WO2005084853A1 - Method of molding composite metal material - Google Patents

Method of molding composite metal material Download PDF

Info

Publication number
WO2005084853A1
WO2005084853A1 PCT/JP2005/001685 JP2005001685W WO2005084853A1 WO 2005084853 A1 WO2005084853 A1 WO 2005084853A1 JP 2005001685 W JP2005001685 W JP 2005001685W WO 2005084853 A1 WO2005084853 A1 WO 2005084853A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
porous preform
composite
metal
molding
Prior art date
Application number
PCT/JP2005/001685
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Fujita
Original Assignee
Central Motor Wheel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co., Ltd. filed Critical Central Motor Wheel Co., Ltd.
Publication of WO2005084853A1 publication Critical patent/WO2005084853A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1073Infiltration or casting under mechanical pressure, e.g. squeeze casting

Definitions

  • the present invention relates to a method of forming a metal composite formed by combining a light metal with a porous preform formed from a predetermined reinforcing material.
  • a metal composite formed by combining a light metal such as aluminum alloy with a reinforcing material having excellent wear resistance and sliding property high! And wear resistance and sliding property are obtained.
  • the required surface required is formed as a composite surface in which the reinforcing material is composited.
  • this metal composite is partially composited with a reinforcing material.
  • a required surface (composite surface) of a cavity formed on a mold for molding the metal composite material a porous preform having a predetermined reinforcing material force formed in advance.
  • a well-known truss forming method in which a molten metal of light metal is pressurized and supplied to the cavity after being placed in contact with a molding die for forming the metal mold.
  • the pressure-supplied molten metal is impregnated into the interior of the porous preform, and the properties of the porous preform are exhibited by bonding the preform and the light metal.
  • the resulting composite surface can be formed.
  • the fiber formed body is used as the porous preform described above, and the fiber formed body is preheated.
  • a method has been proposed which is disposed around a cylinder bore forming core so as to be filled with a molten metal and forged (for example, Patent Document 1).
  • the melt is sufficiently filled in the fiber formed body by preheating the fiber formed body in advance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 62-6766
  • a mold release material is applied in advance to the surface of the mold forming the cavity to which the molten metal is supplied, thereby preventing seizing between the mold and the molten metal, and after molding And molded articles can be easily separated, and can be molded into a smooth, smooth skin.
  • the mold release material is similarly applied and molded.
  • the composite surface of the metal composite material is molded to a rough, rough skin with irregularities. .
  • the time required for this cutting becomes longer, and the time to replace the cutter also becomes It gets faster.
  • the porous preform is made of ceramic short fibers or ceramic particles
  • the load on the cutter is large, and therefore, the time-consuming cutting process and the early replacement of the cutter are remarkable. It also contributes to an increase in manufacturing time and cost.
  • voids (defects) are present at the composite site of the porous preform and the light metal on the inner side of the composite surface.
  • the metal composite material which can be easily formed can sufficiently exhibit the above-described composite effect, and also has problems of wrinkles and wrinkles.
  • the above-mentioned mold release material it is easily known that a generally well-known particle-force release agent such as titanium-zircoa can be applied with a substantially uniform thickness. !, I have the advantage. However, even if this mold release material is applied to a molding die for forming a composite surface, as described above, the composite surface is molded to have a rough skin.
  • the present invention proposes a method of forming a metal composite material which solves the above-mentioned serious problems and can improve the smoothness of a required surface (composite surface).
  • the present invention relates to a method of forming a metal composite in which a porous preform having a predetermined reinforcing material force is formed on a required surface, the required surface of the porous preform.
  • a mold-releasing material comprising a scaly-shaped composition is applied to a molding surface to be in contact with a molding die for forming a coating, and the porous preform is heated to cover the molding surface.
  • the molding die is brought into contact with the molding surface of the porous preform, and the molten metal of light metal is pressurized and supplied to the back of the porous preform. It is a molding method of the metal composite material to be made into merit.
  • a first molding die for forming a composite surface to which a porous preform having a predetermined reinforcing material force is formed, and the other surface.
  • a mold release material comprising a scaly-shaped composition is applied to a molding surface of the porous preform in contact with the first molding die for forming the composite surface, and the porous preliminary molding is applied.
  • the first molding die After forming a bowl-shaped covering layer covering the molding surface by heating the molding, the first molding die is brought into contact with the molding surface of the porous preform to make the molten metal of the light metal into a cavity.
  • the metal composite characterized in that the pressure is supplied It is in the form method.
  • the molten metal supplied under pressure is preferentially filled so as to easily pass through the relatively large holes, it is present on the molding surface.
  • the molten metal coming through the large holes comes into contact with the molding die in a relatively short time. That is, in each place of the forming surface, a difference occurs in time until the pressure-supplied molten metal contacts the forming die.
  • the porous preform is preheated at a temperature close to the temperature of the molten metal so that the molten metal is easily impregnated, but the molding die is lower in strength than the temperature of the molten metal to prevent seizure with the light metal. Preheated by temperature.
  • the molten metal that has passed through the porous preform is brought into contact with the molding die and solidification is started. Therefore, at a place where relatively large holes are present on the molding surface of the porous preform, the molten metal reaches quickly and solidification occurs rapidly, and the solidification sites of the molten metal are dispersed. Then, the solidification that has occurred in this way proceeds to the periphery and also interferes with the filling of the sequentially supplied molten metal. For this reason, there are also places where the molten metal can not reach the molding die on the surface to be molded, and an uneven scaly surface is formed.
  • the filling may be prevented by the solidified molten metal also in the inside of the porous preformed body, a part where the molten metal does not sufficiently spread may be generated to form a void.
  • a part where the molten metal does not sufficiently spread may be generated to form a void.
  • the mold release material is applied to the molding die in contact with the molding surface, since the temperature of the mold release material is low, a rough surface of the unevenness is similarly formed.
  • the mold release material is applied to the mold, a slight amount of moisture may remain in the mold release because the preheating temperature of the mold is relatively low. This moisture is heated by the high-temperature molten metal to become water vapor, which also results in the formation of voids and surface irregularities.
  • a release material comprising a scaly-shaped composition is applied to the surface to be molded of the porous preform so as not to generate such roughened internal skin and internal voids.
  • the molten metal is pressurized and supplied.
  • the scaly coating layer formed by heating the mold release material composed of scaly-shaped composition adheres so as to close the holes present in the molding surface, and the composition Is present in a disordered state in the scaly coating layer where the water is evaporated.
  • the scaly covering layer is different in the state in which the scaly-shaped composition is irregularly distributed depending on the size of the hole present on the molding surface. That is, where relatively large holes are present, the composition is further disturbed to close the holes, and the voids formed by evaporation of water are also relatively large. Since it is present, it has a thick layer form. On the other hand, in the places where small holes are present, the composition is present in a relatively uniform manner and in the form of a thin-walled layer form with less voids as compared with the large holes. And, such a scaly coating layer is formed in a state in which a scaly-shaped composition is supported on the surface to be molded.
  • this bowl-shaped covering layer is preheated to a temperature substantially close to the temperature of the molten metal together with the porous preform, and comes into contact with the molding die. For this reason, even if the pressure-supplied molten metal is brought into contact with the sheath-like coating layer through the porous preform, the molten metal does not immediately solidify because the sheath-like coating layer is at a high temperature.
  • the pressure-supplied molten metal is first filled through the relatively large holes, the molten metal quickly comes into contact with the bowl-shaped covering layer at the locations of the large holes.
  • the molten metal does not solidify, and is spread and expanded into the preform by the molten metal that is subsequently pressurized and supplied one after another, and the wedge-shaped coating layer is pressed against the molding die.
  • the irregular flake-shaped composition is gradually aligned, and the voids in the layer decrease, and the layer itself is compressed and deformed. It can be Then, when the molten metal comes in contact with the bowl-like coating layer through the gradually smaller holes, it will be compressed and deformed by the same pressing action.
  • the ridge-like covering layer is deformed into a form in which the scaly-shaped composition is overlapped and laminated as a whole, and a substantially uniform layer is formed. It becomes thickness. Therefore, a substantially smooth surface shape can be formed by solidification of the molten metal in pressure contact with the deformed wedge-shaped covering layer.
  • the molten metal to be sequentially pressurized and supplied is sufficiently spread and filled in the porous preformed body. It can be By means of the molten metal charged in this way, the air present in the preform is pushed over the wedge-shaped covering layer. Since this air can escape through the overlapping scaly-shaped composition of the scaly coating layer, the formation of voids (defects) inside is also prevented. In addition, the air inherent in the initial scaly coating layer described above is similarly released by the pressing action of the molten metal.
  • the molding method of the present invention it is possible to mold the required surface (or the composite surface) of the metal composite into a substantially smooth surface and to form voids (defects) inside. Also in the prevention Can. Thus, it is possible to form a metal composite that can sufficiently exhibit the respective excellent properties of the light metal and the porous preform. In addition, even when the cutting process is performed after that, the cutting amount can be reduced compared to the above-described conventional method, and the manufacturing process can be made more efficient.
  • the wedge-like covering layer formed on the surface to be molded can be flexibly absorbed by compressive deformation of the pressing action of the pressure-supplied molten metal?
  • the metal composite can be relatively easily released from the molding die even after the molten metal solidifies.
  • a hollow cylindrical metal composite is formed by an inner first molding die for forming a hollow cylindrical cavity such as the cylinder block described above and an outer second molding die.
  • due to solidification shrinkage of the light metal it is difficult to release the metal composite from the first molding die.
  • the mold-releasing material adhered to the molding die surface can hardly be compressed and deformed.
  • the metal composite material is strongly pressed against the first molding die by the pressing force and solidification contraction force of the molten metal supplied under pressure, and sufficient releasability can not be exhibited.
  • the pressing action and the contraction force of the molten metal are compressed and deformed by the wedge-shaped covering layer. Since it can be relieved, the pressing force on the first molding die can be alleviated, and the metal composite can be released relatively easily.
  • the scaly-shaped composition forming the mold release material is graphite having a scaly shape.
  • a method is proposed in which the scaly-shaped composition is a scaly-shaped boron nitride.
  • graphite and boron nitride are excellent in slidability, they can move relatively easily when subjected to the pressing action of the molten metal, and they will be further aligned and stacked. In order to obtain such a ridge-like covering layer, it is easy to be compressed and deformed and the smoothness is also enhanced.
  • the above-mentioned effects of the present invention can be more appropriately exhibited.
  • the porous preformed body forms a framework.
  • a method is proposed in which the short staple fibers and particles having predetermined properties are sintered.
  • the composite is suitably bonded to the light metal.
  • Such a preform is in the form of coarse and dense porosity since the short fibers are intricately entangled.
  • porous preforms are made, for example, by sintering particles excellent in wear resistance and slidability, which is a weak point of light metals such as aluminum alloys, the porous porosity can be reduced.
  • the metal composite material to be formed by the preformed body strength is excellent in abrasion resistance and sliding property.
  • a mold release material comprising a scaly-shaped composition is applied to the molding surface of the porous preform to be bonded to the required surface of the metal composite, and the porous preform is After forming a bowl-shaped covering layer by heating, the forming surface is brought into contact with a forming mold forming a required surface, and a molten metal of light metal is pressurized and supplied to the back of the porous preform. Molding method.
  • a mold-releasing material having a scaly shape composition is applied to the surface to be molded of the porous preform, and the porous preform is heated to form a scaly coated layer, and then the porous preform is formed.
  • the molding surface is brought into contact with a first molding die for forming a composite surface to which a preform is to be bonded, and a molten metal of light metal is pressurized and supplied to the cavity.
  • a molten metal of light metal is pressurized and supplied to the cavity.
  • the metal composite composited in this manner is characterized by the excellent properties of the light metal and the porous preform respectively. It will be able to fully demonstrate.
  • the amount of cutting can be reduced compared to the above-described conventional method also in the cutting process performed after such forming, it is possible to make the manufacturing process more efficient.
  • the scaly-shaped covering layer is Since it is formed of graphite or boron nitride having excellent slidability, it is easy to be compressed and deformed by the pressing action of the molten metal, and the smoothness is also enhanced, and the above-mentioned effects of the present invention are more appropriately exhibited. It can be done.
  • the porous preform described above is formed by sintering short fibers forming a skeleton and particles having a predetermined property
  • the short fibers forming a skeleton since it can prevent deformation due to the force of the molten metal that impregnates the inside, the porous preform and the light metal can be properly bonded, and the characteristics possessed by the short fibers and the particles can be sufficiently exhibited.
  • the resulting metal composite can be formed.
  • FIG. 1 is an explanatory view showing a step of forming a porous preform 1 according to an embodiment of the present invention.
  • FIG. 2 (B) An enlarged photograph showing the surface morphology of the porous preform 1 and (en) an enlarged photograph showing the surface morphology coated with a release agent obtained by diluting scaly graphite.
  • FIG. 3 is an explanatory view showing a process of tumbling the metal composite 3 of Example 1.
  • FIG. 4 An explanatory view schematically showing a process of impregnating a porous preform 1 with a molten metal 2a to form a composite surface 4 in Example 1.
  • FIG. 5 (B) A magnified image showing the composite surface 4 of Example 1 and (Z) A magnified image showing the composite surface 4 'of the comparative example.
  • FIG. 6 is an explanatory view showing a process of tumbling the metal composite 3 of Example 2.
  • a rectangular solid metal composite 3 formed by bonding a flat plate-shaped porous preform 1 to a required surface (composite surface 4) is formed on an aluminum alloy 2 and the first embodiment
  • a cylindrical porous preform 41 is illustrated for Example 2 in which a cylindrical metal composite 43 formed by bonding to the inner circumferential surface (composite surface 44) is formed.
  • a mold release material comprising a composition having the same scaly shape as in Example 1 is not applied to the porous preform 1, and a molding die is produced.
  • a comparative example applied to 22 is also illustrated.
  • FIG. 1 shows a process of forming a porous preform (so-called preform) 1 according to the present invention.
  • the alumina short fibers 10 and the alumina particles 11 are stirred and mixed in water in a predetermined container 61.
  • alumina sol 12 is added as an inorganic binder to form a mixed aqueous solution 13 in which alumina short fibers 10, alumina particles 11 and alumina sol 12 are mixed almost uniformly.
  • the mixed aqueous solution 13 is transferred from the container 61 to the suction shaper 63.
  • a vacuum pump (not shown) is connected to the suction shaper 63, and as shown in FIG.
  • the water in the mixed aqueous solution 13 is sucked by the vacuum pump through the filter 64.
  • a preformed body 14 is obtained in which the alumina particles 11 are substantially uniformly dispersed in the alumina short fibers 10 and pseudo-bonded.
  • this preformed body 14 is removed from the suction forming device 63. Take out and dry in a drying oven maintained at about 120 ° C. to remove water sufficiently (not shown).
  • the volume content of the alumina short fibers 10 is about 12%
  • the volume content of the alumina particles 11 is about 10%
  • the remaining region is a void.
  • the above-mentioned mixed aqueous solution 13 is prepared so as to obtain such a volume content rate.
  • this preformed body 14 was placed on a table 66 in a heating furnace 65, and the inside of the furnace was heated to about 1000 ° C. and held for one hour. Thereafter, furnace cooling (not shown) to room temperature was performed to obtain a porous preform 1 having a flat plate shape.
  • the porous preform 1 molded in this manner is formed by combining the alumina short fibers 10 and alumina particles 11 which form a complex intertwining frame, It has a so-called porous form in which sites (relatively large pores) and dense sites (relatively small pores) are mixed.
  • the water-soluble scale-like graphite 8 (see FIG. 2 (mouth), see FIG. 4) is diluted about twice with water to form a release material (not shown) according to the present invention.
  • Hitzole 242B (manufactured by Hitachi) is used as the scaly graphite.
  • This mold release material is applied to the molding surface 5 of the porous preform 1 to form a required surface (hereinafter referred to as a composite surface) 4 formed by combining the porous preform 1 and the aluminum alloy 2 described above. Apply Then, it is dried in a drying oven maintained at about 120 ° C to remove water sufficiently (not shown).
  • a drying oven maintained at about 120 ° C to remove water sufficiently (not shown).
  • a scale-like coating layer 6 in which scale-like graphite 8 is randomly present is formed on the surface to be formed. Furthermore, this scaly coating layer 6 has an internal void formed after the evaporation of water (see FIG. 4 (i)).
  • the randomness of the scale-like graphite 8 is high and a large number of voids are present, and the layer thickness is thick.
  • the scaly graphite 8 is in a relatively gathered state, and the thickness of the layer with few gaps is thin (see FIG. 4 (i)). It can be said that such a scaly covering layer 6 is formed in a state in which scaly graphite 8 is supported on the molding surface 5 of the porous preform 1.
  • the porous preform 1 has a flat plate shape of about 40 mm ⁇ about 40 mm and about 10 mm in thickness. And as a result of measuring a weight after the said drying, it is an increase of about lg, and this is the adhesion amount of scale-like graphite 8. Thereafter, the porous preform 1 having the bowl-shaped covering layer 6 formed on the molding surface 5 is subjected to a predetermined preheating furnace (not shown). Exposed to a high temperature atmosphere and preheat to about 600 ° C. At this time, the wedge-shaped covering layer 6 is also preheated to about 600.degree. In the present embodiment, after the release material is applied, it is once dried in a drying furnace and weight measurement is performed, but it is also possible to carry out preheating directly in a preheating furnace without performing this. A similar scaly covering layer 6 can be formed.
  • the porous preform 1 preheated by the preheating furnace is immediately placed at a predetermined position of the mold 20 for forming the metal composite 3 of the desired shape as shown in FIG.
  • the mold 20 is a substantially hollow rectangular parallelepiped outer frame mold 21 whose inner four sides are inclined surfaces which are respectively directed downward from above and inclined inward, and the lower part of the outer frame mold 21. It consists of a mold 22 which is fitted and forms the composite surface 4 and a insert 23 which is fitted inside the outer frame mold 21 and whose inner four sides are vertical surfaces.
  • the insert 23 is divided into right and left, and when it is taken out from the outer frame mold 21, it is divided and the metal composite 3 formed on the inside is easily released. It has become possible.
  • Such a mold 20 preheats the outer frame mold 21 to about 300 ° C. and preheats the mold 22 and the insert 23 to about 200 ° C. before the porous preform 1 is placed. It will A mold release material is applied to the inner vertical surface of the insert 23 in advance. This release material may be any of those obtained by diluting the scaly graphite described above or a release material composed of another general particulate composition.
  • the preheated porous preform 1 is placed on the molding die 22 with the molding surface 5 facing downward (FIG. 3 (B)).
  • the surface to be molded 5 is in contact with the molding die 22 through the ridge-like coating layer 6 (see FIG. 2 (opening)) applied to the surface to be molded 5.
  • a predetermined amount of molten metal 2a of aluminum alloy (JIS AC 4 CH alloy) heated to about 760 ° C. is formed in cavity 25 formed by insert 23 and forming die 22. Drain.
  • the pressing element 24 which has a substantially flat surface and which can be inserted into the cavity 25 is provided by a hydraulic press machine not shown.
  • the upper force molten metal 2a is pressed directly at a pressure of 50 MPa.
  • the molten metal 2a is pressurized and supplied in this manner, the inside of the porous preform 1 is gradually impregnated.
  • the composite alloy portion 7 in which the porous preform 1 and the aluminum alloy 2 are composite-bonded, and the aluminum alloy 2 are integrally formed.
  • Metal Composite 3 is obtained.
  • the composite surface 4 formed by combining the porous preform 1 and the aluminum alloy 2 is, as shown in FIG.
  • the molten metal 2a in contact with the bowl-shaped covering layer 6 is pushed and spread around by the molten metal 2a which is sequentially pressurized and supplied, and is filled into the preform 1 and is later pressurized.
  • the wedge-shaped covering layer 6 is pressed against the forming die 22 by the pressing action of the supplied molten metal 2 a.
  • the scaly graphites 8 are gradually aligned so as to gradually overlap each other at the portion of the scaly coating layer 6 which has received the pressing action of the molten metal 2 a,
  • the air contained therein flows out to the outside through the surface of the molding die 22 so that the space is reduced and the layer itself is compressed and deformed.
  • the molten metal 2a is gradually supplied to the dense portion of the porous preform 1 by pressure feeding so that the molten metal 2a is in contact with the bowl-shaped covering layer 6 over the entire area of the molding surface 5. I will. Then, as the bowl-shaped covering layer 6 and the molten metal 2a come into contact with each other, they are compressed and deformed in the same manner as described above, and the entire region of the bowl-shaped covering layer 6 is compressed and deformed.
  • this compressive deformation causes the thick portion of the bowl-like covering layer 6 to be greatly compressed and deformed by the relatively large pressing action at the rough portion, and the thin portion by the relatively small pressing action at the dense field position. It will be made small compression deformation.
  • the scale-like coating layer 6 is compressed and deformed into a generally uniform layer thickness in which the scale-like graphites 8 are laminated in a uniform manner. Therefore, the molten metal 2a in pressure contact with the weir-like coating layer 6 solidifies, whereby a substantially smooth composite surface 4 is formed.
  • the air remaining in the porous preformed body 1 has a ridge-like covering layer formed by the molten metal 2a.
  • the mixture is pressed to 6 and flows to the surface of the molding die 22 through between the flaky graphite (not shown) constituting the scale-like coating layer 6 and flows out to the outside.
  • the flaky graphite not shown
  • the bowl-shaped coating layer 6 can be flexibly absorbed by compressively deforming the pressing action of the molten metal 2a. Since it is possible, the molding die 22 and the molten metal 2a can be shielded reliably. Therefore, the composite surface 4 in which the porous preform 1 and the aluminum alloy 2 are combined so that the aluminum alloy 2 is not seized on the forming die 22 can be relatively easily released from the forming die 22. it can. From this point on as well, the smoothness of the composite surface 4 is maintained.
  • a mold release material obtained by diluting the scaly graphite as in Example 1 is applied to the surface of the molding die 22 to which the molding surface 5 contacts, and the molten metal 2a
  • the metal composite is formed by pressure supply (see Figures 1 and 3). That is, the porous preform 1 is formed in the same manner as in Example 1 described above, and the molded surface 5 of the porous preform 1 is not coated with a release material obtained by diluting scaly graphite (see FIG. 2) Preheat to about 600 ° C.
  • the mold release material is applied to the surface of the molding die 22 on which the composite surface of the metal composite is to be formed (not shown).
  • the coating amount of the release agent is made to be substantially the same as that of the above-mentioned Example 1.
  • the mold 22 is preheated at about 200 ° C. to form a substantially smooth ridge-like covering layer covering the mold 22.
  • a cavity 25 is formed by the forming die 22 and the outer frame die 21 and the insert 23 which are each preheated.
  • the molten metal 2a of the aluminum alloy 2 is poured, and the molten metal 2a is also directly pressed by the pressing element 24 in the upward direction.
  • the molten metal 2a is pressurized and supplied to impregnate the porous preform 1 with the molten metal 2a.
  • a metal composite material 3 formed by integrally forming an aluminum alloy 2 and a composite site where the porous preform 1 and the aluminum alloy 2 are composited is obtained. obtain.
  • the release material obtained by diluting scaly graphite is not applied to the surface to be molded 5 of the porous preform 1 but applied to the molding die 22.
  • the molding is performed in the same manner as in Example 1 described above, and the same reference numerals and descriptions are omitted.
  • a composite surface 4 ′ formed by combining the porous preform 1 and the aluminum alloy 2 is as shown in FIG. With rough skin on the ground became.
  • this composite surface 4 ' is compared with the composite surface 4 (Fig. 5 (i)) of the metal composite 3 of Example 1 described above, it can be seen that the bald surface of the composite surface 4' of the comparative example is rough.
  • the molten metal 2a of the aluminum alloy 2 is pressure-supplied and impregnated into the porous preform 1 and / or passes quickly through the rough part of the porous preform 1 in the course of the process.
  • the asperity shape is formed, and the complex surface 4 'of roughened persimmon skin is to be formed. Also, in this way, on the surface to be molded, if solidification proceeds more quickly than in the interior, a void may be contained in the porous preform 1. In the case of the composite part formed in this manner, the effects such as strength improvement and wear resistance improvement by the composite of the porous preform 1 and the aluminum alloy 2 are not sufficiently exhibited.
  • the metal composite 43 is molded (see FIG. 6).
  • a hollow cylindrical porous preform 41 is molded by the same molding method as in Example 1 described above (see FIG. 1).
  • the inner peripheral surface of this porous preformed body 41 is a molding surface 45 forming the composite surface 44 of the metal composite 43.
  • a composite gauze portion 47 in which a porous preformed body 41 and the aluminum-um alloy 2 are composited is formed on the inner side in the cylindrical diameter direction. It is assumed that aluminum alloy 2 is integrally formed on the outside (Fig. 6 (2)).
  • this embodiment 2 is the same as the above-described embodiment except that the hollow cylindrical metal composite 43 having the composite surface 44 combined with the porous preform 41 on the inner peripheral surface is formed.
  • This is the same shaping method as in Example 1, and in the same process, symbols and explanations are appropriately omitted.
  • Example 2 a mixed solution 13 in which alumina short fibers 10, alumina particles 11 and alumina sol 12 are substantially homogeneously mixed is drawn into a cylindrical storage tank in which a cylindrical core is disposed at the center thereof. Then, a hollow cylindrical preform is obtained by suction with a vacuum pump (see FIG. 1). Then, when the preform is dried in a drying furnace, the volume fraction of alumina short fibers 10 is about 12%, and the volume fraction of alumina particles 11 is about 12 as in Example 1 described above. It is 10%. Thereafter, this preform was sintered by heating at about 1000 ° C. for one hour to obtain a hollow cylindrical porous preform 41 (see FIG. 6).
  • the porous preformed body 41 has a tapered shape in which the outer peripheral surface is substantially straight and the inner peripheral surface is inclined by about 0.5 degrees. Then, it is molded to have a height of about 80 mm, an outer diameter of about 80 mm, and a minimum inner diameter of about 70 mm.
  • a mold release material obtained by diluting scaly graphite as in Example 1 described above is applied, and Remove moisture thoroughly in a drying oven held at ° C and dry.
  • a scaly covering layer (not shown) formed by overlapping scaly graphite on top of the molding surface 45 is formed (see FIG. 2 (opening), FIG. 4).
  • the scaly coated layer is formed in a state in which the scaly graphite is scattered differently depending on the rough and dense form of the molding surface 45 as in the first embodiment described above.
  • the adhesion amount of scaly graphite was about 2 g.
  • the porous preformed body 41 is preheated to about 600 ° C. in a preheating furnace as in the above-mentioned Example 1.
  • the cavity 55 forming the hollow cylindrical metal composite 43 has an internal structure as shown in FIG.
  • An outer frame mold 51 having an inner peripheral inclined surface which inclines inward from the upper side to the lower side on the side, and the lower end of the outer frame mold 51 are fitted to one open end face of the metal composite 43
  • a lower mold 52 to be formed a nest 53 having a vertical surface internally fitted to the outer frame mold 51 and forming an outer peripheral surface of the metal composite 43 inside, and detachable from the center of the lower mold 52
  • It is comprised of a core 56 which is arranged and has an outer peripheral surface with a taper angle which is directed upwards and inclined inwards.
  • the core 56 is formed such that the upper outer diameter is about 70 mm and the taper angle of the outer peripheral surface is about 0.5 degree, and the porous preform 41 described above is externally fitted by a slightly provided tolerance. It is possible.
  • the nest 53 is divided into right and left as described above.
  • the core 56 in contact with the molding surface 45 of the porous preform 41 is the first molding die according to the present invention, and the insert 53 and the lower die 52 are the second molding die. is there.
  • the outer frame mold 51, the lower mold 52, and the insert 53 described above are preheated to about 300 ° C. before the porous preform 1 is placed, and the core 56 is about 200 °. Preheat to C.
  • a mold release material is applied in advance to the surface of the lower mold 52 and the insert 53 on which the cavity 55 is to be formed.
  • the preheated porous preform 41 is immediately fitted on the core 56 and placed in the center of the lower mold 52 as shown in FIG. This results in the porous preform 45 being placed within the cavity 55.
  • the porous preform 41 is not in contact with the inner circumferential surface of the insert 53 and is disposed inside the cavity 55.
  • a predetermined amount of molten metal 2a of aluminum alloy (JIS AC 4 CH alloy) heated to about 760 ° C. is poured into this cavity 55, as shown in FIG.
  • the pressure applied to the inner side of the insert 52 by the pressure of about 50 MPa also directly presses the upward force of the molten metal 2a.
  • the molten metal 2a is gradually impregnated into the porous preformed body 41 by pressure supply of the molten metal 2a. Then, after cooling in this state, it is taken out, and on the inner peripheral side, a composite metal portion 47 where the porous preform 41 and the aluminum alloy 2 are complexed, and the aluminum alloy 2 hardened on the outer side.
  • the composite surface 44 is formed to have a substantially smooth skin as in Example 1 described above (see FIG. 5 (c)). )reference). This is because, as shown in Example 1, a gauze-like object formed on the molding surface 45 of the porous preform 41. This is because the coating layer is compressed and deformed by the pressing action of the pressure-supplied molten metal 2a, so that an effect that can form a substantially smooth composite surface 44 can be exhibited (see FIG. 4).
  • the core is generally removed because the molten aluminum alloy supplied into the cavity shrinks and deforms in the cooling process. difficult.
  • the load required to extract the core 56 (hereinafter referred to as the extraction load) was measured.
  • a mold release material in which flake graphite is diluted is not applied to the molding surface 45, and an outer surface of the core 56 is coated with a mold release material having a general particle shape.
  • a metal composite was formed, and the unloading load of the core 56 was measured.
  • the removal load of the core 56 is about 70% as compared with the case where the release agent composed of the particle shape of the particle is applied. It has fallen.
  • the mold release layer formed by the adhesion of the mold release agent applied to the outer peripheral surface of the core 56 can hardly be compressed and deformed.
  • the metal composite is strongly pressed against the core 56 by the pressing force of the metal and the solidification contraction force of the molten metal.
  • Example 2 in which the present invention works as described above, since the wedge-shaped covering layer can be compressed and deformed, the pressing force and the contraction force of the molten metal can be relaxed.
  • the force applied to the core 56 is reduced as compared to the above.
  • the metal composite can be removed relatively easily. Therefore, in order to facilitate mold removal, it is necessary to increase the taper angle of the outer peripheral surface of the core, and to use the method of cutting after molding, etc. to reduce the time and cost required for the molding process. Is also possible.
  • the porous preform is formed by sintering alumina short fibers and alumina particles, but in addition, shorts such as metal fibers, ceramic fibers, carbon fibers, etc. Even in the case of using fibers and particles such as ceramic particles and metal particles, and porous metals, etc., the effects and advantages of the present invention can be appropriately exhibited.
  • the method of forming the metal composite material of the present invention by high pressure structure, die casting, gas pressure structure, etc. It can be suitably used in various methods for filling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

A method of molding a composite metal material capable of increasing the smoothness of the specified surface (composite surface) thereof joined to a porous preliminary molding. In the method of molding the composite metal material (3), a releasing material formed of a scale-shaped composition is applied to the molded surface (5) of the porous preliminary molding (1) and the porous preliminary molding (1) is heated to form a scale-shaped coating layer (6), the molded surface (5) is brought into contact with a molding die (22) forming the specified surface (or composite surface (4)) joined to the porous preliminary molding (1), and the molten metal (2a) of a light metal is supplied while pressurizing. Thus, the specified surface (or composite surface (4)) having approximately smooth casting surface can be formed, void is prevented from being formed in the material, and the light metal and the porous preliminary molding can sufficiently develop their excellent characteristics in the composite metal material (3).

Description

明 細 書  Specification
金属複合材の成形方法  Method of forming metal composite
技術分野  Technical field
[0001] 本発明は、軽金属を、所定の強化材から形成される多孔性予備成形体と複合化し てなる金属複合材の成形方法に関するものである。  The present invention relates to a method of forming a metal composite formed by combining a light metal with a porous preform formed from a predetermined reinforcing material.
背景技術  Background art
[0002] 例えば、自動車にあって、燃費や操安性等を向上させるために、軽量化、高耐久 性、低熱膨張性等に優れるアルミニウム合金等の軽金属により製造される部品が増 加する傾向にある。この自動車を構成する部品には、エンジン部品等のように使用環 境が厳しいものもあり、このような部品には、軽金属をセラミックス等の強化材と複合 化して成る金属複合材が用いられ、軽量化と高耐久性等をさらに向上させている。さ らに、軽金属の弱点である特定性能に優れた強化材と複合ィ匕することにより、軽金属 の優れた特性と、強化材の優れた特性とを合わせ持つ金属複合材を成形することも 可能である。例えば、耐摩耗性ゃ摺動性の低いアルミニウム合金と、耐摩耗性ゃ摺 動性に優れた強化材とを複合化することにより、軽量化や低熱膨張性等と、耐摩耗 性ゃ摺動性との両者に優れた金属複合材を成形することができ得る。  [0002] For example, in automobiles, there is a tendency to increase parts manufactured by light metals such as aluminum alloys, which are excellent in weight reduction, high durability, low thermal expansivity, etc., in order to improve fuel efficiency and steering stability. It is in. Some of the parts that make up this automobile have harsh environments such as engine parts, etc. For such parts, metal composites formed by combining light metals with reinforcing materials such as ceramics are used. It has further improved weight reduction and high durability. Furthermore, it is possible to form a metal composite that combines the excellent characteristics of light metals and the excellent characteristics of reinforcements by combining them with reinforcements excellent in specific performance, which is the weakness of light metals. It is. For example, by combining an aluminum alloy having low wear resistance and low slidability with a reinforcing material excellent in wear resistance and high slideability, weight reduction, low thermal expansion, etc., wear resistance and wear, etc. It is possible to form a metal composite excellent in both of the properties and the properties.
[0003] このように、アルミニウム合金等の軽金属に、耐摩耗性ゃ摺動性に優れた強化材を 複合化してなる金属複合材にあっては、高!、耐摩耗性ゃ摺動性が要求される所要 面を、当該強化材が複合化された複合面として形成してなるものである。尚、この金 属複合材は、強化材により部分的に複合化されることが一般的である。このような金 属複合材の成形方法としては、予め所定の強化材力 形成した多孔性予備成形体 を、当該金属複合材を成形する金型に形成されたキヤビティの、所要面 (複合面)を 形成する成形金型に接触させるように配した後、軽金属の溶湯を該キヤビティに加圧 供給することにより成形する铸造成形方法が良く知られている。この成形方法では、 加圧供給された溶湯が、多孔性予備成形体の内部に含浸し、当該予備成形体と軽 金属とが結合することにより、この多孔性予備成形体の有する特性を発揮し得る複合 面を形成することができる。 [0004] 上述のような金属複合材として、例えば、エンジンのシリンダブロックを成形する方 法にあっては、上記した多孔性予備成形体として繊維成形体を用い、予め予熱した 該繊維成形体をシリンダボア成形用中子の周囲に配置して、溶湯を充填するように して铸造する方法が提案されている(例えば、特許文献 1)。かかる方法は、予め繊維 成形体を予熱することにより、溶湯が該繊維成形体内に充分に充填されるようにした ものである。 [0003] As described above, in the case of a metal composite formed by combining a light metal such as aluminum alloy with a reinforcing material having excellent wear resistance and sliding property, high! And wear resistance and sliding property are obtained. The required surface required is formed as a composite surface in which the reinforcing material is composited. Generally, this metal composite is partially composited with a reinforcing material. As a method of molding such a metal composite material, a required surface (composite surface) of a cavity formed on a mold for molding the metal composite material, a porous preform having a predetermined reinforcing material force formed in advance. A well-known truss forming method is known, in which a molten metal of light metal is pressurized and supplied to the cavity after being placed in contact with a molding die for forming the metal mold. In this forming method, the pressure-supplied molten metal is impregnated into the interior of the porous preform, and the properties of the porous preform are exhibited by bonding the preform and the light metal. The resulting composite surface can be formed. [0004] For example, in a method of forming a cylinder block of an engine as the metal composite as described above, the fiber formed body is used as the porous preform described above, and the fiber formed body is preheated. A method has been proposed which is disposed around a cylinder bore forming core so as to be filled with a molten metal and forged (for example, Patent Document 1). In such a method, the melt is sufficiently filled in the fiber formed body by preheating the fiber formed body in advance.
特許文献 1:特開昭 62-6766号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 62-6766
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0005] ところで、一般的な铸造成形では、溶湯が供給されるキヤビティを形成する金型の 表面に予め離型材を塗布することにより、金型と溶湯との焼き付きを防ぎ、成形後に 該金型と成形品とを容易に離間でき、かつ平滑な铸肌に成形されるようにしている。 上述した、多孔性予備成形体を結合してなる所要面 (複合面)が形成される金属複 合材の成形にあっても、同様に、離型材を塗布して成形している。ところが、多孔性 予備成形体が接触される成形金型に離型材を塗布しても、金属複合材の複合面は 、凹凸の存在する荒れた铸肌に成形されてしまうという問題が生じている。このため、 複合面を所望の平滑性とするため、後工程で当該複合面を比較的多量に切削加工 することが必要となり、この切削加工に要する時間が長くなり、かつ、刃物の交換時期 も早くなる。特に、多孔性予備成形体がセラミックス短繊維やセラミックス粒子カゝらなる ものとした場合には、刃物に力かる負担も大きいことから、切削加工の長時間化や刃 物交換の早期化が顕著であり、製造時間や製造費用が増大する一因ともなつている 。また、このように、複合面が荒れた铸肌に成形されている場合には、該複合面の内 側に在る多孔性予備成形体と軽金属との複合化部位に、空隙 (欠陥)が生じ易ぐ当 該金属複合材は、上述した複合化効果を充分に発揮できて ヽな ヽと ヽぅ問題もある。  [0005] By the way, in general wrought forming, a mold release material is applied in advance to the surface of the mold forming the cavity to which the molten metal is supplied, thereby preventing seizing between the mold and the molten metal, and after molding And molded articles can be easily separated, and can be molded into a smooth, smooth skin. Even in the molding of the metal composite material to form the required surface (composite surface) formed by bonding the porous preforms described above, the mold release material is similarly applied and molded. However, even if a mold release material is applied to a molding die in contact with the porous preform, there is a problem that the composite surface of the metal composite material is molded to a rough, rough skin with irregularities. . For this reason, in order to make the composite surface have the desired smoothness, it is necessary to cut the composite surface in a relatively large amount in a later step, the time required for this cutting becomes longer, and the time to replace the cutter also becomes It gets faster. In particular, in the case where the porous preform is made of ceramic short fibers or ceramic particles, the load on the cutter is large, and therefore, the time-consuming cutting process and the early replacement of the cutter are remarkable. It also contributes to an increase in manufacturing time and cost. In addition, when the composite surface is thus formed into a rough surface, voids (defects) are present at the composite site of the porous preform and the light metal on the inner side of the composite surface. The metal composite material which can be easily formed can sufficiently exhibit the above-described composite effect, and also has problems of wrinkles and wrinkles.
[0006] ここで、上述した離型材として、一般的に良く知られている、チタ-ァゃジルコ-ァ 等の粒子力 なる離型材は、ほぼ均一な厚みで塗布することが容易にできると!、う利 点を有している。ところが、この離型材を、複合面を形成する成形金型に塗布しても、 上述したように、該複合面が荒れた铸肌に成形されてしまう。 [0007] 本発明は、力かる上記問題点を解決し、所要面 (複合面)の平滑性を向上させ得る 金属複合材の成形方法を提案するものである。 [0006] Here, as the above-mentioned mold release material, it is easily known that a generally well-known particle-force release agent such as titanium-zircoa can be applied with a substantially uniform thickness. !, I have the advantage. However, even if this mold release material is applied to a molding die for forming a composite surface, as described above, the composite surface is molded to have a rough skin. The present invention proposes a method of forming a metal composite material which solves the above-mentioned serious problems and can improve the smoothness of a required surface (composite surface).
課題を解決するための手段  Means to solve the problem
[0008] 本発明は第一に、所要面に所定の強化材力 形成される多孔性予備成形体が結 合された金属複合材の成形方法において、前記多孔性予備成形体の、前記所要面 を形成するための成形金型と接触する被成形面に、鱗片形状の組成物からなる離型 材を塗布し、当該多孔性予備成形体を加熱することにより該被成形面を被覆する鱗 状被覆層を形成した後、この多孔性予備成形体の被成形面に成形金型を接触させ 、軽金属の溶湯を該多孔性予備成形体の背方に、加圧供給するようにしたことを特 徴とする金属複合材の成形方法である。  [0008] First, the present invention relates to a method of forming a metal composite in which a porous preform having a predetermined reinforcing material force is formed on a required surface, the required surface of the porous preform. A mold-releasing material comprising a scaly-shaped composition is applied to a molding surface to be in contact with a molding die for forming a coating, and the porous preform is heated to cover the molding surface. After forming the covering layer, the molding die is brought into contact with the molding surface of the porous preform, and the molten metal of light metal is pressurized and supplied to the back of the porous preform. It is a molding method of the metal composite material to be made into merit.
[0009] また、第二の発明としては、所定の強化材力 形成される多孔性予備成形体が結 合される複合面を形成するための第 1の成形金型と、それ以外の面を形成するため の第 2の成形金型間にキヤビティを形成し、該キヤビティに軽金属の溶湯を充填する ことにより、多孔性予備成形体が結合されて形成された複合面を有する金属複合材 の成形方法において、前記多孔性予備成形体の、前記複合面を形成するための第 1の成形金型と接触する被成形面に、鱗片形状の組成物からなる離型材を塗布し、 当該多孔性予備成形体を加熱することにより該被成形面を被覆する鱗状被覆層を 形成した後、この多孔性予備成形体の被成形面に第一の成形金型を接触させ、軽 金属の溶湯をキヤビティに加圧供給するようにしたことを特徴とする金属複合材の成 形方法である。  According to a second aspect of the invention, there is provided a first molding die for forming a composite surface to which a porous preform having a predetermined reinforcing material force is formed, and the other surface. Forming a cavity between the second forming molds for forming, and filling the cavity with a molten metal of light metal to form a metal composite having a composite surface formed by combining porous preforms. In the method, a mold release material comprising a scaly-shaped composition is applied to a molding surface of the porous preform in contact with the first molding die for forming the composite surface, and the porous preliminary molding is applied. After forming a bowl-shaped covering layer covering the molding surface by heating the molding, the first molding die is brought into contact with the molding surface of the porous preform to make the molten metal of the light metal into a cavity. The metal composite characterized in that the pressure is supplied It is in the form method.
[0010] ここで、上述した従来の、所要面 (又は複合面)を形成する成形金型に離型材を塗 布する成形方法では、該所要面 (又は複合面)が荒れた铸肌に成形される。この従 来の铸造成形方法について、発明者らが鋭意研鑽した結果、凹凸の在る荒れた铸 肌が形成される原因を解明するに至った。この原因としては、主に、多孔性予備成形 体の形状と、成形金型の予熱温度による作用が大きい。この多孔性予備成形体にあ つては、各孔毎に大きさが夫々に異なると共に、その形成位置もバラバラであり、この 様々な孔形態に従って表面形状が凹凸となっている。このため、加圧供給される溶 湯は、比較的大きな孔を通り易ぐ優先的に充填されていくことから、被成形面に在る 該大きな孔を通じて来た溶湯が、比較的短時間で成形金型と接触することとなる。す なわち、被成形面の場所毎で、加圧供給される溶湯が成形金型に接触するまでの時 間に差異が生じる。一方、多孔性予備成形体は、溶湯が含浸し易いように、該溶湯 温度に近い温度で予熱されているが、成形金型は、軽金属との焼き付きを防ぐため、 溶湯温度よりも力なり低い温度で予熱されている。このため、多孔性予備成形体内を 通過した溶湯は、成形金型に接触すると共に凝固が開始されることとなっている。し たがって、多孔性予備成形体の被成形面の、比較的大きな孔が存在する場所では、 溶湯が早く到達して凝固が早く生じることとなり、溶湯の凝固場所が散在していく。そ して、このように生じた凝固は、その周囲へ進行していくと共に、順次供給されてくる 溶湯の充填を妨げることともなる。このため、被成形面で、成形金型まで溶湯が達す ることができない所も生じ、凹凸形状の铸肌が形成されることとなっている。また、多 孔性予備成形体の内部でも、凝固した溶湯によって充填が妨げられることとなってい くことから、溶湯が充分に行き渡らない部位が生成されて、空隙が形成されることとな り得る。尚、上述のように、被成形面と接触する成形金型に離型材を塗布しても、離 型材の温度が低いことから、同様に凹凸の铸肌が形成されることとなる。さらに、成形 金型に離型材を塗布した場合には、成形金型の予熱温度が比較的低温であること から、離型材内に水分がわずかに残ることもあり得る。この水分が高温の溶湯によつ て熱されて水蒸気となることにより、空隙や表面の凹凸が形成されることともなつてい る。 [0010] Here, in the conventional molding method for applying a mold release material to a molding die for forming a required surface (or composite surface) described above, the required surface (or composite surface) is molded on rough skin. Be done. As a result of the inventors' keen research on this conventional forging method, it has come to be elucidated the cause of formation of rough rough skin with irregularities. The main cause of this is the effect of the shape of the porous preform and the preheating temperature of the molding die. In this porous preform, the size is different for each hole, and the forming position is also random, and the surface shape is uneven according to the various hole forms. For this reason, since the molten metal supplied under pressure is preferentially filled so as to easily pass through the relatively large holes, it is present on the molding surface. The molten metal coming through the large holes comes into contact with the molding die in a relatively short time. That is, in each place of the forming surface, a difference occurs in time until the pressure-supplied molten metal contacts the forming die. On the other hand, the porous preform is preheated at a temperature close to the temperature of the molten metal so that the molten metal is easily impregnated, but the molding die is lower in strength than the temperature of the molten metal to prevent seizure with the light metal. Preheated by temperature. For this reason, the molten metal that has passed through the porous preform is brought into contact with the molding die and solidification is started. Therefore, at a place where relatively large holes are present on the molding surface of the porous preform, the molten metal reaches quickly and solidification occurs rapidly, and the solidification sites of the molten metal are dispersed. Then, the solidification that has occurred in this way proceeds to the periphery and also interferes with the filling of the sequentially supplied molten metal. For this reason, there are also places where the molten metal can not reach the molding die on the surface to be molded, and an uneven scaly surface is formed. In addition, since the filling may be prevented by the solidified molten metal also in the inside of the porous preformed body, a part where the molten metal does not sufficiently spread may be generated to form a void. . As described above, even when the mold release material is applied to the molding die in contact with the molding surface, since the temperature of the mold release material is low, a rough surface of the unevenness is similarly formed. Furthermore, when the mold release material is applied to the mold, a slight amount of moisture may remain in the mold release because the preheating temperature of the mold is relatively low. This moisture is heated by the high-temperature molten metal to become water vapor, which also results in the formation of voids and surface irregularities.
このような荒れた铸肌と内部の空隙とを生成しないように、本発明にあっては、多孔 性予備成形体の被成形面に、鱗片形状の組成物からなる離型材を塗布し、これを加 熱することにより鱗状被覆層を形成した後に、溶湯を加圧供給するようにした方法で ある。ここで、鱗片形状の組成物からなる離型材を加熱して形成された鱗状被覆層は 、被成形面に存在する孔を塞ぐように、鱗片形状の組成物が付着しており、該組成物 は、水分が蒸発した鱗状被覆層内で乱雑な状態で存在している。さら〖こ、この鱗状 被覆層は、被成形面に在る孔の大きさに応じて鱗片形状の組成物が乱在する状態 が異なっている。すなわち、比較的大きな孔が在るところでは、この孔を塞ぐように組 成物が一層乱れて存在する状態であり、かつ、水分が蒸発して成る空隙も比較的多 く存在していることから、厚肉状の層形態となっている。一方、小さな孔が在るところ は、前記大きな孔のところに比して、組成物が比較的揃って存在し、かつ空隙も少な ぐ薄肉状の層形態となっている。そして、このような鱗状被覆層は、被成形面に鱗片 形状の組成物が、 V、わゆる担持された状態で形成されて!、るものである。 In the present invention, a release material comprising a scaly-shaped composition is applied to the surface to be molded of the porous preform so as not to generate such roughened internal skin and internal voids. After forming the weir-like coating layer by heating, the molten metal is pressurized and supplied. Here, in the scaly coating layer formed by heating the mold release material composed of scaly-shaped composition, the scaly-shaped composition adheres so as to close the holes present in the molding surface, and the composition Is present in a disordered state in the scaly coating layer where the water is evaporated. Furthermore, the scaly covering layer is different in the state in which the scaly-shaped composition is irregularly distributed depending on the size of the hole present on the molding surface. That is, where relatively large holes are present, the composition is further disturbed to close the holes, and the voids formed by evaporation of water are also relatively large. Since it is present, it has a thick layer form. On the other hand, in the places where small holes are present, the composition is present in a relatively uniform manner and in the form of a thin-walled layer form with less voids as compared with the large holes. And, such a scaly coating layer is formed in a state in which a scaly-shaped composition is supported on the surface to be molded.
[0012] そして、この鱗状被覆層は、多孔性予備成形体と共に、溶湯温度とほぼ近い温度 に予熱されて、成形金型と接触することとなっている。このため、加圧供給された溶湯 力 この多孔性予備成形体を通じて鱗状被覆層に接触しても、該鱗状被覆層は高温 であることから、当該溶湯は直ぐに凝固を生じない。ここで、上述したように、加圧供 給された溶湯は、先ず、比較的大きな孔を通じて充填していくことから、該大きな孔の 在るところでは溶湯が早く鱗状被覆層と接触するが、該溶湯は凝固せず、後から次 々に加圧供給される溶湯によって、当該予備成形体内に押し拡げられていくと共に、 鱗状被覆層を成形金型に押し付けていく。このように、鱗状被覆層は溶湯力も押圧 作用を受けると、乱在する鱗片形状の組成物が徐々に引き揃えられ、かつ、層内の 空隙も減少していき、層自体が圧縮変形することとなり得る。そして、溶湯が徐々に小 さな孔を通じて鱗状被覆層に接触すると、同様の押圧作用により圧縮変形することと なる。この押圧作用は、被成形面の孔の大きさに応じて生じることから、鱗状被覆層 は、全体的に、鱗片形状の組成物が重なり合って積層された形態に変形し、ほぼ均 一な層厚みとなる。したがって、このように変形した鱗状被覆層に圧接している溶湯 が凝固することによって、ほぼ平滑な表面形状を形成することができ得る。  Then, this bowl-shaped covering layer is preheated to a temperature substantially close to the temperature of the molten metal together with the porous preform, and comes into contact with the molding die. For this reason, even if the pressure-supplied molten metal is brought into contact with the sheath-like coating layer through the porous preform, the molten metal does not immediately solidify because the sheath-like coating layer is at a high temperature. Here, as described above, since the pressure-supplied molten metal is first filled through the relatively large holes, the molten metal quickly comes into contact with the bowl-shaped covering layer at the locations of the large holes. The molten metal does not solidify, and is spread and expanded into the preform by the molten metal that is subsequently pressurized and supplied one after another, and the wedge-shaped coating layer is pressed against the molding die. As described above, when the wedge-shaped coating layer is also subjected to the pressing action of the molten metal force, the irregular flake-shaped composition is gradually aligned, and the voids in the layer decrease, and the layer itself is compressed and deformed. It can be Then, when the molten metal comes in contact with the bowl-like coating layer through the gradually smaller holes, it will be compressed and deformed by the same pressing action. Since this pressing action occurs in accordance with the size of the hole on the molding surface, the ridge-like covering layer is deformed into a form in which the scaly-shaped composition is overlapped and laminated as a whole, and a substantially uniform layer is formed. It becomes thickness. Therefore, a substantially smooth surface shape can be formed by solidification of the molten metal in pressure contact with the deformed wedge-shaped covering layer.
[0013] また、上述したように、鱗状被覆層に接触することによって溶湯の凝固が進行しな いことから、順次加圧供給される溶湯は多孔性予備成形体内に充分に拡がって充填 されることとなり得る。このように充填されていく溶湯により、該予備成形体内に存在し た空気が鱗状被覆層に向カゝつて押し出される。この空気は、鱗状被覆層の、重なり 合った鱗片形状の組成物間を通じて外に抜けていくことができるから、内部に空隙( 欠陥)が形成されることも防がれる。尚、上述した、当初の鱗状被覆層に内在する空 気も、同様に、溶湯の押圧作用によって外に抜けていくこととなっている。  Further, as described above, since solidification of the molten metal does not proceed by coming into contact with the bowl-shaped coating layer, the molten metal to be sequentially pressurized and supplied is sufficiently spread and filled in the porous preformed body. It can be By means of the molten metal charged in this way, the air present in the preform is pushed over the wedge-shaped covering layer. Since this air can escape through the overlapping scaly-shaped composition of the scaly coating layer, the formation of voids (defects) inside is also prevented. In addition, the air inherent in the initial scaly coating layer described above is similarly released by the pressing action of the molten metal.
[0014] このように、本発明の成形方法によれば、金属複合材の所要面 (又は、複合面)を ほぼ平滑な铸肌に成形できると共に、内部に空隙 (欠陥)が形成されることも防止で きる。而して、軽金属と多孔性予備成形体との、それぞれの優れた特性を充分に発 揮し得る金属複合材を成形することができる。また、この後に切削工程を行う場合に あっても、上述した従来方法に比して、切削量を少なくでき、製造工程を効率化する ことがでさ得る。 As described above, according to the molding method of the present invention, it is possible to mold the required surface (or the composite surface) of the metal composite into a substantially smooth surface and to form voids (defects) inside. Also in the prevention Can. Thus, it is possible to form a metal composite that can sufficiently exhibit the respective excellent properties of the light metal and the porous preform. In addition, even when the cutting process is performed after that, the cutting amount can be reduced compared to the above-described conventional method, and the manufacturing process can be made more efficient.
[0015] 一方、本発明にあっては、上述したように、被成形面に形成された鱗状被覆層が、 加圧供給される溶湯の押圧作用を、圧縮変形することにより柔軟に吸収できることか ら、該鱗状被覆層によって溶湯と成形金型との接触を確実に遮ることができ得る。こ のため、溶湯が凝固した後でも、金属複合材を成形金型から比較的容易に離型させ ることができるという優れた利点もある。例えば、上述したシリンダブロックのような、中 空円筒形状のキヤビティを形成する内側の第 1成形金型と、外側の第 2成形金型とに よって中空円筒形状の金属複合材を成形する場合にあっては、通常、軽金属の凝 固収縮により、該金属複合材を第 1の成形金型から離型することが難しい。ここで、上 述した従来の、粒子形状の組成物からなる離型材を第 1の成形金型に塗布する方法 では、該成形金型表面に固着する該離型材がほとんど圧縮変形できないものである ことから、加圧供給される溶湯の押圧力や凝固収縮力によって、当該金属複合材は 第 1の成形金型に強く押し付けられることとなり、充分な離型性を発揮することができ ない。ところが、本発明の方法によれば、前記中空円筒形状の金属複合材を成形す る場合にあっても、上述のように、溶湯の押圧作用と収縮力とを鱗状被覆層が圧縮変 形により緩和できるため、第 1の成形金型に押し付ける力を軽減でき、金属複合材を 比較的容易に離型することができ得る。  On the other hand, in the present invention, as described above, is it possible that the wedge-like covering layer formed on the surface to be molded can be flexibly absorbed by compressive deformation of the pressing action of the pressure-supplied molten metal? In addition, it is possible to reliably block the contact between the molten metal and the molding die by the bowl-shaped covering layer. For this reason, there is also an excellent advantage that the metal composite can be relatively easily released from the molding die even after the molten metal solidifies. For example, when a hollow cylindrical metal composite is formed by an inner first molding die for forming a hollow cylindrical cavity such as the cylinder block described above and an outer second molding die. Usually, due to solidification shrinkage of the light metal, it is difficult to release the metal composite from the first molding die. Here, in the above-described conventional method of applying a mold-releasing material comprising a composition in the form of particles to the first molding die, the mold-releasing material adhered to the molding die surface can hardly be compressed and deformed. Thus, the metal composite material is strongly pressed against the first molding die by the pressing force and solidification contraction force of the molten metal supplied under pressure, and sufficient releasability can not be exhibited. However, according to the method of the present invention, even when forming the hollow cylindrical metal composite material, as described above, the pressing action and the contraction force of the molten metal are compressed and deformed by the wedge-shaped covering layer. Since it can be relieved, the pressing force on the first molding die can be alleviated, and the metal composite can be released relatively easily.
[0016] このような金属複合材の成形方法にあって、離型材を成す鱗片形状の組成物が、 鱗片形状の黒鉛であるとした方法が提案される。又は、鱗片形状の組成物が、鱗片 形状のボロンナイトライドであるとした方法が提案される。ここで、黒鉛やボロンナイト ライドは、摺動性に優れるものであるから、溶湯の押圧作用を受けた場合に、比較的 容易に動くことができ、一層整一に引き揃って積層することとなり得るため、当該鱗状 被覆層は圧縮変形し易ぐかつ平滑性も高くなる。而して、力かる方法にあっては、 上述した本発明の作用効果を一層適切に発揮することができ得る。  [0016] In such a method of molding a metal composite material, a method is proposed in which the scaly-shaped composition forming the mold release material is graphite having a scaly shape. Alternatively, a method is proposed in which the scaly-shaped composition is a scaly-shaped boron nitride. Here, since graphite and boron nitride are excellent in slidability, they can move relatively easily when subjected to the pressing action of the molten metal, and they will be further aligned and stacked. In order to obtain such a ridge-like covering layer, it is easy to be compressed and deformed and the smoothness is also enhanced. Thus, in the case of a powerful method, the above-mentioned effects of the present invention can be more appropriately exhibited.
[0017] また、上述した金属複合材の成形方法にあって、多孔性予備成形体が、骨格を成 す短繊維と所定の特性を有する粒子とを焼結してなるものであるとした方法が提案さ れる。この多孔性予備成形体にあっては、骨格を成す短繊維が、加圧供給されて内 部に含浸する溶湯力も受ける力により変形することを防ぐことができ、軽金属と適切に 結合した複合ィ匕部位を形成できる。そして、この短繊維による強度の向上と、粒子の 有する特性とを充分に発揮できる金属複合材を成形することができる。尚、このような 予備成形体は、短繊維が複雑に絡み合つてなるものであるから、粗密な多孔性の形 態を有しているものである。このような多孔性予備成形体として、例えば、アルミニウム 合金等の軽金属の弱点である耐摩耗性ゃ摺動性に優れた粒子を焼結してなるもの とした場合には、カゝかる多孔性予備成形体力ゝら形成される金属複合材は、耐摩耗性 ゃ摺動性に優れたものとなる。而して、上述した本発明の成形方法によれば、かかる 予備成形体から、上述したように、軽金属の特性と予備成形体の特性との両者を充 分に発揮できる金属複合材を適正に成形することができる。 In addition, in the method of forming a metal composite material described above, the porous preformed body forms a framework. A method is proposed in which the short staple fibers and particles having predetermined properties are sintered. In this porous preformed body, it is possible to prevent the short fibers forming the framework from being deformed by the force that is also supplied with pressure and to receive the molten metal force that impregnates the inner part, and the composite is suitably bonded to the light metal. Can form a heel site. And, it is possible to form a metal composite which can sufficiently exhibit the improvement of the strength by the short fibers and the characteristics of the particles. Such a preform is in the form of coarse and dense porosity since the short fibers are intricately entangled. When such porous preforms are made, for example, by sintering particles excellent in wear resistance and slidability, which is a weak point of light metals such as aluminum alloys, the porous porosity can be reduced. The metal composite material to be formed by the preformed body strength is excellent in abrasion resistance and sliding property. Thus, according to the molding method of the present invention described above, from such a preformed body, as described above, a metal composite material that can fully exhibit both the characteristics of the light metal and the characteristics of the preformed body is properly obtained. It can be molded.
発明の効果 Effect of the invention
本発明は、上述したように、金属複合材の所要面に結合される多孔性予備成形体 の被成形面に、鱗片形状の組成物からなる離型材を塗布し、当該多孔性予備成形 体を加熱することにより鱗状被覆層を形成した後、所要面を形成する成形金型に該 被成形面を接触させ、軽金属の溶湯を該多孔性予備成形体の背方に、加圧供給す るようにした成形方法である。または、多孔性予備成形体の被成形面に、鱗片形状 の組成物カゝらなる離型材を塗布し、当該多孔性予備成形体を加熱することにより鱗 状被覆層を形成した後、多孔性予備成形体が結合される複合面を形成するための 第 1の成形金型に該被成形面を接触させ、軽金属の溶湯をキヤビティに加圧供給す るようにした方法である。このような成形方法により、被成形面を被覆した鱗状被覆層 力 加圧供給される溶湯の押圧作用によって圧縮変形し、全体的にほぼ均一な厚み となることから、該鱗状被覆層に圧接する溶湯が凝固して、ほぼ平滑な铸肌の所要 面又は複合面を形成することができる。また、加圧供給される溶湯が多孔性予備成 形体内に充分に行きわたることができ、かつ、該多孔性予備成形体内に存在した空 気を外部に排出できるため、空隙が形成されることを防止できる。このように複合化さ れた金属複合材は、軽金属と多孔性予備成形体とがそれぞれ有する優れた特性を 充分に発揮することができ得るものとなる。また、このような成形後に行われる切削ェ 程も、上述した従来方法に比して、切削量を少なくできるため、製造工程を効率化す ることがでさることなる。 In the present invention, as described above, a mold release material comprising a scaly-shaped composition is applied to the molding surface of the porous preform to be bonded to the required surface of the metal composite, and the porous preform is After forming a bowl-shaped covering layer by heating, the forming surface is brought into contact with a forming mold forming a required surface, and a molten metal of light metal is pressurized and supplied to the back of the porous preform. Molding method. Alternatively, a mold-releasing material having a scaly shape composition is applied to the surface to be molded of the porous preform, and the porous preform is heated to form a scaly coated layer, and then the porous preform is formed. In this method, the molding surface is brought into contact with a first molding die for forming a composite surface to which a preform is to be bonded, and a molten metal of light metal is pressurized and supplied to the cavity. By such a forming method, the wedge-like coating layer covering the surface to be formed is compressed and deformed by the pressing action of the pressure-supplied molten metal, and the entire film becomes substantially uniform in thickness. The molten metal can solidify to form a substantially smooth desired or composite surface of the scale. In addition, a void can be formed because the melt supplied under pressure can be sufficiently spread in the porous preform and the air existing in the porous preform can be discharged to the outside. Can be prevented. The metal composite composited in this manner is characterized by the excellent properties of the light metal and the porous preform respectively. It will be able to fully demonstrate. In addition, since the amount of cutting can be reduced compared to the above-described conventional method also in the cutting process performed after such forming, it is possible to make the manufacturing process more efficient.
[0019] 一方、上述した離型材を成す鱗片形状の組成物が、鱗片形状の黒鉛か、又は、鱗 片形状のボロンナイトライドのいずれかであるとした方法にあっては、鱗状被覆層が、 優れた摺動性を有する黒鉛やボロンナイトライドにより形成されることから、溶湯の押 圧作用によって圧縮変形し易ぐかつ平滑性も高くなり、上述した本発明の作用効果 を一層適切に発揮することができ得る。  On the other hand, in the method in which the scaly-shaped composition forming the above-mentioned release material is either scaly-shaped graphite or scaly-shaped boron nitride, the scaly-shaped covering layer is Since it is formed of graphite or boron nitride having excellent slidability, it is easy to be compressed and deformed by the pressing action of the molten metal, and the smoothness is also enhanced, and the above-mentioned effects of the present invention are more appropriately exhibited. It can be done.
[0020] また、上述した多孔性予備成形体が、骨格を成す短繊維と所定の特性を有する粒 子とを焼結してなるものであるとした方法にあっては、骨格を成す短繊維が、内部に 含浸する溶湯力 受ける力により変形することを防ぎ、多孔性予備成形体と軽金属と を適切に結合させることができ、短繊維と粒子とのそれぞれが有する特性を充分に発 揮し得る金属複合材を成形できる。  Further, in the method in which the porous preform described above is formed by sintering short fibers forming a skeleton and particles having a predetermined property, the short fibers forming a skeleton However, since it can prevent deformation due to the force of the molten metal that impregnates the inside, the porous preform and the light metal can be properly bonded, and the characteristics possessed by the short fibers and the particles can be sufficiently exhibited. The resulting metal composite can be formed.
図面の簡単な説明  Brief description of the drawings
[0021] [図 1]本実施形態例の多孔性予備成形体 1を成形する工程を表す説明図である。  FIG. 1 is an explanatory view showing a step of forming a porous preform 1 according to an embodiment of the present invention.
[図 2] (ィ)多孔性予備成形体 1の表面形態を表す拡大写真、及び (口)鱗片状黒鉛を 希釈した離型材を塗布した表面形態を表す拡大写真である。  [FIG. 2] (B) An enlarged photograph showing the surface morphology of the porous preform 1 and (en) an enlarged photograph showing the surface morphology coated with a release agent obtained by diluting scaly graphite.
[図 3]実施例 1の金属複合材 3を铸造成形する工程を表す説明図である。  FIG. 3 is an explanatory view showing a process of tumbling the metal composite 3 of Example 1.
[図 4]実施例 1の、多孔性予備成形体 1に溶湯 2aが含浸して複合面 4が形成される過 程を概略的に表す説明図である。  [FIG. 4] An explanatory view schematically showing a process of impregnating a porous preform 1 with a molten metal 2a to form a composite surface 4 in Example 1.
[図 5] (ィ)実施例 1の複合面 4を表す拡大写真、及び (口)比較例の複合面 4'を表す 拡大写真である。  [FIG. 5] (B) A magnified image showing the composite surface 4 of Example 1 and (Z) A magnified image showing the composite surface 4 'of the comparative example.
[図 6]実施例 2の金属複合材 3を铸造成形する工程を表す説明図である。  FIG. 6 is an explanatory view showing a process of tumbling the metal composite 3 of Example 2.
符号の説明  Explanation of sign
[0022] 1, 41 多孔性予備成形体 [0022] 1, 41 porous preformed body
2 アルミニウム合金 (軽金属)  2 Aluminum alloy (light metal)
2a 溶湯 (アルミニウム合金)  2a Molten metal (aluminum alloy)
3, 43 金属複合材 4, 44 複合面 3, 43 Metal Composites 4, 44 complex surface
5, 45 被成形面  5, 45 Surface to be molded
6 鱗状被覆層  6 bowl-shaped covering layer
7, 47 複合化部位  7, 47 complexing site
10 アルミナ短繊維  10 alumina short fiber
11 アルミナ粒子  11 alumina particles
22 成形金型  22 Mold
25, 55 キヤビティ  25, 55 Cavity
56 中子 (第 1の成形金型)  56 core (first mold)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明の一実施形態例を添付図面を用いて詳述する。  An embodiment of the present invention will be described in detail with reference to the attached drawings.
本実施形態例にあっては、アルミニウム合金 2に、平板形状の多孔性予備成形体 1 を所要面 (複合面 4)に結合してなる直方体状の金属複合材 3を形成する実施例 1と 、円筒形状の多孔性予備成形体 41を、内周面 (複合面 44)に結合してなる円筒形状 の金属複合材 43を形成する実施例 2について例示している。また、本発明の作用効 果を明確に表すために、実施例 1に対して、同様の鱗片形状の組成物からなる離型 材を、多孔性予備成形体 1に塗布せず、成形金型 22に塗布するようにした比較例も 例示している。  In this embodiment, a rectangular solid metal composite 3 formed by bonding a flat plate-shaped porous preform 1 to a required surface (composite surface 4) is formed on an aluminum alloy 2 and the first embodiment A cylindrical porous preform 41 is illustrated for Example 2 in which a cylindrical metal composite 43 formed by bonding to the inner circumferential surface (composite surface 44) is formed. Further, in order to clearly show the function and effect of the present invention, a mold release material comprising a composition having the same scaly shape as in Example 1 is not applied to the porous preform 1, and a molding die is produced. A comparative example applied to 22 is also illustrated.
[0024] (実施例 1)  (Example 1)
図 1は、本発明にかかる多孔性予備成形体 (いわゆる、プリフォーム) 1を成形する 工程を表している。図 1 (ィ)のように、所定の容器 61で、アルミナ短繊維 10とアルミナ 粒子 11とを、水中で攪拌して混合させる。さら〖こ、無機バインダーとしてアルミナゾル 12を添カ卩して、アルミナ短繊維 10、アルミナ粒子 11、及びアルミナゾル 12がほぼ均 質に混合した混合水溶液 13をつくる。そして、この混合水溶液 13を容器 61から吸引 成形器 63に移す。この吸引成形器 63には真空ポンプ(図示省略)が接続されており 、図 1 (口)のように、フィルター 64を介して真空ポンプによって混合水溶液 13の水分 を吸引する。これにより、アルミナ短繊維 10にアルミナ粒子 11がほぼ均一に分散して 擬結された前成形体 14を得る。そして、この前成形体 14を、吸引成形器 63から取り 出し、約 120°Cに保持された乾燥炉で乾燥させ、充分に水分を除去する(図示省略) 。ここで、前成形体 14は、アルミナ短繊維 10の体積含有率が約 12%、アルミナ粒子 11の体積含有率が約 10%となっており、残りの領域は空隙である。尚、このような体 積含有率となるように、上記の混合水溶液 13を調合している。 FIG. 1 shows a process of forming a porous preform (so-called preform) 1 according to the present invention. As shown in FIG. 1 (b), the alumina short fibers 10 and the alumina particles 11 are stirred and mixed in water in a predetermined container 61. Furthermore, alumina sol 12 is added as an inorganic binder to form a mixed aqueous solution 13 in which alumina short fibers 10, alumina particles 11 and alumina sol 12 are mixed almost uniformly. Then, the mixed aqueous solution 13 is transferred from the container 61 to the suction shaper 63. A vacuum pump (not shown) is connected to the suction shaper 63, and as shown in FIG. 1 (port), the water in the mixed aqueous solution 13 is sucked by the vacuum pump through the filter 64. As a result, a preformed body 14 is obtained in which the alumina particles 11 are substantially uniformly dispersed in the alumina short fibers 10 and pseudo-bonded. Then, this preformed body 14 is removed from the suction forming device 63. Take out and dry in a drying oven maintained at about 120 ° C. to remove water sufficiently (not shown). Here, in the preform 14, the volume content of the alumina short fibers 10 is about 12%, the volume content of the alumina particles 11 is about 10%, and the remaining region is a void. Incidentally, the above-mentioned mixed aqueous solution 13 is prepared so as to obtain such a volume content rate.
[0025] 次に、この前成形体 14を、図 1 (ハ)のように、加熱炉 65内のテーブル 66に設置し、 炉内を約 1000°Cまで加熱して、 1時間保持した。その後、室温まで炉冷し(図示省 略)、平板形状の多孔性予備成形体 1を得た。このように成形された多孔性予備成形 体 1は、図 2 (ィ)のように、複雑に絡み合って骨格を成すアルミナ短繊維 10とアルミ ナ粒子 11とが結合してなるものであり、粗の部位 (比較的大きな孔)と密の部位 (比較 的小さな孔)とが混在する、いわゆる多孔性の形態となっている。  Next, as shown in FIG. 1 (C), this preformed body 14 was placed on a table 66 in a heating furnace 65, and the inside of the furnace was heated to about 1000 ° C. and held for one hour. Thereafter, furnace cooling (not shown) to room temperature was performed to obtain a porous preform 1 having a flat plate shape. The porous preform 1 molded in this manner, as shown in FIG. 2 (a), is formed by combining the alumina short fibers 10 and alumina particles 11 which form a complex intertwining frame, It has a so-called porous form in which sites (relatively large pores) and dense sites (relatively small pores) are mixed.
[0026] 一方、水溶性の鱗片状黒鉛 8 (図 2 (口),図 4参照)を水で約二倍に希釈して、本発 明にかかる離型材(図示せず)を生成する。尚、本実施形態例にあっては、この鱗片 状黒鉛にヒタゾール 242B (日立製)を用いている。この離型材を、上述した多孔性予 備成形体 1とアルミニウム合金 2とが結合されてなる所要面 (以下、複合面) 4を形成 する、該多孔性予備成形体 1の被成形面 5に塗布する。その後、約 120°Cに保持さ れた乾燥炉で乾燥させ、充分に水分を除去する(図示省略)。この乾燥後の多孔性 予備成形体 1には、図 2 (口)のように、鱗片状黒鉛 8が乱雑に存在してなる鱗状被覆 層 6が被成形面上に形成されている。さらに、この鱗状被覆層 6は、水分が蒸発した 後に形成された空隙を内在している(図 4 (ィ)参照)。ここで、鱗状被覆層 6の、被成 形面 5の粗な部位では、鱗片状黒鉛 8の乱雑性が高ぐかつ空隙も多く存在しており 、層厚みが厚肉状となっている。一方、密な部位では、鱗片状黒鉛 8が比較的引き揃 つた状態であり、かつ空隙も少なぐ層厚みが薄肉状となっている(図 4 (ィ)参照)。こ のような鱗状被覆層 6は、多孔性予備成形体 1の被成形面 5に、鱗片状黒鉛 8が担持 された状態で形成されてなるものと言える。  On the other hand, the water-soluble scale-like graphite 8 (see FIG. 2 (mouth), see FIG. 4) is diluted about twice with water to form a release material (not shown) according to the present invention. In the present embodiment, Hitzole 242B (manufactured by Hitachi) is used as the scaly graphite. This mold release material is applied to the molding surface 5 of the porous preform 1 to form a required surface (hereinafter referred to as a composite surface) 4 formed by combining the porous preform 1 and the aluminum alloy 2 described above. Apply Then, it is dried in a drying oven maintained at about 120 ° C to remove water sufficiently (not shown). In the porous preform 1 after drying, as shown in FIG. 2 (mouth), a scale-like coating layer 6 in which scale-like graphite 8 is randomly present is formed on the surface to be formed. Furthermore, this scaly coating layer 6 has an internal void formed after the evaporation of water (see FIG. 4 (i)). Here, in the rough portion of the formed surface 5 of the scale-like covering layer 6, the randomness of the scale-like graphite 8 is high and a large number of voids are present, and the layer thickness is thick. On the other hand, at the dense portion, the scaly graphite 8 is in a relatively gathered state, and the thickness of the layer with few gaps is thin (see FIG. 4 (i)). It can be said that such a scaly covering layer 6 is formed in a state in which scaly graphite 8 is supported on the molding surface 5 of the porous preform 1.
[0027] ここで、本実施形態例にあっては、多孔性予備成形体 1が約 40mm X約 40mm、 厚さ約 10mmの平板形状としている。そして、前記乾燥後に重量を測定した結果、約 lgの増加となっており、これが鱗片状黒鉛 8の付着量である。その後、被成形面 5に 鱗状被覆層 6が形成された多孔性予備成形体 1を、所定の予熱炉(図示省略)により 、高温雰囲気中に曝して、約 600°Cに予熱する。この時、鱗状被覆層 6も同様に約 6 00°Cに予熱される。尚、本実施形態例にあっては、離型材を塗布後、一旦乾燥炉で 乾燥して重量の測定を行っているが、これを行わず、直接予熱炉で予熱することによ つても、同様の鱗状被覆層 6を形成することができる。 Here, in the present embodiment, the porous preform 1 has a flat plate shape of about 40 mm × about 40 mm and about 10 mm in thickness. And as a result of measuring a weight after the said drying, it is an increase of about lg, and this is the adhesion amount of scale-like graphite 8. Thereafter, the porous preform 1 having the bowl-shaped covering layer 6 formed on the molding surface 5 is subjected to a predetermined preheating furnace (not shown). Exposed to a high temperature atmosphere and preheat to about 600 ° C. At this time, the wedge-shaped covering layer 6 is also preheated to about 600.degree. In the present embodiment, after the release material is applied, it is once dried in a drying furnace and weight measurement is performed, but it is also possible to carry out preheating directly in a preheating furnace without performing this. A similar scaly covering layer 6 can be formed.
[0028] 予熱炉により予熱された多孔性予備成形体 1は直ちに、図 3 (ィ)のように、所望形 状の金属複合材 3を形成する金型 20の所定位置に配置される。ここで、金型 20は、 内側四面を、上方から下方へ向力つて内側に夫々に傾斜する傾斜面とした略中空 直方体形状の外枠金型 21と、該外枠金型 21の下部に嵌合され、複合面 4を形成す る成形金型 22と、該外枠金型 21に内嵌し、内側四面を垂直面とした入れ子 23とから なる。ここで、入れ子 23は、左右に分割された構成となっており、前記外枠金型 21か ら取り出した場合には分割して、その内側に形成される金属複合材 3を容易に離型 できるようになつている。このような金型 20は、多孔性予備成形体 1が配置される前に 、外枠金型 21を約 300°Cに予熱し、成形金型 22と入れ子 23とを約 200°Cに予熱す る。尚、入れ子 23の内側垂直面には、予め離型材を塗布している。この離型材は、 上述した鱗片状黒鉛を希釈したもの、或いは、その他の一般的な粒子状の組成物か らなる離型材など、いずれのものであっても良い。  The porous preform 1 preheated by the preheating furnace is immediately placed at a predetermined position of the mold 20 for forming the metal composite 3 of the desired shape as shown in FIG. Here, the mold 20 is a substantially hollow rectangular parallelepiped outer frame mold 21 whose inner four sides are inclined surfaces which are respectively directed downward from above and inclined inward, and the lower part of the outer frame mold 21. It consists of a mold 22 which is fitted and forms the composite surface 4 and a insert 23 which is fitted inside the outer frame mold 21 and whose inner four sides are vertical surfaces. Here, the insert 23 is divided into right and left, and when it is taken out from the outer frame mold 21, it is divided and the metal composite 3 formed on the inside is easily released. It has become possible. Such a mold 20 preheats the outer frame mold 21 to about 300 ° C. and preheats the mold 22 and the insert 23 to about 200 ° C. before the porous preform 1 is placed. It will A mold release material is applied to the inner vertical surface of the insert 23 in advance. This release material may be any of those obtained by diluting the scaly graphite described above or a release material composed of another general particulate composition.
[0029] そして、上述のように、予熱された多孔性予備成形体 1を、その被成形面 5を下側 にして、成形金型 22上に配置する(図 3 (ィ))。この時、被成形面 5は、該被成形面 5 に塗布された鱗状被覆層 6 (図 2 (口)参照)を介して成形金型 22と接触して 、る。そ の後、入れ子 23と成形金型 22とにより形成されたキヤビティ 25に、図 3 (口)のように、 約 760°Cに熱せられたアルミニウム合金 (JIS AC4CH合金)の溶湯 2aを所定量流 し込む。そして、図示しない油圧プレス機により、図 3 (ハ)から図 3 (二)のように、略平 面形状の押し出し面を有し、かつ、キヤビティ 25内に嵌入可能な押圧子 24を、約 50 MPaの圧力で、上方力 溶湯 2aを直接押圧する。このようにして溶湯 2aが加圧供給 されると、多孔性予備成形体 1の内部に徐々に含浸していくこととなる。そして、この 状態で冷却した後、金型 20から取り出し、多孔性予備成形体 1とアルミニウム合金 2 とを複合ィ匕した複合ィ匕部位 7と、アルミニウム合金 2とが一体的に形成されてなる金属 複合材 3を得る。 [0030] このように成形された金属複合材 3にあって、多孔性予備成形体 1とアルミニウム合 金 2とが複合化されてなる複合面 4は、図 5 (ィ)のように、ほぼ平滑な铸肌に成形され ている。これは、上述した溶湯 2aを加圧供給していく過程にあって、図 4 (ィ)のように 、多孔性予備成形体 1に、溶湯 2aが被成形面 5の背面側力 含浸していくと、該溶湯 2aは多孔性予備成形体 1の粗の部位を速く進行する。そして、図 4 (口)のように、溶 湯 2aが鱗状被覆層 6に接触しても、該鱗状被覆層 6は多孔性予備成形体 1と同様に 予熱されていることから、当該溶湯 2aが直ちに凝固することもない。このため、鱗状被 覆層 6に接触した溶湯 2aは、順次加圧供給される溶湯 2aにより、その周囲に押し拡 げられて当該予備成形体 1内に充填されていくと共に、後から加圧供給される溶湯 2 aの押圧作用により、鱗状被覆層 6を成形金型 22に押し付ける。この溶湯 2aの押圧 作用を受けた鱗状被覆層 6の部位では、図 4 (ハ)のように、鱗片状黒鉛 8が徐々に重 なり合うように引き揃えられていくと共に、該鱗状被覆層 6に内在する空気が成形金 型 22の表面を通じて外部に流出することにより空隙が減少していき、層自体が圧縮 変形することとなる。さら〖こ、加圧供給される溶湯 2aが徐々に多孔性予備成形体 1の 密の部位にも進行することにより、被成形面 5の全域に亘つて、溶湯 2aが鱗状被覆 層 6に接触していく。そして、鱗状被覆層 6と溶湯 2aが接触するに従って、前記同様 に圧縮変形することとなり、該鱗状被覆層 6の全域が圧縮変形することとなる。ここで 、この圧縮変形は、粗の部位では比較的大きな押圧作用によって、鱗状被覆層 6の 厚肉な部分を大きく圧縮変形させ、密な場位では比較的小さな押圧作用によって、 薄肉な部分を小さく圧縮変形させることとなる。こうして、鱗状被覆層 6は、図 4 (二)の ように、鱗片状黒鉛 8が引き揃ったように積層された、全体的にほぼ均一な層厚みに 圧縮変形されることとなる。したがって、この鱗状被覆層 6に圧接する溶湯 2aが凝固 することにより、ほぼ平滑な複合面 4が形成されることとなる。 Then, as described above, the preheated porous preform 1 is placed on the molding die 22 with the molding surface 5 facing downward (FIG. 3 (B)). At this time, the surface to be molded 5 is in contact with the molding die 22 through the ridge-like coating layer 6 (see FIG. 2 (opening)) applied to the surface to be molded 5. Thereafter, as shown in FIG. 3 (opening), a predetermined amount of molten metal 2a of aluminum alloy (JIS AC 4 CH alloy) heated to about 760 ° C. is formed in cavity 25 formed by insert 23 and forming die 22. Drain. Then, as shown in FIG. 3 (c) to FIG. 3 (2), the pressing element 24 which has a substantially flat surface and which can be inserted into the cavity 25 is provided by a hydraulic press machine not shown. The upper force molten metal 2a is pressed directly at a pressure of 50 MPa. When the molten metal 2a is pressurized and supplied in this manner, the inside of the porous preform 1 is gradually impregnated. Then, after cooling in this state, it is taken out from the mold 20, and the composite alloy portion 7 in which the porous preform 1 and the aluminum alloy 2 are composite-bonded, and the aluminum alloy 2 are integrally formed. Metal Composite 3 is obtained. In the metal composite 3 thus formed, the composite surface 4 formed by combining the porous preform 1 and the aluminum alloy 2 is, as shown in FIG. It is molded into a smooth, smooth skin. This is in the process of pressure-supplying the above-described molten metal 2a, and as shown in FIG. 4 (i), the porous preform 1 is impregnated with the molten metal 2a on the back side of the surface 5 to be molded. The molten metal 2a travels quickly through the rough portion of the porous preform 1. And, as shown in FIG. 4 (mouth), even if the molten metal 2a comes in contact with the bowl-shaped coating layer 6, the bowl-shaped coating layer 6 is preheated as in the porous preform 1, so that the molten metal 2a is Does not coagulate immediately. For this reason, the molten metal 2a in contact with the bowl-shaped covering layer 6 is pushed and spread around by the molten metal 2a which is sequentially pressurized and supplied, and is filled into the preform 1 and is later pressurized. The wedge-shaped covering layer 6 is pressed against the forming die 22 by the pressing action of the supplied molten metal 2 a. As shown in FIG. 4 (c), the scaly graphites 8 are gradually aligned so as to gradually overlap each other at the portion of the scaly coating layer 6 which has received the pressing action of the molten metal 2 a, The air contained therein flows out to the outside through the surface of the molding die 22 so that the space is reduced and the layer itself is compressed and deformed. Further, the molten metal 2a is gradually supplied to the dense portion of the porous preform 1 by pressure feeding so that the molten metal 2a is in contact with the bowl-shaped covering layer 6 over the entire area of the molding surface 5. I will. Then, as the bowl-shaped covering layer 6 and the molten metal 2a come into contact with each other, they are compressed and deformed in the same manner as described above, and the entire region of the bowl-shaped covering layer 6 is compressed and deformed. Here, this compressive deformation causes the thick portion of the bowl-like covering layer 6 to be greatly compressed and deformed by the relatively large pressing action at the rough portion, and the thin portion by the relatively small pressing action at the dense field position. It will be made small compression deformation. Thus, as shown in FIG. 4 (2), the scale-like coating layer 6 is compressed and deformed into a generally uniform layer thickness in which the scale-like graphites 8 are laminated in a uniform manner. Therefore, the molten metal 2a in pressure contact with the weir-like coating layer 6 solidifies, whereby a substantially smooth composite surface 4 is formed.
[0031] 尚、溶湯 2aが、多孔性予備成形体 1に充填されていく過程にあって、該多孔性予 備成形体 1の内部に滞留していた空気は、該溶湯 2aにより鱗状被覆層 6に押し付け られ、該鱗状被覆層 6を構成する鱗片状黒鉛 (図示省略)間を通じて成形金型 22の 表面に流れ、外部に流出する。これにより、多孔性予備成形体 1とアルミニウム合金 2 とからなる複合ィ匕部位 7に空隙が生じることを防止でき得る。 [0032] また、このように溶湯 2aが加圧供給された場合にあって、上述のように、鱗状被覆 層 6は、該溶湯 2aの押圧作用を圧縮変形することにより柔軟に吸収することができる から、成形金型 22と溶湯 2aとを確実に遮ることができる。したがって、成形金型 22に アルミニウム合金 2が焼き付くことがなぐ多孔性予備成形体 1とアルミニウム合金 2と が複合化された複合面 4は、成形金型 22から比較的容易に離型することができる。こ れからも、複合面 4の平滑性が保たれることとなって 、る。 Incidentally, in the process of filling the porous preform 1 with the molten metal 2a, the air remaining in the porous preformed body 1 has a ridge-like covering layer formed by the molten metal 2a. The mixture is pressed to 6 and flows to the surface of the molding die 22 through between the flaky graphite (not shown) constituting the scale-like coating layer 6 and flows out to the outside. As a result, it is possible to prevent the formation of voids in the composite part 7 consisting of the porous preform 1 and the aluminum alloy 2. Further, as described above, in the case where the molten metal 2a is pressurized and supplied as described above, the bowl-shaped coating layer 6 can be flexibly absorbed by compressively deforming the pressing action of the molten metal 2a. Since it is possible, the molding die 22 and the molten metal 2a can be shielded reliably. Therefore, the composite surface 4 in which the porous preform 1 and the aluminum alloy 2 are combined so that the aluminum alloy 2 is not seized on the forming die 22 can be relatively easily released from the forming die 22. it can. From this point on as well, the smoothness of the composite surface 4 is maintained.
[0033] (比較例)  Comparative Example
次に、上述した実施例 1に対する比較例として、実施例 1と同様の鱗片状黒鉛を希 釈した離型材を、成形金型 22の、被成形面 5が接触する面に塗布し、溶湯 2aを加圧 供給することにより金属複合材を成形する(図 1,図 3参照)。すなわち、上述した実施 例 1と同様に多孔性予備成形体 1を成形し、該多孔性予備成形体 1の被成形面 5〖こ は、鱗片状黒鉛を希釈した離型材を塗布せず (図 2 (ィ)の状態)、約 600°Cに予熱す る。一方、成形金型 22の、金属複合材の複合面を形成する面に、前記離型材を塗 布する(図示省略)。ここで、離型材の塗布量は、上述の実施例 1とほぼ同量となるよ うにする。その後、この成形金型 22を約 200°Cで予熱することにより、該成形金型 22 を被覆するほぼ平滑な鱗状被覆層が形成される。この成形金型 22と、各々予熱され た外枠金型 21及び入れ子 23とによりキヤビティ 25を形成する。このキヤビティ 25の 成形金型 22上に、予熱した多孔性予備成形体 1を配置した後、アルミニウム合金 2 の溶湯 2aを流し込み、該溶湯 2aを押圧子 24により上方力も直接押圧する。このよう に溶湯 2aが加圧供給されることにより、該溶湯 2aが多孔性予備成形体 1に含浸する 。そして、冷却後、金型 20から取り出し、多孔性予備成形体 1とアルミニウム合金 2と が複合化された複合化部位と、アルミニウム合金 2とを一体的に形成してなる金属複 合材 3を得る。  Next, as a comparative example to Example 1 described above, a mold release material obtained by diluting the scaly graphite as in Example 1 is applied to the surface of the molding die 22 to which the molding surface 5 contacts, and the molten metal 2a The metal composite is formed by pressure supply (see Figures 1 and 3). That is, the porous preform 1 is formed in the same manner as in Example 1 described above, and the molded surface 5 of the porous preform 1 is not coated with a release material obtained by diluting scaly graphite (see FIG. 2) Preheat to about 600 ° C. On the other hand, the mold release material is applied to the surface of the molding die 22 on which the composite surface of the metal composite is to be formed (not shown). Here, the coating amount of the release agent is made to be substantially the same as that of the above-mentioned Example 1. Thereafter, the mold 22 is preheated at about 200 ° C. to form a substantially smooth ridge-like covering layer covering the mold 22. A cavity 25 is formed by the forming die 22 and the outer frame die 21 and the insert 23 which are each preheated. After placing the preheated porous preform 1 on the forming die 22 of the cavity 25, the molten metal 2a of the aluminum alloy 2 is poured, and the molten metal 2a is also directly pressed by the pressing element 24 in the upward direction. As described above, the molten metal 2a is pressurized and supplied to impregnate the porous preform 1 with the molten metal 2a. Then, after cooling, it is taken out of the mold 20, and a metal composite material 3 formed by integrally forming an aluminum alloy 2 and a composite site where the porous preform 1 and the aluminum alloy 2 are composited is obtained. obtain.
[0034] この比較例にあっては、鱗片状黒鉛を希釈した離型材を、多孔性予備成形体 1の 被成形面 5には塗布せず、成形金型 22に塗布するようにした以外は、上述した実施 例 1と同様に成形しており、同じ符号及び説明は省略して 、る。  In this comparative example, the release material obtained by diluting scaly graphite is not applied to the surface to be molded 5 of the porous preform 1 but applied to the molding die 22. The molding is performed in the same manner as in Example 1 described above, and the same reference numerals and descriptions are omitted.
[0035] このように成形された金属複合材にあって、多孔性予備成形体 1とアルミニウム合 金 2とが複合化されてなる複合面 4'は、図 5 (口)のように、凹凸の在る荒れた铸肌と なった。この複合面 4'と、上述した実施例 1の金属複合材 3の複合面 4 (図 5 (ィ))とを 比較すると、比較例の複合面 4'の铸肌が荒れていることがわかる。この比較例では、 アルミニウム合金 2の溶湯 2aが加圧供給されて、多孔性予備成形体 1に含浸して!/、く 過程で、該多孔性予備成形体 1の粗の部位を速く通過した溶湯 2aが、成形金型 22 の表面に在る鱗状被覆層に接触すると、該溶湯 2aの凝固が開始される。これは、こ の鱗状被覆層が溶湯 2aに比して低い温度であるためである。この溶湯 2aの凝固は、 多孔性予備成形体 1の粗の部位から密の部位に徐々に進行していくこととなり、該多 孔性予備成形体 1の粗密形態に従って進行する。そして、溶湯 2aが凝固した場所で は、順次供給されてくる新たな溶湯 2aの充填が妨げられることとなるため、被成形面 5の密の部位には溶湯 2aが到達できないことともなり得る。このようにして、凹凸形状 が形成され、荒れた铸肌の複合面 4'が形成されることとなっている。また、このよう〖こ 、被成形面側では、内部に比して早く凝固が進行すると、多孔性予備成形体 1内に 空隙を内包することとなり得る。このように成形された複合ィ匕部位では、多孔性予備 成形体 1とアルミニウム合金 2との複合ィ匕による強度向上ゃ耐摩耗性向上等の効果 が充分に発揮されない。 In the metal composite material thus formed, a composite surface 4 ′ formed by combining the porous preform 1 and the aluminum alloy 2 is as shown in FIG. With rough skin on the ground became. When this composite surface 4 'is compared with the composite surface 4 (Fig. 5 (i)) of the metal composite 3 of Example 1 described above, it can be seen that the bald surface of the composite surface 4' of the comparative example is rough. . In this comparative example, the molten metal 2a of the aluminum alloy 2 is pressure-supplied and impregnated into the porous preform 1 and / or passes quickly through the rough part of the porous preform 1 in the course of the process. When the molten metal 2a comes in contact with the bowl-shaped covering layer present on the surface of the molding die 22, solidification of the molten metal 2a is started. This is because the temperature of this bowl-like covering layer is lower than that of the molten metal 2a. The solidification of the molten metal 2a proceeds gradually from the coarse portion of the porous preform 1 to the dense portion, and proceeds in accordance with the coarse and dense form of the porous preform 1. Then, at the place where the molten metal 2a is solidified, the filling of the new molten metal 2a supplied sequentially is hindered, so that the molten metal 2a may not reach the dense portion of the surface 5 to be molded. In this manner, the asperity shape is formed, and the complex surface 4 'of roughened persimmon skin is to be formed. Also, in this way, on the surface to be molded, if solidification proceeds more quickly than in the interior, a void may be contained in the porous preform 1. In the case of the composite part formed in this manner, the effects such as strength improvement and wear resistance improvement by the composite of the porous preform 1 and the aluminum alloy 2 are not sufficiently exhibited.
[0036] さらにまた、荒れた铸肌の複合面 4'を所望の平滑な面にするためには、比較的多 量に切削加工する必要が生じる。ところが、複合面 4'を切削しても、内部に在る空隙 が表面に現れることとなり、前記した複合ィ匕による効果の発生に限界が生じている。 一方、上述した実施例 1の金属複合材 3は、複合面 4の铸肌がはぼ平滑であることか ら、この比較例の場合に比して、切削量は僅かでよぐこの切削工程を短縮化するこ とができる。したがって、本発明にかかる実施例 1の成形方法によれば、製造工程に 要する時間と費用を短縮しつつ、複合化効果を充分に発揮できる金属複合材 3を得 ることがでさる。 Furthermore, in order to obtain the desired smooth surface of the rough complex surface 4 ′ of the rough skin, it is necessary to cut a relatively large amount. However, even if the composite surface 4 'is cut, the internal voids appear on the surface, which limits the generation of the effect of the composite. On the other hand, in the metal composite 3 of Example 1 described above, since the surface of the composite surface 4 is smooth, the amount of cutting is small compared to the case of this comparative example. Can be shortened. Therefore, according to the molding method of Example 1 of the present invention, it is possible to obtain the metal composite 3 which can sufficiently exhibit the composite effect while reducing the time and cost required for the manufacturing process.
[0037] 尚、上述した比較例では、離型材に、鱗片状黒鉛 8を希釈したものを使用したが、 一般的な粒子形状の組成物からなる離型材を、成形金型 22に塗布した場合でも、 同様に、金属複合材の複合面は、凹凸形状の荒れた铸肌に成形されることとなる。  In the above-described comparative example, although the one obtained by diluting scaly graphite 8 is used as the mold release material, when the mold release material comprising a composition having a general particle shape is applied to the molding die 22 However, similarly, the composite surface of the metal composite will be formed into a roughened rough skin.
[0038] (実施例 2)  Example 2
次に、実施例 2では、内周面に複合面 44を形成するようにした、中空円筒形状の金 属複合材 43を成形する(図 6参照)。先ず、上述の実施例 1と同様の成形方法により 、中空円筒形状の多孔性予備成形体 41を成形する(図 1参照)。ここで、この多孔性 予備成形体 41の内周面が、金属複合材 43の複合面 44を形成する被成形面 45であ る。また、この金属複合材 43は、円筒径方向内側に、多孔性予備成形体 41とアルミ -ゥム合金 2とを複合ィ匕した複合ィ匕部位 47が形成され、該複合ィ匕部位 47の外側に アルミニウム合金 2がー体的に形成されてなるものとしている(図 6 (二))。尚、この実 施例 2は、内周面に多孔性予備成形体 41と複合化された複合面 44を有する、中空 円筒形状の金属複合材 43を成形するようにした以外は、上述の実施例 1と同様の成 形方法であり、同じ過程では符号や説明を適宜省略している。 Next, in the second embodiment, a hollow cylindrical gold having a composite surface 44 formed on the inner peripheral surface thereof. The metal composite 43 is molded (see FIG. 6). First, a hollow cylindrical porous preform 41 is molded by the same molding method as in Example 1 described above (see FIG. 1). Here, the inner peripheral surface of this porous preformed body 41 is a molding surface 45 forming the composite surface 44 of the metal composite 43. Further, in the metal composite material 43, a composite gauze portion 47 in which a porous preformed body 41 and the aluminum-um alloy 2 are composited is formed on the inner side in the cylindrical diameter direction. It is assumed that aluminum alloy 2 is integrally formed on the outside (Fig. 6 (2)). In addition, this embodiment 2 is the same as the above-described embodiment except that the hollow cylindrical metal composite 43 having the composite surface 44 combined with the porous preform 41 on the inner peripheral surface is formed. This is the same shaping method as in Example 1, and in the same process, symbols and explanations are appropriately omitted.
[0039] 実施例 2では、アルミナ短繊維 10、アルミナ粒子 11、及びアルミナゾル 12がほぼ 均質に混合した混合水溶液 13を、中央に円筒型の中子を配した円筒形状の貯留槽 に吸引成形器に移し、真空ポンプにより吸引させることにより、中空円筒形状の前成 形体を得る(図 1参照)。そして、乾燥炉にて乾燥させた場合に、この前成形体は、上 述した実施例 1と同様に、アルミナ短繊維 10の体積含有率が約 12%、アルミナ粒子 11の体積含有率が約 10%となっている。その後、この前成形体を、約 1000°C、 1時 間の加熱を行うことにより焼結させ、中空円筒形状の多孔性予備成形体 41を得た( 図 6参照)。ここで、本実施例 2にあっては、多孔性予備成形体 41を、外周面がほぼ ストレート形状であり、内周面が約 0. 5度傾くテーパー形状としている。そして、高さ が約 80mm、外径約 80mm、最小内径約 70mmとなるように成形している。  In Example 2, a mixed solution 13 in which alumina short fibers 10, alumina particles 11 and alumina sol 12 are substantially homogeneously mixed is drawn into a cylindrical storage tank in which a cylindrical core is disposed at the center thereof. Then, a hollow cylindrical preform is obtained by suction with a vacuum pump (see FIG. 1). Then, when the preform is dried in a drying furnace, the volume fraction of alumina short fibers 10 is about 12%, and the volume fraction of alumina particles 11 is about 12 as in Example 1 described above. It is 10%. Thereafter, this preform was sintered by heating at about 1000 ° C. for one hour to obtain a hollow cylindrical porous preform 41 (see FIG. 6). Here, in Example 2, the porous preformed body 41 has a tapered shape in which the outer peripheral surface is substantially straight and the inner peripheral surface is inclined by about 0.5 degrees. Then, it is molded to have a height of about 80 mm, an outer diameter of about 80 mm, and a minimum inner diameter of about 70 mm.
[0040] このような多孔性予備成形体 41の被成形面 45 (内周面)に、上述した実施例 1と同 様の、鱗片状黒鉛を希釈してなる離型材を塗布し、約 120°Cに保持された乾燥炉で 充分に水分を除去して乾燥させる。この乾燥後には、被成形面 45上に、鱗片状黒鉛 が重なり合って積層されてなる鱗状被覆層(図示省略)が形成されて ヽる(図 2 (口)、 図 4参照)。ここで、鱗状被覆層は、上述した実施例 1と同様に、被成形面 45の粗密 形態に応じて鱗片状黒鉛の乱在する状態が異なって形成されている。この乾燥後に おける重量を測定した結果、鱗片状黒鉛の付着量は約 2gであった。この後、上述の 実施例 1と同様に、当該多孔性予備成形体 41を予熱炉により約 600°Cに予熱する。  On the surface 45 (inner peripheral surface) of the porous preformed body 41 as described above, a mold release material obtained by diluting scaly graphite as in Example 1 described above is applied, and Remove moisture thoroughly in a drying oven held at ° C and dry. After the drying, a scaly covering layer (not shown) formed by overlapping scaly graphite on top of the molding surface 45 is formed (see FIG. 2 (opening), FIG. 4). Here, the scaly coated layer is formed in a state in which the scaly graphite is scattered differently depending on the rough and dense form of the molding surface 45 as in the first embodiment described above. As a result of measuring the weight after this drying, the adhesion amount of scaly graphite was about 2 g. Thereafter, the porous preformed body 41 is preheated to about 600 ° C. in a preheating furnace as in the above-mentioned Example 1.
[0041] 一方、中空円筒形状の金属複合材 43を形成するキヤビティ 55は、図 6のように、内 側に上方から下方に向けて内側に傾斜する内周傾斜面を備えてなる外枠金型 51と 、該外枠金型 51の下部に嵌合され、金属複合材 43の一方の開口端面を形成する 下部金型 52と、該外枠金型 51に内嵌し、内側に金属複合材 43の外周面を形成す る垂直面を備えた入れ子 53と、該下部金型 52の中央に着脱可能に配置され、上方 に向力つて内側に傾くテーパー角度の付いた外周面を備えた中子 56とから構成さ れる。ここで、中子 56は、上部外径が約 70mm、外周面のテーパー角が約 0. 5度に 形成されてなり、僅かに設けた公差によって、上述した多孔性予備成形体 41を外嵌 可能としている。また、入れ子 53は、上述と同様に、左右に分割された構成である。 ここで、多孔性予備成形体 41の被成形面 45と接触する中子 56が、本発明にかかる 第 1の成形金型であり、入れ子 53及び下部金型 52が第 2の成形金型である。 On the other hand, as shown in FIG. 6, the cavity 55 forming the hollow cylindrical metal composite 43 has an internal structure as shown in FIG. An outer frame mold 51 having an inner peripheral inclined surface which inclines inward from the upper side to the lower side on the side, and the lower end of the outer frame mold 51 are fitted to one open end face of the metal composite 43 A lower mold 52 to be formed, a nest 53 having a vertical surface internally fitted to the outer frame mold 51 and forming an outer peripheral surface of the metal composite 43 inside, and detachable from the center of the lower mold 52 It is comprised of a core 56 which is arranged and has an outer peripheral surface with a taper angle which is directed upwards and inclined inwards. Here, the core 56 is formed such that the upper outer diameter is about 70 mm and the taper angle of the outer peripheral surface is about 0.5 degree, and the porous preform 41 described above is externally fitted by a slightly provided tolerance. It is possible. The nest 53 is divided into right and left as described above. Here, the core 56 in contact with the molding surface 45 of the porous preform 41 is the first molding die according to the present invention, and the insert 53 and the lower die 52 are the second molding die. is there.
[0042] そして、上記の外枠金型 51、下部金型 52、入れ子 53は、多孔性予備成形体 1が 配置される前に、約 300°Cに予熱し、中子 56は約 200°Cに予熱する。尚、下部金型 52及び入れ子 53の、キヤビティ 55を形成する面には、予め離型材を塗布する。その 後、予熱された多孔性予備成形体 41を、直ちに、図 6 (ィ)のように、中子 56に外嵌さ せ、下部金型 52の中央に配置する。これにより、多孔性予備成体 45が、キヤビティ 5 5内に配置されたことになる。尚、ここで、多孔性予備成形体 41は、入れ子 53の内周 面とは接触しておらず、キヤビティ 55の内側に配されている。そして、このキヤビティ 5 5に、図 6 (口)のように、約 760°Cに熱せられたアルミニウム合金 (JIS AC4CH合金 )の溶湯 2aを所定量流し込み、図 6 (ハ)から図 6 (二)のように、入れ子 52の内側に嵌 入可能な押圧子 54を約 50MPaの圧力により、溶湯 2aの上方力も直接押圧する。こ のようにして溶湯 2aを加圧供給することにより、多孔性予備成形体 41の内部に溶湯 2aが徐々に含浸していく。そして、この状態で冷却した後に取り出し、内周側に、多 孔性予備成形体 41とアルミニウム合金 2とが複合化された複合ィ匕部位 47と、その外 側に硬化されたアルミニウム合金 2とを一体的に形成してなる中空円筒形状の金属 複合材 43を得る。 Then, the outer frame mold 51, the lower mold 52, and the insert 53 described above are preheated to about 300 ° C. before the porous preform 1 is placed, and the core 56 is about 200 °. Preheat to C. A mold release material is applied in advance to the surface of the lower mold 52 and the insert 53 on which the cavity 55 is to be formed. Thereafter, the preheated porous preform 41 is immediately fitted on the core 56 and placed in the center of the lower mold 52 as shown in FIG. This results in the porous preform 45 being placed within the cavity 55. Here, the porous preform 41 is not in contact with the inner circumferential surface of the insert 53 and is disposed inside the cavity 55. Then, as shown in FIG. 6 (opening), a predetermined amount of molten metal 2a of aluminum alloy (JIS AC 4 CH alloy) heated to about 760 ° C. is poured into this cavity 55, as shown in FIG. As in the above, the pressure applied to the inner side of the insert 52 by the pressure of about 50 MPa also directly presses the upward force of the molten metal 2a. As described above, the molten metal 2a is gradually impregnated into the porous preformed body 41 by pressure supply of the molten metal 2a. Then, after cooling in this state, it is taken out, and on the inner peripheral side, a composite metal portion 47 where the porous preform 41 and the aluminum alloy 2 are complexed, and the aluminum alloy 2 hardened on the outer side. A hollow cylindrical metal composite 43 obtained by integrally forming
[0043] このように成形した中空円筒形状の金属複合材 43にあっても、上述した実施例 1と 同様に、その複合面 44はほぼ平滑な铸肌に形成されている(図 5 (ィ)参照)。これは 、実施例 1で示したように、多孔性予備成形体 41の被成形面 45に形成した鱗状被 覆層が、加圧供給された溶湯 2aの押圧作用によって圧縮変形することにより、ほぼ 平滑な複合面 44を形成できる作用効果が発揮できて 、るからである(図 4参照)。 Even in the hollow cylindrical metal composite 43 molded in this manner, the composite surface 44 is formed to have a substantially smooth skin as in Example 1 described above (see FIG. 5 (c)). )reference). This is because, as shown in Example 1, a gauze-like object formed on the molding surface 45 of the porous preform 41. This is because the coating layer is compressed and deformed by the pressing action of the pressure-supplied molten metal 2a, so that an effect that can form a substantially smooth composite surface 44 can be exhibited (see FIG. 4).
[0044] 一方、このような中空円筒形状の成形品を铸造成形する場合では、キヤビティ内に 供給したアルミニウム合金の溶湯が、冷却過程で収縮変形することから、一般的に中 子を抜き取ることが難しい。ここで、上述の実施例 2の場合に、中子 56を抜き取るに 要した荷重 (以下、抜き荷重)を測定した。また、比較対象として、被成形面 45に鱗 片状黒鉛を希釈した離型材を塗布せず、中子 56の外周面に、一般的な粒子形状の チタ-ァカもなる離型材を塗布して、同様に金属複合材を成形し、中子 56の抜き荷 重を測定した。その結果、比較対象の、粒子形状のチタ-ァからなる離型材を塗布し た場合に比して、本発明にカゝかる実施例 2の場合は、中子 56の抜き荷重が約 70% 低下した。ここで、この比較対象の場合にあっては、中子 56の外周面に塗布された 離型剤が固着してなる離型層はほとんど圧縮変形できな 、ことから、加圧供給される 溶湯の押圧力と溶湯の凝固収縮力とによって、当該金属複合材は中子 56に強く押 し付けられることとなる。一方、本発明に力かる実施例 2の場合には、上述のように、 鱗状被覆層が圧縮変形できることから、溶湯の押圧力と収縮力とを緩和することがで き、前記比較対象の場合に比して中子 56に押し付けられる力が軽減されることとなる 。而して、本発明の成形方法によれば、金属複合材を比較的容易に脱型することが できる。したがって、脱型を容易に行い得るように、中子の外周面のテーパー角度を 大きくして成形し、成形後に切削する方法等を用いる必要もなぐ成形工程に要する 時間と費用とを低減することも可能である。  On the other hand, in the case of molding such a hollow cylindrical shaped article, the core is generally removed because the molten aluminum alloy supplied into the cavity shrinks and deforms in the cooling process. difficult. Here, in the case of Example 2 described above, the load required to extract the core 56 (hereinafter referred to as the extraction load) was measured. In addition, as a comparative object, a mold release material in which flake graphite is diluted is not applied to the molding surface 45, and an outer surface of the core 56 is coated with a mold release material having a general particle shape. Similarly, a metal composite was formed, and the unloading load of the core 56 was measured. As a result, in the case of the second embodiment of the present invention, the removal load of the core 56 is about 70% as compared with the case where the release agent composed of the particle shape of the particle is applied. It has fallen. Here, in the case of this comparison object, the mold release layer formed by the adhesion of the mold release agent applied to the outer peripheral surface of the core 56 can hardly be compressed and deformed. The metal composite is strongly pressed against the core 56 by the pressing force of the metal and the solidification contraction force of the molten metal. On the other hand, in the case of Example 2 in which the present invention works, as described above, since the wedge-shaped covering layer can be compressed and deformed, the pressing force and the contraction force of the molten metal can be relaxed. The force applied to the core 56 is reduced as compared to the above. Thus, according to the molding method of the present invention, the metal composite can be removed relatively easily. Therefore, in order to facilitate mold removal, it is necessary to increase the taper angle of the outer peripheral surface of the core, and to use the method of cutting after molding, etc. to reduce the time and cost required for the molding process. Is also possible.
[0045] 本発明は、上述した本実施形態例に限定されるものではなぐ上述した本発明の主 旨を逸脱しない範囲において利用可能である。例えば、上述の実施形態例では、多 孔性予備成形体を、アルミナ短繊維とアルミナ粒子とを焼結してなるものとして 、るが 、その他に、金属繊維、セラミックス繊維、炭素繊維等の短繊維と、セラミックス粒子、 金属粒子等の粒子とからなるものや、多孔性の金属等を用いる場合にあっても、本 発明の作用効果を適切に発揮し得る。また、アルミニウム合金の他、マグネシウム合 金の溶湯を加圧供給する場合も同様である。そして、本発明の金属複合材を成形す る方法は、高圧铸造、ダイカスト、気体加圧铸造などのように、溶湯を加圧供給して 充填させる様々な方法に好適に用いることができる。 The present invention is not limited to the embodiment described above, and can be used without departing from the scope of the present invention described above. For example, in the above-described embodiment, the porous preform is formed by sintering alumina short fibers and alumina particles, but in addition, shorts such as metal fibers, ceramic fibers, carbon fibers, etc. Even in the case of using fibers and particles such as ceramic particles and metal particles, and porous metals, etc., the effects and advantages of the present invention can be appropriately exhibited. The same applies to the case of pressure supply of a molten magnesium alloy in addition to the aluminum alloy. And the method of forming the metal composite material of the present invention, by high pressure structure, die casting, gas pressure structure, etc. It can be suitably used in various methods for filling.

Claims

請求の範囲 The scope of the claims
[1] 所要面に所定の強化材から形成される多孔性予備成形体が結合された金属複合 材の成形方法において、  [1] In a method for forming a metal composite, in which a porous preform formed from a predetermined reinforcing material is bonded to a required surface,
前記多孔性予備成形体の、前記所要面を形成するための成形金型と接触する被 成形面に、鱗片形状の組成物からなる離型材を塗布し、当該多孔性予備成形体を 加熱することにより該被成形面を被覆する鱗状被覆層を形成した後、この多孔性予 備成形体の被成形面に成形金型を接触させ、軽金属の溶湯を該多孔性予備成形 体の背方に、加圧供給するようにしたことを特徴とする金属複合材の成形方法。  A mold release material comprising a scaly-shaped composition is applied to a molding surface of the porous preform in contact with the molding die for forming the required surface, and the porous preform is heated. After forming a cocoon-shaped coating layer covering the molding surface, the molding surface of the porous preform is brought into contact with a molding die, and a molten metal of light metal is placed on the back of the porous preform. A method of forming a metal composite, characterized in that the pressure is supplied.
[2] 所定の強化材から形成される多孔性予備成形体が結合される複合面を形成するた めの第 1の成形金型と、それ以外の面を形成するための第 2の成形金型間にキヤビ ティを形成し、該キヤビティに軽金属の溶湯を充填することにより、多孔性予備成形 体が結合されて形成された複合面を有する金属複合材の成形方法において、 前記多孔性予備成形体の、前記複合面を形成するための第 1の成形金型と接触 する被成形面に、鱗片形状の組成物からなる離型材を塗布し、当該多孔性予備成 形体を加熱することにより該被成形面を被覆する鱗状被覆層を形成した後、この多 孔性予備成形体の被成形面に第一の成形金型を接触させ、軽金属の溶湯をキヤビ ティに加圧供給するようにしたことを特徴とする金属複合材の成形方法。  [2] A first molding die for forming a composite surface to which a porous preform formed from a predetermined reinforcing material is bonded, and a second molding metal for forming the other surface In the method of forming a metal composite having a composite surface formed by combining a porous preform with a cavity by forming a cavity between molds and filling the cavity with a molten metal of a light metal, the porous preform A mold release material comprising a scaly-shaped composition is applied to the molding surface of the body to be in contact with the first molding die for forming the composite surface, and the porous preform is heated to heat the porous preform. After forming a weir-like covering layer covering the molding surface, the first molding die is brought into contact with the molding surface of this porous preform to pressurize the molten metal of light metal to the cavity. A method of forming a metal composite characterized in that
[3] 離型材を成す鱗片形状の組成物が、鱗片形状の黒鉛であることを特徴とする請求 項 1又は請求項 2に記載の金属複合材の成形方法。  [3] The method for forming a metal composite according to claim 1 or 2, wherein the scaly-shaped composition forming the mold release material is scaly-shaped graphite.
[4] 離型材を成す鱗片形状の組成物が、鱗片形状のボロンナイトライドであることを特 徴とする請求項 1又は請求項 2に記載の金属複合材の成形方法。  [4] The method for forming a metal composite according to claim 1 or 2, characterized in that the scaly-shaped composition forming the mold release material is scaly-shaped boron nitride.
[5] 多孔性予備成形体が、骨格を成す短繊維と所定の特性を有する粒子とを焼結して なるものであることを特徴とする請求項 1乃至請求項 4のいずれかに記載の金属複合 材の成形方法。  [5] The porous preform according to any one of claims 1 to 4, wherein the porous preform is obtained by sintering short fibers forming a skeleton and particles having predetermined properties. Method of forming metal composites.
PCT/JP2005/001685 2004-02-09 2005-02-04 Method of molding composite metal material WO2005084853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-031589 2004-02-09
JP2004031589A JP4291705B2 (en) 2004-02-09 2004-02-09 Metal composite forming method

Publications (1)

Publication Number Publication Date
WO2005084853A1 true WO2005084853A1 (en) 2005-09-15

Family

ID=34917869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001685 WO2005084853A1 (en) 2004-02-09 2005-02-04 Method of molding composite metal material

Country Status (2)

Country Link
JP (1) JP4291705B2 (en)
WO (1) WO2005084853A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295102A (en) * 1996-05-07 1997-11-18 Nippon Light Metal Co Ltd Releasing agent for metallic mold casting and metallic mold casting method of light metal using it
JP2002224814A (en) * 2001-02-05 2002-08-13 Mazda Motor Corp Method for combining preliminarily formed body with light alloy, and preliminarily formed body used therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277217A (en) * 1998-01-19 1999-10-12 Mitsubishi Materials Corp Substrate for heat radiation, and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295102A (en) * 1996-05-07 1997-11-18 Nippon Light Metal Co Ltd Releasing agent for metallic mold casting and metallic mold casting method of light metal using it
JP2002224814A (en) * 2001-02-05 2002-08-13 Mazda Motor Corp Method for combining preliminarily formed body with light alloy, and preliminarily formed body used therefor

Also Published As

Publication number Publication date
JP4291705B2 (en) 2009-07-08
JP2005219109A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US9840030B2 (en) Ceramic preform and method
US5588477A (en) Method of making metal matrix composite
JP3547078B2 (en) Manufacturing method of cylinder block
US5679041A (en) Metal matrix composite and preform therefor
CN108698122B (en) Apparatus and method for forming metal matrix composite components
CN110131343A (en) A kind of preparation method of automobile brake disc
WO2008032598A1 (en) Metal composite material and process for production of metal composite material
WO2005084853A1 (en) Method of molding composite metal material
EP2429742B1 (en) Method for the manufacturing of a component for a braking system
JP2004188452A (en) Composite member and its manufacturing method
JPH0316220B2 (en)
JP2000042718A (en) Casting method of cast product poured with material for composite
JP3628198B2 (en) Preform for metal matrix composite and manufacturing method thereof
JP2000046078A (en) Backing plate for brake pad and manufacture of backing plate
JP2001287017A (en) Method for producing metallic complex product
JP2811452B2 (en) Method for producing fiber-reinforced composite material
JP3547077B2 (en) Method of manufacturing preform for metal matrix composite
KR20220026867A (en) Die casting using sintered material and die casting product manufactured therefrom
JPS62127159A (en) Production of fiber reinforced metallic member
JPH11320075A (en) Molding for cylinder block and its production
JP2002336952A (en) Aluminum complexed body and method for producing the body
JPS63278661A (en) Production of aluminum product having reinforced composite part
JPH04351261A (en) Production of preform for fiber reinforced metal-based composite material
JPH10281002A (en) Metallic base composite reinforcing piston for internal combustion engine and manufacture therefor
JPH04200855A (en) Production of fiber reinforced metal matrix composite

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase