WO2005077421A1 - A method of preparing polyethylene glycol modified interferon alpha 1b - Google Patents

A method of preparing polyethylene glycol modified interferon alpha 1b Download PDF

Info

Publication number
WO2005077421A1
WO2005077421A1 PCT/CN2005/000168 CN2005000168W WO2005077421A1 WO 2005077421 A1 WO2005077421 A1 WO 2005077421A1 CN 2005000168 W CN2005000168 W CN 2005000168W WO 2005077421 A1 WO2005077421 A1 WO 2005077421A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene glycol
interferon
reaction
activated
linear polyethylene
Prior art date
Application number
PCT/CN2005/000168
Other languages
French (fr)
Chinese (zh)
Inventor
Xiantai Meng
Ying Peng
Piaoyang Sun
Original Assignee
Jiangsu Hengrui Medicine Co., Ltd
Lianyungang Xinyang Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Hengrui Medicine Co., Ltd, Lianyungang Xinyang Pharmaceutical Co., Ltd. filed Critical Jiangsu Hengrui Medicine Co., Ltd
Publication of WO2005077421A1 publication Critical patent/WO2005077421A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/56IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the modification of polyethylene glycol to biological macromolecules is a non-selective chemical reaction: there are multiple reactive amino acids on the surface of the protein, and these reactive amino acids Both may react with polyethylene glycol.
  • the modification of polyethylene glycol often cannot be modified for specific amino acids, which causes some amino acids that affect the activity of the protein to be modified by polyethylene glycol, which reduces the activity of the modified product or changes the activity of the protein.
  • polyethylene glycol-biomacromolecule means a product formed by the reaction of a specific group in a biological macromolecule (protein, nucleotide, etc.) and activated polyethylene glycol through covalent bonding. , Such as polyethylene glycol- ⁇ -interferon.
  • PEGylated biomacromolecules (proteins), PEG-modified biomacromolecules (proteins), or PEG biomacromolecules (proteins) have the same meaning.
  • single-phase reaction refers to the modification of biological macromolecules using polyethylene glycol with the same polymerization method and degree of polymerization (same molecular weight). The modification reaction can be completed at one time or repeatedly.
  • heterogeneous reaction refers to the modification of biological macromolecules with polyethylene glycols with different polymerization methods or different degrees of polymerization (different molecular weights). The modification reaction requires at least two or more repeated reactions to complete.
  • the reaction pH in step (A) is preferably controlled between 5.5 to 6.5, preferably 6.0 to 6.5, and most preferably 6.0 ⁇ 0.1; the pH of reaction in step (B) 0 ⁇ It is preferably controlled in the range of 7.5 to 8.5, preferably 8.0 to 8.5, and most preferably 8.0 ⁇ 0.1.
  • the present invention also relates to a novel polyethylene glycol- ⁇ -interferon lb prepared by the above method of the present invention. After modification, the histidine and lysine on the surface protein of ct-interferon lb are respectively the same or different.
  • the alkanoic acid polyethylene glycol ester of the imino CI-C6 is modified, and preferably the activated linear polyethylene glycol is SS-activated linear polyethylene glycol or SC-activated linear polyethylene glycol.
  • the present invention also relates to opportunistic infections caused by the above-mentioned novel polyethylene glycol- ⁇ -interferon lb prepared in the present invention for the prevention and treatment of infectious diseases and malignant tumor diseases such as infectious acute and chronic hepatitis and AIDS virus infection.
  • infectious diseases and malignant tumor diseases such as infectious acute and chronic hepatitis and AIDS virus infection.
  • Application of medicines for diseases, and polyethylene glycol modified ⁇ -interferon lb in preparation for treating malignant tumors including Hairy's cell leukemia, Kaposi tumor, non-Hawkins nose
  • the preferred reaction uses a polyethylene glycol linear chain with a length of 20,000 Daltons.
  • the preferred ratio of ⁇ -interferon to polyethylene glycol is 1:20.
  • the preferred length of the ethylene glycol linear chain is 20,000 Daltons.
  • the preferred ratio of a-interferon to polyethylene glycol is 1:20.
  • the molecular protein is further modified to obtain a polyethylene glycol-modified ⁇ -interferon product.
  • the PEGylated macromolecules formed through amide bonds maintain relative stability and biological activity, and will not break under normal laboratory conditions.
  • the unreacted raw materials or other reaction by-products in the solution can be removed, or the pH of the reaction can be changed for the next chemical reaction.
  • a-interferon lb a preferred unbranched long-chain polyethylene glycol and the polyethylene glycol a-interferon lb obtained by the preparation process of this patent, the polyethylene glycol chain length is much longer than that of a-interferon 2a ( PEG-INFa2a). Therefore, the biological half-life and bioavailability of the new polyethylene glycol ⁇ -interferon lb will be better than similar PEG-INFa2a.
  • Alpha-interferon (INF a lb-PEG12pH6) after modification with activated polyethylene glycol 12000 (SS-PEG) under pH 6.0 reaction conditions.
  • A-interferon INF a lb-PEG20pH8 modified by activated polyethylene glycol 20000 (SC-PEG) under pH 8 ⁇ 0 reaction conditions.
  • Example 1 Preparation of polyethylene glycol 12000/20000 ⁇ -interferon lb

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention related to a method of preparing pegylated interferon alpha 1b covalently bounding to actived polyethylene glycol. To achieve the modified interferon alpha 1b protein, where the histidine and lysine on the protein surface were selectively conjugated to PEG the pH value of reaction system was modulated. There were no needs to separate interferon alpha 1b material and intermediate products from reaction system, and the modified interferon alpha 1b still maintained biological activity of original interferon alpha 1b, and excels as pharmacology, immunogenicity, drug metabolism and drug efficiency.

Description

聚乙二醇修饰 α-干扰素 lb的制备方法 技术领域  Preparation method of polyethylene glycol modified α-interferon lb Technical field
本发明涉及一种新颖而简易的生物蛋白大分子药物化学修饰的技 术, 以及由该技术所获得的产品及其产品的用途。 本方法可将蛋白表 面特定的氨基酸进行共价键化学修饰而不会影响或减低生物蛋白大分 子药物的生物活性。这是一种特殊的聚乙二醇-生物大分子药物制备方 法,特别是聚乙二醇修饰 α -干扰素 lb的制备方法。 背景技术  The invention relates to a novel and simple technology for chemical modification of biological protein macromolecule drugs, and the products obtained by the technology and the use of the products. This method can chemically modify specific amino acids on the surface of the protein by covalent bonding without affecting or reducing the biological activity of the biological protein macromolecule drug. This is a special method for the preparation of polyethylene glycol-biomacromolecules, especially for the preparation of polyethylene glycol modified α-interferon lb. Background technique
一般说来, 许多由生物技术(如基因重组)表达所得到的产品(如 干扰素、 多肽或蛋白生物技术药物), 或经天然提取纯化而得到的生物 大分子医药产品, 都是通过非肠道给药途径而进入生物体内发挥其药 理以及药效作用。 此类由非肠道给药的生物大分子药物产品通常存在 下面的一些问题: (1 ) 生物大分子药物往往具有致敏性反应, 生物体 内产生的抗体会对生物体造成严重的伤害并影响治疗的进行; (2) 生 物大分子药物本身因受到抗体的影响或因蛋白分解酶而引发的代谢作 用, 而使其生物半衰期大为缩短; (3 ) 生物大分子的稳定性差, 保存 困难。  Generally speaking, many products (such as interferon, peptide, or protein biotechnology drugs) obtained through the expression of biotechnology (such as genetic recombination), or biomacromolecular pharmaceutical products obtained by natural extraction and purification are all parenteral Through the route of administration into the body to exert its pharmacological and pharmacological effects. Such biological macromolecular drug products for parenteral administration usually have the following problems: (1) Biological macromolecular drugs often have an allergic reaction, and antibodies produced in the body can cause serious damage and affect the organism. The progress of treatment; (2) The biological macromolecular drug itself is greatly shortened in its biological half-life due to the metabolic effects caused by antibodies or proteolytic enzymes; (3) The stability of biological macromolecules is poor and it is difficult to store.
目前, 可以利用对生物大分子进行某种化学修饰的技术来解决上 述问题。 1980年, Davis等人在美国专利 4, 179, 337中公开了利用 单一分子不同聚合度的聚乙二醇对蛋白药物进行的化学修饰, 在保持 药物的生物活性同时, 药物的抗原性降低, 而其水溶性以及药物的生 物半衰期等得到改善。 与 Davis专利类似, Verones等人在 Applied Biochem and Biotech 11, 142 (1985)上公开发表了用氯钾酸苯酯活化 的聚乙二醇修饰核糖核酸酶和超氧化物岐化酶, 增加了蛋白的生物半 衰期。 上述现有技术文献报导已表明聚乙二醇修饰技术的确可以解决 非肠道给药生物大分子药物存在的一些问题。 但该技术应用过程中也 衍生出一些技术上的难题, 例如:  At present, the above-mentioned problems can be solved by using some chemical modification technology of biological macromolecules. In 1980, Davis et al., In U.S. Patent No. 4,179,337, disclosed the chemical modification of protein drugs using a single molecule of polyethylene glycol with different degrees of polymerization. While maintaining the biological activity of the drug, the antigenicity of the drug was reduced. And its water solubility and the biological half-life of the drug are improved. Similar to the Davis patent, Verones et al. Published in Applied Biochem and Biotech 11, 142 (1985) published a polyethylene glycol modified ribonuclease and superoxide dismutase activated by phenyl chloropotassium ester, which increased protein Biological half-life. The above-mentioned prior art literature reports have shown that the polyethylene glycol modification technology can indeed solve some problems existing in parenteral administration of biological macromolecular drugs. However, some technical difficulties have arisen during the application of this technology, such as:
( 1 ) 聚乙二醇对生物大分子的修饰是一种非选择性化学反应: 蛋白质 表面存在多处具有反应活性的氨基酸,这些有反应活性的氨基酸 均可能与聚乙二醇进行反应。现有技术中聚乙二醇的修饰往往不 能针对特定的氨基酸进行修饰,造成部分影响蛋白活性的氨基酸 被聚乙二醇修饰,使得修饰后的产物活性降低或改变了蛋白的活 性。 (1) The modification of polyethylene glycol to biological macromolecules is a non-selective chemical reaction: there are multiple reactive amino acids on the surface of the protein, and these reactive amino acids Both may react with polyethylene glycol. In the prior art, the modification of polyethylene glycol often cannot be modified for specific amino acids, which causes some amino acids that affect the activity of the protein to be modified by polyethylene glycol, which reduces the activity of the modified product or changes the activity of the protein.
(2) 聚乙二醇化学反应仅仅能够共价结合单一相同样链长的聚乙二 醇: 有些时候, 单一相统一链长的聚乙二醇并不能完全达到增加 生物利用度和延长生物活性半衰期的目的。此外, 已有事实证明 单一分子量 5000的聚乙二醇和蛋白表面的组氨酸间的结合产物 不稳定,已经形成的聚乙二醇 -氨基酸共价键会迅速的断裂。生物 大分子药物便完全丧失了聚乙二醇修饰的优势(Wang et al. , Advanced Drug Delivery Review 54, 547, 2002)。 目前, 尚未见报道从修饰生物大分子药物制备工艺角度来改进或 克服上述各个方面的问题。 根据上述发表的技术文献报导可知, 影响 聚乙二醇-蛋白生物大分子药物的生物半衰期以及生物利用度 (bioavailability) 的两个主要的因素为; ( 1 )选择蛋白表面被聚乙 二醇修饰的氨基酸; (2)选择聚乙二醇的链长度、 链型以及分支度。  (2) The chemical reaction of polyethylene glycol can only covalently bind polyethylene glycol with the same chain length in a single phase: Sometimes, a polyethylene glycol with a uniform chain length in a single phase cannot completely increase bioavailability and extend biological activity. The purpose of half-life. In addition, it has been proved that the binding product between a single polyethylene glycol with a molecular weight of 5000 and histidine on the protein surface is unstable, and the already formed polyethylene glycol-amino acid covalent bond will be rapidly broken. Biological macromolecular drugs have completely lost the advantages of polyethylene glycol modification (Wang et al., Advanced Drug Delivery Review 54, 547, 2002). At present, no report has been reported to improve or overcome the above-mentioned problems from the perspective of the modified biomacromolecule preparation process. According to the published technical literature reports, it can be known that the two main factors affecting the biological half-life and bioavailability of polyethylene glycol-protein biomacromolecules are: (1) the surface of the selected protein is modified by polyethylene glycol (2) Select the chain length, chain type, and degree of branching of polyethylene glycol.
因此, 目前仍需要寻找一种能够对蛋白质分子上特定的氨基酸进 行有针对性、 选择性的修饰方法, 并且能够使用不同结构的修饰物分 别对蛋白表面不同种类氨基酸进行分别修饰。 .  Therefore, there is still a need to find a method that can specifically and selectively modify specific amino acids on a protein molecule, and that different types of amino acids on the surface of the protein can be modified using modifiers with different structures, respectively. .
本发明中, 术语 "聚乙二醇-生物大分子"表示由生物大分子(蛋 白、 核苷酸等) 中的特定基团和活化的聚乙二醇反应经共价键联结而 形成的产物,如聚乙二醇- α -干扰素。另外,聚乙二醇化生物大分子(蛋 白), 聚乙二醇修饰的生物大分子(蛋白)或聚乙二醇生物大分子(蛋 白) 的意思等同。  In the present invention, the term "polyethylene glycol-biomacromolecule" means a product formed by the reaction of a specific group in a biological macromolecule (protein, nucleotide, etc.) and activated polyethylene glycol through covalent bonding. , Such as polyethylene glycol-α-interferon. In addition, PEGylated biomacromolecules (proteins), PEG-modified biomacromolecules (proteins), or PEG biomacromolecules (proteins) have the same meaning.
"聚乙二醇"按聚合单位聚合方式的不同, 分直链和支链型; 按 聚合度的不同, 可以化分出不同分子量大小的聚乙二醇, 如 PEG 5000, PEG 8000, PEG 20000等等。  "Polyethylene glycol" is divided into linear and branched chains according to the polymerization method of the polymerization unit; according to the degree of polymerization, polyethylene glycols of different molecular weights can be separated, such as PEG 5000, PEG 8000, and PEG 20000. and many more.
术语 "单一相反应"是指采用相同聚合方式和聚合度 (同样分子 量) 的聚乙二醇对生物大分子进行修饰。 修饰反应可以一次完成, 也 可重复多次完成。 术语 "多相反应"是指用不同聚合方式或不同聚合度 (不同分子 量) 的聚乙二醇对生物大分子进行修饰。 修饰反应需要经过至少两次 或两次以上的重复反应才能完成。 The term "single-phase reaction" refers to the modification of biological macromolecules using polyethylene glycol with the same polymerization method and degree of polymerization (same molecular weight). The modification reaction can be completed at one time or repeatedly. The term "heterogeneous reaction" refers to the modification of biological macromolecules with polyethylene glycols with different polymerization methods or different degrees of polymerization (different molecular weights). The modification reaction requires at least two or more repeated reactions to complete.
" SS-PEG " 指丁二酰亚胺基丁二酸聚乙二醇酯(Succinimi dyl Succinate Polyethelene Glycol)。  "SS-PEG" means Succinimi dyl Succinate Polyethelene Glycol.
" SC-PEG " 指丁二酰亚胺基碳酸聚乙二醇酯 (Succinimide Carbonate Polyethylene Glycol)。 发明内容  "SC-PEG" means Succinimide Carbonate Polyethylene Glycol. Summary of the invention
为了克服现有干扰素聚乙二醇修饰技术的不足之处, 本发明的目 的在于提供一种新的聚乙二醇-生物大分子药物制备方法, 并用于制备 全新聚乙二醇 -06-干扰素 lb。 - 为了实现本发明的目的, 本发明的技术方案如下- 一种经共价键结合的聚乙二醇修饰 α -干扰素 lb的制备方法, 通 过调节反应系统中的 pH值, 利用不同聚合方式或不同聚合链长度的活 化线性聚乙二醇分步对 α -干扰素 lb蛋白表面的不同氨基酸进行特异 性化学修饰, 该活化聚乙二醇是丁二酰亚胺基 CI- C6 的垸酸聚乙二醇 酯, 包括以下两步步骤:  In order to overcome the shortcomings of the existing interferon-polyethylene glycol modification technology, the purpose of the present invention is to provide a new method for preparing polyethylene glycol-biomacromolecules and to prepare a brand new polyethylene glycol-06- Interferon lb. -In order to achieve the purpose of the present invention, the technical solution of the present invention is as follows-A method for preparing α-interferon lb modified by covalent bonding of polyethylene glycol, by adjusting the pH value in the reaction system, using different polymerization methods Activated linear polyethylene glycol with different polymer chain length performs specific chemical modification of different amino acids on the surface of α-interferon lb protein step by step. The activated polyethylene glycol is a succinic acid group of CI-C6. Polyethylene glycol ester, including the following two steps:
(A)在 pH值为 5-7的条件下,将活化线性聚乙二醇与 α -干扰素 lb接触, 使聚乙二醇与 α -干扰素 lb进行反应, 对 α -干扰素 lb蛋白 表面的组氨酸进行特异性化学修饰;  (A) At a pH of 5-7, contacting activated linear polyethylene glycol with α-interferon lb, reacting polyethylene glycol with α-interferon lb, and reacting with α-interferon lb protein Specific chemical modification of histidine on the surface;
(B)在 pH值为 7-9的条件下,将活化线性聚乙二醇与 ci -干扰素 lb进行反应接触, 对 α -干扰素 lb蛋白表面的赖氨酸进行特异性化学 修饰;  (B) at a pH of 7-9, reacting the activated linear polyethylene glycol with ci-interferon lb to specifically chemically modify the lysine on the surface of the α-interferon lb protein;
上述(A)、 (B)两步的顺序可以颠倒, 两步反应之间通过 pH调节 剂使第一步反应系统的酸碱度调节到适合进行第二步反应的酸碱度。  The order of the above two steps (A) and (B) can be reversed, and the pH of the first reaction system can be adjusted to a pH suitable for the second reaction by using a pH adjuster between the two reactions.
上述制备方法中, 步骤 (A)反应 pH较好的控制在 5. 5至 6. 5, 优 选 6. 0- 6. 5, 最优选 6. 0±0. 1; 步骤 (B)反应的 pH较好的控制在 7. 5 至 8. 5, 优选 8. 0-8. 5, 最优选 8. 0±0. 1。  In the above preparation method, the reaction pH in step (A) is preferably controlled between 5.5 to 6.5, preferably 6.0 to 6.5, and most preferably 6.0 ± 0.1; the pH of reaction in step (B) 0。 It is preferably controlled in the range of 7.5 to 8.5, preferably 8.0 to 8.5, and most preferably 8.0 ± 0.1.
所属领域技术人员根据常识可以选择聚乙二醇的结构类型、 分子 量和反应所需的用量。 通过本申请所提供的制备方法, 可以使不同种 类的聚乙二醇对 CL -干扰素 lb蛋白表面的不同氨基酸进行特异性修饰。 本发明使用的不同的活化聚乙二醇与 α-干扰素 lb反应时,可以形成不 同的共价键。 特异性反应之间是相对独立分开进行的反应。 所属领域 技术人员可根据需要, 通过选择聚乙二醇的结构类型、 分子量和反应 所需的用量, 来调节聚乙二醇修饰后蛋白分子上聚乙二醇的含量和聚 乙二醇的结构等因素, 用于控制修饰后蛋白质分子的结构和性质。 根 据临床使用时药物蛋白的溶解性、 生物半衰期、 生物利用度等特性的 需要, 所属领域技术人员可通过本发明的方法来选择聚乙二醇的结构 类型、 分子量和反应所需的用量。 通过本发明的研究发现修饰干扰素 所使用的活化线性聚乙二醇较好的分子量为 12, 000—40, 000道尔顿, 优选为 12, 000至 25, 000道尔顿, 最优选 12, 000至 20, 000道尔顿; 上述各步骤反应中 α -干扰素 lb与活化线性聚乙二醇的用量比可选择 为 1 : 10 - 1 : 30, 优选为 1 : 20- 1 : 30, 最优选为 1 : 20。 本申请特别提 供了在步骤 (A)所使用的活化线性聚乙二醇分子量为 12, 000、 步骤 (B) 所使用的活化线性聚乙二醇分子量为 20, 000, 以及步骤 (A)和 (B)所使 用的活化线性聚乙二醇分子量均为 20, 000的方法。所属领域技术人员 可以理解的是聚乙二醇的结构类型、 分子量和反应所需用量的选择并 不局限于上述特定的范围。 Those skilled in the art can select the structure type, molecular weight, and amount required for the reaction of polyethylene glycol based on common sense. Through the preparation method provided by the present application, different kinds of A class of polyethylene glycol specifically modifies different amino acids on the surface of CL-interferon lb protein. When different activated polyethylene glycols used in the present invention react with α-interferon lb, different covalent bonds can be formed. The specific reactions are relatively independent reactions. Those skilled in the art can adjust the content of polyethylene glycol and the structure of polyethylene glycol by selecting the structure type, molecular weight, and amount required for the reaction of polyethylene glycol according to the needs. Other factors are used to control the structure and properties of the modified protein molecule. According to the requirements of the solubility, the biological half-life, and the bioavailability of the drug protein in clinical use, those skilled in the art can select the structure type, molecular weight, and amount required for reaction of polyethylene glycol by the method of the present invention. According to the research of the present invention, it is found that the activated linear polyethylene glycol used for modifying the interferon preferably has a molecular weight of 12,000 to 40,000 Daltons, preferably 12,000 to 25,000 Daltons, and most preferably 12 10,000 to 20,000 Daltons; the ratio of the amount of α-interferon lb to the activated linear polyethylene glycol in the reactions of the above steps can be selected from 1: 10-1: 30, preferably 1: 20-1: 30 , Most preferably 1:20. The application specifically provides the molecular weight of the activated linear polyethylene glycol used in step (A) is 12,000, the molecular weight of the activated linear polyethylene glycol used in step (B) is 20,000, and steps (A) and (B) A method in which the activated linear polyethylene glycols each have a molecular weight of 20,000. Those skilled in the art can understand that the choice of the structure type, molecular weight, and amount required for the reaction of polyethylene glycol is not limited to the above specific range.
本申请的反应温度根据本领域技术人员的常识可选择通常蛋白质 修饰反应的环境温度, 优选 25至 30° C, 特别是 25 士 0. Γ C。  The reaction temperature of the present application can be selected according to common knowledge of those skilled in the art. The ambient temperature of a protein modification reaction can be generally selected, preferably 25 to 30 ° C, especially 25 ± 0. Γ C.
本发明还涉及经本发明上述方法制得的全新聚乙二醇- α_干扰素 lb, 修饰后 ct -干扰素 lb表面蛋白上组氨酸和赖氨酸分别被相同或不 同的丁二酰亚胺基 CI- C6的烷酸聚乙二醇酯修饰, 优选活化线性聚乙 二醇为 SS—活化线性聚乙二醇或 SC—活化线性聚乙二醇。  The present invention also relates to a novel polyethylene glycol-α-interferon lb prepared by the above method of the present invention. After modification, the histidine and lysine on the surface protein of ct-interferon lb are respectively the same or different. The alkanoic acid polyethylene glycol ester of the imino CI-C6 is modified, and preferably the activated linear polyethylene glycol is SS-activated linear polyethylene glycol or SC-activated linear polyethylene glycol.
本发明还涉及经本发明上述全新聚乙二醇 -α -干扰素 lb在制备用 于预防和治疗感染性疾病以及恶性肿瘤疾病如传染性急性和慢性肝 炎、 AIDS病毒治感染引起的机会感染传染疾病的药物中的应用, 以及 聚乙二醇修饰的 α -干扰素 lb在制备用于治疗恶性肿瘤包括哈立氏 (Hairy' s)细胞白血病、 卡波氏肿瘤 (Kaposi)、 非霍金斯鼻咽恶性 T 细胞淋巴肿瘤或鼻咽病毒 (Epstein Barr)淋巴癌的药物中的应用。 聚 乙二醇修饰- α-干扰素 lb临床有效药剂量至少为 1.0 X 10°至 3.0 χΐθ" 国际单位 /平方米体表面积 /7天(1.0 X 106 to 3.0 X 106 IU/m2/7 天)。 The present invention also relates to opportunistic infections caused by the above-mentioned novel polyethylene glycol-α-interferon lb prepared in the present invention for the prevention and treatment of infectious diseases and malignant tumor diseases such as infectious acute and chronic hepatitis and AIDS virus infection. Application of medicines for diseases, and polyethylene glycol modified α-interferon lb in preparation for treating malignant tumors including Hairy's cell leukemia, Kaposi tumor, non-Hawkins nose Application of drugs for pharyngeal malignant T-cell lymphoma or nasopharyngeal virus (Epstein Barr) lymphoma. Gather Glycol-modified - α- interferon lb clinically effective dose of at least 1.0 X 10 ° to 3.0 χΐθ "IU / square meter / 7 days (1.0 X 10 6 to 3.0 X 10 6 IU / m 2/7 day).
本发明还提供一种药物组合物, 其含有根据本发明的方法制得的 聚乙二醇修饰的 a -干扰素 lb, 以及药学上可接受的载体。 本申请特别给出了以下两个的优选技术方案:  The present invention also provides a pharmaceutical composition containing a polyethylene glycol modified a-interferon lb prepared according to the method of the present invention, and a pharmaceutically acceptable carrier. This application specifically gives the following two preferred technical solutions:
一、 基于丁二酰亚胺基丁二酸聚乙二醇酯(SS- PEG) (Succinimidyl Succinate Polyethelene Glycol, SS-PEG),或称 SS-活化线性聚乙二醇 的修饰反应。 1. Modification reaction based on Succinimidyl Succinate Polyethelene Glycol (SS-PEG), or SS-activated linear polyethylene glycol.
(1)对 α -干扰素蛋白表面组氨酸的共价键化学修饰:将活化线性 聚乙二醇(SS- PEG)与 ex -干扰素接触, 聚乙二醇线性链的长度范围为 12000至 20000道尔顿, 聚乙二醇与 α -干扰素反应的用量比 (w/w) 范围为 1: 30, 优选用量比为 1:20, 反应的酸碱度为 6.0—6.5。  (1) Chemical modification of the covalent bond of histidine on the surface of α-interferon protein: contacting activated linear polyethylene glycol (SS-PEG) with ex-interferon, the length of the linear chain of polyethylene glycol is 12000 To 20,000 Daltons, the dosage ratio (w / w) of the reaction between polyethylene glycol and α-interferon ranges from 1: 30, and the preferred dosage ratio is 1:20. The pH of the reaction is 6.0-6.5.
(2)对 α-干扰素蛋白表面赖氨酸的共价键化学修饰:将活化线性 聚乙二醇 (SS-PEG)与 α -干扰素接触, 反应使用聚乙二醇线性链的长度 范围为 12, 000 - 20, 000道尔顿, α-干扰素与聚乙二醇的用量比 (w (2) Chemical modification of covalent bond of lysine on α-interferon protein surface: contacting activated linear polyethylene glycol (SS-PEG) with α-interferon, the reaction uses the length range of the linear chain of polyethylene glycol For 12,000-20,000 Daltons, the ratio of α-interferon to polyethylene glycol (w
/w) 范围为 1:10-1: 30, 优选用量比为 1:20, 反应的酸碱度为 8.0/ w) The range is 1: 10-1: 30, the preferred dosage ratio is 1:20, and the pH of the reaction is 8.0
- 8.5。 -8.5.
在所述的步骤(1) 中, 优选的反应使用聚乙二醇线性链的长度为 20, 000道尔顿。 在步骤 (1) 中, 优选的 α -干扰素与聚乙二醇的用量 比为 1:20。 在步骤 (2) 中, 优选的乙二醇线性链的长度为 20, 000道 尔顿。 优选的 a -干扰素与聚乙二醇的用量比为 1:20。  In said step (1), the preferred reaction uses a polyethylene glycol linear chain with a length of 20,000 Daltons. In step (1), the preferred ratio of α-interferon to polyethylene glycol is 1:20. In step (2), the preferred length of the ethylene glycol linear chain is 20,000 Daltons. The preferred ratio of a-interferon to polyethylene glycol is 1:20.
第(1)步反应 ρΗ范围应控制在 6.0至 6.5, 优选为 6.0 ± 0.1; 第(2)步聚乙二醇化学反应的 ρΗ范围应控制在 8.0-8.5, 优选为 8.0 ±0.1。反应溶液酸碱度可由通过加入 10倍浓度的磷酸钠盐缓冲液调整 控制。 第 (1)步和第 (2)步反应的温度范围应控制在 25至 30° C, 优选 的温度控制在 25士 0. Γ C。 ' 二、 基于丁二酰亚铵聚乙二醇碳酸酯(SC- PEG) (Succinimide Carbonate Polyethylene Glycol, SC- PEG), 称 SC -活化线性聚乙二醇 的修饰反应。 The ρΗ range of the reaction in step (1) should be controlled to 6.0 to 6.5, preferably 6.0 ± 0.1; the ρΗ range of the PEG reaction in step (2) should be controlled to 8.0-8.5, preferably 8.0 ± 0.1. The pH of the reaction solution can be adjusted by adding a 10-fold concentration of sodium phosphate buffer. Γ C。 The temperature range of the reaction of step (1) and (2) should be controlled to 25 to 30 ° C, and the preferred temperature is controlled to 25 ± 0. Γ C. '' Second, based on succinimide polyethylene glycol carbonate (SC-PEG) (Succinimide Carbonate Polyethylene Glycol (SC-PEG), called SC-activated linear polyethylene glycol modification reaction.
SC-活化聚乙二醇对生物大分子蛋白修饰的第(1)步反应是通过控 制优化反应的 pH值在 6. 0土 1. 0, 使 α -干扰素生物大分子蛋白表面的 组氨酸能够充分的与活化聚乙二醇进行反应以获得特定分子量 (特定 链长)的聚乙二醇 α_干扰素修饰产物。 采用高纯度、狭窄单向分布 (分 子量分布在 1. 01-1. 05之间)平均分子量为 20, 000的 SC-活化线性聚乙 二醇 (SC- PEG)对 α-干扰素聚生物大分子蛋白做进一步修饰,而获得经 聚乙二醇修饰的 α-干扰素产品。 经酰胺键形成的聚乙二醇化蛋白大分 子保持相对的稳定性以及生物活性, 并在通常的实验室条件下不会发 生断裂。 反应结束后, 可清除未反应的原料或溶液中其他反应副产物, 或改变反应的酸碱度以进行下一步的化学反应。  The step (1) of SC-activated polyethylene glycol modification of biological macromolecular protein is to control the pH of the reaction to optimize the pH between 6.0 and 1.0 to make histamine on the surface of α-interferon biomacromolecular protein. The acid can fully react with the activated polyethylene glycol to obtain a polyethylene glycol α-interferon modified product with a specific molecular weight (specific chain length). SC-activated linear polyethylene glycol (SC-PEG) with high molecular weight and a narrow unidirectional distribution (molecular weight distribution between 1.0 and 1.05) with an average molecular weight of 20,000 is used for α-interferon polyorganisms. The molecular protein is further modified to obtain a polyethylene glycol-modified α-interferon product. The PEGylated macromolecules formed through amide bonds maintain relative stability and biological activity, and will not break under normal laboratory conditions. After the reaction, the unreacted raw materials or other reaction by-products in the solution can be removed, or the pH of the reaction can be changed for the next chemical reaction.
第 (2)步聚乙二醇化学反应为本发明最重要的控制步骤。在不需要 对化学反应中蛋白质及其它中间产物进行纯化分离情况下, 加入 10倍 浓度的磷酸钠盐缓冲液将反应的 pH迅速改变并达到优化反应 pH值至 8. 0±0. 1。 然后加入高纯度、狭窄单向分布(分子量分布在 1. 01-1. 05 之间)平均分子量为 20, 000 的 SC-活化线性聚乙二醇 (SC-PEG)对聚乙 二醇 α-干扰素做进一步修饰, 从而得到高反应活性但稳定的 α-干扰素 蛋白产物。  Step (2) The polyethylene glycol chemical reaction is the most important control step of the present invention. Without the need for purification and separation of proteins and other intermediates in the chemical reaction, the addition of a 10-fold concentration of sodium phosphate buffer solution will rapidly change the pH of the reaction and reach the optimal reaction pH value to 8. 0 ± 0.1. Then add SC-activated linear polyethylene glycol (SC-PEG) to polyethylene glycol α- with high purity, narrow unidirectional distribution (molecular weight distribution between 1.01-1.05) and average molecular weight of 20,000. Interferon is further modified to obtain highly reactive but stable alpha-interferon protein products.
在第 (2)步反应中, 可以采用和第(1)步反应完全相同分子量的活 化聚乙二醇继续和 α -干扰素生物大分子蛋白反应, 最终获得单一分子 量(单一链长)聚乙二醇修饰的产品。 另外, 也可采用与第(1)步反应 完全不同分子量或聚合方式不同的活化聚乙二醇对 α -干扰素生物大分 子蛋白做进一步的修饰, 最终获得经混合聚乙二醇修饰的 α-干扰素产 In the step (2) reaction, an activated polyethylene glycol having the same molecular weight as that in the step (1) can be used to continue the reaction with the α-interferon biomacromolecule protein, and finally a single molecular weight (single chain length) polyethylene is obtained. Glycol modified products. In addition, the α-interferon biomacromolecule protein can be further modified by using activated polyethylene glycol with a completely different molecular weight or different polymerization method from the reaction in step (1), and finally a mixed polyethylene glycol modified α can be obtained. -Interferon production
Ρ 釆用本发明聚乙二醇共价结合修饰制备方法, 通过长链 PEG修饰 所制备出的新型 α -干扰素 lb ( INFalb) 具有和 a -干扰素 lb不同的 分子量, 展现出完全不同的 SDS- PAGE测定行为, 并具有特定延长的 生物半衰期和显著增加的生物利用度。 The new α-interferon lb (INFalb) prepared by long-chain PEG modification using the polyethylene glycol covalent binding modification method of the present invention has a molecular weight different from that of a-interferon lb, and exhibits a completely different SDS-PAGE measures behavior and has a specifically extended biological half-life and significantly increased bioavailability.
和目前已报道的聚乙二醇化 a -干扰素 2a (PEG- INFa2a) 和聚乙 二醇化 α -干扰素 2b (PEG-INFa2b) 相比较, 本发明得到的新型聚乙 二醇化 a -干扰素 lb (PEG-INFalb) 在化学组织成份上以及在分子量 上与 PEG- INFa2a及 PEG- INFa2b二种蛋白化合物绝然不相同。 因此, 上述三种 PEG蛋白应可视为完全不同的化合物。通过使用 a-干扰素 lb, 优选的无分支长链聚乙二醇和本专利的制备工艺得到的聚乙二醇 a-干 扰素 lb, 其聚乙二醇链长度远较 a -干扰素 2a (PEG-INFa2a)来的长。 因此新型聚乙二醇 α -干扰素 lb的生物半衰期以及生物利用度将比起 类似的 PEG-INFa2a为佳。 And currently reported pegylated a-interferon 2a (PEG-INFa2a) and polyethylene Glycolated α-Interferon 2b (PEG-INFa2b) Compared with PEG-INFa2b, the novel PEGylated a-interferon lb (PEG-INFalb) obtained by the present invention is chemically organized in composition and molecular weight with PEG-INFa2a and PEG- The two protein compounds of INFa2b are absolutely different. Therefore, the above three PEG proteins should be regarded as completely different compounds. By using a-interferon lb, a preferred unbranched long-chain polyethylene glycol and the polyethylene glycol a-interferon lb obtained by the preparation process of this patent, the polyethylene glycol chain length is much longer than that of a-interferon 2a ( PEG-INFa2a). Therefore, the biological half-life and bioavailability of the new polyethylene glycol α-interferon lb will be better than similar PEG-INFa2a.
从干扰素的生物活性来探讨, 使用本法而得到的新型聚乙二醇化 α _干扰素 lb在聚乙二醇化学反应中对蛋白表面的不同氨基酸影响十 分温和, α -干扰素 lb的生物活性并没有因为化学作用而大量失活。 和 其他二者干扰素蛋白比较, 本方法以及本发明得到的新型聚乙二醇化 α -干扰素 lb (PEG-INFalb) 与其他方法所得到的干扰素药物制剂, 包括 a -干扰素 2a ( PEG-INFa2a ) , 和聚乙二醇化 α -干扰素 2b (PEG-INFa2b)相比较, 在相对的生物半衰期以及生物利用度上远优 于其他类似 PEG修饰的蛋白产物。  From the biological activity of interferon, the new pegylated α_interferon lb obtained by using this method has a mild effect on different amino acids on the protein surface in the PEG chemical reaction. The activity has not been largely inactivated by chemical action. Compared with other interferon proteins, this method and the novel pegylated α-interferon lb (PEG-INFalb) obtained by the present invention and other interferon pharmaceutical preparations obtained by other methods, including a-interferon 2a (PEG -INFa2a) and PEG-INFa2b (PEG-INFa2b) are far superior to other similar PEG-modified protein products in relative biological half-life and bioavailability.
聚乙二醇修饰的 a-干扰素 lb可制成相应的药用剂型用于通过各 种化学或非化学修饰的试剂、 载体以及给药方式改进得到的粉末, 液 体, 悬浮液和其它药用剂型供皮下, 皮内, 膜间, 栓剂和气雾剂给药。  Polyethylene glycol modified a-interferon lb can be made into corresponding pharmaceutical dosage forms for powders, liquids, suspensions and other medicinal products obtained through various chemically or non-chemically modified reagents, carriers and methods of administration. Dosage forms are for subcutaneous, intradermal, intermembrane, suppository and aerosol administration.
通过研究发现具有丁二酰亚胺基取代的 CI- C6 的烷酸聚乙二醇酯 在特定的 pH值下, 具有非常好的特异性修饰功能。 本发明利用丁二酰 亚胺基取代的 CI- C6 的烷酸聚乙二醇酯作为修饰物, 通过酸碱度改变 带来修饰位点转移的方法可用于新型或改进的聚乙二醇 -生物大分子 药物的生产。聚乙二醇-生物大分子的传统的制备方法是利用均一分子 量的聚乙二醇和生物大分子经单次化学反应作为主要制备工艺。 本发 明可以根据被修饰生物大分子的特点, 采用单一分子量或不同分子量 的聚乙二醇以及具有不同取代基团的聚乙二醇对生物大分子如蛋白的 表面氨基酸进行不同方式和不同程度的修饰, 从而延长生物大分子药 物的生物活性半衰期, 在各种给药条件下, 特别是非肠道给药条件下 获得预期的治疗效果,因而研制开发聚乙二醇修饰 a-干扰素治疗药物, 对满足临床治疗的迫切需要有着重要的意义。 本发明的方法利用化学反应将生物大分子蛋白和聚乙二醇间 的化学反应过程简化, 不必需经中间纯化分离进行多步反应, 使 反应在优化的条件下进行和得到有效的控制, 克服了目前对蛋白质 分子修饰时特异性不强的缺点, 使聚乙二醇更有针对性的对蛋白分子 上特定的氨基酸进行修饰。 通过调节反应釜中的酸碱环境, 使反应直 接进行, 避免了通常在反应中存在的中间步骤(如分离、 纯化等), 简 化了合成步骤, 因而并在制备工艺上提供一条改进产品的生物活性 损失和提高产品收率的途径, 使整个工艺更易于在工业上大规模实 施。 新化合物保持 α-干扰素 lb原有的生物活性, 但在药理, 免疫 原性及药代药效等方面新化合物优于 α-干扰素 lb;并且在稳定性、 生物活性等方面也优于现有的单一相修饰或非特异性修饰的 (X-干 扰素 lb o It is found through research that the succinimide-substituted CI-C6 alkanoate polyethylene glycol ester has a very good specific modification function at a specific pH value. The present invention uses a succinimide-substituted CI-C6 alkanoate polyethylene glycol ester as a modifier, and the method of modifying site transfer through a change in pH can be used for a new or improved polyethylene glycol-biological Production of molecular drugs. The traditional preparation method of polyethylene glycol-biomacromolecules is to use a uniform molecular weight of polyethylene glycol and biomacromolecules as a main preparation process through a single chemical reaction. According to the characteristics of the modified biological macromolecule, the present invention can use single molecular weight or different molecular weight polyethylene glycol and polyethylene glycol with different substituent groups to perform different ways and different degrees of surface amino acids of biological macromolecules such as proteins. Modification to extend the biologically active half-life of biological macromolecular drugs, and to obtain the expected therapeutic effect under various administration conditions, especially parenteral administration conditions, so the development of polyethylene glycol modified a-interferon therapeutic drugs, It is of great significance to meet the urgent needs of clinical treatment. The method of the present invention uses a chemical reaction to simplify the chemical reaction process between a biological macromolecular protein and a polyethylene glycol, and does not require intermediate purification and separation for a multi-step reaction, so that the reaction is performed under optimized conditions and effectively controlled to overcome The shortcomings of the current modification of protein molecules are not strong, making polyethylene glycol more targeted modification of specific amino acids on protein molecules. By adjusting the acid-base environment in the reaction kettle, the reaction proceeds directly, avoiding the intermediate steps (such as separation, purification, etc.) usually existing in the reaction, simplifying the synthetic steps, and thus providing a biologically improved product in the preparation process. Loss of activity and ways to increase product yield make the entire process easier to implement on a large scale in industry. The new compound retains the original biological activity of α-interferon lb, but the new compound is superior to α-interferon lb in pharmacology, immunogenicity and pharmacodynamics; and it is also superior in terms of stability and biological activity. Existing single-phase or non-specifically modified (X-interferon lb o
本发明的 pH值和反应温度可以根据 α-干扰素 lb的稳定性和反 应结果的可接受性来考虑。 其结果由生物活性的保留程度衡量 (见下 文中表 1和 表 2中所列结果)。 附图说明  The pH value and reaction temperature of the present invention can be considered based on the stability of the α-interferon lb and the acceptability of the reaction results. The results are measured by the degree of retention of biological activity (see results listed in Tables 1 and 2 below). BRIEF DESCRIPTION OF THE DRAWINGS
图 1是用 SDS-聚丙烯酰胺凝胶电泳分析技术来分析利用相同或不 同分子量的活化性聚乙二醇 SS-PEG,分两步修饰 α -干扰素 lb (INF a lb) 后所获得的蛋白分子产物。  Figure 1 is obtained by SDS-polyacrylamide gel electrophoresis analysis technology using activated polyethylene glycol SS-PEG of the same or different molecular weights, modified in two steps to modify α-interferon lb (INF a lb). Protein molecule products.
其中- among them-
1. 凝胶带分子量 (200 KD, 116. 3 KD, 66. 3 KD, 55. 4 KD, 36. 5 D, 31. 0 KD, 21. 5 KD, 14. 4 KD, 6. 0 KD) 标记蛋白。 1. Gel band molecular weight (200 KD, 116. 3 KD, 66.3 KD, 55.4 KD, 36. 5 D, 31.0 KD, 21. 5 KD, 14. 4 KD, 6. 0 KD) Labeled protein.
2. 未经聚乙二醇化的 α-干扰素标准品 (INF ci lb)。  2. Unpegylated α-Interferon Standard (INF ci lb).
3. 经活化聚乙二醇 12000 (SS-PEG) 于 pH 6. 0反应条件下修饰 之后的 α_干扰素(INF a lb- PEG12pH6)。  3. Alpha-interferon (INF a lb-PEG12pH6) after modification with activated polyethylene glycol 12000 (SS-PEG) under pH 6.0 reaction conditions.
4. 经活化聚乙二醇 20000 (SS-PEG) 于 pH 6. 0条件下反应修饰 之后的 a-干扰素(INF a lb_PEG20pH6)。  4. A-interferon (INF a lb_PEG20pH6) after modification with activated polyethylene glycol 20000 (SS-PEG) at pH 6.0.
5. 经活化聚乙二醇 12000 (SS-PEG) 于 pH 8. 0反应条件下修饰 之后的 a-干扰素(INF a lb- PEG12pH8)。  5. A-interferon (INF a lb-PEG12pH8) after modification with activated polyethylene glycol 12000 (SS-PEG) under pH 8. 0 reaction conditions.
6. 经活化聚乙二醇 20000 (SS-PEG) 于 pH 8. 0反应条件下修饰 之后的 α-干扰素(INF a lb- PEG20pH8)。 6. Modified with activated polyethylene glycol 20000 (SS-PEG) at pH 8. 0 Alpha-interferon (INF a lb-PEG20pH8).
7. 经活化聚乙二醇 12000 (SS-PEG) 第一次反应条件于 pH 6. 0, 第二次反应于 pH 8. 0 条件下修饰后的 a-干扰素 (INF a lb-PEG12pH6, pH8)。  7. Activated polyethylene glycol 12000 (SS-PEG) reacted at pH 6.0 for the first reaction and modified a-interferon (INF a lb-PEG12 pH6, pH8).
8. 经活化聚乙二醇 20000 (SS-PEG) 第一次反应条件于 pH 6. 0, 第二次反应于 PH 8. 0 条件下修饰后的 a-干扰素 (INF a lb-PEG20pH6, pH8)。 图 2是用 SDS-聚丙烯酰胺凝胶电泳分析技术来分析利用活化性聚 乙二醇 SC- PEG修饰 a-干扰素 lb (INF (i lb)后所获得的蛋白分子产物。  8. Activated polyethylene glycol 20000 (SS-PEG) reacts at pH 6.0 for the first reaction and a-interferon (INF a lb-PEG20 pH6, modified at pH 8. 0 for the second reaction). pH8). Figure 2 is a SDS-polyacrylamide gel electrophoresis analysis technique to analyze the protein molecule products obtained by modifying a-interferon lb (INF (i lb) with activated polyethylene glycol SC-PEG).
1. 凝胶带分子量 (200 KD, 116. 3 KD, 66. 3 KD, 55. 4 KD, 36. 5 KD, 31. 0 KD, 21. 5 KD, 14. 4 KD, 6. 0 KD) 标记蛋白。 1. Gel band molecular weight (200 KD, 116. 3 KD, 66. 3 KD, 55.4 KD, 36.5 KD, 31.0 KD, 21. 5 KD, 14. 4 KD, 6. 0 KD) Labeled protein.
2. 未经聚乙二醇化的 a_干扰素标准品 (INF a lb)。  2. Unpegylated a-interferon standard (INF a lb).
3. 经活化聚乙二醇 20000 (SC-PEG) 于 pH 6. 0反应条件下修饰 之后的 a-干扰素(INF a lb-PEG20pH6)。 图 3是用 SDS-聚丙烯酰胺凝胶电泳分析技术来分析利用活化性聚 乙二醇 SC-PEG, 用一步或分两步修饰 a-干扰素 lb (INF a lb)后所获得 的蛋白分子产物。  3. A-interferon (INF a lb-PEG20pH6) after modification with activated polyethylene glycol 20000 (SC-PEG) under pH 6.0 reaction conditions. Figure 3 is a SDS-polyacrylamide gel electrophoresis analysis technology to analyze the protein molecules obtained by using activated polyethylene glycol SC-PEG and modifying a-interferon lb (INF a lb) in one or two steps. product.
其中  among them
1. 凝胶带分子量 (200 KD, 116. 3 KD, 66. 3 KD, 55. 4 KD, 36. 5 KD, 31. 0 KD, 21. 5 D, 14. 4 KD, 6. 0 KD) 标记蛋白。  1. Gel band molecular weight (200 KD, 116. 3 KD, 66.3 KD, 55.4 KD, 36.5 KD, 31.0 KD, 21. 5 D, 14. 4 KD, 6. 0 KD) Labeled protein.
2. 未经聚乙二醇化的 a-干扰素 lb标准品 (INF a lb)。  2. Unpegylated a-interferon lb standard (INF a lb).
3. 经活化聚乙二醇 20000 (SC- PEG) 于 pH 6. 0反应条件下修饰之后 的 a-干扰素 (INF a lb-PEG20pH6)。  3. A-interferon (INF a lb-PEG20pH6) modified by activated polyethylene glycol 20000 (SC-PEG) under pH 6.0 reaction conditions.
4. 经活化聚乙二醇 20000 (SC- PEG) 于 pH 8· 0反应条件下修饰之后 的 a-干扰素 (INF a lb-PEG20pH8)。  4. A-interferon (INF a lb-PEG20pH8) modified by activated polyethylene glycol 20000 (SC-PEG) under pH 8 · 0 reaction conditions.
5. 经活化聚乙二醇 20000 (SC-PEG) 于第一次反应条件于 pH 6. 0, 第二次反应于 pH 8. 0 条件下修饰后的 a-干扰素 (INF a lb-PEG20pH6, pH8)。 具体实施方式 5. Modified a-interferon (INF a lb-PEG20pH6) modified with activated polyethylene glycol 20000 (SC-PEG) under the first reaction condition at pH 6.0 and the second reaction at pH 8. 0. , pH8). detailed description
以下将结合实施例具体说明本发明, 但是实施例仅仅是说明的目 的, 而非对本发明的限定。 实施例 1 聚乙二醇 12000/20000 α -干扰素 lb的制备  Hereinafter, the present invention will be described in detail with reference to the examples, but the examples are only for the purpose of illustration, but not to limit the present invention. Example 1 Preparation of polyethylene glycol 12000/20000 α-interferon lb
第 (1)步反应 Step (1) Reaction
取 1. 0毫克 oc-干扰素溶解于 1 ml 100 mM (pH 6. 0)的磷酸钠盐缓 冲液。 取 20 毫克分子量 12, 000 的 SS-活化线性聚乙二醇 (SS-PEG12000) , 迅速加入上述溶液中, 适当摇动而使活化线性聚乙二 醇 (SS-PEG12000)在 30秒内完全溶解。 反应于 25 ° C进行 60分钟, 反 应溶液经不必浓縮冲洗, 可进一步纯化或进行第二步反应。  Take 1.0 mg of oc-interferon and dissolve it in 1 ml of 100 mM (pH 6.0) sodium phosphate buffer. Take 20 mg of SS-activated linear polyethylene glycol (SS-PEG12000) with a molecular weight of 12,000, quickly add it to the above solution, and shake it appropriately to completely dissolve the activated linear polyethylene glycol (SS-PEG12000) within 30 seconds. The reaction was carried out at 25 ° C for 60 minutes. The reaction solution can be further purified or subjected to the second step without having to be concentrated and washed.
第(1)步反应的 pH范围控制在 6. 0至 6. 5。  The pH range of the reaction in step (1) is controlled between 6.0 and 6.5.
第 (2)步反应 Step (2) Reaction
经上述 1步所得到的溶液, 加入 0. 1 ml, 500 mM, (pH 8. 0)的磷酸 钠盐缓冲液。置此溶液于水浴中预热至 25°C,另取 20毫克分子量 20000 活化聚乙二醇 (SS-PEG20000)迅速加入上述溶液中适当搅动而使分子 量 20000活化聚乙二醇于 30秒内完全溶解。 反应持续 30分钟。 反应 溶液利用离心浓缩, 分离纯化和无菌过滤后得到聚乙二醇化 α-干扰素 lb (α-干扰素 - PEG12000 I 20, 000) 的终产物, 并置 4° C密封无菌避 光保存。  To the solution obtained in the above step 1, 0.1 ml, 500 mM, (pH 8. 0) sodium phosphate buffer was added. Place this solution in a water bath to preheat to 25 ° C, take another 20 mg of molecular weight 20000 activated polyethylene glycol (SS-PEG20000) and quickly add to the above solution to stir appropriately to make molecular weight 20000 activated polyethylene glycol completely within 30 seconds Dissolve. The reaction lasted 30 minutes. The reaction solution was concentrated by centrifugation. After separation, purification and aseptic filtration, the final product of pegylated α-interferon lb (α-interferon-PEG12000 I 20, 000) was obtained and stored at 4 ° C. in a sealed, sterile, dark place .
第 (2)步反应的 SS活化线性聚乙二醇化学反应的 pH范围应控制在 8. 0至 8. 5。 实施例 2 聚乙二醇 20000/20000 α -干扰素 lb的制备  The pH range of the SS-activated linear polyethylene glycol chemical reaction in step (2) should be controlled between 8. 0 and 8. 5. Example 2 Preparation of polyethylene glycol 20000/20000 alpha-interferon lb
采用同实施例 1相同的步骤,制备聚乙二醇 20000/2000 α -干扰素 lb, 不同的是将: 在第一步中, 线性长度范围为 30毫克 20, 000道尔 顿的 SS-活化线性聚乙二醇与 1毫克 α -干扰素 lb接触,反应使用聚乙 二醇线性链的长度,即 α -干扰素 lb与聚乙二醇的质量比范围为 1 : 30。  The same procedure as in Example 1 was used to prepare polyethylene glycol 20000/2000 α-interferon lb, except that in the first step, SS-activation with a linear length ranging from 30 mg to 20,000 Daltons The linear polyethylene glycol is contacted with 1 mg of α-interferon lb, and the reaction uses the length of the linear chain of polyethylene glycol, that is, the mass ratio of α-interferon lb to polyethylene glycol ranges from 1:30.
在第二步中,线性长度范围为 30毫克 20, 000道尔顿的 SS-活化线 性聚乙二醇与 1毫克 α -干扰素 lb接触, 反应使用聚乙二醇线性链的 长度, 即聚乙二醇与 α -干扰素 lb的质量比范围为 1 ·· 30。 实施例 3 聚乙二醇 12000/20000 α -干扰素 lb的制备 In the second step, SS-activated linear polyethylene glycol with a linear length ranging from 30 mg to 20,000 Daltons was contacted with 1 mg of α-interferon lb. The length, that is, the mass ratio of polyethylene glycol to α-interferon lb ranges from 1 ·· 30. Example 3 Preparation of polyethylene glycol 12000/20000 α-interferon lb
第 (1)步反应 · Step (1) Reaction
取 1. 0 毫克 α-干扰素 lb溶解于 1 ml 100 mM (pH 6. 0)的磷酸钠 盐缓冲液。 取 30 毫克分子量 12, 000 的 SC-活化线性聚乙二醇 (SC-PEG12000) , 迅速加入上述溶液中, 适当摇动而使活化线性聚乙二 醇 (SC-PEG12000)在 30秒内完全溶解。 反应于 25° C进行 60分钟, 反 应溶液经不必浓缩冲洗, 可进一步纯化或进行第二步反应。  Take 1.0 mg of interferon-lb in 1 ml of 100 mM (pH 6.0) sodium phosphate buffer. Take 30 milligrams of SC-activated linear polyethylene glycol (SC-PEG12000) with a molecular weight of 12,000, quickly add to the above solution, and shake it appropriately to completely dissolve the activated linear polyethylene glycol (SC-PEG12000) within 30 seconds. The reaction is carried out at 25 ° C for 60 minutes. The reaction solution can be further purified or subjected to a second reaction step without concentrating and washing.
第(1)步反应的 pH范围控制在 6. 0至 6. 5。  The pH range of the reaction in step (1) is controlled between 6.0 and 6.5.
第 (2)步反应 Step (2) Reaction
经上述 1步所得到的溶液, 加入 0. 1 ml, 500 mM, (pH 8. 0)的磷 酸钠盐缓冲液。 置此溶液于水浴中预热至 25°C, 另取 20毫克分子量 20000 活化聚乙二醇 (SC-PEG20000)迅速加入上述溶液中适当搅动而 使分子量 20000活化聚乙二醇于 30秒内完全溶解。反应持续 30分钟。 反应溶液利用离心浓缩, 分离纯化和无菌过滤后得到聚乙二醇化 o -干 扰素 (α-干扰素 - PEG12000 / 20, 000) 的终产物, 并置 4° C密封无菌 避光保存。  To the solution obtained in the above step 1, 0.1 ml, 500 mM, (pH 8. 0) sodium phosphate buffer was added. Preheat this solution to 25 ° C in a water bath, take another 20 mg of molecular weight 20000 activated polyethylene glycol (SC-PEG20000) and quickly add to the above solution to stir appropriately to make molecular weight 20000 activated polyethylene glycol completely within 30 seconds. Dissolve. The reaction lasted 30 minutes. The reaction solution was concentrated by centrifugation, separated, purified, and sterile filtered to obtain the final product of pegylated o-interferon (α-interferon-PEG12000 / 20,000), and stored at 4 ° C. in a sealed, sterile, and protected from light.
第 (2)步反应的 SC活化线性聚乙二醇化学反应的 pH范围应控制在 8. 0至 8. 5。 以下实验方法中釆用的测试样品为实施例 1所获得。 实验例 4  The pH range of the SC-activated linear polyethylene glycol chemical reaction in step (2) should be controlled between 8. 0 and 8. 5. The test samples used in the following experimental methods were obtained in Example 1. Experimental example 4
分析方法: 蛋白浓度分析 Analysis method: protein concentration analysis
方法 1: 采用 Bradford- Lowry方法来测定蛋白质的浓度。 该法 基于测定蛋白质所结合的考马斯亮蓝 (蛋白质染料) 数量来确定蛋白 质的浓度。首先以已知的不同浓度的标准蛋白所结合染料的量为依据, 绘出标准曲线, 通过测定蛋白的染料结合量推断出该蛋白质样品浓度。  Method 1: The Bradford-Lowry method was used to determine the protein concentration. This method determines the protein concentration based on the amount of Coomassie Brilliant Blue (protein dye) bound to the protein. First, draw a standard curve based on the known amount of dyes bound to the standard protein at different concentrations, and infer the protein sample concentration by measuring the dye's bound amount of the protein.
方法 2 : 取 α -干扰素 lb活力测定的供试品溶液, 依照分光光度法 (中国药典 1995年版二部附录第 20页)在 280 ± 1 nm和 260 土 1 nm 波长处测吸收度, 按下式算出每毫升溶液中所含蛋白的毫克数。 Method 2: Take the test solution of α-interferon lb activity measurement, according to spectrophotometry (Chinese Pharmacopoeia 1995 edition Appendix II page 20) Measure the absorbance at the wavelengths of 280 ± 1 nm and 260 1 nm, and calculate the milligrams of protein contained in each ml of solution according to the following formula.
蛋白含量 (mg I ml ) 1. 55 x D 280 nm— 0. 76 x D 26 实验例 5 蛋白纯度分析 Protein content (mg I ml) 1. 55 x D 280 nm — 0.76 x D 26 Experimental example 5 Analysis of protein purity
生物大分子, 如蛋白质、 酶、 多肽、 氨基酸等, 由于带电性质不 同, 在同一电场条件下, 有着不同的移动方向和迁移率。 带电多, 分 子量小, 则电泳速度快, 因而通过 SDS-聚丙烯酰胺凝胶电泳可将不同 分子量, 不同种类的蛋白等生物大分子分开。 因此, 通过该方法在确 定杂蛋白是否存在的同时, 亦可以确定未知蛋白质的纯度和蛋白分子 的大小。 实验例 6 高压液相一析分离法纯化聚乙二醇修饰后的 ct-干扰素 lb 聚乙二醇化学修饰后的单一, 或双分子(^_干扰素 lb可依蛋白分子 量大小而借助分子筛高压液相析法分离纯化。 分子筛柱 -200 可由 Pharmacia Co.购买。 流动相由 100 mM的磷酸钠盐缓冲液 (pH 5. 0)生 理盐水 (150 mM氯化钠) 组成。 流动相流速 0. 5毫升 /分钟。 分离过 程可由紫外检测器在 214 nm监测。 实验例 7 ot-干扰素 lb -聚乙二醇生物活性的测定  Biological macromolecules, such as proteins, enzymes, peptides, and amino acids, have different moving directions and mobilities under the same electric field condition due to different charging properties. The more charged and the smaller the molecular weight, the faster the electrophoresis speed. Therefore, SDS-polyacrylamide gel electrophoresis can separate biological macromolecules such as different molecular weights and different types of proteins. Therefore, this method can determine the purity of unknown proteins and the size of protein molecules while determining the presence of heteroproteins. Experimental Example 6 Purification of ct-interferon lb modified by polyethylene glycol by high-pressure liquid phase separation method Single or double molecule (^ _interferon lb can be modified by molecular sieve depending on the molecular weight of the protein) Separation and purification by high pressure liquid chromatography. Molecular sieve column-200 can be purchased from Pharmacia Co. The mobile phase consists of 100 mM sodium phosphate buffer (pH 5.0) physiological saline (150 mM sodium chloride). Mobile phase flow rate 0 5 ml / min. The separation process can be monitored by a UV detector at 214 nm. Experimental Example 7 Determination of the biological activity of ot-interferon lb-polyethylene glycol
干扰素的生物活性可由宿主细胞致病效应测试法的颜色反应而确 定。 宿主细胞致病效应 (CytoPathic Effect, or CPE)测试法系由 Foti 提出(Methods in Enzymology, 119, 533, 198)。 本法利用人类宿主细 胞经干扰素处理后产生抵抗病毒感染的活性而能防止细胞病变死亡的 原理设计而成的一种简易快捷的颜色吸收反应测试方法。 简易而言, 宿主细胞在经干扰素处理后可抵抗病毒入侵因而可防止宿主细胞死 亡。 干扰素的抗病毒生物活性即可经由存活细胞所吸收的染料而直接 定量测量。 具体测试中, 首先以已知的不同浓度的标准生物活性干扰 素蛋白所产生的宿主细胞染料的抗病毒致病效应为依据, 绘出存活宿 主细胞吸收染料的标准效价曲线。 未知的聚乙二醇修饰后的 α -干扰素 lb蛋白效价即可通过由宿主细胞产所产生的抗病毒致病效应而吸收的 染料而直接定量测定。 实验例 8 The biological activity of interferon can be determined by the color response of the host cell pathogenic effect test. Host cell pathogenic effect (CytoPathic Effect, or CPE) test method was proposed by Foti (Methods in Enzymology, 119, 533, 198). This method is designed as a simple and quick color absorption response test method based on the principle that human host cells are treated with interferon to produce anti-virus infection activity and prevent cytopathic death. In simple terms, host cells are resistant to virus invasion after interferon treatment and thus prevent host cell death. The antiviral biological activity of interferon can be directly and quantitatively measured by the dye absorbed by the living cells. In a specific test, first, based on the known antiviral pathogenic effects of host cell dyes produced by standard bioactive interferon proteins of different concentrations, draw a standard titer curve for dyes absorbed by surviving host cells. Α-interferon modified by unknown polyethylene glycol The lb protein titer can be directly and quantitatively determined by the dye absorbed by the antiviral pathogenic effect produced by the host cell. Experimental Example 8
聚乙二醇修饰 ex-干扰素蛋白的结果  Results of PEGylated ex-interferon protein
A. SDS-聚丙烯酰胺凝胶电泳蛋白分析  A. SDS-polyacrylamide gel electrophoresis protein analysis
一般用两种方法用来评估聚乙二醇对蛋白表面氨基酸进行化学修 饰效果。 第一种方法是利用 SDS-聚丙烯酰胺凝胶电泳来测定被修饰后 的蛋白在电场上移动速率确定修饰程度。 第二种方法是直接测定蛋白 被聚乙二醇修饰前后氨基酸数量的差异而直接分析。 聚乙二醇化学反 应修饰后的 α-干扰素 lb在图 1 SDS-聚丙烯酰胺凝胶电泳结果显示: α -干扰素 lb经过聚乙二醇修饰而使其分子量明显升高,而使修饰后的 蛋白在电泳场的移动速度降低。分子量明显升高是因为 e -干扰素 lb表 面的氨基酸已被聚乙二醇分子的共价健结合而造成。  Two methods are commonly used to evaluate the effect of polyethylene glycol on chemical modification of amino acids on the surface of proteins. The first method is to use SDS-polyacrylamide gel electrophoresis to determine the degree of modification by measuring the moving rate of the modified protein in an electric field. The second method is to directly determine the difference between the number of amino acids before and after the protein is modified by polyethylene glycol, and directly analyze. Alpha-interferon lb modified by polyethylene glycol chemical reaction is shown in Figure 1. SDS-polyacrylamide gel electrophoresis results show that: Alpha-interferon lb is modified by polyethylene glycol to significantly increase its molecular weight, which results in modification. The subsequent protein moves at a reduced speed in the electrophoretic field. The significant increase in molecular weight is due to the covalent binding of amino acids on the surface of e-interferon lb.
图 1凝胶电泳的结果同时显示了另一个实验结果, 即 α-干扰素 lb 蛋白在电泳场的移动速率比较,在同样的反应条件下, α-干扰素 lb经 过活化分子量 20, 000聚乙二醇 (SS- PEG)化学修饰后,与在使用分子量 12, 000聚乙二醇 (SS- PEG修饰) 化学修饰后的蛋白在电泳场的移动速 度比较, 前者的蛋白电泳速率, 由于分子量的增加的结果比后者明显 降低 (比较图 1第 4和第 3项)。 实验例 9  The results of gel electrophoresis in Figure 1 also show another experimental result, that is, the comparison of the movement rate of α-interferon lb protein in the electrophoresis field. Under the same reaction conditions, α-interferon lb has an activated molecular weight of 20,000 polyethylene. After the chemical modification of diol (SS-PEG), compared with the moving speed of the protein after chemical modification using molecular weight 12,000 polyethylene glycol (SS-PEG modification), the electrophoretic rate of the former protein is The increased result is significantly lower than the latter (compare items 4 and 3 in Figure 1). Experimental Example 9
聚乙二醇化 α-干扰素 lb的活性分析  Activity analysis of pegylated α-interferon lb
聚乙二醇化 α-干扰素 lb的活性可由表一所列的数据而表明。 表 1 中的实验数据同时显示可利用两步反应可以达到最终用分子量 12000 及 20000的活化聚乙二醇 (SS- PEG)化学修饰 α_干扰素 lb的目的,而不 至于使大量的 α -干扰素 lb在化学反应过程中失去干扰素的活性。  The activity of pegylated α-interferon lb is indicated by the data listed in Table 1. The experimental data in Table 1 also show that the two-step reaction can be used to finally achieve the purpose of chemically modifying α_interferon lb with activated polyethylene glycol (SS-PEG) with a molecular weight of 12,000 and 20,000 without causing a large amount of α- Interferon lb loses interferon activity during the chemical reaction.
由抗病毒致病效应 (CPE)数据来看, a-干扰素 lb在弱酸性 (pH 6. 0) 环境下化学修饰所得到产物的活性远比在偏碱性 (pH 8. 0)环境下化学 修饰所得到产物活性来的高 (比较表一第 4 , 第 5 栏; 第 6, 第 7 栏)。 同时在相同的酸碱度化学修饰环境下, 较高分子量 (SS-PEG 20, 000)化学反应所得产品的抗病毒活性要比低分子量 (SS- PEG12, 000) 的化学修饰产品来的高些 (比较表一第 4, 第 6栏; 第 5, 第 7栏)。 由表 1实验数据而得知, 在干扰素化学反应修饰过程中, 化学修饰所 得到产物的活性不仅受到酸碱度改变带来修饰位点转移的影响, 同时 还受到使用不同分子量活化聚乙二醇的影响。 Judging from the antiviral pathogenic effect (CPE) data, a-interferon lb was chemically modified in a weakly acidic (pH 6.0) environment to be far more active than in a slightly alkaline (pH 8.0) environment. Chemistry The product obtained by the modification is highly active (compare Table 1, columns 4, 5; columns 6, 7). At the same time, under the same pH chemical modification environment, the antiviral activity of products with higher molecular weight (SS-PEG 22,000) is higher than that of chemical products with lower molecular weight (SS-PEG12,000) (compared with Table 1, columns 4, 6; columns 5, 7). From the experimental data in Table 1, it is known that during the modification of interferon chemical reaction, the activity of the product obtained by chemical modification is not only affected by the transfer of modification sites caused by changes in pH, but also by the use of activated polyethylene glycols of different molecular weights. influences.
表 1聚乙二醇 α-干扰素 lb (PEG- INF a lb)活性关系 Table 1 Polyethylene glycol α-interferon lb (PEG-INF a lb ) activity relationship
Figure imgf000015_0001
表 2 中的实验数据同时显示利用分子量 20000 道尔顿的活化 SC - PEG聚乙二醇化学反应中亦可以达到修饰 a -干扰素蛋白表面氨基酸 的目的而不至于使大量的 a -干扰素 lb在化学反应过程中失去干扰素 生物活性。
Figure imgf000015_0001
The experimental data in Table 2 also show that the use of activated SC-PEG polyethylene glycol with a molecular weight of 20,000 Daltons can also achieve the purpose of modifying the surface amino acids of a-interferon protein without causing a large amount of a-interferon lb Loss of interferon biological activity during chemical reactions.
表 2 聚乙二醇 a-干扰素 lb (SC-PEG-INF a lb)活性关系 产物 病毒致病效应 (CPE) 效价(titer) x 10 " item ICso (ng /mL)  Table 2 Activity relationship of polyethylene glycol a-interferon lb (SC-PEG-INF a lb) Product Viral pathogenic effect (CPE) titer x 10 "item ICso (ng / mL)
1. 标准品 a-干扰素 2b (INF a 2b) 0. 03 219  1. Standard a-interferon 2b (INF a 2b) 0. 03 219
2. 标准品 a-干扰素 lb (INF a lb) 0. 11 65  2. Standard a-interferon lb (INF a lb) 0. 11 65
3. 标准品 a-干扰素 2a (INF a 2a) 0. 04 171  3. Standard a-interferon 2a (INF a 2a) 0. 04 171
4. c 干扰素 INF a lb- PEG20 pH6 1. 5 4. 6  4. c Interferon INF a lb- PEG20 pH6 1. 5 4. 6
5. a-千扰素 INF a lb- PEG20 pH8 1. 8 3. 8  5. a-Interferon INF a lb- PEG20 pH8 1. 8 3. 8
6. a-干扰素 INF a lb- PEG20 pH6, 8 1. 5 4. 6  6. a-interferon INF a lb- PEG20 pH6, 8 1. 5 4. 6

Claims

权利要求书  Claim
1、 一种经共价键结合的聚乙二醇修饰 α -干扰素 lb的制备方法,通 过调节聚乙二醇与 α -干扰素 lb反应系统中的 PH值, 利用不同 聚合方式或不同聚合链长度的活化线性聚乙二醇分步对 α -干扰 素 lb蛋白表面的不同氨基酸进行特异性化学修饰, 该活化聚乙 二醇是丁二酰亚胺基 CI- C6的烷酸聚乙二醇酯,包括以下两步步 骤: 1. A method for preparing co-bonded polyethylene glycol modified α-interferon lb, by adjusting the PH value in the reaction system of polyethylene glycol and α-interferon lb, using different polymerization methods or different Activated linear polyethylene glycol with length of polymerized chain to specifically chemically modify different amino acids on the surface of α-interferon lb protein. The activated polyethylene glycol is succinimyl CI-C6 alkanoic acid polyethylene Glycol esters, including the following two steps:
(A)在 pH值为 5-7的条件下, 将活化线性聚乙二醇与 α -干扰素 lb 接触, 使线性聚乙二醇与 α -干扰素 lb进行反应, 对 α -干扰素 lb蛋白表面的组氨酸进行特异性化学修饰;  (A) contacting the activated linear polyethylene glycol with α-interferon lb at a pH value of 5-7, reacting the linear polyethylene glycol with α-interferon lb, and reacting with α-interferon lb Specific chemical modification of histidine on the protein surface;
(B)在 pH值为 7-9的条件下, 将活化线性聚乙二醇与 α -干扰素 lb 进行反应接触,对 α -干扰素 lb蛋白表面的赖氨酸进行特异性化 学修饰;  (B) contacting the activated linear polyethylene glycol with α-interferon lb at a pH value of 7-9 to specifically chemically modify lysine on the surface of the α-interferon lb protein;
上述(A)、 (B)两步的顺序可以颠倒, 两步反应之间通过 pH调节剂使 第一步反应系统的酸碱度调节到适合进行第二步反应的酸碱度。 The order of the above two steps (A) and (B) can be reversed, and the pH of the first reaction system can be adjusted to a pH suitable for the second reaction by using a pH adjuster between the two reactions.
2、 根据权利要求 1所述的制备方法, 其特征在于, 步骤 (A)反应 pH 范围控制在 5. 5 至 6. 5; 步骤 (B)反应的 pH范围应控制在 7. 5 至 8. 5。 2. The preparation method according to claim 1, characterized in that the pH range of the reaction in step (A) is controlled to 5.5 to 6.5; the pH range of the reaction in step (B) should be controlled to 7.5 to 8. 5.
3、 根据权利要求 2所述的制备方法, 其特征在于, 步骤 (A)反应 pH 范围控制在 6. 0 ± 0. 1,步骤 (B)反应 pH范围控制在 8. 0 ±0. 1。 3. The preparation method according to claim 2, characterized in that the pH range of the reaction in step (A) is controlled at 6.0 ± 0.1, and the pH range of the reaction in step (B) is controlled at 8. 0 ± 0.1.
4、 据权利要求 1、 2或 3所述的方法, 其特征在于活化线性聚乙二 醇线性链的分子量为 12, 000—40, 000道尔顿。 4. The method according to claim 1, 2 or 3, characterized in that the molecular weight of the activated linear polyethylene glycol linear chain is 12,000 to 40,000 Daltons.
5、 根据权利要求 4所述的方法, 其特征在于所述的活化线性聚乙 二醇分子量为 12, 000至 25, 000道尔顿。 、 根据权利要求 5所述的方法, 其特征在于所述的活化线性聚乙 二醇分子量为 12, 000至 20, 000道尔顿。 、 根据权利要求 1、 2或 3所述的制备方法,其特征在于,步骤 (A) 和(B)中 ct -干扰素 lb与活化线性聚乙二醇的用量比为 1 : 10 - 1 : 30。 、 根据权利要求 所述的方法, 其特征在于步骤 (A) 和 (B ) 中 α -干扰素 lb与活化线性聚乙二醇反应的用量比为 1 : 20-1 : 30。 、 根据权利要求 8所述的方法, 其特征在于步骤 (A)和 (B) 中 5. The method according to claim 4, wherein the molecular weight of the activated linear polyethylene glycol is 12,000 to 25,000 Daltons. 5. The method according to claim 5, wherein the molecular weight of the activated linear polyethylene glycol is 12,000 to 20,000 Daltons. The preparation method according to claim 1, 2 or 3, wherein the ratio of the amount of ct-interferon lb to the activated linear polyethylene glycol in steps (A) and (B) is 1: 10-1: 30. 7. The method according to claim, wherein the ratio of the amount of α-interferon lb reacted with the activated linear polyethylene glycol in steps (A) and (B) is 1: 20-1: 30. A method according to claim 8, characterized in that in steps (A) and (B)
-干扰素 lb与活化线性聚乙二醇反应的用量比为 1 : 20。 0、 根据权利要求 1所述的方法, 其特征在于两步反应是相对独立 分开进行的反应, 步骤 (A)所使用的活化线性聚乙二醇分子量为 12, 000、 步骤 (B)所使用的活化线性聚乙二醇分子量为 20, 000, 由此得到的产物活化线性聚乙二醇修饰的 α -干扰素 lb蛋白大 分子的表面不同种类的氨基酸, 分别具有 12, 000和 20, 000道 -The ratio of interferon lb to activated linear polyethylene glycol is 1:20. 0. The method according to claim 1, characterized in that the two-step reaction is a relatively independent and separate reaction, and the molecular weight of the activated linear polyethylene glycol used in step (A) is 12,000, and that used in step (B) The activated linear polyethylene glycol has a molecular weight of 20,000, and the resulting product activates different types of amino acids on the surface of the linear polyethylene glycol modified α-interferon lb protein macromolecules, respectively, having 12,000 and 20,000. Road
' 尔顿聚乙二醇链长的分子。 1、 根据权利要求 1所述的方法, 其特征在于步骤 (A)和 (B)所使用 的活化线性聚乙二醇分子量均为 20, 000, 反应是相对独立分开 进行的反应。 2、 根据权利要求 1所述的方法, 其特征在于活化线性聚乙二醇为 SS—活化线性聚乙二醇。 3、 根据权利要求 1所述的方法, 其特征在于活化线性聚乙二醇为 SC—活化线性聚乙二醇。 4、 根据权利要求 1所述的方法, 其特征在于步骤 (A)步和步骤 (B) 步反应的温度范围应控制在 25至 30° (:。 'Dalton polyethylene glycol chain-length molecules. 1. The method according to claim 1, wherein the activated linear polyethylene glycols used in steps (A) and (B) each have a molecular weight of 20,000, and the reactions are relatively independent reactions. 2. The method according to claim 1, wherein the activated linear polyethylene glycol is SS-activated linear polyethylene glycol. 3. The method according to claim 1, wherein the activated linear polyethylene glycol is SC-activated linear polyethylene glycol. 4. The method according to claim 1, characterized in that step (A) and step (B) The temperature range of the step reaction should be controlled between 25 and 30 ° (:.
15、 根据权利要求 14所述的方法, 其特征在于步骤 (A)和步骤 (B)反 应的温度范围控制在 25 士 0. Γ Co 15. The method according to claim 14, characterized in that the reaction temperature range of steps (A) and (B) is controlled to 25 ± 0. Γ Co
16、 根据权利要求 1 所述的方法, 其特征在于包括以下具体步骤: 利用不同聚合方式或不同聚合链长度的 SS-活化聚乙二醇对 α - 干扰素 lb进行化学修饰, 其特征在于, 包括以下步骤:16. The method according to claim 1, comprising the following specific steps: Chemically modifying α-interferon lb by using SS-activated polyethylene glycol with different polymerization methods or different polymerization chain lengths, characterized in that: It includes the following steps:
(A1 ) 将 SS-活化线性聚乙二醇与 ct -干扰素 lb接触, 反应使用聚乙 二醇线性链的分子量为 12, 000— 20, 000 道尔顿, α -干扰素 lb与聚乙二醇的质量比范围为 1: 10— 1: 30; (A1) The SS-activated linear polyethylene glycol is contacted with ct-interferon lb, and the molecular weight of the linear chain of polyethylene glycol is 12,000 to 20,000 Daltons, and α-interferon lb and polyethylene are used. The mass ratio of diol is from 1: 10 to 1: 30;
(B1 )改变反应的酸碱度后, 将 SS-活化线性聚乙二醇与 ct -干扰素 lb 进行第二次反应接触, SS-活化聚乙二醇线性链的长度范围为 12, 000 - 20, 000道尔顿, α -干扰素 lb与 SS-活化聚乙二醇反 应的用质量比范围为 1 : 10 - 1 : 30。  (B1) After changing the pH of the reaction, contacting SS-activated linear polyethylene glycol with ct-interferon lb for a second reaction contact, the length of the linear chain of SS-activated polyethylene glycol ranges from 12,000 to 20, 000 Daltons, the mass ratio of α-interferon lb to SS-activated polyethylene glycol ranges from 1: 10 to 1: 30.
17、 根据权利要求 1所述的方法, 其特征在于包括以下具体步骤: 利用不同聚合方式或不同聚合链长度的 SC-活化线性聚乙二醇 对 α -干扰素 lb进行化学修饰: 17. The method according to claim 1, comprising the following specific steps: Chemical modification of α-interferon lb by SC-activated linear polyethylene glycol with different polymerization methods or different polymerization chain lengths:
(A2) 将 SC-活化线性聚乙二醇与 α -干扰素 lb接触, 反应使用 SC-活 化线性聚乙二醇线性链的长度为 12, 000—20, 000道尔顿, ct - 干扰素 lb 与 SC-活化线性聚乙二醇的用量比范围为 1 : 10 - 1 : 30; '  (A2) The SC-activated linear polyethylene glycol is contacted with α-interferon lb. The reaction uses SC-activated linear polyethylene glycol with a linear chain length of 12,000 to 20,000 Daltons. Ct -interferon The dosage ratio of lb to SC-activated linear polyethylene glycol ranges from 1: 10 to 1: 30;
(B2) 改变反应的酸碱度后,将 SC-活化线性聚乙二醇与 ci -干扰素 lb 进行第二次反应接触, SC-活化线性聚乙二醇线性链的长度为 12, 000—20, 000道尔顿, α -干扰素 lb与活化聚乙二醇反应的 用量比范围为 1: 10― 1 : 30。 8、 根据权利要求 16或 17所述的制备方法,其特征在于,步骤 (A1)、  (B2) After changing the pH of the reaction, the SC-activated linear polyethylene glycol is contacted with ci-interferon lb for a second reaction. The length of the linear chain of SC-activated linear polyethylene glycol is 12,000-20, 000 Daltons, the dosage ratio of the reaction between α-interferon lb and activated polyethylene glycol ranges from 1: 10 to 1: 30. 8. The preparation method according to claim 16 or 17, characterized in that the steps (A1),
(A2) 反应 pH 范围控制在 5. 5 至 6. 5; 步骤 (Bl)、 (B2) 反 应的 pH范围应控制在 7. 5至 8. 5。 、 根据权利要求 17或 18所述的方法, 其特征在于各步骤中 α -干 扰素 lb与活化线性聚乙二醇反应的质量比范围为 1 : 20。 、 由权利要求 1-19的方法制得的聚乙二醇修饰的 α -干扰素 lb, 修饰后 α -干扰素 lb表面蛋白上组氨酸和赖氨酸分别被相同或 不同的活化线性聚乙二醇修饰, 其特征在于活化线性聚乙二醇 是丁二酰亚胺基 CI- C6的烷酸聚乙二醇酯。 、 根据权利要求 20所述的聚乙二醇修饰的 α -干扰素 lb, 其特征 在于所述活化线性聚乙二醇为 SS—活化线性聚乙二醇。 、 根据权利要求 20所述的聚乙二醇修饰的 α -干扰素 lb, 其特征 . 在于活化线性聚乙二醇为 SC—活化线性聚乙二醇。 、 根据权利要求 20所述的聚乙二醇修饰的 α -干扰素 lb在制备药 物中的应用, 该药物用于预防和治疗感染性疾病以及恶性肿瘤 疾病如传染性急性和慢性肝炎、 AIDS病毒治感染引起的机会感 染传染疾病、 治疗恶性肿瘤。 、 根据权利要求 23所述的应用, 其特征在于所述恶性肿瘤为哈立 氏细胞白血病、 卡波氏肿瘤、 非霍金斯鼻咽恶性 T细胞淋巴肿 瘤或鼻咽病毒淋巴癌。 、 根据权利要求 23或 24所述的应用, 其特征在于所述药物中聚 乙二醇修饰的 α -干扰素 lb 临床有效药剂量至少为 1. 0 X 10fi 至 3. 0 X 106国际单位 /平方米体表面积 /7天。 一种药物组合物, 其特征在于含有根据权利要求 20所述的聚乙 二醇修饰的 α -干扰素 lb以及药学上可接受的载体。 (A2) The pH range of the reaction is controlled to be 5.5 to 6.5; the pH range of the steps (Bl) and (B2) should be controlled to be 7.5 to 8.5. The method according to claim 17 or 18, characterized in that the mass ratio of the reaction between α-interferon lb and activated linear polyethylene glycol in each step ranges from 1:20. 2. The polyethylene glycol-modified α-interferon lb prepared by the method of claims 1-19, and the modified histidine and lysine on the surface protein of the α-interferon lb are modified by the same or different activated linear polymers, respectively. Glycol modification, characterized in that the activated linear polyethylene glycol is a succinyl-based CI-C6 alkanoate polyethylene glycol ester. 2. The polyethylene glycol-modified α-interferon lb according to claim 20, wherein the activated linear polyethylene glycol is SS-activated linear polyethylene glycol. 2. The polyethylene glycol-modified α-interferon lb according to claim 20, wherein the activated linear polyethylene glycol is SC-activated linear polyethylene glycol. The use of polyethylene glycol-modified α-interferon lb according to claim 20 in the preparation of a medicament for preventing and treating infectious diseases and malignant tumor diseases such as infectious acute and chronic hepatitis, AIDS virus The opportunity to treat infections infects infectious diseases and treats malignant tumors. The use according to claim 23, characterized in that the malignant tumor is Harley's cell leukemia, Kaposi tumor, non-Hawkins nasopharyngeal malignant T cell lymphoma or nasopharyngeal virus lymphoma. 0. The application according to claim 23 or 24, characterized in that the polyethylene glycol modified α-interferon lb clinically effective drug dose is at least 1.0 X 10 fi to 3.0 X 10 6 International Unit / square meter body surface area / 7 days. A pharmaceutical composition comprising the polyethylene glycol-modified α-interferon lb according to claim 20 and a pharmaceutically acceptable carrier.
PCT/CN2005/000168 2004-02-12 2005-02-06 A method of preparing polyethylene glycol modified interferon alpha 1b WO2005077421A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200410039436.8 2004-02-12
CN200410039436 2004-02-12
CN200410007982.3 2004-03-23
CNB2004100079823A CN100355784C (en) 2004-02-12 2004-03-23 Method for preparing polyethylene glycol-modified alpha-interferon 1b

Publications (1)

Publication Number Publication Date
WO2005077421A1 true WO2005077421A1 (en) 2005-08-25

Family

ID=34862509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000168 WO2005077421A1 (en) 2004-02-12 2005-02-06 A method of preparing polyethylene glycol modified interferon alpha 1b

Country Status (2)

Country Link
CN (1) CN100355784C (en)
WO (1) WO2005077421A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082482A1 (en) 2006-01-20 2007-07-26 Tsinghua University Novel compound for treatment of tumor
WO2007082483A1 (en) 2006-01-20 2007-07-26 Tsinghua University Medicament for treatment of tumor and the use thereof
WO2008083615A1 (en) 2007-01-10 2008-07-17 Protgen Ltd. Complexes comprising angiostatin and its fragments, preparation preparing methods and uses thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100478359C (en) * 2005-11-16 2009-04-15 中国科学院过程工程研究所 Polyethylene glycol-interferon coupler and its preparation method
CN101002944B (en) * 2006-01-17 2012-07-25 中国科学院过程工程研究所 Conjugate of branched chair polymacrogol-interferon, and its preparing method
CN102824646A (en) * 2011-06-14 2012-12-19 江苏恒瑞医药股份有限公司 Conjugate of polyethylene glycol interferon
EP3524631A4 (en) * 2016-10-07 2020-04-15 Tokyo Institute of Technology Branched hetero type monodispersed polyethylene glycol, method for producing same and conjugate of same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261806A (en) * 1997-04-29 2000-08-02 先灵公司 Polyethylene glycol-interferon alpha conjugates for therapy of infection
CN1280483A (en) * 1997-12-03 2001-01-17 应用研究系统Ars股份公司 Site-specitic preparation of polyethylene glycol-GRF conjujates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517067B (en) * 1996-05-31 2003-01-11 Hoffmann La Roche Interferon conjugates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261806A (en) * 1997-04-29 2000-08-02 先灵公司 Polyethylene glycol-interferon alpha conjugates for therapy of infection
CN1280483A (en) * 1997-12-03 2001-01-17 应用研究系统Ars股份公司 Site-specitic preparation of polyethylene glycol-GRF conjujates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVID C. ET AL.: "carboxyalkylated histide is a PH-dependent product of pegylation with SC-PEG.", PHARMACEUTICAL RESEARCH, vol. 18, no. 9, 2001, pages 1354 - 1360 *
WANG Y.S. ET AL.: "Indentification of the major positional isomer of pegylated interferon alpha-2b.", BIOCHEMISTRY, vol. 39, no. 35, 2000, pages 10634 - 10640 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082482A1 (en) 2006-01-20 2007-07-26 Tsinghua University Novel compound for treatment of tumor
WO2007082483A1 (en) 2006-01-20 2007-07-26 Tsinghua University Medicament for treatment of tumor and the use thereof
WO2008083615A1 (en) 2007-01-10 2008-07-17 Protgen Ltd. Complexes comprising angiostatin and its fragments, preparation preparing methods and uses thereof
EP2597105A1 (en) 2007-01-10 2013-05-29 Protgen Ltd. A conjugate comprising angiostatin or its fragment, the method for producing the conjugate and use thereof

Also Published As

Publication number Publication date
CN100355784C (en) 2007-12-19
CN1654478A (en) 2005-08-17

Similar Documents

Publication Publication Date Title
Yang et al. Target specific hyaluronic acid–interferon alpha conjugate for the treatment of hepatitis C virus infection
CA2698173C (en) Interferon alpha 2b modified by polyethylene glycol, the preparation and use thereof
WO2005077421A1 (en) A method of preparing polyethylene glycol modified interferon alpha 1b
US11103565B2 (en) Site-specific polyethylene glycolylated (pegylated) asparaginase, preparation method therefor and use thereof
EA003789B1 (en) Polyol-ifn-beta conjugates
JPH11315098A (en) Polyethylene glycol-protein adduct
WO2015101033A1 (en) Novel use of multi-arm polyethylene glycol modifier and application of multi-arm polyethylene glycol modifier in l-asparaginasum modification
CA2698396C (en) Interferon alpha2a modified by polyethylene glycol, the preparation and use thereof
CN101809038A (en) Double-stranded polyethylene glycol modified growth hormone, preparation method and application thereof
CN103467591B (en) A kind of coupling method for Peg-IFN alpha-2b
KR100353392B1 (en) Method of Preparing the PEG-Protein Composition Having Enhanced Biological Activity
CN1375502A (en) Polyglycol modified recombinant human interferon
CN109535247A (en) Polyethyleneglycol modified phycocyanin and preparation method thereof and pharmacy application
CN106632650B (en) Ciliary neurotrophic factor mutant and modified mutant and application thereof
CN115819550A (en) Interleukin-2 mutant and polyethylene glycol modifier and preparation method thereof
US20150329601A1 (en) Methoxypolyethyleneglycol succinimidyl propionate modified recombinant Ganoderma Lucidum immunoregulatory protein, preparing method and application thereof
CN101690822A (en) Medicament carrier for targeted medicament delivery on diseases related to macrophage and preparation method thereof
CN103097406A (en) Polyethylene glycol-interferon conjugate
BRPI0804889B1 (en) PRODUCTION PROCESS OF INTERFERON CONJUGATES WITH POLYALKYLENE OXIDES AND THEIR USES
KR20040086521A (en) Biologically Active Material Conjugated With Biocompatible Polymer with 1:1 complex, Preparation Method Thereof And Pharmaceutical Composition Comprising The Same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase