WO2005076395A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2005076395A1
WO2005076395A1 PCT/JP2004/019842 JP2004019842W WO2005076395A1 WO 2005076395 A1 WO2005076395 A1 WO 2005076395A1 JP 2004019842 W JP2004019842 W JP 2004019842W WO 2005076395 A1 WO2005076395 A1 WO 2005076395A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel cell
anode
corrugated
gas diffusion
Prior art date
Application number
PCT/JP2004/019842
Other languages
French (fr)
Japanese (ja)
Inventor
Takeharu Kuramochi
Masahiko Katsu
Kaoru Eguchi
Masahiro Omata
Yoshiki Muto
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Publication of WO2005076395A1 publication Critical patent/WO2005076395A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a configuration of a gas diffusion layer and a gas passage of a fuel cell.
  • the separator of a fuel cell is made of a metal member with a rectangular cross section, and the inside is reinforced with a corrugated panel.
  • the anode side separator and the anode or anode gas diffusion layer are partitioned by a flat anode current collector plate having many pores. Numerous pores are formed in the anode current collector plate, and the anode gas is supplied to the anode from the anode gas passage formed in the separator through these pores.
  • the interior of the separator on the cathode side is divided by a panel with a corrugated section, and the separator and the power sword or power sword are separated by a flat cathode current collector that ties the string.
  • a large number of pores are formed in the power source current collector plate, and anode gas is supplied to the anode from the cathode gas passage formed in the separator through these pores.
  • JP12003-109648A issued by the Japan Patent Office in 2003 has a contact surface with the anode or anode gas diffusion layer at the separator and the force source or force gas diffusion layer at the separator. It teaches that each contact surface is made of a corrugated sheet. An anode gas passage is formed between the corrugated plate and the anode, and a force sword gas passage is formed between the corrugated plate and the force sword.
  • the supply of anode gas to the anode can be made uniform by changing the number of pores, for example, at the upstream and downstream of the anode gas passage.
  • a flat anode current collector and a cathode current collector are used to form a fuel cell stack by stacking fuel cells, it is inevitable that the dimension in the stacking direction of the stack increases.
  • the anode gas is in direct contact with the anode or anode gas diffusion layer, and similarly the force gas gas flies directly into the force gas or cathode gas expansion. Further, a coolant passage is formed inside the corrugated plate.
  • the corrugated plate is used on the outer surface of the separator to reduce the axial direction of the separator.
  • the thickness increases, and consequently the stack dimension in the stacking direction also increases. Since the anode gas is in direct contact with the anode or the anode gas diffusion layer, it is difficult to equalize the supply of the anode gas to the anode at the upstream portion and the downstream portion of the anode gas passage. The same applies to the supply of force gas.
  • the present invention relates to a fuel cell for generating electricity by an electric power generation reaction through a gas catalyst, wherein a gas passage through which a gas flows and a gas in the gas passage are transmitted to the catalyst.
  • a gas diffusion layer is provided in contact with the catalyst, and a corrugated plate defining the gas diffusion layer and the gas passage is provided.
  • the corrugated plate has a plurality of communication holes for guiding gas from the gas passage to the gas diffusion layer.
  • FIG. 1 is a perspective view of a fuel cell stack using the fuel cell according to the present invention.
  • FIGS. 2A-2E are exploded schematic perspective views of the fuel cell.
  • FIG. 3 is a cross-sectional view of a main part of the fuel cell stack.
  • FIG. I is a partial sectional view of a membrane electrode assembly constituting a fuel cell.
  • FIG. 5 is a cross-sectional view of a main part of the fuel cell, illustrating a variation of the shape of the communication hole according to the present invention.
  • FIG. 6 is a cross-sectional view of a main part of a fuel cell stack according to a second embodiment of the present invention.
  • a fuel cell stack 100 includes a stack of a number of fuel cells 30, a current collector 101, an insulating plate 102, and an end plate 103 disposed at both ends thereof, respectively.
  • a tie rod port 104 is provided for penetrating and fastening these.
  • the end plate 103 has a supply port 105A and a discharge port 105B for hydrogen gas, a supply port 106A and a discharge port 106B for air, a supply port 107A and a discharge port 107B for cooling water, respectively.
  • the fuel cell 30 includes a membrane electrode assembly (MEA) 1 and a pair of separators 31 and 32 sandwiching the MEA 1.
  • MEA membrane electrode assembly
  • the MEA 1 is formed by integrally forming a catalyst layer lb, lc and a gas diffusion layer 4a, 4b on both surfaces of an electrolyte membrane la held inside a resin frame 20, respectively.
  • the catalyst layers lb and lc contain a catalyst such as platinum, and are coated on both sides of the electrolyte membrane la using a method such as coating. Formed.
  • the catalyst layer lb formed on one side of the electrolyte membrane la constitutes the anode of the fuel cell, and the catalyst layer lc formed on the other side constitutes the power source of the fuel cell.
  • the gas diffusion layer 4a contacts the anode catalyst layer lb, and the gas diffusion layer 4b contacts the cathode catalyst layer lc.
  • the surface of the gas diffusion layer 4a in contact with the catalyst layer lb is flat, but the opposite surface is wavy.
  • the surface of the gas diffusion layer 4b in contact with the catalyst layer lc is flat, but the surface on the opposite side is wavy.
  • the gas diffusion layers 4a and 4b are made of carbon paper having such a cross-sectional shape whose main component is carbon.
  • the gas diffusion layers 4a and 4b are bonded to the catalyst layers lb and lc, respectively, and then integrated with the electrolyte membrane 1a and the catalyst layers lb and lc by applying a heat treatment.
  • the gas diffusion layer 4a is formed in a rectangular planar shape having the same dimensions as the catalyst layer lc, and is located at the center of the electrolyte membrane 1a having a somewhat larger rectangular planar shape.
  • the plurality of parallel thin lines of the gas diffusion layer 4a in the figure indicate the direction of the groove formed by the gas diffusion layer 4a having a corrugated cross section.
  • the planar shape of the gas diffusion layer 4b is the same as the gas diffusion layer 4a, and the gas diffusion layer 4b is formed symmetrically with the gas diffusion layer 4a with the electrolyte membrane 1a interposed therebetween.
  • a supply manifold 105c and a discharge manifold 105d for hydrogen gas as an anode gas are formed on the frame 20 holding the electrolyte membrane la.
  • a supply manifold 106c and a discharge manifold 106d for the air as the power source gas are formed on the frame 20 holding the electrolyte membrane la.
  • the supply of the cooling liquid and the lined manifolds 107c and 107d are formed.
  • through holes 104 a of the evening port 104 are formed at the four corners of the frame 20.
  • the manifolds 105c, 105d, 106d, 106d, 107c, 107d are hermetically sealed by a seal member 21 sandwiched between the frame 20 and the separators 31, 32.
  • the anode separator 31 facing the gas diffusion layer 4a includes a metal flat plate 5a shown in FIG. 2A and a metal corrugated plate 2 shown in FIG. 2B.
  • the flat plate 5a has a hydrogen gas supply manifold 105c.
  • a discharge manifold 105d, an air supply manifold 106c, a discharge manifold 106d, a coolant supply manifold 107c and 107d, and four through holes 104a are formed.
  • the corrugated plate 2 includes a corrugated portion 2a facing the gas diffusion layer 4b and a flat portion 2b around the corrugated portion 2a.
  • the corrugated portion 2a has a corrugated cross section corresponding to the corrugated cross section of the gas diffusion layer 4b.
  • the corrugated portion 2a is formed in the center of the corrugated plate 2 by press shaping in advance.
  • the flat section 2b has the same hydrogen gas supply manifold 105c and discharge manifold 105d as the flat plate 5a, the air supply manifold 106c and the discharge manifold 106d, and the coolant supply manifold 107c. And 107d and four through holes 104a. Further, the flat portion 2b is provided with a connection passage 105e for connecting the hydrogen supply manifold 105c and the upstream end of the hydrogen gas passage 10 formed inside the plurality of parallel grooves of the corrugated portion 2b. You. In addition, a connection path 105f that connects the downstream end of the hydrogen gas path 10 and the hydrogen discharge manifold 105d is formed.
  • the flow of hydrogen gas formed by the supply manifold 105c, the connection passage 105e, the hydrogen gas passage 10, the connection passage 105f, and the discharge manifold 105d is sealed by the seal member 22 sandwiched between the flat plate 5a and the corrugated plate 2. .
  • the air supply manifold 106c and the discharge manifold 106d, and the coolant supply manifold 107c and the discharge manifold 107d are hermetically sealed by the seal member 22 sandwiched between the flat plate 5a and the corrugated plate 2.
  • the outer dimensions of the flat plate 5a and the corrugated plate 2 are the same as the outer dimensions of the frame 20.
  • Numerous communication holes 8 are formed in the corrugated portion 2a. At this time, the cross-sectional area of the communication hole 8 per unit area of the corrugated portion 2a is increased toward the downstream of the hydrogen gas passage 10. Here, the number of communication holes 8 per unit area of the corrugated portion 2a is increased toward the downstream of the hydrogen gas passage 10. Instead of keeping the number of the communication holes 8 per unit area of the corrugated portion 2a constant, the diameter of the communication holes 8 may be increased toward the downstream of the hydrogen gas passage 10.
  • the hydrogen gas in the hydrogen gas passage 10 is supplied through the communication hole 8 to the gas diffusion layer 4a. Supplied to Hydrogen gas permeates the gas diffusion layer 4a to reach the anode, and generates electricity by causing an electrochemical reaction with oxygen in the air supplied to the force sword through the electrolyte membrane la. Since the hydrogen gas is consumed in this manner, the hydrogen concentration in the hydrogen gas passage 10 decreases as going downstream. By increasing the cross-sectional area of the communication hole 8 per unit area of the corrugated portion 2a toward the downstream of the hydrogen passage 10, the amount of hydrogen supplied to the gas diffusion layer 4a is made uniform over the entire length of the hydrogen passage 10. I do.
  • the force sword separator 32 facing the gas diffusion layer 4b includes a metal flat plate 5b shown in FIG. 2E and a metal corrugated plate 3 shown in FIG. 2D.
  • the flat plate 5b has the same specifications as the flat plate 5a on the anode side.
  • the corrugated plate 3 includes a press-formed corrugated portion 3a and a flat portion 3b located on the periphery thereof, similarly to the corrugated plate 2 on the anode side.
  • An air passage 11 is formed instead of the hydrogen gas passage 10 inside the plurality of parallel grooves of the corrugated portion 3a.
  • the supply manifold 105c and the discharge manifold 105d for the hydrogen gas, the air supply manifold 106c and the discharge manifold 106d, and the supply of the coolant are provided in the flat part 3b.
  • Manifolds 107c and 107d and four through holes 104a are formed. Further, a connection path 10e connecting the air supply manifold 106c and the upstream end of the air passage 11 and a connection path 106f connecting the air discharge manifold 106d and the downstream end of the air passage 11 are provided. , Formed instead of the connecting paths 105e and 105f. In FIG. 2D, since these passages are formed on the back surface of the corrugated plate 3, they are shown by broken lines in the figure.
  • the air flow formed by the air supply manifold 106c, the connection passage 106e, the air passage 11, the connection passage 106f, and the discharge manifold 106d is sealed by the seal member 22 sandwiched between the flat plate 5b and the corrugated plate 3. Is done.
  • the hydrogen supply manifolds 105c and 105d and the coolant supply manifold 107c and the discharge manifold 107d are similarly sealed by the seal member 22 sandwiched between the flat plate 5b and the corrugated plate 3.
  • External dimensions of flat plate 5b and corrugated plate 3 The method is the same as the external dimensions of the frame 20.
  • a large number of communication holes 8 are formed in the air passage 11 of the corrugated portion 3a.
  • the cross-sectional area of the communication hole 8 per unit area of the corrugated portion 3a is increased toward the downstream of the air passage 11.
  • the number of the communication holes 8 per unit area of the corrugated portion 3a is increased toward the downstream of the air passage 11.
  • the diameter of the communication holes 8 may be increased toward the downstream of the air passage 11.
  • the air in the air passage 11 is supplied to the gas diffusion layer 4b through the communication hole 8.
  • the air passes through the gas diffusion layer 4b to reach a force sword, and oxygen in the air reacts with protons that have passed through the electrolyte membrane 1 to generate water. Due to the oxygen being consumed in the power sword in this manner, the air passage 11 has a lower oxygen concentration downstream.
  • the amount of oxygen supplied to the gas diffusion layer 4b is made uniform over the entire length of the air passage 11.
  • the shape of the through hole 8 formed in the corrugated portions 2a and 3a is also preferable that the cross section of the through hole 8 is tapered from the entrance to the exit.
  • the only difference is that the hydrogen gas passage 10 is formed in the separator 31 and the air passage 11 is formed in the separator 32, and other configurations are the same.
  • the configuration of these passages 10 and 11 depends exclusively on the arrangement of the sealing member 22.
  • the separator 31 can be used as the separator 32, or vice versa, simply by changing the arrangement of the seal member 22.
  • Such high commonality of the components of Separe Ito 31 and Separe Ito 32 is preferable in facilitating the production of the fuel cell 30 and reducing the production cost.
  • the stacked body of the fuel cells 30 constituting the fuel cell stack 100 is formed by stacking the fuel cells 30 configured as described above as shown in FIG. As shown in FIG.
  • the flat plate 5a is used as a flat plate 5b of another adjacent fuel cell 30 as a flat plate.
  • the rat plate 5b is used as the flat plate 5a of another adjacent fuel cell 30. That is, one flat plate is shared by the two fuel cells 30 as the flat plates 5a and 5b.
  • the cooling layer 9 comprises coolant passages 9a and 9b bisected by a plate 15 of corrugated cross section sandwiched between flat plates 5a and 5b.
  • the coolant is supplied to the coolant passages 9a and 9b from a coolant supply manifold 107c.
  • the coolant passage 9 a mainly cools the fuel cell 30 above the cooling layer 9.
  • the coolant passage 9b mainly cools the fuel cell 30 below the cooling layer 9.
  • the coolant flowing down the coolant passages 9a and 9b is collected in a coolant discharge manifold 107d.
  • the layout of the cooling layer 9 can be arbitrarily changed as needed. For example, by alternately stacking the fuel cells 30 and the cooling layers 9, higher cooling performance can be obtained.
  • the gas diffusion layer 4a is formed in a corrugated cross section, and the gas diffusion layer 4a and the hydrogen gas passage 10 are defined via the corrugated plate 2 having the corrugated portion 2a of the same cross section.
  • the cross-sectional area of the communication hole 8 per unit area of the corrugated portion 2a or 3a is increased, so that the thickness of the separator 31 is not increased, and the gas diffusion layer 4a is Supply of hydrogen gas can be made uniform.
  • the gas diffusion layer 4b is formed in a corrugated cross section, and the gas diffusion layer 4b and the air passage 11 are defined through the corrugated plate 3 having the corrugated portion 3a of the same cross section.
  • the cross-sectional area of the communication hole 8 per unit area of the corrugated section 2a or 3a was increased, so that air was supplied to the gas diffusion layer 4b without increasing the thickness of the separator 32. It can be made uniform.
  • the structural strength of the fuel cell 30 can be increased by the corrugated sheets 2, 3, and 15. Further, the gas diffusion layer a having the corrugated cross section is engaged with the corrugated portion 2a, and the gas diffusion layer 4b having the corrugated cross section is correlated with the corrugated portion 3a. The function of preventing the slippage of the separation 31 and 32 and the MEA 1 during stacking.
  • a fuel cell 30 which is thin, has high power generation efficiency, and is structurally stable can be obtained.
  • both the gas diffusion layer 4a on the anode side and the gas diffusion layer 4b on the force side have a corrugated cross section, and the corrugated plates 2 and 3 define a hydrogen gas passage 10 and an air passage 11. It goes without saying that a corresponding effect can be obtained even when the above configuration is applied to only one of the gas diffusion layer 4a on the node side and the gas diffusion layer 4b on the cathode side.
  • This embodiment is different from the first embodiment in the configuration of the coolant passage. That is, in the first embodiment, all of the plurality of grooves defined in the corrugated plate 2 and the flat plate 5 are the hydrogen gas passages 10, but in this embodiment, the hydrogen gas passages 10 are alternately arranged in every other row. A coolant passage 12 is formed. Similarly, air passages 11 and coolant passages 12 are formed in the grooves defined in the corrugated plate 3 and the flat plate 5 every other row. For this purpose, seal members 13 are arranged at the respective contacts of the corrugated plate 2 and the flat plate 5 and at the respective contacts of the corrugated plate 3 and the flat plate 5. The communication hole 8 is formed only on the surface of the corrugated portion 3a facing the air passage 11.
  • the coolant is supplied to the coolant passage 12 from a coolant supply manifold 107c.
  • the coolant flowing down the coolant passage 12 is collected in a coolant discharge manifold 107d.
  • the independent cooling layer 9 becomes unnecessary, the thickness of the fuel cell stack 100 can be further reduced.
  • the present invention has been described through some specific embodiments, but the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims. As described above, the present invention has been described through some specific embodiments, but the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims.
  • the gas diffusion layer and the gas passage are defined by the corrugated plate having the communication holes, so that the reaction gas can be supplied to the anode or the power source while suppressing the thickness of the fuel cell. It can be supplied uniformly.
  • the use of corrugated plates also improves the structural stability of the fuel cell. Therefore, the present invention contributes to realization of a small and powerful fuel cell stack particularly suitable for mounting on a vehicle.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell (30) wherein catalyst layers (1b, 1c) are provided on both sides of an electrolytic membrane (1a), gas diffusion layers (4a, 4b) are provided outside the catalyst layers (1b, 1c), reaction gases such as hydrogen gas and air are supplied through gas passages (10, 11) to the gas diffusion layers (4a, 4b), the gas diffusion layers (4a, 4b) have wavy cross-sections, and the gas passages (10, 11) and the gas diffusion layers (4a, 4b) are partitioned by corrugated sheets (2, 3). Communication holes (8) are formed in the corrugated sheets (2, 3). Therefore, the thickness of the fuel cell (30) is small and uniform supply of the gasses to the gas diffusion layers (4a, 4b) is achieved.

Description

明 細 書  Specification
燃料電池 発明の所属分野 この発明は、 燃料電池のガス拡散層とガス通路の構成に関する。 発明の背景 日本国特許庁が 1994年に発行した JP H06-283177Aは燃料電池のセパレ 夕を金属 製の矩形断面の部材で構成し、 内側を波形断面のバネルで補強することを教えている。 ァ ノ一ド側セパレ一夕と、 アノードまたはアノードガス拡散層とは、 数多くの細孔を有する フラッ卜なアノード集電板に仕切られている。 アノード集電板には数多くの細孔が形成さ れ、 セパレー夕内に形成されたアノードガス通路からアノードへとこれらの細孔を介して アノードガスを供給している。 カソ一ド側のセパレ一夕の内部は波形断面のパネルで仕切 られ セパレー夕と力ソードまたは力ソード ス披翻とは、 くの紐しを "るフラッ トなカソード集電板に仕切られている。 力ソード集電板には数多くの細孔が形成され、 セ パレー夕内に形成されたカゾードガス通路からアノードへとこれらの細孔を介してァノ一 ドガスを供給している。  TECHNICAL FIELD The present invention relates to a configuration of a gas diffusion layer and a gas passage of a fuel cell. BACKGROUND OF THE INVENTION JP H06-283177A issued by the JPO in 1994 teaches that the separator of a fuel cell is made of a metal member with a rectangular cross section, and the inside is reinforced with a corrugated panel. The anode side separator and the anode or anode gas diffusion layer are partitioned by a flat anode current collector plate having many pores. Numerous pores are formed in the anode current collector plate, and the anode gas is supplied to the anode from the anode gas passage formed in the separator through these pores. The interior of the separator on the cathode side is divided by a panel with a corrugated section, and the separator and the power sword or power sword are separated by a flat cathode current collector that ties the string. A large number of pores are formed in the power source current collector plate, and anode gas is supplied to the anode from the cathode gas passage formed in the separator through these pores.
一方、 日本国特許庁が 2003年に発行した JP12003-109648Aは、 セパレー夕のァノ一 ドまたはァノ一ドガス拡散層との接触面、 及びセパレ一タの力ソードまたは力ソードガス 拡散層との接触面をそれぞれ波板で構成することを教えている。 波板とアノードとの間に はアノードガス通路が形成され、 波板と力ソードとの間には力ソードガス通路が形成され る。 発明の開示 前者の従来技術においては、 細孔の数を変化させることで、 例えばアノードガス通路の 上流部と下流部とで、 アノードガスのアノードへの供給を均一化することが可能である。 しかし、 フラットなアノード集電板とカゾード集電板を用いることで、 燃料電池を積層し て燃料電池スタックを構成する場合に、 スタックの積層方向の寸法が増大することは避け られない。 On the other hand, JP12003-109648A issued by the Japan Patent Office in 2003 has a contact surface with the anode or anode gas diffusion layer at the separator and the force source or force gas diffusion layer at the separator. It teaches that each contact surface is made of a corrugated sheet. An anode gas passage is formed between the corrugated plate and the anode, and a force sword gas passage is formed between the corrugated plate and the force sword. DISCLOSURE OF THE INVENTION In the former prior art, the supply of anode gas to the anode can be made uniform by changing the number of pores, for example, at the upstream and downstream of the anode gas passage. However, when a flat anode current collector and a cathode current collector are used to form a fuel cell stack by stacking fuel cells, it is inevitable that the dimension in the stacking direction of the stack increases.
後者の従来技術においては、 アノードガスはアノードまたはアノードガス拡散層に直接 接し、 同様に力ソードガス藤は力ソードま はカソ一ドガス拡編に直擺する。 また、 波板の内側の内側には、 冷却液通路が形成される。  In the latter prior art, the anode gas is in direct contact with the anode or anode gas diffusion layer, and similarly the force gas gas flies directly into the force gas or cathode gas expansion. Further, a coolant passage is formed inside the corrugated plate.
この構成においては、 前者の従来技術のようなアノード集電板ゃカソ一ド集電板は不要 となる代わりに、 セパレ一夕の外面に波板を用いることで、 セパレ一夕の軸方向の厚さが 増し、 結果としてスタックの積層方向の寸法はやはり増大する。 アノードガスがアノード またはアノードガス拡散層に直接接することから、 アノードガス通路の上流部と下流部と で、 アノードガスのアノードへの供給を均一化することは難しい。 力ソ一ドガスの供給も 同様である。  In this configuration, instead of using the anode current collector and the cathode current collector as in the former prior art, the corrugated plate is used on the outer surface of the separator to reduce the axial direction of the separator. The thickness increases, and consequently the stack dimension in the stacking direction also increases. Since the anode gas is in direct contact with the anode or the anode gas diffusion layer, it is difficult to equalize the supply of the anode gas to the anode at the upstream portion and the downstream portion of the anode gas passage. The same applies to the supply of force gas.
この発明の目的は、 したがって、 燃料電池の厚みを抑えつつ、 アノードガスをアノード に均一に供給し、 あるいは力ソードガスを力ソードに均一に供給することである。  It is therefore an object of the present invention to uniformly supply anode gas to the anode or uniformly supply force gas to the force sword while suppressing the thickness of the fuel cell.
この目的を達成するために、 この発明は、 ガスの触媒を介した電気ィ匕学反応により発電 を行う燃料電池において、 ガスを流通させるガス通路と、 ガス通路のガスを触媒に伝達す る、 触媒に接したガス拡散層と、 ガス拡散層とガス通路とを画成する波板とを備え、 波板 にガス通路からガス拡散層へとガスを導く複数の連通孔を形成する。  In order to achieve this object, the present invention relates to a fuel cell for generating electricity by an electric power generation reaction through a gas catalyst, wherein a gas passage through which a gas flows and a gas in the gas passage are transmitted to the catalyst. A gas diffusion layer is provided in contact with the catalyst, and a corrugated plate defining the gas diffusion layer and the gas passage is provided. The corrugated plate has a plurality of communication holes for guiding gas from the gas passage to the gas diffusion layer.
この発明の詳細並びに他の特徴や利点は、 明細書の以降の記載の中で説明されるととも に、 添付された図面に示される 図面の簡単な説明 Details of the invention, as well as other features and advantages, will be set forth in the following description of the specification. Brief description of the drawings shown in the attached drawings
FIG. 1はこの発明による燃料電池、 を用いた燃料電池スタックの斜視図である。 FIG. 1 is a perspective view of a fuel cell stack using the fuel cell according to the present invention.
FIGs. 2A-2Eは燃料電池の分解概略斜視図である。  FIGS. 2A-2E are exploded schematic perspective views of the fuel cell.
FIG. 3は燃料電池スタック要部の横断面図である。  FIG. 3 is a cross-sectional view of a main part of the fuel cell stack.
FIG. は燃料電池を構成する膜電極複合体の部分断面図である。  FIG. Is a partial sectional view of a membrane electrode assembly constituting a fuel cell.
FIG. 5はこの発明による連通孔、 の形状に関するバリエーションを説明する、 燃料電池 要部の横断面図である。  FIG. 5 is a cross-sectional view of a main part of the fuel cell, illustrating a variation of the shape of the communication hole according to the present invention.
FIG. 6はこの発明の第 2の実施例による、 燃料電池スタック要部の横断面図である。 好ましい実施例の説明 図面の FIG. 1 を参照すると、 燃料電池スタック 100は、 数多くの燃料電池 30の積層 体と、 その両端にそれぞれ配置された集電板 101と絶縁板 102とェンドブレート 103と、 これらを貫通して締結するタイロッドポルト 104とを備える。  FIG. 6 is a cross-sectional view of a main part of a fuel cell stack according to a second embodiment of the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 of the drawings, a fuel cell stack 100 includes a stack of a number of fuel cells 30, a current collector 101, an insulating plate 102, and an end plate 103 disposed at both ends thereof, respectively. A tie rod port 104 is provided for penetrating and fastening these.
一方のエンドプレート 103 には水素ガスの供給口 105 Aと排出口 105B、 空気の供給 口 106 Aと排出口 106B、 冷却水の供給口 107Aと排出口 107Bがそれぞれ形成される。  The end plate 103 has a supply port 105A and a discharge port 105B for hydrogen gas, a supply port 106A and a discharge port 106B for air, a supply port 107A and a discharge port 107B for cooling water, respectively.
FIG. 3を参照すると、 燃料電池 30は、 膜電極複合体(MEA)1 と、 MEA 1 を挟持する 一対のセパレ一夕 31 と 32からなる。  Referring to FIG. 3, the fuel cell 30 includes a membrane electrode assembly (MEA) 1 and a pair of separators 31 and 32 sandwiching the MEA 1.
FIG. 4を参照すると、 MEA 1 は、 樹脂製のフレーム 20の内側に保持された電解質膜 laの両面にそれぞれ触媒層 lb, lc とガス拡散層 4a, 4bを一体に形成したものである。 触媒層 lbと lcは白金などの触媒を含み、 電解質膜 laの両面に、 塗布などの方法を用い て形成される。 電解質膜 la の一方の面に形成された触媒層 lb は燃料電池のアノードを 構成し、 もう一面に形成された触媒層 lcは燃料電池の力ソードを構成する。 Referring to FIG. 4, the MEA 1 is formed by integrally forming a catalyst layer lb, lc and a gas diffusion layer 4a, 4b on both surfaces of an electrolyte membrane la held inside a resin frame 20, respectively. The catalyst layers lb and lc contain a catalyst such as platinum, and are coated on both sides of the electrolyte membrane la using a method such as coating. Formed. The catalyst layer lb formed on one side of the electrolyte membrane la constitutes the anode of the fuel cell, and the catalyst layer lc formed on the other side constitutes the power source of the fuel cell.
ガス拡散層 4aはアノード触媒層 lbに接し、 ガス拡散層 4bはカゾード触媒層 lcに接 する。  The gas diffusion layer 4a contacts the anode catalyst layer lb, and the gas diffusion layer 4b contacts the cathode catalyst layer lc.
ガス拡散層 4aの触媒層 lb に接する面は平面をなすが、 反対側の面は波形をなす。 同 様に、 ガス拡散層 4bの触媒層 lcに接する面は平面をなすが、 反対側の面は波形をなす。 ガス拡散層 4aと 4bは、 力一ボンを主成分とするこのような断面形状のカーボンペーパー で構成される。 ガス拡散層 4aと 4bは触媒層 lbと lcにそれぞれ接着させた後に、 熱処 理を加えることで電解質膜 1 a及び触媒層 lb, lcと一体化する。  The surface of the gas diffusion layer 4a in contact with the catalyst layer lb is flat, but the opposite surface is wavy. Similarly, the surface of the gas diffusion layer 4b in contact with the catalyst layer lc is flat, but the surface on the opposite side is wavy. The gas diffusion layers 4a and 4b are made of carbon paper having such a cross-sectional shape whose main component is carbon. The gas diffusion layers 4a and 4b are bonded to the catalyst layers lb and lc, respectively, and then integrated with the electrolyte membrane 1a and the catalyst layers lb and lc by applying a heat treatment.
FIG. 2Cを参照すると、 ガス拡散層 4aは触媒層 lc と同じ寸法の矩形の平面形に形成 され、 ひとまわり大きな矩形の平面形を有する電解質膜 1 aの中央に位置する。 図のガス 拡散層 4a の複数の平行な細線は波形断面のガス拡散層 4aが形成する溝の方向を示す。 ガス拡散層 4b の平面形はガス拡散層 4a と同一であり、 ガス拡散層 4b は電解質膜 1 a を挟んでガス拡散層 4aと対称位置に形成される。  Referring to FIG. 2C, the gas diffusion layer 4a is formed in a rectangular planar shape having the same dimensions as the catalyst layer lc, and is located at the center of the electrolyte membrane 1a having a somewhat larger rectangular planar shape. The plurality of parallel thin lines of the gas diffusion layer 4a in the figure indicate the direction of the groove formed by the gas diffusion layer 4a having a corrugated cross section. The planar shape of the gas diffusion layer 4b is the same as the gas diffusion layer 4a, and the gas diffusion layer 4b is formed symmetrically with the gas diffusion layer 4a with the electrolyte membrane 1a interposed therebetween.
電解質膜 laを保持するフレーム 20には、 アノードガスである水素ガスの供給マ二ホー ルド 105c と排出マ二ホールド 105d とが形成される。 同様に、 力ソードガスである空気 の供給マ二ホールド 106c と排出マ二ホールド 106dが形成される。 さらに同様に冷却液 の供,袷マ二ホールド 107cと 107dが形成される。 また、 フレーム 20の四隅には夕イロッ ドポルト 104の貫通孔 104 aが形成される。 これらのマニホ一ルド 105c, 105d, 106d, 106d, 107c, 107dは、 FIG. 3に示すように、 フレーム 20とセパレー夕 31, 32とに挟持 されるシール部材 21により密閉される。  On the frame 20 holding the electrolyte membrane la, a supply manifold 105c and a discharge manifold 105d for hydrogen gas as an anode gas are formed. Similarly, a supply manifold 106c and a discharge manifold 106d for the air as the power source gas are formed. Further, similarly, the supply of the cooling liquid and the lined manifolds 107c and 107d are formed. Further, through holes 104 a of the evening port 104 are formed at the four corners of the frame 20. As shown in FIG. 3, the manifolds 105c, 105d, 106d, 106d, 107c, 107d are hermetically sealed by a seal member 21 sandwiched between the frame 20 and the separators 31, 32.
ガス拡散層 4aに臨むアノードセパレータ 31 は、 FIG. 2Aに示す金属製のフラットプ レート 5aと、 FIG. 2Bに示す金属製の波板 2とを備える。  The anode separator 31 facing the gas diffusion layer 4a includes a metal flat plate 5a shown in FIG. 2A and a metal corrugated plate 2 shown in FIG. 2B.
FIG. 2Aを参照すると、 フラットプレート 5 aには、 水素ガスの供給マ二ホールド 105c と排出マ二ホールド 105d、 空気の供給マ二ホ一ルド 106cと排出マ二ホ一ルド 106d及び 冷却液の供給マ二ホールド 107cと 107dと、 4個の貫通孔 104aとが形成される。 Referring to FIG. 2A, the flat plate 5a has a hydrogen gas supply manifold 105c. A discharge manifold 105d, an air supply manifold 106c, a discharge manifold 106d, a coolant supply manifold 107c and 107d, and four through holes 104a are formed.
FIG. 2Bを参照すると、 波板 2は、 ガス拡散層 4bに面した波形部 2aと、 その周囲の フラット部 2bからなる。 波形部 2aは、 FIG. 3に示すように、 ガス拡散層 4bの波形断 面に対応した波形断面を備える。 波形部 2aはあらかじめプレス整形により波板 2の中央 部に形成される。  Referring to FIG. 2B, the corrugated plate 2 includes a corrugated portion 2a facing the gas diffusion layer 4b and a flat portion 2b around the corrugated portion 2a. As shown in FIG. 3, the corrugated portion 2a has a corrugated cross section corresponding to the corrugated cross section of the gas diffusion layer 4b. The corrugated portion 2a is formed in the center of the corrugated plate 2 by press shaping in advance.
フラット部 2bには、 フラットプレート 5aと同様の水素ガスの供給マ二ホールド 105c と排出マニホ一ルド 105d、 空気の供給マ二ホールド 106cと排出マ二ホールド 106d、 冷 却液の供給マ二ホールド 107cと 107d及び 4個の貫通孔 104aとが形成される。 さらに、 フラット部 2bには、 水素の供給マ二ホールド 105cと、 波形部 2bの複数の並行な溝の内 側に構成される水素ガス通路 10の上流端とを接続する接続路 105eが形成される。 また、 水素ガス通路 10の下流端と水素の排出マ二ホールド 105dを接続する接続路 105fが形成 される。 供給マニホ一ルド 105c、 接続路 105e、 水素ガス通路 10、 接続路 105f及び排出 マ二ホールド 105dが形成する水素ガスの流れはフラットプレート 5aと波板 2に挟持さ れるシール部材 22 によって密閉される。 空気の供給マニホ一ルド 106c と排出マ二ホー ルド 106d、 冷却液の供給マ二ホールド 107cと排出マニホ一ルド 107dも同様にフラット プレート 5aと波板 2に挟持されるシール部材 22 によって密閉される。 フラットプレー ト 5aと波板 2の外形寸法は、 フレーム 20の外形寸法と同一である。  The flat section 2b has the same hydrogen gas supply manifold 105c and discharge manifold 105d as the flat plate 5a, the air supply manifold 106c and the discharge manifold 106d, and the coolant supply manifold 107c. And 107d and four through holes 104a. Further, the flat portion 2b is provided with a connection passage 105e for connecting the hydrogen supply manifold 105c and the upstream end of the hydrogen gas passage 10 formed inside the plurality of parallel grooves of the corrugated portion 2b. You. In addition, a connection path 105f that connects the downstream end of the hydrogen gas path 10 and the hydrogen discharge manifold 105d is formed. The flow of hydrogen gas formed by the supply manifold 105c, the connection passage 105e, the hydrogen gas passage 10, the connection passage 105f, and the discharge manifold 105d is sealed by the seal member 22 sandwiched between the flat plate 5a and the corrugated plate 2. . Similarly, the air supply manifold 106c and the discharge manifold 106d, and the coolant supply manifold 107c and the discharge manifold 107d are hermetically sealed by the seal member 22 sandwiched between the flat plate 5a and the corrugated plate 2. . The outer dimensions of the flat plate 5a and the corrugated plate 2 are the same as the outer dimensions of the frame 20.
波形部 2aには、 数多くの連通孔 8を形成する。 その際に、 水素ガス通路 10の下流に 行くにつれて波形部 2aの単位面積当たりの連通孔 8の断面積が増大するようにする。 こ こでは、 水素ガス通路 10 の下流に行くにつれて波形部 2aの単位面積当たりの連通孔 8 の数を増やしている。 波形部 2aの単位面積当たりの連通孔 8の数を一定とする代わりに、 水素ガス通路 10の下流に行くにつれて連通孔 8の径を増大させても良い。  Numerous communication holes 8 are formed in the corrugated portion 2a. At this time, the cross-sectional area of the communication hole 8 per unit area of the corrugated portion 2a is increased toward the downstream of the hydrogen gas passage 10. Here, the number of communication holes 8 per unit area of the corrugated portion 2a is increased toward the downstream of the hydrogen gas passage 10. Instead of keeping the number of the communication holes 8 per unit area of the corrugated portion 2a constant, the diameter of the communication holes 8 may be increased toward the downstream of the hydrogen gas passage 10.
FIG. 3を参照すると、 水素ガス通路 10の水素ガスは連通孔 8を介してガス拡散層 4a に供給される。 水素ガスはガス拡散層 4a を透過してアノードに至り、 力ソードに供給さ れる空気中の酸素と電解質膜 la を介して電気化学反応を起こすことで発電を行う。 水素 ガスがこのように消費されるため、 水素ガス通路 10 の水素濃度は下流に行くにつれて低 下する。 水素通路 10の下流に行くほど、 波形部 2aの単位面積当たりの連通孔 8の断面 積を増やすことで、 ガス拡散層 4a に供給される水素量は、 水素通路 10 の全長に渡って 均一化する。 Referring to FIG. 3, the hydrogen gas in the hydrogen gas passage 10 is supplied through the communication hole 8 to the gas diffusion layer 4a. Supplied to Hydrogen gas permeates the gas diffusion layer 4a to reach the anode, and generates electricity by causing an electrochemical reaction with oxygen in the air supplied to the force sword through the electrolyte membrane la. Since the hydrogen gas is consumed in this manner, the hydrogen concentration in the hydrogen gas passage 10 decreases as going downstream. By increasing the cross-sectional area of the communication hole 8 per unit area of the corrugated portion 2a toward the downstream of the hydrogen passage 10, the amount of hydrogen supplied to the gas diffusion layer 4a is made uniform over the entire length of the hydrogen passage 10. I do.
ガス拡散層 4b に臨む力ソードセパレー夕 32は、 FIG, 2Eに示す金属製のフラットプ レート 5bと、 FIG. 2Dに示す金属製の波板 3とを備える。  The force sword separator 32 facing the gas diffusion layer 4b includes a metal flat plate 5b shown in FIG. 2E and a metal corrugated plate 3 shown in FIG. 2D.
フラットプレート 5b はアノード側のフラットプレート 5a と同一仕様である。 波板 3 は、 アノード側の波板 2 と同様に、 プレス成型された波形部 3a とその周縁に位置するフ ラット部 3bとを備える。 波形部 3aの複数の並行な溝の内側には水素ガス通路 10に代え て空気通路 11 が形成される。 フラヅト部 3bには、 波板 2のフラット部 2aと同様に、 水素ガスの供給マ二ホールド 105c と排出マ二ホールド 105d、 空気の供給マニホ一ルド 106cと排出マニホ一ルド 106d、 冷却液の供給マ二ホールド 107cと 107d及び 4個の貫 通孔 104aとが形成される。 さらに、 空気の供給マニホ一ルド 106c と空気通路 11 の上 流端とを接続する接続路 10eと、 空気の排出マ二ホールド 106dと空気通路 1 1の下流端 とを接続する接続路 106f とが、 接続路 105eと 105fの代わりに形成される。 なお、 FIG. 2D において、 これらの通路は波板 3 の裏面に形成されるので、 図には破線で示されてい る。  The flat plate 5b has the same specifications as the flat plate 5a on the anode side. The corrugated plate 3 includes a press-formed corrugated portion 3a and a flat portion 3b located on the periphery thereof, similarly to the corrugated plate 2 on the anode side. An air passage 11 is formed instead of the hydrogen gas passage 10 inside the plurality of parallel grooves of the corrugated portion 3a. In the flat part 3b, similarly to the flat part 2a of the corrugated plate 2, the supply manifold 105c and the discharge manifold 105d for the hydrogen gas, the air supply manifold 106c and the discharge manifold 106d, and the supply of the coolant are provided. Manifolds 107c and 107d and four through holes 104a are formed. Further, a connection path 10e connecting the air supply manifold 106c and the upstream end of the air passage 11 and a connection path 106f connecting the air discharge manifold 106d and the downstream end of the air passage 11 are provided. , Formed instead of the connecting paths 105e and 105f. In FIG. 2D, since these passages are formed on the back surface of the corrugated plate 3, they are shown by broken lines in the figure.
空気の供給マ二ホールド 106c、 接続路 106e、 空気通路 1 1、 接続路 106f及び排出マ二 ホールド 106dが形成する空気の流れはフラットプレート 5b と波板 3に挟持されるシー ル部材 22によって密封される。 水素の供給マ二ホールド 105cと 105d、 冷却液の供給マ ニホ一ルド 107cと排出マ二ホールド 107dも同様にフラットプレート 5bと波板 3に挟 持されたシール部材 22によってシ一ルされる。 フラットプレート 5b と波板 3の外形寸 法は、 フレーム 20の外形寸法と同一である。 The air flow formed by the air supply manifold 106c, the connection passage 106e, the air passage 11, the connection passage 106f, and the discharge manifold 106d is sealed by the seal member 22 sandwiched between the flat plate 5b and the corrugated plate 3. Is done. The hydrogen supply manifolds 105c and 105d and the coolant supply manifold 107c and the discharge manifold 107d are similarly sealed by the seal member 22 sandwiched between the flat plate 5b and the corrugated plate 3. External dimensions of flat plate 5b and corrugated plate 3 The method is the same as the external dimensions of the frame 20.
波形部 3aの空気通路 11には、 数多くの連通孔 8を形成する。 その際に、 空気通路 11 の下流に行くにつれて波形部 3aの単位面積当りの連通孔 8の断面積が増大するようにす る。 ここでは、 空気通路 11 の下流に行くにつれて波形部 3aの単位面積当りの連通孔 8 の数を増やしている。 波形部 3aの単位面積当たりの連通孔 8の数を一定とする代わりに、 空気通路 11の下流に行くにつれて連通孔 8の径を増大させても良い。  A large number of communication holes 8 are formed in the air passage 11 of the corrugated portion 3a. At this time, the cross-sectional area of the communication hole 8 per unit area of the corrugated portion 3a is increased toward the downstream of the air passage 11. Here, the number of the communication holes 8 per unit area of the corrugated portion 3a is increased toward the downstream of the air passage 11. Instead of keeping the number of the communication holes 8 per unit area of the corrugated portion 3a constant, the diameter of the communication holes 8 may be increased toward the downstream of the air passage 11.
FIG. 3を参照すると、 空気通路 11の空気は連通孔 8を介してガス拡散層 4bに供給さ れる。 空気はガス拡散層 4b を透過して力ソードに至り、 空気中の酸素が、 電解質膜 1 を 透過したプロトンと反応して水を生成する。 酸素がこのようにして力ソードで消費される ことにより、 空気通路は 11 の酸素濃度は下流に行くにつれて低下する。 空気通路 11 の 下流ほど波形部 3aの単位面積当たりの連通孔 8の断面積を増大させることで、 ガス拡散 層 4bに供給される酸素量は、 空気通路 11の全長に渡って均一化する。  Referring to FIG. 3, the air in the air passage 11 is supplied to the gas diffusion layer 4b through the communication hole 8. The air passes through the gas diffusion layer 4b to reach a force sword, and oxygen in the air reacts with protons that have passed through the electrolyte membrane 1 to generate water. Due to the oxygen being consumed in the power sword in this manner, the air passage 11 has a lower oxygen concentration downstream. By increasing the cross-sectional area of the communication hole 8 per unit area of the corrugated portion 3a downstream of the air passage 11, the amount of oxygen supplied to the gas diffusion layer 4b is made uniform over the entire length of the air passage 11.
波形部 2a及び 3aに形成する貫通孔 8の形状については様々なバリエーションが可能 である。 例えば、 FIG. 5 に示すように、 貫通孔 8 の断面を入口から出口に向けてテーパ 状に拡大することも好ましい。  Various variations are possible for the shape of the through hole 8 formed in the corrugated portions 2a and 3a. For example, as shown in FIG. 5, it is also preferable that the cross section of the through hole 8 is tapered from the entrance to the exit.
セパレ一タ 31 と 32を比較すると、 セパレ一夕 31に水素ガス通路 10が形成され、 セ パレー夕 32 に空気通路 11 が形成される点のみが異なり、 他の構成は同一である。 これ らの通路 10と 11の構成は、 もっぱらシール部材 22の配置に依存する。 言い換えれば、 シール部材 22の配置を変更するだけで、 セパレー夕 31をセパレー夕 32として、 あるい はその逆に用いることができる。 セパレ一夕 31 とセパレ一夕 32 の構成部材のこうした 高い共通性は、 燃料電池 30の製造を容易にし、 製造コストを低減させるうえで好ましい。 燃料電池スタック 100を構成する燃料電池 30の積層体は、 以上のように構成された燃 料電池 30を FIG. 3 に示すように積層することで構成される。 なお、 FIG. 3に示すよう に、 フラットプレート 5aは隣接する別の燃料電池 30のフラットプレート 5bとして、 フ ラットプレート 5bは隣接する別の燃料電池 30のフラットプレート 5aとして用いられる。 つまり、 一枚のフラッ卜プレートが、 二つの燃料電池 30でフラットプレート 5a、 5b と して共用される。 Comparing the separators 31 and 32, the only difference is that the hydrogen gas passage 10 is formed in the separator 31 and the air passage 11 is formed in the separator 32, and other configurations are the same. The configuration of these passages 10 and 11 depends exclusively on the arrangement of the sealing member 22. In other words, the separator 31 can be used as the separator 32, or vice versa, simply by changing the arrangement of the seal member 22. Such high commonality of the components of Separe Ito 31 and Separe Ito 32 is preferable in facilitating the production of the fuel cell 30 and reducing the production cost. The stacked body of the fuel cells 30 constituting the fuel cell stack 100 is formed by stacking the fuel cells 30 configured as described above as shown in FIG. As shown in FIG. 3, the flat plate 5a is used as a flat plate 5b of another adjacent fuel cell 30 as a flat plate. The rat plate 5b is used as the flat plate 5a of another adjacent fuel cell 30. That is, one flat plate is shared by the two fuel cells 30 as the flat plates 5a and 5b.
さらにこの実施例では、 FIG. 3に示すように二つの燃料電池 30 ごとに一個の冷却層 9 を設ける。 冷却層 9 はフラットプレート 5a と 5b に挟持された波形断面のプレート 15 によって 2分された冷却液通路 9aと 9bを備える。 冷却液通路 9aと 9bには冷却液の供 給マ二ホールド 107cから冷却液が供給される。 冷却液通路 9aは主として冷却層 9の上 方の燃料電池 30 を冷却する。 冷却液通路 9b は主として冷却層 9 の下方の燃料電池 30 を冷却する。 冷却液通路 9a と 9b を流下した冷却液は冷却液の排出マ二ホールド 107d に回収される。  Further, in this embodiment, as shown in FIG. 3, one cooling layer 9 is provided for every two fuel cells 30. The cooling layer 9 comprises coolant passages 9a and 9b bisected by a plate 15 of corrugated cross section sandwiched between flat plates 5a and 5b. The coolant is supplied to the coolant passages 9a and 9b from a coolant supply manifold 107c. The coolant passage 9 a mainly cools the fuel cell 30 above the cooling layer 9. The coolant passage 9b mainly cools the fuel cell 30 below the cooling layer 9. The coolant flowing down the coolant passages 9a and 9b is collected in a coolant discharge manifold 107d.
冷却層 9の配置は必要に応じて任意に設計変更可能である。 例えば、 燃料電池 30 と冷 却層 9を交互に積層すれば、 より高い冷却性能が得られる。  The layout of the cooling layer 9 can be arbitrarily changed as needed. For example, by alternately stacking the fuel cells 30 and the cooling layers 9, higher cooling performance can be obtained.
以上のように、 この燃料電池 30 は、 ガス拡散層 4a を波形断面に形成し、 同じ断面の 波形部 2aを有する波板 2を介してガス拡散層 4aと水素ガス通路 10を画成するととも に、 水素ガス通路 10の下流に行くにつれて、 波形部 2aまたは 3aの単位面積当たり 連 通孔 8 の断面積を増大させたので、 セパレー夕 31 の厚さを増やさずに、 ガス拡散層 4a への水素ガスの供給を均一化することができる。  As described above, in the fuel cell 30, the gas diffusion layer 4a is formed in a corrugated cross section, and the gas diffusion layer 4a and the hydrogen gas passage 10 are defined via the corrugated plate 2 having the corrugated portion 2a of the same cross section. In addition, as it goes downstream of the hydrogen gas passage 10, the cross-sectional area of the communication hole 8 per unit area of the corrugated portion 2a or 3a is increased, so that the thickness of the separator 31 is not increased, and the gas diffusion layer 4a is Supply of hydrogen gas can be made uniform.
同様に、 この燃料電池 30 は、 ガス拡散層 4b を波形断面に形成し、 同じ断面の波形部 3aを有する波板 3を介してガス拡散層 4bと空気通路 11を画成するとともに、 空気通路 11の下流に行くにつれて、 波形部 2aまたは 3aの単位面積当たりの連通孔 8の断面積を 増大させたので、 セパレー夕 32 の厚さを増やさずに、 ガス拡散層 4b への空気の供給を 均一化することができる。  Similarly, in the fuel cell 30, the gas diffusion layer 4b is formed in a corrugated cross section, and the gas diffusion layer 4b and the air passage 11 are defined through the corrugated plate 3 having the corrugated portion 3a of the same cross section. As going downstream of 11, the cross-sectional area of the communication hole 8 per unit area of the corrugated section 2a or 3a was increased, so that air was supplied to the gas diffusion layer 4b without increasing the thickness of the separator 32. It can be made uniform.
さらに、 波板 2, 3, 15によって、 燃料電池 30の構造強度も高められる。 さらに、 波形 断面のガス拡散層 aと波形部 2aの係合、 及び波形断面のガス拡散層 4bと波形部 3aと の係合は、 セパレ一夕 31, 32と MEA 1の積層時のずれを阻止する作用を及す。 Furthermore, the structural strength of the fuel cell 30 can be increased by the corrugated sheets 2, 3, and 15. Further, the gas diffusion layer a having the corrugated cross section is engaged with the corrugated portion 2a, and the gas diffusion layer 4b having the corrugated cross section is correlated with the corrugated portion 3a. The function of preventing the slippage of the separation 31 and 32 and the MEA 1 during stacking.
したがって、 本発明により、 薄く、 発電効率が高く、 構造的に安定した燃料電池 30 を 得ることができる。  Therefore, according to the present invention, a fuel cell 30 which is thin, has high power generation efficiency, and is structurally stable can be obtained.
この実施例では、 アノード側のガス拡散層 4a と力ソード側のガス拡散層 4b をともに 波形断面とし、 波板 2 と 3で水素ガス通路 10及び空気通路 11から画成しているが、 ァ ノード側のガス拡散層 4a とカゾード側のガス拡散層 4b の一方のみに上記の構成を適用 した場合でも相応の効果が得られることは言うまでもない。  In this embodiment, both the gas diffusion layer 4a on the anode side and the gas diffusion layer 4b on the force side have a corrugated cross section, and the corrugated plates 2 and 3 define a hydrogen gas passage 10 and an air passage 11. It goes without saying that a corresponding effect can be obtained even when the above configuration is applied to only one of the gas diffusion layer 4a on the node side and the gas diffusion layer 4b on the cathode side.
次に FIG. 6を参照して、 この発明の第 2の実施例を説明する。  Next, a second embodiment of the present invention will be described with reference to FIG.
この実施例は、 冷却液通路の構成が第 1の実施例と異なる。 すなわち、 第 1の実施例で は、 波板 2とフラットプレート 5に画成された複数の溝のすべてを水素ガス通路 10とし ていたが、 この実施例では、 一列おきに水素ガス通路 10 と冷却液通路 12 を形成する。 同様に、 波板 3とフラットプレ一ト 5に画成された溝に、 一列おきに空気通路 11 と冷却 液通路 12を形成する。 このために、 波板 2とフラットプレート 5の各接点、 波板 3とフ ラットプレー卜 5 の各接点にはそれぞれシール部材 13 を配置する。 連通孔 8 は波形部 3aの空気通路 11に臨む面のみに形成する。  This embodiment is different from the first embodiment in the configuration of the coolant passage. That is, in the first embodiment, all of the plurality of grooves defined in the corrugated plate 2 and the flat plate 5 are the hydrogen gas passages 10, but in this embodiment, the hydrogen gas passages 10 are alternately arranged in every other row. A coolant passage 12 is formed. Similarly, air passages 11 and coolant passages 12 are formed in the grooves defined in the corrugated plate 3 and the flat plate 5 every other row. For this purpose, seal members 13 are arranged at the respective contacts of the corrugated plate 2 and the flat plate 5 and at the respective contacts of the corrugated plate 3 and the flat plate 5. The communication hole 8 is formed only on the surface of the corrugated portion 3a facing the air passage 11.
冷却液通路 12 には、 冷却液の供給マ二ホールド 107cから冷却液を供給する。 冷却液 通路 12を流下した冷却液は冷却液の排出マ二ホールド 107dに回収する。  The coolant is supplied to the coolant passage 12 from a coolant supply manifold 107c. The coolant flowing down the coolant passage 12 is collected in a coolant discharge manifold 107d.
この実施例によれば、 独立した冷却層 9 が不要となるので、 燃料電池スタック 100 の 厚さをさらに小さくすことができる。  According to this embodiment, since the independent cooling layer 9 becomes unnecessary, the thickness of the fuel cell stack 100 can be further reduced.
2004年 2月 5 日を出願日とする日本国における特願 2004-029565号の内容をここに 引用により合体する。  The contents of Japanese Patent Application No. 2004-029565, filed on February 5, 2004, are hereby incorporated by reference.
以上のように、 この発明をいくつかの特定の実施例を通じて説明して来たが、 この発明 は上記の各実施例に限定されるものではない。 当業者にとっては、 クレームの技術範囲で これらの実施例にさよざまな修正あるいは変更を加えることが可能である。 以上のように、 この発明をいくつかの特定の実施例を通じて説明して来たが、 この発明 は上記の各実施例に限定されるものではない。 当業者にとっては、 クレームの技術範囲で これらの実施例にさよざまな修正あるいは変更を加えることが可能である。 適用産業分野 以上のようにこの発明は、 連通孔を形成した波板でガス拡散層とガス通路を画成するの で、 燃料電池の厚みを抑えつつ、 反応用のガスをアノードや力ソードに均一に供給するこ とができる。 波板の使用により燃料電池の構造的な安定性も向上する。 したがって、 この 発明は、 車両搭載に特に適した小型で強力な燃料電池スタックの実現に寄与する。 As described above, the present invention has been described through some specific embodiments, but the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims. As described above, the present invention has been described through some specific embodiments, but the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims. As described above, according to the present invention, the gas diffusion layer and the gas passage are defined by the corrugated plate having the communication holes, so that the reaction gas can be supplied to the anode or the power source while suppressing the thickness of the fuel cell. It can be supplied uniformly. The use of corrugated plates also improves the structural stability of the fuel cell. Therefore, the present invention contributes to realization of a small and powerful fuel cell stack particularly suitable for mounting on a vehicle.
この発明の実施例が包含する排他的性質あるいは特長は以下のようにクレームされる。  The exclusive properties or features encompassed by embodiments of the present invention are claimed as follows.

Claims

請求の範囲 The scope of the claims
1. ガスの触媒を介した電気化学反応により発電を行う燃料電池(30)において; 1. In a fuel cell (30) that generates power by an electrochemical reaction through a gas catalyst;
ガスを流通させるガス通路(10, 11)と;  Gas passages (10, 11) for flowing gas;
ガス通路(10, 11)のガスを触媒に伝達するガス拡散層(4a, 4b)と;  A gas diffusion layer (4a, 4b) for transmitting the gas in the gas passage (10, 11) to the catalyst;
ガス拡散層(4a, 4b)とガス通路(10, 11)とを画成する波板(2, 3)、 波板 (2, 3)にはガ ス通路(10, 11)からガス拡散層(4a, 4b)へとガスを導く複数の連通孔(8)が形成される、 と;  Corrugated plates (2, 3) that define gas diffusion layers (4a, 4b) and gas passages (10, 11), and gas diffusion layers from gas passages (10, 11) A plurality of communication holes (8) for guiding gas to (4a, 4b) are formed; and
を備える。 Is provided.
2. 請求の範囲第 1項に記載の燃料電池(30)において、 ガス通路(10, 11)は波板(2, 3) の一面が形成する溝の内側に形成され、 ガス拡散層(4a, 4b)は波板 (2, 3)のもう一面が形 成する溝の内側に配置される。 2. The fuel cell (30) according to claim 1, wherein the gas passage (10, 11) is formed inside a groove formed by one surface of the corrugated plate (2, 3), and the gas diffusion layer (4a , 4b) are located inside the groove formed by the other side of the corrugated plate (2, 3).
3. 請求の範囲第 1項に記載の燃料電池(30)において、 波板(2, 3)の単位面積当たりの 連通孔(8)の断面積はガス通路(10, 11)の下流に行くにつれて増加する。 3. In the fuel cell (30) according to claim 1, the cross-sectional area of the communication hole (8) per unit area of the corrugated sheet (2, 3) goes downstream of the gas passage (10, 11). Increase with time.
4. 請求の範囲第 3項に記載の燃料電池(30)において、 波板(2, 3)の単位面積当たりの 連通孔(8)の数はガス通路(10, 11)の下流に行くにつれて増加する。 4. In the fuel cell (30) according to claim 3, the number of the communication holes (8) per unit area of the corrugated sheet (2, 3) increases as going downstream of the gas passages (10, 11). To increase.
5. 請求の範囲第 1 項に記載の燃料電池(30) において、 連通孔 (8) の断面積はガス通路 (10, 11)からガス拡散層(4a, 4b)に向かって徐々に拡大する。 5. In the fuel cell (30) according to claim 1, the cross-sectional area of the communication hole (8) gradually increases from the gas passage (10, 11) toward the gas diffusion layer (4a, 4b). .
6. 請求の範囲第 1 項に記載の燃料電池 (30) において、 燃料電池(30) において、 波板 (2, 3)は導電性材料で構成される 6. The fuel cell (30) according to claim 1, wherein the corrugated sheet (30) (2, 3) is made of conductive material
7. 請求の範囲第 1項に記載の燃料電池は0)において、 ガス拡散層(4a, 4b)は、 波板(2, 3) の一面が形成する溝の内側にフィットするように、 あらかじめ波形断面に形成したカー ボンぺ一パ一で構成される。 7. The fuel cell according to claim 1, wherein the gas diffusion layer (4a, 4b) is preliminarily fitted so as to fit inside a groove formed by one surface of the corrugated plate (2, 3). It is composed of a carbon paper formed in a corrugated cross section.
8. 請求の範囲第 1項から第 7項のいずれかに記載の燃料電池(30)において、 燃料電池 (30)は電解質膜 (la)の両面に触媒を含む触媒層(lb, lc) を両面に形成した膜電極複合体 (1)をさらに備え、 ガス拡散層 (4a,4b)は触媒層(lb, lc)と波板 (2, 3)の間に配置される。 8. The fuel cell (30) according to any one of claims 1 to 7, wherein the fuel cell (30) includes a catalyst layer (lb, lc) containing a catalyst on both sides of the electrolyte membrane (la). It further comprises a membrane electrode assembly (1) formed on both sides, and the gas diffusion layers (4a, 4b) are arranged between the catalyst layers (lb, lc) and the corrugated plates (2, 3).
9. 請求の範囲第 8項に記載の燃料電池(30)において、 燃料電池(30)は波板(2, 3)と波 板(2, 3)に接するフラットプレート(5a, 5b)とで構成されたセパレー夕(31, 32)、 ガス通 路(10, 11)は波板(2, 3)とフラットプレート(5a, 5b)に画成される、 をさらに備え、 セ パレー夕(31, 32)は波板 (2a, 3a)をガス拡散層(4a, 4b)に当接させた状態で、 膜電極複 合体(1)に積層される。 9. The fuel cell (30) according to claim 8, wherein the fuel cell (30) includes a corrugated plate (2, 3) and a flat plate (5a, 5b) in contact with the corrugated plate (2, 3). The separated separation (31, 32) and gas passages (10, 11) are further defined by corrugated plates (2, 3) and flat plates (5a, 5b). , 32) are laminated on the membrane electrode assembly (1) with the corrugated plates (2a, 3a) in contact with the gas diffusion layers (4a, 4b).
10. 請求の範囲第 9項に記載の燃料電池(30)において、 フラットプレート(5)は金属性 の板で構成され、 波板 (2, 3)はあらかじめ波形部(2a, 3a)をプレス成型した金属製の板で 構成される。 10. In the fuel cell (30) according to claim 9, the flat plate (5) is made of a metal plate, and the corrugated plates (2, 3) press the corrugated portions (2a, 3a) in advance. It is composed of a molded metal plate.
11. 請求の範囲第 9 項に記載の燃料電池 (30) において、 触媒層 (lb, lc) は電解質膜 (la) の一方の面に形成されたアノード触媒層 (lb) と、 もう一方の面に形成されたカソ一 ド触媒層(lc)とを備え、 ガス拡散層(4a, 4b)アノード触媒層(lb)に接するアノードガス 拡散層 (4a)と、 力ソード触媒層(lc)に接する力ソードガス拡散層 (4b)とを備え、 セパレ一 夕 (31, 32) は波板 (2) を介してアノードガス拡散層 (4a) に接するアノードセパレー夕 (31)と、 波板 (3)を介して力ソードガス拡散層(4b)に接する力ソードセパレー夕(32) と を備え、 ガス通路(10, 11)はアノードセパレー夕 1) の内側に形成され、 アノードガス をァノ一ドガス拡散層(4a)に供給するァノ一ドガス通路 0)と、 力ソードセパレー夕(32) の内側に形成され、 力ソードガスをカゾードガス拡散層(4b)に供給する力ソードガス通路 (11)とを備える。 11. In the fuel cell (30) according to claim 9, the catalyst layer (lb, lc) includes an anode catalyst layer (lb) formed on one side of the electrolyte membrane (la) and the other side. A cathode catalyst layer (lc) formed on the surface, the gas diffusion layers (4a, 4b), the anode gas diffusion layer (4a) in contact with the anode catalyst layer (lb), and the force catalyst layer (lc). Contacting with a sword gas diffusion layer (4b) In the evening (31, 32), the anode separator (31) in contact with the anode gas diffusion layer (4a) through the corrugated plate (2) and the force in contact with the force gas diffusion layer (4b) through the corrugated plate (3) The gas passages (10, 11) are formed inside the anode separator (1) and supply the anode gas to the anode gas diffusion layer (4a). ), And a power sword gas passage (11) formed inside the power sword separator (32) and supplying the power sword gas to the cathode gas diffusion layer (4b).
12. 請求の範囲第 11項に記載の燃料電池(30)において、 燃料電池(30)は、 膜電極複合 体(1) とアノード側のセパレ一タ(31) と力ソード側セパレー夕 2) とを貫通するァノー ドガス供給マニホ一ルドと、 アノードガス排 tlマニホ一ルドと、 力ソードガス ^マ二ホー ルドと、 力ソードガス排出マ二ホールドと、 をさらに備え、 アノードセパレー夕(31)は、 アノードガス通路(10)をアノードガス供給マ二ホールドに接続する接続路(105e) と、 ァ ノードガス通路(10)をアノードガス排出マ二ホールドに接続する接続路(10f)とをさらに 備え、 カソ一ドセパレー夕 (32)はカゾードガス通路(11) を力ソードガス供給マ二ホール ドに接続する接続路(106e) と、 力ソードガス通路(11) を力ソードガス排出マ二ホールド を接続する接続路(106f)とを、 さらに備える。 12. The fuel cell (30) according to claim 11, wherein the fuel cell (30) includes a membrane electrode assembly (1), an anode-side separator (31), and a force-side separator 2). And an anode gas exhaust manifold, an anode gas exhaust tl manifold, a power source gas ^ manifold, and a power source gas exhaust manifold. A connection path (105e) connecting the anode gas passage (10) to the anode gas supply manifold; and a connection path (10f) connecting the anode gas passage (10) to the anode gas discharge manifold. The one-way separator (32) has a connection (106e) connecting the cathode gas passage (11) to the power sword gas supply manifold and a connection (106f) connecting the power sword gas passage (11) to the power sword gas discharge manifold. ) And It provided La.
13. 請求の範囲第 12項に記載の燃料電池(30)において、 アノードセパレー夕(31)はふ たつの接続路 (105e, 105ί) をそれぞれ画成するように配置されたシール部材(22) をさら に備え、 力ソードセパレ一夕 (32)はふたつの接続路(105e, 105ί) をそれぞれ画成するよ うに配置されたシール部材(22)をさらに備える。 13. The fuel cell (30) according to claim 12, wherein the anode separator (31) includes a sealing member (22) arranged so as to define two connection paths (105e, 105ί). In addition, the force separation separator (32) further comprises a sealing member (22) arranged to define two connection paths (105e, 105ί), respectively.
14. 請求の範囲第 13項に記載の燃料電池 0)において、 アノードセパレー夕(31)の構 成と、 カゾードセパレー夕(32)の構成は、 シール部材は 1)の配置の除き同一である。 14. In the fuel cell 0) according to claim 13, the configuration of the anode separator (31) and the configuration of the cathode separator (32) are the same except for the arrangement of the seal member 1).
15. 請求の範囲第 9項に記載の燃料電池(30)において、 セパレー夕(31 , 32)はガス通路 (10, 11) と並行して波板 (2, 3) とフラットプレート (5a, 5b) に画成された冷却液通路 (12)をさらに備える。 15. In the fuel cell (30) according to claim 9, the separator (31, 32) is provided with corrugated plates (2, 3) and flat plates (5a, It further comprises a coolant passage (12) defined in 5b).
16. 請求の範囲第 12項に記載の燃料電池 (30)において、 セパレー夕(31, 32)は、 ガス 通路(10, 11)と冷却液通路(12)とを互いに遮断すべく、 波板(2, 3)とフラットプレート (5a, 5b)に挟持されたシール部材(13)をさらに備える。 16. In the fuel cell (30) according to claim 12, the separator (31, 32) is provided with a corrugated plate to cut off the gas passage (10, 11) and the coolant passage (12) from each other. It further comprises a seal member (13) sandwiched between the (2, 3) and the flat plates (5a, 5b).
PCT/JP2004/019842 2004-02-05 2004-12-28 Fuel cell WO2005076395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-029565 2004-02-05
JP2004029565A JP2005222809A (en) 2004-02-05 2004-02-05 Fuel battery

Publications (1)

Publication Number Publication Date
WO2005076395A1 true WO2005076395A1 (en) 2005-08-18

Family

ID=34835956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019842 WO2005076395A1 (en) 2004-02-05 2004-12-28 Fuel cell

Country Status (2)

Country Link
JP (1) JP2005222809A (en)
WO (1) WO2005076395A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088551A3 (en) * 2006-02-05 2008-01-10 Metal Tech Ltd Perforated flow distributor plate
CN113614422A (en) * 2019-03-29 2021-11-05 大阪瓦斯株式会社 Electrochemical module, electrochemical device, and energy system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691453B1 (en) * 2005-12-21 2007-03-12 삼성전기주식회사 Flexible fuel cell
JP5191951B2 (en) * 2009-05-21 2013-05-08 本田技研工業株式会社 Fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287576A (en) * 1986-06-06 1987-12-14 Hitachi Ltd Fuel cell
JPH0529009A (en) * 1991-07-18 1993-02-05 Matsushita Electric Ind Co Ltd Gas passage plate for fuel cell
JP2002260689A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid high polymer cell assembly, fuel cell stack and reaction gas supply method of the fuel cell
JP2003123826A (en) * 2001-10-09 2003-04-25 Honda Motor Co Ltd Fuel cell stack
JP2003178775A (en) * 2001-12-11 2003-06-27 Nissan Motor Co Ltd Fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287576A (en) * 1986-06-06 1987-12-14 Hitachi Ltd Fuel cell
JPH0529009A (en) * 1991-07-18 1993-02-05 Matsushita Electric Ind Co Ltd Gas passage plate for fuel cell
JP2002260689A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid high polymer cell assembly, fuel cell stack and reaction gas supply method of the fuel cell
JP2003123826A (en) * 2001-10-09 2003-04-25 Honda Motor Co Ltd Fuel cell stack
JP2003178775A (en) * 2001-12-11 2003-06-27 Nissan Motor Co Ltd Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088551A3 (en) * 2006-02-05 2008-01-10 Metal Tech Ltd Perforated flow distributor plate
CN113614422A (en) * 2019-03-29 2021-11-05 大阪瓦斯株式会社 Electrochemical module, electrochemical device, and energy system

Also Published As

Publication number Publication date
JP2005222809A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4516229B2 (en) Solid polymer cell assembly
JP4344484B2 (en) Solid polymer cell assembly
JP5234879B2 (en) Fuel cell
JP4598287B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
US9559376B2 (en) Fuel cell with an electrolyte membrane and gas diffusion layers
JP2003068331A (en) Fuel cell separator
US7824817B2 (en) Fuel cell
WO2006090464A1 (en) Solid polymer fuel cell and method for producing same
US7993790B2 (en) Fuel cell with stacked fuel cell units, space holding member, and fastening member
WO2005076395A1 (en) Fuel cell
JP4185734B2 (en) Fuel cell stack
JP2002100380A (en) Fuel cell and fuel cell stack
JP4516630B2 (en) Solid polymer cell assembly
JP4572252B2 (en) Fuel cell stack
JP2004335179A (en) Fuel cell
JP2006269409A (en) Solid oxide fuel cell, sofc
JP2006066256A (en) Fuel cell stack
JP2008293808A (en) Separator and fuel cell
JP5123824B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP2008004300A (en) Press separator for fuel cell
JP2000067885A (en) Fuel cell
JP4664020B2 (en) Manufacturing method of fuel cell stack
JP2007157667A (en) Fuel cell
JP2004213954A (en) Separator for fuel cell, and fuel cell using it
JP2006073226A (en) Fuel cell stack

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase