that satisfy 0.055 x ≤ 0.95, 0.01 ≤ y ≤ 0.99, 0.01 ≤ z ≤ 0.3, 1.3 65 ≤ δ ≤ 1.995, respectively ).
[0015] 元素 Aは、 Bi、 V、 Ti、 Nb、 W、 Fe、 Pr、 Tb、 Euから選ばれ、これらは単独で、もし くは複数種を混合して用いることができる。そして、複合酸化物に対して元素 Aを添 加することにより、複合酸化物にはイオン伝導性と電子導電性との両方が発現し、 Ce の低温における酸ィ匕還元能が向上する。また、元素 A自体が酸化還元能を有する場 合もある。そして、元素 Aとして、複合酸ィ匕物には、 Bi、 V、 Ti、 Nbが含まれていること が好ましい。 The element A is selected from Bi, V, Ti, Nb, W, Fe, Pr, Tb, and Eu, and these can be used alone or as a mixture of two or more. Then, by adding the element A to the composite oxide, both the ionic conductivity and the electronic conductivity are exhibited in the composite oxide, and the oxidizing and reducing ability of Ce at a low temperature is improved. In some cases, the element A itself has a redox ability. And, as the element A, it is preferable that the complex oxidized product contains Bi, V, Ti, and Nb.
[0016] 元素 Bは、価数が 2以上の陽イオンとなり得る塩基性を示す元素であって、 Ba、 Sr、 Ca、 Mg、 Laから選ばれる。これらは単独で、もしくは複数種を混合して用いることが できる。そして、本実施形態における複合酸化物は、上記に記載した元素 A及び元 素 Bを含んでいるため、 900°C付近の高温に曝された後も大きな比表面積を有すると ともに 300°C以下という低温領域においても優れた酸ィ匕還元能を呈することとなる。 [0016] The element B is a basic element that can be a cation having a valence of 2 or more, and is selected from Ba, Sr, Ca, Mg, and La. These can be used alone or in combination of two or more. The composite oxide according to the present embodiment includes the element A and the element described above. Since it contains element B, it has a large specific surface area even after being exposed to a high temperature of around 900 ° C, and exhibits excellent oxidation reduction ability even in a low temperature region of 300 ° C or less.
[0017] なお、元素 Bを加えることにより元素 Aの添カ卩により生じる複合酸ィ匕物の耐熱性の低 下を抑制することができる理由は明らかではないが、本願発明者らは、本実施形態 における複合酸ィ匕物において元素 Bは不純物として作用し、そのために、 900°C付 近という高温下での粒子成長を阻止するのではないか、と考えている。また、具体例 として列挙した元素 Bの中には、元素 Aの有する低温における酸化還元反応を活性 化する作用を更に高める働きをする元素もある。  [0017] It is not clear why adding the element B can suppress a decrease in the heat resistance of the composite oxidized product produced by the addition of the element A. It is believed that the element B acts as an impurity in the composite oxide in the embodiment, and therefore may prevent the growth of particles at a high temperature of around 900 ° C. In addition, among the elements B listed as specific examples, there are elements that function to further enhance the action of the element A to activate the redox reaction at low temperatures.
[0018] また、一般式(Ce Zr ) (A B ) O において、 x力^). 05≤x≤0. 95を満たす  [0018] Further, in the general formula (Ce Zr) (A B) O, x force ^). 05≤x≤0.95 is satisfied.
δ  δ
数字である複合酸化物は、実用上十分な耐熱性及び酸化還元能を有する。そして、 Xが 0. 25≤χ≤0. 75を満たす複合酸化物では、その耐熱性及び酸化還元能は良 くなり、 Xが 0. 4≤χ≤0. 6を満たす複合酸化物では、その耐熱性及び酸ィ匕還元能は 更に良くなる。また、一般式(Ce Zr ) (A B ) O において、 y力^). 01≤y≤0.  The composite oxides indicated by the numbers have practically sufficient heat resistance and oxidation-reduction ability. In the case of a composite oxide in which X satisfies 0.25≤χ≤0.75, its heat resistance and oxidation-reduction ability are improved, and in the case of a composite oxide in which X satisfies 0.4≤χ≤0.6, Its heat resistance and reducing ability are further improved. In the general formula (Ce Zr) (A B) O, y force ^). 01≤y≤0.
δ  δ
99を満たす複合酸化物は、実用上十分な耐熱性及び低温活性を有する。そして、 y が 0. l≤y≤0. 9を満たす複合酸化物では、その耐熱性及び低温活性は良くなり、 y が 0. 2≤y≤0. 8を満たす複合酸化物では、その耐熱性及び低温活性は更に良く なる。また、一般式(Ce Zr ) (A B ) O において、 zが 0. 01≤z≤0. 3を満た  A composite oxide satisfying 99 has practically sufficient heat resistance and low-temperature activity. And, the heat resistance and low-temperature activity are improved in the composite oxide where y satisfies 0.l≤y≤0.9, and in the composite oxide where y satisfies 0.2≤y≤0.8. The properties and low temperature activity are better. In the general formula (Ce Zr) (A B) O, z satisfies 0.01 ≤ z ≤ 0.3.
δ  δ
す複合酸化物は、実用上十分に高い低温活性、酸化還元能及び耐熱性を有する。 そして、 ζが 0. 01≤ζ≤0. 2を満たす複合酸化物では、その低温活性、酸化還元能 及び耐熱性は良くなり、 ζが 0. 01≤ζ≤0. 1を満たす数字である複合酸化物では、 その低温活性、酸ィ匕還元能及び耐熱性はさらに良くなる。  The composite oxide has low-temperature activity, oxidation-reduction ability and heat resistance sufficiently high for practical use. In the case of a composite oxide where ζ satisfies 0.01 ≤ ζ ≤ 0.2, its low-temperature activity, redox activity and heat resistance are improved, and ζ is a number satisfying 0.01 ≤ ζ ≤ 0.1. In the case of the composite oxide, its low-temperature activity, oxidation reduction ability, and heat resistance are further improved.
[0019] さらに、本実施形態における複合酸化物は、希土類元素(Ce, Tb, Eu, La及び Pr を除く)、 Ni、 Cu、 Al、 Si並びに Beからなる群より選ばれた少なくとも一つをさらに含 んでいてもよい。これらの金属元素は、複合酸化物に求められる特性により、適宜選 択される。例えば、希土類元素(Ce, Tb, Eu, La及び Prを除く)、 Al、 Si及び Beを 添加すると複合酸ィ匕物の耐熱性がさらに向上し、 Ni及び Cuを添加すると複合酸ィ匕 物の排気ガス浄ィ匕効果が更に高められる。  Further, the composite oxide in the present embodiment is at least one selected from the group consisting of rare earth elements (excluding Ce, Tb, Eu, La and Pr), Ni, Cu, Al, Si and Be. They may also be included. These metal elements are appropriately selected depending on the characteristics required for the composite oxide. For example, the addition of rare earth elements (except Ce, Tb, Eu, La and Pr), Al, Si and Be further improves the heat resistance of the composite oxide, and the addition of Ni and Cu adds the composite oxide. This further enhances the exhaust gas purifying effect.
[0020] また、本実施形態における複合酸化物は、 900°C付近の高温に曝された後も大き な比表面積を有するとともに 300°C以下という低温領域においても優れた酸ィ匕還元 能を呈すると 、う効果を奏する限りにお 、て、上記金属元素以外の元素を含んで 、 てもよい。 [0020] The composite oxide of the present embodiment remains large even after being exposed to a high temperature of around 900 ° C. As long as it has a high specific surface area and exhibits excellent oxidation-reduction performance even in a low temperature range of 300 ° C. or lower, it may contain an element other than the above-mentioned metal elements as long as it exhibits an effect.
[0021] 本実施形態における複合酸化物は、公知の合成方法を用いて製造できるが、比表 面積を大きくするという目的を達成するためには、共沈法により製造することが好まし い。さらに好ましくは、後述の実施例に記載のように、原料塩水溶液を加熱処理する 工程を含む共沈法を用いる。  [0021] The composite oxide in the present embodiment can be produced by a known synthesis method, but is preferably produced by a coprecipitation method in order to achieve the purpose of increasing the specific surface area. More preferably, a coprecipitation method including a step of heat-treating a raw salt aqueous solution is used as described in Examples below.
[0022] 本実施形態における複合酸化物の耐熱性は、 900°Cにおいて 4時間焼成した後の 比表面積の大きさで評価し、比表面積は BET法を用いて測定する。この耐熱性の評 価方法は、助触媒材料の耐熱性の評価として一般的に行われる方法である。そして 、 900°Cにお 、て 4時間焼成した後の比表面積が 20m2/g以上である複合酸ィ匕物、 好ましくは 25m2/g以上である複合酸ィ匕物、さらに好ましくは 30m2/g以上である複合 酸化物は、排気ガス浄化触媒の助触媒として優れた酸化還元能を維持することがで きる。なお、比表面積の測定方法の詳細は、後述の実施例中で述べる。 The heat resistance of the composite oxide in the present embodiment is evaluated based on the specific surface area after firing at 900 ° C. for 4 hours, and the specific surface area is measured using the BET method. This method of evaluating heat resistance is a method generally performed to evaluate the heat resistance of a promoter material. And, at 900 ° C., the specific surface area after firing for 4 hours at 900 ° C. is 20 m 2 / g or more, preferably 25 m 2 / g or more, more preferably 30 m 2 / g or more. A composite oxide of 2 / g or more can maintain excellent oxidation-reduction ability as a promoter of an exhaust gas purification catalyst. The details of the method for measuring the specific surface area will be described later in Examples.
[0023] 本実施形態における複合酸化物の排気ガス浄化触媒の助触媒としての酸化還元 會は、昇 fe®兀スヽクトノレ (Temperature Programmed Reduction Spectraノ U疋する ことにより推測することができる。そして、昇温還元スペクトルは、試料に対して水素ガ スなどの還元ガスを流しながら試料を一定速度で昇温して 、き、各温度で還元に使 用された還元ガスの量を測定することにより得られる。そのため、昇温還元スペクトル は、測定物質の還元能の温度依存性を表すスペクトルである。そして、より低温側に ピークが現れている物質の方力 より低温において還元能を示すこととなり、より低温 において排気ガス浄ィ匕触媒の助触媒として作用しうることとなる。具体的には、昇温 還元スペクトルにおいて、 300°C以下にピークが現れていれば、 300°C以下におい て排気ガス浄ィ匕触媒の助触媒として作用しうることとなる。なお、昇温還元スペクトル の測定方法の詳細は後述の実施例中で述べる。  The oxidation-reduction reaction of the composite oxide as a cocatalyst of the exhaust gas purifying catalyst in the present embodiment can be estimated by using a Temperature Programmed Reduction Spectra. The temperature-reduced reduction spectrum is a method in which the sample is heated at a constant rate while flowing a reducing gas such as hydrogen gas to the sample, and the amount of reducing gas used for reduction at each temperature is measured. Therefore, the temperature-reduced reduction spectrum is a spectrum showing the temperature dependence of the reducing ability of the test substance, and the reducing ability at a lower temperature than that of the substance whose peak appears on the lower temperature side. It can act as a co-catalyst of the exhaust gas purification catalyst at a lower temperature.Specifically, if a peak appears below 300 ° C. in the temperature-reduction reduction spectrum, 300 ° C. It will be able to act as a co-catalyst of the exhaust gas purifying catalyst at temperatures below C. The method of measuring the temperature-reduction spectrum will be described in detail in Examples below.
実施例  Example
[0024] 本実施例では、表 1から 3に示す組成式の複合酸化物を用いて、比表面積 (単位: mVg)及び昇温還元スペクトルを測定し、各複合酸化物の組成式または組成比との 〔s〔002In this example, specific surface area (unit: mVg) and temperature-reduction spectrum were measured using composite oxides having the composition formulas shown in Tables 1 to 3, and the composition formula or composition ratio of each composite oxide was measured. With (S (002
Figure imgf000008_0001
Figure imgf000008_0001
〔〕0025 比表面積 [m2/g] ピーク温度 [°C] s §3¾ 施例 3 e0.6 ' 0.4) 0.95 (Dl0.5^a0.5) 0.05〇1.962.; 25.0 260 施例 4 25 ' 0.75) 0.95 (Β1^ 5^30.5) 0.。5〇1.9625 35.5 266 施例 5 (し θ0.50.5 [] 0025 Specific surface area [m 2 / g] Peak temperature [° C] s §3¾ Example 3 e 0.6 '0.4) 0.95 ( Dl 0.5 ^ a 0.5) 0.05〇1.962 .; 25.0 260 Example 4 25' 0.75) 0.95 (Β 1 ^ 5 ^ 3 0.5) 0. 5_Rei_1.9625 35.5 266施例5 (tooth θ 0. 5 ^ Γ 0 .5
0.95 (Dl0.5^Γ0.5) 0.05^1.9625 30.0 265 施例 6 (し e0.5Zr0_ Γ) 5 ο.5) 0.05^1.962i 25.7 276 施例 7 (Ce0.5Zr0. r) o.95 (Nb0. r,Ba0 5) 0.05OL g625 31.2 290 施例 8 (Ce0.5Zr0.5 0.95 ^O.5^a0.5) 0.05^1.9875 28.0 288 施例 9 (Ce0.5Zr0.5 Sr ) 0 0.95 (Dl 0.5 ^ Γ 0.5) 0.05 ^ 1.9625 30.0 265施例6 (to e 0. 5 Zr 0 _ Γ ) 5 ο.5) 0.05 ^ 1.962i 25.7 276施例 7 (Ce 0. 5 Zr 0 . R ) o.95 (Nb 0. r, Ba 0 5) 0. 05 O L g625 31.2 290施例 8 (Ce 0. 5 Zr 0 . 5 0.95 ^ O.5 ^ a 0.5) 0.05 ^ 1.9875 28.0 288施例 9 (Ce 0. 5 Zr 0 . 5 Sr) 0
0.95 i U0.5 ± 0.5ノ 0.05vl.9875 26.3 294 0.95 i U 0.5 ± 0.5 no 0.05 v l. 9875 26.3 294
O CO O CO
LO LO CM CM  LO LO CM CM
度 []表積 [V]°ピ面ク温比cーmg Degree [] Table area [V] ° Temperature ratio c-mg
施 ())実 (ΐΝΐ910」160060S00000 (( ) ) Actual ( Example ΐΝΐ9 10) 160060S00000
O」1 ((' . · · - · ... 寸  O''1 (('.
00  00
CM CO  CM CO
() ()実例τ0aTgつ 1ν1B s"6esso 6oe:oοοοo· · · - - - () () Example τ0aTg 1 ν 1 B s "6esso 6oe: oοοοo · ·---
1 1
ここで、表 1から 3に示すように、実施例 1から 11では、元素 A及び元素 Bを含む複 合酸ィ匕物を用いた。また、比較例 1では Biのみを含む複合酸ィ匕物、比較例 2では Ba のみを含む複合酸化物、比較例 3では Bi及び Baを含まな 、複合酸ィ匕物を用いた。 なお、比較例 1の複合酸化物は、特許文献 1における実施例 1に記載されている複 合酸化物に該当する。 <各複合酸化物の合成方法 > Here, as shown in Tables 1 to 3, in Examples 1 to 11, a composite oxide containing element A and element B was used. In Comparative Example 1, a composite oxide containing only Bi was used. In Comparative Example 2, a composite oxide containing only Ba was used. In Comparative Example 3, a composite oxide containing neither Bi nor Ba was used. The composite oxide of Comparative Example 1 corresponds to the composite oxide described in Example 1 of Patent Document 1. <Synthesis method of each composite oxide>
比表面積 (単位: m2/g)及び昇温還元スペクトルを測定するにあたり、実施例 1か ら 11及び比較例 1から 3で用いる複合酸ィ匕物を以下に示す手法で合成した。 In measuring the specific surface area (unit: m 2 / g) and the temperature-reduced reduction spectrum, the composite oxidized products used in Examples 1 to 11 and Comparative Examples 1 to 3 were synthesized by the following method.
—実施例 1— —Example 1—
セリウム(IV)塩、ジルコニウム塩、ビスマス塩及びバリウム塩を、 Ce、 Zr、 Bi及び Ba のモノレ 匕カじ6 :21:::6 :6& = 0. 475 : 0. 475 : 0. 025 : 0. 025であり、酸ィ匕物換算 濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。なお、一般に、ジ ルコ-ゥム塩は数重量%のハフニウム(Hf)を含有している場合があり、ここで言うジ ルコ-ゥムのモル量にはハフニウムのモル量も含まれている。そして、還流器付きフラ スコを用いて、準備した水溶液に対して 100°C、 15時間の加熱処理を行い、加熱処 理後、水冷によりその水溶液の温度を室温まで冷却した。それから、その水溶液を 1 OOgZLの炭酸水素アンモ-ゥム水溶液 5Lを用いて中和した。そして、懸濁した中 和後の水溶液をヌッチェを用いて固液分離した。得られた固体を、純水によりデカン テーシヨンとろ過とを 10回繰り返す洗浄を行った後、箱型電気炉に入れて、空気中 において 500°C、 10時間の焼成を行い、乳鉢を用いて粉砕した。これにより、表 1に 示す組成式 (Ce Zr ) (Bi Ba ) O の複合酸化物を得た。  A cerium (IV) salt, a zirconium salt, a bismuth salt and a barium salt are mixed with Ce, Zr, Bi, and Ba monoliths 6:21 ::: 6: 6 & = 0.475: 0.475: 0.025: It was adjusted to be 0.025, and the acid-converted concentration was adjusted to 50 gZL to prepare 3 L of an acidic aqueous solution. Note that, in general, the dimethyl salt may contain several weight percent of hafnium (Hf), and the molar amount of the dimethyl includes the molar amount of hafnium. . The prepared aqueous solution was subjected to a heat treatment at 100 ° C. for 15 hours using a flask with a reflux condenser. After the heat treatment, the temperature of the aqueous solution was cooled to room temperature by water cooling. Then, the aqueous solution was neutralized with 5 L of an aqueous solution of 1 OOgZL of hydrogencarbonate. Then, the suspended neutralized aqueous solution was subjected to solid-liquid separation using a Nutsche. The obtained solid is washed by repeating decantation and filtration 10 times with pure water, then placed in a box-type electric furnace, baked in air at 500 ° C for 10 hours, and then mortared. Crushed. Thus, a composite oxide of the composition formula (CeZr) (BiBa) O shown in Table 1 was obtained.
0.50 0.50 0.95 0.50 0.50 0.05 1.9625  0.50 0.50 0.95 0.50 0.50 0.05 1.9625
—実施例 2—  —Example 2—
セリウム(IV)塩、ジルコニウム塩、ビスマス塩及びバリウム塩を、 Ce、 Zr、 Bi及び Ba のモノレ 匕カじ6 : 21:::6 :6& = 0. 475 : 0. 475 : 0. 0125 : 0. 0375であり、酸ィ匕物換 算濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。その後、実施例 1で用いた複合酸ィ匕物の合成方法に従って、表 1に示す組成式 (Ce Zr ) (Bi  A cerium (IV) salt, a zirconium salt, a bismuth salt and a barium salt are mixed with Ce, Zr, Bi, and Ba monoliths 6:21 ::: 6: 6 & = 0.475: 0.475: 0.0125: 0.0375, and 3 L of an acidic aqueous solution was prepared by adjusting so that the conversion concentration of the acid solution was 50 gZL. Then, according to the method for synthesizing the complex acidified product used in Example 1, the composition formula (Ce Zr) (Bi
0.50 0.50 0.95 0.50 0.50 0.95
Ba ) O の複合酸化物を得た。 A composite oxide of Ba) O was obtained.
0.25 0.75 0.05 1.95625  0.25 0.75 0.05 1.95625
—実施例 3—  —Example 3—
セリウム(IV)塩、ジルコニウム塩、ビスマス塩及びバリウム塩を、 Ce、 Zr、 Bi及び Ba のモノレ 匕カじ6 :21:::61::6& = 0. 57 : 0. 38 : 0. 025 : 0. 025であり、酸ィ匕物換算濃度 が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。その後、実施例 1で用 いた複合酸化物の合成方法に従って、表 2に示す組成式 (Ce Zr ) (Bi Ba )  The cerium (IV) salt, zirconium salt, bismuth salt and barium salt were mixed with Ce, Zr, Bi and Ba monoliths 6:21 ::: 61 :: 6 & = 0.57: 0.38: 0.25 : 0.025, and 3 L of an acidic aqueous solution was prepared by adjusting the concentration in terms of acid chloride to 50 gZL. Thereafter, according to the method for synthesizing the composite oxide used in Example 1, the composition formula (Ce Zr) (Bi Ba) shown in Table 2 was used.
0.6 0.4 0.95 0.5 0.5 0.6 0.4 0.95 0.5 0.5
O の複合酸化物を得た。 —実施例 4— A composite oxide of O 2 was obtained. —Example 4—
セリウム(IV)塩、ジルコニウム塩、ビスマス塩及びバリウム塩を、 Ce、 Zr、 Bi及び Ba のモノレ 匕カじ6:21:::6 :6& = 0.2375:0.7125:0.025:0.025であり、酸ィ匕物換 算濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。その後、実施例 1で用いた複合酸ィ匕物の合成方法に従って、表 2に示す組成式 (Ce Zr ) (Bi  The cerium (IV) salt, zirconium salt, bismuth salt and barium salt were mixed with Ce, Zr, Bi and Ba in the form of 6:21 ::: 6: 6 & 0.2375: 0.7125: 0.025: 0.025. 3 L of an acidic aqueous solution was prepared by adjusting the conversion concentration of the dagger to 50 gZL. Then, according to the method for synthesizing the complex acidified product used in Example 1, the composition formula (Ce Zr) (Bi
0.25 0.75 0.95 0.25 0.75 0.95
Ba ) O の複合酸化物を得た。 A composite oxide of Ba) O was obtained.
0.5 0.5 0.05 1.9625  0.5 0.5 0.05 1.9625
—実施例 5—  —Example 5—
セリウム(IV)塩、ジルコニウム塩、ビスマス塩及びストロンチウム塩を、 Ce、 Zr、 Bi及 び Srのモノ ktt力 SCe:Zr:Bi:Sr=0.475:0.475:0.025:0.025であり、酸ィ匕物 換算濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。その後、実施 例 1で用いた複合酸ィ匕物の合成方法に従って、表 2に示す組成式 (Ce Zr ) (Bi  Cerium (IV) salt, zirconium salt, bismuth salt and strontium salt are converted into mono-ktt force of Ce, Zr, Bi and Sr SCe: Zr: Bi: Sr = 0.475: 0.475: 0.025: 0.025, 3 L of an acidic aqueous solution was prepared by adjusting the reduced concentration to 50 gZL. Then, according to the method for synthesizing the composite oxidized product used in Example 1, the composition formula (Ce Zr) (Bi
0.5 0.5 0.95 0.5 0.5 0.95
Sr ) O の複合酸化物を得た。 A composite oxide of Sr 2 O 3 was obtained.
0.5 0.5 0.05 1.9625  0.5 0.5 0.05 1.9625
—実施例 6—  —Example 6—
セリウム(IV)塩、ジルコニウム塩、ビスマス塩及びカルシウム塩を、 Ce、 Zr、 Bi及び じ&のモノレ 匕カじ6:21:::61:じ& = 0.475:0.475:0.025:0.025であり、酸ィ匕物換 算濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。その後、実施例 1で用いた複合酸ィ匕物の合成方法に従って、表 2に示す組成式 (Ce Zr ) (Bi  The cerium (IV) salt, zirconium salt, bismuth salt and calcium salt are converted to Ce, Zr, Bi and Ji & 6:21 ::: 61: J & 0.475: 0.475: 0.025: 0.025, 3 L of an acidic aqueous solution was prepared by adjusting so that the conversion concentration of the acid solution was 50 gZL. Then, according to the method for synthesizing the complex acidified product used in Example 1, the composition formula (Ce Zr) (Bi
0.5 0.5 0.95 0.5 0.5 0.5 0.95 0.5
Ca ) O の複合酸化物を得た。 A composite oxide of Ca) O was obtained.
0.5 0.05 1.9625  0.5 0.05 1.9625
—実施例 7—  —Example 7—
セリウム(IV)塩、ジルコニウム塩、ニオブ塩及びバリウム塩を、 Ce、 Zr、 Nb及び Ba のモノレ 匕カじ6:21::?«)::6& = 0.475:0.475:0.025:0.025であり、酸ィ匕物換算 濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。その後、実施例 1 で用いた複合酸ィ匕物の合成方法に従って、表 2に示す組成式 (Ce Zr ) (Nb  The cerium (IV) salt, zirconium salt, niobium salt and barium salt are converted from Ce, Zr, Nb, and Ba in a monolayer (6:21 ::? «) :: 6 & = 0.475: 0.475: 0.025: 0.025, 3 L of an acidic aqueous solution was prepared by adjusting the concentration to 50 gZL in terms of acid dandelion. Then, according to the method for synthesizing the complex acidified product used in Example 1, the composition formula (Ce Zr) (Nb
0.5 0.5 0.95 0.5 0.5 0.5 0.95 0.5
Ba ) O の複合酸化物を得た。 A composite oxide of Ba) O was obtained.
0.5 0.05 1.9625  0.5 0.05 1.9625
—実施例 8—  —Example 8—
セリウム(IV)塩、ジルコニウム塩、バナジウム塩及びバリウム塩を、 Ce、 Zr、 V及び Baのモノ ktt力 SCe:Zr:V:Ba=0.475:0.475:0.025:0.025であり、酸ィ匕物換 算濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。その後、実施例 1で用いた複合酸ィ匕物の合成方法に従って、表 2に示す組成式 (Ce Zr ) (V Cerium (IV) salt, zirconium salt, vanadium salt and barium salt are converted into mono-ktt force of Ce, Zr, V and Ba SCe: Zr: V: Ba = 0.475: 0.475: 0.025: 0.025, 3 L of an acidic aqueous solution was prepared by adjusting the calculated concentration to 50 gZL. Then the example According to the method for synthesizing the complex acidified product used in 1, the composition formula (Ce Zr) (V
0.5 0.5 0.95 0.5 0.5 0.5 0.95 0.5
Ba ) O の複合酸化物を得た。 A composite oxide of Ba) O was obtained.
0.5 0.05 1.9875  0.5 0.05 1.9875
—実施例 9—  —Example 9—
セリウム(IV)塩、ジルコニウム塩、ニオブ塩及びストロンチウム塩を、 Ce、 Zr、 Nb及 び Srのモノ ktt力 SCe:Zr:Nb:Sr=0.475:0.475:0.025:0.025であり、酸ィ匕物 換算濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。その後、実施 例 1で用いた複合酸ィ匕物の合成方法に従って、表 2に示す組成式 (Ce Zr ) (N  The cerium (IV) salt, zirconium salt, niobium salt and strontium salt were converted to Ce, Zr, Nb and Sr mono-ktt forces SCe: Zr: Nb: Sr = 0.475: 0.475: 0.025: 0.025. 3 L of an acidic aqueous solution was prepared by adjusting the reduced concentration to 50 gZL. Thereafter, according to the method for synthesizing the composite oxidized product used in Example 1, the composition formula (Ce Zr) (N
0.5 0.5 0.95 b Sr ) O の複合酸化物を得た。  A composite oxide of 0.5 0.5 0.95 b Sr) O was obtained.
0.5 0.5 0.05 1.9875  0.5 0.5 0.05 1.9875
—実施例 10—  —Example 10—
セリウム(IV)塩、ジルコニウム塩、ビスマス塩、バリウム塩及びニッケル塩を、 Ce、 Z r、 Bi、 Ba及び Niのモノ ktt力 Ce:Zr:Bi:Ba:Ni=0.45:0.45:0.025:0.025:0 .05であり、酸ィ匕物換算濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準 備した。その後、実施例 1で用いた複合酸ィ匕物の合成方法に従って、表 3に示す組 成式 (Ce Zr ) (Bi Ba ) Ni O の複合酸化物を得た。  Cerium (IV) salt, zirconium salt, bismuth salt, barium salt and nickel salt are converted into mono ktt force of Ce, Zr, Bi, Ba and Ni Ce: Zr: Bi: Ba: Ni = 0.45: 0.45: 0.025: 0.025 : 0.05, and 3 L of an acidic aqueous solution was prepared by adjusting so as to have a concentration of 50 gZL. After that, according to the method for synthesizing the composite oxide used in Example 1, a composite oxide of the composition formula (CeZr) (BiBa) NiO shown in Table 3 was obtained.
0.5 0.5 0.9 0.5 0.5 0.05 0.05 1.9125  0.5 0.5 0.9 0.5 0.5 0.05 0.05 1.9125
—実施例 11—  —Example 11—
セリウム(IV)塩、ジルコニウム塩、ビスマス塩、バリウム塩及びアルミニウム塩を、 Ce 、 Zr、 Bi、 Ba及び A1のモノ ktt力 Ce:Zr:Bi:Ba:Al=0.45:0.45:0.025:0.025 :0.05であり、酸ィ匕物換算濃度が 50gZLとなるように調整して酸性の水溶液 3Lを 準備した。その後、実施例 1で用いた複合酸ィ匕物の合成方法に従って、表 3に示す 組成式 (Ce Zr ) (Bi Ba ) Al O の複合酸化物を得た。  A cerium (IV) salt, a zirconium salt, a bismuth salt, a barium salt and an aluminum salt are converted into a mono ktt force of Ce, Zr, Bi, Ba and A1 Ce: Zr: Bi: Ba: Al = 0.45: 0.45: 0.025: 0.025: It was adjusted to 0.05, and the acid-converted concentration was adjusted to 50 gZL to prepare 3 L of an acidic aqueous solution. After that, according to the method for synthesizing the composite oxide used in Example 1, a composite oxide of the composition formula (Ce Zr) (Bi Ba) Al O shown in Table 3 was obtained.
0.5 0.5 0.9 0.5 0.5 0.05 0.05 1.9375  0.5 0.5 0.9 0.5 0.5 0.05 0.05 1.9375
比較例 1  Comparative Example 1
セリウム(IV)塩、ジルコニウム塩及びビスマス塩を、 Ce、 Zr及び Biのモル比が Ce: Zr:Bi=0.475:0.475:0.05であり、酸ィ匕物換算濃度力 50g/Lとなるように調整 して酸性の水溶液 3Lを準備した。そして、還流器付きフラスコを用いて、準備した水 溶液に対して 100°C、 15時間の加熱処理を行い、加熱処理後、水冷によりその水溶 液の温度を室温まで冷却した。それから、冷却後の水溶液にアンモニア水溶液を用 いて中和し、混合水溶液の pHを pH = 8.5とした。そして、懸濁した中和後の水溶液 をヌッチェを用いて固液分離した。得られた固体を、純水によりデカンテーシヨンとろ 過とを 10回繰り返す洗浄を行った後、箱型電気炉に入れて、空気中において 500°C 、 10時間の焼成を行い、乳鉢を用いて粉砕した。これにより、表 1に示す組成式 (Ce Zr ) Bi O の複合酸化物を得た。 The cerium (IV) salt, zirconium salt and bismuth salt are mixed so that the molar ratio of Ce, Zr and Bi is Ce: Zr: Bi = 0.475: 0.475: 0.05 and the concentration power in terms of oxidized substance is 50 g / L. It was adjusted to prepare 3 L of an acidic aqueous solution. The prepared aqueous solution was subjected to a heat treatment at 100 ° C. for 15 hours using a flask with a reflux condenser. After the heat treatment, the temperature of the aqueous solution was cooled to room temperature by water cooling. Then, the cooled aqueous solution was neutralized with an aqueous ammonia solution, and the pH of the mixed aqueous solution was adjusted to pH = 8.5. Then, the suspended neutralized aqueous solution was subjected to solid-liquid separation using a Nutsche. The obtained solid is decanted with pure water. After washing was repeated 10 times, the mixture was placed in a box-type electric furnace, baked in air at 500 ° C. for 10 hours, and pulverized using a mortar. Thus, a composite oxide of the composition formula (Ce Zr) Bi 2 O shown in Table 1 was obtained.
0.50 0.50 0.95 0.05 1.975  0.50 0.50 0.95 0.05 1.975
-比較例 2 - セリウム(IV)塩、ジルコニウム塩及びバリウム塩を、 Ce、 Zr及び Baのモル比が Ce : Zr: Ba=0. 475 : 0. 475 : 0. 05であり、酸ィ匕物換算濃度が 50gZLとなるように調整 して酸性の水溶液 3Lを準備した。その後、実施例 1で用いた複合酸ィ匕物の合成方 法に従って、表 1に示す組成式 (Ce Zr ) Ba O の複合酸化物を得た。  -Comparative Example 2-A cerium (IV) salt, a zirconium salt and a barium salt were mixed with Ce, Zr and Ba at a molar ratio of Ce: Zr: Ba = 0.475: 0.475: 0.05, and 3 L of an acidic aqueous solution was prepared by adjusting the concentration in terms of a substance to 50 gZL. Thereafter, according to the method for synthesizing the composite oxide used in Example 1, a composite oxide of the composition formula (Ce Zr) Ba O 2 shown in Table 1 was obtained.
0.50 0.50 0.95 0.05 1.95  0.50 0.50 0.95 0.05 1.95
比較例 3 - セリウム(IV)塩、ジルコニウム塩を、 Ce及び Zrのモル比が Ce :Zr=0. 5 : 0. 5であ り、酸ィ匕物換算濃度が 50gZLとなるように調整して酸性の水溶液 3Lを準備した。そ の後、比較例 1で用いた複合酸ィ匕物の合成方法に従って、表 1に示す組成式 Ce Z  Comparative Example 3-A cerium (IV) salt and a zirconium salt were adjusted so that the molar ratio of Ce and Zr was Ce: Zr = 0.5: 0.5, and the concentration in terms of oxidized product was 50 gZL. Thus, 3 L of an acidic aqueous solution was prepared. Then, according to the method of synthesizing the composite oxidized product used in Comparative Example 1, the composition formula Ce Z shown in Table 1 was used.
0.50 r Oの複合酸化物を得た。  A composite oxide of 0.50 rO was obtained.
0.50 2  0.50 2
以上の手法で複合酸化物を合成した後、各複合酸化物の比表面積及び昇温還元 スペクトルを測定した。  After synthesizing the composite oxide by the above method, the specific surface area and the temperature-reduction spectrum of each composite oxide were measured.
<比表面積の測定方法 > <Method of measuring specific surface area>
5gの各複合酸化物を、最大容積が 30mlである磁性るつぼの中に入れた。このとき 、 1つの磁性るつぼの中に一種類の複合酸ィ匕物のみを入れた。そして、予め 900°C の温度に設定しておいた電気炉に、 5gの各複合酸ィ匕物が入った磁性るつぼを入れ た。 4時間後、電気炉力もその磁性るつぼを取り出し、室温まで冷却させた。冷却後 の各複合酸化物を 200mgは力りとり、フローソープ Π2300 (マイクロメトリック社製)を 用いて、 BET法(Brunauer- Emmett- Teller方法)により比表面積を測定した。  5 g of each composite oxide was placed in a magnetic crucible with a maximum volume of 30 ml. At this time, only one kind of the composite iris was placed in one magnetic crucible. Then, a magnetic crucible containing 5 g of each composite oxide was placed in an electric furnace previously set to a temperature of 900 ° C. Four hours later, the electric crucible was taken out of the electric furnace and cooled to room temperature. After cooling, 200 mg of each complex oxide was squeezed out, and the specific surface area was measured by BET method (Brunauer-Emmett-Teller method) using Flow Soap # 2300 (manufactured by Micrometrics).
<昇温還元スペクトルの測定方法 > <Method of measuring temperature-reduction spectrum>
昇温還元スペクトルの測定には、自動昇温脱離分析装置 TP5000 (大食理研製) を用いた。具体的には、空気中において 900°C、 4時間加熱した各複合酸化物 500 mgを U字型の石英管に充填させて、その石英管に Arガス 90%及び Hガス 10%か  An automatic thermal desorption spectrometer TP5000 (manufactured by Oshoku Riken) was used for measurement of the thermal reduction spectrum. Specifically, 500 mg of each composite oxide heated in air at 900 ° C for 4 hours is filled into a U-shaped quartz tube, and the quartz tube is filled with 90% Ar gas and 10% H gas.
2  2
らなる混合ガスを流速 30mlZmin.で流通させながら、 10°C/min. の昇温速度で 、温度範囲 50°Cから 1000°Cまで測定を行った。 <測定結果 > The measurement was performed from a temperature range of 50 ° C. to 1000 ° C. at a heating rate of 10 ° C./min. While flowing a mixed gas composed of 30 ml Zmin. <Measurement results>
表 1から表 3に、各複合酸ィ匕物の比表面積 (単位: m2/g)の値及び昇温還元スぺク トルにぉ 、て最も低温側に現れるピークにおける温度の値 (以下、「ピーク温度」と!ヽ う。)を示す。図 1から図 5に、各々、表 1に記載の複合酸ィ匕物の昇温還元スペクトル を示す。 Tables 1 to 3 show the values of the specific surface area (unit: m 2 / g) of each composite oxidized product and the value of the temperature at the peak appearing on the lowest temperature side in the heating-up reduction spectrum (hereinafter, referred to as the following). , “Peak temperature”!). 1 to 5 show the temperature-reduction spectra of the composite oxidized products shown in Table 1, respectively.
<考察 >  <Discussion>
まず、比表面積の測定結果からは、次のようなことがいえる。  First, the following can be said from the measurement results of the specific surface area.
[0030] 表 1に示すように、実施例 1及び 2の複合酸化物の比表面積の値は、比較例 1の複 合酸ィ匕物の比表面積の値よりも約 3. 5倍大きい。また、実施例 2の複合酸化物の方 が実施例 1の複合酸ィ匕物よりも比表面積の値は大きい。そして、 900°Cで 4時間焼成 した後の各複合酸ィ匕物の比表面積を測定している。以上より、 Baを加えることにより 複合酸ィ匕物の耐熱性が高められている。  [0030] As shown in Table 1, the value of the specific surface area of the composite oxides of Examples 1 and 2 is about 3.5 times larger than the value of the specific surface area of the composite oxide of Comparative Example 1. Further, the value of the specific surface area of the composite oxide of Example 2 is larger than that of the composite oxide of Example 1. Then, the specific surface area of each composite oxidized product after firing at 900 ° C. for 4 hours is measured. As described above, the heat resistance of the composite oxidized product is enhanced by adding Ba.
[0031] また、実施例 1の複合酸ィ匕物の比表面積が 30. 8m2Zgであるため、モル比が Bi: Further, since the specific surface area of the composite oxidized product of Example 1 is 30.8 m 2 Zg, the molar ratio is Bi:
Ba= l: 1である Baを含んでいる複合酸ィ匕物は、 Biを添加することによる高温での比 表面積の低下を実用上可能な程度十分に阻止することができる。また、表 1より、実 施例 2の複合酸ィ匕物の比表面積と比較例 2の複合酸ィ匕物の比表面積とは、等 、値 を示している。比較例 2の複合酸ィ匕物には Biが含まれていないため、比較例 2の複 合酸ィ匕物は 900°Cで 4時間焼成しても Biによる比表面積の低下が生じることはない。 一方、実施例 2の複合酸化物は Biが含まれているため、実施例 2の複合酸化物を 90 0°Cで 4時間焼成すると比表面積が低下する虡はある。しかし、実施例 2の複合酸ィ匕 物の比表面積と比較例 2の複合酸ィ匕物の比表面積とは同一の値を示しているため、 モル比が Bi: Ba= 1: 3である Baを含んでいる複合酸化物は、 Bi添カ卩による高温での 比表面積の低下を完全に阻止することができ、その結果、比表面積は実用上非常に 有用な大きさを有することとなる。  The complex oxide containing Ba, in which Ba = 1: 1, can sufficiently prevent a decrease in the specific surface area at a high temperature due to the addition of Bi to the extent practically possible. Further, from Table 1, the specific surface area of the composite oxidized product of Example 2 and the specific surface area of the composite oxidized product of Comparative Example 2 show values, for example. Since the composite oxidized product of Comparative Example 2 does not contain Bi, even if the composite oxidized product of Comparative Example 2 is baked at 900 ° C for 4 hours, the specific surface area may not be reduced by Bi. Absent. On the other hand, since the composite oxide of Example 2 contains Bi, firing the composite oxide of Example 2 at 900 ° C. for 4 hours results in a decrease in specific surface area. However, since the specific surface area of the composite oxidized product of Example 2 and the specific surface area of the composite oxidized product of Comparative Example 2 show the same value, the molar ratio is Bi: Ba = 1: 3. The complex oxide containing Ba can completely prevent the specific surface area from decreasing at high temperatures due to the Bi-added mash, and as a result, the specific surface area has a practically useful size. .
[0032] なお、エンジンの排気ガス浄ィ匕触媒の助触媒としては、 900°Cで 4時間焼成した後 の比表面積が 20m2/g以上であれば、一般に十分に実用的である。 [0032] Note that, as a promoter of an exhaust gas purifying catalyst for an engine, if the specific surface area after calcining at 900 ° C for 4 hours is 20 m 2 / g or more, it is generally sufficiently practical.
[0033] また、表 2に示すように、実施例 3から 9の複合酸ィ匕物の比表面積は、 20m2Zg以 上であるため、実用上非常に有用な大きさである。換言すると、元素 Aとして Nbや V を用いても、元素 Bとして Srや Caを用いても、比表面積を実用上有用な大きさとする ことができる。さらに、表 2に示すいずれの複合酸ィ匕物も 20m2/g以上の比表面積を 有して 、ることから、元素 A及び元素 Bの組み合わせは特に限定されな 、。 [0033] Further, as shown in Table 2, the specific surface areas of the composite oxidized products of Examples 3 to 9 are 20 m 2 Zg or more, which are practically very useful. In other words, Nb or V Even if Sr or Ca is used as the element B, the specific surface area can be made a practically useful size. Furthermore, since any of the composite oxides shown in Table 2 has a specific surface area of 20 m 2 / g or more, the combination of the elements A and B is not particularly limited.
[0034] また、表 3に示すように、実施例 10及び 11の複合酸ィ匕物の比表面積は、 20m2/g 以上であるため、実用上非常に有用な大きさである。そのため、 Niや A1が添加され た複合酸ィヒ物であっても、その複合酸ィヒ物の比表面積を実用上非常に有用な大き さとすることができる。 [0034] Further, as shown in Table 3, the specific surface area of each of the composite oxidized products of Examples 10 and 11 is 20 m 2 / g or more, which is a very useful size for practical use. Therefore, even in the case of a composite acid product to which Ni or A1 is added, the specific surface area of the composite acid product can be made a very useful size for practical use.
[0035] 実施例 1から 4の結果より、複合酸ィ匕物における Ceと Zrとのモル比が異なっても、そ の複合酸化物の比表面積は、 20m2Zg以上であり、実用上非常に有用な大きさであ る。 From the results of Examples 1 to 4, even if the molar ratio between Ce and Zr in the composite oxide is different, the specific surface area of the composite oxide is 20 m 2 Zg or more, which is very practical. It is a useful size for
[0036] また、昇温還元スペクトルの測定結果からは、次のようなことが 、える。  From the measurement results of the temperature-reduction spectrum, the following can be obtained.
[0037] 表 1並びに図 1、 2、 3、 4及び 5に示すように、 Biが含まれることによりピークは低温 側へシフトすることがわかる。さらに、実施例 1及び 2の複合酸化物のピーク温度の方 が比較例 1の複合酸ィ匕物のピーク温度よりも低いため、 Baが含まれることにより複合 酸ィ匕物の低温側の還元能が高まる。そして、実施例 1及び 2の複合酸ィ匕物において は 300°C以下にピークを備えているため、実施例 1及び 2の複合酸ィ匕物は、 300°C 以下においても排気ガス浄化触媒の助触媒として作用することができる。  As shown in Table 1 and FIGS. 1, 2, 3, 4, and 5, it can be seen that the peak shifts to the lower temperature side due to the inclusion of Bi. Furthermore, since the peak temperatures of the composite oxides of Examples 1 and 2 are lower than the peak temperature of the composite oxide of Comparative Example 1, the reduction of the composite oxide on the low-temperature side due to the inclusion of Ba is included. Noh increases. Since the composite oxidized products of Examples 1 and 2 have a peak at 300 ° C. or less, the composite oxidized products of Examples 1 and 2 exhibit an exhaust gas purification catalyst even at 300 ° C. or less. Can act as a co-catalyst.
[0038] また、表 2に示すように、実施例 3から 9の複合酸ィ匕物についても、その昇温還元ス ベクトルのピーク温度は 300°C以下である。そのため、実施例 3から 9の複合酸化物 も、 300°C以下においても排気ガス浄化触媒の助触媒として作用する。換言すると、 元素 Aとして Nbや Vを用いても、元素 Bとして Srや Caを用いても、その複合酸ィ匕物は 300°C以下においても排気ガス浄化触媒の助触媒として作用する。さらに、表 2に示 すいずれの複合酸化物も、 300°C以下のピーク温度を示しているため、元素 A及び 元素 Bの組み合わせは特に限定されな 、。  [0038] Further, as shown in Table 2, the peak temperatures of the temperature-reduced reduction sprouts of the composite oxides of Examples 3 to 9 are 300 ° C or lower. Therefore, the composite oxides of Examples 3 to 9 also act as cocatalysts of the exhaust gas purification catalyst even at 300 ° C or lower. In other words, regardless of whether Nb or V is used as the element A or Sr or Ca is used as the element B, the composite oxide acts as a cocatalyst of the exhaust gas purification catalyst even at 300 ° C. or lower. Further, since any of the composite oxides shown in Table 2 shows a peak temperature of 300 ° C. or lower, the combination of element A and element B is not particularly limited.
[0039] また、表 3に示すように、実施例 10及び 11の複合酸ィ匕物についても、その昇温還 元スペクトルのピーク温度は 300°C以下である。そのため、 Niや A1が添加された複 合酸化物であっても、 300°C以下においても排気ガス浄化触媒の助触媒として作用 する。 [0040] 実施例 1から 4の結果より、複合酸ィ匕物における Ceと Zrとのモル比が異なっても、 昇温還元スペクトルのピーク温度の値がそれほど大きく変化することはなぐ 300°C 以下においても排気ガス浄化触媒の助触媒として作用する。 Further, as shown in Table 3, the peak temperature of the temperature-reduced reduction spectrum of the composite oxidized products of Examples 10 and 11 is 300 ° C. or lower. Therefore, even a composite oxide to which Ni or A1 has been added acts as a co-catalyst for an exhaust gas purification catalyst even at 300 ° C or lower. [0040] The results of Examples 1 to 4 show that even if the molar ratio between Ce and Zr in the composite oxidized product is different, the value of the peak temperature of the temperature-reduction reduction spectrum does not change so much at 300 ° C. In the following, it also acts as a promoter of the exhaust gas purification catalyst.
[0041] そして、昇温還元スペクトルの測定結果及び比表面積の測定結果においては、次 のようなことがいえる。  The following can be said in the measurement results of the temperature-reduction spectrum and the measurement result of the specific surface area.
[0042] 実施例 1と比較例 1とを比較すると、ピーク温度はいずれも 300°C以下である力 比 表面積は比較例 1の複合酸ィ匕物が Baを含んで 、な 、ために 9. 2m2Zgと著しく小さ な値を示す。また、実施例 1の測定結果と比較例 2の測定結果とを比較すると、比表 面積は 、ずれの場合も 30m2/g以上である力 ピーク温度は比較例 2の複合酸化物 が Biを含んでいないために 550°Cと著しく高い温度を示す。そして、上記の測定結 果は、実施例 2の測定結果と比較例 1の測定結果または比較例 2の測定結果とを比 較した場合にも該当する。以上より、比較例 1の複合酸ィ匕物のように Ceと Zrと Biとを 含み Baを含まな 、複合酸化物は、比表面積が小さ!/、ために排気ガス浄ィ匕触媒の助 触媒として実用的に用いることはできず、比較例 2の複合酸ィ匕物のように Ceと Zrと Ba とを含み Biを含まな ヽ複合酸化物は、 300°C以下と!/ヽぅ低温領域にお!ヽては排気ガ ス浄化触媒の助触媒としての触媒能を呈しな ヽために排気ガス浄化触媒の助触媒と して実用的に用いることはできない。すなわち、 Ce— Zr系複合酸化物に、酸化ビスマ ス及び酸化バリウムの両方を添加することにより初めて、比表面積が 20m2/g以上で あり且つ 300°C以下においても排気ガス浄ィ匕触媒の助触媒として実用上非常に有 用な触媒能を呈することとなる。 [0042] Comparing Example 1 with Comparative Example 1, the peak specific temperatures were all 300 ° C or less. The specific surface area of the composite oxidized product of Comparative Example 1 contained Ba. It shows a remarkably small value of 2m 2 Zg. In addition, comparing the measurement results of Example 1 with the measurement results of Comparative Example 2, the specific surface area was 30 m 2 / g or more even in the case of deviation. Because it does not contain, it shows extremely high temperature of 550 ° C. The above measurement results also correspond to a case where the measurement results of Example 2 are compared with the measurement results of Comparative Example 1 or Comparative Example 2. As described above, the composite oxide which has Ce, Zr and Bi and does not contain Ba like the composite oxidized product of Comparative Example 1 has a small specific surface area! Therefore, it cannot be used practically as a promoter for exhaust gas purification catalysts. Therefore, as in the composite oxidation catalyst of Comparative Example 2, the composite oxidation containing Ce, Zr, and Ba but not Bi. It is practically used as an exhaust gas purifying catalyst because it does not exhibit the catalytic ability of an exhaust gas purifying catalyst in a low temperature range below 300 ° C. Cannot be used for That is, for the first time, by adding both bismuth oxide and barium oxide to the Ce—Zr-based composite oxide, even when the specific surface area is 20 m 2 / g or more and 300 ° C. or less, the exhaust gas purification catalyst can be used. The catalyst exhibits a very useful catalytic ability as a promoter.
[0043] また、表 2に記載の複合酸化物は、上述のように、実施例 1及び 2の複合酸化物と 略同一の効果を奏する。そのため、 Ce— Zr系複合酸化物に、酸化ビスマスの代わり に酸化ニオブや酸化バナジウムを添加し、酸化バリウムの代わりに酸化カルシウムや 酸化ストロンチウムを添加しても、その複合酸ィ匕物は、比表面積が 20m2Zg以上であ り且つ 300°C以下においても排気ガス浄ィ匕触媒の助触媒として実用上非常に有用 な触媒能を呈する。 Further, as described above, the composite oxides described in Table 2 exhibit substantially the same effects as those of the composite oxides of Examples 1 and 2. Therefore, even if niobium oxide or vanadium oxide is added to the Ce—Zr-based composite oxide instead of bismuth oxide, and calcium oxide or strontium oxide is added instead of barium oxide, the composite oxide does not have a specific ratio. Even when the surface area is not less than 20 m 2 Zg and not more than 300 ° C., the catalyst exhibits practically very useful catalytic ability as a promoter of an exhaust gas purification catalyst.
[0044] また、表 3に記載の複合酸化物は、上述のように、実施例 1及び 2の複合酸化物と 略同一の効果を奏する。そのため、 Niや A1が添加された複合酸ィ匕物であっても、比 表面積が 20m2Zg以上であり且つ 300°C以下においても排気ガス浄ィ匕触媒の助触 媒として実用上非常に有用な触媒能を呈する。 Further, as described above, the composite oxides shown in Table 3 exhibit substantially the same effects as those of the composite oxides of Examples 1 and 2. Therefore, even in the case of a complex oxidized product to which Ni or A1 is added, Even when the surface area is not less than 20 m 2 Zg and not more than 300 ° C., the catalyst exhibits practically very useful catalytic ability as a catalyst for an exhaust gas purification catalyst.
[0045] なお、比表面積が 25m2Zg以上であれば、より多くの酸化還元反応の活性点を有 するため、比表面積が 25m2/g以上であることが好ましい。また、ピーク温度は 280 °Cよりも低温であれば、より低温での排気ガス浄ィ匕触媒の助触媒として作用しうること となる。 When the specific surface area is 25 m 2 Zg or more, it has more active sites for oxidation-reduction reaction, so that the specific surface area is preferably 25 m 2 / g or more. Further, if the peak temperature is lower than 280 ° C, it can act as a promoter of the exhaust gas purification catalyst at a lower temperature.
[0046] ここで、本実施例において、元素 Aとしては Bi, V, Nbを例に挙げ、元素 Bとしては Ba, Ca, Srを例に挙げた力 元素 A及び元素 Bはこれに限定されることはない。元素 Aとしては、 Bi, V, Ti, Nb, W, Fe, Pr, Tb及び Euからなる群より選ばれた少なくと も一つの金属元素を含んでいればよぐまた、元素 Bとしては、 Ba, Sr, Ca, Mg, La 力もなる群より選ばれた少なくとも一つを含んでいればよい。従って、例えば、本実施 例における複合酸ィ匕物として、 Ce, Zr, Bi, V, Ba, Srからなる複合酸ィ匕物としてもよ い。また、複合酸化物の組成式は、 (Ce Zr ) (A B ) O (式中、 x, y, z, δはそ れぞれ、 0. 05≤x≤0. 95、 0. 01≤y≤0. 99、 0. 01≤z≤0. 3、 1. 365≤ δ≤1 . 995を満たす数字である)で表される複合酸ィ匕物を用いることができる。また、比表 面積が 20m2Zg以上であり且つ 300°C以下においても排気ガス浄ィ匕触媒の助触媒 として実用上非常に有用な触媒能を呈する t 、う効果を奏する限り、複合酸化物に 対して、上記金属元素以外の元素が添加されて 、てもよ 、。 In this example, Bi, V, and Nb are used as examples of the element A, and Ba, Ca, and Sr are used as examples of the element B. The elements A and B are not limited thereto. Never. The element A may include at least one metal element selected from the group consisting of Bi, V, Ti, Nb, W, Fe, Pr, Tb, and Eu. Ba, Sr, Ca, Mg, and La may include at least one selected from the group consisting of the forces. Therefore, for example, a composite iris made of Ce, Zr, Bi, V, Ba, and Sr may be used as the composite iris in this embodiment. In addition, the composition formula of the composite oxide is (Ce Zr) (AB) O (where x, y, z, and δ are, respectively, 0.05 ≤ x ≤ 0.95 and 0.01 ≤ y ≤ 0.99, 0.01 ≤ z ≤ 0.3, 1. 365 ≤ δ ≤ 1.995) can be used. In addition, even when the specific surface area is 20 m 2 Zg or more and 300 ° C. or less, the composite oxide exhibits practically very useful catalytic activity as a cocatalyst of an exhaust gas purification catalyst. On the other hand, an element other than the above metal element may be added.
[0047] また、本実施例における複合酸ィ匕物を合成する際に用いたセリウム (IV)塩、ジルコ ニゥム塩、ビスマス塩及びバリウム塩などは特に限定しなカゝつた力 水酸化物、塩ィ匕 物、硝酸塩などの無機性塩であっても良ぐまた、ァセチルァセトナト錯体などの有機 性塩であってもよい。 The cerium (IV) salt, zirconium salt, bismuth salt, barium salt, and the like used in synthesizing the composite oxidized product in the present example are not particularly limited, and are not particularly limited. It may be an inorganic salt such as salt chloride, nitrate or the like, or may be an organic salt such as acetyl acetonato complex.
[0048] また、本実施例における複合酸化物を合成する際には原料塩水溶液を加熱処理 する工程を含む共沈法を用いて合成したが、これ〖こ限定されることはなく、固相反応 法、加水分解法などの公知の合成方法を用いることができる。なお、比表面積を大き くするという目的を達成するためには、本実施例に記載したように、原料塩水溶液を 加熱処理する工程を含む共沈法を用いて合成することが好ま Uヽ。  [0048] Further, when synthesizing the composite oxide in the present example, the composite oxide was synthesized using a coprecipitation method including a step of heat-treating the raw salt aqueous solution. However, the present invention is not limited thereto. Known synthesis methods such as a reaction method and a hydrolysis method can be used. In order to achieve the purpose of increasing the specific surface area, it is preferable to synthesize using a coprecipitation method including a step of heating the raw material salt aqueous solution, as described in this example.
[0049] また、複合酸化物を合成する際の焼成工程は、酸化雰囲気であっても、還元雰囲 気であっても、または、これらの雰囲気を交互に繰り返し変更して行ってもよい。 産業上の利用可能性 [0049] Further, the firing step for synthesizing the composite oxide may be performed in a reducing atmosphere even in an oxidizing atmosphere. The atmosphere may be changed, or the atmosphere may be changed alternately and repeatedly. Industrial applicability
以上説明したように、本発明は、複合酸化物、特にガソリンや軽油の燃焼により供 給されるエネルギーが駆動力となるエンジン、例えば自動車などの内燃機関力ゝら排 出される排気ガスを浄ィ匕する排気ガス浄ィ匕触媒の助触媒などに利用することができ る。  As described above, the present invention is intended to purify exhaust gas discharged from the power of an engine, for example, an internal combustion engine of an automobile or the like, which is driven by energy supplied by the combustion of complex oxides, particularly gasoline and light oil. It can be used as a cocatalyst for an exhaust gas purifying catalyst, etc.

Claims

請求の範囲 The scope of the claims
[1] 一般式 (Ce Zr ) (A B ) O  [1] General formula (Ce Zr) (A B) O
l-χ x 1 z 1-y y z ό  l-χ x 1 z 1-y y z ό
(式中、 x, y, z, δはそれぞれ、 0. 05≤χ≤0. 95、 0. 01≤y≤0. 99、 0. 01≤z≤ 0. 3, 1. 365≤ δ≤1. 995を満たす数字である)で表され、  (Where x, y, z, and δ are respectively 0.055≤χ≤0.95, 0.011≤y≤0.99, 0.011≤z≤0.3, 1.365≤δ≤ 1. A number that satisfies 995)
Aは、 Bi, V, Ti, Nb, W, Fe, Pr, Tb及び Euからなる群より選ばれた少なくとも一 つの金属元素を含み、  A contains at least one metal element selected from the group consisting of Bi, V, Ti, Nb, W, Fe, Pr, Tb and Eu,
Bは、 Ba, Sr, Ca, Mg, Laからなる群より選ばれた少なくとも一つを含む、複合酸 化物。  B is a complex oxide containing at least one selected from the group consisting of Ba, Sr, Ca, Mg, and La.
[2] 昇温還元スペクトルにおいて 300°C以下にピークを有し、且つ、 900°Cにおいて 4 時間焼成した後の比表面積が 20m2Zg以上である、請求項 1に記載の複合酸ィ匕物 [2] The composite oxide according to claim 1, which has a peak at 300 ° C or less in a temperature-reduction reduction spectrum and has a specific surface area of 20 m 2 Zg or more after calcining at 900 ° C for 4 hours. object
[3] 希土類元素(Ce, Tb, Eu, La及び Prを除く)、 Ni、 Cu、 Al、 Si並びに Beからなる 群より選ばれた少なくとも一つをさらに含んでいる、請求項 1または 2に記載の複合酸 化物。 [3] The method according to claim 1 or 2, further comprising at least one selected from the group consisting of rare earth elements (excluding Ce, Tb, Eu, La and Pr), Ni, Cu, Al, Si and Be. The composite oxide described.
[4] Aは、少なくとも Biを含んでおり、  [4] A contains at least Bi,
Bは、少なくとも Baを含んでいる、請求項 1に記載の複合酸化物。  2. The composite oxide according to claim 1, wherein B contains at least Ba.
PCT/JP2005/003994 2004-03-08 2005-03-08 Complex oxide WO2005085137A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510786A JP4974674B2 (en) 2004-03-08 2005-03-08 Complex oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-064205 2004-03-08
JP2004064205 2004-03-08

Publications (1)

Publication Number Publication Date
WO2005085137A1 true WO2005085137A1 (en) 2005-09-15

Family

ID=34918180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003994 WO2005085137A1 (en) 2004-03-08 2005-03-08 Complex oxide

Country Status (2)

Country Link
JP (1) JP4974674B2 (en)
WO (1) WO2005085137A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050642A1 (en) * 2006-10-24 2008-05-02 Dowa Electronics Materials Co., Ltd. Composite oxide for use as exhaust gas clean-up catalyst, and filter
WO2008065819A1 (en) 2006-12-01 2008-06-05 Dowa Electronics Materials Co., Ltd. Composite oxide for exhaust gas clean-up catalyst, exhaust gas clean-up catalyst, and diesel exhaust gas clean-up filter
WO2009044736A1 (en) * 2007-10-01 2009-04-09 Dowa Electronics Materials Co., Ltd. Cerium-containing complex oxide, method of producing the same, pm combustion catalyst and diesel particulate filter
WO2009131118A1 (en) * 2008-04-23 2009-10-29 Dowaエレクトロニクス株式会社 Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
JP2010172849A (en) * 2009-01-30 2010-08-12 Osaka Univ Carbon monoxide oxidation catalyst, method of manufacturing the same and carbon monoxide removal filter
JP2010260023A (en) * 2009-05-11 2010-11-18 Toyota Motor Corp Catalyst for cleaning exhaust gas
WO2012065933A1 (en) 2010-11-16 2012-05-24 Umicore Ag & Co. Kg Catalyst for removing nitrogen oxides from the exhaust gas of diesel engines
WO2012165363A1 (en) 2011-06-01 2012-12-06 ロディア・オペラシヨン Complex oxide, method for producing same, and exhaust gas purification catalyst
WO2013092557A1 (en) * 2011-12-21 2013-06-27 Rhodia Operations Composite oxide, method for producing the same, and catalyst for exhaust gas purification
JP2013208621A (en) * 2013-07-01 2013-10-10 New Cosmos Electric Corp Carbon monoxide oxidation catalyst and method for producing the same
CN110002459A (en) * 2019-04-12 2019-07-12 成都理工大学 A kind of preparation method for mixing nickel europium boride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097021A (en) * 2000-09-19 2002-04-02 Matsushita Electric Ind Co Ltd High temperature conductive oxide, electrode for fuel cell and fuel cell using the same
JP2003071250A (en) * 2001-06-18 2003-03-11 Nissan Motor Co Ltd Exhaust gas cleaning system
JP2003238159A (en) * 2001-12-11 2003-08-27 Kinya Adachi Composite oxide having low temperature reduction activity and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097021A (en) * 2000-09-19 2002-04-02 Matsushita Electric Ind Co Ltd High temperature conductive oxide, electrode for fuel cell and fuel cell using the same
JP2003071250A (en) * 2001-06-18 2003-03-11 Nissan Motor Co Ltd Exhaust gas cleaning system
JP2003238159A (en) * 2001-12-11 2003-08-27 Kinya Adachi Composite oxide having low temperature reduction activity and its manufacturing method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105871A (en) * 2006-10-24 2008-05-08 Dowa Electronics Materials Co Ltd Composite oxide for catalyst for cleaning exhaust gas and filter
CN101528605B (en) * 2006-10-24 2013-01-09 同和电子科技有限公司 Composite oxide for use as exhaust gas clean-up catalyst, and filter
WO2008050642A1 (en) * 2006-10-24 2008-05-02 Dowa Electronics Materials Co., Ltd. Composite oxide for use as exhaust gas clean-up catalyst, and filter
US8071501B2 (en) 2006-10-24 2011-12-06 Dowa Electronics Materials Co., Ltd. Composite oxide for use as exhaust gas purification catalyst and filter
EP2438984A1 (en) * 2006-12-01 2012-04-11 DOWA Electronics Materials Co., Ltd. Composite oxide for exhaust gas purifying catalyst, exhaust gas purifying catalyst and diesel exhaust purifying filter
WO2008065819A1 (en) 2006-12-01 2008-06-05 Dowa Electronics Materials Co., Ltd. Composite oxide for exhaust gas clean-up catalyst, exhaust gas clean-up catalyst, and diesel exhaust gas clean-up filter
JP2008136951A (en) * 2006-12-01 2008-06-19 Dowa Electronics Materials Co Ltd Composite oxide for exhaust gas cleaning catalyst, exhaust gas cleaning catalyst, and diesel exhaust gas purifying filter
US8629078B2 (en) 2006-12-01 2014-01-14 Dowa Electronics Materials Co., Ltd. Composite oxide for exhaust gas purifying catalyst and exhaust gas purifying catalyst, and diesel exhaust gas purifying filter
EP2098289A1 (en) * 2006-12-01 2009-09-09 DOWA Electronics Materials Co., Ltd. Composite oxide for exhaust gas clean-up catalyst, exhaust gas clean-up catalyst, and diesel exhaust gas clean-up filter
CN104475099A (en) * 2006-12-01 2015-04-01 同和电子科技有限公司 Composite oxide powder for exhaust gas purifying catalyst and manufacturing method, exhaust gas purifying catalyst, and exhaust gas purifying catalyst filter
EP2098289A4 (en) * 2006-12-01 2010-01-13 Dowa Electronics Materials Co Composite oxide for exhaust gas clean-up catalyst, exhaust gas clean-up catalyst, and diesel exhaust gas clean-up filter
WO2009044736A1 (en) * 2007-10-01 2009-04-09 Dowa Electronics Materials Co., Ltd. Cerium-containing complex oxide, method of producing the same, pm combustion catalyst and diesel particulate filter
JP5345063B2 (en) * 2007-10-01 2013-11-20 Dowaエレクトロニクス株式会社 Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter
US8304364B2 (en) 2008-04-23 2012-11-06 Dowa Electronics Materials Co., Ltd. Complex oxide for exhaust gas purification catalyst, production method thereof, coating material for exhaust gas purification catalyst, and diesel exhaust gas purification filter
KR101574553B1 (en) 2008-04-23 2015-12-04 도와 일렉트로닉스 가부시키가이샤 Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
WO2009131118A1 (en) * 2008-04-23 2009-10-29 Dowaエレクトロニクス株式会社 Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
JP2010172849A (en) * 2009-01-30 2010-08-12 Osaka Univ Carbon monoxide oxidation catalyst, method of manufacturing the same and carbon monoxide removal filter
JP2010260023A (en) * 2009-05-11 2010-11-18 Toyota Motor Corp Catalyst for cleaning exhaust gas
WO2012065933A1 (en) 2010-11-16 2012-05-24 Umicore Ag & Co. Kg Catalyst for removing nitrogen oxides from the exhaust gas of diesel engines
CN103180046A (en) * 2010-11-16 2013-06-26 尤米科尔股份公司及两合公司 Catalyst for removing nitrogen oxides from the exhaust gas of diesel engines
US9095816B2 (en) 2010-11-16 2015-08-04 Umicore Ag & Co. Kg Catalyst for removing nitrogen oxides from the exhaust gas of diesel engines
WO2012165363A1 (en) 2011-06-01 2012-12-06 ロディア・オペラシヨン Complex oxide, method for producing same, and exhaust gas purification catalyst
WO2013092557A1 (en) * 2011-12-21 2013-06-27 Rhodia Operations Composite oxide, method for producing the same, and catalyst for exhaust gas purification
CN104254393A (en) * 2011-12-21 2014-12-31 罗地亚运作公司 Composite oxide, method for producing the same, and catalyst for exhaust gas purification
RU2647589C2 (en) * 2011-12-21 2018-03-16 Родиа Операсьон Composite oxide, method for producing same and catalyst for exhaust gas purification
JP2013208621A (en) * 2013-07-01 2013-10-10 New Cosmos Electric Corp Carbon monoxide oxidation catalyst and method for producing the same
CN110002459A (en) * 2019-04-12 2019-07-12 成都理工大学 A kind of preparation method for mixing nickel europium boride

Also Published As

Publication number Publication date
JP4974674B2 (en) 2012-07-11
JPWO2005085137A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
WO2005085137A1 (en) Complex oxide
EP1007205B1 (en) Use of perovskite-type metal oxide compounds
US7014825B2 (en) Perovskite-type metal oxide compounds and methods of making and using thereof
US9901915B2 (en) Composition including a lanthanum perovskite on an alumina or aluminum oxyhydroxide substrate, preparation method and use in catalysis
JP4852035B2 (en) Nitrogen oxide storage catalyst made from nitrogen oxide storage material
US7247597B2 (en) Composite oxide, process for producing the same, and exhaust gas reducing co-catalyst
Ivanova Physicochemical and catalytic properties of systems based on CeO 2
US8361925B2 (en) Exhaust gas-purifying catalyst
JPWO2003022740A1 (en) Cerium oxide, its production method and exhaust gas purifying catalyst
EP1205235A1 (en) Method and system for diesel engine exhaust treatment using a combination of non-thermal plasma and metal doped gamma-alumina catalysts
WO2012093599A1 (en) Exhaust gas purifying catalyst
JP6087784B2 (en) Oxygen storage / release material and exhaust gas purification catalyst containing the same
JP5003954B2 (en) Exhaust gas purification oxidation catalyst, production method thereof, and exhaust gas purification method using exhaust gas purification oxidation catalyst
KR20190046869A (en) Uses of Vanadium Acid Salt as Oxidation Catalyst
JP2003073123A (en) Compound oxide and method for producing the same, and auxiliary catalyst for cleaning flue gas
JP4859100B2 (en) Exhaust gas purification catalyst
JP3855262B2 (en) Exhaust gas purification catalyst
WO2010143509A1 (en) Oxidation catalyst for exhaust gas purification
CN101428219A (en) Oxynitride catalysis reductant in oxygen-enriched condition and preparation method thereof
JP2009279579A (en) Oxidation catalyst
JPS62187111A (en) Composite oxide containing cerium and aluminum and its production
JP4273396B2 (en) Exhaust gas purification catalyst
KR101180949B1 (en) Catalyst for diesel particulate filter, preparation method of the same, and smoke reduction device of diesel engine
JP2004337782A (en) Multiple oxide and exhaust gas cleaning catalyst
JPH08150338A (en) Oxide catalytic material for removal of nitrogen oxide and method for removing nitrogen oxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510786

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase