WO2005077984A1 - Process for producing organic compound and antibody for use therein - Google Patents

Process for producing organic compound and antibody for use therein Download PDF

Info

Publication number
WO2005077984A1
WO2005077984A1 PCT/JP2005/001901 JP2005001901W WO2005077984A1 WO 2005077984 A1 WO2005077984 A1 WO 2005077984A1 JP 2005001901 W JP2005001901 W JP 2005001901W WO 2005077984 A1 WO2005077984 A1 WO 2005077984A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
group
antibody
reaction
Prior art date
Application number
PCT/JP2005/001901
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Uesato
Yasuo Nagaoka
Takeyuki Kohno
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Publication of WO2005077984A1 publication Critical patent/WO2005077984A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids

Definitions

  • the present invention relates to a method for producing an organic compound and an antibody used for the method.
  • V ⁇ ⁇ yuru abzyme or abzyme see, eg, Lerner et al. (See non-patent document 6) and Schultz et al. (See non-patent document 7).
  • Synthetic methods using catalytic antibodies are widely known.
  • the antibody is used as a catalyst for accelerating the reaction by reducing the free energy in the transition state of the reaction using an antibody that recognizes the transition state compound of the target reaction. This is the synthesis method used.
  • Non-patent literature l Atta-ur-Rahman; Basha, A .; Ghazala, M. Tetrahedron Lett., 1976, 27, 2351-2354.
  • Non-Patent Document 2 Kuehne, M.E .; Matson, P.A .; Bornmann, W.G.J.Org.Chem.,
  • Non-Patent Document 3 Bornmann, WG; Kuehne, MEJ Org.Chem., 1992, 57, 1752-1760.
  • Non-Patent Document 4 Magnus, P .; Mendoza, JS; Stamford, A .; Ladlow, M .; Willis, PJ Am. Chem. Soc, 1992, 114, 10232-10245.
  • Patent Document 5 Yokoshima, S .; Ueda, T .; Kobayashi, S .; Sato, A .; Kuboyama,
  • Non-Patent Document 6 Tramontano, A .; Janda, K.D .; Lerner, R.A.Science, 1986, 234, 1566-1570.
  • Non-Patent Document 7 Pollack, S.J .; Jacobs, J.W; Schultz, P.G.Science, 1986, 234, 1570-1573.
  • Non-Patent Document 8 Langlois, N .; Potier, P.J.C.S.Chem.Commun “1979, 582-583.
  • an object of the present invention is to provide a method for producing an organic compound at a high yield, which can be applied to a compound having a complicated structure, and an antibody suitable for the method.
  • a production method of the present invention is a method for producing an organic compound, wherein the precursor of the organic compound is produced in the presence of an antibody capable of recognizing the organic compound to be produced. This is a production method for converting into an organic compound.
  • the method for producing an organic compound of the present invention can be applied to a compound having a complicated structure, and the organic compound to be produced (hereinafter referred to as “the target compound”) Or simply referred to as “target compound”) can be obtained in high yield.
  • the target compound the organic compound to be produced
  • target compound simply referred to as “target compound”
  • FIG. 1 is a graph showing the results of ELISA measurement of deacetylVLB-TG complex-sensitized mice.
  • FIG. 2 is a graph showing column chromatography separation of antibody MAb-10-A9.
  • FIG. 3 is a graph showing HPLC sampling of a reaction using the antibody of the present invention.
  • FIG. 4 is a graph showing HPLC sampling of a reaction using the antibody of the present invention.
  • FIG. 5 is a graph showing HPLC sampling of a reaction using the antibody of the present invention.
  • FIG. 6 is a graph showing HPLC sampling of a reaction using the antibody of the present invention.
  • FIG. 7 is a graph showing sampling by ESI-MS of a reaction using the antibody of the present invention.
  • the conventional Abzyme uses an antibody that recognizes a transition state of a target reaction.
  • the inventors of the present invention used an antibody that recognizes the target compound instead of the transition state of the reaction as an abzyme! /, And obtained an idea, and synthesized based on this idea.
  • the present inventors have found that the target compound can be produced under low pressure and mild conditions, and have reached the present invention.
  • an abzyme can be obtained without using a transition state compound or a transition state analog which is difficult to synthesize, so that the production method of the present invention can be applied to a compound having a complicated structure.
  • the target compound can be obtained in high yield as described above.
  • the production method of the present invention may consist only of a conversion reaction from the precursor to the organic compound, but may further include other reaction steps as appropriate. Further, the organic compound to be produced may be used to induce another compound by another reaction step.
  • the conversion reaction from the precursor to the organic compound is not particularly limited.
  • at least a group force including an addition reaction, an elimination reaction, a transfer reaction, an oxidation-reduction reaction, a condensation reaction, and a decomposition reaction is also selected.
  • it involves one reaction.
  • by utilizing the high discriminating ability of the antibody it can be effectively used for a reaction to selectively obtain a specific product among a plurality of products.
  • an optical isomer enantiomer
  • the conversion reaction from the precursor to the organic compound may be a seed. It is applicable to various organic compounds, and the organic compound to be produced is not particularly limited.
  • V is preferably, for example, a compound represented by the following formula (I).
  • R 1 is a hydrogen atom, a linear or branched alkyl group having 16 carbon atoms, or a linear or branched acyl group having 16 carbon atoms,
  • R 2 is a hydrogen atom, a linear or branched alkoxy group having 16 carbon atoms, or an amino group
  • R 3 is a hydrogen atom, a linear or branched alkyl group having 16 carbon atoms, or a linear or branched acyl group having 116 carbon atoms;
  • R 4 is a hydrogen atom, a C 16 linear or branched alkyl group, or a C 16 linear or branched acyl group,
  • R 5 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms
  • R 6 is a hydrogen atom, a linear or branched alkoxy group having 16 carbon atoms, or an amino group
  • R 7 is a hydrogen atom or a linear or branched alkyl group having 16 carbon atoms.
  • the “straight or branched alkyl group having 1 to 6 carbon atoms” is not particularly limited. However, examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group.
  • Examples of the ⁇ or branched alkoxy group '' include, but are not particularly limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy. can give.
  • C6-C16 straight-chain or branched acyl group examples include, but are not particularly limited to, for example, formyl group, acetyl group, propionyl group, isoptyryl group, valeryl group, and isovaleryl group.
  • the acyl group of 1 means a formyl group.
  • R 1 is a methyl group or a formyl group
  • R 2 is a methoxy group or an amino group
  • R 3 is a hydrogen atom or an acetyl group.
  • vinblastine As a target compound represented by the formula (III), vinblastine, vincristine and And vindesine are particularly preferred. These are all compounds that are frequently used for applications such as antitumor drugs.
  • the production method of the antibody when the target compound of the formula (I) is synthesized in the presence of an antibody, the production method of the antibody is not particularly limited, and is, for example, as follows. That is, first, a compound represented by the following formula (IX) is prepared, and it is further converted to a compound represented by the following formula (VII). In the formulas (VII) and (IX), And R 4 —R 7 are the same as those in the above formula (I).
  • the method for producing the compounds represented by the formulas (VII) and (IX) is not particularly limited! However, for example, synthesis of the compound (I) itself is preferred because it is simple and convenient. In this case, first, the same compound as the target compound (I) must be prepared.However, when the compound (I) is a natural compound, it may be obtained through an extraction / sales route from natural sources or the like. However, in the case of a non-naturally occurring compound, it may be synthesized by any method. If the compound (I) can be obtained in a small amount, the compound (I) can be produced again by the production method of the present invention.
  • the method for obtaining the compounds (IX) and (VII) from the compound (I) is not particularly limited.
  • the compound (IX) is produced by reacting the compound (I) with hydrazine, and further producing the compound (IX). More preferably, the hydrochloride is reacted with sodium nitrite to produce compound (VII).
  • a complex is obtained by a condensation reaction between the compound of the formula (VII) and the protein, and the target antibody is produced using the complex as an antigen.
  • the protein is not particularly limited, but is preferably, for example, serum albumin, thyroglobulin, or ovalbumin. This antibody can be used for the production of the target compound (I) as many times as possible without losing the activity.
  • the precursor of the compound represented by the formula (I) is not particularly limited, but may be synthesized.
  • a compound represented by the following formula ( ⁇ ) or ( ⁇ ′) is preferable from the viewpoint of the sharpness and the like.
  • R 1 —R 7 are the same as in the formula (I).
  • the precursor of the target compound represented by the formula (III) is preferably a compound represented by the following formula (IV) or (IV ′).
  • R 1 —R 3 are the same as in the formula (III).
  • the precursor is preferably the corresponding compound of the formula (IV) or (IV), respectively.
  • the reaction conditions for the conversion reaction into the organic compound are not particularly limited.
  • the reaction is preferably performed in the presence of the antibody, an oxidizing agent and a reducing agent.
  • the transition metal element preferably contains at least one of oxygen, air, and a transition metal element, and the transition metal element is preferably Fe (II), Rh (III), or Mn (III). ), Co (III), Ce (IV),
  • the group forces consisting of Mo (VI) and Cu (II) also include at least one selected.
  • the oxygen may be a simple substance or an element contained in an oxygen compound.
  • the transition metal element may be, for example, an element contained in an appropriate transition metal compound.
  • the reducing agent include a hydrogen compound, mercaptoethanol, dithiothreitol (dithiothreito or dithiothreitol), glutathione, and NADH.
  • the group strength consisting of 2 tinamide, FAD and FMN also include at least one selected from the group.
  • NAD represents nicotinamide adenine dinucleotide
  • NADP represents -cotinamide adenine dinucleotide phosphate
  • FAD represents flavin adenine dinucleotide
  • FMN represents flavin mononucleotide.
  • the hydrogen compound is NaBH CN,
  • vinblastine and its synthesis will be described as an example of the target compound and its synthesis by the production method of the present invention.
  • Vinblastine (VLB) has a structure represented by the following chemical formula (1), and is a dimer contained in the leaves of Catharanthus roseus (L.) Don. As a trace component. Indole alkaloid. Its antitumor activity has been used in clinical settings as an important cancer drug for strong bladder cancer, testicular tumor, malignant lymphoma, cystic sarcoma, neuroblastoma and breast cancer. However, since it is a component that exists only in trace amounts in nature, its supply is limited and its cost is high. Therefore, many organic synthesizers have tried to synthesize VLB. As described above, various synthetic routes have already been found, and many have been published in international academic journals (for example, see Non-Patent Documents 115).
  • VLB (l) can be obtained by subjecting anhydro VLB (2) to air oxidation as shown in Scheme 2 below.
  • VLB can be synthesized in high yield by using an antibody that recognizes not the transition state analog but the VLB itself.
  • VLB VLB
  • a complex is synthesized using deacetylVLB as a hapten, and a hapten and a protein, and the complex is used as an antigen to immunize a mouse to produce a monoclonal antibody that recognizes VLB.
  • anhydrovinblastine or anhydroVLB (2) described in the above scheme 2 is prepared. This compound is readily obtained from the monomeric indole alkaloids vindoline and catharanthine. Then, this anhydrovinblastine is reacted in the presence of the monoclonal antibody, oxygen and NBHCN as shown in Scheme 3 below to obtain VLB (l).
  • Anhydrovinblastine (2) is a compound that can be easily obtained. As described above, it has been conventionally difficult to obtain VLB (l) in high yield. However, according to the method of the present invention, it is possible to convert anhydrovinblastine (2) to VLB (l) stereoselectively and regioselectively in one step. Also, for example, VLB (l) can be produced from a conjugated iminium intermediate (3) instead of anhydrovinblastine (2). As described above, according to the present invention, an industrial technology for producing a useful natural conjugate in a short time, which has a complicated structure and conventionally required many steps and strict reaction conditions for its synthesis, has been established. can do. In addition, the present invention is not limited to natural conjugates, and can be used as a method for synthesizing a compound that does not exist in nature.
  • the organic compound to be produced may be, for example, a compound represented by the following formula (V), and among them, taxol (paclitaxel) is particularly preferred. .
  • R 8 to R 13 are each independently a hydrogen atom or a linear or branched alkyl group having 16 carbon atoms.
  • the method for producing the antibody for producing the compound (V) is not particularly limited, and is, for example, as follows. That is, first, the same compound as the target compound (V) is prepared, and it is converted into a compound represented by the following formula (VIII). In the formula (VIII), R 8 — R 13 are the same as in the formula (V).
  • the method for first obtaining the same compound as the target compound (V) is, for example, as described for the compound (I).
  • the method for obtaining the compound (VIII) from the compound (V) is not particularly limited. For example, a method of reacting the compound (V) with succinic anhydride is preferable.
  • a complex is obtained by a condensation reaction between the compound (VIII) and the protein, and the target antibody is produced using the complex as an antigen.
  • the protein is not particularly limited, but is preferably, for example, serum albumin, thyroglobulin, or ovalbumin. This antibody can be used for the production of compound (V) any number of times as long as the activity is not lost.
  • the precursor of the compound (V) is not particularly limited. However, for example, when the target compound, which is preferably a compound represented by the following formulas (Via) and (VIb), is taxol, The precursors are more preferably the corresponding compounds of the formulas (Via) and (VIb) below.
  • the antibody of the present invention that is, the antibody used in the production method of the present invention and a general production method thereof will be described more specifically.
  • the method for producing the antibody of the present invention is not particularly limited, and a known antibody production method or the like may be appropriately applied. Since the conventional Abzyme is an antibody that recognizes the transition state of the target reaction, it was necessary to first synthesize the transition state compound of the reaction or an analog thereof as a hapten as described above. In the case of the antibody of the present invention, there is basically no need for such a method, but except for this point, the antibody is produced by referring to a conventional method for producing Abzym.
  • the antigen is not particularly limited.
  • the antibody is an antibody that recognizes a target compound in a reaction using the same, it is convenient to use, for example, the target compound or a derivative thereof as a pentane.
  • the antibody is preferably an antibody produced using a complex obtained by binding an organic compound (target compound) or a derivative thereof to be produced by the production method of the present invention and a protein as an antigen.
  • the same compound as the target compound may be obtained, and the composite may be produced using the same as a raw material.
  • a compound having a structure similar to, but not identical to, the target compound may be used for the production of the antibody. Once the target antibody is obtained, it can be used for the production of the target compound any number of times as long as its activity is not lost.
  • the method for producing an antibody of the present invention is characterized in that a complex obtained by binding an organic compound or a derivative thereof to be produced by the production method of the present invention and a protein is administered to an animal,
  • the method further comprises a step of extracting the antibody-producing cells from the animal, and fusing the antibody-producing cells with myeloma cells to produce a hybridoma, and culturing the hybridoma in vitro. Is more preferable.
  • the antibody-producing cells can be used as they are, it is better to use hybridomas when culturing cells. And has advantages such as easy maintenance.
  • the method further comprises the step of administering the hybridoma to another animal to obtain ascites containing the target antibody from the animal.
  • the animal to which the hybridoma is administered is not particularly limited, but a mouse is particularly preferable from the viewpoint of easy availability and easy handling.
  • the animal to which the complex is administered is more preferably a mouse.
  • the protein in the complex is more preferably albumin, globulin or hemocyanin from the viewpoint of water solubility, antigenicity, and the like, and particularly preferably is serum albumin, thyroglobulin, or ovalbumin.
  • an anti-nopten antibody when produced using a complex of a hapten and a protein, the properties of the antibody are affected by the binding site between the hapten and the protein in the complex. It is believed that. Specifically, the discriminating ability of the anti-hapten antibody is considered to be strong near the binding site between the hapten and the protein and weaker at a portion farther away. Therefore, also in the case of the complex used for producing the antibody of the present invention, it is preferable to appropriately select the binding site between the hapten and the protein in consideration of the reaction site in the reaction using the antibody.
  • the type of the hapten may be appropriately selected according to the type of the target compound in the reaction using the antibody.
  • the condensation reaction between the compound (VII) or the compound (VIII) and the protein may be performed.
  • the composite obtained by the above method can be used.
  • a complex obtained by binding any one of vinblastine, vincristine, vindesine, taxol, and their derivatives to a protein is suitable for the synthesis of the corresponding hapten or an analog thereof.
  • a monoclonal antibody is also preferable in terms of the ability to use a polyclonal antibody, and the viewpoint of the target reaction yield and selectivity.
  • the production method of the present invention using the antibody of the present invention can be applied to various organic compounds as described above.
  • any reactant can be appropriately used depending on the type of the reaction.
  • the reaction temperature and the reaction time of the conversion reaction to the organic compound are not particularly limited, and may be appropriately set.However, due to its properties, the reaction can be performed under mild conditions as compared with a general organic reaction.
  • IR infrared
  • FTIR-8400 P / N206-71000
  • UV absorbance measurement or UV-visible absorption spectrum measurement
  • MS Mass spectrometry
  • VLB vinblastine
  • thyroglobulin or TG was used as a protein for antibody production (immunization).
  • TG thyroglobulin
  • a complex of deoxy VLB and deacetylVLB was used in consideration of the high water solubility.
  • several methods have been tried for the synthesis of a complex of a VLB derivative and a protein. In this example, the method that yielded the best results is shown.
  • VLB sulfate purchased by Wako Pure Chemical Industries, Ltd. 10 mg (l 1 ⁇ mol) is dissolved in 1 mL of distilled water, and 6N (6 mol / L) NHOH is added to the aqueous solution to adjust the pH to 10, and the aqueous solution is dissolved. inside
  • the released VLB was extracted three times with 3 mL each of CH C1. After washing the extract three times with each lmL of distilled water, Dried over Na SO. After drying, the extract is filtered by suction and concentrated under reduced pressure to give white powdery crystals.
  • VLB (1) free base obtained as described above was added to anhydrous hydrazine. It was dissolved in a mixed solution of 0.22 mL and anhydrous methanol l.OmL, and stirred at 60 ° C for 24 hours under an Ar gas flow. After stirring, the reaction solution was cooled, and 3.0 mL of distilled water was added. Release the released product to each CH C1
  • the mixture was extracted three times with 3.0 mL, and the extract was washed with 1 OmL of distilled water, then with 1 OmL of satd. NaCl, and then dried over NaSO.
  • the extract was concentrated under reduced pressure to give deacetylVLB as pale yellow powder.
  • This extract was concentrated under reduced pressure to about lOmL to obtain a concentrated solution of deacetylVLB-acid azide.
  • this reaction ⁇ 3 ⁇ , Barnett, shi. J .; shi ullinan, uJ; Gerzon, K .; Hoying, RC; Jones, WE; Newlon, WM; Poore, GA; Robinson, RL; Sweeney, MJ; The method was performed with reference to the method described in Todd, GC; J. Med. Chem., 1978, 21, 88-96.
  • the IR ⁇ vector peak value of deacetylVLB-acid azide is shown below.
  • BSA deacetylVLB-thyroglobulin
  • TG deacetylVLB-thyroglobulin
  • the 0.1 M phosphate buffer (pH 6.2) used in the following steps (iv) and (V) was 13.28 g of sodium dihydrogen phosphate (NaHPO), 5.33 g of disodium hydrogen phosphate (Na HPO) and EDTA
  • azide dioxane solution was prepared in the same manner as in step (iv) (synthesis of deacetylVLB-Bovine Serum Albumin (BSA) complex). Meanwhile, 17.9 mg of TG (purchased from SIGMA-ALDRICH) was dissolved in 2.0 mL of 0.1 N (0.1 mol / L) Na HPO,
  • an anti-vinblastine monoclonal antibody was prepared.
  • the antibody titer was measured using the above deacetylVLB-BSA complex.
  • TG-VLB deacetylVLB-TG complex
  • CFA Freund's complete adjuvant
  • FIG. 9-11 shows a particularly remarkable increase in antibody titer.
  • Figure 1 graphically shows the measurement results for mouse Nos. 9-11. Using the cells collected from this mouse No. 9-11, a hybridoma was prepared and cultured. The specific operation of the measurement by the ELISA method is described below.
  • buffer P was prepared by adding 1.00 L of Milli-Q water to NaHPO
  • the sodium phosphate concentration of P is 10 mM, the NaCl concentration is 0.1 M, and the pH is 7.0.
  • ⁇ Buffer A '' is prepared by adding 1.00 L of Milli-Q water to NaHPO2 ⁇ O (0.55 g), NaHPO-12H0 (2.29 g), NaCl (5.84 g),
  • BSA concentration is 0.1% (W / W)
  • NaN concentration is 0.1% (W / W)
  • MgCl concentration is lmM
  • pH is 7.0
  • the “dilution buffer” was prepared by adding 1.00 g (0.1 wt%) of BSA to 1.00 L of buffer P.
  • the complex solution was placed in a 96-well plate at 150 L / well, and allowed to stand at 4 ° C. After standing, discard the supernatant, wash the remaining solid-phased protein with buffer P (10 mM phosphate buffer), add buffer A (0.1 wt% BSA protein solution) at L per well, and incubate at 4 ° C for 2 hours. Blocked. Discarded again supernatant after washing the residual solid phase protein in buffer P, 10 3 times with serum (buffer A was also collected the sensitized mice force thereto, it was diluted 10 4 fold or 10 5 fold solution ) Was added and the mixture was incubated at 37 ° C for 2 hours.
  • buffer P 10 mM phosphate buffer
  • buffer A 0.1 wt% BSA protein solution
  • a mouse hybridoma was prepared as follows.
  • mouse myeloma cells were cultured. That is, first, non-secretory mouse myeloma cells SP2 / 0-Agl4 were transferred to a GIT medium (Nihon
  • the cells were cultured in 75 mL of Pharmaceutical Co. Ltd. Tokyo, Japan (ie, manufactured by Nippon Pharmaceutical Co., Ltd.) to obtain 3 million cells (cell density: 4.0 ⁇ 10 4 cells / mL). This was the first day of culture. On the second day of culture, the number of cells is 6 million (cell density: 8.0 ⁇ 10 4 cells / mL), and on the third day of culture, the number of cells is 18.75 million (cell density: 2.5 ⁇ 10 5 cells / mL). On the fourth day of culture, 33 million mouse myeloma cells (cell density: 2.1 ⁇ 10 5 cells / mL) were obtained.
  • the GIT medium manufactured by Nippon Pharmaceutical Co., Ltd. is described in more detail in "Murakami, H .; Masui, H .; Sato, GH;
  • mice Nos. 9 to 11 While the mouse myeloma cells were cultured, macrophages (peritoneal cells) were collected from each of the sensitized Balb / c mice Nos. 9 to 11 in which the antibody titer was significantly increased. That is, first, 10 mL of GIT medium (manufactured by Nippon Pharmaceutical Co., Ltd.) was placed in an injection cylinder (manufactured by Terumo Corporation, trade name: Terumosyringe), and 70% ethanol was sprayed on each of the mice No. 9-11. Then, the mouse's abdominal hair was clipped (approximately 1 cm in diameter), and a 26G injection needle was attached to the syringe, and 10 mL of GIT medium was intraperitoneally administered.
  • GIT medium manufactured by Nippon Pharmaceutical Co., Ltd.
  • cell fusion was performed. That is, first, 70% ethanol was sprayed on each of the above-mentioned Balb / c mice Nos. 9 to 11, and they were killed by dislocation of the cervical spine in a clean bench. Next, the mouse was laparotomized to remove the spleen, and the spleen was placed in an ice-cooled RPMI1640 medium and loosened. It was filtered through a metal mesh, transferred to a 15 mL centrifuge tube, and centrifuged at 1200 rpm for 5 minutes.
  • SP2 / 0-Agl4 mouse myeloma cells cultured as described above were transferred to a 50 mL centrifuge tube, and centrifuged at 1200 rpm for 5 minutes. Further, the supernatant was discarded, 10 mL of RPMI was washed, pipetting, and centrifugation at 1200 rpm for 5 minutes were repeated twice to remove the medium used for culturing the SP2 / 0_Agl4 mouse myeloma cells.
  • the GIT + 10% FCS + HAT medium was further cultivated, the spleen cell concentration was adjusted to 1 ⁇ 10 V mL and the volume was L / well, and the cells were cultured at 37 ° C. in a CO incubator.
  • antibody-producing hybridomas (positive hybridomas) were cloned using S-Clone medium.
  • the hybridoma supernatant was periodically assayed for the presence of anti-vinblastine antibodies.
  • the desired antibody-producing wells were cloned from the wells of mouse No. 9 to 5 well and mouse No. l (1 ⁇ 2 ⁇ 27 well, mouse No. l ⁇ 20we ⁇ ) by the limiting dilution method.
  • Positive clones were confirmed by binding to deacetylVLB-BSA by ELISA, and two anti-vinblastine monoclonal antibodies MAb-9-E7 and MAb-9-D were obtained from three wells of mouse No. 9.
  • Anti-VLB monoclonal antibody antibody titer observed wavelength 490 nm
  • the MAb with the highest affinity for deacetylVLB-BSA by ELISA measurement Nine Balb / c nude mice (5 weeks old, female) were intraperitoneally administered with 9 hybridomas (2 ⁇ 10 8 ) producing the 10-A9 antibody, and 8 days later, 8 mL of ascites was obtained.
  • Protein A Sepharose 4 Fast Flow (trade name of Pharmacia Biotech) ImL is suspended in 1.5 mL of 1.5 M glycine-NaOH buffer (pH 8.9) containing 3 M NaCl, and after filling the column, 1.5 M containing 3 M NaCl Equilibrated with glycine-NaOH buffer (pH 8.9). Then, ImL of the mouse ascites was diluted with ImL of 1.5M glycine-NaOH buffer (pH 8.9) containing 3M NaCl, and the mixture was added to the equilibrated column.
  • each fraction was eluted with 1.5 M glycine-NaOH buffer (pH 8.9) containing 3 M NaCl while collecting ImL, and unbound protein was washed away.
  • elution was performed with lOOmM citrate-NaOH buffer (pH6.0), lOOmM citrate-NaOH buffer (pH5.0), and lOOmM citrate-NaOH buffer (pH4.0).
  • the absorbance of each fraction was monitored by ultraviolet absorbance measurement (observation wavelength: 280 nm).
  • Figure 2 shows the results graphically. As shown in the figure, the absorption of unbound protein in the fraction at pH 8.9 and the absorption of the target antibody in the fraction at pH 6.0 are shown.
  • VLB (l) was synthesized using the monoclonal antibody (anti-VLB monoclonal antibody IgGKMAb-10-A9) obtained as described above.
  • the chemical structural formulas of the following compounds (1)-(6) are all shown in Scheme 2 above.
  • anhydroVLB (2) a precursor of VLB (l), was synthesized. That is, first, 5.0 mL of distilled water was poured into a 20-mL eggplant-shaped flask, and cooled with ice while publishing argon gas. There, catalanthin sulfate (catharanthine '1/2 H SO) 4.9 ⁇ ⁇ (12.7 mol) is distilled Dissolve 0.54 mL of water, 5.8 mg (12.7 ⁇ mol) of vindoline in 0.54 mL of distilled water and 10.8 / zL of 2N HCl, and distill 0.223 g (0.825 mmoL) of FeCl6 ⁇ O
  • reaction solution was extracted four times with 6.0 mL of EtOAc, dried over anhydrous Na 2 SO and concentrated under reduced pressure. Obtained
  • the monoclonal antibody (anti- VLB monoclonal antibody)
  • VLB (l) was synthesized using IgGl (MAb-10-A9)) and anhydroVLB (2).
  • the HPLC conditions are shown below.
  • the column used was Xterra (trade name) MSC5 ⁇ m Column (2.1 X 150 mm) manufactured by Waters.
  • the mobile phase was prepared by diluting 85% HPO (5 mL) and 5 M NaOH (12 mL) to H0 to make 100 mL.
  • the flow rate was 0.4 mL / min, the column temperature was 40 ° C, the solvent temperatures were 40 ° C, and the wavelength (detection wavelength) was 265 nm.
  • VLB (l) VLB (l)
  • the graph in FIG. 3 shows the results of HPLC sampling 4 hours after the start of the reaction.
  • the vertical axis is the relative intensity of the peak
  • the horizontal axis is the retention time
  • reference numeral 1 in the figure is the VLB (l) peak
  • Symbol 2 is the peak of anhydroVLB (2)
  • symbol 6 is the peak of leurosine (6).
  • the numbers near the peaks indicate the respective retention times.
  • the yield of each substance was calculated from the area of the obtained peak and the previously prepared calibration curve.
  • the yield of VLB (l) was 16.0%. Since the recovery of the starting material, anhydroVLB (2), was 80.6%, it was concluded that the conversion to VLB (l) was 82.2%.
  • FIG. 4 shows an HPLC diagram 4 hours after the reaction.
  • the meanings of the symbols and numerical values in the figure are the same as in FIG.
  • the yield of each substance was calculated in the same manner as (iH)
  • the yield of VLB (l) was 15.5%
  • the recovery of anhydroVLB (2) was 61.7%. That is, also in the present synthesis example, good results according to (ii-1) were obtained.
  • an antibody-free synthesis was also performed. That is, anhydroVLB (2) (1.13 nmol) and NaBHCN (4.50 nmol) were added to citrate-NaOH buffer (67 ⁇ L , 100 mM, pH 6.0, containing 10% acetonitrile), placed in a small test tube (18 mm ID X 40 mm, with an oxygen balloon attached to the top), and reacted at 25 ° C as described above. I let it.
  • FIG. 5 shows an HPLC diagram 4 hours after the reaction. The meanings of the symbols and numerical values in the figure are the same as in FIG. When the yield of each substance was calculated in the same manner as in GH), the yield of VLB (l) was 3.9%, which was significantly lower than that in the case where the antibody was used.
  • the reaction was performed in the same manner as in (ii-1) except that the solvent was changed. That is, first, 2 mL of lOOmM citrate-NaOH buffer (pH 6.0) containing anti-VLB monoclonal antibody IgGl (MAb-10- 109) (1.86 M) was mixed with Vivascience VIVASPIN 2 mL Concentrator (trade name) (Membrane: 50,000 PES) and concentrated 20-fold. LOOmM NH in the concentrated buffer
  • this anti-VLB monoclonal antibody IgGl (MAb-10-A9) (1.13 nmol), anhydroVLB (2) (1.13 nmol) and NaBHCN (4.50 nmol) were added to NH OAc-Ac OH buffer (67 ⁇ m).
  • Fig. 7 shows the spectrum diagram.
  • Fig. 7 (a) is a spectrum diagram 1 hour after the start of the reaction
  • Fig. 7 (b) is a spectrum diagram 2 hours after the start of the reaction
  • Fig. 7 (c) is a spectrum diagram 4 hours after the start of the reaction. is there.
  • Symbols 1, 2 and 3 in the figure indicate the peaks of the conjugated products (1) and (2) and the peaks considered to be the conjugated compound (3), respectively.
  • the column used was a YMC YMC-Pack C-AP (trade name) 5 ⁇ m Column (4.6 X 150 mm).
  • the mobile phase was prepared by diluting 85% H PO (5 mL) and 5 M NaOH (12 mL) to H0 to make 100 mL.
  • the flow rate was 2.0 mL / min, the column temperature was 40 ° C, and the solvent temperatures were 40 ° C.
  • Wavelength (detection wavelength) was 265 nm.
  • FIG. 6 shows the HPLC diagram. Symbol 1 in the figure is the peak of VLB (l), and symbol 2 is
  • VLB (l) was converted at a conversion rate of about 82%.
  • catalanthin (0.75 ⁇ mol) and vindoline hydrochloride (0.75 mol) were dissolved in methanol in a 20-ml eggplant-shaped flask, and the mixture was dried by blowing argon gas. After DMSCXlOO / zl) was completely dissolved in the mixture, 3 ml of 0.1 M Tris-HCl buffer (pH 7.0) was added thereto, followed by thorough stirring. Then add FMN aqueous solution (250 M) and MnCl aqueous solution (50 mM) respectively.
  • the iminium intermediate (3) was converted to AnhydroVLB (2). Next, this was extracted with ethyl acetate, and the ethyl acetate extract was further concentrated under argon gas. The obtained residue was dissolved in methanol (100 ⁇ l), and 5 ⁇ l of the residue was injected into an HPLC device and analyzed. As a result, it was found that AnhydroVLB (2) was obtained at a yield of 65% based on the starting materials catalantin and vindoline hydrochloride. That is, the iminium intermediate (3) was obtained in a yield of about 65%.
  • the HPLC conditions are shown below.
  • the column used was Xterra (trade name) MSC5 ⁇ m Column (2.1 X 150 mm) manufactured by Waters.
  • the mobile phase was prepared by diluting 85% H PO (5 mL) and 5 M NaOH (12 mL) into H
  • composition was changed over time as follows using a grard system of a mixture of the solution (solution A, pH 2.5) and MeOH. 0-10min, 20-40% MeOH; 10-14min, 40-50% MeOH; 14-19min, 50% MeOH; 19-23min, 50-95% MeOH; 23-23.lmin, 95-100% MeOH; 23.1-30min, 100% MeOH.
  • the Wavelength (detection wavelength) was 265 nm.
  • the conjugated iminium intermediate (3) could be easily synthesized from vindoline hydrochloride and catharanthine by a known method.
  • VLB (l) was synthesized using the conjugated iminium intermediate (3) obtained as described above. That is, first, the reaction solution 101 obtained by the above-described near-ultraviolet light irradiation reaction was collected in a 20-ml eggplant-shaped flask, and Milli-Q water (H 0 ( ⁇ 1 (3) was added to make 4 ml. Mess up, anti- VLB
  • Monoclonal antibody IgGl (MAb-10-A9) (1.5 ⁇ 1) 500; ⁇ 1 and then add NADH (240 ⁇ ⁇ ) 100 ⁇ l every 1 hour for 5 hours for a total of 500 ⁇ l Reacted for 5 hours. After the completion of the reaction, 500 1 of the reaction solution was collected. To this, 0.5N (0.5 mol / L) NaOH was added to make pHIO, and ethyl acetate 5001 was added, followed by sonication for 3 minutes. The mixture was further vigorously stirred using a magnetic rotator, and then the organic layer was separated. Further, ethyl acetate 5001 was added to the separated aqueous layer again, and the same extraction operation as described above was repeated.
  • the column used was Xterra (trade name) MSC5 ⁇ m Column (2.1 X 150 mm) manufactured by Waters.
  • the mobile phase was prepared by diluting 85% H PO (5 mL) and 5 M NaOH (12 mL) into H
  • composition was changed over time as follows using a grard system of a mixture of the solution (solution A, pH 2.5) and MeOH. 0-10min, 20-40% MeOH; 10-14min, 40-50% MeOH;
  • the flow rate was 0.4 mL / min, the column temperature was 40 ° C, the solvent temperatures were 40 ° C, and the wavelength (detection wavelength) was 265 nm.
  • the conjugated iminium intermediate (3) was used as a starting material for anti-VLB monoclonal
  • the reaction was performed in the presence of antibody IgGl Mab-10-A9 to obtain the desired vinblastine (VLB) (1) in high yield.
  • the conjugated iminium intermediate (3) of the starting material could be easily synthesized from vindoline hydrochloride and catharanthine in a known manner
  • Example 2
  • 2'-sucdnyltaxol was synthesized as described below, and a complex thereof with a protein was synthesized.
  • a thyroglobulin (thyroglobulin or TG) complex and an ovalbumin (ovalbumin or OVA) complex were synthesized and used for antibody production (immunization).
  • a complex with a serum albumin Bovine Serum Albumin or BSA was used.
  • BSA 2'-succinyltaxol-Bovine Serum Albumin
  • OVA (purchased from Nakarai Tester Co., Ltd.) was dissolved in 5.2 mL of 50 mM sodium phosphate buffer (pH 7.0) to prepare an OVA solution.
  • PH 7.0 50 mM sodium phosphate buffer
  • the soluble fraction was concentrated by ultrafiltration with a molecular weight cut-off of 10,000, and 50 mM sodium phosphate buffer + 0.15M sodium chloride (pH 7.0) was added to replace the solvent. Ultrafiltration was performed again with a molecular weight cut-off of 10,000 to obtain 2'-succinyltaxo OVA complex (3.1 mL, 0.853 mg / mL).
  • 2'-succinyltaxo OVA complex was added to 4 Balb / c mice (five weeks old, female, these were Balb / c No. 4 mice), and 2'-succinyltaxoKTG complex was added to 4 Balb / c mice.
  • / c mice (5 weeks old, female, these are Balb / c No. 5-8 mice) and 3 DDY mice (5 weeks old, female, these are DDY No.l-3 mice)
  • Freund's complete adjuvant were administered intradermally at 50 g / 100 ⁇ L each. Thereafter, the same administration was performed at a two-week interval for a total of four times.
  • 2'-succinyltaxo BSA complex solution diluted to 10 g / mL with 0.1 M sodium phosphate buffer + 0.1% sodium azide (pH 7.5) is placed in a 96-well plate at 150 / z L / well at 4 ° C / well. It was left still and solidified. Discard the solution, wash each well with buffer P [10 mM sodium phosphate buffer + 0.1 M sodium chloride (pH 7.0)], and then buffer A [buffer P + 0.1% (w / w) BSA + 0.1% sodium azide + lmM magnesium dichloride (pH 7.0)] for 2 hours.
  • buffer P 10 mM sodium phosphate buffer + 0.1 M sodium chloride
  • buffer A buffer P + 0.1% (w / w) BSA + 0.1% sodium azide + lmM magnesium dichloride (pH 7.0)] for 2 hours.
  • each well was washed with buffer P, and 150 ⁇ L of a 1000-fold diluted buffer A of serum obtained from the sensitized mouse was also added thereto, followed by incubation at 37 ° C. for 2 hours.
  • a peroxidase-labeled secondary antibody [anti-mouse IgG] diluted to 20.8 ng / mL with dilution buffer [buffer P + 0.1% (w / w) BSA (pH 7.0)]
  • Mouse myeloma cells (Sp2 / 0-Agl4) were cultured in GIT medium (Nihon Pharmaceutical Co. Ltd. Tokyo, Japan, manufactured by Nippon Pharmaceutical Co., Ltd.) + 1% penicillin-streptomysin, and the cell density was adjusted to 1.0 ⁇ 10 4 —1.0 X. It was maintained at 10 5 / mL.
  • Mouse myeloma cells having a cell count of 30 million or more and a survival rate of 90% or more were prepared for the cell fusion operation for one mouse.
  • the GIT medium is described in detail in "Murakami, H .; Masui, H .; Sato, GH; Sueoka, N .; Chow, TP; Sueoka, TK Proc. Natl. Acad. Sci. USA, 1982, 79, 1158-1162. " In addition, the same GIT medium described below was used in all cases.
  • GIT medium 10 mL was placed in a syringe (Termo Syringe, manufactured by Terumo Corporation), and 70% ethanol was sprayed on mice with an increased antibody titer.
  • the GIT medium (10 mL) was intraperitoneally administered using a 26G injection needle (diameter: about 1 cm).
  • the mouse's abdomen was rubbed for 5 minutes, and the GIT medium was recovered from the intraperitoneal cavity in a petri dish. This was centrifuged at 1200 rpm for 5 minutes.
  • GIT medium +10 mL was added to the macrophages obtained by discarding the supernatant, followed by centrifugation again under the same conditions.
  • the obtained hybridomas were cultured in a 96-well plate containing the macrophages collected as described above, using GIT medium + 10% fetal calf serum + 2% HAT medium + 1% penicillin-streptomysin. ° C, in CO incubator
  • the antibody titer of the culture supernatant was measured by ELISA.From the colony in which anti-taxol monoclonal antibody production was confirmed, GIT medium + 10% fetal was added according to the guidelines of Sanko Junyaku (Tokyo, Japan). Cloning of antibody-producing hybridomas was performed using calf serum + 1% penicillin-streptomysin. As a result, the antibody production wells were lwell from DDY No.1 mouse, 2well from DDY No.2 mouse, 4well from DDY No.3 mouse, lwell from Balb / c No.2 mouse, and lwell, Balb / c No.
  • 3 wells were obtained from 5 mice, 3 wells from Balb / c No. 6 mice, 2 wells from Balb / c No. 7 mice, and 4 wells from Balb / c No. 8 mice. From these wells, the desired hybridoma was further clawed by the limiting dilution method.
  • One anti-taxol monoclonal antibody MAT-01-G12 was obtained from one well of DDY 1 mouse. The ELISA measurement was performed in the same manner as (ii) except that 20 ⁇ L of culture supernatant and 130 L of buffer A were used instead of 150 ⁇ L of serum.
  • 2 ⁇ 10 7 hybridomas producing the cloned MAT-01-G12 antibody were intraperitoneally administered to 5 Balb / c nude mice (five weeks old, female) to obtain 8 mL of ascites.
  • 2 mL of Protein A Sepharose 4 Fast Flow (trade name of Pharmacia Biotech) was The suspension was suspended in 1 mL of 1.5 M glycine-NaOH buffer (pH 8.9) containing NaCl, packed in a column, and equilibrated with 1.5 M sodium glycinate + 3 M sodium chloride (pH 8.9).
  • the collected ascites was diluted 2-fold with 1.5 M sodium glycinate + 3 M sodium chloride (pH 8.9) and added to the equilibrated column. While collecting 2 mL of each fraction, the fraction was eluted with 1.5 M sodium glycinate buffer + 3 M sodium chloride (pH 8.9), and unbound protein was washed away. Next, elution was performed with lOOmM sodium citrate buffer (pH 6.0), lOOmM sodium citrate buffer (pH 5.0), and lOOmM sodium citrate buffer (pH 4.0). This operation was performed twice using 4 mL of ascites fluid, and the anti-taxol monoclonal antibody
  • IgGl 13.22 mg in 4 mL of 100 mM sodium citrate buffer, pH 6.0 was obtained.
  • the present invention it is possible to provide a method for producing an organic compound at a high yield, which can be applied to a compound having a complicated structure, and an antibody suitable for the method.
  • rare natural organic compounds such as vinblastine and taxol, which are used in clinical settings as important anticancer agents, can be synthesized in a short step. It is applicable to various compounds as well as products.
  • the production method of the present invention can provide the target compound at low cost because it uses a reaction with excellent yield and selectivity, and can be applied to all fields of pharmacy and organic chemistry. It is useful in pharmaceutical technology fields such as drug discovery science and fine chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A process for producing an organic compound with high yield, which is applicable to a compound of complex structure; and an antibody suitable thereto. It has been found to use an antibody capable of recognizing a target compound of reaction as an abzyme. Thus, as an abzyme can be obtained without the need to use a transition state compound or transition state homologue whose synthesis is difficult, application thereof can be made to a compound of complex structure. Further, by the use of high discriminating power of antibody, effective application can be made to a reaction in which it is desired to selectively obtain specified one among multiple products. For example, especially preferred application can be made to an asymmetric synthesis, an addition reaction to unsaturated bond, etc. in which it is desired to selectively obtain specified one among optical isomers (enantiomer), diastereomers, geometrical isomers, etc.

Description

明 細 書  Specification
有機化合物の製造方法およびそれに用いる抗体  Method for producing organic compound and antibody used therefor
技術分野  Technical field
[0001] 本発明は、有機化合物の製造方法およびそれに用いる抗体に関する。  The present invention relates to a method for producing an organic compound and an antibody used for the method.
背景技術  Background art
[0002] 有機化学、特に薬学の分野にぉ 、て、目的化合物を高収率かつ低コストで供給す ることは産業上重要な課題である。特に、天然に存在しない化合物、または微量しか 存在しない化合物は、人工的合成法による高収率な合成が求められる。しかし、複 雑な構造を有する化合物の場合、副反応の制御が困難である等の理由により極めて 低い収率でしカゝ合成できない場合も多い。例えば、天然に極微量成分として含まれ るビンブラスチン (vinblastine 以下 VLBと記すことがある)については、すでに様々な 合成経路が発表されているが、収率やコスト等の問題点を十分に解決できる合成法 はいまだにない (非特許文献 1一 5および 8等参照)。  [0002] In the field of organic chemistry, particularly in the field of pharmacy, it is an industrially important task to supply a target compound at a high yield and at low cost. In particular, a compound that does not exist in nature or a compound that exists only in a trace amount is required to be synthesized at a high yield by an artificial synthesis method. However, in the case of a compound having a complex structure, it is often impossible to synthesize a compound at an extremely low yield because of difficulties in controlling side reactions. For example, for vinblastine, which is naturally contained as a trace component (vinblastine, sometimes referred to as VLB), various synthetic routes have already been published, but problems such as yield and cost can be sufficiently solved. There is no synthetic method yet (see Non-patent Documents 15 and 8).
[0003] 一方、抗体を有機合成に利用した例として、 Lernerら (非特許文献 6参照)と Schultz ら(非特許文献 7参照)のグループによって見出された、 Vヽゎゆるアブザィム(abzyme または catalytic antibody)を用いる合成法が広く知られている。この合成法は、目 的とする反応の遷移状態化合物を認識する抗体を用いて前記反応の遷移状態にお ける活性ィ匕フリーエネルギーを低下させることにより、前記抗体を、反応を促進する 触媒として利用する合成法である。抗体の持つ高い識別能をうまく利用すれば、一般 的合成法では合成困難な複雑な化合物を高い収率で得ることも期待できる。  [0003] On the other hand, as an example of the use of antibodies for organic synthesis, V ヽ ゎ yuru abzyme or abzyme (see, eg, Lerner et al. (See non-patent document 6) and Schultz et al. (See non-patent document 7). Synthetic methods using catalytic antibodies) are widely known. In this synthesis method, the antibody is used as a catalyst for accelerating the reaction by reducing the free energy in the transition state of the reaction using an antibody that recognizes the transition state compound of the target reaction. This is the synthesis method used. By taking advantage of the high discriminating ability of antibodies, it is expected that complex compounds that are difficult to synthesize by general synthesis methods can be obtained in high yields.
[0004] しかしながら、これまでにいくつもの反応のアブザィムが作られてはいるものの、そ の適用範囲は比較的簡単な構造の化合物の合成に限られていた。  [0004] However, although a number of abzymes of reactions have been produced so far, their application range has been limited to the synthesis of compounds having relatively simple structures.
[0005] 例えば、非特許文献 7にお 、て Schultzらは、アブザィムを用いて、下記スキーム 1 のように炭酸エステル(a)の加水分解反応を行なった。このとき、 Schultzらは、まずス キーム 1の反応の遷移状態類似体 (c)を合成し、さらにその遷移状態類似体とタンパ ク質との複合体を抗原としてモノクローナル抗体を作製し、そのモノクローナル抗体を アブザィムとして用いて前記の通りスキーム 1の加水分解反応を行なった。 [化 11] For example, in Non-Patent Document 7, Schultz et al. Performed a hydrolysis reaction of a carbonate ester (a) using Abzym as shown in the following Scheme 1. At this time, Schultz et al. First synthesized a transition state analog (c) of the reaction of scheme 1, and further prepared a monoclonal antibody using the complex of the transition state analog and the protein as an antigen, and then prepared the monoclonal antibody. Using the antibody as an abzyme, the hydrolysis reaction of Scheme 1 was performed as described above. [Formula 11]
Figure imgf000003_0001
Figure imgf000003_0001
[0006] Schultzらによる非特許文献 7の公表以後もアブザィムを用いた種々の有機反応が 開発されたが、いずれも、まず目的とする反応の遷移状態化合物または遷移状態類 似体 (遷移状態アナローグ)を得る必要があった。しかし、目的化合物やその前駆体 が複雑な構造を有する場合は、目的とする反応の遷移状態化合物または遷移状態 類似体の合成が非常に困難な場合が多い。そのため、アブザィムによる有機化合物 の合成法は、新たな合成法として期待されながらも、その適用範囲は比較的簡単な 構造の化合物に限られていたのである。 [0006] Various organic reactions using Abzym have been developed since the publication of Non-Patent Document 7 by Schultz et al., But first of all, a transition state compound or a transition state analog of the target reaction (transition state analog) was developed. ) Needed to be obtained. However, when the target compound or its precursor has a complicated structure, it is often very difficult to synthesize a transition state compound or a transition state analog of the target reaction. For this reason, the synthesis of organic compounds by Abzaim was expected as a new synthesis method, but its application was limited to compounds with relatively simple structures.
[0007] このように、現在までに、複雑な構造を有する有機化合物の高収率な合成法として 有望な方法は存在したが、まだ解決すべき課題があった。  [0007] Thus, up to now, there have been promising methods for synthesizing organic compounds having a complicated structure in high yield, but there are still problems to be solved.
[0008] 非特許文献 l :Atta— ur— Rahman; Basha, A.; Ghazala, M. Tetrahedron Lett., 1976, 27, 2351-2354.  [0008] Non-patent literature l: Atta-ur-Rahman; Basha, A .; Ghazala, M. Tetrahedron Lett., 1976, 27, 2351-2354.
非特許文献 2 : Kuehne, M.E.; Matson, P. A.; Bornmann, W.G. J. Org. Chem., Non-Patent Document 2: Kuehne, M.E .; Matson, P.A .; Bornmann, W.G.J.Org.Chem.,
1991, 56, 513-528. 1991, 56, 513-528.
非特許文献 3 : Bornmann, W.G; Kuehne, M.E. J. Org. Chem., 1992, 57, 1752-1760. 非特許文献 4 : Magnus, P.; Mendoza, J.S.; Stamford, A.; Ladlow, M.; Willis, P. J. Am. Chem. Soc, 1992, 114, 10232-10245. Non-Patent Document 3: Bornmann, WG; Kuehne, MEJ Org.Chem., 1992, 57, 1752-1760. Non-Patent Document 4: Magnus, P .; Mendoza, JS; Stamford, A .; Ladlow, M .; Willis, PJ Am. Chem. Soc, 1992, 114, 10232-10245.
^^特許文献 5 :Yokoshima, S.; Ueda, T.; Kobayashi, S.; Sato, A.; Kuboyama, ^^ Patent Document 5: Yokoshima, S .; Ueda, T .; Kobayashi, S .; Sato, A .; Kuboyama,
T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc, 2002, 124, 2137-2139. T .; Tokuyama, H .; Fukuyama, T. J. Am. Chem. Soc, 2002, 124, 2137-2139.
非特許文献 6 : Tramontano, A.; Janda, K.D.; Lerner, R.A. Science, 1986, 234, 1566-1570.  Non-Patent Document 6: Tramontano, A .; Janda, K.D .; Lerner, R.A.Science, 1986, 234, 1566-1570.
非特許文献 7 : Pollack, S.J.; Jacobs, J.W; Schultz, P.G. Science, 1986, 234, 1570-1573.  Non-Patent Document 7: Pollack, S.J .; Jacobs, J.W; Schultz, P.G.Science, 1986, 234, 1570-1573.
非特許文献 8 : Langlois, N.; Potier, P. J.C.S. Chem. Commun" 1979, 582-583.  Non-Patent Document 8: Langlois, N .; Potier, P.J.C.S.Chem.Commun "1979, 582-583.
発明の開示  Disclosure of the invention
[0009] したがって、本発明の目的は、複雑な構造を有する化合物にも適用できる、有機化 合物の高収率な製造方法、およびそれに適した抗体を提供することである。前記課 題を解決するために、本発明の製造方法は、有機化合物の製造方法であって、製造 の対象となる前記有機化合物を認識可能な抗体の存在下、前記有機化合物の前駆 体を前記有機化合物に変換させる製造方法である。  [0009] Therefore, an object of the present invention is to provide a method for producing an organic compound at a high yield, which can be applied to a compound having a complicated structure, and an antibody suitable for the method. In order to solve the above-mentioned problems, a production method of the present invention is a method for producing an organic compound, wherein the precursor of the organic compound is produced in the presence of an antibody capable of recognizing the organic compound to be produced. This is a production method for converting into an organic compound.
[0010] 前記の構成を有することにより、本発明の有機化合物の製造方法は、複雑な構造 を有する化合物にも適用でき、製造の対象となる前記有機化合物 (以下、「目的とす る化合物」または単に「目的化合物」と記すことがある)を高収率で得ることができる。 図面の簡単な説明  [0010] With the above configuration, the method for producing an organic compound of the present invention can be applied to a compound having a complicated structure, and the organic compound to be produced (hereinafter referred to as "the target compound") Or simply referred to as “target compound”) can be obtained in high yield. Brief Description of Drawings
[0011] [図 1]図 1は、 deacetylVLB-TG複合体感作マウスの ELISA測定結果を示すグラフであ る。  [FIG. 1] FIG. 1 is a graph showing the results of ELISA measurement of deacetylVLB-TG complex-sensitized mice.
[図 2]図 2は、抗体 MAb-10-A9のカラムクロマトグラフィー分離を示すグラフである。  FIG. 2 is a graph showing column chromatography separation of antibody MAb-10-A9.
[図 3]図 3は、本発明の抗体を用 、た反応の HPLCサンプリングを示すグラフである。  FIG. 3 is a graph showing HPLC sampling of a reaction using the antibody of the present invention.
[図 4]図 4は、本発明の抗体を用いた反応の HPLCサンプリングを示すグラフである。  FIG. 4 is a graph showing HPLC sampling of a reaction using the antibody of the present invention.
[図 5]図 5は、本発明の抗体を用 ヽな 、反応の HPLCサンプリングを示すグラフである [図 6]図 6は、本発明の抗体を用いた反応の HPLCサンプリングを示すグラフである。 FIG. 5 is a graph showing HPLC sampling of a reaction using the antibody of the present invention. FIG. 6 is a graph showing HPLC sampling of a reaction using the antibody of the present invention.
[図 7]図 7は、本発明の抗体を用 、た反応の ESI-MSによるサンプリングを示すグラフ である。  FIG. 7 is a graph showing sampling by ESI-MS of a reaction using the antibody of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 次に、本発明の実施形態について説明する。 Next, an embodiment of the present invention will be described.
[0013] 前記の通り、従来のアブザィムは、目的とする反応の遷移状態を認識する抗体を利 用していた。しかし、本発明者らは、反応の遷移状態ではなく目的化合物を認識する 抗体をアブザィムとして利用すると!/、う着想を得、これに基づき合成を行なったところ 、高収率で、し力も低温低圧の穏やかな条件で目的化合物を製造できることを見出し 、本発明に到達した。これにより、合成が困難な遷移状態化合物や遷移状態類似体 を用いなくてもアブザィムが得られるため、本発明の製造方法は複雑な構造を有する 化合物にも適用できるのである。さらに、抗体の持つ高い識別能を利用することによ り、前記の通り目的とする化合物を高収率で得ることが可能である。  [0013] As described above, the conventional Abzyme uses an antibody that recognizes a transition state of a target reaction. However, the inventors of the present invention used an antibody that recognizes the target compound instead of the transition state of the reaction as an abzyme! /, And obtained an idea, and synthesized based on this idea. The present inventors have found that the target compound can be produced under low pressure and mild conditions, and have reached the present invention. As a result, an abzyme can be obtained without using a transition state compound or a transition state analog which is difficult to synthesize, so that the production method of the present invention can be applied to a compound having a complicated structure. Further, by utilizing the high discriminating ability of the antibody, the target compound can be obtained in high yield as described above.
[0014] 本発明の製造方法は、前記前駆体から前記有機化合物への変換反応のみからな つていても良いが、さらにその他の反応工程を適宜含んでいても良い。また、製造の 対象となる前記有機化合物は、さらに他の反応工程により別の化合物へと誘導する ために用いても良い。  [0014] The production method of the present invention may consist only of a conversion reaction from the precursor to the organic compound, but may further include other reaction steps as appropriate. Further, the organic compound to be produced may be used to induce another compound by another reaction step.
[0015] 前記前駆体から前記有機化合物への変換反応は、特に限定されないが、例えば、 付加反応、脱離反応、転移反応、酸化還元反応、縮合反応および分解反応からなる 群力も選択される少なくとも一つの反応を含むことが好ましい。また、抗体の持つ高 い識別能を利用して、複数の生成物のうち特定のものを選択的に得たい反応に効果 的に用いることが可能であり、例えば、光学異性体 (ェナンチォマー)、ジァステレオ マー、幾何異性体等のうち特定のものを選択的に得たい不斉合成、不飽和結合へ の付加反応等に用いることが特に好ましい。従来のアブザィムは、反応の遷移状態 化合物を認識することで前記反応の遷移状態における活性ィ匕フリーエネルギーを低 下させる効果があつたが、本発明では、反応の遷移状態化合物ではなく目的化合物 を認識することで、反応の選択性を高めることが可能である。  [0015] The conversion reaction from the precursor to the organic compound is not particularly limited. For example, at least a group force including an addition reaction, an elimination reaction, a transfer reaction, an oxidation-reduction reaction, a condensation reaction, and a decomposition reaction is also selected. Preferably, it involves one reaction. Also, by utilizing the high discriminating ability of the antibody, it can be effectively used for a reaction to selectively obtain a specific product among a plurality of products. For example, an optical isomer (enantiomer), It is particularly preferable to use the compound for asymmetric synthesis, addition reaction to an unsaturated bond, or the like in which a specific one of diastereomers and geometric isomers is desired to be selectively obtained. Conventional Abzym has the effect of reducing the free energy in the transition state of the reaction by recognizing the transition state compound of the reaction.However, in the present invention, the target compound is used instead of the transition state compound of the reaction. Recognition can increase the selectivity of the reaction.
[0016] 本発明の製造方法において、前記前駆体から前記有機化合物への変換反応は種 々の有機化合物に適用でき、製造の対象となる前記有機化合物は特に限定されな[0016] In the production method of the present invention, the conversion reaction from the precursor to the organic compound may be a seed. It is applicable to various organic compounds, and the organic compound to be produced is not particularly limited.
V、が、例えば下記式 (I)で表される化合物が好ま 、。 V is preferably, for example, a compound represented by the following formula (I).
[化 12] [Formula 12]
Figure imgf000006_0001
Figure imgf000006_0001
式 (I)中、 In the formula (I),
R1は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルキル基、または炭素数 1一 6の 直鎖もしくは分枝ァシル基であり、 R 1 is a hydrogen atom, a linear or branched alkyl group having 16 carbon atoms, or a linear or branched acyl group having 16 carbon atoms,
R2は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルコキシ基、またはアミノ基であ り、 R 2 is a hydrogen atom, a linear or branched alkoxy group having 16 carbon atoms, or an amino group;
R3は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルキル基、または炭素数 1一 6の 直鎖もしくは分枝ァシル基であり、 R 3 is a hydrogen atom, a linear or branched alkyl group having 16 carbon atoms, or a linear or branched acyl group having 116 carbon atoms;
R4は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルキル基、または炭素数 1一 6の 直鎖もしくは分枝ァシル基であり、 R 4 is a hydrogen atom, a C 16 linear or branched alkyl group, or a C 16 linear or branched acyl group,
R5は、水素原子、または炭素数 1一 6の直鎖もしくは分枝アルキル基であり、R 5 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms,
R6は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルコキシ基、またはアミノ基であ り、 R 6 is a hydrogen atom, a linear or branched alkoxy group having 16 carbon atoms, or an amino group;
R7は、水素原子、または炭素数 1一 6の直鎖もしくは分枝アルキル基である。 R 7 is a hydrogen atom or a linear or branched alkyl group having 16 carbon atoms.
なお、本発明で、「炭素数 1一 6の直鎖もしくは分枝アルキル基」としては、特に限定 されないが、例えば、メチル基、ェチル基、 n-プロピル基、イソプロピル基、 n-ブチル 基、イソブチル基、 sec-ブチル基および tert-ブチル基等があげられ、「炭素数 1一 6 の直鎖もしくは分枝アルコキシ基」としては、特に限定されないが、例えば、メトキシ基 、エトキシ基、 n-プロポキシ基、イソプロポキシ基、 n-ブトキシ基、イソブトキシ基、 sec- ブトキシ基および tert-ブトキシ基等があげられる。「炭素数 1一 6の直鎖もしくは分枝 ァシル基」としては、特に限定されないが、例えば、ホルミル基、ァセチル基、プロピ ォニル基、イソプチリル基、バレリル基およびイソバレリル基等があげられ、炭素数 1 のァシル基とはホルミル基を指すものとする。 In the present invention, the “straight or branched alkyl group having 1 to 6 carbon atoms” is not particularly limited. However, examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. Examples of the `` or branched alkoxy group '' include, but are not particularly limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy. can give. Examples of the “C6-C16 straight-chain or branched acyl group” include, but are not particularly limited to, for example, formyl group, acetyl group, propionyl group, isoptyryl group, valeryl group, and isovaleryl group. The acyl group of 1 means a formyl group.
また、前記式 (I)で表される化合物のうち下記式 (III)で表される化合物がより好まし い。  Further, among the compounds represented by the formula (I), compounds represented by the following formula (III) are more preferable.
[化 13]  [Formula 13]
Figure imgf000007_0001
Figure imgf000007_0001
式 (ΠΙ)中、 In equation (ΠΙ),
R1はメチル基またはホルミル基であり、 R 1 is a methyl group or a formyl group,
R2はメトキシ基またはアミノ基であり、 R 2 is a methoxy group or an amino group,
R3は水素原子またはァセチル基である。 R 3 is a hydrogen atom or an acetyl group.
そして、前記式 (III)で表される目的化合物のうち、ビンブラスチン、ビンクリスチンお よびビンデシンが特に好ましい。これらは、いずれも抗腫瘍薬等の用途によく用いら れている化合物である。 Among the target compounds represented by the formula (III), vinblastine, vincristine and And vindesine are particularly preferred. These are all compounds that are frequently used for applications such as antitumor drugs.
本発明の製造方法において、抗体の存在下、前記式 (I)の目的化合物を合成する 場合、前記抗体の製造方法は特に限定されないが、例えば以下の通りである。すな わち、まず、下記式 (IX)で表される化合物を準備し、それをさらに下記式 (VII)の化 合物へと変換する。式 (VII)および (IX)中、
Figure imgf000008_0001
および R4— R7は、前記式 (I)と同じで ある。
In the production method of the present invention, when the target compound of the formula (I) is synthesized in the presence of an antibody, the production method of the antibody is not particularly limited, and is, for example, as follows. That is, first, a compound represented by the following formula (IX) is prepared, and it is further converted to a compound represented by the following formula (VII). In the formulas (VII) and (IX),
Figure imgf000008_0001
And R 4 —R 7 are the same as those in the above formula (I).
[化 14][Formula 14]
Figure imgf000008_0002
Figure imgf000008_0002
[化 15] [Formula 15]
Figure imgf000009_0001
Figure imgf000009_0001
[0020] 前記式 (VII)および (IX)で表される化合物の製造方法は特に限定されな!、が、例 えばィ匕合物 (I)自体力 合成するのが簡便で好ましい。この場合、まず目的化合物 (I )と同一の化合物を準備しなければならな 、が、化合物 (I)が天然化合物の場合は天 然物からの抽出ゃ巿販ルート等で入手しても良いし、天然に存在しない化合物の場 合は何らかの方法により合成しても良い。化合物 (I)が微量でも入手できれば、その 後は本発明の製造方法により再度化合物 (I)を製造することができる。化合物 (I)から 化合物 (IX)および (VII)を得る方法も特に限定されないが、例えば、化合物 (I)をヒド ラジンと反応させて化合物 (IX)を製造し、さらに、化合物 (IX)の塩酸塩を亜硝酸ナト リウムと反応させて化合物 (VII)を製造することがより好ま 、。 [0020] The method for producing the compounds represented by the formulas (VII) and (IX) is not particularly limited! However, for example, synthesis of the compound (I) itself is preferred because it is simple and convenient. In this case, first, the same compound as the target compound (I) must be prepared.However, when the compound (I) is a natural compound, it may be obtained through an extraction / sales route from natural sources or the like. However, in the case of a non-naturally occurring compound, it may be synthesized by any method. If the compound (I) can be obtained in a small amount, the compound (I) can be produced again by the production method of the present invention. The method for obtaining the compounds (IX) and (VII) from the compound (I) is not particularly limited.For example, the compound (IX) is produced by reacting the compound (I) with hydrazine, and further producing the compound (IX). More preferably, the hydrochloride is reacted with sodium nitrite to produce compound (VII).
[0021] そして、前記式 (VII)の化合物とタンパク質との縮合反応により複合体を得て、さら にそれを抗原として目的の抗体を製造する。前記タンパク質は特に限定されないが、 例えば、ゥシ血清アルブミン、サイログロブリンまたは卵白アルブミンが好ましい。この 抗体は、活性を失わな 、限り何度でも目的化合物 (I)の製造に使用することができる [0022] 前記式 (I)で表される化合物の前駆体は、特に限定されないが、合成のしゃすさ等 の観点から、例えば下記式 (Π)または (π')で表される化合物が好まし 、。 Then, a complex is obtained by a condensation reaction between the compound of the formula (VII) and the protein, and the target antibody is produced using the complex as an antigen. The protein is not particularly limited, but is preferably, for example, serum albumin, thyroglobulin, or ovalbumin. This antibody can be used for the production of the target compound (I) as many times as possible without losing the activity. [0022] The precursor of the compound represented by the formula (I) is not particularly limited, but may be synthesized. For example, a compound represented by the following formula (Π) or (π ′) is preferable from the viewpoint of the sharpness and the like.
[化 16] [Formula 16]
Figure imgf000010_0001
Figure imgf000010_0001
[化 17][Formula 17]
Figure imgf000010_0002
Figure imgf000010_0002
式 (II)および (ΙΓ)中、 R1— R7は式 (I)と同じである。同様に、前記式 (III)で表される 目的化合物の前駆体は、下記式 (IV)または (IV')で表される化合物が好ま 、。 In the formulas (II) and (ΙΓ), R 1 —R 7 are the same as in the formula (I). Similarly, the precursor of the target compound represented by the formula (III) is preferably a compound represented by the following formula (IV) or (IV ′).
[化 18] [Formula 18]
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0002
式 (IV)および (IV)中、 R1— R3は式 (III)と同じである。また、製造の対象となる前記 有機化合物がビンブラスチン、ビンクリスチンまたはビンデシンである場合の前駆体 は、それぞれに対応する前記式 (IV)または (IV)の化合物が好ましい。これら前駆体 の、前記有機化合物への変換反応における反応条件も特に限定されないが、例え ば、前記抗体、酸化剤および還元剤の存在下で反応させることが好ましい。前記酸 ィ匕剤は、例えば、酸素、空気および遷移金属元素カゝらなる少なくとも一つを含むこと 力 り好ましぐ前記遷移金属元素は、 Fe(II)、 Rh(III)、 Mn(III)、 Co(III)、 Ce(IV)、 In the formulas (IV) and (IV), R 1 —R 3 are the same as in the formula (III). When the organic compound to be produced is vinblastine, vincristine, or vindesine, the precursor is preferably the corresponding compound of the formula (IV) or (IV), respectively. These precursors The reaction conditions for the conversion reaction into the organic compound are not particularly limited. For example, the reaction is preferably performed in the presence of the antibody, an oxidizing agent and a reducing agent. The transition metal element preferably contains at least one of oxygen, air, and a transition metal element, and the transition metal element is preferably Fe (II), Rh (III), or Mn (III). ), Co (III), Ce (IV),
Mo(VI)および Cu(II)からなる群力も選択される少なくとも一つを含むことが特に好まし い。前記酸素は単体でも良いし、酸素化合物中に含まれる元素であっても良い。また 、前記遷移金属元素は、例えば、適宜な遷移金属化合物中に含まれる元素であって も良い。前記還元剤は、例えば、水素化合物、メルカプトエタノール、ジチオスレイト ール (dithiothreitoほたはジチオトレイトール)、グルタチオン、 NADH  It is particularly preferred that the group forces consisting of Mo (VI) and Cu (II) also include at least one selected. The oxygen may be a simple substance or an element contained in an oxygen compound. Further, the transition metal element may be, for example, an element contained in an appropriate transition metal compound. Examples of the reducing agent include a hydrogen compound, mercaptoethanol, dithiothreitol (dithiothreito or dithiothreitol), glutathione, and NADH.
2、 NADPH、ニコ  2, NADPH, Nico
2 チンアミド、 FADおよび FMNからなる群力も選択される少なくとも一つを含むことがより 好ましい。なお、 NADはニコチンアミドアデニンジヌクレオチドを表し、 NADPは-コチ ンアミドアデニンジヌクレオチドリン酸を表し、 FADはフラビンアデ-ンジヌクレオチド を表し、 FMNはフラビンモノヌクレオチドを表す。前記水素化合物は、 NaBH CN、  It is more preferable that the group strength consisting of 2 tinamide, FAD and FMN also include at least one selected from the group. NAD represents nicotinamide adenine dinucleotide, NADP represents -cotinamide adenine dinucleotide phosphate, FAD represents flavin adenine dinucleotide, and FMN represents flavin mononucleotide. The hydrogen compound is NaBH CN,
3  Three
NaBH、し iBH、 Zn(BH )、 Me NBH(OAc)、し iBH(sec— Bu)、 KBH(sec-Bu)、し iBHEt  NaBH, then iBH, Zn (BH), Me NBH (OAc), then iBH (sec-Bu), KBH (sec-Bu), then iBHEt
4 4 4 2 2 3 3 3 3 4 4 4 2 2 3 3 3 3
、および LiAlH(tert-BuO)力もなる群力も選択される少なくとも一つを含むことが特に , And LiAlH (tert-BuO) force or group force
3  Three
好ましい。  preferable.
[0023] 以下、前記目的化合物および本発明の製造方法によるその合成の一例として、ビ ンブラスチンおよびその合成について説明する。  Hereinafter, vinblastine and its synthesis will be described as an example of the target compound and its synthesis by the production method of the present invention.
[0024] ビンブラスチン (vinblastineまたは VLB)は、下記化学式 (1)で表される構造を有し、 ニチニチソゥ(Catharanthus roseus (L.) Don.)の葉に極微量成分として含まれ る二量体性インドールアルカロイドである。その抗腫瘍活性は強ぐ膀胱がん、精巣 腫瘍、悪性リンパ腫、力ポジ肉腫、神経芽腫および乳癌等の重要な癌治療薬として 臨床の場で使用されている。しかし、天然にはごく微量しか存在しない成分であるた め、供給に限度があり、高コストである。それゆえに、多くの有機合成者が、 VLBの合 成に挑戦してきた。前記の通り、すでに様々な合成経路が見出されており、国際学術 雑誌に数多く公表されている (例えば、非特許文献 1一 5等参照)。  [0024] Vinblastine (VLB) has a structure represented by the following chemical formula (1), and is a dimer contained in the leaves of Catharanthus roseus (L.) Don. As a trace component. Indole alkaloid. Its antitumor activity has been used in clinical settings as an important cancer drug for strong bladder cancer, testicular tumor, malignant lymphoma, cystic sarcoma, neuroblastoma and breast cancer. However, since it is a component that exists only in trace amounts in nature, its supply is limited and its cost is high. Therefore, many organic synthesizers have tried to synthesize VLB. As described above, various synthetic routes have already been found, and many have been published in international academic journals (for example, see Non-Patent Documents 115).
[化 20] [Formula 20]
Figure imgf000013_0001
Figure imgf000013_0001
し力しながら、 VLBの構造の複雑さ等のために、収率やコスト等の問題点を十分に 解決できる合成法はこれまでにな力つた。多くの研究者は、前記-チ-チソゥ( Catharanthus roseus (L.) Dmk)植物に比較的高含量で存在する単量体性ィ 合反応を経由して VLB(l)を合成する方法を採用した。しかし、これらの合成はいずれ も数多くの工程を必要とし、かつ、副反応等を抑えるために化学反応条件の厳密なコ ントロールを必要としため、実用化に耐えるものではな力つた。例えば、非特許文献 8 によれば、下記スキーム 2に示すように、アンヒドロ VLB (anhydroVLB) (2)を空気酸化 することで VLB(l)が得られることが知られていた。しかし、生成物としては VLB(l)よりも ロイロシジン(leurosidine) (5)およびロイ口シン(leurosine) (6)の方が収率が多く、 VLB(l)の収率は最適条件下でも極微量(1%以下)であった。なお、非特許文献 8で は、この反応における VLB(l)は、共役 iminium中間体 (3)及び enamine(4)を経て生成 すると推定された。 However, due to the complexity of the structure of VLB, a synthesis method that can sufficiently solve the problems such as yield and cost has been used until now. Many researchers have adopted the method of synthesizing VLB (l) via a monomeric polymerization reaction, which is present in a relatively high content in the plant-Catharanthus roseus (L.) Dmk. did. However, each of these syntheses requires a number of steps and requires strict control of chemical reaction conditions to suppress side reactions and the like. For example, according to Non-Patent Document 8, it has been known that VLB (l) can be obtained by subjecting anhydro VLB (2) to air oxidation as shown in Scheme 2 below. However, the yield of leurosidine (5) and leurosine (6) is higher than that of VLB (l), and the yield of VLB (l) is extremely high even under optimal conditions. Trace (less than 1%). In Non-Patent Document 8, it was presumed that VLB (l) in this reaction was generated via a conjugated iminium intermediate (3) and enamine (4).
[化 21] [Formula 21]
Figure imgf000014_0001
Figure imgf000014_0001
スキーム 2  Scheme 2
[0026] 一方、アブザィムを VLB(l)のような複雑な構造を有する天然有機化合物の合成に 適用することは、前記の通り、目的とする反応の遷移状態類似体を合成することが困 難なために、ほとんど不可能であると思われてきた。しかし、本発明者らは、遷移状態 類似体ではなく VLB自体を認識する抗体を用いることにより、 VLBを高収率で合成で きることを見出した。 On the other hand, applying Abzym to the synthesis of a natural organic compound having a complex structure such as VLB (l), as described above, makes it difficult to synthesize a transition state analog of the desired reaction. For some reason, it seemed almost impossible. However, the present inventors have found that VLB can be synthesized in high yield by using an antibody that recognizes not the transition state analog but the VLB itself.
[0027] 以下、本発明による VLBの合成について簡単に説明する力 これは一例に過ぎず 、本発明はこれに限定されない。すなわち、まず、 deacetylVLBをハプテンとし、それ とタンパク質とを用いて複合体を合成し、さらにその複合体を抗原としてマウスに免疫 させ、 VLBを認識するモノクローナル抗体を作製する。一方、前記スキーム 2に記載 のアンヒドロビンブラスチン (anhydrovinblastineまたは anhydroVLB)(2)を準備する。こ の化合物は、単量体性インドールアルカロイド vindolineと catharanthineから容易に得 られる。そして、このアンヒドロビンブラスチンを、下記スキーム 3のように前記モノクロ ーナル抗体、酸素および NBH CNの存在下で反応させて VLB(l)を得ることができる。  Hereinafter, the power of briefly explaining the synthesis of VLB according to the present invention This is merely an example, and the present invention is not limited to this. That is, first, a complex is synthesized using deacetylVLB as a hapten, and a hapten and a protein, and the complex is used as an antigen to immunize a mouse to produce a monoclonal antibody that recognizes VLB. Meanwhile, anhydrovinblastine or anhydroVLB (2) described in the above scheme 2 is prepared. This compound is readily obtained from the monomeric indole alkaloids vindoline and catharanthine. Then, this anhydrovinblastine is reacted in the presence of the monoclonal antibody, oxygen and NBHCN as shown in Scheme 3 below to obtain VLB (l).
3  Three
[化 22] [Formula 22]
Figure imgf000015_0001
Figure imgf000015_0001
[0028] アンヒドロビンブラスチン (2)は容易に得られる化合物である力 そこから VLB(l)を高 収率で得ることは、前記の通り従来は難しかった。しかし、本発明の方法によれば、ァ ンヒドロビンブラスチン (2)を一工程で立体選択的及び位置選択的に VLB(l)へ変換す ることができる。また、例えば、アンヒドロビンブラスチン (2)に代えて共役 iminium中間 体 (3)から VLB(l)を製造することもできる。このように、本発明によれば、構造が複雑で 従来はその合成に数多くの工程と厳密な反応条件が必要であった有用天然ィ匕合物 を、短工程で製造する工業的技術を確立することができる。また、本発明は、天然ィ匕 合物に限定されず、天然に存在しない化合物の合成法として使用することもできる。 Anhydrovinblastine (2) is a compound that can be easily obtained. As described above, it has been conventionally difficult to obtain VLB (l) in high yield. However, according to the method of the present invention, it is possible to convert anhydrovinblastine (2) to VLB (l) stereoselectively and regioselectively in one step. Also, for example, VLB (l) can be produced from a conjugated iminium intermediate (3) instead of anhydrovinblastine (2). As described above, according to the present invention, an industrial technology for producing a useful natural conjugate in a short time, which has a complicated structure and conventionally required many steps and strict reaction conditions for its synthesis, has been established. can do. In addition, the present invention is not limited to natural conjugates, and can be used as a method for synthesizing a compound that does not exist in nature.
[0029] 次に、本発明の製造方法では、製造の対象となる前記有機化合物は、例えば下記 式 (V)で表される化合物であっても良ぐその中でもタキソール (パクリタキセル)が特 に好ましい。  Next, in the production method of the present invention, the organic compound to be produced may be, for example, a compound represented by the following formula (V), and among them, taxol (paclitaxel) is particularly preferred. .
[化 23] [Formula 23]
Figure imgf000016_0001
Figure imgf000016_0001
式 (V)中、 R8— R13は、それぞれ独立に、水素原子、または炭素数 1一 6の直鎖もしく は分枝アルキル基である。 In the formula (V), R 8 to R 13 are each independently a hydrogen atom or a linear or branched alkyl group having 16 carbon atoms.
前記化合物 (V)を製造するための抗体の製造方法は特に限定されないが、例えば 以下の通りである。すなわち、まず、前記目的化合物 (V)と同一の化合物を準備し、 それを下記式 (VIII)で表される化合物に変換する。式 (VIII)中、 R8— R13は式 (V)と 同じである。目的化合物 (V)と同一の化合物をまず入手するための方法は、例えば 前記化合物 (I)につ 、て述べた通りである。化合物 (V)から化合物 (VIII)を得る方法 も特に限定されないが、例えば、化合物 (V)を無水コハク酸と反応させる方法が好ま しい。 The method for producing the antibody for producing the compound (V) is not particularly limited, and is, for example, as follows. That is, first, the same compound as the target compound (V) is prepared, and it is converted into a compound represented by the following formula (VIII). In the formula (VIII), R 8 — R 13 are the same as in the formula (V). The method for first obtaining the same compound as the target compound (V) is, for example, as described for the compound (I). The method for obtaining the compound (VIII) from the compound (V) is not particularly limited. For example, a method of reacting the compound (V) with succinic anhydride is preferable.
[化 24] [Formula 24]
[0031] そして、化合物 (VIII)とタンパク質との縮合反応により複合体を得て、さらにそれを 抗原として目的の抗体を製造する。前記タンパク質は特に限定されないが、例えば、 ゥシ血清アルブミン、サイログロブリンまたは卵白アルブミンが好ましい。この抗体は、 活性を失わない限り何度でも化合物 (V)の製造に使用することができる。 Then, a complex is obtained by a condensation reaction between the compound (VIII) and the protein, and the target antibody is produced using the complex as an antigen. The protein is not particularly limited, but is preferably, for example, serum albumin, thyroglobulin, or ovalbumin. This antibody can be used for the production of compound (V) any number of times as long as the activity is not lost.
[0032] 前記化合物 (V)の前駆体は特に限定されな 、が、例えば下記式 (Via)および (VIb )で表される化合物が好ましぐ前記目的化合物がタキソールである場合は、その前 駆体は、対応する下記式 (Via)および (VIb)の化合物がより好ま 、。  [0032] The precursor of the compound (V) is not particularly limited. However, for example, when the target compound, which is preferably a compound represented by the following formulas (Via) and (VIb), is taxol, The precursors are more preferably the corresponding compounds of the formulas (Via) and (VIb) below.
[化 25]  [Formula 25]
Figure imgf000017_0001
Figure imgf000017_0001
(VIb) 式 (Via)中、 R"は、炭素数 1一 6のエーテル基またはチォエーテル基であり、飽和で も不飽和でも直鎖状でも分枝状でも良ぐ式 (VIb)中、 R8— R13は、式 (V)と同じであ る。 R14としては、メチルスルファ -ル基 (-SCH )またはビュルォキシ基 (_OCH=CH ) (VIb) In the formula (Via), R ″ is an ether group or a thioether group having a carbon number of 16 and may be saturated, unsaturated, linear or branched, and in the formula (VIb), R 8 — R 13 is the same as in the formula (V) R 14 is a methylsulfur group (-SCH) or a buroxy group (_OCH = CH)
3 2 が特に好ましい。  32 is particularly preferred.
[0033] 次に、本発明の抗体、すなわち本発明の製造方法に使用する抗体およびその一 般的な製造方法についてより具体的に説明する。  Next, the antibody of the present invention, that is, the antibody used in the production method of the present invention and a general production method thereof will be described more specifically.
[0034] 本発明の抗体の製造方法は特に限定されず、公知の抗体の製造方法等を適宜応 用すれば良い。なお、従来のアブザィムは、目的とする反応の遷移状態を認識する 抗体であるため、前述の通り、まず前記反応の遷移状態化合物またはその類似体を ハプテンとして合成する必要があった。本発明の抗体の場合は基本的にそのような 必要はないが、この点以外は従来のアブザィムの製造方法を参考にして製造するこ とちでさる。  [0034] The method for producing the antibody of the present invention is not particularly limited, and a known antibody production method or the like may be appropriately applied. Since the conventional Abzyme is an antibody that recognizes the transition state of the target reaction, it was necessary to first synthesize the transition state compound of the reaction or an analog thereof as a hapten as described above. In the case of the antibody of the present invention, there is basically no need for such a method, but except for this point, the antibody is produced by referring to a conventional method for producing Abzym.
[0035] 本発明の抗体の製造方法は、具体的には例えば以下の通りである。まず、抗原は 、特に限定されないが、前記抗体は、それを用いる反応の目的化合物を認識する抗 体であるから、例えば、前記目的化合物またはその誘導体をノ、プテンとするのが便 利である。すなわち、前記抗体は、本発明の製造方法による製造の対象となる有機 化合物(目的化合物)またはその誘導体とタンパク質とを結合させて得られる複合体 を抗原として製造される抗体であることが好ましい。この場合、まず前記目的化合物と 同一の化合物を入手し、それを原料として前記複合体を製造しても良い。また、場合 によっては、前記目的化合物と同一でなくとも似た構造の化合物を前記抗体の製造 に利用しても良い。一度目的の抗体が得られれば、その活性が失われない限り何度 でも前記目的化合物の製造に利用することができる。  [0035] A specific example of the method for producing the antibody of the present invention is as follows. First, the antigen is not particularly limited. However, since the antibody is an antibody that recognizes a target compound in a reaction using the same, it is convenient to use, for example, the target compound or a derivative thereof as a pentane. . That is, the antibody is preferably an antibody produced using a complex obtained by binding an organic compound (target compound) or a derivative thereof to be produced by the production method of the present invention and a protein as an antigen. In this case, first, the same compound as the target compound may be obtained, and the composite may be produced using the same as a raw material. In some cases, a compound having a structure similar to, but not identical to, the target compound may be used for the production of the antibody. Once the target antibody is obtained, it can be used for the production of the target compound any number of times as long as its activity is not lost.
[0036] 本発明の抗体の製造方法は、本発明の製造方法による製造の対象となる有機化 合物またはその誘導体とタンパク質とを結合させて得られる複合体を動物に投与して 抗体産生細胞を得る工程を含むことが好ましぐ前記動物から前記抗体産生細胞を 摘出し、それをミエローマ細胞と融合させてハイプリドーマを作製する工程、およびそ のハイブリドーマを in vitroで培養する工程をさらに含むことがより好ましい。前記抗 体産生細胞はそのまま用いることもできるが、ハイプリドーマとする方が細胞の培養お よび維持が容易である等のメリットがある。そして、前記ハイプリドーマを別の動物に 投与し、その動物から目的の抗体を含む腹水を得る工程をさらに含むことが一層好 ましい。前記ハイプリドーマを投与する動物は特に限定されないが、入手の容易さや 扱いやすさ等の観点からマウスが特に好ましい。同様に、前記複合体を投与する動 物は、マウスであることがより好ましい。そして、前記複合体におけるタンパク質は、水 溶性や抗原性等の観点力もアルブミン、グロブリンまたはへモシァニンがより好ましく 、ゥシ血清アルブミン、サイログロブリンまたは卵白アルブミンであることが特に好まし い。 [0036] The method for producing an antibody of the present invention is characterized in that a complex obtained by binding an organic compound or a derivative thereof to be produced by the production method of the present invention and a protein is administered to an animal, Preferably, the method further comprises a step of extracting the antibody-producing cells from the animal, and fusing the antibody-producing cells with myeloma cells to produce a hybridoma, and culturing the hybridoma in vitro. Is more preferable. Although the antibody-producing cells can be used as they are, it is better to use hybridomas when culturing cells. And has advantages such as easy maintenance. More preferably, the method further comprises the step of administering the hybridoma to another animal to obtain ascites containing the target antibody from the animal. The animal to which the hybridoma is administered is not particularly limited, but a mouse is particularly preferable from the viewpoint of easy availability and easy handling. Similarly, the animal to which the complex is administered is more preferably a mouse. The protein in the complex is more preferably albumin, globulin or hemocyanin from the viewpoint of water solubility, antigenicity, and the like, and particularly preferably is serum albumin, thyroglobulin, or ovalbumin.
[0037] なお、一般的に、ハプテンとタンパク質との複合体を用いて抗ノヽプテン抗体を作製 した場合、その抗体の性質は、前記複合体におけるハプテンとタンパク質との結合部 位に影響されると考えられている。具体的には、前記抗ハプテン抗体の識別能は、 前記ハプテンとタンパク質との結合部位付近では弱ぐより離れた部分では強!、と考 えられる。したがって、本発明の抗体の製造に使用する前記複合体の場合も、前記 抗体を用いる反応における反応部位を考慮して、ハプテンとタンパク質との結合部位 を適宜選択することが好ましい。ハプテンの種類は、本発明では、前記抗体を用いる 反応における目的化合物の種類に応じて適宜選択すれば良ぐ例えば、前述の通り 、前記化合物 (VII)または化合物 (VIII)とタンパク質との縮合反応により得られる複合 体等が使用可能である。特に、ビンブラスチン、ビンクリスチン、ビンデシン、タキソー ルおよびそれらの誘導体のうちいずれかとタンパク質とを結合させて得られる複合体 は、対応するハプテンまたはその類似体の合成に適し好まし 、。  [0037] In general, when an anti-nopten antibody is produced using a complex of a hapten and a protein, the properties of the antibody are affected by the binding site between the hapten and the protein in the complex. It is believed that. Specifically, the discriminating ability of the anti-hapten antibody is considered to be strong near the binding site between the hapten and the protein and weaker at a portion farther away. Therefore, also in the case of the complex used for producing the antibody of the present invention, it is preferable to appropriately select the binding site between the hapten and the protein in consideration of the reaction site in the reaction using the antibody. In the present invention, the type of the hapten may be appropriately selected according to the type of the target compound in the reaction using the antibody.For example, as described above, the condensation reaction between the compound (VII) or the compound (VIII) and the protein may be performed. The composite obtained by the above method can be used. In particular, a complex obtained by binding any one of vinblastine, vincristine, vindesine, taxol, and their derivatives to a protein is suitable for the synthesis of the corresponding hapten or an analog thereof.
[0038] また、本発明の抗体としては、ポリクローナル抗体も使用可能である力 目的とする 反応の収率および選択性等の観点力もモノクローナル抗体が好ましい。  [0038] Further, as the antibody of the present invention, a monoclonal antibody is also preferable in terms of the ability to use a polyclonal antibody, and the viewpoint of the target reaction yield and selectivity.
[0039] 本発明の抗体を用いる本発明の製造方法は、前述の通り種々の有機化合物に適 用可能である。製造の対象となる前記有機化合物への変換反応においては、前記 有機化合物の前駆体および前記抗体に加え、反応の種類に応じて任意の反応物質 を適宜用いることができる。前記有機化合物への変換反応の反応温度や反応時間 等も特に限定されず、適宜設定すれば良いが、その性質上、一般的な有機反応と比 較して穏和な条件下で行なえることも利点の一つである。 実施例 1 [0039] The production method of the present invention using the antibody of the present invention can be applied to various organic compounds as described above. In the conversion reaction to the organic compound to be produced, in addition to the precursor of the organic compound and the antibody, any reactant can be appropriately used depending on the type of the reaction. The reaction temperature and the reaction time of the conversion reaction to the organic compound are not particularly limited, and may be appropriately set.However, due to its properties, the reaction can be performed under mild conditions as compared with a general organic reaction. One of the advantages. Example 1
[0040] 次に、本発明の実施例を示す。本実施例では、ビンブラスチンを用いたモノクロ一 ナル抗体の作製例およびそれを用いたビンブラスチンの合成方法の一例にっ 、て 説明する。なお、以下のデータにおいて、核磁気共鳴 (NMR)スペクトルは、 日本電 子株式会社 (JEOL)製 EX-400 (商品名) 測定時 400MHz)を用いて測定した。ケミ カルシフトは百万分率 (ppm)で表している。内部標準 Oppmには、テトラメチルシラン (TMS)を用いた。結合定数 (J)は、ヘルツで示しており、略号 s、 d、 t、 q、 mおよび brは 、それぞれ、一重線 (singlet)、二重線 (doublet),三重線 (triplet)、四重線 (quartet)、多 重線 (multiplet)および広幅線 (broad)を表す。赤外 (IR)スペクトルは、株式会社島津 製作所製 FTIR-8400(P/N206-71000) (商品名)を用いて測定した。紫外線吸光度測 定 (または紫外可視吸収スペクトル測定)は、株式会社日立製作所製 U-2000 Spectrophotometer (商品名 )を用いて行なった。質量分析 (MS)は、アプライド バイ ォシステムズ ジャパン株式会社 (Applied Biosystems)の質量分析計(商品名 API-3000)を用い、 ESI— MS, positive modeで測定した。  Next, examples of the present invention will be described. In this example, an example of preparing a monoclonal antibody using vinblastine and an example of a method for synthesizing vinblastine using the same will be described. In the following data, the nuclear magnetic resonance (NMR) spectrum was measured using EX-400 (trade name, manufactured by Nippon Electronics Co., Ltd. (JEOL), 400 MHz). Chemical shifts are expressed in parts per million (ppm). Tetramethylsilane (TMS) was used as the internal standard Oppm. Coupling constants (J) are given in Hertz and the abbreviations s, d, t, q, m and br are singlet, doublet, doublet, triplet and quadruple, respectively. Represents a line (quartet), a multiple line (multiplet) and a wide line (broad). The infrared (IR) spectrum was measured using FTIR-8400 (P / N206-71000) (trade name) manufactured by Shimadzu Corporation. The UV absorbance measurement (or UV-visible absorption spectrum measurement) was performed using a U-2000 Spectrophotometer (trade name) manufactured by Hitachi, Ltd. Mass spectrometry (MS) was measured in ESI-MS, positive mode using a mass spectrometer (product name API-3000) manufactured by Applied Biosystems Japan Co., Ltd. (Applied Biosystems).
[0041] [1] deacetylVLB-タンパク複合体の合成  [0041] [1] Synthesis of deacetylVLB-protein complex
ビンブラスチン (VLB)を合成するにあたり、まず、 VLB誘導体である deacetylVLBと タンパク質との複合体を以下の (0— (V)の手順に従って製造した。ハプテンとタンパク 質との複合体に用いるタンパク質の選択は、前記の通り水溶性や抗原性等が重要な 要素であるが、本実施例では、抗原性の高さを考慮してサイログロブリン  In synthesizing vinblastine (VLB), first, a complex of protein and deacetylVLB, a VLB derivative, was produced according to the following procedure (0— (V). Selection of protein used for complex of hapten and protein) As described above, water solubility and antigenicity are important factors, but in this example, thyroglobulin is used in consideration of high antigenicity.
(thyroglobulinまたは TG)を抗体作製用(免疫用)タンパクとして使用した。また、作製 した抗体の検出用には、水溶性の高さを考慮して、ゥシ血清アルブミン (Bovine Serum Albuminまたは BSA)と deacetylVLBとの複合体を用いた。なお、 VLB誘導体と タンパク質との複合体の合成については何通りかの方法を試した力 本実施例では 最も良 ヽ結果が得られた方法を示す。  (thyroglobulin or TG) was used as a protein for antibody production (immunization). In addition, for detection of the prepared antibodies, a complex of deoxy VLB and deacetylVLB was used in consideration of the high water solubility. In addition, several methods have been tried for the synthesis of a complex of a VLB derivative and a protein. In this example, the method that yielded the best results is shown.
[0042] (0 ビンブラスチン硫酸塩 (VLB sulfate)の遊離塩基への誘導反応  [0042] (0 Induction reaction of vinblastine sulfate (VLB sulfate) to free base
市販の VLB sulfate (和光純薬工業株式会社力も購入) 10mg(l 1 μ moL)を lmLの蒸 留水に溶かし、その水溶液に 6N(6mol/L)NH OHを加えて pHを 10にし、水溶液中に  Commercially available VLB sulfate (purchased by Wako Pure Chemical Industries, Ltd.) 10 mg (l 1 μmol) is dissolved in 1 mL of distilled water, and 6N (6 mol / L) NHOH is added to the aqueous solution to adjust the pH to 10, and the aqueous solution is dissolved. inside
4  Four
遊離した VLBを CH C1各 3mLで 3回抽出した。抽出液を蒸留水各 lmLで 3回洗浄後、 Na SOで乾燥した。乾燥後、抽出液を吸引濾過、減圧濃縮すると白色粉末状晶のThe released VLB was extracted three times with 3 mL each of CH C1. After washing the extract three times with each lmL of distilled water, Dried over Na SO. After drying, the extract is filtered by suction and concentrated under reduced pressure to give white powdery crystals.
2 4 twenty four
VLB(l)8.69mg (収率: 97.2%)を得た。なお、この反応は、 "Barnett, C.J.; Cullinan, u.J.; Gerzon, K.; Hoying, R.し.; Jones, W.E.; Newlon, W.M.; Poore, u.A.; 8.69 mg (yield: 97.2%) of VLB (l) were obtained. This reaction is described in "Barnett, C.J .; Cullinan, u.J .; Gerzon, K .; Hoying, R. Shi; Jones, W.E .; Newlon, W.M .; Poore, u.A .;
Robinson, R丄.; Sweeney, M.J.; Todd, G.C.; J. Med. Chem., 1978, 21, 88-96." に記載の方法を参照して行なった。 VLB(l)の化学構造式を下に再掲すると ともに、この化合物の機器分析データを示す。 NMRデータ中、炭素原子 (C)および 窒素原子 (N)に添付した番号は、それぞれ下記化学式中に添付した炭素原子およ び窒素原子の番号に対応して!/ヽる。 Robinson, R 丄.; Sweeney, MJ; Todd, GC; J. Med. Chem., 1978, 21, 88-96. ". The chemical structural formula of VLB (l) was Also shown below are the instrumental analysis data for this compound: In the NMR data, the numbers attached to the carbon atom (C) and the nitrogen atom (N) indicate the carbon atom and the nitrogen atom attached to the chemical formula below, respectively. Corresponding to the number!
[化 26] [Formula 26]
Figure imgf000021_0001
Figure imgf000021_0001
VLB(1)  VLB (1)
IR(neat)cm :3469,2946,1741,1614,1503,1460,1227,748; IR (neat) cm: 3469,2946,1741,1614,1503,1460,1227,748;
1H-NMR(400MHz,CDCl ) : δ 0.82(3H,J=7.2Hz,21-CH ), 0.89(3H,J=7.6Hz,21'-CH  1H-NMR (400MHz, CDCl): δ 0.82 (3H, J = 7.2Hz, 21-CH), 0.89 (3H, J = 7.6Hz, 21'-CH)
3 3  3 3
), 2.11(3H,s,C -OCOCH ), 2.71(3H,s,N -CH ), 3.61(3H,s,C — COOCH ),  ), 2.11 (3H, s, C -OCOCH), 2.71 (3H, s, N -CH), 3.61 (3H, s, C — COOCH),
4 3 1 3 18' 3 4 3 1 3 18 '3
3.79(3H,s,C -OCH ), 5.30(lH,d,J=10.4Hz,C— H), 5.47(lH,s,C -H), 3.79 (3H, s, C -OCH), 5.30 (lH, d, J = 10.4Hz, C-H), 5.47 (lH, s, C -H),
16 3 6 4  16 3 6 4
5.84(lH,m,C— H), 6.11(lH,s,C — H), 6.64(lH,s,C — H), 7.12(3H,m,C — H,C  5.84 (lH, m, C-H), 6.11 (lH, s, C-H), 6.64 (lH, s, C-H), 7.12 (3H, m, C-H, C
7 17 14 11' 12' 7 17 14 11 '12'
— HandC — H), 7.52(lH,d,J=7.6Hz,C — H), 8.04(lH,brs,indoleNH). — HandC — H), 7.52 (lH, d, J = 7.6Hz, C — H), 8.04 (lH, brs, indoleNH).
13' 14'  13 '14'
(ii) deacetylvinblastine(deacetylVLB)monohydrazideの合成  (ii) Synthesis of deacetylvinblastine (deacetylVLB) monohydrazide
前記の通りにして得た VLB(1)(遊離塩基) 8.69mg(11.3 μ moL)を、無水 hydrazine 0.22mLと無水 methanol l.OmLの混合液に溶かし、 Ar気流下、 60°Cで 24hr撹拌した。 撹拌後、反応液を冷却し、 3.0mLの蒸留水を加えた。遊離した生成物を CH C1各 8.69 mg (11.3 μmol) of VLB (1) (free base) obtained as described above was added to anhydrous hydrazine. It was dissolved in a mixed solution of 0.22 mL and anhydrous methanol l.OmL, and stirred at 60 ° C for 24 hours under an Ar gas flow. After stirring, the reaction solution was cooled, and 3.0 mL of distilled water was added. Release the released product to each CH C1
2 2 twenty two
3.0mLで 3回抽出し、抽出液を l.OmLの蒸留水、次いで l.OmLの satd. NaClで洗浄後 、 Na SOで乾燥した。抽出液を減圧濃縮し、淡黄色粉末状晶の deacetylVLB The mixture was extracted three times with 3.0 mL, and the extract was washed with 1 OmL of distilled water, then with 1 OmL of satd. NaCl, and then dried over NaSO. The extract was concentrated under reduced pressure to give deacetylVLB as pale yellow powder.
2 4  twenty four
monohydrazide 6.98mg (収率: 82.0%)を得た。なお、この反応は、 "Barnett, C.J.; し ullinan, u.J.; Gerzon, K.; Hoying, R.し.; Jones, W.E.; Newlon, W.M.; Poore, G.A.; Robinson, R.L.; Sweeney, M.J.; Todd, G.C.; J. Med. Chem., 1978, 21, 88-96." に記載の方法を参照して行なった。 deacetylVLB 6.98 mg (yield: 82.0%) of monohydrazide was obtained. This reaction is described in "Barnett, CJ; Shi ullinan, uJ; Gerzon, K .; Hoying, R. Shi; Jones, WE; Newlon, WM; Poore, GA; Robinson, RL; Sweeney, MJ; Todd, GC; J. Med. Chem., 1978, 21, 88-96. " deacetylVLB
monohydrazideの化学構造式を下に記載するとともに、この化合物の機器分析データ を示す。 NMRデータ中、炭素原子 (C)および窒素原子 (N)に添付した番号は、それぞ れ下記化学式中に添付した炭素原子および窒素原子の番号に対応して 、る。 The chemical structural formula of monohydrazide is described below, and the instrumental analysis data of this compound is shown. In the NMR data, the numbers attached to the carbon atom (C) and the nitrogen atom (N) correspond to the numbers of the carbon atom and the nitrogen atom, respectively, in the following chemical formula.
[化 27] [Formula 27]
Figure imgf000022_0001
Figure imgf000022_0001
IR(neat)cm :3743,3467,2934,1723,1658,1614,1503,1460,1229,748 ; IR (neat) cm: 3743,3467,2934,1723,1658,1614,1503,1460,1229,748;
1H-NMR(270MHz,CDCl ) : δ 0.87— 0.94(6H,m,21— CH and21,— CH ), 2.74(3H,s,N 1H-NMR (270MHz, CDCl): δ 0.87- 0.94 (6H, m, 21- CH and21,-CH), 2.74 (3H, s, N
3 3 3  3 3 3
-CH ), 3.60(3H,s,C — COOCH ), 3.78(3H,s,C — OCH ), 4.15(lH,s,C— H),  -CH), 3.60 (3H, s, C — COOCH), 3.78 (3H, s, C — OCH), 4.15 (lH, s, C— H),
3 18' 3 16 3 4  3 18 '3 16 3 4
5.81(2H,m,C— HandC— H), 6.09(lH,s,C — H), 6.60(lH,s,C — H), 7.13(3H,m,C  5.81 (2H, m, C—HandC—H), 6.09 (lH, s, C—H), 6.60 (lH, s, C—H), 7.13 (3H, m, C
6 7 17 14 1: 6 7 17 14 1:
-H,C -HandC — H), 7.52(lH,d,J=5.1Hz,C — H), 8.03(lH,brs,indoleNH), 8.23(lH,brs,— CONHNH ). -H, C -HandC — H), 7.52 (lH, d, J = 5.1Hz, C — H), 8.03 (lH, brs, indoleNH), 8.23 (lH, brs, — CONHNH).
一 2  One two
[0046] (iii) deacetylVLB- acid azideの合成  [0046] (iii) Synthesis of deacetylVLB-acid azide
deacetylVLB monohydrazide 6.98mg(9.08 μ moL)を methanol 0.35mLと lN(lmol/L)HCl 1.20mLの混合液に溶かし、 4°Cに冷却後、 NaNO 7.95mgをカロえ、  Dissolve 6.98 mg (9.08 μmol) of deacetylVLB monohydrazide in a mixture of 0.35 mL of methanol and 1.20 mL of lN (lmol / L) HCl, cool to 4 ° C, and calorie 7.95 mg of NaNO.
2  2
lOmin撹拌した。赤褐色に変化した反応液に、 pH力 になるまで 5% NaHCOをカロえ  Stirred for lOmin. Add 5% NaHCO to the reaction solution that turned reddish brown until it became pH-powered.
3 た。遊離した生成物を、 CH C1各 3.0mLで 3回すばやく抽出後、 Na SOで乾燥した。  3 The released product was quickly extracted three times with 3.0 mL each of CH C1 and then dried over Na 2 SO 4.
2 2 2 4  2 2 2 4
この抽出液を、約 l.OmLになるまで減圧濃縮し、 deacetylVLB-acid azideの濃縮液を 得/こ。なお、この反 ίΐ、ί3~、 Barnett, し. J.; し ullinan, u.J.; Gerzon, K.; Hoying, R.C.; Jones, W.E.; Newlon, W.M.; Poore, G.A.; Robinson, R.L.; Sweeney, M.J.; Todd, G.C.; J. Med. Chem., 1978, 21, 88-96, に記載の方法を参照 して行なった。下に、 deacetylVLB- acid azideの IR ^ベクトルピーク値を示す。  This extract was concentrated under reduced pressure to about lOmL to obtain a concentrated solution of deacetylVLB-acid azide. In addition, this reaction, ί3 ~, Barnett, shi. J .; shi ullinan, uJ; Gerzon, K .; Hoying, RC; Jones, WE; Newlon, WM; Poore, GA; Robinson, RL; Sweeney, MJ; The method was performed with reference to the method described in Todd, GC; J. Med. Chem., 1978, 21, 88-96. The IR ^ vector peak value of deacetylVLB-acid azide is shown below.
[0047] IR(neat)cm"1:3645,3358,2920,2135, 1714,1651, 1504, 1455, 747. [0047] IR (neat) cm " 1 : 3645,3358,2920,2135,1714,1651,1504,1455,747.
[0048] 次に、上記 deacetylVLB- acid azideを用いて、 deacetylVLB- Bovine Serum  Next, using the above deacetylVLB-acid azide, deacetylVLB-Bovine Serum
Albumin(BSA)複合体および deacetylVLB- thyroglobulin(TG)複合体を合成した。なお 、下記ステップ (iv)および (V)で使用した 0.1M phosphate buffer(pH6.2)は、リン酸二 水素ナトリウム (NaH PO )13.28g、リン酸水素ニナトリウム (Na HPO )5.33gおよび EDTA  Albumin (BSA) complex and deacetylVLB-thyroglobulin (TG) complex were synthesized. The 0.1 M phosphate buffer (pH 6.2) used in the following steps (iv) and (V) was 13.28 g of sodium dihydrogen phosphate (NaHPO), 5.33 g of disodium hydrogen phosphate (Na HPO) and EDTA
2 4 2 4  2 4 2 4
•2Na 1.87gをミリ Q水 1.00Lに溶かして調製した(EDTAはエチレンジァミン四酢酸を 表す)。また、前記各複合体における VLBの結合数は紫外線吸光度測定により算出 したが、この算出は、 VLB、 BSAおよび TGのそれぞれの化合物について、観測波長 280nmおよび 310nmで濃度対吸光度の検量線を作成し、それらと前記各複合体の紫 外線吸光度測定値を対比して行なった。なお、 BSAには観測波長 310應での吸収は 見られなかった。  • Prepared by dissolving 1.87 g of 2Na in 1.00 L of Milli-Q water (EDTA stands for ethylenediaminetetraacetic acid). The number of VLB bonds in each of the above complexes was calculated by ultraviolet absorbance measurement, and this calculation was performed by preparing a calibration curve of concentration versus absorbance at observation wavelengths of 280 nm and 310 nm for each compound of VLB, BSA and TG. These were compared with the measured values of the ultraviolet absorbance of each complex. BSA did not show absorption at the observed wavelength of 310.
[0049] (iv) deacetylVLB- Bovine Serum Albumin(BSA)複合体の合成  [0049] (iv) Synthesis of deacetylVLB-Bovine Serum Albumin (BSA) complex
BSA (SIGMA- ALDRICH社から購入) 17.9mgを 0.1N(0.1mol/L)Na HPO 2.0mLに  BSA (purchased from SIGMA-ALDRICH) 17.9 mg to 2.0 mL of 0.1 N (0.1 mol / L) Na HPO
2 4 溶かし、 0.1N(0.1mol/L)NaOHを数滴加え、 pHを 9にした。一方、前記ステップ (iii)で 得た deacetylvinblastine- acid azideの CH CI溶液 (l.OmL)に無水 dioxane 200 μ Lを  The solution was dissolved, and a few drops of 0.1N (0.1 mol / L) NaOH were added to adjust the pH to 9. On the other hand, 200 μL of anhydrous dioxane was added to the CHCI solution (l.OmL) of deacetylvinblastine-acid azide obtained in step (iii).
2 2  twenty two
加え、減圧濃縮して CH C1を留去した。このようにして得られた azideの dioxane溶液  In addition, the mixture was concentrated under reduced pressure to distill off CH C1. Azide dioxane solution obtained in this way
2 2  twenty two
200 Lを BSA溶液に滴下し、 pH9に保ちながら、混合液を 3hr、室温で撹拌した。反 応液を 2 X 35cmの Sephadex G-25M (Pharmacia Biotech社の商品名)カラムで 0.1M phosphate buffer(pH6.2)により精製し、 deacetylVLB- BSA複合体 (lOmL, 1.39mg/mL)を得た。本品は紫外線吸光度測定の結果、 BSA lmolに対し、 3.2molの deacetylVLBが結合していた。なお、この反応は "Conrad, R.A.; Cullinan, G.J.; Gerzon, K.; Poore, G.A. J. Med. Chem., 1979, 22, 391—400." に記載の方 法を参照して行なった。 200 L was added dropwise to the BSA solution, and the mixture was stirred at room temperature for 3 hr while maintaining the pH at 9. Anti The reaction solution was purified using a 2 × 35 cm Sephadex G-25M (Pharmacia Biotech) column with 0.1 M phosphate buffer (pH 6.2) to obtain a deacetylVLB-BSA complex (10 mL, 1.39 mg / mL). . As a result of ultraviolet absorption measurement, 3.2 mol of deacetylVLB was bound to 1 mol of BSA. This reaction was performed by referring to the method described in "Conrad, RA; Cullinan, GJ; Gerzon, K .; Poore, GAJ Med. Chem., 1979, 22, 391-400."
[0050] (V) deacetylVLB- thyroglobulin(TG)複合体の合成 (V) Synthesis of deacetylVLB-thyroglobulin (TG) complex
まず、 azideの dioxane溶揿' 、目 ij記ステップ (iv) (deacetylVLB— Bovine Serum Albumin(BSA)複合体の合成)と同様にして調製した。一方、 TG (SIGMA-ALDRICH 社から購入) 17.9mgを 0.1N(0.1mol/L)Na HPO 2.0mLに溶かし、  First, azide dioxane solution was prepared in the same manner as in step (iv) (synthesis of deacetylVLB-Bovine Serum Albumin (BSA) complex). Meanwhile, 17.9 mg of TG (purchased from SIGMA-ALDRICH) was dissolved in 2.0 mL of 0.1 N (0.1 mol / L) Na HPO,
2 4  twenty four
0.1N(0.1mol/L)NaOHを数滴加え、 pHを 9にした。この TG溶液に前記 azideの dioxane 溶液 200 Lを滴下し、得られた混合液を pH9に保ちながら、 3hr、室温で撹拌した。 反応液を 2 X 35cmの Sephadex G-25M (Pharmacia Biotech社の商品名 )カラムで 0.1M phosphate buffer(pH6.2)により精製し、 deacetylVLB- TG複合体 (16mL, 0.60mg/mL)を得た。本品は紫外線吸光度測定の結果、 TG lmolに対し、 8.21molの deacetylVLBが結合して!/、た。  Several drops of 0.1N (0.1 mol / L) NaOH were added to adjust the pH to 9. 200 L of the azide dioxane solution was added dropwise to the TG solution, and the resulting mixture was stirred at room temperature for 3 hours while maintaining the pH at 9. The reaction solution was purified using a 2 × 35 cm Sephadex G-25M (Pharmacia Biotech) column with 0.1 M phosphate buffer (pH 6.2) to obtain a deacetylVLB-TG complex (16 mL, 0.60 mg / mL). . As a result of ultraviolet absorbance measurement, 8.21 mol of deacetylVLB was bound to 1 mol of TG in this product.
[0051] [2] 抗ビンブラスチンモノクローナル抗体の作製 [2] Preparation of anti-vinblastine monoclonal antibody
前記の通りにして合成した deacetylVLB-TG複合体を用いて抗ビンブラスチンモノク ローナル抗体の作製を行なった。抗体価の測定には前記 deacetylVLB-BSA複合体 を用いた。  Using the deacetylVLB-TG complex synthesized as described above, an anti-vinblastine monoclonal antibody was prepared. The antibody titer was measured using the above deacetylVLB-BSA complex.
[0052] (0 deacetylVLB- TG複合体のマウスへの感作と血清の採取  [0052] (0) Sensitization of mice with 0 deacetylVLB-TG complex and collection of serum
合計 11匹の Balb/cマウス(7週齢、雌)それぞれに対し、 TG— VLB (deacetylVLB- TG 複合体) 100 μ gを、 Freundの完全アジュバント (CFA)で乳化した 0.1M sodium phosphate buffer 100 Lと共に皮内投与して免疫化 (感作)した。その後、同様の 方法により、 2週間間隔で合計 3度追加免疫した。なお、投与した TG— VLBはマウスに より異なるが、マウス No.9— 11については、前述の合成方法による 8.21molの deacetylVLBが結合した TG— VLBを投与した。一方、初回感作から 0、 14、 28および 42日後に採血し、得られた血清 (抗血清)の抗体価を ELISA法で測定した。その結果 、前記 11匹の Balb/cマウスのうち No.9— 11にお!/、て特に顕著な抗体価の増加が見ら れた。図 1に、マウス No.9— 11の測定結果をグラフで示す。このマウス No.9— 11から 採取した細胞を用いてハイプリドーマの作製および培養を行なった。なお、前記 ELISA法による測定の具体的な操作を次に示す。 For each of a total of 11 Balb / c mice (7 weeks old, female), 100 µg of TG-VLB (deacetylVLB-TG complex) was emulsified with Freund's complete adjuvant (CFA) in 0.1 M sodium phosphate buffer 100 Immunization (sensitization) was performed by intradermal administration together with L. Thereafter, a booster immunization was performed in a similar manner three times at 2-week intervals. The administered TG-VLB differs depending on the mouse. For mouse Nos. 9-11, TG-VLB to which 8.21 mol of deacetylVLB was bound by the above-mentioned synthesis method was administered. On the other hand, blood was collected at 0, 14, 28 and 42 days after the first sensitization, and the antibody titer of the obtained serum (antiserum) was measured by ELISA. as a result Of the 11 Balb / c mice, No. 9-11 showed a particularly remarkable increase in antibody titer. Figure 1 graphically shows the measurement results for mouse Nos. 9-11. Using the cells collected from this mouse No. 9-11, a hybridoma was prepared and cultured. The specific operation of the measurement by the ELISA method is described below.
[0053] (ii) ELISA法による抗体価の測定 (Ii) Measurement of antibody titer by ELISA method
本測定において、以下に示す緩衝液「buffer P」は、ミリ Q水 1.00Lに NaH PO ·2Η  In this measurement, the following buffer “buffer P” was prepared by adding 1.00 L of Milli-Q water to NaHPO
2 4 2 2 4 2
O(0.55g)、 Na HPO - 12H 0(2.29g)および NaCl(5.84g)を溶解させて調製した。 buffer It was prepared by dissolving O (0.55 g), Na HPO-12H0 (2.29 g) and NaCl (5.84 g). buffer
2 4 2  2 4 2
Pのリン酸ナトリウム濃度は 10mM、 NaCl濃度は 0.1M、 pHは 7.0である。「buffer A」は、 ミリ Q水 1.00Lに NaH PO ·2Η O(0.55g)、 Na HPO - 12H 0(2.29g)、 NaCl(5.84g)、  The sodium phosphate concentration of P is 10 mM, the NaCl concentration is 0.1 M, and the pH is 7.0. `` Buffer A '' is prepared by adding 1.00 L of Milli-Q water to NaHPO2ΗO (0.55 g), NaHPO-12H0 (2.29 g), NaCl (5.84 g),
2 4 2 2 4 2  2 4 2 2 4 2
BSA(1.00g)、 NaN (1.00g)、および MgCl (0.095g)を溶解させて調製した。 buffer Aの  It was prepared by dissolving BSA (1.00 g), NaN (1.00 g), and MgCl (0.095 g). buffer A
3 2  3 2
BSA濃度は 0.1%(W/W)、 NaN濃度は 0.1%(W/W)、 MgCl濃度は lmM、 pHは 7.0である  BSA concentration is 0.1% (W / W), NaN concentration is 0.1% (W / W), MgCl concentration is lmM, pH is 7.0
3 2  3 2
。また、「dilution buffer」は、 buffer P 1.00Lに 1.00g(0.1wt%)の BSAをカ卩えて調製し た。  . The “dilution buffer” was prepared by adding 1.00 g (0.1 wt%) of BSA to 1.00 L of buffer P.
[0054] 測定は以下のようにして行なった。すなわち、まず、前述の通りに製造した  [0054] The measurement was performed as follows. That is, first, it was manufactured as described above.
deacetylVLB— BSA複合体を、 0.1M Sodium phosphate buffer(pH7.5)に  DeacetylVLB—BSA complex in 0.1M sodium phosphate buffer (pH7.5)
0.1%(W/W)NaNをカ卩えた溶液で 10 g/mLに希釈した。次に、この deacetylVLB- BSA  The solution was diluted to 10 g / mL with a solution of 0.1% (W / W) NaN. Next, this deacetylVLB- BSA
3  Three
複合体溶液を 96穴プレートに lwell当り 150 Lカ卩え、 4°Cでー晚静置した。静置後、 上清を捨て、残った固相化タンパクを buffer P(10mMリン酸緩衝液)で洗浄後、 buffer A(0.1wt%BSAタンパク溶液)を lwell当り L加え、 4°Cで 2hrブロッキングした。再 び上清を捨て、残った固相化タンパクを buffer P で洗浄後、これに前記感作マウス 力も採取した血清 (buffer Aで 103倍、 104倍、または 105倍に希釈した溶液)を 150 L 加え、 37°Cで 2hrインキュベートした。それをさらに buffer P で洗浄後、西洋ヮサビぺ ルォキシダーゼ(POD)で標識した二次抗体 (ャギ(抗マウス IgG) Fab'-POD,すなわ ¾ anti-mouse IgG(H+L— chain) (goat Ig /rabノ conj. peroxidase Lot. 310)を dilution bufferで 20.8ng/mLに希釈したものを 150 μ L加え、 37°Cで 1.5hrインキュベー トした。その後、 buffer P で洗浄し、オルトフヱ-レンジァミン(OPD)水溶液 (OPD 7.5mM+AcONa 50mM)を 100 μ L加え、 37°Cで 45minインキュベートした。そしてこれ に、 1.2M H SO (1L中 Na SO 2.4gを含む)水溶液を 50 μ L加え、 492nmの吸光度を 測定した。なお、この ELISA測定は、 "Kohno, T.; Tanaka, H.; Watabe, K.; Yamashita, S.; Sezaki, H.; Nadai, T.; Sugie, Y.; Ogouchi, T. Microbiol. Immunol, 1999, 43, 253-258." の記載を参照して行なった。 The complex solution was placed in a 96-well plate at 150 L / well, and allowed to stand at 4 ° C. After standing, discard the supernatant, wash the remaining solid-phased protein with buffer P (10 mM phosphate buffer), add buffer A (0.1 wt% BSA protein solution) at L per well, and incubate at 4 ° C for 2 hours. Blocked. Discarded again supernatant after washing the residual solid phase protein in buffer P, 10 3 times with serum (buffer A was also collected the sensitized mice force thereto, it was diluted 10 4 fold or 10 5 fold solution ) Was added and the mixture was incubated at 37 ° C for 2 hours. After washing it further with buffer P, secondary antibody labeled with horseradish oxidase (POD) (goat (anti-mouse IgG) Fab'-POD, sunao ¾ anti-mouse IgG (H + L-chain) ( goat Ig / rabno conj. peroxidase Lot. 310) diluted to 20.8 ng / mL with a dilution buffer was added to 150 μL, and incubated at 37 ° C for 1.5 hours, followed by washing with buffer P and 100 μL of an aqueous rangenamine (OPD) solution (7.5 mM OPD + 50 mM AcONa) was added, and the mixture was incubated at 37 ° C for 45 minutes, and 50 μL of an aqueous 1.2 MHSO (containing 2.4 g of NaSO in 1 L) solution was added thereto. The absorbance at 492nm It was measured. In addition, this ELISA measurement is based on "Kohno, T .; Tanaka, H .; Watabe, K .; Yamashita, S .; Sezaki, H .; Nadai, T .; Sugie, Y .; Ogouchi, T. Microbiol. Immunol , 1999, 43, 253-258. ".
[0055] (iii) マウスハイプリドーマの作製  (Iii) Production of mouse hybridoma
以下のようにしてマウスハイプリドーマを作製した。  A mouse hybridoma was prepared as follows.
[0056] (iii-1) マウスミエローマ細胞の培養  (Iii-1) Culture of mouse myeloma cells
まず、マウスミエローマ細胞の培養を行なった。すなわち、まず、非分泌型マウスミ エローマ細胞 SP2/0-Agl4を、細胞培養フラスコを用いて GIT培地 (Nihon  First, mouse myeloma cells were cultured. That is, first, non-secretory mouse myeloma cells SP2 / 0-Agl4 were transferred to a GIT medium (Nihon
Pharmaceutical Co. Ltd. Tokyo, Japanすなわち日本製薬株式会社製) 75mLで培 養し、細胞数 300万個を得た (細胞密度: 4.0 X 104個/ mL)。これを培養 1日目とした。 培養 2日目では、細胞数が 600万個 (細胞密度: 8.0 X 104個/ mL)、培養 3日目では、細 胞数が 1875万個 (細胞密度: 2.5 X 105個/ mL)、培養 4日目には、 3300万個のマウスミ エローマ細胞 (細胞密度 : 2.1 X 105個/ mL)を得た。なお、前記 GIT培地(日本製薬株 式会社製)について、より詳しくは" Murakami, H.; Masui, H.; Sato, G.H.; The cells were cultured in 75 mL of Pharmaceutical Co. Ltd. Tokyo, Japan (ie, manufactured by Nippon Pharmaceutical Co., Ltd.) to obtain 3 million cells (cell density: 4.0 × 10 4 cells / mL). This was the first day of culture. On the second day of culture, the number of cells is 6 million (cell density: 8.0 × 10 4 cells / mL), and on the third day of culture, the number of cells is 18.75 million (cell density: 2.5 × 10 5 cells / mL). On the fourth day of culture, 33 million mouse myeloma cells (cell density: 2.1 × 10 5 cells / mL) were obtained. The GIT medium (manufactured by Nippon Pharmaceutical Co., Ltd.) is described in more detail in "Murakami, H .; Masui, H .; Sato, GH;
Sueoka, N.; Chow, T.P.; Sueoka, T.K. Proc. Natl. Acad. Sci. USA, 1982, 79, 1158-1162." に記載されている。また、以下に記す GIT培地は、全てこれと同様 のものを用いた。  Natl. Acad. Sci. USA, 1982, 79, 1158-1162. "Sueoka, N .; Chow, TP; Sitoka, TK Proc. Natl. Acad. Was used.
[0057] (iii-2) マクロファージの採取  (Iii-2) Collection of macrophages
マウスミエローマ細胞を培養する一方、前記感作 Balb/cマウスのうち抗体価の顕著 な上昇が見られたマウス No.9— 11のそれぞれからマクロファージ (腹膜細胞)を採取 した。すなわち、まず、 GIT培地(日本製薬株式会社製) 10mLを注射筒 (テルモ株式 会社製、商品名テルモシリンジ)に取り、前記マウス No.9— 11のそれぞれに 70%ェタノ 一ルを噴霧した後、マウスの腹毛を刈り(直径約 lcm)、前記シリンジに 26Gの注射針 を取り付けて GIT培地 10mLを腹腔内投与した。このマウスの腹を 5分間もみ、腹腔内 力 シャーレに GIT培地を回収し、それを 1200rpmで 5分間遠心分離にかけた。上清 を捨てて得られたマクロファージに PBS 10mLを加えて再度、同条件下で遠心分離し た。この遠心分離をもう一度行なった後、マクロファージに地区 GIT培地 +ペニシリン ストレプトマイシン (100倍希釈)をカ卩え、 96穴プレートに O.lmLずつ藩種し、 COイン キュベータ中、 37°Cで培養した。この方法は、" Lane, R.D.; Crissman, R.S.; Ginn, S. Method EnzymoL, 1986, 121, 183-192." を参照した。 While the mouse myeloma cells were cultured, macrophages (peritoneal cells) were collected from each of the sensitized Balb / c mice Nos. 9 to 11 in which the antibody titer was significantly increased. That is, first, 10 mL of GIT medium (manufactured by Nippon Pharmaceutical Co., Ltd.) was placed in an injection cylinder (manufactured by Terumo Corporation, trade name: Terumosyringe), and 70% ethanol was sprayed on each of the mice No. 9-11. Then, the mouse's abdominal hair was clipped (approximately 1 cm in diameter), and a 26G injection needle was attached to the syringe, and 10 mL of GIT medium was intraperitoneally administered. The abdomen of this mouse was rubbed for 5 minutes, and the GIT medium was collected in an intraperitoneal Petri dish and centrifuged at 1200 rpm for 5 minutes. The macrophages obtained by discarding the supernatant were added with 10 mL of PBS, and centrifuged again under the same conditions. After performing this centrifugation again, macrophages were mixed with regional GIT medium + penicillin streptomycin (diluted 100-fold). The cells were cultured at 37 ° C in a cuvette. This method referred to "Lane, RD; Crissman, RS; Ginn, S. Method EnzymoL, 1986, 121, 183-192."
[0058] (iii-3) 細胞融合 (Iii-3) Cell fusion
次に、細胞融合を行なった。すなわち、まず、前記 Balb/c マウス No.9— 11のそれ ぞれに 70%エタノールを噴霧し、クリーンベンチ内で頸椎脱臼させて殺した。次に、 前記マウスを開腹して脾臓を摘出し、その脾臓を氷冷中の RPMI1640培地に入れ、ほ ぐした。それを金属メッシュで濾過し、 15mL用遠沈管に移した後、 1200rpmで 5分間 遠心分離した。上清を廃棄後、あら力じめ 37°Cに温めておいたリジング試薬を 5mLカロ え、 37°Cで 2分間インキュベーションし、さらに RPMIを 5mLカ卩え、 1200rpmで 5分間遠 心分離した。再度上清を廃棄後、もう一度、 37°Cに温めておいたリジング試薬を 5mL 加え、 37°Cで 2分間インキュベーションし、 RPMIを 5mLカ卩え、 1200rpmで 5分間遠心分 離して脾臓細胞力も赤血球を除いた。さらに、上清を廃棄し、 RPMI 10mLを加え、ピ ペッティング後、 1200rpmで 5分間遠心分離することを 2回繰り返してリジング試薬を除 去した。  Next, cell fusion was performed. That is, first, 70% ethanol was sprayed on each of the above-mentioned Balb / c mice Nos. 9 to 11, and they were killed by dislocation of the cervical spine in a clean bench. Next, the mouse was laparotomized to remove the spleen, and the spleen was placed in an ice-cooled RPMI1640 medium and loosened. It was filtered through a metal mesh, transferred to a 15 mL centrifuge tube, and centrifuged at 1200 rpm for 5 minutes. After discarding the supernatant, 5 mL of ridging reagent warmed to 37 ° C was added, and incubated at 37 ° C for 2 minutes.Furthermore, 5 mL of RPMI was added and centrifuged at 1200 rpm for 5 minutes. . After discarding the supernatant again, add 5 mL of the ridging reagent warmed to 37 ° C again, incubate at 37 ° C for 2 minutes, remove 5 mL of RPMI, centrifuge at 1200 rpm for 5 minutes to increase the spleen cell power. Red blood cells were removed. Further, the supernatant was discarded, 10 mL of RPMI was added, and after pipetting, centrifugation at 1200 rpm for 5 minutes was repeated twice to remove the ridging reagent.
[0059] 一方、前述の通りに培養した SP2/0-Agl4マウスミエローマ細胞を 50mL用遠沈管に 移し、 1200rpmで 5分間遠心分離した。さらに、上清を廃棄し、 RPMI 10mLをカ卩え、ピ ペッティング後、 1200rpmで 5分間遠心分離することを 2回繰り返し、前記 SP2/0_Agl4 マウスミエローマ細胞の培養に使用した培地を除去した。  On the other hand, SP2 / 0-Agl4 mouse myeloma cells cultured as described above were transferred to a 50 mL centrifuge tube, and centrifuged at 1200 rpm for 5 minutes. Further, the supernatant was discarded, 10 mL of RPMI was washed, pipetting, and centrifugation at 1200 rpm for 5 minutes were repeated twice to remove the medium used for culturing the SP2 / 0_Agl4 mouse myeloma cells.
[0060] このようにして得た脾臓細胞と SP2/0-Agl4マウスミエローマ細胞のそれぞれに [0060] Each of the spleen cells thus obtained and SP2 / 0-Agl4 mouse myeloma cells was
RPMI 5mLを加え、細胞融合のために血球計算盤を用いて細胞数を計測した。細胞 融合は、 Roche Diagnostics(Mannheim, Germany)の方法に従って行なった。すなわ ち、まず、前記脾臓細胞と SP2/0-Agl4マウスミエローマ細胞を 5 : 1の細胞数比で一 つの 50mL用遠沈管に入れ、 1200rpmで 5分間遠心分離し、上清を捨てた。これを、あ らカじめ 37°Cに温めてクリーンベンチ内に入れた水浴中で保温し、あら力じめ 37°Cに 温めた Polyethylene Glycol 1500 in 75mM HEPES (ロッシュ株式会社製、商品名 PEG— 1500) lmLを 1分間かけて加えながらピペットで攪拌した。 PEG— 1500を力卩ぇ終 わった後、水浴中で遠沈管を回転させながら、内容物をさらにピペットで 2分間攪拌し 、そして、さらに遠沈管の回転および内容物の攪拌を続けながら、 RPMI 4mLを 4分 間力けてカロえた。そこに、あらかじめ 37°Cに温めた RPMI 10mLをカ卩えて穏やかに懸 濁し、 900rpmで 5分間遠心分離した。遠心分離機を停止させる時、ブレーキによる細 胞のダメージを防ぐために、 5分間ほどかけて徐々に回転数を落とし、停止させた。こ のようにして細胞融合を行ない、 目的のハイプリドーマを得た。 5 mL of RPMI was added and the number of cells was counted using a hemocytometer for cell fusion. Cell fusion was performed according to the method of Roche Diagnostics (Mannheim, Germany). That is, first, the spleen cells and SP2 / 0-Agl4 mouse myeloma cells were placed in one 50 mL centrifuge tube at a cell ratio of 5: 1, centrifuged at 1200 rpm for 5 minutes, and the supernatant was discarded. Polyethylene Glycol 1500 in 75mM HEPES (Roche Co., Ltd., trade name) warmed to 37 ° C and kept in a water bath placed in a clean bench, and warmed to 37 ° C The mixture was stirred with a pipette while adding 1 mL of (PEG-1500) over 1 minute. After finishing the PEG-1500, the contents were further agitated with a pipette for 2 minutes while rotating the centrifuge tube in a water bath, and RPMI was further continued while rotating the centrifuge tube and stirring the contents. 4 mL for 4 minutes I got a lot of calories. Then, 10 mL of RPMI preliminarily heated to 37 ° C. was added thereto, gently suspended, and centrifuged at 900 rpm for 5 minutes. When the centrifuge was stopped, the rotation speed was gradually reduced over about 5 minutes and stopped in order to prevent damage to the cells due to the brake. Cell fusion was performed in this manner to obtain the desired hybridoma.
[0061] 得られたノヽイブリドーマは、 GIT培地(日本製薬株式会社製)に 10%FCSおよび HAT [0061] The obtained hybridomas were added to 10% FCS and HAT
(50倍希釈)を加えた培地に脾臓細胞濃度 1一 2 X 106/mLとなるように懸濁させ、あら かじめ前述のようにして採取したマクロファージをカ卩えた 96穴プレート中に加えた。そ こにさらに前記 GIT+ 10%FCS + HAT培地をカ卩え、脾臓細胞濃度が 1 X lOVmL かつ 容量が L/wellとなるように調整し、 COインキュベータ内、 37°Cで培養した。 (50-fold dilution) was added to the culture medium, and the spleen cells were suspended at a concentration of 12 × 10 6 / mL, and the macrophages collected in advance as described above were added to a 96-well plate that had been prepared. Was. The GIT + 10% FCS + HAT medium was further cultivated, the spleen cell concentration was adjusted to 1 × 10 V mL and the volume was L / well, and the cells were cultured at 37 ° C. in a CO incubator.
2  2
[0062] (iii-4) 抗ビンブラスチンモノクローナル抗体を産生するマウスハイプリドーマのクロー ユング  (Iii-4) Claw Jung of mouse hybridoma producing anti-vinblastine monoclonal antibody
前記ノ、イブリドーマがコロニー形成後、その培養上清の抗体価を ELISA測定し、抗 ビンブラスチンモノクローナル抗体産生が確認されたコロニーから、三光純薬 (Tokyo, After the colony formation of the above-mentioned (i) and (ii), the antibody titer of the culture supernatant was measured by ELISA. From the colonies in which anti-vinblastine monoclonal antibody production was confirmed, Sanko Pure Chemical (Tokyo,
Japan)の指針に従 、S- Clone培地を用いて、抗体産生ハイプリドーマ(陽性ノヽイブリ ドーマ)のクロー-ングを行った。前記ハイプリドーマの上清は、抗ビンブラスチン抗 体の存在について定期的にアツセィを行なった。その結果、 目的の抗体産生 wellを、 マウス No.9から 5well、マウス No.l(½^27well、マウス No.l ^20we ^ これら wellから、 目的のノ、イブリドーマをさらに限界希釈法によりクローユングした。 ELISA測 定により、 deacetylVLB-BSAに対する結合から陽性クローンを確認した。マウス No.9 の 3つの wellから 2種の抗ビンブラスチンモノクローナル抗体 MAb-9-E7と MAb- 9-Dが 得られた。また、マウス No.10の 9つの wellから 2種の抗ビンブラスチンモノクローナル 抗体 MAb- 10- A9と MAb- 9- 10F10が得られた。一方、マウス No.llのllwellからは所 期の抗体は得られな力つた。なお、 ELISA測定は、血清 150 Lに代えて培養上清 20 /z Lおよび buffer A 130 Lを用いる以外は前記 (ii)と同様に行なった。これらの結果 を下記表 1一 3にまとめて示す。 In accordance with the guidelines of (Japan), antibody-producing hybridomas (positive hybridomas) were cloned using S-Clone medium. The hybridoma supernatant was periodically assayed for the presence of anti-vinblastine antibodies. As a result, the desired antibody-producing wells were cloned from the wells of mouse No. 9 to 5 well and mouse No. l (½ ^ 27 well, mouse No. l ^ 20we ^) by the limiting dilution method. Positive clones were confirmed by binding to deacetylVLB-BSA by ELISA, and two anti-vinblastine monoclonal antibodies MAb-9-E7 and MAb-9-D were obtained from three wells of mouse No. 9. In addition, two anti-vinblastine monoclonal antibodies MAb-10-A9 and MAb-9-10F10 were obtained from the nine wells of mouse No. 10. On the other hand, the desired antibody was obtained from llwell of mouse No. ll. The ELISA measurement was performed in the same manner as in the above (ii) except that culture supernatant 20 / zL and buffer A 130 L were used instead of serum 150 L. The results are shown in Table 1 below. A summary is shown in Section 13.
[表 1] ハイプリドーマの調製 [table 1] Preparation of hybridoma
Figure imgf000029_0001
Figure imgf000029_0001
[表 2] 上記ハイプリド一マの限界希釈クローニング [Table 2] Limit dilution cloning of the above hybridomas
Figure imgf000029_0002
Figure imgf000029_0002
[表 3] [Table 3]
EL I S Α法による抗体価測定 Antibody titer by ELISA method
抗 VLBモノクローナル抗体 抗体価 (観測波長 490 nm) Anti-VLB monoclonal antibody antibody titer (observed wavelength 490 nm)
MAb— 9 -E 7 0. 453 MAb— 9 -E 7 0.453
MAb- 9 -D 1 2 0. 657  MAb- 9 -D 1 2 0.657
MAb - 1 0 -A 9 2 - 1 7  MAb-1 0 -A 9 2-1 7
MAb- 1 0 -F 1 0 1. 72 [0063] [3] マウス腹水を利用した抗ビンブラスチンモノクローナル抗体 MAb-10-A9の大量 生産 MAb-1 0 -F 1 0 1.72 [0063] [3] Mass production of anti-vinblastine monoclonal antibody MAb-10-A9 using mouse ascites
前記抗ビンブラスチンモノクローナル抗体 MAb- 9-E7、 MAb- 9-D、 MAb- 10-A9およ び MAb-9-10F10のうち、 ELISA測定で deacetylVLB- BSAに対して最も親和性の高か つた MAb- 10-A9抗体を産生するハイブリドーマ (2 X 108)を Balb/cヌードマウス (5週齢 、雌) 9匹の腹腔内投与し、 10日後に腹水を 8mL得た。一方、 Protein A Sepharose 4 Fast Flow (Pharmacia Biotech社の商品名) ImLを、 3M NaClを含む 1.5M glycine- NaOH buffer(pH8.9) ImLに懸濁し、カラムに充填後、 3M NaClを含む 1.5M glycine- NaOH buffer(pH8.9)で平衡化した。そして、前記マウス腹水のうち ImLを、 3M NaClを含む 1.5M glycine- NaOH buffer(pH8.9) ImLに希釈し、前記平 衡化したカラムに添カ卩した。各フラクションを ImLずつ採取しつつ、 3M NaClを含む 1.5M glycine- NaOH buffer(pH8.9)で溶出し、非結合の proteinを洗い流した。次い で、 lOOmM citrate— NaOH buffer(pH6.0)、 lOOmM citrate— NaOH buffer(pH5.0)、 lOOmM citrate-NaOH buffer(pH4.0)で順次溶出した。前記各フラクションは、紫外 線吸光度測定 (観測波長 280nm)で吸光度をモニタリングした。図 2に、その結果をグ ラフで示す。図示の通り、 pH8.9のフラクションに非結合プロテインの、 pH6.0のフラク シヨンに目的とする抗体の吸収が表れている。さらに、このカラムクロマトグラフィー分 離を、前記マウス腹水を ImLずつ用いて計 5回実施し、 anti- VLB monoclonal antibody IgGl(6.75mg in 20.6mL of lOOmM citrate— NaOH buffer, pH6.0)を得 た。 Of the anti-vinblastine monoclonal antibodies MAb-9-E7, MAb-9-D, MAb-10-A9 and MAb-9-10F10, the MAb with the highest affinity for deacetylVLB-BSA by ELISA measurement Nine Balb / c nude mice (5 weeks old, female) were intraperitoneally administered with 9 hybridomas (2 × 10 8 ) producing the 10-A9 antibody, and 8 days later, 8 mL of ascites was obtained. On the other hand, Protein A Sepharose 4 Fast Flow (trade name of Pharmacia Biotech) ImL is suspended in 1.5 mL of 1.5 M glycine-NaOH buffer (pH 8.9) containing 3 M NaCl, and after filling the column, 1.5 M containing 3 M NaCl Equilibrated with glycine-NaOH buffer (pH 8.9). Then, ImL of the mouse ascites was diluted with ImL of 1.5M glycine-NaOH buffer (pH 8.9) containing 3M NaCl, and the mixture was added to the equilibrated column. Each fraction was eluted with 1.5 M glycine-NaOH buffer (pH 8.9) containing 3 M NaCl while collecting ImL, and unbound protein was washed away. Next, elution was performed with lOOmM citrate-NaOH buffer (pH6.0), lOOmM citrate-NaOH buffer (pH5.0), and lOOmM citrate-NaOH buffer (pH4.0). The absorbance of each fraction was monitored by ultraviolet absorbance measurement (observation wavelength: 280 nm). Figure 2 shows the results graphically. As shown in the figure, the absorption of unbound protein in the fraction at pH 8.9 and the absorption of the target antibody in the fraction at pH 6.0 are shown. Further, this column chromatography separation was performed 5 times in total using the mouse ascites by ImL to obtain an anti-VLB monoclonal antibody IgGl (6.75 mg in 20.6 mL of 100 mM citrate-NaOH buffer, pH 6.0). .
[0064] [4] モノクローナル抗体を反応場とした VLB(l)の合成  [4] Synthesis of VLB (l) using monoclonal antibody as reaction field
前述のようにして得られたモノクローナル抗体(anti-VLB monoclonal antibody IgGKMAb- 10-A9))を用いて、 VLB(l)を合成した。なお、以下に示すィ匕合物 (1)一 (6) の化学構造式は、全て前記スキーム 2の中で示されて 、る。  VLB (l) was synthesized using the monoclonal antibody (anti-VLB monoclonal antibody IgGKMAb-10-A9) obtained as described above. The chemical structural formulas of the following compounds (1)-(6) are all shown in Scheme 2 above.
[0065] (0 anhydroVLB (2)の合成 (0 Synthesis of anhydroVLB (2)
まず、 VLB(l)の前駆体となる anhydroVLB(2)を合成した。すなわち、まず、 20mL容 ナス型フラスコに蒸留水 5.0mLをカ卩え、アルゴンガスをパブリングさせながら氷冷した 。そこに、カタランチン硫酸塩(catharanthine' 1/2 H SO ) 4.9π^(12.7 moL)を蒸留 水 0.54mLに溶かしたもの、ビンドリン(vindoline) 5.8mg(12.7 μ mol)を蒸留水 0.54mLと 2N HCl 10.8 /z Lに溶かしたもの、および FeCl ·6Η O 0.223g (0.825mmoL)を蒸留 First, anhydroVLB (2), a precursor of VLB (l), was synthesized. That is, first, 5.0 mL of distilled water was poured into a 20-mL eggplant-shaped flask, and cooled with ice while publishing argon gas. There, catalanthin sulfate (catharanthine '1/2 H SO) 4.9π ^ (12.7 mol) is distilled Dissolve 0.54 mL of water, 5.8 mg (12.7 μmol) of vindoline in 0.54 mL of distilled water and 10.8 / zL of 2N HCl, and distill 0.223 g (0.825 mmoL) of FeCl6ΗO
3 2  3 2
水 1.4mLに溶力したものを加え、アルゴン気流下、氷冷下で 3hr撹拌した。撹拌後、 NaOAc 0.33g(4.03mmol)を蒸留水 1.35mLに溶かしたもの、および固体のままの NaBH 6.05mg(0.16mmoL)を加え、アルゴン気流下、氷冷下で 30min撹拌した。この A solution dissolved in 1.4 mL of water was added, and the mixture was stirred under an argon stream and ice-cooling for 3 hours. After stirring, a solution prepared by dissolving 0.33 g (4.03 mmol) of NaOAc in 1.35 mL of distilled water and 6.05 mg (0.16 mmol) of NaBH in a solid state were added, and the mixture was stirred under an argon stream and ice-cooling for 30 minutes. this
4 Four
反応液を EtOAc 6.0mLで 4回抽出し、無水 Na SOで乾燥後、減圧濃縮した。得られ  The reaction solution was extracted four times with 6.0 mL of EtOAc, dried over anhydrous Na 2 SO and concentrated under reduced pressure. Obtained
2 4  twenty four
た残澄を CHC1 2.0mUこ溶かした後、 CHC1層を、まず satd. NaHCO 1.5mL次い  After dissolving 2.0 mU of CHC1 in the residue, the CHC1 layer was washed with 1.5 mL of satd.
3 3 3  3 3 3
で水で洗浄後、無水 Na SOで乾燥し、減圧濃縮した。得られた残渣に cold methanol  , And dried over anhydrous Na SO and concentrated under reduced pressure. Cold methanol is added to the obtained residue.
2 4  twenty four
2.0mLをカ卩え、 mpl78.3- 184.1°C、白色粉末状晶の anhydroVLB(2) 9.8π^(12.4 moL、収率: 97.6%)を得た。このように、 anhydroVLB(2)は、カタランチンおよびビンドリ ンカもわず力 1段階で高収率に得ることができた。なお、この合成は、特開平 2— 048 582号公報を参照して行なった。以下に、この化合物の機器分析データを示す。 NMRデータ中、炭素原子 (C)および窒素原子 (N)に添付した番号は、前記 VLB(l)化 学式中に添付した番号に準じる。  2.0 mL was collected and mpl78.3-184.1 ° C, to obtain anhydroVLB (2) 9.8π ^ (12.4 mol, yield: 97.6%) as white powdery crystals. Thus, anhydroVLB (2) could be obtained in a single step with high yield, regardless of catharanthin and bindlinka. This synthesis was performed with reference to Japanese Patent Application Laid-Open No. 2-048582. The following shows the instrumental analysis data of this compound. In the NMR data, the numbers attached to the carbon atom (C) and the nitrogen atom (N) conform to the numbers attached to the VLB (l) chemical formula.
[0066] IR(neat)cm"1:3393,2926,1734,1616,1231,748; [0066] IR (neat) cm " 1 : 3393,2926,1734,1616,1231,748;
1H-NMR(270MHz,CDCl ) δ : 0.80(3H,t,J=7.3Hz,21— CH ), 1 H-NMR (270MHz, CDCl) δ: 0.80 (3H, t, J = 7.3Hz, 21- CH),
3 3  3 3
1.00(3H,t,J=7.8Hz,21'-CH ), 2.10(3H,s,C— OCOCH ), 2.71(3H,s,N -CH ),  1.00 (3H, t, J = 7.8Hz, 21'-CH), 2.10 (3H, s, C- OCOCH), 2.71 (3H, s, N -CH),
3 4 3 1 3  3 4 3 1 3
3.61(3H,s,C -COOCH ), 3.79(3H,s,C -COOCH ), 3.81(3H,s,C — OCH ),  3.61 (3H, s, C -COOCH), 3.79 (3H, s, C -COOCH), 3.81 (3H, s, C — OCH),
18' 3 3 3 16 3  18 '3 3 3 16 3
5.27(lH,d,J = 10.2Hz,C -H), 5.45(lH,s,C - H), 5.48(lH,m,C - H), 5.82(lH,m,C  5.27 (lH, d, J = 10.2Hz, C -H), 5.45 (lH, s, C-H), 5.48 (lH, m, C -H), 5.82 (lH, m, C
6 4 3' 7 6 4 3 '7
-H), 6.11(lH,s,C -H), 6.59(lH,s,C - H), 7.13(3H,m,C - H,C - HandC - H), -H), 6.11 (lH, s, C -H), 6.59 (lH, s, C-H), 7.13 (3H, m, C-H, C-HandC-H),
17 14 11' 12' 13' 17 14 11 '12' 13 '
7.49(lH,m,C - H), 8.03(lH,brs,indoleNH). 7.49 (lH, m, C-H), 8.03 (lH, brs, indoleNH).
14'  14'
APCI-MS m/z 793.5(M+H+). APCI-MS m / z 793.5 (M + H + ).
[0067] (ii) モノクローナル抗体を反応場とした VLBの合成 (Ii) Synthesis of VLB using monoclonal antibody as reaction field
次に、前記モノクローナノレ抗体 (anti— VLB monoclonal antibody  Next, the monoclonal antibody (anti- VLB monoclonal antibody)
IgGl(MAb-10-A9))および anhydroVLB(2)を用いて VLB(l)を合成した。  VLB (l) was synthesized using IgGl (MAb-10-A9)) and anhydroVLB (2).
[0068] 合成を行なうに先立ち、 VLB(1)、 anhydroVLB(2)、 leurosidine(5)および leurosine(6) は、あらカゝじめ標準サンプルを HPLCに注入し、 Rt (保持時間)を確認するとともに、濃 度対ピーク面積の検量線を作成した。各化合物につ 、て確認された Rtを示すと、 VLB(l)は Rt=21.1min、 anhydroVLB(2)は Rt=22.6minゝ leurosidine(5)は Rt=20.9min、 leurosine(6)は Rt=20.4minであった。 HPLC条件を以下に示す。 [0068] Prior to the synthesis, VLB (1), anhydroVLB (2), leurosidine (5) and leurosine (6) were injected with HPLC as a standard sample and confirmed Rt (retention time). At the same time, a calibration curve of concentration versus peak area was created. The Rt confirmed for each compound is shown as VLB (l) was Rt = 21.1min, anhydroVLB (2) was Rt = 22.6min, leurosidine (5) was Rt = 20.9min, and leurosine (6) was Rt = 20.4min. The HPLC conditions are shown below.
[0069] HPLC条件: [0069] HPLC conditions:
カラムは、 Waters社製 Xterra (商品名) MS C 5 ^ m Column(2.1 X 150mm)を用いた  The column used was Xterra (trade name) MSC5 ^ m Column (2.1 X 150 mm) manufactured by Waters.
8 移動相は、 85% H PO (5mL)及び 5M NaOH(12mL)を H 0に希釈し lOOOmLとしたも  8 The mobile phase was prepared by diluting 85% HPO (5 mL) and 5 M NaOH (12 mL) to H0 to make 100 mL.
3 4 2  3 4 2
の (A液、 pH 2.5)と MeOHとの混液の gradient systemを用い、次のように組成を経時 変化させた。 0- lOmin, 20-40% MeOH; 10- 14min, 40-50% MeOH; 14- 19min, Using a gradient system of a mixture of (Solution A, pH 2.5) and MeOH, the composition was changed over time as follows. 0- lOmin, 20-40% MeOH; 10-14 min, 40-50% MeOH; 14-19 min,
50% MeOH; 19-23min, 50-95% MeOH; 23-23. lmin, 95-100% MeOH; 50% MeOH; 19-23min, 50-95% MeOH; 23-23.lmin, 95-100% MeOH;
23.1-30min, 100% MeOH.  23.1-30min, 100% MeOH.
Flow rateは 0.4mL/min、 column temperatureは 40°C、 solvent temperaturesは 40°C 、 Wavelength (検出波長)は 265nmとした。  The flow rate was 0.4 mL / min, the column temperature was 40 ° C, the solvent temperatures were 40 ° C, and the wavelength (detection wavelength) was 265 nm.
[0070] 以下に、 VLB(l)の合成例を示す。 Hereinafter, a synthesis example of VLB (l) will be described.
[0071] (ii-1) lOOmM citrate- NaOH緩衝液中 anhydroVLB(2)(l当量)、 antト VLB  (Ii-1) in an lOOmM citrate-NaOH buffer, anhydroVLB (2) (l equivalent), ant
monoclonal antibody(l当量)、 NaBH CN(4当量)及び酸素を用いた反応  Reaction using monoclonal antibody (1 equivalent), NaBHCN (4 equivalents) and oxygen
3  Three
anhydroVLB(2)(1.13nmoL)、 anti-VLB monoclonal antibody  anhydroVLB (2) (1.13nmoL), anti-VLB monoclonal antibody
IgGl(MAb- 10- A9)(1.13nmoL)及び NaBH CN(4.50nmoL)を citrate- NaOH緩衝液 (67  IgGl (MAb-10-A9) (1.13 nmol) and NaBHCN (4.50 nmol) were added to citrate-NaOH buffer (67
3  Three
μ L、 lOOmM, pH6.0、 10%のァセトニトリルを含む)に溶かしたものを、小型試験管 (18mm ID X 40mm,酸素の風船を上部に取り付けた)にいれ、 25度で、激しく攪拌し た (攪拌子として両面十字型のテフロン (登録商標)被膜回転子、 10mm wide X 8mm highを用いた)。反応の進行は HPLCでモニターした。 HPLC条件は前記と同じ条件 を用いた。反応進行のモニターは、より具体的には、反応開始後 1、 2、 3および 4時 間、反応液から 6 μ Lを採り、それに acetonitrile 3.0 μ Lと Α液 3.0 μ Lとを混合し、 3分 間超音波に掛けて得られた混液のうち、 10 Lを HPLC機器に注入して行なった。な お、 A液の組成は、前記 HPLC条件の中で示した通りである。 VLB(l)の生成は、反応 液と VLB(l)標準サンプル (Rt, 21.2min)との HPLCでの co-injectionにより確認した。  μL, lOOmM, pH 6.0, containing 10% acetonitrile) into a small test tube (18 mm ID X 40 mm, with an oxygen balloon attached to the top) and vigorously stir at 25 ° C. (A double-sided cross-shaped Teflon (registered trademark) coated rotor, 10 mm wide X 8 mm high was used as a stirrer). The progress of the reaction was monitored by HPLC. The same HPLC conditions were used as described above. To monitor the progress of the reaction, more specifically, at 1, 2, 3 and 4 hours after the start of the reaction, take 6 μL of the reaction solution, mix 3.0 μL of acetonitrile and 3.0 μL of Α solution, The mixture was obtained by sonication for 3 minutes, and 10 L of the mixture was injected into an HPLC instrument. The composition of the solution A is as shown in the HPLC conditions. The production of VLB (l) was confirmed by co-injection of the reaction solution and a VLB (l) standard sample (Rt, 21.2 min) by HPLC.
[0072] 図 3のグラフに、反応開始後 4時間における HPLCサンプリング結果を示す。縦軸は ピークの相対強度、横軸は保持時間であり、図中の符号 1は VLB(l)のピークであり、 符号 2は anhydroVLB (2)のピークであり、符号 6は leurosine(6)のピークである。各ピ ーク頂点付近の数字は、それぞれの保持時間を示す。得られたピークの面積と、あら 力じめ作成した前記検量線とから各物質の収率を算出した。 VLB(l)の収率は 16.0% であった。出発物質である anhydroVLB(2)の回収率は 80.6%であったので、 VLB(l)へ の変換率は 82.2%となることが分力つた。また、 VLB(l)の C-4'異性体である leurosidine(Rt, 20.9min)は、生成していないか、もし、生成していたとしても無視しう るほどの量であることが分かった。さらに、 leurosine(Rt, 20.4min)の収率は 0.4%であつ た。従来法 (非特許文献 8)では leurosidine(5)および leurosine(6)の方が収率が高く、 VLB(l)の収率は 1%未満とわずかであったことと比較すると、上記反応における VLB(l)の収率および反応選択性は非常に優れていると言える。このように、本発明 の製造方法によれば、 anhydroVLB(2)から VLB(l)を高 ヽ収率で選択的に合成するこ とが可能であることが分力つた。し力も、上記反応は、各反応物質を混合して室温で 攪拌するのみでスムーズに進行するので簡便である。 [0072] The graph in FIG. 3 shows the results of HPLC sampling 4 hours after the start of the reaction. The vertical axis is the relative intensity of the peak, the horizontal axis is the retention time, and reference numeral 1 in the figure is the VLB (l) peak, Symbol 2 is the peak of anhydroVLB (2), and symbol 6 is the peak of leurosine (6). The numbers near the peaks indicate the respective retention times. The yield of each substance was calculated from the area of the obtained peak and the previously prepared calibration curve. The yield of VLB (l) was 16.0%. Since the recovery of the starting material, anhydroVLB (2), was 80.6%, it was concluded that the conversion to VLB (l) was 82.2%. In addition, it was found that leurosidine (Rt, 20.9 min), a C-4 'isomer of VLB (l), was not produced or, if produced, was negligible. Was. Further, the yield of leurosine (Rt, 20.4 min) was 0.4%. According to the conventional method (Non-Patent Document 8), leurosidine (5) and leurosine (6) have higher yields, and the yield of VLB (l) is less than 1%, which is very small. It can be said that the yield and reaction selectivity of VLB (l) are very excellent. As described above, according to the production method of the present invention, it was possible to selectively synthesize VLB (l) from anhydroVLB (2) in a high yield. The above reaction is simple because the above reaction proceeds smoothly only by mixing the respective reactants and stirring at room temperature.
[0073] (ii-2) lOOmM citrate- NaOH緩衝液中 anhydroVLB(2)(l当量)、 antト VLB (Ii-2) lOOmM citrate- NaOH buffer in anhydroVLB (2) (l equivalent), ant
monoclonal antibody(l/3当量)、 NaBH CN(4/3当量)及び酸素を用いた反応  Reaction using monoclonal antibody (l / 3 equivalent), NaBHCN (4/3 equivalent) and oxygen
3  Three
次に、各反応物質の使用量比を変えて同様の反応を行なった。すなわち、 anhydroVLB(2)(1.13nmoL入 anti-VLB monoclonal antibody  Next, the same reaction was carried out by changing the amount ratio of each reactant. That is, anhydroVLB (2) (1.13 nmol containing anti-VLB monoclonal antibody
IgGl(MAb- 10- A9)(0.38nmoL)及び NaBH CN(1.50nmoL)を citrate- NaOH緩衝液 (67  IgGl (MAb-10-A9) (0.38 nmol) and NaBHCN (1.50 nmol) in citrate-NaOH buffer (67
3  Three
μ L、 lOOmM, pH6.0、 10%のァセトニトリルを含む)に溶かしたものを、小型試験管 (18mm ID X 40mm,酸素の風船を上部に取り付けた)にいれ、 25度で、前記同様に して反応させた。図 4に、反応 4時間後の HPLC図を示す。図中の符号および数値の 意味は図 3と同様である。各物質の収率を (iH)と同様に算出したところ、 VLB(l)の収 率は 15.5%で、 anhydroVLB(2)の回収率は61.7%でぁった。すなわち、本合成例でも、 (ii-1)に準じる良好な結果が得られた。  μL, lOOmM, pH6.0, containing 10% acetonitrile) into a small test tube (18mm ID X 40mm, oxygen balloon mounted on top) and at 25 degrees And reacted. FIG. 4 shows an HPLC diagram 4 hours after the reaction. The meanings of the symbols and numerical values in the figure are the same as in FIG. When the yield of each substance was calculated in the same manner as (iH), the yield of VLB (l) was 15.5%, and the recovery of anhydroVLB (2) was 61.7%. That is, also in the present synthesis example, good results according to (ii-1) were obtained.
[0074] (ii-3)100mM citrate- NaOH緩衝液中 anhydroVLB(2)(l当量)、 NaBH CN(4当量)及び (Ii-3) anhydroVLB (2) (l equivalent), NaBH CN (4 equivalent) and 100 mM citrate-NaOH buffer
3  Three
酸素を用いた反応  Reaction using oxygen
本発明の製造方法と比較するために、抗体を用いない合成も行なった。すなわち、 anhydroVLB(2)(1.13nmoL)及び NaBH CN(4.50nmoL)を citrate- NaOH緩衝液 (67 μ L 、 100mM、 pH6.0、 10%のァセトニトリルを含む)に溶かしたものを、小型試験管 (18mm ID X 40mm,酸素の風船を上部に取り付けた)に入れ、 25度で、前記同様にして反応 させた。図 5に、反応 4時間後の HPLC図を示す。図中の符号および数値の意味は図 3と同様である。各物質の収率を GH)と同様に算出したところ、 VLB(l)の収率は 3.9% と、抗体を用いた場合に比べ著しく低下していた。 For comparison with the production method of the present invention, an antibody-free synthesis was also performed. That is, anhydroVLB (2) (1.13 nmol) and NaBHCN (4.50 nmol) were added to citrate-NaOH buffer (67 μL , 100 mM, pH 6.0, containing 10% acetonitrile), placed in a small test tube (18 mm ID X 40 mm, with an oxygen balloon attached to the top), and reacted at 25 ° C as described above. I let it. FIG. 5 shows an HPLC diagram 4 hours after the reaction. The meanings of the symbols and numerical values in the figure are the same as in FIG. When the yield of each substance was calculated in the same manner as in GH), the yield of VLB (l) was 3.9%, which was significantly lower than that in the case where the antibody was used.
[0075] (ii-4) lOOmM NH OAc— AcOH緩衝液中 anhydroVLB(2)(l当量)、 antト VLB (Ii-4) lOOmM NH OAc— anhydroVLB (2) (1 equivalent) in AcOH buffer, ant to VLB
4  Four
monoclonal antibody(l当量)、 NaBH CN(4当量)及び酸素を用いた反応  Reaction using monoclonal antibody (1 equivalent), NaBHCN (4 equivalents) and oxygen
3  Three
溶媒を変えて (ii-1)と同様に反応を行なった。すなわち、まず、 anti-VLB monoclonal antibody IgGl(MAb- 10- Α9)(1.86 M)を含む lOOmM citrate- NaOH緩 衝液 (pH6.0)2mLを、 Vivascience社製 VIVASPIN 2mL Concentrator (商品名) (Membrane : 50,000 PES)に入れ、 20倍濃縮した。その濃縮緩衝液に lOOmM NH  The reaction was performed in the same manner as in (ii-1) except that the solvent was changed. That is, first, 2 mL of lOOmM citrate-NaOH buffer (pH 6.0) containing anti-VLB monoclonal antibody IgGl (MAb-10- 109) (1.86 M) was mixed with Vivascience VIVASPIN 2 mL Concentrator (trade name) (Membrane: 50,000 PES) and concentrated 20-fold. LOOmM NH in the concentrated buffer
4 Four
OAc— AcOH緩衝液 (pH6.0)1.8mLを加え、再度 VIVASPIN 2mL Concentrator (Membrane : 50,000 PES)で 10倍濃縮し、 anti- VLB monoclonal antibody IgGl (MAb- 10- A9)を含む lOOmM NH OAc- AcOH 緩衝液 (pH6.0)(22.5 μ M)を調製した Add 1.8 mL of OAc-AcOH buffer (pH 6.0), concentrate again 10-fold with VIVASPIN 2 mL Concentrator (Membrane: 50,000 PES), and add lOOmM NH OAc- containing anti-VLB monoclonal antibody IgGl (MAb-10-A9). AcOH buffer (pH 6.0) (22.5 μM) was prepared.
4  Four
。次に、この anti- VLB monoclonal antibody IgGl(MAb- 10- A9)(1.13nmoL)と、 anhydroVLB(2)(1.13nmoL)及び NaBH CN(4.50nmoL)を NH OAc- Ac OH緩衝液 (67 μ  . Next, this anti-VLB monoclonal antibody IgGl (MAb-10-A9) (1.13 nmol), anhydroVLB (2) (1.13 nmol) and NaBHCN (4.50 nmol) were added to NH OAc-Ac OH buffer (67 μm).
3 4  3 4
L、 lOOmM, pH6.0、 10%のァセトニトリルを含む)に溶かしたものを、小型試験管 (18mm ID X 40mm,酸素の風船を上部に取り付けた)にいれ、 25度で、激しく攪拌した (攪 拌子として両面十字型のテフロン (登録商標)被膜回転子、 10mm wide X 8mm high を用いた)。  L, lOOmM, pH 6.0, containing 10% acetonitrile), placed in a small test tube (18 mm ID X 40 mm, with an oxygen balloon attached to the top) and stirred vigorously at 25 degrees ( A double-sided cross-shaped Teflon (registered trademark) coated rotor, 10 mm wide X 8 mm high was used as a stirrer.
[0076] 上記の反応の進行を、開始 1、 2、 3、 4時間後に反応液 3 μ Lずつサンプリングし、 ァセトニトリル ミリ Q水混合溶媒 (1:1)85 Lで希釈後、質量分析計 (API- 3000,ES卜 MS, positive mode)で分析した。図 7に、そのスペクトル図を示す。図 7 (a)は反応開 始 1時間後のスペクトル図であり、図 7 (b)は反応開始 2時間後のスペクトル図であり、 図 7 (c)は反応開始 4時間後のスペクトル図である。図中の符号 1、 2および 3は、それ ぞれィ匕合物 (1)、(2)のピークおよびィ匕合物 (3)と思われるピークを示し、各ピーク頂点 付近の数値はおおよその m/z値である。図示の通り、反応 1時間後に出発原料の anhydroVLB(2)(m/z 793.5)とともに共役 iminium中間体 (3)と思われるピーク (m/z 791.3)が確認された。 2時間後には、 anhydroVLB(2)(m/z 793.0)のピークより共役 iminium中間体 (3)(m/z 791.5)のピークが優った。また、 VLB(l)のピーク (m/z 811.5) が現れた。 4時間後には、 VLB(l)(m/z 811.5)由来の強いピークが観察された。 After 1, 2, 3, and 4 hours from the start of the above reaction, a 3 μL sample of the reaction solution was sampled, diluted with 85 L of acetonitrile-milli-Q water mixed solvent (1: 1), and then subjected to mass spectrometry ( API-3000, ES micro MS, positive mode). Fig. 7 shows the spectrum diagram. Fig. 7 (a) is a spectrum diagram 1 hour after the start of the reaction, Fig. 7 (b) is a spectrum diagram 2 hours after the start of the reaction, and Fig. 7 (c) is a spectrum diagram 4 hours after the start of the reaction. is there. Symbols 1, 2 and 3 in the figure indicate the peaks of the conjugated products (1) and (2) and the peaks considered to be the conjugated compound (3), respectively. M / z value. As shown in the figure, one hour after the reaction, the peak (m / z) which seems to be a conjugated iminium intermediate (3) together with the starting material anhydroVLB (2) (m / z 793.5) 791.3) was confirmed. Two hours later, the peak of the conjugated iminium intermediate (3) (m / z 791.5) was superior to the peak of anhydroVLB (2) (m / z 793.0). Also, a VLB (l) peak (m / z 811.5) appeared. After 4 hours, a strong peak derived from VLB (l) (m / z 811.5) was observed.
[0077] また、反応 4時間後、反応液から 6 μ Lを採り、それに acetonitrile 3.0 μ Lと Α液 3.0 μ Lとを混合し、 3分間超音波に掛けて混液を得た。このうち 10 /z Lを採取し、 HPLCにィ ンジェタトして分析した。測定条件は以下に示すとおりである。  After 4 hours of the reaction, 6 μL of the reaction solution was taken, 3.0 μL of acetonitrile and 3.0 μL of the solution were mixed, and the mixture was subjected to ultrasonication for 3 minutes to obtain a mixture. Of these, 10 / z L was collected, injected into HPLC and analyzed. The measurement conditions are as shown below.
[0078] HPLC条件:  [0078] HPLC conditions:
カラムは、 YMC社製 YMC- Pack C - AP (商品名) 5 μ m Column(4.6 X 150mm)を用い  The column used was a YMC YMC-Pack C-AP (trade name) 5 μm Column (4.6 X 150 mm).
8  8
た。  It was.
移動相は、 85% H PO (5mL)及び 5M NaOH(12mL)を H 0に希釈し lOOOmLとしたも  The mobile phase was prepared by diluting 85% H PO (5 mL) and 5 M NaOH (12 mL) to H0 to make 100 mL.
3 4 2  3 4 2
の (A液、 pH 2.5)と MeOHとの混液の gradients systemを用い、次のように組成を経 時変化させた。 0- lOmin, 20-40% MeOH; 10- 14min, 40-50% MeOH; 14- 19min, Using a gradient system of a mixture of (Solution A, pH 2.5) and MeOH, the composition was changed over time as follows. 0- lOmin, 20-40% MeOH; 10-14 min, 40-50% MeOH; 14-19 min,
50% MeOH; 19-23min, 50-95% MeOH 50% MeOH; 19-23min, 50-95% MeOH
Flow rateは 2.0mL/min、 column temperatureは 40°C、 solvent temperaturesは 40°C であった。 Wavelength (検出波長)は 265nmとした。  The flow rate was 2.0 mL / min, the column temperature was 40 ° C, and the solvent temperatures were 40 ° C. Wavelength (detection wavelength) was 265 nm.
[0079] 図 6に、この HPLC図を示す。図中の符号 1は VLB(l)のピークであり、符号 2は  FIG. 6 shows the HPLC diagram. Symbol 1 in the figure is the peak of VLB (l), and symbol 2 is
anhydroVLB(2)のピークである。なお、 VLB(l)および anhydro VLB(2)については、あ らカじめ上記の条件で標準サンプルの測定を行なって検量線を作成し、かつ、 Rtは 、 VLB(l)について Rt=14.4min、 anhydro VLB(2)について Rt=15.4minであることを確 認した。この検量線と、図 6の HPLC図のピーク面積とから VLB(l) (Rt, 14.4min)の収 率を計算したところ、約 22.5%と良好な収率であった。  This is the peak of anhydroVLB (2). For VLB (l) and anhydro VLB (2), a calibration curve was prepared by measuring a standard sample under the above conditions in advance, and Rt was Rt = 14.4 for VLB (l). It was confirmed that Rt = 15.4min for min and anhydro VLB (2). When the yield of VLB (l) (Rt, 14.4 min) was calculated from the calibration curve and the peak area of the HPLC chart in FIG. 6, a good yield of about 22.5% was obtained.
[0080] 以上の通り、本実施例では、 anti- vinblastine monoclonal ant¾odyの存在下、 anhydroVLB(2)を NaBH CNと酸素と反応させることにより、約 82%の変換率で VLB(l)  [0080] As described above, in this example, by reacting anhydroVLB (2) with NaBHCN and oxygen in the presence of anti-vinblastine monoclonal ant¾ody, VLB (l) was converted at a conversion rate of about 82%.
3  Three
を得ることができた。さらに、この反応では、 1の C- 4'epimerである leurosidine(5)ゃェ ポキシ体の leurosine(6)は殆ど生成しておらず、反応力 ^hemoselectiveに進行すること が証明された。なお、質量分析で、イオンピーク m/z 791.3が検出されたことから、共 役 iminium中間体 (3)が (1)の生成過程における中間体であると思われる。  Could be obtained. Furthermore, in this reaction, leurosine (6), a leurosidine (5) -epoxy form, which is a C-4'epimer, was hardly produced, and it was proved that the reaction progressed to the reactivity ^ hemoselective. In addition, since the ion peak m / z 791.3 was detected by mass spectrometry, it is considered that the synergistic iminium intermediate (3) is an intermediate in the production process of (1).
[0081] (iii) 共役 iminium中間体 (3)の合成 さらに、 anhydroVLB(2)に代えて共役 iminium中間体 (3)を用いた VLB(l)の合成も行 なった。まず、 Duangteraprecha, S.; Hirata, K.; Morihara, E.; Nakae, M.; Katayama, H.; Honda, M.; Miyamoto, K. J. Ferment. Bioeng., 83 (3), 227-232 (1997).および Hirata, K.; Duangteraprecha, S.; Morihara, E.; Honda, M.; Akagi, T.; Nakae, M.; Katayama, H.; Miyamoto, K. Biotechnol. Lett., 19 (1), 53-57 (1997).の記載を参照し、以下の通り、近紫外線光照射を利用して 共役 iminium中間体 (3)を合成した。 [0081] (iii) Synthesis of conjugated iminium intermediate (3) Furthermore, VLB (l) was synthesized using a conjugated iminium intermediate (3) instead of anhydroVLB (2). First, Duangteraprecha, S .; Hirata, K .; Morihara, E .; Nakae, M .; Katayama, H .; Honda, M .; Miyamoto, KJ Ferment. Bioeng., 83 (3), 227-232 (1997) Hirata, K .; Duangteraprecha, S .; Morihara, E .; Honda, M .; Akagi, T .; Nakae, M .; Katayama, H .; Miyamoto, K. Biotechnol. Lett., 19 (1 ), 53-57 (1997). A conjugated iminium intermediate (3) was synthesized using near-ultraviolet light irradiation as described below.
[0082] すなわち、まず、 20ml容ナス型フラスコにカタランチン(0.75 μ mol)、ビンドリン塩酸 塩(0.75 mol)を methanolに溶かし、アルゴンガスを吹きかけて乾固させた。これに DMSCXlOO /z l)をカ卩ぇ完全に溶解させた後、 0.1M Tris- HC1 buffer(pH7.0)を 3ml加 えて、よく攪拌した。さらに FMN水溶液 (250 M)、 MnCl水溶液 (50mM)をそれぞれ That is, first, catalanthin (0.75 μmol) and vindoline hydrochloride (0.75 mol) were dissolved in methanol in a 20-ml eggplant-shaped flask, and the mixture was dried by blowing argon gas. After DMSCXlOO / zl) was completely dissolved in the mixture, 3 ml of 0.1 M Tris-HCl buffer (pH 7.0) was added thereto, followed by thorough stirring. Then add FMN aqueous solution (250 M) and MnCl aqueous solution (50 mM) respectively.
2  2
lmlずつ加えた (最終濃度 0.15mM)。この反応液に 370nmに極大吸収をもつ近紫外 線光を容器から 10cmの距離力も照射して 10分間反応し、 iminium中間体 (3)を得た。  1 ml was added (final concentration 0.15 mM). The reaction solution was irradiated with near-ultraviolet light having a maximum absorption at 370 nm at a distance of 10 cm from the vessel and reacted for 10 minutes to obtain an iminium intermediate (3).
[0083] 上記反応で得た iminium中間体 (3)は、直接検出することは困難であるので、以下の ようにして生成を確認し、収率を算出した。すなわち、まず、反応液 500 1を採取し、 NaBH (72mM)を 100 μ 1加え、さらに 0.5N(0.5mol/L) NaOHをカ卩え pHIOにし、得られ[0083] Since it is difficult to directly detect the iminium intermediate (3) obtained in the above reaction, the production was confirmed as follows, and the yield was calculated. That is, first, a reaction liquid 5001 is collected, 100 μl of NaBH (72 mM) is added, and 0.5N (0.5 mol / L) NaOH is added to pHIO to obtain a pHIO.
4 Four
た iminium中間体 (3)を AnhydroVLB(2)に変換した。次に、これを酢酸ェチルで抽出し 、さらに、その酢酸ェチル抽出液をアルゴンガス下濃縮した。得られた残渣を methanol 100 μ 1に溶解させ、そのうち 5 μ 1を HPLC機器に注入し分析した。その結 果、 AnhydroVLB(2)が、出発原料カタランチンおよびビンドリン塩酸塩を基準として 65 %の収率で得られたことが分かった。すなわち、 iminium中間体 (3)は約 65%の収率で 得られたことになる。なお、 HPLC条件を以下に示す。  The iminium intermediate (3) was converted to AnhydroVLB (2). Next, this was extracted with ethyl acetate, and the ethyl acetate extract was further concentrated under argon gas. The obtained residue was dissolved in methanol (100 μl), and 5 μl of the residue was injected into an HPLC device and analyzed. As a result, it was found that AnhydroVLB (2) was obtained at a yield of 65% based on the starting materials catalantin and vindoline hydrochloride. That is, the iminium intermediate (3) was obtained in a yield of about 65%. The HPLC conditions are shown below.
[0084] HPLC条件: [0084] HPLC conditions:
カラムは、 Waters社製 Xterra (商品名) MS C 5 ^ m Column(2.1 X 150mm)を用いた  The column used was Xterra (trade name) MSC5 ^ m Column (2.1 X 150 mm) manufactured by Waters.
8 移動相は、 85% H PO (5mL)及び 5M NaOH(12mL)を H 0(pH2.5)に希釈し lOOOmLと  8 The mobile phase was prepared by diluting 85% H PO (5 mL) and 5 M NaOH (12 mL) into H
3 4 2  3 4 2
したもの (A液、 pH2.5)と MeOHとの混液の graient systemを用い、次のように組成を経 時変化させた。 0-10min, 20-40% MeOH; 10- 14min, 40-50% MeOH; 14-19min, 50%MeOH; 19- 23min, 50-95% MeOH; 23-23. lmin, 95-100% MeOH; 23.1- 30min, 100% MeOH. The composition was changed over time as follows using a graient system of a mixture of the solution (solution A, pH 2.5) and MeOH. 0-10min, 20-40% MeOH; 10-14min, 40-50% MeOH; 14-19min, 50% MeOH; 19-23min, 50-95% MeOH; 23-23.lmin, 95-100% MeOH; 23.1-30min, 100% MeOH.
Flow rateは 0.4mL/min、 column temperatureは 40°C、 solvent temperaturesは 40°C Flow rate 0.4mL / min, column temperature 40 ° C, solvent temperatures 40 ° C
、 Wavelength (検出波長)は 265nmとした。 The Wavelength (detection wavelength) was 265 nm.
[0085] このように、共役 iminium中間体 (3)は、公知の方法で、ビンドリン (vindoline)塩酸塩 及びカタランチン(catharanthine)から容易に合成することができた。 [0085] Thus, the conjugated iminium intermediate (3) could be easily synthesized from vindoline hydrochloride and catharanthine by a known method.
[0086] (iv) anti-VLB monoclonal antibody (1当量)、 NADH (80当量)を用いた、 iminium中 間体 (3) (1当量)から VLB(l)の変換反応 [0086] (iv) Conversion reaction of iminium intermediate (3) (1 equivalent) to VLB (l) using anti-VLB monoclonal antibody (1 equivalent) and NADH (80 equivalents)
次に、前述のようにして得た共役 iminium中間体 (3)を用い、 VLB(l)を合成した。すな わち、まず、前記の近紫外線光照射反応で得られた反応液 10 1を 20ml容ナス型フ ラスコに採取し、ミリ Q水 (H 0(\1 (3》を加えて 4mlにメスアップした。これに anti- VLB  Next, VLB (l) was synthesized using the conjugated iminium intermediate (3) obtained as described above. That is, first, the reaction solution 101 obtained by the above-described near-ultraviolet light irradiation reaction was collected in a 20-ml eggplant-shaped flask, and Milli-Q water (H 0 (\ 1 (3) was added to make 4 ml. Mess up, anti- VLB
2  2
monoclonal antibody IgGl (MAb- 10- A9) (1.5ηπιο1) 500 ;ζ 1をカ卩え、さらに、 NADH(240 μ Μ)を 1時間ごとに 100 μ 1ずつ 5時間で計 500 μ 1カ卩えて 5時間反応した。 反応終了後、反応液を 500 1採取した。これに、 0.5N(0.5mol/L) NaOHを加えて pHIOにし、酢酸ェチル 500 1を加え、 3分間超音波処理をした。この混液は、さらに 磁気回転子を用いて激しく攪拌後、有機層を分離した。さらに、分離後の水層に、も う一度酢酸ェチル 500 1をカ卩え、前記と同様の抽出操作を繰り返した。そして、 1回 目と 2回目の酢酸ェチル抽出溶液を合せ、アルゴンガスを吹き付けて溶媒を留去し た。得られた残渣に methanol 20 μ 1を加え、溶解させた後、 20 μ 1を HPLC機器に注 入し分析した。検量線力も算出した VLB(l)の収率は 46.7%であった。なお、 HPLC条 件を以下に示す。  Monoclonal antibody IgGl (MAb-10-A9) (1.5ηπιο1) 500; ζ 1 and then add NADH (240 μ Μ) 100 μl every 1 hour for 5 hours for a total of 500 μl Reacted for 5 hours. After the completion of the reaction, 500 1 of the reaction solution was collected. To this, 0.5N (0.5 mol / L) NaOH was added to make pHIO, and ethyl acetate 5001 was added, followed by sonication for 3 minutes. The mixture was further vigorously stirred using a magnetic rotator, and then the organic layer was separated. Further, ethyl acetate 5001 was added to the separated aqueous layer again, and the same extraction operation as described above was repeated. Then, the first and second ethyl acetate extraction solutions were combined, and argon gas was blown to evaporate the solvent. After adding and dissolving 20 μl of methanol to the obtained residue, 20 μl was poured into an HPLC device for analysis. The yield of VLB (l) for which the calibration curve force was also calculated was 46.7%. The HPLC conditions are shown below.
[0087] HPLC条件: [0087] HPLC conditions:
カラムは、 Waters社製 Xterra (商品名) MS C 5 ^ m Column(2.1 X 150mm)を用いた  The column used was Xterra (trade name) MSC5 ^ m Column (2.1 X 150 mm) manufactured by Waters.
8 移動相は、 85% H PO (5mL)及び 5M NaOH(12mL)を H 0(pH2.5)に希釈し lOOOmLと  8 The mobile phase was prepared by diluting 85% H PO (5 mL) and 5 M NaOH (12 mL) into H
3 4 2  3 4 2
したもの (A液、 pH2.5)と MeOHとの混液の graient systemを用い、次のように組成を経 時変化させた。 0-10min, 20-40% MeOH; 10- 14min, 40-50% MeOH;  The composition was changed over time as follows using a graient system of a mixture of the solution (solution A, pH 2.5) and MeOH. 0-10min, 20-40% MeOH; 10-14min, 40-50% MeOH;
14-19min, 50%MeOH; 19- 23min, 50-95% MeOH; 23-23. lmin, 95-100% MeOH; 23.1- 30min, 100% MeOH. 14-19min, 50% MeOH; 19-23min, 50-95% MeOH; 23-23.lmin, 95-100% MeOH; 23.1-30 min, 100% MeOH.
Flow rateは 0.4mL/min、 column temperatureは 40°C、 solvent temperaturesは 40°C 、 Wavelength (検出波長)は 265nmとした。  The flow rate was 0.4 mL / min, the column temperature was 40 ° C, the solvent temperatures were 40 ° C, and the wavelength (detection wavelength) was 265 nm.
[0088] 以上の通り、共役 iminium中間体 (3)を出発物質として anti- VLB monoclonal [0088] As described above, the conjugated iminium intermediate (3) was used as a starting material for anti-VLB monoclonal
antibody IgGl Mab- 10-A9存在下の反応を行い、高収率で目的のビンブラスチン( VLB) (1)を得た。出発物質の共役 iminium中間体 (3)は、公知の方法で、ビンドリン( vindoline)塩酸塩及びカタランチン(catharanthine)から容易に合成することができた 実施例 2  The reaction was performed in the presence of antibody IgGl Mab-10-A9 to obtain the desired vinblastine (VLB) (1) in high yield. The conjugated iminium intermediate (3) of the starting material could be easily synthesized from vindoline hydrochloride and catharanthine in a known manner Example 2
[0089] 本実施例では、タキソール (taxol)をハプテンとしたモノクローナル抗体の作製例お よびそれを用いたタキノールの合成例を示す。核磁気共鳴 (NMR)スペクトルは、 日 本電子株式会社 (JEOL)製 EX-500 (商品名) 測定時 500MHz)を用いて測定した 。それ以外の機器分析条件等は、特に示さない限り実施例 1と同じである。  [0089] In this example, an example of preparing a monoclonal antibody using taxol as a hapten and an example of synthesizing taquinol using the same will be described. The nuclear magnetic resonance (NMR) spectrum was measured using EX-500 (trade name, manufactured by Nihon Electronics Co., Ltd. (trade name), 500 MHz). Other instrumental analysis conditions and the like are the same as in Example 1 unless otherwise indicated.
[0090] [1] 2'- succinyltaxo卜タンパク複合体の合成  [0090] [1] Synthesis of 2'-succinyltaxo protein complex
以下のようにして 2'-sucdnyltaxolを合成し、さらにそれとタンパク質との複合体を合 成した。本実施例では、サイログロブリン (thyroglobulin または TG)複合体および卵 白アルブミン (ovalbumin または OVA)複合体を合成してそれぞれ抗体作製用(免 疫用)に用いた。作製した抗体の検出用には、ゥシ血清アルブミン (Bovine Serum Albumin または BSA)との複合体を用いた。  2'-sucdnyltaxol was synthesized as described below, and a complex thereof with a protein was synthesized. In this example, a thyroglobulin (thyroglobulin or TG) complex and an ovalbumin (ovalbumin or OVA) complex were synthesized and used for antibody production (immunization). For the detection of the prepared antibody, a complex with a serum albumin (Bovine Serum Albumin or BSA) was used.
[0091] (0 2し succinyltaxolの合成  [0091] (0 2 Synthesis of succinyltaxol
taxol (和光純薬工業株式会社から購入) 20mg(23.4 μ mol)と succinic anhydride 36mg(359.7 μ mol)を pyridine 480 μ Lに溶かし、 Ar気流下、室温でー晚攪拌した。こ の反応液を減圧濃縮した後、 CHC1で 3回抽出した。その抽出液を減圧濃縮し、 PLC  20 mg (23.4 μmol) of taxol (purchased from Wako Pure Chemical Industries, Ltd.) and 36 mg (359.7 μmol) of succinic anhydride were dissolved in 480 μL of pyridine, and the mixture was stirred at room temperature under a stream of Ar at room temperature. The reaction solution was concentrated under reduced pressure, and extracted three times with CHC1. The extract is concentrated under reduced pressure and
3  Three
(展開溶媒… CHC1: MeOH = 10:1)で精製すると、白色粉状結晶の 2'- succinyltaxol  (Developing solvent: CHC1: MeOH = 10: 1) to give 2'-succinyltaxol as white powdery crystals
3  Three
20.1πι§(21.1 /ζ πιο1,収率: 89%)を得た。なお、この反応は、 "(a) Jyh-Gang, L.; 20.1πι § (21.1 / ζ πιο1, yield: 89%) was obtained. This reaction is described in "(a) Jyh-Gang, L .;
Bi— Xing, C; Peter, B.S.; Bernard, F.E. し ancer Res., 1993, 53,  Bi—Xing, C; Peter, B.S .; Bernard, F.E. and ancer Res., 1993, 53,
1388-1391." および "(b) Neal, F.M.; David, G.I.K. J. Nat. Prod., 1988, 51, 298-306. "に記載の方法を参照して行なった。以下に、 2 '-succinyltaxolの化学 構造式を記すとともに、この化合物の1 H— NMRデータを示す。データ中、炭素原子( C)に添付した番号は、それぞれ下記化学式中に添付した炭素原子の番号に対応し ている。 1388-1391. "And" (b) Neal, FM; David, GIKJ Nat. Prod., 1988, 51, 298-306. ". 2'-succinyltaxol Chemistry The structural formula is shown, and 1 H-NMR data of this compound is shown. In the data, the number attached to the carbon atom (C) corresponds to the number of the carbon atom attached to the following chemical formula, respectively.
[化 28]  [Formula 28]
Figure imgf000039_0001
Figure imgf000039_0001
[0092] H-NMR(500MHz,CDCl ) : δ 1.13(3H,s,C -H ), 1.22(3H,s,C -H ), 1.67(3H,s,C H-NMR (500 MHz, CDCl): δ 1.13 (3H, s, C -H), 1.22 (3H, s, C -H), 1.67 (3H, s, C
3 17 3 16 3 li 3 17 3 16 3 li
-H ), 1.91(3H,s,C -H ), 2.17(2H,m,C - H ), 2.21(3H,s,— OCOCH ), -H), 1.91 (3H, s, C -H), 2.17 (2H, m, C-H), 2.21 (3H, s, — OCOCH),
3 18 3 14 2 3  3 18 3 14 2 3
2.34(2H,m,C— H ), 2.44(3H,s,— OCOCH ), 2.63(4H,m,C -OCOCH CH ),  2.34 (2H, m, C-H), 2.44 (3H, s,-OCOCH), 2.63 (4H, m, C-OCOCH CH),
6 2 3 2' 2 2  6 2 3 2 '2 2
3.80(lH,d,J=7.05Hz,C— H), 4.20(0.5H,d,J=8.25Hz,C — H ),  3.80 (lH, d, J = 7.05Hz, C-H), 4.20 (0.5H, d, J = 8.25Hz, C-H),
3 20 2  3 20 2
4.30(0.5H,d,J=8.55Hz,C — H ), 4.43(lH,dd,J=6.75andll.0Hz,C -H),  4.30 (0.5H, d, J = 8.55Hz, C — H), 4.43 (lH, dd, J = 6.75andll.0Hz, C -H),
20 2 7  20 2 7
4.97(lH,brd,J=8.55Hz,C— H), 5.53(lH,d,J=3.35Hz,C— H), 5.68(lH,d,J=7.00Hz,C  4.97 (lH, brd, J = 8.55Hz, C-H), 5.53 (lH, d, J = 3.35Hz, C-H), 5.68 (lH, d, J = 7.00Hz, C
5 2' : 5 2 ':
-H), 5.98(lH,dd,J=3.05and9.15Hz,C— H), 6.23(lH,brt,J=8.55Hz,C — H), -H), 5.98 (lH, dd, J = 3.05and9.15Hz, C-H), 6.23 (lH, brt, J = 8.55Hz, C-H),
3' 13  3 '13
6.29(lH,s,C -H), 7.08(lH,d,J=9.15Hz,C— NH), 7.37(8H,m,C— NBz'C— Ph),  6.29 (lH, s, C-H), 7.08 (lH, d, J = 9.15Hz, C-NH), 7.37 (8H, m, C-NBz'C-Ph),
10 3' 3' 3'  10 3 '3' 3 '
7.50(3H,m,C— OBz), 7.76(2H,d,J=7.35Hz,C— NBz), 8.13(2H,d,J=7.30Hz,C  7.50 (3H, m, C-OBz), 7.76 (2H, d, J = 7.35Hz, C-NBz), 8.13 (2H, d, J = 7.30Hz, C
2 3' 2 2 3 '2
-OBz). -OBz).
[0093] (ii) 2'-succinyltaxol- Bovine Serum Albumin(BSA)複合体の合成 まず、 BSA (ナカライテスタ株式会社から購入) 30.0mg(0.44 μ mol)を 50mM sodium phosphate buffer(pH 7.0)1.2mLに溶かし、 BSA溶液とした。一方、前述の (Ii) Synthesis of 2'-succinyltaxol-Bovine Serum Albumin (BSA) complex First, 30.0 mg (0.44 μmol) of BSA (purchased from Nakarai Tester Co., Ltd.) was dissolved in 1.2 mL of 50 mM sodium phosphate buffer (pH 7.0) to obtain a BSA solution. On the other hand,
2し succinyltaxol 2.1mg(2.2 μ mol)¾rdimethylformamide 0.り mLに溶; ^し、次いで 丄— ethyl— 3— (3— dimethylaminopropyl)carbodumide hydrochloride 0.46mg(2.4 μ mol)と N- hydroxy- sulfosuccinimide 2.1mg(9.6 μ mol)をカ卩え、 Ar気流下、 25°Cで 1時間攪拌 した。このようにして得られた反応液を上述の BSA溶液に滴下し、室温でー晚撹拌し た。反応後、 BSA溶液を遠心分離して、不溶性画分を除去した。可溶性画分を分画 分子量 1万で限外濾過濃縮し、 50mM sodium phosphate buffer+0.15M sodium chlOride(pH7.0)を加えて、溶媒を置換した。再度分画分子量 1万で限外濾過濃縮を 行ない、 2'- succinyltaxo卜 BSA複合体 (4.0mL, 5.62mg/mL)を得た。この反応は "Paul, G.G.; T.G.J., R; Gary, S.B; Carolyn, B丄.; Jilanne, B.B. J. 2 succinyltaxol 2.1 mg (2.2 μmol) ¾ rdimethylformamide dissolved in 0.1 mL; ^ then 丄 -ethyl-3- (3-dimethylaminopropyl) carbodumide hydrochloride 0.46 mg (2.4 μmol) and N-hydroxy-sulfosuccinimide 2.1 mg (9.6 μmol) was stirred at 25 ° C. for 1 hour under an Ar gas flow. The reaction solution thus obtained was added dropwise to the above BSA solution, and the mixture was stirred at room temperature. After the reaction, the BSA solution was centrifuged to remove the insoluble fraction. The soluble fraction in a fractionation molecular weight of 10,000 concentrated by ultrafiltration, by adding a 50mM sodium phosphate buffer + 0.15M sodium chl O ride (pH7.0), the solvent was replaced. Ultrafiltration and concentration were performed again with a molecular weight cut off of 10,000 to obtain 2'-succinyltaxo BSA complex (4.0 mL, 5.62 mg / mL). This reaction is described in "Paul, GG; TGJ, R; Gary, SB; Carolyn, B 丄.; Jilanne, BBJ
Immunol. Methods., 1993, 158, 5- 15."を参照して行なった。  Immunol. Methods., 1993, 158, 5-15 ".
[0094] (iii) 2し succinyltaxoH:hyroglobulin(TG)複合体の合成 [0094] (iii) Synthesis of succinyltaxoH: hyroglobulin (TG) complex
TG (SIGMA- ALDRICH社から購入) 30.0mg(0.44 μ mol)を 50mM sodium phosphate buffer(pH 7.0)1.2mLに溶かし、 TG溶液とした。一方、前述の  30.0 mg (0.44 μmol) of TG (purchased from SIGMA-ALDRICH) was dissolved in 1.2 mL of 50 mM sodium phosphate buffer (pH 7.0) to prepare a TG solution. On the other hand,
2 ' -succinyltaxol(l)2.1 mg(2.2 μ mol)を dimethylformamide 0.6mLに溶かし、次いで 丄— ethyl— 3— (3— dimethylaminopropyl)carbodumide hydrochloride 0.46mg(2.4 μ mol)と N- hydroxy- sulfosuccinimide 2.1mg(9.6 μ mol)をカ卩え、 Ar気流下、 25°Cで 1時間攪拌 した。このようにして得られた反応液を上述の TG溶液に滴下し、室温で一晩撹拌した 。反応後、 TG溶液を遠心分離して、不溶性画分を除去した。可溶性画分を分画分子 量 1万で限外濾過濃縮し、 50mM sodium phosphate buffer+0.15M sodium chlOride(pH7.0)を加えて、溶媒を置換した。再度分画分子量 1万で限外濾過濃縮を 行ない、 2'- succinyltaxo卜 BSA複合体 (2.6mL, 9.00mg/mL)を得た。 Dissolve 2.1 mg (2.2 μmol) of 2'-succinyltaxol (l) in 0.6 mL of dimethylformamide, then 0.46 mg (2.4 μmol) of 丄 -ethyl-3- (3-dimethylaminopropyl) carbodumide hydrochloride and 2.1 mg of N-hydroxy-sulfosuccinimide (9.6 μmol) was stirred at 25 ° C. for 1 hour under an Ar gas flow. The reaction solution thus obtained was dropped into the above-mentioned TG solution, and stirred at room temperature overnight. After the reaction, the TG solution was centrifuged to remove the insoluble fraction. The soluble fraction in a fractionation molecular weight of 10,000 concentrated by ultrafiltration, by adding a 50mM sodium phosphate buffer + 0.15M sodium chl O ride (pH7.0), the solvent was replaced. Ultrafiltration and concentration were performed again at a molecular weight cut off of 10,000 to obtain 2'-succinyltaxo BSA complex (2.6 mL, 9.00 mg / mL).
[0095] (iv) 2し succinyltaxo卜 ovalbumin(OVA)複合体の合成 [0095] (iv) Synthesis of succinyltaxo ovalbumin (OVA) complex
OVA (ナカライテスタ株式会社から購入) 17.0mg(0.38 μ mol)を 50mM sodium phosphate buffer(pH 7.0)5.2mLに溶かし、 OVA溶液とした。一方、前述の  17.0 mg (0.38 μmol) of OVA (purchased from Nakarai Tester Co., Ltd.) was dissolved in 5.2 mL of 50 mM sodium phosphate buffer (pH 7.0) to prepare an OVA solution. On the other hand,
2 ' -succinyltaxol(l)9.0mg(9.4 μ mol)を dimethylformamide 2.6mLに溶かし、次!、で 丄— ethyl— 3— (3— dimethylaminopropyl)carbodumide hydrochloride 2.0mg(10.4 μ mol)と N— hydroxy— sulfosuccinimide 9.0mg(41.4 μ mol)をカ卩え、 Ar気流下、 25°Cで 1時間攪 拌した。このようにして得られた反応液を上述の OVA溶液に滴下し、室温でー晚撹 拌した。反応後、 OVA溶液を遠心分離して、不溶性画分を除去した。可溶性画分を 分画分子量 1万で限外濾過濃縮し、 50mM sodium phosphate buffer+0.15M sodium chloride(pH 7.0)をカ卩えて、溶媒を置換した。再度分画分子量 1万で限外濾 過濃縮を行ない、 2'- succinyltaxo卜 OVA複合体 (3.1mL, 0.853mg/mL)を得た。 Dissolve 9.0 mg (9.4 μmol) of 2'-succinyltaxol (l) in 2.6 mL of dimethylformamide, and add 2.0 mg (10.4 μmol) of ethyl-ethyl— 3- (3-dimethylaminopropyl) carbodumide hydrochloride 9.0 mg (41.4 μmol) of N-hydroxy-sulfosuccinimide was dried and stirred at 25 ° C. for 1 hour under an Ar gas flow. The reaction solution thus obtained was added dropwise to the above-mentioned OVA solution, and the mixture was stirred at room temperature. After the reaction, the OVA solution was centrifuged to remove the insoluble fraction. The soluble fraction was concentrated by ultrafiltration with a molecular weight cut-off of 10,000, and 50 mM sodium phosphate buffer + 0.15M sodium chloride (pH 7.0) was added to replace the solvent. Ultrafiltration was performed again with a molecular weight cut-off of 10,000 to obtain 2'-succinyltaxo OVA complex (3.1 mL, 0.853 mg / mL).
[0096] [2] 抗タキソールモノクローナル抗体の作製 [0096] [2] Preparation of anti-taxol monoclonal antibody
(0 2し succinyltaxo卜 OVA複合体及び 2し succinyltaxoKTG複合体のマウスへの感作 と血清の採取  (0) Sensitization of mice with the 2-succinyltaxo OVA complex and the 2-succinyltaxo KTG complex and collection of serum
2'- succinyltaxo卜 OVA複合体を 4匹の Balb/cマウス(5週齢、雌、これらを Balb/c No.l— 4マウスとする)に、 2'- succinyltaxoKTG複合体を 4匹の Balb/cマウス(5週齢、 雌、これらを Balb/c No.5— 8マウスとする)と 3匹の DDYマウス(5週齢、雌、これらを DDY No.l— 3マウスとする)に、 Freund's complete adjuvantと共に各々 50 g/100 μ L皮内投与した。その後、 2週間間隔で計 4回同様に投与した。一方、初回感作か ら 0、 14、 28および 42日後に採血し、得られた血清の抗タキソール抗体力価を ELISA 法で測定した。 ELISA法による測定の条件および操作は実施例 1と同様であるが、以 下に説明する。  2'-succinyltaxo OVA complex was added to 4 Balb / c mice (five weeks old, female, these were Balb / c No. 4 mice), and 2'-succinyltaxoKTG complex was added to 4 Balb / c mice. / c mice (5 weeks old, female, these are Balb / c No. 5-8 mice) and 3 DDY mice (5 weeks old, female, these are DDY No.l-3 mice) And Freund's complete adjuvant were administered intradermally at 50 g / 100 μL each. Thereafter, the same administration was performed at a two-week interval for a total of four times. On the other hand, blood was collected at 0, 14, 28 and 42 days after the initial sensitization, and the anti-taxol antibody titer of the obtained serum was measured by ELISA. The conditions and operation for measurement by the ELISA method are the same as those in Example 1, but will be described below.
[0097] (ii) ELISA法による抗体力価の測定 (Ii) Measurement of antibody titer by ELISA
0.1M sodium phosphate buffer+0.1% sodium azide(pH 7.5)で 10 g/mLに希釈 した 2'- succinyltaxo卜 BSA複合体溶液を、 96穴プレートに lwell当り 150 /z Lカ卩え、 4°C でー晚静置して、固相化した。溶液を捨て、各 wellを buffer P[10mM sodium phosphate buffer+0.1M sodium chloride(pH 7.0)]で洗净後、 buffer A[buffer P+0. l%(w/w)BSA+0.1% sodium azide+lmM magnesium dichloride(pH 7.0)]で 2hr ブロッキングした。次いで、各 wellを buffer Pで洗浄後、これに感作マウス力も採取し た血清の buffer A 1000倍希釈液を 150 μ L加え、 37°Cで 2hrインキュベートした。各 wellを buffer Pで洗浄後、 dilution buffer[buffer P+0.1%(w/w)BSA(pH 7.0)]で 20.8ng/mLに希釈したペルォキシダーゼ標識二次抗体 [anti-mouse IgG  2'-succinyltaxo BSA complex solution diluted to 10 g / mL with 0.1 M sodium phosphate buffer + 0.1% sodium azide (pH 7.5) is placed in a 96-well plate at 150 / z L / well at 4 ° C / well. It was left still and solidified. Discard the solution, wash each well with buffer P [10 mM sodium phosphate buffer + 0.1 M sodium chloride (pH 7.0)], and then buffer A [buffer P + 0.1% (w / w) BSA + 0.1% sodium azide + lmM magnesium dichloride (pH 7.0)] for 2 hours. Next, each well was washed with buffer P, and 150 μL of a 1000-fold diluted buffer A of serum obtained from the sensitized mouse was also added thereto, followed by incubation at 37 ° C. for 2 hours. After washing each well with buffer P, a peroxidase-labeled secondary antibody [anti-mouse IgG] diluted to 20.8 ng / mL with dilution buffer [buffer P + 0.1% (w / w) BSA (pH 7.0)]
(H+L— chainXgoat IgG /Fab')conj. peroxidase Lot. 310]溶液を 150 Lカロえ、 37 °Cで 1.5hrインキュベートした。 buffer Pで洗浄後、 OPD溶液 [7.5mM (H + L—chainXgoat IgG / Fab ') conj. Peroxidase Lot. Incubated at ° C for 1.5 hr. After washing with buffer P, OPD solution [7.5mM
o-phenylenediamine+0.25mg/mL BSA+0.025% hydrogen peroxide]を 100 μ L加え、 37°Cで 45minインキュベートした。これに、 1.2M sulluric acid+2.4g/L sodium sulfiteを 100 μ L加え、 492nmの吸光度を測定した。この ELISA測定法は、 "Kohno, T.; Tanaka, H.; Watabe, K.; Yamashita, S.; beza i, H.; Nadai, T.; Sugie, Y.; Ogouchi, T. Microbiol. Immunol, 1999, 43, 253- 258."を参照した。  100 μL of o-phenylenediamine + 0.25 mg / mL BSA + 0.025% hydrogen peroxide] was added, and the mixture was incubated at 37 ° C. for 45 minutes. To this was added 100 μL of 1.2 M sulluric acid + 2.4 g / L sodium sulfite, and the absorbance at 492 nm was measured. This ELISA assay is described in "Kohno, T .; Tanaka, H .; Watabe, K .; Yamashita, S .; beza i, H .; Nadai, T .; Sugie, Y .; Ogouchi, T. Microbiol. Immunol. , 1999, 43, 253-258. "
[0098] (iii) マウスハイプリドーマの作製  [0098] (iii) Production of mouse hybridoma
(iii-1) マウスミエローマ細胞の培養  (iii-1) Culture of mouse myeloma cells
マウスミエローマ細胞 (Sp2/0- Agl4)を GIT培地 (Nihon Pharmaceutical Co. Ltd. Tokyo, Japanすなわち日本製薬株式会社製) +1% penicillin- streptomysinで培養し、 細胞密度を 1.0 X 104— 1.0 X 105/mLに維持させた。マウス 1匹分の細胞融合操作に 対し、細胞数が 3000万個以上、生存率が 90%以上の、マウスミエローマ細胞を調製し た。なお、上記 GIT培地について、詳しくは" Murakami, H.; Masui, H.; Sato, G.H.; Sueoka, N.; Chow, T.P.; Sueoka, T.K. Proc. Natl. Acad. Sci. USA, 1982, 79, 1158-1162. "に記載されている。また、以下に記す GIT培地は、全てこれ と同様のものを用いた。 Mouse myeloma cells (Sp2 / 0-Agl4) were cultured in GIT medium (Nihon Pharmaceutical Co. Ltd. Tokyo, Japan, manufactured by Nippon Pharmaceutical Co., Ltd.) + 1% penicillin-streptomysin, and the cell density was adjusted to 1.0 × 10 4 —1.0 X. It was maintained at 10 5 / mL. Mouse myeloma cells having a cell count of 30 million or more and a survival rate of 90% or more were prepared for the cell fusion operation for one mouse. The GIT medium is described in detail in "Murakami, H .; Masui, H .; Sato, GH; Sueoka, N .; Chow, TP; Sueoka, TK Proc. Natl. Acad. Sci. USA, 1982, 79, 1158-1162. " In addition, the same GIT medium described below was used in all cases.
[0099] (iii-2) マクロファージの採取  [0099] (iii-2) Collection of macrophages
まず、あら力じめ GIT培地 10mLを注射筒(テルモ株式会社製、商品名テルモシリ ンジ)に取り、抗体価の上昇が見られたマウスに 70%エタノールを噴霧した後、マウス の腹毛を刈り(直径約 lcm)、 26Gの注射針を用いて前記 GIT培地 10mLを腹腔内投与 した。マウスの腹を 5分間もみ、シャーレに腹腔内から GIT培地を回収した。これを 1200rpm、 5分間遠心分離にかけた。上清を捨てて得られたマクロファージに GIT培地 +10mLを加えて再度、同条件下で遠心分離した。この遠心分離を再度行い、マクロフ ァージに GIT培地 +1% penicillin- streptomysinをカ卩え、 96穴プレートに 100 μ Lずつ藩 種し、 COインキュベータ中、 37°Cで培養した。この方法は、 "Lane, R.D.;  First, 10 mL of GIT medium was placed in a syringe (Termo Syringe, manufactured by Terumo Corporation), and 70% ethanol was sprayed on mice with an increased antibody titer. The GIT medium (10 mL) was intraperitoneally administered using a 26G injection needle (diameter: about 1 cm). The mouse's abdomen was rubbed for 5 minutes, and the GIT medium was recovered from the intraperitoneal cavity in a petri dish. This was centrifuged at 1200 rpm for 5 minutes. GIT medium +10 mL was added to the macrophages obtained by discarding the supernatant, followed by centrifugation again under the same conditions. This centrifugation was performed again, GIT medium + 1% penicillin-streptomysin was added to the macrophage, 100 μL each was seeded in a 96-well plate, and cultured at 37 ° C. in a CO incubator. This method is described in "Lane, R.D .;
2  2
Crissman, R.S.; Ginn, S. Method EnzymoL, 1986, 121, 183- 192."を参照した  Crissman, R.S .; Ginn, S. Method EnzymoL, 1986, 121, 183-192. "
[0100] (iii-3) 細胞融合 次に、細胞融合を行なった。すなわち、まず、前記マウスに 70%エタノールを噴霧 し、クリーンベンチ内で頸椎脱臼させた。開腹し、摘出した脾臓を氷冷中の GIT培地 に入れ、脾臓をほぐした。金属メッシュで濾過し、 15mL用遠沈管に移した後、 1200rpm、 5分間遠心分離した。脾臓細胞と Sp2/0-Agl4マウスミエローマ細胞を 5: 1の 比で使用し、 PEG- 1500を用いて、 Roche Diagnostics(Mannheim, Germany)の方法 に従って、細胞融合をした。得られたノヽイブリドーマは、前述のようにしてあら力じめ 採取したマクロファージをカ卩えた 96穴プレート中で、 GIT培地 + 10% fetal calf serum + 2% HAT培地 +1% penicillin— streptomysinにより 37°C、 COインキュベータ内 [0100] (iii-3) Cell fusion Next, cell fusion was performed. That is, first, the mouse was sprayed with 70% ethanol, and the cervical vertebra was dislocated in a clean bench. The laparotomy was performed, and the removed spleen was placed in an ice-cooled GIT medium, and the spleen was loosened. After filtration through a metal mesh and transfer to a 15 mL centrifuge tube, the mixture was centrifuged at 1200 rpm for 5 minutes. Using spleen cells and Sp2 / 0-Agl4 mouse myeloma cells at a ratio of 5: 1, cell fusion was performed using PEG-1500 according to the method of Roche Diagnostics (Mannheim, Germany). The obtained hybridomas were cultured in a 96-well plate containing the macrophages collected as described above, using GIT medium + 10% fetal calf serum + 2% HAT medium + 1% penicillin-streptomysin. ° C, in CO incubator
2  2
で培養した。この方法は、 "Lane, R.D.; Crissman, R.S.; Ginn, S. Method EnzymoL, 1986, 121 , 183-192."を参照した。なお、細胞融合について、上記以外 の条件および操作は実施例 1と同様である。  And cultured. This method referred to "Lane, R.D .; Crissman, R.S .; Ginn, S. Method EnzymoL, 1986, 121, 183-192." The conditions and operations other than those described above for cell fusion are the same as in Example 1.
[0101] (iii-4) マウスハイプリドーマのクローニング  [0101] (iii-4) Cloning of mouse hybridoma
前記ノ、イブリドーマがコロニー形成後、その培養上清の抗体価を ELISA測定し、抗 タキソールモノクローナル抗体産生が確認されたコロニーから、三光純薬 (Tokyo, Japan)の指針に従い GIT培地 +10% fetal calf serum + 1% penicillin- streptomysinを 用いて、抗体産生ハイブリドーマのクローユングを行った。その結果、 目的の抗体産 生 wellが、 DDY No.1マウスから lwell、 DDY No.2マウスから 2well、 DDY No.3マウス から 4well、 Balb/c No.2マウスから lwell、 Balb/c No.5マウスから 3well、 Balb/c No.6 マウスから 3well、 Balb/c No.7マウスから 2well、 Balb/c No.8マウスから 4well得られた 。これら wellから、 目的のハイプリドーマをさらに限界希釈法によりクローユングした。 DDY 1マウスの 1つの wellから 1種の抗タキソールモノクローナル抗体 MAT-01-G12 が得られた。なお、 ELISA測定は、血清 150 μ Lに代えて培養上清 20 μ Lおよび buffer A 130 Lを用いる以外は前記 (ii)と同様に行なった。  After the colony formation, the antibody titer of the culture supernatant was measured by ELISA.From the colony in which anti-taxol monoclonal antibody production was confirmed, GIT medium + 10% fetal was added according to the guidelines of Sanko Junyaku (Tokyo, Japan). Cloning of antibody-producing hybridomas was performed using calf serum + 1% penicillin-streptomysin. As a result, the antibody production wells were lwell from DDY No.1 mouse, 2well from DDY No.2 mouse, 4well from DDY No.3 mouse, lwell from Balb / c No.2 mouse, and lwell, Balb / c No. 3 wells were obtained from 5 mice, 3 wells from Balb / c No. 6 mice, 2 wells from Balb / c No. 7 mice, and 4 wells from Balb / c No. 8 mice. From these wells, the desired hybridoma was further clawed by the limiting dilution method. One anti-taxol monoclonal antibody MAT-01-G12 was obtained from one well of DDY 1 mouse. The ELISA measurement was performed in the same manner as (ii) except that 20 μL of culture supernatant and 130 L of buffer A were used instead of 150 μL of serum.
[0102] [3] マウス腹水を利用した抗タキソールモノクローナル抗体 MAT-01-G12の大量生 産  [0102] [3] Mass production of anti-taxol monoclonal antibody MAT-01-G12 using mouse ascites
クロー-ングの終了した前記 MAT-01-G12抗体を産生するハイブリドーマ 2 X 107 個を Balb/cヌードマウス (5週齢、雌) 5匹に腹腔内投与し、腹水を 8mL得た。一方、 Protein A Sepharose 4 Fast Flow (Pharmacia Biotech社の商品名) 2mLを、 3M NaClを含む 1.5M glycine- NaOH buffer(pH8.9)lmLに懸濁し、カラムに充填後、 1.5M sodium glycinate+3M sodium chloride(pH8.9)で平衡化した。そして、採取し た前記腹水を 1.5M sodium glycinate+3M sodium chloride(pH8.9)で 2倍希釈し、 前記平衡化したカラムに添カ卩した。各フラクションを 2mLずつ採取しつつ、 1.5M sodium glycinate buffer+3M sodium chloride(pH8.9)で溶出し、非結合の proteinを 洗い流した。次いで、 lOOmM sodium citrate buffer(pH6.0)、 lOOmM sodium citrate buffer(pH5.0)、 lOOmM sodium citrate buffer(pH4.0)で順次溶出した。この 操作を、腹水 4mLを用いて計 2回実施し、 anti- taxol monoclonal antibody 2 × 10 7 hybridomas producing the cloned MAT-01-G12 antibody were intraperitoneally administered to 5 Balb / c nude mice (five weeks old, female) to obtain 8 mL of ascites. On the other hand, 2 mL of Protein A Sepharose 4 Fast Flow (trade name of Pharmacia Biotech) was The suspension was suspended in 1 mL of 1.5 M glycine-NaOH buffer (pH 8.9) containing NaCl, packed in a column, and equilibrated with 1.5 M sodium glycinate + 3 M sodium chloride (pH 8.9). Then, the collected ascites was diluted 2-fold with 1.5 M sodium glycinate + 3 M sodium chloride (pH 8.9) and added to the equilibrated column. While collecting 2 mL of each fraction, the fraction was eluted with 1.5 M sodium glycinate buffer + 3 M sodium chloride (pH 8.9), and unbound protein was washed away. Next, elution was performed with lOOmM sodium citrate buffer (pH 6.0), lOOmM sodium citrate buffer (pH 5.0), and lOOmM sodium citrate buffer (pH 4.0). This operation was performed twice using 4 mL of ascites fluid, and the anti-taxol monoclonal antibody
IgGl(13.22mg in 4mL of lOOmM sodium citrate buffer, pH6.0)を得た。  IgGl (13.22 mg in 4 mL of 100 mM sodium citrate buffer, pH 6.0) was obtained.
[0103] なお、このモノクローナル抗体 anti- taxol monoclonal antibody IgGlをタキソール 合成に用いたところ、良好な結果が得られた。 [0103] When this monoclonal antibody anti-taxol monoclonal antibody IgGl was used for taxol synthesis, good results were obtained.
産業上の利用の可能性  Industrial potential
[0104] 以上説明した通り、本発明によれば、複雑な構造を有する化合物にも適用できる、 有機化合物の高収率な製造方法、およびそれに適した抗体を提供することができる 。本発明の製造方法によれば、例えば、重要な抗癌剤として臨床の場で使用されて いるビンブラスチンやタキソールなどの稀少天然有機化合物を短工程で合成すること が可能であり、また、天然ィ匕合物のみならず種々の化合物に適用可能である。本発 明の製造方法は、収率および選択性に優れる反応を用いるため目的化合物を低コ ストで提供可能であり、薬学や有機化学のあらゆる分野に応用可能であり、特に、医 薬品製造、創薬科学、ファインケミカル等の製薬技術分野に有用である。 As described above, according to the present invention, it is possible to provide a method for producing an organic compound at a high yield, which can be applied to a compound having a complicated structure, and an antibody suitable for the method. According to the production method of the present invention, for example, rare natural organic compounds such as vinblastine and taxol, which are used in clinical settings as important anticancer agents, can be synthesized in a short step. It is applicable to various compounds as well as products. The production method of the present invention can provide the target compound at low cost because it uses a reaction with excellent yield and selectivity, and can be applied to all fields of pharmacy and organic chemistry. It is useful in pharmaceutical technology fields such as drug discovery science and fine chemicals.

Claims

請求の範囲 [1] 有機化合物の製造方法であって、製造の対象となる前記有機化合物を認識可能な 抗体の存在下、前記有機化合物の前駆体を前記有機化合物に変換させる製造方法 [2] 前記前駆体から前記有機化合物への変換反応が、付加反応、脱離反応、転移反応、酸化還元反応、縮合反応および分解反応からなる群から選択される少なくとも一つ の反応を含む請求の範囲 1に記載の製造方法。 [3] 製造の対象となる前記有機化合物が、下記式 (I)で表される化合物である請求の範 囲 1に記載の製造方法。 Claims [1] A method for producing an organic compound, the method comprising converting a precursor of the organic compound into the organic compound in the presence of an antibody capable of recognizing the organic compound to be produced [2] 2. The method according to claim 1, wherein the conversion reaction from the precursor to the organic compound includes at least one reaction selected from the group consisting of an addition reaction, an elimination reaction, a transfer reaction, an oxidation-reduction reaction, a condensation reaction, and a decomposition reaction. The method according to 1. [3] The production method according to claim 1, wherein the organic compound to be produced is a compound represented by the following formula (I).
[化 1]  [Chemical 1]
Figure imgf000045_0001
式 (I)中、
Figure imgf000045_0001
In the formula (I),
R1は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルキル基、または炭素数 1一 6 の直鎖もしくは分枝ァシル基であり、 R 1 is a hydrogen atom, a linear or branched alkyl group having 16 carbon atoms, or a linear or branched acyl group having 116 carbon atoms;
R2は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルコキシ基、またはアミノ基であ り、 R 2 is a hydrogen atom, a linear or branched alkoxy group having 16 carbon atoms, or an amino group;
R3は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルキル基、または炭素数 1一 6 の直鎖もしくは分枝ァシル基であり、 R4は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルキル基、または炭素数 1一 6 の直鎖もしくは分枝ァシル基であり、 R 3 is a hydrogen atom, a linear or branched alkyl group having 16 carbon atoms, or a linear or branched acyl group having 116 carbon atoms; R 4 is a hydrogen atom, a linear or branched alkyl group having 16 carbon atoms, or a linear or branched acyl group having 116 carbon atoms;
R5は、水素原子、または炭素数 1一 6の直鎖もしくは分枝アルキル基であり、 R 5 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms,
R6は、水素原子、炭素数 1一 6の直鎖もしくは分枝アルコキシ基、またはアミノ基であ り、 R 6 is a hydrogen atom, a linear or branched alkoxy group having 16 carbon atoms, or an amino group;
R7は、水素原子、または炭素数 1一 6の直鎖もしくは分枝アルキル基である。 R 7 is a hydrogen atom or a linear or branched alkyl group having 16 carbon atoms.
前記式 (I)で表される化合物の前駆体が、下記式 (II)で表される化合物である請求 の範囲 3に記載の製造方法。 The production method according to claim 3, wherein the precursor of the compound represented by the formula (I) is a compound represented by the following formula (II).
[化 2] [Formula 2]
Figure imgf000046_0001
Figure imgf000046_0001
式(II)中、 ー は式 (I)と同じである。 In formula (II),-is the same as in formula (I).
前記式 (I)で表される化合物の前駆体が、下記式 (ΙΓ )で表される化合物である の範囲 3に記載の製造方法。 4. The production method according to range 3, wherein the precursor of the compound represented by the formula (I) is a compound represented by the following formula (II).
[化 3] [Formula 3]
Figure imgf000047_0001
Figure imgf000047_0001
式(Π,)中、 R1— R7は式 (I)と同じである。 In the formula (Π,), R 1 — R 7 are the same as in the formula (I).
製造の対象となる前記有機化合物が、前記式 (I)で表される化合物のうち下記式 (III )で表される化合物である請求の範囲 3に記載の製造方法。 4. The production method according to claim 3, wherein the organic compound to be produced is a compound represented by the following formula (III) among the compounds represented by the formula (I).
[化 4][Formula 4]
Figure imgf000047_0002
Figure imgf000047_0002
(III) 式 (m)中、 (III) In equation (m),
R1はメチル基またはホルミル基であり、 R 1 is a methyl group or a formyl group,
R2はメトキシ基またはアミノ基であり、 R 2 is a methoxy group or an amino group,
R3は水素原子またはァセチル基である。 R 3 is a hydrogen atom or an acetyl group.
前記式 (III)で表される化合物の前駆体が、下記式 (IV)で表される化合物である の範囲 6に記載の製造方法。 7. The production method according to range 6, wherein the precursor of the compound represented by the formula (III) is a compound represented by the following formula (IV).
[化 5] [Formula 5]
Figure imgf000048_0001
式(IV)中、 R1— R3は式(III)と同じである。
Figure imgf000048_0001
In the formula (IV), R 1 —R 3 are the same as in the formula (III).
前記式 (III)で表される化合物の前駆体が、下記式 (IV' )で表される化合物である 求の範囲 6に記載の製造方法。 7. The method according to claim 6, wherein the precursor of the compound represented by the formula (III) is a compound represented by the following formula (IV ′).
[化 6] [Formula 6]
Figure imgf000049_0001
Figure imgf000049_0001
式(IV,)中、 R1— R3は式(III)と同じである。 In the formula (IV,), R 1 —R 3 are the same as in the formula (III).
[9] 製造の対象となる前記有機化合物が、ビンブラスチン、ビンクリスチンまたはビンデシ ンである請求の範囲 6に記載の製造方法。 [9] The production method according to claim 6, wherein the organic compound to be produced is vinblastine, vincristine, or vindesine.
[10] 製造の対象となる前記有機化合物が、ビンブラスチン、ビンクリスチンまたはビンデシ ンであり、その前駆体が、前記有機化合物に対応する前記式 (IV)の化合物である請 求の範囲 7に記載の製造方法。 [10] The claim according to claim 7, wherein the organic compound to be produced is vinblastine, vincristine or vindesine, and a precursor thereof is a compound of the formula (IV) corresponding to the organic compound. Production method.
[11] 製造の対象となる前記有機化合物が、ビンブラスチン、ビンクリスチンまたはビンデシ ンであり、その前駆体が、前記有機化合物に対応する前記式 (IV' )の化合物である 請求の範囲 8に記載の製造方法。 [11] The organic compound according to claim 8, wherein the organic compound to be produced is vinblastine, vincristine or vindesine, and a precursor thereof is a compound of the formula (IV ′) corresponding to the organic compound. Production method.
[12] 前記前駆体を、前記抗体、酸化剤および還元剤の存在下で前記有機化合物に変換 させる請求の範囲 4または 5に記載の製造方法。 12. The production method according to claim 4, wherein the precursor is converted to the organic compound in the presence of the antibody, an oxidizing agent, and a reducing agent.
[13] 前記酸化剤が、酸素、空気および遷移金属元素力 なる群力 選択される少なくとも 一つを含む請求の範囲 12に記載の製造方法。 13. The production method according to claim 12, wherein the oxidizing agent includes at least one selected from the group consisting of oxygen, air, and a transition metal element.
[14] 前記遷移金属元素が、 Fe(II)、 Rh(III)、 Mn(III)、 Co(III)、 Ce(IV)、 Mo(VI)および Cu(II)か らなる群力も選択される少なくとも一つを含む請求の範囲 13に記載の製造方法。 [14] A group force in which the transition metal element is composed of Fe (II), Rh (III), Mn (III), Co (III), Ce (IV), Mo (VI) and Cu (II) is also selected. 14. The production method according to claim 13, comprising at least one of:
[15] 前記還元剤が、水素化合物、メルカプトエタノール、ジチオスレィトール (dithiothreitol またはジチオトレイトール)、グルタチオン、 NADH、 NADPH、ニコチンアミド、 FADお よび FMNからなる群力も選択される少なくとも一つを含む請求の範囲 12に記載の製 造方法。 [15] The reducing agent may be a hydrogen compound, mercaptoethanol, dithiothreitol (dithiothreitol or dithiothreitol), glutathione, NADH, NADPH, nicotinamide, FAD or the like. 13. The production method according to claim 12, including at least one in which a group force comprising FMN and FMN is also selected.
[16] 前記水素化合物が、 NaBH CN、 NaBH、 LiBH、 Zn(BH )、 Me NBH(OAc)、  [16] The hydrogen compound is selected from the group consisting of NaBHCN, NaBH, LiBH, Zn (BH), MeNBH (OAc),
3 4 4 4 2 2 3  3 4 4 4 2 2 3
LiBH(sec-Bu)、 KBH(sec-Bu)、 LiBHEt、および LiAlH(tert- BuO)からなる群から選  Selected from the group consisting of LiBH (sec-Bu), KBH (sec-Bu), LiBHEt, and LiAlH (tert-BuO).
3 3 3 3  3 3 3 3
択される少なくとも一つを含む請求の範囲 15に記載の製造方法。  16. The production method according to claim 15, comprising at least one selected from the group consisting of:
[17] 製造の対象となる前記有機化合物が、下記式 (V)で表される化合物である請求の範 囲 1に記載の製造方法。 [17] The production method according to claim 1, wherein the organic compound to be produced is a compound represented by the following formula (V).
[化 7]  [Formula 7]
Figure imgf000050_0001
Figure imgf000050_0001
(V) 式 (V)中、 R8— R13は、それぞれ独立に、水素原子、または炭素数 1一 6の直鎖もしく は分枝アルキル基である。 (V) In the formula (V), R 8 to R 13 are each independently a hydrogen atom or a linear or branched alkyl group having 16 carbon atoms.
前記式 (V)で表される化合物の前駆体が、下記式 (Via)および (VIb)で表される化合 物である請求の範囲 17に記載の製造方法。  18. The production method according to claim 17, wherein the precursor of the compound represented by the formula (V) is a compound represented by the following formulas (Via) and (VIb).
[化 8]
Figure imgf000051_0001
[Formula 8]
Figure imgf000051_0001
式 (Via)中、 R14は、炭素数 1一 6のエーテル基またはチォエーテル基であり、飽和で も不飽和でも直鎖状でも分枝状でも良ぐ式 (VIb)中、 R8— R13は、請求の範囲 17に 記載の式 (V)と同じである。 In the formula (Via), R 14 is an ether group or a thioether group having 16 carbon atoms. In the formula (VIb), R 8 — R may be saturated, unsaturated, linear, or branched. 13 is the same as the formula (V) described in claim 17.
[19] 製造の対象となる前記有機化合物がタキソール (パクリタキセル)である請求の範囲 1 7に記載の製造方法。 [19] The production method according to claim 17, wherein the organic compound to be produced is taxol (paclitaxel).
[20] 製造の対象となる前記有機化合物がタキソールであり、その前駆体が、対応する前 記式 (Via)および (VIb)の化合物である請求の範囲 18に記載の製造方法。  [20] The production method according to claim 18, wherein the organic compound to be produced is taxol, and the precursor thereof is the corresponding compound of the above formulas (Via) and (VIb).
[21] 請求の範囲 1に記載の製造方法に使用する抗体であって、製造の対象となる前記有 機化合物を認識可能な抗体。  [21] An antibody used in the production method according to claim 1, which is capable of recognizing the organic compound to be produced.
[22] モノクローナル抗体である請求の範囲 21に記載の抗体。  [22] The antibody according to claim 21, which is a monoclonal antibody.
[23] 製造の対象となる前記有機化合物またはその誘導体とタンパク質とを結合させて得 られる複合体を抗原として製造される、請求の範囲 21に記載の抗体。  23. The antibody according to claim 21, wherein the antibody is produced using a complex obtained by binding the organic compound or its derivative to be produced and a protein as an antigen.
[24] 前記複合体が、下記式 (VII)で表される化合物とタンパク質との縮合反応により得ら れる複合体である請求の範囲 23に記載の抗体。  24. The antibody according to claim 23, wherein the complex is a complex obtained by a condensation reaction between a compound represented by the following formula (VII) and a protein.
[化 9]
Figure imgf000052_0001
[Formula 9]
Figure imgf000052_0001
(VI I) 式 (VII)中、 R および R4— R7は、請求の範囲 3に記載の式 (I)と同じである。 (VI I) In the formula (VII), R and R 4 —R 7 are the same as those in the formula (I) described in claim 3.
前記複合体が、下記式 (VIII)で表される化合物とタンパク質との縮合反応により得ら れる複合体である請求の範囲 23に記載の抗体。 24. The antibody according to claim 23, wherein the complex is a complex obtained by a condensation reaction between a compound represented by the following formula (VIII) and a protein.
[化 10] [Formula 10]
Figure imgf000052_0002
式 (VIII)中、 IT一 R13は、請求の範囲 17に記載の式 (V)と同じである。
Figure imgf000052_0002
Wherein (VIII), IT one R 13 is the same as the formula (V) according to claim 17 of the claims.
前記タンパク質がゥシ血清アルブミン、サイログロブリンまたは卵白アルブミンである 請求の範囲 23に記載の抗体。 24. The antibody according to claim 23, wherein the protein is pepsin serum albumin, thyroglobulin, or ovalbumin.
PCT/JP2005/001901 2004-02-13 2005-02-09 Process for producing organic compound and antibody for use therein WO2005077984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004036846 2004-02-13
JP2004-036846 2004-02-13

Publications (1)

Publication Number Publication Date
WO2005077984A1 true WO2005077984A1 (en) 2005-08-25

Family

ID=34857732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001901 WO2005077984A1 (en) 2004-02-13 2005-02-09 Process for producing organic compound and antibody for use therein

Country Status (1)

Country Link
WO (1) WO2005077984A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034980A (en) * 1983-04-29 1985-02-22 オムニケム Vinblastine conjugate, manufacture and use for therapy
JPS6330478A (en) * 1986-07-17 1988-02-09 ロ−ン−プ−ラン・サント Manufacture of taxol and 10-deacetyltaxol
JPS63107942A (en) * 1986-06-23 1988-05-12 イゲン インコーポレイテッド Manufacture of antibody catalyst
WO1989010961A1 (en) * 1988-05-04 1989-11-16 Igen, Inc. Peptide analogs and their use as haptens to elicit catalytic antibodies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034980A (en) * 1983-04-29 1985-02-22 オムニケム Vinblastine conjugate, manufacture and use for therapy
JPS63107942A (en) * 1986-06-23 1988-05-12 イゲン インコーポレイテッド Manufacture of antibody catalyst
JPS6330478A (en) * 1986-07-17 1988-02-09 ロ−ン−プ−ラン・サント Manufacture of taxol and 10-deacetyltaxol
WO1989010961A1 (en) * 1988-05-04 1989-11-16 Igen, Inc. Peptide analogs and their use as haptens to elicit catalytic antibodies

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HASSERODT J. ET AL.: "A class of 4-aza-lithocholic acid-derived haptens for the generation of catalytic antibodies with steroid synthase capabilities", BIOORG. MED. CHEM., vol. 8, 2000, pages 995 - 1003, XP002987975 *
XU Y. ET AL.: "Catalytic antibodies : hapten design strategies and screening methods", BIOORG. MED. CHEM., vol. 12, 2004, pages 5247 - 5268, XP004573348 *

Similar Documents

Publication Publication Date Title
TWI377207B (en) Indolopyridines
Reyes-Gutiérrez et al. Synthesis of azepino [4, 5-b] indolones via an intermolecular radical oxidative substitution of N-Boc tryptamine
Wenkert et al. Yuehchukene analogs
Nicolaou et al. The CP molecule labyrinth: A paradigm of how endeavors in total synthesis lead to discoveries and inventions in organic synthesis
Zhou et al. Progress towards the synthesis of aconitine: construction of the AE fragment and attempts to access the pentacyclic core
JP2021512046A (en) Macrocycles and their use
Kuehne et al. Syntheses and biological evaluation of vinblastine congeners
JP2021523165A (en) Pyrrolo [2,1-f] [1,2,4] triazine derivatives and their use as selective HER2 inhibitors
Wang et al. To seek an approach toward the chemical conversion of C19-diterpenoid alkaloids to taxoids
CN112920014B (en) Semi-synthesis method of abietane diterpene and derivative thereof, abietane diterpene derivative and application
Nakayama et al. Concise total synthesis of tronocarpine
WO2005077984A1 (en) Process for producing organic compound and antibody for use therein
Jubb et al. Redox chemistry of meso-octaethylporphyrinogen: formation and opening of a cyclopropane ring
Purushottamachar et al. Large-scale synthesis of galeterone and lead next generation galeterone analog VNPP433-3β
Oguri et al. Designed hapten aimed at anti-ciguatoxin monoclonal antibody: Synthesis, immunization and discrimination of the C2 configuration
CN108440550B (en) A kind of isochroman diindyl derivative and preparation method thereof
Zhang et al. An improved synthesis of (+)-2-tropinone
Xu et al. Total synthesis, structure revision and cytotoxic activity of Sch 53825 and its derivatives
Li et al. Steroid-fullerene adducts from Diels–Alder reactions: characterization and the effect on the activity of Ca 2+-ATPase
Duan et al. Pseudeurglobosins A–F, six rearranged [11]-chaetoglobosins with immunosuppressive activities from Pseudeurotium bakeri P1-1-1
Reuß et al. Synthetic strategies for the ibophyllidine alkaloids
Éles et al. Synthesis of vinca alakaloids and realated compounds 98. Oxidation with dimethyldioxirane of compounds containing the aspidospermane and quebrachamine ring system. A simple synthesis of (7S, 20S)‐(+)‐rhazidigenine and (2R, 7S, 20S)‐(+)‐rhazidine
Martin et al. A convergent total synthesis of (+)-phyllanthocin
US20210179605A1 (en) Discovery of Novel First in Class Nature-Inspired Compounds Targeting the Mitochondrial Function and Pharmaceutical Composition Thereof
Rakhimova et al. N-Substituted tetrahydropentaazadibenzocycloheptafluorenes–a new type of condensed polyazapolycyclic system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP