WO2005078357A1 - Heater for generating hot air and insulator for its electric heating wire - Google Patents

Heater for generating hot air and insulator for its electric heating wire Download PDF

Info

Publication number
WO2005078357A1
WO2005078357A1 PCT/JP2004/001660 JP2004001660W WO2005078357A1 WO 2005078357 A1 WO2005078357 A1 WO 2005078357A1 JP 2004001660 W JP2004001660 W JP 2004001660W WO 2005078357 A1 WO2005078357 A1 WO 2005078357A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
heating wire
gas flow
heater
insulators
Prior art date
Application number
PCT/JP2004/001660
Other languages
French (fr)
Japanese (ja)
Inventor
Sadayoshi Taketsuna
Original Assignee
Kabushiki Kaisha Taketsuna Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Taketsuna Seisakusho filed Critical Kabushiki Kaisha Taketsuna Seisakusho
Priority to JP2005517868A priority Critical patent/JP4271686B2/en
Priority to EP04711492.1A priority patent/EP1717526B1/en
Priority to PCT/JP2004/001660 priority patent/WO2005078357A1/en
Priority to CNB2004800108523A priority patent/CN100410595C/en
Publication of WO2005078357A1 publication Critical patent/WO2005078357A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/16Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being mounted on an insulating base

Definitions

  • the present invention relates to a heater connected to an air blower or the like to generate high-temperature hot air, and an insulator for supporting a heating wire such as a dichromated wire wired in the heater.
  • FIGS. 10 and 11 of the accompanying drawings A conventional insulator and heater of this type are shown in FIGS. 10 and 11 of the accompanying drawings.
  • FIG. 10 is a perspective explanatory view of the insulator
  • FIG. 11 is a side perspective explanatory view of the heater.
  • the insulator 50 shown in FIG. 10 is a so-called lotus root insulator having a cylindrical shape, and is provided with a large number of through holes 52, 52,. Are connected with a heating wire such as a nichrome wire.
  • the blown gas flows in the axial direction (gas flow direction) D, passes through the through holes 52, and is heated. No ridge or projection is provided on the inner wall surface of each through hole 52 to support the nichrome wire.
  • An appropriate number of the insulators 50 are arranged in the axial direction, and the positions of the through holes 52 are matched with each other, and the insulators 50 are placed in the heater for generating hot air.
  • FIG. 11 shows a heater 60 for generating hot air in which the insulator 50 is provided.
  • the heater housing 65 having a gas inlet 61 at the right end in the figure and a hot air outlet 62 at the left end in the figure, there are four insulators 50 in the axial direction (gas flow direction). D) and are fixed in series. The number of the insulators 50 arranged is appropriately determined according to the capacity of the heater. When arranging the insulators 50, the positions of the through holes 52 are arranged at the same position. Then, as shown by a two-dot chain line in the figure, a nichrome wire is wired from the suction port 61 side to the discharge port 62 in these through holes 52, and then the discharge port 62 is formed.
  • the wires are sequentially wired in a zigzag manner from the side toward the suction port 61 side.
  • the number of through holes 52 of the insulator 50 By setting the number of through holes 52 of the insulator 50 to an even number, both terminals of the nichrome wire can be positioned on the suction port side.
  • Each insulator 50 is fixed by a long port 61 and a nut 67. These bolts and nuts are fixed using two to four of the through holes 52 provided in the insulator 50. 'Although not shown, a temperature sensor such as a thermocouple for preventing abnormal overheating can be disposed in any of the through holes 52 located at the center. In this case, the wire is arranged so as to pass through the center of the spirally wound nichrome wire.
  • the discharge temperature sensor T for detecting the discharge temperature is provided from the outside of the heater housing 65 in front of the insulator located closest to the discharge port in the heater housing 65.
  • a device called a ring insulator described in Japanese Utility Model Laid-Open Publication No. 113470/90.
  • a ring insulator is made of a cylindrical member having a short axial length, and has a through hole for passing a temperature sensor or the like at a central portion thereof, and a nichrome hole at an outer peripheral portion of the central portion.
  • a plurality of heating wire passages for laying wires are formed by radial partition frames.
  • a plurality of such ring insulators are used by overlapping them in the axial direction.However, the structure can raise the maximum gas discharge temperature to 500 ° C or more. Can not. Therefore, it cannot be used as an insulator of the heater for generating high-temperature hot air according to the present invention.
  • this ring insulator is of a different category from the heater insulator for generating hot air of 800 ° C. or higher according to the present invention.
  • the wind speed must be at least a certain level (in order to heat the air to be heated to near the heat-resistant limit temperature of the heating wire, It is necessary to increase the heat exchange efficiency by increasing the flow rate), and the uniformity of the air volume passing through each gas flow hole is required, so that the blast gas to be heated is passed through a certain narrow space (passage) and It is necessary to make forced contact with the turned nichrome wire, but in the case of the above ring insulator, since only the dichrome wire is supported by the partition frame, it hits each heating wire. This is because it is considered that the air volume cannot be made uniform. If the wind speed cannot be kept constant, the surface temperature of the heating wired in each hole will be different, which will not improve the overall heat exchange
  • the heating wire that is wired to the insulator extends in the direction in which force is applied due to a sudden increase in the blowing gas (changing the wind speed passing through the through hole) or gravity (the wire is spirally wound).
  • the distance (pitch) between adjacent wires of the heating wire will be uneven), which will cause abnormal overheating and change the volume of air passing through each through-hole. I can't do it.
  • the surface temperature of the heating wire becomes approximately 900 ° C or more, but the wind pressure of the blowing gas causes the heating wire to jump out of the discharge port side of the insulator. I do.
  • the discharge port is directed downward, gravity is also applied, and the problem of elongation and protrusion of the heating wire becomes greater. It is considered that the problem of the heating wire jumping out can be promoted by the generation of a magnetic field when a current is applied to the heating wire, and by the vibration of the heating wire caused by the magnetic field.
  • Vibration of the heating wire is generated not only by a magnetic field but also by mechanical vibration. However, due to the generation of strong vibration, the nichrome wire and the through hole come into frictional contact, and the oxide film of the heating wire is cut (polished). ) Or, the inner wall surface of the insulator is polished, and it jumps out as dust and has an adverse effect on the environment. If it accumulates in the through hole, it may cause a break in the heating wire.
  • a plurality of insulators are fixed by using two or four through-holes and fastening the long axis port and nut, but the gas to be heated cannot be passed through these through-holes. , It cannot be made compact.
  • a temperature sensor such as a thermocouple for preventing abnormal overheating is arranged at the center of the inside of a spirally wound nichrome wire arranged in a through hole located at the center, and the through hole is formed by this temperature sensor.
  • the flow of gas into the hole is hindered, and the heating wire in that hole has a smaller airflow than the heating wire in the other holes, and it becomes overheated more than the heating wire in other holes. Therefore, the temperature detected by the sensor always indicates a somewhat higher temperature, and perfect temperature control cannot be performed. Therefore, the maximum operating temperature must be set a little lower empirically in consideration of the safety of the heating wire.
  • the temperature sensor for the discharged gas is wired from the outside to the discharge port side portion of the heater housing 65, and the wiring is obstructive or does not look good.
  • the present invention is directed to a heater insulator capable of discharging hot air at a temperature of 800 ° C. or higher, which does not cause uneven heating wire pitch, is resistant to vibrations due to magnetic fields and mechanical vibrations, Even if the outlet of the hot air is directed in any direction, the heating wire can be held and fixed effectively.Especially, even when it is directed downward, the heating wire can be prevented from jumping out.
  • a heater for generating hot air is provided.
  • the insulator according to the present invention has been developed for discharging hot air at 800 ° C. or higher, it is needless to say that the insulator can be used for discharging hot air at a lower temperature by reducing its capacity. That is. Disclosure of the invention
  • an insulator component (A, B) consists of a plate-like body with a number of gas flow holes (10, 10, ...) perforated, around which the component can be fixed and / or electrodes can be wired 1 or Two or more through-portions (12a, 12b) are formed, and a plurality of these insulator component pieces (A, B) can be overlapped in the blowing direction to form an insulator. Or the positions of the gas flow holes (10, 10,...) Of all or all adjacent constituent pieces are arranged in a positional relationship slightly shifted from each other, and the above-mentioned fixing and Z or electrode wiring are arranged.
  • the through-portions (12a, 12b) can be arranged at the same position, and furthermore, in the insulators thus superimposed, the gap between the adjacent insulator components in which the positions of the gas flow holes are shifted from each other is defined as follows.
  • a set of heating insulators (G1, G2, G3) is constructed by arranging a spacer insulator (C) consisting of This is a heating wire insulator for a heater for generating hot air to which a heating wire such as a wire can be wired.
  • the heating wires to be wired are linearly wired. Instead, the wires are wired in a slightly shifted (twisted) positional relationship, and as a result, the heating wires are securely held and fixed by the two insulator component pieces.
  • the insulator component pieces in which the positions of the gas flow holes are slightly shifted from each other are placed directly adjacent to each other, it becomes difficult to wire the heating wire satisfactorily. This problem is solved with insulators.
  • the inventor's most difficult task was to create the technical idea of holding and fixing each part of the wiring heating wire by shifting the position of the gas flow hole of the adjacent insulator component piece with this spacer insulator interposed. It is a point that did.
  • the heating wire is held and fixed by each of the insulator constituent pieces, thereby preventing expansion and bending (uneven pitch) due to wind pressure and gravity, and preventing the heating wire from jumping out. Vibration and vibrations caused by magnetic fields do not have to be adversely affected.
  • the gas heated in the large number of gas flow holes is mixed in the space inside the spacer insulator (the static pressure becomes constant). Even if there is a bias in heating (unevenness in pressure) in a certain gas flow hole, the gas is mixed and mixed in this space, and bias or unevenness in heating of gas can be reduced.
  • the air flow passing through each gas flow hole can always be made the same by the spacer insulator, and the mechanical strength of the heating wire has a weak point that it decreases as the temperature rises.
  • the pitch unevenness of the heating wire can be prevented.
  • the position of the heating wire is slightly shifted (twisted) at that location, and the heating wire is provided with tension, thereby preventing the heating wire from jumping out due to high temperature. You can do it.
  • a temperature sensor is passed through one or more gas flow holes (10c) formed in a central portion of the insulator component pieces (A, B).
  • This is an insulator for a heating wire of a heater for generating hot air, characterized by forming a space (10s) capable of being heated.
  • the temperature sensor is inserted into the space to appropriately set the desired position. It is possible to more appropriately sense and measure the maximum limit temperature (abnormal overheating temperature) of the wired -chrome wire.
  • the sensor for detecting the temperature of discharged gas and the sensor for preventing abnormal overheating can be collectively arranged, for example, on the suction port side of the heater.
  • a ridge (11, 11, ...) capable of supporting a heating wire is provided on an inner wall of the gas flow hole in a gas flow direction.
  • a heating wire insulator for a heater for generating hot air characterized in that a plurality of heating wire wires are provided so as to be supported in a gas flow hole while maintaining a distance from an inner wall thereof.
  • the wound heating wire wired in the gas flow hole of the insulator is held at a fixed distance from the inner wall surface in the gas flow hole by the ridge, so The heat exchange efficiency from the hot wire to the gas to be heated is improved, and the dust and the like accumulated on the inner wall surface are not adversely affected, and the risk of disconnection is reduced.
  • the fourth aspect of the present invention has a gas inlet (31) that can be connected to a blower or the like via a pipe at one end, and a discharge outlet (32) that discharges hot air at the other end.
  • a heater for generating hot air having a tubular shape, wherein one or more sets of the heating wire insulators (Gl, Gl, G2, G3) are heaters for generating hot air that can be supplied at predetermined intervals and can supply power independently to the heating wires of each set of insulators.
  • a heater having a desired capacity can be formed by appropriately storing one or more sets of heating wire insulators.
  • the temperature of the supply gas is low at the entrance side and high at the exit side. Therefore, the appropriate surface load of the heating wire, that is, the amount of heating wire used can be changed in each set. This makes it possible to make the whole compact and contribute to energy savings without using wasteful and expensive materials.
  • At least two temperature sensors can be provided from the suction port side. Both the discharge temperature sensor and the overheat prevention (maximum temperature) sensor can be installed from the suction port side, and the discharge temperature sensor must be provided from the outside of the discharge port side of the heater housing as in the past. Is also gone.
  • a fifth aspect of the present invention is a plate-like body having a large number of gas flow holes (10, 10,...) Formed therein.
  • Insulator component (A) constituting one set of heating wire insulators (Gl, G2, G3) according to any of the first to third inventions, wherein at least two through portions (12a, 12b) are formed. , B).
  • only one or two or more through-portions (12c) for fixing and Z or electrode wiring are formed in the peripheral portion, and the central portion is a space (14).
  • a frame-shaped switch disposed at one or more positions of the set of heating wire insulators (Gl, G2, G3) according to any of the first to third inventions.
  • Insulator for heating wire which is a ceramic insulator (C).
  • the insulator component piece according to the fifth invention and the spacer insulator according to the sixth invention can constitute a set of heating wire insulators according to any of the first to third inventions. Things. Brief Description of Drawings
  • FIG. 1 is a front view of an insulator constituting piece A according to the present invention as viewed from a gas flow direction.
  • FIG. 2 is a front view of the insulator component B according to the present invention as viewed from the gas flow direction.
  • FIG. 3 is a front view of the spacer C according to the present invention as viewed from the gas flow direction.
  • FIG. 4 is a transparent front view showing a state in which the insulator component A, the insulator component B, and the spacer insulator C are superimposed in the gas flow direction.
  • FIG. 5 is a side view for explaining the structure of the heater for generating hot air according to the present invention.
  • FIG. 6 is a partially enlarged front view of the gas flow holes located at the center of the insulator constituent pieces A and B.
  • FIG. 7 is a front view of an insulator constituting piece according to another embodiment of the present invention as viewed from a gas flow direction.
  • FIG. 8 is a front view of a spacer insulator according to another embodiment of the present invention as viewed from a gas flow direction.
  • FIG. 9 is a transparent front view showing a state in which the insulator constituting piece shown in FIG. 7 and the spacer insulator shown in FIG. 8 are overlapped in the gas flow direction.
  • FIG. 10 is an explanatory perspective view of a heating wire insulator used in a conventional heater for generating high-temperature hot air.
  • FIG. 11 is a side perspective view of a conventional heater for generating hot air.
  • FIGS. 1 to 3 are front views of three types of component pieces for constituting a set of heating wire insulators according to the present invention, as viewed from the gas flow direction, respectively.
  • Insulator component A shows insulator component B
  • Fig. 3 shows spacer insulator C.
  • FIG. 4 is a transparent front view showing a state in which these three types of component pieces are superimposed in the gas flow direction.
  • FIG. 5 is a view showing three sets of the heating wire insulators as heaters for generating hot air.
  • FIG. 4 is an explanatory side view for explaining a state where it is housed and arranged inside the device.
  • the insulator component A shown in Fig. 1 is made of a disk-shaped plate with a certain thickness and a circular shape in a front view, with a thickness of about 10 mm and an outer diameter of about 84 mm. It consists of ceramic insulation and insulation.
  • a large number of gas flow holes 10 each having a circular cross section are formed in the entire surface of the insulator component A in almost all directions from the center to the peripheral portion.
  • the three gas flow holes 10c in the central portion are provided with a temperature sensor insertion portion 10s formed of a space for passing a temperature sensor (not shown).
  • the temperature sensor passage portion 10 s is formed so as to extend the center side portion of the insulator constituting piece A of the through hole serving as the gas flow hole 10 c.
  • Three temperature sensors can be provided by the temperature sensor passage 10 s.
  • the gas flow holes 10 are not provided at substantially the same intervals in the circumferential direction, and this portion is used for fixing the component A to each other.
  • Through-holes 12 a for wiring electrode terminals of terminals of a heating wire such as a wire are formed respectively.
  • the through-portions 12a are formed by cutouts having a predetermined width and a predetermined length from the outer peripheral edge of the insulator component piece A to the center point of the component piece A, and are formed at equal intervals in the circumferential direction. . That is, these communicating portions 12a are formed at intervals of 120 degrees at the central angle.
  • the communicating portion 12a formed at the upper part in FIG. 1 is formed at a position deviated by 4 degrees ( ⁇ ) counterclockwise from the center line Y.
  • the gas flow hole 10 has an inner diameter of about 7.7 mm, which will be described later.
  • Four protrusions are formed on the inner wall of the gas flow hole 10 in the gas flow direction.
  • the gas flow hole 10c at the center of the insulator component A is provided with a sensor passage 10s, so that only three ridges are formed.
  • the insulator component B shown in Fig. 2 has almost the same configuration as the insulator component A described above, except for one point for fixing the insulator and for wiring the electrode terminal of the terminal of the heating wire. Only the position of the communication section 1 2b is different. That is, the communicating portion 12b formed at the upper part in FIG. 2 is formed at a position shifted 9 degrees (j3) counterclockwise from the center line Y. Therefore, these three communicating portions 1 2 b are formed by the insulating component A.
  • the through-portion 12a and its position are located at positions offset by 5 degrees (j8- ⁇ ) counterclockwise, respectively.
  • the rest of the configuration is exactly the same as the above-mentioned insulator component piece ⁇ .
  • FIG. 3 shows a spacer insulator C which is a component piece for constituting a set of insulators for a heating wire, and its thickness and outer diameter are almost the same as those of the insulator component pieces A and B.
  • Force Many individual gas circulation holes do not exist at all, and the center part is a hollowed-out space 14, consisting only of a frame part 16 consisting of a circular frame in a front view, such a frame part Extension portions 18 are formed at three locations 16 at the same interval toward the center thereof, and each of the three extension portions 18 is provided with a through portion 12c formed of a long hole.
  • These through-holes 12 c are formed at equal intervals in the circumferential direction (at 120-degree intervals at the center angle), and the through-holes 12 a formed on the insulator component pieces A and B are formed. , 1 2b.
  • these respective through portions 12a, 12b, and 12c can be arranged at the same position. .
  • FIG. 4 is a front perspective explanatory view showing a state in which the above-mentioned insulator component piece, the insulator component piece B and the spacer insulator C are superimposed, and shows the positional relationship between the gas flow holes 10 and 10 and the respective positions.
  • the passages 12a, 12b, and 12c can be seen in the positional relationship.
  • the through portions 12a, 12b, and 12c for fixing and Z or electrode wiring are different.
  • Each is arranged at the same position.
  • the positions of the gas flow holes 10 of the insulator constituent pieces A and B are slightly shifted.
  • the gas flow hole of one component piece has a positional relationship shifted by 5 degrees at the central angle from that of the other component piece.
  • any of the insulator components A and B can be freely arranged on the near side or the opposite side, but the spacer insulator C must be arranged between these insulator components A and B.
  • a suitable set of heating wire insulators is formed by overlapping the appropriate number of insulator component pieces A and B and spacer insulator C.
  • heating wire insulators having such a configuration, as described above, Since the gas flow holes of all the adjacent insulator component pieces have a slightly shifted positional relationship through the spacer insulator, when a heating wire such as a dichrome wire is wired to these gas flow holes, The heat wire is swirled by the insulator component pieces A and B, and is securely fixed and held. This prevents the heating wire from moving up and down even when the gas flow hole of the insulator is oriented vertically, or prevents the heating wire from jumping out of the gas flow hole due to the wind pressure of the blowing gas. In addition, no adverse effects are caused by vibrations.
  • a heating wire such as a dichrome wire
  • FIG. 5 is a side perspective explanatory view showing an example of use of the above heating wire insulator, showing a state in which three sets of heating wire insulators are disposed in a heater for generating hot air.
  • the main body 30 of the heater for generating hot air is made of stainless steel and has a cylindrical shape, and a gas suction port 31 is formed at the lower part on the right end side in the figure. A blower and the like are connected. A discharge port 32 for discharging hot air is formed on the left end side of the main body 30.
  • three sets of heating wire insulators Gl, G2, and G3 are housed and fixed. Each of the insulators Gl, G2, and G3 is composed of the insulator component A (shown by oblique lines rising to the right), the insulator component B (shown by oblique lines that descend to the right), and the spacer insulator C (lattice) (Indicated by diagonal lines)).
  • two insulator component pieces, one spacer insulator C, one insulator component piece 8, and one A pair of insulators C and two insulator components A are sequentially superimposed from left to right to form a set of heating wire insulators G 2 with a total of seven components.
  • two insulator component pieces 8, one spacer insulator C, one insulator component piece, and one spacer A pair of insulators C and two insulator component pieces B are sequentially superimposed from left to right, and a total of seven component pieces constitute one set of heating wire insulator G3.
  • each of the insulators Gl, G2, and G3 has two identical pieces A or B at the both ends, but at the middle part, the mutual contact structures are in contact.
  • different component pieces B are located, and spacer insulator C is arranged between them.
  • the gas flow holes 10, 10,... Of the insulator component piece B have a slightly shifted positional relationship, and the heating wire can be twisted and held reliably.
  • the method of superimposing the insulator constituent pieces can be set arbitrarily, and it is not always necessary to superimpose two pieces at both ends, and the insulator is configured by interposing spacer insulators C one by one alternately. Pieces A and B can be overlapped.
  • two insulator components A and B may be alternately superimposed on each other, and one spacer insulator C may be interposed therebetween.
  • two spacer insulators can be stacked and interposed between the insulator component pieces A and B, and the overlap number of the insulator component piece A and the overlap number of the insulator component piece B can be varied. They can be superimposed on each other via insulators.
  • the method of superimposing the three types of component pieces can be performed completely freely.
  • spacer insulator C must be placed between insulator components A and B. Unless this spacer is interposed, wiring of the heating wire becomes difficult.
  • each set of heating wire The insulator is fixed, and the terminal 35 of the electrode terminal 33 of the heating wire can be arranged collectively at the right end of the gas inlet 31 side.
  • the electrode terminal 33 uses a metal plate because it is also used for fixing each insulator component piece. In FIG. 5, the electrode terminal 33 is used for simplicity. Although only one is shown in the figure, it is actually provided at each of three locations in each of the communication sections.
  • the difference in the positions of the gas flow holes is provided with a difference of about 5 degrees as the central angle, but this difference is not less than 5 degrees and not more than 5 degrees. It is only necessary that the gas flow holes of the insulator component piece can appropriately hold and fix the nichrome wire, and that the pressure loss of the blown gas be suppressed as much as possible.
  • the heating wire can be reliably held, and through the spacer insulator, even if the gas flow holes are misaligned, there is no problem in the wiring of the heating wire. It has the effect of not occurring.
  • the presence of this space 14 also makes it possible to reduce the uneven temperature rise of the blown gas in the gas flow holes of the insulator constituent pieces A and B, and to reduce the heating wire in some of the gas flow holes. Excessive temperature rise can be suppressed, which also contributes to prevention of disconnection of the heating wire.
  • three sets of heating wire insulators G1, G2, and G3 are housed as described above, and power can be supplied independently to the nichrome wires wired to these. It becomes.
  • the nichrome wire wired to the insulator G3 near the suction port 31 is supplied with power of about 5 to 7 WZ cm 2 (watt density) to convert gas from normal temperature to about 5 WZ cm 2 (watt density).
  • the nichrome wire, which is wired to the next insulator G 2 supplies power of about 4 to 6 W_ cm 2, the gas to about 4 0 0 ° C from 6 0 0 ° Heat to about C, and finally supply the power of about 2 to 4 WZ cm 2 to the insulator G 1 located closest to the discharge port side to generate hot air of about 800 ° C or more .
  • the length L 1 of the heater storage section in the discharge direction (see FIG. 11; The one in the figure is not a capacity of 12 kW but a smaller capacity.) was about 725 mm, but the same continuous maximum discharge temperature as this conventional heater was 800 With the heater of the present invention at 12 ° C and the same capacity of 12 ° C, the discharge direction The length L 2 (see Fig. 5) can be reduced to 346 mm, and the length can be reduced to about half. This fact clearly demonstrates that the heater according to the present invention exerts extremely high heat exchange efficiency.
  • FIG. 6 is a partially enlarged front view of a gas flow hole located at the center of the insulator component A or B.
  • the gas flow hole 10 is formed of a circular through hole having an inner diameter of approximately 7.7 mm, and has four ridges 11 formed at the same interval in the gas flow direction on the inner wall.
  • a heating wire such as a chrome wire on which the ridge 11 is wound can be held in the gas flow hole 10 at a constant distance from the inner wall, and the inner and outer surfaces of the wound heating wire can be maintained.
  • the blast gas contacts the blast gas properly, and heat is effectively conducted from the heating wire to the blast gas, resulting in higher thermal efficiency.
  • a temperature sensor insertion portion 10s consisting of a space portion in which the wall surface of the gas flow hole is expanded is formed at the center point side of the insulator constituting piece, and one set of power supply holes is formed.
  • a temperature sensor such as a thermocouple is inserted into the temperature sensor passage 10 s from the end on the suction port side of the heater and deployed, so that temperature measurement at a desired position can be performed. It becomes possible.
  • FIG. 7 is a front view showing an insulator constituting piece 20 according to another embodiment of the present invention viewed from the gas flow direction
  • FIG. 8 is a view showing a space according to another embodiment of the present invention. It is the front view which looked at the insulator 40 from the gas flow direction illustrated.
  • the insulator component piece 20 shown in FIG. 7 is a disc-shaped plate-like body having a constant thickness and a circular shape in a front view similar to the insulator component pieces A and B according to the embodiment, and is made of ceramic. Made of thermal insulation and insulator. The size is about 10 mm in thickness and about 66 mm in outer diameter, and is slightly smaller than the insulator component pieces A and B according to the above embodiment. Further, this insulator component piece 20 is only one type, and the position of the gas flow hole 21 can be slightly shifted by the arrangement of the insertion portion provided on the peripheral portion. A large number of gas flow holes 21, 21,...
  • the two gas flow holes 21c and 21c at the center are provided with temperature sensor passages 21s and 21s, respectively, which are spaces for passing a temperature sensor (not shown). La It is.
  • the temperature sensor communication portion 21 s is formed so as to extend the center side portion of the insulator component piece 20 of the through hole that is the gas flow hole 21 c. Two temperature sensors can be provided by these two temperature sensor passages 21 s.
  • a set of three through-holes (22) are provided around the periphery of the insulator component piece 20 to fix the component piece 20 to each other and to wire the electrode terminals of the terminals of the heating wire such as a dichrome wire.
  • a, 22 b, 22 c) are arranged at the same interval, that is, the center angle is set at an interval of 120 degrees, and another set of three communicating portions (22 x, 22 y, 22 z) is arranged at the same interval.
  • the central angles are formed at intervals of 120 degrees.
  • these two sets of through-holes (22a, 22b, 22c) and through-holes (22x, 22y, 22z) are provided at positions shifted counterclockwise by 65 degrees ( ⁇ ), respectively. ing.
  • the two pieces of the insulator component pieces 20 are overlapped, and the communicating portions (22a, 22b, 22c) of one insulator component piece 20 are connected to the communicating portions (22) of the other insulator component piece 20.
  • x, 22 y, and 22 z respectively, by disposing the through portion 20 a of one insulator component 20 and the through portion 20 X of the other insulator component 20 at the same position.
  • the positions of the gas flow holes 21, 21,... are slightly shifted, that is, in this embodiment, the center angles are shifted by 5 degrees. It will be.
  • Each form of the through-holes in this embodiment is formed in a notch shape elongated in the circumferential direction at a certain angle from the outer peripheral edge of the insulator component piece 20. More strictly, these through portions are formed at an angle of about 45 degrees ( ⁇ ) with respect to the center line Y.
  • These insertion portions are formed by cuts having an angle of 45 degrees with respect to the center line ⁇ , but this angle is completely arbitrary and can be set freely.
  • the inner diameter of the gas flow hole 21 is about 7.7 mm, and each of the inner walls is formed with four ridges 25 for supporting a heating wire in the gas flow direction. Same as pieces A and B.
  • FIG. 8 shows a spacer insulator 40 whose thickness and outer diameter are the same as those of the insulator. It is almost the same as the piece 20, but does not have many individual gas flow holes at all, and has a hollowed-out space 44 at the center.
  • the extended portions 48 are provided at the same intervals at three positions of the frame portion 46, and the extended portions 48 are provided with the through portions 42 formed of long holes. These through portions 42 are formed at equal intervals in the circumferential direction, that is, their central angles are formed at 120 degrees, and the through portions (2) of the insulator component piece 20 shown in FIG.
  • FIG. 9 is a perspective front view of the state in which the insulator constituent pieces 20 and 20 and the spacer insulator 40 are superimposed on each other, and shows the positional relationship between the gas flow holes 21, 21, and so on.
  • ⁇ ⁇ ⁇ Look at the relative positions of the through-holes (22a, 22b, 22c) (22x, 22y, 22z) (42, 42, 42). Can be.
  • the respective through portions (22 a, 2 2 b, 2 2 c) (22 x 22 y, 22 z) (42, 42, 42) are arranged at the same position.
  • the positions of the gas flow holes 21, 21,... Of the insulator component pieces 20, .20 are slightly shifted. That is, the gas flow holes of one of the constituent pieces are shifted from the other by 5 degrees at the center angle with respect to the center point of each of the constituent pieces.
  • any of the insulator components 20, 20 may be arranged on the near side or the opposite side, but the spacer insulator 40 must be arranged between these insulator components 20, 20. There is. In this way, the appropriate number of insulator constituent pieces 20, 20,.
  • a set of heating wire insulators is formed by superposing the insulators 40. In a set of heating wire insulators having such a configuration, as described above, the gas flow holes of some or all of the adjacent insulator component pieces are shifted slightly through the spacer insulator. Therefore, when a heating wire such as a dichromium wire to be wired in the gas flow hole is wired, the heating wire is twisted by the insulator constituting piece and is securely fixed and held.
  • One set of heating wire insulators is constructed as described above. One or two or more sets of these insulators are housed in a heater with a predetermined interval between them, and they are placed in a high position. As in the first embodiment, a heater for generating hot hot air can be configured.
  • the shape and size of the insulator component and the spacer insulator can be appropriately designed as needed.
  • these external shapes are circular when viewed from the front, but they may be elliptical, square, or polygonal. In this case, the shape of the main body of the heater must be adapted to this.
  • the thickness of the insulator component piece and the spacer insulator is set to 10 mm, but may be 10 mm or more or 10 mm or less. Furthermore, the thicknesses of the insulator component piece and the spacer insulator may not be the same, but may be different thicknesses.
  • the gas flow hole for wiring the heating wire has a circular cross section, but may have a quadrangular shape with rounded corners.
  • the inner diameters of a number of gas flow holes drilled in each insulator component are the same, but the inner diameter of the gas flow hole located in the center portion may be formed slightly larger than the inner diameter of the gas flow hole formed in the peripheral portion.
  • the temperature sensor passage may be provided in one gas flow hole located in the center of the insulator component piece, or may be provided in two or more as required.
  • the configuration of the insulator component piece and the through-hole for fixing and / or electrode wiring provided on the peripheral portion of the spacer insulator can be freely designed as appropriate.
  • this through-hole is formed by cutting, but it may be formed as a long hole provided in the spacer insulator. Conversely, the through portion of the spacer insulator can be formed by cutting.
  • the through portion may be formed by a mere small hole, a wire may be inserted through the small hole, and a pair of insulators may be fixed at both ends to form a terminal terminal of a dichrome wire.
  • a pair of insulators may be fixed at both ends to form a terminal terminal of a dichrome wire.
  • a long strip-shaped metal plate 33 (see FIG. 5) is used, and the plate 33 simultaneously serves as a nichrome wire electrode terminal. Doubles as well.
  • this plate is basically three, but if it is a large capacity, it may be six or nine in terms of the circuit configuration. For single phase, use two, four or six. Therefore, the number of the communication portions can be set freely as needed.
  • the band-shaped plate has a length that connects from a fixed set of heating wire insulators to the electrode 35 at the right end of the suction port 31.
  • the plate 33 is provided with cutouts at, for example, portions located at both ends of a set of insulators G1, and the cutouts of the plate are appropriately bent so that the insulator constituent pieces and the like can be fixed.
  • the fixing means such as the insulator component piece can be performed in various forms using the above-mentioned through-hole.
  • the inner diameters of a large number of gas flow holes provided in the insulator component piece can also be appropriately set as needed, and the number can be freely determined.
  • the gas flow holes can be slightly shifted in the horizontal, vertical or oblique directions.
  • the center angles of the adjacent insulator component pieces are shifted by 5 degrees, but may be 5 degrees or more or 5 degrees or less, as long as the nichrome wire can be appropriately held and fixed.
  • the central angle is too large, the displacement of the gas flow holes located in the peripheral portion is too large, and it becomes difficult to wire the nichrome wire, and the gas flow is obstructed, and the problem of pressure loss occurs. If the central angle is too small, the gas flow holes located in the central part will be less displaced, and the effect of holding and fixing the nichrome wire will be reduced.
  • the positions of the gas flow holes of the adjacent insulator component pieces are slightly shifted by a fixed central angle of 5 degrees to be shifted, but the difference of the central angles of the gas flow holes located inside is different.
  • the number of protrusions provided on the inner wall of the gas flow hole of the insulator component piece can also be freely set, but three or four are provided to appropriately support the spirally wound -chrome wire. Is desirable.
  • the ridges are provided continuously throughout the gas flow direction on the inner wall of the gas flow hole, but may be provided intermittently in the flow direction.
  • the heating wire insulator (polymer of insulator component piece and spacer insulator) housed in the heater may be one set, but preferably two or more sets. Is better, and it is best to arrange two or more sets of heating wire insulators at regular intervals.
  • the spacing between the heating wire insulators can be freely set as appropriate, but it is desirable that the spacing be larger than the thickness of one spacer insulator.
  • the main body of the heater has a cylindrical appearance, but the design can be changed as appropriate according to the outer shape of the insulator.
  • the gas inlet provided at the lower part on the right end side may be formed on the right end face part of the main body.

Landscapes

  • Resistance Heating (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)
  • Surface Heating Bodies (AREA)
  • Insulators (AREA)

Abstract

A heater being connected with a blower, or the like, to deliver high-temperature hot air, and an insulator being provided in the heater. A planar insulator segment is provided with a large number of gas conduction holes (10, 10, ...) and provided, at the circumferential edge part thereof, with inserting parts (12a, 12b) for securing the insulator segment and wiring an electrode. The insulator is formed by laying a plurality of sheets of the insulator segment in the air supply direction. Positions of the gas conduction holes (10, 10, ...) of adjacent segments are shifted slightly while the sheets are laid in layers and the inserting parts (12a, 12b) for securing and wiring the electrode are arranged at an identical position. Between adjacent insulator segments where the positions of the gas conduction holes are shifted, a frame-like spacer insulator consisting only of a circumferential part where the inserting part (12c) for securing and wiring the electrode is provided at the same position as these insulator segments is arranged thus constituting a set of insulators for electric heating wire. When a nichrome wire is wired in the gas conduction hole of the set of insulators for electric heating wire, the nichrome wire is twisted by each insulator segment and held and secured surely.

Description

熱風発生用ヒータ及びその電熱線用碍子 技術分野  Technical field of heater for hot air generation and insulator for heating wire
本発明は、 送風機等に接続して高温熱風を発生させるためのヒータと、 該ヒー タ内に配線される二クロム線明等の電熱線を支持するための碍子に関するものであ る。  The present invention relates to a heater connected to an air blower or the like to generate high-temperature hot air, and an insulator for supporting a heating wire such as a dichromated wire wired in the heater.
書 背景技術  Background art
従来のこの種の碍子及びヒータを添付図面第 1 0図及び第 1 1図に図示してい る。 第 1 0図は碍子の斜視説明図、 第 1 1図はヒータの側面透視説明図である。 第 1 0図に示した碍子 5 0は、 円柱形状を有するいわゆるレンコン碍子と呼ば れるものであり、 その軸方向に多数の貫通孔 5 2、 5 2、 …が設けられ、 該貫通 孔 5 2のそれぞれにニクロム線等の電熱線が配線されるものである。  A conventional insulator and heater of this type are shown in FIGS. 10 and 11 of the accompanying drawings. FIG. 10 is a perspective explanatory view of the insulator, and FIG. 11 is a side perspective explanatory view of the heater. The insulator 50 shown in FIG. 10 is a so-called lotus root insulator having a cylindrical shape, and is provided with a large number of through holes 52, 52,. Are connected with a heating wire such as a nichrome wire.
送風気体は軸方向 (気体流通方向) Dに流れ、 前記各貫通孔 5 2内を通過し、 加熱される。 それぞれの貫通孔 5 2の内壁面にはニクロム線を支持するための突 条又は突起等は設けられていない。  The blown gas flows in the axial direction (gas flow direction) D, passes through the through holes 52, and is heated. No ridge or projection is provided on the inner wall surface of each through hole 52 to support the nichrome wire.
この碍子 5 0は、 その適数個を軸方向に配列し、 それぞれの貫通孔 5 2の位置 を合致させて重ね合わせ、 熱風発生用ヒータ内に配備される。  An appropriate number of the insulators 50 are arranged in the axial direction, and the positions of the through holes 52 are matched with each other, and the insulators 50 are placed in the heater for generating hot air.
第 1 1図は、 上記碍子 5 0が内部に配備された熱風発生用ヒータ 6 0を示して いる。  FIG. 11 shows a heater 60 for generating hot air in which the insulator 50 is provided.
図中右端側の気体の吸入口 6 1と、 図中左端側の熱風の吐出口 6 2を有するヒ ータ収納体 6 5の内部には上記碍子 5 0が 4個軸方向 (気体流通方向 D ) に直列 に配列され、 固定されている。 碍子 5 0の配列個数は、 ヒータの容量に応じて適 宜決定される。 碍子 5 0の配列に際しては、 それぞれの貫通孔 5 2の位置を同一 位置に配置する。 そして、 図中二点鎖線で示した通り、 これらの貫通孔 5 2内に ニクロム線を吸入口 6 1の側から吐出口 6 2に向けて配線し、 次に吐出口 6 2の 側から吸入口 6 1の側に向けてジグザグ状に順次配線して行く。 碍子 5 0の貫通 孔 5 2の数を偶数とすることによりニクロム線の両端子を吸入口側に位置させる ことができる。 '' Inside the heater housing 65 having a gas inlet 61 at the right end in the figure and a hot air outlet 62 at the left end in the figure, there are four insulators 50 in the axial direction (gas flow direction). D) and are fixed in series. The number of the insulators 50 arranged is appropriately determined according to the capacity of the heater. When arranging the insulators 50, the positions of the through holes 52 are arranged at the same position. Then, as shown by a two-dot chain line in the figure, a nichrome wire is wired from the suction port 61 side to the discharge port 62 in these through holes 52, and then the discharge port 62 is formed. The wires are sequentially wired in a zigzag manner from the side toward the suction port 61 side. By setting the number of through holes 52 of the insulator 50 to an even number, both terminals of the nichrome wire can be positioned on the suction port side. ''
それぞれの碍子 5 0は、 長軸のポルト 6 6とナット 6 7により固定される。 こ れらのボルト ·ナツトは、 碍子 5 0に設けられている何れかの貫通孔 5 2の 2乃 至 4箇所を利用して固定される。 ' 異常過熱防止用の熱伝対等の温度センサは、 図示はしていないが、 中央部分に 位置する何れかの貫通孔 5 2に配設することができる。 この場合には螺旋状に巻 回されたニクロム線の中心部分に揷通させて配置することとなる。  Each insulator 50 is fixed by a long port 61 and a nut 67. These bolts and nuts are fixed using two to four of the through holes 52 provided in the insulator 50. 'Although not shown, a temperature sensor such as a thermocouple for preventing abnormal overheating can be disposed in any of the through holes 52 located at the center. In this case, the wire is arranged so as to pass through the center of the spirally wound nichrome wire.
吐出温度を感知する吐出温度感知センサ Tは、 ヒータ収納体 6 5内の最も吐出 口側に位置する碍子の前方にヒータ収納体 6 5の外部から配設される。  The discharge temperature sensor T for detecting the discharge temperature is provided from the outside of the heater housing 65 in front of the insulator located closest to the discharge port in the heater housing 65.
更に、 本願出願人は、 実開平 1一 3 4 7 9 0号公報に記載されたいわゆるリン グ碍子と呼ばれる考案を過去に提案している。 かかるリング碍子は、 軸方向の長 さの短い円筒形状のものからなり、 その中央部分には温度センサ等を揷通するた めの揷通孔が設けられ、 その中央部分の外周部分にはニクロム線を配線するため の複数の電熱線揷通部が放射状の仕切枠によつて形成されたものである。  Further, the applicant of the present application has proposed in the past a device called a ring insulator described in Japanese Utility Model Laid-Open Publication No. 113470/90. Such a ring insulator is made of a cylindrical member having a short axial length, and has a through hole for passing a temperature sensor or the like at a central portion thereof, and a nichrome hole at an outer peripheral portion of the central portion. A plurality of heating wire passages for laying wires are formed by radial partition frames.
このリング碍子は、 所望の容量に応じて、 その複数のものを軸方向に重ね合わ せて使用するのであるが、 その構造から気体の吐出最高温度を 5 0 0 °C以上に上 げることができない。 そのため、 本発明に係る高温熱風発生用のヒータの碍子と しては使用することができないのである。  According to the desired capacity, a plurality of such ring insulators are used by overlapping them in the axial direction.However, the structure can raise the maximum gas discharge temperature to 500 ° C or more. Can not. Therefore, it cannot be used as an insulator of the heater for generating high-temperature hot air according to the present invention.
換言すれば、 このリング碍子は、 本発明に係る 8 0 0 °C以上の高温熱風発生用 のヒータ用碍子とは異なるカテゴリーのものである。 その理由は、 8 0 0 °C以上 の高温熱風を吐出させるヒータ用碍子の場合には、 ある程度以上の風速 (電熱線 の耐熱限界温度近くまで、 被加熱エアーを加熱する為には、 風速を上げて熱交換 効率を上げる必要がある) と、 各気体流通孔内を通過させる風量の均一性が要求 されるため、 加熱される送風気体を一定の狭い空間 (通路) 内に通過させ、 卷回 されたニクロム線に強制接触させる必要があるが、 上記リング碍子の場合は、 仕 切枠によって二クロム線が支持されているだけであるため、 各々の電熱線に当た る風量を均一にすることができないと考えられるからである。 風速を一定にする ことができないと、 各孔に配線されている電熱線の表面温度が異なってしまい、 これにより全体の熱交換効率も向上させることができず、 吐出最高温度に限界が 出るものと考えられるのである。 In other words, this ring insulator is of a different category from the heater insulator for generating hot air of 800 ° C. or higher according to the present invention. The reason is that in the case of a heater insulator that discharges high-temperature hot air at 800 ° C or higher, the wind speed must be at least a certain level (in order to heat the air to be heated to near the heat-resistant limit temperature of the heating wire, It is necessary to increase the heat exchange efficiency by increasing the flow rate), and the uniformity of the air volume passing through each gas flow hole is required, so that the blast gas to be heated is passed through a certain narrow space (passage) and It is necessary to make forced contact with the turned nichrome wire, but in the case of the above ring insulator, since only the dichrome wire is supported by the partition frame, it hits each heating wire. This is because it is considered that the air volume cannot be made uniform. If the wind speed cannot be kept constant, the surface temperature of the heating wire wired in each hole will be different, which will not improve the overall heat exchange efficiency and will limit the maximum discharge temperature. It is thought that.
上記従来例の問題点を列挙すると、 次のようになる。  The problems of the above conventional example are listed as follows.
碍子に配線される電熱線が、 送風気体の急激増加 (貫通孔を通過する風速の変 ィ匕)、 或は重力により、 力の負荷される方向へ伸びてしまい (螺旋状に卷回され た電熱線の隣接する線と線の間の距離 (ピッチ) にムラが出る)、 これによる異 常過熱によって各貫通孔内を通過する風量が変わってしまうため、 高温熱風を安 全に長期にわたり吐出することが出来ない。  The heating wire that is wired to the insulator extends in the direction in which force is applied due to a sudden increase in the blowing gas (changing the wind speed passing through the through hole) or gravity (the wire is spirally wound). The distance (pitch) between adjacent wires of the heating wire will be uneven), which will cause abnormal overheating and change the volume of air passing through each through-hole. I can't do it.
8 0 0 °C以上の高温熱風を吐出させる場合、 電熱線の表面温度は約 9 0 0 °C以 上になるが、 送風気体の風圧によって電熱線が碍子の吐出口側から飛び出す現象 が発生する。 また、 吐出口を下方向に向けた場合には、 重力も負荷されて電熱線 の伸びや飛び出しの問題はより大きくなる。 この電熱線の飛び出し等の問題は、 電熱線に電流を流すと磁界が発生し、 この磁界による電熱線の振動によっても促 進されうるものと考えられる。  When hot air at a temperature of 800 ° C or more is discharged, the surface temperature of the heating wire becomes approximately 900 ° C or more, but the wind pressure of the blowing gas causes the heating wire to jump out of the discharge port side of the insulator. I do. In addition, when the discharge port is directed downward, gravity is also applied, and the problem of elongation and protrusion of the heating wire becomes greater. It is considered that the problem of the heating wire jumping out can be promoted by the generation of a magnetic field when a current is applied to the heating wire, and by the vibration of the heating wire caused by the magnetic field.
電熱線の振動は、 磁界ばかりでなく、 機械的振動によっても発生するが、 力か る振動の発生により、 ニクロム線と貫通孔とが摩擦接触し、 電熱線の酸化皮膜が 削られ (研磨され)、 或いは碍子の内壁面の方が研磨されてしまい、 粉塵となつ て外部に飛び出して環境に悪影響を及ぼし、 貫通孔内にそれが溜まった場合には、 電熱線の断線の原因となる。  Vibration of the heating wire is generated not only by a magnetic field but also by mechanical vibration. However, due to the generation of strong vibration, the nichrome wire and the through hole come into frictional contact, and the oxide film of the heating wire is cut (polished). ) Or, the inner wall surface of the insulator is polished, and it jumps out as dust and has an adverse effect on the environment. If it accumulates in the through hole, it may cause a break in the heating wire.
碍子による電熱線の保持が不十分で、 機械的振動又は磁界的振動に弱い。 電熱 線は、 碍子の貫通孔に揷通されて配線されているだけなので、 碍子によって電熱 線は保持又は固定等されていない。  Insufficient holding of heating wire by insulator, weak to mechanical or magnetic vibration. Since the heating wire is only passed through the through hole of the insulator, the heating wire is not held or fixed by the insulator.
従来においては、 上記のような電熱線の飛び出しを防止するために、 碍子の吐 出口側の端部に飛び出し防止用の手段を設けたものはあった。 し力 し、 この飛ぴ 出し防止用手段を設けても、 碍子に配線された電熱線は、 碍子の貫通孔内では何 ら保持又は固定等の手段が講じられておらず、 各孔を通過する風量や加熱等によ る電熱線のピッチむらによる弊害、 振動によって生ずる問題等を解決するもので はなかった。 Conventionally, in order to prevent the heating wire from jumping out as described above, there has been a device provided with a means for preventing jumping at the end of the insulator on the discharge port side. Even if this means for preventing protrusion is provided, the heating wire wired to the insulator passes through each hole without any means such as holding or fixing in the through hole of the insulator. Depending on the amount of air flow and heating However, it did not solve the problems caused by uneven heating wire pitch and the problems caused by vibration.
複数の碍子の固定は、 2乃至 4個所の貫通孔を利用して、 長軸のポルトとナツ トの締め着けによって行っているが、 かかる貫通孔には被加熱気体を流通させる ことが出来ず、 コンパクトに作れない。  A plurality of insulators are fixed by using two or four through-holes and fastening the long axis port and nut, but the gas to be heated cannot be passed through these through-holes. , It cannot be made compact.
異常過熱防止用の熱電対等の温度センサは、 中央部分に位置する貫通孔内に配 線された螺旋状に卷回されたニクロム線の内部中心に配置されるが、 この温度セ ンサによって貫通孔内への気体の流通が阻害され、 その孔の電熱線は、 他の孔の 電熱線と比較して、 通過する風量が少なくなり、 その分ほかの孔の電熱線よりも 過熱気味となり、 これによりセンサーで検出する温度はいくらか高い温度を常に 示すこととなり、 完全な温度コントロールが出来ない。 従って、 電熱線の安全を 考慮して最高使用温度を経験的に少し低めに設定せざるをえない。  A temperature sensor such as a thermocouple for preventing abnormal overheating is arranged at the center of the inside of a spirally wound nichrome wire arranged in a through hole located at the center, and the through hole is formed by this temperature sensor. The flow of gas into the hole is hindered, and the heating wire in that hole has a smaller airflow than the heating wire in the other holes, and it becomes overheated more than the heating wire in other holes. Therefore, the temperature detected by the sensor always indicates a somewhat higher temperature, and perfect temperature control cannot be performed. Therefore, the maximum operating temperature must be set a little lower empirically in consideration of the safety of the heating wire.
吐出気体の温度センサは、 ヒータ収納体 6 5の吐出口側部分にその外部から配 線しており、 該配線が邪魔となったり、 或いは見栄えがよくない。  The temperature sensor for the discharged gas is wired from the outside to the discharge port side portion of the heater housing 65, and the wiring is obstructive or does not look good.
そこで、 本発明は、 8 0 0 °C以上の高温熱風を吐出させることができるヒータ 用碍子であって、 電熱線のピッチむらを生じることな'く、 磁界による振動や機械 的振動に強く、 熱風の吐出口を任意の方向に向けたとしても電熱線を効果的に保 持、 固定することができ、 とりわけ下方向に向けた場合でも電熱線の飛び出しを 防止することができ、 更に電熱線から気体への熱交換効率がかたよることなく、 被加熱気体への熱効率をより向上させることができ、 長期に渡り安定した高温熱 風を吐出できるものを提供すること、 またこの碍子を用いた高温熱風発生用ヒー タを提供することをその目的としている。  Therefore, the present invention is directed to a heater insulator capable of discharging hot air at a temperature of 800 ° C. or higher, which does not cause uneven heating wire pitch, is resistant to vibrations due to magnetic fields and mechanical vibrations, Even if the outlet of the hot air is directed in any direction, the heating wire can be held and fixed effectively.Especially, even when it is directed downward, the heating wire can be prevented from jumping out. To improve the heat efficiency of the gas to be heated without depending on the heat exchange efficiency from the air to the gas, and to provide a stable high-temperature hot air that can be discharged over a long period of time. Its purpose is to provide a heater for generating hot air.
尚、 本発明にかかる碍子は、 8 0 0 °C以上の熱風吐出用として開発されたもの であるが、 その容量を低くしてより低温の熱風を吐出させるものとしても使用で きることは勿論のことである。 発明の開示  Although the insulator according to the present invention has been developed for discharging hot air at 800 ° C. or higher, it is needless to say that the insulator can be used for discharging hot air at a lower temperature by reducing its capacity. That is. Disclosure of the invention
上記課題を解決するために、 本発明の第 1のものにおいては、 碍子構成片 (A, B)は多数の気体流通孔 (10, 10,·..)が穿設された板状体のものからなり、 その周縁 部分にはこの構成片を固定し及び/又は電極を配線できる 1又は 2以上の揷通部 (12a, 12b)が形成され、 これら碍子構成片 (A, B)の複数枚を送風方向に重ね合わ せて碍子を形成することができ、 この重ね合わせた状態で一部の又は全ての隣接 する構成片同士の気体流通孔 (10, 10,··.)の位置を相互に少しずらした位置関係に 配置し、 且つ、 上記固定用及ぴ Z又は電極配線用の揷通部 (12a, 12b)は同一位置 に配置することができ、 更にこのように重ね合わせた碍子において、 気体流通孔 の位置がずれた関係にある隣接した碍子構成片同士の間には、 この碍子構成片と 同一位置に固定用及ぴ Z又は電極配線用の揷通部 (12c)が設けられた周縁部分の みからなる枠体状のものからなるスぺーサ碍子 (C)を配置して 1 組の電熱線用碍 子 (Gl, G2, G3)を構成し、 この 1組の電熱線用碍子の気体流通孔に-ク口ム線等 の電熱線を配線することができる熱風発生用ヒータの電熱線用碍子である。 この第 1の発明においては、 隣り合う碍子構成片の気体流通孔が、 スぺーサを 介してその位置が相互に少しずれた位置関係となるため、 配線される電熱線は、 直線状に配線されず、 少しずれた (ツイストされた) 位置関係で配線されること となり、 これによつて両碍子構成片により電熱線が確実に保持、 固定されること となる。 また、 ここにおいて気体流通孔の位置が相互に少しずれた碍子構成片同 士を直接隣接させて配置すると電熱線を良好に配線することが困難となるため、 両碍子構成片の間にスぺーサ碍子を介在させて、 この問題を解決している。 この スぺーサ碍子を介在させて隣り合う碍子構成片の気体流通孔の位置をずらして、 配線される電熱線のそれぞれの部分を保持、 固定するという技術思想の創作が発 明者の最も苦労した点である。 In order to solve the above-mentioned problems, in a first aspect of the present invention, an insulator component (A, B) consists of a plate-like body with a number of gas flow holes (10, 10, ...) perforated, around which the component can be fixed and / or electrodes can be wired 1 or Two or more through-portions (12a, 12b) are formed, and a plurality of these insulator component pieces (A, B) can be overlapped in the blowing direction to form an insulator. Or the positions of the gas flow holes (10, 10,...) Of all or all adjacent constituent pieces are arranged in a positional relationship slightly shifted from each other, and the above-mentioned fixing and Z or electrode wiring are arranged. The through-portions (12a, 12b) can be arranged at the same position, and furthermore, in the insulators thus superimposed, the gap between the adjacent insulator components in which the positions of the gas flow holes are shifted from each other is defined as follows. A frame-like structure consisting of only the peripheral portion where the fixing and Z or electrode wiring (12c) is provided at the same position as the insulator component A set of heating insulators (G1, G2, G3) is constructed by arranging a spacer insulator (C) consisting of This is a heating wire insulator for a heater for generating hot air to which a heating wire such as a wire can be wired. In the first invention, since the positions of the gas flow holes of the adjacent insulator component pieces are slightly shifted from each other via the spacer, the heating wires to be wired are linearly wired. Instead, the wires are wired in a slightly shifted (twisted) positional relationship, and as a result, the heating wires are securely held and fixed by the two insulator component pieces. In addition, if the insulator component pieces in which the positions of the gas flow holes are slightly shifted from each other are placed directly adjacent to each other, it becomes difficult to wire the heating wire satisfactorily. This problem is solved with insulators. The inventor's most difficult task was to create the technical idea of holding and fixing each part of the wiring heating wire by shifting the position of the gas flow hole of the adjacent insulator component piece with this spacer insulator interposed. It is a point that did.
このような構成により、 電熱線は、 碍子構成片のそれぞれによって保持、 固定 され、 風圧や重力による伸ぴやたわみ (ピッチむら)、 そして電熱線の飛出しを 防止することができ、 更には機械的振動、 磁界による振動にも悪影響を受けずに 済むこととなるのである。  With such a configuration, the heating wire is held and fixed by each of the insulator constituent pieces, thereby preventing expansion and bending (uneven pitch) due to wind pressure and gravity, and preventing the heating wire from jumping out. Vibration and vibrations caused by magnetic fields do not have to be adversely affected.
更に詳説すれば、 スぺーサ碍子の配置により、 多数の気体流通孔内で加熱され た気体が、 このスぺーサ碍子内の空間で混和され (静圧が一定になり)、 仮に特 定の気体流通孔内での加熱の偏り (圧力のムラ) があったとしても、 この空間内 で混合、 混和され、 気体の加熱の偏り或いはむらを緩和することができるのであ る。 More specifically, due to the arrangement of the spacer insulator, the gas heated in the large number of gas flow holes is mixed in the space inside the spacer insulator (the static pressure becomes constant). Even if there is a bias in heating (unevenness in pressure) in a certain gas flow hole, the gas is mixed and mixed in this space, and bias or unevenness in heating of gas can be reduced.
そして、 このスぺーサ碍子によって各気体流通孔内を通過する風量を常に同じ 量にすることができ、 電熱線の機械的強度は温度上昇と共に低下する弱点を有す るが、 これによつて電熱線のピッチむら等を防止できるのである。 更にそのスぺ ーサ碍子を利用して、 その場所で電熱線の位置を少しずらし (ツイス トして)、 電熱線に張りを持たせたことによって、 電熱線の高温による飛び出しをも防止す ることができるのである。  Then, the air flow passing through each gas flow hole can always be made the same by the spacer insulator, and the mechanical strength of the heating wire has a weak point that it decreases as the temperature rises. The pitch unevenness of the heating wire can be prevented. Furthermore, by using the spacer insulator, the position of the heating wire is slightly shifted (twisted) at that location, and the heating wire is provided with tension, thereby preventing the heating wire from jumping out due to high temperature. You can do it.
被加熱気体の乱流による電熱線の振動、 そして電磁振動や機械的振動によって 生じる電熱線と碍子がこすれあう研磨作用による悪影響が全て解決された。 即ち、 スぺーサ碍子のところでツイストされているので、 電熱線は碍子構成片 によって確実に保持、 固定されているため、 従来品と比較して、 振動によって電 熱線と碍子が研磨される問題が解決できる。 研磨とは、 上記した通り電熱線と気 体流通孔とが振動により摩擦接触し、 電熱線の酸化被膜が削られたり、 気体流通 孔の内壁面が削られ、 粉塵等が生じて環境に悪影響を及ぼしたり、 気体流通孔内 に溜まつた場合には最悪電熱線が断線したりするが、 これらを防止することがで きるのである。  All the adverse effects of the heating wire vibration caused by the turbulent flow of the gas to be heated, and the polishing effect of the heating wire and the insulator rubbing each other, which are caused by the electromagnetic and mechanical vibrations, have been solved. That is, since the heating wire is securely held and fixed by the insulator constituent pieces because it is twisted at the spacer insulator, the heating wire and the insulator are polished by vibration compared to the conventional product. Solvable. Polishing means that the heating wire and the gas flow hole come into frictional contact due to vibration as described above, and the oxide film of the heating wire is shaved or the inner wall surface of the gas flow hole is shaved, generating dust and other adverse effects on the environment. In the worst case, if the gas is accumulated in the gas flow hole, the worst-case heating wire will be broken, but these can be prevented.
本発明の第 2のものは、 上記第 1の発明において、 碍子構成片 (A, B)の中央部 分に穿設された 1又は 2以上の気体流通孔 (10c)に温度センサを揷通させること ができる空間部 (10s)を形成したことを特徴とする熱風発生用ヒータの電熱線用 碍子である。  According to a second aspect of the present invention, in the first aspect, a temperature sensor is passed through one or more gas flow holes (10c) formed in a central portion of the insulator component pieces (A, B). This is an insulator for a heating wire of a heater for generating hot air, characterized by forming a space (10s) capable of being heated.
この第 2の発明では、 中央部分に位置する 1又は 2以上の気体流通孔 (10c)に 空間部 (10s)が設けられているため、 この空間部内に温度センサを挿通させて、 適宜所望位置に配備することができ、 配線された-クロム線の最高限界温度 (異 常過熱温度) をより適切に感知、 測定することが可能となる。 また、 2以上の空 間部を形成した場合には、 吐出気体の吐出温度感知センサ及び異常過熱防止感知 センサ等を例えばヒータの吸入口側にまとめて配置することも可能となる。 本発明の第 3のものは、 上記第 1又は第 2の発明において、 気体流通孔の内壁 に電熱線を支持することができる突条 (11, 11,..·)を気体の流通方向に複数設け、 卷回された電熱線を気体流通孔内でその内壁と間隔を維持して支持できるように したこと特徴とする熱風発生用ヒータの電熱線用碍子である。 In the second invention, since the space (10s) is provided in the one or more gas flow holes (10c) located in the central portion, the temperature sensor is inserted into the space to appropriately set the desired position. It is possible to more appropriately sense and measure the maximum limit temperature (abnormal overheating temperature) of the wired -chrome wire. In the case where two or more spaces are formed, the sensor for detecting the temperature of discharged gas and the sensor for preventing abnormal overheating can be collectively arranged, for example, on the suction port side of the heater. According to a third aspect of the present invention, in the first or second aspect, a ridge (11, 11, ...) capable of supporting a heating wire is provided on an inner wall of the gas flow hole in a gas flow direction. A heating wire insulator for a heater for generating hot air, characterized in that a plurality of heating wire wires are provided so as to be supported in a gas flow hole while maintaining a distance from an inner wall thereof.
この第 3の発明により、 碍子の気体流通孔内に配線される巻回された電熱線は、 上記突条により気体流通孔内の内壁面と一定の間隔を保って保持されるために、 電熱線から被加熱気体への熱交換効率が良好となり、 且つ内壁面に溜まる塵埃等 にも悪影響を受けず、 断線の恐れも減少する。  According to the third aspect of the present invention, the wound heating wire wired in the gas flow hole of the insulator is held at a fixed distance from the inner wall surface in the gas flow hole by the ridge, so The heat exchange efficiency from the hot wire to the gas to be heated is improved, and the dust and the like accumulated on the inner wall surface are not adversely affected, and the risk of disconnection is reduced.
本発明の第 4のものは、 一方端部分に配管を介して送風機等と接続できる気体 の吸入口(31)を有し、 他方端部分には熱風を吐出する吐出口(32)を有する略筒形 状の熱風発生用ヒータであって、 かかるヒータの内部には電熱線が配線された 1 組又は 2組以上の上記第 1乃至第 3の発明の何れかの電熱線用碍子 (Gl, G2, G3) が所定間隔を保って収納され、 それぞれの組の碍子の電熱線には独立に電力を供 給することができるところの熱風発生用ヒータである。  The fourth aspect of the present invention has a gas inlet (31) that can be connected to a blower or the like via a pipe at one end, and a discharge outlet (32) that discharges hot air at the other end. A heater for generating hot air having a tubular shape, wherein one or more sets of the heating wire insulators (Gl, Gl, G2, G3) are heaters for generating hot air that can be supplied at predetermined intervals and can supply power independently to the heating wires of each set of insulators.
この第 4の発明においては、 まず 1組又は複数組の電熱線用碍子を適宜収納す ることにより、 所望の容量のヒータを構成することができる。  In the fourth aspect of the invention, a heater having a desired capacity can be formed by appropriately storing one or more sets of heating wire insulators.
複数組の電熱線用碍子を配設したときは、 これらそれぞれの組に独立に電力を 供給することができるため、 従来の 1つの回路で構成したものよりも、 より適切 に電熱線の表面負荷 (W) を変えることができるので、 同一容量で同一の吐出温 度を得るのにより体積の小さい、 即ち具体的にはヒータの気体流通方向の長さの 短いヒータを提供することができる。  When a plurality of sets of heating wire insulators are provided, power can be supplied to each of these sets independently. Since (W) can be changed, it is possible to provide a heater having a smaller volume by obtaining the same discharge temperature with the same capacity, that is, a heater having a shorter length in the gas flow direction.
即ち、 供給気体の温度は、 入り口側は低く、 出口に行くほど高温になるため、 各組で適切な電熱線の表面負荷、 つまり電熱線の使用量を変えることができる。 これにより全体にコンパクトにでき、 無駄に高価な材料を使うことなく、 省エネ に貢献できるのである。  In other words, the temperature of the supply gas is low at the entrance side and high at the exit side. Therefore, the appropriate surface load of the heating wire, that is, the amount of heating wire used can be changed in each set. This makes it possible to make the whole compact and contribute to energy savings without using wasteful and expensive materials.
換言すれば、 電力供給するときに、 電熱線の表面負荷をそれぞれの碍子の組で 異ならせることにより、 より適切な形状を可能とし、 被加熱気体への適切な加熱、 即ち電熱線の耐熱温度に近い温度の気体を発生することが可能となり、 これらの 工夫により熱交換効率が上がり電熱線の耐熱温度に近い温度の気体を発生させる ことが可能となり、 これらの工夫により熱交換効率が上が.りエネルギーの省力化 に寄与できるのである。 In other words, when power is supplied, by making the surface load of the heating wire different for each set of insulators, a more appropriate shape is possible, and appropriate heating to the gas to be heated, that is, the heat resistance temperature of the heating wire Gas at a temperature close to The heat exchange efficiency is improved by the contrivance, and it becomes possible to generate gas at a temperature close to the heat-resistant temperature of the heating wire. These contrivances improve the heat exchange efficiency and contribute to energy saving.
それぞれの組の碍子との間には所定の間隔が保持されており、 一定の空間が形 成されているために、 加熱された気体は良好にこの空間内で混和され、 被加熱気 体の温度の偏り或いはむらを防止することができる。  Since a predetermined space is maintained between each pair of insulators and a fixed space is formed, the heated gas is mixed well in this space, and the heated gas is mixed with the insulator. Temperature unevenness or unevenness can be prevented.
碍子構成片として、 温度センサを揷通させることができる空間部を 2以上設け たものを使用した場合には、 少なくとも 2本の温度センサを吸入口側から配設す ることができるので、 例えば吐出温度感知センサと過熱防止 (最高温度) 感知セ ンサの両センサを吸入口側から配備させることができ、 従来のように吐出温度感 知センサをヒータ収納体の吐出口側の外部から設ける必要もなくなる。  If two or more spaces that allow the temperature sensor to pass through are used as the insulator constituent pieces, at least two temperature sensors can be provided from the suction port side. Both the discharge temperature sensor and the overheat prevention (maximum temperature) sensor can be installed from the suction port side, and the discharge temperature sensor must be provided from the outside of the discharge port side of the heater housing as in the past. Is also gone.
本発明の第 5のものは、 多数の気体流通孔 (10, 10,·..)が穿設された板状体から なり、 その周縁部分には固定用及び Z又は電極配線用の 1又は 2以上の揷通部 (12a, 12b)が形成された上記第 1乃至第 3の何れかの発明に係る 1組の電熱線用 碍子 (Gl, G2, G3)を構成する碍子構成片 (A, B)であるところの電熱線用碍子であ る。  A fifth aspect of the present invention is a plate-like body having a large number of gas flow holes (10, 10,...) Formed therein. Insulator component (A) constituting one set of heating wire insulators (Gl, G2, G3) according to any of the first to third inventions, wherein at least two through portions (12a, 12b) are formed. , B).
本発明の第 6のものは、 周縁部分に固定用及ぴ Z又は電極配線用の 1又は 2以 上の揷通部 (12c)のみが形成され、 その中央部分は空間(14)となっており、 上記 第 1乃至第 3の何れかの発明に係る 1組の電熱線用碍子 (Gl, G2, G3)の 1又は 2 以上の位置に配置されるところの枠体状のものからなるスぺーサ碍子 (C)である ところの電熱線用碍子である。  According to a sixth aspect of the present invention, only one or two or more through-portions (12c) for fixing and Z or electrode wiring are formed in the peripheral portion, and the central portion is a space (14). And a frame-shaped switch disposed at one or more positions of the set of heating wire insulators (Gl, G2, G3) according to any of the first to third inventions. Insulator for heating wire, which is a ceramic insulator (C).
上記第 5の発明に係る碍子構成片及ぴ第 6の発明に係るスぺーサ碍子は、 上記 第 1乃至第 3の何れかの発明に係る 1組の電熱線用碍子を構成することができる ものである。 図面の簡単な説明  The insulator component piece according to the fifth invention and the spacer insulator according to the sixth invention can constitute a set of heating wire insulators according to any of the first to third inventions. Things. Brief Description of Drawings
第 1図は、 本発明に係る碍子構成片 Aの気体流通方向から見た正面図である。 第 2図は、 本発明に係る碍子構成片 Bの気体流通方向から見た正面図である。 第 3図は、 本発明に係るスぺーサ碍子 Cの気体流通方向から見た正面図である。 第 4図は、 上記碍子構成片 A、 碍子構成片 B及びスぺーサ碍子 Cを気体流通方 向に重ね合わせた状態を図示した透視正面図である。 FIG. 1 is a front view of an insulator constituting piece A according to the present invention as viewed from a gas flow direction. FIG. 2 is a front view of the insulator component B according to the present invention as viewed from the gas flow direction. FIG. 3 is a front view of the spacer C according to the present invention as viewed from the gas flow direction. FIG. 4 is a transparent front view showing a state in which the insulator component A, the insulator component B, and the spacer insulator C are superimposed in the gas flow direction.
第 5図は、 本発明に係る熱風発生用ヒータの構造を説明する側面説明図である。 第 6図は、 碍子構成片 A及び Bの中央部分に位置する気体流通孔の一部拡大正 面図である。  FIG. 5 is a side view for explaining the structure of the heater for generating hot air according to the present invention. FIG. 6 is a partially enlarged front view of the gas flow holes located at the center of the insulator constituent pieces A and B.
第 7図は、 本発明の他の実施形態に係る碍子構成片の気体流通方向から見た正 面図である。  FIG. 7 is a front view of an insulator constituting piece according to another embodiment of the present invention as viewed from a gas flow direction.
第 8図は、 本発明の他の実施形態に係るスぺーサ碍子の気体流通方向から見た 正面図である。  FIG. 8 is a front view of a spacer insulator according to another embodiment of the present invention as viewed from a gas flow direction.
第 9図は、 第 7図に図示した碍子構成片と第 8 図に図示したスぺーサ碍子を 気体流通方向に重ね合わせた状態を図示した透視正面図である。  FIG. 9 is a transparent front view showing a state in which the insulator constituting piece shown in FIG. 7 and the spacer insulator shown in FIG. 8 are overlapped in the gas flow direction.
第 1 0図は、 従来の高温熱風発生用ヒータに使用される電熱線用碍子の斜視説 明図である。  FIG. 10 is an explanatory perspective view of a heating wire insulator used in a conventional heater for generating high-temperature hot air.
第 1 1図は、 従来の高温熱風発生用ヒータの側面透視説明図である。  FIG. 11 is a side perspective view of a conventional heater for generating hot air.
図中符号:(A)(B)(20)…碍子構成片、 (C)(40)…スぺーサ碍子、 (10)(2 1)···気体流通孔、 (1 0 s)…空間部、 (1 1)…突状、 (1 2 a , 1 2 b, 1 2 c)(22 a , 22 b, 22 c)(22 x, 22 y , 22 z )( 12 c )(42 )…揷通部、 (14)(44)…空間、 (1 6)(46)···枠体部、 ( 30 )···ヒータの本体部、 (3 1)··· 吸入口、 (32)…吐出口、 (G 1)(G2)(G3)…電熱線用碍子 . 発明を実施するための最良の形態  Symbols in the figure: (A) (B) (20) ... insulator component pieces, (C) (40) ... spacer insulators, (10) (21) ... gas flow holes, (10 s) ... Space part, (1 1) ... protruding, (12 a, 12 b, 12 c) (22 a, 22 b, 22 c) (22 x, 22 y, 22 z) (12 c) (42 ) ... communication part, (14) (44) ... space, (16) (46) ... frame part, (30) ... heater body part, (31) ... suction port, (32) ... discharge port, (G1) (G2) (G3) ... insulator for heating wire. Best mode for carrying out the invention
以下、 添付の図面に基づき発明を実施するための最良の形態について説明する。 第 1図から第 3図は、 本発明に係る 1組の電熱線用碍子を構成するための 3種 類の構成片をそれぞれ図示する気体流通方向から見た正面図であり、 第 1図が碍 子構成片 Aを、 第 2図が碍子構成片 Bを、 第 3図がスぺーサ碍子 Cを図示してい る。 また第 4図は、 これら 3種類の構成片を気体流通方向に重ね合わせた状態を 示す透視正面図であり、 第 5図は、 当該電熱線用碍子の 3組を熱風発生用ヒータ の内部に収納、 配置した状態を説明する側面説明図である。 Hereinafter, the best mode for carrying out the invention will be described with reference to the accompanying drawings. FIGS. 1 to 3 are front views of three types of component pieces for constituting a set of heating wire insulators according to the present invention, as viewed from the gas flow direction, respectively. Insulator component A, Fig. 2 shows insulator component B, and Fig. 3 shows spacer insulator C. FIG. 4 is a transparent front view showing a state in which these three types of component pieces are superimposed in the gas flow direction. FIG. 5 is a view showing three sets of the heating wire insulators as heaters for generating hot air. FIG. 4 is an explanatory side view for explaining a state where it is housed and arranged inside the device.
まず第 1 図に図示した碍子構成片 Aは、 一定の厚みを有する正面視円形形状 の円盤形状の板状体のものからなり、 その厚みは約 1 0 mm、 その外径は約 8 4 mmで、 セラミック製の断熱及ぴ絶縁体からなる。  First, the insulator component A shown in Fig. 1 is made of a disk-shaped plate with a certain thickness and a circular shape in a front view, with a thickness of about 10 mm and an outer diameter of about 84 mm. It consists of ceramic insulation and insulation.
碍子構成片 Aの全面には、 その中心部分から周縁部分に向けてほぼ全方向に、 横断面円形形状の貫通孔からなる多数の気体流通孔 1 0を穿設している。 その中 央部分の 3つの気体流通孔 1 0 cには、 温度センサ (図示省略) を揷通するため の空間部からなる温度センサ挿通部 1 0 sが設けられている。 この温度センサ揷 通部 1 0 sは、 気体流通孔 1 0 cである貫通孔の碍子構成片 Aの中心側部位を拡 張するように形成されたものである。 この温度センサ揷通部 1 0 sにより 3個の 温度センサを配備させることができる。  A large number of gas flow holes 10 each having a circular cross section are formed in the entire surface of the insulator component A in almost all directions from the center to the peripheral portion. The three gas flow holes 10c in the central portion are provided with a temperature sensor insertion portion 10s formed of a space for passing a temperature sensor (not shown). The temperature sensor passage portion 10 s is formed so as to extend the center side portion of the insulator constituting piece A of the through hole serving as the gas flow hole 10 c. Three temperature sensors can be provided by the temperature sensor passage 10 s.
碍子構成片 Aの周縁部分には、 気体流通孔 1 0を設けていない部分が周方向に 略同一間隔に 3ケ所あり、 この部分にはこの構成片 Aを相互に固定するため、 ま たニクロム線等の電熱線の端末の電極ターミナルを配線するための揷通部 1 2 a がそれぞれ形成されている。 この揷通部 1 2 aは、 碍子構成片 Aの外周縁から構 成片 Aの中心点に向けて一定幅の所定長さの切り込み部から形成され、 周方向に 同一間隔に形成されている。 即ち、 これらの揷通部 1 2 aは、 中心角において 1 2 0度間隔に形成されている。 第 1図中上部に形成された揷通部 1 2 aは、 中心 線 Yから反時計回りに 4度 (α ) ずれた位置に形成されている。  In the peripheral part of the insulator component A, there are three places where the gas flow holes 10 are not provided at substantially the same intervals in the circumferential direction, and this portion is used for fixing the component A to each other. Through-holes 12 a for wiring electrode terminals of terminals of a heating wire such as a wire are formed respectively. The through-portions 12a are formed by cutouts having a predetermined width and a predetermined length from the outer peripheral edge of the insulator component piece A to the center point of the component piece A, and are formed at equal intervals in the circumferential direction. . That is, these communicating portions 12a are formed at intervals of 120 degrees at the central angle. The communicating portion 12a formed at the upper part in FIG. 1 is formed at a position deviated by 4 degrees (α) counterclockwise from the center line Y.
気体流通孔 1 0の内径は、 約 7 . 7 mmで、 後に説明するが、 気体流通孔 1 0 の内壁にはその気体流通方向に 4つの突条が形成されている。 尚、 碍子構成片 A の中央部分の気体流通孔 1 0 cには、 センサ揷通部 1 0 sが設けられている関係 上突条は 3つのみ形成されている。  The gas flow hole 10 has an inner diameter of about 7.7 mm, which will be described later. Four protrusions are formed on the inner wall of the gas flow hole 10 in the gas flow direction. The gas flow hole 10c at the center of the insulator component A is provided with a sensor passage 10s, so that only three ridges are formed.
第 2図に図示した碍子構成片 Bは、 上記碍子構成片 Aとほぼ同一の構成からな るが、 ただ一点、 碍子を固定するための、 また電熱線の端末の電極ターミナルを 配線するための揷通部 1 2 bの位置のみが相違している。 即ち、 第 2図中上部に 形成された揷通部 1 2 bは、 中心線 Yから反時計回りに 9度 (j3 ) ずれた位置に 形成されている。 従って、 これら 3つの揷通部 1 2 bは、 前記碍子構成片 Aの揷 通部 1 2 aとその位置が反時計回りにそれぞれ 5度 ( j8— α ) ずつずれた位置に 配置されていることとなる。 その他の構成は、 上記碍子構成片 Αと全く同一であ る。 The insulator component B shown in Fig. 2 has almost the same configuration as the insulator component A described above, except for one point for fixing the insulator and for wiring the electrode terminal of the terminal of the heating wire. Only the position of the communication section 1 2b is different. That is, the communicating portion 12b formed at the upper part in FIG. 2 is formed at a position shifted 9 degrees (j3) counterclockwise from the center line Y. Therefore, these three communicating portions 1 2 b are formed by the insulating component A. The through-portion 12a and its position are located at positions offset by 5 degrees (j8- α ) counterclockwise, respectively. The rest of the configuration is exactly the same as the above-mentioned insulator component piece Α.
第 3図は、 1組の電熱線用碍子を構成するための構成片となるスぺーサ碍子 C を図示しており、 その厚み及び外径は前記碍子構成片 A及び Bとほぼ同一である 力 多数の個別の気体流通孔は全く存在せずに、 中央部分はくり抜かれた空間 1 4となっており、 正面視円形の枠体からなる枠体部 1 6のみからなり、 かかる枠 体部 1 6の 3箇所に同一間隔でその中心部に向けて拡張部 1 8を形成し、 この 3 つの拡張部 1 8のそれぞれに長孔からなる揷通部 1 2 cを設けたものである。 こ れらの揷通部 1 2 cは、 周方向に同一間隔 (中心角において 1 2 0度間隔) で形 成され、 前記碍子構成片 A及び Bに形成されている揷通部 1 2 a、 1 2 bと同一 位置に位置することとなる。 これによつて碍子構成片 A及び Bとスぺーサ碍子 C とを重ね合わせた際に、 これらそれぞれの揷通部 1 2 a、 1 2 b、 1 2 cを同一 位置に配置させることができる。  FIG. 3 shows a spacer insulator C which is a component piece for constituting a set of insulators for a heating wire, and its thickness and outer diameter are almost the same as those of the insulator component pieces A and B. Force Many individual gas circulation holes do not exist at all, and the center part is a hollowed-out space 14, consisting only of a frame part 16 consisting of a circular frame in a front view, such a frame part Extension portions 18 are formed at three locations 16 at the same interval toward the center thereof, and each of the three extension portions 18 is provided with a through portion 12c formed of a long hole. These through-holes 12 c are formed at equal intervals in the circumferential direction (at 120-degree intervals at the center angle), and the through-holes 12 a formed on the insulator component pieces A and B are formed. , 1 2b. Thus, when the insulator constituent pieces A and B and the spacer insulator C are overlapped, these respective through portions 12a, 12b, and 12c can be arranged at the same position. .
第 4図は、 上記碍子構成片 、 碍子構成片 B及ぴスぺーサ碍子 Cを重ね合わせ た状態の正面透視説明図であり、 それぞれの気体流通孔 1 0、 1 0の位置関係及 ぴそれぞれの揷通部 1 2 a、 1 2 b、 1 2 cの位置関係を見て取ることができる。 この図から解る通り、 これら 3種類の構成片においては、 これらを相互に重ね 合わせた際に固定用及び Z又は電極配線用の揷通部 1 2 a、 1 2 b、 1 2 cはそ れぞれ同一位置に配置される。 そして、 この際に碍子構成片 A及び Bの気体流通 孔 1 0のそれぞれは、 少しその位置がずれた状態となる。 即 、 それぞれの構成 片の中心点を中心として一方の構成片の気体流通孔が中心角において 5度だけ他 方のものとずれた位置関係となるのである。  FIG. 4 is a front perspective explanatory view showing a state in which the above-mentioned insulator component piece, the insulator component piece B and the spacer insulator C are superimposed, and shows the positional relationship between the gas flow holes 10 and 10 and the respective positions. The passages 12a, 12b, and 12c can be seen in the positional relationship. As can be seen from these figures, in these three types of component pieces, when they are superimposed on each other, the through portions 12a, 12b, and 12c for fixing and Z or electrode wiring are different. Each is arranged at the same position. At this time, the positions of the gas flow holes 10 of the insulator constituent pieces A and B are slightly shifted. Immediately, with respect to the center point of each component piece, the gas flow hole of one component piece has a positional relationship shifted by 5 degrees at the central angle from that of the other component piece.
更に、 碍子構成片 A及び Bは、 いずれを手前側又は向う側に配置するのも自由 であるが、 スぺーサ碍子 Cは、 これら碍子構成片 A及ぴ Bの間に配置する必要が ある。 このようにして適宜枚数の碍子構成片 A及ぴ B並びにスぺーサ碍子 Cを重 ね合わせることによって 1組の電熱線用碍子が構成される。  Furthermore, any of the insulator components A and B can be freely arranged on the near side or the opposite side, but the spacer insulator C must be arranged between these insulator components A and B. In this way, a suitable set of heating wire insulators is formed by overlapping the appropriate number of insulator component pieces A and B and spacer insulator C.
このような構成に係る 1組の電熱線用碍子においては、 上記の通り一部の又は 全部の隣接する碍子構成片の気体流通孔がスぺーサ碍子を介して少しずれた位置 関係となることから、 この気体流通孔に配線される二クロム線等の電熱線を配線 した際に電熱線が碍子構成片 A及び Bによってッイス トされ確実に固定 ·保持さ れることとなる。 これにより碍子の気体流通孔を上下方向に向けた際にも、 電熱 線が上下方向に移動することが防止され、 或いは送風気体の風圧による電熱線の 気体流通孔からの飛び出し等が防止され、 更には振動等によつても何らの悪影響 をも受けることがなくなるのである。 In one set of heating wire insulators having such a configuration, as described above, Since the gas flow holes of all the adjacent insulator component pieces have a slightly shifted positional relationship through the spacer insulator, when a heating wire such as a dichrome wire is wired to these gas flow holes, The heat wire is swirled by the insulator component pieces A and B, and is securely fixed and held. This prevents the heating wire from moving up and down even when the gas flow hole of the insulator is oriented vertically, or prevents the heating wire from jumping out of the gas flow hole due to the wind pressure of the blowing gas. In addition, no adverse effects are caused by vibrations.
第 5図は、 上記の電熱線用碍子の使用例を示しており、 3組の電熱線用碍子を 熱風発生用ヒータ内に配設した状態を示す側面透視説明図である。  FIG. 5 is a side perspective explanatory view showing an example of use of the above heating wire insulator, showing a state in which three sets of heating wire insulators are disposed in a heater for generating hot air.
熱風発生用ヒータの本体部 3 0は、 ステンレス製の円筒形状のものからなり、 図中右端側の下方部に気体の吸入口 3 1が形成され、 この吸入口 3 1に配管を介 してブロア一等が接続される。 本体部 3 0の左端側は、 熱風を吐出する吐出口 3 2が形成されている。 本体部 3 0の内部には、 3組の電熱線用碍子 G l、 G 2、 G 3が収納され、 固定されている。 それぞれの碍子 G l、 G 2、 G 3は、 前記碍 子構成片 A (右上がり斜線で示す。)、 碍子構成片 B (右下がり斜線で示す。) 及 びスぺーサ碍子 C (格子状斜線で示す。) を重ね合わせたものからなる。  The main body 30 of the heater for generating hot air is made of stainless steel and has a cylindrical shape, and a gas suction port 31 is formed at the lower part on the right end side in the figure. A blower and the like are connected. A discharge port 32 for discharging hot air is formed on the left end side of the main body 30. Inside the main body 30, three sets of heating wire insulators Gl, G2, and G3 are housed and fixed. Each of the insulators Gl, G2, and G3 is composed of the insulator component A (shown by oblique lines rising to the right), the insulator component B (shown by oblique lines that descend to the right), and the spacer insulator C (lattice) (Indicated by diagonal lines)).
吐出口側の左端の 1 組の電熱線用碍子 G 1においては、 一番左側に第 1図に 示した碍子構成片 Aを揷通部 1 2 aの位置を合致させて 2枚重ね合わせ、 その右 隣に第 3図に示したスぺーサ碍子 Cを同様に揷通部 1 2 cの位置を碍子構成片 A の揷通部 1 2 aに合致させて 1 枚重合し、 その右隣に第 2図に示した碍子構成 片 Bを同様に揷通部 1 2 bの位置をスぺーサ碍子 Cの揷通部 1 2 cに合致させて 1枚重合し、 以下同様にして順次、 1枚のスぺーサ碍子 C、 1枚の碍子構成片 、 1枚のスぺーサ碍子 C、 そして 2枚の碍子構成片 Bを重合して全体で 9枚の構成 片を重ね合わせて 1組の電熱線用碍子 G 1を構成している。  In the pair of heating wire insulators G1 at the left end on the discharge port side, two insulator component pieces A shown in Fig. To the right of the spacer insulator C shown in Fig. 3, one piece of the insulator is also superposed, with the position of the through-portion 12c matching the through-portion 12a of the insulator component piece A. In the same manner, the insulator component B shown in FIG. 2 is similarly overlapped with one piece so that the position of the through portion 12 b matches the through portion 12 c of the spacer insulator C. One spacer insulator C, one insulator component piece, one spacer insulator C, and two insulator component pieces B are superimposed and a total of nine component pieces are overlapped to form a set. This constitutes the heating wire insulator G1.
同様に、 中央の 1 組の電熱線用碍子 G 2においては、 上記と同様にして 2枚 の碍子構成片 、 1枚のスぺーサ碍子 C、 1枚の碍子構成片8、 1枚のスぺーサ 碍子 C、 2枚の碍子構成片 Aを順次左から右に重ね合わせて合計で 7枚の構成片 により 1組の電熱線用碍子 G 2を構成している。 更に一番右端側の 1組の電熱線用碍子 G 3においても、 同様に 2枚の碍子構 成片8、 1枚のスぺーサ碍子 C、 1枚の碍子構成片 、 1枚のスぺーサ碍子 C、 2枚の碍子構成片 Bを順次左から右に重ね合わせて合計で 7枚の構成片により 1 組の電熱線用碍子 G 3を構成している。 Similarly, in the central set of heating wire insulators G2, two insulator component pieces, one spacer insulator C, one insulator component piece 8, and one A pair of insulators C and two insulator components A are sequentially superimposed from left to right to form a set of heating wire insulators G 2 with a total of seven components. Furthermore, in the set of heating wire insulators G3 on the far right side, similarly, two insulator component pieces 8, one spacer insulator C, one insulator component piece, and one spacer A pair of insulators C and two insulator component pieces B are sequentially superimposed from left to right, and a total of seven component pieces constitute one set of heating wire insulator G3.
以上の通り、 各組の碍子 G l、 G 2、 G 3は、 それぞれその両端部で同一の碍 子構成片 A又は Bを 2枚重ねているが、 その中間部においては,接する相互の構 成片は、 異なる構成片 、 Bが位置し、 その間にスぺーサ碍子 Cが配置されるこ ととなる。 これにより碍子構成片 、 Bの気体流通孔 1 0、 1 0、 …が少しずれ た位置関係となり、 電熱線をツイストして確実に保持することができるのである。 ここで碍子構成片の重合方法は、 任意に設定することができ、 常に必ずしも両 端部に 2枚ずつ重ね合わせる必要もなく、 全て 1枚ずつ交互にスぺーサ碍子 Cを 介在させて碍子構成片 Aと Bを重ね合わせて行く事もできる。 或いは全て 2枚ず つ交互に碍子構成片 Aと Bを重ね合わせ、 その間に 1枚のスぺーサ碍子 Cを介在 させても良い。 更にはスぺーサ碍子を 2枚重ねて、 碍子構成片 Aと Bの間に介在 させることもできるし、 碍子構成片 Aの重合枚数と碍子構成片 Bの重合枚数を異 ならせてスぺーサ碍子を介して相互に重ね合わせることもできる。 このように 3 種類の構成片の重ね合わせ方法は全く自由に行うことができる。 但し、 スぺーサ 碍子 Cは、 碍子構成片 Aと Bの間に配置する必要がある。 このスぺーサ碍子を介 在させないと、 電熱線の配線が困難となるからである。  As described above, each of the insulators Gl, G2, and G3 has two identical pieces A or B at the both ends, but at the middle part, the mutual contact structures are in contact. In the piece, different component pieces B are located, and spacer insulator C is arranged between them. Thus, the gas flow holes 10, 10,... Of the insulator component piece B have a slightly shifted positional relationship, and the heating wire can be twisted and held reliably. Here, the method of superimposing the insulator constituent pieces can be set arbitrarily, and it is not always necessary to superimpose two pieces at both ends, and the insulator is configured by interposing spacer insulators C one by one alternately. Pieces A and B can be overlapped. Alternatively, two insulator components A and B may be alternately superimposed on each other, and one spacer insulator C may be interposed therebetween. Furthermore, two spacer insulators can be stacked and interposed between the insulator component pieces A and B, and the overlap number of the insulator component piece A and the overlap number of the insulator component piece B can be varied. They can be superimposed on each other via insulators. Thus, the method of superimposing the three types of component pieces can be performed completely freely. However, spacer insulator C must be placed between insulator components A and B. Unless this spacer is interposed, wiring of the heating wire becomes difficult.
また碍子構成片の重合に際しては、 それぞれの構成片の揷通部 1 2 a、 1 2 b、 1 2 cの位置を同一に配置することが必要であり、 これにより、 それぞれの組の 電熱線用碍子が固定され、 また電熱線の電極ターミナル 3 3の端子 3 5を気体吸 入口 3 1の側の右端部にまとめて配置することが可能となるのである。  In addition, when stacking the insulator component pieces, it is necessary to arrange the positions of the through portions 12a, 12b, and 12c of the component pieces in the same manner, and as a result, each set of heating wire The insulator is fixed, and the terminal 35 of the electrode terminal 33 of the heating wire can be arranged collectively at the right end of the gas inlet 31 side.
この電極ターミナル 3 3は、 それぞれの碍子構成片を固定するためにも使用す るため、 金属製のプレートを使用しており、 この第 5図においては、 図示簡略化 のため上記電極ターミナル 3 3を 1枚のみ図示しているが、 実際には各揷通部の 3箇所にそれぞれ設けられることとなる。  The electrode terminal 33 uses a metal plate because it is also used for fixing each insulator component piece. In FIG. 5, the electrode terminal 33 is used for simplicity. Although only one is shown in the figure, it is actually provided at each of three locations in each of the communication sections.
更に、 碍子構成片 Aと Bにおいて、 それぞれの気体流通孔の位置のずれに関し ては、 電熱線の配線、 及ぴ気体の流通における圧力損失等を考慮して一定の範囲 内で設定する必要がある。 即ち、 上記実施形態においては、 その気体流通孔の位 置のずれは、 中心角にして約 5度の相違を設けていたが、 この相違は 5度以上で も、 5度以下であってもよく、 碍子構成片の気体流通孔が適切にニクロム線を保 持、 固定でき、 送風気体の圧力損失をできる限り抑えられる程度であればよい。 このように気体流通孔の位置をずらしたことにより電熱線を確実に保持でき、 更にスぺーサ碍子を介することにより、 気体流通孔の位置のずれがあっても電熱 線の配線に何ら問題を生じないという効果を有する。 それと共に、 この空間 1 4 の存在が、 碍子構成片 A及び Bの気体流通孔内での送風気体の温度上昇のむらを 緩和させることも可能となり、 一部の気体流通孔内での電熱線の過剰温度上昇を 抑制することもでき、 電熱線の断線等の予防にも寄与することとなるのである。 この熱風発生用ヒータにおいては、 上記のように 3組の電熱線用碍子 G 1、 G 2、 G 3が収納され、 これらに配線されるニクロム線にそれぞれ独立に電力を供 給することが可能となる。 Furthermore, regarding insulator component pieces A and B, Therefore, it is necessary to set the temperature within a certain range in consideration of the wiring of the heating wire and the pressure loss in the flow of gas. That is, in the above embodiment, the difference in the positions of the gas flow holes is provided with a difference of about 5 degrees as the central angle, but this difference is not less than 5 degrees and not more than 5 degrees. It is only necessary that the gas flow holes of the insulator component piece can appropriately hold and fix the nichrome wire, and that the pressure loss of the blown gas be suppressed as much as possible. By displacing the gas flow holes in this way, the heating wire can be reliably held, and through the spacer insulator, even if the gas flow holes are misaligned, there is no problem in the wiring of the heating wire. It has the effect of not occurring. At the same time, the presence of this space 14 also makes it possible to reduce the uneven temperature rise of the blown gas in the gas flow holes of the insulator constituent pieces A and B, and to reduce the heating wire in some of the gas flow holes. Excessive temperature rise can be suppressed, which also contributes to prevention of disconnection of the heating wire. In the heater for generating hot air, three sets of heating wire insulators G1, G2, and G3 are housed as described above, and power can be supplied independently to the nichrome wires wired to these. It becomes.
例えば、 本実施形態の場合には、 吸入口 3 1に近い側の碍子 G 3に配線される ニクロム線には約 5〜7 WZ c m2 (ワット密度) の電力供給によって気体を常 温から約 4 0 0 °C位まで加熱し、 次の碍子 G 2に配線されるニクロム線には約 4 〜6 W_ c m2の電力を供給して、 気体を約 4 0 0 °Cから 6 0 0 °C程度まで加熱 し、 最後に一番吐出口側に位置する碍子 G 1には約 2〜4 WZ c m2 の電力を供 給して約 8 0 0 °C以上の熱風を発生させることができる。 For example, in the case of the present embodiment, the nichrome wire wired to the insulator G3 near the suction port 31 is supplied with power of about 5 to 7 WZ cm 2 (watt density) to convert gas from normal temperature to about 5 WZ cm 2 (watt density). 4 was heated to 0 0 ° C position, the nichrome wire, which is wired to the next insulator G 2 supplies power of about 4 to 6 W_ cm 2, the gas to about 4 0 0 ° C from 6 0 0 ° Heat to about C, and finally supply the power of about 2 to 4 WZ cm 2 to the insulator G 1 located closest to the discharge port side to generate hot air of about 800 ° C or more .
これに対して第 1 1図に示した従来のタイプのヒータにおいては、 構造上碍子 の入り口から出口まで、 同じ電熱線が往復しており、 この電熱線の表面負荷は、 一番高温になる場所に合わすことになるという無駄があつた。  In contrast, in the conventional heater shown in Fig. 11, the same heating wire reciprocates from the entrance to the exit of the insulator due to its structure, and the surface load of this heating wire is the highest. There was a waste of having to fit the place.
そして、 従来のタイプのヒータにおいては、 連続最高吐出温度 8 0 0 °C、 容量 1 2 k wのものでは、 ヒータ収納部の吐出方向の長さ L 1 (第 1 1図参照。 但し 第 1 1図のものは容量 1 2 k wのものではなく、 それよりも小さい容量のもので ある。) が約 7 2 5 mmであったが、 この従来のヒータと同一の連続最高吐出温 度 8 0 0 °C、 同一容量 1 2 k wの本発明のヒータでは、 ヒータ収納部の吐出方向 の長さ L 2 (第 5図参照) を 3 4 6 mmにすることができ、 約半分の長さに短縮 することができた。 この事実は本発明に係るヒータが極めて高い熱交換効率を発 揮するものであることを如実にものがたつている。 In the case of a conventional type of heater having a continuous maximum discharge temperature of 800 ° C. and a capacity of 12 kW, the length L 1 of the heater storage section in the discharge direction (see FIG. 11; The one in the figure is not a capacity of 12 kW but a smaller capacity.) Was about 725 mm, but the same continuous maximum discharge temperature as this conventional heater was 800 With the heater of the present invention at 12 ° C and the same capacity of 12 ° C, the discharge direction The length L 2 (see Fig. 5) can be reduced to 346 mm, and the length can be reduced to about half. This fact clearly demonstrates that the heater according to the present invention exerts extremely high heat exchange efficiency.
第 6図は、 碍子構成片 A又は Bの中央部分に位置する気体流通孔の一部拡大正 面図である。 気体流通孔 1 0は、 内径が略 7 . 7 mmの円形の貫通孔から成り、 その内壁の気体流通方向に 4本の突条 1 1をそれぞれ同一間隔に形成している。 この突条 1 1が卷回された-クロム線等の電熱線を気体流通孔 1 0内に内壁と一 定の間隔を維持して保持することができ、 卷回された電熱線の内外面に適切に送 風気体が接触し、 電熱線から送風気体に有効に熱伝導が行われ、 より熱効率を高 める結果となる。  FIG. 6 is a partially enlarged front view of a gas flow hole located at the center of the insulator component A or B. The gas flow hole 10 is formed of a circular through hole having an inner diameter of approximately 7.7 mm, and has four ridges 11 formed at the same interval in the gas flow direction on the inner wall. A heating wire such as a chrome wire on which the ridge 11 is wound can be held in the gas flow hole 10 at a constant distance from the inner wall, and the inner and outer surfaces of the wound heating wire can be maintained. The blast gas contacts the blast gas properly, and heat is effectively conducted from the heating wire to the blast gas, resulting in higher thermal efficiency.
中央部分の気体流通孔 1 0 cにおいては、 碍子構成片の中心点側は気体流通孔 の壁面が拡張された空間部からなる温度センサ挿通部 1 0 sが形成されており、 1組の電熱線用碍子が重合された後、 この温度センサ揷通部 1 0 sに熱伝対等の 温度センサをヒータの吸入口側の端部から揷入して配備し、 所望の位置での温度 測定が可能となる。 In the gas flow hole 10c in the central part, a temperature sensor insertion portion 10s consisting of a space portion in which the wall surface of the gas flow hole is expanded is formed at the center point side of the insulator constituting piece, and one set of power supply holes is formed. After the heat wire insulator is superimposed, a temperature sensor such as a thermocouple is inserted into the temperature sensor passage 10 s from the end on the suction port side of the heater and deployed, so that temperature measurement at a desired position can be performed. It becomes possible.
第 7図は、 本発明の他の実施形態に係る碍子構成片 2 0を図示する気体流通方 向から見た正面図であり、 第 8図は、 本発明の他の実施形態に係るスぺーサ碍子 4 0を図示する気体流通方向から見た正面図である。  FIG. 7 is a front view showing an insulator constituting piece 20 according to another embodiment of the present invention viewed from the gas flow direction, and FIG. 8 is a view showing a space according to another embodiment of the present invention. It is the front view which looked at the insulator 40 from the gas flow direction illustrated.
まず第 7図に示した碍子構成片 2 0は、 前記実施形態に係る碍子構成片 A及び Bと同様に、 一定の厚みを有する正面視円形形状の円盤形状の板状体のもので、 セラミック製の断熱及び絶縁体からなる。 その大きさは、 厚みが約 1 0 mm、 外 径が約 6 6 mmで、 前記実施形態に係る碍子構成片 A及び Bよりもやや小型であ る。 またこの碍子構成片 2 0は、 1種類のみであり、 その周縁部に設ける挿通部 の配置により、 気体流通孔 2 1の位置を少しずらすことができるものである。 碍子構成片 2 0の全面には、 その中心部分から周縁部分に向けてほぼ全方向に、 横断面円形形状の貫通孔からなる多数の気体流通孔 2 1、 2 1、 …を穿設してい る。 その中央部分の 2つの気体流通孔 2 1 c、 2 1 cには、 温度センサ (図示省 略) を揷通するための空間部からなる温度センサ揷通部 2 1 s、 2 1 sが設けら れている。 この温度センサ揷通部 21 sは、 気体流通孔 21 cである貫通孔の碍 子構成片 20の中心側部位を拡張するように形成されたものである。 この 2つの 温度センサ揷通部 21 sにより 2個の温度センサを配備させることができる。 碍子構成片 20の周縁部分には、 この構成片 20を相互に固定するため、 また 二クロム線等の電熱線の端末の電極ターミナルを配線するための 3つで 1組の揷 通部 (22 a, 22 b, 22 c ) を同一間隔に、 つまりその中心角度を 1 20度 間隔に設け、 更にもう 1組の 3個の揷通部 (22 x, 22 y , 22 z) を同一間 隔に、 その中心角度を 1 20度間隔に形成している。 そして、 これら 2組の揷通 部 (22 a、 22 b、 22 c) と揷通部 (22 x、 22 y、 22 z) をそれぞれ 65度 (γ) ずつ反時計回りにずらした位置に設けている。 First, the insulator component piece 20 shown in FIG. 7 is a disc-shaped plate-like body having a constant thickness and a circular shape in a front view similar to the insulator component pieces A and B according to the embodiment, and is made of ceramic. Made of thermal insulation and insulator. The size is about 10 mm in thickness and about 66 mm in outer diameter, and is slightly smaller than the insulator component pieces A and B according to the above embodiment. Further, this insulator component piece 20 is only one type, and the position of the gas flow hole 21 can be slightly shifted by the arrangement of the insertion portion provided on the peripheral portion. A large number of gas flow holes 21, 21,... Formed of through-holes having a circular cross section are formed in the entire surface of the insulator component piece 20 in almost all directions from the center portion to the peripheral portion. You. The two gas flow holes 21c and 21c at the center are provided with temperature sensor passages 21s and 21s, respectively, which are spaces for passing a temperature sensor (not shown). La It is. The temperature sensor communication portion 21 s is formed so as to extend the center side portion of the insulator component piece 20 of the through hole that is the gas flow hole 21 c. Two temperature sensors can be provided by these two temperature sensor passages 21 s. A set of three through-holes (22) are provided around the periphery of the insulator component piece 20 to fix the component piece 20 to each other and to wire the electrode terminals of the terminals of the heating wire such as a dichrome wire. a, 22 b, 22 c) are arranged at the same interval, that is, the center angle is set at an interval of 120 degrees, and another set of three communicating portions (22 x, 22 y, 22 z) is arranged at the same interval. In addition, the central angles are formed at intervals of 120 degrees. Then, these two sets of through-holes (22a, 22b, 22c) and through-holes (22x, 22y, 22z) are provided at positions shifted counterclockwise by 65 degrees (γ), respectively. ing.
これによつて、 碍子構成片 20の 2枚を重ね合わせて、 一方の碍子構成片 20 の揷通部 (22 a、 22 b、 22 c) を他方の碍子構成片 20の揷通部 (22 x、 22 y、 22 z) にそれぞれ合致させるに際し、 一方の碍子構成片 20の揷通部 20 aと、 他方の碍子構成片 20の揷通部 20 Xとを同一位置に配置することに より、 それぞれの揷通部の位置が合致し、 しかも、 それぞれの気体流通孔 21、 21、 …の位置が少しずれた位置に、 即ち、 この実施形態では中心角が 5度ずれ た位置に配置されることとなるのである。  As a result, the two pieces of the insulator component pieces 20 are overlapped, and the communicating portions (22a, 22b, 22c) of one insulator component piece 20 are connected to the communicating portions (22) of the other insulator component piece 20. x, 22 y, and 22 z), respectively, by disposing the through portion 20 a of one insulator component 20 and the through portion 20 X of the other insulator component 20 at the same position. , And the positions of the gas flow holes 21, 21,... Are slightly shifted, that is, in this embodiment, the center angles are shifted by 5 degrees. It will be.
この実施形態における揷通部のそれぞれの形態は、 碍子構成片 20の外周縁か ら一定角度をもって周方向に細長い切り込み状に形成されたものからなる。 より 厳密には、 これらの揷通部は、 中心線 Yに対して約 45度 (δ) の角度をもって 形成されている。  Each form of the through-holes in this embodiment is formed in a notch shape elongated in the circumferential direction at a certain angle from the outer peripheral edge of the insulator component piece 20. More strictly, these through portions are formed at an angle of about 45 degrees (δ) with respect to the center line Y.
これら挿通部は、 中心線 Υに対して 45度の角度をもった切り込みによって形 成しているが、 この角度はまったく任意であって、 自由に設定することが可能で ある。  These insertion portions are formed by cuts having an angle of 45 degrees with respect to the center line Υ, but this angle is completely arbitrary and can be set freely.
気体流通孔 2 1の内径は、 約 7. 7 mmで、 そのそれぞれの内壁にはその気体 流通方向に電熱線を支持するための 4つの突条 25が形成されている点は、 前記 碍子構成片 A, Bと同様である。  The inner diameter of the gas flow hole 21 is about 7.7 mm, and each of the inner walls is formed with four ridges 25 for supporting a heating wire in the gas flow direction. Same as pieces A and B.
第 8図は、 スぺーサ碍子 40を示しており、 その厚み及ぴ外径は前記碍子構成 片 20とほぼ同一であるが、 多数の個別の気体流通孔は全く存在せずに、 中央部 分はくり抜かれた空間 44となっており、 正面視円形の枠体からなる枠体部 4 6 のみからなり、 かかる枠体部 4 6の 3箇所に同一間隔でそれぞれ拡張部 4 8を設 け、 これら拡張部 4 8のそれぞれに長孔からなる揷通部 42を設けたものである。 これらの揷通部 4 2は、 周方向に同一間隔で形成され、 つまりそれらの中心角を 1 2 0度に形成し、 前記第 7図に示した碍子構成片 2 0の揷通部 (2 2 a、 2 2 b、 2 2 c) 又は揷通部 (2 2 x、 2 2 y、 2 2 z ) と同一位置に位置させるこ とができ、 これらの揷通部である切り込みと合致する長孔によって形成されてい る。 従って、 2枚の碍子構成片 2 0, 20を、 それらの揷通孔 20 aと揷通孔 2 O xとを合致させることにより、 気体流通孔 2 1、 2 1、 …が相互に 5度だけず れた位置関係となり、 且つ、 両碍子構成片 20, 2 0の間にスぺーサ碍子 4 0を 配置させ、 且つスぺーサ碍子 4 0の揷通部 (4 2、 4 2, 4 2) を碍子構成片 2 0、 2 0の揷通部 (2 2 a、 2 2 b、 22 c) と揷通部 (2 2 x、 2 2 y、 2 2 z) とを同一の位置に配置することができるのである。 FIG. 8 shows a spacer insulator 40 whose thickness and outer diameter are the same as those of the insulator. It is almost the same as the piece 20, but does not have many individual gas flow holes at all, and has a hollowed-out space 44 at the center. The extended portions 48 are provided at the same intervals at three positions of the frame portion 46, and the extended portions 48 are provided with the through portions 42 formed of long holes. These through portions 42 are formed at equal intervals in the circumferential direction, that is, their central angles are formed at 120 degrees, and the through portions (2) of the insulator component piece 20 shown in FIG. 2 a, 22 b, 22 c) or through-holes (22 x, 22 y, 22 z) can be positioned at the same position as these cut-outs It is formed by long holes. Therefore, by making the two insulator constituent pieces 20 and 20 coincide with the through hole 20a and the through hole 2O x, the gas flow holes 21 1, 2 1,. The spacers are displaced from each other, and the spacers 40 are arranged between the insulator component pieces 20 and 20, and the through portions of the spacers 40 (42, 42, 4) 2) Place the through-holes (22a, 22b, 22c) and the through-holes (22x, 22y, 22z) of the insulator pieces 20 and 20 in the same position. It can be placed.
第 9図は、 上記碍子構成片 2 0, 2 0及びスぺーサ碍子 4 0を重ね合わせた状 態の透視正面図であり、 それぞれの気体流通孔 2 1、 2 1、 …の位置関係及ぴそ れぞれの揷通部 (2 2 a、 2 2 b、 2 2 c) (2 2 x、 2 2 y、 2 2 z) (4 2, 4 2, 42) の位置関係を見て取ることができる。  FIG. 9 is a perspective front view of the state in which the insulator constituent pieces 20 and 20 and the spacer insulator 40 are superimposed on each other, and shows the positional relationship between the gas flow holes 21, 21, and so on.る こ と Look at the relative positions of the through-holes (22a, 22b, 22c) (22x, 22y, 22z) (42, 42, 42). Can be.
この図から解る通り、 これら 3枚の構成片及びスぺーサ碍子においては、 これ らを相互に重ね合わせた際に固定用及び Z又は電極配線用のそれぞれの揷通部 (2 2 a、 2 2 b、 2 2 c) (2 2 x 2 2 y、 2 2 z) (4 2, 4 2, 4 2) は それぞれ同一位置に配置される。 そして、 この際に碍子構成片 20, .20の気体 流通孔 2 1、 2 1、 …のそれぞれは、 少しその位置がずれた状態となる。 即ち、 それぞれの構成片の中心点を中心として一方の構成片の気体流通孔が中心角にお いて 5度だけ他方のものとずれた位置関係となるのである。  As can be seen from these figures, in these three component pieces and spacer insulators, when they are superimposed on each other, the respective through portions (22 a, 2 2 b, 2 2 c) (22 x 22 y, 22 z) (42, 42, 42) are arranged at the same position. At this time, the positions of the gas flow holes 21, 21,... Of the insulator component pieces 20, .20 are slightly shifted. That is, the gas flow holes of one of the constituent pieces are shifted from the other by 5 degrees at the center angle with respect to the center point of each of the constituent pieces.
更に、 碍子構成片 20, 2 0は、 いずれを手前側又は向う側に配置するのも自 由であるが、 スぺーサ碍子 40は、 これら碍子構成片 2 0, 2 0の間に配置する 必要がある。 このようにして適宜枚数の碍子構成片 2 0、 2 0、 …並びにスぺー サ碍子 4 0を重ね合わせることによって 1組の電熱線用碍子が構成される。 このような構成に係る 1 組の電熱線用碍子においては、 上記の通り一部の又 は全部の隣接する碍子構成片の気体流通孔がスぺーサ碍子を介して少しずれた位 置関係となることから、 この気体流通孔に配線される二クロム線等の電熱線を配 線した際に電熱線が碍子構成片によってツイストされ確実に固定、 保持されるこ ととなる。 これにより碍子の気体流通孔を上下方向に向けた際にも、 電熱線が上 下方向に移動することが防止され、 或いは送風気体の風圧等による電熱線の気体 流通孔からの飛び出し等が防止され、 更には振動等によっても何らの悪影響をも 受けることがなくなるのである。 Further, any of the insulator components 20, 20 may be arranged on the near side or the opposite side, but the spacer insulator 40 must be arranged between these insulator components 20, 20. There is. In this way, the appropriate number of insulator constituent pieces 20, 20,. A set of heating wire insulators is formed by superposing the insulators 40. In a set of heating wire insulators having such a configuration, as described above, the gas flow holes of some or all of the adjacent insulator component pieces are shifted slightly through the spacer insulator. Therefore, when a heating wire such as a dichromium wire to be wired in the gas flow hole is wired, the heating wire is twisted by the insulator constituting piece and is securely fixed and held. This prevents the heating wire from moving up and down when the gas flow hole of the insulator is oriented vertically, or prevents the heating wire from jumping out of the gas flow hole due to the wind pressure of the blowing gas. In addition, vibrations and the like do not have any adverse effects.
以上のようにして 1組の電熱線用碍子が構成されるが、 この碍子の 1組を、 又 は 2組以上を所定の間隔を保持してヒータ内に収納し、 配設することによって高 温の熱風発生用ヒータを構成することができることは、 上記第 1の実施形態と同 様である。  One set of heating wire insulators is constructed as described above. One or two or more sets of these insulators are housed in a heater with a predetermined interval between them, and they are placed in a high position. As in the first embodiment, a heater for generating hot hot air can be configured.
以上、 最良の実施形態について説明したが、 本発明においては更に以下のよう に設計変更をすることが可能である。  As described above, the best embodiment has been described. However, in the present invention, the design can be further changed as follows.
碍子構成片及びスぺーサ碍子の形状及び大きさは、 適宜必要に応じて設計する ことができる。  The shape and size of the insulator component and the spacer insulator can be appropriately designed as needed.
上記実施形態においては、 これらの外形形状を正面視円形としたが、 これを楕 円、 四角形或いは多角形とすることも可能である。 この場合にはヒータの本体部 の形状もこれに適合させる必要がある。  In the above embodiment, these external shapes are circular when viewed from the front, but they may be elliptical, square, or polygonal. In this case, the shape of the main body of the heater must be adapted to this.
またそれらの外径サイズも任意に設定できる。 厚みに関しては、 碍子構成片及 びスぺーサ碍子共に 1 0 mmとしたが、 1 0 mm以上でも、 1 0 mm以下であつ てもよい。 更に碍子構成片とスぺーサ碍子のそれぞれの厚みを同一とせずに、 そ れぞれ異なる厚みとすることもできる。  Also, their outer diameter sizes can be set arbitrarily. The thickness of the insulator component piece and the spacer insulator is set to 10 mm, but may be 10 mm or more or 10 mm or less. Furthermore, the thicknesses of the insulator component piece and the spacer insulator may not be the same, but may be different thicknesses.
電熱線を配線する気体流通孔は、 上記実施形態のいずれにおいても横断面円形 形状のものとしたが、 これを角部を丸くした 4角形形状のものとすることもでき る。  In each of the above embodiments, the gas flow hole for wiring the heating wire has a circular cross section, but may have a quadrangular shape with rounded corners.
またそれぞれの碍子構成片に穿設された多数の気体流通孔の内径は、 上記実施 形態のそれぞれにおいて、 全て同一としているが、 その中央部分に位置する気体 流通孔の内径をその周縁部分に穿設されている気体流通孔の内径よりも少し大き く形成することもできる。 In addition, the inner diameters of a number of gas flow holes drilled in each insulator component In each of the embodiments, all are the same, but the inner diameter of the gas flow hole located in the center portion may be formed slightly larger than the inner diameter of the gas flow hole formed in the peripheral portion.
温度センサ揷通部は、 碍子構成片の中央部分に位置する 1つの気体流通孔に設 けたものでもよく、 必要に応じて 2以上設けてもよい。  The temperature sensor passage may be provided in one gas flow hole located in the center of the insulator component piece, or may be provided in two or more as required.
碍子構成片及ぴスぺーサ碍子の周縁部分に設けられた固定用及び/又は電極配 線用の揷通部の構成も適宜自由に設計することができる。  The configuration of the insulator component piece and the through-hole for fixing and / or electrode wiring provided on the peripheral portion of the spacer insulator can be freely designed as appropriate.
碍子構成片では切り込みによりこの揷通部を形成したが、 スぺーサ碍子に設け られたような長孔にすることもできる。 逆にスぺーサ碍子の揷通部を切り込みに より形成することもできる。  In the insulator component piece, this through-hole is formed by cutting, but it may be formed as a long hole provided in the spacer insulator. Conversely, the through portion of the spacer insulator can be formed by cutting.
更に、 揷通部を単なる小さい孔によって形成し、 この小孔にワイヤーを挿通さ せて 1組の碍子をその両端で固定し、 二クロム線の端末ターミナルとすることも できる。 勿論この小孔を利用して長軸のポルトとナツトによって固定することも 可能である。  Further, the through portion may be formed by a mere small hole, a wire may be inserted through the small hole, and a pair of insulators may be fixed at both ends to form a terminal terminal of a dichrome wire. Of course, it is also possible to use these small holes to fix with a long axis port and nut.
この揷通部を利用して固定する手段として、 本発明においては、 金属製の長い 帯状のプレート 3 3 (第 5図参照) を用いており、 かかるプレート 3 3が同時に ニクロム線の電極ターミナルをも兼ねている。 ここで、 供給電力が 3相の場合に は、 このプレートは、 基本的には 3本であるが、 大容量の場合は回路構成上 6本 又は 9本としてもよレ、。 単相の場合は 2本、 4本又は 6本にする。 従って、 これ に応じて揷通部の数も適宜自由に設定することができる。  In the present invention, as a means for fixing using the through-hole, a long strip-shaped metal plate 33 (see FIG. 5) is used, and the plate 33 simultaneously serves as a nichrome wire electrode terminal. Doubles as well. Here, if the supply power is three-phase, this plate is basically three, but if it is a large capacity, it may be six or nine in terms of the circuit configuration. For single phase, use two, four or six. Therefore, the number of the communication portions can be set freely as needed.
この帯状プレートは、 固定される 1組の電熱線用碍子から吸入口 3 1の右端部 の電極 3 5に接続する長さを有している。 このプレート 3 3には、 例えば 1組の 碍子 G 1の両端部に位置する部位に切り込みを設け、 このプレートの切り込み部 分を適宜折り曲げることにより碍子構成片等を固定できるようにしている。 この碍子構成片等の固定手段は、 上記揷通部を利用して種々の形態で行うこと が可能である。  The band-shaped plate has a length that connects from a fixed set of heating wire insulators to the electrode 35 at the right end of the suction port 31. The plate 33 is provided with cutouts at, for example, portions located at both ends of a set of insulators G1, and the cutouts of the plate are appropriately bent so that the insulator constituent pieces and the like can be fixed. The fixing means such as the insulator component piece can be performed in various forms using the above-mentioned through-hole.
碍子構成片に設けられた多数の気体流通孔の内径も適宜必要に応じて設定する ことができ、 その数も自由に決定できる。 碍子構成片が正面視四角形の場合には、 気体流通孔を水平方向、 垂直方向又は 斜め方向に少しずらすこともできる。 The inner diameters of a large number of gas flow holes provided in the insulator component piece can also be appropriately set as needed, and the number can be freely determined. When the insulator component is square in front view, the gas flow holes can be slightly shifted in the horizontal, vertical or oblique directions.
上記実施形態においては、 隣接する碍子構成片同士はその中心角を 5度ずらし ているが、 5度以上でも、 5度以下であってもよく、 適切にニクロム線を保持、 固定できる程度であればよい。 即ち、 その中心角が大きすぎると周縁部分に位置 する気体流通孔のずれが大き過ぎ、 ニクロム線の配線が困難となってしまうと共 に気体の流れが阻害され圧力損失の問題が生じ、 他方その中心角が小さすぎると 中央部分に位置する気体流通孔のずれが小さくなり、 ニクロム線の保持、 固定の 効果が少なくなつてしまうので、 これらを考慮して適切な角度にする必要がある。 上記実施形態では、 隣接する碍子構成片同士の気体流通孔は、 その位置を一定 の中心角 5度だけ少し異ならせて、 ずらしているが、 内側に位置する気体流通孔 の中心角の相違を、 外側部分に形成されている気体流通孔の中心角の相違よりも 大きくずらすことも可能である。 これにより内側の気体流通孔のずれが小さいこ とを補正することができる。  In the above embodiment, the center angles of the adjacent insulator component pieces are shifted by 5 degrees, but may be 5 degrees or more or 5 degrees or less, as long as the nichrome wire can be appropriately held and fixed. Just fine. That is, if the central angle is too large, the displacement of the gas flow holes located in the peripheral portion is too large, and it becomes difficult to wire the nichrome wire, and the gas flow is obstructed, and the problem of pressure loss occurs. If the central angle is too small, the gas flow holes located in the central part will be less displaced, and the effect of holding and fixing the nichrome wire will be reduced. In the above embodiment, the positions of the gas flow holes of the adjacent insulator component pieces are slightly shifted by a fixed central angle of 5 degrees to be shifted, but the difference of the central angles of the gas flow holes located inside is different. However, it is possible to shift the gas flow holes formed in the outer portion to a greater extent than the difference in the central angle. This makes it possible to correct that the displacement of the inner gas flow hole is small.
碍子構成片の気体流通孔の内壁に設けられた突条の数も自由に設定することが できるが、 螺旋状に卷回された-クロム線を適切に支持するために 3つ乃至 4つ 設けられていることが望ましい。 また、 突条は、 気体流通孔の内壁の気体流通方 向の全体に渡り連続的に設けているが、 その流通方向に断続的に設けてもよい。 高温熱風発生用ヒータにおいては、 その内部に収納される電熱線用碍子 (碍子 構成片とスぺーサ碍子との重合体) は、 1組のものであってもよいが、 望ましく は 2組以上がベターであり、 2組以上の電熱線用碍子を一定の間隔を保って配置 させるのが最良である。  The number of protrusions provided on the inner wall of the gas flow hole of the insulator component piece can also be freely set, but three or four are provided to appropriately support the spirally wound -chrome wire. Is desirable. Further, the ridges are provided continuously throughout the gas flow direction on the inner wall of the gas flow hole, but may be provided intermittently in the flow direction. In the heater for generating high-temperature hot air, the heating wire insulator (polymer of insulator component piece and spacer insulator) housed in the heater may be one set, but preferably two or more sets. Is better, and it is best to arrange two or more sets of heating wire insulators at regular intervals.
電熱線用碍子同士の間隔は適宜自由に設定できるが、 1枚のスぺーサ碍子の厚 みよりも大きい間隔とすることが望ましい。  The spacing between the heating wire insulators can be freely set as appropriate, but it is desirable that the spacing be larger than the thickness of one spacer insulator.
該ヒータの本体部は、 円筒形状の外観を有するが、 碍子の外形形状に応じて適 宜設計変更することができる。 右端側下方部に設けられた気体の吸入口は、 本体 部の右側端面部に形成することもできる。  The main body of the heater has a cylindrical appearance, but the design can be changed as appropriate according to the outer shape of the insulator. The gas inlet provided at the lower part on the right end side may be formed on the right end face part of the main body.
以上、 本発明は、 請求の範囲内において種々設計変更が可能である。  As described above, the present invention can be variously modified within the scope of the claims.

Claims

請 求 の 範 囲  The scope of the claims
碍子構成片 (A, B)は多数の気体流通孔 (10, 10,...)が穿設された板状体のもの からなり、 その周縁部分にはこの構成片を固定し及び/又は電極を配線でき る 1又は 2以上の揷通部 (12a, 12b)が形成され、 これら碍子構成片 (A, B)の 複数枚を送風方向に重ね合わせて碍子を形成することができ、 この重ね合わ せた状態で一部の又は全ての隣接する構成片同士の気体流通孔 (10, 10,.··)の 位置を相互に少しずらした位置関係に配置し、 且つ、 上記固定用及び/又は 電極配線用の揷通部 (12a, 12b)は同一位置に配置することができ、 更にこの ように重ね合わせた碍子において、 気体流通孔の位置がずれた関係にある隣 接した碍子構成片同士の間には、 この碍子構成片と同一位置に固定用及ぴノ 又は電極配線用の挿通部 (12c)が設けられた周縁部分のみからなる枠体状の ものからなるスぺーサ碍子 (C)を配置して 1 組の電熱線用碍子 (Gl, G2, G3) を構成し、 この 1組の電熱線用碍子の気体流通孔にニクロム線等の電熱線を 配線することができる熱風発生用ヒータの電熱線用碍子。 請求の範囲第 1項において、 碍子構成片 (A, B)の中央部分に穿設された 1又 は 2以上の気体流通孔 (10c)に温度センサを揷通させることができる空間部 (10s)を形成したことを特徴とする熱風発生用ヒータの電熱線用碍子。 請求の範囲第 1項又は第 2項において、 気体流通孔の内壁に電熱線を支持す ることができる突条 (11, 11,··.)を気体の流通方向に複数設け、 巻回された電 熱線を気体流通孔内でその内壁と間隔を維持して支持できるようにしたこと を特徴とする熱風発生用ヒータの電熱線用碍子。 一方端部分に配管を介して送風機等と接続できる気体の吸入口(31)を有し、 他方端部分には熱風を吐出する吐出口(32)を有する略筒形状の熱風発生用ヒ ータであって、 かかるヒータの内部には電熱線が配線された 1組又は 2組以 上の請求の範囲第 1項乃至第 3項の何れかに記載の電熱線用碍子 (Gl, G2, G3)が所定間隔を保って収納され、 それぞれの組の碍子の電熱線には独立に 電力を供給することができるところの熱風発生用ヒータ。 多数の気体流通孔 (10, 10,...)が穿設された板状体からなり、 その周縁部分に は固定用及び Z又は電極配線用の 1又は 2以上の挿通部 (12a, 12b)が形成さ れた請求の範囲第 1項乃至第 3項の何れかに記載した 1組の電熱線用碍子 (Gl, G2, G3)を構成する碍子構成片 (A, B)であるところの電熱線用碍子。 周縁部分に固定用及び/又は電極配線用の 1又は 2以上の挿通部 (12c)のみ が形成され、 その中央部分は空間 (14)となっており、 請求の範囲第 1項乃至 第 3項の何れかに記載の 1組の電熱線用碍子 (Gl, G2, G3)の 1又は 2以上の 位置に配置されるところの枠体状のものからなるスぺーサ碍子 (C)であると ころの電熱線用碍子。 The insulator component (A, B) consists of a plate-like body with a number of gas flow holes (10, 10, ...) perforated, and the component is fixed to the periphery and / or One or more through-holes (12a, 12b) to which electrodes can be wired are formed, and a plurality of these insulator component pieces (A, B) can be overlapped in the air blowing direction to form an insulator. In the superposed state, the positions of the gas flow holes (10, 10,...) Of some or all of the adjacent constituent pieces are arranged in a positional relationship slightly shifted from each other, and Or, the through-holes (12a, 12b) for the electrode wiring can be arranged at the same position, and in the insulator thus superimposed, adjacent insulator component pieces in which the positions of the gas flow holes are shifted from each other. Between the two, there is a peripheral portion where a fixing portion and an insertion portion (12c) for electrode wiring are provided at the same position as the insulator constituting piece. A pair of insulators (C) consisting of frame-shaped insulators is arranged to form a set of heating wire insulators (Gl, G2, G3), and the gas flow holes of this set of heating wire insulators Insulator for heating wire of heater for generating hot air that can wire heating wire such as nichrome wire. In claim 1, a space (10s) through which a temperature sensor can be passed through one or more gas flow holes (10c) formed in the center of the insulator component pieces (A, B). ) Is an insulator for a heating wire of a heater for generating hot air. In claims 1 or 2, a plurality of ridges (11, 11, ...) that can support the heating wire are provided in the gas flow direction on the inner wall of the gas flow hole, A heating wire for a heater for generating hot air, wherein the heating wire can be supported in the gas flow hole while maintaining a distance from an inner wall thereof. A substantially cylindrical hot air generating heater having a gas suction port (31) at one end portion which can be connected to a blower or the like via a pipe, and a discharge port (32) at the other end portion for discharging hot air. The heating wire insulator according to any one of claims 1 to 3, wherein a heating wire is wired inside the heater (Gl, G2, G3) is a heater for generating hot air that is housed at predetermined intervals and can supply power independently to the heating wires of each set of insulators. It consists of a plate with a number of gas flow holes (10, 10, ...) perforated, and one or two or more penetrations (12a, 12b) for fixing and Z or electrode wiring on the periphery. ) Is the insulator component (A, B) that constitutes the set of heating wire insulators (Gl, G2, G3) according to any one of claims 1 to 3 Insulator for heating wire. Claims 1 to 3 wherein only one or more insertion parts (12c) for fixing and / or electrode wiring are formed in the peripheral part, and the center part is a space (14). A spacer insulator (C) consisting of a frame-shaped insulator placed at one or more positions of one set of heating wire insulators (Gl, G2, G3) described in any of Roller heating wire insulator.
PCT/JP2004/001660 2004-02-16 2004-02-16 Heater for generating hot air and insulator for its electric heating wire WO2005078357A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005517868A JP4271686B2 (en) 2004-02-16 2004-02-16 Hot air generating heater and its heating wire insulator
EP04711492.1A EP1717526B1 (en) 2004-02-16 2004-02-16 Heater for generating hot air and insulator for its electric heating wire
PCT/JP2004/001660 WO2005078357A1 (en) 2004-02-16 2004-02-16 Heater for generating hot air and insulator for its electric heating wire
CNB2004800108523A CN100410595C (en) 2004-02-16 2004-02-16 Heater for generating hot air and its electric wire insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/001660 WO2005078357A1 (en) 2004-02-16 2004-02-16 Heater for generating hot air and insulator for its electric heating wire

Publications (1)

Publication Number Publication Date
WO2005078357A1 true WO2005078357A1 (en) 2005-08-25

Family

ID=34857540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001660 WO2005078357A1 (en) 2004-02-16 2004-02-16 Heater for generating hot air and insulator for its electric heating wire

Country Status (4)

Country Link
EP (1) EP1717526B1 (en)
JP (1) JP4271686B2 (en)
CN (1) CN100410595C (en)
WO (1) WO2005078357A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057892A (en) * 2010-09-10 2012-03-22 Taketsuna Seisakusho:Kk Heater for generating hot air
JP2013213637A (en) * 2012-04-03 2013-10-17 Sadayoshi Taketsuna Heater for generating hot air
JP2017020785A (en) * 2013-06-28 2017-01-26 貞徳舎株式会社 Hot blast generating device and method for controlling hot blast generating device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004046B (en) * 2015-07-08 2018-04-10 杭州凯尔云母制品有限公司 The device of the energy is provided for mica slurrying
CN106440348A (en) * 2016-10-18 2017-02-22 上海森松新能源设备有限公司 Radiation type high pressure large flow amount gas heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850284U (en) * 1971-10-18 1973-06-30
JPS51542U (en) * 1974-06-18 1976-01-06

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2235588Y (en) * 1995-11-01 1996-09-18 冯茂全 Chemical gas electrically heating furnace
CN2458837Y (en) * 2000-12-22 2001-11-07 谢镇安 Improved insulator for heater
CN2481105Y (en) * 2001-06-11 2002-03-06 尹浚生 Electric heating bar
DE10163012B4 (en) * 2001-12-20 2006-01-26 Siemens Ag Heating, in particular for a rail vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850284U (en) * 1971-10-18 1973-06-30
JPS51542U (en) * 1974-06-18 1976-01-06

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1717526A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057892A (en) * 2010-09-10 2012-03-22 Taketsuna Seisakusho:Kk Heater for generating hot air
JP2013213637A (en) * 2012-04-03 2013-10-17 Sadayoshi Taketsuna Heater for generating hot air
JP2017020785A (en) * 2013-06-28 2017-01-26 貞徳舎株式会社 Hot blast generating device and method for controlling hot blast generating device

Also Published As

Publication number Publication date
EP1717526A1 (en) 2006-11-02
CN100410595C (en) 2008-08-13
JPWO2005078357A1 (en) 2007-08-30
CN1777779A (en) 2006-05-24
JP4271686B2 (en) 2009-06-03
EP1717526A4 (en) 2011-03-30
EP1717526B1 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
US20100266319A1 (en) Heat generation unit and heating apparatus
US20230363509A1 (en) Heater assembly
US20240015856A1 (en) Heater assembly
US20120061379A1 (en) Ceramic Monolith and an Electric Heating Device Incorporating the Said Monolith
US20230375224A1 (en) Heater assembly
WO2005078357A1 (en) Heater for generating hot air and insulator for its electric heating wire
US5928549A (en) Etched foil heater for low voltage applications requiring uniform heating
KR100827469B1 (en) Electic hot blast heater using high frequency induction heaing
KR100906938B1 (en) A Surface heating element hot blast heater
JP5932443B2 (en) Manufacturing method of heater for generating hot air
JP2006261095A (en) Planar heater device
JP5773599B2 (en) Heater heater
JP5379024B2 (en) Electric furnace insert
KR100638442B1 (en) Heater for generating hot air and insulator for its electric heating wire
JPS6035489A (en) Electric heater assembly
KR20090133037A (en) Heater of hair dryer
KR20210056486A (en) Radiant Heat Emitting Electric Heater
US20060193366A1 (en) Heating element structure with efficient heat generation and mechanical stability
JP2022011238A (en) Heater for generating warm air and insulator thereof
JP2005093746A (en) Heat treatment furnace
JP2023063866A (en) Hot air generation heater and insulator for the same
JP2021042866A (en) Liquid heating device
JPH0723917Y2 (en) Spiral insulator for heating wire
JP2007157488A (en) Planar heating element
JPH1187025A (en) Skin current heating apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004711492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057018453

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048108523

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005517868

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057018453

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004711492

Country of ref document: EP