WO2005074986A2 - Bioactive species capable of interfering with a microbial toxin-antitoxin complex and methods for evaluation and use of said bioactive species - Google Patents

Bioactive species capable of interfering with a microbial toxin-antitoxin complex and methods for evaluation and use of said bioactive species Download PDF

Info

Publication number
WO2005074986A2
WO2005074986A2 PCT/DK2005/000082 DK2005000082W WO2005074986A2 WO 2005074986 A2 WO2005074986 A2 WO 2005074986A2 DK 2005000082 W DK2005000082 W DK 2005000082W WO 2005074986 A2 WO2005074986 A2 WO 2005074986A2
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
toxin
sequence identity
sequence
seq
Prior art date
Application number
PCT/DK2005/000082
Other languages
French (fr)
Other versions
WO2005074986A3 (en
Inventor
Kenn Gerdes
Deo Prakash Pandey Pandey
Original Assignee
Genobiotix Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genobiotix Aps filed Critical Genobiotix Aps
Publication of WO2005074986A2 publication Critical patent/WO2005074986A2/en
Publication of WO2005074986A3 publication Critical patent/WO2005074986A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/025Enterobacteriales, e.g. Enterobacter
    • A61K39/0258Escherichia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Bioactive species capable of interfering with a microbial toxin-antitoxin complex and methods for evaluation and use of said bioactive species
  • the present invention relates to methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex and the bioactive species identifiable using said evaluation methods.
  • the present invention also relates to pharmaceutical formulations and methods for treating an individual suffering from a disease, such as caused by a microbial cell.
  • the present invention further relates to the use of one or more said bioactive species for the preparation of a medicament for the treatment of an individual in need thereof, such as an individual diagnosed with, or at risk of contracting, a bacterial disease.
  • the present invention further relates to hygienic compositions capable of reducing or eliminating microbial cells, non-therapeutic methods for eliminating or reducing microbial cells, and methods for treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell.
  • Bacterial pathogens are also responsible for a plethora of human and animal diseases, ranging in severity from inapparent to severe, and elimination or reduction of these pathogenic bacteria is also highly desirable. Bacterial disease
  • Bacterial disease may be caused by bacterial infection, defined as the invasion of the host by microorganisms, which then multiply in close association with the host's tissues.
  • bacteria can be organized into three major groups. When isolated from a patient, frank or primary pathogens are considered to be probable agents of disease. Opportunistic pathogens are those isolated from patients whose host defense mechanisms have been compromised. They may be the agents of disease (e.g., in patients who have been predisposed to urinary tract infections with Escherichia coli by catheterization). Finally, some bacteria are considered to be nonpathogens, because they rarely or never cause human disease. Their categorization as nonpathogens may change, however, because of the adaptability of bacteria and the detri- mental effect of modern radiation therapy, chemotherapy, and immunotherapy on resistance mechanisms. In fact, some bacteria previously considered to be non- pathogens are now known to cause disease. Serratia marcescens, for example, is a common soil bacterium that causes pneumonia, urinary tract infections, and bac- teremia in immunocompromised hosts.
  • Virulence is the measure of the pathogenicity of an organism. The degree of virulence is related directly to the ability of the organism to cause disease despite host resistance mechanisms; it is affected by numerous variables such as the number of infecting bacteria, route of entry into the body, specific and nonspecific host defense mechanisms, and virulence factors of the bacterium. Virulence can be measured experimentally by determining the number of bacteria required to cause animal death, illness, or lesions in a defined period after the bacteria are administered by a designated route. Consequently, calculations of a lethal dose affecting 50 percent of a population of animals (LD 50 ) or an effective dose causing a disease symptom in 50 percent of a population of animals (ED 50 ) are useful in comparing the relative virulence of different bacteria.
  • LD 50 population of animals
  • ED 50 effective dose causing a disease symptom in 50 percent of a population of animals
  • Bacterial virulence factors can influence a bacteria's ability to cause infectious disease. These virulence factors can be divided into two categories: 1. virulence factors that promote bacterial colonization of the host 2. virulence factors that damage the host.
  • Bacterial virulence factors may be encoded on chromosomal, plasmid, transposon, or temperate bacteriophage DNA; virulence factor genes on transposons or temperate bacteriophage DNA may integrate into the bacterial chromosome.
  • Susceptibility to bacterial disease depends on the physiologic and immunologic condition of the host, the bacterial virulence and the number of bacteria that enter the body. Before increased amounts of specific antibodies or T cells are formed in response to invading bacterial pathogens, the "nonspecific" mechanisms of host resistance (such as polymorphonuclear neutrophils and macrophage clearance) must defend the host against the microbial cells. Development of effective specific immunity (such as an antibody response to the bacterium) may require several weeks. The normal bacterial flora of the skin and mucosal surfaces also serves to protect the host against colonization by bacterial pathogens.
  • Infants are also especially susceptible to certain pathogens (such as group B streptococci) because their immune systems are not yet fully developed and cannot mount a protective immune response to important bacterial antigens.
  • pathogens such as group B streptococci
  • some individuals have genetic defects of the complement system or cellular defenses (e.g., inability of polymorphonuclear neutrophils to kill bacteria).
  • a patient may develop granulocytopenia as a result of a predisposing disease, such as cancer, or immunosuppressive chemotherapy for organ transplants or cancer.
  • Host resistance can be compromised by trauma and by some underlying diseases.
  • An individual becomes susceptible to infection with a variety of bacteria if the skin or mucosa is breached, particularly in the case of severe wounds such as burns or contaminated surgical wounds.
  • Cystic fibrosis patients who have poor ciliary function and consequently cannot clear mucus efficiently from the respiratory tract, are abnormally susceptible to infection, particularly from mucoid strains of Pseudomo- nas aeruginosa, resulting in serious respiratory distress.
  • Ascending urinary tract infections with Escherichia coli are common in women and are particularly troublesome in patients with urinary tract obstructions.
  • Bacteria can be transmitted to the host via a number of modes of transmission. Transmission may be direct, so from an infected host directly to a susceptible host, for instance via airborne transmission, direct contact transmission (via blood, excrement blood transfusions, organ transplants) or sexual transmission. Bacterial disease transmission may also be indirect, such as from infected host to reservoir to susceptible host, in which case the reservoir can be living (such as an arthropod vector or disease-free individual) or inanimate, for example soil, water, food, bed- ding or surgical instruments.
  • Transmission may be direct, so from an infected host directly to a susceptible host, for instance via airborne transmission, direct contact transmission (via blood, excrement blood transfusions, organ transplants) or sexual transmission.
  • Bacterial disease transmission may also be indirect, such as from infected host to reservoir to susceptible host, in which case the reservoir can be living (such as an arthropod vector or disease-free individual) or inanimate, for example soil, water, food, bed- ding or surgical instruments.
  • tissue damage results from the host's own immune system. This is termed "host-mediated pathogenesis".
  • host-mediated pathogenesis tissue damage results from the host's own immune system.
  • Classic examples of host-mediated pathogenesis are seen in diseases such as Gram-negative bacterial sepsis, tuberculosis, and tuberculoid leprosy.
  • the tissue damage in these infections is caused by toxic factors released from the lymphocytes, macrophages, and polymorphonuclear neutrophils infiltrating the site of infec- tion. Often the host response is so intense that host tissues are destroyed, allowing resistant bacteria to proliferate.
  • Emerging infections are those whose incidence in humans has increased within the past two decades or threatens to increase in the near future. Emergence may be due to the spread of a new agent, to the recognition of an infection that has been present in the population but has gone undetected, or to the realization that an established disease has an infectious origin.
  • Emergence may also be used to describe the reappearance (or "reemergence") of a known infection after a decline in inci- dence.”
  • the 1995 Report of the Committee on International Science, Engineering and Technology Policy (a White House-appointed committee of the National Science and Technology Council to review the US role in dealing with emerging diseases) listed several pathogenic bacteria and bacterial diseases that have emerged since 1973, such as Legionnaires' disease (Legionella pneumophila), Bacteria Toxic shock syndrome (toxic strains of Staphylococcus aureus), Bacteria Hemorrhagic colitis and hemolytic uremic syndrome (Escherichia coli 0157:H7), Lyme disease (Borrelia burgdorferi), peptic ulcer disease (Helicobacter pylori), Human ehrlichiosis (Ehrlichia chafeensis), a new epidemic cholera strain (Vibrio cholerae 0139), Bacteria Cat-saatch disease (Bartonella henselae)
  • Bioterrorism There is concern that bacterial disease may be brought about by warfare and/or terrorist activities. Certainly, some known bacteria, such as bacteria of the Bacillus genus, may be used for bioterrorist activities.
  • bacteria of the Bacillus genus may be used for bioterrorist activities.
  • Anthrax is available (See e.g., Ivins et al., Vaccine 13:1779 [1995]) and can be used for the prevention of classic anthrax, genetic mixing of different strains of the organism can render the vaccine ineffective (See e.g., Mobley, Military Med. 160:547 [1995]).
  • Anthrax spores as a biological weapon were demonstrated by the accidental release of Bacillus anthracis from a military microbiology laboratory in the former Soviet Union. Seventy-seven cases of human anthrax, including 66 deaths, were attributed to the accident. Some anthrax infections occurred as far as 4 kilometers from the laboratory (See e.g., Meselson et al., Science 266:1202 [1994]). Genetic analysis of infected victims revealed the presence of either multiple strains or a genetically altered B. anthracis (See e.g., Jackson et al., Proc. Nat. Acad. of Sci. U.S.A. 95:1224 [1998]). There is thus a clear need for improved treatments and prevention of anthrax.
  • Current bacterial disease therapies include, but are not restricted to: Cell wall synthesis inhibitors, such as: a. Beta-lactams (such as penicillin or cephalosporins), which block cell wall crosslinking by mimicking d-ala-d-ala b. Vancomycin, which binds d-ala-d-ala motifs. Protein synthesis inhibitors, such as: a. Aminoglycosides (such as streptomycin), which are protein synthesis inhibitors that bind to the bacterial ribosome 30S subunit and cause misreading of the genetic code. b. Tetracyclines, which act on the bacterial ribosome 30S subunit and inhibit tRNA binding. c. Macrolides (such erythromycin) act on the bacterial ribosome 50S subunit, blocking peptidyl transfer. d. Oxazolidinones, which are active only against gram positive bacteria, and interfere with translation.
  • Nucleic acid metabolism inhibitors such as: a. Sulfonamides, which are structural analogues of PABA and prevent formation of folic acid. The bacteria cannot import folic acid to make DNA bases. b. Trimethoprim, which inhibits dihydrofolic reductase and acts synergistically with sulfonamides. c. Rifamycins, which block transcription by binding to RNA polymerase.
  • DNA gyrase inhibitors such as: a. Quinolones, which inhibit DNA gyrase. New fluorinated derivatives (i.e. ciproflaxin) have a broad spectrum and are very potent, b. Novobiocin, which blocks binding of ATP to DNA gyrase.
  • Antimicrobial agents are most effective, however, when the infection is also being fought by healthy phagocytic and immune defenses. Some reasons for this situation are the poor diffusion of antibiotics into certain sites (such as the prostate gland), the ability of many bacteria to multiply or survive inside cells (where many antimicrobial agents have little or no effect), the bacteriostatic rather than bactericidal action of some drugs, and the capacity of some organisms to develop resistance to multiple antibiotics. This problem is now becoming very common, for instance recent surveys in Europe have shown that betwen 15 and 50 % of clinical isolates of S. pneumo- niae are resistant to penicillin.
  • bacteria that develop antibiotic resistance include Staphylococcus (often causing fatal infections), Pneumococci (causing for example pneumonia and meningitis); Salmonella and E. coli (causing for example diarrhea) and Enterococci (causing for example bloodstream, surgical wound and urinary tract infections).
  • Staphylococcus often causing fatal infections
  • Pneumococci causing for example pneumonia and meningitis
  • Salmonella and E. coli causing for example diarrhea
  • Enterococci causing for example bloodstream, surgical wound and urinary tract infections.
  • the bacterial toxin-antitoxin systems are encoded by bacterial plasmids and chromosomes, which specify a cytotoxin and an antitoxin.
  • the antitoxins neutralise the cognate toxins by forming tight complexes with them.
  • the anti-toxins are unstable due to degradation by cellular proteases, whereas the toxins are stable.
  • TA loci usually comprise two genes in a transcriptional unit. One of the genes codes for the antitoxin which combines with and neutralizes the toxin, which is encoded by the other gene.
  • the antitoxins bind extremely well to their cognate toxins, both in vivo and in vitro, but do not bind to non-cognate toxins, that is, the interaction between a toxin and the corresponding antitoxin is specific.
  • the toxins are very potent cell killers or inhibitors of bacterial cell growth.
  • chp systems chpA locus has also been called mazEF
  • higBA systems HigB toxin, HigA antitoxin
  • vapBC systems also known as vagCD or STBORF1 and STBORF2
  • ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA", J. Mol. Biol. Volume 332, Issue 4, 26 September 2003, Pages 809-819.
  • the anti-microbial would have to be taken up by the bacteria in a way that allowed it to remain in a viable, active form. 3) The anti-microbial would have to be targeted to the complex
  • the anti-microbial should be in a format allowing it to be toxic or detrimental to the microbial cell, but should not be toxic or detrimental to the cells of the individual thus treated.
  • the anti-microbial should not be eliminated from the body fluids or otherwise rendered inactive in the anti-microbial method used.
  • bacterial toxins such as RelE have been characterised as inducing apoptosis in human cells (Yamamoto et al., "Bacterial toxin RelE induces apoptosis in human cells", FEBS Letters 519 p 191-194), so there is much uncertainty as to whether using TA complexes as drug targets could lead to detrimental cell death or retardation of growth in the individual thus treated. It is probable that this (possibly therapeutically problematic) wide-spectrum ability of the toxins to induce cell death is due to conserved elements of the translation machinery.
  • compositions and methods that decrease the infectivity, morbidity, and mortality associated with bacterial pathogenic exposure are needed.
  • Such compositions and methods should preferably not have the undesirable properties of promoting microbial resistance, or of being toxic to the recipient.
  • the inventors of the present invention have advantageously found, after sustained bioinformatics investigations, that homologues to the TA systems mentioned above appear to be widespread among prokaryotes. It was found that many prokaryotes contain multiple copies of TA loci, increasing the importance of these complexes as drug targets.
  • compositions and methods for treating an individual suffering from a disease such as caused by a microbial cell.
  • the present invention further relates to the use of one or more said bioactive species for the preparation of a medicament for the treatment of an individual in need thereof, such as an individual diagnosed with, or at risk of contracting, a bacterial disease.
  • the present invention also relates to methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex and the bioactive species identifiable using said evaluation methods. Furthermore, the present invention relates to hygienic compositions capable of reducing or eliminating microbial cells, non-therapeutic methods for eliminating or reducing microbial cells, and methods for treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell.
  • the bioactive species is targeted correctly to the bacterial site in a way that allows the bioactive species to remain in a viable, active form.
  • the bioactive species are toxic or detrimental to the microbial cell(s) of interest, but are not toxic or detrimental to the cells of the individual thus treated.
  • Amino acid Entity comprising an amino terminal part (NH 2 ) and a carboxy terminal part (COOH) separated by a central part comprising a carbon atom, or a chain of carbon atoms, comprising at least one side chain or functional group.
  • NH 2 refers to the amino group present at the amino terminal end of an amino acid or peptide
  • COOH refers to the carboxy group present at the carboxy terminal end of an amino acid or peptide.
  • the generic term amino acid comprises both natural and non- natural amino acids. Natural amino acids of standard nomenclature as listed in J. Biol.
  • amino acid residue is meant to encompass amino acids, either standard amino acids, non-standard amino acids or pseudo-amino acids, which have been reacted with at least one other species, such as 2, for example 3, such as more than 3 other species.
  • amino acid residues may com- prise an acyl bond in place of a free carboxyl group and/or an amine-bond and/or amide bond in place of a free amine group.
  • reacted amino acids residues may comprise an ester or thioester bond in place of an amide bond
  • binding between e.g. the bound toxin and anti-toxin refers to contact between the two entities with a dissociation constant of Kd less than 5 X 10 "6 M, such as less than 10 "6 M, e.g. less than 5 X 10 "7 M, such as less than 10 "7 M, e.g. less than 5 X 10 "8 M, such as less than 10 "8 M, e.g. less than 5 X 10 "9 M, such as less than 10 _9 M, e.g. less than 5 X 10 "10 M, such as less than 10 "10 M, e.g.
  • Dissociation constants can e.g. be determined by surface plasmon resonance analysis.
  • a disease "caused by” a microbial cell is meant that said disease may be associated with or directly caused by the bacteria, for example by a toxin, tissue damage, or host-mediated pathogensis.
  • said another therapy comprises administering an anti-microbial compound
  • said anti-microbial compound may administered before, concurrently with, or after, the methods described herein.
  • Said anti-microbial compounds may also be formulated in the medicaments described herein.
  • infant - by "infant” is meant any individual of physical or apparent age from 0-3 years, said individual being preferably human.
  • Neonate - by “neonate” is meant any individual at the age from birth to one year old, said individual being preferably human.
  • Immunocompromised - by “immunocompromised” individual is meant herein an individual whose immune system is not functioning as well as in a normal healthy adult individual.
  • this may be due to diseases or medical treatments or other changes in the individual's body reducing the individual's immune function, such as AIDS, HIV, malnutrition, old age (defined herein as an individual over 50 years old, preferably over 70 years old), pregnancy, lactation, immunosuppressive drugs like steroids, chemotherapy, viruses (such as HIV, infectious bursal disease virus, cytomegalovirus), autoimmune disease, radiation, radiother- apy, sarcoidosis, leprosy, malaria, and the like.
  • diseases or medical treatments or other changes in the individual's body reducing the individual's immune function such as AIDS, HIV, malnutrition, old age (defined herein as an individual over 50 years old, preferably over 70 years old), pregnancy, lactation, immunosuppressive drugs like steroids, chemotherapy, viruses (such as HIV, infectious bursal disease virus, cytomegalovirus), autoimmune disease, radiation, radiother- apy, sarcoidosis, leprosy, malaria, and the like.
  • an individual is immunocompromised if they have an underdeveloped immune system, for example due to a genetic disease or in the case of a foetus, infant, young child (from age 3 to 12) or adolescent (from age 13 to adult).
  • said individual has granulocytopenia.
  • said indi- vidual has trauma, burns, or a wound. Said wound may be a surgical wound.
  • Non-natural amino acid Any amino acid not included in Table 1 herein above. Non- natural amino acids are capable of being incorporated into a peptide or peptide like structure by translation mediated by a ribosome.
  • a non-natural amino acid according to the present invention may for example be any amino acid comprising an amino group and a carboxyl group separated by an ⁇ -carbon.
  • the amino acid may for example be selected from the group consisting of, Aib, Nai, Sar, Orn, Lysine analogues DAP and DAPA or any of the amino acids described in US 5,573,905.
  • non-natural amino acids may be any of the above mentioned or any stan- dard amino acids which further comprises one or more moieties selected from the group consisting of hydroxyl, bromo, fluoro, chloro, iodo, mercapto, thio, cyano, alkylthio, heterocycle, aryl, heteroaryl, carboxyl, carboalkoyl, alkyl, alkenyl, nitro, amino, alkoxyl and/or amido.
  • the non-natural amino acid is capable of being incorporated into a peptide or peptide like structure by translation mediated by a wild- type, mutant, modified or recombinant ribosome.
  • Peptide Plurality of covalently linked amino acid residues defining a sequence and linked by amide bonds.
  • the term is used analogously with oligopeptide and polypeptide.
  • the amino acids may be both natural amino acids and non-natural amino acids, including any combination thereof.
  • the natural and/or non-natural amino acids may be linked by peptide bonds or by non-peptide bonds.
  • the term peptide also embraces post-translational modifications introduced by chemical or enzyme-catalyzed reactions, as are known in the art. Such post-translational modifications can be introduced prior to partitioning, if desired.
  • Amino acids as specified herein will preferentially be in the L-stereoisomeric form. Amino acid analogs can be employed instead of the 20 naturally-occurring amino acids. Several such analogs are known, including fluorophenylalanine, norleucine, azetidine-2- carboxylic acid, S-aminoethyl cysteine, 4-methyl tryptophan
  • Treatment - by “treatment” is meant for example prophylaxis, treatment or ameliora- tion of a disease, for example a bacterial infection.
  • Treating an individual may thus comprise prevention, treatment, or amelioration of a disease.
  • amelioration is meant any improvement in the patient's health or quality of life, however small, i.e. the treatment may not necessarily lead to a disease cure.
  • a method for treating an individual suffering from, or at risk of developing, a disease caused by a microbial cell comprising at least one complex of a polypeptide toxin and an anti-toxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide.
  • Said method comprises the steps of
  • Said method preferably comprises the further step of providing a pharmaceutical composition, comprising at least one bioactive species.
  • a pharmaceutical composition comprising at least one bioactive species.
  • Said bioactive species is capable of contacting and activating in a microbial cell at least one polypeptide toxin selected from the group of polypeptide toxins consisting of RelE and variants thereof ParE and variants thereof Chp (or MazE) and variants thereof Hig and variants thereof Doc and variants thereof CcdB and variants thereof VapC and variants thereof
  • Said polypeptide toxin optionally forms a complex with an anti-toxin polypeptide prior to activation, said complex being capable of reducing or inhibiting the toxic activity of the polypeptide toxin.
  • said step of contacting the microbial cell with the bioactive species is selected from . a) contacting the cell surface of the microbial cell with the bioactive species, and/or b) uptake of the bioactive species in the microbial cell and contacting an intracellular component of the microbial cell with the bioactive species.
  • said step of activation of the at least one polypeptide toxin results from one or more of a) de novo synthesis of activated polypeptide toxin, wherein the de novo synthesised and activated polypeptide toxin does not form a complex with an anti-toxin polypeptide, and/or b) dissociation of polypeptide toxin and anti-toxin polypeptide present in the same complex, wherein said dissociation results in the release from the complex of polypeptide toxin in an active form, or a form capable of being activated following dissociation from the anti-toxin polypeptide, and op- tionally c) degradation of the anti-toxin
  • Microbial cell Said microbial cell may be any microbe capable of causing any form of disease in at least one individual, including, but not restricted to: microbes of the genus Achromobacter, preferably Achromobacter xylosoxidans microbes of the genus Acinetobacter, preferably Acinetobacter calcoaceticus, microbes of the genus Actinomyces, preferably Actinomyces israelii, microbes of the genus Aeromonas, preferably Aeromonas hydrophila, microbes of the genus Alcaligenes, preferably selected from Alcaligenes faecalis, Alcaligenes odorans or Alcaligenes denitrificans, microbes of the genus Arizona, preferably Arizona hinshawii, microbes of the genus Bacillus, preferably selected from Bacillus anthracis, Bacillus subtilis, Bacillus cereus, Bacillus fragilis, microbes of the genus Bac
  • Burkholderia preferably Burkholderia pseudomallei or Burkholderia mallei
  • microbes of the genus Bordetella preferably Bordetella pertussis, microbes of the genus Borrelia, preferably Borrelia burgdorferi or Borrelia recurrentis
  • microbes of the genus Brucella preferably Brucella melitensis, Brucella abortus, Brucella suis or Brucella canis
  • microbes of the genus Calymmatobacterium or Calymmatobacterium granulomatis microbes of the genus Campylobacter, preferably Campylobacter fetus
  • microbes of the genus Chrombacterium preferably Chrombacterium violaceum
  • microbes of the genus Citrobacter preferably selected from Clostridium difficile, Clostridium tetani, Clostridium botulinum or Clostridium perfringens,
  • Enterobacter aerogenes Enterobacter hafniae (Hafnia alvei) or Enterobacter ag- glomerans, microbes of the genus Erysipelothrix, preferably Erysipelothrix rrhu- siopathiae, microbes of the genus Escherichia, preferably selected from Escherichia coli, Escherichia coli - enterotoxigenic (ETEC), Escherichia coli - enteropathogenic (EPEC), Escherichia coli 0157:H7 enterohemorrhagic (EHEC), Escherichia coli - enteroinvasive (EIEC), or E.
  • ETEC Escherichia coli - enterotoxigenic
  • EEC Escherichia coli - enteropathogenic
  • EHEC Escherichia coli 0157:H7 enterohemorrhagic
  • EIEC Escher
  • EAggEC coli Enteroaggregative
  • microbes of the genus Eubacterium preferably Eubacterium alactolyticum
  • microbes of the genus Francisella preferably Francisella tularensis
  • microbes of the genus Flavobacterium preferably Flavobacterium meningosepticum
  • microbes of the genus Fusobacterium preferably Fusobacterium nucleatum
  • microbes of the genus Gardnerella preferably Gardnerella vaginalis
  • microbes of the genus Haemophilus preferably selected from Haemophilus aegyptius or Hemophilus influenzae
  • microbes of the genus Helico- bacter preferably Helicobacter pylori
  • microbes of the genus Intrasporangium microbes of the genus Janthinobacterium, microbes of the genus Klebsiella, preferably selected from Klebsiella pneumoniae, Klebsiella,
  • said microbe comprises a relBE TA system.
  • Said microbe is preferably a gram negative bacteria, such as selected from one or more of Brucella melitensis, Brucella suis, Helicobacter pylori, Escherichia coli, Escherichia coli 0157, Shigella flexneri, Coxiella burnetii, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, Haemophilus influenzae, Pseudomonas aeruginosa, Pseudomonas putida KT2440, Pseudomonas syrin- gae, Salmonella typhimurium and Salmonella typhi.
  • said microbe is a gram positive bacteria, such as selected from Mycobacte- rium tuberculosis, Enterococcus faecalis, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus mutans, Streptococcus pneumonia, or Fusobacterium nucleatum.
  • a gram positive bacteria such as selected from Mycobacte- rium tuberculosis, Enterococcus faecalis, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus mutans, Streptococcus pneumonia, or Fusobacterium nucleatum.
  • said microbe comprises a vapBC TA system.
  • Said microbe is preferably a gram positive bacterium, such as Mycobacterium tuberculosis.
  • said microbe is a gram negative bacterium, such as on or more of Rickettsia conorii, Coxiella burnetii, Haemophilus influenzae, Pseudomonas syringae, Salmonella typhimurium, Salmonella typhi and Leptospira intrerrogans.
  • said microbe comprises a mazEF TA system.
  • Said microbe is preferably a gram positive bacterium, such as one or more of Mycobacterium tuberculosis, Bacillus anthracis, Bacillus cereus, Bacillus halodurans, Clostridium perfringens, Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans and Streptococcus pneumonia.
  • Mycobacterium tuberculosis such as one or more of Mycobacterium tuberculosis, Bacillus anthracis, Bacillus cereus, Bacillus halodurans, Clostridium perfringens, Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans and Streptococcus pneumonia.
  • said bacterium is a gram negative bacterium, such as one or more of Brucella melitensis, Brucella suis, Rickettsia conorii, Neisseria meningitidis, Escherichia coli, Escherichia coli 0157, Shigella flexneri, Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas putida or Leptospira intrerrogans.
  • Brucella melitensis Brucella suis, Rickettsia conorii, Neisseria meningitidis, Escherichia coli, Escherichia coli 0157, Shigella flexneri, Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas putida or Leptospira intrerrogans.
  • said microbe comprises a parDE TA system.
  • Said microbe preferably comprise a gram positive bacterium, such as one or more of Mycobacterium tuberculosis, Streptococcus agalactiae, or Streptococcus pyogenes.
  • said bacterium is a gram negative bacterium, such as one or more of Escherichia coli 0157, Escherichia coli, Coxiella burnetii, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, Pseudomonas aeruginosa and Pseudomonas syringae.
  • said microbe comprises a higBA TA system.
  • Said microbe preferably comprises a gram negative bacterium, such as Neisseria meningitidis, Escherichia coli, Coxiella burnetii, Vibrio cholerae, Haemophilus influenzae, Pseudomonas aeruginosa, Pseudomonas putida KT2440 and Pseudomonas syringae.
  • said microbe comprises a phd/doc TA system.
  • Said microbe is preferably a gram positive bacterium, such as one or more of Clostridium tetani, Enterococcus faecalis and Streptococcus pneumonia.
  • said microbe is a gram negative bacterium, such as one or more of Brucella melitensis, Brucella suis, Neisseria meningitidis, Yersinia pestis, Vibrio cholerae, Pseudomonas aeruginosa, Salmonella typhimurium and
  • Salmonella typhi Salmonella typhi.
  • said microbe comprises a ccdAB TA system.
  • Preferred microbes in this category include Escherichia coli or Escherichia coli 0157.
  • Said individual may be any organism capable of suffering from, or at risk of developing, a disease caused by a microbial cell. More preferably, said individual is an ani- mal, more preferably a vertebrate, most preferably a mammal. Said individual may be a domestic animal, such as a pet or farm animal, or may be a a wild animal. Most preferably, said individual is human. Said individual may be female, or, equally preferably, may be male. In one preferred embodiment of the present invention, said individual is pregnant or lactating. In another, equally preferred embodiment, said individual has undergone endotracheal intubation. In another, equally preferred embodiment, said individual has undergone bladder catheterization. In another, equally preferred embodiment, said individual has undergone central venous catheterization.
  • said individual has undergone peritoneal dialysis.
  • said individual is immuno- compromised.
  • said immunocompromised individual has been, is being, or will be treated with an immunosuppressive drug, for example one or more steroid.
  • said individual is suffering from a disease not caused by a bacteria, such as an autoimmune disease, sarcoi- dosis, leprosy, cytomegalovirus infections, malaria, a parasitic disease, a fungal disease or a viral infection.
  • said viral infection is caused by one or more of HIV, infectious bursal disease virus or cytomegalovirus.
  • said individual has HIV or AIDS.
  • said individual is a neonate. In another, equally preferred embodiment, said individual is an infant. Said individual may be from 0-130 years old, such as 0-3 years old, such as 3-6 years old, such as 6-10 years old, such as 10-20 years old, such as 20-30 years old, such as 40-50 years old, such as 50-60 years old, such as 60-70 years old, such as 70-80 years old, such as 70-130 years old.
  • said disease is caused by any bacterium.
  • suitable diseases capable of being treated by the methods of the present invention are listed below, together with descriptions of the diseases (where appropriate) and examples of bacteria associated with these diseases.
  • bacteria not disclosed herein capable of causing these, and other bacterial diseases are also envisaged as falling within the scope of the present invention; the bacteria referred to are merely examples of some of the causative bacteria for these diseases and do not serve to limit the invention in any way):
  • ACA Eikenella corrodens Acrodermatitis chronica atrophicans
  • Bartonellosis (Verruga peruana, Carrion's disease or Oroya fever) Bartonella bacilliformis, caused by sandfly bites at elevations of 600 to 2800 meter in Peru, Ecuador and Colombia.
  • "Black death” (plague) - Yersinia pestis Bacillary angiomatosis - Bartonella henselae Bacterial vaginosis - Bacteroides spp., Gardnerella vaginalis, Mobiluncus spp. Bejel (endemic syphilis) Treponema pallidum var.
  • pallidum Blepharitis caused by infestation of the eyelash follicle by a mite, which results in an allergic reaction leading to secondary infection with Staphylococcus aureus or Staphylococcus epidermidis.
  • Boils Staphylcoccus aureus Botulism - Clostridium botulinum Boutonneuse fever (Fievre boutonneuse or Tick typhus)- Rickettsia conori Brazilian purpuric fever - Haemophilus aegyptius Bronchitis Brucellosis - Brucella sp.
  • Cat Scratch fever (Cat Scratch Disease) - Bartonella henselae Cholera - Vibrio cholerae Clap (Gonorrhea) - Neisseria gonorrhoeae Conjunctivitis (pink eye) ( * ) - Haemophilus aegyptius, Cystitis or Pyelonephritis -Escherichia coli, Klebsiella sp, Enterobacter sp., Serratia sp., Proteus sp., Providencia sp., Morganella sp., Pseudomonas aeruginosa, Staphylococcus saprophyticus, Enterococcus sp., Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae Dacryocytitis- Staphylococcus aureus, St
  • Disseminated Intravascular Coagulation most commonly Escherichia coli Donovanosis (Granuloma inguinale) - Calymmatobacterium granulomatis Ehrlichiosis - Ehrlichia sp., transmitted by ticks Endemic Relapsing fever- Borrelia sp.
  • Endocarditis - Streptococcus of the viridans group Staphylococcus aureus, Staphylococcus epidermidis
  • Furunculosis boil furuncle
  • Glanders - Burkholderia mallei (used to be named Pseudomonas mallei; G- rod)
  • Ludwig's angina- usually a polymicrobial infection (cellulitis of the floor of the mouth with spread to the submental, sublingual and submandibular spaces).
  • Melioidosis Whitmore's disease
  • Burkholderia pseudomallei used to be called Pseudomonas pseudomallei
  • Meningitis (spotted fever) bacterial - Neisseria meningitidis, Haemophilus influenzae, Listeria, Streptoccoccus pneumoniae, Group B streptococcus, Edwardsiella tarda
  • Montezuma's Revenge (Traveler's diarrhea) - Any number of bacteria (Escherichia coli, Salmonella, Shigella, Yersinia, Vibrio, etc.), that cause diarrhea.
  • Opthalmia neonatorium (Gonorrhea) - Neisseria gonorrhoeae Oriental Spotted Fever - Rickettsia japonica
  • Pelvic Inflammatory Disease PID
  • PID Pelvic Inflammatory Disease
  • PID Neiserria gonorrhoeae, anaerobic bacteria, Facultative Gram negative rods
  • Actinomyces israelii Pertussis (Whooping cough) - Bordetella pertussis Pigbel - beta-toxin of Clostridium perfringens type C Pinta - Treponema carateum Pitted Keratolysis - Micrococcus sedentarius Plague - Yersinia pestis Pneumonia - Acinetobacter sp., Actinomyces sp., Bacillus anthracis, Bacteroides melaninogenicus, Bordetella pertussis, Burkholderia pseudomallei, Burkholderia mallei, Coxiella burnetii (Q-fever), Escherichia coli, Francisella tularensis, Fusobacterium sp.,
  • Pylephlebitis Bateroides fragilis, Peptostreptococcus, Clostridium spp, and several of the Enterobacteriaceae. Pyelonephritis - E.coli Q fever - Coxiella burnetii
  • SIRS Systemic Inflammatory Response Syndrome
  • Tooth decay - bacteria such as Streptococcus mutans, Fusobacterium nucleatum
  • Trench fever (5-day fever) - Bartonella quintana
  • Trench mouth or Vincent's disease Various anaerobic bacteria in the mouth Trichomycosis axillaris - Corynebacterium tenuis Tuberculosis - Mycobacterium tuberculosis Tularemia- rabbit fever- deer fly fever- Francisella tularensis Typhoid fever - Salmonella typhi (G- rod: facultative-straight: enteric pathogens)
  • Vaginitis Waterhouse-Friderichsen syndrome - Neisseria meningitidis • Weil's diseases (Leptospirosis) - Leptospira interrogans • Whipple's disease - Tropheryma whippelii • Yaws - Treponema per pneumonia • Yersinosis - Yersinia enterocolitica
  • said disease is stomach cancer.
  • said bacterial disease is a dental infection.
  • Preferred bacterial diseases in this class include, but are not restricted to, tooth decay and periodontal disease, caused for example by excessive formation of organic acids which break down enamel of teeth.
  • said bacterial disease affects the skin.
  • Preferred bacterial diseases in this class include, but are not restricted to: Impetigo (Staphylococcus aureus, Streptococcus pyogenes), Folliculitis, boils (Staphylococcus aureus), Scalded Skin Syndrome (Staphylococcus aureus), Erysipelas (Streptococcus pyogenes), Lyme disease (Borrelia burgdorferi), Syphilis (Treponema pallidum), and Rocky Mountain Spotted Fever (Rickettsia rickettsii).
  • Impetigo Staphylococcus aureus, Streptococcus pyogenes
  • Folliculitis boils
  • Scalded Skin Syndrome Staphylococcus aureus
  • Erysipelas Streptococcus pyogenes
  • Lyme disease Bos burgdorferi
  • said bacterial disease affects one or more of an individual's eyes.
  • Preferred bacterial diseases in this class include, but are not restricted to: Pink Eye (conjunctivitis - Haemophilus aegyptius), and Opthalmia neonatorium (Neisseria gonorrhoeae).
  • the causative bacteria mentioned herein are examples and should not be viewed as restricting the scope of the invention.
  • said bacterial disease is a disease of the gastrointestinal tract.
  • Preferred bacterial diseases in this class include, but are not restricted to, noninflammatory gastroenteritis (caused by, for example, one or more of Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium botulinum, E. coli (EPE ), E. coli (ETECJ, E. coli (EAggEC or enteroadherent E ), Vibrio cholerae and/or Clostridium difficile), inflammatory Gastroenteritis (caused by, for example, one or more of Vibrio cholerae, Enterotoxigenic (ETEC) E. coli, Enteropathogenic (EPEC) E. coli, Enteroaggregative (EAggEC) E.
  • noninflammatory gastroenteritis caused by, for example, one or more of Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium botulinum, E. coli (EPE ), E. coli
  • E. coli Clostridium difficile, Vibrio parahemolyticus, Bacillus anthracis, E. coli (EIEC), E. coli (EHEC), Salmonella typhimurium, Salmonella typhi, Shigella dysenteriae type 1, Shigella sonnei/flexneri, Yersinia enterocolitica, or invasive gastroenteritis (caused by, for example, one or more of Shigella sp., Salmonella sp., Enteroinvasive E. coli (EIECJ, Enterohemorrhagic E. coli (EHECJ, Vibrio vulnificus, Yersinia sp., Francisella tularensis, Helicobacter pylori.
  • Preferred microbes causing disease of the gastrointestinal tract include, but are not restricted to, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium botulinum, E. coli (EPEC), E. coli (ETEC), E. coli (EAggEC or enteroadherent EC), Vibrio cholerae 01 , Vibrio cholerae non-O1 , Enteropathogenic
  • E. coli Clostridium difficile, Vibrio parahemolyticus, Bacillus anthracis, E. coli (EIEC), E. coli (EHEC), Salmonella spp, Salmonella typhimurium, Salmonella typhi, Shigella dysenteriae type 1 , Shigella sonnei/flexneri, Yersinia enterocolitica, Shigella sp., Enteroinvasive E. coli (EIEC), Enterohemorrhagic E.
  • EHEC Escherichia coli
  • EEC enterovirulent Escherichia coli group
  • ETEC Escherichia coli - enterotoxigenic
  • EHEC Escherichia coli O157:H7 enterohemorrhagic
  • said disease is pneumonia, for example caused by one or more of the following bacteria: Acinetobacter sp., Actinomyces sp., Bacillus anthracis, Bacteroides melaninogeni- cus, Bordetella pertussis, Burkholderia pseudomallei, Burkholderia mallei, Coxiella burnetii (Q-fever), Escherichia coli, Francisella tularensis, Fusobacterium sp., He- mophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Moraxella catarrhalis, Mycobacterium tuberculosis, Mycobacterium sp., Neisseria meningitidis, Nocardia sp., Porphyromonas sp., Prevotella sp., Proteus sp., Pseudomonas aeruginosa, Serratia sp
  • said disease is a nosocomial infection.
  • said nosocomial infection is selected from a urinary tract infection, a surgical site infection, pneumonia and a systemic infection.
  • said microbe is an oppor- tunistic bacterial pathogen, such as for example Staphylococcus aureus, E. coli,
  • Stenotrophomonas maltophilia
  • Salmonella sp. Rhodococcus equi. Shigella flexneri, Pseudomonas aeruginosa, Listonella anguillarum, Burkholderia cepacia or Mycobacterium, Nocardia asteroides, Nocardia brasiliensis, and Nocardia otitidiscaviarum.
  • said microbe is resistant to one or more antibiotics, for example resistant strains of Staphylococcus sp.(such as MRSA - methicillin-resistant staph aureus), Pneumococcus sp., Salmonella sp., E. coli, Enterococcus sp., S. Pneumoniae, Enterococcus sp., Enterobacter sp., Klebsiella pneumoniae, Campylobacter sp, Listeria monocytogenes, Haemophilus influenzae, Bacillus subtilis, Streptococcus pneumoniae, Mycobacterium tuberculosis, E.
  • Staphylococcus sp. such as MRSA - methicillin-resistant staph aureus
  • Pneumococcus sp. Salmonella sp.
  • E. coli Enterococcus sp.
  • S. Pneumoniae Enterococcus sp.
  • the diseases treated by the present invention may be transmitted via any mode of transmission.
  • said mode of transmission is via airborn transmission, and preferred diseases in this class in- elude, but are not restricted to, diseases involving the respiratory system, diphtheria, pneumonia, tuberculosis, Legionnaire's disease, skin diseases, impetigo, cellulitis, systemic diseases, rheumatic fever and menigititis.
  • said mode of transmission is via arthropods, such as insects, such as ticks, mites, larvae, lice, fleas, flies, or gnats.
  • Preferred bacterial diseases in this class include, but are not restricted to, typhoid fever, Lyme disease, rickettsial typus, erlichiosis, spotted- fever, Scrub Typhus (Tsutsugamushi disease), Rickettsia tsutsugamushi (caused by the bite of a larval mite), Rickettsial pox (Rickettsia akari), Tularemia (Francisella tularensis), Rocky Mountain Spotted Fever Rickettsia rickettsia (cause by a tick bite), Endemic Relapsing Fever (Borrelia sp., caused by a tick bite), Sennetsu fever (Ehrlichia canis,
  • said mode of transmission is via direct contact of the bacteria with the individual's body, preferably via direct contact of the bacteria with the skin, mucous membranes or underlying tissues.
  • Preferred bacterial diseases in this class include, but are not restricted to, anthrax, cat-scratch fever, gas gangrene, leprosy, peptic ulcers, staphylococcal infections, syphilis, or systemic diseases such as staphylococcal diseases, gonorrhea, or tetanus
  • said mode of transmis- sion is via ingestion of food or water, such as for example unpasteurised dairy prod- ucts, leading for example to bacterial infection (the pathogen enters the gastrointestinal tract and multiplies) or intoxication due to ingestion of bacterial toxins.
  • Preferred bacterial diseases in this class include, but are not restricted to, Campylobacteriosis (Campylobacter sp.), Salmonellosis (Salmonella sp.), Hemolytic Uremic Syndrome (E.
  • coli O157:H7 coli O157:H7
  • Yersiniosis Yersinsia enterocolitica
  • Listeriosis Listeria monocy- togenes
  • Tuberculosis Mycobacterium tuberculosis
  • Brucellosis Brucella sp.
  • Cryptosporidiosis Cerptosporidium parvum
  • Staphylococcal enterotoxin poisoning Staphylococcus aureus
  • Q fever Coxiella bumetti
  • Campylobacter gastroenteritis shigellosis
  • listeriosis traveler's diarrhea
  • typhoid fever botulism
  • cholera and food poisoning, such as staphylococcal food poisoning.
  • Preferred foo-bome disease-causing bacteria include Salmonella spp., Clostridium botulinum, Staphylococcus aureus, Yersinia enterocolitica, Yersinia pseudotuberculosis, Listeria monocytogenes, Vibrio cholerae 01, Vibrio cholerae non-01, Vibrio parahaemolyticus and other vibrios, Vibrio vulnificus, Clostridium perfringens, Bacillus cereus, Aeromonas hydrophila and other spp., Plesiomonas shigelloides, Shigella spp., Miscellaneous enterics, Streptococcus, enterovirulent Escherichia coli group (EEC GroupJ, Escherichia coli - enterotoxigenic (ETEC), Escherichia coli - enteropath
  • said mode of transmission is via sexual transmission.
  • Preferred bacterial diseases in this class include, but are not restricted to, Bacterial vaginosis (Bacteroides spp, Gardnerella vaginalis, Mobiluncus spp), enteric infections (various gram negative bacteria, Campylobacter fetus, Shigellasp., Escherichia coli, Salmonella sp.), Gonorrhea (Neisseria gonorrhoeae), Granuloma inguinale (donovanosis - Calymmatobacterium granulomatis), Group B streptococcal infections (Streptococcus agalactiae), NGU or Nongonococ- cal urethritis (Gardnerella vaginalis), Pelvic Inflammatory Disease (N.
  • a method of the present in- vention is used in combination with another medical treatment.
  • said medical treatment is organ transplant or organ transplant aftercare.
  • said medical treatment is chemotherapy.
  • said another medical treatment is for treatment of one or more of: a neoplastic disease, cystic fibrosis, AIDS, HIV, a bacterial disease, pregnancy or birth complications.
  • said medical treatment causes or contributes to immunodeficiency or impaired immune system function of the individual thus treated.
  • a method of the present invention is used in combination with an anti-microbial treatment.
  • Said anti-microbial treatment preferably comprises administration of at least one anti-microbial compound.
  • said antimicrobial compounds comprises one or more bacterial cell wall synthesis inhibitor, such as Vancomycin or a beta-lactam, for example penicillin and/or a cephalosporin.
  • said anti-microbial compound comprises one or protein synthesis inhibitor, such as an Aminoglycoside (streptomycin), a Tetracycline, Macrolide (erythromycin) and/or an Oxazolidinone.
  • said anti-microbial compound comprises one or more nucleic acid metabolism inhibitor, such as a Sulfonamide, Trimethoprim and/or a Rifamycin.
  • said anti-microbial compound comprises one or more DNA gyrase inhibitor, such as a Novobiocin, Quinolone, a Quinolone derivative or, more preferably, a fluorinated derivative of Quinolone.
  • said antimicrobial compounds comprises an ampicillin or carbapenem.
  • complex of a polypeptide toxin and an anti-toxin polypeptide is meant a polypeptide toxin bound to its cognate antitoxin polypeptide.
  • Said polypeptide toxin is capable of causing a detrimental effect on said microbial cell, such as reduction in microbial cell growth, cellular dysfunction or cell death.
  • Said anti-toxin polypeptide is capable of preventing or reducing the detrimental effect of the polypeptide toxin on the microbial cell, preferably by binding said toxin or otherwise preventing the mode of action of said toxin.
  • Said complex is preferably a known TA complex, more preferably from one or more of the following TA complex families (the family members in each family being termed "variants”): • rel BE systems • parDE systems
  • chp systems also termed mazEF
  • vapBC systems also known as vagCD or STBORF1 and STBORF2
  • cognate anti-toxin a particular anti-toxin capable of reducing or preventing the detrimental effect of the toxin in question.
  • Said toxin preferably comprises a sequence of 10-300 amino acids, such as 20-250 amino acids, such as 30-200 amino acids, such as 40-175 amino acids, such as 50- 160 amino acids, for example 55-140 amino acids, such as 60-100 amino acids, such as 70-90 amino acids.
  • said polypeptide toxin is from the RelE toxin family, such as a polypeptide toxin comprising a sequence selected from, or substantially identical to SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16.
  • Said polypeptide toxin from the RelE family may in another preferred embodiment have a sequence comprising a sequence with at least 80 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such at least 99 % sequence identity.
  • said polypeptide toxin from the RelE family comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 "10 or less, such as a polypeptide toxin comprising a sequence selected from SEQ ID NO: 17-97.
  • said toxin is any of the toxins with sequences as given in Example 5.
  • said polypeptide toxin is from the VapC toxin family, such as a polypeptide toxin comprising a sequence selected from, or substantially identical to, SEQ ID NO:99, 101 , 103 and 105.
  • said polypeptide toxin of the VapC family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide toxin of the VapC toxin family comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO:99, 101 , 103 and 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "4 , such as an E value of 10 "10 or less, such as a polypeptide with sequence comprising a sequence selected from SEQ ID NO: 106-154.
  • said polypeptide toxin is from the MazF toxin family, such as said polypeptide has a sequence comprising a sequence selected from or substantially identical to SEQ ID NO: 155 and 160.
  • said polypeptide toxin from the MazF family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 155 and 160, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide toxin from the MazF family comprises a sequence, characterised in that said sequence produces an E value of 10 -4 or less when compared to one or more of SEQ ID NO:155 and 160 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 "10 or less, such as a polypeptide toxin comprising a sequence selected from SEQ ID NO: 161 -205.
  • said polypeptide toxin is from the ParE toxin family, such as a polypeptide toxin comprising a sequence with, or substantially identical to, SEQ ID NO:207.
  • said polypeptide toxin from the ParE family comprises a sequence with at least 80 % sequence identity to SEQ ID NO:207, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide toxin of the ParE family com- prises a sequence characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 "10 or less, for example said polypeptide toxin com- prises a sequence selected from SEQ ID NO:208-219.
  • said polypeptide toxin is from the HigB toxin family, for example said polypeptide toxin from the HigB toxin family comprises a sequence with SEQ ID NO: 221, or a substantially identical vari- atn thereof.
  • said polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 221 , such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide toxin of the HigB toxin family comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 221 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 "10 , for example said polypeptide toxin of the HigB toxin family comprises a se- quence selected from SEQ ID NO:222-240.
  • said polypeptide toxin is from the Doc toxin family, such as a polypeptide comprising the sequence SEQ ID NO: 242 or a sequence substantially identical thereto.
  • said polypeptide toxin from the Doc toxin family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 242, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide toxin of the Doc family comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 "10 or less, for example said polypeptide toxin comprises a sequence selected from SEQ ID NO:243-257.
  • said polypeptide toxin is from the CcdB toxin family, such as a polypeptide comprising the sequence SEQ ID NO: 259, or a sequence substantially identical thereto.
  • said polypeptide toxin of the CcdB toxin family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 259, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide toxin of the CcdB toxin family comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 "10 or less, for example a sequence comprising a sequence selected from SEQ ID NO-.260-263.
  • said polypeptide toxin comprises a sequence, evaluated as a "final hit" using the following iterative BLAST protocol for evaluating sequences: a) Compare the query sequence of any of SEQ ID NO:
  • step b) Repeat step b) at least once, until no further "hit” sequences are found, d) Use the "hit” sequences found in the previous steps as query sequences to compare with any of SEQ ID: 17-97, 106-154, 161-205, 208-219, 222-240, 243-257 and 260-263 using the the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • "Final hit” sequences are characterised by generating an E value of 10 "4 or less.
  • the "sequences to be evaluated” are preferably in a genome or polypeptide sequence database.
  • polypeptide antitoxin is the cognate antitoxin to any of the toxins listed above, such as any of the antitoxins listed in Example 5.
  • said polypeptide antitoxin is from the RelB family, such as said polypeptide antitoxin comprises a sequence selected from, or substantially identical to, SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15.
  • said polypeptide antitoxin from the RelB family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 1 ,3,5,7,9, 11 ,13 and 15, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15.
  • said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 "10 or less.
  • said polypeptide antitoxin is from the VapB family, such as said antitoxin comprises a sequence selected from, or substantially identical to, SEQ ID NO: 98, 100, 102 and 104.
  • said polypeptide antitoxin of the VapB family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 98, 100, 102 and 104, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide antitoxin of the VapB family comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 98, 100, 102 and 104, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 , such as an E value of 10 "10 .
  • said polypeptide antitoxin is from the MazE family, such as said antitoxin comprises a sequence selected from, or substantially identical to SEQ ID NO: 156, 157, 158 and 159.
  • said polypeptide antitoxin of the MazE family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 156, 157, 158 and 159, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO:
  • said polypeptide antitoxin is from the ParD family, for example said polypeptide antitoxin comprises a sequence with SEQ ID NO: 206, or a substantially identical sequence thereof.
  • said polypeptide antitoxin of teh ParD family comprises a sequence with at least 80 % sequence identity to SEQ ID: 206, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide antitoxin of the ParD family comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 206, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 "10 or less.
  • said polypeptide antitoxin is from the HigA family, such as a polypeptide antitoxin comprises a sequence with SEQ ID NO: 220 or a sequence substantially identical thereof.
  • said polypeptide antitoxin of the HigA family comprises a sequence with at least 80 % sequence identity to SEQ ID: 220, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide antitoxin of the HigA family comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 220, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 "10 or less.
  • said polypeptide antitoxin is from the Phd family, such as said polypeptide antitoxin comprises a sequence with SEQ ID NO: 241 , or a substantially identical sequence thereto.
  • said polypeptide antitoxin of the Phd family comprises a sequence with at least 80 % sequence identity to SEQ ID: 241 , such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 241 , using the BLAST algorithm version
  • said polypeptide antitoxin is from the CcdA family, such as said polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 258, or a substantially identical sequence thereto.
  • said polypeptide antitoxin of the CcdA family comprises a sequence with at least 80 % sequence identity to SEQ ID: 258, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity.
  • said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 258, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10 "5 or less, such as an E value of 10 ⁇ 10 or less.
  • said anti-toxin polypeptide is the cognate anti-toxin to any of the toxin polypeptides described herein, including an toxin capable of being evaluated as a "final hit" in the iterative BLAST protocol described above.
  • At least one polynucleotide encoding a polypeptide toxin and an antitoxin polypeptide is meant herein that said microbial cell comprises: (i) at least one polynucleotide encoding a polypeptide toxin, preferably comprised on a longer polynucleotide stretch, such as a bacterial plasmid or chromosome. (ii) At least one polynucleotide encoding a polypeptide antitoxin, preferably comprised on a longer polynucleotide, such as a bacterial plasmid or chromosome.
  • the gene coding for said toxin is closely spatially linked to the gene for its cognate anti-toxin, such as within 500 bp, such as within 450 bp, such as within 400 bp, such as within 350 bp, such as within 300 bp, such as within 250 bp, such as within 200 bp, such as within 100 bp, such as within 90 bp, such as within 73 bp, such as within 60 bp, such as within 50 bp, such as within 40 bp, such as within 30 bp, such as within 20 bp.
  • said polynucleotide encoding a antitoxin is between 10-300 codons long, such as 15-250 codons long, such as 20-200 codons long, such as 25-175 codons long, such as 42-140 codons long, for example 60-90 codons long.
  • said said polynucleotide encoding a polypeptide toxin encodes any of the polypeptide toxins described herein and/or that said polynucleotide encoding a polypeptide antitoxin encodes any of the polypeptide antitoxins described herein.
  • sequence identity in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned for maximum correspondence over a specified comparison window.
  • sequence identity or “identity” in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned for maximum correspondence over a specified comparison window.
  • sequence identity When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g. charge or hydro- phobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art.
  • percentage of sequence identity means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both se- quences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.
  • Two peptide sequences are "substantially identical" if one peptide is specifically im- munologically reactive with antibodies raised against the second peptide.
  • a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution - e.g. the peptides share sequences except that residue positions which are not identical may differ by conservative amino acid changes.
  • the phrase "specifically immunoreactive with”, when referring to an antibody refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologies.
  • the specified antibodies bind preferentially to a particular protein and do not bind in a significant amount to other proteins present in the sample.
  • Specific binding to a protein under such conditions requires an antibody that is selected for its specificity for a particular protein.
  • a variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein.
  • solid-phase ELISA immunoassays are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York, for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.
  • a “conservative substitution”, when describing a protein refers to a change in the amino acid composition of the protein that does not substantially alter the protein's activity.
  • “conservatively modified variations” of a particular amino acid sequence refers to amino acid substitutions of those amino acids that are not critical for protein activity or substitution of amino acids with other amino acids having similar properties (e.g., acidic, basic, positively or negatively charged, polar or non- polar, etc.) such that the substitutions of even critical amino acids do not substantially alter activity.
  • Conservative substitution tables providing functionally similar amino acids are well known in the art. The following is six groups each contain amino acids that are examples of conservative substitutions for one another:
  • sequence identity methods of alignment of nucleotide and amino acid sequences for comparison are well-known in the art.
  • Optimal alignment of sequences for comparison may be conducted, for example, by the local homology algorithm (Best Fit) of Smith and Waterman, Adv. Appl. Math. 2: 482 (1981); by the homology alignment algorithm (GAP) of Needleman and Wunsch, J. Mol. Biol. 48: 443 (1970); by the search for similarity method (Tfasta and Fasta) of Pearson and Lipman, Proc. Natl. Acad. Sci.
  • the BLAST family of programs can be used for database similarity searches and include: BLASTN for nucleotide query sequences against nucleotide database sequences; BLASTX for nucleotide query sequences against protein database sequences; BLASTP for protein query sequences against protein database sequences; TBLASTN for protein query sequences against nucleotide database sequences; and TBLASTX for nucleotide query sequences against nucleotide data- base sequences.
  • BLASTN for nucleotide query sequences against nucleotide database sequences
  • BLASTP for protein query sequences against protein database sequences
  • TBLASTN protein query sequences against nucleotide database sequences
  • TBLASTX for nucleotide query sequences against nucleotide data- base sequences.
  • HSPs high scoring sequence pairs
  • the word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mis- matching residues; always ⁇ 0). Forsamino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of ei- ther sequence is reached.
  • the BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
  • the BLASTP program uses as defaults a wordlength (W) of 3, a low complexity filter, Gap costs (existence: 11 and extension: 1) and the BLOSUM62 scoring matrix (see Henikoff & Henikoff
  • BLAST refers to version 2.04.
  • the BLAST algorithm is also capable of performing a statistical analysis of the simi- larity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci.
  • the BLAST E-value measures the statistical significance threshold for reporting protein sequence matches against a database; e.g. if the threshold significance value is 10 "4 , then there is a probability of 10 "4 that a match would be expected to occur by chance, according to the stochastic model of Karlin and Altschul (Schaffer, A.A. et al. (1999) Bioinformatics 15:1000-1011). E values may also be calculated for alignments generated using any of the other bioinformatics methods described herein.
  • HMM-SEARCH is another useful program for homology searches, belonging to the HMMER package, which compares a query profile HMM (hidden Markov Model) against a sequence library.
  • Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences.
  • Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis.
  • Several software implementa- tions and two large libraries of profile HMMs of common protein domains are available (see "HMMER Profile hidden Markov models", Bioinformatics 1998;14(9):755- 763, Eddy SR).
  • all the methods described above may be used, for example, to search databases for TA-complex sequences and/or calculate the level of homology between two putative toxin or antitoxin sequences, for example by calculation of an E value or a percentage identity score.
  • the invention relates to methods for the evaluation of the ability of a bioactive compound to interfere with a bacterial toxin-antitoxin complex.
  • Interfere with' in this context can e.g. be disruption, disturbance as well as prevention of for- mation of the bacterial toxin-antitoxin complex.
  • the invention relates to a method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex comprising the steps of 1. providing a compound to be evaluated for the ability to interfere with a bacterial toxin-antitoxin complex,
  • the step of evaluating whether or not the presence of said compound has affected the binding of said first polypeptide to said second polypeptide is done by comparison with a control experiment in which said first polypeptide and said second polypeptide are incubated under conditions allowing bind- ing of said first polypeptide to said second polypeptide in the absence of said compound, i.e. the signal detected in this parallel experiment is considered the reference value indicative of the binding of said first polypeptide to said second polypeptide in the absence of said compound.
  • said reference value is known before the method is carried out, for example the amount of signal is assayed for in the presence of the first and second polypeptide but prior to addition of the compound to be evaluated.
  • said reference value may be well- known to those in the art, such as an absence of detectable signal.
  • Said methods may be used to qualitatively or quantitatively evaluate the efficacy of a previously identified compound capable of interfering with a bacterial toxin-antitoxin complex, or postulated as being capable of interfering with a bacterial toxin-antitoxin complex.
  • the aim of the evaluation can e.g. be to identify a compound with the desired activity of interfering with a bacterial toxin-antitoxin complex, for instance to screen libraries of chemical compounds to identify lead compounds.
  • the above method can be used as a method for identification, a method for screening for, or a method for characterising bioactive compounds capable of interfering with a bacterial toxin-antitoxin complex.
  • Bioactive species of the present invention which may be used in the methods of the present invention, can be evaluated using in vivo (including cell-based) as well as in vitro evaluation methods as disclosed herein.
  • said method is capable of directly and/or indirectly detecting a toxin-antitoxin interaction.
  • Suitable in vitro methods include methods in which the toxin-antitoxin interaction is detected directly, for instance using purified toxin and antitoxin.
  • one of the two binding partners is immobilised and the other partner is labelled in such a way as to be capable of producing a signal indicative of the degree of binding of said first polypeptide to said second polypeptide.
  • Said detectable signal may for example be qualitative or quantitative. Interactions of the two binding partners may be detected by assaying for the level of the detectable signal, for example presence or absence of the signal, or for example a quantitative signal.
  • Preferred signal types include enzymatic activity, such as activity of horseradish peroxidase (HRP) or glucose oxidase.
  • HRP horseradish peroxidase
  • glucose oxidase additional reagents are required to visualise the fact that a indicator-moiety/ligand com- plex (immunoreactant) has formed.
  • additional reagents for HRP include hydrogen peroxide and an oxidation dye precursor such as diaminobenzidine.
  • An additional reagent useful with glucose oxidase is 2,2'-amino-di-(3-ethyl-benzthiazoline- G-sulfonic acid).
  • Another preferred enzyme activity is activity of beta galactosidase.
  • the signalling means can also be one or more of a fluorescence-based signal, such as a fluorescent agent that chemically binds to one or more of the polypeptides without denaturing them to form a fluorochrome (dye) that is a useful immunofluo- rescent tracer.
  • a fluorescence-based signal such as a fluorescent agent that chemically binds to one or more of the polypeptides without denaturing them to form a fluorochrome (dye) that is a useful immunofluo- rescent tracer.
  • Suitable fluorescent labelling agents are fluorochromes such as fluorescein isocyanate (FIC), fluorescein isothiocyante (FITC), 5-dimethylamine-1 ⁇ naphthalenesulfonyl chloride (DANSC), tetramethylrhodamine isothiocyanate
  • TRITC lissamine
  • rhodamine 8200 sulphonyl chloride RB 200 SC
  • suitable fluorescent materials include umbelliferone, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin and the like.
  • a description of immunofluorescence analysis techniques is found in DeLuca, "Immunofluorescence Analysis", in Antibody As a Tool, Marchalonis, et al., eds., John Wiley & Sons, Ltd., pp. 189-231 (1982).
  • said signal may be generated by a radiolabelling agent, (for example, wherein radiation (alpha, beta or gamma) produced by decay of a at- tached radioisotope label serves as the signal which can be detected and quanti- tated by various radiometric methods such as scintillation counting).
  • a radiolabelling agent for example, wherein radiation (alpha, beta or gamma) produced by decay of a at- tached radioisotope label serves as the signal which can be detected and quanti- tated by various radiometric methods such as scintillation counting).
  • a radioactive element that produces gamma ray emissions.
  • Elements which themselves emit gamma rays, such as 124 l, 125 l, 128 l, 132 l and 51 Cr represent one class of gamma ray emission-producing radioactive element indicating groups. Particularly preferred is 125 l.
  • Another group of useful labelling means are those elements such as
  • radioactive materials include 131 l and 35 S.
  • the level of bound toxin or antitoxin can also be detected using one or more specific antibodies. Detection using antibodies can, in one embodiment, be facilitated by coupling the antibody to another detectable substance, such as an enzyme, a prosthetic group, a luminescent materials, or a bioluminescent material.
  • another detectable substance such as an enzyme, a prosthetic group, a luminescent materials, or a bioluminescent material.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta- galactosidase, or acetylcholinesterase;
  • suitable prosthetic group com- plexes include Streptavidin/biotin and avidin/biotin;
  • an example of a luminescent material includes luminol;
  • examples of bioluminescent materials include luciferase, luciferin, and aequorin.
  • proteins can be labelled by metabolic incorporation of radio- isotope-containing amino acids provided as a component in the culture medium. See, for example, Galfre et al., Meth. Enzymol., 73:3-46 (1981).
  • the techniques of protein conjugation or coupling through activated functional groups are particularly applicable. See, for example, Aurameas, et al., Scand. J. Immunol., Vol. 8 Suppl. 7:7-23 (1978), Rodwell et al. (1984) Biotech. 3:889-894, and U.S. Pat. No.
  • the detectability of the signal determines the sensitivity of the evaluation method.
  • the sensitivity is in turn related to both the type of signal employed and the quality and type of equipment available to detect it.
  • said method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex is performed in vitro, for example as a biochemical method, preferably performed using purified toxin and/or purified antitoxin.
  • a biochemical method preferably performed using purified toxin and/or purified antitoxin.
  • One or more of said toxins or antitoxins is preferably fused to a reporter capable of generating a signal, such as any of the signals described herein.
  • the antitoxin is purified and immobilized, preferably to a solid support, more preferably a well for protein immobilization or a microtiter well, using protocols known in the art.
  • suitable wells include those provided by Corning Inc.
  • the corresponding toxin is fused to an suitable chemical "reporter" capable of providing a indicative of the degree of binding of said first polypeptide to said second polypeptide, and is for example an enzyme with an easily detectable activity (for example, alkaline phosphatase) or a fluorescently- labelled moiety.
  • the fusion protein is preferably tested for biological activity in vivo before purification.
  • any low mo- lecular compound that disrupts the interaction between the TA pair will lead to release of the toxin fused to alkaline phosphatase. It is also envisaged that the same method can be applied with an immobilised toxin and fusion proten comprising the antitoxin.
  • the antitoxin is purified and immobilized, preferably to a solid support, more preferably a well for protein immobilization or a microtiter well, using protocols known in the art. Examples of suitable wells include those provided by Corning Inc.
  • the corresponding toxin is then incubated with the antitoxin under conditions capable of allowing TA complex formation.
  • the toxin is optionally a fusion protein. Contacting of said toxin to said immobilized antitoxin is detected using one or more specific antibodies, with at least one antibody type being capable of binding to said toxin.
  • At least one of said antibodies is capable of providing a "signal", for example a change in level of enzymatic activity or a change in the level of fluorescence. It is also envisaged that the same method can be applied with an immobilised toxin rather than antitoxin.
  • the amount of toxin-antitoxin complexes and/or antitoxin complexes are assayed for.
  • the amount of released toxin is assayed for, for example by transferring the supernatant containing the toxin to a suitable assaying surface, such as a microtiter well, and performing an assay for the levels of the signal, such as an alkaline phosphatase assay in cases where the signal is alkaline phosphatase activity.
  • the methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex are suitable for being automated, using for example robotics and/or automated plate readers known by one skilled in the art.
  • the one or more compound evaluated is from a commercially available combinatorial chemical library, such as those available from Chemical Diversity Inc.
  • substrates yielding fluorescent products should be used to assay for the level of reporter present.
  • Said substrates are preferably phosphate substrates, more preferably commercially available fluorescent substrates, such as for example Fluorescein diphosphate-FDP from Molecular
  • the toxin is fluorescently labelled by standard procedures known by those skilled in the art. Toxin and antitoxin are mixed, for example in microtiter wells, and fluorescence polarization (FP) measured (see Methods 22, 61-70 (2000), using e.g. a FP plate reader. The active substances may be identified due to their lower polarization value.
  • FP fluorescence polarization
  • said method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex is performed in vivo.
  • a bacterial two-hybrid system is used to indicate interaction of the TA system components, such as is described by Karimova and coworkers (Proc Natl Acad Sci U S A 95, 5752, 1999).
  • the basis of this system is the activation of certain genes, such as lacZ in a bacteria such as E. coli, by a complex of interacting proteins, such as the CAP protein in complex with cAMP.
  • the activated gene creates a detectable signal, such as a change in enzymatic activity or a change in flourescence levels.
  • said TA interaction is monitored using bioluminscence resonance energy transfer (BRET), such as is described by Xu et al. (Xu Y, Piston DW, Johnson CH.
  • BRET bioluminescence resonance energy transfer
  • a combination of more than one evaluation method may also be envisaged to be part of the present invention, for example first evaluating large number of compounds with an in vitro method, and then screening smaller numbers of compounds with an in vivo method. For example, analogs are evaluated for their activity of dis- rupting TA interactions in vitro and in vivo as disclosed herein, and promising candidates are then tested for antibacterial activity using e.g. a bacterial toxicity assay or by monitoring bacterial growth levels.
  • the compound to be evaluated is administered to an individual suffering from, or likely to suffer from, a bacterial disease, and the individual's disease state used as the signal indicative of the degree of binding of said bacterial toxin to said bacterial antitoxin, using as a reference value the disease state of a healthy individual.
  • Said individual is preferably a laboratory animal, such as a mouse, rat, monkey or rabbit
  • bioactive species of the present invention may also be identified by optimization protocols, such as an iterative process of systematically modifying the bioactive species structure and retesting.
  • Suitable compounds for use in the evaluation method disclosed herein may also be generated using e.g. computational drug de- sign, structure-based drug design and the like.
  • Bioactive species capable of activating a polypeptide toxin and/or capable of initiating de novo synthesis of an activated polypeptide toxin
  • a bioactive species is provided, said bioactive species preferably being identifiable using the evaluation methods described above.
  • Said bioactive species is preferably a low molecular weight chemical compound.
  • the bioactive species of the present invention are capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of activated polypeptide toxin.
  • activating is meant that said polypeptide toxin becomes capable of having a detrimental effect on said microbial cell, such as, for example, inducing impaired growth of the microbial cell and/or, more preferably, inducing cell death of said microbial cell.
  • said bioactive species is capable of binding to the toxin.
  • said bioactive species is capable of binding to the anti-toxin, wherein said binding preferably prevents said antitoxin from inactivating its cognate toxin.
  • said bioactive species is capable of binding to the toxin-antitoxin complex, in which case said binding preferably causes direct dissociation of the toxin-antitoxin complex.
  • said bioactive species promotes degradation of an anti-toxin molecule, thereby increasing the levels of free toxin within a bacterial cell.
  • said bioactive species is capable of destabilising an anti-toxin, thereby optionally (also) promoting degradation of the anti-toxin.
  • said bioactive species is capable of preventing synthesis of an anti-toxin, thereby increasing the levels of free, activated toxins within a bacterial cell.
  • said bioactive species is capable of promoting the synthesis of a toxin compound, thereby increasing the levels of free (i.e. not bound within a TA complex) active toxin in a bacterial cell.
  • said bioactive species is capable of increasing the stability of a toxin, thereby promoting the toxic effect of the toxin molecules on a bacterial cell.
  • Said bioactive species is preferably organic in nature.
  • said bioactive species comprises or essentially consists of one or more of the following: -peptides, ⁇ -peptides, ⁇ -peptides, ⁇ -peptides, mono-, di- and tri-substituted - peptides, ⁇ -peptides, ⁇ -peptides, ⁇ -peptides, peptides wherein the amino acid resi- dues are in the L-form or in the D-form, vinylogous polypeptides, glycopoly-peptides, polyamides, vinylogous sulfonamide peptide, polysulfonamide, conjugated peptides comprising e.g.
  • prosthetic groups polyesters, polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonat.es, polyurethanes, azatides, oligo N-substituted glycines, polyethers, ethoxyformacetal oligomers, poly- thioethers, polyethylene glycols (PEG), polyethylenes, polydisulfides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyrrolinone, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g. aliphatic or aromatic cycles, including polyheterocyclic compounds, proteoglycans, and/or polysi loxanes .
  • PEG polyethylene glyco
  • Yet further preferred molecules are those comprising a scaffold structure comprising a plurality of covalently linked functional entities selected from the group consisting of -peptides, ⁇ -peptides, ⁇ -peptides, ⁇ -peptides, mono-, di- and tri-substituted ⁇ - peptides, ⁇ -peptides, ⁇ -peptides, ⁇ -peptides, peptides wherein the amino acid residues are in the L-form or in the D-form, vinylogous polypeptides, glycopoly-peptides, polyamides, vinylogous sulfonamide peptides, polysulfonamides, conjugated peptides comprising e.g.
  • prosthetic groups polyesters, polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonates, polyurethanes, azatides, oligo N-substituted glycines, polyethers, ethoxyformacetal oligomers, poly- thioethers, polyethylene glycols (PEG), polyethylenes, polydisulfides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyrrolinones, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g.
  • the plurality of functional entities is preferably from 2 to 200, for example from 2 to 100, such as from 2 to 80, for example from 2 to 60, such as from 2 to 40, for example from 2 to 30, such as from 2 to 20, for example from 2 to 15, such as from 2 to 10, such as from 2 to 8, for example from 2 to 6, such as from 2 to 4, for example 2, such as from 3 to 100, for example from 3 to 80, such as from 3 to 60, such as from 3 to 40, for example from 3 to 30, such as from 3 to 20, such as from 3 to 15, for example from 3 to 15, such as from 3 to 10, such as from 3 to 8, for example from 3 to 6, such as from 3 to 4, for example 3, such as from 4 to 100, for example from 4 to 80, such as from 4 to 60, such as from 4 to 40, for example from 4 to 30, such as from 4 to 20, such as from 4 to 15, for example from 4 to 10, such as from 4 to 10, such as from 4 to 10, such as
  • 22 to 60 such as from 22 to 40, for example from 22 to 30, such as from 22 to 25, for example from 25 to 100, such as from 25 to 80, for example from 25 to 60, such as from 25 to 40, for example from 25 to 30, such as from 30 to 100, for example from 30 to 80, such as from 30 to 60, for example from 30 to 40, such as from 30 to 35, for example from 35 to 100, such as from 35 to 80, for example from 35 to 60, such as from 35 to 40, for example from 40 to 100, such as from 40 to 80, for example from 40 to 60, such as from 40 to 50, for example from 40 to 45, such as from 45 to 100, for example from 45 to 80, such as from 45 to 60, for example from 45 to 50, such as from 50 to 100, for example from 50 to 80, such as from 50 to 60, for exam- pie from 50 to 55, such as from 60 to 100, for example from 60 to 80, such as from 60 to 70, for example from 70 to 100, such as from 70 to 90, for example from 70 to 80,
  • the bioactive species to be synthesised in accordance with the present invention are preferably "small molecules", by which is meant molecules having a molecular weight (MW) of less than 10000 Daltons, such as less than 8000 Daltons, for example less than 6000 Daltons, such as less than 5000 Daltons, for example less than 4000 Daltons, for example less than 3500 Daltons, such as less than 3000 Daltons, for example less than 2500 Daltons, for example less than 2000 Daltons, such as less than 1800 Daltons, for example less than 1600 Daltons, for example less than
  • MW molecular weight
  • 1400 Daltons such as less than 1200 Daltons, for example less than 1000 Daltons.
  • the functional entities of the above molecules can be linked by a chemical bond selected from the group of chemical bonds consisting of peptide bonds, sulfonamide bonds, ester bonds, saccharide bonds, carbamate bonds, carbonate bonds, urea bonds, phosphonate bonds.urethane bonds, azatide bonds, peptoid bonds, ether bonds, ethoxy bonds, thioether bonds, single carbon bonds, double carbon bonds, triple carbon bonds, disulfide bonds, sulfide bonds, phosphodiester bonds, oxime bonds, imine bonds, imide bonds, including any combination thereof.
  • the chemical bond linking at least some of the functional entities of the molecule is preferably formed by a reaction of a nucleophile group of a first functional entity with an ester or thioester of another functional entity.
  • the linker of the functional entity bearing the thioester group is preferably cleaved simultaneously with the formation of the bond resulting in a transfer of the functional entity or a part thereof to the nucleophilic functional entity.
  • the nucleophile group is preferably selected from -NH 2 , H 2 NHN-, HOHN-, H 2 N-C(0)-NH-.
  • the backbone structure of said bioactive species can, for example, comprise or es- sentially consist of one or more molecular group(s) selected from -NHN(R)CO- ; -
  • the following properties may also be used to define the bioactive species of the present invention: the number of rotatable bonds (RTB) the number of rings (RNG) the number of hydrogen bond donors (HDO) the number of hydrogen bond acceptors (HAC) the octanol-water partition coefficient (log P) molar refractivity (MR)
  • said bioactive species falls within one or more of the following limits: 3 ⁇ HDO ⁇ 5, more preferably 0 ⁇ HDO ⁇ 2 2 ⁇ HAC ⁇ 9 2 ⁇ RTB ⁇ 8
  • the bioactive species preferably comprises any amino acid sequence of at least about 1 to 60 amino acids in length and may be derived from the expression of nucleotide sequences which are prepared by any one of a variety of methods such as, for example, random synthetic generation, or using naturally-occurring genomes as exemplified herein.
  • nucleotide sequences which are prepared by any one of a variety of methods such as, for example, random synthetic generation, or using naturally-occurring genomes as exemplified herein.
  • the use of larger fragments, particularly employing randomly sheared nucleic acid derived from bacterial, yeast or animal genomes, is not excluded.
  • the bioactive species is expressed as a fusion protein with a peptide sequence capable of enhancing uptake of the peptide by an isolated cell such as, for example, when the subject peptide is synthesized ex vivo and added to isolated cells in culture.
  • the peptide sequence capable of enhancing, increasing or assisting penetration or uptake is functional in bacterial cells.
  • the bioactive species may also be expressed in a conformationally constrained form.
  • amino acid sequences which are expressed in a conformation- ally constrained form may be expressed within a second polypeptide as a fusion protein such that they are effectively "nested" in the secondary structure of the second polypeptide.
  • a peptide, oligopeptide or polypeptide may be circu- larized within a loop of disulphide bonds to limit conformational diversity, such as, for example, by expressing a peptide within oxidized flanking cysteine residues. This may be particularly beneficial where the amino acid sequences are nested within a surface-exposed or functional site of a protein, such that they are accessible to the interaction of interest.
  • the peptide may be expressed within a thiore- doxin (Trx) polypeptide loop.
  • said bioactive species comprises at least one heterocyclic ring, such as an aromatic heterocycle or, more preferably, a nonaromatic heterocyclic rings.
  • said bioactive species comprises at least one tertiary aliphatic amines.
  • said bioactive species comprises at least one alcoholic OH group.
  • said bioactive species comprises at least one carboxamide.
  • said bioactive species comprises at least one benzene ring.
  • said bioactive species is preferably lipophilic, and capable of penetrating a cell membrane.
  • said molecule is encapsulated in a lipophilic carrier, such as a micelle or liposome, to enable effective penetration of cell membranes.
  • said bioactive species is preferably non-immunogenic.
  • said bioactive species is classified as a "drug" using the scoring scheme disclosed in Sadowski et al., "A scoring scheme for discriminating between drugs and non-drugs", Combinatorial Chemistry and Molecular Modelling, vol. 41 , Issue 18, August 27, 1998 p 3325-
  • said bioactive species passes the "rule of 5" test, a probability scheme that estimates oral absorption, pro- posed by Lipinski et al. [Adv. Drug Deliv. Rev., 23 (1997) 3].
  • the bioactive species is designed to bind to, or close to, an area of an antitoxin and/or toxin that interacts with its corresponding toxin or antitoxin (i.e. a binding interface). Without being bound by theory, it is believed that this would disrupt the binding interface between said toxin and antitoxin, preventing or reducing binding and thus preventing or reducing TA complex formation, thus preventing neutralisation of the toxin.
  • the bioactive species of the present invention is a reduced-toxicity variant of the toxin, which causes antitoxin inactivation.
  • Such reduced-toxicity variant may be a variant of a toxin from any of the following toxin/antitoxin systems: • parDE systems
  • chp systems (chpA locus has also been called mazEF)
  • vapBC systems also known as vagCD or STBORF1 and STBORF2
  • said variant is a reduced-toxicity variant of the MazF toxin.
  • said variant may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 15-31 of the E.coli MazF toxin (VDFDPTKGSEQAGHRPA - SEQ ID NO: 722), or homologue and/or fragment thereof.
  • Said homologue and/or fragment may be e.g. less than 16 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14, such as at least 15 amino acids long.
  • Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO:155 and 160, such as SVMLTVPPA LLNALSLGTD N (SEQ ID NO: 723) and VGFDPASGHEQQGAGRP (SEQ ID NO: 724). Further suitable homologues include polypeptide sections homologous to VDFDPTKGSEQAGHRP A (SEQ ID NO: 722) in the MazF toxin polypeptides with SEQ ID NO: 161-205. Further suitable homologues include polypeptide sections homologous to VDFDPTKGSEQAGHRP A (SEQ ID NO: 722) in any of the MazF toxin polypeptides described in Example 5 (results shown in Table 2).
  • a polypeptide section (preferably used in the invention as an isolated polypeptide in itself) is defined as "Homologous" to a comparison polypeptide if the homology value has an E value of 10 "4 or less (e.g. 10 "5 or less, e.g 10 "6 or less, e.g 10 "7 or less, e.g 10 "8 or less, e.g 10 "9 or less, e.g 10 "10 or less) when calculated using the BLAST algorithm version (2.04) set to the default pa- rameters defined herein.)
  • said variant may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 31-50 of the E.coli MazF toxin (AWLSPFMYN NKTGMCLCVP- SEQ ID NO: 725), or homologue and/or fragment thereof.
  • Said fragment and/or homologue may be e.g. less than 21 amino acids long and is pref- erably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14, such as at least 16, for example at least 18, amino acids long.
  • Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO:155 and 160, such as NEVGMVIDNGRLIVEPYRRPQYSLAELLAQ CDP (SEQ ID NO: 726) and ALVLSVQAFNQLGMTLVAP (SEQ ID NO: 727).
  • homologues include polypeptide sections homologous to AWLSPFMYNNKTGMCLCVP (SEQ ID NO: 725) in the MazF toxin polypeptides with SEQ ID NO: 161-205. Further suitable homologues include polypeptide sections homologous to AWLSPFMYNNKTGMCLCVP SEQ ID NO: 725) in any of the MazF toxin polypep- tides described in Example 5 (results shown in Table 2).
  • said variant may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 50-79 of the E.coli MazF toxin (PCTTQSKGYPF EWLSGQERD GVALADQVK - SEQ ID NO: 728), or homologue and/or fragment thereof.
  • Said fragment and/or homologue may be e.g. less than 32 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14, such as at least 16, for example at least 18, such as at least 20, for example at least 22, such as at least 24, for example at least 26, such as at least 28, amino acids long.
  • Suit- able fragments include, but are not restricted to a fragment selected from PCTTQS
  • Suitable "homologues thereof” include homologous polypeptide sections in SEQ ID NO: 155 and 160. Further suitable homologues include polypeptide sections ho- mologous to PCTTQSKGYPFEWLSGQERDGVALADQVK (SEQ ID NO: 728) in the
  • maF toxin polypeptides with SEQ ID NO: 161-205.
  • suitable homologues include polypeptide sections homologous to PCTTQSKGYPFEWLSGQERDGVALADQVK (SEQ ID NO: 728) in any of the MazF toxin polypeptides described in Example 5 (results shown in Table 2).
  • said variant may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 86-109 of the E.coli MazF toxin (RGATKKGTVAPEELQLIKAKINVL - SEQ ID NO: 735), or homologue and/or fragment thereof.
  • Said homologue and/ or fragment may be e.g.
  • Suitable fragments include, but are not restricted to, RGATK (SEQ ID NO: 736), KGTVA (SEQ ID NO: 737), PEELQ (SEQ ID NO: 738), LIKA (SEQ ID NO: 739), or KINVL (SEQ ID NO: 740).
  • Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO:155 and 160.
  • homologues include polypeptide sections homologous to RGATKKGTVAPEELQLIKAKINVL (SEQ ID NO: 735), in the MazF toxin polypeptides with SEQ ID NO: 161-205. Further suitable homologues include polypeptide sections homologous to RGATKKGTVAPEELQLIKAKINVL (SEQ ID NO: 735), in any of the MazF toxin polypeptides described in Example 5 (results shown in Table 2).
  • the bioactive species of the present invention is an antitoxin variant, said antitoxin variant acting to bind to, but not inac- tivate, its cognate toxin.
  • Said antitoxin variant may be a variant of an antitoxin from any of the following toxin/antitoxin systems: • parDE systems
  • chp systems (chpA locus has also been called mazEF)
  • said antitoxin variant is a variant of the MazE antitoxin.
  • Said variant of the MazE antitoxin may be a peptide comprising, consisting of, or consisting essen- tially of, amino acid residues 29-32 of the E.coli MazE antitoxin (IDDE - SEQ ID NO: 741), or homologue and/or fragment thereof, such as IDD, DDE or DD.
  • Said fragment and/or homologue may be e.g. less than 6 amino acids long and is preferably at least 2, for example at least 3, such as at least 4, for example at least 5 amino acids long.
  • Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO: 156, 157, 158 or 159.
  • said variant of the MazE antitoxin may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 48-53 of the E.coli MazE antitoxin (RKEPVF - SEQ ID NO: 742), or homologue and/or fragment thereof, such as RKE, KEPV or PVF.
  • Said fragment and/or homologue may be e.g. less than 7 amino acids long and is preferably at least 2, for example at least 3, such as at least 4, for example at least 5 amino acids long.
  • Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO: 156, 157, 158 or 159.
  • said variant of the MazE antitoxin may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 68-76 of the E.coli MazE antitoxin (HENIDWGEP - SEQ ID NO: 743), or homologue and/or fragment thereof.
  • Said homologue and/ or fragment may be e.g. less than 10 amino acids long and is preferably at least 4, for example at least 6, such as at least 8 amino acids long.
  • Suitable fragments include, but are not restricted to, HENI (SEQ ID NO: 744), NIDW
  • SEQ ID NO: 745 Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO: 156, 157, 158 or 159.
  • said variant of the MazE antitoxin may be a peptide comprising, con- sisting of, or consisting essentially of, amino acid residues 54-67 of the E.coli MazE antitoxin (LAELVNDITPENL - SEQ ID NO: 747), or homologue and/or fragment thereof.
  • Said homologue and/ or fragment may be e.g. less than 13 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12 amino acids long.
  • Suitable fragments include, but are not restricted to, LAEL (SEQ ID NO: 748), ELVN (SEQ ID NO: 750), VNDIT
  • bioactive species may be any of the following sequences (or a fragment or homologue thereof): FTLAELVN (SEQ ID NO: 753),
  • NDITPENLHENIDW SEQ ID NO: 754
  • PVRKE PVFTLAELV SEQ ID NO: 755
  • TPENLHEN IDWGEPK SEQ ID NO: 756
  • LAELVNDITPENL SEQ ID NO: 757.
  • said bioactive species is LAELVNDITPENLHE (SEQ ID NO: 758), or a fragment or homologue thereof.
  • said antitoxin variant is a variant of the RelB antitoxin.
  • Said variant of the RelB antitoxin may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 9-23 of the E.coli MazE antitoxin (DDELKARSYAALEKM - SEQ ID NO: 759), or homologue and/or fragment thereof.
  • Said homologue and/ or fragment may be e.g. less than 16 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14 amino acids long.
  • Suitable fragments include, but are not restricted to, ELKARSY (SEQ ID NO:
  • Suitable "homologues thereof include homologous polypeptide sections in any of SEQ ID NO: 1 , 3, 5, 7, 9, 11 , 13 or 15.
  • said antitoxin variant is a variant of the RelB antitoxin.
  • Said variant of the RelB antitoxin may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 39-53 of the E.coli MazE antitoxin (ADNERLPFKQTL LSD - SEQ ID NO: 764), or homologue and/or fragment thereof.
  • Said homologue and/ or fragment may be e.g. less than 16 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14, amino acids long.
  • Suitable fragments include, but are not restricted to, ADNE (SEQ ID NO: 765), RLPF (SEQ ID NO: 766), KQTL (SEQ ID NO: 767), or LSD (SEQ ID NO: 768).
  • Suitable "homologues thereof include homologous polypeptide sections in any of SEQ ID NO: 1 , 3, 5, 7, 9, 11 , 13 or 15.
  • peptides such as the above-mentioned peptides, do not have to comprise natural peptide bonds in order to maintain the required activity of activating a bacterial toxin.
  • R represents the amino acid side chain.
  • the bioactive species of the present invention is an aptamer.
  • Aptamers are macromolecules comprised of nucleic acid, such as RNA or DNA, that bind tightly to a specific molecular target.
  • said aptamer is 15-60 bases. It is usual that the chain of nucleotides comprising the aptamer forms intramolecular interactions that fold the molecule into a complex three-dimensional shape. The shape of the aptamer allows it to bind tightly against the surface of its target molecule, herein preferably a toxin, antitoxin or TA complex.
  • aptamers may be obtained for a wide array of molecular targets, including most proteins and many small molecules.
  • Aptamers are chemically stable to all but the harshest environmental conditions and can be boiled or frozen without loss of activ- ity. They may be produced on the benchtop using standard molecular biological techniques or they may be chemically synthesized at microgram to kilogram scales. As synthetic molecules, they are amenable to a nearly infinite variety of modifications designed to optimize their properties for a specific application. They may be circularized, linked together in pairs, or clustered onto the surface of a fat globule.
  • aptamers can be modified to dramatically reduce their sensitivity to degradation by enzymes in the blood.
  • Other chemical appendages can alter their biodistribution or plasma resi- dence time following, for example, intravenous injection.
  • This plasticity is a distinct advantage of aptamers over other types of molecular ligands, such as monoclonal antibodies, where chemical modification is often variable, difficult to control, and may harm the function of the molecule.
  • aptamers can distinguish between closely related but non-identical members of a protein family, or between different functional or conformational states of the same protein.
  • an aptamer to the small molecule theophylline (1 ,3-dimethylxanthine) binds with 10,000-fold lower affinity to caffeine (1 ,3,7-trimethylxanthine) that differs from theophylline by a single methyl group.
  • aptamer In addition to high specificity, aptamer have very high affinities to their targets. Typi- cally aptamers generated against proteins have affinities in the picomolar to low nanomolar range.
  • the method relies on standard molecular biological techniques and can be carried out manually or in an automated fashion.
  • the process can be broken down concep- tually into four steps: (1) pool preparation, (2) selection, (3) amplification and (4) aptamer isolation.
  • a large "library” of nucleic acid molecules is generated.
  • Each molecule in the library (often as many as 10 15 different compounds) contains a unique nucleotide sequence that can, in principle, adopt a unique three-dimensional shape.
  • the selection step is designed to find those molecules with the greatest affinity for the target of interest.
  • the library of nucleotide sequences is exposed to the target (a protein, small molecule, or supramolecular structure) and allowed to incubate for a period of time.
  • the molecules in the library with weak or no affinity for the target will, on average, remain free in solution while those with some capacity to bind will tend to associate with it.
  • Any one of several methods is used to physically isolate the aptamer target com- plexes from the unbound molecules in the mixture, effectively separating the wheat from the chaff on a molecular scale.
  • the unbound molecules are discarded.
  • the target-bound molecules among which are the highest affinity aptamers, are purified away from the target and used for the subsequent steps in the SELEX process.
  • the captured, purified sequences are copied enzymatically, or "amplified", to generate a new library of molecules that is substantially enriched for those that can bind to the target.
  • the enriched library is used to initiate a new cycle of selection, partitioning and amplification.
  • the library of molecules is reduced from 10 15 of unique sequences to a small number that bind tightly to the target of interest.
  • Individual molecules in the mixture are then isolated, their nucleotide sequences are determined, and their properties with respect to binding affinity and specificity are measured and compared.
  • isolated aptamers are further refined to eliminate any nucleotides that do not contribute to target binding or aptamer structure. Aptamers truncated to their core binding domain typically range in length from 15 to 60 nucleotides.
  • Photoaptamers (such as those produced by SomaLogic) may be created by substituting a brominate deoxyuridine (BrdU) for the thymidine (T) normally found in DNA, aptamers take on the ability to crosslink to specific sites on their target proteins. Photoaptamers thus add a second dimension of specificity, since they recognize both the complex shape and charge distribution of their targets and the presence of specific amino acid residues at specific sites.
  • BrdU brominate deoxyuridine
  • T thymidine
  • Photoaptamers thus add a second dimension of specificity, since they recognize both the complex shape and charge distribution of their targets and the presence of specific amino acid residues at specific sites.
  • Aptamers may be generated against any of the toxins, antitoxins and TA complexes described herein.
  • the aptamer is designed to bind to, or close to, an area of an antitoxin and/or toxin that interacts with its corresponding toxin or antitoxin (i.e. a binding interface). Without being bound by theory, it is believed that this would increase the likelihood of success of identifying a suitable bioactive species as it would disrupt the binding interface between said toxin and antitoxin, preventing or reducing binding and thus preventing or reducing TA complex formation, thus preventing neutralisation of the toxin.
  • the bioactive species such as an aptamer
  • the bioactive species is designed to bind one or more binding interface of a bacterial antitoxin, such as an antitoxin from one or more of the following TA systems: • parDE systems
  • chp systems chpA locus has also been called mazEF
  • higBA systems HigB toxin, HigA antitoxin
  • vapBC systems also known as vagCD or STBORF1 and STBORF2
  • a potential bioactive species for use in the methods of the present invention may have been identified using a strategy comprising a method, known by those skilled in the art, suitable for use in evolving small molecules.
  • Biotech evolutionary methods including combinatorial libraries and phage-display technology (see e.g. Parmley, S. F. and Smith, G. P. (1988) Gene 73, 305-318; Scott, J. K. and Smith, G. P. (1990) Science 249, 386-390; Smith, G. P. (1993) Gene 128, 1-2.), are used in the search for novel ligands of diagnostic, biomedical and pharmaceutical use (for reviews, see Cortese, R. (ed.) (1996) Combinatorial libraries: Synthesis, Screening and Application potential; Walter de Gruyter, Berlin and Collins, J. (1997) Phage display. In Moos, W. H. et al.
  • Phage display methods One such suitable evolutionary method that may have been used to generate the bioactive species of the present invention is a phage display method.
  • Phage display is a method to individually display up to tens of billions of peptides and proteins, including for example human antibodies and enzymes, on the surface of a filamentous phage, a bacterial virus.
  • Preferred phage for use in the present in- vention include, but are not restricted to, M13, fd or fl phage.
  • Phage display can be used to produce and search through large collections, or libraries, of peptides and proteins to rapidly identify those compounds that bind with high affinity and high specificity to targets of interest, in this case a bacterial toxin, antitoxin or TA com- plex.
  • the phage display process generally consists of the following steps: (1) generating one or more phage libraries, (2) screening the phage display libraries to select binding compounds with high affinity and high specificity to a target, and (3) producing and evaluating the selected binding compounds.
  • Phage display libraries can contain billions of potential binding compounds, that may be rationally-designed variations of a particular peptide or protein framework. The size and diversity of the libraries improves the likelihood of identifying compounds with high specificity (the ability to bind to the target and not to other, closely related molecules) and high affinity (strength of binding to the target).
  • gene libraries are generated containing extremely large number (for example, 10 6 to 10 10 ) of variants.
  • the variant gene segments are fused to a coat protein gene of a filamentous bacteriophage, and the fusion gene is inserted into the genome of the phage or of a phagemid.
  • a phagemid is defined as a plasmid containing the packaging and replication origin of a filamentous bacteriophage. This latter property allows the packaging of the phagemid genome into a phage coat when it is present in an Escherichia coli host strain infected with a fila- mentous phage (superinfection).
  • the packaged particles produced display the fusion protein on the surface of the particles secreted into the medium.
  • Such packaged particles are able to inject their genomes into a new host bacterium, where they can be propagated as phage or plasmids, respectively.
  • the special property of the system lies in the fact that since the packaging takes place in individual cells usually infected by a single variant phage/phagemid, the particles produced on propogation contain the gene encoding the particular variant displayed on the particle's surface.
  • Phage display technology can be applied in an automated format to many targets simultaneously to discover specific, high-affinity compounds, including antibodies, such as human monolclonal antibodies, for each target.
  • a selected phage can be replicated into thousands of identical copies in less than a day. Once generated, a phage display library can be amplified and stored so that it may be used for an unlimited number of screenings.
  • Phage display libraries are screened to identify binding compounds with high affinity and high specificity for the desired target. This information can be used to design successive generations of phage display libraries to further optimize leads. For example, Dyax has demonstrated between a 10- and 100-fold improvement in binding affinity with second generation phage display libraries.
  • Disulfide constrained cyclic peptide libraries may be used, e.g. in one library produced by Dyax, the peptides within the cyclized structure range in size from six to twelve amino acids. Amino acids both within and outside the cyclized structure are selected for variation, and the number of distinct peptide structures in each library typically exceeds 10 billion. The resulting peptides are chemically synthesizable and are amenable to chemical modification, such as attachment to a chromatographic support.
  • Phage libraries based on well-characterized protein structures may also be used. A single highly structured protein is selected and the amino acids in one portion of this "parental" protein are varied. In one variation, only the regions of the protein that are accessible to the surface are varied since it is these regions that are available for binding of target, while regions of the protein that are involved in maintaining its structure are not varied. Examples of libraries created in this way include those based on structural motifs such as alpha-helices, zinc fingers, kunitz domains, and other well characterized structural motifs.
  • Human phage antibody libraries contain genes encoding the heavy and light chain variable regions of the antibody producing cells of human donors. These are displayed in the phage library as antibody fragments (Fabs).
  • the library design preferably includes the capability to rapidly produce and purify soluble Fabs.
  • a first gen- eration Fab library produced by Dyax displays 37 billion distinct human antibodies.
  • Linear peptide libraries may also be envisaged as being used, for example in the case where all 19 amino acids, except cysteine, at each position in a 20-mer peptide are varied to create large libraries.
  • phage display libraries are the Ph.D.-7TM Kit, Ph.D.-12TM Kit or Ph.D.-C7CTM Kit, available from New England BioLabs Inc. (www.neb.com).
  • Cosmix plex- ing is a technique to perform high diversity phage display thus yielding ligands with higher binding affinities than ligands evolved with conventional M13
  • Cosmix-plexing® is an evolution-like process based on generating extremely high diversity followed by effective selection steps to enhance peptides, antibodies or proteins with desirable characteristics, e.g. preferably a high affinity to a bacterial toxin, antitoxin or TA complex.
  • the Cosmix cycle The starting point in developing e.g. a novel peptide ligand is to choose a suitable target, e.g. a known bacterial toxin, antitoxin or TA complex.
  • a suitable target e.g. a known bacterial toxin, antitoxin or TA complex.
  • a range of requirements can also be imposed, such as specificity, and cross reactivity, affinity, pH or temperature.
  • An initial screen for potential bioactive compounds is done with one of Cosmix's established core libraries, which offers approximately 10 10 variants.
  • This initial search results in primary ligands binding to the target. Screenings against the target are executed using phagemid display.
  • the primary ligands are further optimized using Cosmix-plexing®: The sequences of these ligands are totally recombined to deliver new variants with significantly improved characteristics conforming to the predefined profile.
  • the recombination step increases the number of peptide variants that could be accessed approximately 10 19 new variants. It is this extremely high degree of diversity that is accessible through Cosmix-plexing®.and allows optimization of product evolution.
  • the optimized candidate ligands are selected, synthesized and their binding characteristics and physicochemical properties determined for comparison with the original specifications.
  • Cosmix-plexing® may for example be applied to:
  • Peptides for example generating peptides consisting of 9 or 15 amino acids with nanomolar affinities.
  • Antibodies for example generating antibody-like, huFab fragments with nanomolar affinities.
  • Proteins
  • the potential bioactive compound binds to, or close to, an area of an antitoxin and/or toxin that intereacts with its corresponding toxin or antitoxin (i.e. a binding interface). Without being bound by theory, it is believed that this would increase the likelihood of success of identifying a suitable bioactive species as it would disrupt the binding interface between said toxin and antitoxin, preventing or reducing binding and thus preventing or reducing TA complex formation, thus preventing neutralisation of the toxin.
  • the bioactive species is designed to bind one or bacterial antitoxins (preferably at one or more binding interface), such as an antitoxin from one or more of the following TA systems: • parDE systems
  • chp systems (chpA locus has also been called mazEF)
  • vapBC systems also known as vagCD or STBORF1 and STBORF2
  • bioactive species of the present invention may have been identified using a method comprising a computer-aided drug design method, more preferably a structure-based drug design method.
  • a method envisaged as being useful for identifying a potential bioactive species comprises the steps of:
  • a. employing a three-dimensional structure of a toxin, anti-toxin or toxin/antitoxin (TA) complex, or at least one sub-domain thereof
  • sub-domain is meant at least one complete element of secondary structure, for example an alpha helix or a beta sheet.
  • a potential bioactive species for use in the present invention may be examined through the use of computer modelling, using a docking program such as GRAM, DOCK, or AUTODOCK (see Walters et al., Drug Discovery Today, Vol.3,
  • Computer programs can be employed to estimate the attraction, repulsion, and steric hindrance of the two binding partners (e.g. the potential bioactive species and an area of a toxin, antitoxin or TA complex).
  • the two binding partners e.g. the potential bioactive species and an area of a toxin, antitoxin or TA complex.
  • the tighter the fit the fewer the steric hindrances, and the greater the attractive forces, the more potent the potential bioactive species, since these properties are consistent with a tighter binding constant.
  • the more specificity in the design of a potential drug the more likely it is that the drug will not interact with other proteins as well. This will tend to minimise potential side-effects due to unwanted interactions with other proteins.
  • step b. may involve selecting the bioactive species by computationally screening a database of compounds for interaction with the toxin, antitoxin or TA complex of interest.
  • a 3-D descriptor for the potential bioactive species may be derived, the descriptor including geometric and functional constraints derived from the architecture and chemical nature of the toxin, antitoxin or TA complex.
  • the descriptor may then be used to interrogate the compound database, a potential bioactive species being a compound that has a good match to the features of the descriptor.
  • the descriptor is a type of virtual pharmacophore.
  • a computer-aided design method useful in generating suitable potential bioactive compounds may comprise the further steps of:
  • SBDD structure-based drug design
  • Nuclear Magnetic Resonance (NMR) spectroscopy permits access to a wealth of information about the molecular recognition reaction.
  • NMR Nuclear Magnetic Resonance
  • spectroscopy permits access to a wealth of information about the molecular recognition reaction.
  • NMR has evolved dramatically in the last 15 years and, in parallel with the development of NMR methods for the determination of protein structure, a variety of tools aimed at detecting protein ligand interactions have been proposed and are being now used both in industrial and academic laboratories as valuable tools for structure-based drug discovery.
  • Very recent developments have considerably increased the fraction of therapeutic targets that can be tackled by NMR and significantly reduced the amount of sample required for analysis; (for more detail on NMR techniques, see Salvatella X, Giralt E., "NMR-based methods and strategies for drug discovery", Chem Soc Rev. 2003 Nov;32(6):365-72, incorporated by reference herein).
  • Greer et al. J. of Medicinal Chemistry, Vol. 37, (1994), 1035-1054) describes an iterative approach to ligand design based on repeated sequences of computer modelling, protein-ligand complex formation and X-ray analysis.
  • novel thymidylate synthase bioactive species series were designed de novo by Greer et al., and bioactive species may also be designed in the this way.
  • a ligand e.g. a potential bioactive species
  • a ligand may be designed that complements the known structure of a toxin, antitoxin or TA complex.
  • the ligand can then be synthesised, formed into a complex with said toxin, antitoxin or TA complex, and said complex then analysed by X-ray crystallography to identify the actual position of the bound ligand.
  • the structure and/or functional groups of the ligand can then be adjusted, if necessary, in view of the results of the X-ray analysis, and the synthesis and analysis sequence repeated until an optimised ligand is obtained.
  • Related approaches to structure- based drug design are also discussed in Bohacek et al., Medicinal Research Reviews, Vol.16, (1996), 3-50.
  • More purely computational techniques for rational drug design may also be used to design bioactive species (for an overview of these techniques see e.g. Walters et al., Drug Discovery Today, Vol.3, No.4, (1998), 160-178).
  • automated ligand-receptor docking programs discussed e.g. by Jones et al. in Current Opinion in Biotechnology, Vol.6, (1995), 652-656) may be used to design potential bioactive species.
  • Docking algorithms may be used to perform docking of large virtual libraries to structurally known sites and thus save on unnecessary compound screening. Docking algorithms allow the user to search large virtual compound sets for structures that have the right geometric and electronic features to fit the designated sites.
  • NMR structures and/or the use of crystal structures can be used to create a composite binding site, which is more likely to find possible ligands from a da- tabase of drug-like molecules. It is well known that whole domains within a protein can move relative to one another (often a result of binding or activation) with obvious consequences for ligand binding.
  • a number of scoring functions for ligand binding can be used in these methods, such as those disclosed in J.R.H. Tame, Scoring functions: a view from the bench. J Comput Aided Mol Des 13 (1999), pp. 99-108; H. Gohlke, M. Herium and G.
  • Linked-fragment approaches to drug design also require accurate information on the atomic coordinates of target receptors.
  • the basic idea behind these approaches is to determine (computationally or experimentally) the binding locations of plural ligands to a target molecule, and then construct a molecular scaffold to connect the ligands together in such a way that their relative binding positions are preserved.
  • the connected ligands thus form a potential lead compound that can be further refined using e.g. the iterative technique of Greer et al.
  • Greerative technique of Greer et al For a virtual linked-fragment approach see Verlinde et al., J. of Computer-Aided Molecular Design, 6, (1992),
  • Some of the techniques and approaches to structure-based drug design described above rely at some stage on X-ray analysis to identify the binding position of a ligand in a ligand-protein complex.
  • a common way of doing this is to perform X-ray crystallography on the complex, produce a difference Fourier electron density map, and associate a particular pattern of electron density with the ligand.
  • determination of one or more of a toxin, antitoxin or TA complex structure also allows difference Fourier electron density maps of ligand complexes with said toxin, antitoxin or TA complex to be produced, which can greatly assist the process of rational drug design.
  • results may subsequently be used to guide virtual screenings for new ligands via pharmacophore searches or docking simulations (for more information on these methods, see Sotriffer C, Klebe G, "Identification and mapping of small- molecule binding sites in proteins: computational tools for structure-based drug design", Farmaco. 2002 Mar;57(3):243-51, incorporated herein by reference.)
  • a first stage of a drug design program may involve computer-based in silico screening of compound databases (such as the Cambridge Structural Database) with the aim of identifying compounds which interact with a site or sites of the target bio- molecule. Screening selection criteria may be based on pharmacokinetic properties such as metabolic stability and toxicity. However, determination of at least part of the structure of a toxin, antitoxin or TA complex allows the architecture and chemical nature of each toxin, antitoxin or TA complex to be identified, which in turn allows the geometric and functional constraints of a descriptor for the potential bioactive species to be derived. The descriptor is, therefore, a type of virtual 3-D pharmacophore, which can also be used as selection criteria or filter for database screening.
  • Bioactive molecules may also be selected using a method based on generation and selection of molecular diversity, i.e. a so-called "Darwinian” method, i.e. a method different from the structure-based, structure-modulation approaches described above.
  • a Darwinian method is inverse QSAR. It consists of the computational generation of candidate chemical structures and their selection according to a previously established QSAR model. New trends in the field of combinatorial chemical syntheses comprise the concepts of virtual combinatorial synthesis and virtual or computational screening. Virtual combinatorial synthesis, closely related to inverse QSAR, can be defined as the computational simulation of the generation of new chemical structures by using a combinatorial strategy to generate a virtual library.
  • Virtual screening is the selection of chemical structures having potential de- sirable properties from a database or virtual library in order to be synthesized and assayed.
  • these methods see de Julian-Ortiz JV, "Virtual darwinian drug design: QSAR inverse problem, virtual combinatorial chemistry, and computational screening". Comb Chem High Throughput Screen. 2001 May;4(3):295-310, incorporated herein by reference.
  • the Woolford algorithm described in US Patent 6,226,603, may also be used to predict preferred bioactive species binding targets in one or more of a toxin, anti- toxin or TA complex.
  • Suitable structures and models useful for structure based drug design to generate potential bioactive compounds are any complete or partial structures of the toxins, antitoxins or TA complexes described herein.
  • the bioactive species is designed to bind to, or close to, an area of an antitoxin and/or toxin that intereacts with its corresponding toxin or antitoxin. Without being bound by theory, it is believed that this would increase the likelihood of success of identifying a suitable bioactive species as it would disrupt the binding interface between said toxin and antitoxin, thus reducing or preventing TA complex formation, thus preventing neutralisation of the toxin.
  • the bioactive species is designed to bind a TA complex, such as a TA complex of one or more of the following TA systems: • parDE systems
  • chp systems (chpA locus has also been called mazEF)
  • vapBC systems also known as vagCD or STBORF1 and STBORF2
  • the complex is a RelBE protein complex or, most preferably, the MazEF protein complex, the structure of which is disclosed in Kamada, K et al., Crystal Structure of the Maze/Mazf Complex. Molecular Bases of Antidote-Toxin
  • Preferred structures for use in a method of structure based drug design may also include molecular models produced by those of skill in the art, including models produced by any suitable molecular modeling method, such as molecular replacement and fold recognition-related methods.
  • Administration forms are intravenous, oral, and topical, as will be described below.
  • Other drug-administration methods such as subcutaneous injection or via inhalation, which are effective to deliver the drug to a target site or to introduce the drug into the bloodstream, are also contemplated.
  • One area to which the pharmaceutical preparation of the invention is administered may be any mucosal membrane of the individual to which the biologically active substance is to be given, e.g. in the nose, vagina, eye, mouth, genital tract, lungs, gastrointestinal tract, or rectum, preferably the mucosa of the nose, mouth or va- gina.
  • the bioactive substances of the invention may be administered parenterally, that is by intravenous, intramuscular, subcutaneous intranasal, intrarectal, intravaginal or intraperitoneal administration.
  • the subcutaneous and intramuscular forms of par- enteral administration are generally preferred.
  • Appropriate dosage forms for such administration may be prepared by conventional techniques.
  • the bioactive species may also be administered by inhalation, that is by intranasal and oral inhalation administration.
  • Appropriate dosage forms for such administration such as an aerosol formulation or a metered dose inhaler, may be prepared by conventional techniques.
  • the bioactive substances according to the invention may be administered with at least one other compound, such as another bioactive species of the present invention or another anti-microbial compound.
  • administered with is meant that the compounds may be administered simultaneously, either as separate formulations or combined in a unit dosage form, or administered sequentially.
  • the dosage requirements will vary with the particular drug composition employed, the route of administration and the particular subject being treated. Ideally, an indi- vidual to be treated by the present method will receive a pharmaceutically effective amount of the bioactive substances in the maximum tolerated dose, generally no higher than that required before drug resistance develops.
  • the daily oral dosage regimen will preferably be from about 0.01 to about 80 mg/kg of total body weight.
  • the daily parenteral dosage regimen about 0.001 to about 80 mg/kg of total body weight.
  • the daily topical dosage regimen will preferably be from 0.1 mg to 150 mg, administered one to four, preferably two or three times daily, thus it is preferred that the contacting of said microbial cell with a bioactive species as described herein is performed 1-4 times daily, such as 2-3 times daily or once daily.
  • the daily inhalation dosage regimen will preferably be from about 0.01 mg/kg to about 1 mg/kg per day. It will also be recognized by one of skill in the art that the optimal quantity and spacing of individual dosages of a bioactive species or a phar- maceutically acceptable salt thereof will be determined by the nature and extent of the condition being treated, the form, route and site of administration, and the particular patient being treated, and that such optimums can be determined by conventional techniques. It will also be appreciated by one of skill in the art that the optimal course of treatment, i.e., the number of doses of a bioactive species or a pharma- ceutically acceptable salt thereof given per day for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment determination tests.
  • unit dosage form refers to physically discrete units suit- able as unitary dosages for human and animal subjects, each unit containing a pre- determined quantity of a bioactive substance, alone or in combination with other agents, calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier, or vehicle.
  • the specifications for the unit dosage forms of the present invention depend on the particular bioactive substance or bioactive species employed and the effect to be achieved, as well as the pharmacodynamics associated with each bioactive substances in the individual.
  • the dose administered should be an " effective amount” or an amount necessary to achieve an "effective level" in the individual patient.
  • the effective level is used as the preferred endpoint for dosing, the actual dose and schedule can vary, depending on interindividual differences in pharmacokinetics, drug distribution, and metabolism.
  • the "effective level” can be defined, for example, as the blood or tissue level desired in the patient that corresponds to a concentration of one or more bioactive species according to the invention.
  • compositions containing a bioactive substance of the present invention may be prepared by conventional techniques, e.g. as described in Remington: The Science and Practice of Pharmacy 1995, edited by E. W. Martin, Mack Publishing Company, 19th edition, Easton, Pa.
  • the compositions may appear in conven- tional forms, for example capsules, tablets, aerosols, solutions, suspensions or topical applications.
  • the present invention further provides a pharmaceutical formulation, for medicinal application, which comprises a bioactive species of the present invention or a pharmaceutically acceptable salt thereof, as herein defined, and a pharmaceutically acceptable carrier therefor.
  • the bioactive substances of the present invention may be formulated in a wide variety of oral administration dosage forms.
  • the pharmaceutical compositions and dosage forms may comprise the bioactive substances of the invention or pharmaceutically acceptable salts or a crystal form thereof as the active component.
  • the phar- maceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules.
  • a solid carrier can be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, wetting agents, tablet disintegrating agents, or an encapsulating mate- rial.
  • the composition will be about 0.5% to 75% by weight of a bioactive substance or bioactive substances of the invention, with the remainder consisting of suitable pharmaceutical excipients.
  • suitable pharmaceutical excipients include pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, gelatin, sucrose, magnesium carbonate, and the like.
  • the carrier is a finely divided solid which is a mixture with the finely di- vided active component.
  • the active component is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired.
  • the powders and tablets preferably containing from one to about seventy percent of the active bioactive species.
  • Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like.
  • preparation is intended to include the formulation of the active bioactive species with encapsulating material as carrier providing a capsule in which the active component, with or without carriers, is surrounded by a carrier, which is in association with it.
  • carrier which is in association with it.
  • cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be as solid forms suitable for oral administration.
  • Drops according to the present invention may comprise sterile or non-sterile aqueous or oil solutions or suspensions, and may be prepared by dissolving the bioactive species in a suitable aqueous solution, optionally including a bactericidal and/or fungicidal agent and/or any other suitable preservative, and optionally including a surface active agent.
  • a suitable aqueous solution optionally including a bactericidal and/or fungicidal agent and/or any other suitable preservative, and optionally including a surface active agent.
  • the resulting solution may then be clarified by filtration, transferred to a suitable container which is then sealed and sterilized by autoclaving or maintaining at 98-100 °C for half an hour.
  • the solution may be steril- ized by filtration and transferred to the container aseptically.
  • bacteri- cidal and fungicidal agents suitable for inclusion in the drops are phenylmercuric nitrate or acetate (0.002%), benzalkonium chloride (0.01%) and chlorhexidine acetate (0.01 %).
  • Suitable solvents for the preparation of an oily solution include glycerol, diluted alcohol and propylene glycol.
  • solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for oral administration.
  • liquid forms include solutions, suspensions, and emulsions.
  • These preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artifi- cial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
  • liquid form preparations including emulsions, syrups, elixirs, aqueous solutions, aqueous suspensions, toothpaste, gel dentrifrice, chewing gum, or solid form preparations which are intended to be converted shortly before use to liquid form preparations.
  • Emulsions may be prepared in solutions in aqueous propylene glycol solutions or may contain emulsifying agents such as lecithin, sorbitan monooleate, or acacia.
  • Aqueous solutions can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizing and thickening agents.
  • Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents.
  • Solid form preparations include solutions, suspensions, and emulsions, and may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
  • the bioactive substances of the present invention may be formulated for parenteral administration (e.g., by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative.
  • the compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous polyethylene glycol.
  • oily or nonaqueous carriers, diluents, solvents or vehicles examples include propylene glycol, polyethylene glycol, vegetable oils (e.g., olive oil), and injectable organic esters (e.g., ethyl oleate), and may contain formulatory agents such as preserving, wetting, emulsifying or suspending, stabilizing and/or dispersing agents.
  • the bioactive species may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilisation from solution for constitution before use with a suitable ve- hide, e.g., sterile, pyrogen-free water.
  • Oils useful in parenteral formulations include petroleum, animal, vegetable, or synthetic oils. Specific examples of oils useful in such formulations include peanut, soybean, sesame, cottonseed, corn, olive, petrolatum, and mineral. Suitable fatty acids for use in parenteral formulations include oleic acid, stearic acid, and isostearic acid. Ethyl oleate and isopropyl myristate are examples of suitable fatty acid esters.
  • Suitable soaps for use in parenteral formulations include fatty alkali metal, ammonium, and triethanolamine salts
  • suitable detergents include (a) cationic deter- gents such as, for example, dimethyl dialkyl ammonium halides, and alkyl pyridinium halides; (b) anionic detergents such as, for example, alkyl, aryl, and olefin sul- fonates, alkyl, olefin, ether, and monoglyceride sulfates, and sulfosuccinates, (c) nonionic detergents such as, for example, fatty amine oxides, fatty acid alkanola- mides, and polyoxyethylenepolypropylene copolymers, (d) amphoteric detergents such as, for example, alkyl-. eta.-aminopropionates, and 2-alkyl-imidazoline quaternary ammonium salts, and (
  • the parenteral formulations typically will contain from about 0.5 to about 25% by weight of the bioactive species in solution. Preservatives and buffers may be used. In order to minimize or eliminate irritation at the site of injection, such compositions may contain one or more nonionic surfactants having a hydrophile-lipophile balance (HLB) of from about 12 to about 17. The quantity of surfactant in such formulations will typically range from about 5to about 15% by weight. Suitable surfactants include polyethylene sorbitan fatty acid esters, such as sorbitan monooleate and the high molecular weight adducts of ethylene oxide with a hydrophobic base, formed by the condensation of propylene oxide with propylene glycol.
  • HLB hydrophile-lipophile balance
  • parenteral formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid excipient, for example, water, for injections, immediately prior to use.
  • sterile liquid excipient for example, water
  • Extemporaneous injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
  • the bioactive substances of the invention can also be delivered topically.
  • Regions for topical administration include the skin surface and also mucous membrane tissues of the vagina, rectum, nose, mouth, and throat. Compositions for topical administration via the skin and mucous membranes should not give rise to signs of irritation, such as swelling or redness.
  • the topical composition may include a pharmaceutically acceptable carrier adapted for topical administration.
  • the composition may take the form of a suspension, solution, ointment, lotion, sexual lubricant, cream, foam, aerosol, spray, suppository, implant, inhalant, tablet, capsule, dry powder, syrup, balm or lozenge, for example. Methods for preparing such compositions are well known in the pharmaceutical in- dustry.
  • the bioactive substances of the present invention may be formulated for topical administration to the epidermis as ointments, creams or lotions, or as a transdermal patch.
  • Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents.
  • Lotions may be formulated with an aqueous or oily base and will in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents.
  • Formulations suitable for topical administration in the mouth include lozenges comprising active agents in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the bioactive species in an inert base such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising the bioactive species in a suitable liquid carrier.
  • Creams, ointments or pastes according to the present invention are semi-solid for- mulations of the bioactive species for external application. They may be made by mixing the bioactive species in finely-divided or powdered form, alone or in solution or suspension in an aqueous or non-aqueous fluid, with the aid of suitable machinery, with a greasy or non-greasy base.
  • the base may comprise hydrocarbons such as hard, soft or liquid paraffin, glycerol, beeswax, a metallic soap; a mucilage; an oil of natural origin such as almond, corn, arachis, castor or olive oil; wool fat or its de- rivatives or a fatty acid such as steric or oleic acid together with an alcohol such as propylene glycol or a macrogel.
  • the formulation may incorporate any suitable surface active agent such as an anionic, cationic or non-ionic surfactant such as a sorbitan ester or a polyoxyethylene derivative thereof.
  • Suspending agents such as natural gums, cellulose derivatives or inorganic materials such as silicaceous silicas, and other ingredients such as lanolin, may also be included.
  • Lotions according to the present invention include those suitable for application to the skin or eye.
  • An eye lotion may comprise a sterile aqueous solution optionally containing a bactericide and may be prepared by methods similar to those for the preparation of drops.
  • Lotions or liniments for application to the skin may also include an agent to hasten drying and to cool the skin, such as an alcohol or acetone, and/or a moisturizer such as glycerol or an oil such as castor oil or arachis oil.
  • bioactive substances described herein can be administered transdermally.
  • Transdermal administration typically involves the delivery of a pharmaceutical agent for percutaneous passage of the drug into the systemic circulation of the patient.
  • the skin sites include anatomic regions for transdermally administering the drug and include the forearm, abdomen, chest, back, buttock, mastoidal area, and the like.
  • Transdermal delivery is accomplished by exposing a source of the complex to a patient's skin for an extended period of time.
  • Transdermal patches have the added advantage of providing controlled delivery of a bioactive substances to the body. See Transdermal Drug Delivery: Developmental Issues and Research Initiatives, Hadgraft and Guy (eds.), Marcel Dekker, Inc., (1989); Controlled Drug Delivery:
  • Such dosage forms can be made by dissolving, dispersing, or otherwise incorporating the pharmaceutical agent-chemical modifier complex in a proper medium, such as an elastomeric matrix material.
  • Absorption enhancers can also be used to increase the flux of the bioactive species across the skin. The rate of such flux can be controlled by either providing a rate-controlling membrane or dispersing the bioactive species in a polymer matrix or gel.
  • a variety of types of transdermal patches will find use in the methods described herein.
  • a simple adhesive patch can be prepared from a backing material and an acrylate adhesive.
  • the bioactive substance is formulated into the adhesive casting solution and allowed to mix thoroughly.
  • the solution is cast directly onto the backing material and the casting solvent is evaporated in an oven, leaving an adhesive film.
  • the release liner can be attached to complete the system.
  • a polyurethane matrix patch can be employed to deliver the pharmaceutical agent-chemical modifier complex.
  • the layers of this patch comprise a back- ing, a polyurethane drug/enhancer matrix, a membrane, an adhesive, and a release liner.
  • the polyurethane matrix is prepared using a room temperature curing polyurethane prepolymer. Addition of water, alcohol, and complex to the prepolymer results in the formation of a tacky firm elastomer that can be directly cast only the backing material.
  • a further embodiment of this invention will utilize a hydrogel matrix patch.
  • the hydrogel matrix will comprise alcohol, water, drug, and several hydrophilic polymers. This hydrogel matrix can be incorporated into a transdermal patch between the backing and the adhesive layer.
  • the liquid reservoir patch will also find use in the methods described herein.
  • This patch comprises an impermeable or semipermeable, heat sealable backing material, a heat sealable membrane, an acrylate based pressure sensitive skin adhesive, and a siliconized release liner.
  • the backing is heat sealed to the membrane to form a reservoir which can then be filled with a solution of the complex, enhancers, gelling agent, and other excipients.
  • Foam matrix patches are similar in design and components to the liquid reservoir system, except that the gelled pharmaceutical agent-chemical modifier solution is constrained in a thin foam layer, typically a polyurethane. This foam layer is situated between the backing and the membrane which have been heat sealed at the periphery of the patch.
  • the rate of release is typically controlled by a mem- brane placed between the reservoir and the skin, by diffusion from a monolithic de- vice, or by the skin itself serving as a rate-controlling barrier in the delivery system. See U.S. Pat. Nos. 4,816,258; 4,927,408; 4,904,475; 4,588,580, 4,788,062; and the like.
  • the rate of drug delivery will be dependent, in part, upon the nature of the membrane. For example, the rate of drug delivery across membranes within the body is generally higher than across dermal barriers.
  • the rate at which the complex is delivered from the device to the membrane is most advantageously controlled by the use of rate-limiting membranes which are placed between the reservoir and the skin. Assuming that the skin is sufficiently permeable to the complex (i.e., absorption through the skin is greater than the rate of passage through the membrane), the membrane will serve to control the dosage rate experienced by the patient.
  • Suitable permeable membrane materials may be selected based on the desired degree of permeability, the nature of the complex, and the mechanical considerations related to constructing the device.
  • Exemplary permeable membrane materials include a wide variety of natural and synthetic polymers, such as polydimethylsilox- anes (silicone rubbers), ethylenevinylacetate copolymer (EVA), polyurethanes, poly- urethane-polyether copolymers, polyethylenes, polyamides, polyvinylchlorides (PVC), polypropylenes, polycarbonates, polytetrafluoroethylenes (PTFE), cellulosic materials, e.g., cellulose triacetate and cellulose nitrate/acetate, and hydrogels, e.g., 2-hydroxyethylmethacrylate (HEMA).
  • HEMA 2-hydroxyethylmethacrylate
  • compositions according to this invention may also include one or more preservatives or bacteriostatic agents, e.g., methyl hydroxybenzoate, propyl hydroxybenzoate, chlorocresol, benzalkonium chlorides, and the like.
  • preservatives or bacteriostatic agents e.g., methyl hydroxybenzoate, propyl hydroxybenzoate, chlorocresol, benzalkonium chlorides, and the like.
  • bacteriostatic agents e.g., methyl hydroxybenzoate, propyl hydroxybenzoate, chlorocresol, benzalkonium chlorides, and the like.
  • active ingredients such as antimicrobial agents, particularly antibiotics, anesthetics, analgesics, and antipruritic agents.
  • the bioactive substances of the present invention may be formulated for administration as suppositories.
  • a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted and the active component is dispersed homogeneously, for example, by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and to solidify.
  • the bioactive substance may be formulated into a suppository comprising, for example, about 0.5% to about 50% of a bioactive species of the invention, disposed in a polyethylene glycol (PEG) carrier (e.g., PEG 1000 [96%] and PEG 4000 [4%].
  • PEG polyethylene glycol
  • bioactive substances of the present invention may be formulated for vaginal administration. Pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the bioactive species such carriers as are known in the art to be appropriate.
  • the bioactive substances of the present invention may be formulated for nasal administration.
  • the solutions or suspensions are applied directly to the nasal cavity by conventional means, for example with a dropper, pipette or spray.
  • the formulations may be provided in a single or multidose form. In the latter case of a dropper or pi- pette this may be achieved by the patient administering an appropriate, predetermined volume of the solution or suspension. In the case of a spray this may be achieved for example by means of a metering atomizing spray pump.
  • the bioactive substances of the present invention may be formulated for aerosol administration, particularly to the respiratory tract and including intranasal administration.
  • the bioactive species will generally have a small particle size for example of the order of 5 microns or less. Such a particle size may be obtained by means known in the art, for example by micronization.
  • the bioactive species is provided in a pressurized pack with a suitable propellant such as a chlorofluorocarbon (CFC) for example dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoro- ethane, carbon dioxide or other suitable gas.
  • CFC chlorofluorocarbon
  • the aerosol may conveniently also contain a surfactant such as lecithin.
  • the dose of drug may be controlled by a metered valve.
  • the bioactive species may be provided in a form of a dry powder, for example a powder mix of the bioactive species in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidine (PVP).
  • a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidine (PVP).
  • PVP polyvinylpyrrolidine
  • the powder carrier will form a gel in the nasal cavity.
  • the powder composition may be presented in unit dose form for example in capsules or cartridges of e.g., gelatin or blister packs from which the powder may be administered by means of an inhaler.
  • formulations can be prepared with enteric coatings adapted for sustained or controlled release administration of the bioactive species.
  • the pharmaceutical preparations are preferably in unit dosage forms.
  • the preparation is subdivided into unit doses containing appropriate quantities of the active component.
  • the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
  • the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
  • salts of the instant bioactive substances where they can be prepared, are also intended to be covered by this invention.
  • These salts will be ones which are acceptable in their application to a pharmaceutical use. By that it is meant that the salt will retain the biological activity of the parent bioactive species and the salt will not have untoward or deleterious effects in its application and use in treating diseases.
  • compositions are prepared in a standard manner. If the parent bioactive species is a base it is treated with an excess of an organic or inorganic acid in a suitable solvent. If the parent bioactive species is an acid, it is treated with an inorganic or organic base in a suitable solvent.
  • bioactive substances of the invention may be administered in the form of an alkali metal or earth alkali metal salt thereof, concurrently, simultaneously, or together with a pharmaceutically acceptable carrier or diluent, especially and preferably in the form of a pharmaceutical composition thereof, whether by oral, rectal, or parenteral (including subcutaneous) route, in an effective amount.
  • Examples of pharmaceutically acceptable acid addition salts for use in the present inventive pharmaceutical composition include those derived from mineral acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulfuric acids, and organic acids, such as tartaric, acetic, citric, malic, lactic, fumaric, ben- zoic, glycolic, gluconic, succinic, p-toluenesulphonic acids, and arylsulphonic, for example.
  • mineral acids such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulfuric acids
  • organic acids such as tartaric, acetic, citric, malic, lactic, fumaric, ben- zoic, glycolic, gluconic, succinic, p-toluenesulphonic acids, and arylsulphonic, for example.
  • Examples of a typical tablet which may be prepared by conventional tabletting techniques may contain:
  • bioactive substance as free bioactive species or salt thereof
  • Colloidal silicon dioxide (Aerosil) 1.5 mg Cellulose, microcryst.
  • (Avicel) 70 mg Modified cellulose gum (Ac-Di-Sol) 7.5 mg Magnesium stearate
  • the pharmaceutical carrier is a mixture of the pharmaceutical carrier.
  • Illustrative solid carriers include lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like.
  • a solid carrier can include one or more substances which may also act as flavoring agents, lubricants, solubi- lizers, suspending agents, fillers, glidants, compression aids, binders or tablet- disintegrating agents; it can also be an encapsulating material.
  • the carrier is a finely divided solid which is in admixture with the finely divided bioactive species.
  • the bioactive substance is mixed with a carrier having the necessary compression properties in suitable proportions, and compacted in the shape and size desired.
  • the powders and tablets preferably contain up to 99% of the bioactive species.
  • suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.
  • Illustrative liquid carriers include syrup, peanut oil, olive oil, water, etc. Liquid carriers are used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compositions.
  • the bioactive substance can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats.
  • the liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
  • liquid carriers for oral and parenteral administration include water (partially containing additives as above, e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhy- dric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil).
  • the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate.
  • Sterile liquid carders are useful in sterile liquid form compositions for parenteral administration.
  • the liquid carrier for pressurized compositions can be halogenated hydrocarbon or other pharmaceutically acceptable propellant.
  • Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperito- neal or subcutaneous injection. Sterile solutions can also be administered intrave- nously.
  • the bioactive species can also be administered orally either in liquid or solid composition form.
  • the carrier or excipient may include time delay material well known to the art, such as glyceryl monostearate or glyceryl distearate along or with a wax, ethylcellulose, hydroxypropylmethylcellulose, methylmethacrylate and the like.
  • time delay material well known to the art, such as glyceryl monostearate or glyceryl distearate along or with a wax, ethylcellulose, hydroxypropylmethylcellulose, methylmethacrylate and the like.
  • Tween 80 in PHOSAL PG-50 phospholipid concentrate with 1 ,2-propylene glycol, A. Nattermann & Cie. GmbH
  • PHOSAL PG-50 phospholipid concentrate with 1 ,2-propylene glycol, A. Nattermann & Cie. GmbH
  • “Pharmaceutical agent or drug” refers to any chemical or biological material, compound, or composition capable of inducing a desired therapeutic effect when properly administered to a patient. Some drugs are sold in an inactive form that is converted in vivo into a metabolite with pharmaceutical activity. For purposes of the present invention, the terms “pharmaceutical agent” and “drug” encompass both the inactive drug and the active metabolite.
  • Transport and “delivery” refers to the passage of a substance across or through the skin (i.e., transdermal), including the epidermis and dermis, or across a mucosal membrane (i.e., gastrointestinal, sublingual, buccal, nasal, pulmonary, vaginal, cor- neal, and ocular membranes), where the substance can contact, and be absorbed into, the capillaries. In certain instances, the delivery and/or transport of the substance across other membranes will be effected.
  • a mucosal membrane i.e., gastrointestinal, sublingual, buccal, nasal, pulmonary, vaginal, cor- neal, and ocular membranes
  • Penetration enhancer refers to a substance which is used to increase the transdermal or transmembrane flux of a bioactive species.
  • a penetration enhancer is typically applied to the skin or mucous membrane in combination with the bioactive species. Enhancers are believed to function by disrupting the skin or mucous membrane barrier or changing the partitioning behavior of the drug in the skin or mucous membrane.
  • controlled release for the purposes of the present invention: continuous release, controlled release, delayed release, depot, gradual release, long-term release, programmed release, prolonged release, proportionate release, protracted release, repository, retard, slow release, spaced release, sustained release, time coat, timed release, delayed action, extended action, layered-time action, long acting, prolonged action, repeated action, slowing acting, sustained action, sustained-action medications, and extended release. Further discussions of these terms may be found in Lesczek Krowczynski, Extended-Release Dosage Forms, 1987 (CRC Press, Inc.).
  • Controlled release technologies cover a very broad spectrum of drug dosage forms. Controlled release technologies include, but are not limited to physical systems and chemical systems.
  • Physical systems include, but are not limited to, reservoir systems with rate- controlling membranes, such as microencapsulation, macroencapsulation, and membrane systems; reservoir systems without rate-controlling membranes, such as hollow fibers, ultra microporous cellulose triacetate, and porous polymeric substrates and foams; monolithic systems, including those systems physically dissolved in non-porous, polymeric, or elastomeric matrices (e.g., non-erodible, erodible, environmental agent ingression, and degradable), and materials physically dispersed in non-porous, polymeric, or elastomeric matrices (e.g., non-erodible, erodible, environmental agent ingression, and degradable); laminated structures, including reservoir layers chemically similar or dissimilar to outer control layers; and other physical methods, such as osmotic pumps, or adsorption onto ion-exchange resins.
  • rate- controlling membranes such as microencapsulation, macroencapsulation, and membrane systems
  • Chemical systems include, but are not limited to, chemical erosion of polymer matrices (e.g., heterogeneous, or homogeneous erosion), or biological erosion of a polymer matrix (e.g., heterogeneous, or homogeneous). Additional discussion of categories of systems for controlled release may be found in Agis F. Kydonieus, Controlled Release Technologies: Methods, Theory and Applications, 1980 (CRC Press, Inc.).
  • Controlled release drug delivery systems may also be categorized under their basic technology areas, including, but not limited to, rate-preprogrammed drug delivery systems, activation-modulated drug delivery systems, feedback-regulated drug delivery systems, and site-targeting drug delivery systems.
  • rate-preprogrammed drug delivery systems release of drug molecules from the delivery systems "preprogrammed" at specific rate profiles. This may be accomplished by system design, which controls the molecular diffusion of drug molecules in and/or across the barrier medium within or surrounding the delivery system. Fick's laws of diffusion are often followed.
  • activation-modulated drug delivery systems release of drug molecules from the delivery systems is activated by some physical, chemical or biochemical processes and/or facilitated by the energy supplied externally. The rate of drug release is then controlled by regulating the process applied, or energy input.
  • release of drug molecules from the delivery systems may be activated by a triggering event, such as a biochemical substance, in the body.
  • a triggering event such as a biochemical substance
  • the rate of drug release is then controlled by the concentration of triggering agent detected by a sensor in the feedback regulated mechanism.
  • the drug delivery system targets the active molecule to a specific site or target tissue or cell.
  • a conjugate including a site specific targeting moiety that leads the drug delivery system to the vicinity of a target tissue (or cell), a solubi- lizer that enables the drug delivery system to be transported to and preferentially taken up by a target tissue, and a drug moiety that is covalently bonded to the polymer backbone through a spacer and contains a cleavable group that can be cleaved only by a specific enzyme at the target tissue.
  • controlled release drug delivery While a preferable mode of controlled release drug delivery will be oral, other modes of delivery of controlled release compositions according to this invention may be used. These include mucosal delivery, nasal delivery, ocular delivery, transdermal delivery, parenteral controlled release delivery, vaginal delivery, rectal delivery and intrauterine delivery. All of these dosage forms may be manufactured using conventional techniques, together with the techniques discussed herein.
  • controlled release drug formulations that are developed preferably for oral administration. These include, but are not limited to, osmotic pres- sure-controlled gastrointestinal delivery systems; hydrodynamic pressure-controlled gastrointestinal delivery systems; membrane permeation-controlled gastrointestinal delivery systems, which include microporous membrane permeation-controlled gastrointestinal delivery devices; gastric fluid-resistant intestine targeted controlled- release gastrointestinal delivery devices; gel diffusion-controlled gastrointestinal delivery systems; and ion-exchange-controlled gastrointestinal delivery systems, which include cationic and anionic drugs. Additional information regarding controlled release drug delivery systems may be found in Yie W. Chien, Novel Drug Delivery Systems, 1992 (Marcel Dekker, Inc.). some of these formulations will now be discussed in more detail.
  • Enteric coatings may be applied to tablets to prevent the release of drugs in the stomach either to reduce the risk of unpleasant side effects or to maintain the stability of the drug which might otherwise be subject to degradation of expose to the gastric environment.
  • Most polymers that are used for this purpose are polyacids that function by virtue of the fact that their solubility in aqueous medium is pH- dependent, and they require conditions with a pH higher then normally encountered in the stomach.
  • Enteric coatings may be used to coat a solid or liquid dosage form of the bioactive species according to the invention. Enteric coatings promote the inventive bioactive species remaining physically incorporated in the dosage form for a specified period when exposed to gastric juice. Yet the enteric coatings are designed to disintegrate in intestinal fluid for ready absorption. Delay of the bioactive species' absorption is dependent on the rate of transfer through the gastrointestinal tract, and so the rate of gastric emptying is an important factor. Some investigators have reported that a multiple-unit type dosage form, such as granules, may be superior to a single-unit type. Therefore, in a preferable embodiment, the bioactive species according to the invention may be contained in an enterically coated multiple-unit dosage form.
  • the dosage form of the bioactive species according to the invention is prepared by spray-coating granules of an bioactive species -enteric coating agent solid dispersion on an inert core material. These granules can result in prolonged absorption of the drug with good bioavailability.
  • Typical enteric coating agents include, but are not limited to, hyd roxypropylmethyl- cellulose phthalate, methacrylic acid-methacrylic acid ester copolymer, polyvinyl acetate-phthalate and cellulose acetate phthalate.
  • Akihiko Hasegawa Application of solid dispersions of Nifedipine with enteric coating agent to prepare a sustained- release dosage form, Chem. Pharm. Bull. 33: 1615-1619 (1985).
  • Various enteric coating materials may be selected on the basis of testing to achieve an enteric coated dosage form designed ab initio to have a preferable combination of dissolu- tion time, coating thicknesses and diametral crushing strength.
  • S. C. Porter et al. The Properties of Enteric Tablet Coatings Made From Polyvinyl Acetate-phthalate and Cellulose acetate Phthalate, J. Pharm. Pharmacol. 22:42p (1970).
  • a solid dispersion may be defined as a dispersion of one or more bioactive species in an inert carrier or matrix in the solid state prepared by the melting (fusion), solvent, or melting-solvent method.
  • Solid dispersions may be used to improve the solubilities and/or dissolution rates of bioactive species according to the invention that may be poorly water-soluble. See generally Hiroshi Yuasa, et al., Application of the Solid Dispersion Method to the Controlled Release Medicine. III. Control of the Release Rate of Slightly Water- Soluble Medicine From Solid Dispersion Granules, Chem. Pharm. Bull. 41 :397-399 (1993).
  • the solid dispersion method was originally used to enhance the dissolution rate of slightly water-soluble medicines by dispersing the medicines into water- soluble carriers such as polyethylene glycol or polyvinylpyrrolidone, Hiroshi Yuasa, et al., Application of the Solid Dispersion Method to the Controlled Release of Medicine. IV. Precise Control of the Release Rate of a Water-Soluble Medicine by Using the Solid Dispersion Method Applying the Difference in the Molecular Weight of a Polymer, Chem. Pharm. Bull. 41:933-936 (1993).
  • the selection of the carrier may have an influence on the dissolution characteristics of the dispersed drug because the dissolution rate of a component from a surface may be affected by other components in a multiple component mixture.
  • a water-soluble carrier may result in a fast release of the drug from the matrix, or a poorly soluble or insoluble carrier may lead to a slower release of the drug from the matrix.
  • the solubility of poorly water soluble bioactive species according to the invention may also be increased owing to some interaction with the carriers.
  • Examples of carriers useful in solid dispersions according to the invention include, but are not limited to, water-soluble polymers such as polyethylene glycol, polyvi- nylpyrrolidone, or hydroxypropylmethyl-cellulose.
  • water-soluble polymers such as polyethylene glycol, polyvi- nylpyrrolidone, or hydroxypropylmethyl-cellulose.
  • the physical mixture of a drug in a water-soluble carrier is heated directly until it melts.
  • the melted mixture is then cooled and solidified rapidly while rigorously stirred.
  • the final solid mass is crushed, pulverized and sieved.
  • a super saturation of a solute or drug in a system can often be obtained by quenching the melt rapidly from a high temperature. Under such condi- tions, the solute molecule may be arrested in solvent matrix by the instantaneous solidification process.
  • a disadvantage is that many substances, either drugs or carriers, may decompose or evaporate during the fusion process at high temperatures. However, this evaporation problem may be avoided if the physical mixture is heated in a sealed container. Melting under a vacuum or blanket of an inert gas such as nitrogen may be employed to prevent oxidation of the drug or carrier.
  • the solvent method has been used in the preparation of solid solutions or mixed crystals of organic or inorganic bioactive species.
  • Solvent method dispersions may be prepared by dissolving a physical mixture of two solid components in a common solvent, followed by evaporation of the solvent.
  • the main advantage of the solvent method is that thermal decomposition of drugs or carriers may be prevented because of the low temperature required for the evaporation of organic solvents.
  • some disadvantages associated with this method are the higher cost of preparation, the difficulty in completely removing liquid solvent, the possible adverse effect of its supposedly negligible amount of the solvent on the chemical stability of the drug.
  • Another method of producing solid dispersions is the melting-solvent method. It is possible to prepare solid dispersions by first dissolving a drug in a suitable liquid solvent and then incorporating the solution directly into a melt of polyethylene glycol, obtainable below 70 degrees, without removing the liquid solvent. The selected solvent or dissolved adenosine analogs may be selected such that the solution is not miscible with the melt of polyethylene glycol. The polymorphic form of the adenosine analogs may then be precipitated in the melt. Such a unique method possesses the advantages of both the melting and solvent methods. Win Loung Chiou, et al.,
  • Another controlled release dosage form is a complex between an ion exchange resin and the bioactive species according to the invention.
  • Ion exchange resin-drug complexes have been used to formulate sustained-release products of acidic and basic drugs.
  • a polymeric film coating is provided to the ion exchange resin-drug complex particles, making drug release from these particles diffusion controlled. See Y. Raghunathan et al., Sustained-released drug de- livery system I: Coded ion-exchange resin systems for phenylpropanolamine and other drugs, J. Pharm. Sciences 70: 379-384 (1981).
  • Injectable micro spheres are another controlled release dosage form.
  • Injectable micro spheres may be prepared by non-aqueous phase separation techniques, and spray-drying techniques.
  • Micro spheres may be prepared using polylactic acid or copoly(lactic/glycolic acid).
  • Shigeyuki Takada Utilization of an Amorphous Form of a Water-Soluble GPIIb/llla Antagonist for Controlled Release From Biodegradable Micro spheres, Pharm. Res. 14:1146-1150 (1997), and ethyl cellulose, Yoshiyuki Koida, Studies on Dissolution Mechanism of Drugs from Ethyl Cellulose Microcap- sules, Chem. Pharm. Bull. 35:1538-1545 (1987).
  • SODAS are multi particu- late dosage forms utilizing controlled release beads.
  • INDAS are a family of drug delivery technologies designed to increase the solubility of poorly soluble drugs.
  • IPDAS are multi particulate tablet formation utilizing a combination of high density controlled release beads and an immediate release granulate.
  • MODAS are controlled release single unit dosage forms. Each tablet consists of an inner core surrounded by a semipermeable multiparous membrane that controls the rate of drug release.
  • EFVAS is an effervescent drug absorption system
  • PRODAS is a family of multi particulate formulations utilizing combinations of immediate release and controlled release mini-tablets.
  • DUREDAS is a bilayer tablet formulation providing dual release rates within the one dosage form.
  • INDAS was developed specifically to improve the solubility and absorption characteristics of poorly water soluble drugs. Solubility and, in particular, dissolution within the fluids of the gastrointestinal tract is a key factor in determining the overall oral bioavailability of poorly water soluble drug. By enhancing solubility, one can in- crease the overall bioavailability of a drug with resulting reductions in dosage.
  • INDAS takes the form of a high energy matrix tablet. In a preferred embodiment of the invention production involves including adenosine analogs in an amorphous form together with a combination of energy, excipients, and unique processing procedures.
  • the resultant high energy complex may be stabilized by an absorption process that utilizes a novel polymer cross-linked technology to prevent recrystallization.
  • the combination of the change in the physical state of the adenosine analogs according to the invention coupled with the solu- bilizing characteristics of the excipients employed enhances the solubility of the adenosine analogs according to the invention.
  • the resulting absorbed amorphous drug complex granulate may be formulated with a gel-forming erodable tablet system to promote substantially smooth and continuous absorption.
  • IPDAS is a multi-particulate tablet technology that may enhance the gastrointestinal tolerability of potential irritant and ulcerogenic drugs. Intestinal protection is facilitated by the multi-particulate nature of the IPDAS formulation which promotes dispersion of an irritant adenosine analog according to the invention throughout the gastrointestinal tract. Controlled release characteristics of the individual beads may avoid high concentration of drug being both released locally and absorbed systemi- cally. The combination of both approaches serves to minimize the potential harm of the adenosine analog according to the invention with resultant benefits to patients.
  • IPDAS is composed of numerous high density controlled release beads. Each bead may be manufactured by a two step process that involves the initial production of a micromatrix with embedded adenosine analogs according to the invention and the subsequent coating of this micromatrix with polymer solutions that form a rate limiting semipermeable membrane in vivo. Once an IPDAS tablet is ingested, it may disintegrate and liberate the beads in the stomach. These beads may subsequently pass into the duodenum and along the gastrointestinal tract, preferably in a controlled and gradual manner, independent of the feeding state. Adenosine analog release occurs by diffusion process through the micromatrix and subsequently through the pores in the rate controlling semipermeable membrane.
  • the release rate from the IPDAS tablet may be customized to deliver a drug-specific absorption profile associated with optimized clinical benefit. Should a fast onset of activity be necessary, immediate release granulate may be included in the tablet. The tablet may be broken prior to administration, without substantially compromising drug release, if a reduced dose is required for individual titration.
  • MODAS is a drug delivery system that may be used to control the absorption of water soluble adenosine analogs according to the invention.
  • Physically MODAS is a non-disintegrating table formulation that manipulates drug release by a process of rate limiting diffusion by a semipermeable membrane formed in vivo. The diffusion process essentially dictates the rate of presentation of drug to the gastrointestinal fluids, such that the uptake into the body is controlled. Because of the minimal use of excipients, MODAS can readily accommodate small dosage size forms.
  • Each MODAS tablet begins as a core containing active drug plus excipients. This core is coated with a solution of insoluble polymers and soluble excipients.
  • the fluid of the gastrointestinal tract may dissolve the soluble excipients in the outer coating leaving substantially the insoluble polymer.
  • What results is a network of tiny, narrow channels connecting fluid from the gastrointestinal tract to the inner drug core of water soluble drug. This fluid passes. through these channels, into the core, dissolving the drug, and the resultant solution of drug may diffuse out in a controlled manner. This may permit both controlled dissolution and absorption.
  • An advantage of this system is that the drug releasing pores of the tablet are distributed over substantially the entire surface of the tablet. This facilitates uniform drug absorption and reduces aggressive unidirectional drug delivery.
  • MODAS represents a very flexible dosage form in that both the inner core and the outer semipermeable membrane may be altered to suit the individual delivery requirements of a drug.
  • the addition of excipients to the inner core may help to produce a micro environment within the tablet that facilitates more predictable release and absorption rates.
  • the addition of an immediate release outer coating may allow for development of combination products.
  • PRODAS may be used to deliver adenosine analogs according to the invention.
  • PRODAS is a multi particulate drug delivery technology based on the production of controlled release mini tablets in the size range of 1.5 to 4 mm in diameter.
  • the PRODAS technology is a hybrid of multi particulate and hydrophilic matrix tablet approaches, and may incorporate, in one dosage form, the benefits of both these drug delivery systems.
  • PRODAS In its most basic form, PRODAS involves the direct compression of an immediate release granulate to produce individual mini tablets that contain adenosine analogs according to the invention. These mini tablets are subsequently incorporated into hard gels and capsules that represent the final dosage form.
  • a more beneficial use of this technology is in the production of controlled release formulations.
  • the incorporation of various polymer combinations within the granulate may delay the release rate of drugs from each of the individual mini tablets.
  • These mini tablets may subsequently be coated with controlled release polymer solutions to provide additional delayed release properties. The additional coating may be necessary in the case of highly water soluble drugs or drugs that are perhaps gastroirritants where release can be delayed until the formulation reaches more distal regions of the gastrointestinal tract.
  • a bioactive species capable of activating a polypeptide toxin and/or capable of initiating de novo synthesis of an activated polypeptide toxin is used for the preparation of a medicament for the treatment of an individual sin need thereof.
  • said medicament is for the treatment or prevention of disease by a microbial cell, such as any bacterial disease or bacterial cell mentioned herein.
  • Said bacterial cell preferably comprises any of the toxins and cognate anti-toxins described herein.
  • the individual treated may be any individual described herein.
  • toxins described herein are known as being capable of having detrimental effects of other cell types, such as eukaryotic cells, the bioactive species described herein are also useful for treating any disease caused by unwanted cell growth, such as neoplastic diseases.
  • a hygienic composition capable of reducing or eliminating microbes, comprising one or more of the bioactive species disclosed herein.
  • Said hygienic composition may further comprise a hy- gienically-acceptable carrier.
  • hygienically-acceptable carrier is meant any suit- able carrier that does not prevent the composition from having the desired effect of reducing or eliminating microbes.
  • Said hygienic composition may be contacted against a surface in a non-therapeutic method for eliminating or reducing microbial cells.
  • surface is also meant any suitable surface for which reduction or elimination of microbial cells is desirable, for example a wall, floor, toilet basin and so on.
  • Said surface may in one embodiment be within an environment in which healthcare professionals work, such as a hospital or care home. More preferably, said surface is present on an item of healthcare equipment, such as an item of surgical or medical apparatus, such as a catheter, glove, or medical implant. Said surface may also be found within the home, such as within a kitchen, such as an item of kitchen equipment, particularly surfaces that may be contacted by food.
  • a method for treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell comprising at least one complex of a polypeptide toxin and an antitoxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide, said method comprising the steps of
  • Illustrative plant pathogens that may be reduced or eliminated using this method include, but are not restricted to, the group consisting of the genera Agrobacterium, Pseudomonas, Xanthomonas, Erwinia, Ralstonia, and Clavibacter.
  • Method for treating an individual suffering from, or at risk of developing, a disease caused by a microbial cell comprising at least one complex of a polypeptide toxin and an anti-toxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide, said method comprising the steps of
  • contacting said microbial cell with a bioactive species capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of activated polypeptide toxin, and/or capable of increasing the total amount of ac- tivated polypeptide toxin and ii) obtaining in said microbial cell an activated polypeptide toxin in an amount sufficient for achieving at least an impaired growth or elimination of said microbial cell in said individual.
  • Method of item 1 comprising the further step, preferably before step (i), of providing a pharmaceutical composition comprising at least one bioactive species capable of contacting and activating in a microbial cell at least one polypeptide toxin selected from the group of polypeptide toxins consisting of RelE and variants thereof; ParE and variants thereof; VapC and variants thereof, Chp and variants thereof; Hig and variants thereof; Doc and variants thereof; and CcdB and variants thereof, wherein the polypeptide toxin prior to activation optionally forms a complex with an anti-toxin polypeptide capable of reducing or inhibiting the toxic activity of the polypeptide toxin.
  • a pharmaceutical composition comprising at least one bioactive species capable of contacting and activating in a microbial cell at least one polypeptide toxin selected from the group of polypeptide toxins consisting of RelE and variants thereof; ParE and variants thereof; VapC and variants thereof, Chp and variants thereof; Hig and variants thereof
  • step of contacting the microbial cell with the bioactive species is selected from a) contacting the cell surface of the microbial cell with the bioactive species, and/or b) uptake of the bioactive species in the microbial cell and contacting an intracellular component of the microbial cell with the bioactive species.
  • Method of item 6 said bacteria is selected from one or more of
  • Method of item 8 wherein said bacteria is selected from one or more of Mycobacterium tuberculosis, Enterococcus faecalis, Staphylococcus aureus, Strep- tococcus agalactiae, Streptococcus mutans, Streptococcus pneumonia, or Fusobacterium nucleatum
  • Method of item 10 wherein said microbial cell is a gram positive bacterium. 12. Method of item 11 , wherein said bacterium is selected from Mycobacterium tuberculosis
  • Method of item 13 wherein said bacterium is selected from one or more of Rickettsia conorii, Coxiella burnetii, Haemophilus influenzae, Pseudomonas sy- ringae, Salmonella typhimurium, Salmonella typhi and Leptospira intrerrogans.
  • Method of item 15 wherein said microbial cell is a gram positive bacterium.
  • Method of item 16 wherein said microbial cell is selected from one or more of Mycobacterium tuberculosis, Bacillus anthracis, Bacillus cereus, Bacillus halodurans, Clostridium perfringens, Enterococcus faecalis, Listeria monocy- togenes, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans and Streptococcus pneumonia 18. Method of item 15, wherein said microbial cell is a gram negative bacterium. 19.
  • Method of item 18, wherein said microbe is selected from Brucella melitensis, Brucella suis, Rickettsia conorii, Neisseria meningitidis, Escherichia coli, Escherichia coli 0157, Shigella flexneri, Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas putida or Leptospira intrerrogans.
  • said microbial cell comprises a parDE TA system.
  • Method of item 20 wherein said microbial cell comprises a gram positive bacterium.
  • Method of item 21 wherein said microbial cell is selected from Mycobacterium tuberculosis, Streptococcus agalactiae, or Streptococcus pyogenes.
  • Method of item 20 wherein said microbial cell comprises a gram negative bacterium.
  • Method of item 23 wherein said microbial cell is selected from Escherichia coli 0157, Escherichia coli, Coxiella burnetii, Vibrio cholerae, Vibrio parahaemo- lyticus, Vibrio vulnificus, Pseudomonas aeruginosa and Pseudomonas syringae.
  • Method of item 25 wherein said microbial cell comprises a gram negative bacte- rium.
  • Method of item 26 wherein said microbial cell is selected from Neisseria meningitidis, Escherichia coli, Coxiella burnetii, Vibrio cholerae, Haemophilus influenzae, Pseudomonas aeruginosa, Pseudomonas putida KT2440 and Pseudomonas syringae.
  • said microbial cell comprises a phd/doc TA system
  • Method of item 28 wherein said microbial cell comprises a gram positive bacterium
  • Method of item 29 wherein said microbial cell is selected from Clostridium tet- ani, Enterococcus faecalis and Streptococcus pneumonia.
  • Method of item 28 wherein said microbial cell comprises a gram negative bacterium.
  • Method of item 48 wherein said individual is suffering from a disease not caused by a bacteria.
  • Method of item 51 wherein said individual is suffering one or more of: an autoimmune disease, sarcoidosis, leprosy, cytomegalovirus infections, malaria, a parasitic disease, a fungal disease.
  • Method of item 53 wherein said viral infection is caused by one or more of infec- tious bursal disease virus or cytomegalovirus.
  • said di sease is selected from: an abscess, acrodermatitis chronica atrophicans (ACA), actinomycosis, acute bacterial Prostatitis, anthrax (Black Bane or malignant pustule or Wool sorter's disease or Tanner's disease), Australian tick typhus (Australian Spotted Fever or Queensland Tick Typhus), Bang's disease (Brucellosis), bartonellosis (Verruga peru- ana or carrion's disease or Oroya fever), "Black death” (plague), bacillary an- giomatosis, bacterial vaginosis, Bejel (endemic syphilis), blennorrhea of the newborn, blepharitis, a boil, botulism, Boutonneuse fever (fievre boutonneuse or tick typhus), Brazilian
  • Method of item 70 wherein said disease is bacterial vaginosis.
  • Method of item 70 wherein said microbial cell is selected from Bacteroides spp, Gardnerella vaginalis or Mobiluncus spp.
  • Method of item 70 wherein said disease is a Chlamydial infection or Lymphogranuloma venereum.
  • Method of item 73 wherein said microbial cell is Chlamydia trachomatis.
  • Method of item 70 wherein said disease is an enteric infection.
  • Method of item 260 wherein said microbial cell is selected from Campylobacter fetus, Shigella sp., Escherichia coli, Salmonella sp.
  • Method of item 70 wherein said disease is Granuloma inguinale (donovanosis) 80.
  • Method of item 79 wherein said microbial cell is Calymmatobacterium granulomatis
  • Method of item 81 wherein said microbial cell is selected from Chlamydia trachomatis, and Gardnerella vaginalis.
  • Method of item 70 wherein said disease is Pelvic Inflammatory Disease (PID)
  • Method of item 83 wherein said microbial cell is selected from N. gonorrhoeae, Chlamydia trachomatis, Anaerobic bacteria, Facultative Gram negative rods, Actinomyces israelii
  • Method of item 70 wherein said disease is syphilis 86.
  • Method of item 85 wherein said microbial cell is Treponema pallidum
  • Method of item 87 wherein said disease is selected from Campylobacteriosis, Salmonellosis, Hemolytic Uremic Syndrome, Yersiniosis, Listeriosis, Tuberculosis, Brucellosis, Cryptosporidiosis, Staphylococcal enterotoxin poisoning or Q fever.
  • Method of item 90 wherein said microbial cell is selected from Haemophilus aegyptius, Chlamydia trachomatis or Neisseria gonorrhoeae 92. Method of any of items 1-4, wherein said disease is a skin disease
  • Method of item 92 wherein said disease is selected from Impetigo, Folliculitis, boils, Scalded Skin Syndrome, Erysipelas, leprosy, Lyme disease, syphilis, chancroid, Rocky Mountain Spotted Fever
  • Method of item 93 wherein said microbial cell is selected from Staphylococcus aureus, Streptococcus pyogenes, Borrelia burgdorferi, Treponema pallidum, Rickettsia rickettsii, Bacteroides spp, Gardnerella vaginalis, and Mobiluncus spp.
  • Method of item 95 wherein said microbial cell is selected from Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium botulinum, E. coli (EPEC), E. coli (ETEC), E. coli (EAggEC or enteroadherent EC), Vibrio cholerae 01, Vibrio cholerae non-01, Enteropathogenic (EPEC) E. coli, Clostridium difficile, Vibrio parahemolyticus, Bacillus anthracis, E. coli (EIEC), E.
  • EHEC Espente coli
  • Salmonella spp Salmonella typhimurium
  • Salmonella typhi Shigella dysenteriae type 1
  • Shigella sonnei/flexneri Yersinia enterocolitica
  • Shigella sp. Enteroinvasive E. coli (EIEC)
  • EIEC Enterohemorrhagic E.
  • EHEC Escherichia coli
  • EEC enterovirulent Escherichia coli group
  • ETEC Escherichia coli - enterotoxigenic
  • EHEC Escherichia coli 0157:H7 enterohemorrhagic
  • EHEC Escherichia coli
  • Salmonella spp Salmonella typhimurium, Salmonella typhi, Shigella dysenteriae type 1 , Shigella sonnei/flexneri, and Yersinia enterocolitica.
  • said disease of the gastrointestinal tract is invasive Gastroenteritis.
  • said microbial cell is selected from one or more of Shigella sp., Salmonella sp., Enteroinvasive E. coli (EIEC), Enterohemorrhagic E.
  • EHEC EHEC
  • Vibrio vulnificus Yersinia sp.
  • Francisella tularensis or Helicobacter pylori.
  • 101. Method of any of items 1-4, wherein said disease is pneumonia. 102.
  • Method of item 101 wherein said microbial cell is selected from one or more of Acinetobacter sp., Actinomyces sp., Bacillus anthracis, Bacteroides melaninogenicus, Bordetella pertussis, Burkholderia pseudomallei, Burkholderia mallei, Chlamydia pneumoniae, Chlamydia psittaci, Chlamydia trachomatis, Coxiella burnetii (Q-fever), Escherichia coli, Francisella tularensis, Fusobacte- rium sp., Hemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Moraxella catarrhalis, Mycobacterium tuberculosis, Mycobacterium sp., Neisseria meningitidis, Nocardia sp., Porphyromonas sp., Prevotella sp., Proteus
  • Method of item 103 wherein said disease is selected from Scrub Typhus (Tsutsugamushi disease), Rickettsial pox, Tularemia, Rocky Mountain Spotted Fever, Endemic Relapsing Fever, Sennetsu fever, erlichiosis, Epidemic typhus, Trench fever, bacillary angiomatosis, bacillary peliosis, Louse-borne relapsing fever or epidemic relapsing fever, Plague, Murine typhus, Tularemia, Bartonellosis, Oroya fever, Carrion's disease, Tick-borne Relapsing Fever, Tularemia and Cat Scratch Fever
  • Method of item 105 wherein said disease is selected from diphtheria, pneumonia, tuberculosis, Legionnaire's disease, a skin diseases, impetigo, cellulitis, a systemic bacterial disease, rheumatic fever or menigitis.
  • Method of any of items 1-4 wherein said disease is transmitted via direct contact of the bacterium with the individual, such as by the bacterium contacting one or more of the skin, mucous membrane or underlying tissues.
  • Method of item 109 wherein said disease is selected from Campylobacter gastroenteritis, salmonellosis, shigellosis, listeriosis, traveler's diarrhea, typhoid fever, botulism, cholera, staphylococcal food poisoning, Campylobacteriosis, Hemolytic Uremic Syndrome, Yersiniosis, Listeriosis, Tuberculosis, Brucellosis, Cryptosporidiosis, Staphylococcal enterotoxin poisoning or Q fever.
  • Method of any of items 1 -4 wherein said disease is a disease of the respiratory tract.
  • Method of item 111 wherein said disease is selected from strep throat, acute tuberculosis, chronic tuberculosis and pneumonia.
  • microbial cell is an opportunistic bacterial pathogen.
  • said opportunistic bacterial pathogen is selected from Staphylococcus aureus, E. coli, Stenotrophomonas (Xanthomonas) maltophilia, Salmonella sp., Rhodococcus equi. Shigella flexneri, Pseudomonas aeruginosa, Listonella anguillarum, Burkholderia cepacia or Mycobacterium, Nocardia asteroides, Nocardia brasiliensis, and Nocardia otitidiscaviarum. 120. Method of any of items 1-4, wherein said disease is a dental disease.
  • Method of item 120 wherein said dental disease is selected from tooth decay and/or periodontal disease
  • Method of item 122 wherein said microbial cell is selected from Staphylococcus sp., MRSA (methicillin-resistant staph aureus) Campylobacter sp, Listeria monocytogenes, Pneumococcus sp., Haemophilus influenzae, Bacil- lus subtilis, Streptococcus pneumoniae, Mycobacterium tuberculosis, Salmo- nella sp., E.
  • Method of item 127 whereby said medical treatment is an organ transplant.
  • Method of item 127 whereby said medical treatment is chemotherapy. 130. Method of item 127, whereby said medical treatment is radiotherapy.
  • Method of item 127 whereby said medical treatment is a cancer treatment.
  • Method of item 127 whereby said medical treatment is a cystic fibrosis treatment.
  • Method of item 127, whereby said medical treatment causes or contributes to immunodeficiency of said individual.
  • Method of item 127 whereby said medical treatment is used to treat AIDS or HIV.
  • Method of item 127 whereby said medical treatment is an anti- microbial treatment.
  • said treatment comprises administration of at least one anti-microbial compound, such as any of the following: - one or more cell wall synthesis inhibitor, such as a beta-lactam - penicillin - a cephalosporin - Vancomycin - protein synthesis inhibitor, such as an Aminoglycoside (streptomycin), a Tetracycline, a Macrolide (erythromycin), an Oxazolidinone - one or more nucleic acid metabolism inhibitor - a Sulfonamide - Trimethoprim - a Rifamycin - one or more DNA gyrase inhibitor, such as a Quinolone, a derivative of Quinolone, a fluorinated derivative of Quinolone or a Novobiocin.
  • a cell wall synthesis inhibitor such as a beta-lactam - penicillin - a cephalosporin - Vancomycin - protein synthesis
  • polypeptide toxin comprises a sequence selected from SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16.
  • polypeptide toxin comprises a se- quence that is substantially identical to SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16.
  • polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16.
  • polypeptide toxin comprises a se- quence with at least 85 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16.
  • polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16. 143. Method of item 137, wherein said polypeptide toxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16. 144. Method of item 137, wherein said polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16. 145.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence selected from SEQ ID NO: 17-97 149. Method of any of items 1-136, wherein said polypeptide toxin is from the VapC toxin family.
  • Method of item 149 wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO:99, 101, 103 and 105
  • Method of item 149 wherein said polypeptide toxin comprises a se- quence that is substantially identical to SEQ ID NO:99, 101 , 103 and 105.
  • polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105.
  • polypeptide toxin comprises a se- quence with at least 85 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105.
  • Method of item 149 wherein said polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105.
  • Method of item 149, wherein said polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105. 157.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO:99, 101, 103 and 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO:99, 101 , 103 and 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to one or more of SEQ ID NO:99, 101 , 103 and 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • Method of item 149 and/or 159 wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO: 106-154 161.
  • Method of any of items 1 -136, wherein said polypeptide toxin is from the MazF toxin family.
  • Method of item 161 wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO: 155 and 160.
  • polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID N0.155 and 160.
  • polypeptide toxin comprises a se- quence with at least 85 % sequence identity to one or more of SEQ ID NO: 155 and 160.
  • polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO:155 and 160. 167. Method of item 161 , wherein said polypeptide toxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 155 and 160. 168. Method of item 161, wherein said polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO:155 and 160. 169.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 155 and 160 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 170.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 155 and 160 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to one or more of SEQ ID NO: 155 and 160 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • Method of item 161 and/or 171, wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO:161-205. 173. Method of any of items 1-136, wherein said polypeptide toxin is from the ParE toxin family.
  • polypeptide toxin comprises sequence with SEQ ID NO:207
  • polypeptide toxin comprises a se- quence that is substantially identical to SEQ ID NO:207.
  • polypeptide toxin comprises a sequence with at least 80 % sequence identity to SEQ ID NO:207.
  • polypeptide toxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 207.
  • polypeptide toxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 207.
  • polypeptide toxin comprises a sequence with at least 95 % sequence identity to SEQ ID NO: 207.
  • polypeptide toxin comprises a se- quence with at least 99 % sequence identity to SEQ ID NO: 207.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to SEQ ID NO: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 ⁇ 10 or less when compared to SEQ ID NO: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence with SEQ ID NO: 221.
  • polypeptide toxin comprises a sequence that is substantially identical to SEQ ID NO: 221.
  • polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 221.
  • polypeptide toxin comprises a se- quence with at least 85 % sequence identity to one or more of SEQ ID NO: 221.
  • polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 221.
  • polypeptide toxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 221.
  • polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 221.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 221 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • Method of item 185 wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 221 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • Method of item 185 or 195 wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO:222-240.
  • polypeptide toxin comprises a se- quence selected from SEQ ID NO: 242
  • polypeptide toxin comprises a sequence that is substantially identical to SEQ ID NO: 242.
  • polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 242.
  • polypeptide toxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 242.
  • polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 242.
  • polypeptide toxin comprises a se- quence with at least 95 % sequence identity to one or more of SEQ ID NO: 242.
  • polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 242.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to one or more of SEQ ID NO: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence selected from SEQ ID NO:243-257.
  • polypeptide toxin is from the CcdB toxin family.
  • polypeptide toxin comprises a sequence selected from SEQ ID NO: 259.
  • polypeptide toxin comprises a sequence that is substantially identical to SEQ ID NO: 259.
  • polypeptide toxin comprises a se- quence with at least 80 % sequence identity to one or more of SEQ ID NO: 259.
  • polypeptide toxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 259.
  • polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 259. 215. Method of item 209, wherein said polypeptide toxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 259.
  • polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 259.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to one or more of SEQ ID NO: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence that is substantially identical to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15
  • polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 1 ,3,5,7,9, 11 ,13 and 15
  • polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15.
  • polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15. 227. Method of item 221, wherein said polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15.
  • polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 1 ,3,5,7,9, 11,13 and 15, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • BLAST algorithm version 2.04 set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 98, 100, 102 and 104. 234. Method of item 232, wherein said polypeptide antitoxin comprises a sequence that is substantially identical to one or more of SEQ ID NO: 98, 100, 102 and 104.
  • polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 98, 100, 102 and 104.
  • polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 98, 100, 102 and 104.
  • polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 98, 100, 102 and 104.
  • polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 98, 100, 102 and 104. 239. Method of item 232, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 98, 100, 102 and 104.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 98, 100, 102 and 104, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 98, 100, 102 and 104 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to one or more of SEQ ID NO: 98, 100, 102 and 104 using the BLAST algorithm version (2.04) set to the default parameters de- fined herein.
  • BLAST algorithm version 2.04
  • polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 156, 157, 158 and 159. 245. Method of item 243, wherein said polypeptide antitoxin comprises a sequence that is substantially identical to one or more of SEQ ID NO: 156, 157, 158 and 159.
  • polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 156, 157, 158 and 159.
  • polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 156, 157, 158 and 159.
  • polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 156, 157, 158 and 159.
  • polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 156, 157, 158 and 159. 250. Method of item 243, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 156, 157, 158 and 159.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to one or more of SEQ ID NO: 156, 157, 158 and 159, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 156, 157, 158 and 159 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to one or more of SEQ ID NO: 156, 157, 158 and 159 and 104 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 254. Method of any items 1- 136 wherein said polypeptide antitoxin is from the ParD family 255. Method of item 254, wherein said polypeptide antitoxin comprises a sequence with SEQ ID NO: 206.
  • polypeptide antitoxin comprises a sequence that is substantially identical to SEQ ID NO: 206.
  • Method of item 254, wherein said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to SEQ ID: 206.
  • Method of item 254, wherein said polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 206.
  • polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 206 260.
  • polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 206. 261.
  • polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to SEQ ID NO: 206. 262.
  • said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 206, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 206 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to SEQ ID NO: 206, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • Method of item 265, wherein said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to SEQ ID: 220. 269. Method of item 265, wherein said polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 220.
  • polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 220
  • polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to SEQ ID NO: 220.
  • polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to SEQ ID NO: 220.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 220, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 220 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to SEQ ID NO: 220, using the BLAST algorithm version (2.04) set to the default parameters defined herein. 276. Method of any of items 1-136, wherein said polypeptide antitoxin is from the Phd family.
  • Method of item 276, wherein said polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 241.
  • Method of item 276, wherein said polypeptide antitoxin comprises a sequence that is substantially identical to SEQ ID NO: 241.
  • polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to SEQ ID: 241.
  • polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 241. 281. Method of item 276, wherein said polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 241
  • polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to SEQ ID NO: 241. 283. Method of item 276, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to SEQ ID NO: 241.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 241, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 241 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 286. Method of item 276 and/or 285, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "10 or less when compared to SEQ ID NO: 241 , using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • Method of item 287 wherein said polypeptide comprises a sequence that is substantially identical to SEQ ID NO: 258.
  • said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to SEQ ID: 258.
  • polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 258.
  • polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 258.
  • polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 258.
  • Method of item 287, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to SEQ ID NO: 258. 295. Method of item 287, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "4 or less when compared to SEQ ID NO: 258, using the BLAST algorithm version (2.04) set to the default parameters defined herein. 296. Method of item 287, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10 "5 or less when compared to one or more of SEQ ID NO: 258, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
  • Method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex comprising:
  • a) providing a compound to be evaluated for the ability to interfere with a bacterial toxin-antitoxin complex and b) providing a first polypeptide comprising a bacterial toxin or a fragment thereof capable of binding an antitoxin, and c) providing a second polypeptide comprising said antitoxin or a fragment thereof capable of binding said toxin, and d) incubating said compound, said first polypeptide and said second polypeptide under conditions allowing binding of said first polypeptide to said second polypeptide, and e) detecting a signal from said incubation mixture indicative of the degree of binding of said first polypeptide to said second polypeptide, and f) evaluating whether or not the presence of said compound has affected the binding of said first polypeptide to said second polypeptide by comparison of the signal detected in step e), with a reference value indicative of the binding of said first polypeptide to said second polypeptide in the absence of said compound.
  • step f) is done by comparison with a parallel control experiment, wherein said first polypeptide and said second polypeptide are incubated under conditions allowing binding of said first polypeptide to said second polypeptide, in the absence of said compound.
  • Method of item 309 wherein said method is cell-based.
  • Method of item 310 wherein said cell is recombinant.
  • Method of any of items 310-311 wherein said method is a bacterial two-hybrid method.
  • Bioactive species capable of activating a bacterial polypeptide toxin and/or capable of initiating de novo synthesis of an activated bacterial polypep- tide toxin, said species comprising one or more of the following groups: - peptides, ⁇ -peptides, ⁇ -peptides, ⁇ -peptides, mono-, di- and tri-substituted ⁇ - peptides, ⁇ -peptides, ⁇ -peptides, ⁇ -peptides, peptides wherein the amino acid residues are in the L-form or in the D-form, vinylogous polypeptides, glycopoly- peptides, polyamides, vinylogous sulfonamide peptides, polysulfonamides, con- jugated peptides comprising e.g.
  • polyesters polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonat.es, polyurethanes, azatides, oligo N-substituted glycines, polyethers, ethoxyformacetal oligomers, poly-thioethers, polyethylene glycols (PEG), polyethylenes, polydisulfides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyr- rolinones, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g. aliphatic or aromatic cycles, including polyheterocyclic compounds; proteoglycans, and polysiloxanes,
  • Bioactive species of capable of activating a bacterial polypeptide toxin and/or capable of initiating de novo synthesis of an activated bacterial polypeptide toxin wherein said bioactive species comprises a scaffold structure, said scaffold structure comprising a plurality of covalently linked functional entities selected from one or more of the following groups: ⁇ -peptides, ⁇ -peptides, ⁇ - peptides, ⁇ -peptides, mono-, di- and tri-substituted ⁇ -peptides, ⁇ -peptides, ⁇ - peptides, ⁇ -peptides, peptides wherein the amino acid residues are in the L-form or in the D-form, vinylogous polypeptides, glycopoly-peptides, polyamides, vinylogous sulfonamide peptides, polysulfonamides, conjugated peptides comprising e.g.
  • prosthetic groups polyesters, polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonates, polyurethanes, azatides, oligo N- substituted glycines, polyethers, ethoxyformacetal oligomers, poly-thioethers, polyethylene glycols (PEG), polyethylenes, polydisulfides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyrrolinones, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g.
  • Bioactive species of items 318-321 comprising functional entities linked by one or more type of chemical bond, selected from peptide bonds, sulfonamide bonds, ester bonds, saccharide bonds, carbamate bonds, carbonate bonds, urea bonds, phosphonate bonds, urethane bonds, azatide bonds, peptoid bonds, ether bonds, ethoxy bonds, thioether bonds, single carbon bonds, double carbon bonds, triple carbon bonds, disulfide bonds, sulfide bonds, phos- phodiester bonds, oxime bonds, imine bonds and imide bonds.
  • peptide bonds sulfonamide bonds
  • ester bonds saccharide bonds
  • carbamate bonds carbonate bonds
  • urea bonds phosphonate bonds
  • urethane bonds urethane bonds
  • azatide bonds peptoid bonds
  • ether bonds ethoxy bonds
  • Bioactive species according to any of items 318-323, wherein said bioactive species is defined by one or more of the following structural limits: 3 ⁇ HDO ⁇ 5 and/or 2 ⁇ HAC ⁇ 9 and/or 2 ⁇ RTB ⁇ 8 and/or 1 ⁇ RNG ⁇ 4 and/or -0.4 ⁇ log P ⁇ 5.6 and/or 40 ⁇ MR ⁇ 130
  • Bioactive species of item 324 wherein said bioactive species is defined by 4 of said structural limits.
  • Bioactive species of any of items 324-331 wherein said bioactive species is either lipophilic and/or encapsulated in a lipophilic carrier.
  • Bioactive species of any of items 324-332 wherein said bioactive species is identifiable using the methods of any of items 301-317.
  • Hygienic composition capable of reducing or eliminating microbial cells, comprising one or more of the bioactive species of items 318-333.
  • Hygienic composition of item 334 further comprising a hygienically- acceptable carrier.
  • Non-therapeutic method for eliminating or reducing microbial cells comprising contacting a surface with the hygienic composition of items 334 or 335.
  • Method of treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell said microbial cell comprising at least one complex of a polypeptide toxin and an anti-toxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide, said method comprising the steps of a) contacting said microbial cell with a bioactive species capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of activated polypeptide toxin, and/or capable of increasing the total amount of activated polypeptide toxin and b) obtaining in said microbial cell an activated polypeptide toxin in an amount sufficient for achieving at least an impaired growth or elimination of said microbial cell in said plant.
  • bioactive species is selected from the bioactive species of items 318-333.
  • a pharmaceutical formulation comprising a bioactive species of any of items 318-333, or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent therefor.
  • the pharmaceutical formulation of item 340 comprising more than one bioactive species of any of items 318-333, or a phamaceutically acceptable salt thereof.
  • bioactive species described in any of items 318-333 capable of activating a polypeptide toxin of a bacterial toxin;antitoxin complex and/or ca- pable of initiating de novo synthesis of an activated polypeptide toxin and/or capable of increasing the amount of activated polypeptide toxin; for the manufacture of a medicament for the treatment of an individual in need thereof.
  • Figure 1 Schematic representation of fluorescence polarization measurements.
  • a small fluorescent molecule When a small fluorescent molecule is excited with polarized light, the dipole will tumble randomly in solution, and when emission is measured through a second polarizing filter, parallel and perpendicular to the excitation plane of polarization, equal intensities will be observed and result in a low polarization value.
  • the fluorescent molecule When the fluorescent molecule binds to a macromolecule, the molecule rotates slowly, orients in the plane of polarization, and yields higher intensity when the polarizers are parallel than perpendicular, resulting in a high polarization value (Methods 22, 61-70 (2000)).
  • Figure 2 In vivo testing and screening for compounds that disrupt the interaction between a toxin (denoted X) and antitoxin (denoted Y). Any compound identified that leads to a disruption of the TA interaction is thus expected to lead to a repression of ⁇ -galactosidase synthesis, provided that it can enter the cell and contain in vivo activity. It may be necessary to use a harmless version of the toxin for these studies to avoid killing of the cells. Such toxin derivatives are already available. (Karimova et al., (1998) PNAS 95:5752-6.)
  • Figure 3 (A) Schematic drawing that explains the titration induction principle, (B) optical density and (C) colony forming units pr ml (cfu/ml) after production of RelE6CS mutant protein in wild-type and ⁇ relBE E. coli cells .
  • Cells of MG1655/pKP3103 (pBAD::re/E6CS) and MG1655 re/ ⁇ E/pKP3103 were grown in
  • M9 minimal medium supplemented with 50 ⁇ g/ml chloramphenicol, amino acids in defined amounts and 0,5% glycerol.
  • the relE ⁇ CS gene encodes a RelE protein that has its C-terminal six aa substituted with TVTVTV. This mutant RelE protein does not inhibit translation in vitro (Pedersen et al., 2002).
  • transcription of the relE ⁇ CS gene was induced by addition of 0.2% arabinose.
  • appropriate dilutions of the cultures were plated on LA-plates containing 50 ⁇ g/ml chloramphenicol and 0.2% arabinose.
  • FIG. 4 Peptide Scanning Arrays used to identify linear sequences of antitoxin that interact with partner toxins. Nitrocellulose membranes spotted with peptides derived from RelB (A) and MazE (B) and probed with either RelE-GST (A) or MazF-GST (B). The peptides were designed so that there was a shift of 2 aa between two consecutive peptides. 50 ⁇ g of GST-RelE (A) or GST-MazF (B) was incubated with the membranes ON at 4°C. To visualize the binding of the GST fusions, the membranes were incubated with mouse anti-GST antibody in addition to HRP-conjugated goat anti-mouse antibody the following day.
  • Example 1 Cell killing by activation of endogenous RelE of E. coli
  • RelB neutralizes RelE by direct protein - protein interaction. Therefore, in E. coli wild-type cells that contain native RelBE complexes, ectopic overproduction of non- toxic variants of RelE that still can bind RelB should titrate endogenous RelB away from the active wild-type RelE and confer cell killing.
  • RelE6CS non- toxic mutant variant of RelE that has its 6 C-terminal codons substituted to TVTVTV
  • the RelE6CS variant does not inhibit translation in vitro and this explains its lack of cell killing activity in vivo.
  • titration-principle as illustrated in Figure 3A.
  • Plasmid pKP3103 ( Figure 3A) carries the relE ⁇ CS gene downstream of the pBAD promoter and therefore produces RelE6CS upon addition of arabinose (0.2%) to the growth medium.
  • Cells of MG1655/pKP3103 and MG1655-dre/BE/pKP3103 were grown in M9 minimal medium supplemented with amino acids in defined amounts and 0.5% glycerol. At an optical density of approximately 0.2 (OD 45 o), 0.2% arabinose was added to induce transcription of the relE ⁇ CS gene.
  • Figure 3B shows that the optical density of MG1655_dre/SE/pKP3103 continued to increase after addition of arabinose.
  • RelE6CS resulted in inhibition of cell growth and in a reduction of the number of viable cells only if the plasmid-carrying strain encoded a chromosomal copy of the relBE locus. This result shows that endogenous RelE can be activated from outside the cell and kill and/or inhibit the growth of the cells.
  • Example 2 Identification of linear seguences in RelB and MazE that interact with the toxin partner.
  • RelB antitoxin forms a tight complex with RelE and
  • MazE antitoxin forms a tight complex with MazF.
  • peptide arrays to identify linear stretches of amino acids in the antitoxins RelB and MazE that interact with the cognate toxins.
  • the array peptides were covalently bound to a Whatman 50 cellulose support by their C- termini.
  • For detection of toxin interaction we used fusions between toxins RelE and MazF to GST.
  • the peptide array membranes were probed with GST-RelE or GST-MazF fusion proteins. From biochemical experiments we knew that the fusion proteins were biologically active and bind their cognate antitoxins avidly. To visualize the binding of the GST fusion proteins, the membranes were incubated with mouse anti-GST antibody in addition to HRP-conjugated goat anti-mouse antibody.
  • RelB-derived peptides that were recognized by RelE- GST.
  • the first series corresponded to the N-terminal part of RelB and consisted of the two peptides RelB 7-2 ⁇ and RelB 9-23 . This region covers the aa sequence RIL%
  • DELKARSYAALEKM DELKARSYAALEKM.
  • the underlined sequence represents the aa which are present in both peptides.
  • the second series consisted of the peptide RelB 39-53 and covers the sequence ADNERLPFKQTLLSD.
  • the peptides that bound MazF all contain aa that interact with MazF in the crystals.
  • the strongest interaction between MazE and MazF involves a region called "site 2" of MazE which consists of aa 54-67. With the exception of 1 aa all 14 "site 2" aa were included in peptide MazE 55-69 which was the peptide that was recognized the most strongly by GST-MazF.
  • the GST-MazF fusion did not bind RelB derived peptides and GST-RelE derived peptides did not bind to the MazE peptides (control reactions).
  • Example 3 Examples of in vitro methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex, as disclosed herein
  • the antitoxin is purified and immobilized to a solid support (e.g. microtiter well).
  • a solid support e.g. microtiter well.
  • protein immobilization e.g. Corning Inc.
  • the corresponding toxin is fused to an enzyme with an easily detectable activity, exemplified by alkaline phosphatase.
  • the fusion protein is tested for biological activity in vivo before purification. Interaction between antitoxin and tagged toxin proteins can now be estab- lished in microtiter wells and these form the basis for screening of combinatorial chemical libraries that are commercially available (Chemical Diversity Inc. and others).
  • any low molecular compound that disrupts the interaction between the TA pair will lead to release of the toxin fused to alkaline phosphatase.
  • the amount of released toxin can be assayed with great sensitivity by transferring the supernatant to a clean microtiter well and performing an alkaline phosphatase assay.
  • phosphate substrates yielding fluorescent products eg. Fluorescein di- phosphate-FDP, Molecular Probes Inc.
  • alkaline phosphatase FDP Upon action of alkaline phosphatase FDP is hydrolyzed to fluorescein that fluoresces with a maximum of 518 nm upon excitation with a maximum of 494 nm which makes this substrate suit- able for detection in standard ELISA readers.
  • Example 4 Examples of in vivo methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex as disclosed herein
  • Toxin antitoxin interaction in vivo can be monitored using the bacterial two hybrid system developed by Karimova and coworkers (Proc Natl Acad Sci U S A 95, 5752,
  • a given antitoxin is genetically fused to a bioluminescent Renilla luciferase. In the presence of substrate, coelenterazine, it will emit light with an emission optimum of 480 nm. This is close to the excitation maximum for the YFP protein to which the toxin will be fused. Interaction of the toxin and antitoxin brings luciferase and the YFP proteins into close proximity such that resonance energy transfer takes place (Xu Y, Piston DW, Johnson CH. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96, 151 , 1996).
  • BRET bioluminescence resonance energy transfer
  • BRET has previously been used to demonstrate interaction between a number of proteins (ref). Any compound identified in la or lb that lead to a disruption of TA interaction is thus expected to lead to to reduced resonance energy transfer and reduced YFP fluores- cence, provided that it can enter the cell and contain in vivo activity. It may be necessary to use a harmless version of the toxin for these studies to avoid killing of the cells.
  • Example 5 Example of bioinformatics search of genome databases to indentify toxin-antitoxin pairs
  • GI GI identifiers are numbers assigned by NCBI to all sequences contained within the
  • the 'GI 1 identifier provides a uniform and stable naming convention whereby a specific sequence is assigned its unique GI identifier. If a nucleotide or protein sequence changes, however, a new GI identifier is assigned, even if the accession number of the record remains unchanged. Thus GI identifiers provide a mechanism for identifying the exact sequence that was used or retrieved in a given search.
  • toxin protein sequences (RelE, VapC, MazF, ParE, HigB, Doc, CcdB) from scientific publications. In this way, groups of experimentally verified toxin sequences of RelE, VapC, MazF, ParE, HigB, Doc and CcdB were generated. These sequences comprise SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 99, 101 , 103, 105, 155, 160, 221 , 242, 259. The toxin sequences may be plasmid-encoded or chromosome encoded. / b) Database searches for TA system components > These toxin sequences were used as query sequences in data base searches as follows:
  • the genomes of the organisms to be searched were downloaded from the NCBI ftp- server, ftp.ncbi.nih.gob/genomes/Bacteria. Then, the formatdb program, from NCBI blast suite, was used to create separately indexed databases (amino acid and nu- cleotide or both) for each organism, to make them searchable with BLAST. As such the genomes of the organisms to be searched define the "search space". Plasmid DNA sequences were excluded from the search space.
  • the amino acid database created for each organism were searched with programs BLASTP (matrix used: BLOSUM62), PSI-BLAST (matrix used: BLO- SUM62) and HMM-SEARCH (BLOSUM62) as described in the steps below. All other search parameters were default parameters as defined herein.
  • Score sequences characterized by E-values lower than 10 "10 were col- lected to generate the groups of "core sequences” , with SEQ ID: 17-97, 106- 154, 161-205, 208-219, 222-240, 243-257 and 260-263.
  • SEQ ID: 2 4, 6, 8, 10, 12, 14, 16, 99, 101, 103, 105, 155, 160, 207, 221, 242 and 259, were used again in BLAST searches against the genomes searched. Hits with an E-value lower than 10 "4 were collected.
  • step 4 All the "hit" sequences from step 3 were then used as queries with the search programs described above and the 126 genomes as search space. Again, sequences characterized by E-values lower than 10 "4 were collected. This step was repeated until no further sequences could be added.
  • step 4 All sequences collected after step 4 were used as queries in a BLASTP search using the groups of core toxin sequences (SEQ ID: 17-97, 106-154, 161-205, 208-219, 222-240, 243-257 and 260-263) generated in step 2 as the search space. Hits characterized by E-values lower than 10 "4 were collected.
  • All the sequences retrieved in step 5 were sorted by size such that sequences of more than 160 aa and less than 50 aa were discarded. 7.
  • the genes encoding all the collected toxin protein sequences were analyzed with respect to the presence of a closely linked upstream putative or annotated antitoxin gene of a suitable size (or, in the case of the Hig family of toxins, a putative or annotated downstream antitoxin gene). Closely linked means that the distance (in bp) between the toxin and antitoxin genes was not more than 72 bp, or in one case, not more than 148 bp (ccdA and ccdB of Nitrosomonas eu- ropaeus). Suitable size of the antitoxin genes was not more than 140 and not less than 42 codons. The pair of GI numbers of the toxin and antitoxin protein sequences were then retrieved.
  • the toxin protein sequences collected as described above were used as query sequences in searches of the nucleotide sequences of interesting organisms. This method provides a means to identify un-annotated toxin genes encoded by the DNA of an interesting organism.
  • the cut-off E-value used in this analysis was also 10 "4 .
  • the first sequence codes for the antitoxin
  • the second sequence codes for the toxin, except in the case of toxin-antitoxin pairs from the higBA family, wherein the first sequence is the toxin.
  • Nucleotide sequences are presented first, followed by a section disclosing the corresponding polypeptide sequences.
  • DNA chromosome
  • colon DNA co-ordinates in the DNA of the gene(s).
  • c in front of these DNA coordinates indicates that the gene of interest is encoded by the opposite DNA strand.
  • nucleotide sequences described herein may be used in an artificial sequence comprised in a synthetic construct, which may be introduced into a suitable vehicle for production of the encoded polypeptide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex and the bioactive species identifiable using said evaluation methods. The present invention also relates to pharmaceutical formulations and methods for treating an individual suffering from a disease, such as caused by a microbial cell. The present invention further relates to the use of one or more of said bioactive species for the preparation of a medicament for the treatment of an individual in need thereof, such as an individual diagnosed with, or at risk of contracting, a bacterial disease. Furthermore, the present invention relates to hygienic compositions capable of reducing or eliminating microbial cells, non-therapeutic methods for eliminating or reducing microbial cells, and methods for treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell.

Description

Bioactive species capable of interfering with a microbial toxin-antitoxin complex and methods for evaluation and use of said bioactive species
This application is a non-provisional of U.S. provisional application Serial No. 60,542,840 filed 10th February 2004, which is hereby incorporated by reference in its entirety. All patent and non-patent references cited in the application, or in the present application, are also hereby incorporated by reference in their entirety.
Field of invention
The present invention relates to methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex and the bioactive species identifiable using said evaluation methods. The present invention also relates to pharmaceutical formulations and methods for treating an individual suffering from a disease, such as caused by a microbial cell. The present invention further relates to the use of one or more said bioactive species for the preparation of a medicament for the treatment of an individual in need thereof, such as an individual diagnosed with, or at risk of contracting, a bacterial disease. The present invention further relates to hygienic compositions capable of reducing or eliminating microbial cells, non-therapeutic methods for eliminating or reducing microbial cells, and methods for treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell.
Background of invention
There are many instances in which elimination or reduction of bacteria may be desirable. One example is in preventing spoilage of food or other perishable items. Reduction of bacterial numbers is also desirable within many environments, such as within the home or workplace, laboratories, food preparation areas, medical envi- ronments (including hospitals and medical equipment, such as catheters) and any other areas where bacteria could have a detrimental effect. Bacterial pathogens are also responsible for a plethora of human and animal diseases, ranging in severity from inapparent to severe, and elimination or reduction of these pathogenic bacteria is also highly desirable. Bacterial disease
Bacterial disease may be caused by bacterial infection, defined as the invasion of the host by microorganisms, which then multiply in close association with the host's tissues.
The capacity of a bacterium to cause disease reflects its relative pathogenicity. On this basis, bacteria can be organized into three major groups. When isolated from a patient, frank or primary pathogens are considered to be probable agents of disease. Opportunistic pathogens are those isolated from patients whose host defense mechanisms have been compromised. They may be the agents of disease (e.g., in patients who have been predisposed to urinary tract infections with Escherichia coli by catheterization). Finally, some bacteria are considered to be nonpathogens, because they rarely or never cause human disease. Their categorization as nonpathogens may change, however, because of the adaptability of bacteria and the detri- mental effect of modern radiation therapy, chemotherapy, and immunotherapy on resistance mechanisms. In fact, some bacteria previously considered to be non- pathogens are now known to cause disease. Serratia marcescens, for example, is a common soil bacterium that causes pneumonia, urinary tract infections, and bac- teremia in immunocompromised hosts.
Virulence is the measure of the pathogenicity of an organism. The degree of virulence is related directly to the ability of the organism to cause disease despite host resistance mechanisms; it is affected by numerous variables such as the number of infecting bacteria, route of entry into the body, specific and nonspecific host defense mechanisms, and virulence factors of the bacterium. Virulence can be measured experimentally by determining the number of bacteria required to cause animal death, illness, or lesions in a defined period after the bacteria are administered by a designated route. Consequently, calculations of a lethal dose affecting 50 percent of a population of animals (LD50) or an effective dose causing a disease symptom in 50 percent of a population of animals (ED50) are useful in comparing the relative virulence of different bacteria.
Bacterial virulence factors can influence a bacteria's ability to cause infectious disease. These virulence factors can be divided into two categories: 1. virulence factors that promote bacterial colonization of the host 2. virulence factors that damage the host.
Bacterial virulence factors may be encoded on chromosomal, plasmid, transposon, or temperate bacteriophage DNA; virulence factor genes on transposons or temperate bacteriophage DNA may integrate into the bacterial chromosome.
Susceptibility to bacterial disease depends on the physiologic and immunologic condition of the host, the bacterial virulence and the number of bacteria that enter the body. Before increased amounts of specific antibodies or T cells are formed in response to invading bacterial pathogens, the "nonspecific" mechanisms of host resistance (such as polymorphonuclear neutrophils and macrophage clearance) must defend the host against the microbial cells. Development of effective specific immunity (such as an antibody response to the bacterium) may require several weeks. The normal bacterial flora of the skin and mucosal surfaces also serves to protect the host against colonization by bacterial pathogens. In most healthy indi- viduals, bacteria from the normal flora that occasionally penetrate the body (e.g., during tooth extraction or routine brushing of teeth) are cleared by the host's cellular and humoral mechanisms. In contrast, individuals with defective immune responses are prone to frequent, recurrent infections with even the least virulent bacteria. The best-known example of such susceptibility is acquired immune deficiency syndrome (AIDS), in which the CD4+ helper lymphocytes are progressively decimated by human immunodeficiency virus (HIV). However, resistance mechanisms can be altered by many other processes. For example, aging often weakens both nonspecific and specific defense systems so that they can no longer effectively combat the challenge of bacteria from the environment. Infants are also especially susceptible to certain pathogens (such as group B streptococci) because their immune systems are not yet fully developed and cannot mount a protective immune response to important bacterial antigens. In addition, some individuals have genetic defects of the complement system or cellular defenses (e.g., inability of polymorphonuclear neutrophils to kill bacteria). Finally, a patient may develop granulocytopenia as a result of a predisposing disease, such as cancer, or immunosuppressive chemotherapy for organ transplants or cancer.
Host resistance can be compromised by trauma and by some underlying diseases. An individual becomes susceptible to infection with a variety of bacteria if the skin or mucosa is breached, particularly in the case of severe wounds such as burns or contaminated surgical wounds. Cystic fibrosis patients, who have poor ciliary function and consequently cannot clear mucus efficiently from the respiratory tract, are abnormally susceptible to infection, particularly from mucoid strains of Pseudomo- nas aeruginosa, resulting in serious respiratory distress. Ascending urinary tract infections with Escherichia coli are common in women and are particularly troublesome in patients with urinary tract obstructions. A variety of routine medical procedures, such as tracheal intubation and catheterization of blood vessels and the urethra, increase the risk of bacterial infection. The plastic devices used in these proce- dures are readily colonized by bacteria from the skin, which migrate along the outside of the tube to infect deeper tissues or enter the bloodstream.
Bacteria can be transmitted to the host via a number of modes of transmission. Transmission may be direct, so from an infected host directly to a susceptible host, for instance via airborne transmission, direct contact transmission (via blood, excrement blood transfusions, organ transplants) or sexual transmission. Bacterial disease transmission may also be indirect, such as from infected host to reservoir to susceptible host, in which case the reservoir can be living (such as an arthropod vector or disease-free individual) or inanimate, for example soil, water, food, bed- ding or surgical instruments.
In certain bacterial diseases, tissue damage results from the host's own immune system. This is termed "host-mediated pathogenesis". Thus, the pathogenesis of many bacterial infections cannot be separated from the host immune response, for much of the tissue damage is caused by the host response rather than by bacterial factors. Classic examples of host-mediated pathogenesis are seen in diseases such as Gram-negative bacterial sepsis, tuberculosis, and tuberculoid leprosy. The tissue damage in these infections is caused by toxic factors released from the lymphocytes, macrophages, and polymorphonuclear neutrophils infiltrating the site of infec- tion. Often the host response is so intense that host tissues are destroyed, allowing resistant bacteria to proliferate. In lepromatous leprosy, in contrast, the absence of a cellular response to Mycobacterium leprae allows the bacteria to multiply to such large numbers in the skin that they become tightly packed and replace healthy tissue. Most bacterial pathogens do not invade cells, proliferating instead in the extracellular environment enriched by body fluids. Some of these bacteria (e.g., V cholerae and Bordetella pertussis) do not even penetrate body tissues, but, rather, adhere to epithelial surfaces and cause disease by secreting potent protein toxins. Although bacteria such as £ coli and P aeruginosa are termed noninvasive, they frequently spread rapidly to various tissues once they gain access to the body.
Emerging infections
Emerging infections are those whose incidence in humans has increased within the past two decades or threatens to increase in the near future. Emergence may be due to the spread of a new agent, to the recognition of an infection that has been present in the population but has gone undetected, or to the realization that an established disease has an infectious origin. Emergence may also be used to describe the reappearance (or "reemergence") of a known infection after a decline in inci- dence." The 1995 Report of the Committee on International Science, Engineering and Technology Policy (a White House-appointed committee of the National Science and Technology Council to review the US role in dealing with emerging diseases) listed several pathogenic bacteria and bacterial diseases that have emerged since 1973, such as Legionnaires' disease (Legionella pneumophila), Bacteria Toxic shock syndrome (toxic strains of Staphylococcus aureus), Bacteria Hemorrhagic colitis and hemolytic uremic syndrome (Escherichia coli 0157:H7), Lyme disease (Borrelia burgdorferi), peptic ulcer disease (Helicobacter pylori), Human ehrlichiosis (Ehrlichia chafeensis), a new epidemic cholera strain (Vibrio cholerae 0139), Bacteria Cat-saatch disease (Bartonella henselae) and bacillaryangiomatosis.
The continuing problem of newly identified emerging infections places a high strain on current microbial therapies.
Bioterrorism There is concern that bacterial disease may be brought about by warfare and/or terrorist activities. Certainly, some known bacteria, such as bacteria of the Bacillus genus, may be used for bioterrorist activities. One disease causing much concern is anthrax. While an anthrax vaccine is available (See e.g., Ivins et al., Vaccine 13:1779 [1995]) and can be used for the prevention of classic anthrax, genetic mixing of different strains of the organism can render the vaccine ineffective (See e.g., Mobley, Military Med. 160:547 [1995]). The potential consequences of the use of Anthrax spores as a biological weapon were demonstrated by the accidental release of Bacillus anthracis from a military microbiology laboratory in the former Soviet Union. Seventy-seven cases of human anthrax, including 66 deaths, were attributed to the accident. Some anthrax infections occurred as far as 4 kilometers from the laboratory (See e.g., Meselson et al., Science 266:1202 [1994]). Genetic analysis of infected victims revealed the presence of either multiple strains or a genetically altered B. anthracis (See e.g., Jackson et al., Proc. Nat. Acad. of Sci. U.S.A. 95:1224 [1998]). There is thus a clear need for improved treatments and prevention of anthrax.
Current bacterial disease therapies
Current bacterial disease therapies include, but are not restricted to: Cell wall synthesis inhibitors, such as: a. Beta-lactams (such as penicillin or cephalosporins), which block cell wall crosslinking by mimicking d-ala-d-ala b. Vancomycin, which binds d-ala-d-ala motifs. Protein synthesis inhibitors, such as: a. Aminoglycosides (such as streptomycin), which are protein synthesis inhibitors that bind to the bacterial ribosome 30S subunit and cause misreading of the genetic code. b. Tetracyclines, which act on the bacterial ribosome 30S subunit and inhibit tRNA binding. c. Macrolides (such erythromycin) act on the bacterial ribosome 50S subunit, blocking peptidyl transfer. d. Oxazolidinones, which are active only against gram positive bacteria, and interfere with translation.
Nucleic acid metabolism inhibitors, such as: a. Sulfonamides, which are structural analogues of PABA and prevent formation of folic acid. The bacteria cannot import folic acid to make DNA bases. b. Trimethoprim, which inhibits dihydrofolic reductase and acts synergistically with sulfonamides. c. Rifamycins, which block transcription by binding to RNA polymerase.
DNA gyrase inhibitors, such as: a. Quinolones, which inhibit DNA gyrase. New fluorinated derivatives (i.e. ciproflaxin) have a broad spectrum and are very potent, b. Novobiocin, which blocks binding of ATP to DNA gyrase.
Antimicrobial agents are most effective, however, when the infection is also being fought by healthy phagocytic and immune defenses. Some reasons for this situation are the poor diffusion of antibiotics into certain sites (such as the prostate gland), the ability of many bacteria to multiply or survive inside cells (where many antimicrobial agents have little or no effect), the bacteriostatic rather than bactericidal action of some drugs, and the capacity of some organisms to develop resistance to multiple antibiotics. This problem is now becoming very common, for instance recent surveys in Europe have shown that betwen 15 and 50 % of clinical isolates of S. pneumo- niae are resistant to penicillin.
An organism infected with an antibiotic-resistant strain of bacteria faces serious and potentially life-threatening consequences. Examples of bacteria that develop antibiotic resistance include Staphylococcus (often causing fatal infections), Pneumococci (causing for example pneumonia and meningitis); Salmonella and E. coli (causing for example diarrhea) and Enterococci (causing for example bloodstream, surgical wound and urinary tract infections). (See e.g., Berkelman et. al., J. Infcet. Dis. 170(2):272 [1994]).
Bacterial toxin-antitoxin systems
The bacterial toxin-antitoxin systems (TA systems) are encoded by bacterial plasmids and chromosomes, which specify a cytotoxin and an antitoxin. The antitoxins neutralise the cognate toxins by forming tight complexes with them. The anti-toxins are unstable due to degradation by cellular proteases, whereas the toxins are stable. TA loci usually comprise two genes in a transcriptional unit. One of the genes codes for the antitoxin which combines with and neutralizes the toxin, which is encoded by the other gene. The antitoxins bind extremely well to their cognate toxins, both in vivo and in vitro, but do not bind to non-cognate toxins, that is, the interaction between a toxin and the corresponding antitoxin is specific. The toxins are very potent cell killers or inhibitors of bacterial cell growth.
A number of these TA systems have been discovered (Gerdes, K, "Toxin-Antitoxin Modules May Regulate Synthesis of Macromolecules during Nutritional Stress",
Journal of Bacteriology, Vol. 182, No. 3, p 561-572), including the following families:
• relBE systems (relB antitoxin, relE toxin) • parDE systems
• chp systems (chpA locus has also been called mazEF) • higBA systems (HigB toxin, HigA antitoxin)
• phd/doc systems
• ccdAB systems (ccdA antitoxin, ccdB toxin)
• vapBC systems (also known as vagCD or STBORF1 and STBORF2)
The mode of action of these complexes has also been investigated; see for example Pedersen, K. et al., 2003. The Bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A-site. Cell 112, 131-140; Christensen S. and Gerdes K. 2003. RelE proteins from Bacteria and Archaea inhibit protein synthesis by cleavage of translating mRNAs and is counteracted by tmRNA. Mol. Microbiol. 48:1389-400; Christensen S, et al., "Toxin-antitoxin Loci as Stress-response elements:
ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA", J. Mol. Biol. Volume 332, Issue 4, 26 September 2003, Pages 809-819.
Although it has been suggested that, in theory, these systems could be used as novel anti-microbial targets with medical applications, there are many practical difficulties to be overcome to make this idea viable. Problems to be overcome include:
1) The anti-microbial would have to be targeted to the bacterial site
2) The anti-microbial would have to be taken up by the bacteria in a way that allowed it to remain in a viable, active form. 3) The anti-microbial would have to be targeted to the complex
4) The anti-microbial should be in a format allowing it to be toxic or detrimental to the microbial cell, but should not be toxic or detrimental to the cells of the individual thus treated.
5) The anti-microbial should not be eliminated from the body fluids or otherwise rendered inactive in the anti-microbial method used. Furthermore, bacterial toxins such as RelE have been characterised as inducing apoptosis in human cells (Yamamoto et al., "Bacterial toxin RelE induces apoptosis in human cells", FEBS Letters 519 p 191-194), so there is much uncertainty as to whether using TA complexes as drug targets could lead to detrimental cell death or retardation of growth in the individual thus treated. It is probable that this (possibly therapeutically problematic) wide-spectrum ability of the toxins to induce cell death is due to conserved elements of the translation machinery.
References
Berry LJ: Bacterial toxins. Crit Rev Toxicol 5: 239, 1977
Eisenstein TK, Actor P, Friedman H: Host Defenses to Intracellular Pathogens. Plenum Publishing Co, New York, 1983
Finlay BB, Falkow S: Common themes in microbial pathogenicity. Microbiol Rev 53:210, 1989
Foster TJ: Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev 47:361 , 1983
Hardegree MC, Tu AT (eds): Handbook of Natural Toxins. Vol.4: Bacterial Toxins.
Marcel Dekker, New York, 1988 Iglewski BH, Clark VL (eds): Molecular Basis of Bacterial Pathogenesis. Vol. XI of
Luderitz O, Galanos C: Endotoxins of gram-negative bacteria, p.307. In Dorner F,
Drews J (eds): Pharmacology of Bacterial Toxins. International Encyclopedia of
Pharmacology and Therapeutics, Section 119. Pergamon, Elmsford, NY, 1986
Mims CA: The Pathogenesis of Infectious Disease. Academic Press, London, 1976 Payne SM: Iron and virulence in the family Enterobacteriaceae. Crit Rev Microbiol
16:81 , 1988
Salyers, AA, Whitt DD: Bacterial Pathogenesis - A Molecular Approach ASM Press,
1994
Smith H, Turner JJ (eds): The Molecular Basis of Pathogenicity. Verlag Chemie, Deerfield Beach, FL, 1980
Summary of invention
Clearly, antipathogenic compositions and methods that decrease the infectivity, morbidity, and mortality associated with bacterial pathogenic exposure are needed. Such compositions and methods should preferably not have the undesirable properties of promoting microbial resistance, or of being toxic to the recipient.
The inventors of the present invention have advantageously found, after sustained bioinformatics investigations, that homologues to the TA systems mentioned above appear to be widespread among prokaryotes. It was found that many prokaryotes contain multiple copies of TA loci, increasing the importance of these complexes as drug targets.
Thus, in one aspect of the present invention is provided pharmaceutical formulations and methods for treating an individual suffering from a disease, such as caused by a microbial cell. The present invention further relates to the use of one or more said bioactive species for the preparation of a medicament for the treatment of an individual in need thereof, such as an individual diagnosed with, or at risk of contracting, a bacterial disease.
The present invention also relates to methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex and the bioactive species identifiable using said evaluation methods. Furthermore, the present invention relates to hygienic compositions capable of reducing or eliminating microbial cells, non-therapeutic methods for eliminating or reducing microbial cells, and methods for treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell.
In said methods, the bioactive species is targeted correctly to the bacterial site in a way that allows the bioactive species to remain in a viable, active form. The bioactive species are toxic or detrimental to the microbial cell(s) of interest, but are not toxic or detrimental to the cells of the individual thus treated.
Definitions
Amino acid: Entity comprising an amino terminal part (NH2) and a carboxy terminal part (COOH) separated by a central part comprising a carbon atom, or a chain of carbon atoms, comprising at least one side chain or functional group. NH2 refers to the amino group present at the amino terminal end of an amino acid or peptide, and COOH refers to the carboxy group present at the carboxy terminal end of an amino acid or peptide. The generic term amino acid comprises both natural and non- natural amino acids. Natural amino acids of standard nomenclature as listed in J. Biol. Chem., 243:3552-59 (1969) and adopted in 37 C.F.R., section 1.822(b)(2) belong to the group of amino acids listed in Table 1 herein below. Non-natural amino acids are those not listed in Table 1. Examples of non-natural amino acids are those listed e.g. in 37 C.F.R. section 1.822(b)(4), all of which are incorporated herein by reference. Further examples of non-natural amino acids are listed herein below. Amino acid residues described herein can be in the "D" or or "L" isomeric form.
Symbols Amino acid 1 -Letter 3-Letter
Y Tyr tyrosine G Gly glycine F Phe phenylalanine M Met methionine A Ala alanine S Ser serine I lie isoleucine L Leu leucine T Thr threonine V Val valine P Pro praline K Lys lysine H His histidine Q Gin glutamine E Glu glutamic acid W Trp tryptophan R Arg arginine D Asp aspartic acid N Asn asparagine C Cys cysteine
Table 1. Natural amino acids and their respective codes. Amino acid residue: the term "amino acid residue" is meant to encompass amino acids, either standard amino acids, non-standard amino acids or pseudo-amino acids, which have been reacted with at least one other species, such as 2, for example 3, such as more than 3 other species. In particular amino acid residues may com- prise an acyl bond in place of a free carboxyl group and/or an amine-bond and/or amide bond in place of a free amine group. Furthermore, reacted amino acids residues may comprise an ester or thioester bond in place of an amide bond
"binding" and "bound" - In preferred embodiments of the present invention, "binding" between e.g. the bound toxin and anti-toxin refers to contact between the two entities with a dissociation constant of Kd less than 5 X 10"6M, such as less than 10"6M, e.g. less than 5 X 10"7M, such as less than 10"7M, e.g. less than 5 X 10"8M, such as less than 10"8M, e.g. less than 5 X 10"9M, such as less than 10_9M, e.g. less than 5 X 10"10M, such as less than 10"10M, e.g. less than 5 X 10"11M, such as less than 10" 1 M, e.g. less than 5 X 10"12M, such as less than 10" 2M. Dissociation constants can e.g. be determined by surface plasmon resonance analysis.
"caused by" - by a disease "caused by" a microbial cell is meant that said disease may be associated with or directly caused by the bacteria, for example by a toxin, tissue damage, or host-mediated pathogensis.
By carrying out another therapy or treatment "in combination" with the methods of the present invention, it is meant that the methods of the present invention may be carried out before, during, or after another therapy or treatment type.
For example, if said another therapy comprises administering an anti-microbial compound, said anti-microbial compound may administered before, concurrently with, or after, the methods described herein. Said anti-microbial compounds may also be formulated in the medicaments described herein.
Infant - by "infant" is meant any individual of physical or apparent age from 0-3 years, said individual being preferably human.
Neonate - by "neonate" is meant any individual at the age from birth to one year old, said individual being preferably human. Immunocompromised - by "immunocompromised" individual is meant herein an individual whose immune system is not functioning as well as in a normal healthy adult individual. In extreme examples, this may be due to diseases or medical treatments or other changes in the individual's body reducing the individual's immune function, such as AIDS, HIV, malnutrition, old age (defined herein as an individual over 50 years old, preferably over 70 years old), pregnancy, lactation, immunosuppressive drugs like steroids, chemotherapy, viruses (such as HIV, infectious bursal disease virus, cytomegalovirus), autoimmune disease, radiation, radiother- apy, sarcoidosis, leprosy, malaria, and the like. Furthermore, an individual is immunocompromised if they have an underdeveloped immune system, for example due to a genetic disease or in the case of a foetus, infant, young child (from age 3 to 12) or adolescent (from age 13 to adult). In one form of immunosuppression, said individual has granulocytopenia. In another form of immunosuppression, said indi- vidual has trauma, burns, or a wound. Said wound may be a surgical wound.
Non-natural amino acid: Any amino acid not included in Table 1 herein above. Non- natural amino acids are capable of being incorporated into a peptide or peptide like structure by translation mediated by a ribosome. A non-natural amino acid according to the present invention may for example be any amino acid comprising an amino group and a carboxyl group separated by an α-carbon. The amino acid may for example be selected from the group consisting of, Aib, Nai, Sar, Orn, Lysine analogues DAP and DAPA or any of the amino acids described in US 5,573,905. Furthermore, non-natural amino acids may be any of the above mentioned or any stan- dard amino acids which further comprises one or more moieties selected from the group consisting of hydroxyl, bromo, fluoro, chloro, iodo, mercapto, thio, cyano, alkylthio, heterocycle, aryl, heteroaryl, carboxyl, carboalkoyl, alkyl, alkenyl, nitro, amino, alkoxyl and/or amido. The non-natural amino acid is capable of being incorporated into a peptide or peptide like structure by translation mediated by a wild- type, mutant, modified or recombinant ribosome.
Peptide: Plurality of covalently linked amino acid residues defining a sequence and linked by amide bonds. The term is used analogously with oligopeptide and polypeptide. The amino acids may be both natural amino acids and non-natural amino acids, including any combination thereof. The natural and/or non-natural amino acids may be linked by peptide bonds or by non-peptide bonds. The term peptide also embraces post-translational modifications introduced by chemical or enzyme-catalyzed reactions, as are known in the art. Such post-translational modifications can be introduced prior to partitioning, if desired. Amino acids as specified herein will preferentially be in the L-stereoisomeric form. Amino acid analogs can be employed instead of the 20 naturally-occurring amino acids. Several such analogs are known, including fluorophenylalanine, norleucine, azetidine-2- carboxylic acid, S-aminoethyl cysteine, 4-methyl tryptophan and the like.
Treatment - by "treatment" is meant for example prophylaxis, treatment or ameliora- tion of a disease, for example a bacterial infection. "Treating" an individual may thus comprise prevention, treatment, or amelioration of a disease. By "amelioration" is meant any improvement in the patient's health or quality of life, however small, i.e. the treatment may not necessarily lead to a disease cure.
Detai led descri pti on of the i nventi on
In one aspect of the present invention, a method is provided for treating an individual suffering from, or at risk of developing, a disease caused by a microbial cell, comprising at least one complex of a polypeptide toxin and an anti-toxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide. Said method comprises the steps of
i) contacting said microbial cell with a bioactive species capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of acti- vated polypeptide toxin, and/or capable of increasing the total amount of activated polypeptide toxin and
ii) obtaining in said microbial cell an activated polypeptide toxin in an amount sufficient for achieving at least an impaired growth or elimination of said mi- crobial cell having caused said infection in said individual.
Said method preferably comprises the further step of providing a pharmaceutical composition, comprising at least one bioactive species. (By "further step" is meant herein that the step may occur at any point in the process, such as before step (i).) Said bioactive species is capable of contacting and activating in a microbial cell at least one polypeptide toxin selected from the group of polypeptide toxins consisting of RelE and variants thereof ParE and variants thereof Chp (or MazE) and variants thereof Hig and variants thereof Doc and variants thereof CcdB and variants thereof VapC and variants thereof
Said polypeptide toxin optionally forms a complex with an anti-toxin polypeptide prior to activation, said complex being capable of reducing or inhibiting the toxic activity of the polypeptide toxin.
It is preferred that said step of contacting the microbial cell with the bioactive species is selected from . a) contacting the cell surface of the microbial cell with the bioactive species, and/or b) uptake of the bioactive species in the microbial cell and contacting an intracellular component of the microbial cell with the bioactive species.
In another preferred embodiment of the present invention, said step of activation of the at least one polypeptide toxin results from one or more of a) de novo synthesis of activated polypeptide toxin, wherein the de novo synthesised and activated polypeptide toxin does not form a complex with an anti-toxin polypeptide, and/or b) dissociation of polypeptide toxin and anti-toxin polypeptide present in the same complex, wherein said dissociation results in the release from the complex of polypeptide toxin in an active form, or a form capable of being activated following dissociation from the anti-toxin polypeptide, and op- tionally c) degradation of the anti-toxin
Microbial cell Said microbial cell may be any microbe capable of causing any form of disease in at least one individual, including, but not restricted to: microbes of the genus Achromobacter, preferably Achromobacter xylosoxidans microbes of the genus Acinetobacter, preferably Acinetobacter calcoaceticus, microbes of the genus Actinomyces, preferably Actinomyces israelii, microbes of the genus Aeromonas, preferably Aeromonas hydrophila, microbes of the genus Alcaligenes, preferably selected from Alcaligenes faecalis, Alcaligenes odorans or Alcaligenes denitrificans, microbes of the genus Arizona, preferably Arizona hinshawii, microbes of the genus Bacillus, preferably selected from Bacillus anthracis, Bacillus subtilis, Bacillus cereus, Bacillus fragilis, microbes of the genus Bacteroides, preferably Bacteroides melaninogenicus, microbes of the genus
Burkholderia, preferably Burkholderia pseudomallei or Burkholderia mallei, microbes of the genus Bordetella, preferably Bordetella pertussis, microbes of the genus Borrelia, preferably Borrelia burgdorferi or Borrelia recurrentis, microbes of the genus Brucella, preferably Brucella melitensis, Brucella abortus, Brucella suis or Brucella canis, microbes of the genus Calymmatobacterium or Calymmatobacterium granulomatis, microbes of the genus Campylobacter, preferably Campylobacter fetus, microbes of the genus Chrombacterium, preferably Chrombacterium violaceum, microbes of the genus Citrobacter, preferably selected from Clostridium difficile, Clostridium tetani, Clostridium botulinum or Clostridium perfringens, microbes of the genus Corynebacterium, preferably selected from Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium haemolyticum or Corynebacterium pseudotuberculosis, microbes of the genus Coxiella, preferably Coxiella bumetti, microbes of the genus Cryptosporidium, preferably Cryptosporidium parvum, microbes of the genus Deinococcus, microbes of the genus Edwardsiella, preferably Edwardsiella tarda, microbes of the genus Eikenella, preferaby Eikenella corrodens, microbes of the genus Enterobacter, preferably selected from Enterobacter cloace,
Enterobacter aerogenes, Enterobacter hafniae (Hafnia alvei) or Enterobacter ag- glomerans, microbes of the genus Erysipelothrix, preferably Erysipelothrix rrhu- siopathiae, microbes of the genus Escherichia, preferably selected from Escherichia coli, Escherichia coli - enterotoxigenic (ETEC), Escherichia coli - enteropathogenic (EPEC), Escherichia coli 0157:H7 enterohemorrhagic (EHEC), Escherichia coli - enteroinvasive (EIEC), or E. coli Enteroaggregative (EAggEC), microbes of the genus Eubacterium, preferably Eubacterium alactolyticum, microbes of the genus Francisella, preferably Francisella tularensis, microbes of the genus Flavobacterium, preferably Flavobacterium meningosepticum; microbes of the genus Fusobacterium, preferably Fusobacterium nucleatum; microbes of the genus Gardnerella, preferably Gardnerella vaginalis; microbes of the genus Haemophilus, preferably selected from Haemophilus aegyptius or Hemophilus influenzae; microbes of the genus Helico- bacter, preferably Helicobacter pylori; microbes of the genus Intrasporangium, microbes of the genus Janthinobacterium, microbes of the genus Klebsiella, preferably selected from Klebsiella pneumoniae, Klebsiella ozaenae or Klebsiella rhinoscleromatis; microbes of the genus Kingella, microbes of the genus Legionella, preferably Legionella pneumophilia; microbes of the genus Leptospira, preferably Leptospira interrogans; microbes of the genus Listeria, preferably Listeria monocytogenes, microbes of the genus Glueonobacter, microbes of the genus Mo- biluncus; microbes of the genus Mycobacterium, preferably selected from Mycobacterium tuberculosis, Mycobacterium avium or Mycobacterium bovis, microbes of the genus Moraxella, preferably selected from Moraxella catarrhalis, Moraxella lacunata or Moraxella osloensis, microbes of the genus Neisseria, preferably selected from Neisseria gonorrhoeae or Neisseria meningitidis; microbes of the genus Nocardia, preferably selected from Nocardia asteroides or Nocardia brasiliensis; microbes of the genus Oscillospira, microbes of the genus Peptococcus, preferably Peptococcus magnus; microbes of the genus Peptostreptococcus, microbes of the genus Plesio- monas, preferably Plesiomonas shigelloides, microbes of the genus Porphyromo- nas; microbes of the genus Proteus, preferably selected from Proteus mirabilis or Proteus vulgaris, microbes of the genus Prevotella; microbes of the genus Provi- dencia, selected from Providencia alcalifaciens, Providencia stuartii, Providencia rettgeri; microbes of the genus Pseudomonas, preferably selected from Pseudomo- nas aeruginosa, Pseudomonas mallei or Pseudomonas pseudomallei; microbes of the genus Rickettsia, preferably selected from Rickettsia rickettsii or Rickettsia conorii; microbes of the genus Salmonella, preferably selected from Salmonella choleraesuis, Salmonella typhimurium, Salmonella typhi; microbes of the genus Ser- ratia, preferably Serratia marcescens; microbes of the genus Shigella, preferably selected from Shigella dysenteriae, Shigella sonnei/flexneri or Shigella boydii; mi- crobes of the genus Spirillum, preferably Spirillum minor, microbes of the genus Staphylococcus, preferably selected from Staphylococcus aureus, Staphylococcus epidermidis or Staphylococcus aprophyticus; microbes of the genus Streptobacillus, preferably Streptobacillus moniliformis; microbes of the genus Streptococcus, pref- erably Streptococcus agalactiae, Streptococcus pyogenes, Streptococcus pyo- genes, Streptococcus pneumoniae, Streptococcus faecalis, Streptococcus faecium, Streptococcus durans, Streptococcus viridans or Streptococcus mutans; Spirillum, preferably Spirillum minus; microbes of the genus Treponema, preferably selected from Treponema pallidum, Treponema carateum or Treponema pertenue; microbes of the genus Vibrio, preferably selected from Vibrio cholerae, Vibrio cholerae 01 ,
Vibrio cholerae non-O1, Vibrio parahaemolyticus or Vibrio vulnificus; microbes of the genus Wolinella; microbes of the genus Wolbachia; microbes of the genus Xantho- monas, preferably Xanthomonas maltophilia; microbes of the genus Yersinia, preferably selected from Yersinia pestis, Yersinia enterocolitica or Yersinia pseudotu- berculosis, or microbes of the genus Zoogloea.
In one preferred embodiment of the present invention, said microbe comprises a relBE TA system. Said microbe is preferably a gram negative bacteria, such as selected from one or more of Brucella melitensis, Brucella suis, Helicobacter pylori, Escherichia coli, Escherichia coli 0157, Shigella flexneri, Coxiella burnetii, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, Haemophilus influenzae, Pseudomonas aeruginosa, Pseudomonas putida KT2440, Pseudomonas syrin- gae, Salmonella typhimurium and Salmonella typhi. In another preferred embodiment, said microbe is a gram positive bacteria, such as selected from Mycobacte- rium tuberculosis, Enterococcus faecalis, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus mutans, Streptococcus pneumonia, or Fusobacterium nucleatum.
In another preferred embodiment of the present invention, said microbe comprises a vapBC TA system. Said microbe is preferably a gram positive bacterium, such as Mycobacterium tuberculosis. Equally preferably, said microbe is a gram negative bacterium, such as on or more of Rickettsia conorii, Coxiella burnetii, Haemophilus influenzae, Pseudomonas syringae, Salmonella typhimurium, Salmonella typhi and Leptospira intrerrogans. In another preferred embodiment of the present invention, said microbe comprises a mazEF TA system. Said microbe is preferably a gram positive bacterium, such as one or more of Mycobacterium tuberculosis, Bacillus anthracis, Bacillus cereus, Bacillus halodurans, Clostridium perfringens, Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans and Streptococcus pneumonia. Equally preferably, said bacterium is a gram negative bacterium, such as one or more of Brucella melitensis, Brucella suis, Rickettsia conorii, Neisseria meningitidis, Escherichia coli, Escherichia coli 0157, Shigella flexneri, Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas putida or Leptospira intrerrogans.
In another preferred embodiment of the present invention, said microbe comprises a parDE TA system. Said microbe preferably comprise a gram positive bacterium, such as one or more of Mycobacterium tuberculosis, Streptococcus agalactiae, or Streptococcus pyogenes. Equally preferably, said bacterium is a gram negative bacterium, such as one or more of Escherichia coli 0157, Escherichia coli, Coxiella burnetii, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, Pseudomonas aeruginosa and Pseudomonas syringae.
In another preferred embodiment of the present invention, said microbe comprises a higBA TA system. Said microbe preferably comprises a gram negative bacterium, such as Neisseria meningitidis, Escherichia coli, Coxiella burnetii, Vibrio cholerae, Haemophilus influenzae, Pseudomonas aeruginosa, Pseudomonas putida KT2440 and Pseudomonas syringae. In another preferred embodiment of the present invention, said microbe comprises a phd/doc TA system. Said microbe is preferably a gram positive bacterium, such as one or more of Clostridium tetani, Enterococcus faecalis and Streptococcus pneumonia. Equally preferably, said microbe is a gram negative bacterium, such as one or more of Brucella melitensis, Brucella suis, Neisseria meningitidis, Yersinia pestis, Vibrio cholerae, Pseudomonas aeruginosa, Salmonella typhimurium and
Salmonella typhi.
In another preferred embodiment of the present invention, said microbe comprises a ccdAB TA system. Preferred microbes in this category include Escherichia coli or Escherichia coli 0157. Individual
Said individual may be any organism capable of suffering from, or at risk of developing, a disease caused by a microbial cell. More preferably, said individual is an ani- mal, more preferably a vertebrate, most preferably a mammal. Said individual may be a domestic animal, such as a pet or farm animal, or may be a a wild animal. Most preferably, said individual is human. Said individual may be female, or, equally preferably, may be male. In one preferred embodiment of the present invention, said individual is pregnant or lactating. In another, equally preferred embodiment, said individual has undergone endotracheal intubation. In another, equally preferred embodiment, said individual has undergone bladder catheterization. In another, equally preferred embodiment, said individual has undergone central venous catheterization. In another, equally preferred embodiment, said individual has undergone peritoneal dialysis. In another, equally preferred embodiment, said individual is immuno- compromised. In one preferred embodiment, said immunocompromised individual has been, is being, or will be treated with an immunosuppressive drug, for example one or more steroid. In another preferred embodiment, said individual is suffering from a disease not caused by a bacteria, such as an autoimmune disease, sarcoi- dosis, leprosy, cytomegalovirus infections, malaria, a parasitic disease, a fungal disease or a viral infection. Preferably, said viral infection is caused by one or more of HIV, infectious bursal disease virus or cytomegalovirus. In another, equally preferred embodiment, said individual has HIV or AIDS. In another, equally preferred embodiment, said individual is a neonate. In another, equally preferred embodiment, said individual is an infant. Said individual may be from 0-130 years old, such as 0-3 years old, such as 3-6 years old, such as 6-10 years old, such as 10-20 years old, such as 20-30 years old, such as 40-50 years old, such as 50-60 years old, such as 60-70 years old, such as 70-80 years old, such as 70-130 years old.
Disease
It is preferred that said disease is caused by any bacterium. Examples of suitable diseases capable of being treated by the methods of the present invention are listed below, together with descriptions of the diseases (where appropriate) and examples of bacteria associated with these diseases. (Other bacteria not disclosed herein capable of causing these, and other bacterial diseases, are also envisaged as falling within the scope of the present invention; the bacteria referred to are merely examples of some of the causative bacteria for these diseases and do not serve to limit the invention in any way):
Abscesses - Bacteroides fragilis, Eikenella corrodens Acrodermatitis chronica atrophicans (ACA)- late skin manifestation of latent Lyme disease- Borrelia burgdorfe (Spirochetes) Actinomycosis - Actinomyces israelii Acute bacterial Prostatitis - E. coli Anthrax (Black Bane, Malignant pustule, Wool sorter's disease or Tanner's disease) Bacillus anthracis Australian tick typhus (Australian Spotted Fever or Queensland Tick Typhus) Rickettsia australis Bang's disease (Brucellosis) Brucella sp. Bartonellosis (Verruga peruana, Carrion's disease or Oroya fever) Bartonella bacilliformis, caused by sandfly bites at elevations of 600 to 2800 meter in Peru, Ecuador and Colombia. "Black death" (plague) - Yersinia pestis Bacillary angiomatosis - Bartonella henselae Bacterial vaginosis - Bacteroides spp., Gardnerella vaginalis, Mobiluncus spp. Bejel (endemic syphilis) Treponema pallidum var. pallidum Blepharitis - caused by infestation of the eyelash follicle by a mite, which results in an allergic reaction leading to secondary infection with Staphylococcus aureus or Staphylococcus epidermidis. Boils - Staphylcoccus aureus Botulism - Clostridium botulinum Boutonneuse fever (Fievre boutonneuse or Tick typhus)- Rickettsia conori Brazilian purpuric fever - Haemophilus aegyptius Bronchitis Brucellosis - Brucella sp. Bullous impetigo- Staphylococcus aureus Buruli ulcers (Mycoburuli ulcers)- Mycobacterium ulcerans Campylobacteriosis - Campylobacter sp. Chromobacteriosis - Chromobacterium violaceum Cryptosporidiosis - Cryptosporidium parvum Carate (Mai del pinto or Pinta) - Treponema pallidum var. carateum Carditis
Carbuncle - Staphylcoccus aureus
Cat Scratch fever (Cat Scratch Disease) - Bartonella henselae Cholera - Vibrio cholerae Clap (Gonorrhea) - Neisseria gonorrhoeae Conjunctivitis (pink eye) (*) - Haemophilus aegyptius, Cystitis or Pyelonephritis -Escherichia coli, Klebsiella sp, Enterobacter sp., Serratia sp., Proteus sp., Providencia sp., Morganella sp., Pseudomonas aeruginosa, Staphylococcus saprophyticus, Enterococcus sp., Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae Dacryocytitis- Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae
Diphtheria - Corynebacterium diphtheriae
Disseminated Intravascular Coagulation - most commonly Escherichia coli Donovanosis (Granuloma inguinale) - Calymmatobacterium granulomatis Ehrlichiosis - Ehrlichia sp., transmitted by ticks Endemic Relapsing fever- Borrelia sp.
Endocarditis - Streptococcus of the viridans group, Staphylococcus aureus, Staphylococcus epidermidis
Endophthalmitis- Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Streptococcus pneumoniae, Streptococcus pyogenes. Enteric infections - Various Gram negative bacteria, such as Campylobacter fetus, Shigellasp., Escherichia coli, Salmonella sp., Arizona hinshawii Epidemic Relapsing fever- Borrelia recurrentis Epiglottitis - Haemophilus influenzae Erysipeloid (Erysipelothricosis) - Erysipelothrix rhusiopathiae Erysipelis- Streptococcus pyogenes Erythema chronicum migrans - Borrelia burgdorferi Erythema marginatum - Streptococcus pyogenes Erythema multiforme - seen in coccidioidomycosis (Coccidioides immitis) Erythema nodosum - seen in coccidioidomycosis (Coccidioides immitis) Erythrasma - Corynebacterium minutissimum
Fitz-Hugh-Curtis syndrome (Perihepatitis) - Neisseria gonorrhoeae
Flinders Island Spotted Fever- Rickettsia honei
Frambesia (Yaws) -Treponema pallidum var. pertenue
Furunculosis ( boil furuncle) - Staphylcoccus aureus
Folliculitis - Staphylcoccus aureus
Gas gangrene - Clostridium perfringens
Glanders - Burkholderia mallei (used to be named Pseudomonas mallei; G- rod)
Granuloma inguinale (donovanosis) - Calymmatobacterium granulomatis
Hamburger disease (Hemolytic Uremic Syndrome) - Escherichia coli 0157
H7 strain.
Hard chancre (syphilis) - Treponema pallidum subsp. pallidum
Haverhill fever (Rat bite fever) - Streptobacillus moniliformis
Helicobacterosis (duodenal ulcers) - Helicobacter pylori
Hidradenitis - Staphylcoccus aureus
Human monocytic ehrlichiosis - Ehrlichia chaffeensis, transmitted by ticks
Human granulocytic ehrlichiosis - Ehrlichia equi, transmitted by ticks
Impetigo- Streptococcus pyogenes, Staphylococcus aureus
Inclusion conjunctivitis (Swimming Pool conjunctivitis or Pannus)
Infantile diarrhea- Escherichia coli (ETEC- enterotoxigenic E. coli)
Israeli spotted fever - unnamed Rickettsia
Legionnaire's pneumonia - Legionella pneumophila
Leptospirosis - Leptospira interrogans
Listerosis - Listeria monocytogenes
Lockjaw - Tetanus - Clostridium tetani
Ludwig's angina- usually a polymicrobial infection (cellulitis of the floor of the mouth with spread to the submental, sublingual and submandibular spaces).
Caused by bacteria from mouth.
Lyme disease - Borrelia burgdorferi
Malta fever (Brucellosis) - Brucella sp.
Mediterannean spotted fever- Rickettsia coronii
Melioidosis (Whitmore's disease) - Burkholderia pseudomallei (used to be called Pseudomonas pseudomallei) Meningitis, (spotted fever) bacterial - Neisseria meningitidis, Haemophilus influenzae, Listeria, Streptoccoccus pneumoniae, Group B streptococcus, Edwardsiella tarda
Montezuma's Revenge (Traveler's diarrhea) - Any number of bacteria (Escherichia coli, Salmonella, Shigella, Yersinia, Vibrio, etc.), that cause diarrhea.
Multiple Organ Dysfunction Syndrome or MODS - many bacterial species. Murine typhus - Rickettsia typhi
Myositis- Streptococcus pyogenes, Staphylococcus aureus Myocarditis
Necrotizing fasciitis- Streptococcus pyogenes, Staphylococcus aureus Nocardiosis (Nocardia)
Nongonococcal urethritis - Gardnerella vaginalis Asian tick typhus - Rickettsia sibi ca
Nosocomial infections - a wide range of bacteria that may cause nosocomial infections, for example Achromobacter xylosoxidans, Acinetobacter cal- coaceticus
Opthalmia neonatorium (Gonorrhea) - Neisseria gonorrhoeae Oriental Spotted Fever - Rickettsia japonica
Otitis media- Streptococcus pneumoniae, Haemophilus influnezae, Moraxella catarrhalis
Otitis externa- Pseudomonas aeruginosa
Osteomyelitis - Staphylococcus aureus, Streptococcus sp., members of the enterobacteriaceae, Peptococcus magnus. PCP pneumonia - Pneumonia caused by Pneumocystis ca nii Peliosis hepatica - Bartonella henselae
Pelvic Inflammatory Disease (PID) - Neiserria gonorrhoeae, anaerobic bacteria, Facultative Gram negative rods, Actinomyces israelii Pertussis (Whooping cough) - Bordetella pertussis Pigbel - beta-toxin of Clostridium perfringens type C Pinta - Treponema carateum Pitted Keratolysis - Micrococcus sedentarius Plague - Yersinia pestis Pneumonia - Acinetobacter sp., Actinomyces sp., Bacillus anthracis, Bacteroides melaninogenicus, Bordetella pertussis, Burkholderia pseudomallei, Burkholderia mallei, Coxiella burnetii (Q-fever), Escherichia coli, Francisella tularensis, Fusobacterium sp., Hemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Moraxella catarrhalis, Mycobacterium tuberculosis, Mycobacterium sp., Neisseria meningitidis, Nocardia sp., Porphyromo- nas sp., Prevotella sp., Proteus sp., Pseudomonas aeruginosa, Serratia sp., Serratia marcescens, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Staphylococcus aureus, Peptostreptococcus sp., Yersinia pestis and other bacteria Pontiac fever - Legionella pneumophila
Postanginal septicemia (Lemierre's Syndrome) - Fusobacterium necropho- rum
Prostatitis, bacterial - Escherichia coli, Klebsiella sp., Proteus sp., Pseudomonas sp., Enterobacter sp., Serratia sp., Enterococcus feacalis Pseudomembranous colitis - Clostridium difficile Puerperal fever- Streptococcus pyogenes
Pylephlebitis - Bateroides fragilis, Peptostreptococcus, Clostridium spp, and several of the Enterobacteriaceae. Pyelonephritis - E.coli Q fever - Coxiella burnetii
Quinsy (Peritonsillar abscess) - (Streptococcus pyogenes) Rat bite fever - Spirillum minor, Streptobacillus moniliformis Reiter Syndrome - resulting from a nongonococcal sexually transmitted disease due usually to an infectious diarrhea (Shigella, Salmonella, Yersinia). Persons with an HLA-B27 major histocompatibility complex are more likely to get this disease.
Relapsing fever- Borrelia recurrentis Rheumatic fever - Streptococcus pyogenes Rhinoscleroma - Klebsiella rhinoscleromatis Rickettsialpox - Rickettsia akari , contracted from mite bites Rocky Mountain spotted fever - Rickettsia rickettsii Salmonellosis - Salmonella spp. Scarlet fever (Scarlatina) - Streptococcus group A (Streptococcus pyogenes) Scalded Skin Syndrome - exfoliative toxin producing strains of Staphylococcus aureus
Scrub typhus - Rickettsia tsutsugamushi (contracted e.g. by a chigger bite) Sennetsu fever (Ehrlichiosis) Ehrlichia sp., transmitted by ticks Sepsis/Septic Shock - 50% due to Gram negative bacteria; 50% due to Gram positive bacteria. Most common sites of infection leading to sepsis are lungs, abdomen, and urinary tract.
Septic arthritis - Neisseria gonorrhoeae, Staphylococcus aureus Shigellosis - Shigella sp Siberian tick typhus- Rickettsia sibirica Sinusitis - Streptococcus pneumoniae, Haemophilus influenzae Staphylococcal enterotoxin poisoning - Staphylococcus aureus Stie- Hordeola- Staphylococcus aureus Strep, throat- Streptococcus pyogenes Stomach ulcers - Helicobacter pylori Stomach cancer - Helicobacter pylori
Systemic Inflammatory Response Syndrome or SIRS - many types of bacteria may be involved.
Tabes dorsalis (tertiary syphilis) - Treponema pallidum subsp. pallidum TB- Tuberculosis - Mycobacterium tuberculosis
Tooth decay - bacteria such as Streptococcus mutans, Fusobacterium nucleatum
Toxic Shock Syndrome - Staphylcoccus aureus (producing TSST) and Streptococcus pyogenes
Trench fever (5-day fever) - Bartonella quintana
Trench mouth or Vincent's disease- Various anaerobic bacteria in the mouth Trichomycosis axillaris - Corynebacterium tenuis Tuberculosis - Mycobacterium tuberculosis Tularemia- rabbit fever- deer fly fever- Francisella tularensis Typhoid fever - Salmonella typhi (G- rod: facultative-straight: enteric pathogens)
Typhus fever - Rickettsia typhi (flea-borne), Rickettsia conorii Urethritis - N. gonorrhoeae, C. trachomatis Undulant fever - Brucella sp. • Urethritis - Neisseria gonorrhoeae • Vaginosis, bacterial - Peptostreptococccus sp., Bacteriodes sp., Gardnerella vaginalis, Mobiluncus sp. • Vaginitis • Waterhouse-Friderichsen syndrome - Neisseria meningitidis • Weil's diseases (Leptospirosis) - Leptospira interrogans • Whipple's disease - Tropheryma whippelii • Yaws - Treponema pertenue • Yersinosis - Yersinia enterocolitica
In one preferred embodiment of the present invention, said disease is stomach cancer.
In another preferred embodiment of the present invention, said bacterial disease is a dental infection. Preferred bacterial diseases in this class include, but are not restricted to, tooth decay and periodontal disease, caused for example by excessive formation of organic acids which break down enamel of teeth.
In another preferred embodiment of the present invention, said bacterial disease affects the skin. Preferred bacterial diseases in this class include, but are not restricted to: Impetigo (Staphylococcus aureus, Streptococcus pyogenes), Folliculitis, boils (Staphylococcus aureus), Scalded Skin Syndrome (Staphylococcus aureus), Erysipelas (Streptococcus pyogenes), Lyme disease (Borrelia burgdorferi), Syphilis (Treponema pallidum), and Rocky Mountain Spotted Fever (Rickettsia rickettsii). The causative bacteria mentioned herein are examples and should not be viewed as restricting the scope of the invention.
In another preferred embodiment of the present invention, said bacterial disease affects one or more of an individual's eyes. Preferred bacterial diseases in this class include, but are not restricted to: Pink Eye (conjunctivitis - Haemophilus aegyptius), and Opthalmia neonatorium (Neisseria gonorrhoeae). The causative bacteria mentioned herein are examples and should not be viewed as restricting the scope of the invention. In another preferred embodiment of the present invention, said bacterial disease is a disease of the gastrointestinal tract. Preferred bacterial diseases in this class include, but are not restricted to, noninflammatory gastroenteritis (caused by, for example, one or more of Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium botulinum, E. coli (EPE ), E. coli (ETECJ, E. coli (EAggEC or enteroadherent E ), Vibrio cholerae and/or Clostridium difficile), inflammatory Gastroenteritis (caused by, for example, one or more of Vibrio cholerae, Enterotoxigenic (ETEC) E. coli, Enteropathogenic (EPEC) E. coli, Enteroaggregative (EAggEC) E. coli, Clostridium difficile, Vibrio parahemolyticus, Bacillus anthracis, E. coli (EIEC), E. coli (EHEC), Salmonella typhimurium, Salmonella typhi, Shigella dysenteriae type 1, Shigella sonnei/flexneri, Yersinia enterocolitica, or invasive gastroenteritis (caused by, for example, one or more of Shigella sp., Salmonella sp., Enteroinvasive E. coli (EIECJ, Enterohemorrhagic E. coli (EHECJ, Vibrio vulnificus, Yersinia sp., Francisella tularensis, Helicobacter pylori.
Preferred microbes causing disease of the gastrointestinal tract include, but are not restricted to, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium botulinum, E. coli (EPEC), E. coli (ETEC), E. coli (EAggEC or enteroadherent EC), Vibrio cholerae 01 , Vibrio cholerae non-O1 , Enteropathogenic
(EPEC) E. coli, Clostridium difficile, Vibrio parahemolyticus, Bacillus anthracis, E. coli (EIEC), E. coli (EHEC), Salmonella spp, Salmonella typhimurium, Salmonella typhi, Shigella dysenteriae type 1 , Shigella sonnei/flexneri, Yersinia enterocolitica, Shigella sp., Enteroinvasive E. coli (EIEC), Enterohemorrhagic E. coli (EHEC), Yersinia sp., Francisella tularensis, Helicobacter pylori, Staphylococcus aureus, Yersinia pseudotuberculosis, Listeria monocytogenes, Vibrio parahaemolyticus, Vibrio sp., Vibrio vulnificus, Clostridium perfringens, Bacillus cereus, Aeromonas hydrophila, Plesiomonas shigelloides, Streptococcus sp., enterovirulent Escherichia coli group (EEC Group), Escherichia coli - enterotoxigenic (ETEC), Escherichia coli O157:H7 enterohemorrhagic (EHEC) and Clostridium difficile
In another preferred embodiment of the present invention, said disease is pneumonia, for example caused by one or more of the following bacteria: Acinetobacter sp., Actinomyces sp., Bacillus anthracis, Bacteroides melaninogeni- cus, Bordetella pertussis, Burkholderia pseudomallei, Burkholderia mallei, Coxiella burnetii (Q-fever), Escherichia coli, Francisella tularensis, Fusobacterium sp., He- mophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Moraxella catarrhalis, Mycobacterium tuberculosis, Mycobacterium sp., Neisseria meningitidis, Nocardia sp., Porphyromonas sp., Prevotella sp., Proteus sp., Pseudomonas aeruginosa, Serratia sp., Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Staphylococcus aureus, Peptostreptococcus sp., and Yersinia pestis.
In another preferred embodiment of the present invention, said disease is a nosocomial infection. In one preferred embodiment of the present invention, said nosocomial infection is selected from a urinary tract infection, a surgical site infection, pneumonia and a systemic infection.
In another preferred embodiment of the present invention, said microbe is an oppor- tunistic bacterial pathogen, such as for example Staphylococcus aureus, E. coli,
Stenotrophomonas (Xanthomonas) maltophilia, Salmonella sp., Rhodococcus equi. Shigella flexneri, Pseudomonas aeruginosa, Listonella anguillarum, Burkholderia cepacia or Mycobacterium, Nocardia asteroides, Nocardia brasiliensis, and Nocardia otitidiscaviarum.
In another preferred embodiment of the present invention, said microbe is resistant to one or more antibiotics, for example resistant strains of Staphylococcus sp.(such as MRSA - methicillin-resistant staph aureus), Pneumococcus sp., Salmonella sp., E. coli, Enterococcus sp., S. Pneumoniae, Enterococcus sp., Enterobacter sp., Klebsiella pneumoniae, Campylobacter sp, Listeria monocytogenes, Haemophilus influenzae, Bacillus subtilis, Streptococcus pneumoniae, Mycobacterium tuberculosis, E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Klebsiella oxytoca, Morganella morganii, Enterobacter agglomerans, Enterococcus faecalis, Enterococcus faeium and/or Staphylococcus epidermidis
Modes of transmission
The diseases treated by the present invention may be transmitted via any mode of transmission. In one preferred embodiment of the present invention, said mode of transmission is via airborn transmission, and preferred diseases in this class in- elude, but are not restricted to, diseases involving the respiratory system, diphtheria, pneumonia, tuberculosis, Legionnaire's disease, skin diseases, impetigo, cellulitis, systemic diseases, rheumatic fever and menigititis.
In another preferred embodiment of the present invention, said mode of transmission is via arthropods, such as insects, such as ticks, mites, larvae, lice, fleas, flies, or gnats. Preferred bacterial diseases in this class include, but are not restricted to, typhoid fever, Lyme disease, rickettsial typus, erlichiosis, spotted- fever, Scrub Typhus (Tsutsugamushi disease), Rickettsia tsutsugamushi (caused by the bite of a larval mite), Rickettsial pox (Rickettsia akari), Tularemia (Francisella tularensis), Rocky Mountain Spotted Fever Rickettsia rickettsia (cause by a tick bite), Endemic Relapsing Fever (Borrelia sp., caused by a tick bite), Sennetsu fever (Ehrlichia canis, E. sennetsu, E. chaffeensis, E. equi, E. phagocytophilia, caused by the bite of a tick), Trench fever (bacillary angiomatosis or bacillary peliosis, Bartonella quintana, caused by a louse bite contaminated by louse feces or crushing louse on skin), louse-borne relapsing fever or epidemic relapsing fever (Borrelia recurrentis, caused by louse bite contaminated by louse feces or crushing louse on skin), Plague (Yersina pestis, caused by a flea bite and/or flea faeces), Murine typhus (Rickettsia typhi, caused by flea bite and/or flea faeces, Tularemia (Francisella tularensis, caused by the bite of an infected fly, Bartonellosis (Oroya fever or Carrion's disease - Bartonella bacilliformis, caused by the bite of an infected fly), Tick-borne Relapsing Fever (Borrelia recurrentis), Tularemia (Francisella tularensis) or Cat Scratch Fever (Bartonella henselae, may be transmitted via a tick). The causative bacteria and vectors mentioned herein are examples and should not be viewed as restricting the scope of the invention.
In another preferred embodiment of the present invention, said mode of transmission is via direct contact of the bacteria with the individual's body, preferably via direct contact of the bacteria with the skin, mucous membranes or underlying tissues. Preferred bacterial diseases in this class include, but are not restricted to, anthrax, cat-scratch fever, gas gangrene, leprosy, peptic ulcers, staphylococcal infections, syphilis, or systemic diseases such as staphylococcal diseases, gonorrhea, or tetanus
In another preferred embodiment of the present invention, said mode of transmis- sion is via ingestion of food or water, such as for example unpasteurised dairy prod- ucts, leading for example to bacterial infection (the pathogen enters the gastrointestinal tract and multiplies) or intoxication due to ingestion of bacterial toxins. Preferred bacterial diseases in this class include, but are not restricted to, Campylobacteriosis (Campylobacter sp.), Salmonellosis (Salmonella sp.), Hemolytic Uremic Syndrome (E. coli O157:H7), Yersiniosis (Yersinsia enterocolitica), Listeriosis (Listeria monocy- togenes), Tuberculosis (Mycobacterium tuberculosis), Brucellosis (Brucella sp.), Cryptosporidiosis (Cryptosporidium parvum), Staphylococcal enterotoxin poisoning (Staphylococcus aureus), Q fever (Coxiella bumetti), Campylobacter gastroenteritis, shigellosis, listeriosis, traveler's diarrhea, typhoid fever, botulism, cholera, and food poisoning, such as staphylococcal food poisoning. The causative bacteria mentioned herein are examples and should not be viewed as restricting the scope of the invention. Preferred foo-bome disease-causing bacteria include Salmonella spp., Clostridium botulinum, Staphylococcus aureus, Yersinia enterocolitica, Yersinia pseudotuberculosis, Listeria monocytogenes, Vibrio cholerae 01, Vibrio cholerae non-01, Vibrio parahaemolyticus and other vibrios, Vibrio vulnificus, Clostridium perfringens, Bacillus cereus, Aeromonas hydrophila and other spp., Plesiomonas shigelloides, Shigella spp., Miscellaneous enterics, Streptococcus, enterovirulent Escherichia coli group (EEC GroupJ, Escherichia coli - enterotoxigenic (ETEC), Escherichia coli - enteropathogenic (EPEC), Escherichia coli 0157 ': H7 enterohemor- rhagic (EHEC) or Escherichia coli - enteroinvasive (EIEC)
In another preferred embodiment of the present invention, said mode of transmission is via sexual transmission. Preferred bacterial diseases in this class include, but are not restricted to, Bacterial vaginosis (Bacteroides spp, Gardnerella vaginalis, Mobiluncus spp), enteric infections (various gram negative bacteria, Campylobacter fetus, Shigellasp., Escherichia coli, Salmonella sp.), Gonorrhea (Neisseria gonorrhoeae), Granuloma inguinale (donovanosis - Calymmatobacterium granulomatis), Group B streptococcal infections (Streptococcus agalactiae), NGU or Nongonococ- cal urethritis (Gardnerella vaginalis), Pelvic Inflammatory Disease (N. gonorrhoeae, Anaerobic bacteria, Facultative Gram negative rods, Actinomyces israelii) or Syphilis (Treponema pallidum). The causative bacteria mentioned herein are examples and should not be viewed as restricting the scope of the invention.
In one preferred embodiment of the present invention, a method of the present in- vention is used in combination with another medical treatment. In one preferred em- bodiment, said medical treatment is organ transplant or organ transplant aftercare. In another, equally preferred embodiment, said medical treatment is chemotherapy. In another preferred embodiment, said another medical treatment is for treatment of one or more of: a neoplastic disease, cystic fibrosis, AIDS, HIV, a bacterial disease, pregnancy or birth complications. In another preferred embodiment of the present invention, said medical treatment causes or contributes to immunodeficiency or impaired immune system function of the individual thus treated.
In another preferred embodiment of the present invention, a method of the present invention is used in combination with an anti-microbial treatment. Said anti-microbial treatment preferably comprises administration of at least one anti-microbial compound. In one preferred embodiment of the present invention, said antimicrobial compounds comprises one or more bacterial cell wall synthesis inhibitor, such as Vancomycin or a beta-lactam, for example penicillin and/or a cephalosporin. Equally preferably, said anti-microbial compound comprises one or protein synthesis inhibitor, such as an Aminoglycoside (streptomycin), a Tetracycline, Macrolide (erythromycin) and/or an Oxazolidinone. Equally preferably, said anti-microbial compound comprises one or more nucleic acid metabolism inhibitor, such as a Sulfonamide, Trimethoprim and/or a Rifamycin. Equally preferably, said anti-microbial compound comprises one or more DNA gyrase inhibitor, such as a Novobiocin, Quinolone, a Quinolone derivative or, more preferably, a fluorinated derivative of Quinolone. Equally preferably, said antimicrobial compounds comprises an ampicillin or carbapenem.
Complex of a polypeptide toxin and an anti-toxin polypeptide
By "complex of a polypeptide toxin and an anti-toxin polypeptide" is meant a polypeptide toxin bound to its cognate antitoxin polypeptide. Said polypeptide toxin is capable of causing a detrimental effect on said microbial cell, such as reduction in microbial cell growth, cellular dysfunction or cell death. Said anti-toxin polypeptide is capable of preventing or reducing the detrimental effect of the polypeptide toxin on the microbial cell, preferably by binding said toxin or otherwise preventing the mode of action of said toxin. Said complex is preferably a known TA complex, more preferably from one or more of the following TA complex families (the family members in each family being termed "variants"): • rel BE systems • parDE systems
• chp systems (also termed mazEF) • higBA systems
• phd/doc systems
• ccdAB systems
• vapBC systems (also known as vagCD or STBORF1 and STBORF2)
By "cognate anti-toxin" is meant a particular anti-toxin capable of reducing or preventing the detrimental effect of the toxin in question.
Said toxin preferably comprises a sequence of 10-300 amino acids, such as 20-250 amino acids, such as 30-200 amino acids, such as 40-175 amino acids, such as 50- 160 amino acids, for example 55-140 amino acids, such as 60-100 amino acids, such as 70-90 amino acids. In one preferred embodiment of the present invention, said polypeptide toxin is from the RelE toxin family, such as a polypeptide toxin comprising a sequence selected from, or substantially identical to SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16. Said polypeptide toxin from the RelE family may in another preferred embodiment have a sequence comprising a sequence with at least 80 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide toxin from the RelE family comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10"10 or less, such as a polypeptide toxin comprising a sequence selected from SEQ ID NO: 17-97. In another preferred embodiment, said toxin is any of the toxins with sequences as given in Example 5.
In one preferred embodiment of the present invention, said polypeptide toxin is from the VapC toxin family, such as a polypeptide toxin comprising a sequence selected from, or substantially identical to, SEQ ID NO:99, 101 , 103 and 105. In another pre- ferred embodiment of the present invention, said polypeptide toxin of the VapC family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide toxin of the VapC toxin family comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO:99, 101 , 103 and 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"4, such as an E value of 10"10 or less, such as a polypeptide with sequence comprising a sequence selected from SEQ ID NO: 106-154.
In another preferred embodiment of the present invention, said polypeptide toxin is from the MazF toxin family, such as said polypeptide has a sequence comprising a sequence selected from or substantially identical to SEQ ID NO: 155 and 160. In another preferred embodiment of the present invention, said polypeptide toxin from the MazF family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 155 and 160, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide toxin from the MazF family comprises a sequence, characterised in that said sequence produces an E value of 10-4 or less when compared to one or more of SEQ ID NO:155 and 160 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10"10 or less, such as a polypeptide toxin comprising a sequence selected from SEQ ID NO: 161 -205.
In another preferred embodiment of the present invention, said polypeptide toxin is from the ParE toxin family, such as a polypeptide toxin comprising a sequence with, or substantially identical to, SEQ ID NO:207. In another preferred embodiment of the present invention, said polypeptide toxin from the ParE family comprises a sequence with at least 80 % sequence identity to SEQ ID NO:207, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide toxin of the ParE family com- prises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10"10 or less, for example said polypeptide toxin com- prises a sequence selected from SEQ ID NO:208-219.
In another preferreed embodiment of the present invention, said polypeptide toxin is from the HigB toxin family, for example said polypeptide toxin from the HigB toxin family comprises a sequence with SEQ ID NO: 221, or a substantially identical vari- atn thereof. In another preferred embodiment of the present invention, said polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 221 , such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide toxin of the HigB toxin family comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 221 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10"10, for example said polypeptide toxin of the HigB toxin family comprises a se- quence selected from SEQ ID NO:222-240.
In another preferred embodiment of the present invention, said polypeptide toxin is from the Doc toxin family, such as a polypeptide comprising the sequence SEQ ID NO: 242 or a sequence substantially identical thereto. In another preferred embodi- ment of the present invention, said polypeptide toxin from the Doc toxin family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 242, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide toxin of the Doc family comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10"10 or less, for example said polypeptide toxin comprises a sequence selected from SEQ ID NO:243-257. In another preferred embodiment of the present invention, said polypeptide toxin is from the CcdB toxin family, such as a polypeptide comprising the sequence SEQ ID NO: 259, or a sequence substantially identical thereto. In another preferred em- bodiment of the present invention, said polypeptide toxin of the CcdB toxin family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 259, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide toxin of the CcdB toxin family comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10"10 or less, for example a sequence comprising a sequence selected from SEQ ID NO-.260-263.
In another preferred embodiment of the present invention, said polypeptide toxin comprises a sequence, evaluated as a "final hit" using the following iterative BLAST protocol for evaluating sequences: a) Compare the query sequence of any of SEQ ID NO:
2,4,6,8, 10, 12, 14, 16,99, 101, 103, 105, 155, 160,207,221, 242 or 259 with the sequences to be evaluated, using the BLAST algorithm version (2.04) set to the default parameters defined herein. Collect all "hit" sequences characterised by generating an E value of 10"4 or less. b) Repeat step a), but using the "hit" sequences as query sequences this time, again comparing these new query sequences with the sequences to be evaluated. c)Repeat step b) at least once, until no further "hit" sequences are found, d) Use the "hit" sequences found in the previous steps as query sequences to compare with any of SEQ ID: 17-97, 106-154, 161-205, 208-219, 222-240, 243-257 and 260-263 using the the BLAST algorithm version (2.04) set to the default parameters defined herein. "Final hit" sequences are characterised by generating an E value of 10"4 or less. The "sequences to be evaluated" are preferably in a genome or polypeptide sequence database.
It is preferred that said polypeptide antitoxin is the cognate antitoxin to any of the toxins listed above, such as any of the antitoxins listed in Example 5.
In another preferred embodiment of the present invention, said polypeptide antitoxin is from the RelB family, such as said polypeptide antitoxin comprises a sequence selected from, or substantially identical to, SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15. In another preferred embodiment of the present invention, said polypeptide antitoxin from the RelB family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 1 ,3,5,7,9, 11 ,13 and 15, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15. In another preferred embodiment of the present invention, said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10"10 or less.
In another preferred embodiment of the present invention, said polypeptide antitoxin is from the VapB family, such as said antitoxin comprises a sequence selected from, or substantially identical to, SEQ ID NO: 98, 100, 102 and 104. In another pre- ferred embodiment of the present invention, said polypeptide antitoxin of the VapB family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 98, 100, 102 and 104, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present inven- tion, said polypeptide antitoxin of the VapB family comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 98, 100, 102 and 104, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 , such as an E value of 10"10 . In another preferred embodiment of the present invention, said polypeptide antitoxin is from the MazE family, such as said antitoxin comprises a sequence selected from, or substantially identical to SEQ ID NO: 156, 157, 158 and 159. In another preferred embodiment of the present invention, said polypeptide antitoxin of the MazE family comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 156, 157, 158 and 159, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO:
156, 157, 158 and 159, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10'1Q or less.
In another preferred embodiment of the present invention, said polypeptide antitoxin is from the ParD family, for example said polypeptide antitoxin comprises a sequence with SEQ ID NO: 206, or a substantially identical sequence thereof. In another preferred embodiment of the present invention, said polypeptide antitoxin of teh ParD family comprises a sequence with at least 80 % sequence identity to SEQ ID: 206, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide antitoxin of the ParD family comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 206, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10"10 or less.
In another preferred embodiment of the present invention, said polypeptide antitoxin is from the HigA family, such as a polypeptide antitoxin comprises a sequence with SEQ ID NO: 220 or a sequence substantially identical thereof. In another preferred embodiment of the present invention, said polypeptide antitoxin of the HigA family comprises a sequence with at least 80 % sequence identity to SEQ ID: 220, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide antitoxin of the HigA family comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 220, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10"10 or less.
In another preferred embodiment of the present invention, said polypeptide antitoxin is from the Phd family, such as said polypeptide antitoxin comprises a sequence with SEQ ID NO: 241 , or a substantially identical sequence thereto. In another preferred embodiment of the present invention, said polypeptide antitoxin of the Phd family comprises a sequence with at least 80 % sequence identity to SEQ ID: 241 , such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 241 , using the BLAST algorithm version
(2.04) set to the default parameters defined herein, such as an E value of 10~5 or less, such as an E value of 10"10 or less.
In another preferred embodiment of the present invention, said polypeptide antitoxin is from the CcdA family, such as said polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 258, or a substantially identical sequence thereto. In another preferred embodiment of the present invention, said polypeptide antitoxin of the CcdA family comprises a sequence with at least 80 % sequence identity to SEQ ID: 258, such as at least 85 % sequence identity, such as at least 90 % sequence identity, such as at least 95 % sequence identity, such as at least 99 % sequence identity. In another preferred embodiment of the present invention, said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 258, using the BLAST algorithm version (2.04) set to the default parameters defined herein, such as an E value of 10"5 or less, such as an E value of 10~10 or less.
In another preferred embodiment of the present invention, said anti-toxin polypeptide is the cognate anti-toxin to any of the toxin polypeptides described herein, including an toxin capable of being evaluated as a "final hit" in the iterative BLAST protocol described above. At least one polynucleotide encoding a polypeptide toxin and an antitoxin polypeptide
By "at least one polynucleotide encoding a polypeptide toxin and an antitoxin polypeptide" is meant herein that said microbial cell comprises: (i) at least one polynucleotide encoding a polypeptide toxin, preferably comprised on a longer polynucleotide stretch, such as a bacterial plasmid or chromosome. (ii) At least one polynucleotide encoding a polypeptide antitoxin, preferably comprised on a longer polynucleotide, such as a bacterial plasmid or chromosome. More preferably, the gene coding for said toxin is closely spatially linked to the gene for its cognate anti-toxin, such as within 500 bp, such as within 450 bp, such as within 400 bp, such as within 350 bp, such as within 300 bp, such as within 250 bp, such as within 200 bp, such as within 100 bp, such as within 90 bp, such as within 73 bp, such as within 60 bp, such as within 50 bp, such as within 40 bp, such as within 30 bp, such as within 20 bp. In another preferred embodiment, said polynucleotide encoding a antitoxin is between 10-300 codons long, such as 15-250 codons long, such as 20-200 codons long, such as 25-175 codons long, such as 42-140 codons long, for example 60-90 codons long.
In the methods described herein, it is preferred that said said polynucleotide encoding a polypeptide toxin encodes any of the polypeptide toxins described herein and/or that said polynucleotide encoding a polypeptide antitoxin encodes any of the polypeptide antitoxins described herein.
As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g. charge or hydro- phobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a fall mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to the algorithm of Meyers and Miller, Computer Applic. Biol. Sci., 4: 11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif.,
USA).
As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both se- quences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.
Two peptide sequences are "substantially identical" if one peptide is specifically im- munologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution - e.g. the peptides share sequences except that residue positions which are not identical may differ by conservative amino acid changes.
The phrase "specifically immunoreactive with", when referring to an antibody refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologies. Thus, under designated immunoassay conditions, the specified antibodies bind preferentially to a particular protein and do not bind in a significant amount to other proteins present in the sample. Specific binding to a protein under such conditions requires an antibody that is selected for its specificity for a particular protein. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York, for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.
A "conservative substitution", when describing a protein refers to a change in the amino acid composition of the protein that does not substantially alter the protein's activity. Thus, "conservatively modified variations" of a particular amino acid sequence refers to amino acid substitutions of those amino acids that are not critical for protein activity or substitution of amino acids with other amino acids having similar properties (e.g., acidic, basic, positively or negatively charged, polar or non- polar, etc.) such that the substitutions of even critical amino acids do not substantially alter activity. Conservative substitution tables providing functionally similar amino acids are well known in the art. The following is six groups each contain amino acids that are examples of conservative substitutions for one another:
1) Alanine (A), Serine (S), Threonine (T);
2) Aspartic acid (D), Glutamic acid (E);
3) Asparagine (N), Glutamine (Q);
4) Arginine (R), Lysine (K);
5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and
6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
See also, Creighton (1984) Proteins, W. H. Freeman and Company. In addition, individual substitutions, deletions or additions which alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence are also "conservatively modified variations".
For the calculation of sequence identity, methods of alignment of nucleotide and amino acid sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison may be conducted, for example, by the local homology algorithm (Best Fit) of Smith and Waterman, Adv. Appl. Math. 2: 482 (1981); by the homology alignment algorithm (GAP) of Needleman and Wunsch, J. Mol. Biol. 48: 443 (1970); by the search for similarity method (Tfasta and Fasta) of Pearson and Lipman, Proc. Natl. Acad. Sci. 85: 2444 (1988); by computerized implementations of these algorithms, including, but not limited to: CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, Calif., GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis., USA; the CLUSTAL program is well described by Higgins and Sharp, Gene 73: 237-244 (1988); Higgins and Sharp, CABIOS 5: 151-
153 (1989); Corpet, et al., Nucleic Acids Research 16: 10881-90 (1988); Huang, et al., Computer Applications in the Biosciences 8: 155-65 (1992), and Pearson, et al., Methods in Molecular Biology 24: 307-331 (1994). One preferred program to use for optimal global alignment of multiple sequences is PileUp (Feng and Doolittle, Jour- nai of Molecular Evolution, 25:351-360 (1987) which is similar to the method described by Higgins and Sharp, CABIOS, 5:151-153 (1989) and hereby incorporated by reference).
The BLAST family of programs can be used for database similarity searches and include: BLASTN for nucleotide query sequences against nucleotide database sequences; BLASTX for nucleotide query sequences against protein database sequences; BLASTP for protein query sequences against protein database sequences; TBLASTN for protein query sequences against nucleotide database sequences; and TBLASTX for nucleotide query sequences against nucleotide data- base sequences. See, Current Protocols in Molecular Biology, Chapter 19, Ausubel, et al., Eds., Greene Publishing and Wiley-lnterscience, New York (1995), and Altschul et al. (1990) J. Mol. Biol. 215: 403-410; Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997). Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mis- matching residues; always <0). Forsamino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of ei- ther sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLAST program (for nucleotide sequences) uses as defaults a wordlength (W) of 11 , a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, a low complexity filter, Gap costs (existence: 11 and extension: 1) and the BLOSUM62 scoring matrix (see Henikoff & Henikoff
(1989) Proc. Natl. Acad. Sci. USA 89:10915). Unless otherwise stated, the term "BLAST" refers to version 2.04.
The BLAST algorithm is also capable of performing a statistical analysis of the simi- larity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci.
USA 90:5873-5787 (1993)). One preferred output is the BLAST "E value". The BLAST E-value measures the statistical significance threshold for reporting protein sequence matches against a database; e.g. if the threshold significance value is 10"4, then there is a probability of 10"4 that a match would be expected to occur by chance, according to the stochastic model of Karlin and Altschul (Schaffer, A.A. et al. (1999) Bioinformatics 15:1000-1011). E values may also be calculated for alignments generated using any of the other bioinformatics methods described herein.
HMM-SEARCH is another useful program for homology searches, belonging to the HMMER package, which compares a query profile HMM (hidden Markov Model) against a sequence library. Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences. Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several software implementa- tions and two large libraries of profile HMMs of common protein domains are available (see "HMMER Profile hidden Markov models", Bioinformatics 1998;14(9):755- 763, Eddy SR).
It is envisaged that all the methods described above may be used, for example, to search databases for TA-complex sequences and/or calculate the level of homology between two putative toxin or antitoxin sequences, for example by calculation of an E value or a percentage identity score.
Methods for the evaluation of the ability of a compound to interfere with the toxin- antitoxin complex
In a main aspect, the invention relates to methods for the evaluation of the ability of a bioactive compound to interfere with a bacterial toxin-antitoxin complex. "Interfere with' in this context can e.g. be disruption, disturbance as well as prevention of for- mation of the bacterial toxin-antitoxin complex.
Accordingly, the invention relates to a method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex comprising the steps of 1. providing a compound to be evaluated for the ability to interfere with a bacterial toxin-antitoxin complex,
2. providing a first polypeptide comprising a bacterial toxin or a fragment thereof capable of binding an antitoxin,
3. providing a second polypeptide comprising said antitoxin or a fragment thereof capable of binding said toxin,
4. incubating said compound, said first polypeptide and said second polypeptide under conditions allowing binding of said first polypeptide to said second polypeptide,
5. detecting a signal from said incubation mixture indicative of the degree of bind- ing of said first polypeptide to said second polypeptide, 6. evaluating whether or not the presence of said compound has affected the binding of said first polypeptide to said second polypeptide by comparison of the signal detected in step 5, with a reference value indicative of the binding of said first polypeptide to said second polypeptide in the absence of said compound.
Often, in the above method, the step of evaluating whether or not the presence of said compound has affected the binding of said first polypeptide to said second polypeptide is done by comparison with a control experiment in which said first polypeptide and said second polypeptide are incubated under conditions allowing bind- ing of said first polypeptide to said second polypeptide in the absence of said compound, i.e. the signal detected in this parallel experiment is considered the reference value indicative of the binding of said first polypeptide to said second polypeptide in the absence of said compound. In another preferred embodiment, said reference value is known before the method is carried out, for example the amount of signal is assayed for in the presence of the first and second polypeptide but prior to addition of the compound to be evaluated. Alternatively, said reference value may be well- known to those in the art, such as an absence of detectable signal.
Said methods may be used to qualitatively or quantitatively evaluate the efficacy of a previously identified compound capable of interfering with a bacterial toxin-antitoxin complex, or postulated as being capable of interfering with a bacterial toxin-antitoxin complex.
Alternatively, the aim of the evaluation can e.g. be to identify a compound with the desired activity of interfering with a bacterial toxin-antitoxin complex, for instance to screen libraries of chemical compounds to identify lead compounds. Thus in preferred embodiments, the above method can be used as a method for identification, a method for screening for, or a method for characterising bioactive compounds capable of interfering with a bacterial toxin-antitoxin complex.
Bioactive species of the present invention, which may be used in the methods of the present invention, can be evaluated using in vivo (including cell-based) as well as in vitro evaluation methods as disclosed herein. In one preferred embodiment, said method is capable of directly and/or indirectly detecting a toxin-antitoxin interaction. Suitable in vitro methods include methods in which the toxin-antitoxin interaction is detected directly, for instance using purified toxin and antitoxin. In one possible setup, one of the two binding partners is immobilised and the other partner is labelled in such a way as to be capable of producing a signal indicative of the degree of binding of said first polypeptide to said second polypeptide. Said detectable signal may for example be qualitative or quantitative. Interactions of the two binding partners may be detected by assaying for the level of the detectable signal, for example presence or absence of the signal, or for example a quantitative signal.
Signals
Preferred signal types include enzymatic activity, such as activity of horseradish peroxidase (HRP) or glucose oxidase. In such cases where the principal signal is from enzymatic activity using an enzyme such as HRP or glucose oxidase, additional reagents are required to visualise the fact that a indicator-moiety/ligand com- plex (immunoreactant) has formed. Such additional reagents for HRP include hydrogen peroxide and an oxidation dye precursor such as diaminobenzidine. An additional reagent useful with glucose oxidase is 2,2'-amino-di-(3-ethyl-benzthiazoline- G-sulfonic acid). Another preferred enzyme activity is activity of beta galactosidase.
The signalling means can also be one or more of a fluorescence-based signal, such as a fluorescent agent that chemically binds to one or more of the polypeptides without denaturing them to form a fluorochrome (dye) that is a useful immunofluo- rescent tracer. Suitable fluorescent labelling agents are fluorochromes such as fluorescein isocyanate (FIC), fluorescein isothiocyante (FITC), 5-dimethylamine-1~ naphthalenesulfonyl chloride (DANSC), tetramethylrhodamine isothiocyanate
(TRITC), lissamine, rhodamine 8200 sulphonyl chloride (RB 200 SC). Other examples of suitable fluorescent materials include umbelliferone, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin and the like. A description of immunofluorescence analysis techniques is found in DeLuca, "Immunofluorescence Analysis", in Antibody As a Tool, Marchalonis, et al., eds., John Wiley & Sons, Ltd., pp. 189-231 (1982).
In another embodiment, said signal may be generated by a radiolabelling agent, (for example, wherein radiation (alpha, beta or gamma) produced by decay of a at- tached radioisotope label serves as the signal which can be detected and quanti- tated by various radiometric methods such as scintillation counting). An example is a radioactive element that produces gamma ray emissions. Elements which themselves emit gamma rays, such as 124l, 125l, 128l, 132l and 51Cr represent one class of gamma ray emission-producing radioactive element indicating groups. Particularly preferred is 125l. Another group of useful labelling means are those elements such as
11C, 18F, 150 and 13N which themselves emit positrons, or beta emitters, such as 111indium of 3H. Other suitable radioactive materials include 131l and 35S.
The level of bound toxin or antitoxin can also be detected using one or more specific antibodies. Detection using antibodies can, in one embodiment, be facilitated by coupling the antibody to another detectable substance, such as an enzyme, a prosthetic group, a luminescent materials, or a bioluminescent material. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta- galactosidase, or acetylcholinesterase; examples of suitable prosthetic group com- plexes include Streptavidin/biotin and avidin/biotin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin.
The linking of labels, i.e. labelling of polypeptides such as antibodies, is well known in the art. For instance, proteins can be labelled by metabolic incorporation of radio- isotope-containing amino acids provided as a component in the culture medium. See, for example, Galfre et al., Meth. Enzymol., 73:3-46 (1981). The techniques of protein conjugation or coupling through activated functional groups are particularly applicable. See, for example, Aurameas, et al., Scand. J. Immunol., Vol. 8 Suppl. 7:7-23 (1978), Rodwell et al. (1984) Biotech. 3:889-894, and U.S. Pat. No.
4,493,795.
In general, the detectability of the signal determines the sensitivity of the evaluation method. The sensitivity is in turn related to both the type of signal employed and the quality and type of equipment available to detect it.
In one preferred embodiment of the present invention, said method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex is performed in vitro, for example as a biochemical method, preferably performed using purified toxin and/or purified antitoxin. One or more of said toxins or antitoxins is preferably fused to a reporter capable of generating a signal, such as any of the signals described herein.
In one preferred in vitro method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex, the antitoxin is purified and immobilized, preferably to a solid support, more preferably a well for protein immobilization or a microtiter well, using protocols known in the art. Examples of suitable wells include those provided by Corning Inc. The corresponding toxin is fused to an suitable chemical "reporter" capable of providing a indicative of the degree of binding of said first polypeptide to said second polypeptide, and is for example an enzyme with an easily detectable activity (for example, alkaline phosphatase) or a fluorescently- labelled moiety. The fusion protein is preferably tested for biological activity in vivo before purification. Contacting said toxin with said immobilized antitoxin provides the "signal", for example in the case of alkaline phosphatase being used, any low mo- lecular compound that disrupts the interaction between the TA pair will lead to release of the toxin fused to alkaline phosphatase. It is also envisaged that the same method can be applied with an immobilised toxin and fusion proten comprising the antitoxin.
In one preferred in vitro method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex, the antitoxin is purified and immobilized, preferably to a solid support, more preferably a well for protein immobilization or a microtiter well, using protocols known in the art. Examples of suitable wells include those provided by Corning Inc. The corresponding toxin is then incubated with the antitoxin under conditions capable of allowing TA complex formation. The toxin is optionally a fusion protein. Contacting of said toxin to said immobilized antitoxin is detected using one or more specific antibodies, with at least one antibody type being capable of binding to said toxin. At least one of said antibodies is capable of providing a "signal", for example a change in level of enzymatic activity or a change in the level of fluorescence. It is also envisaged that the same method can be applied with an immobilised toxin rather than antitoxin.
In one preferred embodiment of the present invention, the amount of toxin-antitoxin complexes and/or antitoxin complexes are assayed for. In another preferred em- bodiment, the amount of released toxin is assayed for, for example by transferring the supernatant containing the toxin to a suitable assaying surface, such as a microtiter well, and performing an assay for the levels of the signal, such as an alkaline phosphatase assay in cases where the signal is alkaline phosphatase activity.
It is preferred that the methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex are suitable for being automated, using for example robotics and/or automated plate readers known by one skilled in the art. In one preferred embodiment, the one or more compound evaluated is from a commercially available combinatorial chemical library, such as those available from Chemical Diversity Inc.
For maximal sensitivity, it is preferred that substrates yielding fluorescent products should be used to assay for the level of reporter present. Said substrates are preferably phosphate substrates, more preferably commercially available fluorescent substrates, such as for example Fluorescein diphosphate-FDP from Molecular
Probes Inc. In the case of FDP, the action of alkaline phosphatase causes the hydrolysis of FDP to fluorescein, that fluoresces with a maximum of 518 nm upon excitation with a maximum of 494 nm, which makes this substrate suitable for detection in standard ELISA readers.
In another preferred embodiment of the present invention, the toxin is fluorescently labelled by standard procedures known by those skilled in the art. Toxin and antitoxin are mixed, for example in microtiter wells, and fluorescence polarization (FP) measured (see Methods 22, 61-70 (2000), using e.g. a FP plate reader. The active substances may be identified due to their lower polarization value.
In other preferred embodiments, said method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex is performed in vivo. In one preferred in vivo method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex, a bacterial two-hybrid system is used to indicate interaction of the TA system components, such as is described by Karimova and coworkers (Proc Natl Acad Sci U S A 95, 5752, 1999). The basis of this system is the activation of certain genes, such as lacZ in a bacteria such as E. coli, by a complex of interacting proteins, such as the CAP protein in complex with cAMP. The activated gene creates a detectable signal, such as a change in enzymatic activity or a change in flourescence levels.
In another preferred in vivo method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex, said TA interaction is monitored using bioluminscence resonance energy transfer (BRET), such as is described by Xu et al. (Xu Y, Piston DW, Johnson CH. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96, 151 , 1996).
A combination of more than one evaluation method may also be envisaged to be part of the present invention, for example first evaluating large number of compounds with an in vitro method, and then screening smaller numbers of compounds with an in vivo method. For example, analogs are evaluated for their activity of dis- rupting TA interactions in vitro and in vivo as disclosed herein, and promising candidates are then tested for antibacterial activity using e.g. a bacterial toxicity assay or by monitoring bacterial growth levels.
In another prefered in vivo method, the compound to be evaluated is administered to an individual suffering from, or likely to suffer from, a bacterial disease, and the individual's disease state used as the signal indicative of the degree of binding of said bacterial toxin to said bacterial antitoxin, using as a reference value the disease state of a healthy individual. Said individual is preferably a laboratory animal, such as a mouse, rat, monkey or rabbit
The bioactive species of the present invention may also be identified by optimization protocols, such as an iterative process of systematically modifying the bioactive species structure and retesting. Suitable compounds for use in the evaluation method disclosed herein may also be generated using e.g. computational drug de- sign, structure-based drug design and the like.
Bioactive species capable of activating a polypeptide toxin and/or capable of initiating de novo synthesis of an activated polypeptide toxin In another aspect of the present invention, a bioactive species is provided, said bioactive species preferably being identifiable using the evaluation methods described above. Said bioactive species is preferably a low molecular weight chemical compound.
The bioactive species of the present invention are capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of activated polypeptide toxin. By "activating" is meant that said polypeptide toxin becomes capable of having a detrimental effect on said microbial cell, such as, for example, inducing impaired growth of the microbial cell and/or, more preferably, inducing cell death of said microbial cell. In one preferred embodiment of the present invention, said bioactive species is capable of binding to the toxin. In another preferred embodiment of the present invention, said bioactive species is capable of binding to the anti-toxin, wherein said binding preferably prevents said antitoxin from inactivating its cognate toxin. In another preferred embodiment, said bioactive species is capable of binding to the toxin-antitoxin complex, in which case said binding preferably causes direct dissociation of the toxin-antitoxin complex. In another preferred embodiment, said bioactive species promotes degradation of an anti-toxin molecule, thereby increasing the levels of free toxin within a bacterial cell. In another preferred embodiment, said bioactive species is capable of destabilising an anti-toxin, thereby optionally (also) promoting degradation of the anti-toxin. In another preferred embodiment, said bioactive species is capable of preventing synthesis of an anti-toxin, thereby increasing the levels of free, activated toxins within a bacterial cell. In another preferred embodiment, said bioactive species is capable of promoting the synthesis of a toxin compound, thereby increasing the levels of free (i.e. not bound within a TA complex) active toxin in a bacterial cell. In another preferred embodiment, said bioactive species is capable of increasing the stability of a toxin, thereby promoting the toxic effect of the toxin molecules on a bacterial cell.
Said bioactive species is preferably organic in nature. In one preferred embodiment said bioactive species comprises or essentially consists of one or more of the following: -peptides, β-peptides, γ-peptides, ω-peptides, mono-, di- and tri-substituted - peptides, β-peptides, γ-peptides, ω-peptides, peptides wherein the amino acid resi- dues are in the L-form or in the D-form, vinylogous polypeptides, glycopoly-peptides, polyamides, vinylogous sulfonamide peptide, polysulfonamide, conjugated peptides comprising e.g. prosthetic groups, polyesters, polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonat.es, polyurethanes, azatides, oligo N-substituted glycines, polyethers, ethoxyformacetal oligomers, poly- thioethers, polyethylene glycols (PEG), polyethylenes, polydisulfides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyrrolinone, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g. aliphatic or aromatic cycles, including polyheterocyclic compounds, proteoglycans, and/or polysi loxanes .
Yet further preferred molecules are those comprising a scaffold structure comprising a plurality of covalently linked functional entities selected from the group consisting of -peptides, β-peptides, γ-peptides, ω-peptides, mono-, di- and tri-substituted α- peptides, β-peptides, γ-peptides, ω-peptides, peptides wherein the amino acid residues are in the L-form or in the D-form, vinylogous polypeptides, glycopoly-peptides, polyamides, vinylogous sulfonamide peptides, polysulfonamides, conjugated peptides comprising e.g. prosthetic groups, polyesters, polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonates, polyurethanes, azatides, oligo N-substituted glycines, polyethers, ethoxyformacetal oligomers, poly- thioethers, polyethylene glycols (PEG), polyethylenes, polydisulfides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyrrolinones, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g. aliphatic or aromatic cycles, including polyheterocyclic compounds, proteoglycans, and polysiloxanes, and wherein the plurality of functional entities is preferably from 2 to 200, for example from 2 to 100, such as from 2 to 80, for example from 2 to 60, such as from 2 to 40, for example from 2 to 30, such as from 2 to 20, for example from 2 to 15, such as from 2 to 10, such as from 2 to 8, for example from 2 to 6, such as from 2 to 4, for example 2, such as from 3 to 100, for example from 3 to 80, such as from 3 to 60, such as from 3 to 40, for example from 3 to 30, such as from 3 to 20, such as from 3 to 15, for example from 3 to 15, such as from 3 to 10, such as from 3 to 8, for example from 3 to 6, such as from 3 to 4, for example 3, such as from 4 to 100, for example from 4 to 80, such as from 4 to 60, such as from 4 to 40, for example from 4 to 30, such as from 4 to 20, such as from 4 to 15, for example from 4 to 10, such as from 4 to 8, such as from 4 to 6, for example 4, for example from 5 to 100, such as from 5 to 80, for example from 5 to 60, such as from 5 to 40, for example from 5 to 30, such as from 5 to 20, for example from 5 to 15, such as from 5 to 10, such as from 5 to 8, for example from 5 to 6, for example 5, such as from 6 to 100, for example from 6 to 80, such as from 6 to 60, such as from 6 to 40, for example from 6 to 30, such as from 6 to 20, such as from 6 to 15, for example from 6 to 10, such as from 6 to 8, such as 6, for example from 7 to 100, such as from 7 to 80, for example from 7 to 60, such as from 7 to 40, for example from 7 to 30, such as from 7 to 20, for example from 7 to 15, such as from 7 to 10, such as from 7 to 8, for example 7, for example from 8 to 100, such as from 8 to 80, for example from 8 to 60, such as from 8 to 40, for example from 8 to 30, such as from 8 to 20, for example from 8 to 15, such as from 8 to 10, such as 8, for example 9, for example from 10 to 100, such as from 10 to 80, for example from 10 to 60, such as from 10 to 40, for example from 10 to 30, such as from 10 to 20, for example from 10 to 15, such as from 10 to 12, such as 10, for example from 12 to 100, such as from 12 to 80, for example from 12 to 60, such as from 12 to 40, for example from 12 to 30, such as from 12 to 20, for example from 12 to 15, such as from 14 to 100, such as from 14 to 80, for example from 14 to 60, such as from 14 to 40, for example from 14 to 30, such as from 14 to 20, for example from 14 to 16, such as from 16 to 100, such as from 16 to 80, for example from 16 to 60, such as from 16 to 40, for example from 16 to 30, such as from 16 to 20, such as from 18 to 100, such as from 18 to 80, for example from 18 to 60, such as from 18 to 40, for example from 18 to 30, such as from 18 to 20, for example from 20 to 100, such as from 20 to 80, for example from 20 to 60, such as from 20 to 40, for example from 20 to 30, such as from 20 to 25, for example from 22 to 100, such as from 22 to 80, for example from
22 to 60, such as from 22 to 40, for example from 22 to 30, such as from 22 to 25, for example from 25 to 100, such as from 25 to 80, for example from 25 to 60, such as from 25 to 40, for example from 25 to 30, such as from 30 to 100, for example from 30 to 80, such as from 30 to 60, for example from 30 to 40, such as from 30 to 35, for example from 35 to 100, such as from 35 to 80, for example from 35 to 60, such as from 35 to 40, for example from 40 to 100, such as from 40 to 80, for example from 40 to 60, such as from 40 to 50, for example from 40 to 45, such as from 45 to 100, for example from 45 to 80, such as from 45 to 60, for example from 45 to 50, such as from 50 to 100, for example from 50 to 80, such as from 50 to 60, for exam- pie from 50 to 55, such as from 60 to 100, for example from 60 to 80, such as from 60 to 70, for example from 70 to 100, such as from 70 to 90, for example from 70 to 80, such as from 80 to 100, for example from 80 to 90, such as from 90 to 100.
The bioactive species to be synthesised in accordance with the present invention are preferably "small molecules", by which is meant molecules having a molecular weight (MW) of less than 10000 Daltons, such as less than 8000 Daltons, for example less than 6000 Daltons, such as less than 5000 Daltons, for example less than 4000 Daltons, for example less than 3500 Daltons, such as less than 3000 Daltons, for example less than 2500 Daltons, for example less than 2000 Daltons, such as less than 1800 Daltons, for example less than 1600 Daltons, for example less than
1400 Daltons, such as less than 1200 Daltons, for example less than 1000 Daltons.
The functional entities of the above molecules can be linked by a chemical bond selected from the group of chemical bonds consisting of peptide bonds, sulfonamide bonds, ester bonds, saccharide bonds, carbamate bonds, carbonate bonds, urea bonds, phosphonate bonds.urethane bonds, azatide bonds, peptoid bonds, ether bonds, ethoxy bonds, thioether bonds, single carbon bonds, double carbon bonds, triple carbon bonds, disulfide bonds, sulfide bonds, phosphodiester bonds, oxime bonds, imine bonds, imide bonds, including any combination thereof.
In one embodiment the chemical bond linking at least some of the functional entities of the molecule is preferably formed by a reaction of a nucleophile group of a first functional entity with an ester or thioester of another functional entity. The linker of the functional entity bearing the thioester group is preferably cleaved simultaneously with the formation of the bond resulting in a transfer of the functional entity or a part thereof to the nucleophilic functional entity. The nucleophile group is preferably selected from -NH2 , H2NHN-, HOHN-, H2N-C(0)-NH-.
The backbone structure of said bioactive species can, for example, comprise or es- sentially consist of one or more molecular group(s) selected from -NHN(R)CO- ; -
NHB(R)CO- ; -NHC(RR')CO- ; -NHC(=CHR)CO- ; -NHC6 H4 CO-; -NHCH2 CHRCO-; -NHCHRCH2 CO- ; -COCH2- ; -COS- ; -CONR- ; -COO- ; -CSNH- ; -CH2 NH- ; - CH2CH2- ; -CH2 S- ; -CH2 SO- ; -CH2S02- ; -CH(CH3)S- ; -CH=CH- ; -NHCO- ; - NHCONH- ; -CONHO- ; -C( =CH2)CH2- ; -P02 "NH- ; -P02OH2- ; -P02OH2N+- ; - S02NH"- ; and lactams. The following properties may also be used to define the bioactive species of the present invention: the number of rotatable bonds (RTB) the number of rings (RNG) the number of hydrogen bond donors (HDO) the number of hydrogen bond acceptors (HAC) the octanol-water partition coefficient (log P) molar refractivity (MR)
In preferred embodiments of the present invention, said bioactive species falls within one or more of the following limits: 3 < HDO < 5, more preferably 0 < HDO < 2 2 < HAC < 9 2 < RTB < 8
1 < RNG < 4
-0.4 < log P < 5.6, more preferably around 2.5 40 ≤MR <130, more preferably around 97.
The bioactive species preferably comprises any amino acid sequence of at least about 1 to 60 amino acids in length and may be derived from the expression of nucleotide sequences which are prepared by any one of a variety of methods such as, for example, random synthetic generation, or using naturally-occurring genomes as exemplified herein. The use of larger fragments, particularly employing randomly sheared nucleic acid derived from bacterial, yeast or animal genomes, is not excluded.
In another preferred embodiment, the bioactive species is expressed as a fusion protein with a peptide sequence capable of enhancing uptake of the peptide by an isolated cell such as, for example, when the subject peptide is synthesized ex vivo and added to isolated cells in culture. In a preferred embodiment, the peptide sequence capable of enhancing, increasing or assisting penetration or uptake is functional in bacterial cells.
The bioactive species may also be expressed in a conformationally constrained form. For example, amino acid sequences which are expressed in a conformation- ally constrained form may be expressed within a second polypeptide as a fusion protein such that they are effectively "nested" in the secondary structure of the second polypeptide. Alternatively, a peptide, oligopeptide or polypeptide may be circu- larized within a loop of disulphide bonds to limit conformational diversity, such as, for example, by expressing a peptide within oxidized flanking cysteine residues. This may be particularly beneficial where the amino acid sequences are nested within a surface-exposed or functional site of a protein, such that they are accessible to the interaction of interest. For example, the peptide may be expressed within a thiore- doxin (Trx) polypeptide loop.
In one preferred embodiment of the present invention, said bioactive species comprises at least one heterocyclic ring, such as an aromatic heterocycle or, more preferably, a nonaromatic heterocyclic rings. In another preferred embodiment, said bioactive species comprises at least one tertiary aliphatic amines. In another preferred embodiment, said bioactive species comprises at least one alcoholic OH group. In another preferred embodiment, said bioactive species comprises at least one carboxamide. In another preferred embodiment, said bioactive species comprises at least one benzene ring.
In a preferred embodiment of the present invention, said bioactive species is preferably lipophilic, and capable of penetrating a cell membrane. In another preferred embodiment, said molecule is encapsulated in a lipophilic carrier, such as a micelle or liposome, to enable effective penetration of cell membranes. In another preferred embodiment, said bioactive species is preferably non-immunogenic.
In another preferred embodiment of the present invention, said bioactive species is classified as a "drug" using the scoring scheme disclosed in Sadowski et al., "A scoring scheme for discriminating between drugs and non-drugs", Combinatorial Chemistry and Molecular Modelling, vol. 41 , Issue 18, August 27, 1998 p 3325-
3329.
In another preferred embodiment of the present invention, said bioactive species passes the "rule of 5" test, a probability scheme that estimates oral absorption, pro- posed by Lipinski et al. [Adv. Drug Deliv. Rev., 23 (1997) 3]. In one embodiment, the bioactive species is designed to bind to, or close to, an area of an antitoxin and/or toxin that interacts with its corresponding toxin or antitoxin (i.e. a binding interface). Without being bound by theory, it is believed that this would disrupt the binding interface between said toxin and antitoxin, preventing or reducing binding and thus preventing or reducing TA complex formation, thus preventing neutralisation of the toxin. Thus, in one embodiment of the present invention, the bioactive species of the present invention is a reduced-toxicity variant of the toxin, which causes antitoxin inactivation. Such reduced-toxicity variant may be a variant of a toxin from any of the following toxin/antitoxin systems: • parDE systems
• chp systems (chpA locus has also been called mazEF)
• higBA systems (HigB toxin, HigA antitoxin)
• phd/doc systems
• ccdAB systems (ccdA antitoxin, ccdB toxin) • vapBC systems (also known as vagCD or STBORF1 and STBORF2)
Preferably, said variant is a reduced-toxicity variant of the MazF toxin. Thus, said variant may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 15-31 of the E.coli MazF toxin (VDFDPTKGSEQAGHRPA - SEQ ID NO: 722), or homologue and/or fragment thereof. Said homologue and/or fragment may be e.g. less than 16 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14, such as at least 15 amino acids long. Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO:155 and 160, such as SVMLTVPPA LLNALSLGTD N (SEQ ID NO: 723) and VGFDPASGHEQQGAGRP (SEQ ID NO: 724). Further suitable homologues include polypeptide sections homologous to VDFDPTKGSEQAGHRP A (SEQ ID NO: 722) in the MazF toxin polypeptides with SEQ ID NO: 161-205. Further suitable homologues include polypeptide sections homologous to VDFDPTKGSEQAGHRP A (SEQ ID NO: 722) in any of the MazF toxin polypeptides described in Example 5 (results shown in Table 2). (A polypeptide section (preferably used in the invention as an isolated polypeptide in itself) is defined as "Homologous" to a comparison polypeptide if the homology value has an E value of 10"4 or less (e.g. 10"5 or less, e.g 10"6 or less, e.g 10"7 or less, e.g 10"8 or less, e.g 10"9 or less, e.g 10"10 or less) when calculated using the BLAST algorithm version (2.04) set to the default pa- rameters defined herein.) Alternatively, said variant may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 31-50 of the E.coli MazF toxin (AWLSPFMYN NKTGMCLCVP- SEQ ID NO: 725), or homologue and/or fragment thereof. Said fragment and/or homologue may be e.g. less than 21 amino acids long and is pref- erably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14, such as at least 16, for example at least 18, amino acids long. Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO:155 and 160, such as NEVGMVIDNGRLIVEPYRRPQYSLAELLAQ CDP (SEQ ID NO: 726) and ALVLSVQAFNQLGMTLVAP (SEQ ID NO: 727). Further suitable homologues include polypeptide sections homologous to AWLSPFMYNNKTGMCLCVP (SEQ ID NO: 725) in the MazF toxin polypeptides with SEQ ID NO: 161-205. Further suitable homologues include polypeptide sections homologous to AWLSPFMYNNKTGMCLCVP SEQ ID NO: 725) in any of the MazF toxin polypep- tides described in Example 5 (results shown in Table 2).
Equally preferably, said variant may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 50-79 of the E.coli MazF toxin (PCTTQSKGYPF EWLSGQERD GVALADQVK - SEQ ID NO: 728), or homologue and/or fragment thereof. Said fragment and/or homologue may be e.g. less than 32 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14, such as at least 16, for example at least 18, such as at least 20, for example at least 22, such as at least 24, for example at least 26, such as at least 28, amino acids long. Suit- able fragments include, but are not restricted to a fragment selected from PCTTQS
(SEQ ID NO: 729), KGYPF (SEQ ID NO: 730), EWLS (SEQ ID NO: 731), GQERD (SEQ ID NO: 732), GVALA (SEQ ID NO: 733), or DQVK (SEQ ID NO: 734). Suitable "homologues thereof" include homologous polypeptide sections in SEQ ID NO: 155 and 160. Further suitable homologues include polypeptide sections ho- mologous to PCTTQSKGYPFEWLSGQERDGVALADQVK (SEQ ID NO: 728) in the
MazF toxin polypeptides with SEQ ID NO: 161-205. Further suitable homologues include polypeptide sections homologous to PCTTQSKGYPFEWLSGQERDGVALADQVK (SEQ ID NO: 728) in any of the MazF toxin polypeptides described in Example 5 (results shown in Table 2). Equally preferably, said variant may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 86-109 of the E.coli MazF toxin (RGATKKGTVAPEELQLIKAKINVL - SEQ ID NO: 735), or homologue and/or fragment thereof. Said homologue and/ or fragment may be e.g. less than 25 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14, such as at least 16, for example at least 18, such as at least 20, such as at least 22, amino acids long. Suitable fragments include, but are not restricted to, RGATK (SEQ ID NO: 736), KGTVA (SEQ ID NO: 737), PEELQ (SEQ ID NO: 738), LIKA (SEQ ID NO: 739), or KINVL (SEQ ID NO: 740). Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO:155 and 160. Further suitable homologues include polypeptide sections homologous to RGATKKGTVAPEELQLIKAKINVL (SEQ ID NO: 735), in the MazF toxin polypeptides with SEQ ID NO: 161-205. Further suitable homologues include polypeptide sections homologous to RGATKKGTVAPEELQLIKAKINVL (SEQ ID NO: 735), in any of the MazF toxin polypeptides described in Example 5 (results shown in Table 2).
In another embodiment of the present invention, the bioactive species of the present invention is an antitoxin variant, said antitoxin variant acting to bind to, but not inac- tivate, its cognate toxin. Said antitoxin variant may be a variant of an antitoxin from any of the following toxin/antitoxin systems: • parDE systems
• chp systems (chpA locus has also been called mazEF)
• higBA systems (HigB toxin, HigA antitoxin) • phd/doc systems
• ccdAB systems (ccdA antitoxin, ccdB toxin)
• vapBC systems (also known as vagCD or STBORF1 and STBORF2). Preferably, said antitoxin variant is a variant of the MazE antitoxin. Said variant of the MazE antitoxin may be a peptide comprising, consisting of, or consisting essen- tially of, amino acid residues 29-32 of the E.coli MazE antitoxin (IDDE - SEQ ID NO: 741), or homologue and/or fragment thereof, such as IDD, DDE or DD. Said fragment and/or homologue may be e.g. less than 6 amino acids long and is preferably at least 2, for example at least 3, such as at least 4, for example at least 5 amino acids long. Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO: 156, 157, 158 or 159. Alternatively, said variant of the MazE antitoxin may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 48-53 of the E.coli MazE antitoxin (RKEPVF - SEQ ID NO: 742), or homologue and/or fragment thereof, such as RKE, KEPV or PVF. Said fragment and/or homologue may be e.g. less than 7 amino acids long and is preferably at least 2, for example at least 3, such as at least 4, for example at least 5 amino acids long. Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO: 156, 157, 158 or 159.
Alternatively, said variant of the MazE antitoxin may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 68-76 of the E.coli MazE antitoxin (HENIDWGEP - SEQ ID NO: 743), or homologue and/or fragment thereof. Said homologue and/ or fragment may be e.g. less than 10 amino acids long and is preferably at least 4, for example at least 6, such as at least 8 amino acids long. Suitable fragments include, but are not restricted to, HENI (SEQ ID NO: 744), NIDW
(SEQ ID NO: 745), or DWGEP (SEQ ID NO: 746). Suitable "homologues thereof include homologous polypeptide sections in SEQ ID NO: 156, 157, 158 or 159.
Alternatively, said variant of the MazE antitoxin may be a peptide comprising, con- sisting of, or consisting essentially of, amino acid residues 54-67 of the E.coli MazE antitoxin (LAELVNDITPENL - SEQ ID NO: 747), or homologue and/or fragment thereof. Said homologue and/ or fragment may be e.g. less than 13 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12 amino acids long. Suitable fragments include, but are not restricted to, LAEL (SEQ ID NO: 748), ELVN (SEQ ID NO: 750), VNDIT
(SEQ ID NO: 751), or PENL (SEQ ID NO: 752). Suitable "homologues thereof" include homologous polypeptide sections in SEQ ID NO: 156, 157, 158 or 159. Thus, preferred bioactive species may be any of the following sequences (or a fragment or homologue thereof): FTLAELVN (SEQ ID NO: 753),
NDITPENLHENIDW (SEQ ID NO: 754), PVRKE PVFTLAELV (SEQ ID NO: 755), TPENLHEN IDWGEPK (SEQ ID NO: 756), LAELVNDITPENL (SEQ ID NO: 757). Most preferably, said bioactive species is LAELVNDITPENLHE (SEQ ID NO: 758), or a fragment or homologue thereof.
In another preferred embodiment of the present invention, said antitoxin variant is a variant of the RelB antitoxin. Said variant of the RelB antitoxin may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 9-23 of the E.coli MazE antitoxin (DDELKARSYAALEKM - SEQ ID NO: 759), or homologue and/or fragment thereof. Said homologue and/ or fragment may be e.g. less than 16 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14 amino acids long. Suitable fragments include, but are not restricted to, ELKARSY (SEQ ID NO:
760), RSYAA (SEQ ID NO: 761), ELKARSYAALEKM (SEQ ID NO: 762), or RID- DELKARSYAALE (SEQ ID NO: 763). Suitable "homologues thereof include homologous polypeptide sections in any of SEQ ID NO: 1 , 3, 5, 7, 9, 11 , 13 or 15.
In another preferred embodiment of the present invention, said antitoxin variant is a variant of the RelB antitoxin. Said variant of the RelB antitoxin may be a peptide comprising, consisting of, or consisting essentially of, amino acid residues 39-53 of the E.coli MazE antitoxin (ADNERLPFKQTL LSD - SEQ ID NO: 764), or homologue and/or fragment thereof. Said homologue and/ or fragment may be e.g. less than 16 amino acids long and is preferably at least 4, for example at least 6, such as at least 8, for example at least 10, such as at least 12, for example at least 14, amino acids long. Suitable fragments include, but are not restricted to, ADNE (SEQ ID NO: 765), RLPF (SEQ ID NO: 766), KQTL (SEQ ID NO: 767), or LSD (SEQ ID NO: 768). Suitable "homologues thereof include homologous polypeptide sections in any of SEQ ID NO: 1 , 3, 5, 7, 9, 11 , 13 or 15.
One skilled in the art is also aware that peptides, such as the above-mentioned peptides, do not have to comprise natural peptide bonds in order to maintain the required activity of activating a bacterial toxin. Suitable alternative chemical bonds that may be used to replace one or more of the peptide bonds (such as to replace all the peptide bonds) include, but are not restricted to, -NHN(R)CO- -NHB(R)CO- -NHC(RR')CO- -NHC(=CHR)CO- -NHC6H4CO-
-NHCH2CHRCO-
-NHCHRCH2CO-
, and lactam structures, -COCH2-
-COS-
-CONR
-COO-
-CSNH- -CH2NH-
-CH2CH2
-CH2S-
-CH2SO-
-CH2S02- -CH(CH3)S-
-CH=CH-
-NHCO-
-NHCONH-
-CONHO- -C(=CH)CH2-
Wherein "R" represents the amino acid side chain.
Aptamers
In one preferred embodiment of the present invention, the bioactive species of the present invention is an aptamer. Aptamers are macromolecules comprised of nucleic acid, such as RNA or DNA, that bind tightly to a specific molecular target. In one embodiment of the present invention, said aptamer is 15-60 bases. It is usual that the chain of nucleotides comprising the aptamer forms intramolecular interactions that fold the molecule into a complex three-dimensional shape. The shape of the aptamer allows it to bind tightly against the surface of its target molecule, herein preferably a toxin, antitoxin or TA complex. Because an extraordinary diversity of molecular shapes exist within the universe of all possible nucleotide sequences, aptamers may be obtained for a wide array of molecular targets, including most proteins and many small molecules. Aptamers are chemically stable to all but the harshest environmental conditions and can be boiled or frozen without loss of activ- ity. They may be produced on the benchtop using standard molecular biological techniques or they may be chemically synthesized at microgram to kilogram scales. As synthetic molecules, they are amenable to a nearly infinite variety of modifications designed to optimize their properties for a specific application. They may be circularized, linked together in pairs, or clustered onto the surface of a fat globule.
For in vivo applications, for instance in a pharmaceutical formulation, aptamers can be modified to dramatically reduce their sensitivity to degradation by enzymes in the blood. Other chemical appendages can alter their biodistribution or plasma resi- dence time following, for example, intravenous injection. This plasticity is a distinct advantage of aptamers over other types of molecular ligands, such as monoclonal antibodies, where chemical modification is often variable, difficult to control, and may harm the function of the molecule.
The surface area of interaction between an aptamer and its molecular target is relatively large, so even small changes in the target molecule can disrupt aptamer association. Thus, aptamers can distinguish between closely related but non-identical members of a protein family, or between different functional or conformational states of the same protein. In a striking example of specificity, an aptamer to the small molecule theophylline (1 ,3-dimethylxanthine) binds with 10,000-fold lower affinity to caffeine (1 ,3,7-trimethylxanthine) that differs from theophylline by a single methyl group.
In addition to high specificity, aptamer have very high affinities to their targets. Typi- cally aptamers generated against proteins have affinities in the picomolar to low nanomolar range.
Example of one possible method of aptamer selection - SELEX
Systematic evolution of ligands by exponential enrichment (SELEX) (see also Gold et al., "Diversity of Oligonucleotide functions", Annu Rev Biochem. 1995;64:763-97) is an iterative process used to identify an aptamer to a chosen molecular target.
The method relies on standard molecular biological techniques and can be carried out manually or in an automated fashion. The process can be broken down concep- tually into four steps: (1) pool preparation, (2) selection, (3) amplification and (4) aptamer isolation.
(1) Pool preparation
To begin, a large "library" of nucleic acid molecules is generated. Each molecule in the library (often as many as 1015 different compounds) contains a unique nucleotide sequence that can, in principle, adopt a unique three-dimensional shape. A very few of these molecules — the aptamers — present a surface that is complementary to the target molecule.
(2) Selection partitioning
The selection step is designed to find those molecules with the greatest affinity for the target of interest. The library of nucleotide sequences is exposed to the target (a protein, small molecule, or supramolecular structure) and allowed to incubate for a period of time. The molecules in the library with weak or no affinity for the target will, on average, remain free in solution while those with some capacity to bind will tend to associate with it.
Any one of several methods is used to physically isolate the aptamer target com- plexes from the unbound molecules in the mixture, effectively separating the wheat from the chaff on a molecular scale. The unbound molecules are discarded. The target-bound molecules, among which are the highest affinity aptamers, are purified away from the target and used for the subsequent steps in the SELEX process.
(3) Amplification
The captured, purified sequences are copied enzymatically, or "amplified", to generate a new library of molecules that is substantially enriched for those that can bind to the target. The enriched library is used to initiate a new cycle of selection, partitioning and amplification.
(4) Aptamer isolation
After 5-15 cycles of the complete process, the library of molecules is reduced from 1015 of unique sequences to a small number that bind tightly to the target of interest. Individual molecules in the mixture are then isolated, their nucleotide sequences are determined, and their properties with respect to binding affinity and specificity are measured and compared. In most cases, isolated aptamers are further refined to eliminate any nucleotides that do not contribute to target binding or aptamer structure. Aptamers truncated to their core binding domain typically range in length from 15 to 60 nucleotides.
Photoaptamers (such as those produced by SomaLogic) may be created by substituting a brominate deoxyuridine (BrdU) for the thymidine (T) normally found in DNA, aptamers take on the ability to crosslink to specific sites on their target proteins. Photoaptamers thus add a second dimension of specificity, since they recognize both the complex shape and charge distribution of their targets and the presence of specific amino acid residues at specific sites.
Methods suitable for selecting an aptamer suitable for use in the present invention, and further information on aptamers, are disclosed in the following US patents, in- corporated herein by reference to their patent numbers:
6,482,594; 6,458,543; 6,458,539; 6,376,190; 6,344,318; 6,242,246; 6,184,364; 6,001 ,577; 5,958,691 ; 5,874,218; 5,853,984; 5,843,732; 5,843,653; 5,817,785; 5,763,177; 5,696,249; 5,660,985; 5,595,877; 5,567,588; and 5,270,163.
Other single molecule selection methods suitable for identifying or assessing small molecule compounds suitable for use in the present invention are disclosed in US Patent Application 2002/0034757.
Aptamers may be generated against any of the toxins, antitoxins and TA complexes described herein. In all cases of aptamer evolution discussed herein, it is preferred that the aptamer is designed to bind to, or close to, an area of an antitoxin and/or toxin that interacts with its corresponding toxin or antitoxin (i.e. a binding interface). Without being bound by theory, it is believed that this would increase the likelihood of success of identifying a suitable bioactive species as it would disrupt the binding interface between said toxin and antitoxin, preventing or reducing binding and thus preventing or reducing TA complex formation, thus preventing neutralisation of the toxin. In the most preferred embodiment of the present invention, it is preferred that the bioactive species, such as an aptamer, is designed to bind one or more binding interface of a bacterial antitoxin, such as an antitoxin from one or more of the following TA systems: • parDE systems
• chp systems (chpA locus has also been called mazEF) • higBA systems (HigB toxin, HigA antitoxin)
• phd/doc systems
• ccdAB systems (ccdA antitoxin, ccdB toxin)
• vapBC systems (also known as vagCD or STBORF1 and STBORF2)
Biotech evolutionary methods
In one embodiment of the present invention, it is envisaged that a potential bioactive species for use in the methods of the present invention may have been identified using a strategy comprising a method, known by those skilled in the art, suitable for use in evolving small molecules.
Biotech evolutionary methods, including combinatorial libraries and phage-display technology (see e.g. Parmley, S. F. and Smith, G. P. (1988) Gene 73, 305-318; Scott, J. K. and Smith, G. P. (1990) Science 249, 386-390; Smith, G. P. (1993) Gene 128, 1-2.), are used in the search for novel ligands of diagnostic, biomedical and pharmaceutical use (for reviews, see Cortese, R. (ed.) (1996) Combinatorial libraries: Synthesis, Screening and Application potential; Walter de Gruyter, Berlin and Collins, J. (1997) Phage display. In Moos, W. H. et al. (eds) Annual reports in combinatorial chemistry and molecular diversity. Vol. 1., ESCOM Science publ., Leiden, pp. 210-262). These methods use empirical procedures to select molecules with required characteristics, e.g. binding properties, from large populations of variant gene products. Evolutionary methods also include SELEX (see section on aptamers).
Phage display methods One such suitable evolutionary method that may have been used to generate the bioactive species of the present invention is a phage display method.
Phage display is a method to individually display up to tens of billions of peptides and proteins, including for example human antibodies and enzymes, on the surface of a filamentous phage, a bacterial virus. Preferred phage for use in the present in- vention include, but are not restricted to, M13, fd or fl phage. Phage display can be used to produce and search through large collections, or libraries, of peptides and proteins to rapidly identify those compounds that bind with high affinity and high specificity to targets of interest, in this case a bacterial toxin, antitoxin or TA com- plex.
The phage display process generally consists of the following steps: (1) generating one or more phage libraries, (2) screening the phage display libraries to select binding compounds with high affinity and high specificity to a target, and (3) producing and evaluating the selected binding compounds.
Phage display libraries can contain billions of potential binding compounds, that may be rationally-designed variations of a particular peptide or protein framework. The size and diversity of the libraries improves the likelihood of identifying compounds with high specificity (the ability to bind to the target and not to other, closely related molecules) and high affinity (strength of binding to the target).
In these method types, gene libraries are generated containing extremely large number (for example, 106 to 1010) of variants. The variant gene segments are fused to a coat protein gene of a filamentous bacteriophage, and the fusion gene is inserted into the genome of the phage or of a phagemid. A phagemid is defined as a plasmid containing the packaging and replication origin of a filamentous bacteriophage. This latter property allows the packaging of the phagemid genome into a phage coat when it is present in an Escherichia coli host strain infected with a fila- mentous phage (superinfection). The packaged particles produced, be they phage or phagemid, display the fusion protein on the surface of the particles secreted into the medium. Such packaged particles are able to inject their genomes into a new host bacterium, where they can be propagated as phage or plasmids, respectively. The special property of the system lies in the fact that since the packaging takes place in individual cells usually infected by a single variant phage/phagemid, the particles produced on propogation contain the gene encoding the particular variant displayed on the particle's surface. Several cycles of affinity selection for clones exhibiting the required properties due to the particular property of the variant protein displayed, e.g. binding to a particular target molecule immobilized on a surface, fol- lowed by amplification of the enriched clones leads to the isolation of a small num- ber of different clones having these properties. The primary structure of these variants can then be rapidly elucidated by sequencing the hypermutated segment of the variant gene.
Phage display technology can be applied in an automated format to many targets simultaneously to discover specific, high-affinity compounds, including antibodies, such as human monolclonal antibodies, for each target.
A selected phage can be replicated into thousands of identical copies in less than a day. Once generated, a phage display library can be amplified and stored so that it may be used for an unlimited number of screenings.
Phage display libraries are screened to identify binding compounds with high affinity and high specificity for the desired target. This information can be used to design successive generations of phage display libraries to further optimize leads. For example, Dyax has demonstrated between a 10- and 100-fold improvement in binding affinity with second generation phage display libraries.
Example of suitable phage display libraries:
1 ) Structured peptide libraries:
Disulfide constrained cyclic peptide libraries may be used, e.g. in one library produced by Dyax, the peptides within the cyclized structure range in size from six to twelve amino acids. Amino acids both within and outside the cyclized structure are selected for variation, and the number of distinct peptide structures in each library typically exceeds 10 billion. The resulting peptides are chemically synthesizable and are amenable to chemical modification, such as attachment to a chromatographic support.
2) Protein Libraries
Phage libraries based on well-characterized protein structures may also be used. A single highly structured protein is selected and the amino acids in one portion of this "parental" protein are varied. In one variation, only the regions of the protein that are accessible to the surface are varied since it is these regions that are available for binding of target, while regions of the protein that are involved in maintaining its structure are not varied. Examples of libraries created in this way include those based on structural motifs such as alpha-helices, zinc fingers, kunitz domains, and other well characterized structural motifs.
3) Human Antibody Libraries
Human phage antibody libraries contain genes encoding the heavy and light chain variable regions of the antibody producing cells of human donors. These are displayed in the phage library as antibody fragments (Fabs). The library design preferably includes the capability to rapidly produce and purify soluble Fabs. A first gen- eration Fab library produced by Dyax displays 37 billion distinct human antibodies.
4) Linear Peptide Libraries
Linear peptide libraries may also be envisaged as being used, for example in the case where all 19 amino acids, except cysteine, at each position in a 20-mer peptide are varied to create large libraries.
Further suitable phage display libraries are the Ph.D.-7™ Kit, Ph.D.-12™ Kit or Ph.D.-C7C™ Kit, available from New England BioLabs Inc. (www.neb.com).
For further details concerning examples of phage display envisaged as suitable for use in the present invention, see for exampe Hoogenboom HR., "Overview of antibody phage-display technology and its applications", Methods Mol Biol. 2002;178:1-37. The entire disclosure of US patents 5,837,500, 5,821,047 and 5,702,892 are also hereby incorporated giving information on some of the envisaged embodiments of phage display methods. Further details of techniques used to display populations of proteins and peptides and to select members with desired properties are described in Ladner RC, Ley AC, "Novel frameworks as a source of high-affinity ligands", Curr Opin Biotechnol. 2001 Aug;12(4):406-10., e.g. affinity maturation has been demonstrated so that binding in the low nanomolar to subnanomolar range by non-antibodies is now achievable.
It is further envisaged that similar display methods may be used, wherein the potential bioactive compounds are displayed on e.g. the outer surface of a chosen bacterial cell, bacterial spore or other phage type. COSMIX
Another suitable evolutionary method to generate potential bioactive compounds for use in the present invention is a COSMIX or Cosmix plexing method. Cosmix plex- ing is a technique to perform high diversity phage display thus yielding ligands with higher binding affinities than ligands evolved with conventional M13
(or lambda) based phage display. This method is also envisaged as being suitable for evolving suitable bioactive species for use in the present invention.
Cosmix-plexing® is an evolution-like process based on generating extremely high diversity followed by effective selection steps to enhance peptides, antibodies or proteins with desirable characteristics, e.g. preferably a high affinity to a bacterial toxin, antitoxin or TA complex.
The Cosmix cycle: The starting point in developing e.g. a novel peptide ligand is to choose a suitable target, e.g. a known bacterial toxin, antitoxin or TA complex. A range of requirements can also be imposed, such as specificity, and cross reactivity, affinity, pH or temperature.
An initial screen for potential bioactive compounds is done with one of Cosmix's established core libraries, which offers approximately 1010 variants. This initial search results in primary ligands binding to the target. Screenings against the target are executed using phagemid display. The primary ligands are further optimized using Cosmix-plexing®: The sequences of these ligands are totally recombined to deliver new variants with significantly improved characteristics conforming to the predefined profile. The recombination step increases the number of peptide variants that could be accessed approximately 1019 new variants. It is this extremely high degree of diversity that is accessible through Cosmix-plexing®.and allows optimization of product evolution.
In the final stage of the cycle, the optimized candidate ligands (potential bioactive compounds for use in the present invention) are selected, synthesized and their binding characteristics and physicochemical properties determined for comparison with the original specifications. Cosmix-plexing® may for example be applied to:
• Peptides: for example generating peptides consisting of 9 or 15 amino acids with nanomolar affinities. • Antibodies: for example generating antibody-like, huFab fragments with nanomolar affinities. • Proteins
Methods disclosed in US Patents Number 6,310,191 and 6,640,192 are also dis- closed herein by reference as being suitable embodiments of Cosmix plexing. For use in generating potential bioactive compounds.
Evolutionary methods such as those described herein may be used to generate bioactive compounds capable of binding to any of the toxins, antitoxins and TA com- plexes described herein. In all cases of evolution discussed herein, it is preferred that the potential bioactive compound binds to, or close to, an area of an antitoxin and/or toxin that intereacts with its corresponding toxin or antitoxin (i.e. a binding interface). Without being bound by theory, it is believed that this would increase the likelihood of success of identifying a suitable bioactive species as it would disrupt the binding interface between said toxin and antitoxin, preventing or reducing binding and thus preventing or reducing TA complex formation, thus preventing neutralisation of the toxin. In the most preferred embodiment of the present invention, it is preferred that the bioactive species is designed to bind one or bacterial antitoxins (preferably at one or more binding interface), such as an antitoxin from one or more of the following TA systems: • parDE systems
• chp systems (chpA locus has also been called mazEF)
• higBA systems (HigB toxin, HigA antitoxin)
• phd/doc systems • ccdAB systems (ccdA antitoxin, ccdB toxin)
• vapBC systems (also known as vagCD or STBORF1 and STBORF2)
• rel BE systems
Computer-aided drug design In one embodiment of the present invention, it is envisaged that the bioactive species of the present invention may have been identified using a method comprising a computer-aided drug design method, more preferably a structure-based drug design method. For example, one method envisaged as being useful for identifying a potential bioactive species comprises the steps of:
a. employing a three-dimensional structure of a toxin, anti-toxin or toxin/antitoxin (TA) complex, or at least one sub-domain thereof
b. identifying one or more potential bioactive species by designing or selecting a compound for interaction with said known three-dimensional structure.
By "sub-domain" is meant at least one complete element of secondary structure, for example an alpha helix or a beta sheet.
More specifically, a potential bioactive species for use in the present invention may be examined through the use of computer modelling, using a docking program such as GRAM, DOCK, or AUTODOCK (see Walters et al., Drug Discovery Today, Vol.3,
No.4, (1998), 160-178, and Dunbrack et al., Folding and Design, 2, (1997), 27-42) to identify potential bioactive species. This procedure can include computer fitting of potential bioactive species to the known structure to ascertain how well the shape and the chemical structure of the potential bioactive species will bind to the toxin, antitoxin or TA complex of interest.
Also computer-assisted, manual examination of the known structure, or partly- known, structure of a toxin, antitoxin or TA complex may be performed. The use of programs such as GRID (Goodford, J. Med. Chem., 28, (1985), 849-857)n-a pro- gram that determines probable interaction sites between molecules with various functional groups may also be used to to predict partial structures of suitable bioactive species.
Computer programs can be employed to estimate the attraction, repulsion, and steric hindrance of the two binding partners (e.g. the potential bioactive species and an area of a toxin, antitoxin or TA complex). Generally the tighter the fit, the fewer the steric hindrances, and the greater the attractive forces, the more potent the potential bioactive species, since these properties are consistent with a tighter binding constant. Furthermore, the more specificity in the design of a potential drug, the more likely it is that the drug will not interact with other proteins as well. This will tend to minimise potential side-effects due to unwanted interactions with other proteins.
Alternatively, step b. may involve selecting the bioactive species by computationally screening a database of compounds for interaction with the toxin, antitoxin or TA complex of interest. For example, a 3-D descriptor for the potential bioactive species may be derived, the descriptor including geometric and functional constraints derived from the architecture and chemical nature of the toxin, antitoxin or TA complex. The descriptor may then be used to interrogate the compound database, a potential bioactive species being a compound that has a good match to the features of the descriptor. In effect, the descriptor is a type of virtual pharmacophore.
Having designed or selected possible binding partners (i.e. potential bioactive species), these can then be subjected to the evaluation methods of the present inven- tion.
A computer-aided design method useful in generating suitable potential bioactive compounds may comprise the further steps of:
c. obtaining or synthesising said potential bioactive species;
d. forming a complex of a toxin, antitoxin or TA complex and said potential bioactive species; and
e. analysing said complex by structural techniques such as NMR or X-ray crystallography to determine the ability of said potential bioactive species to interact with said toxin, antitoxin or TA complex. Detailed "structural information can then be obtained about the binding of the potential bioactive species to said toxin, antitoxin or TA complex, and in the light of this information adjustments can be made to the struc- ture or functionality of the potential bioactive species, e.g. to improve binding to the active site. Steps c. to e. may be repeated and re-repeated as necessary.
Detailed description of suitable structure-based drug design (SBDD) methods Determination of the 3D structure of a toxin, antitoxin or TA complex provides impor- tant information about the likely interaction sites. This information may then be used for rational design of bioactive species, e.g. by computational techniques which identify possible binding ligands for the interaction sites, by enabling linked-fragment approaches to drug design, and by enabling the identification and location of bound ligands using structural techniques such as NMR or X-ray crystallographic analysis.
NMR methods
Nuclear Magnetic Resonance (NMR) spectroscopy permits access to a wealth of information about the molecular recognition reaction. NMR has evolved dramatically in the last 15 years and, in parallel with the development of NMR methods for the determination of protein structure, a variety of tools aimed at detecting protein ligand interactions have been proposed and are being now used both in industrial and academic laboratories as valuable tools for structure-based drug discovery. Very recent developments have considerably increased the fraction of therapeutic targets that can be tackled by NMR and significantly reduced the amount of sample required for analysis; (for more detail on NMR techniques, see Salvatella X, Giralt E., "NMR-based methods and strategies for drug discovery", Chem Soc Rev. 2003 Nov;32(6):365-72, incorporated by reference herein).
Crystallographic methods
Over the past 12 years, drugs have been developed using structure-based drug design relying upon traditional crystallographic methods. Established successes, such as the drugs designed against HIV-1 protease and neuraminidase, demonstrate the utility of a structure-based approach in the drug-discovery process.. Re- cent technological innovations such as submicroliter high-throughput crystallization, high-performance synchrotron beamlines and rapid binding-site analysis of de novo targets using virtual ligand screening and small molecule co-crystallization have resulted in a significant advance in structure-based drug discovery. Preferred X-ray crystallography methods, most preferably high-throughput methods, are described in the following articles, incorporated by reference herein:
E. Abola, P. Kuhn, T. Earnest and R.C. Stevens , Automation of X-ray crystallography. Nat Struct Biol 7 (2000), pp. 973-977; S.W. Muchmore, J. Olson, R. Jones, J. Pan, M. Blum, J. Greer, S.M. Merrick, P. Magdalinos and V.L. Nienaber , Automated crystal mounting and data collection for protein crystallography. Struct Fold Des 8 (2000), pp. R243-R246; P.D. Adams and R.W. Grosse-Kunstleve , Recent developments in software for the automation of crystallographic macromolecular structure determination. Curr Opin Struct Biol 10 (2000), pp. 564-568;
Perrakis, R. Morris and V.S. Lamzin , Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6 (1999), pp. 458-463; R.C. Stevens , High-throughput protein crystallization. Curr Opin Struct Biol 10 (2000), pp. 558-563;
Goodwill KE, Tennant MG, Stevens RC: High-throughput X-ray crystallography for structure-based drug design. Drug Discovery Today 2001 , 6 (Genomics
Suppl):S113-118;
U. Mueller, L. Nyarsik, M. Horn, H. Rauth, T. Przewieslik, W. Saenger, H. Lehrach and H. Eickhoff , Development of a technology for automation and miniaturization of protein crystallization. J Biotechnol 85 (2001), pp. 7-14.
Peter Kuhn et al., "The genesis of high-throughput structure-based drug discovery using protein crystallography" Rowland RS, "Using X-ray crystallography in drug discovery" Curr Opin Drug Discov Devel. 2002 Jul;5(4):613-9.
Greer et al. (J. of Medicinal Chemistry, Vol. 37, (1994), 1035-1054) describes an iterative approach to ligand design based on repeated sequences of computer modelling, protein-ligand complex formation and X-ray analysis. Thus novel thymidylate synthase bioactive species series were designed de novo by Greer et al., and bioactive species may also be designed in the this way. More specifically, using e.g. GRID on the solved 3D structure of a toxin, antitoxin or TA complex, a ligand (e.g. a potential bioactive species) may be designed that complements the known structure of a toxin, antitoxin or TA complex. The ligand can then be synthesised, formed into a complex with said toxin, antitoxin or TA complex, and said complex then analysed by X-ray crystallography to identify the actual position of the bound ligand. The structure and/or functional groups of the ligand can then be adjusted, if necessary, in view of the results of the X-ray analysis, and the synthesis and analysis sequence repeated until an optimised ligand is obtained. Related approaches to structure- based drug design are also discussed in Bohacek et al., Medicinal Research Reviews, Vol.16, (1996), 3-50.
More purely computational techniques for rational drug design may also be used to design bioactive species (for an overview of these techniques see e.g. Walters et al., Drug Discovery Today, Vol.3, No.4, (1998), 160-178). For example, automated ligand-receptor docking programs (discussed e.g. by Jones et al. in Current Opinion in Biotechnology, Vol.6, (1995), 652-656) may be used to design potential bioactive species. Docking algorithms may be used to perform docking of large virtual libraries to structurally known sites and thus save on unnecessary compound screening. Docking algorithms allow the user to search large virtual compound sets for structures that have the right geometric and electronic features to fit the designated sites. The algorithms speed up the in silico search procedure, before more extensive screening process(es) on a selected subset of actual compounds. For a more through description of flexible docking, see H.A. Carlson and J.A. McCammon, Accommodating protein flexibility in computational drug design. Mol Pharmacol 57 (2000), pp. 213-2 8Carlson and McCammon (incorporated herein by reference). Preferably, NMR structures and/or the use of crystal structures can be used to create a composite binding site, which is more likely to find possible ligands from a da- tabase of drug-like molecules. It is well known that whole domains within a protein can move relative to one another (often a result of binding or activation) with obvious consequences for ligand binding. The challenge of docking a flexible ligand into a rigid receptor has been taken up by a number of groups; one particularly good outcome is the FlexX algorithm (see B. Kramer, M. Rarey and T. Lengauer, Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37 (1999), pp. 228-241, incorporated herein by reference)
A number of scoring functions for ligand binding can be used in these methods, such as those disclosed in J.R.H. Tame, Scoring functions: a view from the bench. J Comput Aided Mol Des 13 (1999), pp. 99-108; H. Gohlke, M. Hendlich and G.
Klebe, Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295 (2000), pp. 337-356; I. Muegge and Y.C. Martin, A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42 (1999), pp. 791-804; J.B.O. Mitchell, R.A. Laskowski, A. Alex and J.M. Thornton, BLEEP — potential of mean force describing protein-ligand interactions: I. Generating potential. J Comput Chem 20 (1999), pp. 1165-1176; J.B.O. Mitchell, R.A. Laskowski, A. Alex, M.J. Forster and J.M. Thornton, BLEEP — potential of mean force describing protein-ligand interactions: Calculation of binding energies and comparison with experimental data. J Comput Chem 20 (1999), pp. 1165-1176; M. Liu and S. Wang, MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13 (1999), pp. 435^-51 ; J.Y. Trosset and H.A. Scheraga, Prodock: software package for protein modeling and docking. J Comput Chem 20 (1999), pp. 412-427; S. Makino, T.J.A. Ewing and I.D. Kuntz,.DREAM++: flexible docking program for virtual combinatorial libraries. J Comput Aided Mol Des 13 (1999), pp. 513-532;
It is possible for huge numbers of drug-like candidates to be ranked by docking, for example a collaboration between Protherics and SGI (Silicon Graphics Inc.) has resulted in DockCrunch, a software/hardware system capable of scoring one million compounds in around six days (DockCrunch on World Wide Web URL: http://www.protherics.com/crunch).
Linked-fragment approaches to drug design also require accurate information on the atomic coordinates of target receptors. The basic idea behind these approaches is to determine (computationally or experimentally) the binding locations of plural ligands to a target molecule, and then construct a molecular scaffold to connect the ligands together in such a way that their relative binding positions are preserved. The connected ligands thus form a potential lead compound that can be further refined using e.g. the iterative technique of Greer et al. For a virtual linked-fragment approach see Verlinde et al., J. of Computer-Aided Molecular Design, 6, (1992),
131-147. The use of these approaches to design bioactive species is made possible by the knowledge of the structure of one or more of a toxin, antitoxin or TA complex.
Some of the techniques and approaches to structure-based drug design described above rely at some stage on X-ray analysis to identify the binding position of a ligand in a ligand-protein complex. A common way of doing this is to perform X-ray crystallography on the complex, produce a difference Fourier electron density map, and associate a particular pattern of electron density with the ligand. However, in order to produce the map (as explained e.g. by Blundell et al., in Protein Crystallog- raphy, Academic Press, New York, London and San Francisco, (1976)) it is neces- sary to know beforehand the protein 3D structure (or at least the protein structure factors). Therefore, determination of one or more of a toxin, antitoxin or TA complex structure also allows difference Fourier electron density maps of ligand complexes with said toxin, antitoxin or TA complex to be produced, which can greatly assist the process of rational drug design.
Virtual or computer-based screening of large chemical libraries against structural and electrostatic information of target proteins has established itself as a powerful and rapid tool for directing, or focussing' the design of experimental libraries. A va- riety of in silico docking and scoring tools have been developed to computationally screen for favourable small molecule/protein interaction partners (see e.g. R. Abag- yan and M. Totrov , High-throughput docking for lead generation. Curr Opin Chem Biol 5 (2001), pp. 375-382 and T.L. Blundell, H. Jhoti and C. Abell , High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1 (2002), pp. 45-54). Recently, the incorporation of more than one virtual ligand screening method was found to uncover more favourable drug leads ( see P.S. Charifson, J.J. Corkery, M.A. Murcko and W.P. Walters, Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42 (1999), pp. 5100-5109). Additionally, virtual ligand screening methods can be validated and/or supplemented with NMR-based or X-ray crystallo- graphic-based co-complex experimental screening methods. The 'SAR by NMR' methodology pioneered by Fesik (see S.B. Shuker, P.J. Hajduk, R.P. Meadows and S.W. Fesik , Discovering high-affinity ligands for proteins: SAR by NMR. Science 274 (1996), pp. 1531-1534) (SAR, structure-activity relationship) provides important information for lead optimization efforts, and NMR-based binding assays are being incorporated in SBDD efforts (e.g. see triadtherapeutics.com). X-ray crystallographic screening is also being used at Abbott Laboratories (Abbott Park, IL, USA) and Astex Technology. In some cases, an integrated approach using both virtual and experimental screening and optimization can be used to identify suitable potential bioactive species.
Approaches to identify binding pockets on a target toxin, antitoxin or TA complex may also be used to aid design of suitable bioactive compounds: these techniques include geometric analyses of protein surfaces, comparisons of protein structures, similarity searches in databases of protein cavities, and docking scans to reveal areas of high ligand complementarity. In the context of binding-site analysis, powerful data mining tools help to retrieve experimental information about related protein-ligand complexes. To identify interaction hot spots, various potential functions and knowledge-based approaches are available for mapping binding regions. The results may subsequently be used to guide virtual screenings for new ligands via pharmacophore searches or docking simulations (for more information on these methods, see Sotriffer C, Klebe G, "Identification and mapping of small- molecule binding sites in proteins: computational tools for structure-based drug design", Farmaco. 2002 Mar;57(3):243-51, incorporated herein by reference.)
Other approaches to computer-aided bioactive molecule design A first stage of a drug design program may involve computer-based in silico screening of compound databases (such as the Cambridge Structural Database) with the aim of identifying compounds which interact with a site or sites of the target bio- molecule. Screening selection criteria may be based on pharmacokinetic properties such as metabolic stability and toxicity. However, determination of at least part of the structure of a toxin, antitoxin or TA complex allows the architecture and chemical nature of each toxin, antitoxin or TA complex to be identified, which in turn allows the geometric and functional constraints of a descriptor for the potential bioactive species to be derived. The descriptor is, therefore, a type of virtual 3-D pharmacophore, which can also be used as selection criteria or filter for database screening.
Bioactive molecules may also be selected using a method based on generation and selection of molecular diversity, i.e. a so-called "Darwinian" method, i.e. a method different from the structure-based, structure-modulation approaches described above. An example of a Darwinian method is inverse QSAR. It consists of the computational generation of candidate chemical structures and their selection according to a previously established QSAR model. New trends in the field of combinatorial chemical syntheses comprise the concepts of virtual combinatorial synthesis and virtual or computational screening. Virtual combinatorial synthesis, closely related to inverse QSAR, can be defined as the computational simulation of the generation of new chemical structures by using a combinatorial strategy to generate a virtual library. Virtual screening is the selection of chemical structures having potential de- sirable properties from a database or virtual library in order to be synthesized and assayed. For more information on these methods as envisaged for use in the methods of the present invention, see de Julian-Ortiz JV, "Virtual darwinian drug design: QSAR inverse problem, virtual combinatorial chemistry, and computational screening". Comb Chem High Throughput Screen. 2001 May;4(3):295-310, incorporated herein by reference.
Various QSAR predictive methods have been developed to help direct the synthesis and screening process, for example as disclosed in the following references, incorporated herein by reference: D. Barnum et al., Identification of Common Functional Configuration Among Molecules. J. Chem. Inf. Comput. Sci. 36 (1996), pp. 563-571.
J. Greene et. al, Chemical Function Queries for 3D Database Search. J. Chem. Inf. Comput. Sci. 34 (1994), pp. 1297-1308. R.D. Cramer, III et al, Comparative Molecular Field Analysis (CoMFA), Effect of Shape on Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc. 110 (1998), pp.
5959-5967.
M.J. McGregor and S.M. Muskal, Pharmacophore Fingerprinting. Application to QSAR and Focused Library Design. J. Chem. Inf. Comput. Sci. 39 (1999), pp. 569- 574. H. Matter, Selecting Optimally Diverse Compounds from Structure Databases: A
Validation Study of Two-Dimensional and Three-Dimensional Molecular Descriptors. J. Med. Chem. 40 (1997), p. 1219.
H.J. Bohm and M. Stahl, Structure-Based Library Design: Molecular Modelling Merges with Combinatorial Chemistry. Curr Opin Chem Biol 4 (2000), pp. 283-286. D. Joseph-McCarthy, Computational Approaches to Structure-Based Ligand Design.
Pharmacol Ther 84 (1999), pp. 179-191.
The Woolford algorithm, described in US Patent 6,226,603, may also be used to predict preferred bioactive species binding targets in one or more of a toxin, anti- toxin or TA complex.
Other references disclosing suitable computer-based drug design methods for generating potential bioactive species for use in the present invention include (incorporated herein by reference): Waszkowycz B, "Structure-based approaches to drug design and virtual screening" Curr Opin Drug Discov Devel. 2002 May;5(3):407-13. Barry A. Bunin, "Increasing the efficiency of small-molecule drug discovery" DDT Vol. 8, No 18 September 2003.
Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strate- gies, Wiley-Liss, Inc
Lee A, Breitenbucher JG, "The impact of combinatorial chemistry on drug discovery". Curr Opin Drug Discov Devel. 2003 Jul;6(4):494-508. Veselovsky AV, Ivanov AS, "Strategy of computer-aided drug design", Curr Drug Targets Infect Disord. 2003 Mar;3(1):33-40. Paul J Gane and Philip M Dean - "Recent advances in structure-based rational drug design" Current Opinion in Structural Biology, Volume 10, Issue 4 , 1 August 2000, Pages 401-404
Klebe G, "Recent developments in structure-based drug design", J Mol Med. 2000;78(5):269-81. J. Antel, Integration of combinatorial chemistry and structure based drug design. Curr Opin Drug Discov Dev 2 (1999), pp. 224-233.
Suitable structures and models useful for structure based drug design to generate potential bioactive compounds are any complete or partial structures of the toxins, antitoxins or TA complexes described herein. In all cases of structure-based drug design discussed herein, it is preferred that the bioactive species is designed to bind to, or close to, an area of an antitoxin and/or toxin that intereacts with its corresponding toxin or antitoxin. Without being bound by theory, it is believed that this would increase the likelihood of success of identifying a suitable bioactive species as it would disrupt the binding interface between said toxin and antitoxin, thus reducing or preventing TA complex formation, thus preventing neutralisation of the toxin. In the most preferred embodiment of the present invention, it is preferred that the bioactive species is designed to bind a TA complex, such as a TA complex of one or more of the following TA systems: • parDE systems
• chp systems (chpA locus has also been called mazEF)
• higBA systems (HigB toxin, HigA antitoxin)
• phd/doc systems
• ccdAB systems (ccdA antitoxin, ccdB toxin) • vapBC systems (also known as vagCD or STBORF1 and STBORF2)
• RelBE systems
Most preferably, the complex is a RelBE protein complex or, most preferably, the MazEF protein complex, the structure of which is disclosed in Kamada, K et al., Crystal Structure of the Maze/Mazf Complex. Molecular Bases of Antidote-Toxin
Recognition Mol. Cell 11 pp. 875 (2003).
Preferred structures for use in a method of structure based drug design may also include molecular models produced by those of skill in the art, including models produced by any suitable molecular modeling method, such as molecular replacement and fold recognition-related methods.
Administration forms The main routes of bioactive substance delivery in the treatment methods of the present invention are intravenous, oral, and topical, as will be described below. Other drug-administration methods, such as subcutaneous injection or via inhalation, which are effective to deliver the drug to a target site or to introduce the drug into the bloodstream, are also contemplated.
One area to which the pharmaceutical preparation of the invention is administered may be any mucosal membrane of the individual to which the biologically active substance is to be given, e.g. in the nose, vagina, eye, mouth, genital tract, lungs, gastrointestinal tract, or rectum, preferably the mucosa of the nose, mouth or va- gina.
The bioactive substances of the invention may be administered parenterally, that is by intravenous, intramuscular, subcutaneous intranasal, intrarectal, intravaginal or intraperitoneal administration. The subcutaneous and intramuscular forms of par- enteral administration are generally preferred. Appropriate dosage forms for such administration may be prepared by conventional techniques. The bioactive species may also be administered by inhalation, that is by intranasal and oral inhalation administration. Appropriate dosage forms for such administration, such as an aerosol formulation or a metered dose inhaler, may be prepared by conventional techniques. The bioactive substances according to the invention may be administered with at least one other compound, such as another bioactive species of the present invention or another anti-microbial compound. By "administered with" is meant that the compounds may be administered simultaneously, either as separate formulations or combined in a unit dosage form, or administered sequentially.
Dosing regimes
The dosage requirements will vary with the particular drug composition employed, the route of administration and the particular subject being treated. Ideally, an indi- vidual to be treated by the present method will receive a pharmaceutically effective amount of the bioactive substances in the maximum tolerated dose, generally no higher than that required before drug resistance develops.
For all methods of use disclosed herein for the bioactive substances, the daily oral dosage regimen will preferably be from about 0.01 to about 80 mg/kg of total body weight. The daily parenteral dosage regimen about 0.001 to about 80 mg/kg of total body weight. The daily topical dosage regimen will preferably be from 0.1 mg to 150 mg, administered one to four, preferably two or three times daily, thus it is preferred that the contacting of said microbial cell with a bioactive species as described herein is performed 1-4 times daily, such as 2-3 times daily or once daily.
The daily inhalation dosage regimen will preferably be from about 0.01 mg/kg to about 1 mg/kg per day. It will also be recognized by one of skill in the art that the optimal quantity and spacing of individual dosages of a bioactive species or a phar- maceutically acceptable salt thereof will be determined by the nature and extent of the condition being treated, the form, route and site of administration, and the particular patient being treated, and that such optimums can be determined by conventional techniques. It will also be appreciated by one of skill in the art that the optimal course of treatment, i.e., the number of doses of a bioactive species or a pharma- ceutically acceptable salt thereof given per day for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment determination tests.
The term "unit dosage form" as used herein refers to physically discrete units suit- able as unitary dosages for human and animal subjects, each unit containing a pre- determined quantity of a bioactive substance, alone or in combination with other agents, calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier, or vehicle. The specifications for the unit dosage forms of the present invention depend on the particular bioactive substance or bioactive species employed and the effect to be achieved, as well as the pharmacodynamics associated with each bioactive substances in the individual. The dose administered should be an " effective amount" or an amount necessary to achieve an "effective level" in the individual patient.
Since the "effective level" is used as the preferred endpoint for dosing, the actual dose and schedule can vary, depending on interindividual differences in pharmacokinetics, drug distribution, and metabolism. The "effective level" can be defined, for example, as the blood or tissue level desired in the patient that corresponds to a concentration of one or more bioactive species according to the invention.
Pharmaceutical compositions containing a bioactive substance of the present invention may be prepared by conventional techniques, e.g. as described in Remington: The Science and Practice of Pharmacy 1995, edited by E. W. Martin, Mack Publishing Company, 19th edition, Easton, Pa. The compositions may appear in conven- tional forms, for example capsules, tablets, aerosols, solutions, suspensions or topical applications.
Formulations
Whilst it is possible for the bioactive substances, or salts thereof, of the present in- vention to be administered as the raw chemical, it is preferred to present them in the form of a pharmaceutical formulation. Accordingly, the present invention further provides a pharmaceutical formulation, for medicinal application, which comprises a bioactive species of the present invention or a pharmaceutically acceptable salt thereof, as herein defined, and a pharmaceutically acceptable carrier therefor.
The bioactive substances of the present invention may be formulated in a wide variety of oral administration dosage forms. The pharmaceutical compositions and dosage forms may comprise the bioactive substances of the invention or pharmaceutically acceptable salts or a crystal form thereof as the active component. The phar- maceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, wetting agents, tablet disintegrating agents, or an encapsulating mate- rial.
Preferably, the composition will be about 0.5% to 75% by weight of a bioactive substance or bioactive substances of the invention, with the remainder consisting of suitable pharmaceutical excipients. For oral administration, such excipients include pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, gelatin, sucrose, magnesium carbonate, and the like.
In powders, the carrier is a finely divided solid which is a mixture with the finely di- vided active component. In tablets, the active component is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably containing from one to about seventy percent of the active bioactive species. Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term "preparation" is intended to include the formulation of the active bioactive species with encapsulating material as carrier providing a capsule in which the active component, with or without carriers, is surrounded by a carrier, which is in association with it. Similarly, cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be as solid forms suitable for oral administration.
Drops according to the present invention may comprise sterile or non-sterile aqueous or oil solutions or suspensions, and may be prepared by dissolving the bioactive species in a suitable aqueous solution, optionally including a bactericidal and/or fungicidal agent and/or any other suitable preservative, and optionally including a surface active agent. The resulting solution may then be clarified by filtration, transferred to a suitable container which is then sealed and sterilized by autoclaving or maintaining at 98-100 °C for half an hour. Alternatively, the solution may be steril- ized by filtration and transferred to the container aseptically. Examples of bacteri- cidal and fungicidal agents suitable for inclusion in the drops are phenylmercuric nitrate or acetate (0.002%), benzalkonium chloride (0.01%) and chlorhexidine acetate (0.01 %). Suitable solvents for the preparation of an oily solution include glycerol, diluted alcohol and propylene glycol.
Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. These preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artifi- cial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
Other forms suitable for oral administration include liquid form preparations including emulsions, syrups, elixirs, aqueous solutions, aqueous suspensions, toothpaste, gel dentrifrice, chewing gum, or solid form preparations which are intended to be converted shortly before use to liquid form preparations. Emulsions may be prepared in solutions in aqueous propylene glycol solutions or may contain emulsifying agents such as lecithin, sorbitan monooleate, or acacia. Aqueous solutions can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizing and thickening agents. Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents. Solid form preparations include solutions, suspensions, and emulsions, and may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
The bioactive substances of the present invention may be formulated for parenteral administration (e.g., by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous polyethylene glycol. Examples of oily or nonaqueous carriers, diluents, solvents or vehicles include propylene glycol, polyethylene glycol, vegetable oils (e.g., olive oil), and injectable organic esters (e.g., ethyl oleate), and may contain formulatory agents such as preserving, wetting, emulsifying or suspending, stabilizing and/or dispersing agents. Alternatively, the bioactive species may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilisation from solution for constitution before use with a suitable ve- hide, e.g., sterile, pyrogen-free water.
Oils useful in parenteral formulations include petroleum, animal, vegetable, or synthetic oils. Specific examples of oils useful in such formulations include peanut, soybean, sesame, cottonseed, corn, olive, petrolatum, and mineral. Suitable fatty acids for use in parenteral formulations include oleic acid, stearic acid, and isostearic acid. Ethyl oleate and isopropyl myristate are examples of suitable fatty acid esters.
Suitable soaps for use in parenteral formulations include fatty alkali metal, ammonium, and triethanolamine salts, and suitable detergents include (a) cationic deter- gents such as, for example, dimethyl dialkyl ammonium halides, and alkyl pyridinium halides; (b) anionic detergents such as, for example, alkyl, aryl, and olefin sul- fonates, alkyl, olefin, ether, and monoglyceride sulfates, and sulfosuccinates, (c) nonionic detergents such as, for example, fatty amine oxides, fatty acid alkanola- mides, and polyoxyethylenepolypropylene copolymers, (d) amphoteric detergents such as, for example, alkyl-. eta.-aminopropionates, and 2-alkyl-imidazoline quaternary ammonium salts, and (e) mixtures thereof.
The parenteral formulations typically will contain from about 0.5 to about 25% by weight of the bioactive species in solution. Preservatives and buffers may be used. In order to minimize or eliminate irritation at the site of injection, such compositions may contain one or more nonionic surfactants having a hydrophile-lipophile balance (HLB) of from about 12 to about 17. The quantity of surfactant in such formulations will typically range from about 5to about 15% by weight. Suitable surfactants include polyethylene sorbitan fatty acid esters, such as sorbitan monooleate and the high molecular weight adducts of ethylene oxide with a hydrophobic base, formed by the condensation of propylene oxide with propylene glycol. The parenteral formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid excipient, for example, water, for injections, immediately prior to use. Extemporaneous injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
The bioactive substances of the invention can also be delivered topically. Regions for topical administration include the skin surface and also mucous membrane tissues of the vagina, rectum, nose, mouth, and throat. Compositions for topical administration via the skin and mucous membranes should not give rise to signs of irritation, such as swelling or redness.
The topical composition may include a pharmaceutically acceptable carrier adapted for topical administration. Thus, the composition may take the form of a suspension, solution, ointment, lotion, sexual lubricant, cream, foam, aerosol, spray, suppository, implant, inhalant, tablet, capsule, dry powder, syrup, balm or lozenge, for example. Methods for preparing such compositions are well known in the pharmaceutical in- dustry.
The bioactive substances of the present invention may be formulated for topical administration to the epidermis as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents. Formulations suitable for topical administration in the mouth include lozenges comprising active agents in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the bioactive species in an inert base such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising the bioactive species in a suitable liquid carrier.
Creams, ointments or pastes according to the present invention are semi-solid for- mulations of the bioactive species for external application. They may be made by mixing the bioactive species in finely-divided or powdered form, alone or in solution or suspension in an aqueous or non-aqueous fluid, with the aid of suitable machinery, with a greasy or non-greasy base. The base may comprise hydrocarbons such as hard, soft or liquid paraffin, glycerol, beeswax, a metallic soap; a mucilage; an oil of natural origin such as almond, corn, arachis, castor or olive oil; wool fat or its de- rivatives or a fatty acid such as steric or oleic acid together with an alcohol such as propylene glycol or a macrogel. The formulation may incorporate any suitable surface active agent such as an anionic, cationic or non-ionic surfactant such as a sorbitan ester or a polyoxyethylene derivative thereof. Suspending agents such as natural gums, cellulose derivatives or inorganic materials such as silicaceous silicas, and other ingredients such as lanolin, may also be included.
Lotions according to the present invention include those suitable for application to the skin or eye. An eye lotion may comprise a sterile aqueous solution optionally containing a bactericide and may be prepared by methods similar to those for the preparation of drops. Lotions or liniments for application to the skin may also include an agent to hasten drying and to cool the skin, such as an alcohol or acetone, and/or a moisturizer such as glycerol or an oil such as castor oil or arachis oil.
The bioactive substances described herein can be administered transdermally.
Transdermal administration typically involves the delivery of a pharmaceutical agent for percutaneous passage of the drug into the systemic circulation of the patient. The skin sites include anatomic regions for transdermally administering the drug and include the forearm, abdomen, chest, back, buttock, mastoidal area, and the like.
Transdermal delivery is accomplished by exposing a source of the complex to a patient's skin for an extended period of time. Transdermal patches have the added advantage of providing controlled delivery of a bioactive substances to the body. See Transdermal Drug Delivery: Developmental Issues and Research Initiatives, Hadgraft and Guy (eds.), Marcel Dekker, Inc., (1989); Controlled Drug Delivery:
Fundamentals and Applications, Robinson and Lee (eds.), Marcel Dekker Inc., (1987); and Transdermal Delivery of Drugs, Vols. 1-3, Kydonieus and Berner (eds.), CRC Press, (1987). Such dosage forms can be made by dissolving, dispersing, or otherwise incorporating the pharmaceutical agent-chemical modifier complex in a proper medium, such as an elastomeric matrix material. Absorption enhancers can also be used to increase the flux of the bioactive species across the skin. The rate of such flux can be controlled by either providing a rate-controlling membrane or dispersing the bioactive species in a polymer matrix or gel. A variety of types of transdermal patches will find use in the methods described herein. For example, a simple adhesive patch can be prepared from a backing material and an acrylate adhesive. The bioactive substance is formulated into the adhesive casting solution and allowed to mix thoroughly. The solution is cast directly onto the backing material and the casting solvent is evaporated in an oven, leaving an adhesive film. The release liner can be attached to complete the system.
Alternatively, a polyurethane matrix patch can be employed to deliver the pharmaceutical agent-chemical modifier complex. The layers of this patch comprise a back- ing, a polyurethane drug/enhancer matrix, a membrane, an adhesive, and a release liner. The polyurethane matrix is prepared using a room temperature curing polyurethane prepolymer. Addition of water, alcohol, and complex to the prepolymer results in the formation of a tacky firm elastomer that can be directly cast only the backing material.
A further embodiment of this invention will utilize a hydrogel matrix patch. Typically, the hydrogel matrix will comprise alcohol, water, drug, and several hydrophilic polymers. This hydrogel matrix can be incorporated into a transdermal patch between the backing and the adhesive layer.
The liquid reservoir patch will also find use in the methods described herein. This patch comprises an impermeable or semipermeable, heat sealable backing material, a heat sealable membrane, an acrylate based pressure sensitive skin adhesive, and a siliconized release liner. The backing is heat sealed to the membrane to form a reservoir which can then be filled with a solution of the complex, enhancers, gelling agent, and other excipients.
Foam matrix patches are similar in design and components to the liquid reservoir system, except that the gelled pharmaceutical agent-chemical modifier solution is constrained in a thin foam layer, typically a polyurethane. This foam layer is situated between the backing and the membrane which have been heat sealed at the periphery of the patch.
For passive delivery systems, the rate of release is typically controlled by a mem- brane placed between the reservoir and the skin, by diffusion from a monolithic de- vice, or by the skin itself serving as a rate-controlling barrier in the delivery system. See U.S. Pat. Nos. 4,816,258; 4,927,408; 4,904,475; 4,588,580, 4,788,062; and the like. The rate of drug delivery will be dependent, in part, upon the nature of the membrane. For example, the rate of drug delivery across membranes within the body is generally higher than across dermal barriers. The rate at which the complex is delivered from the device to the membrane is most advantageously controlled by the use of rate-limiting membranes which are placed between the reservoir and the skin. Assuming that the skin is sufficiently permeable to the complex (i.e., absorption through the skin is greater than the rate of passage through the membrane), the membrane will serve to control the dosage rate experienced by the patient.
Suitable permeable membrane materials may be selected based on the desired degree of permeability, the nature of the complex, and the mechanical considerations related to constructing the device. Exemplary permeable membrane materials include a wide variety of natural and synthetic polymers, such as polydimethylsilox- anes (silicone rubbers), ethylenevinylacetate copolymer (EVA), polyurethanes, poly- urethane-polyether copolymers, polyethylenes, polyamides, polyvinylchlorides (PVC), polypropylenes, polycarbonates, polytetrafluoroethylenes (PTFE), cellulosic materials, e.g., cellulose triacetate and cellulose nitrate/acetate, and hydrogels, e.g., 2-hydroxyethylmethacrylate (HEMA).
Other items may be contained in the device, such as other conventional components of therapeutic products, depending upon the desired device characteristics. For example, the compositions according to this invention may also include one or more preservatives or bacteriostatic agents, e.g., methyl hydroxybenzoate, propyl hydroxybenzoate, chlorocresol, benzalkonium chlorides, and the like. These pharmaceutical compositions also can contain other active ingredients such as antimicrobial agents, particularly antibiotics, anesthetics, analgesics, and antipruritic agents.
The bioactive substances of the present invention may be formulated for administration as suppositories. A low melting wax, such as a mixture of fatty acid glycerides or cocoa butter is first melted and the active component is dispersed homogeneously, for example, by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and to solidify. The bioactive substance may be formulated into a suppository comprising, for example, about 0.5% to about 50% of a bioactive species of the invention, disposed in a polyethylene glycol (PEG) carrier (e.g., PEG 1000 [96%] and PEG 4000 [4%].
The bioactive substances of the present invention may be formulated for vaginal administration. Pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the bioactive species such carriers as are known in the art to be appropriate.
The bioactive substances of the present invention may be formulated for nasal administration. The solutions or suspensions are applied directly to the nasal cavity by conventional means, for example with a dropper, pipette or spray. The formulations may be provided in a single or multidose form. In the latter case of a dropper or pi- pette this may be achieved by the patient administering an appropriate, predetermined volume of the solution or suspension. In the case of a spray this may be achieved for example by means of a metering atomizing spray pump.
The bioactive substances of the present invention may be formulated for aerosol administration, particularly to the respiratory tract and including intranasal administration. The bioactive species will generally have a small particle size for example of the order of 5 microns or less. Such a particle size may be obtained by means known in the art, for example by micronization. The bioactive species is provided in a pressurized pack with a suitable propellant such as a chlorofluorocarbon (CFC) for example dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoro- ethane, carbon dioxide or other suitable gas. The aerosol may conveniently also contain a surfactant such as lecithin. The dose of drug may be controlled by a metered valve. Alternatively the bioactive species may be provided in a form of a dry powder, for example a powder mix of the bioactive species in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidine (PVP). The powder carrier will form a gel in the nasal cavity. The powder composition may be presented in unit dose form for example in capsules or cartridges of e.g., gelatin or blister packs from which the powder may be administered by means of an inhaler. When desired, formulations can be prepared with enteric coatings adapted for sustained or controlled release administration of the bioactive species.
The pharmaceutical preparations are preferably in unit dosage forms. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
Pharmaceutically acceptable salts
Pharmaceutically acceptable salts of the instant bioactive substances, where they can be prepared, are also intended to be covered by this invention. These salts will be ones which are acceptable in their application to a pharmaceutical use. By that it is meant that the salt will retain the biological activity of the parent bioactive species and the salt will not have untoward or deleterious effects in its application and use in treating diseases.
Pharmaceutically acceptable salts are prepared in a standard manner. If the parent bioactive species is a base it is treated with an excess of an organic or inorganic acid in a suitable solvent. If the parent bioactive species is an acid, it is treated with an inorganic or organic base in a suitable solvent.
The bioactive substances of the invention may be administered in the form of an alkali metal or earth alkali metal salt thereof, concurrently, simultaneously, or together with a pharmaceutically acceptable carrier or diluent, especially and preferably in the form of a pharmaceutical composition thereof, whether by oral, rectal, or parenteral (including subcutaneous) route, in an effective amount.
Examples of pharmaceutically acceptable acid addition salts for use in the present inventive pharmaceutical composition include those derived from mineral acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulfuric acids, and organic acids, such as tartaric, acetic, citric, malic, lactic, fumaric, ben- zoic, glycolic, gluconic, succinic, p-toluenesulphonic acids, and arylsulphonic, for example.
Examples of a typical tablet A typical tablet which may be prepared by conventional tabletting techniques may contain:
Core: bioactive substance (as free bioactive species or salt thereof) 100 mg Colloidal silicon dioxide (Aerosil) 1.5 mg Cellulose, microcryst. (Avicel) 70 mg Modified cellulose gum (Ac-Di-Sol) 7.5 mg Magnesium stearate
Coating:
HPMC approx. 9 mg *Mywacett 9-40 T approx. 0.9 mg
*Acylated monoglyceride used as plasticizer for film coating.
The pharmaceutical carrier
Illustrative solid carriers include lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like. A solid carrier can include one or more substances which may also act as flavoring agents, lubricants, solubi- lizers, suspending agents, fillers, glidants, compression aids, binders or tablet- disintegrating agents; it can also be an encapsulating material. In powders, the carrier is a finely divided solid which is in admixture with the finely divided bioactive species. In tablets, the bioactive substance is mixed with a carrier having the necessary compression properties in suitable proportions, and compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the bioactive species. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.
Illustrative liquid carriers include syrup, peanut oil, olive oil, water, etc. Liquid carriers are used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compositions. The bioactive substance can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators. Suitable examples of liquid carriers for oral and parenteral administration include water (partially containing additives as above, e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhy- dric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration, the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carders are useful in sterile liquid form compositions for parenteral administration. The liquid carrier for pressurized compositions can be halogenated hydrocarbon or other pharmaceutically acceptable propellant. Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperito- neal or subcutaneous injection. Sterile solutions can also be administered intrave- nously. The bioactive species can also be administered orally either in liquid or solid composition form.
The carrier or excipient may include time delay material well known to the art, such as glyceryl monostearate or glyceryl distearate along or with a wax, ethylcellulose, hydroxypropylmethylcellulose, methylmethacrylate and the like. When formulated for oral administration, 0.01% Tween 80 in PHOSAL PG-50 (phospholipid concentrate with 1 ,2-propylene glycol, A. Nattermann & Cie. GmbH) has been recognized as providing an acceptable oral formulation for other compounds, and may be adapted to formulations for various bioactive species of this invention.
"Pharmaceutical agent or drug" refers to any chemical or biological material, compound, or composition capable of inducing a desired therapeutic effect when properly administered to a patient. Some drugs are sold in an inactive form that is converted in vivo into a metabolite with pharmaceutical activity. For purposes of the present invention, the terms "pharmaceutical agent" and "drug" encompass both the inactive drug and the active metabolite.
"Transport" and "delivery" refers to the passage of a substance across or through the skin (i.e., transdermal), including the epidermis and dermis, or across a mucosal membrane (i.e., gastrointestinal, sublingual, buccal, nasal, pulmonary, vaginal, cor- neal, and ocular membranes), where the substance can contact, and be absorbed into, the capillaries. In certain instances, the delivery and/or transport of the substance across other membranes will be effected.
"Penetration enhancer" refers to a substance which is used to increase the transdermal or transmembrane flux of a bioactive species. A penetration enhancer is typically applied to the skin or mucous membrane in combination with the bioactive species. Enhancers are believed to function by disrupting the skin or mucous membrane barrier or changing the partitioning behavior of the drug in the skin or mucous membrane.
Controlled release formulations
The following terms may be considered to be substantially equivalent to controlled release, for the purposes of the present invention: continuous release, controlled release, delayed release, depot, gradual release, long-term release, programmed release, prolonged release, proportionate release, protracted release, repository, retard, slow release, spaced release, sustained release, time coat, timed release, delayed action, extended action, layered-time action, long acting, prolonged action, repeated action, slowing acting, sustained action, sustained-action medications, and extended release. Further discussions of these terms may be found in Lesczek Krowczynski, Extended-Release Dosage Forms, 1987 (CRC Press, Inc.).
The various controlled release technologies cover a very broad spectrum of drug dosage forms. Controlled release technologies include, but are not limited to physical systems and chemical systems.
Physical systems include, but are not limited to, reservoir systems with rate- controlling membranes, such as microencapsulation, macroencapsulation, and membrane systems; reservoir systems without rate-controlling membranes, such as hollow fibers, ultra microporous cellulose triacetate, and porous polymeric substrates and foams; monolithic systems, including those systems physically dissolved in non-porous, polymeric, or elastomeric matrices (e.g., non-erodible, erodible, environmental agent ingression, and degradable), and materials physically dispersed in non-porous, polymeric, or elastomeric matrices (e.g., non-erodible, erodible, environmental agent ingression, and degradable); laminated structures, including reservoir layers chemically similar or dissimilar to outer control layers; and other physical methods, such as osmotic pumps, or adsorption onto ion-exchange resins.
Chemical systems include, but are not limited to, chemical erosion of polymer matrices (e.g., heterogeneous, or homogeneous erosion), or biological erosion of a polymer matrix (e.g., heterogeneous, or homogeneous). Additional discussion of categories of systems for controlled release may be found in Agis F. Kydonieus, Controlled Release Technologies: Methods, Theory and Applications, 1980 (CRC Press, Inc.).
Controlled release drug delivery systems may also be categorized under their basic technology areas, including, but not limited to, rate-preprogrammed drug delivery systems, activation-modulated drug delivery systems, feedback-regulated drug delivery systems, and site-targeting drug delivery systems.
In rate-preprogrammed drug delivery systems, release of drug molecules from the delivery systems "preprogrammed" at specific rate profiles. This may be accomplished by system design, which controls the molecular diffusion of drug molecules in and/or across the barrier medium within or surrounding the delivery system. Fick's laws of diffusion are often followed. In activation-modulated drug delivery systems, release of drug molecules from the delivery systems is activated by some physical, chemical or biochemical processes and/or facilitated by the energy supplied externally. The rate of drug release is then controlled by regulating the process applied, or energy input.
In feedback-regulated drug delivery systems, release of drug molecules from the delivery systems may be activated by a triggering event, such as a biochemical substance, in the body. The rate of drug release is then controlled by the concentration of triggering agent detected by a sensor in the feedback regulated mechanism.
In a site-targeting controlled-release drug delivery system, the drug delivery system targets the active molecule to a specific site or target tissue or cell. This may be accomplished, for example, by a conjugate including a site specific targeting moiety that leads the drug delivery system to the vicinity of a target tissue (or cell), a solubi- lizer that enables the drug delivery system to be transported to and preferentially taken up by a target tissue, and a drug moiety that is covalently bonded to the polymer backbone through a spacer and contains a cleavable group that can be cleaved only by a specific enzyme at the target tissue.
While a preferable mode of controlled release drug delivery will be oral, other modes of delivery of controlled release compositions according to this invention may be used. These include mucosal delivery, nasal delivery, ocular delivery, transdermal delivery, parenteral controlled release delivery, vaginal delivery, rectal delivery and intrauterine delivery. All of these dosage forms may be manufactured using conventional techniques, together with the techniques discussed herein.
There are a number of controlled release drug formulations that are developed preferably for oral administration. These include, but are not limited to, osmotic pres- sure-controlled gastrointestinal delivery systems; hydrodynamic pressure-controlled gastrointestinal delivery systems; membrane permeation-controlled gastrointestinal delivery systems, which include microporous membrane permeation-controlled gastrointestinal delivery devices; gastric fluid-resistant intestine targeted controlled- release gastrointestinal delivery devices; gel diffusion-controlled gastrointestinal delivery systems; and ion-exchange-controlled gastrointestinal delivery systems, which include cationic and anionic drugs. Additional information regarding controlled release drug delivery systems may be found in Yie W. Chien, Novel Drug Delivery Systems, 1992 (Marcel Dekker, Inc.). some of these formulations will now be discussed in more detail.
Enteric coatings may be applied to tablets to prevent the release of drugs in the stomach either to reduce the risk of unpleasant side effects or to maintain the stability of the drug which might otherwise be subject to degradation of expose to the gastric environment. Most polymers that are used for this purpose are polyacids that function by virtue of the fact that their solubility in aqueous medium is pH- dependent, and they require conditions with a pH higher then normally encountered in the stomach.
Enteric coatings may be used to coat a solid or liquid dosage form of the bioactive species according to the invention. Enteric coatings promote the inventive bioactive species remaining physically incorporated in the dosage form for a specified period when exposed to gastric juice. Yet the enteric coatings are designed to disintegrate in intestinal fluid for ready absorption. Delay of the bioactive species' absorption is dependent on the rate of transfer through the gastrointestinal tract, and so the rate of gastric emptying is an important factor. Some investigators have reported that a multiple-unit type dosage form, such as granules, may be superior to a single-unit type. Therefore, in a preferable embodiment, the bioactive species according to the invention may be contained in an enterically coated multiple-unit dosage form. In a more preferable embodiment, the dosage form of the bioactive species according to the invention is prepared by spray-coating granules of an bioactive species -enteric coating agent solid dispersion on an inert core material. These granules can result in prolonged absorption of the drug with good bioavailability.
Typical enteric coating agents include, but are not limited to, hyd roxypropylmethyl- cellulose phthalate, methacrylic acid-methacrylic acid ester copolymer, polyvinyl acetate-phthalate and cellulose acetate phthalate. Akihiko Hasegawa, Application of solid dispersions of Nifedipine with enteric coating agent to prepare a sustained- release dosage form, Chem. Pharm. Bull. 33: 1615-1619 (1985). Various enteric coating materials may be selected on the basis of testing to achieve an enteric coated dosage form designed ab initio to have a preferable combination of dissolu- tion time, coating thicknesses and diametral crushing strength. S. C. Porter et al., The Properties of Enteric Tablet Coatings Made From Polyvinyl Acetate-phthalate and Cellulose acetate Phthalate, J. Pharm. Pharmacol. 22:42p (1970).
On occasion, the performance of an enteric coating may hinge on its permeability. S. C. Porter et al., The Permeability of Enteric Coatings and the Dissolution Rates of Coated Tablets, J. Pharm. Pharmacol. 34: 5-8 (1981). With such oral drug delivery systems, the drug release process may be initiated by diffusion of aqueous fluids across the enteric coating. Investigations have suggested osmotic driven/rupturing affects as important release mechanisms from enteric coated dosage forms. Roland Bodmeier et al., Mechanical Properties of Dry and Wet Cellulosic and Acrylic Films Prepared from Aqueous Colloidal Polymer Dispersions used in the Coating of Solid Dosage Forms, Pharmaceutical Research, 11 : 882-888 (1994).
Another type of useful oral controlled release structure is a solid dispersion. A solid dispersion may be defined as a dispersion of one or more bioactive species in an inert carrier or matrix in the solid state prepared by the melting (fusion), solvent, or melting-solvent method. Akihiko Hasegawa, Super Saturation Mechanism of Drugs from Solid Dispersions with Enteric Coating Agents, Chem. Pharm. Bull. 36: 4941- 4950 (1998). The solid dispersions may be also called solid-state dispersions. The term "coprecipitates" may also be used to refer to those preparations obtained by the solvent methods.
Solid dispersions may be used to improve the solubilities and/or dissolution rates of bioactive species according to the invention that may be poorly water-soluble. See generally Hiroshi Yuasa, et al., Application of the Solid Dispersion Method to the Controlled Release Medicine. III. Control of the Release Rate of Slightly Water- Soluble Medicine From Solid Dispersion Granules, Chem. Pharm. Bull. 41 :397-399 (1993). The solid dispersion method was originally used to enhance the dissolution rate of slightly water-soluble medicines by dispersing the medicines into water- soluble carriers such as polyethylene glycol or polyvinylpyrrolidone, Hiroshi Yuasa, et al., Application of the Solid Dispersion Method to the Controlled Release of Medicine. IV. Precise Control of the Release Rate of a Water-Soluble Medicine by Using the Solid Dispersion Method Applying the Difference in the Molecular Weight of a Polymer, Chem. Pharm. Bull. 41:933-936 (1993). The selection of the carrier may have an influence on the dissolution characteristics of the dispersed drug because the dissolution rate of a component from a surface may be affected by other components in a multiple component mixture. For exam- pie, a water-soluble carrier may result in a fast release of the drug from the matrix, or a poorly soluble or insoluble carrier may lead to a slower release of the drug from the matrix. The solubility of poorly water soluble bioactive species according to the invention may also be increased owing to some interaction with the carriers.
Examples of carriers useful in solid dispersions according to the invention include, but are not limited to, water-soluble polymers such as polyethylene glycol, polyvi- nylpyrrolidone, or hydroxypropylmethyl-cellulose. Akihiko Hasegawa, Application of Solid Dispersions of Nifedipine with Enteric Coating Agent to Prepare a Sustained- release Dosaae Form, Chem. Pharm. Bull. 33:1615-1619 (1985).
There are various methods commonly known for preparing solid dispersions. These include, but are not limited to the melting method, the solvent method and the melting-solvent method.
In the melting method, the physical mixture of a drug in a water-soluble carrier is heated directly until it melts. The melted mixture is then cooled and solidified rapidly while rigorously stirred. The final solid mass is crushed, pulverized and sieved. Using this method a super saturation of a solute or drug in a system can often be obtained by quenching the melt rapidly from a high temperature. Under such condi- tions, the solute molecule may be arrested in solvent matrix by the instantaneous solidification process. A disadvantage is that many substances, either drugs or carriers, may decompose or evaporate during the fusion process at high temperatures. However, this evaporation problem may be avoided if the physical mixture is heated in a sealed container. Melting under a vacuum or blanket of an inert gas such as nitrogen may be employed to prevent oxidation of the drug or carrier.
The solvent method has been used in the preparation of solid solutions or mixed crystals of organic or inorganic bioactive species. Solvent method dispersions may be prepared by dissolving a physical mixture of two solid components in a common solvent, followed by evaporation of the solvent. The main advantage of the solvent method is that thermal decomposition of drugs or carriers may be prevented because of the low temperature required for the evaporation of organic solvents. However, some disadvantages associated with this method are the higher cost of preparation, the difficulty in completely removing liquid solvent, the possible adverse effect of its supposedly negligible amount of the solvent on the chemical stability of the drug.
Another method of producing solid dispersions is the melting-solvent method. It is possible to prepare solid dispersions by first dissolving a drug in a suitable liquid solvent and then incorporating the solution directly into a melt of polyethylene glycol, obtainable below 70 degrees, without removing the liquid solvent. The selected solvent or dissolved adenosine analogs may be selected such that the solution is not miscible with the melt of polyethylene glycol. The polymorphic form of the adenosine analogs may then be precipitated in the melt. Such a unique method possesses the advantages of both the melting and solvent methods. Win Loung Chiou, et al.,
Pharmaceutical Applications of Solid Dispersion Systems, J. Pharm. Sci. 60:1281- 1301 (1971).
Another controlled release dosage form is a complex between an ion exchange resin and the bioactive species according to the invention. Ion exchange resin-drug complexes have been used to formulate sustained-release products of acidic and basic drugs. In one preferable embodiment, a polymeric film coating is provided to the ion exchange resin-drug complex particles, making drug release from these particles diffusion controlled. See Y. Raghunathan et al., Sustained-released drug de- livery system I: Coded ion-exchange resin systems for phenylpropanolamine and other drugs, J. Pharm. Sciences 70: 379-384 (1981).
Injectable micro spheres are another controlled release dosage form. Injectable micro spheres may be prepared by non-aqueous phase separation techniques, and spray-drying techniques. Micro spheres may be prepared using polylactic acid or copoly(lactic/glycolic acid). Shigeyuki Takada, Utilization of an Amorphous Form of a Water-Soluble GPIIb/llla Antagonist for Controlled Release From Biodegradable Micro spheres, Pharm. Res. 14:1146-1150 (1997), and ethyl cellulose, Yoshiyuki Koida, Studies on Dissolution Mechanism of Drugs from Ethyl Cellulose Microcap- sules, Chem. Pharm. Bull. 35:1538-1545 (1987). Other controlled release technologies that may be used in the practice of this invention are quite varied. They include SODAS (Spheroidal Oral Drug Absorption System), INDAS (Insoluble Drug Absorption System), IPDAS (Intestinal Protective Drug Absorption System), MODAS (Multiporous Oral Drug Absorption System), EFVAS
(Effervescent Drug Absorption System), PRODAS (Programmable Oral Drug Absorption System), and DUREDAS (Dual Release Drug Absorption System) available from Elan Pharmaceutical Technologies, Dublin, Ireland. SODAS are multi particu- late dosage forms utilizing controlled release beads. INDAS are a family of drug delivery technologies designed to increase the solubility of poorly soluble drugs. IPDAS are multi particulate tablet formation utilizing a combination of high density controlled release beads and an immediate release granulate. MODAS are controlled release single unit dosage forms. Each tablet consists of an inner core surrounded by a semipermeable multiparous membrane that controls the rate of drug release. EFVAS is an effervescent drug absorption system, PRODAS is a family of multi particulate formulations utilizing combinations of immediate release and controlled release mini-tablets. DUREDAS is a bilayer tablet formulation providing dual release rates within the one dosage form. Although these dosage forms are known to one of skill, certain of these dosage forms will now be discussed in more detail.
INDAS was developed specifically to improve the solubility and absorption characteristics of poorly water soluble drugs. Solubility and, in particular, dissolution within the fluids of the gastrointestinal tract is a key factor in determining the overall oral bioavailability of poorly water soluble drug. By enhancing solubility, one can in- crease the overall bioavailability of a drug with resulting reductions in dosage. INDAS takes the form of a high energy matrix tablet. In a preferred embodiment of the invention production involves including adenosine analogs in an amorphous form together with a combination of energy, excipients, and unique processing procedures.
Once included in the desirable physical form, the resultant high energy complex may be stabilized by an absorption process that utilizes a novel polymer cross-linked technology to prevent recrystallization. The combination of the change in the physical state of the adenosine analogs according to the invention coupled with the solu- bilizing characteristics of the excipients employed enhances the solubility of the adenosine analogs according to the invention. The resulting absorbed amorphous drug complex granulate may be formulated with a gel-forming erodable tablet system to promote substantially smooth and continuous absorption.
IPDAS is a multi-particulate tablet technology that may enhance the gastrointestinal tolerability of potential irritant and ulcerogenic drugs. Intestinal protection is facilitated by the multi-particulate nature of the IPDAS formulation which promotes dispersion of an irritant adenosine analog according to the invention throughout the gastrointestinal tract. Controlled release characteristics of the individual beads may avoid high concentration of drug being both released locally and absorbed systemi- cally. The combination of both approaches serves to minimize the potential harm of the adenosine analog according to the invention with resultant benefits to patients.
IPDAS is composed of numerous high density controlled release beads. Each bead may be manufactured by a two step process that involves the initial production of a micromatrix with embedded adenosine analogs according to the invention and the subsequent coating of this micromatrix with polymer solutions that form a rate limiting semipermeable membrane in vivo. Once an IPDAS tablet is ingested, it may disintegrate and liberate the beads in the stomach. These beads may subsequently pass into the duodenum and along the gastrointestinal tract, preferably in a controlled and gradual manner, independent of the feeding state. Adenosine analog release occurs by diffusion process through the micromatrix and subsequently through the pores in the rate controlling semipermeable membrane. The release rate from the IPDAS tablet may be customized to deliver a drug-specific absorption profile associated with optimized clinical benefit. Should a fast onset of activity be necessary, immediate release granulate may be included in the tablet. The tablet may be broken prior to administration, without substantially compromising drug release, if a reduced dose is required for individual titration.
MODAS is a drug delivery system that may be used to control the absorption of water soluble adenosine analogs according to the invention. Physically MODAS is a non-disintegrating table formulation that manipulates drug release by a process of rate limiting diffusion by a semipermeable membrane formed in vivo. The diffusion process essentially dictates the rate of presentation of drug to the gastrointestinal fluids, such that the uptake into the body is controlled. Because of the minimal use of excipients, MODAS can readily accommodate small dosage size forms. Each MODAS tablet begins as a core containing active drug plus excipients. This core is coated with a solution of insoluble polymers and soluble excipients. Once the tablet is ingested, the fluid of the gastrointestinal tract may dissolve the soluble excipients in the outer coating leaving substantially the insoluble polymer. What results is a network of tiny, narrow channels connecting fluid from the gastrointestinal tract to the inner drug core of water soluble drug. This fluid passes. through these channels, into the core, dissolving the drug, and the resultant solution of drug may diffuse out in a controlled manner. This may permit both controlled dissolution and absorption. An advantage of this system is that the drug releasing pores of the tablet are distributed over substantially the entire surface of the tablet. This facilitates uniform drug absorption and reduces aggressive unidirectional drug delivery. MODAS represents a very flexible dosage form in that both the inner core and the outer semipermeable membrane may be altered to suit the individual delivery requirements of a drug. In particular, the addition of excipients to the inner core may help to produce a micro environment within the tablet that facilitates more predictable release and absorption rates. The addition of an immediate release outer coating may allow for development of combination products.
Additionally, PRODAS may be used to deliver adenosine analogs according to the invention. PRODAS is a multi particulate drug delivery technology based on the production of controlled release mini tablets in the size range of 1.5 to 4 mm in diameter. The PRODAS technology is a hybrid of multi particulate and hydrophilic matrix tablet approaches, and may incorporate, in one dosage form, the benefits of both these drug delivery systems.
In its most basic form, PRODAS involves the direct compression of an immediate release granulate to produce individual mini tablets that contain adenosine analogs according to the invention. These mini tablets are subsequently incorporated into hard gels and capsules that represent the final dosage form. A more beneficial use of this technology is in the production of controlled release formulations. In this case, the incorporation of various polymer combinations within the granulate may delay the release rate of drugs from each of the individual mini tablets. These mini tablets may subsequently be coated with controlled release polymer solutions to provide additional delayed release properties. The additional coating may be necessary in the case of highly water soluble drugs or drugs that are perhaps gastroirritants where release can be delayed until the formulation reaches more distal regions of the gastrointestinal tract.
Use of "bioactive species" for the preparation of a medicament for the treatment of an individual in need thereof
In another embodiment of the present invention, a bioactive species capable of activating a polypeptide toxin and/or capable of initiating de novo synthesis of an activated polypeptide toxin, such as any of the bioactive species described herein, is used for the preparation of a medicament for the treatment of an individual sin need thereof. Preferably, said medicament is for the treatment or prevention of disease by a microbial cell, such as any bacterial disease or bacterial cell mentioned herein. Said bacterial cell preferably comprises any of the toxins and cognate anti-toxins described herein. The individual treated may be any individual described herein. Given that toxins described herein are known as being capable of having detrimental effects of other cell types, such as eukaryotic cells, the bioactive species described herein are also useful for treating any disease caused by unwanted cell growth, such as neoplastic diseases.
Hygienic compositions and methods for reduction or elimination of microbes
In another aspect of the present invention, a hygienic composition capable of reducing or eliminating microbes is provided, comprising one or more of the bioactive species disclosed herein. Said hygienic composition may further comprise a hy- gienically-acceptable carrier. By "hygienically-acceptable carrier" is meant any suit- able carrier that does not prevent the composition from having the desired effect of reducing or eliminating microbes. Said hygienic composition may be contacted against a surface in a non-therapeutic method for eliminating or reducing microbial cells. By "surface" is also meant any suitable surface for which reduction or elimination of microbial cells is desirable, for example a wall, floor, toilet basin and so on. Said surface may in one embodiment be within an environment in which healthcare professionals work, such as a hospital or care home. More preferably, said surface is present on an item of healthcare equipment, such as an item of surgical or medical apparatus, such as a catheter, glove, or medical implant. Said surface may also be found within the home, such as within a kitchen, such as an item of kitchen equipment, particularly surfaces that may be contacted by food. Method of treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell
In another aspect of the present invention a method is provided for treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell, said microbial cell comprising at least one complex of a polypeptide toxin and an antitoxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide, said method comprising the steps of
a) contacting said microbial cell with a bioactive species capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of activated polypeptide toxin, and/or capable of increasing the total amount of activated polypeptide toxin and b) obtaining in said microbial cell an activated polypeptide toxin in an amount sufficient for achieving at least an impaired growth or elimination of said microbial cell in said plant.
Illustrative plant pathogens that may be reduced or eliminated using this method include, but are not restricted to, the group consisting of the genera Agrobacterium, Pseudomonas, Xanthomonas, Erwinia, Ralstonia, and Clavibacter.
Preferred embodiments of the present invention:
The following items describe preferred embodiment of the present invention:
1. Method for treating an individual suffering from, or at risk of developing, a disease caused by a microbial cell, comprising at least one complex of a polypeptide toxin and an anti-toxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide, said method comprising the steps of
i) contacting said microbial cell with a bioactive species capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of activated polypeptide toxin, and/or capable of increasing the total amount of ac- tivated polypeptide toxin and ii) obtaining in said microbial cell an activated polypeptide toxin in an amount sufficient for achieving at least an impaired growth or elimination of said microbial cell in said individual.
2. Method of item 1 comprising the further step, preferably before step (i), of providing a pharmaceutical composition comprising at least one bioactive species capable of contacting and activating in a microbial cell at least one polypeptide toxin selected from the group of polypeptide toxins consisting of RelE and variants thereof; ParE and variants thereof; VapC and variants thereof, Chp and variants thereof; Hig and variants thereof; Doc and variants thereof; and CcdB and variants thereof, wherein the polypeptide toxin prior to activation optionally forms a complex with an anti-toxin polypeptide capable of reducing or inhibiting the toxic activity of the polypeptide toxin.
3. The method of any of items 1 and 2 wherein the step of contacting the microbial cell with the bioactive species is selected from a) contacting the cell surface of the microbial cell with the bioactive species, and/or b) uptake of the bioactive species in the microbial cell and contacting an intracellular component of the microbial cell with the bioactive species.
4. The method of any of items 1 to 3, wherein the step of activation of the at least one polypeptide toxin results from
a) de novo synthesis of activated polypeptide toxin, wherein the de novo synthe- sised and activated polypeptide toxin does not form a complex with an anti-toxin polypeptide, and/or
b) dissociation of polypeptide toxin and anti-toxin polypeptide present in the same complex, wherein said dissociation results in the release from the complex of polypeptide toxin in an active form, or a form capable of being activated following dissociation from the anti-toxin polypeptide, and optionally c) degradation of the anti-toxin
5. Method of any of the items 1-4, wherein said microbial cell comprises a relBE TA system. 6. Method of item 5, wherein said microbial cell is a gram negative bacteria.
7. Method of item 6, said bacteria is selected from one or more of
Brucella melitensis, Brucella suis, Helicobacter pylori, Escherichia coli, Escherichia coli 0157, Shigella flexneri, Coxiella burnetii, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, Haemophilus influenzae, Pseudomonas aeruginosa, Pseu- domonas putida KT2440, Pseudomonas syringae, Salmonella typhimurium and Salmonella typhi.
8. Method of item 5, wherein said microbial cell is a gram positive bacteria.
9. Method of item 8, wherein said bacteria is selected from one or more of Mycobacterium tuberculosis, Enterococcus faecalis, Staphylococcus aureus, Strep- tococcus agalactiae, Streptococcus mutans, Streptococcus pneumonia, or Fusobacterium nucleatum
10. Method of any of items 1-4, wherein said microbial cell comprises a vapBC TA system.
11. Method of item 10, wherein said microbial cell is a gram positive bacterium. 12. Method of item 11 , wherein said bacterium is selected from Mycobacterium tuberculosis
13. Method of item 10, wherein said microbial cell is a gram negative bacterium
14. Method of item 13, wherein said bacterium is selected from one or more of Rickettsia conorii, Coxiella burnetii, Haemophilus influenzae, Pseudomonas sy- ringae, Salmonella typhimurium, Salmonella typhi and Leptospira intrerrogans.
15. Method of any of items 1-4, wherein said microbial cell comprises a mazEF TA system.
16. Method of item 15, wherein said microbial cell is a gram positive bacterium.
17. Method of item 16, wherein said microbial cell is selected from one or more of Mycobacterium tuberculosis, Bacillus anthracis, Bacillus cereus, Bacillus halodurans, Clostridium perfringens, Enterococcus faecalis, Listeria monocy- togenes, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans and Streptococcus pneumonia 18. Method of item 15, wherein said microbial cell is a gram negative bacterium. 19. Method of item 18, wherein said microbe is selected from Brucella melitensis, Brucella suis, Rickettsia conorii, Neisseria meningitidis, Escherichia coli, Escherichia coli 0157, Shigella flexneri, Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas putida or Leptospira intrerrogans. 20. Method of any of items 1-4, wherein said microbial cell comprises a parDE TA system.
21. Method of item 20, wherein said microbial cell comprises a gram positive bacterium.
22. Method of item 21 , wherein said microbial cell is selected from Mycobacterium tuberculosis, Streptococcus agalactiae, or Streptococcus pyogenes.
23. Method of item 20, wherein said microbial cell comprises a gram negative bacterium.
24. Method of item 23, wherein said microbial cell is selected from Escherichia coli 0157, Escherichia coli, Coxiella burnetii, Vibrio cholerae, Vibrio parahaemo- lyticus, Vibrio vulnificus, Pseudomonas aeruginosa and Pseudomonas syringae.
25. Method of any of items 1-4, wherein said microbial cell comprises a higBA TA system.
26. Method of item 25, wherein said microbial cell comprises a gram negative bacte- rium.
27. Method of item 26, wherein said microbial cell is selected from Neisseria meningitidis, Escherichia coli, Coxiella burnetii, Vibrio cholerae, Haemophilus influenzae, Pseudomonas aeruginosa, Pseudomonas putida KT2440 and Pseudomonas syringae. 28. Method of any of items 1-4, wherein said microbial cell comprises a phd/doc TA system
29. Method of item 28, wherein said microbial cell comprises a gram positive bacterium
30. Method of item 29, wherein said microbial cell is selected from Clostridium tet- ani, Enterococcus faecalis and Streptococcus pneumonia.
31. Method of item 28, wherein said microbial cell comprises a gram negative bacterium.
32. Method of item 31 , wherein said bacterium is selected from Brucella melitensis, Brucella suis, Neisseria meningitidis, Yersinia pestis, Vibrio cholerae, Pseu- domonas aeruginosa, Salmonella typhimurium and Salmonella typhi. 33. Method of any of items 1-4, wherein said microbial cell comprises a ccdAB TA system
34. Method of item 33, wherein said microbial cell is selected from Escherichia coli or Escherichia coli 0157. 35. Method of any of the previous items, wherein said individual is an animal.
36. Method of any of the previous items, wherein said individual is a vertebrate.
37. Method of any of the previous items, wherein said individual is a mammal.
38. Method of any of the previous items, wherein said individual is a domestic animal. 39. Method of any of the previous items, wherein said individual is a wild animal.
40. Method of any of the previous items, wherein said individual is a human.
41. Method of any of the previous items, wherein said individual is female.
42. Method of any of items 1-40, wherein said individual is male.
43. Method of item 41, wherein said individual is pregnant or lactating. 44. Method of any of the previous items, wherein said individual has undergone en- dotracheal intubation.
45. Method of any of the previous items, wherein said individual has undergone bladder catheterization.
46. Method of any of the previous items, wherein said individual has undergone cen- tral venous catheterization.
47. Method of any of the previous items, wherein said individual has undergone peritoneal dialysis.
48. Method of any of the previous items, wherein said individual is immunocompromised. 49. Method of item 48, wherein said individual has been, is being, or will be treated with an immunosuppressive drug.
50. Method of item 49, wherein said drug comprises one or more steroid
51. Method of item 48, wherein said individual is suffering from a disease not caused by a bacteria. 52. Method of item 51 , wherein said individual is suffering one or more of: an autoimmune disease, sarcoidosis, leprosy, cytomegalovirus infections, malaria, a parasitic disease, a fungal disease.
53. Method of item 51 wherein said individual is suffering from a viral infection
54. Method of item 53 wherein said viral infection is caused by one or more of infec- tious bursal disease virus or cytomegalovirus. 55. Method of item 53, wherein said individual has HIV or AIDS.
56. Method of item 48 wherein said individual has one or more of: trauma, burns, a wound or a surgical wound.
57. Method of any of items 1-56, wherein said individua s a neonate 58. Method of any of items 1-56, wherein said individual s an infant
59. Method of any of items 1-56, wherein said individua s 3-6 years old
60. Method of any of items 1-56, wherein said individua s 6-10 years old
61. Method of any of items 1-56, wherein said individua s 10-20 years old
62. Method of any of items 1-56, wherein said individua s 20-30 years old 63. Method of any of items 1-56, wherein said individua s 40-50 years old
64. Method of any of items 1-56, wherein said individua s 50-60 years old
65. Method of any of items 1-56, wherein said individua s 60-70 years old
66. Method of any of items 1-56, wherein said individua s 70-80 years old
67. Method of any of items 1-56, wherein said individua s 70-130 years old 68. Method of any of items 1-4, wherein said di sease is selected from: an abscess, acrodermatitis chronica atrophicans (ACA), actinomycosis, acute bacterial Prostatitis, anthrax (Black Bane or malignant pustule or Wool sorter's disease or Tanner's disease), Australian tick typhus (Australian Spotted Fever or Queensland Tick Typhus), Bang's disease (Brucellosis), bartonellosis (Verruga peru- ana or carrion's disease or Oroya fever), "Black death" (plague), bacillary an- giomatosis, bacterial vaginosis, Bejel (endemic syphilis), blennorrhea of the newborn, blepharitis, a boil, botulism, Boutonneuse fever (fievre boutonneuse or tick typhus), Brazilian purpuric fever, Brill-Zinsser disease (recrudescent typhus), bronchitis, Brucellosis, Bullous impetigo, Buruli ulcers (Mycoburuli ulcers), cam- pylobacteriosis, chromobacteriosis, cryptosporidiosis, carate (Mai del pinto or Pinta), carditis, carbuncle, cat scratch fever (cat scratch disease), chancroid, chlamydia, cholera, clap, conjunctivitis (pink eye), cystitis or pyelonephritis, dacryocytitis, diphtheria - Corynebacterium diphtheriae (G+ rod: non-sporulating: non-filamentous), disseminated Intravascular Coagulation, donovanosis (granu- loma inguinale), Durand-Nicholas-Favre disease (lymphogranuloma venereum (LGV)), ehrlichiosis, epidemic typhus, endemic Relapsing fever, endocarditis, endophthalmitis, enteric infections, epidemic relapsing fever, epiglottitis, ery- sipeloid (erysipelothricosis), erysipelis, erythema chronicum migrans, erythema marginatum, erythema multiforme, erythema nodosum, erythema nodosum lep- rosum, erythrasma, Fitz-Hugh-Curtis syndrome (peri hepatitis), Flinders Island Spotted Fever, frambesia (yaws), furunculosis (boil- furuncle), folliculitis, gas gangrene, glanders, granuloma inguinale (donovanosis), hamburger disease (hemolytic uremic syndrome), Hansen's disease (leprosy), hard chancre (syphilis), Haverhill fever (rat bite fever), Helicobacterosis (duodenal ulcers), hidrade- nitis, human monocytic ehrlichiosis, human granulocytic ehrlichiosis, impetigo, inclusion conjunctivitis (swimming pool conjunctivitis or pannus), infantile diarrhea, Israeli spotted fever, Legionnaire's pneumonia , leprosy (Hansen's disease), leptospirosis, listerosis, lockjaw (tetanus), Ludwig's angina, Lyme disease, Lymphogranuloma venereum (LGV), Malta fever (Brucellosis), Mediteran- nean spotted fever, melioidosis (Whitmore's disease), meningitis (spotted fever), Montezuma's Revenge (traveler's diarrhea), Multiple Organ Dysfunction Syndrome or MODS, murine typhus, myositis, myocarditis, necrotizing fasciitis, no- cardiosis (nocardia), nongonococcal urethritis, North Asian tick typhus - Rickettsia sibirica (G- intracellular; tick-borne), nosocomial infections, opthalmia neonatorium, Oriental Spotted Fever, otitis media, otitis externa, osteomyelitis, parrot fever (Ornithosis or Psittacosis), PCP pneumonia, Peliosis hepatica, pelvic Inflammatory Disease (PID), pertussis (whooping cough), pigbel, Pinta, pitted keratolysis, plague, pneumonia, pontiac fever, postanginal septicemia (Le- mierre's Syndrome), prostatitis, pseudomembranous colitis, puerperal fever, pylephlebitis, pyelonephritis, Q fever, Quinsy- Peritonsillar abscess, rat bite fever, Reiter Syndrome, relapsing fever, rheumatic fever, rhinoscleroma (Klebsiella rhinoscleromatis), rickettsialpox, Rocky Mountain spotted fever, salmonel- losis, scarlet fever (scarlatina), scalded skin syndrome, scrub typhus, Sennetsu fever (ehrlichiosis), sepsis or septic shock, septic arthritis, shigellosis, shipping fever, Siberian tick typhus, sinusitis, sporadic typhus, staphylococcal enterotoxin poisoning, Stie- Hordeola, Strep. Throat, stomach ulcers, stomach cancer, Systemic Inflammatory Response Syndrome or SIRS, Tabes dorsalis (tertiary syphilis), Tuberculosis (TB), tooth decay, Toxic Shock Syndrome (TSS), trench fever (5-day fever), trench mouth (Vincent's disease), Trachoma, Trichomycosis axillaris, tularemia (rabbit fever or deer fly fever), typhoid fever, typhus fever, urethritis, ulcus molle (soft chancre or chancroid), undulant fever, urethritis, bacterial vaginosis, vaginitis, Waterhouse-Friderichsen syndrome, Weil's diseases, Whipple's disease, yaws, yersinosis - Yersinia enterocolitica 69. Method of any of items 1-4, wherein said disease is stomach cancer. 70. Method of any of items 1-4, wherein said disease is a sexually transmitted disease.
71. Method of item 70 wherein said disease is bacterial vaginosis.
72. Method of item 70 wherein said microbial cell is selected from Bacteroides spp, Gardnerella vaginalis or Mobiluncus spp.
73. Method of item 70 wherein said disease is a Chlamydial infection or Lymphogranuloma venereum.
74. Method of item 73 wherein said microbial cell is Chlamydia trachomatis.
75. Method of item 70 wherein said disease is an enteric infection. 76. Method of item 260 wherein said microbial cell is selected from Campylobacter fetus, Shigella sp., Escherichia coli, Salmonella sp.
77. Method of item 70 wherein said disease is a Group B streptococcal infections
78. Method of item 77 wherein said microbial cell is Streptococcus agalactiae
79. Method of item 70 wherein said disease is Granuloma inguinale (donovanosis) 80. Method of item 79 wherein said microbial cell is Calymmatobacterium granulomatis
81. Method of item 70 wherein said disease is NGU or Nongonococcal urethritis
82. Method of item 81 wherein said microbial cell is selected from Chlamydia trachomatis, and Gardnerella vaginalis. 83. Method of item 70 wherein said disease is Pelvic Inflammatory Disease (PID)
84. Method of item 83 wherein said microbial cell is selected from N. gonorrhoeae, Chlamydia trachomatis, Anaerobic bacteria, Facultative Gram negative rods, Actinomyces israelii
85. Method of item 70 wherein said disease is syphilis 86. Method of item 85 wherein said microbial cell is Treponema pallidum
87. Method of any of items 1-4, wherein said disease is transmitted via consumption of unpasteurised dairy products
88. Method of item 87 wherein said disease is selected from Campylobacteriosis, Salmonellosis, Hemolytic Uremic Syndrome, Yersiniosis, Listeriosis, Tuberculosis, Brucellosis, Cryptosporidiosis, Staphylococcal enterotoxin poisoning or Q fever.
89. Method of any of items 1-4, wherein said disease is an eye disease 90. Method of item 89 wherein said eye disease is selected from pink eye (conjunctivitis), trachoma and Opthalmia neonatorium.
91. Method of item 90 wherein said microbial cell is selected from Haemophilus aegyptius, Chlamydia trachomatis or Neisseria gonorrhoeae 92. Method of any of items 1-4, wherein said disease is a skin disease
93. Method of item 92 wherein said disease is selected from Impetigo, Folliculitis, boils, Scalded Skin Syndrome, Erysipelas, leprosy, Lyme disease, syphilis, chancroid, Rocky Mountain Spotted Fever
94. Method of item 93 wherein said microbial cell is selected from Staphylococcus aureus, Streptococcus pyogenes, Borrelia burgdorferi, Treponema pallidum, Rickettsia rickettsii, Bacteroides spp, Gardnerella vaginalis, and Mobiluncus spp.
95. Method of any of items 1-4 wherein said disease is a disease of the gastrointestinal tract.
96. Method of item 95 wherein said microbial cell is selected from Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium botulinum, E. coli (EPEC), E. coli (ETEC), E. coli (EAggEC or enteroadherent EC), Vibrio cholerae 01, Vibrio cholerae non-01, Enteropathogenic (EPEC) E. coli, Clostridium difficile, Vibrio parahemolyticus, Bacillus anthracis, E. coli (EIEC), E. coli (EHEC), Salmonella spp, Salmonella typhimurium, Salmonella typhi, Shigella dysenteriae type 1 , Shigella sonnei/flexneri, Yersinia enterocolitica, Shigella sp., Enteroinvasive E. coli (EIEC), Enterohemorrhagic E. coli (EHEC), Yersinia sp., Francisella tularensis, Helicobacter pylori, Staphylococcus aureus, Yersinia pseudotuberculosis, Listeria monocytogenes, Vibrio parahaemolyticus, Vibrio sp., Vibrio vulnificus, Clostridium perfringens, Bacillus cereus, Aeromonas hydrophila, Plesiomonas shigelloides, Streptococcus sp., enterovirulent Escherichia coli group (EEC Group), Escherichia coli - enterotoxigenic (ETEC), Escherichia coli 0157:H7 enterohemorrhagic (EHEC) and Clostridium difficile
97. Method of any of items 95-96, wherein said disease of the gastrointestinal tract is inflammatory Gastroenteritis. 98. Method of item 97 wherein said microbial cell is selected from one or more of Vibrio cholerae, Vibrio cholerae 01 , Vibrio cholerae non-01 , Enterotoxigenic (ETEC) E. coli, Enteropathogenic (EPEC) E. coli, Enteroaggregative (EAggEC) E. coli, Clostridium difficile, Vibrio parahemolyticus, Bacillus anthracis, E. coli (EIEC), E. coli (EHEC), Salmonella spp, Salmonella typhimurium, Salmonella typhi, Shigella dysenteriae type 1 , Shigella sonnei/flexneri, and Yersinia enterocolitica. 99. Method of any of items 95-96, wherein said disease of the gastrointestinal tract is invasive Gastroenteritis. 100. Method of item 99 wherein said microbial cell is selected from one or more of Shigella sp., Salmonella sp., Enteroinvasive E. coli (EIEC), Enterohemorrhagic E. coli (EHEC), Vibrio vulnificus, Yersinia sp., Francisella tularensis or Helicobacter pylori. 101. Method of any of items 1-4, wherein said disease is pneumonia. 102. Method of item 101 wherein said microbial cell is selected from one or more of Acinetobacter sp., Actinomyces sp., Bacillus anthracis, Bacteroides melaninogenicus, Bordetella pertussis, Burkholderia pseudomallei, Burkholderia mallei, Chlamydia pneumoniae, Chlamydia psittaci, Chlamydia trachomatis, Coxiella burnetii (Q-fever), Escherichia coli, Francisella tularensis, Fusobacte- rium sp., Hemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Moraxella catarrhalis, Mycobacterium tuberculosis, Mycobacterium sp., Neisseria meningitidis, Nocardia sp., Porphyromonas sp., Prevotella sp., Proteus sp., Pseudomonas aeruginosa, Serratia sp., Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Staphylococcus aureus, Peptostreptococcus sp., and Yersinia pestis.
103. Method of any of items 1-4, wherein said disease is transmitted via an arthropod, such as an insect, for example one or more of a tick, a mite, an insect larva, a louse, a flea, a fly or a gnat.
104. Method of item 103, wherein said disease is selected from Scrub Typhus (Tsutsugamushi disease), Rickettsial pox, Tularemia, Rocky Mountain Spotted Fever, Endemic Relapsing Fever, Sennetsu fever, erlichiosis, Epidemic typhus, Trench fever, bacillary angiomatosis, bacillary peliosis, Louse-borne relapsing fever or epidemic relapsing fever, Plague, Murine typhus, Tularemia, Bartonellosis, Oroya fever, Carrion's disease, Tick-borne Relapsing Fever, Tularemia and Cat Scratch Fever
105. Method of any of items 1-4, wherein said disease is transmitted via an airborne mode of transmission.
106. Method of item 105, wherein said disease is selected from diphtheria, pneumonia, tuberculosis, Legionnaire's disease, a skin diseases, impetigo, cellulitis, a systemic bacterial disease, rheumatic fever or menigitis. 107. Method of any of items 1-4, wherein said disease is transmitted via direct contact of the bacterium with the individual, such as by the bacterium contacting one or more of the skin, mucous membrane or underlying tissues.
108. Method of items 107, wherein said disease is selected from anthrax, cat-scratch fever, gas gangrene, leprosy, peptic ulcers, staphylococcal infections, syphilis, tetanus, staphylococcal diseases or gonorrhea
109. Method of any of items 1-4, wherein said disease is transmitted via ingestion of food and/or water.
110. Method of item 109, wherein said disease is selected from Campylobacter gastroenteritis, salmonellosis, shigellosis, listeriosis, traveler's diarrhea, typhoid fever, botulism, cholera, staphylococcal food poisoning, Campylobacteriosis, Hemolytic Uremic Syndrome, Yersiniosis, Listeriosis, Tuberculosis, Brucellosis, Cryptosporidiosis, Staphylococcal enterotoxin poisoning or Q fever. 111. Method of any of items 1 -4 wherein said disease is a disease of the respiratory tract.
112. Method of item 111 , wherein said disease is selected from strep throat, acute tuberculosis, chronic tuberculosis and pneumonia.
113. Method of any of items 1-4, wherein said disease is a nosocomial infection.
114. Method of item 113, wherein said nosocomial infection is a urinary tract infection.
115. Method of item 113 wherein said nosocomial infection is a surgical site infection. 116. Method of item 113 wherein said nosocomial infection is pneumonia
117. Method of item 113 wherein said nosocomial infection is a systemic infection.
118. Method of any of items 1-4, wherein said microbial cell is an opportunistic bacterial pathogen. 119. Method of item 118, wherein said opportunistic bacterial pathogen is selected from Staphylococcus aureus, E. coli, Stenotrophomonas (Xanthomonas) maltophilia, Salmonella sp., Rhodococcus equi. Shigella flexneri, Pseudomonas aeruginosa, Listonella anguillarum, Burkholderia cepacia or Mycobacterium, Nocardia asteroides, Nocardia brasiliensis, and Nocardia otitidiscaviarum. 120. Method of any of items 1-4, wherein said disease is a dental disease.
121. Method of item 120, wherein said dental disease is selected from tooth decay and/or periodontal disease
122. Method of any of the previous items, wherein said microbial cell is re- sistant to one or more antibiotics.
123. Method of item 122 wherein said microbial cell is selected from Staphylococcus sp., MRSA (methicillin-resistant staph aureus) Campylobacter sp, Listeria monocytogenes, Pneumococcus sp., Haemophilus influenzae, Bacil- lus subtilis, Streptococcus pneumoniae, Mycobacterium tuberculosis, Salmo- nella sp., E. coli, Enterococcus sp., Klebsiella pneumoniae, Pseudomonas aeruginosa, Klebsiella oxytoca, Morganella morganii, Enterobacter agglomer- ans, Enterococcus faecalis, Enterococcus faeium and Staphylococcus epidermidis
124. Method of any of the previous items, wherein said bioactive species is administered to said individual in an amount from 0.1 mg - 150 mg.
125. Method of any of the previous items, wherein said contacting is performed 1-4 times daily.
126. Method of any of the previous items, wherein said contacting is performed 2-3 times daily. 127. Method of any of the previous items, whereby said method is used in combination with another medical treatment.
128. Method of item 127, whereby said medical treatment is an organ transplant.
129. Method of item 127, whereby said medical treatment is chemotherapy. 130. Method of item 127, whereby said medical treatment is radiotherapy.
131. Method of item 127, whereby said medical treatment is a cancer treatment.
132. Method of item 127, whereby said medical treatment is a cystic fibrosis treatment. 133. Method of item 127, whereby said medical treatment causes or contributes to immunodeficiency of said individual.
134. Method of item 127, whereby said medical treatment is used to treat AIDS or HIV.
135. Method of item 127, whereby said medical treatment is an anti- microbial treatment. 136. Method of item 135, wherein said treatment comprises administration of at least one anti-microbial compound, such as any of the following: - one or more cell wall synthesis inhibitor, such as a beta-lactam - penicillin - a cephalosporin - Vancomycin - protein synthesis inhibitor, such as an Aminoglycoside (streptomycin), a Tetracycline, a Macrolide (erythromycin), an Oxazolidinone - one or more nucleic acid metabolism inhibitor - a Sulfonamide - Trimethoprim - a Rifamycin - one or more DNA gyrase inhibitor, such as a Quinolone, a derivative of Quinolone, a fluorinated derivative of Quinolone or a Novobiocin. 137. Method of any of items 1 -136, wherein said polypeptide toxin is from the RelE toxin family.
138. Method of item 137, wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16.
139. Method of item 137, wherein said polypeptide toxin comprises a se- quence that is substantially identical to SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16.
140. Method of item 137, wherein said polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16.
141. Method of item 137, wherein said polypeptide toxin comprises a se- quence with at least 85 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16.
142. Method of item 137, wherein said polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16. 143. Method of item 137, wherein said polypeptide toxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16. 144. Method of item 137, wherein said polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16. 145. Method of item 137, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 146. Method of item 137, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
147. Method of item 137, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
148. Method of item 137 and/or 147, wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO: 17-97 149. Method of any of items 1-136, wherein said polypeptide toxin is from the VapC toxin family.
150. Method of item 149, wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO:99, 101, 103 and 105
151. Method of item 149 wherein said polypeptide toxin comprises a se- quence that is substantially identical to SEQ ID NO:99, 101 , 103 and 105.
152. Method of item 149, wherein said polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105.
153. Method of item 149, wherein said polypeptide toxin comprises a se- quence with at least 85 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105.
154. Method of item 149, wherein said polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105. 155. Method of item 149, wherein said polypeptide toxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105. 156. Method of item 149, wherein said polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105. 157. Method of item 149, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO:99, 101, 103 and 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 158. Method of item 149, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO:99, 101 , 103 and 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
159. Method of item 149, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to one or more of SEQ ID NO:99, 101 , 103 and 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
160. Method of item 149 and/or 159 wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO: 106-154 161. Method of any of items 1 -136, wherein said polypeptide toxin is from the MazF toxin family.
162. Method of item 161 , wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO: 155 and 160.
163. Method of item 161, wherein said polypeptide toxin comprises a se- quence that is substantially identical to SEQ ID NO: 155 and 160.
164. Method of item 161, wherein said polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID N0.155 and 160.
165. Method of item 161, wherein said polypeptide toxin comprises a se- quence with at least 85 % sequence identity to one or more of SEQ ID NO: 155 and 160.
166. Method of item 161, wherein said polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO:155 and 160. 167. Method of item 161 , wherein said polypeptide toxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 155 and 160. 168. Method of item 161, wherein said polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO:155 and 160. 169. Method of item 161, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 155 and 160 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 170. Method of item 161, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 155 and 160 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
171. Method of item 161, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to one or more of SEQ ID NO: 155 and 160 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
172. Method of item 161 and/or 171, wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO:161-205. 173. Method of any of items 1-136, wherein said polypeptide toxin is from the ParE toxin family.
174. Method of item 173, wherein said polypeptide toxin comprises sequence with SEQ ID NO:207
175. Method of item 173, wherein said polypeptide toxin comprises a se- quence that is substantially identical to SEQ ID NO:207.
176. Method of item 173, wherein said polypeptide toxin comprises a sequence with at least 80 % sequence identity to SEQ ID NO:207.
177. Method of item 173, wherein said polypeptide toxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 207. 178. Method of item 173, wherein said polypeptide toxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 207.
179. Method of item 173, wherein said polypeptide toxin comprises a sequence with at least 95 % sequence identity to SEQ ID NO: 207.
180. Method of item 173, wherein said polypeptide toxin comprises a se- quence with at least 99 % sequence identity to SEQ ID NO: 207.
181. Method of item 173, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 182. Method of item 173, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to SEQ ID NO: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 183. Method of item 173, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10~10 or less when compared to SEQ ID NO: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
184. Method of item 173 and/or 183 wherein said polypeptide toxin com- prises a sequence selected from SEQ ID NO:208-219.
185. Method of any of items 1-136 wherein said polypeptide toxin is from the HigB toxin family.
186. Method of item 185, wherein said polypeptide toxin comprises a sequence with SEQ ID NO: 221. 187. Method of item 185, wherein said polypeptide toxin comprises a sequence that is substantially identical to SEQ ID NO: 221.
188. Method of item 185, wherein said polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 221.
189. Method of item 185, wherein said polypeptide toxin comprises a se- quence with at least 85 % sequence identity to one or more of SEQ ID NO: 221.
190. Method of item 185, wherein said polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 221.
191. Method of item 185, wherein said polypeptide toxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 221. 192. Method of item 185, wherein said polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 221.
193. Method of item 185, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 221 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
194. Method of item 185, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 221 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 195. Method of item 185, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to one or more of SEQ ID NO: 221 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 196. Method of item 185 or 195 wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO:222-240.
197. Method of any of items 1-136, wherein said polypeptide toxin is from the Doc toxin family.
198. Method of item 197, wherein said polypeptide toxin comprises a se- quence selected from SEQ ID NO: 242
199. Method of item 197, wherein said polypeptide toxin comprises a sequence that is substantially identical to SEQ ID NO: 242.
200. Method of item 197, wherein said polypeptide toxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID NO: 242. 201. Method of item 197, wherein said polypeptide toxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 242.
202. Method of item 197, wherein said polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 242.
203. Method of item 197, wherein said polypeptide toxin comprises a se- quence with at least 95 % sequence identity to one or more of SEQ ID NO: 242.
204. Method of item 197, wherein said polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 242.
205. Method of item 197, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
206. Method of item 197, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
207. Method of item 197, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to one or more of SEQ ID NO: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 208. Method of item 197 and/or 207 wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO:243-257.
209. Method of any of items 1-136, wherein said polypeptide toxin is from the CcdB toxin family. 210. Method of item 209, wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO: 259.
211. Method of item 209, wherein said polypeptide toxin comprises a sequence that is substantially identical to SEQ ID NO: 259.
212. Method of item 209, wherein said polypeptide toxin comprises a se- quence with at least 80 % sequence identity to one or more of SEQ ID NO: 259.
213. Method of item 209, wherein said polypeptide toxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 259.
214. Method of item 209, wherein said polypeptide toxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 259. 215. Method of item 209, wherein said polypeptide toxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 259.
216. Method of item 209, wherein said polypeptide toxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 259.
217. Method of item 209, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
218. Method of item 209, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
219. Method of item 209, wherein said polypeptide toxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to one or more of SEQ ID NO: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
220. Method of item 209-219, wherein said polypeptide toxin comprises a sequence selected from SEQ ID NO:260-263.
221. Method of any of items 1-136, wherein said polypeptide antitoxin is from the RelB family. 222. Method of item 221 wherein said polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 1,3,5,7,9, 11 ,13 and 15.
223. Method of item 221, wherein said polypeptide antitoxin comprises a sequence that is substantially identical to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15
224. Method of item 221 , wherein said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 1 ,3,5,7,9, 11 ,13 and 15
225. Method of item 221, wherein said polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15.
226. Method of item 221, wherein said polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15. 227. Method of item 221, wherein said polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15.
228. Method of item 221, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15.
229. Method of item 221, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 1 ,3,5,7,9, 11,13 and 15, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
230. Method of item 221, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
231. Method of item 221 and/or 230, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 232. Method of any of items 1-136 wherein said polypeptide antitoxin is from the VapB family
233. Method of item 232, wherein said polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 98, 100, 102 and 104. 234. Method of item 232, wherein said polypeptide antitoxin comprises a sequence that is substantially identical to one or more of SEQ ID NO: 98, 100, 102 and 104.
235. Method of item 232, wherein said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 98, 100, 102 and 104.
236. Method of item 232, wherein said polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 98, 100, 102 and 104.
237. Method of item 232, wherein said polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 98, 100, 102 and 104.
238. Method of item 232, wherein said polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 98, 100, 102 and 104. 239. Method of item 232, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 98, 100, 102 and 104.
240. Method of item 232, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 98, 100, 102 and 104, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
241. Method of item 232, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 98, 100, 102 and 104 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
242. Method of item 232 and/or 241 , wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to one or more of SEQ ID NO: 98, 100, 102 and 104 using the BLAST algorithm version (2.04) set to the default parameters de- fined herein. 243. Method of any of items 1-136, wherein said polypeptide antitoxin is from the MazE family.
244. Method of item 243, wherein said polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 156, 157, 158 and 159. 245. Method of item 243, wherein said polypeptide antitoxin comprises a sequence that is substantially identical to one or more of SEQ ID NO: 156, 157, 158 and 159.
246. Method of item 243, wherein said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to one or more of SEQ ID: 156, 157, 158 and 159.
247. Method of item 243, wherein said polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to one or more of SEQ ID NO: 156, 157, 158 and 159.
248. Method of item 243, wherein said polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 156, 157, 158 and 159.
249. Method of item 243, wherein said polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 156, 157, 158 and 159. 250. Method of item 243, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to one or more of SEQ ID NO: 156, 157, 158 and 159.
251. Method of item 243, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 156, 157, 158 and 159, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
252. Method of item 243, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 156, 157, 158 and 159 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
253. Method of item 243 and/or 252, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to one or more of SEQ ID NO: 156, 157, 158 and 159 and 104 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 254. Method of any items 1- 136 wherein said polypeptide antitoxin is from the ParD family 255. Method of item 254, wherein said polypeptide antitoxin comprises a sequence with SEQ ID NO: 206.
256. Method of item 254, wherein said polypeptide antitoxin comprises a sequence that is substantially identical to SEQ ID NO: 206.
257. Method of item 254, wherein said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to SEQ ID: 206.
258. Method of item 254, wherein said polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 206.
259. Method of item 254, wherein said polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 206 260. Method of item 254, wherein said polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 206. 261. Method of item 254, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to SEQ ID NO: 206. 262. Method of item 254, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 206, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
263. Method of item 254, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 206 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
264. Method of item 254 and/or 263, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to SEQ ID NO: 206, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
265. Method of any of items 1-136, wherein said polypeptide antitoxin is from the HigA family
266. Method of item 265 wherein said polypeptide antitoxin comprises a sequence with SEQ ID NO: 220. 267. Method of item 265, wherein said polypeptide antitoxin comprises a sequence that is substantially identical to SEQ ID NO: 220.
268. Method of item 265, wherein said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to SEQ ID: 220. 269. Method of item 265, wherein said polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 220.
270. Method of item 265, wherein said polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 220
271. Method of item 265, wherein said polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to SEQ ID NO: 220.
272. Method of item 265, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to SEQ ID NO: 220.
273. Method of item 265, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 220, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
274. Method of item 265, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 220 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
275. Method of item 265 and/or 274, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to SEQ ID NO: 220, using the BLAST algorithm version (2.04) set to the default parameters defined herein. 276. Method of any of items 1-136, wherein said polypeptide antitoxin is from the Phd family.
277. Method of item 276, wherein said polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 241.
278. Method of item 276, wherein said polypeptide antitoxin comprises a sequence that is substantially identical to SEQ ID NO: 241.
279. Method of item 276, wherein said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to SEQ ID: 241.
280. Method of item 276, wherein said polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 241. 281. Method of item 276, wherein said polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 241
282. Method of item 276, wherein said polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to SEQ ID NO: 241. 283. Method of item 276, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to SEQ ID NO: 241.
284. Method of item 276, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 241, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
285. Method of item 276, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 241 using the BLAST algorithm version (2.04) set to the default parameters defined herein. 286. Method of item 276 and/or 285, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to SEQ ID NO: 241 , using the BLAST algorithm version (2.04) set to the default parameters defined herein.
287. Method of any of items 1-136, wherein said polypeptide antitoxin is from the CcdA family
288. Method of item 287, wherein said polypeptide antitoxin comprises a sequence selected from SEQ ID NO: 258.
289. Method of item 287, wherein said polypeptide comprises a sequence that is substantially identical to SEQ ID NO: 258. 290. Method of item 287, wherein said polypeptide antitoxin comprises a sequence with at least 80 % sequence identity to SEQ ID: 258.
291. Method of item 287, wherein said polypeptide antitoxin comprises a sequence with at least 85 % sequence identity to SEQ ID NO: 258.
292. Method of item 287, wherein said polypeptide antitoxin comprises a sequence with at least 90 % sequence identity to SEQ ID NO: 258.
293. Method of item 287, wherein said polypeptide antitoxin comprises a sequence with at least 95 % sequence identity to one or more of SEQ ID NO: 258.
294. Method of item 287, wherein said polypeptide antitoxin comprises a sequence with at least 99 % sequence identity to SEQ ID NO: 258. 295. Method of item 287, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 258, using the BLAST algorithm version (2.04) set to the default parameters defined herein. 296. Method of item 287, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"5 or less when compared to one or more of SEQ ID NO: 258, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
297. Method of item 287 and/or 296, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"10 or less when compared to SEQ ID NO: 258, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
298. Method of any of items 1-136, wherein said anti-toxin polypeptide is the cognate anti-toxin to any of the toxin polypeptides described in items 137- 220.
299. Method of any of items 1-136, wherein said polynucleotide encoding a polypeptide toxin encodes a polypeptide toxin described in any of items 137- 220.
300. Method of item 299, wherein said polynucleotide encoding a polypep- tide antitoxin encodes a polypeptide antitoxin described in any of items 221-297.
301. Method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex, comprising:
a) providing a compound to be evaluated for the ability to interfere with a bacterial toxin-antitoxin complex, and b) providing a first polypeptide comprising a bacterial toxin or a fragment thereof capable of binding an antitoxin, and c) providing a second polypeptide comprising said antitoxin or a fragment thereof capable of binding said toxin, and d) incubating said compound, said first polypeptide and said second polypeptide under conditions allowing binding of said first polypeptide to said second polypeptide, and e) detecting a signal from said incubation mixture indicative of the degree of binding of said first polypeptide to said second polypeptide, and f) evaluating whether or not the presence of said compound has affected the binding of said first polypeptide to said second polypeptide by comparison of the signal detected in step e), with a reference value indicative of the binding of said first polypeptide to said second polypeptide in the absence of said compound. 302. Method of item 301 , wherein step f) is done by comparison with a parallel control experiment, wherein said first polypeptide and said second polypeptide are incubated under conditions allowing binding of said first polypeptide to said second polypeptide, in the absence of said compound.
303. Method of item 301 or 302, wherein said toxin is selected from the tox- ins described in items 137-297.
304. Method of any of items 301-303, wherein said anti-toxin is selected from the antitoxins described in items 221-297.
305. Method of any of items 301-304, wherein said method is a biochemical method. 306. Method of item 305, wherein said biochemical method is performed using purified toxin and/or purified antitoxin.
307. Method of any of items 301-306, wherein one of said polypeptides is immobilised.
308. Method of any of items 301-307, wherein one of said polypeptides is fused to an enzymatic or fluorescent reporter.
309. Method of any of items 301-308, wherein said method is an in vivo method.
310. Method of item 309, wherein said method is cell-based.
311. Method of item 310, wherein said cell is recombinant. 312. Method of any of items 310-311 , wherein said method is a bacterial two-hybrid method.
313. Method of any of items 301-312, wherein said signal is generated by a level of enzymatic activity.
314. Method of any of items 301-313 wherein said signal is generated by a level of fluorescence.
315. Method of any of items 301-314 with the further step of repeating said method at least once, with a different bacterial toxin-antitoxin complex.
316. Method of item 315 wherein said different toxin is selected from the toxins described in items 137-220. 317. Method of item 315 and/or item 316, wherein said different antitoxin is selected from the antitoxins described in items 221-297.
318. Bioactive species capable of activating a bacterial polypeptide toxin and/or capable of initiating de novo synthesis of an activated bacterial polypep- tide toxin, said species comprising one or more of the following groups: - peptides, β-peptides, γ-peptides, ω-peptides, mono-, di- and tri-substituted α- peptides, β-peptides, γ-peptides, ω-peptides, peptides wherein the amino acid residues are in the L-form or in the D-form, vinylogous polypeptides, glycopoly- peptides, polyamides, vinylogous sulfonamide peptides, polysulfonamides, con- jugated peptides comprising e.g. prosthetic groups; polyesters, polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonat.es, polyurethanes, azatides, oligo N-substituted glycines, polyethers, ethoxyformacetal oligomers, poly-thioethers, polyethylene glycols (PEG), polyethylenes, polydisulfides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyr- rolinones, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g. aliphatic or aromatic cycles, including polyheterocyclic compounds; proteoglycans, and polysiloxanes,
319. Bioactive species of capable of activating a bacterial polypeptide toxin and/or capable of initiating de novo synthesis of an activated bacterial polypeptide toxin, wherein said bioactive species comprises a scaffold structure, said scaffold structure comprising a plurality of covalently linked functional entities selected from one or more of the following groups: α-peptides, β-peptides, γ- peptides, ω-peptides, mono-, di- and tri-substituted α-peptides, β-peptides, γ- peptides, ω-peptides, peptides wherein the amino acid residues are in the L-form or in the D-form, vinylogous polypeptides, glycopoly-peptides, polyamides, vinylogous sulfonamide peptides, polysulfonamides, conjugated peptides comprising e.g. prosthetic groups, polyesters, polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonates, polyurethanes, azatides, oligo N- substituted glycines, polyethers, ethoxyformacetal oligomers, poly-thioethers, polyethylene glycols (PEG), polyethylenes, polydisulfides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyrrolinones, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g. aliphatic or aromatic cycles, including polyheterocyclic compounds, proteoglycans, and polysiloxanes.. Bioactive species according to item 319, wherein the plurality of functional entities is from 2 to 200, for example from 2 to 100, such as from 2 to 80, for example from 2 to 60, such as from 2 to 40, for example from 2 to 30, such as from 2 to 20, for example from 2 to 15, such as from 2 to 10, such as from 2 to 8, for example from 2 to 6, such as from 2 to 4, for example 2, such as from 3 to 100, for example from 3 to 80, such as from 3 to 60, such as from 3 to 40, for example from 3 to 30, such as from 3 to 20, such as from 3 to 15, for example from 3 to 15, such as from 3 to 10, such as from 3 to 8, for example from 3 to 6, such as from 3 to 4, for example 3, such as from 4 to 100, for example from 4 to 80, such as from 4 to 60, such as from 4 to 40, for example from 4 to 30, such as from 4 to 20, such as from 4 to 15, for example from 4 to 10, such as from 4 to 8, such as from 4 to 6, for example 4, for example from 5 to 100, such as from 5 to 80, for example from 5 to 60, such as from 5 to 40, for example from 5 to
30, such as from 5 to 20, for example from 5 to 15, such as from 5 to 10, such as from 5 to 8, for example from 5 to 6, for example 5, such as from 6 to 100, for example from 6 to 80, such as from 6 to 60, such as from 6 to 40, for example from 6 to 30, such as from 6 to 20, such as from 6 to 15, for example from 6 to 10, such as from 6 to 8, such as 6, for example from 7 to 100, such as from 7 to
80, for example from 7 to 60, such as from 7 to 40, for example from 7 to 30, such as from 7 to 20, for example from 7 to 15, such as from 7 to 10, such as from 7 to 8, for example 7, for example from 8 to 100, such as from 8 to 80, for example from 8 to 60, such as from 8 to 40, for example from 8 to 30, such as from 8 to 20, for example from 8 to 15, such as from 8 to 10, such as 8, for example 9, for example from 10 to 100, such as from 10 to 80, for example from 10 to 60, such as from 10 to 40, for example from 10 to 30, such as from 10 to 20, for example from 10 to 15, such as from 10 to 12, such as 10, for example from 12 to 100, such as from 12 to 80, for example from 12 to 60, such as from 12 to 40, for example from 12 to 30, such as from 12 to 20, for example from 12 to 15, such as from 14 to 100, such as from 14 to 80, for example from 14 to 60, such as from 14 to 40, for example from 14 to 30, such as from 14 to 20, for example from 14 to 16, such as from 16 to 100, such as from 16 to 80, for example from 16 to 60, such as from 16 to 40, for example from 16 to 30, such as from 16 to 20, such as from 18 to 100, such as from 18 to 80, for example from 18 to 60, such as from 18 to 40, for example from 18 to 30, such as from 18 to 20, for example from 20 to 100, such as from 20 to 80, for example from 20 to 60, such as from 20 to 40, for example from 20 to 30, such as from 20 to 25, for example from 22 to 100, such as from 22 to 80, for example from 22 to 60, such as from 22 to 40, for example from 22 to 30, such as from 22 to 25, for example from 25 to 100, such as from 25 to 80, for example from 25 to 60, such as from 25 to 40, for example from 25 to 30, such as from 30 to 100, for example from 30 to 80, such as from 30 to 60, for example from 30 to 40, such as from 30 to 35, for example from 35 to 100, such as from 35 to 80, for example from 35 to 60, such as from 35 to 40, for example from 40 to 100, such as from 40 to 80, for example from 40 to 60, such as from 40 to 50, for example from 40 to 45, such as from 45 to 100, for example from 45 to 80, such as from 45 to 60, for example from 45 to 50, such as from 50 to 100, for example from 50 to 80, such as from 50 to 60, for example from 50 to 55, such as from 60 to 100, for example from 60 to 80, such as from 60 to 70, for example from 70 to 100, such as from 70 to 90, for example from 70 to 80, such as from 80 to 100, for example from 80 to 90, such as from 90 to 100. 321. Bioactive species of any of items 318-320, wherein said bioactive species is a "small molecule". 322. Bioactive species of items 318-321, comprising functional entities linked by one or more type of chemical bond, selected from peptide bonds, sulfonamide bonds, ester bonds, saccharide bonds, carbamate bonds, carbonate bonds, urea bonds, phosphonate bonds, urethane bonds, azatide bonds, peptoid bonds, ether bonds, ethoxy bonds, thioether bonds, single carbon bonds, double carbon bonds, triple carbon bonds, disulfide bonds, sulfide bonds, phos- phodiester bonds, oxime bonds, imine bonds and imide bonds. 323. Bioactive species according to any of items 318-322, wherein said bioactive species comprises a backbone structure comprising or essentially consisting of one or more molecular group(s) selected from -NHN(R)CO- ; - NHB(R)CO- ; -NHC(RR')CO- ; -NHC(=CHR)CO- ; -NHC6 H4 CO-; -NHCH2 CHRCO-; -NHCHRCH2 CO- ; -COCH2- ; -COS- ; -CONR- ; -COO- ; -CSNH- ; - CH2 NH- ; -CH2CH2- ; -CH2 S- ; -CH2 SO- ; -CH2S02- ; -CH(CH3)S- ; -CH=CH- ; - NHCO- ; -NHCONH- ; -CONHO- ; -C( =CH2)CH2- ; -P02 "NH- ; -P02 "CH2- ; -POz " CH2N+- ; -S02NH"- ; and lactams. 324. Bioactive species according to any of items 318-323, wherein said bioactive species is defined by one or more of the following structural limits: 3 < HDO ≤ 5 and/or 2 < HAC ≤ 9 and/or 2 < RTB ≤ 8 and/or 1 < RNG < 4 and/or -0.4 ≤ log P < 5.6 and/or 40 ≤MR <130
325. Bioactive species of item 324 wherein said bioactive species is defined by 2 of said structural limits.
326. Bioactive species of item 324, wherein said bioactive species is defined by 3 of said structural limits.
327. Bioactive species of item 324, wherein said bioactive species is defined by 4 of said structural limits. 328. Bioactive species of item 324, wherein said bioactive species is defined by 5 of said structural limits.
329. Bioactive species of item 324, wherein said bioactive species is defined by 6 of said structural limits.
330. Bioactive species of any of items 324-329, wherein said bioactive spe- cies is further defined within the limits 0 ≤ HDO ≤ 2
331. Bioactive species of any of items 324-330, wherein said bioactive species is further defined within the limits 2 ≤ log P ≤ 3.
332. Bioactive species of any of items 324-331 , wherein said bioactive species is either lipophilic and/or encapsulated in a lipophilic carrier. 333. Bioactive species of any of items 324-332, wherein said bioactive species is identifiable using the methods of any of items 301-317.
334. Hygienic composition capable of reducing or eliminating microbial cells, comprising one or more of the bioactive species of items 318-333.
335. Hygienic composition of item 334, further comprising a hygienically- acceptable carrier.
336. Non-therapeutic method for eliminating or reducing microbial cells, comprising contacting a surface with the hygienic composition of items 334 or 335.
337. Method of item 336, wherein said surface is on an item of hospital equipment. 338. Method of treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell, said microbial cell comprising at least one complex of a polypeptide toxin and an anti-toxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide, said method comprising the steps of a) contacting said microbial cell with a bioactive species capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of activated polypeptide toxin, and/or capable of increasing the total amount of activated polypeptide toxin and b) obtaining in said microbial cell an activated polypeptide toxin in an amount sufficient for achieving at least an impaired growth or elimination of said microbial cell in said plant.
339. Method of item 338, wherein said bioactive species is selected from the bioactive species of items 318-333. 340. A pharmaceutical formulation comprising a bioactive species of any of items 318-333, or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent therefor.
341. The pharmaceutical formulation of item 340 comprising more than one bioactive species of any of items 318-333, or a phamaceutically acceptable salt thereof.
342. The pharmaceutical formulation of any of items 340-341 , formulated for parenteral administration.
343. The pharmaceutical formulation of any of items 340-341 , formulated for oral administration 344. The pharmaceutical formulation of any of items 340-341 , formulated for topical administration.
345. The pharmaceutical formulation of any of items 340-341 , formulated for parenteral administration.
346. The pharmaceutical formulation of any of items 340-341 , formulated for transdermal administration.
347. The pharmaceutical formulation of any of items 340-341 , formulated as a suppository.
348. The pharmaceutical formulation of any of items 340-341 , formulated for nasal administration. 349. The pharmaceutical formulation of any of items 340-341 , formulated for aerosol administration.
350. Use of a bioactive species described in any of items 318-333, capable of activating a polypeptide toxin of a bacterial toxin;antitoxin complex and/or ca- pable of initiating de novo synthesis of an activated polypeptide toxin and/or capable of increasing the amount of activated polypeptide toxin; for the manufacture of a medicament for the treatment of an individual in need thereof.
351. Use of item 350, wherein said medicament is for the treatment or pre- vention of disease in said individual caused by a bacterium harbouring one or more toxin:anti-toxin complexes.
352. Use of any of items 350-351 , wherein said disease is selected from the list of diseases in item 68.
353. Use of any of items 350-352, wherein said microbial cell is selected from the microbial cells described in any of items 5-34.
354. Use of any of items 350-353, wherein said toxin and/or antitoxin is selected from the toxins and antitoxins described in items 137-298.
355. Use of any of items 350-354, wherein said individual is selected from any of the individuals described in items 35-67.
Description of Figures
Figure 1 : Schematic representation of fluorescence polarization measurements. When a small fluorescent molecule is excited with polarized light, the dipole will tumble randomly in solution, and when emission is measured through a second polarizing filter, parallel and perpendicular to the excitation plane of polarization, equal intensities will be observed and result in a low polarization value. When the fluorescent molecule binds to a macromolecule, the molecule rotates slowly, orients in the plane of polarization, and yields higher intensity when the polarizers are parallel than perpendicular, resulting in a high polarization value (Methods 22, 61-70 (2000)).
Figure 2: In vivo testing and screening for compounds that disrupt the interaction between a toxin (denoted X) and antitoxin (denoted Y). Any compound identified that leads to a disruption of the TA interaction is thus expected to lead to a repression of β-galactosidase synthesis, provided that it can enter the cell and contain in vivo activity. It may be necessary to use a harmless version of the toxin for these studies to avoid killing of the cells. Such toxin derivatives are already available. (Karimova et al., (1998) PNAS 95:5752-6.)
Figure 3: (A) Schematic drawing that explains the titration induction principle, (B) optical density and (C) colony forming units pr ml (cfu/ml) after production of RelE6CS mutant protein in wild-type and ΔrelBE E. coli cells . Cells of MG1655/pKP3103 (pBAD::re/E6CS) and MG1655 re/βE/pKP3103 were grown in
M9 minimal medium supplemented with 50 μg/ml chloramphenicol, amino acids in defined amounts and 0,5% glycerol. The relEβCS gene encodes a RelE protein that has its C-terminal six aa substituted with TVTVTV. This mutant RelE protein does not inhibit translation in vitro (Pedersen et al., 2002). At time zero, transcription of the relEβCS gene was induced by addition of 0.2% arabinose. At the time-points indicated, appropriate dilutions of the cultures were plated on LA-plates containing 50 μg/ml chloramphenicol and 0.2% arabinose.
Figure 4: Peptide Scanning Arrays used to identify linear sequences of antitoxin that interact with partner toxins. Nitrocellulose membranes spotted with peptides derived from RelB (A) and MazE (B) and probed with either RelE-GST (A) or MazF-GST (B). The peptides were designed so that there was a shift of 2 aa between two consecutive peptides. 50 μg of GST-RelE (A) or GST-MazF (B) was incubated with the membranes ON at 4°C. To visualize the binding of the GST fusions, the membranes were incubated with mouse anti-GST antibody in addition to HRP-conjugated goat anti-mouse antibody the following day.
Examples
Example 1 :Cell killing by activation of endogenous RelE of E. coli
RelB neutralizes RelE by direct protein - protein interaction. Therefore, in E. coli wild-type cells that contain native RelBE complexes, ectopic overproduction of non- toxic variants of RelE that still can bind RelB should titrate endogenous RelB away from the active wild-type RelE and confer cell killing. To test this, we used a non- toxic mutant variant of RelE that has its 6 C-terminal codons substituted to TVTVTV (called RelE6CS) (Pedersen et al., 2002). The RelE6CS variant does not inhibit translation in vitro and this explains its lack of cell killing activity in vivo. As a first attempt to activate endogenous RelE, we used the titration-principle as illustrated in Figure 3A.
Plasmid pKP3103 (Figure 3A) carries the relEβCS gene downstream of the pBAD promoter and therefore produces RelE6CS upon addition of arabinose (0.2%) to the growth medium. Cells of MG1655/pKP3103 and MG1655-dre/BE/pKP3103 were grown in M9 minimal medium supplemented with amino acids in defined amounts and 0.5% glycerol. At an optical density of approximately 0.2 (OD45o), 0.2% arabinose was added to induce transcription of the relEβCS gene. Figure 3B shows that the optical density of MG1655_dre/SE/pKP3103 continued to increase after addition of arabinose. In contrast, the growth of MG1655/pKP3103 rapidly ceased. Simulta- neously, cells of MG1655/pKP3103 were plated on LA-plates containing 50 μg/ml chloramphenicol and 0.2% arabinose at different time-points before and after addition of arabinose. The number of colony forming units continued to increase in MG1655 lre/SE/pKP3103 after addition of arabinose (Figure 3C). In contrast, the viability of MG1655 4re/BE/pKP3103 was severely reduced after addition of arabi- nose (Figure 3C). The first sample was plated on LA-plates without arabinose. Thus, production of RelE6CS resulted in inhibition of cell growth and in a reduction of the number of viable cells only if the plasmid-carrying strain encoded a chromosomal copy of the relBE locus. This result shows that endogenous RelE can be activated from outside the cell and kill and/or inhibit the growth of the cells.
Example 2: Identification of linear seguences in RelB and MazE that interact with the toxin partner.
RelB antitoxin forms a tight complex with RelE and MazE antitoxin forms a tight complex with MazF. We used peptide arrays to identify linear stretches of amino acids in the antitoxins RelB and MazE that interact with the cognate toxins. We used two peptide "scanning" arrays that consisted of peptides of 15 aa in length and corresponded from aa 1-15, 3-17 etc. to 65-79 (RelB) or to 68-82 (MazE). The array peptides were covalently bound to a Whatman 50 cellulose support by their C- termini. For detection of toxin interaction we used fusions between toxins RelE and MazF to GST. The peptide array membranes were probed with GST-RelE or GST-MazF fusion proteins. From biochemical experiments we knew that the fusion proteins were biologically active and bind their cognate antitoxins avidly. To visualize the binding of the GST fusion proteins, the membranes were incubated with mouse anti-GST antibody in addition to HRP-conjugated goat anti-mouse antibody.
We identified two series of RelB-derived peptides that were recognized by RelE- GST. The first series corresponded to the N-terminal part of RelB and consisted of the two peptides RelB7-2ι and RelB9-23. This region covers the aa sequence RIL%
DELKARSYAALEKM. The underlined sequence represents the aa which are present in both peptides. The second series consisted of the peptide RelB39-53 and covers the sequence ADNERLPFKQTLLSD.
We identified three series of MazE-derived peptides that were recognized by MazF- GST (Fig. 4B). The strongest interaction was to the series of peptides MazE45.59, MazE53-67-MazE59-73 and MazE63-77 covering EPVRKEPVFTLAELVNPITPENL- HENIDWGEPK of MazE. The underlined sequence is present in more than one of the MazE peptides that is recognized by GST-MazF. The aa sequence in bold rep- resent the peptide MazE55-69. This peptide is recognized very strongly by GST-MazF.
These results are in very good agreement with the known structure of the MazEF complex (Kamada et al. 2003). The peptides that bound MazF all contain aa that interact with MazF in the crystals. The strongest interaction between MazE and MazF involves a region called "site 2" of MazE which consists of aa 54-67. With the exception of 1 aa all 14 "site 2" aa were included in peptide MazE55-69 which was the peptide that was recognized the most strongly by GST-MazF. The GST-MazF fusion did not bind RelB derived peptides and GST-RelE derived peptides did not bind to the MazE peptides (control reactions). These result show that small linear peptides derived from antitoxins can bind in vitro to their cognate toxins with a high specificity. Such small peptides demonstrate that peptidomimetics can be used as lead compounds that break toxin - antitoxin activity and thereby activate the toxins. Example 3: Examples of in vitro methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex, as disclosed herein
(a) Release of toxin from solid phase immobilized antitoxin.
The antitoxin is purified and immobilized to a solid support (e.g. microtiter well). There are numerous companies specializing in wells for protein immobilization (e.g. Corning Inc.) from whom standard protocols are available. The corresponding toxin is fused to an enzyme with an easily detectable activity, exemplified by alkaline phosphatase. The fusion protein is tested for biological activity in vivo before purification. Interaction between antitoxin and tagged toxin proteins can now be estab- lished in microtiter wells and these form the basis for screening of combinatorial chemical libraries that are commercially available (Chemical Diversity Inc. and others). Any low molecular compound that disrupts the interaction between the TA pair will lead to release of the toxin fused to alkaline phosphatase. The amount of released toxin can be assayed with great sensitivity by transferring the supernatant to a clean microtiter well and performing an alkaline phosphatase assay. For maximal sensitivity phosphate substrates yielding fluorescent products (eg. Fluorescein di- phosphate-FDP, Molecular Probes Inc.) should be used. Upon action of alkaline phosphatase FDP is hydrolyzed to fluorescein that fluoresces with a maximum of 518 nm upon excitation with a maximum of 494 nm which makes this substrate suit- able for detection in standard ELISA readers.
All screening procedures described here are readily automatized using robotics and plate readers currently available.
(b) Disruption of TA interaction in solution The antitoxin is purified as above. The corresponding toxin is purified and fluores- cently labeled by standard procedures). Toxin and antitoxin are mixed in microtiter wells and fluorescence polarization determined in a FP plate reader. Combinatorial chemical libraries can be screened for their ability in splitting the toxin antitoxin interaction because active substances will give rise to a lower polarization value (see Fig. 1). The principle behind fluorescence polarization is that when a fluorescent molecule is excited with plane polarized light, light is emitted in the same polarized plane, provided that the molecule remains stationary throughout the excited state (which has a duration of 4 nanoseconds for fluorescein). If the molecule rotates and tumbles out of this plane during the excited state, light is emitted in a different plane from the excitation light. If vertically polarized light is exciting the fluorophore, the intensity of the emitted light can be monitored in vertical and horizontal planes (degree of movement of emission intensity from vertical to horizontal plane is related to the mobility of the fluorescently labeled molecule). If a molecule is very large, little movement occurs during excitation and the emitted light remains highly polarized. If a molecule is small, rotation and tumbling is faster and the emitted light is depolarized relative to the excitation plane. This procedure has the advantage that it is performed in solution in a single microtiter plate, i.e. no transfer between plates are necessary. Furthermore it allows real time detection of TA disruption (kinetics) and it is insensitive to variations in concentrations. The method is very sensitive.
Example 4: Examples of in vivo methods for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex as disclosed herein
(a) Bacterial two hybrid system used as an indicator for TA interaction.
Toxin antitoxin interaction in vivo can be monitored using the bacterial two hybrid system developed by Karimova and coworkers (Proc Natl Acad Sci U S A 95, 5752,
1999). The basis of this system is the activation certain genes in E. coli, for example lacZ, by the CAP protein in complex with cAMP. If the Cya protein of Bordetella pertussis is split into two domains (T18 and T25), cAMP is no longer formed and gene activation by CAP no longer takes place (Fig. 2). However, if proteins that normally interacts (toxin and antitoxin) are fused to T18 and T25, respectively, these will be brought into close proximity of each other and functional CAP will be formed. Thus, interaction between the toxin and antitoxin will lead to derepression of the lac promoter, and an increase in beta-galactosidase activity that can be easily monitored.
(b) TA interaction in vivo monitored by BRET (bioluminescence resonance energy transfer)
A given antitoxin is genetically fused to a bioluminescent Renilla luciferase. In the presence of substrate, coelenterazine, it will emit light with an emission optimum of 480 nm. This is close to the excitation maximum for the YFP protein to which the toxin will be fused. Interaction of the toxin and antitoxin brings luciferase and the YFP proteins into close proximity such that resonance energy transfer takes place (Xu Y, Piston DW, Johnson CH. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96, 151 , 1996). Thus, in presence of a substrate for luciferase we are ex- pected to observe YFP fluorescence due to strong TA interaction. BRET has previously been used to demonstrate interaction between a number of proteins (ref). Any compound identified in la or lb that lead to a disruption of TA interaction is thus expected to lead to to reduced resonance energy transfer and reduced YFP fluores- cence, provided that it can enter the cell and contain in vivo activity. It may be necessary to use a harmless version of the toxin for these studies to avoid killing of the cells.
Example 5: Example of bioinformatics search of genome databases to indentify toxin-antitoxin pairs
Definition of "GI" amino acid (protein) and DNA sequence identifier:
"GI" identifiers are numbers assigned by NCBI to all sequences contained within the
NCBI sequence databases. The 'GI1 identifier provides a uniform and stable naming convention whereby a specific sequence is assigned its unique GI identifier. If a nucleotide or protein sequence changes, however, a new GI identifier is assigned, even if the accession number of the record remains unchanged. Thus GI identifiers provide a mechanism for identifying the exact sequence that was used or retrieved in a given search.
a) Searches with toxin protein query sequences: The first step in the identification of toxin-antitoxin pairs was retrieval of toxin protein sequences (RelE, VapC, MazF, ParE, HigB, Doc, CcdB) from scientific publications. In this way, groups of experimentally verified toxin sequences of RelE, VapC, MazF, ParE, HigB, Doc and CcdB were generated. These sequences comprise SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 99, 101 , 103, 105, 155, 160, 221 , 242, 259. The toxin sequences may be plasmid-encoded or chromosome encoded. / b) Database searches for TA system components > These toxin sequences were used as query sequences in data base searches as follows:
The genomes of the organisms to be searched were downloaded from the NCBI ftp- server, ftp.ncbi.nih.gob/genomes/Bacteria. Then, the formatdb program, from NCBI blast suite, was used to create separately indexed databases (amino acid and nu- cleotide or both) for each organism, to make them searchable with BLAST. As such the genomes of the organisms to be searched define the "search space". Plasmid DNA sequences were excluded from the search space.
The amino acid database created for each organism, were searched with programs BLASTP (matrix used: BLOSUM62), PSI-BLAST (matrix used: BLO- SUM62) and HMM-SEARCH (BLOSUM62) as described in the steps below. All other search parameters were default parameters as defined herein.
1. The groups of toxin sequences with SEQ ID: 2, 4, 6, 8, 10, 12, 14, 16, 99, 101 , 103, 105, 155, 160, 207, 221, 242 and 259, were used as queries in a BLASTP search against the genomes downloaded from the NCBI web-site.
2. Score sequences ("hits") characterized by E-values lower than 10"10 were col- lected to generate the groups of "core sequences" , with SEQ ID: 17-97, 106- 154, 161-205, 208-219, 222-240, 243-257 and 260-263.
3. SEQ ID: 2, 4, 6, 8, 10, 12, 14, 16, 99, 101, 103, 105, 155, 160, 207, 221, 242 and 259, were used again in BLAST searches against the genomes searched. Hits with an E-value lower than 10"4 were collected.
4. All the "hit" sequences from step 3 were then used as queries with the search programs described above and the 126 genomes as search space. Again, sequences characterized by E-values lower than 10"4 were collected. This step was repeated until no further sequences could be added.
5. All sequences collected after step 4 were used as queries in a BLASTP search using the groups of core toxin sequences (SEQ ID: 17-97, 106-154, 161-205, 208-219, 222-240, 243-257 and 260-263) generated in step 2 as the search space. Hits characterized by E-values lower than 10"4 were collected.
6. All the sequences retrieved in step 5 were sorted by size such that sequences of more than 160 aa and less than 50 aa were discarded. 7. The genes encoding all the collected toxin protein sequences were analyzed with respect to the presence of a closely linked upstream putative or annotated antitoxin gene of a suitable size (or, in the case of the Hig family of toxins, a putative or annotated downstream antitoxin gene). Closely linked means that the distance (in bp) between the toxin and antitoxin genes was not more than 72 bp, or in one case, not more than 148 bp (ccdA and ccdB of Nitrosomonas eu- ropaeus). Suitable size of the antitoxin genes was not more than 140 and not less than 42 codons. The pair of GI numbers of the toxin and antitoxin protein sequences were then retrieved.
8. In cases in which there was no identifiable putative and annotated antitoxin gene sequence (in the form of a protein GI), the DNA flanking the toxin gene of interest was translated and inspected for the presence of a potential antitoxin gene. Antitoxin genes found by this method were designated as "un-annotated".
Searches with toxin protein query sequences:
Using the TBLASTN program provided at the NCBI web-site and default search parameters, the toxin protein sequences collected as described above were used as query sequences in searches of the nucleotide sequences of interesting organisms. This method provides a means to identify un-annotated toxin genes encoded by the DNA of an interesting organism. The cut-off E-value used in this analysis was also 10"4.
The results of the above-described searches are reproduced below, in Table 2. It is to be understood that the results shown are not intended to limit the scope of the invention in any way, but merely to illustrate methods for identifying homologues of the TA system components. In this particular search, 675 TA system homologues were found, in the following TA system families: relBE - 159 vapBC- 285 mazEF (or Chp) - 67 parDE - 59 higBA - 74 phd/doc - 26 ccdAB - 5 The homologues found are reproduced below. Each toxin and it corresponding antitoxin sequence has a separate GI number. In the nucleotide and protein sequences below, the first sequence codes for the antitoxin, and the second sequence codes for the toxin, except in the case of toxin-antitoxin pairs from the higBA family, wherein the first sequence is the toxin. Nucleotide sequences are presented first, followed by a section disclosing the corresponding polypeptide sequences.
In cases in which a toxin and/or an antitoxin homologue were found without an GI number assigned, the homologue sequence was defined by the GI number of the
DNA (chromosome) followed by a colon and "DNA co-ordinates" in the DNA of the gene(s). As in standard nomenclature known to those skilled in the art, a "c" in front of these DNA coordinates indicates that the gene of interest is encoded by the opposite DNA strand.
It is clear to one skilled in the art that the nucleotide sequences described herein may be used in an artificial sequence comprised in a synthetic construct, which may be introduced into a suitable vehicle for production of the encoded polypeptide.
Table 2
Nucleotide sequences coding for homologs of vapBC toxin-antitoxin pairs
>gi)15896971:1511957-1512196 (SEQ ID NO: 264)
ATGGAAGAGGTTAAGGTAACGAGGAATTATCAGATTACCATACCTTATGAAATAAGGCAAAAATTAGGAA TAAAAATAGGTGATAAGCTAATTGTGACAGTTGATGGAGACAAAATAGTTATTGAAAAGAAGAAGGGAAA TATATCTTCTCTAAACTTAACTTTAGGTAAGAAAATAACTGATGAGGAAATAAATGAGACAATAAATGAG GCTGGAAGAGAAATTGCAGACAGTAGTTGA
>gi 115896971 : 1512162-1512542 (SEQ ID NO: 265 ) ATGAGGCTGGAAGAGAAATTGCAGACAGTAGTTGATACAAATTTTATAATAGCCATAATTTTTAGGGACC ATGAGAAACATGAAGAAGCATTAAAGGAATGGGAAATTATTGAAAAAGCTTACTTGCCCCTAATTTCACT ATCAGAACTCTCCTATTTTCTAATAAAAAACGGCGTGAATCTTGAAGTAGTAAATGAGGTAATAAGCGAT CCGAAAATTGAGATAGTCCCAAATACAATAGAGGACGTTCGTTTTGCGTTAGCTAACAAAGAGAAAATAA AGGGATATGACGATTTTAACGACTTCCTAATACTCTCAACAGCTAAAAGGCTCGATCTACCTTTACTTAC TTTTGATAAAAAACTGAAAATGAAAAGTTAA
>gi 115896971 :c2833719-2833498 (SEQ ID NO: 266)
ATGGAGAGGGTAAAGGTTACGAGAAATTACCAGATAACTATTCCAGCCTCGGCTAGGAGTAAGATTAATA TAAA&GAAGGAGATATACTTGAGGTTTACTTGAACGGTGACGAGATAGTACTTCGGAAGGTTAAGACTGA GAGGCCGAGGATAAGGCTAGGCAGTAAACTCTCACTGGGAGATATTGAGGAGGCAATAGAGCGTGGAGAA GGCAATAGTTGA
>gi 115896971.-C2833517-2833113 (SEQ ID NO: 267)
GTGGAGAAGGCAATAGTTGACACTAACGTGATAATTTACGACTACGTTGAAGACTCCGAATATCATAAGA GGGCGGAAGAGCTTCTCGATAGTTTGGATAGGTGGGTAATTCCCGTGATTGTAGTTCATGAGATCATGTG GTTCTTAAAGGGCATGAAACTTGAAGACAAGGTAGATGACGTTTTGGCTTATATTAGAAGTGAGAAAGCT GAGGTTGTCTGCGATTGTACAGATAACGTCACTGACGCTATAGGAGTGCTGAATAAGGAAAAGCTTCCCT TGGTCAGCTACAAAGATATGGTAATACTTTCTCACGCAATTAGAGAAAAATTGCCTTTAGCCACTTTTGA TAGGAAACTCTCAAAGATAGCAAAGAAGTACTCCGTAAGTTTGCTACAGTCGTAA
>gi 115896971 :cl783108-1782833 (SEQ ID NO: 268)
ATGAGTTTGACTCTAAGAGTGGAAGTTGGAAAGAAGGGTTATATAATAATTCCTAAAAGTGTAAGGGATT TGGTGGGAATAAAAGAGGGGGATATCTTAATTTTGACAGTCGTTGGAGATAAGATAATCTTAGAACCTGA GAGGAAGGTTAACATACGAGAAGTTGTCAAAAAATTAGAAGAACATGAGAGGAAGATATCTTATGCTAAA AGGGCAAGCCTTGGGGAACTTGAGAACATAAGTCTTGAAGAGGAATTGAAGATTGATTTTTCTTGA
>gi] 15896971 :cl782846-1782460 (SEQ ID NO: 269)
TTGATTTTTCTTGATGCTAATTTCTTAATCTACTTAAACTCGGGTGTAAGTGAGGTAAAAGAGTATTATA TAAAACTCCTCACATATGAAAGCTTGTTTTCAGATCCTTTAGTTATAGATGAGGTAATATACGTGTCTAA GAAGAAGTATGGAGTTAAGTATTGCGATACCATAGAATTCTTGGATGAAATAGTGCTCAAGTACTTAACA GTTTTACCAATCACGATAAAGGAATATGAGAGGGCTAAAGAAATTATGAGAAAATACTCAGTTAAGCCAT CTGATGCCTTTCATATTGCCGTAATGTTAAACAATTCAATAAACGTGATCTTAAGTGAAGATAAGGAGTT AGATAAAGTTGCAGAAATAAAGAGAATATGGATTTAA >gi I 24473558 :cll20099-1119845 (SEQ ID NO: 270)
ATGTATATAGCATATATGAAAACCATAATGATAAGGGATGACGTATATAAGAAACTCCTTGAGATTAAAG GTGATAAAAGCTTTAGTGAAATAATTGAAGAACTAATAGAGGAATCATTAAGTGTGAGAAGGAAAAAGAT TGAAAAATACTTTGGAATTCTCAATGAGGAAGAAGCAAGGGGGTTAGCTAAAGAAATTGAAGAAATGAGG AAGAGGACTGATGAAGATATTGCTAGAAAGCTCAGCAATTATTGA
>gi 124473558 :clll9879-1119502 (SEQ ID NO: 271)
ATGAAGATATTGCTAGAAAGCTCAGCAATTATTGAATATTTAAAGGGAAACAAAAAGGCAAAAGAAATTC TAGATAAGGCTGAAGATTTTTATGTTAGCTCATTAAGTGCATATGAGATATTATTAGGTAAAATTAATGA AAATAAAATATTAGATTTTCTATCAGCATTTAAAATTTTAAGCATTACCTTAAAAGATTCTCTGATAGCC TCAAGGATTTATAAAAGATTGAGAGATAAAGGAATGCTAATAGGATCTTTTGACATATTAATAGCTTCTC AAGCTATTAATAGAGATTTAACCCTTGTAACTAAAGACACAGATTTCCTAAGAATAAAAGAGGAATATAA AAATCTCAAGTTATTTATGCTTTCATAA
>gi | 24473558 : 1950215-1950436 (SEQ ID NO: 272) ATGGCAAAGACTATCACGATTTCTGAAGAGGCGTATAGGTTATTATTAAGTGAGAAGAGGGAAGGAGAGA GCTTTTCCGACGTTATTATAAGGTTGGTGAAGAGTAGTAGAAAAAATATTATGGATTATGCTGGTATTTG GGGAGATATGAATGATGAAGAGGTTAACAAACTGTTCGAAGATTTAAAGAAGATGTGGGAAAGATGGAAT GTAAATGCTTAG >gi 124473558 -.1950409-1950810 (SEQ ID NO: 273)
GTGGGAAAGATGGAATGTAAATGCTTAGATAGCGATATACTTATTGATTTTCTAAGGGGTAAGGAAAAGG CAGTGAAGTACATTGAATCCGTAAGAGGGAGTAGTAGGATAGTAACTACAGTAATTAACGTATTTGAACT GTATTATGGGGCTTTAAAATATAATAAGGATGTTGAGAAACTTGATGAATTTTTACAATCAGTAGAAATA CTCCCATTTACAGTATCTGAGGCTAAGAAGGCTGCTGAAATAGAAGTAGACCTTGAAAATCGAGGAGAGG TAATAGGTTTAAAAGACGTGTTAATAAGTTCTATTGCATTAAATAATAATTGTACTATAGTTACCGGAAA TGTTAAACACTTTGAAAGAATTCAAGGGGTTAAAGTTGAGAACTGGAAGTAA >gi | 24473558 : 816489-816710 (SEQ ID NO: 274)
ATGGAGAGGGTAAAAGTTACAAGAAACTATCAAATAACTATTCCTGCTTCTATAAGAAATAAAATAAATC TAAAAGAAGGAGATATTCTAGAGGTCTATTTAAACGGTGATGAAATAGTATTAAGAAAGGTTAAAAGTGA AAGACCAAGAATAAGGCTTGGTAAGAAATTATACCCAGAAGAGATTGAGGAGGCAATTGAACGTGGAGAA GGCAATAATTGA
>gi ] 24473558 : 816691-817092 (SEQ ID NO: 275)
GTGGAGAAGGCAATAATTGATACTAACGTTATAATATACGACTACGTTGAGGACTCGGAATATCATAAAA AAGCGGAAGAACTTCTAGATTCGCTTAATAAATGGATAATTCCAGCAATTGTTATACATGAACTAGTATG GTTTCTAAAAGATATGAAATTAGAAGATAAGATTAATGATGTTTTTGCATATGTAAGGAATGAAAAAGCC GAGGTGATATGTGACAGTGTAAATAACATAGTAGATTCCTTAGAAATATTAATTAGAGAAAAACTTCCTC TAGCCGATTATAAGGATATGATTATACTCTCCCATGCAATACGCGAAAAATTACCTTTAGTTACTTTTGA TAAAAAACTTTCAAAGATAGCAAAAAAGTATGGTGTATCTGTAGTAAGTTAA
>gi | 24473558 : C1689692-1689384 (SEQ ID NO: 276)
ATGTTTTTACAATATTCCATAAAAACTTTTTATTTCGGTATACTAAGTATACATATGGCTTATACCACAA TAAAGGTTACTGATGAAGTAAAAAGGAAGCTAATTAAGTTAGCTGGAGAGATTCAAGCTAAGAAAGGTGA AGAGATCAGTCTAAATGACGTAATCGAGCTCCTAATAGACTTTTATGAAAATAAAAGAAAGATTAAAAAG GGATTAAAAATGAACGACTTTGATGGGTTAATTATAGAAATGGATACGGATTCCTCAGAAAAGGTAGATG AGGTAGTTTATGGAAAAAGTACTTCTTGA
>gi | 24473558 :cl689403-1688969 (SEQ ID NO: 277)
ATGGAAAAAGTACTTCTTGATACTTCGTATTTTATAGCATACTTAAATAAGAATGATAAGTACCATAGCG AAGCTTTGTCACTTTCTAAAAAGATTGCGGAGTTTGAATCTGTTATCACAGATTATATACTTGATGAATT ATTAACTTTCCTAATATATCGCATAAATAAAAATTATGCAATAAATATTGCTAAAACAATCCTAAATAAA
ATAGATAATGAGGAGCTTACATTATATATGATAGGCATTGAAACCCTTAATGGAGCTTTAAATTACCTTG
CCAGATATGATAAAAAGCTTAGCTTTACTGATTGTACAACTTTATCCTCAATGGATAAGTTAAGGACACA
ATTTATAGTAAGCTTTAATAGCGACTTCGATGACATAACCTTAATTGAGTTTAAGAAGCCCGTAATCAAC ATAAGGTACTTATAA
>gi | 24473558 : C52108-51854 (SEQ ID NO: 278)
ATGGGAATACAAAATTATCTTATGGGATATATTGTTACAGTTGATGAAAGGGGGAGAGTTATAATACCGA AACAAATTAGGGAGAAATTAAACTTAAAAGAGGGAAGCAAAGTTGAAGTTGATTTGGAGAAAGACGGAAA GATAGTAATTAAAGTGAAAAGAATAAGCGTGGACGACATTTACGGAATAGCAGGGAAGGAGAAGGTTGAA ATTGAGGAGATTGAGGAGGCATTAGGATTTGAAGATAATGATTGA
>gi | 24473558 :c51861-51475 (SEQ ID NO: 279)
ATGATTGATTCTAACGTATTTATCTATGTCCTTTTTTCTGACCCTTCCTATGGTGAGAGAGCAAAAGAGT TATTAAAGACTGCAGAAGTAGAAGATGCTTACTCTTCGACTCTTATAATTTCTCAAGTATTATCACATCT AGAAAGGAGGAAAAAAGCTGAAGTAATTCCGATGTTTGTTAATTACCTCCAGCAATCGGGGATTAATATT GTAGATACGAGGTGGGAAGATATTGTTAATGGAATAAAGATTCTTCAGGAATTAAAATTAAGTTATAAAC TTTGGGACGATGCAGTAATATTATCCCAAATGAAAAGATTAGGGATTGACATAATTTATTCTAACGATAC GGACTTCGATTTGCTCAACGCAAATAGGAAATTTTAA
>gi 124473558 :c885087-884800 (SEQ ID NO: 280)
GTGTTTTATAACTTTTTACTTTATTTAGTTATTCACGTTAATTACGCGTTGGACGCTCTCACGAGAAATT ATCAAATAACTATCCCCTCCACGATTAGGAATAGGCTAAATATTCGAGTAGGTGATAGACTGTTAGTTTA TGTCGAAAACAACAGAATAATTATAGAAAAGAAAAGTGGAAATATTGCATCATTAGGTCTTAGGTTAGGT AGGAAGTTTACTGATGAGGATATTAACAAAATTATAGCAGAGGCTGGAGAGGAAATTGGAAGAGATAGCA GTAGTTGA
>gi 1 4473558 :c884789-884442 (SEQ ID NO: 281)
GTGATTGCGGTAATTTTTGAAGATCATATTTTTCATAAATTAGCAATAAAAGATTGGGAAAAATTACGCA AAGCTTACTTACCCATAATTGCGATCTCTGAACTTGCATACTTTCTAATAAAAAACGGGTTTAGCTTAAA CGATGTTATTGATAACGTTTTATCTGATCCAAAGATAGAAGTAGTTGAAAATACCTTAGAGGACATATAT TTCGCAATTAGAAACTCACCTAAATCATATGATGATTTTAATGACTATATGATAATTTCTCTGGCTAGAA GATTGAAGCTTAAAATACTTACTTATGATCATAAAATGAAGAAAAAAGGTAGTAGATTAAATGGTTAG >gi] 24473558 :c724199-723960 (SEQ ID NO: 282)
ATGAGAGTTAAAGTTACTAGGAACTTTCAGATTACTATACCAGCAGAAGTCAGGGAAAAACTTAACATAA GGGAAGGAGAGTATGTTGATGTTACTATTAACGAGAAAGAAGGGATAATAATTGTTAGACCTTATCGTAA GAAGTGGACTACCGTAACACTAGGTAAAAGGATAACTCAAGAGGAAATCGATAAGGCTATAGAGGAGGTT GTAGACGATTTCACGAAGAGTTTTACTTGA
>gi | 24473558 : C723946-723572 (SEQ ID NO: 283)
GTGTATTCTACTTTCGAGGACTCTGAAAGACATAAGGAGGCTATGAAGATTTTAACCGAAAACGAAGTAG TAATTCCGCAAATAGTAGTTTATGAATACATATGGGTTTTGGCGAGACTAACAAATAACGTGGATCTAGT CAAACAGAAGTTGGAGGAGTTAAAGGATTTTGAGATAGCTAAGGAAGATTTGGAAGATATGATAAAAGGG ATTGAGATGCTGAAGAAAGATAATAAGCCAATAAGAATGCTAAACGATTATATAATCCTCGCAATAGCTA AAAGACTTAATATCGGACTTGCAACTTATGACATTGAGTTAGTAAAAGCTGGAGTTAGGAACAGTGTAAA TATTTACTCACAACATTCTTCTTAG >gi 118311643 : 1672925-1673149 (SEQ ID NO: 284)
GTGGAAGTAAAAGTTACTAGGAACTACCAAGTGACTATACCCGCCGAGTACAGGAGAAAACTCGGCATAA AGATAGGAGATGTGGTGACTGTGTTGCTCGAAGGCGACAGAATAGTAATAATACCGGCTAAAAAGCGGAG GATTACTTTCAAAGCGGGGCGGCCCGTATCAGTGGAAGAGCTAGAGAGTGCAGTGGAGAAAGCCCTAGAT GAAAGTACTAGTTGA
>gi 118311643 : 1673133-1673546 (SEQ ID NO: 285)
ATGAAAGTACTAGTTGACACCAACGTCTTAATATACGAGACTTTTGAAGACTTTGAGAGACACGCAGAGG CAACAGACATTGTATATACAAACGAGGTATACATACCTACAATAGTTCTACATGAGTATATCTGGCTCCT CCTACGCCATTTCTCTATTAGTTACGCCCAAGCAGCCGCGAAGCTTGAACAGCTACTATCGGAAAAGAAT ATACATGTAATTTGCGAAAATCTCAGCGATTTGGCAGCTGGGATAAGAATGGCAGCAGAGGACGGCGCCA AGCCCTCTAATATAAACGACTACATTAT CTAGCCTCCGCGCTTAACAGAGGCTTAGCCCTAGCCACTTA CGACAGAGAATTAAGAAGGGCCGGAGCCAGAAGGGCCGTAACAGTACTGCCAGCTACACTGTAA >gi 118311643 :cl592229-1591879 (SEQ ID NO: 286)
GTGTTAAGCCAAAGCGACGGGAAGGCGCCATCGTATCAACACCGGCTGATCCGAGCGCCAGCCGCCTTAC AAGATTTATATTGTACTAAAGTTCTTTTGTACATGAGTGAAAAAGAGGTAATTAAGGTGGAGGTGCCCAA GTGGTTGGCCGAGAGGCTCAGGAAATACGCCGCCGAGAGATACGGCTTGAGGCGGGGCGCTCTATCTAAG GCCATTGTGGAGATCTTGGAGAGGGAGCTCGGCGGCCCTCAGCCCAGCGCTGGGGGACTGGATCGGCTCG TGGGGCTCGGCCTCTCCTCACCGAGGAGGTGGAACGGGGAGGATCTAGCCGAGGCGTTGAGGGATAATTG A
>gi 118311643 : C1591882-1591505 (SEQ ID NO: 287)
TTGACGCCAGAGTTGCTCTACAAGCGGCAAAAGTGGGTTGAACCGTACCGCTTTCTAGAGAAGGTCAAGT CGGGGAACATTAGGGGATACGTCTTGCAGTTCGCCGTACATGGCATATCAGCCATTTTGGCCAGGCCAGA TCTCGTGGAGGCGTTCCTAAGCGAGATCGCAACATGGCGCGGGCTTGAAATCGTGAAGAGCAATATGGAG GAGGAGATTGAGGCGGCCAGAGCCGCCGCTAAGGTTGGTCTCGACTTCGACGACGGGCTCCACTACTATT ACGCCAAGAAATTAGGCGTGCCCATTGTCAGTTTCGATAAGGATTTTGACAAAACCGATCTCAAGAGGTT GGAGCCCGGGGAGGTGGTAGGCGGTTAA
>gi 118311643 : 14684-14884 (SEQ ID NO: 288)
GTGGAGAAGACCACAATAGCCGTTTCGAAAAAACTGTGGCAAGAGCTTCTCAGCGAGAAGGAGAGGCTAG CGGCTAAGACCATGGAGGAGGCCATTAGCAAAATTCTACAAGAGTACAGAGAGTTAAAGAGGAGAATTGC TATACTTGAAATAATTGAAAAAACCGGGCGGAGGGCTTTACAACAGTGGAGGAGTTGCTAG
>gi 118311643 : 14898-15275 (SEQ ID NO: 289)
ATGGGGGCTTCCCAGAGAGCACTCCTAGACACCAGCGTTTTAATAGAGATTTTAGACAAGGGGAGGCTCT CCCTTTTGCCCAAAGACCCCTACCTCTCAGTTATTTCAATATATGAATATATCCGGTACAAAAGGGATAG GCATTTTTACAAGGAGAGGCTAGAGGAGGCGTTCTCAGTCCTCGGCTTAACTAATAAAGTTATTGAACGC GCCGCCGAGATCTTCGCGTCTTTAAAGGCGAGAGGCGTTGTTGTTAGTGATAACGACGTTTTTATTGCCG CCACGGCTGTTGCCTACGGCCTCCCGCTGATTACAAAGGACAGGTATTTTTTAAAAATTAAAACTGCCGC TGGCCTAGACGTCGTTTTTATAGACTAG
>gi 111497621 : C1799014-1798793 (SEQ ID NO: 290) ATGACAAAAACGATTAGCATTTCCGATGATGTGTATGAGATGCTGGTTAAAATTAAAGGAAAAAGGAGCT TCTCTGAAGTCATCAGGGAGTTGGTAAAAAAGGAAGGAAATTTTGACCTTTTAATGGTTGCATTCGGGAC GAGGAGCGAGGAGGAGGTTGAAAAGTTAAAAAGGGAGATGAAGGAGGTTGAAGAATGGATGCAATCCTTG TGTAATCATTGA >gi 111497621 :cl798827-1798573 (SEQ ID NO: 291)
TTGAAGAATGGATGCAATCCTTGTGTAATCATTGATTTGTTTAAAGGAGATAAAGGATTGCTTGAAAAGT TGAACGGAGATACAGTTTATGGCATTTCTGTCATAACTCTTTTCGAACTCCAGTGTGGAAGTTTAAAAGA GAGGGAAGAAATTTTTCTTGAAAAAATACCTAAGCTGAATTTTGAAGAAAGTTCTGCAAAGCTTGCAGGA AAAATTTTCAGAGAACTTAAAAAAGGGGCAGAGTTCCAAAGGTAA
>gi 111497621 : 1809630-1809890 (SEQ ID NO: 292)
ATGGTAAGAACGAGAACTGTTGGCAAGAAGGGACAGGTTACAATTCCAAAAGAGATCAGGGAAAAGTTCG GTTTGAAGGAGGGTGAGAAAGTCGTCTTTGAGATTAGAGGAGATGAAATCATCTTGAGACCGGAAAAAAG CGGAAGAGATTATGTGGAGGAGCTTACTTCAATCATTGAGAAGAAGCTTGAAGCACCAGAACCTGCTGAA CTGAAGAGGTTGTACTATGGACAGATTGAAAAGCGCGTATCTGGACTCTAA
>gi 111497621.-1809856-1810269 (SEQ ID NO: 293)
ATGGACAGATTGAAAAGCGCGTATCTGGACTCTAATGTTTTCATTTATGCAACGCTTTACTCGGGAAAGA CTGCCGAAAAATCGAAGGAGTACCTCTTAAGAGCTTCAGATGGCGAATTCAACGCATTTACATCAACGCT TACGTGGGATGAAGTTGTGTATGTCGTAAGAAAAGTTGCTGGAATAGAAGAAGGCATTAAAGCTGGAGAA ATTCTGCTTAAAATGCCATTCATTGAGTTTCTGGATGTTGATTTTGCTGTTTGTGAAGAAGCCCAGAAGC TTGCTGAGAAGTATAATCTATTGCCGAGAGATGCAATTCATGCTGTCCTTGCCCTGAAATACTGCGATGG TGTGATTATTAGCAACGATGCAGATTTCGATGTTGTTGATGGACTGAAAAGAATGTTTGATTAA >gi 111497621: 288258-288452 (SEQ ID NO: 294)
ATGCCCAAAATAATCGAAGCCATTTACGAGAACGGCGTGTTTAAGCCCCTCCAAAAGGTTGACTTGAAGG AGGGGGAAAAAGCCAAAATCGTTTTGGAATCCATCTCTGACAAGACGTTTGGTATTCTAAAGGCCAGCGA GACGGAAATAAAAAAGGTTCTGGAGGAAATAGATGACTTCTGGGGTGTTTGTTGA >gi|H497621:288430-288861 (SEQ ID NO: 295)
ATGACTTCTGGGGTGTTTGTTGATACAAATATTTTGGTAAGACACCTTGCTGGGGATCAAAAGGCAAAGA AATTAATAGATCAAATTGAGATCGGGGAAATTCGCGGATATATTAACCAAATCGTGGTTTCGGAAGTTGT CTTTGTGTACATGAGACTGTTGACAAAATTAGACGCAAAAACGCTGAAGAGAAATCATGAGATTATCTGC AAAATTGACCTTGAGCCAGTTTACGAGATTCTAAGCATTTTTGTCGAATTACAATCTTCCAATTTGATTA CGGTTGAATCTCGGAAAATAATGTCGAGATACGGGCTTTTACCAAACGACGCGTTAATCGCTGCAACATG CAAGCATTATGGCATCAGGAAGATTGCAACTTTCGATGAAGATTTCAGGAGGGTTGACTTTCTGCAGGTC GTAGAGCTTTGA
>gi 111497621 : C978351-978214 (SEQ ID NO: 296)
GTGAGAATCAAAATAGAGGACAGAAAAACGAAAAGGCTTAACTTTCTCAACTCATGGAAGCCGCTAAGGC TGGAAGGAAGATTAGCCGCTGAAGATATAGAAAAACTGAGGCTGCTGAAGTATGAGAATCTTCCTTGA >gi|H497621:c978230-977838 (SEQ ID NO: 297)
ATGAGAATCTTCCTTGATACGAACTTCATTGTAAACTTGATTTTTGAAACAGAGTTTACCGAGACTGCAA AGGCAATATTAGTGAAATATGCCGACTCCGATTTAATAACCTCCATCTCTGTAATTGAGGAAACTTTGTT TGTCTTGAAAAGGCTCACAAGAAAAACCAATCGAGAAATTGCTGAATTGGTGGCAAATTTATTGGACGGA GTGGAAATAGAAGTTTTGGAAAAGCTACCACTAAGCGTTTTTCTCGAAGTGTTTCGAGAATACGACCTTT TACCCAATGACGCCTTAATCGCCGCCACATGCAAACACTACGACATCAAAAAGATAGCCACCTTCGATGA GGATTTTAAGAGAGTGGACTTTCTGGAGGTTGTTAAGCTTTAA
>gl 111497621 :c982259-982074 (SEQ ID NO: 298)
ATGCCAAAAATCATCGAAGCCATCTACGAGAATGGCGTCTTCAAACCCTTGCAGAAGGTGGATTTAAAGG AGGGGGAGAGAGTGAGGGTTGTTGTGAGTGAAGTCGTAGCAAAAACGAGAGGGTTGCTGAAAGGTTGCGA AATGGAAGAGATAATCGAGGAGATCGAAAGTGAGGGTTTTCTTTGA
>gi 111497621 :c982090-981671 (SEQ ID NO: 299)
GTGAGGGTTTTCTTTGACTCAAACGTTTTCCTGCACCACTTAGCCGACACGAAAGATGAAGCTACAGAAC TTCTTGAAAGGGTTGAGGACGGCACCTTTGAGGGAATCGTAAATGACATAGTCGTATCTGAAGTAATCTA CGGTTATCTCCGTGCAACCTCCGGTTTAAAACCTTACGAGCTGAGGAAGAAAATTTTAACAATAGATATG GATCTCAAACCGGTGGAGGAGCTTTTTGGCCTCTTCGAGCTGCTTCCTTGCAACTTTGGTGTCGGTTTGA CGAAGTTTATTAAAAAATACAAACTTCTGCCTAACGACGCCCTAATCGCCGCCACATGCAAACATTACGG CATCAACAAGATAGCCACTTTCGACGAGGATTTCAGGAGGGTTGAGTTTCTGGAGGTTGTTGAACTCTAA
>gi 111497621:1337305-1337520 (SEQ ID NO: 300)
ATGCCAACCAAAACGATAACCATAACTCTCGAAGCCTACGAAAGATTGAAAAGAGAAAAAAGAGAGGGAG AGAGCTTCAGCGACGTTATAATCAGGCTCACAGAGAAAAGGAGAGATTTGCTTGAATTTGCCGGTAAATG GAAAGATTCTGGAGAGGAAATCGAGAAGATAATCTTAGAAGGCAGGAAGGAGTTCGATAAACATGTTCTG TCTTGA
>gi|H497621:1337507-1337899 (SEQ ID NO: 301)
ATGTTCTGTCTTGAAACCACGTTTCTAATTGATCTGCTGAGAGGGAGAGATGAGGCAΪ GAAGTTCTACG CAAAAATTAGAGATTCGAAGCTATACACCACGTCCATTTCAGCGTGGGAGCTCCTAAGAGGGCCAAAGCT CATTGGGAAAGATAAAGAATTTGAAGTGGCTGTTGAGCTGCTTGAGAGTCTTGATGTTCTTCCGTTCTCT TTCAATTCGGCAAAAATTGCCGTAGAAATTGAAAAAGATTTGAGAGAGAAAGGCATGGAAGTTAATCTAA TAGACGTGCTCATTGCATCTGTTGCAATGGAACACAGTCTTAAACTTGTAACGAGAGATGAGCACTTCAG CAGGATAAAGGGGCTTGAAGTTGAAAGGTATCGCCCCGAATAA >gi 111497621: 1959972-1960190 (SEQ ID NO: 302)
ATGAGCATCGAAGTAAAAAAACTGGACAGACACGGAAGGATTGTCATCCCCAAGGAGTGGAGGGAGAGGC ACGGGGATGAGGTTGTGGTTGTGGTTTACGAGGACAAAGTTGAGATTCTCCCGAGGAAGGGGAACGTGAT GAGGTTTGCAGACAGCATCGAGGTTGAGGAGCTGAAGGACTGGGAAGAGATGAGGAGAGAGCTTTATGAG GTTCGTTGA
>gx|H497621:1960177-1960587 (SEQ ID NO: 303)
ATGAGGTTCGTTGATTCCAACGTCCTGATTTACGCCCTGCTTAAACCAAAGAAAGAACCAGATGACAGGA TTGCAGAGATGAAGGGGAAATCCGTCGAGATTCTCAGGAGGATCCAAGAGGGAGAGAAAGTTGCGACGAC TGTTGTGCATCTGAGCGAGGTTGCCAACGTAATTGCGAGCAGGAGTAACGAAAAGCTGTCAGCAGAATTC GTGAAGGAATTTCTTACCCTCAGGAACGTGAAGGTTTTTGAGGTTAGTGCCGAAGACTACCTGAAAGCCT CTCTTCTCGCAGTGGAGAAGGGCGTTGACGTTAACGACGCCCTTGCTTACGTCAAGATGAGAGAGCACAA AATCGAGGAAATTTACACCTTTGACAAACACTTCGTGAAGATGGGGGTTGTGGTAGTTTGA
>gi 111497621 : 1515345-1515566 (SEQ ID NO: 304) ATGAAGAACATAATGGTGAGGGATGAAGTTTACGAAAAATTGCAGAAAATGAAGAAGGGCAGGGAATCCT TTTCAGATGTCATACTCAGGCTTATCGAAGGGAGAAAGAAGAGAGGAATTGAGATTCTTGAAAGGTATGC AGGCTCTCTCTCAGACAGTGAACTGGAGAAGATTGTAATGGAGGAAAGGAGAAAATTCAGGGTGAGAAGC TTTGATTCTTGA >gi 111497621: 1515556-1515966 (SEQ ID NO: 305)
TTGATTCTTGACACCTCTGTAATAATCCGCATTTTCAGGGACAGAAATTTTTTCGAAGTGCTTAAGGAGA GAATAGACGACGATGTGAAGATAACTTCCGTAACAGCCTACGAACTGCAGAGAGGGGCTGTTTACATCAT GCTAAAGCATGGAAGAGATTATGAATTTAAACTCATTAGAGATTTTCTTGAAGAGGTGGAAATCCTGTCA TTCACCCCAAAGGACTCCGAGATTTCGGCAATGATATGGGCTAAGCTGAGGGAAAAAGGGTATGAGCTAA ATGATGCGGACATAATGATTTCAGCAGTGTCTATAAGAGAGAACGAGAAGCTTGTAACTCTCGACAGAGA TTTTGAATACATAAGCAGAGTTTCGGAGCTTGATGTTGACATCTTAGAGGAGGAATTATGA >gi|11497621:c65673-65485 (SEQ ID NO: 306)
GTGATTCCAAAGGTTATAAGGGACAAGCTGGGAATAAAGCCAGATGATGTCCTTCTTGTGGATGAAGAGG GCGGGAAGATAGTGATTGAAAAGCAGGACATCGATGATTTCATTGAGTGGGTCAAAAAAACCAGAAAGAA GGTTGCGGGCGAGGTTTACAGAATTGCATTGGAGGATGAGTTCGAATGA >gi|H497621:c65488-65075 (SEQ ID NO: 307)
ATGAAAATTTTTCTGGATGCCAATTATCTGATTTACCTGAAGTACTCTGAAAGTGACGAAATCTTTGATT ACTGCGTAAACCTTCTCAGAAAAATTGAAAAATACGACCTGGTGACTAACATGCTCGCAATCGATGAGGT TATCTGGATACTCAACAGAAAGTATAAAATCGAGCTTGATGAGGTGTTTGAGTATCTTGACAGACTTTTA AGCTTTCTCAGGGTTGTTCCGATTGAAGCTGAGGATTACGACCTCATGAAGGAGTTCATGCTTGGATACA ACCTCAAACCCTCGGACTCTCTGCATCTTTCGAGCATGAGGAGACATGGGGTGAGTGTGATAGTCTCGGA GGATTCCGACTTTGACAGGGTGGATTGGGTTAAGAGGGTGTGGATTGGCAGAGGTGATGTTTGA
>gi 111497621: 288877-289218 (SEQ ID NO: 308) .
GTGTGCAAACCGCCCATGAGACTTCTAACCCAAACAGGTTTGCCACGAAGTAGCGAACGCCAAATTAGGA TTTTAGAGATTGTGACCGGCAATCGAAAAGGAAAACATCAGCCGAAACCTATTTCTAAACCTCAACCAAA TATCAGTATGCCCAAAATAATCGAAGCCATCTACGAAAACGGAGTTTTCAAGCCCCTCCAGAAGGTGAAT TTCAGACCGGGATCCAAAGTAAGAATTGTGATTCAAGAAGACAAAAAAGAAATCCTGCGAAAATACAAGG GTGTTTTCGGAAAAGCAGAGGTGGAGGAGTTGAGAGAATACGAAGGGGAGGTAATGCTTTGA >gi 111497621: 289215-289664 (SEQ ID NO: 309)
TTGATCGTTTTGGATACCAACATTTTCTACAACTTCCTCTTCGAAACGAACTTGACCGAAAAATCTGAAA GAATTCTCGAAACCTACGAACCGCTGTTCTCGACT TCACTGTTTGGAACGAGACGATTTACGTAGTTTC AAGAAAGCTTGCCGAGATAAAATTTGGAATAAAATCGTATGTAAAGTTCAGGAAATTAGTGGCAGAGGAA GGATACAGTTTCTGTGCCAAGGAGATAGAGGCTTTTGAAAGTGTAATTCGAGACTTAAACATAACAGTCT TGAGAGACTATCAAAATCCGCGGGAAATATCGGAAATCATGAGCAAATTCAAATTACTTCCGAACGATGC CCTGATAGCTGCAACCTGCAGGCATTACGGGATAAGGAAGATCGCCACCTTCGATGAAGACTTCAGGCGA GTAGATTTTCTTGAGGTTGTTGAGCCTTAG
>gi 111497621 : 2105685-2105912 (SEQ ID NO: 310) ATGAAAGTAAAAGTTACTAGGAATTTTCAGATTACTATACCTGCCGAAGTTAGGAGAAAGATGGGATTAA AGCTGGGCGATGTGCTTGAAGTTGAATACAACGAGGAGAAGGGAGAGGCCATTATAAGGAAGCTCGGTGG AGAGAGAAGGAAGCTGAAAGCGGGAAGAAAGCTTACGCCGGACGAGATAGAGGCGCTGATAGCTGAGGGA ATGGGCGATAACTTATGA >gl|H497621:2105909-2106313 (SEQ ID NO: 311)
ATGAAAGCCGTCATAGATACAAATGTTATAGTCTACGACACCTTTGAAGACAGCGTTTTTCATCAGGAAG CCATGCAACTCCTCGATAGAATTGATGTGTGGGTAATCCCTACGATAGTTATTCACGAGTATGTTTGGGT CCTCAAATCACTGAAGGTGGACGTGAAAGAAATCAAATACAAAGTGGAGGAGTATCTTAACCACTATAAA ACGAAAATGGTTTCAGAAAATAAGCAAATCGTTTTGTCAGCACTGGAAAGAATTGTAGGTGGGGGATTAA GCCTTTCAAGGTACAACGACGAGTTGATACTTGCTGTTGCTGGTAGGGAAAAAATAAGCCTTGCAACCTT CGACGAGAGGTTGAGAAGGCAGGCGAGAGCAAGAGGTGTAGAAGTAATTCCATAG
>gi 115668172 -.C908364-908158 (SEQ ID NO: 312)
ATGGTGATTGTTATGGAAATTGTCGTTGATGCTATCTATGAGAAAGGAGTTTTAAAACTTAAAAAATCTA TAAATCTTCCAGAGGGTTGTGAAGTTGAGATAAAGATAATCCCAAAAAAGATTTCAGAAAAAACCTTTGG AATCTTAAAACTTTCAGATAAAGAAATTAAAGAAATTCTTGAGGAGATTGAAAATGGAGGAGAATAA
>gi|l5668172:c908186-907737 (SEQ ID NO: 313)
TTGAGGAGATTGAAAATGGAGGAGAATAAAATATTTTTTGATTCTAATATATTAATATATCACTTATGTG GTAAAGTTGAAGCTAAAAAACTAATTGAAAAAGTAGAGAATAAAGAAATCTGTGGATTTATAAATCCTAT AGTAATATCAGAAGTTTTGTTCTTTTATATAAGGGCTACAACAAATAAAAGGCATTATGACATTAAAAAA CATCCAGAGATTTTAAAATCGTTAGATTTAGATATAGTTTTTGAGCTTTTTTCAATTTTCCAAATATTAG ATTTAAATAGTGAGATTGTTAAAATTTCAAGAGAAATTATTAAAAAATATTGTTTATTACCAAATGACGC ATTAATCTGCTCAACATGTAAGTTTTATAAAATCAATAAAATATGTAGCTTTGACGATGATTTTAAAAGA GTAGATTTCTTAGAAATTATTGAAATTTAA
>gi 115668172 :cl061735-1061502 (SEQ ID NO: 314)
GTGATAAATATGGCAACTATAACTATAGATGATGATGTTTATAAAGAATTATTAAAACTTAAAGGTAGAA AGTCAGTTTCAGAGTTTATAAAAGAATTGTTGGAAGAGAGAAAGAGAAAAAACTTGGATGTTTTTATGAT TGCCTTTGGTTCAAGAAGTGAGGAGGATGTAGAAAAATTAAAAAAAGAACTTAAAGAGGCAGAAAAATGG ATGCAGTCATTGATACAAGTGTAA
>gi 115668172 :cl061529-1061245 (SEQ ID NO: 315)
ATGGATGCAGTCATTGATACAAGTGTAATAATAGAGATATTTAGAGGAAATAAAGATACTCTATATCAAA TTTGTGATTACAACTGTAAAATAACATCCATAACAGTTTTTGAGTTATATTGTGGTAATCTAAAAGAAAA TGAAATGATAATGATTGACAGCTTACCAAAACTAAATTTTGATGATAAATCATCAAAGATTGCTGGCAAT ATATTTAAAAAACTAAAAAAAGAAGGCAAAATTCCATCAGTAAAAGATTTATTAATTGCGTCAATATTTT ATTAA >gi|20088899:1791919-1792152 (SEQ ID NO: 316)
ATGCCAACAAGAACAATCAGCATAAGCGAAGAGGCCTACGAGAAGCTCAAAAGCCTCAAAAGCTCGGAAA AAGACAGCTTCTCTGATGTGATTCTCAGGTACTACCCCAAAAAAAGAAAGCTCTCTGAAGTGCTCGCAGA AATAGGTCCGAATCCCGAACTTGCTGATGCAATCGAAAAAGTGTCAGGAGAAATGAGAGCGGAAAAAATG AGGGAGATTGATCCGGAGAGTTGA
>gi | 20088899 : 1792149-1792550 (SEQ ID NO: 317)
TTGATCGAAATGCCGGTGCTTGACACCTCTTTTATTGTGGCCCTCTTAAGGGGAGAGCCGGAAGCCCATC AAAAACTGGCTGAAATGGAAGCTGAAGAAGTTCCCTTAAGCACGACCGAAATTAATGTCCTTGAACTGTA CCGGGGAGCTTATCTGTTCAGAAAAAAGTATCAAAATCTGGAAGAAATCAAGAAGCTTCTGGAATGTTTT CAGGTTCTGGAGCTTGAAGAACCGGTCTATGAAATCTTTGCTTCCCTTTCGGCTCGGTTACTTTCGGAAG GCAAGCCGATTGGGGCTTTTGATGAACTGATAGCAGCAATTACGCTGCTTCAGGAAGAGCAGATAGTTAC GAGAGATGAGCATTTCAAAAGAGTTCCAGGGCTTGAAGTAATCACCTATTGA
>gl 114518450 : C393294-393055 (SEQ ID NO: 318)
GTGATATCCTTGAGCAAGACGATAACAATAGCCGATGATGTCTATTACGAACTTGTAAAAATGAAGGGCA ATAAGAGCTTTTCAGAGCTCCTTAGAGAGTTGATAGGAAAGAAAAAGAAGGGAAACCTGGACATTCTCAT GATAGCCTTTGGAACAATGAGTGAGGAGGAAGTTAAGGAGTTCAAGAAGAAGATTAAGGAGGTTGAAGAA TGGATAAACTCCTGGACACCAGTGTCTTGA
>gi 114518450 :c393085-392714 (SEQ ID NO: 319) ATGGATAAACTCCTGGACACCAGTGTCTTGATTGAAGTGTTTAGGGGGAATGCTAAGATCCTCACTCAAC TTCCCCCTGAAGAAGAGTATGCTATTCCTTCCATAGTTCTCTTCGAACTTCTCTGTGGTGGACTTAAACC CAAGCAGAGGCTCGCTCTTGAGAAGATGCCAGTTGTAAACTTTGACAAGACAAGCGCTGAAGTCGCGGGG GAGATATTCAAAGATTTAATATCAAAAGGCCTGAGACCTCCAACGAAGGATTTACTCATCGCCGCAACTG CAATAGCCCACAACATCCCTCTTTATACCTGTGACAGGGGCTTTGAGAGATTCAAAGAATACGGACTTAA ATTGGTGATTCTTGAGAGATAA
>gi 114518450 : 724259-724486 (SEQ ID NO: 320)
ATGCCCATAACGAAAGTGACTAGGAACTATCAAGTGACCCTTCCAGCAGAGGTCAGAAAAGTGCTTGGAA TTAGGGAGGGTGATTTTCTTGAGGTTGAAGTGAGGGGTGATGAAATCGTTATGAGGAAGTTGAGGAAAAA CAGGAGAACACTGAAACTTGGAAGGAATTTAACCCCCGAAGATATCGAAAGGATTATAGAGGAGGGTATG CGGGAATGCATGCAGTAA
>gi 114518450 : 724474-724884 (SEQ ID NO: 321)
ATGCATGCAGTAATTGACACCGACATTCTTATCTACGACACCTTTGAGGATCTCGAGTTCCATGAAGAGG CTAGGGCTTTGTTAGATTCACTTAGCAAGTGGTACGTGCCAACAATAGTTCTCCAGGAATACATCTGGTT CTTTAAAAGGAATAATTTCTCTCTCCTCGATGCGAAATCAATGCTCATGGAGTACGTTAGGGATCCGAGG TTCAAGGGTTTAGGCGAAAGTCATGAAGTGATAATCCACGCTCTCAAGATTCTTGAGGAGAACGAACTTT CACTATCCCACTTTAATGATGCTATCATTCTTTACCAGGCATTCTCAAGAAAATACCCACTCGCAACGTT CGACGAAAAACTAAGAAAACTAGCAACAAAACATGGGATCAGAGTGTTGCCTGAAATTTAA
>gi 114518450 :cll3583-113359 (SEQ ID NO: 322)
ATGGGAATTACAAAAGTAACTAGAAACTATCAAATTACTATCCCAAGTGATGTTAGGAAGAAGCTTGGGA TTAAGGTAGGTGATGTTCTTATCATCGAGATTGAAGACGGGAAGGCTGTAATAAAAAAGAGTGATCTTGA ACTTCCCCTACTGCCTGGAGGAAGGGGTCTGAAAGTTGAAGACATCGAGGATGCCATAAGGAGGGGACAG AGGGAGGAGGGGTGA
>gi 114518450 :cll3362-112976 (SEQ ID NO: 323)
■GTGACGGTTATAGATACAAACGTCTTTATATATGCAATCCTAAGGGATTCGGAGTTCAACTCTAGGGCGA GAAACCTCCTTGCATCTCTGGAAAGGTGGATCGTGCCGAGCATCGTTCTCTATGAGCTCTATTGGTTCTT TCGGGAAGAGGGGTATGGAAGAGATGAAATAACGAATGTTATTTCCTCAATCTTAAATAGCCCGAGGACG AGAGTAATCGGTGACAATGGGAGGTACACAAAACGTGCACTTGAGTTAACAAAGAACCCAAGACGCTTCA ACGATATGATAATACTAGCAACGGCTGAACAATTCAAAAGATTGGCTACATACGATAAGAGATTGAAAAA AGAAGCGGAAAGATTGGGAATAGAAACGATGCCCTAG
>gi 114518450 : 1135061-1135264 (SEQ ID NO: 324)
ATGGAAAATGCGTATGAACTTTTCCAAAAGTTACCCGACGATCTCAAGAGAGAAGTTATAGACTATATAG AATTTTTGTTAGAAAAGAAAGCGAAGAAGAAGCGAGGACAGCTCAAGCTTACATGGAAAGGAGCCTTAAA AGAATTGAGAGATAAGTACTCTTCTGTAGAGCTTCAGCATAAAGCTCTTGAATGGTGGGAATAG
>gi 114518450 : 1135265-1135666 (SEQ ID NO: 325)
ATGTATCTAGTTGATACCAATGTGTTCCTTGAGATTTTTCTTAACCAAGAAAAAGCAAATGAGGCAGAAG AGTTTTTGACAAAAACGCCAACAGAATATTCACACATTTCAGACTTTTCTCTTTATTCTATTGGAATAAT TCTGTCTAGACAGAAAAAATATGCTGTCTTTTCAGATTTTGTAGAAGATGTCCTTTTGGAAGGAGGAGTG ACACTTTTGCGACTGTCCCCCTTTGACCTTGGAAGCGTTATTAATGCAGCGGAAAGATTTAATCTGGATT TTGACGATGCATACCAATACACCTTAGCCAGAAAATACAATCTCAAGATTGTGAGCTTTGATTCCGATTT TGATAAAACCGATATAGGAAGGTTGCTCCCTGCTCAAGCTCTTCGAAGGTAG >gi 118976372 : 1159693-1160004 (SEQ ID NO: 326)
ATGTTCTTGTCTGTCCATCCAAACTCCATAACGCTTAAATATGATGCATGCATTCAATGTATTATGGTGA GTATTATGGTTAAGACAATCACTATCTCGGATGATGTCTATAACGAGTTACTCCGAATCAAGGGAAATAA GTCGTTTAGCGAAGTCCTCAGAGAACTGTTAAAAGAAAGAAAGGGGAATAAAGAGGTTCTCAAGCGTATT TTTGGTATTTTAAGTGAAGAGGAATATCAGGAAGTTAAGAAGAGGCTTAAAGAGCTTGAGGGAGAGTTCG AGAAATGGGAGCAGTCCTTGACACAAATGTGA
>gi 118976372 : 1159977-1160348 (SEQ ID NO: 327)
ATGGGAGCAGTCCTTGACACAAATGTGATAATCGAAATAGCTCGAGGAAACCGAAGAATCCTTGAAAAAG TACTGAGTACAGATAGCACCTTTTATATAACCTCAATAACAAAGTTTGAAATATTTTTGGGATTTCCAAA AAAGGAAGAATTAATTTGGTTAAACTCACTTG7AAGAACTTCCATTTGACGGGAAGAGTGCTGAGATAGCA GCATATCTCTACAAAAAGCTCAGAGAAAAAGGAATAATGCTAGGAATACGAGACTTGTTTATTGGCTCAA TAGCCCTAGTTAACGACCTCCCTTTAATAACACTAGATAAGGACTTTTTACACCTCAAAGAGTTTGGACT TGAAGTGGAGATTTTGAGGTAG
>gi 118976372 : 594596-594823 (SEQ ID NO: 328)
ATGCCCATTACGAAGGTTACTAGAAACTATCAGATAACAATTCCTGCAGAGATTAGAAAGGCCCTTGGAA TTAAAGAAGGTGAACTGCTTGAAGTAAGGCTAGAAAATGGAAAAATAATTATAGAAAGACTCAAAAAAGA AAGAAAAACACTCAAGCTGGGTAAAAAGTTAACACTCGAAGAAATTGAGAAAGCGATAGAGGAGGGAATG AAACAATGCATGCAGTGA
>gi 118976372 : 594811-595212 (SEQ ID NO: 329)
ATGCATGCAGTGATAGATACAAATGTTCTAATTTATGATACATTTAGCGATTCTGAGTTTCACAAAGAGT CTAGATCTCTTTTGAATTCTCTTGATAGATGGTACATTCCTTCCATAGTACTTCAGGAGTATGTGTGGTT TTTTAGAAGTCAAGGATTTTCAAGTAGAGAGGCCAAGATAATGCTCTCTGAATATATATCAGATCCAAGA TTCAGAGGTCTTGTAGAAGACCACAATGTAATTCTTCGTGCCATTGACATTCTCGAAAGGGAAAACCTCT CTTTATCACGGTTTAATGATATGATAATTCTTGTTCATGCAATAGAGAAGGGTACCCTAGCAACTTTTGA TCAAAAACTCAGAAAACTTGCAAGGAAGTTGAGCGTTGAAATCTTGCCATAG >gi 118976372 :c794749-794519 (SEQ ID NO: 330)
ATGGGAATGGAAGTTAAGCGAATTGATAGTCAGGGTAGAATTGTTTTACCAAAAGAGTGGCGGAAAAGGT GGGGTAACGAGGTAATTCTAATCGAATTTGAAGACAGGATAGAGATTTTACCAAAGAGGAAGCCAAAACT TTCAGAGTTCTTTGATATAATCGAAGTGGAAGAGGTTGAGGAAGACGTTGAAAAAGAGCTTTTAAAAGAA CTTGCAGGGGAGTATGAATGA
>gi 118976372 :c794522-794106 (SEQ ID NO: 331)
ATGAGATTCATTGACAGCAATGTTTTTCTTTATGCGATGATAAAGCCAAAAGGGAACACAAGTAAGGAGA TTCTCAAAAAGAAGGAAAAAGCCAAAAAGATTCTTCTAAGGGTCGAAAATGGAGAAGATGTTGTGACGAC ATTGATACACTTAAGCGAGATTGCAAACATCTTGGAGGCAAAGGTAAACCTCACAACTGCGGTAAGATTT TTAGAAAACCTGCTCCTCGCTGAAAATGTTAAAATTCTCCCAGTGTCTGTGGAGGAATATTTGAAAGCAG TACTTATTTCTAAAGAAAAAGGAATAAGTGTAAATGATGCCCTAGCTTATCTCAAAATGAAAGAACTCAA CATTAAAGAGATATACACGTTTGACAGACATTTTCAGAACTTAGATGTTGAGGTGATCCAAGACTGA
>gi 118976372 :cll48001-1147771 (SEQ ID NO: 332) ATGAAGACAATAGCAGTTGATGAGGAAACATGGGAGGCAATTAAAAAGCTCAAGGCTAGGTTGGATGCAA AATCATACGATGAAGTCTTGAAAAAGCTAATACAAGCGTGGCATACCTTAGAATTGGAGACCAAGGCCGA AAGCATTTCACTGGAAGACGATGAGGCTGAACTAGTGCTTTCAGTTATTAGGGATAGAAGTAAGCTTGTT GAGGAGGGAAGCAGGAAATGA >gi 118976372 :cll47774-1147304 (SEQ ID NO: 333)
ATGAACCCAATGCCTCGAAAAATCAGCTTTGACCCCCCTTCTTTTATTCAACTTACGAGAAAGCAAAATA AAGAGCTTTTAGAGTTTGTTCTTGCAGAGTTCGAAATTTACCTTCCAATTACAACCGTTCACGCTTATCT CTTGGCAAAGGCCTTCAAGGGGAAGAATCCAAAAGAGGAAGTCCAAAAGCTGAGGGACATCGTTAAAATT GTGGACTTGACGGATGAACTGCTTGGAGAGATTGCCGAGATAGATGCATCTCTAATTAAAGATGGATACT TCTTTACCTTGGAGGATTTAATCACGGCCGTTTCAGCAATAACATCTAAGTCCCTTCTTGTTGTTAATGG CAATGCTGAAAAGTACTCCCCCTTAAGGAAGTATGGGCTAGATTGTGTCAATTACGAGAAATTTCTAGAG GAAGTTGAAGTTTTAGCTAGAGAGGAGGCAAAGAGGGAGAAAATAATCTAG
>gi 118976372 : 813298-813549 (SEQ ID NO: 334) ATGAAACTGACGCATAAGTTTAAAAGTTTTCTGAACCAAATTCTATTCGGTGAGAATATGCAAGAGATCG AGAAGGTTCTCTCCAAACTTCCTCCTGAGCTTAAAAAGGAGGTTTTTGATTATGCAGAGTTCCTTCTTAA AAAATATCGTGAGAAAAAAAGAAAGGGATTCACGTTTTCATGGGAAGGCAAAGTTAAGTCGGAGCTTTCC TCAGTTGAACTTCAACACAAGGCTTTGGAGTGGAGGACTTGA >gi 118976372: 813549-813929 (SEQ ID NO: 335)
ATGTTTCTTGTGGATACAAATGTTTTCTTGGAGATCCTTCTTGGTCAAAAGAAGAAAGAGGAGGCAAAGA AATTTCTTTCTGAGAATATTGATAGACTTTATATGACAGATTTTTCTCTGCACTCAATTGGAGTGATACT TTTCAAATTAAGAAAACCAGAGGTTTTTGAAGAATTCATAGAAGATGTTCTTCCAAATGTGGAGATTCTC TCTTTACCAGTAGAGGGCTATCCAGAACTCATTAGGATACATAAGACCCTCAATCTTGATTTCGACGATG CCTACCAGTGTGCTGTTGCAAACGTTTTTGATCTTACAGTAGTCACTATGGACACGGATTTCACAAAAGC TTTGAATTATGTAAAAATCCTCTTTTTGTGA
>gx 118976372 : c596188-596048 (SEQ ID NO: 336) ATGCAGATTGTTGAGGCGATTTATGAGGATGGAGTTTTGAAACTTCTGAAAAATTTAAAGCTCAAAGAGC ACTCAAAGGTCATCATCAAGGTAATTGATGAGGAGGAGATTGAGAAAATCTTGGATTCCCGTGATTATTG A >gi] 18976372 :c596009-595671 (SEQ ID NO: 337)
ATGAATCCCTCTGAAGTCTTTCTAGATTCTTCTATTCTGGTAGGATTAAACCTTGGTGACGAGAACGCAA AGGCATTAGTGAAGTCGTTGATTGAAAGGGGTTTCACTTTAGTCATAAA.TCCTGTCGTTTTCTCTGAAAC GGCTTATAAAGTTATGTTTACCTTAGCTCTTCGAGATGAATTAAAGGGGTTTATAACCTCAAAAAGCATT TGGATAGATATGCTTGGGTTTATGGAAAGATCAAAGGAATCAATTGAGCAGCTGCAAATATTACGGAATT CAGAAATAGCCACTTTTGATGAAGACTTTAAGAAAGTTGATTTTCATCGAAGTTATTGA
>gi 115607142 :363824-364045 (SEQ ID NO: 338)
ATGAGTGATGTACTGATTCGGGACATCCCCGACGACGTGTTAGCAAGCCTTGACGCGATCGCGGCACGCT TGGGCTTGTCGCGGACCGAATACATCCGTCGGCGTTTAGCCCAGGATGCGCAGACGGCTCGCGTCACCGT GACAGCCGCGGATCTTCGACGCCTCAGGGGTGCGGTTGCCGGTCTGGGCGATCCCGAGCTTATGCGTCAG GCGTGGAGGTGA
>gi|l5607142:364042-364467 (SEQ ID NO: 339)
GTGACTGACCAGCGCTGGCTGATCGACAAGTCGGCGCTGGTGCGGCTCACGGACAGCCCTGACATGGAAA TCTGGTCGAACCGGATCGAACGCGGCCTGGTACACATCACGGGCGTGACACGCTTGGAAGTAGGGTTCTC GGCCGAATGCGGGGAGATAGCGCGACGGGAGTTTCGTGAACCGCCGCTGTCTGCGATGCCCGTGGAATAC CTAACCCCGAGAATTGAAGACCGTGCGCTCGAGGTGCAGACCTTGCTTGCCGACCGCGGACACCACCGTG GCCCGTCGATCCCGGATCTGCTCATCGCCGCGACAGCCGAACTGTCGGGCTTGACGGTACTGCACGTCGA CAAGGACTTTGACGCCATCGCCGCGCTTACCGGTCAGAAAACAGAACGGCTCACGCATCGCCCGCCTTCC GCTTAA
>gi 115607142 : C695483-695226 (SEQ ID NO: 340)
ATGTCTGCTACGATACCCGCTCGCGATCTTCGCAACCACACCGCCGAGGTACTGCGGCGAGTTGCCGCCG GCGAGGAAATCGAGGTGCTCAAGGACAATCGCCCCGTAGCGCGCATCGTTCCGCTCAAGCGGCGCCGCCA ATGGTTGCCAGCTGCCGAGGTGATCGGCGAACTGGTGCGCTTGGGCCCCGATACCACCAATCTGGGCGAG GAGCTGCGAGAGACGCTGACGCAAACCACGGACGATGTGCGGTGGTGA
>gi 115607142 : C695229-694837 (SEQ ID NO: 341)
GTGAACGTACGGCGCGCCCTCGCCGACACATCCGTTTTCATTGGCATCGAGGCGACACGATTCGACCCGG ACCGGTTTGCGGGATACGAATGGGGCGTCTCGGTAGTCACACTCGGCGAGCTGCGGCTCGGGGTGTTGCA AGCCTCCGGCCCCGAGGCCGCCGCACGTCGGCTCTCCACCTACCAGCTTGCGCAACGGTTCGAACCACTA GGCATCGACGAGGCGGTCTCCGAAGCATGGGCATTACTGGTGTCCAAGCTGCGCGCCGCCAAACTGCGCG TGCCGATCAACGACAGCTGGATTGCGGCCACAGCCGTGGCGCACGGCATTGCGATCCTGACCCAAGACAA CGACTACGCCGCCATGCCCGACGTCGAGGTCATAACGATCTGA
>gi 115607142 = 718023-718283 (SEQ ID NO: 342)
ATGTCTGAGGTGGCCTCGCGTGAGCTGCGTAACGATACGGCCGGCGTGCTGCGCCGCGTGCGGGCAGGGG AGGACGTCACCATCACCGTCAGCGGCCGTCCGGTCGCGGTGCTTACCCCGGTTCGTCCGCGGCGCCGGCG TTGGCTGAGCAAAACGGAGTTCCTGTCGCGGTTGCGCGGCGCTCAAGCCGATCCCGGGCTCCGTAACGAC CTCGCGGTCCTTGCCGGCGACACGACCGAGGATCTCGGGCCGATCCGGTGA
>gi|l5607142:718280-718687 (SEQ ID NO: 343)
GTGAGCACGACGCCGGCCGCCGGAGTGCTCGACACGTCGGTGTTCATCGCGACCGAAAGCGGCCGGCAAC TCGACGAGGCGCTGATCCCCGACCGGGTCGCCACCACCGTCGTCACCCTCGCCGAACTGCGCGTCGGCGT GCTGGCCGCGGCGACGACCGACATCCGGGCTCAACGCCTGGCGACCCTGGAATCCGTTGCCGATATGGAA ACGTTGCCCGTCGACGACGATGCCGCCCGAATGTGGGCCCGATTGCGGATCCATCTTGCCGAGTCCGGTC GCCGGGTGCGGATCAACGACCTGTGGATCGCGGCCGTCGCGGCATCGCGAGCGCTGCCGGTCATCACCCA GGACGACGACTTCGCCGCCCTCGACGGTGCGGCCAGTGTGGAGATCATTCGGGTCTGA
>gi 115607142 :c756135-755767 (SEQ ID NO: 344)
TTGTTCCTCCCTAATACGCGTGCCTATCGACGCTACAACCGCAGCGTCTGGGCCGTCCGCGGGTCAACGC GACCGCAATGGCAGCCGCCGCCCAAATTTCAGCATGCTAAATGTATGAGCATGCGTCTGGCGCATCGGCT CCAGATCCTGCTCGACGACGAGTGCCACCGCCGCATCACCGCGGTGGCGCGCGAGCGAGGCGTCCCGGTC GCAACCGTCGTGCGTGAGGCCATTGATCGAGGCCTCGTCAGCCCCGCCGGTCGCCGCAAGTCCGCGGGCA GGCGCCTGCTCGACGCCGCCGACATGTCCGTTCCCGAGCCGCGGGAGCTGAAGCAGGAACTCGAGGCCCT CCGGGCGCGCCGCGGATGA
>gi 115607142 : C755770-755333 (SEQ ID NO: 345) ATGATAGTGCTCGACACCACCGTCCTCGTCTATGCCAAAGGCGCCGAGCATCCACTCCGCGATCCCTGCC GCGATCTCGTCGCGGCAATCGCCGACGAACGCATCGCTGCGACCACCACCGCCGAGGTGATCCAGGAGTT CGTCCACGTACGCGCCCGCCGGCGCGACCGCAGCGACGCCGCCGCGCTGGGCCGTGTGACTATGCCGAAC TGCTCTCGCCGCTACTCACCATCAATCGAGGCCACCTCGAAGCGCGGCCTGACGCTGTTCGAGACAACGC CAGGGCTTGAAGCCTGCGACGCGGTGCTCGCGGCGGTTGCCGCAAGCGCCGGCGCGACCGCTCTTGTCTC GGCTGACCCGGCGTTCGCCGATCTGTCGGATGTCGTGCACGTCATTCCCGACGCGGCCGGGATGGTCAGC CTGCTCGGCGACCGCTGA
>gi 115607142 : 758530-758802 (SEQ ID NO: 346) ATGGAAAAGTCACGGTGCCACGCTGTCGCACATGGAGGTGGGTGTGCGGGATCTGCGAAATCGCACAAGT CAGGTGGTCGATGCGGTCAAGGCCGGGGTGCCGGTGACTCTCACGGTACACGGGGAGCCGGTCGCCGATA TCGTGCCGCATCGGCGCCGCATCCGCTGGCTGTCGGGGCGCATCTGCGCGATGAGCTCGCCAAGCGCTCG GCCGACCCGCGCCTCACCGATGAACTCAACGACTTGGCCGGTCATACCCTCGACGACCTGTGA
>gi 115607142 : 758799-759137 (SEQ ID NO: 347)
GTGACCGAGGGCGAGGTCGGGGTAGGCCTGCTAGATACGTCGGTCTTCATTGCGCGCGAGAGCGGCGGTG CAATCGCGGACCTGCCTGAACGCGTGGCGCTTTCGGTTATGACGATCGGTGAGCTGCAACTCGGTCTGCT CAATGCTGGCGATTCGGCGACCCGATCACGACGCGCCGACACCCTCGCGCTAGCGCGCACGGCCGATCAG ATCCCTGTCAGTGAAGCGGTGATGAΪTTCGTTGGCTCGACTCGTCGCGGACTGCCGAGCCGCGGGCGTGC GGCGGTCGGTGAAGCTGACCGACGCTCTCATTGCGGCAACCGCGGAGATCAAGGTGTGA
>gi 115607142 : cl574765-1574508 (SEQ ID NO: 348)
ATGAAGCGGACCAACATCTACCTCGACGAGGAGCAGACGGCAAGCCTCGACAAGTTGGCCGCGCAAGAAG GTGTTTCGCGCGCCGAGCTGATCCGCCTCCTGCTGAACCGAGCCCTCACCACCGCTGGGGACGACCTTGC ATCGGACCTGCAGGCTATAAACGATTCGTTCGGCACGCTTCGCCACCTGGATCCGCCGGTGCGTCGCTCC GGTGGTCGTGAACAGCACCTTGCCCAGGTGTGGCGCGCCACCTCATGA
>gi 115607142 :cl574511-1574110 (SEQ ID NO: 349) ATGATCCTTGTCGACTCCGATGTGCTGATCGCGCATTTGCGGGGTGTCGTTGCTGCTCGCGATTGGCTTG TCAGCGCCCGCAAGGACGGACCGCTGGCGATCAGCGTGGTGTCCACCGCCGAACTCATCGGCGGAATGCG GACCGCCGAACGGCGCGAGGTGTGGCGCCTGCTTGCATCGTTTCGGGTACAGCCAGCAACCGAGGTAATC GCACGCCGCGCCGGCGACATGATGCGCCGATATCGTCGCAGCCACAACCGGATTGGACTTGGCGACTATC TGATAGCTGCTACCGCCGACGTCCAGGACCTGCAATTGGCAACCCTCAACGTGTGGCATTTCCCCATGTT CGAGCAGCTGAAACCACCATTTGCGGTGCCGGGGCACCGACCGCGGGCATGA
>gi|l5607142:c2087910-2087647 (SEQ ID NO: 350)
ATGAGTAAGCGCCTGCAGGTTCTGCTGGACCCCGACGAGTGGGAAGAACTCCGAGAGATTGCACGCCGGC ACCGCACGACAGTGTCCGAGTGGGTCCGCCGGACGCTGCGGGAGGCGCGGGAGCGAGAACCGCGCGGCGA TCTAGACATGAAGCTGCGATCTGTCCGTGCCGCCGCACGCCATGAGTTCCCGACAGCCGACGTCGAGCAG ATGCTCGAGGAAATCGAACGCGGACGCGGTGCGGAGCGCGAAGGATCACGGTGA
>gi 115607142 : c2087650-2087255 (SEQ ID NO: 351)
GTGATCCTCGTTGACTCCAACATTCCCATGTATCTGGTGGGTGCCTCGCACCCGCATAAGCTGGACGCGC AACGTCTGCTGGAGTCGGCGCTGTCGGGCGGTGAACGCCTAGTCACCGACGCCGAGGTGCTGCAGGAGAT ATGCCACCGGTATGTGGCAATCAAACGCCGTGAGGCGATTCAGCCGGCTTTCGATGCAATTATCGGCGTG GTCGACGAAGTGCTGCCGATCGAGCGCACCGATGTCGAACACGCGAGGGATGCCCTGTTGCGCTATCAAA CGTTGTCGGCCAGGGATGCACTACACATCGCCGTCATGGCTCACCACGACATTACCCGGCTGATGAGCTT CGACCGTGGGTTCGACTCCTATCCGGGGATCAAGCGTCTGGCCTGA
>gi|l5607142:2200724-2200939 (SEQ ID NO: 352)
GTGATCCGCAACCTTCCCGAGGGGACCAAGGCGGCACTACGGGTCCGTGCTGCACGTCATCACCACTCCG TCGAAGCGGAAGCCCGCGCGATCCTCACCGCGGGATTGTTGGGCGAAGAAGTCCCCATGCCGGTACTGCT GGCCGCCGACAGTGGCCATGACATCGACTTCGAGCCCGAACGTCTCGGCCTGATCGCCCGCACCCCGCAA CTGTGA
>gi 115607142 : 2200936-2201247 (SEQ ID NO: 353)
GTGACCTACGTCCTGGACACCAACGTGGTGTCCGCTTTGCGCGTGCCGGGACGCCACCCCGCCGTGGCGG CGTGGGCGGACTCGGTGCAAGTCGCCGAACAGTTCGTTGTGGCGATAACGCTGGCCGAGATTGAGCGAGG CGTGATCGCCAAGGAACGCACCGACCCGACCCAGAGTGAGCACCTACGGCGCTGGTTCGACGACAAGGTG CTGCGCATATTCGTGTTCGCCCGCCGGGGCACAAACCTCATCATGCAGCCCCTAGCTGGGCATATAGGTT ACAGCCTATATTCTGGTATAAGCTGGTTTTAG
>gi 115607142 : 2851089-2851316 (SEQ ID NO: 354) ATGACCGTAAAGAGGACCACGATTGAGCTGGACGAAGATCTTGTGCGGGCAGCCCAGGCCGTCACCGGGG AAACATTGCGAGCGACGGTCGAGCGCGCGCTGCAGCAGCTGGTGGCCGCGGCTGCCGAGCAGGCCGCCGC GCGCCGGCGGCGGATCGTCGACCATCTCGCGCACGCCGGCACTCACGTGGACGCAGACGTGCTGCTCTCC GAGCAGGCGTGGCGATGA >gi 115607142: 2851313-2851714 (SEQ ID NO: 355)
ATGACCACCTGGATTCTGGACAAGAGTGCCCACGTGCGACTCGTGGCCGGCGCCACGCCGCCAGCCGGCA TCGACCTCACCGACCTCGCCATCTGCGATATCGGCGAACTTGAATGGCTGTATTCAGCACGGTCAGCTAC CGACTACGACAGCCAACAAACGTCACTGCGCGCCTATCAAATCCTTCGCGCACCCAGCGACATCTTTGAC CGGGTTCGCCACCTTCAGCGCGACCTAGCCCACCACCGTGGGATGTGGCATCGAACGCCGCTTCCGGACC TATTCATCGCCGAAACCGCGCTTCATCACCGGGCCGGCGTGTTGCACCACGACCGTGACTACAAACGAAT TGCCGTCGTACGGCCTGGGTTTCAAGCATGCGAACTCTCTCGCGGGCGCTAG
>gi 115607142 : 2868604-2868861 (SEQ ID NO: 356)
ATGCGGACTCAGGTGACCCTGGGCAAAGAGGAGCTTGAGCTGCTCGATCGTGCCGCCAAGGCGAGTGGCG CATCGCGGTCCGAACTCATCCGACGCGCAATTCACCGTGCCTACGGGACTGGATCCAAGCAGGAACGGCT CGCCGCGCTCGACCACAGCCGTGGCTCGTGGCGAGGACGGGACTTCACCGGCACCGAGTATGTCGACGCC ATTCGGGGCGACCTCAACGAACGACTTGCTCGGCTCGGTCTGGCGTGA >gi 115607142: 2868858-2869235 (SEQ ID NO: 357)
GTGAAGCTGATCGACACCACCATCGCGGTCGACCACCTTCGCGGCGAACCCGCGGCAGCCGTGCTGCTCG CCGAACTGATAAACAACGGTGAGGAGATCGCGGCCAGCGAGCTGGTCCGATTCGAACTCCTCGCCGGTGT GCGGGAAAGCGAACTCGCGGCGCTCGAGGCCTTCTTCTCGGCAGTGGTGTGGACCCTGGTGACCGAGGAC ATTGCCCGGATCGGCGGACGACTCGCCCGTCGATACCGGTCCAGCCACCGCGGTATCGACGACGTGGACT ACCTGATCGCTGCGACCGCCATTGTGGTCGACGCCGACCTGCTCACCACCAATGTGCGCCACTTCCCGAT GTTCCCGGATCTGCAGCCGCCGTACTGA
>gi 115607142 -.C3070846-3070580 (SEQ ID NO: 358) ATGCATCGCGGATATGCATTAGTAGTATGCTCTCCGGGTGTGACGCGCACCATGATCGACATCGATGACG ACCTGCTCGCTCGGGCCGCCAAGGAACTGGGTACCACGACAAAGAAAGACACCGTGCATGCCGCGCTGCG GGCCGCGTTGCGAGCCAGTGCCGCGCGCTCGCTCATGAACCGGATGGCCGAGAACGCCACCGGAACCCAG GACGAAGCTCTGGTCAACGCAATGTGGCGAGACGGCCACCCAGAGAACACGGCATGA gi 115607142 -.C3070583-3070167 (SEQ ID NO: 359)
ATGACCACGCGCTATTTGCTCGACAAATCAGCGGCTTACCGCGCGCACTTGCCCGCGGTCCGACATCGCT TGGAACCGTTGATGGAACGCGGTCTACTGGCCCGGTGCGGCATTACCGATCTCGAGTTCGGAGTCTCGGC GCGTTCCCGCGAGGACCATCGAACACTGGGCACCTACCGGCGTGACGCGCTCGAATACGTCAACACCCCC GACACCGTGTGGGTTCGTGCATGGGAGATCCAAGAAGCATTGACCGACAAGGGATTTCACCGCTCGGTCA AGATCCCGGACTTGATCATTGCGGCGGTCGCCGAGCATCACGGCATACCCGTCATGCACTACGACCAAGA CTTCGAACGCATCGCCGCCATCACACGGCAACCCGTGGAATGGGTGGTGGCCCCAGGGACAGCGTGA
>gi 115607142 : 2258028-2258270 (SEQ ID NO: 360)
GTGTATAGTGGTGTTGTGTCACGGACCAACATCGAGATCGACGACGAACTCGTGGCCGCCGCACAGCGGA TGTACCGACTCGATTCCAAGCGAAGTGCCGTCGACCTCGCGCTGCGCCGGCTCGTGGGTGAACCGTTGGG CCGCGATGAGGCTTTGGCGCTGCAGGGCAGCGGTTTCGACTTCAGCAACGATGAGATCGAATCGTTCTCG GATACGGACCGCAAGCTCGCCGACGAGTCGTAG
>gi 115607142 : 2258271-2258669 (SEQ ID NO: 361) ATGATCGTCGACACCTCGGTCTGGATCGCATATCTCTCCACGTCAGAGTCGTTGGCCAGTCGCTGGCTAG CCGATCGCATTGCCGCTGACTCGACGGTGATCGTGCCCGAGGTGGTGATGATGGAGCTGCTGATCGGTAA GACCGATGAGGACACCGCCGCACTGCGCCGACGGCTCCTGCAGCGATTCGCTATCGAACCGCTGGCCCCG GTCCGCGACGCGGAAGATGCCGCCGCCATTCACCGGCGCTGTCGTCGCGGCGGCGACACCGTACGCAGCC TGATCGATTGCCAGGTGGCCGCGATGGCGTTGCGGATCGGGGTCGCCGTGGCGCATCGTGATCGCGACTA CGAGGCGATCCGCACACATTGCGGACTACGCACCGAGCCGTTGTTCTGA
>gi 115607142: 1764753-1764971 (SEQ ID NO: 362)
GTGTATCGTTGGTGTATGTCGCGCACCAACATCGACATCGATGACGAACTTGCCGCCGAGGTCATGCGCA GGTTCGGTCTGACCACCAAGAGGGCGGCGGTCGACCTTGCCCTACGACGGTTGGTCGGGTCGCCGTTGAG CCGTGAGTTTCTGCTCGGGCTGGAAGGCGTCGGCTGGGAAGGCGACCTGGATGACTTGCGAAGCGATCGC CCAGACTGA
>gi j 15607142 : 1764977-1765381 (SEQ ID NO: 363) ATGATCCTCATCGACACATCGGCCTGGGTGGAGTACTTCCGTGCCACCGGATCAATCGCCGCTGTCGAAG TACGCCGGCTGCTGTCCGAAGAAGCAGCGCGAATCGCTATGTGTGAGCCCATTGCGATGGAAATCTTGAG TGGCGCGCTCGACGACAACACCCACACGACGCTAGAGCGGCTCGTGAATGGCTTGCCGTCGTTGAACGTT GATGACGCGATTGACTTTCGTGCTGCCGCGGGTATCTATCGCGCCGCCCGGCGCGCCGGCGAAACGGTTC GAAGCATCAACGACTGCCTCATAGCGGCGCTCGCGATCCGCCACGGTGCGCGTATCGTCCACCGTGACGC CGACTTTGATGTGATTGCCCGGATTACCAACCTGCAGGCCGCATCGTTTCGGTGA -
>gi ] 15839372 :760536-760862 (SEQ ID NO: 364)
ATGGAGGTGGGTGTGCGGGATCTGCGAAATCGCACAAGTCAGGTGGTCGATGCGGTCAAGGCCGGGGTGC CGGTGACTCTCACGGTACACGGGGAGCCGGTCGCCGATATCGTGCCGCATCGGCGCCGCATCCGCTGGCT GTCGGGGCGCATCTGCGCGATGAGCTCGCCAAGCGCTCGGCCGACCCGCGCCTCACCGATGAACTCAACG ACTTGGCCGGTCATACCCTCGACGACCTGTGACCGAGGGCGAGGTCGGGGTAGGCCTGCTAGATACGTCG GTCTTCATTGCGCGCGAGAGCGGCGGTGCAATCGCGGACCTGCCTGA
>gi 115839372 : 760774-761112 (SEQ ID NO: 365)
GTGACCGAGGGCGAGGTCGGGGTAGGCCTGCTAGATACGTCGGTCTTCATTGCGCGCGAGAGCGGCGGTG CAATCGCGGACCTGCCTGAACGCGTGGCGCTTTCGGTTATGACGATCGGTGAGCTGCAACTCGGTCTGCT CAATGCTGGCGATTCGGCGACCCGATCACGACGCGCCGACACCCTCGCGCTAGCGCGCACGGCCGATCAG ATCCCTGTCAGTGAAGCGGTGATGATTTCGTTGGCTCGACTCGTCGCGGACTGCCGAGCCGCGGGCGTGC GGCGGTCGGTGAAGCTGACCGACGCTCTCATTGCGGCAACCGCGGAGATCAAGGTGTGA >gi 115839372 :c696933-696676 (SEQ ID NO: 366)
ATGTCTGCTACGATACCCGCTCGCGATCTTCGCAACCACACCGCCGAGGTACTGCGGCGAGTTGCCGCCG GCGAGGAAATCGAGGTGCTCAAGGACAATCGCCCCGTAGCGCGCATCGTTCCGCTCAAGCGGCGCCGCCA ATGGTTGCCAGCTGCCGAGGTGATCGGCGAACTGGTGCGCTTGGGCCCCGATACCACCAATCTGGGCGAG GAGCTGCGAGAGACGCTGACGCAAACCACGGACGATGTGCGGTGGTGA
>gi 115839372 :c696682-696287 (SEQ ID NO: 367)
GTGGTGAACGTACGGCGCGCCCTCGCCGACACATCCGTTTTCATTGGCATCGAGGCGACACGATTCGACC CGGACCGGTTTGCGGGATACGAATGGGGCGTCTCGGTAGTCACACTCGGCGAGCTGCGGCTCGGGGTGTT GCAAGCCTCCGGCCCCGAGGCCGCCGCACGTCGGCTCTCCACCTACCAGCTTGCGCAACGGTTCGAACCA CTAGGCATCGACGAGGCGGTCTCCGAAGCATGGGCATTACTGGTGTCCAAGCTGCGCGCCGCCAAACTGC GCGTGCCGATCAACGACAGCTGGATTGCGGCCACAGCCGTGGCGCACGGCATTGCGATCCTGACCCAAGA CAACGACTACGCCGCCATGCCCGACGTCGAGGTCATAACGATCTGA
>gi 115839372 : C758122-757742 (SEQ ID NO: 368)
TTGGCTGCGGCATTGTTCCTCCCTAATACGCGTGCCTATCGACGCTACAACCGCAGCGTCTGGGCCGTCC GCGGGTCAACGCGACCGCAATGGCAGCCGCCGCCCAAAΪTTCAGCATGCTAAATGTATGAGCATGCGTCT GGCGCATCGGCTCCAGATCCTGCTCGACGACGAGTGCCACCGCCGCATCACCGCGGTGGCGCGCGAGCGA GGCGTCCCGGTCGCAACCGTCGTGCGTGAGGCCATTGATCGAGGCCTCGTCAGCCCCGCCGGTCGCCGCA AGTCCGCGGGCAGGCGCCTGCTCGACGCCGCCGACATGTCCGTTCCCGAGCCGCGGGAGCTGAAGCAGGA ACTCGAGGCCCTCCGGGCGCGCCGCGGATGA
>gi 115839372 :c757745-757308 (SEQ ID NO: 369) ATGATAGTGCTCGACACCACCGTCCTCGTCTATGCCAAAGGCGCCGAGCATCCACTCCGCGATCCCTGCC GCGATCTCGTCGCGGCAATCGCCGACGAACGCATCGCTGCGACCACCACCGCCGAGGTGATCCAGGAGTT CGTCCACGTACGCGCCCGCCGGCGCGACCGCAGCGACGCCGCCGCGCTGGGCCGTGTGACTATGCCGAAC TGCTCTCGCCGCTACTCACCATCAATCGAGGCCACCTCGAAGCGCGGCCTGACGCTGTTCGAGACAACGC CAGGGCTTGAAGCCTGCGACGCGGTGCTCGCGGCGGTTGCCGCAAGCGCCGGCGCGACCGCTCTTGTCTC GGCTGACCCGGCGTTCGCCGATCTGTCGGATGTCGTGCACGTCATTCCCGACGCGGCCGGGATGGTCAGC CTGCTCGGCGACCGCTGA
>gi 115839372 : C1574636-1574367 (SEQ ID NO: 370)
ATGATATGGTGTATGAAGCGGACCAACATCTACCTCGACGAGGAGCAGACGGCAAGCCTCGACAAGTTGG CCGCGCAAGAAGGTGTTTCGCGCGCCGAGCTGATCCGCCTCCTGCTGAACCGAGCCCTCACCACCGCTGG GGACGACCTTGCATCGGACCTGCAGGCTATAAACGATTCGTTCGGCACGCTTCGCCACCTGGATCCGCCG GTGCGTCGCTCCGGTGGTCGTGAACAGCACCTTGCCCAGGTGTGGCGCGCCACCTCATGA
>gi 115839372 :cl574370-1573969 (SEQ ID NO: 371) ATGATCCTTGTCGACTCCGATGTGCTGATCGCGCATTTGCGGGGTGTCGTTGCTGCTCGCGATTGGCTTG TCAGCGCCCGCAAGGACGGACCGCTGGCGATCAGCGTGGTGTCCACCGCCGAACTCATCGGCGGAATGCG GACCGCCGAACGGCGCGAGGTGTGGCGCCTGCTTGCATCGTTTCGGGTACAGCCAGCAACCGAGGTAATC GCACGCCGCGCCGGCGACATGATGCGCCGATATCGTCGCAGCCACAACCGGATTGGACTTGGCGACTATC TGATAGCTGCTACCGCCGACGTCCAGGACCTGCAATTGGCAACCCTCAACGTGTGGCATTTCCCCATGTT CGAGCAGCTGAAACCACCATTTGCGGTGCCGGGGCACCGACCGCGGGCATGA
>gi 115839372 :c2085138-2084875 (SEQ ID NO: 372)
ATGAGTAAGCGCCTGCAGGTTCTGCTGGACCCCGACGAGTGGGAAGAACTCCGAGAGATTGCACGCCGGC ACCGCACGACAGTGTCCGAGTGGGTCCGCCGGACGCTGCGGGAGGCGCGGGAGCGAGAACCGCGCGGCGA TCTAGACATGAAGCTGCGATCTGTCCGTGCCGCCGCACGCCATGAGTTCCCGACAGCCGACGTCGAGCAG ATGCTCGAGGAAATCGAACGCGGACGCGGTGCGGAGCGCGAAGGATCACGGTGA
>gi 115839372 : C2084878-2084483 (SEQ ID NO: 373)
GTGATCCTCGTTGACTCCAACATTCCCATGTATCTGGTGGGTGCCTCGCACCCGCATAAGCTGGACGCGC AACGTCTGCTGGAGTCGGCGCTGTCGGGCGGTGAACGCCTAGTCACCGACGCCGAGGTGCTGCAGGAGAT ATGCCACCGGTATGTGGCAATCAAACGCCGTGAGGCGATTCAGCCGGCTTTCGATGCAATTATCGGCGTG GTCGACGAAGTGCTGCCGATCGAGCGCACCGATGTCGAACACGCGAGGGATGCCCTGTTGCGCTATCAAA CGTTGTCGGCCAGGGATGCACTACACATCGCCGTCATGGCTCACCACGACATTACCCGGCTGATGAGCTT CGACCGTGGGTTCGACTCCTATCCGGGGATCAAGCGTCTGGCCTGA
>gi 115839372 : 2198045-2198272 (SEQ ID NO: 374)
ATGGAGCAGATCGTGATCCGCAACCTTCCCGAGGGGACCAAGGCGGCACTACGGGTCCGTGCTGCACGTC ATCACCACTCCGTCGAAGCGGAAGCCCGCGCGATCCTCACCGCGGGATTGTTGGGCGAAGAAGTCCCCAT GCCGGTACTGCTGGCCGCCGACAGTGGCCATGACATCGACTTCGAGCCCGAACGTCTCGGCCTGATCGCC CGCACCCCGCAACTGTGA
>gi 115839372 :2198269-2198580 (SEQ ID NO: 375)
GTGACCTACGTCCTGGACACCAACGTGGTGTCCGCTTTGCGCGTGCCGGGACGCCACCCCGCCGTGGCGG CGTGGGCGGACTCGGTGCAAGTCGCCGAACAGTTCGTTGTGGCGATAACGCTGGCCGAGATTGAGCGAGG CGTGATCGCCAAGGAACGCACCGACCCGACCCAGAGTGAGCACCTACGGCGCTGGTTCGACGACAAGGTG CTGCGCATATTCGTGTTCGCCCGCCGGGGCACAAACCTCATCATGCAGCCCCTAGCTGGGCATATAGGTT ACAGCCTATATTCTGGTATAAGCTGGTTTTAG
>gi 115839372 :2846577-2846804 (SEQ ID NO: 376) ATGACCGTAAAGAGGACCACGATTGAGCTGGACGAAGATCTTGTGCGGGCAGCCCAGGCCGTCACCGGGG AAACATTGCGAGCGACGGTCGAGCGCGCGCTGCAGCAGCTGGTGGCCGCGGCTGCCGAGCAGGCCGCCGC GCGCCGGCGGCGGATCGTCGACCATCTCGCGCACGCCGGCACTCACGTGGACGCAGACGTGCTGCTCTCC GAGCAGGCGTGGCGATGA >gl 115839372: 2846801-2847202 (SEQ ID NO: 377)
ATGACCACCTGGATTCTGGACAAGAGTGCCCACGTGCGACTCGTGGCCGGCGCCACGCCGCCAGCCGGCA TCGACCTCACCGACCTCGCCATCTGCGATATCGGCGAACTTGAATGGCTGTATTCAGCACGGTCAGCTAC CGACTACGACAGCCAACAAACGTCACTGCGCGCCTATCAAATCCTTCGCGCACCCAGCGACATCTTTGAC CGGGTTCGCCACCTTCAGCGCGACCTAGCCCACCACCGTGGGATGTGGCATCGAACGCCGCTTCCGGACC TATTCATCGCCGAAACCGCGCTTCATCACCGGGCCGGCGTGTTGCACCACGACCGTGACTACAAACGAAT TGCCGTCGTACGGCCTGGGTTTCAAGCATGCGAACTCTCTCGCGGGCGCTAG >gi|l5839372:2864735-2865007 (SEQ ID NO: 378)
ATGTATGGTGATGTCATGCGGACTCAGGTGACCCTGGGCAAAGAGGAGCTTGAGCTGCTCGATCGTGCCG CCAAGGCGAGTGGCGCATCGCGGTCCGAACTCATCCGACGCGCAATTCACCGTGCCTACGGGACTGGATC CAAGCAGGAACGGCTCGCCGCGCTCGACCACAGCCGTGGCTCGTGGCGAGGACGGGACTTCACCGGCACC GAGTATGTCGACGCCATTCGGGGCGACCTCAACGAACGACTTGCTCGGCTCGGTCTGGCGTGA
>gi|15839372:2865004-2865381 (SEQ ID NO: 379)
GTGAAGCTGATCGACACCACCATCGCGGTCGACCACCTTCGCGGCGAACCCGCGGCAGCCGTGCTGCTCG CCGAACTGATAAACAACGGTGAGGAGATCGCGGCCAGCGAGCTGGTCCGATTCGAACTCCTCGCCGGTGT GCGGGAAAGCGAACTCGCGGCGCTCGAGGCCTTCTTCTCGGCAGTGGTGTGGACCCTGGTGACCGAGGAC ATTGCCCGGATCGGCGGACGACTCGCCCGTCGATACCGGTCCAGCCACCGCGGTATCGACGACGTGGACT ACCTGATCGCTGCGACCGCCATTGTGGTCGACGCCGACCTGCTCACCACCAATGTGCGCCACTTCCCGAT GTTCCCGGATCTGCAGCCGCCGTACTGA
>gi|15839372:c3065571-3065305 (SEQ ID NO: 380)
ATGCATCGCGGATATGCATTAGTAGTATGCTCTCCGGGTGTGACGCGCACCATGATCGACATCGATGACG ACCTGCTCGCTCGGGCCGCCAAGGAACTGGGTACCACGACAAAGAAAGACACCGTGCATGCCGCGCTGCG GGCCGCGTTGCGAGCCAGTGCCGCGCGCTCGCTCATGAACCGGATGGCCGAGAACGCCACCGGAACCCAG GACGAAGCTCTGGTCAACGCAATGTGGCGAGACGGCCACCCAGAGAACACGGCATGA
>gi|l5839372:c3065308-3064892 (SEQ ID NO: 381)
ATGACCACGCGCTATTTGCTCGACAAATCAGCGGCTTACCGCGCGCACTTGCCCGCGGTCCGACATCGCT TGGAACCGTTGATGGAACGCGGTCTACTGGCCCGGTGCGGCATTACCGATCTCGAGTTCGGAGTCTCGGC GCGTTCCCGCGAGGACCATCGAACACTGGGCACCTACCGGCGTGACGCGCTCGAATACGTCAACACCCCC GACACCGTGTGGGTTCGTGCATGGGAGATCCAAGAAGCATTGACCGACAAGGGATTTCACCGCTCGGTCA AGATCCCGGACTTGATCATTGCGGCGGTCGCCGAGCATCACGGCATACCCGTCATGCACTACGACCAAGA CTTCGAACGCATCGCCGCCATCACACGGCAACCCGTGGAATGGGTGGTGGCCCCAGGGACAGCGTGA
>gi 115839372 :3168956-3169150 (SEQ ID NO: 382) ATGTCCCTCAGTAACTGGCTGCGTCAAGCGGGGCTCAGGCAGCTCGAGGCACAGCGACAACGTCCCCTGC GCACCGCCCAGGAATTGCGCGAGT CTTTGCGTCACGGCCCGACGAGACAGGGGCAGAACCTGATTGGCA GGCGCATCTGCAGGTGATGGCTGAATCGCGCCGTCGCGGCCTGCCGGCGCCATGA
>gi 115839372 : 3169147-3169527 (SEQ ID NO: 383) ATGATCTTCGTCGATACCAACGTCTTCATGTATGCGGTCGGTCGCGATCACCCATTGCGGATGCCCGCCC GTGAGTTCCTCGAGCACAGCCTCGAACACCAAGACCGCCTTGTCACGTCAGCCGAGGCCATGCAGGAATT GCTGAACGCGTATGTGCCCGTCGGGCGGAACTCGACGCTGGACTCAGCATTGACCTTGGTGCGGGCGCTG ACGGAAATCTGGCCCGTCGAGGCGGCCGACGTCGCGCATGCGCGAACCCTGCACCACCGCCACCCCGGTC TGGGCGCGCGCGATCTGCTACACCTGGCATGCTGCCAGCGTCGCGGTGTCACGCGGATCAAGACGTTCGA CCACACACTGGCCAGCGCATTCCGATCATGA
>gi 115839372 = 2255362-2255604 (SEQ ID NO: 384)
GTGTATAGTGGTGTTGTGTCACGGACCAACATCGAGATCGACGACGAACTCGTGGCCGCCGCACAGCGGA TGTACCGACTCGATTCCAAGCGAAGTGCCGTCGACCTCGCGCTGCGCCGGCTCGTGGGTGAACCGTTGGG CCGCGATGAGGCTTTGGCGCTGCAGGGCAGCGGTTTCGACTTCAGCAACGATGAGATCGAATCGTTCTCG GATACGGACCGCAAGCTCGCCGACGAGTCGTAG
>gi 115839372 : 2255605-2256003 (SEQ ID NO: 385)
ATGATCGTCGACACCTCGGTCTGGATCGCATATCTCTCCACGTCAGAGTCGTTGGCCAGTCGCTGGCTAG CCGATCGCATTGCCGCTGACTCGACGGTGATCGTGCCCGAGGTGGTGATGATGGAGCTGCTGATCGGTAA GACCGATGAGGACACCGCCGCACTGCGCCGACGGCTCCTGCAGCGATTCGCTATCGAACCGCTGGCCCCG GTCCGCGACGCGGAAGATGCCGCCGCCATTCACCGGCGCTGTCGTCGCGGCGGCGACACCGTACGCAGCC TGATCGATTGCCAGGTGGCCGCGATGGCGTTGCGGATCGGGGTCGCCGTGGCGCATCGTGATCGCGACTA CGAGGCGATCCGCACACATTGCGGACTACGCACCGAGCCGTTGTTCTGA
>gi 115839372 : 1764909-1765127 (SEQ ID NO: 386)
GTGTATCGTTGGTGTATGTCGCGCACCAACATCGACATCGATGACGAACTTGCCGCCGAGGTCATGCGCA GGTTCGGTCTGACCACCAAGAGGGCGGCGGTCGACCTTGCCCTACGACGGTTGGTCGGGTCGCCGTTGAG CCGTGAGTTTCTGCTCGGGCTGGAAGGCGTCGGCTGGGAAGGCGACCTGGATGACTTGCGAAGCGATCGC CCAGACTGA
>gi 115839372 : 1765133-1765537 (SEQ ID NO: 387)
ATGATCCTCATCGACACATCGGCCTGGGTGGAGTACTTCCGTGCCACCGGATCAATCGCCGCTGTCGAAG TACGCCGGCTGCTGTCCGAAGAAGCAGCGCGAATCGCTATGTGTGAGCCCATTGCGATGGAAATCTTGAG TGGCGCGCTCGACGACAACACCCACACGACGCTAGAGCGGCTCGTGAATGGCTTGCCGTCGTTGAACGTT GATGACGCGATTGACTTTCGTGCTGCCGCGGGTATCTATCGCGCCGCCCGGCGCGCCGGCGAAACGGTTC GAAGCATCAACGACTGCCTCATAGCGGCGCTCGCGATCCGCCACGGTGCGCGTATCGTCCACCGTGACGC CGACTTTGATGTGATTGCCCGGATTACCAACCTGCAGGCCGCATCGTTTCGGTGA
>gi | 29826540: 6884073-6884306 (SEQ ID NO: 388)
ATGTCCGTCACACAGATTGATCTCGATGACGAGGCGCTCGCTGAGGCTATGCGGCTGATGGGCGTCACGA CGAAGAAGGAGACGGTCAACGCGGCCCTGCGGGACTATGTGGCCCGGATCAAGCGCCTCGACGCCGCCGA GAAACTGGCCGCGCGCGGTGCACGTGGCGAGTTCGAGCAGGCTGCGGCGGCGTATTACGCAGGCAAGCGT GCCCGACGCGAGGCCTTCGAGTGA
>gi | 29826540 -.6884303-6884710 (SEQ ID NO: 389) GTGATCACATACCTGCTCGACACCTCCGCCCTGTGGCACCTGTTCCGCACTCCCGGAGCTCTGGCACCCT GGGAGGGGCACATCGCCGCCGGGGTGTTCCACCTCTGCGAGCCGACACGTGCCGAATTTCTCTACTCGGC AACCAGTCCGACTCACCGGGACGAGCTCGCGGAGGAGCTGGACGCACTCTGCCTGCTCTCTCCCGTTCCG AAGAATGCCTGGCGTTGGGTCGATACCGCCCAGTACAAGTTGACACAACAGGGTCAGCATCGTGCGGCAG GAGCGATCGACCTGTTGGTGTGTGCGACCGCGGTCCACCACGGGCACACCGTCCTCCATGTGGACAACGA CTTCGCGACGGTCGCCGGAGTGCTCAAGGAACTTCAGCAGCGAGACGTGCGAGCCTGA
>gl 117227497 : 598957-599157 (SEQ ID NO: 390)
ATGAATACAAGGATTCAATTTACTGCCAAGGTGGAGCAAGGTAAAATTATTATTCCTGATGAATATATTA GTATGGTTGGTGACAATTTAATTGAGGTAATTATTAAGCCTAAGCCTTCTCGTTTGATGGATCGTCTTGC AGAAAATCCTTTAACGGCTGTGGGTTGGCGTGATTTGTCAAGAGATGATATTCATGAATAA
>gi|l7227497:599141-599608 (SEQ ID NO: 391)
ATGATATTCATGAATAATTTTATAGATAAAAAGTTTATTGACTCTAATATTTGGCTGTATCGGTTTCTTC ATGATCCAAAAGTAGATCCTCAAGTGCAGCAATTAAAAAGAAGTATGGCTATTAATTTAACTCAAGCTGT TGATCGCAGTATTGTAGTTAGCACTCAGGTTATCACTGAAACTTGTGCTGTACTCAAACGGAAAACAGGA ATTTCTGAACAGAATATTTTAGAGTTAGTAGAGGAGTTTGAAGAACAGTGTGAAATTGTCAACCTGACAA CAAGTGAGATCAAAGAAGCTTGTCGATTAAGAGATAAATATTCTTTTTCGTATTGGGATAGTCTTGTTAT TGCTACTGCTCTAAAGTCTCAGGCTAAGGTTCTATATTCGGAAGATATGCAAAATGGATTATTGATTGAA AATCAATTAACAATTATCAATCCGTTTGTAGGATCGGGAAATAGGTAA
>gi 117227497 : 4373436-4373660 (SEQ ID NO: 392)
ATGCAGATGGAAGTAGTAGAATTTCAAGGTATTGTCAAAGATGGTGTAATTCAAATTCCTGAAATTTATA AAGGAGAGCTAGATGGAGAATCTGTCAAAGTAATTGTTATGAAAAAAGTTAGAAAAACAGCAGCAGTAGA TATTATTGCTGAACTCATCGAGCATCCGGTGGAGTTTGAATGGCCTCCTTTGAACCGAGAAGAGATTTAT GACCGCAATTCATGA
>gi 117227497 : 4373644-4374066 (SEQ ID NO: 393)
ATGACCGCAATTCATGAAAATGGCTATTTTCTAGATTCTAATATCTGGATTTATGCTCTAGCGAACAATC AAGATATTAACAAACGCAATATAGCTTGTCGTCTAATTGATGCTGAAGGAGTAATCATTAGTACACAAGT TATTAATGAAGTCTGTCTAAATCTAATTAAAAAATCTTCTTTCACTGAGCAACAAATAACACAGTTAATC GAGGCAT TTATAAAGGTTCTCACATCATTTCATTTAATCGTGATATTTTGGTGAACTCTTCTAATCTTC GCAGTAGATATAAGTTGTCTTTTTGGGATAGTTTAATTGTTGCTTGTGCTTTAGCTGCGGGAGCAAGTAT TCTCTATTCTGAAGATATGCAGGATGGGTTAGTGGTAGATAGTCAATTACAAATTGTGAATCCGTTTAAA TGA
>gi 117227497 :c2638453-2638217 (SEQ ID NO: 394)
GTGCTTACTTCGCATTCCCATTCCATGCAAATCATTCTTAACCTTGACGAGTCTCTGCTTAACGAAGCCA GCCAACTGACCAACCTTGCCAGCCAAGAGGAACTGGTGAACTTTGCTCTGCAAGAACTCGTGCGATCGCG CCGCAAAAAAAATCTCCTCGACCTCGCGGGGCAAATTCAGTTCGCTCCTGACTTTGACCATAAAGCCCTG CGTGAAACTCGTCATGCTGCTGATTGA
>gi 117227497 : C2638230-2637832 (SEQ ID NO: 395)
ATGCTGCTGATTGATACATCGGTCTGGATTGGCGTGTTTCGCGATCGCAGTGATCAAGTTCGCCAACAAC TTGAAACTCTGATCGCCGAGCGTGAAGTTTTACTCACCCGATTCACTCAGCTTGAATTACTTCAAGGCAG CCTAAACGAGCAAGAATGGACTCTCCTTTCTACTTACCTCGAAACACAAAATTACGTTGAACTCACAGTT CAGTCTTGGCAAGCAGCAGCCCGCATCTATTTTGACTTGCGCCGCCAAGGGCTTATCGTTCGTAGTCCAA TCGATTGCTGTATTGCTCAAGTAGCACTGGAAAATAATTTGCTTTTGATCCATAATGATCGTGACTTTGA AACCATTGCTCAGGTGCGCGCTCTTCAACACCTTCGTTTTCAGCCTTGA
>gl 117227497 :cl760079-1759870 (SEQ ID NO: 396)
ATGACTAGCCGCGAGCAGCTTATCCAAGAACTTGCAGAGGTTCCAGATGAGTTAGTTAAAGTAATGTTAG ATTTTTTACATCGTCTTCAGACAACGCGCAGTCATCATCCTCTAGCGAAATTTGCTGGTATTTTGAGTGA TAATGAGGCGGCCGATTTACAGGAAGCAATTCAAGCTGATTGTCGTCAGGTTGATTTAAATGAGTGGTGA
>gi 117227497 : C1759880-1759491 (SEQ ID NO: 397)
ATGAGTGGTGAGATTGCATTAGATACTTCTGTTGCAATACGTTTTTTGAATGGTGATCCTGATGTTGTTT CAAGGGTGTTGGCGTTACCGGAAATATTTTTGTCGGTGGTAGTAGTTGGAGAGTTACTGTTTGGGGCTGA GAACTCGACTCGACCGTTGAAAAATCTTCCTCGATATTTGGAGTTTATGGAAGTTTGTACGGTTGTGCCT GTGGAAAAGAGAACAGCAGTTATCTATGCTCAAACTCGTTCTGCTTTAAAGCGCAAAGGACGACCAATTC CGATGAATGATGTTTGGATTGCAGCGCATTGTCTGGAACATGGTTGGGTGCTTGTGACCGATAATTCAGA TTTTGATTATGTGGATGGATTGGTTATAGAGCATTGGTAA >gi 117227497 : 4197876-4198145 (SEQ ID NO: 398)
ATGACCTCAATCAAAGCAAAACTCATCGAAGCGATCGAAACAGTACCAGATTCGATTTTAGAGCAAACCC TTGATTATCTCGAATATCTCAAAACCAAAGAACAGAAACCTCAGACTTTATCTCAAGAAATTCCTCAAAA AGAGGGAGAGCCGATTTTGCGTGGTTCTAAAGCCAAAGATTTACTCAAGTTTGCAAAAACATGGCAGGGA GACGACTTCGAGGAATGCCTTCAGCTTGTTTATGACACCCGTTCCCAAGCAGAGTTCTAA
>gi 117227497 : 4198145-4198594 (SEQ ID NO: 399)
ATGTATTTGCTTGATACCAATCATTGTAGCCGCATCATCTTTGGTGATTCTAACCTGATCCAACAACTAC AGCTTAATAGCGAAGCAGGAATTGCTACCAGCGTTGTAGTATGTGGAGAACTCCTATACATGGCAGCAAA ATCTGATCGCAGTGTTGCCAATCTTCAGCAGGTCAGAGTATTTTTAGACACAATCGATATTTATCCCGTC AATTTCTCAATTTCTGAGGTTTATGGCAATCTCAAAGGCAAGTTGGTGAATGCTTTCGGGCCTAAAGAAA AAGCCCAGCGACGAAATTTCAACCTGCAAGCCCTTGGTTTTGGAGATAATGACCTCTGGATCGCAGCCAC AGCAATTCACTATAATCTCACTGTAGTTTCCACAGACAATGATTTTCGACGGATTCAGCAAGTAGAAACT TTGCTTTTGGAATCTTGGCTTGCCAGTTAA
>gi 116329170 : C474432-474205 (SEQ ID NO: 400)
ATGAACACAGCTCAAATTAGCACCGATGGCACCCATCAAATCGTTATTTTACCAGAAAACTTTACGATAG CCGGAAGCGAAGTTTACATTAAAAAAATTGGAAGTACAATTATTTTGATTGCTAAAAATAACCCTTGGCA ATCCTTAATTGAAAGCTTAGATCAATTTTCAGATGATTTTATGAAAACTAGGGAACAGCCTCCCTTAGAT ATACGAGAAGAGTTCTAA
>gi 116329170 : C474204-473953 (SEQ ID NO: 401)
ATGAAGTATTTACTAGATACGAATATTTGCATTTATCTCATTAAGAAGAAACCGTTTAAAGTCTTGGCAA AATTTCAAACCCTGGAGATATCAGACATTGGTATTTCATCCATTACCGTGGCGGAATTAGAATATGGTGT CAGTAAAAGTCAACAACAATCGAAAAATCGTGATGCCTTAATGCAATTCTTGATGCCGCTAGAAATCGTG GAATTTAATTCAGGAAGCGGCGATCGCCTATGGCAACATTAG
>gi 116329170 : C2631868-2631611 (SEQ ID NO: 402) ATGAAAAGATCTGTAACTATGTCTTCAACCTATGTTGTTAAACTGGATTCCCGTGGCAAAAGTCAGAGTC TAACACTACCAGAAGATCTTCGTCTCAATGCCACCGAAGTGGAAATTTATTGCCAGGATGGCCGCCTAAT TATAGAGCCTCTTCCCCAACCCTCTCTATTGGCCAAACTGGTTCTTTTGGATGACATAGAAGAAAGTTTT CCCGAAAATTTTACTGACAATCTTCCTCTAGATAATATTAATTTATAA >gi|l6329170:c2631608-2631207 (SEQ ID NO: 403)
GTGCAGTATCCTTATTTGCTAGACAGAAATATACTTTCTAATTTGATTCGTCATCCTAACGGAACGATTT TCTTCAAAATTAAAGAGGTAGGGGAAGCTAACATCTCCACAAGTATTATCGTGGCTTGTGAATTAGCTTT TGGTGCGGAGAAAAAACAATCAAAAAGGCTACAGGAAAGGGTTAACTTAATTCTAGACTTGGTTCCCATT GCGCCAATGCTTGCGGGCATGGAGAAAGTGTATGGCAAAATCAGAGCTATTTTAGAACACCAGGGAACTC CCATAGGTGGCAATGCTCTTTTAATTGCTAGTCAAGCTATTTACGCTAATTTGATTCTCGTAACTGACAA TACTGGAGAGTTTAAACGGATGCCTGGTCTGTCCGTTGAAAACTGGCTTTGA
>gi I 20806542 : 2469898-2470164 (SEQ ID NO: 404)
ATGAAAAAAAGTAAACGAAAAATGGAAATACAAAATATCACGCTATCTTTACCTAAGGATTTATTGCAAA AGATAAAACATATAGCCATAGACAGACAAACATCAGTATCCGGCCTTTTAACAGAAACACTAGAAGAAAT AGTAAGAAAAGAAGATTTGTATGAGAGAGCTAAGCTGCGTCATATAAGCATATTAGAAAAGGGTTTTGAC TTGGGTACAGAAGGTAAAATCACGTGGAGCAGAGATGATTTATATGAAAGGCAATAA
>gi I 20806542 : 2470142-2470582 (SEQ ID NO: 405) ATGATTTATATGAAAGGCAATAAAGATTTGCAATTTGTCGATACGAATGTTTTAGTTTATGCATATGATG TATCTGCAGGTGAAAAACATGAAATCGCAAAAGAACTATTAAAAGAGTTATGGTATGAAAGGAATGGTTG TTTAAGCACCCAAGTCCTTCAAGAATTTTATGTAACTATTACAAAAAAGGTAAAAAAACCTTTGTCCCCA GTAGAAGCTGCAGAAATTATTTCGGACCTTAGAAGTTGGAAATTGAGTGTGATAGATATTAAAGATATCC TGGAAGCAATTAGAGTTTCCCAACGCTATATGATTTCTTTTTGGGATTCGTTGATAATTGTCAGTGCAGT TAATCTTGATTGTGAAATAATATGGAGCGAGGATTTAAATTCAGGGCAGTACTTTGGTAAAGTAAGAGTG CAAAATCCTTTTAACAAATAA
>gi|l6124256:c34938-34699 (SEQ ID NO: 406)
ATGGCCCGAGCGACCGGCAAAACGTTCAGAAGCGGCAATAGCGAAGCCGTACGTCTGCCGCGCGATCTGG CGTTCGGCGCCGATGTCGAGCTGACCCTGATCCGATCCGGCGACGTTCTGACCATCTATCCGTCGAAGGG CTCGATCGCTGACCTGGTGGCGACGCTGAATCAAATGCCGCGTCCCGACAGCGTCGAGATTCGGGACGAG GATCTGTTTCCCGAACGTCCCGGCCTCTGA
>gi 116124256 : c34698-34312 (SEQ ID NO: 407) GTGGCTTACGTCCTCGACACCAATGTCGCGATCCATTTGCGCGATGGCGACCCGGAAGTCACCACGCGGG TCACGGCCTTGAACGGCGCGATCCTCCTGTCGATCATCAGTCGGGTGGAACTGGAGGGCGGCGTCTATCG CGAGGCGGCCCAGGCAGGCCTTCGGCGTAGTCGCCTGGATGTGATGCTAAAGGTGTTGCCCGTTCTCGAC TTCGACGGGGCGGCGGCCGACGAATATCGCAGGATTGTCGAGTCGGCGGGCTATTCTCGGCGCAAGGTCG TCGATCGCATGATCGCCGCCCAGGCGCTGGCCCATCGGGCGACGTTTGTGACGTTCAACGCCGACGACTT CAGAGATATTCCCGGCCTGTCACTGCTGGCCTGGTGA
>gi 117933925 : cl001733-1001503 (SEQ ID NO: 408)
ATGCGCACGAATATTGAGCTTGATGACGCCTTGATCGCAGAAGCGATGGAAATCACTGGCCTTCCGACGA AAAAGGCGACGGTCGAAAAGGCGTTGCGCGATCTCGTAGAAAATCTCGGGCGGCGAAAAGCGTTGCAGGA ACTTAGAGGTATCGGCTGGAAGGGCGATTTAGAAGAAGTCCGCGGCAGCTGGAGCGCAGATAGTATAAAG TCGCAAGACGCCGCAGAATGA >gi 117933925 :cl001506-1001117 (SEQ ID NO: 409)
ATGATCGTTGTTGACACGTCTGTCTGGATCGACTGGTTTCAGAATAAACAAACGCCGCAAGTCGCTACAC TCAGCGATATCAACGATCTTTCCGACGTGATTATCGGAGATATCATCCTGCTCGAAATCCTACAGGGAGA GCGGAACGAAAGACGGGCGGCGGCGATCGAGAGCCGGCTGAAGGTTTTCGAGCTTGTATCAATGTTGACA CCCGAATTTGCCGTGGCTGCCGCTGCGAACTACCGAAAACTACGCGGCCTTGGAAAGACAGTGCGCAAAA CAGCCGACCTCATCATCGGCACCTACTGCATCGAGCACGGGCACAAGCTCCTGCAAAACGACCGGGACTT TCAGCCGATGGCCGATCATCTCGGTCTGCAATTCGTCTGA
>gi|27375111:c2653308-2653024 (SEQ ID NO: 410)
ATGGCCGATCACAACACTGCACCCGACACGCTTCCGGCTGATGACACGTGGACGCTTGCCAACGCCAAGG CACGACTGTCCCAGGTGATCGACCGCGCCCAAACCGGCCCGCAGATCATCACCCGTCACGGCAAGCCGAA CGCCGTGATCGTTTCCGCAGAGGAATGGGCCCGCAAGACCGCACGCAAAGGCACGTTGGCCGAATTCCTA CTGGCCTCGCCGCTGCGCGGCGCCGACCTCGCACTTGAACGCATGCACGATGCGCCGCGCGACGAGATGC CGTGA >gi|27375111:c2653027-2652602 (SEQ ID NO: 411)
GTGAACCTGCTGCTCGACACCAACGTACTGTCGGAAGTTCAGCGGCCAGCCCCCTCGCCGAAAGTCTTGG CTTGGCTTGACACGATCGATGAAGATCGTGCGTTCATCAGCGTCGCATCGATCGCCGAGCTTCGCCGCGG CATCGCATTGCTGGAGGACGGCCGCCGGCGCTCGGCACTGGCCGCCTGGCTCGCCCACGATCTACCGGCG CGGTTTGCCGACCGCGTCCTGCCGATCGACCACGCGGTGGCCGAGCACTGGGGCGACCTGATGGCTCAGA GCCGCAGGAGCGGCGTCACATTGTCTGTCATGGACGGCTTCTTTGCCGCAACCGCGCTCGCGCACAGCCT CTCGCTCGTCACGCGCAACGTGAAGGATTTCGCTGCATTCGGCGTCCCCCTGCTCAATCCGTGGGACGAC CCATAG
>gi 113470324 : C4020429-4020133 (SEQ ID NO: 412) ATGATGGCAGGCACGCATCGGTCTATGTCCCTCGGAAGGGAGTTTGACATGGCCGAACCACAGCTCTCAG TCCGCAGCGCAAAGGCACGTGACCTGGCTCATAGGCTTGCTCGTCGCGAGAACCGCTCGATAGCCGACGT GGTCGAACGCGCGCTTGAATCCTACGAGATTCGTGAAGCTGGCCGCGAACCCGCCTCCACCTTCTATGCC AGCCTGACCGCAAGCAGTGGCGTCGACATCGATCTGGAGAAAGTTATTCGCGAGGGTCGCGAGCTTCATT CAGGAATTGAGCATTGA
>gi 113470324 : C4020136-4019723 (SEQ ID NO: 413)
TTGATTTTCGTCGATACCAACGTGATTTCGGAGTCTCTGAAGAAGACCCCGGATCCAGCCGTGCTGGCGT GGCTTGTGCGCAATGACGCCGAACTGGCGCTTCCCACGGTGACGATTGCTGAAATCGCCTTCGGTATTCA AAAGATACGACCTGACGAGCGTGCGGATCGGCTGGAACAGGGACTTTCCCGATGGCGGCATCGATTTGCT GACCGGATTTTTGGACTGACGGAAGAGGCTGCCTTGGCTTACGGCGCGATCATGGGGGCCGCGACACGCC AAGGTCCCGGCATGTCGGCTCCCGATGGCATGATCGCGGCGATAGCGCGCGTGAATGGAGGCCGGCTGGC AACCCGAAATCTCAACGACTTCGGCACCACCAGCCTGGACCTGATCTCACCATGGAATTTCTGA
>gi 113470324 :4770106-4770405 (SEQ ID NO: 414) ATGAGCAGCTCGCAAAAACGCGCCATTCAAAACTATCGATCTCGCCTCAGCGAGCGCGGCTTGGCGCGCT TCGAGGTGCTTGGCCGCGATGCCGATCGCGACCTCATTCGATCTTTGGCTCGCCGCCTGGCCGAAGATGG ACCGGATGCCTCTAGCCTGCGCGCTGCTGTCAGCCAGACCATCGCCGGCGAGCCACCCAAGCTTGTCGGG ATTCTCGCCGCATTGCGTCGTTCGCCGCTCGTGGGAGCTGACCTCGATCTTTCCAGCCCCCATGAAGAGG GGCGGAAGATCGACCTGTGA
>gi 113470324 : 4770402-4770791 (SEQ ID NO: 415)
GTGACACGCTACCTCCTCGATACCAACATCATCAGCGATGTCGTCAAATCGCAGCCTTCGGAATCGCTCC TGGCATGGATGTCGAGACAGCGTGACGAGGATTTGTTCATCGCTTCGCTGACCGTTGCGGAAATTCTTCG CAGGGTTCTGGAGAAGCCGCGCGGGAAAAAACGCGACGCACTCGACAACTGGTTCTCTGGGCCTGAGGGG CCGCAGGCGCTGTTTGCGGGCCGCATCCTCTCGTTCGACGACAAGGCAGGGCTGATCTGGGCGCGGCTGA TGGCAGGAGGAAAACTGGCCGGCAAGCCGCGCAGCGGGCTCGAAGGCAAGATGGCTGAAACTCAGATAGA GTGGAGCGCGCCAAATCCAGCGGGACGAGCTCCCAGATGA
>gi 113470324 : C1401825-1401427 (SEQ ID NO: 416) ATGCGGTTCATGCTGGATACCAACATCATCAGCGACATGATCCGGAACCCGGCCGGCAAGGCAGCCGGTG CAATGGTGCGCGAGGGAGACGCCGCTGTATGCACCAGCATCGTCGTTGCCTCTGAATTGCGATATGGCTG CGCCAGGAAGGGATCGACCAAGCTGCTCAAGAAGGTCGAGGACCTGCTGGCCGAGATCCCCGTCCTGCCG CTCGACGTGCCGGTGGATGCCGAGTACGGCGCACTTCGCGCCGAGCTGGAGGCTGTTGGCCAACCCATTG GCTACAATGACCTTTTTATTGCTGCTCACGCCTGCGTATTGGGCACCACGCTGGTGACGGCCAACATCGG GGAGTTCACCCGGATACGGAAGCTGAAGGTCGAGAACTGGCTGGAATAG
>gi 113470324 :cl402100-1401825 (SEQ ID NO: 417)
ATGCCCCAGCATCGCCACACGACAACGCCACCACCGAAGGAGGCGAAACTGTTCCGAAACAACCGCAGCC AGGCGGTGCGCATTCCTGTCGAGTTCGAACTCCCCGGCGACAAGGTTCTGATCAGCCGCGAAGGCGACCG CCTTGTCATTGAGCCGCTCCGCAAACCTGGGCTTGCCGCGCTGCTCGCCCAATGGGCGAAAGAGGCGCCG CTTGGTCCTGAGGACAACTTTCCAGAGATCAATGATGCGCCTGTCGAAGCCGAGGACATTTTTTGA
>gi 115963753 :cl398104-1397889 (SEQ ID NO: 418) ATGCGAGCCTTGATCGATATGAACGATACCCAGGTCGAAGCCCTAGATACCCTCGCCAAGCGGGTGCGCC GGTCCCGTGCGGCTCTGATCCGCGAAGCGATCGACGACTATCTCAACCGTCATCATCGCGAGCAGATCGA AGATGGCTTCGGTTTGTGGGGCAAGCGCAAAGTTGACGGTCTGGC TATCAGGAGAAGGTGCGCGGCGAA TGGTAG
>gi 115963753 -.cl397895-1397530 (SEQ ID NO: 419)
ATGGTAGGCGCACTGTTCGATACCAATATCCTTATCGATCATCTGAATGCGGTGCCTCAGGCGCACAAGG AACTTGACCGTTTCGAAAACCGGGCCATCAGCATCATCACCTGGATGGAGGTGATGGTTGGAGCGGACGC CGAACTGGTTGAGCCGACCCGGCGCTTCCTCGACGGTTTCGAAACGATCGCCTTGAACGATGAGATCGCC AACCGTGCGGTGACATTGCGCAGGGCGCACCGCATCAAGCTACCCGACGCGGTGATCTGGGCAACGGCGC AGACTGCCGGTCGTCTGCTCGTGACGCGCAATACCAAGGACTTTCCAGCCGACGACCCGGGGATACGCGA ACCCTACGCCGTGTAG
>gi 115963753 : C1754348-1754109 (SEQ ID NO: 420) GTGCCGACCTCGACGATCACTTCGAAAGGTCAAATCACCATCCCGGCCAAGGTCCGCATCGATATGGGTC TTTCCGCCGGGGATCGTGTGGACTTCATCCGTATGGAGGACGGCCACTATGCGGTTGTGCCCGCTTCCCA TTCGATCAGGTCGCTGAAGGGGATTGTTCCTCGTCCGGACAGGCCAGTCAGTCTTGAGGATATGCAGAAA GCGATTATCGCCGGAGCCGCCGGCGAATGA >gi 115963753 :cl754112-1753714 (SEQ ID NO: 421)
ATGATCGGCGTCGATACGAACCTGCTGGTGCGTTACCTGGCGCAGGACGATACCACCCAATCACCGTTGG CTTCACAGATCATCGACGGCTTCACACCCGAGGCGCCCGGCTACATCTCACAGGTGGTTCTCGTCGAAAC CGTCCGGGTCTTGACGCGATCATATAGGATGTCACGCGAAGCCGTTGCCAGCGTTATCGAAACTTTGTTG CGGGCGCGTGAGATCGTTGTTGATCGAGCGGATGCCGGCTATCTGGCGCTTGCCACCTACCGAGCGACAA AGGCGGACTTCTCCGATGCGCTGATCGCTCACGGCGGACTCTTGGCAGGCTGCACCGAAACGCTGACCTT CGACAAGCTGGCAGCCGATCATGCCGGAATGCGCCTCGTAAGCCCATGA
>gi 115963753 : 2611440-2611712 (SEQ ID NO: 422)
ATGCCCGTCCCGTTGCCGTCATCGCGACCTAAAGAAGTAAAGCTGTTCCGCAATAACCGCAGCCAGGCAG TCCGTATTCCTGCGGAGTTCGAGTTGCCTGGAGACCGTGTGTTGATCCGTCGCGAAGGAACGAGACTCAT TATCGAACCGATAGCCAGGCCAGCCGATATCGTGGAGCTTCTCGCGGAGTGGAAGAAGGAAGCTCCCCTC GGACCTGAAGACCGGTTCCCGGATGTTGAGGATATACCCGCCCGGCCGGAGAAAATCTTTTGA
>gi 115963753 : 2611709-2612113 (SEQ ID NO: 423) TTGAACGGCTATCTTCTCGATACGAACATCATCAGCGACGTCATTCACAATCCGTTCGGACCGGCTGCGC AACGCATCGAACGGATCGGCCCGAAGGAGATTTACACCAGCATCGTCGTCGCGTCCGAGTTGCGGTATGG TTGCGCAAAAAAGGGATCGGCGAAGTTGCTCGCCAAGGTCGAAAGCTTGCTGGAAATCGTCCCGGTGCTG CCATTGGATATTCCGGCCGACACCCGATATGGCAGCATTCGTGCGGAATTGGAGTCTCTGGGGCAGACCA TCGGCTCCAACGATCTGTTGATTGCCGCGCATGCATATGCGCTGGACCTGACGCTGGTGACGGACAATAT CCGTGAGTTCAGCCGCGTTCGTGGCCTTAGTCTGGAAAACTGGCTTGAGCGATAG
>gi| 15963753 :c3194126-3193881 (SEQ ID NO: 424)
GTGGAAGAAGCCGTTTCGGCAGCGGATGCCAACCGCAAGTTTTCTCTTATCCTGCGCAGCGTGCGGGAGG GGCACAGCTATGTCGTGACGAGCCACGGACGGCCTGTCGCGCGCATCGTTCCCGCCGCCAAAAGCGATAA CGCGGTTTCCGGTGCGCGAACAGCGCTGCTGTCGCGCCTCGAACGTCAGCCCGCCGTGATTGCCGGGCGC TGGACCCGCGATGAGCTTTACGAGGACGAGCGGTGA
>gi 115963753 : c3193884-3193423 (SEQ ID NO: 425)
GTGAGGGTCGCGCTCGACACCAACGTCCTCGCCTATGCGGAGGGCGTCAACGGTATCGAGAAGCGGGATA TCGTTCTGGAACTGGTGCGCAATCTGCCGCAGGAGGCTGCCGTCATTCCCGTTCAGGTGCTTGGAGAACT GTTCAATGTTCTCGTGCGCAAGGCAGGAAGGTCACGGGCCGACGCCCGCGAGGCCATTCTAGGCTGGCGA GACGCCTTTTCGATCGTCGGGACCTCGCCCGAAATCATGGTGGCGGCGGCTGACCTCGCAACCGATCATC ATTTCGGCATCTGGGATGCGGTGATCCTTTCCGCCGCCTCGCAGGCCGGTTGCCGGCTGCTGCTGTCCGA AGACCTTCAGGATGGCTTCACATCGGGCGGCGTAACAGTCGTCAATCCCTTTGCGTCTCCGCGTCATACG TTGCTGGAGTCATTGTTGGGAGGGGGCGAGGCATCGGAGTAA
>gi|l5963753:c3616900-3616640 (SEQ ID NO: 426)
ATGCCCCATCTTGCACGGGTGTTCCAGTCCGGAAATTCGCAGGCCGTCCGCCTGCCTAAGGAATTCCGCT TCAACGTCGATCGCGTCGAAATCACGCAGGAAGGCGACGCGCTCATTCTCCGCCCGCACGTCGAGCAAGG CGAGCAGTGGTCATCGCTGAAGGCGGCACTTGCCCGTGGCATGAGTGAAGACTTCATGATGTGCGGGCGC GAGCAGCCGGAACAGCAGGATCGGTCGGAACTCGACGCGGTATTTCGGTGA
>gi 115963753 :c3616643-3616239 (SEQ ID NO: 427)
GTGATCTCCCATATTCTCGACACCAACGCCGTCATCGCTTTGATCGGGCGCAAATCGGATGCATTGGTCA CCCGTGTACTCCATAGCCCTCAGGGCATTATCGGGCTCCCGTCGGTCGTCGCGTATGAACTCTATTTTGG AGCGCAGAAAAGCGCGAAGGCCCAACACAATCTCGAAACCCTGCGTTTGTTGATGGCGGATTTTCCGATC CTCGACTTCGACCGGAACGATGCCTTTGTCGCAGGCGAGATCCGGGCCGCCCTTGCCGCGAAGGGTACGC CCATCGGACCTTATGACGTGCTGATTGCGGGACAGGCCAAAGCCCGTGGATTGACGCTCGTCACCAACAA TGTCGGCGAGTTCAATAGGGTTGAGAACCTGCGCGTGGAGGATTGGTCGCTCTAG >gi 115963753 :c2890659~2890261 (SEQ ID NO: 428)
ATGCTCACCTATATGCTCGATACCAATATCTGCATCTATGTGATGAAGACCTATCCGCCGGCCGTGCGCG AAAAGTTCAACGGACTGGCGGAGCAGCTTTGCATATCGAGCATCACGCTGGGAGAATTACACTATGGCGC CGAAAAATCGGCCTGGCGCGTTGAGAACCTTACGGCTATCGAACATTTCGTGGCACGGCTGGAGGTGCTG CCGTTCGCAGACAAGGCAGCGGCCCACTACGGGCAGGTTCGGGCTGAACTGGAGCGGACGGGAACGCCAT GCGGCCCTCATGACATGCAGATCGGCGCGCATGCGCGCAGCGAAGGGCTGATTGTCGTGACCAACAATAT ACGCGAGTTCGTCCGCATGCCGGGTGTAAGGGTCGAGAACTGGCTGTGA >gi 115963753 :c2890892-2890659 (SEQ ID NO: 429)
TTGGCCAGTTCGACCGTATTCATCAGTAACCGTAGCCAGGCGGTGCGGCTGCCAAAGGCCGTCGCCTTTC CCGAGGGCGTGCATCAGGTCGATATCCTCAAGATCGGCCGCAGCCGCGTGATCGTCCCCCAGGGCAAAAG ATGGGACGATCTGTTCCTCAGCGGGCCGCGCGTCAGCGAGGATTTCATGAGCGAGCGTGATCAGCCGGTG GCGGAAACACGCGAATCCTTCTGA
>gi 115891923 :c587619-587368 (SEQ ID NO: 430)
ATGAGTAAAAGTGCCAGAGTAGTAATCTCATCGAAACAGGTAGTTATACCTAAATATATAAGAAATAAAC TTGGTTTACATTCAGGCTCTGAGTTAATAATTAACTACAAAAAAAATGAAACATTAGAATTGCTTCCCAT AAACAAAGATATCTATAGCTTTTTTGGTAAAGGTAAACATAAAGCTAAAAACGGTCCGGTGGATGTAGAT GAAGCTATTAGTATTGCGGTTATCGAAAATGATAGGAATTGA
>gi 115891923 :c587411-586992 (SEQ ID NO: 431)
ATGAAGCTATTAGTATTGCGGTTATCGAAAATGATAGGAATTGACACTAATATCTTAACTCGTACTTTTC TTGAAGATGATAAAATACAAGGTAAAGCAGCTCAAAATTTCTTAAAAAATAACATCACTAGTAAGATTTT TATTGCATCATATGCATTACTTGAATTTGTATGGGTGCTAAAAGTAAATAAATTTACTCGCCAGGAAATT TATGAAACAGTAATCAATCTTATTGATAATTCCGGCTTTATCATTGGGCATCAAGACATAATAATATCAG CTACTGAGCAATATATTAAAGGTAAAGCAGACTTTGCCGATTATATAATTATTGCAGAAGGAGAAGTCAA TAGTGCTAATAAGTTTATCACTTTTGATAAAGACCTAGTAAGAGAAGTTAAAAATGCATCTTATCCATAA
>gi 115891923 :c381804-381505 (SEQ ID NO: 432)
TTGAGGATAAATATGGCACAAATTATTAGAGCAACAGAATTTGTACGATCTTTTTCAGATATTATGAATA GAGTTTACTATAAAGGCGAAAGCTTTGACGTTCAAAAAGGTAATCATATCGTAGCAAGGATTACGCCTGC AGAAATCAAGCCTTCTGTAGCAGTAAGAGACTTAGAGGAAGCTΪTTAAAAATGGTCCACATCTTGATCCT GAAGATGCTGATCAATTCATGAAAAATCGCGAAGAAATAAGATACAATACTAAACAAGATATTAAAAAAT TGGTTGAAAGATGGGATTAA >gi 115891923 :c381514-381110 (SEQ ID NO: 433)
ATGGGATTAATTATTGATACTGCTATAATCATAGCTTTAGAAAGAGAAAAGGTCAGTACTAAGCAATGGT CACATTACGGTCAGACTTATATTAGCCCTATTGTGTTAACTGAACTATTAATAGGAGTATATAGAGTCAA GAATGAGAATAAACGTATAAAATGTTTAGCTTTTATAGAATACGTAAAAAGTCTGTTTACTATATTACCT TTCGGTATTGAAGAAGTATATACATATGCACGTATTACTCATGATTTATACACACAACGTATAACTATAG GAACTCATGATATGCTTATTGCAGCAACGGCTATTACAAAAGGTTTTCTGATATTAACTCTAAATGTAAA AGACTTTAAAAGAATCCAGGGACTAGAGGTTTTAACAGTTTCTTCTAAGGATTAA
>gi 115891923 :cl222779-1222534 (SEQ ID NO: 434)
ATGAATAAATGGCAGTTACACGAAGCAAAGAATAAGTTAAGTAATATTATTGATATTGCAATGCATGGTA CCCCTCAATGTATTACAAAAAGGGGTGAAGAAGCAGTTGTAATTATTAGTATAAAAGACTATAAACAACT TACTAAACAAAAACCTGATTTCAAAGAATATTTATTGAGCATACCTAAGACAGATAATTTGGATATTCAG AGAGCAAAAGGATATGCTAGAGAT TTGAATTATGA
>gi 115891923 :cl222537-1222130 (SEQ ID NO: 435) ATGAAATATTTATTAGATACTAATGTTGTATCTGAAATTCAAAAGAAAAAATCCAATTCTCAAGTAGCAG CATGGTTTTCAATTATTCATTCTAGCCAGTTATACTTGAGTTGTATTACTATCGGCGAAATAAGAAAGGG AATATCAAAATTAGCAAAGAAAGATAAAATAGCAAGTTTGAAATTAGAAAAATGGTTAGAAAGAATAATA ATAGATTATAATGAAAGAATTCTTAATATTGATAAAGAAATATGTGAGGAGTGGGGTGAATTAATGAGTA TTGATAGTACAAATGCAATCGATGCTTTAATAGCTGCACAGGCAAAACAAAGTAATATGATACTAGTTAC TAGAAATATTAAACATTATAATATGTTTAATATAAAAATATTTGATCCTTTTAACTGA
>gi 117544719 :c3292870-3292637 (SEQ ID NO: 436)
ATGCAAGTCTCGAAATGGGGCAACAGCCTCGCTATCCGGCTGCCGGCGGCCGTTGTGGAGGCGCTTCAGC TGCACGAAGGCGACGACGTCGAGGTGGTGATCGCGGGCGAGCGCTCGTTTGGCGTCCGCCGCAAGCGCGC TGCGCGCGAGCTTTTCGACCGGATCCACCAATATCGCGGCAAGCTGCCCGCCGATTTCATCTTCGAGCGC GACCAGGCCAATGCCCGCGACTGA
>gi 117544719 : C3292650-3292237 (SEQ ID NO: 437)
ATGCCCGCGACTGAGGCATTCTTCGACAGCAATGTCGTGCTGTACCTGCTGTCGGCCGACACCGCCAAGG CCGATGCGGCGGAAACGCTGCTGATGACCGGCGGTGTCGTCACCGTACAGGTACTGAACGAAACGACGCA CGTGATGCGCCGCAAGCTCGCCATGCCGTGGCACGCGATCGAAACGGTGCAGGAGGCCGTGCGTGCGCAA TGCCGGGTCGAGCCGCTGACGCTCGAAACCCATGATCTCGGACGGCGTATCGCAGAACGCTACGGATTGT CGGTCTATGATGCACTGATCGTCGCGGCGGCATTGCTTGCCGGCTGCAACGTTCTGTATTCCGAGGATAT GCAGCACGGCCTGGTGATCGAGCAGCATCTGCGCATCGTCAATCCTTTTCCGGCACGGGCATGA
>gi 117544719 : C905129-904878 (SEQ ID NO: 438) ATGCAAAGCTGGCAAATGCAGGCCGCCAAGGCGCGGTTTTCCGATGTCGTGAAGCGGGCAGCAGACGACG GCCCGCAGGAAATCACCGTGCATGGCCGCCCGGTGGCGGTAGTGATCTCGCGCGCACTGTTCGATCGCTT GAGCGGCAGCGGTGAGTCACTGGTCAGCTTCATGCGCCAATCCCCGCTGGCCGATCAGGACGATGTCGTT TTTGAGCGCGAGCGCAGCCTGCCGCGCGAGGTCGAGTTTTGA >gi 117544719 :c904881-904468 (SEQ ID NO: 439)
TTGAGTTACCTGATCGACACCAATGTCCTGTCCGAATTGCGTCGCAAAGCGCCCGATGCGCGCGTGGCGG CCTGGATGCAGGACCGCCCGCGCCAGTCGCTCTACCTGAGCGTGCTGACCCTGGGCGAGATTCGCAAAGG TATCGAGCGGCTGGAGGACGCGGTACGCCGCCAGAACCTGATTGACTGGCTCGAAGTGGAACTGCCGAAC TACTTTCTCGGCCGATTGCTCGACATCGATGCACATACTGCGGACCGCTGGGGCCGGTTGATGTCCTCGG CTGGCCGCCCCCTGCCCGCCATTGACGGCCTGCTGGCCGCGACCGCCCTGCAACACGACCTCACGCTGGT CACGCGCAACACCAAAGATTTCGCGGGGCTCGACATCCAGCTCATCAACCCCTGGGAAGCCTGA
>gi I 30248031 : C1497386-1497153 (SEQ ID NO: 440)
ATGCAGGTTTCAAAATGGGGCAACAGTCTGGCAGTCAGATTACCCGCATCAGTTGTTGAAATACTTGATC TCAAGGAAGGTGATTCTATTGAAATTCACGTGGCAGGTGCCCGTGACATTGAAATCATGAAAACACCGGA AGCCCGTGAAATCCTTGAACGACTGAGAAAATACCGTGGGCGATTACCGAAAGACTTCAAATTTGATCGC CTTGAAGCGCATGAAAGATCATAG
>gi I 30248031 : C1497166-1496762 (SEQ ID NO: 441) ATGAAAGATCATAGTGCTTTTCTGGATACGAATATCCTGCTGTATCTTTTATCCGAAGATGAAACAAAAT CTGTTCGGGCGGAAAACACTATTGCAGCTGGCGGCTTTATCAGTGTTCAGGTGCTCAATGAATTCGCAAG TGTGGCCCGGAGGAAACTGAACATGTCCTTTGCTGAAATCCAGGAATTTCTTTCACACATACGCATGATA TGTTCCGTAGTGCCGGTTACTGTCGAAGTACATGATCAAGGGCTCCGGATAGCGGAACACTATGGATTTT CGATATATGATGCATTGATCATCGCCGCAGCATTATCGGCTGATTGCACGATCCTTTATTCAGAAGATAT GCAGAACAGCCAAATAATTGATGATCGGCTTCTAATTCAAAATCCCTTTGCTTGA
>gi|30248031:c2362952-2362713 (SEQ ID NO: 442)
TTGGAAAGAGGAATGACAATGTCAACAATCGAACGGCTTTACAAACTCAGTAGTACGCTACCACCTGCTG CTCTGGCAGAGTTGCTGGATTTTGCCGAATTTCTACACCAGAAGAACATGCTTCCGCAACCAGATGAGCC TTTCCGGCTGATTGATATGGCCGGTGGGCTGGAACATTCAGCCTGCTTTGCCGGGGAACCGTTGGCAGTA CAGGAGGCACTGCGCCGTGAATGGGATTGA
>gi|30248031:c2362726-2362394 (SEQ ID NO: 443)
GTGAATGGGATTGACTGGCTGCTTGATACCAACTTTATTCTTGGGCTATTGAAATCCAATCCTGAAACAT TGTCCATGATCAGTAATCAGCAGATTGATACCCGGCGTTGCGGCTATAGCGCAATCACTCGTATGGAGTT ACTGGGCTTTCCGGGATTGACTGCGGAAGAAGAAATTCTGATTAGTGGAAAACTGGCCTGCCTCCAGTAT CTGCCCCTGACCAAAGAGATTGAAGATATGGTTATTGGTTTGCGTCGTAGCCACCGCGTAAAGCTGCCAG ATGCCATCATTGCTGCAAGTGCGCTCACTTGCAACGCGCAAACTGACCCATGA >gi I 30248031: 536217-536480 (SEQ ID NO: 444)
ATGTTTAGGAATAGGAGTAATACCATGTTATCTGAACGTTATGTCAGATTGTTTCGTAACGGCAAGAATC AGGCTGTGCGTATTCCTCGCGAATTCGAGCTGAATGCGCAGGAGGTAATCATGCGCCGGGAAGGTAATCG TTTGATTATTGAACCGGTACCCCCAAAAGGCTTGCTGGTAGTGTTGGCAGAGTTGGCACCACTTGAGGAA AATTTTTCTGATATTGATACCAGATTGGCACCGTTGGATGACATTGATTTATGA
>gi I 30248031: 536477-536887 (SEQ ID NO: 445)
ATGATTTCACCGCGTTATTTACTGGATACGAATATTCTTTCTGATCTGGTTCGCTATCCACAAGGAGTTA TAGCCCGACGAATTGAGGAAGTTGGTGAAGCAGCGGTATGTACGTCGATTATCGTTGCCGCAGAATTGAG GTTTGGGGCTGCCAGGAGAAATTCCTTAAGGCTGACCAGGCAGGTGGAAGCCATTCTGGCGGCAATCGAG GTGTTGCCGCTTGATACGCCAGTGGACCGCGCTTATGCGCAATTGCGCTGGGTGCTTGAGCAATCTGGAC AAGTCATCGGGCCTAACGATATGCTGATTACGGCCCAGGCTATGGCAAGTCAATGTGTGCTGATTACTGC CAATCTGGATAAATTTTCCCGGGTTGGGGAATTGCAGGTAGAAAACTGGTTAGTGAGGTAA
>gi I 30248031 : C1155119-1154871 (SEQ ID NO: 446) ATGGCGACTATGACTATTCGCAACATCGATGAGCAACTCAAGGCCCGGCTGCGTGTGCGTGCTGCTATGC ATGGACGTTCCATGGAAGATGAAGTACAGGATATTTTGCGTACAGCGTTATCTGCTGAACCAGTGCAGAC TGTCTCGCTGGTGGAAGTAATTCGTTCACGTATAGAGCCATTGGGCGGGATCGAGCTGAATCTGCCTGAA CGGGAAGCTATTCGTGATCCTTTGGAGCCGGGAGCATGA >gi I 30248031 :cll54874-1154443 (SEQ ID NO: 447)
ATGATCGTTCTGGATACCAATGTACTTTCCGAGATTTTGCGCCCTGTACCAGATACACAGGTACTGGTAT GGCTGGCGGCCCAGCCACGGTCAGTGCTATTCACTACTACGGTTACACGAGCTGAACTGTTCTACGGTGT GCGTCTACTACCTGATGGCCAACGTCAGACAGCTCTGCTGGATGCCATTCAGAGCATTTTCGATCAAGAT CTGGCCGGACATGTTCTGAATTTCGATAGCACGGCTGCCGATACCTACGCCAAAATTGCAGCATCCCGTA AGGCCGTCGGTAAGCCGATCAGTCAGTTCGATGCCATGATTGCTGCTATGGCTAAATCCAAGGGTGCCAG CCTGGCTACACGTAACCTCAAGGATTTTGTCGATTGCGGGATCGATCTGGTTAATCCCTGGAGTACCTCA TACCTCAAATAA >gi |30248031:cl713464-1713210 (SEQ ID NO: 448)
ATGGCAACGTTGACCATTCGCAATGTGGACGATGTAACCAAACGGTTGCTGCGTATTCGTGCGGCGCAGC ATGGGGTGTCAATGGAAGAGGAGGTGCGGCGAATCCTTCGGCAGGAGCTTTCTCGTGCTGGTAGTAGTCA ATTCCCATTTGGCCAGCATTTGCTGAGTCGCTTTGCTGAGTCAACAAGCAAAGAGTTTGCTTTGCCCGCA CGTCAGGTGCCGCGCACTCCGCCGAGTTGGGATGAGCCAATATGA
>gi 130248031 : C1713213-1712785 (SEQ ID NO: 449)
ATGATTTTGCTCGATACCAATGTGCTTTCTGAATTTATGCGTCTGCAACCCGCTACTCAAGTGGTTGTTT GGCTGGACAGGCAGGCGCCCAATGAGATCTGGACAAACGCTGTTAGCCGTGCCGAAATCGAATTAGGCCT GGCACTGATGCCGGAGAGTAAGCGACAGAAAAGTTTAAGCCAGGCCGCCCGGACAATGTTCGATGAGGAT TTTGCCGGGCGCTGCCTGCCATTTGATGAAATCGCGGCCAGTTACTATGGGCGTATCGTTTCTACACGGA CCCGAATGGGTCGGCCCATCAGCGTGGAGGATGCTCAGATCGCTGCGATTGCGCTGGCATATCGAATGTT CTTATCTACGCGTAATACCGTTGATTTTGAGGACATTGCAGGTTTGAATGTAATTAATCCCTGGGAAACC GAAGCATAA
>gi | 30248031: 519527-519760 (SEQ ID NO: 450)
ATGTATACAGGTACTGTTTTTGAAAATAACCGTACTCAGGCTGTACGTTTGCCGGTAGATGTGCGCTTTG CCGATGATGTGAAAAAGGTCTGGGTACGTAAACTGGGTAAAGAGCGAATCCTGACCCCGGTTGACCATAC TTGGGACAGCTTTTTTCTGGCGGAACAAGGTGTTTCAGAAGATTTTTTATCTGAACGTGCCAGTCAGGAG CAGCAGGAGCGCGAGGTGTTCTGA
>gi I 30248031 : 519760-520161 (SEQ ID NO: 451)
ATGCTCAAATATATGCTGGATACGAACATCGCCATCTACGTTATCAAACGTCGGCCAATAGAAGTGCTGG TTACCTTTAACCGCTATGCAGACATGATGTGCGTAAGCGCTGTTACCGAAGCCGAGTTACTGCACGGCGC AGAAAAAAGCCGGCAGCGTGAGCACAATCTGCGACAGGTGGCTGATTTTTTATCTCGTCTGGAAGTGCTG TCGTATACCAGTAAAGCAGCCGGGCATTATGGTGATATTCGTGCTGATCTGGAGCGAAAAGAAAAGCCCA TCGGCGTGAATGACTTGCACATCGCCGCTCATGCTCGCAGTGAAGGTTTCATCCTGGTCAGTAATAACCT GCGTGAATTTGAACGAGTAGATGGTTTGCGTTTGGAAAATTGGATTACCTGA >gi | 30248031: 2296116-2296373 (SEQ ID NO: 452)
ATGCATGTCTGGCCTGTTCAAGATGCCAAGGCTCGCTTTAGCGAGTTTCTGGACGCCTGCATAACCGAAG GACCCCAGATTGTTTCCCGCCGGGGCGCCGAAGAAGCGGTATTGGTGCCCATTGGAGAATGGCGGCGCCT GCAAGCGGCTGCACGCCCCTCGCTTAAGCAATTGTTGCTCTCTGACTCAGCCCGCACTGAGATGCTCGTT CCCGAGCGAGGCAAAGCCCGCCGACGCCAGGTTGAACCCCTGCGGTGA
>gi I 30248031 : 2296379-2296795 (SEQ ID NO: 453)
ATGTATCTGCTGGATACCAACGTTGTTTCAGAACTCCGCAAACCGCGCCCACATGGGGCTGTACTCGCCT GGATAAATTCCGTGGATGACGCCAGCCTCCATCTGGCCACCGTAACGCTCGGTGAAATTCAGGCCGGCAT TGAGTTAACCCGCGAACAAGATCCGGCCAAAGCAGCTGAAATTGAGTCTTGGCTGGACCTTGTGAGCGAC TCTTACAACGTATTGGTCATGGACGGTCCAGCATTCCGCTGCTGGGCGAAGCTGACACATAAGAAGTCCA ACACACTCATTGAAGATGCGATGATCGCGTCCATTGCCAAGATTCACGGTCTGACGGTGGTGACTCGTAA TGTCTCTGACTTCTCGTCGTTCGGCGTCAGGATTTTCAATCCGTTCGAATTCAACGCGAATGCCTGA
>gi|30248031:cl476753-1476508 (SEQ ID NO: 454) ATGACTGCTGCTACTCTTACCAGCAAAGGACAAATCACCATTCCAGCAGCAGTTCGCGCTGGTTTAGGCA TTGATGTGGGAGACCGGGTAGAATTTATAGAAATTGAACCAGGACGCTATGAAGTAATTGCTGCAACACA ATCGGTGAAGGCGCTCAAAGGTATTATCCGTAAACCGAATCATCCCATATCAATAGAGCAGATGAATGCC GCTATCGCCCGTGAAGCGGTAAAGTCGGTTCGATGA >gi I 30248031 :cl476500-1476105 (SEQ ID NO: 455)
ATGATCGGTCTCGATACAAACGTACTCCTGCGCTATTTAGCACAGGATGATGCCATACAATCACCTAAAT CCACCCTGCTTATCGAATCACTGAGTGTTGAGGAACCCGGCTTCGTACCATTGATTGTCATTGTTGAGTC GGTGTGGGTGCTTTCGTCGGCTTACGGTAGCACGCGTGAAGAAATAACAGAGGTGCTGCATAATCTGCTA CGTACACGTGAACTACGCATTGAGCAGGCTGAAACTGTTGCTGCGGCATTACACCTATATCAGCGAGGCA AAGCCGATTTTGCTGATTGTCTCATCGAGCGCACAGCAATGCGTGCCGGATGCAAGGCAGTGATGACTTT CGACAAAACTGCTGTGAAATCATGCGGGATGCAGTTGATTGACTGA
>gi I 29732244 : C1249555-1249226 (SEQ ID NO: 456)
GTGCTAAGAATTCTAGCGGGATCGATTGGGATTGGAATATTCTCTTCAATTATGTATAATTACATATATA CATATTTAGAGGCGAACATGAAAGCATCTATTTTAGATTTACGTTATAACATGAAATCTGTACTAAAAGC ACTGGAGCGAAATGAGGAAATTGAAATCCTCTATCATGGTAAAGTGAAAGGGACAATTCTTCCTTATCGA AAGCCCAGCAGCAAAAAGAAGATCACTGAGCACCCCTTTTTTGGCATGCTTGCTAATGAAGAGAAAAGTG TCACTGAGCAGATGGATACATTACGCGGTGGTCGTTACAATGATCTTTGA >gi I 29732244 :cl249236-1248859 (SEQ ID NO: 457)
ATGATCTTTGATACGGACATATTGATTTGGGTTCAAAGAGGCAACGTAAAAGCGGCAGGGTTGATTGAAA AAGCAGAAGAGCGAATGATTTCCATCTACTCTTACATGGAAATGTTCCAATGCGCCACCGCTAAATCCCA ACACAAAATCATGCATGCTTTTCTTCGCGAATACGATTTTAAAATCCAGCCACTTTCTGAAAAGATAGGA CACCGGGCAGCTATTTATATCGAAGAGTATGCTTTACCCAGCGGTTTGCGTGCCGGTGATGCAATTATTG CCGCTACAGCCGTTGAGAATAATTGGGTATTAGCCACCAGTAATAACAAGCACTTTAAATGCATCAAAGA CTTGCAATTCAATTTGTTTAAGCCTTAA
>gi 129732244 : cll90451-1190197 (SEQ ID NO: 458) ATGATTCGTACTCAAATTTATCTCACTAAACAAGAGCGCAAGTATTTAAACTTGCTTTCACAAAAAATCG GTAAGTCACAGAGTGCATTAATTCGAGAAGCGATTGATCAATTTATTAAGGCTCATCTAAAAGCACGCGA CGATCATCAGGCGGCTATGGAAGCGGCCAAAGGCTTGTGGGCAGACCGAAAGGATTTGTCCAATCTCACT AAAATCCGAAAAGAGTTGGATAATCGGTTAAAAGACACAGAGTAA
>gi | 29732244 : cll90188-1189802 (SEQ ID NO: 459)
ATGCTGTTGCTATTGGACACGGACATTATTATTGATTTCCTGCGAGGACAGGAGAGCGCAGTAAAATTTA TCGAAAAAACTGCGGCTAAGGTCGTTTGTCACATCTCCACGTTGACCATTGCGGAACTTTACGTTGGCGC GAGGGATGGCGAAGAATATGGTGTATTAGAGCGATTTTTACAGATATTTACGGCTATTGAAGTCAGCCCG CAAATCGCTCAATTAGGTGGTTTATTTCGCCGAGATTATGGAAAAAGCCACGGCACCGGATTAGCCGATG CAATTATTGCGGCAACTACCCAATGTATTTCCGCTAAACTGGTCACCTTAAATAAAAAGCACTATCCCAT GTTAAAAAACATTCATGTTCCTTACTTAAAATCCTAA
>gi | 21240774 :5099881-5100135 (SEQ ID NO: 460) ATGCCTTCTTTCACCGTCCGCAATATCCCAGACGACGTGCATCGCGCGATCCGCGCGCGGGCTGCACTTC ATGGCCGCAGCACCGAAGCGGAGATCCGCGCAATCCTTGAATTGGCGGCCAAACCCGCAGACCGGGTCAA ACTCGGCTCACTGCTGGTGAGCATCGGCCGCGACGCCGGCCTGACCGCAAAAGAGGCCAATGCCTTCGAC AAGCTGCGCGGCAAGGCGGCGATCAAGCCGATCGGTCTGAAGTGA >gi | 21240774: 5100132-5100548 (SEQ ID NO: 461)
GTGATCCTGCTCGATACCAATGTCATCTCCGAACTTTGGCGGCCTCAGCCTAATCCGCAGGTCGTCGCCT GGATCGATGCACAAGCTGTCGAGACACTGTTCCTGTCGGTCGTGACGGTGGCTGAACTCCGTTTCGGTAT TGCCGTGATGCCCAAGGGCCGAAAGCGATCCACCTTGCATGCTCGGTTGGAGGGCGAGGTATTGCCACTG TTCGACGGGCGCCTGCTCGCATTCGATCTGGATGCATCACACGCATTTGCGGCGCTTGCATCGAAAGCCA GAACCGCAGGACTCACACTCGGGCGCGCCGATGCCTACATCGCTGCAACAGCAGCCGCGCAAGGATTGAC CGTTGCCACTCGCGACACGGCACCATTCGAGGCGATGGCGTTAGACGTCATTAACCCTTGGAGTTGA
>gi | 21240774 : C2561791-2561552 (SEQ ID NO: 462)
GTGGCCATGCAAGTCGCGAAGTGGGGTAACAGCCTGGCGGTGCGCCTGCCGTCCAGTCTGGTGGAAGCGC TGGAACTGCGCGAGGGCGACGACATCGAGATCGTCGTCGATGATCCGCGATTGTTCGCGGTGCGCAAGAA GCCGGGTCCGGAGGCCATGTTGGAGCGGCTGCGTGCCTTCCGGGGCAAGTTGCCCGCAGATTTCAAGTTC AACCGGGACGAGGCCAATGGCCGCGGGTAA
>gi I 21240774 : C2561544-2561152 (SEQ ID NO: 463) GTGTTTCTCGACAGCAACGTGGTGCTCTACCTGCTGTCGGAGGATGCGGTGAAGGCGGACGGCGCGGAGG CATTGCTGCAGCGCAGGCCCGTCATCAGTGTGCAGGTGCTCAATGAAGTGACCCACGTCTGCGTTCGCAA GCTCAAGATGGGCTGGGACGAAGTCGGGCAGTTCCTTGCGTTGGTGCGATCGTTCTGCAAGATAGTGCCT CTGACGGTCGATGTTCACGACCGTGCGCGCCAGCTGGCGGAGCGGCACCAATTGTCGTTCTACGACGCGT GCATCGTGGCGGCGGCCGCCATCGAAGGGTGCCAGACCCTCTACTCCGAAGACATGCACCACGGCCTCAT CATCGAAGAGAGCCTGTCGATTCGGAACCCGTTCAACGTCTGA
>gi I 21229478 : 1901388-1901687 (SEQ ID NO: 464)
TTGCATTACAATGCAAAGCATCAACCTTGGATTGCGAGGCAAACCATCATGACCACATTGACCGTTACCG CACGGGGACAAGTGACGTTTCGGAAGGACGTACTGCAACACCTCGGCATCAGGCCAGGCGACAAGATCGA ACTGAACTTGCTGCCAGATGGTCGGGGCGTGCTCAAGGCGGCCCGGCCCGCAGGGACGATAGCCAGCTTT GTCGGCCTGCTCGCGGGCAGGACGCAGAAGGTTGCAACCATCGAAGAAATCAACGAGGCGGCGGCGCAAG GCTGGGCAGGTAAGCAATGA
>gi I 21229478 : 1901684-1902079 (SEQ ID NO: 465) ATGAAGGTCGCCGCCGATACCAACGTCCTTGTGCGTGCGGTTGTGCGTGACGATCCCGCACAAGCGGACG TTGCCGCCGCAGTCTTGACCGACGCCGAGTTGATCGCGGTCGCGTTGCCGTGCCTATGTGAATTTGTTTG GGTGCTGCTGCGAGTCTACGGCTTCCAGCAAGCCGACGCGGCCAGCGCGATCCGGGCACTACTGGCCGCC GCGAATGTGGAAGTGAACCGGCCTGCCGTGGAGGCTGGCTTGCTGGTGCTCGACGCGGGCGGAGACTTTG CCGATGGCGTCATTGCCTACGAAGGCAACTGGCTTGGCGGGGAAACCTTCGTTTCCTTCGATAAGAAGGC GGTGGTACTTCTCACAGCGCAAGGGCAATCAACGCGCCTTTTGTGA
>gi 115836605 : cl537134-1536874 (SEQ ID NO: 466)
TTGAATATGGCCATGTTGACAGTGCGTAATTTGCCTGATGAAGTCCATCGAGCCTTGCGGGTTCGAGCCG CCACACACGGCCGCAGTACAGAAGCAGAAGTACGTGAGATTTTAACGAACATGGTCAAGCCAGATGAGCG TGTTCGCATTGGCGATGCCTTGGCTACCCTGGGACGCGAGATCGGACTAAATAACGAGGATTTCACGACC TTTGATAAGGTGCGAGATAAGACGCAGGCCGAGCCAATGAGATTTGAATGA
>gi 115836605 : C1536873-1536445 (SEQ ID NO: 467)
ATGATTGTCTTGGATACCAATGTTGTTTCCGAAGCAATGAAACCCGAACCGGATGCAGCAGTCCGAACCT GGCTCAACGAGCAGATGAGCGTCACGTTGTACCTATCCAGTGTGACGTTATCTGAACTGTTGTTTGGAAT CGCAGTGTTGCCCACAAGTAAACGCAAGGACATGTTGGCTCGAACCCTTGATGGCTTGCTTGATCTGTTC AATGAACGGGTGTTGCCGTTCAATACGGACGCGGCACGCCACTATGCCGAACTGGCAGTGAAAGCGAGAA ACAGCGGGCGCGGCTTCCCCACACCGGATGGCTATATCGCGGCAATTGCTGCATCACGAGGTTACATAGT GGCTTCCCGCGACACCTCAGCCTATGAGTCAAGTGGTGTGCAAGTCATCAATCCGTGGCAATACAGCAAA CAAACATAG
>gi 116271976 = 351138-351374 (SEQ ID NO: 468)
ATGCTTACTAAAGTGTTTCAAAGTGGTAACAGCCAAGCTGTTCGGATCCCGATGGACTTTCGTTTTGACG TCGATACCGTAGAAATTTTCCGAAAGGAAAATGGGGATGTGGTATTACGCCCAGTTTCTAAAAAAACAGA TGATTTTCTTGCGTTATTTGAAGGATTTGATGAGACCTTTATTCAAGCACTTGAAGCGCGTGATGATTTA CCGCCTCAGGAGCGAGAAAATTTATGA >gl 116271976: 351371-351775 (SEQ ID NO: 469)
ATGATTTATATGTTAGACACCAATATCATTATTTATTTAATGAAAAATCGCCCCAAAATTATTGCCGAAC GAGTATCACAATTATTGCCTAATGATCGCTTAGTTATGAGCTTTATTACTTATGCTGAACTTATTAAAGG CGCCTTTGGTAGTCAAAATTATGAGCAATCAATACGAGCAATAGAATTACTTACTGAACGAGTGAATGTA CTATATCCCAATGAACAAATCTGTTTACATTATGGCAAATGGGCAAATACACTCAAAAAACAAGGGCGAC CTATCGGAAATAATGATCTATGGTTCGCTTGTCACGCATTGAGTTTAAATGCCGTTCTTATTACACATAA TGTAAAAGAATTTCAGCGAATTACAGATCTTCAGTGGCAAGATTGGACAAAATAG
>gi 116271976 : C1008583-1008185 (SEQ ID NO: 470)
GTGTTGAAATATATGCTTGATACTAACATTGTGATTTACGTGATTAAGCGTAGGCCATTGGAAATTCTTT CTCGCTTTAATCAAAATGCAGGAAAAATGTGCGTGAGTAGCATTACTGTGGCTGAACTCTATTATGGAGC TGAAAAAAGCGAATATCCCGAAAGAAACATTGCGGTTATTGAAGATTTCTTATCACGCCTCACCATTTTA GATTACCAACCAAAGCATGCAGCTCATTTCGGCAATATTAAAGCTGAACTCTCTAAACAAGGGAAATTGA TTGGCGAAAATGATATTCATATAGCGGCTCATGCTCGTAGTGAAGGGTTAATTCTGGTTAGTAACAATTT AAGAGAATTTGAGCGAGTTATAGCATTACGTACAGAAAATTGGGTGTAA
>gi ] 16271976 : C1008816-1008583 (SEQ ID NO: 471)
ATGATTGAAGCCTCTGTTTTTATGACTAATCGAAGTCAAGCTGTGCGTTTGCCCGCTGAAGTTCGCTTT CTGAAGAAATCAAAAAATTATCGGTTCGTGTATCGGGCAGTGATCGGATTTTATCGCCTCTCAACCAATC TTGGGATAGTTTTTTCTTGAATGATCAAGCAGTTAGCGATGATTTTATGAATGAACGAGAAATTGCATTT CAACCAGAGCGTGAGGCTTTATAG
>gi ] 28867243 :cll44032-1143628 (SEQ ID NO: 472)
ATGCTCAAATACATGCTCGACACCAATATCTGCATCTTCACTATCAAGAACAAGCCGGTGTCGGTACGTG AGGCCTTCAACCTTCATCACGGGCAGCTGTGTATCAGCGCGATCACGTTGATGGAGCTTGTCTACGGCGC AGAAAAGTCTTCCAGTCCCGAAAGAAATCTTGCTGTTGTAGAAGGTTTTGCAGCGCGTCTTGAATTGCTT CCCTACGATAGCGACGCCGCGGCTCACACCGGCATGATCAGAGCCGAGCTGGCCAGAGCGGGTACACCGA TTGGCCCGTACGATCAAATGATTGCAGGACATGCCCGCTCTCTTGGCCTCGTGGTCATCACCAACAACCA GCGTGAATTCCAGCGCGTCGAGGGGCTGAGGGTAGAAGACTGGGTAAGCCAATGA >gl 128867243 : C1144262-1144032 (SEQ ID NO: 473)
ATGGAACAATCCACAGTCTTCAAAAGCAATCGAAGTCAGGCTGTTCGACTTCCAAAAGCGGTGGCATTGC CCGACGACGTGAAACGGGTAGACGTGGTAGCAGTGGGCAGGACACGCATCATTTCCCCTGCTGGTGAAAT GTGGAACAGTTGGTTCGATGGTGAAAGTGTCAGTGATGACTTCATGGCAGAGCGCGAGCAGCCAGTTGAA CAACTGCGCGAATCACTCTGA
>gi 128867243 :c2184347-2183895 (SEQ ID NO: 474)
ATGTTCCTGCTCGACACCAACGTGGTGTCCGAACTCAGAAAACGCAATGCCGACGCGAACGTGCTCCGCT GGTCGCGAACCCAGATGGCATCCAGCCTGTTCATCTCGTCCATCACGATTCTTGAGCTCGAAACAGGTAT CCTGCGGGTCGAACGCCGTGATCCGACACAAGGCGCAGCCCTGCGAATGTGGCTCGACCACCATGTATTG AAAGCCTTCGCCGGGCGCATTCTGCCAATCGACACCCAGGTCGCAAAACGCTGTGCCCAACTGCACGTGC CCGACCCGCGCAGCGAATGTGATGCCCTGATCGCCGCCACAGCGCTGGTGCACGGCATGACCGTGGTCAC CCGCAACACAGCAGATTTCAAATCTAGCGGAGCCGCCTTGCTTAATCCCTGGATCAGCCAGTTGAACGAA GAAACGGCCTATTACTCAAGTGCGTCACGTTGA >gi | 28867243 :c2184598-2184347 (SEQ ID NO: 475)
ATGACAACTACCCTCTCAAGCCGCGAATTCAACCAAGACACCAGCGGGGCTAAAAAGGCTGCGAATGAAG GCCCGGTTTTCATTACCGACCGAGGCCGCCCTGCCCATGTGCTGCTGTCGATCGAGGCGTACCTGCAACT GACCGGCAGTGCAGCGAGTATCGCTGACCTGTTAATCATGCCAACGCACCTCGATATCGAATTCGAGCCG CAACGGGCTGTCATCACGCCTCGACCGGTTGACCTGTCCTGA
>STM3033, gi|l6763390:c3195554-3195156 (SEQ ID NO: 476)
ATGCTGAAATTCATGCTTGATACCAATACCTGTATTTTCACCATCAAAAATAAGCCCGAACACATCAGAG AACGCTTCAACCTCAATACATCCCGAATGTGTATCAGCTCCATCACCTTAATGGAGCTGATTTACGGTGC TGAAAAAAGCCTGGCGCCGGAGCGTAATCTTGCCGTCGTGGAGGGATTTATCTCCCGCCTTGAGGTTTTG GATTACGATACACAGGCAGCGATACATACCGGTCAAATCCGTGCCGAACTGGCCCGCAAGGGAACACCTG TCGGGCCTTATGACCAGATGATTGCTGGCCATGCCGGTAGCCGCGGACTGGTCGTCGTCACAAACAATCT CCGCGAATTTGAACGCATTCCGGGTATCCGAATCGAAGACTGGTGCTAA
>STM3034, gi 116763390 :c3195781-3195554 (SEQ ID NO: 477) ATGCACACAACACTTTTTTTTAGTAACCGGACCCAGGCAGTCAGATTGCCTAAATCGATATCCTTTCCGG AGGATGTGAAACATGTCGAAATCATTGCGGTTGGCAGAAGCAGAATCATTACTCCAGTCGGAGAATCCTG GGACAGCTGGTTCGATGGCGAAGGCGCCAGTACTGATTTTATGAGTACCAGAGAACAACCCGCAGTACAG GAACGGGAAGGATTTTGA >gi| 16758993 :c3051786-3051388 (SEQ ID NO: 478)
ATGCTGAAATTCATGCTTGATACCAATACTTGTATTTTCACCATCAAAAATAAGCCCGAACACATCAGAG AACGCTTCAACCTCAATACATCCCGAATGTGTATCAGCTCCATCACCTTAATGGAGCTGATTTACGGTGC TGAAAAAAGCCTGGCACCGGAGCGTAATTTTGCAGTCGTGGAGGGATTTATCTCCCGCCTTGAGGTTCTG GATTACGATACACAGGCAGCGATACATACCGGTCAAATCCGTACCGAACTGGCCCGCAAGGGAACACCTG TCGGGTCTTATGACCAGATGATTGCTGGCCATGCCCGTAGCCGCGGACTGGTCGTCGTCACAAACAATCT CCGCGAGTTTGAACGCATTCCGGGTATCCGAATCGAAGACTGGTGCTAA >gi 116758993 :c3052013-3051786 (SEQ ID NO: 479)
ATGCACACAACACTTTTTTTTAGTAACCGGACCCAGGCAGTCAGATTGCCTAAATCGATATCCTTTCCGG AGGATGTGAAACATGTCGAAATCATTGCGGTTGGTAGAAGCAGAATCATTACTCCAGTCGGAGAATCCTG GGACAGCTGGTTCGATGGCGAAGGCGCCAGTACTGATTTTATGAGCACCAGAGAACAACCCGCAGTACAG GAACGGGAAGGATTCTGA
>gi 116758993 =c3703463-3703089 (SEQ ID NO: 480)
ATGGTCAAAGGGTCTGCGCTTTTTGATACCAATATCCTCATCGACCTGTTTAGCGGTCGAATTGAAGCGA AACATGCGCTGGAAGCGTATCCGCCACAAAATGCGATTAGCCTTATCACATGGATGGAAGTGATGGTGGG TGCTAAGAAATATCATCAGGAAAACCGCACGCGCATTGCATTAAGTGCGTTCAATATTATTGGCGTAACA CAGGAAATCGCGGAACGAAGCGTCATTGTCAGGCAGGAGTATGGCATGAAACTCCCGGATGCGATCATTC TGGCCACTGCACAAGTCCATCGTTGTGAGCTTGTGACGCGCAATACAAAAGACTTTGCCGATATTCCGGG AGTGATCACGCCGTATCACTTGTAG
>gi 116758993 : C3703711-3703463 (SEQ ID NO: 481) GTGAGTATGATGGCTGGGATGGATATGGGCAGAATTTTACTCGATTTATCAGACGATGTGATTAAACGGC TTGACGATCTCAAGGTGCAACGCAACCTACCTCGTGCAGAACTCTTGCGGGAGGCCGTTGAGCAGTATCT GGAAAGACAGGATCGGGCTGAGACCACAATTTCGAAAGCATTGGGGCTCTGGCAAGGCTGTGAGGAAGAT GGCGTTGAATACCAACGTAAACTTCGTGAGGAATGGTAA >gi|29140543:c3037693-3037295 (SEQ ID NO: 482)
ATGCTGAAATTCATGCTTGATACCAATACTTGTATTTTCACCATCAAAAATAAGCCCGAACACATCAGAG AACGCTTCAACCTCAATACATCCCGAATGTGTATCAGCTCCATCACCTTAATGGAGCTGATTTACGGTGC TGAAAAAAGCCTGGCACCGGAGCGTAATTTTGCAGTCGTGGAGGGATTTATCTCCCGCCTTGAGGTTCTG GATTACGATACACAGGCAGCGATACATACCGGTCAAATCCGTACCGAACTGGCCCGCAAGGGAACACCTG TCGGGTCTTATGACCAGATGATTGCTGGCCATGCCCGTAGCCGCGGACTGGTCGTCGTCACAAACAATCT CCGCGAGTTTGAACGCATTCCGGGTATCCGAATCGAAGACTGGTGCTAA
>gi I 29140543 : c3037920-3037693 (SEQ ID NO: 483)
ATGCACACAACACTTTTTTTTAGTAACCGGACCCAGGCAGTCAGATTGCCTAAATCGATATCCTTTCCGG AGGATGTGAAACATGTCGAAATCATTGCGGTTGGTAGAAGCAGAATCATTACTCCAGTCGGAGAATCCTG GGACAGCTGGTTCGATGGCGAAGGCGCCAGTACTGATTTTATGAGCACCAGAGAACAACCCGCAGTACAG GAACGGGAAGGATTCTGA
>gi I 29140543 :c3689126-3688752 (SEQ ID NO: 484) ATGGTCAAAGGGTCTGCGCTTTTTGATACCAATATCCTCATCGACCTGTTTAGCGGTCGAATTGAAGCGA AACATGCGCTGGAAGCGTATCCGCCACAAAATGCGATTAGCCTTATCACATGGATGGAAGTGATGGTGGG TGCTAAGAAATATCATCAGGAAAACCGCACGCGCATTGCATTAAGTGCGTTCAATATTATTGGCGTAACA CAGGAAATCGCGGAACGAAGCGTCATTGTCAGGCAGGAGTATGGCATGAAACTCCCGGATGCGATCATTC TGGCCACTGCACAAGTCCATCGTTGTGAGCTTGTGACGCGCAATACAAAAGACTTTGCCGATATTCCGGG AGTGATCACGCCGTATCACTTGTAG
>gi I 29140543 :c3689374-3689126 (SEQ ID NO: 485)
GTGAGTATGATGGCTGGGATGGATATGGGCAGAATTTTACTCGATTTATCAGACGATGTGATTAAACGGC TTGACGATCTCAAGGTGCAACGCAACCTACCTCGTGCAGAACTCTTGCGGGAGGCCGTTGAGCAGTATCT GGAAAGACAGGATCGGGCTGAGACCACAATTTCGAAAGCATTGGGGCTCTGGCAAGGCTGTGAGGAAGAT GGCGTTGAATACCAACGTAAACTTCGTGAGGAATGGTAA
>gi I 24212700 : C3244021-3243803 (SEQ ID NO: 486)
ATGAAGAATATTACGTTTAGAGCAGACGACCAATTGCTTGAAAAAGCGAGACTACGTGCGGCCAGTGAAC GAAAATCTTTAACTGACGTTTTTAATGAATTTCTTAAGAACTATTCAAATTCAGTTAAAGACGTTTCTGA TTATGAAAATCTATTACAAAAACTAGCCTACGTTAAAGTTGGTCGCAAGTTTACTAGGGAAGAGATGAAT GAAAGATAA
>gi I 24212700 :c3243813-3243370 (SEQ ID NO: 487) ATGAAAGATAAAGTATTCTTGGATACTAATCTGTTTATTTATAATTTTGATACAGAAAATAAAACGAAAC ATGAGAAATCAAAGGAAATCGTTTTAACGGCTTTAGCAGAAAATAATTATGTAATTAGTTATCAAGTGAT TCAAGAATTTTCAAATGTAGCTTTGAAAAAATTTCAGATACCTCTCAAACCAAAAGACTTAGCAATATAT TTGAAAAGAGTTATGTTTCCATTATGCAATGTCTATTATACTAATGAGAATATTTTGAATGCAATTGAAA TCAGAAACCGATATAAACTTTCTTTTTACGATTCTGTTCTTATAGGTTCTGCGATAGAAGCGAATTGTAA AACATTGTTAAGTGAAGATTTACAAGATGGACTTCAAATCAAAGGTTTACAAATTACGAATCCTTTTAAT AGCACAATAAAAAAGAAAAAGTAG
>gi 124212700 : C1008151-1007753 (SEQ ID NO: 488)
ATGTATCTTTTGGATACCAATATATGCATTTTTCTAATTAAAAAGAAAAATGCGACTCTGTTAGAAAATC TTAAGAAAAAATTAAATAAAGATCTATTTGTTTCGTCTTTAACTGTTGCGGAACTTGAGTTTGGAATTCA GAAAAGTGAATTTAAAGAAAAGAATAAAGTTGCACTAATCGAATTTTTAACGATTTTCAATATACTTTCC TTTTCTGATAAAGATGCAGAGTCTTACGGTATCATCAGAGCGGATTTGGAGAGGAAAGGTAATGTAATCG GTTCAATAGACATGTTACTTGCCGCTCAAGCAATTGCTAATAATTATATCTTTGTTACTAATAATACAAA AGAATTTAAAAGAATTAAGGCTTTAAAAATAGAAAATTGGACACAGTAG
>gi 124212700 :cl008381-1008151 (SEQ ID NO: 489)
ATGCAAACAGCCAAATTATTTATAAATGGAAGAAGTCAAGCGGTTCGACTACCAAAAGAATTTCAATTTA CCGGAGATGATGTTCTTATCCAAAAAGTTGGAGAGGCGGTAATATTGGTTCCGAAAAACAAGGCCTGGAA CGTATTTTTAGAAGGATTGAACGGGTTTTCAGATGATTTCTTTAAGGAGGAGAGAGAACAGCCGAAATCT GATAAAAGAGAAAAGCTTTAA
>gi 115805042 : C2113624-2113409 (SEQ ID NO: 490) ATGACCGCACCGAAAGAGCTGCATGAACGTATAGACCGTCTGCCTCCTGAAGCCATCAAGGCGATTCAGG AATTGGTCGAGCGCCAGGAGTACGCGGCGCAGCAAATCGCGGCCCTGAAAGCGTTCGCCGCCGACTGGAC CCCCGAAGAGCAGGCGGCGTGGGATGAGGGGACGAAGCGGCGCCCCTGGCGTACCTTTCCGCCTGAAGAA GTCTAA >gi|l5805042:c2113408-2113016 (SEQ ID NO: 491)
ATGCTGGCGCTGGATACCAACATCCTGATTGCGCTGCAAAAGCTGGAACCGGCGGCGTTTGGGCATGATC GGCAGGCCCTGATGACTGTGCCGGTCGTGATTCCAAGCGTGGTGCGCTACGAAGCGCGGCGCAGTCTACT GGCACCGCAGTATGCGCGGCGTTTGGCACAGCTTGACCAGCTCCTTTCAGGACATGCCACTCTGGACTTT GATCAGCAGGCTGCCGACATCGCCGCAGATATTTACCACCAACTCTGTACCACCGGCCAGCTCATTGACG AAGCCGATTTGATGATTGCGGCCCTCAGCATTCAGCACGGCGCCGCCCTTGTCACTCGTAATACCAGCCA TTTTCAGCGCATTCCGGGGTTGACGCTGCTGGACTGGCTTTAA
The sequences below were found in a later supplementary search: >gi]l4600379:cl99314-199072 (SEQ ID NO: 492)
ATCCTATTGCTAGTGGTGTCTACCGTGTCGAAGGTTATCCGGGTAAAGTACGAGAAGGGTGTGCTAAAGC CTCTCGAGCCCCTGGATTTACAGGAGGGCGAGGAGGTTCAGGTAATAATACAGCCGGGCGAGCCCATAGC CGAGAAATATTATGGCATCGCTAGAAAACACAGACCAAACCTCGATAAGAAAGAGTTCCTAGAGGTTCTA GAGGAGATAGAGGATGAGGATATTCGTGGACACTAG
>gi|l4600379:cl99091-198657 (SEQ ID NO: 493)
ATGAGGATATTCGTGGACACTAGCATCATACTAGCATTCCTTGCAGGCCAGGATGATAGAGCAAAAGATC TCATGAGGAAGGTTGAGAGGCATGAGATCACCGGCTACATTAATCCATTGGTAATAGATGAGGTTATACA CGGTTACCTACGCTTGGCAACAGGATTAAGCGCTAGGAGAATAAGGAAGCTGCTAGCTAGGAGGGATGAG AGGCTCATAAAAATGATCAAGGGCGAAGTCTGGCCTGTACTGAAGCTCTTCACAACACTACCGCTCATGG CTGAGCCGGGAGAAATAATCGAGTTCATAGAAGAATACGGCCTAATGCCAGCAGATGCACTAATAGCATT AACATGCAAACAACACGAGCTAGACACAATAGCAACCTTGGATGAGGACTTCAAGAGAATACCTTGGCTA AAAGTCGTACCCTAG >gi|14600379:c205979-205752 (SEQ ID NO: 494)
ATGGAGTTAAGGAGGGTGGAGATAGGGATGTCTAAAGTTATTAGGGTTAGATATGAGAAGGGCGTGCTGA AGCCTCTTGAGCCCGTTAATCTTGAGGATGGTGAAGAGGTTGATATTATTATAAGGGAGAATCTCGCAGA GTTAGCCAGAAGGATAAGGCGTAGGTTGTCTCAAGAGAGGGAGGAGCCAAGCGAGATTTTGTCTAGAGAG AGGAGTAGGCTTGCATAA
>gi|l4600379:c205669-205301 (SEQ ID NO: 495)
GTGGTGGAATGCATTGAACGCCACAGTATAAGCGTTTACGCACCACGCCTGTTCCTAGTAGAGGTTGCTG GCGTCCTGGTGAGATACCTGGCACCCTCTATCGTAGAGCGAGTACTTGATGCTTTTAGCAGTAAGGTAAT CCTAGTTGGCGATGAAGCATATTTCAGGATAGCCGTTGAAATAGCGCTAGCAACTGGGTCGAGGGGGGCA GACTCTTATTATCTTGGACTGGCAAAGACCCTAAATCTGCCTGTGGCGACAAGCGATAAAGTACAGGCGC AGAATGCTAGAAAAGCAGGAATCAAATCATTCTATATCCTAAGTAATAATGAATTAGAGGAGCTAATGAA ATATATGGGCTGTAAATAG
>gi|14600379:c697607-697245 (SEQ ID NO: 496) CTGGCTATGAATATCGACGGCGACGGTGTGGTGGTCTCGACCACCGCGGGGAGCACTGCCTACAGCCTCA GCGGGGGCGGCCCCATAATAGACCCGAGGCTGGACGTCATAGTACTAACCCCCCTGAACCCGGTTCAGCT CTTCCTCAGGAGCATTGTGGTCCCCAGCGGCTCGCGCGTCACGGTGGAGGCCAGCGTCTACAGCAACCCC CTGGTAGTCAACATAGACGGCCAGTACGTCTACGAGCTGGAGCCCGGGGGGATAGTGGATATAGAGCGGT GTGGGAGCGGGGTTAGGATAGCGAGGTTCAGGTGGTGGGAGGACTACTATGAGAGGCTCTACACAAGGCT GCTCGCCTACTGGTAG
>gi|14600379:c697279-696860 (SEQ ID NO: 497)
ATGAGAGGCTCTACACAAGGCTGCTCGCCTACTGGTAGGGAGGCCATAGTCCTCGACACCGGCGCATTCA TAGCGGGGAAGGCGGCGGCCCTCCCCGGGAGGCTCGCCACGCCCCCCAGGGTCCTGGAGGAGGTTAGGGA CCGGGGTAGCAGGTCGCTGCTGGAGCTGCTCCAATCGACGGGCAGGCTCGAGGTCCTCGCCCCCAGCACC CGCGCCCTGGAGAGGGCTAGGGAGGAGGCCAGGAGGGCCGGCGTCCTGGGGAGGCTCAGCGGGGCGGACC TCGAGGTCCTCGCCCTCGCCCTGGACCTGGCCTGGCAGGGCTGCAGGGTGGCGGTGGCGACAGACGACTA CACCCTCCAGAGGCTGGCCGCCAGGCTGGGGCTGGGGGTGGTGAGGCTGAGGTACCGGGGGGCTGTCTAG >gi|14600379:c760494-760258 (SEQ ID NO: 498)
ATGGGTTGGGGGTGTGCTATGTCTAAGGTTATCCGTGTGAAGTATGAGGGGGGTGTGCTGAAACCCCTAG AACCCTTGGTGTTAAGTGAGGGGGAGGAGGTTGAGGTTGTTATTAGGCGTAGAGTTTTCGGGGAGGAGGA TTACCGGGAGTTAGTGGACTTCCTTTCAGAACTCCCTAAGGGTAAGGCTGAGCTGCTGGACCTAGTGGAG GAGTTATATCTTGAGGAGGCTCTTCGTTGA
>gill4600379:c760274-759849 (SEQ ID NO: 499) TTGAGGAGGCTCTTCGTTGACGCTAACATATTCATCCGCATAATATTCAACAGAGAACACAGCCTTCTCG AGTACCTAATAGGAACAGAACCCTACACCTCGACCCACCTCCTTGAGGAGGCAGCGTACAAGCTAATAGC CCTCTCCATAATTGAATCGGAGGGGCCTGTAAGTGTCTACAAGATAGGAAAACTGTTTGAGAAGGGTGCT GCAGAAGACACCATTAGAGCTAGACTAGCTGCACTCGACAAGATAGCTGAAAAGCTGAATATAATCCCAC CAACCTACAGCGACTTCAGAGAAAGCATGAAAATATCGCTAGAATACAAGCTACTACCGAGCGACGCTCT AACAGTAGCAATCATGAAAAGAGAAGAAATAAAAGAAATCCTAACACTAGACAACGATTTCAAACAGATA CCATAG
>gi|l4600379:cl008442-1008167 (SEQ ID NO: 500)
CTGGTCCCTCCAGGCCACGACCCTAATGATTTTGCGCGAGGTAGTATAAAAACCTGTCAGTGGAGAGGGC GAAATATAAACACCAACATCAAGAATACTACCATGGGAGAGGCGGTGGCGACCAAGAAGATAACCATTGA GGTTGAGGTGCCCGAGGACTTCGACGAAGAAAGAGGGGTAGAACGGTTAATAGAACTCCTTAGGAAGGGA GCCCCCCTCGGAGTGAAACAAAAGGACCTGAGGAGGCAGAGAATCTATGCCAGCAGGACTCGATACTAA
>gi|l4600379:cl008186-1007788 (SEQ ID NO: 501) ATGCCAGCAGGACTCGATACTAACATACTAATCTACGCAATGGATAACAAAGCAGGAGAGAAGCATGAGA AAGCAGTAGAGGTAATAGAACAGGCTCTAAAACATCCGACGGAGTACATCGTCTCCTCCCAAGTGCTGGC CGAGACCATATACGCGGTAAAAAGAAAGTACCCGGCAGCTACTCCACTTGCACAAACACTCGCCTACACG CTCACAAGGACACTACGTGTAGTCCACTACACCCACCTTGAAGTGCTACAGGCCTCACAATCACCTCCAC GCTACTTTTGGGATAGACTCCTCGCCTACACATACCTAAACAACGGTGCAGACAGGATCATCACAGAAGA CGAGAAACCCTACAGGGGAATACTCAAGACGATAGATCCCTTCAGGTAA
>gi|l4600379-.cl508755-1508399 (SEQ ID NO: 502)
GTGGCTATAGGCACTCAGCTCGACCCCAGCGTGACAAAGGCCGACAACCTGGTCGGCAACGTCGTGGGCA AGCCGGGAGAGCTGCCGGAGCCCCTGACCACGCTGAGGATAGAGCACCACCTGCTTGAGAAGGTTGTGGG TATGAAGGAGGAGGCTAGGGTGGAGCCTATAAGGAGGGGGGAGATGCTGATGCTCTCTGTGGGGACGGCG ATAACCCTCGGCGTCGTAACCAGGGCGGGGAAGGACGAGATTGAGGTGCAGCTTAGGAGGCCTGTGGTAA CATGGCCCAAGGCGAGGGTGGCCCTGAGCAGGAGGATAATGGGGAGGTGGAGGCTCATAGGCTGGGGGCT CATAAAGTAG >gi)l4600379:cl508474-1507986 (SEQ ID NO: 503)
ATGGCCCAAGGCGAGGGTGGCCCTGAGCAGGAGGATAATGGGGAGGTGGAGGCTCATAGGCTGGGGGCTC ATAAAGTAGTAGTTCTCCTGGACTCCAACACCCTTATCCTGATGGCCTCCGGCCGAATAGCCCCAAGCAT GATCTTAGAGGCGATAAACTCCAGCTTCAAACCCGCCACCACGTCTACAGTAGTAGCCGAGCTGCGGGGG CTCGCTGAGATACATAGGACAAGGCTCCTCGGCAGGAGGGCCCAGACCGCCCTCAGGCTCCTCCAGCAGA TGGGAGTTGAGGTCATAGAAACTGAGAGCCGAGACGCCGACGACAGCCTCGAGGAAGCTGCCGAAAAGCT CAAAGTAGAGGGGGCTAAAGTATACGTGGCAACCAGCGACAGGAGCCTGAGGAGGAGGCTCCGCCGCAGA GGGGTGCCTACAATCTACTACAGGTCCTCAGAGGCCAGGCTGGAGGCCGACTGGTGGGACGACCTGTAA
>gill4600379:cl666639-1666448 (SEQ ID NO: 504) TTGTCAAAGGTTATCCGAGTCAGGTATGAAAAAGGAGTCCTGAAGCCCATTGGAGAGGTCGTGCTCAGAG AGGGGGAAGAGCTGGAAGTAGTGGTTGTCCGAAAGAGTTTCAGGGGTTTCAAAGACGAAGCCGGAAAATA CATGTTCAAGGCTGATCGAGATACTGTTAAGGAGTTCGTGGAGGAGAGGAGGTAA
>gi 114600379 :cl666417-1665992 (SEQ ID NO: 505) GTGATTGATACTAGCGTTTTTGCCGACTACTACCTGCTATATCCTGGAGACCCGGAGAGGCATGAGAGGT CTAGAACAGTTCTCGATAAGCTATCTCTCCGGGATGTAATAGTTTATGAGCCTTTCCTCTTTGAAATAGA GCTCCGAGCAGTCCTTGTACGTAGAATCCCTCCAGAGCAAGCCCTTCGGATAGTAGACACGACATTGAAG CATGTAAATGTAGTAAGAGAAGAAGAACTACACGACAAAGCCGCTGAGATAGCACTCATCACCGGTTGTA GGGCGGTTGACGCATACTTTATCGCAACAGCTAAGCATGTAGATGGAATCCTGATAACTAATGATAAAGT CATGAAGGATAATGCTCAGAAAATTGGAGTTAAAGCATACTACTTACTCGACAACCAAGATTACACAAAA TTATAG
>gi|l5282445:203338-203605 (SEQ ID NO: 506)
ATGGTAGGAAAAGATGAAATCGTAGTAAAAGTTTTACCTAAAGGACAGATAACCTTGCCCAAGAGAATAA GAGAAAAACTAGGAATACGGGAAGGCGATATTTTAATTGTTGAAGAAAAGGAAGGAAAATTAGAAATCAG GAAACCTAAAAGCCTTAGGGACTTCTATGGTTTCCTGAAAGGAAAGAAATCTATTAATAGGGAGAATATA GAAAGAGTTATTGAAGAGGTTGTAAAGGAACGTGAACTTGAAAAAGATAGTCGTTGATACA
>gi|l5282445:203338-203605 (SEQ ID NO: 507) ATGGTAGGAAAAGATGAAATCGTAGTAAAAGTTTTACCTAAAGGACAGATAACCTTGCCCAAGAGAATAA GAGAAAAACTAGGAATACGGGAAGGCGATATTTTAATTGTTGAAGAAAAGGAAGGAAAATTAGAAATCAG GAAACCTAAAAGCCTTAGGGACTTCTATGGTTTCCTGAAAGGAAAGAAATCTATTAATAGGGAGAATATA GAAAGAGTTATTGAAGAGGTTGTAAAGGAACGTGAACTTGAAAAAGATAGTCGTTGATACA >gi|15282445:1338522-1338839 (SEQ ID NO: 508)
ATGAACAAAAGGTTTGAGCAGGTAGACAAGAGGTTTGAACAGGTAGACAAAAGATTTGAGCAGATAAACA ATGAACTGAACCGGCTCATACAGATAATGGTGGGGATATTCGCGGGACAGATAGCTTTAGTGGCAGCGGT TATAGGTTTTGCATGGTGGGACAGGAGAACGATTATAAGGAAGTCTAAGGAAGAAACCTTTGAAGAGATG GAAAAGGAATTAAGACCTGAAAAGTTCAAGAAACTCCTCAACGCCCTCAGAGAAAAGGCAAAAACCGATA AAGAACTGGAAGCGATACTTAAAAAATACGGTTTGTTGTAA
>gi|l5282445:1338855-1339262 (SEQ ID NO: 509)
ATGAAACTCCTTGATACTACCGTACTCCTGGACTTCCTCTCGGGGGAAGAAGAGAAAGTGGAAACAATAG AGCAATTTTTTGAAGAGCTTTCCCAAAAAGGTGAAAAATTGTTCGTTCCCGAAGAGGTCATAATAGAACT CGTTTACTTTCTGGAGCACGGATACAAATGGGAGAGGGAGGACATTTACGAAGTAGTTGAGACTATCTTA AACGACGAGCTCTTTAACGTAGAACTAAAACCCTTTATAAGGGAGGCTATCAAGCTTTACTCAAAGAGAC AGGGGACTTTCTTGGATTGTCTAAAGAGCGTAAAGGCTAAAAAGATGGGAATTAAGGAAGTGGTTTCCTT CGGGAGGAGGTTTAAAAAGCTCGGCTTCAAAACTGTAAACCCTTACGAGGAGAGTTAA
>gi|H497621:c271532-271335 (SEQ ID NO: 510)
ATGCCCCGAGTAATTGAAGTAATATACGAAAATGGGATGTTCAAGCCTCTCGAAAAGGTTGATCTCCCTG AAGGTTCCAGGTTTAAAATACTAATAGAAGATTTTAGTGAGATTGATAGGATTCATGAGCATGTTAAAAA AATAGCAGGGGAAGCTTCTAAAGAGAAAATCCTTGAACTGCTAGATGAAGTATGGATTTAG
>gi|H497621:c271341-270886 (SEQ ID NO: 511)
ATGGATTTAGTCTACCTTGATTCAAGCGTTATCGTAGAACTGCTACTCGGTAGCGAAGAAAGAAGGCGGA CTATAAAATCTTTAATAGCTGGTAAAAGACGCTTCACATCAGCCATATCTTATGGAGAGGTTCTTTACGT TGTTTTAGCTATAAGTGCCGAAAAATACTACGGAAGTAGGGGGCGCAACGCTGTAAGAAAGTTTGTAAAA GAAAAGCACGATCATTACATCACTCTCCACGAAAGTGTATGCCGCACGTATTCGAGTCTGAACATAGATA CCCTAGCTCATCCAAAAGTTGAAACTCTGAGTGTGCTGATCAGAAAATACAATTTGCTCCCTAGAGATTT GATCCACATCACCACAGCGATCGAAGGCAACTGCAATGCT.TTCTTAACGTTGGACGAAGACTTTAAGCAA GTTAAGGAAAATATCAATGTTGTTATTATTGAATGA
>gi|H497621:287426-287674 (SEQ ID NO: 512)
TTGAGCAATCAAAAAAGACTGCAGCCGAAACCTATTTCTTCTTTCATGCAAACTAATAACATGCCAAAAG TCATTGAAGCCATTTACGAAAACGGAGTGTTCAAGCCCCTCCAGAAAGTTGAACTCAGGGAGGGGGAGAA GGTAAAAGTCATTGTGGATCGGGGACTTACCCAGTTATTCGGGATGTTCCGACACAGGCGTAAGACGGAC CTGGACGAAGATATGGATCTGATGATAACGGAGAGAGCATGA
>gi|H497621:287674-288126 (SEQ ID NO: 513)
ATGAAGGTCTTTTTCGACACCTCTTTCTTTGTCGAGTATTTTAGAGGGAATGAGAATGCACGGAGGATTT ACGAAGAACTGAAGAATTACGAATATTTTACATCGCTCAATGTGGTAGAGGAAACGACCTATATACTCAT GAAGTTTACCGCTTCTGATTTTGTGAAATTGGAGAAGCACTACGAAGTAATCAAGAAACTCAAGGAAGAT TCAAATGTGTACGAGAAAAGTCTCAAAAATGCAAAGCTGTTTTACAGCTCAATTCTTCATGACGGATTCC AGATCCTGCCATTGCCTTCTTGGGACCTCGTTCTCGAGATTATGGAGCGATACAGACTCCTGCCAAACGA TGCCCTAATAGCAGCAACCTGCAAGCATTATGGGATAAAGAAAATCGCAACCTTCGATGAGGATTTCAGG AGGGTTGACTTTCTGCAGGTCGTAGAGCTTTGA
>gi|11497621:289639-289923 (SEQ ID NO: 514)
ATTTTCTTGAGGTTGTTGAGCCTTAGGGGAAACCTATTTCTATTCTCAGACCCACAATCTATATGCCAAA AATCATCGAAGCTGTATATGAGAACGGAGTTGTTCAAGCCCCTTCAGAAGGTTGACTTGAAGGAGGGAGA AAAAATCCGACTTAGATTGGATGAGAGGGGCTATATCGATCACAGTCTGATCAGAGAGCTTGAAGTTTTA CTTAAAAACGCACCAAAAACAAAAATAGACCTCAGAGAACTGGAGAGGTTACACGATGTCGGAAAAATGC TTTATTGA
>gi|11497621:289904-290359 (SEQ ID NO: 515) ATGTCGGAAAAATGCTTTATTGATACCACAGTGATTCTCGAAGTCATCTTAAGGAAAGAGTTCAAGATTT TAGAGAAACTGTCGGAATACGTTCTCCATACATCTGTAAACGTTCTTGAGGAGGCATCTTTCAAGATCAT CTTTGTAAGCGTGGTTGACGAACTCTCCGTTAGCCGTGTCAACATTTTCAAAGTTAAGGATAGCTTTGAG AAAGGTATAGGTTCATCCCTAACTGAAACGAGGCTTCACGCACTAAATGTGCTTAAGGATGCTCTGAAAA TCATAGAAATCGACGAACACATTTTTGATATGGCCAAGAAAATAATTCTGGAGTATAAGCTCTTGCCAAA CGACGCCTTAATAGCTGCCACCTGTAAGCATTACGGCATAAAGAAAATTGCAACTTTCGATGAGGATTTC AGGAGGCTTGATTTTCTTGAAGTACTTGGACTCTAA
>gi|H497621:290594-290764 (SEQ ID NO: 516)
TTGAGTATGGAGAAGATATTTATTGACACGAATGTCATAATCGACCTGCTGAGAGGAAAGAAAAGCGTTG TTTCCTTCTTCCGGGATGTGGAAGATGGTGAAATACACGGCTTGACTAACAAAAACGGTGTTTCTGGAAA CTGTTTACGTTTACCTGATCCTTACAACGGATAA
>gi|H497621:290721-291002 (SEQ ID NO: 517)
GTGTTTCTGGAAACTGTTTACGTTTACCTGATCCTTACAACGGATAAAGGTCCGCTAACCTTAAGAAAGA GGCCAGAGCTAATTGAGAATGTAAATCTGGAGCCAGTTCTGAGAGTTTTTGAGATTATCGACATGCTGCC AACTGACAGGATTGCCAAAGAATACATAGTTGAACTTATTGGAAAATTTGGATTGCTGCCAAACGATGCC TTAATCGCAGCAACCTGCAAGCACTATGAAGATTTCAGGCAAGTGGATTTCCTTGAAGTTGTAGAGCCTT GA
>gi|H497621:350180-350689 (SEQ ID NO: 518) CTGGTTAATGTGACCTTTGAGAACGATGATGTCGGGCATGTTGCTGCAGCCATAGCCGTCAACGGAACTT ACTTCATTCTCGACCAGCACCTCCCGCCCTTCGACCCTCAGGGATACTTCATCAAATGGTTAAGGGATGG GAAGAGGATTGAGAAGGCAGAGATCATTGATAACAACACCACCATACCGCTCAACCTTTCCATCGGGTAT GTGGCAAGCGATAGAGATGCGAAATCGCTCGAATCAAGAATCCGTCAGTACTTTAAAGGCACTGGAATAA GAGAAGATCCAAGACTGAACGGTGAGAAACTACCTTTAGGATACAGGGAAGGCTACACGCTCAAATTGAG CCTTGAGATGGCAGAATACTACCATCCTGAATTTGAAAGGCAGTATGCGGAGCACATCTACAAACTCCTT GAAGAGAGCATCGAAGGAAGGTTTAAGGCGTTCAACCTTCACTTGTCTATTAAGGGAGATGTGATGGAGA TCGTTCTTTACCTCGCAAGGTGA >gi|ll497621:350721-351221 (SEQ ID NO: 519)
ATGAAATGTGTGGAAGTGCACGTCATAGACTCCAGTGCGATCTTCCAGAGAAAGGCCGTTTACAGGAACA TGGTTACCGTGCCAGAGGTAGTGGCAGAGATCCTCGACGAGGCTTCGGCACTGTACTTCAGCGTAAAAAA CTTCAGGGTGGAGGAGGCGAGTCCTGAGAGCGTTGAAGAGGTGAAGGAGGCTGCGAGAAAAACCGGTGAC ATCCACAAGCTCTCAGATACGGACATAAAGGTACTGGCAAAGGCTCTGGATGAAATAAAGAAGGGGAACG AGGTCGTTCTTGTAACCGACGATTACGCTATCCAGAATGTGGCAATGAGCCTTGGAATAAGGTTCGACGG CATTCTCCACAGACAGATATCAAAAGAATTTAAATGGGTGAAGGTGTGTAGAGGATGTGGTAGAAGAATT GAGTCTGAAATTTGCCCCGTGTGTGGGAGTGAGGCTATAATTAGGAGGGTTAAAAATGACAAAAATCGAA ACTCTGGTTGA >gi | 11497621 :c534011-533655 (SEQ ID NO: 520)
GTGGGTATAGCAACGAAGCTCGACCCTACCCTTACGAAGAGCGACGCCCTCGTGGGAAATGTAGTAGGCC ACCCGGGCAATTTGCCAGACGTGCTGACGAGCTTTACGATGGAAGTGAACCTCCTTGAAAGGGTTGTGGG GCTTGATGAAGAAATGGAGGTCGAGAAGATAAAGATGAACGAGCCCCTCATGCTCGCAGTGGGGACTGCA ATAACTCTGGGAGTTGTGACATCAGCGAGGGATGACATCGTTGAGGTGAAGCTCAGAAGGCCAGTGTGTG CTGATAAGGGTTCGAGAGTTGCCATCAGCAGGAGAGTAGGGAGCAGATGGAGGCTGATAGGGGCAGGAAT AATAAGGTGA
>gi|H497621:c533685-533278 (SEQ ID NO: 521)
ATGGAGGCTGATAGGGGCAGGAATAATAAGGTGAGGTGCGCGGTAGTAGACACCAACGTTCTGATGTACG TATACCTCAATAAGGCCGACGTAGTTGGGCAGCTAAGGGAGTTCGGCTTCAGCAGGTTTCTGATAACGGC CTCAGTCAAAAGGGAGCTTGAGAAGCTCGAAATGAGCTTAAGGGGGAAGGAGAAAGTAGCGGCGAGATTT GCTCTAAAGCTTCTTGAGCACTTTGAAGTTGTGGAGACGGAGAGCGAGGGGGACCCCTCTTTAATTGAAG CCGCTGAAAAATACGGGTGCATTCTTATCACCAACGACAAGGAGCTTAAAAGAAAGGCGAAGCAGAGGGG AATTCCCGTTGGATACCTGAAAGAAGATAAAAGGGTTTTTGTTGAGCTGCTCGATTAG
>gi|H497621:c556664-556485 (SEQ ID NO: 522)
ATATTGAATTCACAGAGAAATATGTGTATGCCCAACATAACCTTATCATTACCTGAAGACCTCTACAGGA AGATGAAAAAATATGGTGAAATCAGATGGAGTGAAGTTGTAAGGAAAGCAATAGCTGAGTATCTGGAAAA GCTGGAAGAGATCGAGACTGAGGTTGGCTCCAAGGAACTTTAA
>gi 111497621 :c556392-556102 (SEQ ID NO: 523)
ATGGAGAAGAACCTTTACGATACAAACAAATTGATCGAATTGTACAAAAATAAGGAAAGTATGAGCGGAT ACACGACGATACTAAACGTTATAGAATTTCCAAAGGCACTTGAGTTCAATCTAACGGTATTATACCTATC AAAATCTGACTACAGGCTGGCAATAAAGATTTCTACAGAACTTTTAAAAATTGGAGAGCCAGTACCTGCT GTGTATACATTAATTTCTGCAATCGCTAATAAACAACGGTTTAAGGGTTGTAACGCTGGACAAACTTTTT ATGCTAGTTAA
>gi|H497621:c981711-981451 (SEQ ID NO: 524)
ATTTCAGGAGGGTTGAGTTTCTGGAGGTTGTTGAACTCTAACTTCCAACGAAACCCTTTTCTTCTTCCAA GAAAAATTACAGACATGCCAAAAATCATCGAAGCTGTTTACGAAAACGGAGTCTTCAAGCCTTTGCAGAA AGTTGATCTGAGAGAGGGGGAGAAAGTGAAAATTATAGCCGGAAATCTTGTTGAAAGACTTAGAAAATAC AGAGTGAAAGTGGATTCGGACATAGTTGCAGAATTCATTTCGGAGAGGAGATGA
>gi|H497621:c981451-981026 (SEQ ID NO: 525) ATGATGAGATATACAGTTGATACATCAATTTTCGCCGATTTTATTTTTGAATTCGATGAGAACAGAACAA GTGCGGCAGAAAAGGTTTTAAGCGAAATTAAAGGGAGAATTTTAAATCCTAAGGTCTTTAAAGTTGAGAT GACCTGCATTCTTTCAAGAAGATTCCATTCTGAGATTGTTGAGAAAATAATTTCTGAAATTTTAGAGGAT GTTGCACTGATTGAGAATCCTGACGAAATTGCATTCGAAGTTGCCCTAAAAACTGGAAGCAGAGCAATCG ACGCTTACTTCATCGCCACAGCAAAGCTCACAAACTCAATTTTGATAACCAACGACCGAATTATGGCTGA GAATGCCAAAAAAGCGGGTATTGAAGCTTACTATTTGCTGGAAGAGTTTGAAGAGGTTAAGAGAAGGTTG CAATAA
>gi|H497621:cl236899-1236693 (SEQ ID NO: 526)
ATAAGGGATGCACTGGGGATAAAGCCCGGAACGGTCATGAACGTTCACTTGGAGGGCAAGAAGATAATCC TCGAACCTTCTCCCGAACCACCGGACATTTTCGTCGATCTCGGAGAGAGGTCTGAGCAGATATTGAAAGA
GTCCAGAAAAATCGACGAGGAAAGAATGAGAAAACTCCTGAGGGATCTTGGTGTCGAAGGCGGTGATTGA
>gi|H497621:cl236709-1236260 (SEQ ID NO: 527) GTGTCGAAGGCGGTGATTGACACCGGCGTATTTGTTGACTACATTGACAGGAAGTCTCCGCTCCACGATG TAGCAAGAAATGTAATCAACTCTATTGGGCAGCTTGAGGTTCTTCTACCCTACGTCACCATAGCAGAGAT CTGCTACGTCACTGCGAGAGTGCTGAGGGAAGCAGGTATCGAAGAGTGGCTTGAAAAGTCCGTGGAGTTC GTTGAGTGGCTACAAAGGCACCCCGCAGTGGAAGTTGTCTGCTCAACCGAGCTCGACGTTGAGGCAGCTA AAGTTAAACTTCGATACGGCCTCGCCCTTGCGGACTGCTACGTCCTCGCCCTGTCCAAGCTGAAAAACTG CAAAGCAGTTTTCAGAAAGAGAGAGAAGGAGATGCCCGACAAAGTGGAGAAGGATTTTGACGTTATATTT CTCGAAGACTACGTCGGAGGTGATAGGTAG
>gi|H497621:cl535066-1534851 (SEQ ID NO: 528)
ATGGGAGAGATTATCGAGGCTGTTTACCAGAAGGGAGTTCTTAAGCCCCTCAGGAAAGTTAGCCTTAGAG
AGGGGGAGATTGTTAAGGTGGAGATAAGGGAAACAAAAAAGGTGACAGGAAGATTTTACGCAAAACTCAG GGAGCTTGAGAAGAGAATTGAGAGAGTTGAGGGAGCTCATCGAGAATTAGAGGAGATCAGGGATGATCGT TATTGA
>gi|H497621:cl534864-1534421 (SEQ ID NO: 529) ATGATCGTTATTGATACATCGATTTTTGTCGATTATCTTTTTGATAGGGATGAGAATAGAAATGAAAAAG CGAGGAAGTTTTTGAATTCCATTGAGGGATTGACTGTATTTGTTCCGAAAATCTTCGTTATTGAGCTGAT TTCAGTAGCTAAAAGGCTTGGGATTGAGATTTCGAGAAAGGATATTGAGGAACTTACATATGATTTCGAG ATTCTTTCAGAGGATTTCGTGTTTGATGAGGCTTTAAATGTCGCTGAAAAAGTTCATCCAAGGGCTGCGG ACTCATATTTCATAGCCACCGCCAGATTAACGAACTCCATCCTGATATCATCAGATAGATTAATGGTAAG GAATGGCAAGAAATATGGGATTGAGGCATACTGTTTGCTCGATGAACTTGAAAAAGCCTTAGAGGCGATT GGAAAGCTGAAAGGGGAGGGGTAA
>gi | 11497621:1978461-1978667 (SEQ ID NO: 530)
ATGGGACATGGATGTCTTCGTAGATACTTCGTTTGTGATATCCTACTAATAAAAACAGATAAGACAGAAA AAGCTATTGAGCTCTTCAACCGTTTAAATCCGATTGCAAGCGTAACGGTCTACGAGGAGTCCTTTTACAC
AGGCCTTCGAATTATAGCCCAGAAAAGGCTAAATATTAAAAATATGCTTATGCTCTCAGGGATTTTGTAA
>gi|H497621:1978694-1978912 (SEQ ID NO: 531)
ATGGATTTTGTAAAAGCTCTACATAATTTTTATGATGAAATTTACGTTGTTCAAGATTCGAGGGACTTGG AGTTAATTAAATCTGTCGCAGAGAAGTATAAATCACTCCCAAACGACGCCCTAATCGCTGCCACATGCAA ACATTACGGCATCAAAAAGATAGCCACCTTCGATGAGGATTTCAGGAGGGTTGACTTTCTGGAGGTTGTT GGGCTTTAG
>gi]H497621:c980157-979951 (SEQ ID NO: 532) ATGATTGTCATTGACACCTCTGTGTTTATTGATGCTCTGTTCAGATTTAACGAAAAAAGGTCAAATATGG CAAATGAGATTTTCGAGATTGCTCAGCATCGTCAAATTGCAGTTGTGGAGCCGGAAATATTCAGAATGGA GATAATCGGACAACTTGTCAGAAGAACTCCAAAGTCGGAAGCCATCACATTGTATGAAGGTATAGTGTAA
>gi|H497621:c980157-979948, C979947-979723) (SEQ ID NO: 533) ATGATTGTCATTGACACCTCTGTGTTTATTGATGCTCTGTTCAGATTTAACGAAAAAAGGTCAAATATGG CAAATGAGATTTTCGAGATTGCTCAGCATCGTCAAATTGCAGTTGTGGAGCCGGAAATATTCAGAATGGA GATAATCGGACAACTTGTCAGAAGAACTCCAAAGTCGGAAGCCATCACATTGTATGAAGGTATAGTGTAA AAAGTTAAGCTAATAGACTTTGCAGTCTTAAACGAAGTTGCATTTTCTGTTTGCTTGGAAACCGGCTGCA GAGCAATCGACGCTTACTTCATCGCAACTGCAAAGCTCGCAAACTCAACTTTAATAACCAACGACCGCAT TATGGCTGAGAATGCCAGAAAGGCTGGGATTGAAGCCTACTATTTGCTGGAAGAGTTTGAGAAGGTTAAG AAAAGATTGCAGTAG
>gi|H497621:c550521-550279 (SEQ ID NO: 534)
ATGGGAAAAGTAATCCAAATAGAAGTGCCCGATCGGGTTAATGAGAAACTAATAAACAAGTTGAAAGAAA TGCTGGCAGATAAGATATTAGACGAAATAGGGAAAGATTACGCTGATATCGACTTGTACAATTTGTATCT AACGCTAAAATTCCCCAAAACAGAAGACGTTACGTTTGATACTGATAAAGAACTGGAATACCTTAGAAAG ATGAAAGAGAAAGAGAAGAAAAGAGTATGGTCGTAG
>gi|H497621:c550285-550079, C550079-549951) (SEQ ID NO: 535) ATGGTCGTAGCGGACACGAACTTGGTAATTGAAAGAGTTAAGAAAAACGAAAGTATTGAAGAAAACATAA CGGAAGTAACTATCGTCGAATTTCCTCCAGTTATAAACTACAAAAAATTTCACGGAAAAGTTCTAATCAT CGAAAGAGGTGACGTTTTACTCTCTATAGAGCTACAAAGACGTTTAAGAATTGTTAGAAAGCCGAGAAAA CCATTTTCAGACCTTTTAATTGCCTCAATTTGTATAAATAGAGATGAAGAATTAATAACGAAGGATAGGG ATTTCTTAGACATCGCAGAAGTCTCAAATTTGAGAGTTAAGTTAATTGAACCGTGA
>gi|l5887359:cl001665-1001393 (SEQ ID NO: 536)
TTGGTGTATGATTTCGAAAATCGATACACCAAGGATTTTTCTATGCGCACGAATATTGAGCTTGATGACG CCTTGATCGCAGAAGCGATGGAAATCACTGGCCTTCCGACGAAAAAGGCGACGGTCGAAAAGGCGTTGCG CGATCTCGTAGAAAATCTCGGGCGGCGAAAAGCGTTGCAGGAACTTAGAGGTATCGGCTGGAAGGGCGAT TTAGAAGAAGTCCGCGGCAGCTGGAGCGCAGATAGTATAAAGTCGCAAGACGCCGCAGAATGA
>gi 115887359 :cl001665-1001393 (SEQ ID NO: 537)
TTGGTGTATGATTTCGAAAATCGATACACCAAGGATTTTTCTATGCGCACGAATATTGAGCTTGATGACG CCTTGATCGCAGAAGCGATGGAAATCACTGGCCTTCCGACGAAAAAGGCGACGGTCGAAAAGGCGTTGCG CGATCTCGTAGAAAATCTCGGGCGGCGAAAAGCGTTGCAGGAACTTAGAGGTATCGGCTGGAAGGGCGAT TTAGAAGAAGTCCGCGGCAGCTGGAGCGCAGATAGTATAAAGTCGCAAGACGCCGCAGAATGA
>gi|l5887359:c2106112-2105684 (SEQ ID NO: 538) GTGGCGATGACCGGCGATCAGATTGATAAGTCGTGGTTTTCACAACAGCTTAAGAGAAAAGGAAAGAGTC AGGCTGATTTGGCCCGCTTCCTGAATCTGGACCGCAGCGCGGTGACGCGAATGTTAAATGGGGATCGCAA TATGAGCGTGGAGGAGCAGGATCGGATTGCTGAATATCTCGAGATTCCGGTCGGCGACGTCGCTCTTCAT CGTCGGGGCGGAGTTGCCGGCTTTTCGGAAAACAACCAAACGGCCTATTCCGAACCTGCTCCGTCCGGAA GATCAGGCCCTGAGGCAGGCAATGTCAGTACAACTGAAAGTAGACATCCGATTTTCGGCTGTATGAAAGG CACGATTACCGTCATGCCCGATGTGGACTTAACCAAACCCGTTGATTTTGAATGGGGAGAAAAGCTCTAC AATGAGTGA
>gi|l5887359:c2105721-2105275 (SEQ ID NO: 539)
TTGATTTTGAATGGGGAGAAAAGCTCTACAATGAGTGACGGCTTTCTTCTCGATACATGTGCAGTGATCT
GGATGTCGCAGGGTGAACCTGTTTCAGACGAGGCGGTCAGTGCCTTGAACCAGTCCTATCGGGCAGGCGA TCCTGTTTGCGTTTCTGCCGTCACCGCATGGGAGATGGGTATGCTGGTTGCGAAGGGGCGCATCAGTGAG ACCAAAAGTCCCCAGCGTTGGTACGACGATTTCAAAAGGGAGGCTGAAGTCATCGAGCAGCCGGTGACCG CAGATATCTTTATAGCATCCTGCTTTCTTCCTCAGCTCGTCCATAAAGACCCGATCGATCGTATTTTGAT TACGACGGCGCGAGAACACGACCTGACCATCATCACGCGTGATCGCGTCATTCTGGCTTATGGCGAGGCC GGCCACGTTAAGACTTTAGCCTGTTAG
>gi|l5890089:2065160-2065423 (SEQ ID NO: 540)
TTGGTTACGACGGTATTACGGAAATTTGACATGACAACAACGGTAACGGCCAAAGGGCAGGTCACCATTC i
CAAAAGCTGTACGCGAGCTTTTAGGGATCTCACCGGGAAGCTCGGTCGATTTTGTCCGGGCTCCCGATGG ' ACGGATCGTTCTCGTCAGGGCGGACAAGAAACAGCCACTGACGCGTTTTGCTAAGCTGCGCGGACATGCC GGTGAAGGTCTTGGTACCGACGCCATCATGGCTTTGACCCGTGGTGACGAGTGA
>gi|l5890089:2065420-2065824 (SEQ ID NO: 541)
GTGACGCTTGTCGATACAAATGTGCTGCTTGATCTTGTGACGGACGACCCGGTTTGGGCCGATTGGTCAA TCGAGCAGCTCGAACTGGCAAGCGTTTCAGGTTCGCTGTACATCAATGACGTTGTCTACGCGGAACTATC TGTTCGATATGAGCGGATAGAAGAGCTTGACGCTTTTGTTGATCAGGCGGGGTTGAAGTTCACCCCTTTT CCTCGCGCAGCGTTATTTCTGGCAGGTAAGGCCTTTACCAAGTATCACCGGGGCGGCGGGACCCGTACCG GTGTTTTGCCTGACTTTTTTATCGGCGCCCACGCAGCAATACAAAACCTTCCCTTGTTGACGCGAGATGT GGCTCGTTACCGATCGTATTTTCCAACTGTCACTTTGATCTCACCTGAAGTTTAG
>gi]17933925:c2106219-2105797 (SEQ ID NO: 542)
ATGACCGGCGATCAGATTGATAAGTCGTGGTTTTCACAACAGCTTAAGAGAAAAGGAAAGAGTCAGGCTG ATTTGGCCCGCTTCCTGAATCTGGACCGCAGCGCGGTGACGCGAATGTTAAATGGGGATCGCAATATGAG CGTGGAGGAGCAGGATCGGATTGCTGAATATCTCGAGATTCCGGTCGGCGACGTCGCTCTTCATCGTCGG GGCGGAGTTGCCGGCTTTTCGGAAAACAACCAAACGGCCTATTCCGAACCTGCTCCGTCCGGAAGATCAG GCCCTGAGGCAGGCAATGTCAGTACAACTGAAAGTAGACATCCGATTTTCGGCTGTATGAAAGGCACGAT TACCGTCATGCCCGATGTGGACTTAACCAAACCCGTTGATTTTGAATGGGGAGAAAAGCTCTACAATGAG TGA >gi|l7933925:c2106219-2105797 (SEQ ID NO: 543)
ATGACCGGCGATCAGATTGATAAGTCGTGGTTTTCACAACAGCTTAAGAGAAAAGGAAAGAGTCAGGCTG ATTTGGCCCGCTTCCTGAATCTGGACCGCAGCGCGGTGACGCGAATGTTAAATGGGGATCGCAATATGAG CGTGGAGGAGCAGGATCGGATTGCTGAATATCTCGAGATTCCGGTCGGCGACGTCGCTCTTCATCGTCGG GGCGGAGTTGCCGGCTTTTCGGAAAACAACCAAACGGCCTATTCCGAACCTGCTCCGTCCGGAAGATCAG GCCCTGAGGCAGGCAATGTCAGTACAACTGAAAGTAGACATCCGATTTTCGGCTGTATGAAAGGCACGAT TACCGTCATGCCCGATGTGGACTTAACCAAACCCGTTGATTTTGAATGGGGAGAAAAGCTCTACAATGAG TGA
>gi|17936711:c9596-9333 (SEQ ID NO: 544) TTGGTTACGACGGTATTACGGAAATTTGACATGACAACAACGGTAACGGCCAAAGGGCAGGTCACCATTC CAAAAGCTGTACGCGAGCTTTTAGGGATCTCACCGGGAAGCTCGGTCGATTTTGTCCGGGCTCCCGATGG ACGGATCGTTCTCGTCAGGGCGGACAAGAAACAGCCACTGACGCGTTTTGCTAAGCTGCGCGGACATGCC GGTGAAGGTCTTGGTACCGACGCCATCATGGCTTTGACCCGTGGTGACGAGTGA >gi|l7936711:c9336-8932 (SEQ ID NO: 545)
GTGACGCTTGTCGATACAAATGTGCTGCTTGATCTTGTGACGGACGACCCGGTTTGGGCCGATTGGTCAA TCGAGCAGCTCGAACTGGCAAGCGTTTCAGGTTCGCTGTACATCAATGACGTTGTCTACGCGGAACTATC TGTTCGATATGAGCGGATAGAAGAGCTTGACGCTTTTGTTGATCAGGCGGGGTTGAAGTTCACCCCTTTT CCTCGCGCAGCGTTATTTCTGGCAGGTAAGGCCTTTACCAAGTATCACCGGGGCGGCGGGACCCGTACCG GTGTTTTGCCTGACTTTTTTATCGGCGCCCACGCAGCAATACAAAACCTTCCCTTGTTGACGCGAGATGT GGCTCGTTACCGATCGTATTTTCCAACTGTCACTTTGATCTCACCTGAAGTTTAG
>gi|23464628:391430-391864 (SEQ ID NO: 546) CTGATTCGGCGACTGCGGGAAGACCCAGTCCAAGCTCAAAAGGCGGATGCGCATGATGCATATCCGCCTT TTTTCATGCGTGCATACCTCATCACCCGTACTGCAAGCAAAACGACAGCACCTCATGCTAGCATTATGAC AGCAACAAGGAGGTGCATCATGGCAACATTGACCATCCGAAAAATACCCGATGAGCAGATTCAGCAGCTC AAAGAAGTGGCTGAGAAAAACAACCGCTCCATGGAATCTCAGGTGCGATCCATTCTTGAAGAATGGCTGG CTGGCACGGTGGCGCATGAAATCACGCGAAAGACCAATTTCTATGACGAGATCCGCGAATTCATGAAGAA CATGGATTTTGAGGGACTCGACAAGGGGGAACTCCCACTATCCGAGCGAAATTCCGCCGATTCCCGACCG CCAGTATCTTTTGAATAG
>gi|23464628:391877-392296 (SEQ ID NO: 547)
ATGATTATTCTGGACACCAACGTCATCAGCGAAATCATCAAGAAACAGCCAGACGAACACGTTGCCAATT GGCTGAGGAACCAAGATACAAGCAATTTGGCAACCACCGCCATCACCGTCGCCGAGTTGTTGGCCGGAAT ATGTCGCATGCCTGAAGGCAAACGACGAAAGTACACAGATACGACCGTCAAGCTGGCGCTTATGACATTA GAGGACAGAACGTTCGCATTTGACACTCAGGCAGCTGCGGATTATGCCCATATCCTTGTCGAACGCGAAC ACAGGGGCACACCTACCAGTATTCAAGACGCCATGATTGCGGCAATTGCCTGTTCCTGGGATGCGGCCAT AGCCACGCGCAATATCAAGGACTTCGAAGGTACCGACGTGGAATTGATTAATCCGTGGGAGTTTGCATAG >gi|23464628:cl249274-1248957 (SEQ ID NO: 548)
ATGACTATGGCCATGGTGACGGCGCGCGTCAATGCCGAACGGAAGCGTGACGCGGAGAAAGTGCTTAAGC GTAATGGGCGCACCTATTCGGACCTGATTCGTGATCTGACCGACTACCTTGCGGATACGGGGGAACTGCC GGAATTCGAGCGTCTGACGCTCTCCCTGATTCAGGAGCGGGAGCGTAGGAAAAAGCAGGAGTTGATTCAA CGTTTCGCCGACCGGAATTTGCCGGAGGCGGAAGGCGATCTTTCGGATGAGGAGATTCTCGCGCAGGCAC GTATGGAACGATTTGGGGGACGGGATGAAACTGCTGTTTGA
>gij23464628:cl249274-1248957 (SEQ ID NO: 549)
ATGACTATGGCCATGGTGACGGCGCGCGTCAATGCCGAACGGAAGCGTGACGCGGAGAAAGTGCTTAAGC GTAATGGGCGCACCTATTCGGACCTGATTCGTGATCTGACCGACTACCTTGCGGATACGGGGGAACTGCC GGAATTCGAGCGTCTGACGCTCTCCCTGATTCAGGAGCGGGAGCGTAGGAAAAAGCAGGAGTTGATTCAA CGTTTCGCCGACCGGAATTTGCCGGAGGCGGAAGGCGATCTTTCGGATGAGGAGATTCTCGCGCAGGCAC GTATGGAACGATTTGGGGGACGGGATGAAACTGCTGTTTGA >gi|23464628:1737372-1737734 (SEQ ID NO: 550)
ATGACCATGGTCCAAATGAACGTTCGCATTGATGCGAAACTGAAGAACGAGGTCGAAGAAGTCCTCAAGG GCAAAGGCGTATCGGTGAGTGACGTAATCCGGTCGCTGTGGTTGTACATCGCCGACCGCAAGGAAGTGCC GGCATTGGAAACGACCGCCGAAGAGCAAGCCCGCGAGGAGGAAAAGCAGCGCAAGCTGAAACTGATTCGA GAAGGTGCCGGATACGTACACAAGGAACTGGTCAAGGCCGGACTGATCTCAGAAGACACCGACCTCATGG AAGGCCTTACCTACAAGCAGTTCCGCGACAAAATGTACGACGAGCAACTTGATACGTATTACAACATGAA GAGGGCCGATTGA
>gi|23464628:1737734-1738225 (SEQ ID NO: 551) ATGACCGACGTTTCCATGCAGCGTATTTTGCTTGATACCAATGTACTGTTGGACTATTTGCTCCATCGCG ATGATCACGCCAAGATGGCGGAAGCGGTTATGGAACTTGGCGCGAAGAACAACATTACGTTGTTGTGCGC GTCATTGTCGCTGAAGGATATCGCATACCTATCATCATCGGCGATTCGTAGGGAATTCAAACCGAATGAA TCGGAAGTGGAGAATTTCACTCGCGGCTTTCTGTCGTCACGGGTGCCATGGCGTTGTATCGAGCAGGTGA AGGAGATGTGTGACATCGTCGCTGTCGATGAGTCGACATGTGATAAGGCTTTTTCCCTGCAAAAACGGCA TCGGGATTTTGAAGATGATCTGATCATCGTTGCCGCGCAACAATCCGGTGCCAACTGTGTGGTCACATCG GATGCCGAATTAATCAGTCATTTTCCCGAATATTGCAAAACACCGGCTGAAATCGTGGCGGCGCTGGAAT AA
>gi|l5805042:418314-418571 (SEQ ID NO: 552)
GTGAGTGACGCGGAGGGCGGCTACACTTTCCCCATGACGACGTTGGAGGCCCGGATTGAGAACGGCAAGG TGGTGCTCACCCCTGAGCAGGCCGCCGAACTGGGCCTGCGCGAAGGCGAAGTGCTGCCGGTGACGATTGC GCCGCACGAAGCGGAAACGGAAGGCAACCCCTTCACCCGCTGGATTGGGACGCTCCCCCCACTGCCTGAC GGTGAAGAGTCTGCGCGGTTCTACCGCCGCCTGCGAGACGGCGAATGA
>gi|l5805042:418568-418981 (SEQ ID NO: 553) ATGACAGAGAGCACCGTGCTGGACGCCAATATTCTCAGTGCCCTGCTCCGTTCTGAGGCGAACCCTCTGT CCATTGCGCGTCAGCTTTCGGCGCTGGCCCGTGAGGGTTCACTAGTGGTTTATGCCGAGTTGCTCGCGGG CCCTGAGGTTACGCCCGATTTCCTCAAGGGATTTCTGCAAGAGGTGGACGTGCAGATTCTTCCGCCGTCT GGCCTTGCGGTCTGGGAAAGCGCGGGCCTCGCTTATGGGAGCTACGCTCAGCGGCGGCAACGCAGCGGTG GTGGGTCGCCTCGCCAGATTCTGAGTGACTTTGTGATTGGTGCCCATGCCCTGTATCACGGCGCCGCTCT CTTCACCGCTGATCCTCAGCATTACCGCCTCAGCTTCCCAGCCCTCACAGTCCTGACCCCATGA
>gi 115805042.-C1546386-1546141 (SEQ ID NO: 554)
ATGACGCGCCTTCTGGTCAACGTGGAACTGGACGAGCAGGGACAGCCGGTCTTTCAACTCACGCCCGCGC AACTGGCTAAACTGGGGCTGTCTGGAAGCGCCGTCCATGTCGCCCGCTGGGAAGTCGCCGCGCAGGAAGC GGCGCAGCCAGCGCAAAGTCCTTTCCGCAGGTATGTGGGCATCGCTCCGCCGCTAGAAGGCGGCAGCGTG GAATATCACCGCCAGCAACTGGGTTATGAGGAATGA
>gi|l5805042:cl546144-1545719 (SEQ ID NO: 555) ATGACGCTGGCGCTGGATACCAATATCCTATCGGCCATTTTCCGGGCAGAGGAGACGGCAGAGGCGGTGC TGGGCGTACTGGAAGCTCAGCCACCGGGTACCCTGGTGGTCAGTGGCGCGGCATTCAGTGAATTTCTGGC TTCCCCGAACATTGCCGAGGCCAGCGCGTTTGCCTTTCTGCGTGATACCGGTGTACGGGCAGACTGGCAG ATGGATGAAGACCTTTGGCTCTGTGCTGCACGGGCTTTTCGGGGCTATTCGGTCAGGCGGCGGCAAAGTG GAGGTGGACAGCCGCGCCGGATTCTGGCGGACTTCATGATTGGTGCTCATGCTTTGCTGCGGGCGGACGC ACTCGTTACCCTTGACCCGCAGCACTATCGCCTGAATTTTCCCGAGTTACGGGTTATCAATCCTGCTGAG GGATAA
>gi|l5789340:c67955-67662 (SEQ ID NO: 556)
CTGGATGACGTTTCGACGAGTGCAGTCGGAATGTGTCGGGATTCCCATGGGGCGGAGTTAGAGATGTCGG GGGTGGCAACTGGCGGTTCGCGGGCGCCAGCGGCGCTGGGTTTGCTCTTCAACGAAAGTGGGATTATTGG TGGAAACATTTACTCAGTTGCGGACGTAACTCTAGGTATGTCGAAAGCAGTGAAAGTTGACGAGGACGCG AAGTCCCGTCTGGAGGAACTCCAGGCGGAGATTCGCTTGGAGACCGGCGAGTCGGTCACCCAGCAGGAAC TGCTGTCGCGGCTCATC
>gi|l5789340:c67491-67057 (SEQ ID NO: 557) ATGACGGTGCTCGTGGACACGGGCGTGCTGTACGCCGACCACGACACGGATGCAGCGAGACACGAGGCGG CAGCAGGCGCGTTGGACGCCGTCTACGACGGCGAATTCGGGCAGCCGTACGTGAGCGACTACCTCTACGA CGAAGCGGTAACCCTAGCGCTCGCACGCAGCAGTTCGTTTGACGTAGCACAGCGACTCGGGCGACGTCTC CGGGGCGCCGACCCGTACCCAGAGACGTACCGGATGCTGGACGTGACCACTGCGGTCTTCGATGATGCCG TGGGCGTCTTCGAGCGACTCGACGACCAGCAACTGAGTTTCACGGACGCGACGACAGTAGCGCTGATGCG GCGTCACGACGTCGACGGCGTCCTGAGTTTCGACGACGACTTCGACGGTTTGGTGGATCGACTCGACCCG GCAGCCGTGGTTTGA
>gi|l5789340:cl474604-1474407 (SEQ ID NO: 558) GTGATGGGGTCGGACGGCACGGAGCTTGGCATGCTGTACAACATCACGATGGACCTCAAATCCGGCACGC TGGAGCACCTGCTCGTCGAGCAGACCGAGGAGTCCGTCGCCGCTGACTTCCCGATCGGCGACGACGGCCG GTACCGCGTTCCGGTGAGCCGCGTGCAAGCAGTCAAAGACTACATCGTCGTTCGCCGATAG
>gi|l5789340:cl474272-1473943 (SEQ ID NO: 559) ATGCGGGTGCACGTTCCCGCACAGGACGCCCGCGAGGCCGTGCGCCAGGCCGCGGCCACGACCGGCGACG CCGACGTGCTCTCCGAGACCGACCGCCGGCTGTTGGCGACCGCCCACGAACTCGACGGGACGCTGGTCAG CGACGACTACGCGATGCAGAACGTCGCCGCCGAGCTCGCCGTCACGGTCGAGTCGATCTCCCAGGACGGC ATCACCGAGCGCCGCGACTGGCGCCTCCAATGCCAGGGGTGTGGCCGCGAGTTCGACGACACCGACCACG ACCGCTGTCCCGTCTGTGGCAGCCCCCTCGAACGCAAGAACCCGTCGTAG
>gi|l5789340:cl510923-1510639 (SEQ ID NO: 560)
CTGCCGCCGACGTGGGAGTCCTTCGAGATGGACGTGGATCTGCTCGAGCGGCTCGTCGGCGCGGCCGACG GCGAGCAGATCGACGACATCTCGACGGGTGAGCCGCTGATGCTCACGGTCGGCACCGCCACCACCGTCGG CTCGGTGACGAGCGCGCGCGACGGCGAGTGCGAGGTCGCACTCAAGCGGCCCGTCTGTGCGCCCGCCGGC GCGAAGATCGCGATCAACCGTCGCGTCGGCGCGCGCTGGCGACTCATCGGCGTCGGGACGCTGACGGAGT CCGAGTAG
>gi|l5789340:cl510631-1510248 (SEQ ID NO: 561)
ATGCAGGCGGTCGCCATCGACACCAACGCGTTGTTGTTGCCGGCCACGCAGCCGCTCCGGCTCTTCGAGG AGCTCGACCGGCTGCTCGGCGACTACGACGCCGTTGTCCCCCAGGCGGTCCACGACGAGCTCGTGGCGCT CGCGGCGGGCGCGGGAGAGACGGCGTCGGCGGCCAGCGTCGGCGTGGATCTGGCGACCGACCGGTGTGGC ACGCTCCGGACAGACGTATCGTATGCGGACGACGCGCTCCACGCGCTTGCGGTGAGTGAGGACGTGGACG CGGTCGTGACGAACGACGGCCCCCTGAAAGAGCGCGTGCTCGACGCGGGCACACCGGTAATTCATTTACG GGGCCGGACGCAACTCACCATCACTCGACCATAG
>gi)24212700:c930850-930617 (SEQ ID NO: 562)
ATGAAATCGTATCCGGTTGGCGAGCTTAAATCGCATTTCTCTGAAGTCTTAGAATCGGTTAAAAACGGTG AAAGTGTAGGAATACTATATGGAAAGGGCAAGAAGCCGATTGCCATGATTATTCCTATGAAAAGTAAAAA GGAAGGGAAAAGAAAAATAGGATTATTGTATGGAAAGGTAAAAATTTCTTTCTCTAAAGGTTTTAAAATT TCCGAAGAAGAGTTTTTAAGTTAA
>gi|24212700:c930615-93021 (SEQ ID NO: 563)
ATGAAGTATTTGCTTGATACTCATGTAATTCTTTGGATAATCGGTTCATCTAACTTATTAAGTAAAAAAG CTAAAGCAACTATCGAAAATTCGGAAAATAAAATCTACGTTAGCTCAGTTTCTCTTTGGGAGATTTCACT GAAATTTAGATTAGGAAAACTTAGTCTTTCCGGAATGAAACCATCGCAAATCCCAGAAATTCTCTCTAAA TCCAATATTGAGACTATAAATCTTGAATCAGCCGATGCAAGCACATACGGTCAATTAAAGGTTATGCATC ATAGAGATCCATTCGATAGGATGCTAATTTGGCAATGTATTTTAAGAAAGTTTACATTGATAAGTAAAGA TTCAAAAATGAAAAAATATAGATCACATGGATTAAAAACACTTTGGTGA >gi|l3470324:c3134762-3134493 (SEQ ID NO: 564)
ATGCGCGTGACCACCAAAGGGCAAGTGACAATCCCCAAACCGATAAGGGACCATCTGGGCATAGGTCCGG GCTCGGAGGTGGAATTCGTGGCCACCGACGGGGGCGTTCGGCTGGTTCCCGTCAACGAGAACCTCTCGCA TGAGGAGAAATTGCGCAGGTTCCACGATGTCCTCGACCGGATGGAAGGCACGTTGGATCTGGGGGGCATG ACCACCGATCAATACATGGAGTGGTTGAGGGGGCCGCGTGAAGATCTCGACATTGATTGA
>gi|l3470324:c3134515-3134096 (SEQ ID NO: 565)
GTGAAGATCTCGACATTGATTGACACAAATGTCCTGATCGACGTTTGGGGACCAACCGGGCCGATGAAAG AATGGTCGGCATCGGCAATCGCTTCATGCCGCCGCGACGGCGCATTGGTCGTCAATTCGATCATCTGGTC TGAACTGGCGCCGCTGATCGCGACAGAGGCCGCGCTTCGAAAAGCCGTCGACATGCTCGAGATGGATCGC GAACTTATACCCTGGGACGCGGCATTCCTTGCTGGCGTCACGCATTCCCGCTATCGCCGGGCCGGTGGCG TCAGGGAAAGGACCTTGCCTGATTTCTTTATCGGCGCTCATGCGTCCGTTGCCGGACATCGTCTTTTGAC ACGCGACGCCACGCGTTATCGCAGTTACTTTCCCGACCTCGAGATCATCTCTCCGGATATGCACCCATGA
>gi|l5678031:202303-202899 (SEQ ID NO: 566) ATGTACGTGGCCAGGTCCTTTGACATAAACAAACCTGGCGCAGACCCCGAACACCTCGCAGGAGGAGTTA TAGGGGGCTCACTGGTCCAGGGCAGGCTCAGGGTTGGAGACGAGATAGAGATAAGACCGGGCATACAGGT CAAAAAGGACGGTAAGCAGACCTGGATGAGTCTGCACTCCACAATCACGGGCCTGGTGGCCGGTGGAGAG GAGATGGAAGAAGTTGGACCCGGCGGACTCGTGGGTGTCGGGACACTCCTGGATCCAGCCCTCACCAAGG CGGACTCACTTTCAGGGTCAGTTGCCGGGGAACCAGGCACACTGCCACCTGTAAGGCACTCATTCACCAT GGAGACACACCTCCTGGAGAGGGTTGTCGGTACCAAGGAGGAGACCAAGGTCGAACCCATAAAGACAGGG GAACCCCTGATGATAAACGTCGGTACCACAACCACGGTGGGTGTTGTCAAATCTGCCAGGGCAGATGATG CCGACGTGGTCCTCAAACTCCCTGCATGCGCAGAGGAGGGTCAGAGGATAGCCCTCTCCAGGCGTGTCGG TGCAAGATGGAGGCTGATAGGATATGGTATCATCAAATAG >gi|l5678031:202927-203286 (SEQ ID NO: 567)
ATGATACCCTACCAGTTCCGGGTCGACATCGTATCCGAGCTCCGGAGACTCTTCCCAAAAAACGACCTTC TTGTCCCATCCTTCGTCATAGGGGAACTTGAAGGCATAAAGAGACATTCAGGCGGTGATGCGAGGATAGC CGCGTCCGTTGGACTCGCACTCGCAAAGAAACCCCCCTTCAGGATTTTTGAGGAGAAACTCCTTGAAGGT GAAACCGTTGACGACGCGCTTCTCCGGATCTCAGATGTCCTCTGCACCAGCGACCGGGAACTCAGAAGAA GGGCAAGGTCGAAGGGAATACCTGTTGTCTACCTGAGACAGAAAAGATATCTTGGAGTGGATGGGCATAT ATTGGAGTAG
>gi|l5678031:1698784-1698945 (SEQ ID NO: 568) ATTAGATTCTGTGGTAATACTTTTTCATGTCAGCCCGGTTACCATTCAGCAGCTCTGAAGACTTTAAGGA TGGAAACAGACATCCACATTTTTGCAGGAATCTTTCCTGGGGCAGTGCAGCTGATTGCATTTTTCCTCTT CATCATCTCAGGGTACATTTATTAG
>gi|15678031:1698982-1699497 (SEQ ID NO: 569) ATGCATATTGATAATGTGGTTTTTATGAAGAAGGTTCTTGACGCGTCTGCCTTCATAAATGGATACGTGC CAGAGGGAAGGGAAAATTACACTGTAAGATCGGTCACAGAGGAGATCAGGGATTTCAGGTCAATGATGAT ACTGGAGGATGCACTGAGGGAAGGTAGACTCAAAATAACCGAACCCGACCCTGAGAGCATGAAGGTGGTG GAGGACGCCATCAGCGAATCAGGAGACATAATGAGACTTTCCCCCACAGACATGGAGGTCATAGGCCTTG CAGTTTCCCTGAGGGGGAAGGATGACGTCACTGTGATAACAGACGACTACACAATACAGAACACACTGAA AATCCTGGGTATAGGGTTCAGGAGTGTTCTAACATCAGGTATAAGGGACACCTACAGCTGGAGACGGGTA TGCACCGGGTGCCGGAGGGTGTACCCCCTGGACTATGAATTTGAGGAATGTGAGATATGCGGTTCAAGAA TAGTCCGCAAGAGGCACAGAAACTGA
>gi|l5668172:c846334-846143 (SEQ ID NO: 570) ATGATTTCTGCAAAATCTAAAACAAAAAGGATTACTATAACTTTTGAAATTCCAGAAGATATTGATGCTA AAAAATTCAAAGATGATGTTAAAAGATATGTTAGATATAAATTACTTGCTAACAAACTCTATGAATTATT AGAAGGTGAAAATATTGAAGAAATTGAAGAAGAAATTAGAAAAAGAAGAGAGTAA
>gi|l5668172:c846189-845779 (SEQ ID NO: 571) GTGAAAATATTGAAGAAATTGAAGAAGAAATTAGAAAAAGAAGAGAGTAAAATATTGGTCGATACTTCAG TTTTAATTGATTATTTTAAAAAAAGAAGATTGGAAGAACTCGGAGGAGAAGCGATTTCAATAATAACAGC AGTCGAATTTATTAGAGGTATTTCAGAACACAAACAAGAACAAGTTCTAAATATTTTTAAAGAGTTGTTT GAGATTGTTTATATTGATGAAGAGATAATTATACCATTTTCAAAAATTTACCGACAATTAAAAAAGAGAG GTATGCTAATAGACGATGCTGACTTATATATTGCATGCACCGCAATAATCAAAAATTATCCATTATGGAC TAAAAACAAAAAACATTTTGAGAGATTAAAAGAATTTGGTTTAAAAATATATGATAAGTGA
>gi|l5668172:cl268398-1268213 (SEQ ID NO: 572)
ATTAATGAATCAATTATGCAATTGTTATATGATTTAACTAAAATGAACTATTCTGCACTATATGGAGAAG GTAGATATCTTAGAATTCCAGCACCAATACATTATGCAGATAAATTTGTTAAAGCACTTGGTAAAAATTG GAAAATAGATGAAGAACTGCTAAAGCATGGATTCTTATATTTCATATAA
>gi|l5668172:cl268189-1267794 (SEQ ID NO: 573)
ATGTATAAAATAGTTCCAGATACCAACTTTTTAATTTACGTTTTTAAGCATAAGATAAACTTTGATTATG AGATAGAGAGGGCTTTAAATACAAAATTTGAAATTGTTATTTTATCTCCAATAAAAGAGGAGTTGGAAAG GTTATTAAAAAGTAGAGATTTAAAAGGTAAAGAAAAATTGGCTGTTAATTTAGCTCTTGCAAAGATAAAA AACTATAAGTTAGTTGATTACACTGCCAATTATGCAGATGAAGCAATTTTAAATTATGCAAAGGAAAATG AAAACGTTATAGTAGCAACAAACGATAAAGAACTTAAGGAAAAATTAATGGAAAATAACATCCCAGTGAT GGTTGTTAGACAGAAAAAATATTTTGAGATTTTTGGAATGGTATAA >gi 115668172: 1445372-1445695 (SEQ ID NO: 574)
ATAGTGCAAGGCCCTGTAATAATTCCTTTAATTTCAACATTAGGATTGAGTTTTTTGGCTATACTTTTAG CGTATAAAATATCTTTTAGTGTTATTGGTTTTATAAACTCCACTCTACCAACAACTCTCTTCCCATCAAA GCCATACATGTTGTTTGTGAAAATCTCAACCATATCTCCTCTAACCTGTCCATCACTTATAATATTAACT CCAGCTTTAACCTGGTCTTTAACAGCCCTCTCTATGGCATATTTATATTCATCATACAAGCCAAATACCT TTTTTACCTTATCTAAGAATGTTTCTTCCTTTTTAACTACTGGATAA
>gi|15668172:1445712-1446305 (SEQ ID NO: 575)
TTGTTATCATTGCCACCACCAGAATTTTATAAATTATGGATTATTAATAAATCTCCTTATCAGTTATTTA
ACATTTATAGGAGTGGAATCATGAAGGTTAAGGTGTTGGATGCTTCAGCTATTATTCATGGATACAACCC AATTATAGAGGAGGGGGAACATTACACAACCCCAGAAGTTTTGGAAGAGATAGAATCAAAAAAAATTATT GTTGAACAAGCATTAGATTTTGGAAAATTAAAAATAATGAGTCCTAATAGGGAGTATATAAAAAAGGTTG AAGAAGTTGTTAAAAAAACTGGAGATAATTTGTCTCAACAAGATATTGGTGTCTTAGCTTTAGCTCTAAA TTTAAACGCCATATTATATACTGACGATTATGGCATTCAAAATGTAGCTAAAAAATTAAATATTGAAGTT AGGGGAATAGCTTTTGAACCAACAAATAAAGATTTTATTTGGAGAAAGATTTGTGAAGGTTGTAAAAAAC TTTATCCAGTAGATTATGAAGAAGATATATGTGAGATTTGTGGTAGCCCTTTAAAGAGGAAGATGGTTAA ATCGAGATTAAAGAAGAAAAGGAAGAAAAAATAA
>gi|20093440:1478697-1479293 (SEQ ID NO: 576) ATGTACATCGCCCGATCGTTCGACGTCAACAAGCCCGGTACCAGACCGAGCGACCTCAAGGGCGGCGTGA TAGGAGGAGCCATCGTCCAGGGAGAGGTCGAGATCGGTGACGAAATCGAGATACGGCCGGGAATCCGGGT GGAGCGATACGGTCGTACCGAGTGGGAACCGGTGTACACGGAGGTGGTGAGCCTCCACGCGAACGTGACG CCGGTGGAGCGTGCGAGACCCGGCGGTCTGGTCGGTATAGGCACGAAGCTAGACCCCACCATGACCAAAG CGGACCGGTTGTCGGGCCAAGTGGCCGGAGAACCCGACACATTGCCGCCCGTCCGTCACGAGCTGCTGTT GGAGGTGGAACTGCTCGAGCGGGTGGTAGGAACCGAAGAGGAGCGTAAGGTGGAACCCATCCGGACGAAC GAGGTACTGATGCTCACCGTGGGTACGGCGACTACAGTGGGCGTGGTGACCAGTGCACGGGACGACGAGA TTGAGATCAAGCTGAAACAACCGGTGTGCGCCGAAGAAGGCGACAGGGTCGCGATAAGCCGTAGGATCCA GCGGTGGCGTCTGATAGGCCACGGTGTCATCAAAGGGTGA
>gi|20093440:1479303-1479695 (SEQ ID NO: 577) GTGACCATCAGAGTCGTGTTGGACGCTAACTTCCTCATGATACCGCATCAGGAAGGGGTGGACGTGTTCT CCGAACTCGACCGCCTCTTGGGCTCCTACCGACCCATCGTTCCCCGTCAGGTCCTCGAGGAACTGGAGCG CGTGAAGCGTGCGGCTACCGGTCGGGACAAGATCGCGGCGCGAGTAGCCCTATCCCTCGTAGACGCTAAA GGGATCGAGGTAGTGGACGTTAAAGGGAGGGACGGAGACGAGGCAATCTTGAACCTCGCCCGACGGTGGG ATCGAGTGTACGTGGGCACCCGAGACAAGGAGCTCAAAAAGCGCCTGTGGAAACTCGGTGTTCCGGTGAT AACGTTGCGTCAGCGCACACACCTGGTGATCGAGCGGGGTTAA
>gi|20088899:1173673-1173882 (SEQ ID NO: 578)
TTGATATTTATGGGATCAACAGCAGAAATCGAGAAGAGACTTATCGAACTCGATAAGGAAATTCATTCCA TCCTCAACATGGTTAGAAAAAAAGAAGGAAAAAGCTCAAAGGAAATTGTAGAATCGGCCTGTGGGGCATG GGGTTACGATGTAGAGAGTGAAGAGTTTGTTGACCAGCTGAGGAAATCTTCACGTCTGGATTGGGTAGAA TGA
>gi | 20088899.-1173873-1174226 (SEQ ID NO: 579) TTGGGTAGAATGAAATTTTTTGTAGACACATCGATATTTGTTGACTGTCTTCGAAAAGAGGTCATTCCGT CTTCCAAAAGCTTTCTGGAACGTATCGGAGATGAATATTCAGGTTATACGTCATCAATTACCGTCGCCGA ACTGAGTGTTGGCGCTCACCTTTCAAGATCCCAGGATGCCCTTGAAAAAACACTTGAACTACTTAATATT GTAGAAGTAATAGATCTTGATTCGAGAATAGCAATAGATGCAGGGAAAATTTATGCTGATCTCATCAGAA GCGGAAAGAGAATTGAGTTGAATGACTGCCTGATTGCAGCAACAGCCCTTTCTCTAGGCATAAATAGAGA ATAG
>gi|20088899:4548892-4549509 (SEQ ID NO: 580)
GTGGATAAGCCTGCCAGCATGTTGATCGCCCGATCTTTTGACATTAACAAGCCCGGAGCCTCAATCGATG
AAATCCGCGGAGGAGTTATCGGAGGCACCCTTACGGAAGGCGTACTTCACCCCGGGGACGAGCTCGAGAT AAGACCCGGAATAAAAGTCACAACAGAAGGCAGCACCAAATGGATTCCTATCGTGACAACGATTTCATCC ATTTATGCAGGTCCGACAAAGGTAGAGGAAGCAACTCCGGGTGGGCTTCTGGCTGTCGGAACTTACCTTG ACCCCACCCTGACGAAAGGCGACTCTTTAACCGGACAGATCGCAGGCGTCCCAGGCACCCTGCCTGAGAC CAGGCACCAGTTTGTCATGGAACTTCACCTGCTCGACAGGGTTGTGGGAGTTACAAGGGAAGAAAAGATA AATGAAATCAAGACCAGTGAACCCCTTATGCTCAATATAGGGACTGCAACGACCGTAGGGATCGTTACAA GTGCCAGGAAAAATGAAGCTCAGGTGGCACTCAAGCGCCCGATAAGCGCAGCCGTCGGAGCTATGGTTGC TATTAGCAGGAGAATCGATTCCCGCTGGCGGCTCATTGGAGTAGGGGTAATAAAGAGTTGA
>gi|20088899:4549509-4549874 (SEQ ID NO: 581)
TTGAAAATCATAATCGATACTAACGGGTTCATGATCCCTGTCCAGTTCGGAGTGGATATTTTCGAAGAAC TGAAAAGGCTGGGTTTTAATGAGTTCTATGTGCCTGAAGCTGTTGTATTTGAAATCGAAAAACTCATAAA GCGGGAAAAAGGTTCAAACAGAACGGCCGCAAAGGTTGCCAGGTCCATGATGGACAGGTGCGAACGAATA GCCGGAACGGGACCTGCGGATGATGTGATTCTCAGGCTCGCGGGCGAGATGGAAGCGGCTGTTCTGACAA ATGATATAGGGTTGAAGCGCAGACTTGCCGAAAACGGGATCCAAACCGTGTCTCTGCGCCAGAAAAACAG ACTTGATATTGTCTGA
>gi|21226102:726480-727034 (SEQ ID NO: 582)
ATTGAGGAAATCCGCGGAGGAGTTATAGGAGGAACCCTTACCGAGGGCGTGCTTCATCCCGGAGACGAGC
TTGAAATCAGGCCTGGAATAAAGGTCACAACAGAAGGCAGCACCAGATGGATCCCTATTTTGACCACGGT
TTCATCAATTTATGCAGGAGCAACAAAGGTAGATGAAGCAACCCCCGGAGGGCTTCTTGCCGTAGGAACT
TATCTTGACCCTACCCTGACAAAGGGAGACTCCCTTACGGGGCAGATGGCAGGTGTTCCGGGTACCCTTC
CTGAAACAAGGCACCAGTTTGTTATGGAGCTTCATCTTCTGGACAGGGTTGTGGGAGTTACCAGGGAAGA
GAAAATTAATGAAATCAAGACCAGTGAACCCCTTATGCTCAACATAGGAACCGCTACAACTGTAGGTGTG
GTCACAAGTGCCCGGAAGAATGAAGCTCAGGTGGCACTCAAGCGTCCGATAAGTGCAGCCATAGGAGCTA
TGGTTGCGATCAGCAGGAGAGTCGATTCCCGCTGGCGGCTCATTGGAGTAGGGGTAATAAAGAGTTGA
>gi I 21226102:727034-727399 (SEQ ID NO: 583)
TTGAAAATTATAATTGACACCAACGGATTCATGATCCCTGTCCAGTTCGGAGTGGATATCTTTGAAGAGC
TGAAAAGGCTGGGTTTTAATGAGTTCTATGTGCCTGAAGCTGTTGTATTTGAAATAGAAAAACTCATAAA
GCGGGAGAAAGGTTCAAACAGGACAGCCGCAAAGGTTGCCAGGTCCATGATGGAAAGGTGCATGCGGATC
GCAGGCAAGGGACCTGCTGATGATGTGATCCTCAGGCTCGCAAAAGAGATGGGAGCGGCTGTTCTGACAA
ACGATATAGGGTTGAAGCGCAGGCTTGCTGAAAGCGGGATCCAGACCATATCCCTGCGCCAGAAAAACAA
ACTGGATTTTGTTTGA
>gi|l5839372:71570-71806 (SEQ ID NO: 584) ATGGCTACCATTCAAGTTCGGGATTTGCCCGAAGATGTCGCCGAAACCTATCGACGGCGCGCCACCGCAG CGGGGCAGTCGCTGCAGACGTATATGCGCACCAAGCTCATCGAAGGGGTGCGGGGCCGAGACAAGGCCGA GGCAATCGAGATCCTGGAACAGGCGCTCGCCAGCACTGCCAGCCCAGGCATCAGCCGGGAGACCATCGAG GCATCCCGGCGGGAGCTCAGGGGTGGATGA >gi|l5839372:71802-72203 (SEQ ID NO: 585)
GTGGATGAATGTGTAGTCGACGCGGCGGCCGTGGTTGACGCTCTCGCCGGCAAGGGCGCCAGCGCGATCG TTCTGCGCGGTTTGCTCAAGGAGTCGATTTCTAACGCGCCGCATTTGCTGGACGCAGAGGTCGGACATGC ACTCCGCCGCGCCGTGCTCAGCGACGAAATCTCCGAAGAGCAGGCTCGCGCCGCGTTGGATGCCTTGCCT TATCTCATCGACAATCGTTACCCGCACAGCCCACGACTGATCGAATACACATGGCAGCTAAGGCACAACG TCACGTTCTACGACGCCCTTTACGTCGCACTGGCCACCGCACTGGATGTCCCGCTGCTCACGGGCGACTC GCGGCTTGCGGCCGCGCCGGGCCTTCCGTGCGAAATCAAACTCGTTCGGTGA
>gi 115839372:363888-364106 (SEQ ID NO: 586)
ATGAGTGATGTACTGATTCGGGACATCCCCGACGACGTGTTAGCAAGCCTTGACGCGATCGCGGCACGCT TGGGCTTGTCGCGGACCGAATACATCCGTCGGCGTTTAGCCCAGGATGCGCAGACGGCTCGCGTCACCGT GACAGCCGCGGATCTTCGACGCCTCAGGGGTGCGGTTGCCGGTCTGGGCGATCCCGAGCTTATGCGTCAG GCGTGGAGGTGA
>gi|l5839372:364106-364531 (SEQ ID NO: 587) GTGACTGACCAGCGCTGGCTGATCGACAAGTCGGCGCTGGTGCGGCTCACGGACAGCCCTGACATGGAAA TCTGGTCGAACCGGATCGAACGCGGCCTGGTACACATCACGGGCGTGACACGCTTGGAAGTAGGGTTCTC GGCCGAATGCGGGGAGATAGCGCGACGGGAGTTTCGTGAACCGCCGCTGTCTGCGATGCCCGTGGAATAC CTAACCCCGAGAATTGAAGACCGTGCGCTCGAGGTGCAGACCTTGCTTGCCGACCGCGGACACCACCGTG GCCCGTCGATCCCGGATCTGCTCATCGCCGCGACAGCCGAACTGTCGGGCTTGACGGTACTGCACGTCGA CAAGGACTTTGACGCCATCGCCGCGCTTACCGGTCAGAAAACAGAACGGCTCACGCATCGCCCGCCTTCC GCTTAA
>gi|l5839372:c642356-642090 (SEQ ID NO: 588) TTGTTGAGCCGGCGCACGAAAACGATCGTTGTGTGTACATTGGTGTGTATGGCTCGGTTGAACGTGTATG TGCCCGACGAATTGGCGGAGCGCGCCAGGGCGCGGGGCTTGAACGTCTCGGCGCTGACTCAGGCCGCGAT CAGTGCCGAGTTGGAGAACTCCGCAACCGATGCGTGGCTTGAGGGGTTGGAACCCAGAAGCACCGGCGCT CGGCATGATGACGTGCTGGGTGCGATCGATGCCGCTCGCGATGAGTTCGAAGCGTGA >gi|l5839372:c642093-641680 (SEQ ID NO: 589)
GTGAGAGCATCGCCCACTTCGCCGCCGGAGCAGGTGGTCGTCGACGCGAGTGCCATGGTGGATCTACTGG CTCGCACTAGCGATCGGTGCTCTGCGGTGCGCGCGCGGCTGGCTCGGACCGCGATGCACGCGCCGGCGCA CTTCGATGCAGAGGTGTTGTCGGCGCTGGGGCGCATGCAGCGCGCCGGCGCACTCACCGTTGCCTATGTC GATGCGGCACTGGAGGAGTTGCGACAGGTGCCGGTGACTCGACACGGTCTTTCGTCGCTGCTTGCTGGAG CGTGGTCGCGCCGCGACACCCTCCGCCTGACCGATGCCCTCTACGTCGAGCTGGCCGAAACGGCAGGTCT GGTGTTGTTGACCACCGACGAAAGATTGGCACGCGCCTGGCCCTCGGCTCACGCCATCGGCTGA
>gi|l5839372:719471-719728 (SEQ ID NO: 590)
ATGTCTGAGGTGGCCTCGCGTGAGCTGCGTAACGATACGGCCGGCGTGCTGCGCCGCGTGCGGGCAGGGG AGGACGTCACCATCACCGTCAGCGGCCGTCCGGTCGCGGTGCTTACCCCGGTTCGTCCGCGGCGCCGGCG TTGGCTGAGCAAAACGGAGTTCCTGTCGCGGTTGCGCGGCGCTCAAGCCGATCCCGGGCTCCGTAACGAC CTCGCGGTCCTTGCCGGCGACACGACCGAGGATCTCGGGCCGATCCGGTGA
>gi|15839372:719728-720132 (SEQ ID NO: 591) GTGAGCACGACGCCGGCCGCCGGAGTGCTCGACACGTCGGTGTTCATCGCGACCGAAAGCGGCCGGCAAC TCGACGAGGCGCTGATCCCCGACCGGGTCGCCACCACCGTCGTCACCCTCGCCGAACTGCGCGTCGGCGT GCTGGCCGCGGCGACGACCGACATCCGGGCTCAACGCCTGGCGACCCTGGAATCCGTTGCCGATATGGAA ACGTTGCCCGTCGACGACGATGCCGCCCGAATGTGGGCCCGATTGCGGATCCATCTTGCCGAGTCCGGTC GCCGGGTGCGGATCAACGACCTGTGGATCGCGGCCGTCGCGGCATCGCGAGCGCTGCCGGTCATCACCCA GGACGACGACTTCGCCGCCCTCGACGGTGCGGCCAGTGTGGAGATCATTCGGGTCTGA
>gi|l5839372:c755590-755435 (SEQ ID NO: 592)
GTGTCGGTGACCCAGATCGACCTCGACGACGAAGCGCTGGCCGATGTGATGCGCATCGCCGCCGTGCACA CAAAGAAGGAAGCCGTGAACCTCGCGATGCGCGATTACGTCGAACGGTTTCGGCGCATCGAGGCCCTGGC CCGCTCGCGCGAGTAG
>gi|l5839372:c755340-754957 (SEQ ID NO: 593)
TTGGCGGCTGCAACGACAACCGGAACCCACCGAGGCCTGGAACTCCGCGCTGCTCAGCGGGCCGTCGGGT CGTGCGAACCGCAACGAGCCGAGTTCTGCCGATCAGCGCGGAATGCGGACGAGTTCGACCAGATGAGCCG GATGTTTGGTGACGTCTACCCCGATGTGCCAGTGCCGAAATCCGTGTGGCGGTGGATCGATTCGGCACAG CACCGCCTCGCCCGGGCGGGAGCGGTGGGTGCCCTGTCGGTTGTCGATCTGCTGATCTGCGACACTGCGG CGGCCAGGGGCCTAGTAGTCCTCCACGACGATGCCGACTACGAACTCGCAGAGCGTCACCTTCCCGACAT CAGAGTGCGGAGGGTCGTCAGCGCCGACGACTAG >gi|l5839372:1073340-1073561 (SEQ ID NO: 594)
ATGAAGACGCTGTATCTGCGCAATGTGCCGGACGACGTGGTCGAGCGACTCGAGCGCCTCGCCGAACTCG CCAAGACGTCGGTGTCCGCGGTTGCTGTGCGTGAGCTCACCGAGGCTTCTCGCCGCGCCGACAATCCGGC GCTTCTTGGGGACTTGCCCGATATCGGCATCGACACGACCGAACTGATCGGTGGTATCGACGCCGAGCGC GCCGGTCGATGA
>gi 115839372:1073558-1073941 (SEQ ID NO: 595)
ATGATCGTCGTTGACGCCTCGGCCGCGCTGGCCGCGCTGCTCAACGATGGACAAGCTCGACAATTGATCG CTGCCGAGCGCCTGCATGTCCCGCATCTGGTCGATTCGGAAATCGCGAGCGGGCTCCGCAGGCTAGCGCA GCGGGATCGGCTGGGCGCGGCCGACGGACGGCGGGCCCTCCAAACGTGGCGCCGCCTCGCGGTGACGCGT TATCCGGTGGTGGGCCTTTTCGAGCGTATCTGGGAAATCCGCGCGAACCTGTCGGCATACGACGCCAGCT ATGTGGCCTTGGCGGAAGCCCTGAACTGTGCGCTCGTCACAGCGGATCTGCGGCTCAGCGACACCGGCCA AGCCCAGTGTCCGATTACCGTTGTGCCCAGGTAG
>gi 115839372 :cl938445-1938218 (SEQ ID NO: 596) ATGTCCGCCATGGTTCAGATCCGCAACGTTCCCGACGAGCTTCTCCACGAGCTGAAGGCCCGCGCAGCGG CGCAACGGATGAGCCTGAGCGATTTCCTCCTAGCACGGCTTGCCGAGATCGCGGAAGAACCGGCCCTCGA CGACGTTCTCGACCGTCTAGCGGCACTGCCGCGCCGGGATCTCGGCGCGAGCGCAGCCGAGCTTGTTGAC GAGGCTCGATCTGAGTGA >gi|l5839372:cl938221-1937832 (SEQ ID NO: 597)
GTGATCGTGTTGGACGCCTCGGCGGCCGTCGAGCTCATGCTCACGACGCCGGCGGGTGCGGCGGTCGCCC GGCGCTTGCGGGGCGAAACCGTGCACGCCCCTGCACATTTCGATGTCGAGGTGATCGGGGCGATACGTCA AGCGGTCGTGCGTCAGCTGATCAGCGATCATGAAGGACTCGTCGTGGTTGTCAACTTCCTTAGCCTGCCC GTTCGGCGTTGGCCGTTAAAGCCATTCACCCAGCGTGCCTACCAACTTCGGTCCACTCATACCGTGGCCG ATGGAGCCTACGTCGCCCTCGCCGAGGGCCTCGGCGTACCGCTTATCACTTGCGACGGGCGACTTGCCCA ATCCCATGGCCATAATGCGGAGATCGAGCTTGTCGCCTGA
>gi|l5839372:c2503593-2503357 (SEQ ID NO: 598) CTGGGCGCCTGCGAAGCGGGTCGGCGTTCACGAGGCGAAGACACGCCTGTCCGAGCTGCTGCGGCTCGTC TACGGCGGGCAGAGGTTGAGATTGCCCGCCGCGGCGAGCCGGTAGCAAAGCTTGTGCCGCTGCATCCTCA TGAGACTCGGCGGTTAGGCATTGACCATGGCGTGTACCGCGTGCCCGACGATTTGGACGCTCCGTTGTCA GACGACGTGCTCGAACGCTTTCACCGGTGA >gi | 15839372 :c2503427-2503008 (SEQ ID NO: 599)
ATGGCGTGTACCGCGTGCCCGACGATTTGGACGCTCCGTTGTCAGACGACGTGCTCGAACGCTTTCACCG GTGAAGCGCTACCTCATCGACACCCACGTTTGGCTGCGGATGCCGTCAACGAAACACGGGCGATTGTTCA GGACGTCCGCAACAGCATTCTCTTGTCGGCCGCCAGTGCCTGGGAGATCGCGATCAACTACCGCCTCGGC AAGCTCCCGCCGCCCGAGCCATCGGCCTCTTACGTGCCCGATCGAATGCGCCGCTGCGGCACGTCGCCGC TGTCAGTTGACCACGCACACACTGCGCACCGCAGAGCTTCCGGATCACCATCGACATCCATTCGACCGTG TGCTCATCGCCCAGGCACAGCTGCTTGGCCTGACGATCATCACCGCCGACGCCCTGTTAGCTGCCTGTGA
>gi|l5839372:2863927-2864205 (SEQ ID NO: 600)
GTGAGCACCACCATCGTTGCTGGCGTGATCCAGGGTCACCTGCCGGTGATCCTGCCCACGCGCAGGCGGG CTCGCGATCTCGGGCACACGACGGCGTTATTTCGGGCGCAAACGCTCCAATGCATATATCTCAGTATCGA ATACCTATATGTTTGCTCCATGTCTCGGCGTACAACGATCGACATCGATGACATACTGCTGGCCCGCGCG CAAGCGGCGCTCGGTACCACCGGGCTGAAGGACAGGGTCGATGCCGCTTTGCGAGCCGCGGTGCGCTAG
>gi|15839372:2864295-2864711 (SEQ ID NO: 601) GTGATGGTGTTCTGCGTCGACACCAGCGCGTGGCATCACGCGGCGCGGCCGGAAGTTGCGCGCCGATGGT TGGCGGCCTTGTCCGCGGACCAGATCGGCATCTGCGACCACGTGCGGTTGGAGATCCTGTACTCGGCGAA CTCCGCTACCGACTACGACGCGCTCGCCGACGAACTCGACGGCTTGGCCCGTATACCAGTCGGTGCCGAA ACCTTTACGCGCGCATGCCAAGTCCAGCGTGAGCTTGCCCACGTCGCCGGTCTGCATCACCGCAGCGTGA AGATCGCCGATCTTGTCATCGCCGCGGCGGCCGAACTTTCAGGCACCATCGTGTGGCATTACGACGAGAA CTATGACCGGGTCGCCGCCATCACCGGCCAACCTACGGAGTGGATCGTGCCGCGCGGGACCCTTTAA
>gi|l5839372:c2866541-2866266 (SEQ ID NO: 602)
ATCCGATTCTCGGCTACCGATGTATACAGCATTATGCTAGTGGCGTATATTTGCCATGTGAAAAGGCTGC AGATCTACATCGACGAAGACGTTGACCGAGCGCTTGCTGTTGAAGCGCGACGGCGGCGGACGTCGAAGGC GGCGCTGATCCGGGAGTACGTCGCTGAGCACCTCCGGCAGCCGGGCCCAGATCCGGTCGATGCCTTCGTC GGATCGTTCGTGGGGGAAGCCGACTTGTCCGCGTCCGTCGACGACGTGGTTTACGGAAAGCACGAATGA
>gi|15839372:c2866541-2866266 (SEQ ID NO: 603)
ATCCGATTCTCGGCTACCGATGTATACAGCATTATGCTAGTGGCGTATATTTGCCATGTGAAAAGGCTGC AGATCTACATCGACGAAGACGTTGACCGAGCGCTTGCTGTTGAAGCGCGACGGCGGCGGACGTCGAAGGC GGCGCTGATCCGGGAGTACGTCGCTGAGCACCTCCGGCAGCCGGGCCCAGATCCGGTCGATGCCTTCGTC GGATCGTTCGTGGGGGAAGCCGACTTGTCCGCGTCCGTCGACGACGTGGTTTACGGAAAGCACGAATGA
>gi] 15839372 :c3131449-3131225 (SEQ ID NO: 604) ATGACCAGAAAAATGACCGCTACGGAGGTGAAGGCGAAGATCCTCTCCTTGCTTGATGAAGTGGCCCAGG GCGAGGAGATCGAGATCACCAAACACGGCCGCACCGTGGCCCGGCTGGTGGCAGCGACGGGGCCGCACGC GCTGAAGGGTCGATTCTCGGGTGTGGCGATGGCGGCCGTGGATGACGACGAACTCTTCACCACCGGGGTT TCGTGGAACGTTTCATGA >gi|15839372:c3131449-3131225 (SEQ ID NO: 605)
ATGACCAGAAAAATGACCGCTACGGAGGTGAAGGCGAAGATCCTCTCCTTGCTTGATGAAGTGGCCCAGG GCGAGGAGATCGAGATCACCAAACACGGCCGCACCGTGGCCCGGCTGGTGGCAGCGACGGGGCCGCACGC GCTGAAGGGTCGATTCTCGGGTGTGGCGATGGCGGCCGTGGATGACGACGAACTCTTCACCACCGGGGTT TCGTGGAACGTTTCATGA
>gi|15607142-.71575-71823 (SEQ ID NO: 606)
GTGAACTCCGCTATGGCTACCATTCAAGTTCGGGATTTGCCCGAAGATGTCGCCGAAACCTATCGACGGC GCGCCACCGCAGCGGGGCAGTCGCTGCAGACGTATATGCGCACCAAGCTCATCGAAGGGGTGCGGGGCCG AGACAAGGCCGAGGCAATCGAGATCCTGGAACAGGCGCTCGCCAGCACTGCCAGCCCAGGCATCAGCCGG GAGACCATCGAGGCATCCCGGCGGGAGCTCAGGGGTGGATGA
>gi|l5607142:71819-72220 (SEQ ID NO: 607)
GTGGATGAATGTGTAGTCGACGCGGCGGCCGTGGTTGACGCTCTCGCCGGCAAGGGCGCCAGCGCGATCG TTCTGCGCGGTTTGCTCAAGGAGTCGATTTCTAACGCGCCGCATTTGCTGGACGCAGAGGTCGGACATGC ACTCCGCCGCGCCGTGCTCAGCGACGAAATCTCCGAAGAGCAGGCTCGCGCCGCGTTGGATGCCTTGCCT TATCTCATCGACAATCGTTACCCGCACAGCCCACGACTGATCGAATACACATGGCAGCTAAGGCACAACG TCACGTTCTACGACGCCCTTTACGTCGCACTGGCCACCGCACTGGATGTCCCGCTGCTCACGGGCGACTC GCGGCTTGCGGCCGCGCCGGGCCTTCCGTGCGAAATCAAACTCGTTCGGTGA >gi|l5607142:c640902-640636 (SEQ ID NO: 608)
TTGTTGAGCCGGCGCACGAAAACGATCGTTGTGTGTACATTGGTGTGTATGGCTCGGTTGAACGTGTATG TGCCCGACGAATTGGCGGAGCGCGCCAGGGCGCGGGGCTTGAACGTCTCGGCGCTGACTCAGGCCGCGAT CAGTGCCGAGTTGGAGAACTCCGCAACCGATGCGTGGCTTGAGGGGTTGGAACCCAGAAGCACCGGCGCT CGGCATGATGACGTGCTGGGTGCGATCGATGCCGCTCGCGATGAGTTCGAAGCGTGA >gi|l5607142:c640639-640226 (SEQ ID NO: 609)
GTGAGAGCATCGCCCACTTCGCCGCCGGAGCAGGTGGTCGTCGACGCGAGTGCCATGGTGGATCTACTGG CTCGCACTAGCGATCGGTGCTCTGCGGTGCGCGCGCGGCTGGCTCGGACCGCGATGCACGCGCCGGCGCA CTTCGATGCAGAGGTGTTGTCGGCGCTGGGGCGCATGCAGCGCGCCGGCGCACTCACCGTTGCCTATGTC GATGCGGCACTGGAGGAGTTGCGACAGGTGCCGGTGACTCGACACGGTCTTTCGTCGCTGCTTGCTGGAG CGTGGTCGCGCCGCGACACCCTCCGCCTGACCGATGCCCTCTACGTCGAGCTGGCCGAAACGGCAGGTCT GGTGTTGTTGACCACCGACGAAAGATTGGCACGCGCCTGGCCCTCGGCTCACGCCATCGGCTGA >gi|l5607142:c753615-753460 (SEQ ID NO: 610)
GTGTCGGTGACCCAGATCGACCTCGACGACGAAGCGCTGGCCGATGTGATGCGCATCGCCGCCGTGCACA CAAAGAAGGAAGCCGTGAACCTCGCGATGCGCGATTACGTCGAACGGTTTCGGCGCATCGAGGCCCTGGC CCGCTCGCGCGAGTAG >gi | 15607142 :c753365-752982 (SEQ ID NO: 611)
TTGGCGGCTGCAACGACAACCGGAACCCACCGAGGCCTGGAACTCCGCGCTGCTCAGCGGGCCGTCGGGT CGTGCGAACCGCAACGAGCCGAGTTCTGCCGATCAGCGCGGAATGCGGACGAGTTCGACCAGATGAGCCG GATGTTTGGTGACGTCTACCCCGATGTGCCAGTGCCGAAATCCGTGTGGCGGTGGATCGATTCGGCACAG CACCGCCTCGCCCGGGCGGGAGCGGTGGGTGCCCTGTCGGTTGTCGATCTGCTGATCTGCGACACTGCGG CGGCCAGGGGCCTAGTAGTCCTCCACGACGATGCCGACTACGAACTCGCAGAGCGTCACCTTCCCGACAT CAGAGTGCGGAGGGTCGTCAGCGCCGACGACTAG
>gi |15607142:1073325-1073543 (SEQ ID NO: 612)
ATGAAGACGCTGTATCTGCGCAATGTGCCGGACGACGTGGTCGAGCGACTCGAGCGCCTCGCCGAACTCG CCAAGACGTCGGTGTCCGCGGTTGCTGTGCGTGAGCTCACCGAGGCTTCTCGCCGCGCCGACAATCCGGC GCTTCTTGGGGACTTGCCCGATATCGGCATCGACACGACCGAACTGATCGGTGGTATCGACGCCGAGCGC GCCGGTCGATGA
>gi|l5607142:1073543-1073926 (SEQ ID NO: 613) ATGATCGTCGTTGACGCCTCGGCCGCGCTGGCCGCGCTGCTCAACGATGGACAAGCTCGACAATTGATCG CTGCCGAGCGCCTGCATGTCCCGCATCTGGTCGATTCGGAAATCGCGAGCGGGCTCCGCAGGCTAGCGCA GCGGGATCGGCTGGGCGCGGCCGACGGACGGCGGGCCCTCCAAACGTGGCGCCGCCTCGCGGTGACGCGT TATCCGGTGGTGGGCCTTTTCGAGCGTATCTGGGAAATCCGCGCGAACCTGTCGGCATACGACGCCAGCT ATGTGGCCTTGGCGGAAGCCCTGAACTGTGCGCTCGTCACAGCGGATCTGCGGCTCAGCGACACCGGCCA AGCCCAGTGTCCGATTACCGTTGTGCCCAGGTAG
>gi|l5607142:cl947632-1947414 (SEQ ID NO: 614)
ATGGTTCAGATCCGCAACGTTCCCGACGAGCTTCTCCACGAGCTGAAGGCCCGCGCAGCGGCGCAACGGA TGAGCCTGAGCGATTTCCTCCTAGCACGGCTTGCCGAGATCGCGGAAGAACCGGCCCTCGACGACGTTCT CGACCGTCTAGCGGCACTGCCGCGCCGGGATCTCGGCGCGAGCGCAGCCGAGCTTGTTGACGAGGCTCGA TCTGAGTGA
>gi|l5607142:cl947417-1947028 (SEQ ID NO: 615)
GTGATCGTGTTGGACGCCTCGGCGGCCGTCGAGCTCATGCTCACGACGCCGGCGGGTGCGGCGGTCGCCC GGCGCTTGCGGGGCGAAACCGTGCACGCCCCTGCACATTTCGATGTCGAGGTGATCGGGGCGATACGTCA AGCGGTCGTGCGTCAGCTGATCAGCGATCATGAAGGACTCGTCGTGGTTGTCAACTTCCTTAGCCTGCCC GTTCGGCGTTGGCCGTTAAAGCCATTCACCCAGCGTGCCTACCAACTTCGGTCCACTCATACCGTGGCCG ATGGAGCCTACGTCGCCCTCGCCGAGGGCCTCGGCGTACCGCTTATCACTTGCGACGGGCGACTTGCCCA ATCCCATGGCCATAATGCGGAGATCGAGCTTGTCGCCTGA
>gi|15607142:c2506381-2506208 (SEQ ID NO: 616)
TTGGCGCTGTGGTATCAGGCGATGATCGCGAAGTTTGGTGAGCAGGTGGTCGACGCGAAAGTCTGGGCGC CTGCGAAGCGGGTCGGCGTTCACGAGGCGAAGACACGCCTGTCCGAGCTGCTGCGGCTCGTCTACGGCGG GCAGAGGTTGAGATTGCCCGCCGCGGCGAGCCGGTAG
>gi|l5607142:c2506381-2506208 (SEQ ID NO: 617)
TTGGCGCTGTGGTATCAGGCGATGATCGCGAAGTTTGGTGAGCAGGTGGTCGACGCGAAAGTCTGGGCGC CTGCGAAGCGGGTCGGCGTTCACGAGGCGAAGACACGCCTGTCCGAGCTGCTGCGGCTCGTCTACGGCGG GCAGAGGTTGAGATTGCCCGCCGCGGCGAGCCGGTAG
>gi|l5607142:2867781-2868059 (SEQ ID NO: 618)
GTGAGCACCACCATCGTTGCTGGCGTGATCCAGGGTCACCTGCCGGTGATCCTGCCCACGCGCAGGCGGG CTCGCGATCTCGGGCACACGACGGCGTTATTTCGGGCGCAAACGCTCCAATGCATATATCTCAGTATCGA ATACCTATATGTTTGCTCCATGTCTCGGCGTACAACGATCGACATCGATGACATACTGCTGGCCCGCGCG CAAGCGGCGCTCGGTACCACCGGGCTGAAGGACAGGGTCGATGCCGCTTTGCGAGCCGCGGTGCGCTAG
>gi|l5607142:2868152-2868565 (SEQ ID NO: 619)
ATGGTGTTCTGCGTCGACACCAGCGCGTGGCATCACGCGGCGCGGCCGGAAGTTGCGCGCCGATGGTTGG CGGCCTTGTCCGCGGACCAGATCGGCATCTGCGACCACGTGCGGTTGGAGATCCTGTACTCGGCGAACTC CGCTACCGACTACGACGCGCTCGCCGACGAACTCGACGGCTTGGCCCGTATACCAGTCGGTGCCGAAACC TTTACGCGCGCATGCCAAGTCCAGCGTGAGCTTGCCCACGTCGCCGGTCTGCATCACCGCAGCGTGAAGA TCGCCGATCTTGTCATCGCCGCGGCGGCCGAACTTTCAGGCACCATCGTGTGGCATTACGACGAGAACTA TGACCGGGTCGCCGCCATCACCGGCCAACCTACGGAGTGGATCGTGCCGCGCGGGACCCTTTAA >gi j 15607142 :c2870362-2870117 (SEQ ID NO: 620)
ATGCTAGTGGCGTATATTTGCCATGTGAAAAGGCTGCAGATCTACATCGACGAAGACGTTGACCGAGCGC TTGCTGTTGAAGCGCGACGGCGGCGGACGTCGAAGGCGGCGCTGATCCGGGAGTACGTCGCTGAGCACCT CCGGCAGCCGGGCCCAGATCCGGTCGATGCCTTCGTCGGATCGTTCGTGGGGGAAGCCGACTTGTCCGCG TCCGTCGACGACGTGGTTTACGGAAAGCACGAATGA
>gi|l5607142:c2870120-2869725 (SEQ ID NO: 621)
ATGATCTTCGTCGACACGTCCTTCTGGGCTGCACTTGGCAACGCCGGCGACGCTCGGCACGGCACCGCGA AGAGGTTGTGGGCCAGCAAACCGCCCGTGGTGATGACCTCCAACCATGTCCTGGGCGAGACCTGGACGCT GCTCAACCGGCGCTGCGGTCACCGCGCGGCGGTTGCCGCCGCTGCAATCCGCTTGAGCACCGTCGTTCGC GTCGAGCACGTAACAGCCGACCTGGAAGAGCAGGCATGGGAATGGCTTGTACGCCACGACGAGCGAGAGT ACTCGTTCGTCGATGCCACGAGCTTCGCGGTGATGCGAAAGAAAGGCATCCAAAATGCGTATGCCTTCGA TGGTGACTTCAGCGCGGCCGGATTTGTCGAGGTAAGACCCGAGTAG >gi|l5607142:c3137221-3137006 (SEQ ID NO: 622)
ATGACCGCTACGGAGGTGAAGGCGAAGATCCTCTCCTTGCTTGATGAAGTGGCCCAGGGCGAGGAGATCG AGATCACCAAACACGGCCGCACCGTGGCCCGGCTGGTGGCAGCGACGGGGCCGCACGCGCTGAAGGGTCG ATTCTCGGGTGTGGCGATGGCGGCCGCGGATGACGACGAACTCTTCACCACCGGGGTTTCGTGGAACGTT TCATGA
>gi | 15607142 :c3137009-3136617 (SEQ ID NO: 623)
ATGACGACGGTGCTGCTCGACTCGCATGTGGCCTACTGGTGGTCGGCCGAGCCGCAGCGTCTCAGCATGG CGGCGAGCCAGGCCATCGAACACGCCGACGAGCTCGCCGTCGCCGCGATTTCGTGGTTCGAGCTGGCTTG GCTTGCCGAACAGGAACGCATCCAACTGGCGATTCCGGTGCTGTCCTGGCTTCAGCAGCTGGCCGAGCAC GTTCGCACCGTCGGTATCACGCCCTCGGTCGCCGCCACGGCGGTGGCGCTGCCCTCGTCGTTCCCCGGCG ATCCGGCCGACCGGTTGATCTACGCCACCGCGATCGAACACGGCTGGCGGCTGGTGACCAAGGACCGGCG GCTACGCAGTCATCGGCACCCACGACCGGTCACCGTCTGGTAG
>gi|l5607142:3174744-3174989 (SEQ ID NO: 624) ATCCTTTCCGACGAAGAGCGGGAGGCGTTCCGGCAGCAAGCCGCAGCCCAGCAGATGTCCCTCAGTAACT GGCTGCGTCAAGCGGGGCTCAGGCAGCTCGAGGCACAGCGACAACGTCCCCTGCGCACCGCCCAGGAATT GCGCGAGTTCTTTGCGTCACGGCCCGACGAGACAGGGGCAGAACCTGATTGGCAGGCGCATCTGCAGGTG ATGGCTGAATCGCGCCGTCGCGGCCTGCCGGCGCCATGA >gi|l5607142:3174989-3175369 (SEQ ID NO: 625)
ATGATCTTCGTCGATACCAACGTCTTCATGTATGCGGTCGGTCGCGATCACCCATTGCGGATGCCCGCCC GTGAGTTCCTCGAGCACAGCCTCGAACACCAAGACCGCCTTGTCACGTCAGCCGAGGCCATGCAGGAATT GCTGAACGCGTATGTGCCCGTCGGGCGGAACTCGACGCTGGACTCAGCATTGACCTTGGTGCGGGCGCTG ACGGAAATCTGGCCCGTCGAGGCGGCCGACGTCGCGCATGCGCGAACCCTGCACCACCGCCACCCCGGTC TGGGCGCGCGCGATCTGCTACACCTGGCATGCTGCCAGCGTCGCGGTGTCACGCGGATCAAGACGTTCGA CCACACACTGGCCAGCGCATTCCGATCATGA
>gi|l5675948:cl739527-1739279 (SEQ ID NO: 626)
ATGTTTCAAGCAAATATTCATCAGGCAAAAACCAATTTGAGTCAATTGATTCAAAGAGCAGAAGCAGGGG AAATCGTTATTATTGCGAAGGCAGGTAAGCCTTGCGTCCAACTAATCGGTATTGAAAAACCGGCACGAAA TGCAGGAAGGTTGAAAAAATTCAGTCATATGGAAAATACGGATATTTCACGTATTCTTGAGGATGACAAT GAAACGGCAGCTTTATTTTTTGAGGAGTCGGCTCTGTGA
>gi|l5675948:cl739282-1738896 (SEQ ID NO: 627) GTGAGAAAGATTCTGCTTGATACCCATGCGTTGCTGTGGTGGTTGTTGGATGACAAGAAACTGGGGATAT CTGCACGCAAACTGATAGAAAATCCGAGAAATGCGATCTTTGTCAGTGCAGCAAGTATTTGGGAAATTTC CATCAAGCAGAACAAGGGGTTGTTGAAATTACCGGAAGAGTTTTTTGATGTGCTTCAAGAAGAGGATTTT GAAATGTTGCCTATAGGTCTGTTTCATGCAAAACAGGCTGGAAGCCTTCCGGAGATACACAAAGACCCTT TCGATAGGATGTTGATTGCACAAACCCAAGCGGAAGGCTTTGAACTGATGACTGTCGATGAATATATTCC GCAATATGGAATTAGAGTTGTCAACGCATCAAGCTGA
>gi|30248031:c316448-316260 (SEQ ID NO: 628)
CTGGCCAGCACATTCAGGCTCTCTTCACTATGTTGTATCGCTCGACGCACCGCCGCTGTCGTGCGGGCGC TCCCGTGTAATATCTGTCCCATAATTCCTCCTGTGTCGGTAGCAAATCATACAATACACCATCACAATGC GGGACCAAACAACTACCTGCTGATACGCCGCGCCTGGAATTCTGAGCGCTGA
>gi|30248031:c316254-315850 (SEQ ID NO: 629)
ATGCTGATTCTGGATAGCAATACCATCAGTTATTACTTTCGCGGTGATCCGCAAGTGGTGCTGCGTTTGC AGGCACAGCGCCCGCAGGATGTGGCTGTACCGGCCATTGTGGAATACGAACTGCGCTACGGCCTGTTGCG TTTGCCACCCGAAATGGCTGCACCACGTCTGGCTGCTCTGACTACCTTGCTGCTACCCATGCAGAAACTG CCTTTCGACAGCGAATGTGCCGACCATGCTGCCCGCATTCGAACAACGCTGGAAGCAGCAGAGAACCCTA TCGGGCCGCACGATACCCTGATTGCCGCCACCGCCTTGCGTCACGGCGCAACACTGATCACACGCAACGT ACGCGAATTTTCCCGTGTACCAGGTTTGCAATGGATAAACTGGCATGAGGGTTGA >gi|30248031:1155550-1155774 (SEQ ID NO: 630)
ATCGGGCATCGAAGATGTGGAAGTGGAGTTCCCCCGCTCGCGCGAACTGGCACGGCCTGCGGACTTCACC TGATGCTCCTGCTCGATACCAACGTCATTTCTGAGCTGCTCAAAGTCCGTGCTGGAAAGGCCGATCCGCA CGTGACAACATGGGGCCGGACAGTGCCCGGTGCGAGTCTCTACGTTTCGGTCATCACCGTGCAGGAATTG GAGATCGGTACCTTGTAG >gi|30248031:1155808-1156071 (SEQ ID NO: 631)
TTGCTTCGCACCTGGCTGGAGGAACATGTACTGTCGAGCTTCGCTGATCGAATCTTGCCGGTCGATACAG TCGTAGCACGCCGCAGCGCCGCGCTCCACGTACCCAACCCGCGCCCATACCGGGACAGCCTGATCGCCGC CACCGCGCTGGTATATGGCATGACTCTGATTACTCGCAACGTAGCTGATTTCGAACCGATGGGTGTCACA TTGCTCAACCCATGGACGCCATGCTGGCCGCGAATCAGCGGGCTTGTACCGTAA
>gi|30248031:1333144-1333407 (SEQ ID NO: 632)
ATGCAAGTTACTGACAAAGGACAAGTTACGATCCCCAAACGCCTGCGCGATGCTGCCGGCTTTCTGCCCG GCAGCCAGGTCACCTTCTCGTTGGAAGGAGGAAAGATCATCATCAGCAAGACCGGCATGGGAACTGACGA CCGACGTAAGTCGCTGCGCGCTGCTGCCGCAAAGGTACGCAAAAGCCTGGATGAGCCATTCAAGCAGATG AACAGCGACGACATCATGGCGTTCCTGCGCCCGGATGGCGACGATTGTGCATGA
>gi|30248031:1333388-1333861 (SEQ ID NO: 633) ATGGCGACGATTGTGCATGACTTGTCCAAATATGACGGCTCGGCGGGTTTCTTAGTCGATACCAATATTT GGATCGACTGCATGGACACCGATAGCCGGTGGCACGACTGGTCCGTGGATCAGCTTCAGATCTGTAGCGA GCAGGCGCCACTGCACATCAATCTGATGATCTACACTGAGTTGCTTATCCCGGGACCAGACATAGATGCT CTGGACACGATGCTTGATATCTACGATACCCTGCGCAGTCCCTTACCATGGTCGTGTGCCGGGCTGGCGG CGAAAGCCTATCTGAACTATCGCCGTCGGGGTGGCACTCGACTCGTACCGTTGCCGGATTTCTACATTGG CACCCATGCGGCTGTTGCCAATCTAAGTGTGCTCAGTCGGGACGTAAAACCTTATCACAACTATTTTCGG CGCTTGCGCTGCGTCGGTCCAGATGAAACAGCCGAGCAGCATACAGACGGATAG
>gi|30248031:cl718652-1718350 (SEQ ID NO: 634)
TTGACTATACAATGGAACCATTATGGTTCCATTTCAATTGGAAAACTTAGAAACGCCATGCCTACAACCT TAACACTGAAAAATATTCCGGATGATGTGTACGAACGGCTCAAAGTTGCCGCAGAAATGCACCGCCGCAG CCTCAACAGTGAAATCATTGTGTGCCTTGAGACCGTGCTCATGCCAACCAGAATCTCCCCCGGCGAACGA CTGGAGCGCGCCCGTCAGTTACGGGCTGGGCTGAACTCCGAAAAATTTCAGGCATGCGATATTGACGTTA TGAAAAGACAGGGGCGCCCATGA >gi|30248031:cl718353-1717946 (SEQ ID NO: 635)
ATGATTGTCGTGGATTCAAATGTACTGGCTTATTTTTATCTGCCCGGCGAATACACCGCCGCTGCAGAAG CCTTGTTTGAACATGATCCTGATTGGGTAGCACCAGTTTTGTGGCGAAGTGAGTTTCGAAACATTCTGGC CGGGTATCTCAGGCGCGGAAGCCTGACATTCTTGCAGGCATATAATCTCCAGTGTGAGGCAGAGGATTTA CTCGCTGGCGCTGAGTATGAAGTGAATTCATTCAGTATTCTGGAGTTGGTGCGTGACAGCGAATGCTCAG CTCATGACTGCGAATTTGTTGCACTGGCAATAAAGCTGGGTGCGAAGCTGGTAACGATGGACGGTAAATT GCTAAGGATGTTTCCAGATATCGCATTCGCACTCTCTGCGAGTCAACGTAGCAGCTAA
>gi|30248031:2296994-2297218 (SEQ ID NO: 636)
CTGAAAAATATTCCGGATGATGTGTATGAGCGACTCAAAGCTGCCGCAGAAATACACCGTCGCAGCCTCA ACAGTGAAATCATTGTGTGCCTTGAGACTGTGCTTATGCCAACCAGAATCTCCCCCAGCGAACGACTGGA GCGTGCCCGTCAGCTACGGGCCGGGCTGAACCCCAAAAAATTTCAGGCATGCGATATTGCTATCATGAAA CGACAGGGGCGCCCATGA
>gi|30248031:2297218-2297613 (SEQ ID NO: 637) ATGATCGTCGTGGATTCAAACGTGCTGGCTTATTTTTATCTGCCCGGCGAATACACCGCCACTGCAGAAG CCTTGTTTGAACATGATCCTGATTGGGTAGCACCGGTTTTGTGGTGGAGTGAGTTTCGAAACATTCTGGC CGGGTATCTCAAGCGTGGAAACCTGACATTTTTACAGGCATATAACCTCCAATGTGAGGCAGAGGATTTA CTCGCTAGCGCCGAGTATGAAGTGAATTCACCCAGTATTCTGGAGTTGGTGCGTGACAGCGAATGCTCAG CTCATGACTGCGAATTTGTCGCACTGGCAATGAAACTGGGTGCAAAGCTGGTAACGATGGATGGCAAATT GCTGAGGGCATTTCCGGGTATCGCATTCGCACTCTCTATGAGTTAA
>gi|l7227497:152869-153114 (SEQ ID NO: 638)
ATGACTTCCCAAGTTGTAGATACTACTTCAGATTTAATTGCCAAGCTAGAAACCCTACCACCAGAAAAGT TACAGCAGGTACTAGATTTTGTCGAATTTTTAGCACAGAAATACACTCAAACCCCAGAATCTGAACAAAC GCCTCAAAAACGGGTATTAGGTTTAAATCAAGGAGAAATATGGATGAGTGATGATTTTAATGAGCCTTTA CCGGATGAATTTTGGTTGGGTGAAGGAGAAATATGA
>gi | 17227497: 153111-153497 (SEQ ID NO: 639)
ATGAAGTTACTCTTGGATACCCATGTACTTATTTGGTCAACAGGAAATCCAGAAAAACTATCTGAAAGAG TTAAAAACTTACTGCTAGATAATAACAACTCTTGGATAGTTAGTGTTGCTAGCGTTTGGGAGTTACAAAT TAAATATCAAATTGGCAAGTTAAATTTAAGCTCATCGCTGCCAAATTTGATAGAAACTCAACAGCGAGTG AATAATCTACAAATTTTACCTATTGAATTATCTCATATCTATGCTTTGGACAGTTTACCAAACCATCACC GCGACCCTTTTGATAGAATTGTCATCGCTCAAGCAATATCTGAAAAAATTCCTTTGTTAAGTACAGATAC AGTTTTTGATGCCTATCCAGTGGAAAAGATATGGTAG
>gi|l7227497:c875936-875553 (SEQ ID NO: 640)
ATGAAGTGCATAGATGCGATCGCATTTGGTTTTTGGAGAGTGCGATCGCGTTATGTGTCATCGGACAGAT TGGAGAGTTCCGCTAAAATAAATAACACAGTCATTAGGGGCAAAGCTATGAGCAATCAAGAACTAGAGCA ACAACTTCTCAGCCTCGACTTAGCAGAAAGGATTCGCATCTTTCAAATTTTAGCTCAAAGTCTTACAGTG CAATCATCACCCCCATCTCCAACCCCTGATGCAATTGATTTAAAGAGCGATAGCGAAGCGCTGCTGCTTT CAGCAGATCGCTCTCCTCAGCATCCCCTACGCAAAATCCCCTTGACAATTCCTCCAGATTTTGACGAACC CATGCCTGAATTATGGGATGCTTTGGGACAATGA
>gi|l7227497:c875556-875161 (SEQ ID NO: 641) ATGATTTTGCTAGACACCCACATTTGGCTGTGGTGGCTCCATTCCCCAGAACAACTTTCTGAGAGTGGAC GTACCCTATTAACCATAGGCGAAAACCAAAATGCCCTTATTGTTTCTGCTATTTCTGTTTGGGAAATTGC AATCAAGCATAGTAATGGGAAACTACCACTCCCCCTTCCCATCAATGAATGGTTTGCGCTGGCAAAAACT CGACCTGGAATTACTATAGAACCACTCGATCCACTTGATGCAATTACTAGTACCCAATTACCTGGCGACT TCCACAAAGACCCAGCTGATCGTATTATTGTTGCGATCGCCTACCGCCGCAATATAGAACTCATGACCTG CGATCAAAAAGTTCTCAACTATCCACACATCAAAACAATTTGCTGA
>gi | 722749 :c3277558-3277322 (SEQ ID NO: 642)
ATGGAACACATTGCTACCAGCGAACTGCCTGAAACCCTGCAACAAATATTTGCAGAAATACAACGCACTA AAACACCCGTAACCGTCACCCATGACGGGGAACCCTTAGTCATTATCTATCCCGCCACCCCTCAACCCCA ACGCCCAGCATTTGGCGCAATGAAGGGTAGCGGCGAAATATTGGGAGACGTAATTGCTCCAGTAATCCCT GCTGCCACATGGGAAGCACTCCAGTGA
>gi | 17227497 :c3277325-3276936 (SEQ ID NO: 643) GTGAAGCTATTACTTGATACCCACATCTGGCTTTGGTATTTGCTGGGTAACGAACGCCTATCTCCTGGGC TTCAAACCACTATTGCAGCAACAACAACCGAACTTTGGCTCAGTCCAATTAGTATCTGGGAAACGCTACT TTTAGCAGAAAAAGGACGAATATCTTTACAGCCTAATCCAGTTGCATGGGTCGATTTAGCCTTAAATACC CTAGAAATTCGTGAAGCTCCACTTAACCGCCACATCGCTATTTTAAGCCGTCAGATTCAGCTACCACATC AAGACCCAGGCGATCGCTTTATTGCTGCTACCGCAGTTCACCACCAGTTGACCTTAGCTACAGTCGATAC CAATCTCACAGGTACTTCCTGGTTACAAACATTAAGCTAG
>gi] 17227497 :c3788612-3788415 (SEQ ID NO: 644)
TTGCGGGACAGATTCAATTTGCCCCAGATTTTGATTATAAAGCCCTACGTGAAACTCGTTATGTTGCTGA TTGATACATCTGTATGGATCAGCGTCTTCCGTAATCGTAGTGGTCAAGTTCGCCAGCAACTTGAAACCCT GGTTGCGAATCGGCAGAACTCACTCGGTTCACCCAGCTTGAATTGTTGCAAGGTAGTCTGA
>gi 117227497 :c3788430-3788158 (SEQ ID NO: 645)
TTGTTGCAAGGTAGTCTGAATGAGCAAGAGTGGACTCTCCTCTCTACTTATCTTGAAGCACAAGACTACG TTGAACTAACACCTTCTTCGTGGCGAGAGGCTGCACGTATCTACTACGACTTGCGCCGCCAAGGGCTTAC CGTTCGTAGTCCAATCGATTGCTGTATTGCTCAAGTGACACTGGAAAATAATTTACTTTTGATCCATGAT GATCGTGACTTCGAGACCATTACTCAAGTGCGATATCTTCAACACCTTCGTTTTCAGCCTTGA
>gi|l7227497:4186153-4186404 (SEQ ID NO: 646)
ATGTACAGCCTAGAAATCCCAGAAGGTCAAGCTGAATTTGCTGAACTACTCCGTCGAGTGCGAGACGGAG AAGAAGTGATTATTTCTCAAGCAGGCACTCCTATCGCGCGTATAGTCCCAATTGCGGAACAGAAATTACC TCGAATTCCAGGTTTAGACCGTGGTCAGGTAACAATTTCCCCAGACTTTGATGCTCCCCTCCCCGACGAG GTGCTAAATGCTTTTATCAACCCAACAGACGCAGAAGCATGA
>gi|l7227497:4186401-4186787 (SEQ ID NO: 647) ATGAGAGCATTACTTGATACCCATACGTTTATTTGGTGGGTTATTGACGATAACCGACTCTCATCTACAG CTAGAAATATAATTGCTGACCCAGGGAATAACTTATTTTTTAGTGCTGCAAGCGCATGGGAAATTGTAAT TAAAGTTCGTTTGGGTAAATTAAATTTACCAGAACCACCAGAAACTTACATTCCCAATCGGTTGACTATA AATCGATTTGAAAGTTTGCCTATTCAAATGAATCACGCTTTACAAGTCGTTAATCTACCTGCTTTACATC AAGACCCTTTTGACCGAATAATTATCGCTCAAAGTCAAGTGGAAAAAATGCCCATAATTACTGTAGATAA TAAAATCACACAGTATCCTGTTGATGTAATTTGGTAG
>gi 117227497.-C4789239-4789018 (SEQ ID NO: 648)
ATGTTAAAAAGTTACGAAGCGATTTATGAAAATGGTCAAATAAAGTGGATATCAGAACAGCCTCAAGTTA ATACTGCCCGTGTCATTGTTACCTTTATAGAAGAAACTTTACCATCAAAGAAACGCCGCACTGCCCCTGA ATCTATTGCAGGCAAAGGTAAAACATTAGGGGATATTGTCAGTCCTATAGTTGATGAAGAAGACTGGGAA TGTCTGAAGTAA
>gi|l7227497:c4789030-4788629 (SEQ ID NO: 649)
ATGTCTGAAGTAATAGTCCTCGATACTCATATTTGGTTCTGGTTGATTAATCAAGAATTTCAAAGATTTC CTACTCAGTGGAGAGAAGCTATCGAAACGGCTGAACAAGTAGGCATTTCGGTTATTTCTTGTTATGAAAT TGCACTGGCACAGCAGCGAGGAAGGCTACAGTTACCCTGTGCCGCTAATCAATGGTTTCAGGAAGCTTTG CAGCCAGCAGATATTACATTATTTCCCTTAACTCCCGAAATTGTCTGCCGTGCTGTAGATTTATCTCCTA TTCACAAAGATCCGTTTGACCGCCTGATTGTTGCTACTACATTGGAATATCAAGCAAAGTTAGCCAGTGT TGATAGTTTGTTCTCTCAGTATCCTGAACTTGATACTCATTTGATGAAGTAG
>gi|l7227497:c4982499-4982272 (SEQ ID NO: 650)
ATGCACCAAATTAATTTAAAAGAAGCTGAGACTCGCCTAGCAGAACTAATTGAAGAAGTGGCTAGTGGAC AAGAAGTCATTATCACACGCAGTGATGGGGCATCGTTTAAAATTGTGCCGATTGGAGAAGTGAAAGCATA TCCAAAGTTCGGTAGTGCTAAGGGTTTAGTGAAAATTTCAGATGATTTTGATGAGCCATTGGCAGATTTT GAGGAATATGCTCCATGA
>gi|17227497:c4982275-4981889 (SEQ ID NO: 651)
ATGAGGCTCATGCTCGACACCCATACGTTTTTGTGGTTTATTGAAGGTAGTTTAAATCTCAGTGATACAG CAAAAAGCCTCATTGAAGATCAGCAAAATCAAAGATTTTTAAGCATTGCAAGTCTTTGGGAAATATCTAT CAAAGTCAGTATTGGCAAGCTAGAACTGGATATGACCTTTACTGAGTTGGTTAAACAACAGGTTTATGGT AATGCGATTGAATTGCTTGAAATACAGCCAGCACATTTAGATGAGTTAGCAAAGCTGCCTTTTTACCATA AAGATCCTTTTGATAGGCTGATGATTTCTCAATCTTTGGTGGAGAGCATACCTATAGTTACTAAAGACAG TGTGTTTGAGGGTTATCCTGTGCAAATATTATGGTGA >gi|l7227497:5498855-5499145 (SEQ ID NO: 652)
GTGATTTTTAAGGAGATGAATATGACTCAAGTTATTTTGAAACAGCTTAACCCCATTGTTCTAGAAAAAC TAAAACGTCTGGCTCAGAGTCATCAACGGACTTTGGAAGAAGAAATCACATCTATTCTTGAGGATGTAGC AGAAAAAGAGGAAGAACCAAAAAGCTCTGAGGGTTTTTGGGATATGACTTTACAATTTAGAGAAAGGATG CAGCAGGAGAATATTACTTTTGATGATGCAGATTTTGCGGATATTCGAGATCGCTCTGTCGGTAGGGATG TTGAGTTTTGA
>gi | 17227497:5498855-5499145 (SEQ ID NO: 653)
GTGATTTTTAAGGAGATGAATATGACTCAAGTTATTTTGAAACAGCTTAACCCCATTGTTCTAGAAAAAC TAAAACGTCTGGCTCAGAGTCATCAACGGACTTTGGAAGAAGAAATCACATCTATTCTTGAGGATGTAGC AGAAAAAGAGGAAGAACCAAAAAGCTCTGAGGGTTTTTGGGATATGACTTTACAATTTAGAGAAAGGATG CAGCAGGAGAATATTACTTTTGATGATGCAGATTTTGCGGATATTCGAGATCGCTCTGTCGGTAGGGATG TTGAGTTTTGA >gi|l7227497:c6130230-6129922 (SEQ ID NO: 654)
GTGAGATGGCGTAGTTACAATAAGTGGTATCATTATTTGGTTGCAATAAATTCTATGGAACGTGAAGCTT TAACCATCCGTTTTCCTTCTGAACTACTTACCAAAGCCAGAAAACTGAAGGGAAGCAACGAATCTTTTAA TGATTTAGTTGTTGAAGCATTGGAATCTGAAGTCAAGCGTAGAAGAGGATGGGCTGCACATCAACGAATT CTTGCCCGTAGCGAAACCATCAAAGCTAAAACTGGCATACAACCAAGTTCTACAGAGATGATTCGTAGTC TCAGAGAAGGTGAGGGAAGACGTGACTAG
>gi | 17227497 :c6129941-6129498 (SEQ ID NO: 655)
GTGAGGGAAGACGTGACTAGAGTTTTGTGCCTAGATACCAGCGTTTGGATTCCTTACCTTGTCCCAGAAG TTTATCAATCTCAAGCTGTAACTCTAGTAACAGAAGCATTGAGCTTAAATATACGTTTAGTAGCACCTGC TTTTGCTTGGGCAGAAGTTGGGTCTGTGCTACGGAAAAAAACGCGCATGGGAGTTATCACCGCAGAGGAA GCACTAGGCTTTTTTGAGGACTTTTGCGAACTGCCGATTGATTACATTGAAGAAGAAGCAATTCGCCTCA GAAGTTGGGAAATTGCGGAACAATACGGGTTATTAACTCTTTATGATGCAGCATTTCTGGCTTGTGCCGA GATGACATCTGCTGAGTTTTGGACTGCTGACGCTGCACTGGTTAAGCAAGTTATACCCAGACCGTCTTAT TTGCGAGAGATCGGGGAAATATAA
>gi|l8311643:54121-54348 (SEQ ID NO: 656)
ATGGAAATAGTGGAAGTCGACGGCTTTGGGAGGATTTATCTGCCTGCCGAAATTAGGAAGAGGATTGGGG CAAGGCGTTTTAGGGTGAAAATAGTGGATAACGGGATTCTGTTAGAGCCCGTAGACGACGTGGATAAATA TTACGGGAGTTACGGGCCTCCCAGGTACAAGTCCTTAGAGGATATTGAAGAGGCCATAAGAGATGTATCG CAAGTGGATTTACGTTGA
>gi|l8311643:54323-54703 (SEQ ID NO: 657
ATGTATCGCAAGTGGATTTACGTTGACGTAAATGTTCTCTACTATTTTTTCACTGCACATCCAGAATACG GAGAGGGCTCCCGCGAGTTGATTAAAAAATACGCAGGTAGGCTAGCGACATCTGCGCTCACCGCCTGGCT ACTCTACGTCTTGACACGCAATGAAGGCATTGTGGAGGCTACGAGGGACTTAACGACGCTGTTGCCGCTG GACGTTGAAGTTTTAAATAAAGCCAAAAGGCTTAATAAGCCGAGGGACTTCGAAGATAGGATACACCTAG CCACTATGCAAATCTACGGCATAGACACCATTTTATCTAATGACGGGGATTTCGACGAGGCCGGCGTGCA GAGAATTGCGCCCAGGAGGAAGGGGGAATAG >gi 118311643 :c82368-82135 (SEQ ID NO: 658)
GTGAGTGAGGTAATTTCCATTAGGGTGAGGAGAGGGCTGAAAAAAGAACTCGAAGAATTAGGCATAAACT ACGCAGAGGCTGTGAGGAAGTTCCTAGAGGAGCTAGTGGCCAGGGAGAGGAGGAGGCGGGCGCTGGAGAG GGCGAGGGCGCTGAGAGAGGAGTTGAGGAAAAAAGGAGCCTTCCCCCCAAGCGCTGAGCTTATAAGAGAG GACAGAGATGAAGCTAGTCGTTGA
>gi|l8311643:c82151-81756 (SEQ ID NO: 659)
ATGAAGCTAGTCGTTGACGCCTCGGCCATAGCCGCGTTGTACGTCCCCGAGGAGCGGAGTGAGCAGGCGG AGAGGGCAGTGAGCCAGGCCCAAGAGCTACACACCCTAGACCTAGCCGCATATGAAGTCGCCAATGACCT GTGGAAACACGCAAGGCGCGGGTTGCTCCGGGAGGACGAGGCGAGCAACATGCTGGAGGAGCTGTGGGAA TTCTTCAAGGCGTTAAAAGTACACTCCTACGCTGAGGTTTTAAAAGACGCCTTCGCCCTGGCTTTGAAAC ACGGCGTCACTGTTTACGACGCCGCGTACGTCGCCCTCGCGGAGAAAATAGGGGGCAAATTACTCACCCT AGATAGACAATTGGCCGAGAAGTTTCCAGCCCTGGTCACTCCCTGA
>gi]l8311643:190768-191052 (SEQ ID NO: 660) GTGAAGAAGTTAACGCTTTCTGTGAGGGAGGAGACGTTGAGGAGAGTGAGGGCCGTCTTGAGCAGAGCCG GCTTGAAGACGTCAATAAGCGAGCTTTTTGACGACTATATCGCGTTGATGGACGGGGAGGGCCTTGCGGC TGAGCTGTGCAGTGAGCTGAAATTAGACTGCGGGGGGCAGTTCTACACGCCAGATGAAGTAAAGGCCAAA AGGCCCGCCGCGTTGGGCCCGCCGGCTTCAGAGCTTGTGAAAGAGCTGAGGAGGGCCCGGGAGAGCCGTC TGTGA
>gi 118311643:191049-191489 (SEQ ID NO: 661)
GTGATATATCTAGACACAAGCGCCTTAATAAAGCGGTATGTCAAGGAGGCTGATAGCGACGTGGTAGACG GGCTATTTGAGGCGGCATACCGGGGCGAAGTGGCAGTCTCGACCTCAGTGTTTAACATCGGCGAAGCCGC CACTGCCGCGGATAAGAAAGCAAGGAGGGGGGAGTTGAGCGGCGACGTCAGAACCGCCGTTTCACTAATG CTGAGGGAAATCGCCGTATTGAGCAGTCTGGGCTCTTTGGTAATAGTCCCCATTGGGTTAAGTGTTATGA AGGCCTCTATACACATCGCCTTAACCCACAAGCTCTATATCGCAGACGCCCTCCAAATAGCCAGTTGTCT GCGGGTTAAATGCCACGAGTTATATACAGCGGACAAAGCCCTCGCAGATGCCGCCGAGAAAGAAGGCATA AAGACGCGGGTACTCCGCTGA >gi | 18311643:335372-335986 (SEQ ID NO: 662)
ATACTGGGCGGCGACGGGACTCTGCTGGAGGCAATTAGGAGACATCCCTGCGTGTTGGAGTCAGTCGTGA TCCACCTGGGCTTAGGAAAAGTTAATTTTTACAAAAGTGCAGAAATAACCTTACCAATTGACGAGGCTGT CAGCAGAGTTTTAAAAGGGGAATATAAAGTATTAGAGCTCTCTACTCTGGAGTCAGACGGCTGTATTGCG CTTAATGAGGCGGCAGTGTATAGAAGAGACCCAGGCCGCCTCCTCAGTTTTAAAATAACAACTGACGAGG GCCAAATTGCCGGCCGCGCAGACGGCATTATTGTGTCTACCCCCCACGGCGCTTCTGGCTATGTCGTGTC TACTTTTGGGCCCGTCGTGGACTATCGCGCCGACGTTATAGTGGTGTCGTTTGTGGCTCCGTATACGCTA TACTTACGTCCTATGGTCTTGACTAGCAAAAGAGTTGTTATTGAGACGAGAGAAGACGCCGTTTTGGTAT GCGACGGAAGAGAGGCGCGGATGGGCCGCGTGTTTGAAGTGGCTAAGGGCCAGAGGAGGCTTAAACTTGC AATATTCGGCGATTTCCAGTTCATCCAGAGGGTGGCTGAGCGTTTGAGAAGCCTATGA
>gi|18311643:335986-336321 (SEQ ID NO: 663)
ATGAAGTGCTACGCCCTTGATGCATCTGCCTTTTTCCACGGCAGAGATGCGAGGCTCTTTTCGGGGCAGT TATACACGACAAAAAATGTTGTAGAGGAATTGAAAGACCCCAGGGCGCAGGCGCTTTTAGAGGTGTGGAG AGTTGAGATAGTGGAAGTAGATGAGAAAAAAGTTAGGGAGCTGTTGAAAAAATACGGAGGGCTCTCCCCC GCAGATGCGTCAGTGCTTATACTCGCCTTAGAGAGGGGTTGTGTGTTGATTACTGATGACGGCAGGCTGG CATCAATCGCGAAGAAATTGGGCGTGGAGGTGCTTGGGATTTTCTACAAGAGGTGA
>gi|18311643:cl635721-1635497 (SEQ ID NO: 664) GTGTCAGTCATCATCAGCGTAAGAGTGAGGAGGGAGTTGAAGGAGAAGGCCAAACGGCTGGGTATAGATA TCAGGAGGGTGGTCGAGAGGGCGCTGGAGGAAGAGATCAAAAGGCGCGAGGAAGAGGAGCTCGCGAAATC GCTGGAGGAGCTGAGGAGGGCGCTGTCGGGCATCTCGGAGAGGGAGTGGGTGGAAGCGGTGAGGGAGGCG CGAAATGCCCGTTGA >gi | 18311643 :cl635507-1635106 (SEQ ID NO: 665)
ATGCCCGTTGAGTACCTAGTGGACGCCTCCGCGCTATACGCCCTCGCGGCCCATTACGACAAGTGGATCA AACATAGGGAGAAACTGGCCATTCTGCACTTGACCATATACGAGGCAGGCAACGCGTTGTGGAAAGAGGC GAGGCTCGGGAGAGTGGACTGGGCCGCCGCGTCTCGGCATTTGAAAAAGGTGTTGTCCAGCTTCAAGGTG TTGGAGGACCCGCCCCTAGACGAGGTCTTGAGGGTGGCCGTGGAGCGGGGCTTGACCTTCTACGACGCCA GCTACGCCTACGTGGCGGAGTCCTCCGGACTAGTCTTGGTGACGCAAGACCGCGAGCTACTGGCCAAGAC GAAAGGCGCTATAGACGTCGAAACTTTACTGGTAAGGCTGGCGGCACAATAA
>gi|l8311643:2133278-2133844 (SEQ ID NO: 666) ATTAGGGAGGCTGAGAGGGCGTTATTAGAGCTCAGAGTAGGCCTTAAGGATAAATTCTATTTAATCAGCG GGAGGAGACTCGCGGCGTGGAAATACACTTATGAGACGCACGTAGATCTCATGCCCCTAACAAGCGTGGG GGCCGAGGGGCAGTTCACGCCGCATCACCTCTCGAGAATTTTGACCATGTCCTCTTATGAGGCCGTGAGA GATGCGCTTTATAATTACTTAGAAATTGCGGATATTGAAGACGTCAGAGTTGGCCTCGTCAAAACCGGCC GCATAGCTCTATACGTCAAAAAAGGCGGTTTGTGGACAAATGGATATAACGCTGGGAATTACACGAAGGC GGTGTTGCCTGTATTGTTGCAAATGCTCCTCGCAAACGAGGGATCCTCAGTATTTATAGACGATGTGGAT TTAGCAGTTCCCAGCGGAAGGGCCGAGGTCCTTTTAAGCGCCTTATTTGAAATCGCCCGTAAAAGGAATT TGCAACTAGTCGCCTCGGCGAAAGAACCCGGCTTCGCTGAGATCGCTGAGAAGCTCGGCTTTACTATAGC CAAGCTGTGA
>gij 18311643 -.2133853-2134185 (SEQ ID NO: 667) GTGCTCGACACCTCTGCCCTATTATACATCGTGGAACACAGACTGGACATATGGGAACTCTCAGAACACG AAATTTACATCCCATCGGCGGTGTTGGAGGAGTTAAACGCCTTGAGCAGGAGGAGTAGAAAGGCCAGGGT CGCGCTTCAGCTCCTTTCCTTGTTAAAATATAAAGTCGTGGAAAGGGGAGGCCCCGCCGACAAAGCAGTG TTAGAAACAGCCGTTGAGGAGGGCGCGGTGTTAATAACCGGGGACACGGCGCTGGCCGAGGAGGCGAGGC GCAGGGGGGTTCCTGTTGCGAAATTTCATAAGGGCCAATTGGCCATTTACTAG
>gi|l4518450:c448138-447806 (SEQ ID NO: 668)
ATAAACTTAGCGCTATGGAGTGCATGGAGCGATAAGAACGTGCTGGTTCCCCAACATGGAAGCTGGAGCG ATGGATTGCATTCCTGGAAGTGGAAGACGAATCCAGATGGAAACGTTGAACTCTCTGGAATGACCTTTAG AGTTGTAAACGCTGAATGGAACTACTCTGGAGGGCCAGAGAACATAGATTTAAGCGGAAAAGGAAGGTTC TCACCCAAGATACCAATCCCACTTTACATCGAGGGGAGATTCTACTCTAAGGACCCCGAAACAGGGGAAG AAGTGGAAGTTTATGGGGAGTACGAGCTTGAGGATATGAAGCTCGAAGAGATTTGA
>gi]l4518450:c447806-447348 (SEQ ID NO: 669) TTGAGAACCTTTTTATTCCCTCCCTCACTCTCTTTTATCATGAAGGGCAAGGTTTGGCTCGTGGTTCCAG ACACTAACTTCCTTTTCATCCCAGGACAGTTTGGTGTCGATATAATTTCGGAGTTTGAGAGGATTCTCGA CGTTAAGTATCAGGTTGCCATTCCAAACGTCGTCCTCGAAGAGATTAAGACGATAATAAGGGAGGGAAAG GTAAAGGGGAAAGATCTAATGGCCGCAAAGATAGCCTTGAAGATAGCCGAGAGGTTTCCAAAGATATACG TTGGGGAATTCCTATCGAAACCTACCGATGAATTGCTTTACGAATACGCCATAGCAAACGACAACGTGAT AATATGCACGAACGATAGGAAATTGAGGAAGAGGCTCAGGGAAGCTGGGGTTCCAGTTATATTCCTTAGA CAGAAGAAAAAATTGGAACTTGAAGGGATACTCGAGTAA
>gi ]14518450: 761684-761887 (SEQ ID NO: 670)
ATATGGCTTGAGGCTTTATTTTTATATGGTGAGAATATGGAAGTTATTAAGGTTGAGATTCCTCGAGAGC TGGAGGAGGATGTCAAGAGATACATCAAGCTCCTCAAGAAGAGGAGGGAAGTCCTCAAGAAGACTTTTGG AATTCTAAAAACAGAAAAAACAGCGAAAGAACTTAAGGTGGAAATTTATGACGAGCTTTATGATTGA
>gi|l4518450:761871-762341 (SEQ ID NO: 671)
ATGACGAGCTTTATGATTGATTCTACGCTCATTATAGAGCACCTCAAGGGTAATCCGATCGCAAGGAAAA
TCTTGGAGGTTTTAATCGATTCTGATGTTAATGTTTACATAAATGATGTTGTAGCTTCAGAAGTCATTTT CATTTATTTAAAACTAACAACCGGGAAAAGCTACTTAACACTCAAGAAGAACCCAGTGATAGTTCGGTCT GTAGATAAAACCTCAGTTTACGAGTTATTGGGTATGTTCAAATTTCTTGAAACAAATGAGTTTGTATTCT CTATTGCAAAGAGACTCATAGATAAATATGGACTGCTTCCAAATGATGCTTTGATTTTAGCTACAGCTAT TTTTTATAGGTGTGATTATTTAATCGCACTTGACTCCGACTATAAAGAGCCATGTGAGGCTGAGAAAATA CGCTTAATCTCAACCAAAGAAGAACTTGAAAAGGCATTACATAATCATTAG
>gi | 14518450: 834293-834433 (SEQ ID NO: 672)
ATGGTCATCTATTTAGATGCCAATGTGATTGTCGGTTACTTGATCTATACTGACAAAACGGAGGAAATTA AGGAACTGCTCGAAAAGGACGAGATTTTCGTTACGACAATAAACACTTTGTTTTGGGATGAGATTAATCT TTGA
>gi|l4518450:834420-834710 (SEQ ID NO: 673)
ATGAGATTAATCTTTGAGGAACACTATGGAGAATACAAACTAAAAAAGCTAAAGAAATCACTAAGTCAAA AATTTGAAATTTATCGGGCATATTTAAGGAATTTAAACAGGCTAATAGTCGTTATACCCGCACCTTCCGA TGTAAGCAAGCTAACCTATATCATGGAAAAATACTCCCTCCTCCCAAATGACGCCTTGATAGTCCTCACC TGCAAGGTTTATGGAATTAATAAGATAGCAACTTTTGATTCTGATTTTGAGAATGTTGATTTCCTTGAAA AACTTCCTTGA
>gi | 14518450 :c898293-898093 (SEQ ID NO: 674) ATGAAAACGATAGCGGTTGATGAGGAAACTTGGGAAGCAATAAAACGACTGAAAGCTAAATTAGATGCCA AGTCATACACGGAAGTTCTGAAAAAGCTCATTGAGGTCTGGCATTCAGTAGAACTTGAAATGAAGGCTGA GAAAGTTACTATAGAGGACGATAAGGCCGAGATGATAATATCACTCCTCGAAAATTCTGAATAG
>gi|l4518450:c898076-897606 (SEQ ID NO: 675) TTGAGAATGCTTCCAGAGAGAATTTCCTTTGGTCCGATTTCTTTTCTTAAGATAACTCGAAAACAAAACA AGGAGATTCTTGAGTTTATCCTTGCAGAATTTCAAGTTTTCTTGCCTCTTCCCGCAGTAAACTCCTATCT CATGACTAAGGGTTTATTAGGAAGGGATATTGACGAAGAGATTAAGATTTTGAGGGAGGTATTTACTATT GTGGAAGTCTCGGATCAGTTAATAAGAAAAATGGCCGAACTTGGAGGGGCCCTTGTAAAGGAAGGCATTG TTCCTAACTTCTCAGATCTTATAACAGCAGCTTCTGCTATTATTACTGAGTCCTTACTTGTAGTGAATGA CAAGAAAGTTAAGGATTATGAAATTTTCTCAAAGTACGGCTTGGATGTTATAAGTTATACAAAGTTCTTG GAGGAAATAGAGAGCTTAGCTGAGGAAGAGGCAAAGAGAGTAGCAAAATAG
>gi|l4518450:cl009921-1009637 (SEQ ID NO: 676)
ATTTATCAATATGTCCACTATATGCAAATTTATGGTGACATTAATATGAATGTGGAAGTTAAGCGAATTG ATAGCCAAGGTAGAATTGTTTTACCAAAAGAGTGGCGAAAGAAATGGGGAAGTGAGGTTATCCTGATCGA ACTTGATGACAGGATAGAAATATTACCCAGGAAAAAACCAAAACTCTCTGAGTTCTTTGATATAATTGAA GTTGAAGATATCGGCGAGGATATTGAAAAAGACCTCCTAAAGGAACTTGGGGAGGATATTAATGAGGTTC ATCGATAG >gi)l4518450:cl009665-1009234 (SEQ ID NO: 677)
TTGGGGAGGATATTAATGAGGTTCATCGATAGCAACATTTTCCTTTATGCAATGATAAAGCCAAAAGGAA ACATAAGTAAGATGATCCTCGAGAGAAAAGAAAGATCGAAAAGAATACTCTTAAGAGTTGAAAATGGAGA AGATGTCGTAACGACGGTAGTGCATCTGAGCGAAGTCGCGAATATTCTTGAAGCAAAAGTGAGTCTCACA ACTGCTATAAAATTTCTAGAAAGTCTCTTCCTTGCTGAAAATGTTAAGATTCTTCCCGTATCAGCAGAAG ACTATTTAAAAGCAATACTATTATCCAAAGAGAAAAGGATTAGTGTAAATGATGCCCTAGCATATCTTAA AATGAAGGAACTTGGCATAAAGGAGATATACACATTTGACAGGCACTTTTACAATCTGGATGTTAAAGTA GTTCAGGAGTGA
>gi 114518450 :cll20616-1120338 (SEQ ID NO: 678) ATGGTGATAAGGATGGTAACGACTAAAAAGGTGAAGATTGTACAAACAGAGGTAGATCTTGGGACTTATC ATACCTTAAGAGCAATTGCAGTTCATAGGGGTGTCCCCCTTAAGGAGGTTATTAGGGAGATTCTTCGCAA TTATGCTGAGACCTATAAGAGAGAGCTCATTAAGGAAATTCACGAAGATCCAATTTGGAAAGGAATAGGA CTCCTTAATACTGGAGATCCAAGGGCAAGTGAAAAAGACGATTGGGGAGTTGTTAAATGGTCAAGCGAAT GA
>gi|l4518450:cll20350-1119904 (SEQ ID NO: 679)
ATGGTCAAGCGAATGAAGTCTAAACTTGTTTACATTGACACTGGAGCGTTAATTGCCTTTTTTGATAAAA GGGACAAGAATCATAAAATCGCCGTGAGTTACTTTGAATCTGCCATTTTGAACGGAGTGAGGTTTGTAGT TGGGCGTCCTGTTCTTATGGAGTTCATTAATGGTGCCTCAAAGGTAAACGGAAAACGTGTTGCAATACAG CTCAAAAATTTAATATATTCAAGCAGGTATATACTCATTGAAAATGAAACTGAAAGGGATTGGGAGAAGG CTTGGGAAATCTTTGAAAAATTTGATGATCAAGATGGTATGGATCTAGTCGATTGTCTGAGCTTTGCGAT TATGGAGCGTCTCGGAATTAAAAAAGCATTCACCTTTGATAGTGATTTTGAAACATATGGCTTTATAGTT GTCCCGAGGTCACAGAGTAATTATTGA >gi|l4518450:1136739-1136951 (SEQ ID NO: 680)
ATACGGAAGGTGAAAAATGTGGGCAAAGTTGTAATCACACTTAATGTTCCGGATGGTATGGAGGACGTTG TTAAGTCCCTCCTCGAGAGAGAGGCAAGGGTAATTATGAGAAGGCTTTCAAGGGCTGATTTTAAGAGTAC GTTTGGAATTTTAAAGGGAAAAAGGAAAAGCGTCGATGAAATTGAGGCTGATATTTATGACGAGTGGGAA GTTTAG
>gi 114518450 -.1136914-1137423 (SEQ ID NO: 681)
ATGAAATTGAGGCTGATATTTATGACGAGTGGGAAGTTTAGGTTCTTCATTGACAGCAATGTTATACTGA ATTATTTTTACGGAGATGATAACGCAAGAGAAATAATAGAGATTGCAGAAAATGCTGGTGAAGTTTTCAT AAATGGAATTGTTTTAACTGAAGTTTCGATAAGATATTTGAAAGATGAAACTGGTGAAAAAAGCTACACT TTGAAGCGCAAACCGGAACTCGTTAAAAACGTTGATAAAAGCCCGCCTTATGCAGTTCTCGGCAAGTTCT TGTACCTTTCAGATAATGTGCTTATTGGAGAAGATGCAGTGATATTAATGGATATTTATGGTCTTCTGCC TAACGATGCTATAATTTTAGCTACCTGTAAGTTTTATGGGATTAAGTATTTGATGTCATTTGACAGTGAC TTTAGGGAGGCATGTAAGGGAGAAGGAATTATCCTAATTGAAAGCAAAGAAAAGCTGGATGAAATTATCA AATTTGGTGACTCAAAATGA
>gi|l4518450:cll53817-1153542 (SEQ ID NO: 682)
GTGGCGAGCCTAATCAATTTCAGAAACTTAAAAAGTCATTGGATGATAGTAACCTTTGGTGGTCATATGA GCAAGGTTATCACTATAGAAGTTCCGGAGTGGGTAGATGAGGAGAGACTTAAGACTATCCTAAATAAAGT ATTAATGGAACTTTCCCCTAAAGTCATGCCTGTTGATAAGTTAAGGGAAATGTTAGGCGTTGTAGAGCTT GAAGAAGAAATTACTGATCATACTTATGTTAGAGAAAAAGAGAAGGAGAGGATCAAATGGTTGTATTAG
>gi|l4518450:cll53551-1153219 (SEQ ID NO: 683)
ATGGTTGTATTAGATACAAGCATTGTTATAGATCGGGTTAAAAGAAAGGACGAAATAAAAGAAAACATAA CAGGGATAACTTTCGTTGAGTATCCAGCGATAATAAGATATAAGAAATTCCATGGAAATGTTCTCTTTCC AACCTTTGAAGACTTTCTCTTAGCTCACAAGATTCAGGAGAGACTTTTGAAAATTGGAAAACCGAAGGCT TTTGCTGACTTACTAATTGCCTCAATTTGTATCAGTAATAATGAGGAACTGATAACAAAGGATAAAGACT TTCTAGACATTGCAAGGGTATCAAATCTAAGGGTTAAAGTTATTGATGTTTGA >gi|l4518450:1260427-1260705 (SEQ ID NO: 684)
ATGGTGACATCTGTGGTTAGTATCCGACTCAAAGTTGGACCTAAGGGACAAATAGTCATCCCAAAGGTAT TCAGGGAAGCTTATGGAATAAAAGAAGGGGGAGAAGTGATAATTGAGCCAACTGATAAAGGGTTAGTTAT CAAGGCTCCACTCGACGTTAAAACATTAATGGAAAAGCTCAAAGAAAGAAGGAAAAATATGAAAGGAGTT GGAATTCAAGCAAAGCTTGGAGATCTAAAGGATGTAGACTTGGAGGATGAATTTAATGAAGATATTCCTT GA
>gi)l4518450:1260692-1261093 (SEQ ID NO: 685)
ATGAAGATATTCCTTGATGCCAGCTTTATCATATACCTTAACGTTGATGTTCCAGATAGCCTTGCAGAAA AAATTGACGCCCTTTACGAGCAACTTATAACCAGTAGTAAGCTCTATACAGATGTTCTCGTTATCGATGA GGTTATACACGTCTCAAGGAAGAAATACAAGGTGCCATACTCCAAAACAATTGAGATGCTTGATGACATC GTAATCCCCTATGTCGAGGTTCTTCCAATTGGGCTTATGGAGTATCTTAAAGCAAAGGAGAACATCTTGA AATACAACCTAAAACCTTCCGATGCAATTCATTTAGCCGTAATAGAGAACAATGGAATTCAAGCGATAGT CACGGAAGATGAAGACTTTGATAGAGTTCCAATAAAAAGAATTTGGCTTTAA >gi]l4518450:1291316-1291903 (SEQ ID NO: 686)
ATGCACGCAAATGAGATCTTAGATGGAAAGGATTTACCGCTCCTCTACGTTGGAATATCGCCTTGCTTCA GGAAAGAGGCGGGAACTGCAGGAAAGGATACCAAGGGAATATTCAGGGTTCACCAATTCCACAAGGTTGA GCAGTTCGTGTACTCTAGGCCTGAGGAGAGCTGGGAGTGGCACGAGAGGATAATAAGGAACGCCGAGGAA CTCTTCCAGAAGCTCGAGATACCGTATAGGGTAGTGAACATATGCACTGGAGACCTTGGCTACGTGGCGG CTAAGAAGTACGATATAGAAGCTTGGATGCCTGGTCAAGGAAGATTTAGGGAAGTAGTTTCGGCAAGCAA CTGTACCGATTGGCAAGCTAGAAGGCTCAACATAAGATTTAGGGATAGAACAGATGAAAAGCCACGCTAC GTTCACACCTTAAATTCAACGGCCATAGCAACTTCTAGAGCGATAGTTGCGATACTTGAGAACCATCAAG AGGAAGATGGAACCGTGAAGATTCCGAAGGTTCTCTGGAAGTACACCGGCTTCAAGGAAATAGTTCCCGT AGAGAAGAAGGAGAGGTGTTGCTCAAGTTGA
>gi)l4518450:1291891-1292376 (SEQ ID NO: 687)
GTGTTGCTCAAGTTGAAGCTCGTTCTCGACTCTTCAGTTTTTATTCAAGGCCTTGACATAGAGGGTTACA CGACACCAAAAGTCGTTGATGAAGTTAAAGATAGAGAGTCAAGGATTCTCTTAGAATCCCTAATATCCTC GGGAAAGGTTAAAGTTGTAGAGCCATCCAAAGAAGCCCTAAGGGCAGTTAAAAATGCAGCGTTAAAAACT GGAGAAATTGAAGAGCTAAGCGAGGCCGACTTAGAGGTTTTGGCCTTGGCATATGAGCTTAAAGCAGAAG TTTTTTCTGATGATTACAATGTTCAGAATGTGGCAAGAATTCTGGGTCTTAAGTTTAGAACGCTGAAGAG AGGGATAAAAAAGGTCATCAAATGGCAGTACGTTTGCATAGGTTGCGGTAGAAAATTTAAGGAAATGCCC CCAGGAGGAATATGTCCAGATTGTGGAAGCCCCGTAAAGCTAATTCCAAGGCGTCAGCGCTCATAG >gi|l4518450:1501612-1501827 (SEQ ID NO: 688)
ATGAAGACGATAGCCGTTGATGAGAGCACGTGGAAGAAGATTAAAATGCTTAAGGACAAGCTCGAGGCCA AGTCGTACGATGAGGTTTTGCAGAAACTCATAGAGACCTGGCACTTGGTTGAGCTGGACAAGAAAGTGGA TAAAGTTGTGGTCAAGGAGGAGGAAGCCGAAACGCTACTAAGCGTTCTGAACAAGATCAAGAAGAAGGGG GAGAGCTGA
>gi)l4518450:1501834-1502283 (SEQ ID NO: 689)
ATGCCCCTCCCTCCAGACATAACGTTTGACAGCGTAACCCTCTTGAAGATGCACAGCGAAAAGAACAAGA GGCTACTCGAGATAACGCTGGCCAAATTCACCGTTTACCTATCAATGCTAACCGTTCAAAGGTACCTAAC TGCTAGAGCTTACCTAAAGAGGAACGTAGAGCTTGAATTTGAAGTTCTAAAAGATATCTACAACATAGTG CCGGTCAGCGAGGAGATAATTTTGAGGGCATCGAAGATAGAGGCCAACTTAATTAGAAAGGGAGTTTTCC TCGACTTAGAGGATATCATAACGGCCGTGACTGCAATTGAAACTGGAAGCTTATTAATAACGGACGAACC AAAGAAATACGAGCCAATTAGAAGATTTGGGCTAGATACGATGCCCCTTGATAAATTTCTTAGGGAAGTA GAGCTAATGGTAGAAAAAGAAATCATATAA >gi|l4518450:cl699062-1698781 (SEQ ID NO: 690)
GTGATACTGTTGGTTAGTATACGTCTTAAGGTTGGGCCAAAAGGTCAGATAGTAATCCCCAAGGTTTTTA GAGAGGCTTATGGCATAAAGGAGGGGGGAGAAGTCGTACTTGAACCAACAGATAAAGGTTTAATTATTCG GGCTCCAATAAGAGTTGATGACCTCATTAAGAAGATCAGAGAAGAAAGAAAGAAAATGAACCCAAAGAGA AGGCCAAAACCCGGAGAACTTAGAGGGATCAGCCTTGAAGATGAGTATGAAGAGGAATGGAGGAGTGAAG AGTGA
>gi|l4518450:cl698781-1698371 (SEQ ID NO: 691)
GTGAAGCTCTTTTTAGATACAAATATCCTAGTTTATCTTGCTTTAGGTAGTGTTGATCCAAGTTACGAAA CATCAATTGATGAATTTTATAGAGACCTCATGAAGGGTCATGAGCTTTACACGGATGTCTTGGTTCTCGA CGAGTTCATTTATATCCTCAAGAGAAAATATGGAGTCCCCTATGAAAAAGCAATAACGTTCATCGAGGAG ACTGTAATACCGGTTGTAAAAATACTCCCTATAACATTTCTCGACTATCTAACGGCTAAGGACGTTATGC TTAAATATAAATTAAAGCCATCTGACGCCTTTCATGTCGCCGTGATTCAGAATAATGGTCTTCAGGCTAT AGTAAGTGAAGATGAAGATTTCGACAGGCTCCCCCTAAAGAGGCTATGGTTGAGGGATTAA
>gi|l8976372:c765497-765189 (SEQ ID NO: 692)
GTGTTCGGAGAGATCGTACCTAGGCCTACAATGCTTAAATATGATGCACGTATTCAATGTATTGGTGAGG TTATGGTTAAGACAATCACAGTTTCTGATGATGTTTACAATGAACTCTTACGAATAAAGGGCAAGAAATC ATTTAGTGAACTTCTTAGGGAACTCTTAAGGGAGAAAAAAGGAAATTCAGTGGCTCTTAAACACATTTAC GGTATCTTAAATGGGGAAGAATATCGGGAAACCAGGAAAAGGCTAAAAGAGCTAGAAAAAGAGTTTGAGA AATGGAAGCAGTTCTTGACACAAGTGTGA
>gi|l8976372:c765216-765121 (SEQ ID NO: 693)
ATGGAAGCAGTTCTTGACACAAGTGTGATAATCGAAATAGCTCGTGGGAACAGAGAAATTCTTGAAAAAG CCTTGGGCCTTGACAACACCTTATAA
>gi|l8976372:768291-768446 (SEQ ID NO: 694)
ATAAAGGGGGATGAAGTGGTGGTTATTGAAGAGGAGGGGAAAGTTGAAATCCTTCCAAGGGATGTGGACC TGTCCAAATACGTGGATTCGGTGGAAGTGGATGTTGATAACTTTGGGGATTATCACGAACTGAGAAAAGA GCTGAGGGAGAAGAAATGA
>gi|l8976372:768446-768862 (SEQ ID NO: 695)
ATGAGGTTCATTGATGCAAATGTTTTCATCTACGCAATTTTAAAACCCAAGAGAGAATTAAACGAGAAGG AGCTGAAGATAAAAAGGGTTTCAAAAGAGATATTCAATCGAATAAACGGGGGAGAAGAGGTTGTAACAAC GGTGGTGCATTTAAGCGAGGTTGCAAACGTACTGGAGGATGCTGCGAATCTCAGCTTTGCAATCTCTTTC CTGAAAGATGTGTTGATAAAGGGAAACGTTATTGTCGAGGAGGTTAGCGATAGGGATTATATGGAGAGTG TTTTGCTGGCGGAGGAGAAGGGAGTTAGTATCAACGATGCCCTTGCTTATATTTTGATGAAAAGGAAAGG GATAGAGGAGATCTATACTTTTGACAGGCATTTTGAAAACCTGGATGTTAGAATAGTTAATAGTTGA >gi|l8976372:765537-765860 (SEQ ID NO: 696)
ATGATTTATCTGTTCCTTCAGAACTCGGTGGCCTTAAATGTTGGAATTGGGTATATAAAAATTGTATTAC AAATATACCTGCAGGTGAATTACGTGGGAGATGGTATTAGTATTCGTGTTCCGCCAGAAATTAAGCACGA AATGGAGAAGTTGAAGGGTGAAGTTAACTGGAGTGAGGAAATTAGAGAATTCATAAAAAGGAAGATTAAA GAATATAAAATGAGAAAGGCACTTCAGGAGGTTATAGCTTACATCCAAGCCTTGCCCGAGGCACCAAGAG GAACAGCACAAAAGTTAGTGGGAAAGGATCGTGATAATCATTGA
>gi|l8976372:765537-765860 (SEQ ID NO: 697)
ATGATTTATCTGTTCCTTCAGAACTCGGTGGCCTTAAATGTTGGAATTGGGTATATAAAAATTGTATTAC AAATATACCTGCAGGTGAATTACGTGGGAGATGGTATTAGTATTCGTGTTCCGCCAGAAATTAAGCACGA AATGGAGAAGTTGAAGGGTGAAGTTAACTGGAGTGAGGAAATTAGAGAATTCATAAAAAGGAAGATTAAA GAATATAAAATGAGAAAGGCACTTCAGGAGGTTATAGCTTACATCCAAGCCTTGCCCGAGGCACCAAGAG GAACAGCACAAAAGTTAGTGGGAAAGGATCGTGATAATCATTGA
>gi|l8976372:1146253-1146840 (SEQ ID NO: 698) ATGCACGCAAACGAGATTCTCGATGGAAAGGATTTACCTTTACTATATGTAGCTTTCAGCCCGTGCTTTA GAAAAGAGGCAGGGACCGCCGGAAAGGATACCAAGGGAATCTTTAGGGTTCACCAGTTCCACAAGGTTGA GCAGTTCGTCTATTCTAGACCTGAAGAGAGCTGGGAGTGGCATGAAAGGCTAGTTAGGAACGCTGAAGAG CTCTTCCAAGAGCTTGAGATTCCCTACAGAGTAGTTAACATCTGTACTGGAGATCTGGGTTACGTAGCCG CAAAGAAGTACGACATAGAGGCTTGGATGCCTGGGCAGGGGAGGTTTAGAGAAGTTGTTTCGGCAAGCAA CTGTACAGACTGGCAGGCTAGGAGGTTGAACATTAGGTTTAGAGATAGAACTGACGAAAAGCCCAGGTAC GTGCACACTTTAAACTCCACTGCAATAGCAACTTCTAGAGCAATAGTGGCAATTCTAGAGAACCACCAGC AGGAGGATGGAACTGTAAAGATACCCAGGGCGCTCTGGAAGTACACTGGATTCAAGGAGATAGTCCCGGT TGAGAAGAAGGAAGGGTGCTGCAAGGCATGA >gi|l8976372:1146840-1147307 (SEQ ID NO: 699)
ATGAAGCTTGTCCTTGACTCTTCTGTTTTTATTCAGGGTGTTGAGGTGGAAGGTTACACAACGCCAAGTG TTGTTGAGGAGATTAAAGATAGAGAATCCAAGTTATTCCTAGAATCTTTAATATCTGCAGGAAAGGTAAG GGTGATTGAACCTTCAAAGGAGGCTATAGAGAAGATAATCCAAGCGGCTAGAGAGACTGGAGAGTTGGAG GAGCTAAGTAAGGCCGATATAGAGGTTTTAGCCTTGGCGTATGAGTTAAAGGCAACCATCTTTACAGATG ACTACAACGTCCAGAACATAGCCTCCCTCCTGGGACTCAAGTTTAGAACCCTTAAGAAGGGAATCACGAG GGTAATGAAGTGGAGGTATGTATGTATAGGTTGTGGAAGAAAATTCTCGACCCTTCCCCCTGGGGGAATA TGTCCAGACTGTGGGAGTAGAGTGAAGCTTATTCCCAGGAGGCGCTAG
>gi|l8976372:cl271586-1271365 (SEQ ID NO: 700) ATGGAAGTCGTTAGCTTTAGAATTCCCAGGGAACTTAAGAAGGAAATGAAAAAAATTGACATAAATTGGA GCGAAGAAGTCAGAAAATTCATTGAAGAAAAAGTAAAAGAGTACAAAAGGAAGAAAGCCTTAGAGGAAAT CGATGCTATGTTGGCAAATTTACCAAAAGCTGAAAAGGGAACTGCAAGAAAATACGTGAGGGAGGATCGT GATAGTAATTGA >gi|18976372:cl271378-1270974 (SEQ ID NO: 701)
GTGATAGTAATTGACGCATCCTCCATCGCCAAATACATCCTAAGGGAAGAAAATTGGGAGAAAGTAAGAA AATACCTACTAGACAAACCATACTCTCTAACACTAGCTTTAGCTGAAGTGTCAAATGCCATCTGGAAACA TTACGTGCTGTACAAAGCTATATCAATTGAGGAAGCTAAGTTAATGTATGAAGCATTAAAGAGGCTTGAA GAGGACGTTATAACTTTTGAACCTCTTGAAAATTATCTTTGGGATGCTATGAACATAGCCATCAGCTGGG GAATTCCAATTTATGATGCCCTCTATTTGGCTCAAGCAAAAAAGTATGGCAAGCTTTTAACAAGCGACAA AGAGCAATGGAAGATTGCAAAAAAGCTTGGAATTAAAGTGGAATACGTGGAGTAA
>gi|18976372:cl596552-1596223 (SEQ ID NO: 702) TTGACTAAAGGTGATTTAATGGCAGGAAACGTAGTTGGAAAACCAGGGAAGTTGCCGCCAGTTTGGACAG ATCTGAGGCTTGAAGTTCACCTACTGGAGAGAGTCGTTGGTACTGAGCAAGAGCTGAATGTTGAGCCCAT TAAGAGGAAAGAAGTTCTCCTATTAAACGTTGGAACGGCTAGAACAATGGGTTTAGTTACAGCTCTAGGT AAGGATGAGATAGAGCTTAAGCTCCAGATACCAGTTTGTGCTGAACCTGGAGAAAGAGTTGCAATTAGCA GGCAAATAGGGTCAAGATGGAGATTGATAGGATACGGCATAATTAAGGAGTAA
>gi|l8976372:cl596214-1595798 (SEQ ID NO: 703)
ATGAAGAGAGTTTGGCTGGTTATTCCTGATACAAATTTTCTTTTTATCCCTGGGCAATTTGGCGTGGACA TAATATCTGAGCTCGAAAGAATACTTGATGTGAATTACAAAATTGTAATACCGAACATAGTTTTGGAAGA ATTGAAGACTATTCTCAGAGAAGGCAAGCTTAGAGGAAAAGACCTTATTGCTGCTCGAATGGCACTTAAG TTGGCTGAACGGTTTCCCACAATTTACGTAGGAGATTTTATGTCCAAAACTACAGATGAGTTAATTTATG AGTTTGCGATTTCAAACGACAATGTGATAGTTTGCACTAATGATAAGCAATTGAGAAAAAGGTTAAGGGA AGCAGGGGTTCCAGTTGTGTTTCTAAGACAAAAGAAAAAGCTAGAACTTGAGGGTATGTTGGGATAA
>gi|l8976372:cl897570-1897358 (SEQ ID NO: 704) ATTATAAGAAGCTTAAGGAGGCTTACTATGAATCACTTTGAACTCTTTGTAGATTCTTCTGTTCTGGTAG GATTAAACCTTGGTGATGAAAAGGCAAAAGCATTAGTAAAGTCGTTAATTGAAAGAGGCCTTACCTTAGT CCAGTCGTTTTCTCTGAAACGGCTTATAAGGTTATGTTTACCTGGCCCTTCGAGATGGATTGAAGGGTGT TTATGA >gi | 18976372 :cl897371-1897201 (SEQ ID NO: 705)
TTGAAGGGTGTTTATGATCTCAAAAAGCATTTGAATAGATATAGTTGGGTTTATGGGAAAGTCAAGGAAT CAATTGAACAACTGATGAAGAATGAACTTTTAAGGATAGTTGAAGTCAACTGGGAAATACTAAAGTTATC CGCAGAAATTGGGAAAAATACGCTCTTTTAA >gi|l4589963:c351629-351390 (SEQ ID NO: 706)
ATCGTAATCAAGGTGGTATGCATGGAAGTCATTAGCTTTAGAATTCCCAGCGAGCTCAAGAAGGAAATGA AGAAAATTGACATAAATTGGAGCGAAGAGATCAGGAAGTTCATTGAAGCCAAAGTGAGGGAATACAAAAG AAAGAAAGCCTTAGAGGAGATAGATGCAATGCTAGAGAATTTGCCAAGAACTGAAAAGGGAACCGCAAGA AAATACGTGAGGGAGGATCGTGATAGTAATTGA
>gi|l4589963:c351400-350996 (SEQ ID NO: 707)
GTGATAGTAATTGACGCATCATCCATAGCTAAATACATATTAAGGGAAGAGAATTGGGAGGAAGTCAGAA AATACCTGCTAGATGATCCGCACTCCCTAACCCTAGCTTTAGCTGAGGTCTCAAACGCCATCTGGAAGCA TTACGTGCTATACAAAGTTGTATCAGCTGAAGAGGTTGGAATAATGCTCAAAGCATTGAAGAGGCTTGAA GAGGATGTCATAAATTTTGAACCCTTTGAGCATTACCTCAAGGATGCTATGAGCATAGCTATCAACTGGA GTATTCCGGTTTACGATGCACTTTACCTAGCCCAGGCAAAAAGATATGGCAAGCTTTTAACTAGCGACAA AGAGCAATGGAGGATTGCAAAGAAGCTTAAAATAAAAGCGGAGTACGTGGAATAA
>gi|l4589963:c372781-372554 (SEQ ID NO: 708) ATTTTTGGAGTGGGTTGTTTGAGTAAAGTTGTCACTATAAGGGTTCCGGAGTGGGTTGATGAGGAAAAGC TTAGAGAGATTATAAATATGGCATTAGCCGAAATTTCGCCAAGAATTATGTCTATTAATAAATTGAGGGA AATTCTAGGTGTAGAAGAGGTTGAGGAAGAAATTTCAGATGACGTTTACGTTAGGGAAAAGGAGAAGGAG AGAGTTAAATGGTTGTACTAG >gi|14589963:c372499-372242 (SEQ ID NO: 709)
GTGACTTTTGTTAAATATCCAGCGATAGTGAGGTATAAGAAGTTTTATGGAAATGTTTTATTCCCAACCG TTGAGGATTTTCTCCTAGCCCATAAGATTCAGGAAGAGCTTTTAAAAATGGGAAAACCAAAAACTTTTGC TGACTTGTTGATCGCGTCAATTTGCATTAACAATGGCGAAGAACTCATAACGAAAGATAAAGACTTCTCA GACATTGCAGAAGTCTCAAACCTAAAAGTTAAGATCGTTGAAGAGTGA
>gi|14589963:c452910-452704 (SEQ ID NO: 710)
ATGAAGACGATAGCAGTTGATGAAACTACCTGGAAGAAAATAAAGATGCTCAAGGACAAGATGGAAGCAA GATCGTACGATGAGGTTTTACAAAAACTAATAGAAACTTGGCACCTAGTCGAGCTGGATAAGAAAGTCGA TAAGGTAATGGTTAACGACGAGGAGATGAAAATTCTAATGTCGATATTAAAGAAAAAGAAGGGGAGTTAA
>gi|l4589963:c452698-452249 (SEQ ID NO: 711)
ATGCCTCTACCTCCAGATATAACTTTTGATAGCTTAGCATTAATAAAGATGCACTCCCAGAATATGAAGA GAATACTTGAGGTAACCCTGGCAAAATTTACCGTTAACCTATCTATAGTCACAGTATATAGGTACCTTAC CGCGAGGGCATATTTAAAAAAGAACATTGAAGCAGAATTTGAGATCTTAAAAGATATTTATAATATAGTT CCACTCCTTGATGACATAGCCATAAAAGCAGCCCAAATTGAAGCTAATCTTATAAAAAAGGAGATAACGC TTGACATGGAGGATATAATAACAGCGACGACGGCCATATATACAAATAGCCTACTTGTGACAGATGATCC AAAGAGATACGAGCCAATTAGAAGATTTGGGCTCGATACAATGCCACTAGATAAGTTTATAAAAGAGGTA GAGCTAATGGTTGAGAAAGAACTCATATAA >gi | 14589963: 631040-631294 (SEQ ID NO: 712)
ATGAAAACAATAGCGGTTGATGAGGAAACATGGGAAGCCATTAAAAAGCTCAAGGCTAGATTAGATGCAA AATCATACGATGAAGTACTAAAAAAATTAATACAGGCATGGCACACCTTGGAGTTGGAAACAAAAGCTGA GAGTATATCATTGGATGACGAAGAGGCCGAACTTGTGCTTTCAGTAATTAAAGAAAGGGGCAGATTTGTC CAGGAGGGAAATAAGAATGACTCCAATGCTTCGAAAAATTTGCTTTGA
>gi|l4589963:631266-631736 (SEQ ID NO: 713) ATGACTCCAATGCTTCGAAAAATTTGCTTTGATCCTTCTTCTTTTATTCAACTTACGAGAAAGCAAAATA AGGAGCTTTTAGAATTTGTCTTAGCGGAATTCGAGATATATCTCCCGATAACGACAGTTCATGCCTACCT CCTGGCGAAATCCTTTAAGGGGAAGGATCCAAAAAAAGAGGTTCAAAAGTTGAGGGGAATAGTTAGAATA GTCGACTTGACGGATGATCTACTAGGGGAAATAGCTGAGATAGATGCCTCCTTAATTAAAGATGGTTACT TCCTCTCCCTGGAAGATTTAATAACCGCTGTCTCTGCTATAGCATCTAAATCCCTGTTGGTTGTCAGTGG TAATGCGGAAAAGTACTCCCCTTTAAGGAAATACGGACTTGATTGCGTAAACTATGACAAGTTTTTAGAG GAAGTTGAGGTTCTTGCTAGGGAAGAGGCAAAGAGAGAAAAGTTAATCTAG
>gi] 14589963 :c632499-632206 (SEQ ID NO: 714)
ATAGAAGCCTGGATGCCAGGACAAGGTAAATTTAGGGAAGTAGTCTCAGCAAGCAATTGTACTGATTGGC AGGCTAGGAGGCTTAACATAAGGTTTAGGGATAGGACTGATGAAAAGCCCAGGTACGTTCACACTCTAAA TTCAACGGCAATAGCTACTTCTAGAGCGATAGTTGCAATCCTGGAAAACCATCAGGAGGAAGATGGAACC GTTAGGATCCCAAAGGTTCTGTGGAAATACACAGGGTTTAAGGAGATAGTTCCAGTAGAAAAGAAGGAGA GGTGTTGCGCAACTTGA >gi|l4589963:c632218-631733 (SEQ ID NO: 715)
GTGTTGCGCAACTTGAAAAAAACCTTAGTCCTTGACTCTTCAGTTTTCATTCAGGGGATTGATATTGAAG GATACACAACCCCTAGTGTAGTTGAGGAAATAAAGGATAGAGAATCTAAGATCTTCCTGGAATCTCTGAT ATCAGCAGGAAAAGTGAAGATTGCAGAACCTTCAAAGGAGTCCATCGATAGAATAATCCAAGTAGCTAAA GAGACTGGTGAGGTAAACGAACTTAGTAAAGCCGATATAGAGGTTCTAGCTTTGGCCTATGAGCTCAAGG GAGAGATCTTCAGTGACGATTATAACGTTCAAAATATCGCCTCGCTCCTCGGGCTTAGGTTTAGAACCCT TAAAAGGGGAATCAAAAAGGTCATAAAGTGGAGATACGTATGCATAGGCTGTGGAAGAAAGTTCTCAACC CTTCCTCCTGGAGGGGTATGCCCGGATTGTGGAAGTAAGGTAAAGTTGATTCCTAGAAAGCGCTAG
>gi|l4589963:820081-820305 (SEQ ID NO: 716)
ATGCCAATAACGAAGGTTACTCGAAATTATCGAATAACAATTCCCGCGGAAATTAGAAAGGCCCTTGGAA TTAAAGAAGGTGAACTACTCGAGGTTAAGCTCGAAGATGGGAAAATTATTATAGAAAGGCTCAAAAAAGA AAGAAAAACACTCAAGTTGGGTAAAAAGTTAACTCCCGAAGAAATTGAGAAAGCAATAGTGGAAGGGATG AAAGAATGCATATAG
>gi|l4589963:820296-820538 (SEQ ID NO: 717)
ATGCATATAGTGTTAATTTATGATACATTTATCGATTCTGAGTTTCACAAAAAGGCTAGATCTCTTTTGG ATTCTCTTGATAGATGGTACATTCCTCCCACAGTACTTCAGGAGTACGTGTGGTTTTTTAGGAGTCAAGG ATTTTCAAGTAGAGATGCCAAGATAATGCTCTCTGAATATATCAGATCTAAGTTGACCTTCTCGAAAGGA AAAACCTCTCTTTGCCACAGTTTAATGATATGA
>gi 114589963 :c821653-821345 (SEQ ID NO: 718)
ATAGCGGGCTTGGGTGTTGCAGTAGCCCTTAAGATGAGTAGCATGGAGGGGTTCCAGATAATAGTGATGA TGCTAATGCTCCCAATGATGTTCCTCAGCGGTGCATTCTACCCAGTAAGGACTATGCCAAACTGGATGCA GTGGCTAGCAAAGATAAACCCCTTAACGTATGCAGTTGATGGGGCTAGGTACTATCTTGCAGGGGTAACT CCAACTTTTGGGATTATGCAGGATTGGATAGTCTTAATACTCCTAGCTTTAGTGTTCGCTGGATTTGCAG GATTGGAGTTTAGAAAGGCCTATCTTTCATGA >gi] 14589963 :c821345-820929 (SEQ ID NO: 719)
ATGATTTTTGTTTATTTTTCTCTTCGTGACGAGAAGGCAAAGGCATTAGTGAAGTCATTGATTGAAAGGA GCTTCACTTTAGTCATAAACCCTGTCGTTTTCTCTGAAACGGCTTATAAAGTTATGTTCACCTTAGCCCT TCGAGATGGATTGAAGGGCGTTTATGATCTCAGAAAGCATTTAGATAGATATGCTTGGGTTTATGGAAAA GTCAAAAAATCGATTGAACTGCTGATAAAGAATGAACTTTTGAGGATAGTCGAAGTCAACGCAGAAATTG GGGAGAAATACGCTCTTTTAACCAATGATGCTATAATAGTTGCCACTTGCAAATATTACGAAATTCAGAA AATAGCCACTTTTGATGAAGACTTTAAGAAAGTTGATTTTATCGAAATTATCGATTCATCATTATAA
>gi|l4589963:cll68172-1168014 (SEQ ID NO: 720) TTGAGAGTCCAAAAAACACTGGCTCCTGGGCTTATTTGGAATATACACCCTCTCATCAATAAACCTACTC ACATCACCCCCGATTTTAGTGGCCTATCTCTTCCTCGGAAGCCTATACTACATCATAGCACACCACTATA CAACAAAAGAAGAGGTAAATAA
>gi|l4589963:cll67964-1167611 (SEQ ID NO: 721) GTGTCAAAGTATAGGGGATTTTTACAAAGGAAAAAAGACCTCGAAAAGAGCCTTCGGGAGCTGAGATTGG AATGGGAGGGATTTCTGATAAACACCAACATCCTCATATACTACCTCGCCGATGCCATTCCGGAGGATGA GATACCCAGGATAGAGAAAATCCTAAAGGAGGACTTCAACATCTCCATAATCACCAAGATAGAGTTCCTT GGAAGGAAGGGCCACACTTCGGAGGGTTTTGAGAAGTCAAGAGAGTTCATAAGCTTTGCTCGTGTAATTC CTCTCACGGATGACATTGCCGAACTCGCAATCGAGCTTAGGAGAAGGAAAAGCATAAAGCTCCCGATGCT GTAA
>gi | 14589963 :1501435-1501986 ATCTACCCCTGGGATATTGGATGGTCAGGAATTTTCTCTCCAATGGGTGGAGAGGAAAGGTTCGTTGGAG TTGAATTTGAGTACAGGGGTAAGAAATTTACAGTAATCAACCCAACTCCATATAAAAAAGGATTATTTCC ATACATTAACGGGAATAGCGAATGGATGAAAGAGTTAAACGATGACTTGAATAACCTTTACATGGGCTGG GCCGCCATGGTTAACTTAGCTTTATGGAGTGCATGGAGTGATAAAAACGTTCTAGTGCCCCAACAGGGAA CATGGAGCGACGGTACACACAGCTGGGAATGGGAAACTAGACCAGATGGAGAGATTACCTTTTCGGGAGT GACATTCAGAGTTATAAACGCTGAATGGAAGTATTCTGGAGAACCAGAGGGTATAAAGCTCAGTGGAAAC GGGAAATTTGCACCTGAAATATTTATTCCCCTAAGCGTTGAAGGGTGGTTTTCGTCTAAGGATCCAAAAA CTGGAGAGAACATCGAGATATATGGAGCTTATGAACTTCAAGATATAAAACTAGAGGAAATTTGA
>gi | 14589963 : 1502036-1502452 ATGAGGAAAGTTTGGCTTGTAATACCAGACACAAACTTCCTGTTCATTCCCGGACAGTTCGGCGTTGACA TAATATCTGAACTATCCAGGATACTTGATGTTAAGTACCAAATAGCAATCCCTAACGTGGTAATTGATGA GATAAATACAATAATAAGAGAAGGAAAGGTAAAGGGAAGGGACTTATTGGCAGCAAGGATAGCATTGAAG ATAGCGGAGAGATTTCCAAAGATTTACATAGGAGAATTCTTGTCAAAGTCTACGGATGAGCTTCTCTATG AATATGCAATAACACATGATAACGTGATAATATGTACTAATGATAGAACGCTAAGGAAAAGGCTCAGAGA AGCTGGAGTCCCTGTTATATTCCTTAGGCAAAAAAAGAAACTTGAAATCGAAGGAATGCTAGATTGA
>gi | 14589963:965798-965962
ATATATTTCGTGCATACATGCACTTATGAGGTAACCTCTATGAGTAAGACGATAACAATAGCGGATGATG TATACTACGAGCTTGTGAAAATGAAGGGAAAGAGAAGTTTTTCAGAAGTTCTTAGAGAACTTATTGGGAA GAAAAAAGAGGGAATCTCGACGTACTAA
>gi 114589963 :966048-966383
CTGGACACCAGTATAGTTATTGAAATATTTAAAGGAAACAGAAAAATTCTAGATCAACTTTCTCCTACAG AAGAATATTCTCTTCCTTCAATAGTGCTTTTTGAACTCCTTTGCGGAAATCTTAAGCCTCGACAAAGGCT TGCCCTGGAAAAACTACCTATTGTAGATTTTGATAGAGTAAGTGCGGAAGTTGCGAGTGAAATATTTAAA GATTTGGCATCAAAAGGCCAAAGGCCTCCGACTAGAGACTTACTAATTGCTGCAACTGCTATAGCCTATA ATATGCATCTGCTCACATGTGACAAAGACTTCGAGCGGTTTAAAGATTATGTTTAG
>gi ] 15963753 : 1166694-1166927
ATGGCAACCACCGTTACGATCAAGGGGCAGGTCGCGATACCGAAAGCGGTGCGCGAACTGCTTGGTATCA AGCCGGGCAGCAAGGTTGACTTCCGCCGCACCGGCAGCGGCATCGTCGAAATCAGGCGGGCCGACAGCAA ACCTGTCCGCAGCCGTTTCCAGAATCTGCGCGGCCATGCCGGCGAGGGCCTCAGCACGGATGACATTATG GCGCTGACGCGTGGTGATGCGTGA
>gi|15963753:U66924-1167208 GTGACGCTGGTCGACACAAACGTTCTGCTTGATCTCGTTACCGATGACGCAAGCTGGGCGGGTTGGTCGA TAGACCAGTTGAAAGCGGCAAGCCTGCAGGGCCCGCTTCTGATCAATGACGTGATCTATGCGGAGCTCGG CGTGCGATACGAACGCATTGAAACGCTCGATTCGTTCATAGCCGAAGCCGGCCTGGAGCTGTTGGCCCTG CCCCGTGCCGCACTGTTCCTGGCCGGCAAGGTCTTTGTTCCATTCCGTGCGCGAATTCAGGCACATTGCC TTTGA
>gi 115896971: 360012-360608 GTGATAAGAAGTTTTGACGTTAATAAGCCCGGTACCCAATTCAATGAGTTGAAGGGTGGTGTAATAGGTG GCAGTATTATACAAGGTTTGTTTAAAGTTGACCAAGAAATAAAAGTATTACCGGGCTTAAGAGTGGAAAA ACAAGGTAAAGTATCTTATGAACCTATTTTCACAAAGATTTCGTCCATAAGGTTTGGAGATGAGGAATTT AAAGAGGCTAAACCAGGAGGTTTAGTTGCAATAGGTACATATTTAGATCCCTCATTGACTAAAGCTGATA ATTTGCTTGGCAGTATTATTACCTTAGCTGATGCTGAAGTTCCAGTTTTATGGAACATTAGAATAAAGTA TAATCTCCTAGAACGTGTAGTTGGAGCTAAGGAAATGTTAAAGGTAGATCCCATAAGAGCTAAGGAAACT TTAATGTTGTCTGTAGGTTCATCGACGACTTTGGGTATCGTTACCTCTGTAAAGAAGGATGAGATTGAAG TGGAGTTAAGGAGACCTGTGGCAGTATGGTCTAATAATATTAGAACTGTCATAAGTAGGCAAATAGCTGG TAGGTGGAGAATGATAGGATGGGGTTTAGTAGAGATCTAA >gi|l5896971:360575-361012
GTGGAGAATGATAGGATGGGGTTTAGTAGAGATCTAAAAGTACTAGTTGATACTAATATTTTATTGTACG TGTATGATGGTTTAGATCCATTTAATAAGGTATTAGAATTTCTAGATTATAAACCGTCTTTTTTTATTCA TTCTACAGTCTTAAGAGAGCTAGATATTTTATTTGAGAAGAACAAAAAAGGATTTATTATATCATCTAGA ATTAAGATAGCCAGAAAATATTTGGAAGTATATAAAAATTTATGGAATTTAATAAATGATTATGATGATT TACCTACAGATGAAGCATTAATAAGGACCGCTCTTAAGCATAATATGTTTATATTTACTAATGATAAGGA ATTAAAAAATGATGCAATTAAAAAGGGTATAGGAGTTTTATTTCTTCAGAATAGGAGTAAAATTATAAAA TCCTTATATCCTATCTAA >gi | 15896971 :c683385-683083
ATTAAAGAAGTAAAGACGCACTACTTTGTAACCTTAAACCCACCCAGATCAATAACAGCTTTGCAGCCAA TAACAGTCAGTGTAGGAGCTTTAAGTGCAATTGGAATCTTAGCTTATCTTCTCTCGAGACTAGATAAGGG AGAGGATAATATTAGGGAAGTTGTAGAAAAAGCCTTGGATGAGGCAATAAAGGAGAAGGAAAAAGAAAGG CTTAGAGAAACTGCGCTAAAAATTAAGGAACTTATGAAAGACGTGAACGAGGAAGAATGGGCAACAGTCA TAAGGGAAAATAGGAATGAAAGGTAA
>gi ] 15896971 :c683090-682698
ATGAAAGGTAACGGGTTTTTATTCGACGCTTCAGCTTTATACCCACTTTTAGACTACATCGACAAGATTG ACGTCAAGAAAATTTATATACTTACCTTGACTTTTTACGAGGTAGGAAACGCGATATGGAAAGAGTATTA TATACACAAGAAGGTAAAGGACCCAATAACCCTTTCTATGCTTTTTAACGATTTACTTAGGCGCTTTAAC GTAGTAGAAGACCCACCTTTAGATAAGGTAATGAAGGTCGCTATAGACAAGGGTTTAACTTATTATGATG CGTCTTACGTATACGTTGCTGAGTCTTTAGGCCTCACTCTAGTATCTAACAATCGTGAGTTGATAAGAAA GGCCAACGCTATTACATTAGAGGAGTTGATAAAAGGGGTTTAA
>gi | 15896971 :c725687-725481
ATTTCAGAGAGAATTAAAGAAAAGATCTACGATACGAACGCCTTAATTAAAATTCATAAGAATAAATCTC
TCCTATCTACGACTAATTACGTAACAACGTCCATACTAAATGTGATAGAATACCCTCCAATAATAGATCT AAAGGAGAAATTGATAATAATTTATCCCACAAGAAGTGATTACGAACTTGCCATAAAAGATAATGGTTAA
>gi 115896971 :c725485-725327
ATGGTTAAACTAAGAAAAATAGGAGAGCCAGTTAATGCGGTGGATATAATTTTATCTTCTATTGCCCTAA ACAGGGACATGATAATAGTGACTAACGATAATGATTTTGAATCAATTAAAAAAGTCGAAGAGAGATTAAA GATAGAAAAAATGAGATAA
>gi 115896971: 1073660-1073923
ATATACGAAAATTTTATATACGTATATCTCGTATACATATATATGTCAGACGTAATAAGCGTAAGAGTGA AGAAAGAGCTAAAGAAGAAGGCAGAGGAGTTAGGAATTAACGTTAGGGAAGTTGTAGAAAAAGCTTTAGA GGAAGCCATAAGGGAGAAGGAGAAGGAAGAGCTTAAGGATATGACTATGAAAATTAAGGAACTAATGAGG GACGTAAGTGAATATGATTGGGTAAGTACTGTTAGGGAGAGTAGGGATGAAAGATAA
>gi 115896971: 1073916-1074308 ATGAAAGATAAGGAATTCTTGCTCGATGCCTCAGCTTTGTATTCACTTTTAGATTACGTGGATAAGGTAG . ATGTTAAGAAAATTCATGTACTTACCCTAACTTTTTATGAGGTAGGTAATGTCATATGGAAGGAGTATTA TATACATAAAAAGGTTAAAGATCCTATAACCCTTTCGAGGCTTTTCTATAAATTAATGCGAAAATTTAAC GTAATAGAGGATTCGCCTCTTGAGGGGGTAATGAGAATTGCCATAGAAAGGGGTTTAACTTACTATAACG CATCTTATGCGTATGTTGCTGAATCTTTAGGGCTTATCCTAGTGTCTAACGATAAAGAGTTGATAAGAAA GGCTAACGCTATTTCGTTAAAGGATTTGATAAAAAGTATGTGA
>gi 115896971 : 1340360-1340617
ATATATTACTTACACCTAAAATTTACTATGGAAAGAATGATATCTAAGGTCACCAGGAACTTTCAAGTCA CAATTCCTTATGAGATTAGAAAAGTGCTAGGAATAAAAGAGGGAGACTATATTGAGTTCGCAATAGAAAA CGGTAAGGTCATGATAAAACCTGTTAGAAAAGTTTGGTCAACTATTAGACTTGGAAGAGAAGTTACAGTG GAGGAGATTGAGGAAATCGCAAGTAAGGCCTTTAAAGATGATAGTAGTTGA
>gi 115896971: 1340550-1340996 TTGGAAGAGAAGTTACAGTGGAGGAGATTGAGGAAATCGCAAGTAAGGCCTTTAAAGATGATAGTAGTTG ATACGAATGTCCTAATTTACGCCACTCTTGAAGACAGCGAATTTCATACTCAAAGTCTAGAGATAATTGA GGGATCAGACATAATAGTTCCCCAAATTGTAGTCTTCGAATACATAAAGGTACTATCTGAAATTGTACAG AACTTAGATTTCATAAAAACAAAAATCTCAGAGTTAAACAATTTTGTCGTTGTTTGCGAAGACCTTAATA CTATAGCACTAGCGTTGAGACTATTAGCAGAGTTAAAACTTTCACTGAAAGACATTAACGATATGATAAT CTTAACCGCAGCAATTAAGACAAACAGCTCCATAGCCACATTTGATCAGAAGCTTAGAAAGATTGCAGAC AAGAAGGGAGTTAAAGTTTTGCCTTGA
>gi|15896971:cl348295-1347993 ATGGTAATAAAGAATGCTACAATTTTAATCTATGTACCAGAGATAGAAACGTTTATATTTCCCGTATACG TGTATTATAATATGAAAACCGTATACAGTTTAAGGTTAGATAAGGAATTACGTGAGGAGATGGAGAAATA TAACGTCAAGTGGAATGAGGAGATAGAGAGCTTTATAAGAAAGAGAATTGAGGAATTGAAGAAAGAGGAG ATCTTAAAGAAGATTAATGAAATCCTCCAAACAATGCCAGAAACTAAGTCAAATAGTGCAGATTTGGTGA GGGAAGATAGGGATAATAATTGA
>gi 115896971 :cl347931-1347608
TTGAAAGACGCTGAGACATTAGACTTCGCATTAGTGGAAGTATCTAACGTAGTATGGAAGAAAGCTGTAT TAACTGGGGAATTAACTGGGAAAGATGTAATTAAGGCAATTACTATTGTTAAAGAGTATTTACCACAACT GCTTACAGTTAACAAAAGCATTGACTTAATTGAAAGAGCTATTGAGATTTCCGTTAACGAGAAAATCACA GTATATGATTCACTTTATATTGCACTGGCTGAATGTAAGGGGAGTAAATTGGTAACGGGGGATAAGAAAC AATACGACGTAGCTAAAAAGTACGTCATCTCTGAGCTCATATAG
>gi I 15896971 :cl503996-1503685 ATAAATTTCAGAAGTGACCCACAAAGCAGTATACAAAGTAAACTTTATATACATACACACTTATTTACAT TTGTGAGTAAAATTATAAGAGTAAGTGAAGATGTAAAAGAGAAGTTAGTTAAAATTTCTGCTGAATTAGA GTTAAGTGAAGGTAAAAGGGTTAGTTTAAACGACACAATAAAATATTTAATAACCCTTTATGAGGAGAAG AAAAGTAACAAGAACTCAGAGTTACTACTATCACTTTTAGGTTCTGCTAAAGGAATTAGGGAAGAATTTG AGAGGTCTAGGATAGAAGATGAAAGTAGTGACTGA
>gi | 15896971 :cl503698-1503303
ATGAAAGTAGTGACTGACACGGGAGTATTAGTTGAAGTTTTAGAAGGCTCTAAATTGGGAGAAAAGTTCA TTCAACTAGTGGATAGTGGAAAAATAGAACCTATAATTACTAATTTAACATTAATTGAATTATCCTACAT AATATGTAGAAAATATGGGATAGACAAGGCTAGGGAACTTGTTAAGAAGTTGTTAGATTCAAATTACTTT GAAGTGGTGAATGCATTTGATTTTGCTGAGAATATAGTTGAAATAAAATGTAATAATTCTCTATCTATAA TTGACGCCTCTGTCATTGCAACAGCTAAAGCGTTAGGAATTTCTGCATTATTTAAAATGGAAAAAGAGTT AAAGGATAAGAAGTTTAATAATTTAATATTTATCGAGAATTTATAG
>gi | 15896971 :cl577585-1577400
ATAAAGGAGGGAGATATATTAATCCTAAGAGTCGAAGATGGTAAAATTGTTCTTGAGCCTGAAAGAAAGG TAAGTTTTGATGACTTAAAAAAGAAGATGGAGGAACATAGTGCTAAAATCTCATATGCAAATAAGGCTAA ACTTGGAGATTTAATTAACGTTAGTTTAGAGGAGGAATTCGATAATTGA
>gi 115896971 :cl577282-1577010
ATGAGGTTATTTACATTATCAAAAAAGAAGTATAATGTAAAATTTGAGGATACAATTGATTTCTTAGATA AGATAATACTTCCTTATACAATTATACTGCCAATCAACTCTCATGATTATGAAAAAGCAAAGGGGATAAT GATAAGTAAGACTTTAAAACCGTCTGATGCTTTCCACGTAGCTGTAATGATAAATAATTCAATAAAAAAG ATAGTAAGTGAGGATTCAGATTTCGATAAAATTAATGGAATAGAAAGGATTTGGGTAAAATAA
>gi 115896971: 1582391-1582642
GTGGGAATACAAAATCAACTTATGGGATATATAGTCACAGTTGATGAAAGAGGAAGGATTGTAATACCGA AGGATATTAGAGAGAGGCTTAACTTGAAAGAAGGAAGTAAAGTTGAGATAAGTGTGGACGAAAAGGGAAG GATTATTATTATTGTAAGGAGGATAAGTGTGGACAATATTTATGGAATTGCAGGAAGGGAAAGAGTTAGT ATTGAGGAGATTGAGGAGGCTTTAGGATTTGAAGATAATGATTGA
>gi 115896971:1582629-1583024 TTGAAGATAATGATTGATTCTAACGTATTTATCTATGTTCTATTTTCTGATCCATCCTATGGGGAAAGAG CTAAGGAGTTATTAAATAAGGCTGAAAATGAAGATGCTTATTCATCAACTCTCATAATTTCCCAAGTCCT TGCACACTTAGAGAGGAGGAGAAAATCTGAAATTATCCCCGTTTTTATAAATTATATTCAACAATCTGGA ATAAAAATATTAGAAACCAGGTGGGAAGACGTAATTGAAGCCATAAAGCTTTTGAGGAATATGAATCTGA GCTATAATCTTTGGGATGATGCAATAATTTCAGCCCAAATAAAGAGGGAAAAGATAGACATAATTTTCTC TAACGATAAAGATTTCGACATTCTTCAAGTTAAAAGAGAATTCTAA
>gi 115896971: 1620321-1620638
ATAATACATTTATTACGCATACGTAAATTTTATAATATACGAATGTCATATTTTTTACATATGCCTATAA TTAGTATAAGAATAGATGAGAAGTTGAAGAAGAAGATGGATGAGTTGAGTTATATAAATTGGAGTGAGAT AATAAGGAGAAAGATAGAAGAGGTAATTGAGGAAGAAGAAGAGAAGAGAAAAGGAAAAAGAAAAGATTAT AAGAAGATTGCTGAGGCTTCAGTTAGATCTTATGAATTTTTCTTAAATTATGGCGGTAAGAGTTCGGAAG AAATTATAAGGGAATGGAGAGACAAGAATTGGCAGTTGTAG >gi|l5896971:1620614-1621045
ATGGAGAGACAAGAATTGGCAGTTGTAGATGCTTCAGTTGTAATAAAATGGTTTGTTAATGAGAATTATA GTAAAGAAGCGTTAATTCTTAAGGAGGCATATGTGAAAGGCTTAGAGGATTTACTAGCACCTTGTATTCT TCCCTTTGAAGTGCTAAACGGGTTAAAGTATACTTATAGTCTGGGAGAAAAGGAACTGGAAGAGGTAGGG AAAATTTTATCCGATTTTCAGATAACGCTTTACGGATTCGAAAATATATTGGACGAAATGGTTTCCTTAT CTCTTAGATACGGTATAACAATATATGATGCAGCATATATAGCATTGGGTAAGGTTCTCAACGAGAAAGT TTATACTGCTGATGAAAGACTTATTAGAAAAGTCAAAGAATTACCTTTCGTAATTCATATAAAGGACTAT AAACAAAAGTAG
>gi|l5896971:1682955-1683302
ATGATTAAATTAAAGAGAGTTTACGATCCAATAGAAAGGGATGATGGAATAAGGATCTTAGTGGATAGGT TATGGCCAAGAGGTATTGGCAAGGATAAAGTCGATTTGTGGCTCAAAGACATAGCGCCTAGTGATGAATT ACGAAAGTGGTTTAGTCACGATACTAGTAAATGGGACGAGTTCAAAAAGAAATATTTTGAAGAATTAGAT GCTAATCCAAAGATAAGCGTACTATTACAATTAATTAAAAAAGGTGAAAATATTACTTTACTTTACGCTT CAAAGTCACCGTATAATAATGCAGTAGCGTTAAAGGAGTATCTAGAAAAAAAGATATTAAAACAATAG
>gi 115896971: 1683320-1683934
ATGTTAAAATCACCATTTGAAGCAACAATCCTAATTGAGGAGCACCCTTGTGAAGTAATGAAGATAATAT CTAGTACTGGGCTTAAAGGTGTTGTTGATAACGTTAAACTTGGAGATAATACAACCGATCACATAGTACT TTTCGAAAAAGAGGTCCAAAAAGATGATCTAATTAAGCTTAAATCGCATAGTACTAAGGTTTTAAGGCTT AACGATAACAAGATATGGGTTAGAACTTACGGATGTGCAGTATGTAAGATTCTATATACTTCAAACGTCG TTGTAGAGAAAATAAAGGTAGTAAGAGAGAGGACATTGCTCTATACTCTCTTAATCCCTAATACGATGGC ACTTAAGGAATTTCTGGCAAGCCTCATAAGTCAAGATATAGAGTTTACAGTGCTAAGCACTTCTGAAATA AGTAGTAATGAGTTAACTGATAGACAAATGGAAATATTGAAGCTTGCGTATAAGATGGGTTATTTCGATG ACGATAGGAGGGTTACTTTAACTGAGCTAGCAAAACAATTGGGAATTTCTACACCAACTTTAGAGGAGAT TTTGCGTAGGGCTTTAAGGAAAGTTGTCAAGTTTTACTTAGATAAGGTAAGATAG
>gi|l5896971:cl734033-1733776
ATGTTTACAATAAAAGAAAACACTATGACTAGCACTGTTATATCGATAAGAGTTGACGAGAGGTTAAAGA AGGAGTTAGAGGAGCTAGGAATAGATTATCCGGAGCTAGTTAGAAGGTATTTAGAGGAGGTCGTGAGGAA GGAAAAAATGAGGAGAGAATTAAGAGAGGCAAACGGGATTAGAGAGGAACTCTTAAAATCTCATGGATAT TATTCGCCCTCAGCAGAACTTGTAAGAGAAGATAGAGATGGCTATCATTGA
>gi | 15896971 :cl733786-1733373
ATGGCTATCATTGATACTTCTGCCCTATTTGCAATTTACTTTCCAGAGAAAATGACCGATTTTATAAGGA GAGAGATTGAAAGAGTTGAGGAATGTTACTTTCTTGATCTAATATTTTATGAATTCCCTAACGTAATTCG TAAAAGGATAGTGAGGAATGAACTAAGTAGAGAGAAAGCAGATGAGATATTACTTAGGGCTTTATCTTAT ATTGATCTTTGTAAGATAGTAAGTGGAAAGGAATTAACTTGGACTGCTTATGAGATTAGCTTAAAGTATA GCTTAACAACTTATGACGCTTCATTAATAGCTTTGGCAAAGAAAGTAGGAGACGTAATATTAACTGCAGA TGAAAAACTATTAAGGGGGATTAGAAACTTTCCAGAAATCTCAAAATATTTCATCTTTCCCTAA
>gi|l5896971:1742082-1742303
ATGTCTACAGTGATAAGCGTGAGGATAAAGAAGGAGATAAAGGAGGAATTAGAAAAACATGGAGTAGACA TTGATCAAGAGGTAAGAAAATTTTTAGAGGAACTTTACCTAAAGGTTAAGGCTAAAGAATACATAAATAA ATGGATTGAAGACCTTAAGGACGTTAAACCTAGTGAGGAAGGGTTCTCATCAAATTCCGTGAGGGAAGAT CGTGAGAGTCATTGA
>gi | 15896971: 1742293-1742688
GTGAGAGTCATTGACTCTTCTTCTTTAGTAAAATTTTTCTCTAAAGAGAAGGGTTGGGAAAAGGTTGTGG AAATTATATCTGAAGGAGTGATGACCTTGGACTTATCGATTAAGGAAGTTGCTAACTCCTTGTGGAAAAA GATCCTTTTAGGCGAAATGAAAGAGGACGTCGTAATTAAAATACTTTCTGACTTATTAAAAAGAGAGGCT CTATTGATTGTAAGCCAAGATGAATACTTGATTGAGGCATTTAAGATCGCTAATAGGAATAAAATAACTG TTTATGACTCCTTGTTCATCGCATTAGCTAAGTCGAATAACCTTGAGTTAGTAACGTCTGATAAAAAGCA GTACGAAGTTGCGATAAAAGAAGGAGTTAATACGCGATTAATATAA
>gi|l5896971:1783470-1783712
ATATATCTCATGGAGGTAAAAGTTCACAAGAAAGGGATTATAGTTATCCCCGCTGAGGTTAGAAGGAGGC TTAATATTAAAGAGGGTTCTGTTATAGAGTTGGAAGTTGAGGGTGATAAGATTATTTTAAAACGTAAATT AACCCTCTTGGACGCTTACGGCATAGATAAAGAGATGGGAGATTCTGCTGTAAAGGAGTTGGAAAAGCTG AGGAAAGAGGAAGTTGAGAAGGAAAATTCTGTTTGA
>gi 115896971: 1783693-1784091
TTGAGAAGGAAAATTCTGTTTGACACCGGTTTTTTCCACGTATATTTTTCCGGGCTTAATGAAGAGGCTA AGAAAGCTGTGGAAGAAGTTTATACGGGTAAAAGTGTAGGTTATACTCTAGATCTTAATTTAGCGGAGTT CCTTTATACTTATGGCAAACTTAATGGGGTAGAAGAAGCTAATGTTAGACTCTCCTTAATTCTAAATTCA CCAATAAAGATTGTTAGTACTAATAAGGAACTTGCTTTAAGGGCAGGTGAGCTCAAAGTTAAGTACCAAA ACCTTTCCATAGTGGACTGTTTTCTAGTAGCCTTTGCTGAAAAAGAGAATACTGTAATATATACTACGGA CTCTGAGATTAAAAGAGTATATAAAAACACAATAATTCTACATAGTTGA
>gi]l5896971:1784438-1784701
ATATACGAAAGTTTTATATACGTATATTTCGTATACATATATATGTCAGACGTAATAAGCGTAAGGGTTA AGAAAGAGCTGAAGAAGAGGGCAGAGGAGTTGGGAATTAACATTAGGGAAGTTGTAGAAAAAGCTTTAGA AGAGGCCATAAGGGAGAAGGAGAAGGAAGAGCTTAAGGATATAGTTATGAGAATTAAGGAACTAATGAGA GATGTAAGTGAAGATGATTGGGTAAGGGCTGTTAGGGAGAGTAGGGATGAAAGATAA
>gi 115896971: 1784694-1785086
ATGAAAGATAAGGAATTCCTATTCGATGCCTCAGCTTTGTACTCGCTTTTAGATTACGTGGATAAAATAG ACTTAAAGAAAATTCATATACTTACCCTAACTTTTTATGAGGTAGGTAACGTCATATGGAAGGAGTATTA TATACATAAAAAGGTTAAAGATCCTATAACTCTTTCGATGCTTTTCCATAAATTAATGCGAAAACTTAAC ATAGTAGAGGATCCACCTCTTGAGGGAGTAATGAGAATTGCCGTAGAAAGGGGTTTGACTTACTATGACG CATCTTATGCATATGTTGCTGAATCTTTAGGGCTTATCCTAGTGTCTAACGATAAAGAGCTGATAAGAAA AGCTAATGCTATTTCATTAAAAGATTTGATAAAAAGTATGTGA
>gi|l5896971:cl788331-1788080
ATGTATACATCATATATGAAAACGATAATGATAAGGGACGACGTCTATAAGAAATTGGTAGAAATAAAAG GGGACAAAAGCTTTAGTGAAATAATTGAGGAACTTATAGAAGAATCTCTAACCTTGAGGAGGAGGAAATT GGAGAAGTATTTCGGAATTCTTAATGAAGAGGAAGCAGAAGAGATTATGAAAGAAATCAAAGAAGTGAGG AAGATAACTGATGAAAGTATTAATAGAAAGCTCAGCAATTATTGA
>gi 115896971 :cl788111-1787734
ATGAAAGTATTAATAGAAAGCTCAGCAATTATTGAATATTTGAAAGGTAATGCAAAGGTAAAGGAAATTA TTTCCAATTCTGAAGATTTTTATGTTAGTACATTAACAATTTTTGAAGTATTACTCGGCAAAGTTGAGGA AAATAAAATCCTCGACTTTTTGTCAGCATTTAATGTAATAGGTCTTAATAAAAAAGATTCCATTATTGCT TCAAGGATATACAAGAGATTAAGAGATAAGGGAAAGTTGATAGGATATTTCGATATATTAATATCCGCCC AAGCTATCAATAGAGATTTAACTCTAGTGACTAAGGATACTGATTTTTTAAAAGTAGCTGACGAATTTAA TGAACTGAAAGTCGCTCTAATTACTTAG
>gi | 15896971 : 1914151-1914375
GTGAAGTCAACAATAACTGTCAGTAAAAAAGTCAAGGAAGTCCTTGAGAGGAAGAAGAAGGAAATGGAAA TTAAGTTAAACAAACCGTTAAGTTGGGACGAATTTTTCCAGAACATATTTAGAGAGGAAGAGGAGAGAAT ACCGAAATTAACTGAGGAAGAGGCTGAAATTCTTAAGGATTTGACTAAGGAGGATAGGAAGAATTGGAGA ATAAGAGAATTTGTTTAG
>gi | 15896971 : 1914354-1914725
TTGGAGAATAAGAGAATTTGTTTAGATACGGATGTACTTATAGATGCTTTTAGAAATGATATTAAGAAAT TCATAGGTTATTACACTACCTGTATTAATCTTTATGAATTCTTGAGAGGATTAGCCTTTATTGGGAAAAA TATAGATGAGTTCAAATCGTGGATAGAACTTAACCTTAACGTAGTATGTATTGATAATAACTCCCTAAAA ACTGCTTCAAGAATTTACGCAGAACTTAGAAAGATGGGAGAAATAATTGAAGATCCAGATTTATTAATAG CTTCGATATGCATAGCTAATGACTTCTCTCTAATGACACATAATAAGAAACATTTTAAAAGATTAGAGAA ATACGGCTTAAAACTAATTTAG
>gi | 15896971 :c2041164-2040874
ATGTCTGCAACCAACTCCTTGCTATATAAAGACCTAAACGCGATAGAGATAATATTCGTTAATCCAATTT TCTACTATCTAAGATCGGTTGTAATACCACCAAAGTCTCTAATCCTAAGATTAGAAGATAAGGGGTATCC TCAAACAGCCAGAGTAGTGGTAGATGGTGAAGTAGTTACCTTAATAAAAACTAATCAAGAAATTACGGTA AGAGTCTCTCAACACAAGGCAAAAATCTTAAGATTTTTCAAACTAGACTTAATAGGAGAAGTATTACATG CATATCATATTTGA
>gi 115896971 :c2040887-2040411 ATGCATATCATATTTGATACCTCAGGGTTTTTATCTGGACTGCAACTCTCTTTAGATAGAGTCTATACTA CGCAGGAGGTCATAAATGAAATAAAGGATAAATACTCCAGATTTAACCTGGAAATTGCTATATCGTCTGG AAAGGTAATAATAATGAAGCCTTCTACAAGAAGTGTAGAAAAAGTAACTAAAGTATTAAATCTTACCAAA GAGAGAAAACTATCTAATACAGATATATCAGTGATTGCACTTGCCCTAGATCTACAACCGTCAATTGTAT TTACTGATGACTTGTCCGTACAAAATATACTTAAACAACTTGGAATACAATTCTCGTCAGTCAAAATCAA TAAAAAAGTGGAAAAATCCTTCAAATTCAAATATGTCTGCGTCAACTGTAAAAGAGAATTTAACATAGAC CATGGAGAGTGCCCATATTGTGGTGGAAAAGTAGTAAAGAGAAGAATAATGGAGTGA
>gi 115896971 :c2879523-2879278
ATGGAAAGACGTAGAGTAAAGGTTTATAAAAAAGGAATAATAGTTATTCCTAAAGAAATAAGGGAAAAGC TTGGAATAAAAGAGGGAGATATAATAGAATTAATTGTTAATGGAGATAGGATAAGCATAGAGAAACCTTT GACGCTTTTGGATCTTTTTGGAATAGACGGAGACGAGGCTTTAGAAATTGCTAAGGAAATAATTAAGGAA AGGAGGAAAGAAGTTGAGAAAGAAATACGTTCTTGA
>gi 115896971 :c2879300-2878899 TTGAGAAAGAAATACGTTCTTGATGCAGGACCTTTATCTTTATTATTTGCCGGAAGAAAAGAAATTAAAA AGTATTTTGAAGAAATTTATACAGGCGATGCGATAATTTATATGAGTGAGGTAAATTTAGCTGAACTCCT CTATATTTATATTTTAAAGAAGGGGAAAGATGTTGCGATAGCTAGGCATAGATATATTAGAAATTCTCCA ATTAAAGTAATATCTCCTAATGAAAGAATAACTGAAAATGCCGCTTTATTGAAGAGTAAATATTCTTATC TATCACTAGCTGATGCGTTTTTAATAGCTACAGCAAAGGAAGTCAAAGGGAAAGTTATCACAACTGACGA AGACATAGAAAAGACTAAAGAAGTTGAAACAATAAAAATTCCTTTAGATTAA
>gi|24473558:c2516-2271
ATATTTTCCGTATACGTATATTATAATATGAAGACCGTATACAGTTTAAGGATAGATAAAGAGTTACGTG AGGAGATGGAGAAATACAATATTAAATGGAATGAGGAGATTGAGAACTTTATTAGGAGGAGGATTGAGGA GTTAAAGAAAGAAGAGATCTTAAAGAAGATTAATGAAATTCTCCAAACAATGCCAGAAACTAACTCTAGT AGTGCGGAATTGGTGAGGGAAGATAGGGATAATAATTGA
>gi I 24473558 :c2173-1883
GTGGAAGTATCTAACGTAGTGTGGAAGAAAGTTGTATTAACCAGAGAGTTAACTGAACAAGACGCGATTA AGGCGGTTACTATTATCAAAGAATATTTGCCACAGTTGCTGACATTGAATAAAAGCGTTAACTTAATTGA AAGGGCTATGGAGATTTCCGTAAAAGAGAAAATCCCAATATATGATTCACTTTATATCGCACTGGCTGAA CGTAAAGGGAGTAAATTAGTAACTGGAGATAAGAAGCAACATGAGATAGCAAAGAAGTATGTCATCTCAG AGCTTATATAG
>gi I 24473558 : 21509-21742 ATGGAAACGATTACAAAAGTAAATAAGAAAGGTATAATAGTAATCCCTAAGGGAATAAGGGATGAAATTG GTTTAAAAGAGGGTGATGCAGTTAAAATAACGGTTGAAGGAAATAAGATAGTTATAGAAAAAATTGATCT GTGGGATAAGGTATGGAATTGCTGTAAAGGGTCTGCTGAAGAGGCAGAAAAGGAACTTGATGAGGAGGAA GGGGAATTTTGGAAGAGAAAATAA >gi I 24473558: 21769-22158
ATGGCTTTTGGAGAGCTTACGGAAAGAGGAAAGGAAATTATGCTCAGAATTAAAGATAGAAAAATAGAGG GCATAATTACGTCTACCGTTGCTTATGAGTTTACAGTACATTGGTTTCGCGGAAGAATTCCAGCATTAAA ATCTCTTGATGAGGTAAAGAGTTTTCTTAATTCGTACTTCAAGATTGTTGAGCTTTCAGTAGATGATTTC TTAGAAAGTGCAAGAATTAAGAGTGAAGGAGATAAAATTGTTTCGTTAAAAGGGAGAAAACTAAGTATAG TGGATTCGACATTAATACAAACAGCTAAAAAGCTGGGGTTAAAGATTTTGAGCGGTGATAAGGACTTAAC TTTAGTTGCAACTAAAATGGGAATAGAAGTTATCTGGTAG
>gi|24473558:c397414-397157
ATTGAAAACTATCAATTACTAGAAAGAGTTGTTGGAGCAAAAGAATTAGTTAAGGTCGAGAATATTAAGA AAGGCGAGGTACTGATGTTAACATTAGGTTCAGCAACTACCTTAGGTGTAGCAAAAAACATTAAGAATGA CGAATTAGAAGTAGAATTAAAAAGGCCTTTAGTAGTATGGGATAAAGATTTAAGAGTTGTTATAAGTAGA CAAGTTAGTGGAAGATGGAGACTAGTAGGTTGGGGAATAATAAAAATTTAG
>gi | 24473558 :c397190-396759
ATGGAGACTAGTAGGTTGGGGAATAATAAAAATTTAGGAGTATTAGTTGATACTAATATACTTCTTTATA TATATCACGGTTTTGATCCTTTTGAGAAGATAATTCAATTTCTAGATTATAAGCCAGTTTTCTATATACC TAATATAGTTCTAAAAGAGTTAAATAAATTTCTTAATTCTAAAAGTATTATTATGAATAAGAAAGCCAAT TTAGCTTTACAATACCTTAATACATATAAAAATTATTGGAAAAGCATAGAAGGTTATGAAAACATGAGAG TTGACGATGCACTTATACAAATATGCAAAGACTACGATTTGTTTTTATTTACAAATGATACTAGACTTAG ACATAAAGCTAAGCTTAAAGGGGTAAGAGTTATTTATCTAAGACAGAAGAGTAAAAATATAAAGGTAGAC ATCATTATCTAG
>gi | 24473558 :c673537-673358
CTGCTTGAAAGAAAGAAAAAAGAAATGGAGATTAAGTTGGATAAACCTTTAACTTGGGATGAATTTTTCC AAGAAGTATTTAAGGAGGAGAATATACCCAAGTTAACTGAGGAGGAAGCGGAAACACTGAAAAAGCTAGT GCTAGAGGATAGGAAGAATTGGAAAGTAAGAGAGTTTGCTTAG
>gi | 24473558 :c673537-673358
CTGCTTGAAAGAAAGAAAAAAGAAATGGAGATTAAGTTGGATAAACCTTTAACTTGGGATGAATTTTTCC AAGAAGTATTTAAGGAGGAGAATATACCCAAGTTAACTGAGGAGGAAGCGGAAACACTGAAAAAGCTAGT GCTAGAGGATAGGAAGAATTGGAAAGTAAGAGAGTTTGCTTAG
>gi | 24473558: 761620-761892
ATTTTGTTACAAAGTGATAATGTGATGTCTGAAACTATTAGGGTATCAAAAGAGGTTAAAAGAGAGTTGT TGAAGATAATGGGAGAGCTTCAAATAGAAAGGGGTGAAAAAGTGGATTTTAACGACGTCATAGAATACTT ACTTTCGTTATATAGGAGGAAAAATCCTGAAATTTTAAGGAGAATGGTTGGCTTAGTACCCAATATATCA TATGAAGACTTAAGGAAAGAGAGGAAAAAAGAACTTGAGTACGAGAAAGAGAAGTATGGTATTTGA
>gi I 24473558: 761885-762280
ATGGTATTTGATTCGGGAGTCGTTATAGATATCCTTTTGGGTAGCAATGAAGGAAAGAAAATAGAGAAAT TCATTGAAGAAAACTTAGATGAGATAGTTATAAACGAATTGAATCTAGAGGAAATTAAATATATAATATG CAGAAAGAATAACGTAGAAAAAGCTGAAGAAGTAGAAATATTTCTAAAATCAAGTGGTTATTTTAATGTA TTTCCTTTTACTAACGTAAGGGGAGAAATATACAGATTAAAATGTAAGTATCCGATATCTTTAGCTGATG CAAGCAGTATTGCTACCGCTAAAATTCTAGGAATACCAGCAATGTTTAAGAGAGAAAAAGAAATTGAGCC ATTTAAAAATGAGCTCAATGTAATTTTCACAGATGAACTAATTTAG >gi|24473558:875336-875542
GTGAGGTTACCTAAAGAGCTTAAGGAGAAGATGGAAAAATACGAGGTTGATTGGGATCAGTTAATCAAAG ATTTCATAGAAAAGAAGGTTGAAGAATTAGAAAGAGAAAATCATGCTAAAAAAGCAAAAGAGTTACTAAG TTCCATAGACCTTTCAACTAACGGTTTTGCTATAAAAGAGGTGAGGAGACATAGAGAAGGTAATTGA >gi I 24473558: 875568-875945
ATGAAAGGTGAAAATTGGGATAGAATAATTGAATATATTCCTAACGGAATCACTCTAGATATTTCTTACT ATGAGGTTCTAAATGTGATATCATCAGCAAAAAAGAAGAAAATAGTAGATAAAGAGAAAAGTAAGGTATT ATATGACGCGGTAAACGAACTTATGAAATCTATGAAAGTTTACAGTGCATATAACTACTTAAAGGAAGGT TTTGAAATTTCTAACGAGTATAACATATCGCTTTACGATGGATTATTTTTAGCCTTAGCTTTGTCTCATA ATGCAGAGTTATTAACGTTTTCAAGGAATCAAATAAAAGTTGCAACTAAACTAGGAATAACGTATAACAA GGATCTATTAATGAATCATGAGTACTAA
>gi I 24473558: 1084436-1084672 ATGAAGGTAAAGGTTCATAAGAAGGGTATTATAGTTATACCAGCTGATGTTAGAAGGAGGCTTAATATTA GTGAGGGTTCTTATATGGAGTTGGAGGTTGAAGGTGATAAGATTATTTTGAAACGAAAAATGACTCTTCT TGATGCTTACGGTATAGATAAAGGGATGGGGGATTTAGCTTTAAAGGAGTTGGAAAAGTTGAGGAAGGAA GAAGTTGAGAAAGAAAATAATATTTGA >gi|24473558:1084728-1085051
ATGGAAGAGGTTTACATGGGTAAGAGTCAAGGTTATACTATAGATCTTAATTTGGCAGAGTTTCTTTACA CTTACGGTAAACTTAAGGGATTAGAGGAAGCTAGGGTTAGGCTTTCACTAATCCTAAATTCGCCAATAAA AATTGTTAGCACTAATAGGGAACTTGCATTAAGAGCTGGAGAGTTAAAAGTTAAGTACCAAAACCTTTCC ATAGTGGACTGTTTTATAGTAGCATTAGCCGAAAAAGAGAATGCGGTAGTATATACTACGGATTCTGGAA TAGAAAGAGTATATAAAAACACTAAAGTAATTCTACATAGTTAA
>gi | 24473558 : C1303456-1303313
ATAGAAAATGTAAGTACAGGTAGTGAAATTATAGAGAGGCTTAAAAAATTAGGAGTGGAAGAAAAGGACC TAATTGTAGAACCTCCTCAAGGTGAAGAAGAATTTCAGAAAGAACTAAAGAGAAAATCTATGATACAAAT GTTCTGA
>gi I 24473558 :cl303456-1303313
ATAGAAAATGTAAGTACAGGTAGTGAAATTATAGAGAGGCTTAAAAAATTAGGAGTGGAAGAAAAGGACC TAATTGTAGAACCTCCTCAAGGTGAAGAAGAATTTCAGAAAGAACTAAAGAGAAAATCTATGATACAAAT GTTCTGA
>gi | 24473558 :cl590813-1590436
GTGTTTTTAGATAAAAAGGAAATGAGAGATATGTTAAAAATAAAGAGAATTTATGATCCAGTAGAAAAAG ATGACGGGATTAGGATATTGGTTGATAGATTATGGCCTAGAGGTGTTAGGAAAGATAAGGTAGATGTATG GCTTAAAGATATAGCGCCTAGCGATGAATTAAGAACATGGTTTAATCATGATCCTAATAAGTGGGAAGAG TTTAAAAAGAAATATTTTGAAGAACTTAGTAAGAATCCTAAACTGGATATTTTATTACAGTTGATTAAAA AAGGGGAAAATGTGACTCTACTTTATACATCTAAATCACCATATAATAATGCTGTAGCATTAAAGGAATT TCTAGATAAGATATTTAAAGCGAGTTGA
>gi | 24473558 :cl590422-1589808
ATGCCTAAATCACCGTTTGAAGTTACTCTATTGATAGAGGATCATCCTTGTGAGGTAATGAAGCTTATAT CTACTATGGGCCTAAAAGCAAGCGTAGAGAATGTTAAACTAGGAGATAATGTAACTGATCATATAGTATT ATTCGATAACAAAGTTAAAAATGAAGATGTGTTAAAACTTAAATCGGGTAATAGTAAGGTATTAAGGCTC TCAGATAACAGAATATGGGTTAGAACAAATGGTTGTTCTGTATGTAAAGTGCTTTATACCTCTGACGTTG TTGTAGAAAAGATAAAAGTTGTTAAAGAGAGAACTTTACTTTATACTCTCTTAATTCCTAATACTTCCTC ATTAAAGGAGTTTTTATCAAAGCTAACAAGTCAAGGAGTTAAGGTTACTGTAATAAGTACAAACGAGATA ACTGGTAACGAGTTGACTGAGAGACAGATGGAAATATTAAAATTGGCTTATAGATTAGGGTACTTTGATG ATGATAGAGGCATAACTTTAACCGAATTGGCTAATAGATTGAACGTTTCTGCACCAACTCTGGAAGAAAT ATTACGGAGAGCTTTAAGAAAAGTAGTTAAATACTATCTTGATAAAGTAGGATAA
>gi | 24473558: 1624055-1624321
ATGTTTACAAAAGAAGAAAACATTATGACAACTACCGTTATATCAATAAGAGTTGACGAGAAATTAAAAA AGGAATTAGAAGAGTTAGGAATAGATTATCCTAGCTTAGTTAGGAGCTACTTAGAAGAAGTAGTAAGGAA GGAAAAAATGAGAAGAGAATTAAAAGAAGCAGATAGGATAAGAGAAGAGCTTTTAAAATCTCATGGATAT TATTCTTCTTCTGCAGAACTCGTTAGAGAAGATAGGGATAATAATGACTATTATTGA
>gi I 24473558: 1624257-1624724 ATGGATATTATTCTTCTTCTGCAGAACTCGTTAGAGAAGATAGGGATAATAATGACTATTATTGACACTT CAGCACTCTTTGCACTCTATATTCCTGAGAAGATGAGTGCATTCATAAGAAAAGAAATTGAAAATGTAGA CGAGTGTTACGTTTTGGATTTGATATTTTATGAATTCCCAAATGTTATCCGTAAAAGGATAGTAAGAAAT GAGTTAAGCAAAGAAAAGGGGGACGAAATATTAGCGAGGGGTTTATCTTATATAGATTTGTGTAAAGTAG TAAGTGGGAAAGAATTAGCTAAGACAGCTTACGAAATAAGCTTAAAGTATAGCTTAACAACTTATGACGC GTCTTTAATAGCTTTAGCAGAGAAAGTAAACGATATTATATTAACAGCAGATGAGAAACTAATAAGAGGA ATTAGAAATGTTCAAGAAATCTCGAAATATTTTATATTCCCCGATTAA
>gi I 24473558 :cl634563-1634261
ATGGGCGTAAATCTTATAATATACGAATTCGATTCTTTACATATGCCAGTAATTAGTATAAGAATCGATG AGAAGTTAAAGAAAAAGATGGACGAATTGAGTTATATAAATTGGAGTGAAATAATAAGGAGGAAGATAGA AGAGGTAATTGAGGAGGAAGAGAAGAAAAAGAAAGGGAAAAGAAAAGATTATAAGAGAATTGCAGAAGCC TCAGTCAAATCTTATGAATTCTTCTTAAATTATGGCGGTAAGAGTTCGGAAGAAATTATAAGAGAATGGA GAGATAAGAATTGGCAGTTATAG
>gi I 24473558 : C1634186-1633857 GTGAAAGGTTTAGAGGATTTATCTGCACCTTGTATTCTCCCCTTTGAAGTGCTAAACGGATTAAAATATA CTTATAGTCTGGGAGAAAAAGAACTGGAAGAAGTAGGTAAAATTTTATCCGATTTTCAGATAACACTTTA TGGCTTCGAGGACATGTTAGACGAAATGGTTTCCTTATCTCTTAGATACGGTATAACAATATATGACGCC GCCTATATAGCATTGGGTAAGGTTCTAAATGATAAAGTTTATACTGCTGATGAAAACCTAATTAGAAAAG TCAAAGAATTACCTTTCGTAGTTCACATAAAAGATTATAAACAACAATAG
>gi I 24473558 : 1634787-1635119
ATGATGAGTTTAACTTCTGATGAAAAAACACTATGCAAAATAGTATACAAAGTAAACTTTATATACATAA GTTCTGATTTCTTTCATGTGACTGAAGTTATAAGAGTTAGTAAGGATGTGAAAGATAAATTAGTTAAAAT TGCAGCTGAGTTGCAATTAAGTAAAGGTAAAAAGGTTAGTTTAAATGAGGCTATAGGATATTTAATAACT TTTTATGAGGAGAATAAAAGAAGTAAAAAAGATTCGCAGTTATTGATATCTCTTTTAGGTTCTGCTAAAG GGATTAGGGAAGAATTTGAGAGGTCTAGGATAGAAGATGAGAGTAGTAGTTGA
>gi I 24473558 : 1635103-1635507
ATGAGAGTAGTAGTTGATACTGGAGTATTGGTTGAGGTTTTAGAAGGCTCTGAACTCGGAGAGAAATTTA TCCAGTTAGTCAGTAGAGGGAAATTAGAACCTATAATCACTAATTTAACTCTAATTGAGTTAACTTATGT TATATGTAGAAGATATGGGACGGATAAAGCCAGAGAACTAATTATGAAACTTTTAGATTCAGGTTATTTC AAGTTAGTTAACGCATTAGATTTTGCCGACGAGATTGTTAAAGTAAAGTGTAATAATTCTCTTTCTATAA TTGATGCGTCAGTTATTGCTACGGCTAAGGGGCTCGGGATTACTGCATTGTTTAAAATGGAAAAAGAGTT AAAAGATAAAAAAATAGATAATTTAATATTTATTGAAAATCTTATTAATATTTAA >gi 124473558: 1818807-1819082
ATGTTATTCTACGTTTACGAAAATTTTATATACACGAAAATCGTATACTTAATTATGTCAACCGTAATAA GTGTAAGAGTGAGGAAAGAGTTGAAGGAGAAAGCTGAAGAATTGGGAATAAACATTAGGGAGGTTGTAGA GAAAGCTTTAGAGGAAGCAATACGAGAGAAAGAAAAGGAAGAAATCAAGGAAACTGCTAGGAAAATTAAG GAACTAATGAAGGATATTAGTGAGGATGAATGGATTACCTCAATAAGGGAAGATAGATATGAGAGATGA
>gi I 24473558 : 1819075-1819467
ATGAGAGATGAGTTTTTATTAGATGCTTCAGCATTATACCCTATACTTAACTACATAGATAAAATAGACG TTGCTAAGATTTATATAATTCCTCTAGCTTTTTACGAGGTGGGAAACACAATATGGAAGGAATACTATCT TCATAAAAAAATTAAGGATCCAATCATATTATCTGCTCTCTTTCAGAAGTTTATGAGTAAGCTTAAACTC CTTAATAGCCCCCCAGCTGAAGAAGTAATGAAGTTTGCAATAGAAAAAGAACTGACTTTTTACGATGCTG CATACGTTTATTCTGCTGCATCTCATGGACTAATCTTAGTCTCAGAAGACAAAGAGTTAATAAAGAAGGC TAATGCACTCTCACTTAAAGATTTTATAAGCAAATTATCTTAA
>gi 124473558 : 1940114-1940497
ATGGTAGATTATATTGCAAGATATGTCTTGCGGGATAGAGAGATTATTGTAAAGTACACTGCAGAGAATG ACGATGAGAGTATTAAGCTAGCAAACTCCGTATGCGAAAAGTTAGGAGAAAGGGATATAGAAGAAGTGAT AATAGGTAAAATTGTTGGTACAATCACTGGTGCTATTATGTGGCATTCAATTTCAGAAGATAACAGCATT ACAACTGCTATATTTAGTGCAATTACCAATGCCTTAATAGGGCATATTGTAGATAATCTCATAGTAAAAG AAATTTACAGTAAGAAGTACCCTTGTATCAGACCAAGACAACTGTCAGACCTACATAAGTATATTGATAT TAGGAAGTTAGAGGACGCAGTTAATGCACGTTGA
>gi I 24473558 : 1940487-1941044 ATGCACGTTGATGAAGTATTGCAGAAATGTGATCAAACATACGTTATTTTTGATACAAGCATAATTTTAG ATTATATAAGGCTCTCAAGTAGAGATAAAAATCACAGGTTAGAAGTTTTATCGTATATAATAAATAACTG TAGGAATAAGGTCATTACTCTGTTAAATCTTGAGGAAATATTAGTAGGTAACATTGGAAATAAAGAGGAG ATAGAGAATTTTATCTTCTATTCCTTTAAAATACTCAATATTACAGAGAAAGAGGCAGAAGTAACAGCAG AACTTGAAGTGAAGGTTAGAGAAGAAGGGCTAGGATTTAAGGGCGAAAATTGGAGGATAGACCTTTTTAT TGCATCATTTGCATATACACGCTCTTACTACATCCTTACTAAGGACTCAGACTTCAAGAAAATATTGGAT TGTAAATTACATTTATTACACATTATACACTATTTAGAGCTTCACGCTCAAGGAATTCAACGGCCTACAA CCCCAAATTACTCAAAGCTAACCAATATGTTTTGTATATGGAAGTCGGATTACCAGACGGATGGATAA
>gi I 24473558 : 2013077-2013304 ATGGAGAGGATTATAAGAATAGGTAAGAGAAATGCGATTTATATTCCTAAGGAGATTGCTGATAGTCTTA ACTTAAAAGAGGGTGATAGGTTAGTTTTAGTTGTAAAAGATGATAAGATAGAGCTAATACCGGTTAGGAA ACCTTCAAAGTATTGGGCTGAAATAAGTCCAGATGAGGTAGAGGAGGTTGGAGAAGAGATTAATAAATCT CTCGGAGTTAATAGTTGA >gi|24473558:2013077-2013304
ATGGAGAGGATTATAAGAATAGGTAAGAGAAATGCGATTTATATTCCTAAGGAGATTGCTGATAGTCTTA ACTTAAAAGAGGGTGATAGGTTAGTTTTAGTTGTAAAAGATGATAAGATAGAGCTAATACCGGTTAGGAA ACCTTCAAAGTATTGGGCTGAAATAAGTCCAGATGAGGTAGAGGAGGTTGGAGAAGAGATTAATAAATCT CTCGGAGTTAATAGTTGA
>gi I 24473558: 2026127-2026339
GTGTCTACCGTTTATAGTATACGGATACCGAAAAAGCTAAGGGAATTAATGAATTTGGTAAACGTGGATT GGCAAAAGGAGATAAGTAAGTATATAGAGGATAGAGTAAGGGAGGAGTTAATACGGAAATACATAGAAGA GGGGAGAAAGAATTTAGCTAAAATGAAAAATATAAGTAATGCGGACTTAATCAGAGAGGACAGGGAAGCT TGA
>gi I 24473558: 2026396-2026749
GTGATAAAAATAATAGAAGGCAGTGATGAAGATTTCTTAACGTTGGATTTGGCCTTTGCTGAAGTTTCTA ATGTTGCCTGGAAAAGGATAGTGATATTTAACGATGATTACAATATTACATTGGAGCAGTTAAAGAATGC TTTAGATTTTATAGAGAAATTATGCAAGATAGTTTATGTTAAGGATATTACCATGGAAGCTATTAACTTA GCAGTACAGGAGAAGTTACCTTTCTATGATTCCGCATTTCTTTATCTCGCTATAAAGGAAGGTACTAAGC TATTAACTACTGACCTAAAACTATTTAATAAATTAAACGATAAGCTGAAGAACTATGTTATAGTCCCAGA GTGA >gi|24473558:2138189-2138767
ATACCAATCTTAGGAGTGAAATTTGGACGTCGCTCAGCCTTACTAGATATAAGACCAGAAAACATTAAAG AAGCTCTTGAACTATTACAGAAAAATAAATATACAATAGAAGAATATCCTATGCTTGAGGCTAAAAGCAA AAATATAAACACAATTGCTTTTAATGAAATAGCTATTTTATTCAACAACCCGGAGACAGTATATGGTAGT GTTAATATAAAAGAAAGAAAAATTCTCTTTGAAGGAGATGGAGTACTTATAGCTACACCACAAGGTAGTT GGGCATGGAGCTATTCAGCAACTAGAGTCTTACTCCATAAAGATATTAATGGAATTGAAATAACGTTCAT AAACCCTATTATTCCAAACATAAAAGCTCTAATAATCCCTCAGACAGAGACAATACTTGTGAAATTGGAA GATAAAGGAAGAACACAAAATGTCAGAGTTATTAGTGACGGAGAAATTGTAGGAAATTTAATAAGTAAAG AAGACGAGGAATTAACTATAACTCTCTCTAAAAGAAAAGCAAAAATATTAAGGTTTTTTAACTTAATTGA ATTTGATGGACTATTCACATAA
>gi I 24473558 : 2138754-2139242
ATGGACTATTCACATAAAATTGTTTTTGATACTGGGGCATTTTTAGCTGGTCTGCAAAACTACTATGAAA AAATATACACCAATAGTCTTGTTATAAATGAGATAAAAGATAAAAAATCTAGAGAATTATTAGACCTTGC AATTATGGCTGGAAAAATAATTATTATGGAACCAGAAGAGAATACCTTGAAAAAGACAAAGAAAATTGCA GAAAAGATTTCTGCTTATAATCTCTCAAAAACAGATTTAAGCATAGCGGCACTTGCATATGAACTAAGAC CTAGTATAGTTTTCACAGATGATTTAACACTACAAAATTTATTATTAAATCTTGGTATAGAATTTAAATC TGTAAAATTAAATATTAGAATTAGAAATAGAAAGAAATACAAATTTACATGCAAAGCGTGCGGAAAAACA TTCAGTAGATCCTATTCTTCGTGCCCATATTGTGGAAATACAATAATAGTAGTTAGTTATAATGAATGA
>gi I 24473558: 2191281-2191526
ATGGAAAAGTATAGGGTAAAGGTTTATAAAAAAGGAATAATAGTCATCCCAAAAGAGATAAGGGAAAAAA TAGGAATAAAAGAAGGAGATATATTAGAGTTAACAGTTAACGGAAATAAGATAGACATAGAGAAACCCAT GACACTCTTAGATCTCTTTGGGGTTGACGGAGAAGTAGCTGTAGAAGTTGCTAAAGAGGTTATTAAGGAA AGGAGGAAAGAAGTTGAAAGAGAAATACGTTCTTGA
>gi | 24473558:2191588-2191905
ATGTATACTGGAAGCATAGAAATTTACATGAGTGAAGTAAATTTAGCTGAATTTCTCTACCTATATATTC TAAAAATGGGAAAGGAAATTGCAATTGCTAGACATAGATATATTAGAAATTCTCCAATTAAGATTTTAGC TCCAAATGAAAATATAACCCAAAGTGCAGCAATATTAAAGAGCAAATATCATTATCTTTCTTTAGCTGAT GTATTTCTTATAGCTACTGCGAAAGAAATTGGAGGCAAAGTTATTACTACAGATGAAGATATAGAAAAAA CTAAAGAAGTTGAAGTAATAATGATCCCTTTAGATTAA
>gi | 16329170 :c969294-968893 ATGCTCAGAGAATTAAGAACAAACAGGGCATCCTGGAAGATATTTACTGGGAAGAAATTGAGAAAGCAGT ATCTATTGAGCTTGATTTCAACTCAGCGTTCAAGTCTTGATAATACAAAAGAAGGTCAGGCTATACTGAA AAAAGTCCACAGCTTTTATAAAATGATGCTTCAAGAACTCGAAGCCGTATTTGACGGCACAGCTCTTCAA TTGGAAGTTCCCTTAAACCTTGCCGCAGGTACGAGGGTGCGAATTGTTGTTGAAAGTGTTCTACCAAATG AAGTAAAAGCACCTAAAACGTTTCTTCAAACTGCTCAGTCTTTAAAATTACAGGGTGAACCTGATTGGTC AGAGAAAATTGATCAATATTTGTATGGGGAAACTCTTTCTGACAATGACTGA
>gi 116329170 :c968960-968487
GTGAACCTGATTGGTCAGAGAAAATTGATCAATATTTGTATGGGGAAACTCTTTCTGACAATGACTGAAG TTTTTTTAGATACATCTTTTGCGATCGCATTATCTTCCATCACTGATCAAAATCATGTACGGGCTATTCA GCTTGCTAATCAAATTGAGGCTAACAAAATTCGTCTAGTAACAACCCAAGGTATCTTGCTAGAGATAGGC AATGCGCTTTCTAAGCAAAGATATAGAAAAGCGGCAATCCAACTTTTAGAATCCCTGGAAACTGATCCCA GTGTTGAAGTCGTTCTATTAACTAACAGTCTATACAAATCAGCATTTAATTTGTTTAAGCAACGAGAAGA CAAGGAATGGGGTTTAGTGGACTGCATATCATTCATCGTGATGCAGGATCGAGGAATCACTGATGTACTG ACTGCCGATATCCATTTTCAGCAGGCAGGATTTCGGGCACTATTAAGGGATTAA
>gi 116329170 : C1674298-1674044
ATGAATACCCAATTAGTAGAATCCTTGGTTCAAATAATTCAAAGTCTTTCCCCAGAGGAGCAAAAGTTAT TGGAAACTCATTTGGCAGAAAAAAATAGCAACTGGCAGGAGGTTTTGGGGAAAATTGAAACCAATCGCCA AGAAATTTATGCTTCTCGTCAGGGAAAACCTTTTGATCTTTCTATAGATGAAATCATCGAAGAAATGCGT GAGGAAAGAACCCAAGATGTTCTACAAGCCTGTTTTGGAAAATGA
>gi| 16329170 :cl674034-1673585
ATGACCAACCAAACTTCTTTCACAATTTGTATTGACTCAAATTTTATTGTCCGACTTCTTGTTGGGTATT ATGAAGAAACTATCTATCTTGAGATGTGGAATAAATGGTGTAACGCAAATACTAAAATTGTTGCTCCTGA TCTAATCAACTATGAGGTGACTAATGTTTTGTGGCGTTTAAACAAGACCAATCAGATTAACTACACTCAA GCCCAAATTGCTCTTACAGAAAGTTTTAATCTCGGCATTGAACTTTATTCAAACTCAGAACTACACCAGG ATGCTTTGGCGATCGCCGAAAAGTTTCAATTGTCAGCCGCCTATGATGTCCATTATTTAGCTTTAGCAGA AAAAATGCAGATAGATTTTTATACCTGTGACAAAAAACTGTTCAATTCCGTACAACAAAATTTCCCTAGA ATAAAATTAGTTATTGCTAACAGTAGTTAG
>gi 116329170 : C1934060-1933854
ATGACTACTGAAGCTGCCCTATTAAACATTGCTGAAAATCTGCCTGATGACTTAAAAATCGAGCTTTTAC ACTATGCTGAATATTTAATGAATAAATCCTTAAATGCGCCCCAAAAGCCATTAGCAGGATCGATGAAAGG AACTTTTATTTTACCTCTACCCGAAGACTTTGATGCCCCCTTAGAAGAATTTGAGGAGTATATGTAA
>gi 116329170 :cl933854-1933468
ATGAATTCTGTTTTGATAGACACCCACGTTTTTATTTGGTTAGCAGAAGATGACTCTAACTTGCCTGTGA CGACAAAAGATACCTTAGAAAATATGGATAACGTTTTTGTTAGTATTGCCAGCTTTTGGGAAATTTCTAT TAAACTAAAAATTGGTAAACTTTCTCTCTGTGGTGATTTCAATAGTATTGAAGCTAGTTTTCAAAGAACC CGATTCAAGCTATTACCTATTACACTAAAAGACACAATTAAACTTTATAATCTTCCCTTGCACCACAAAG ATCCCTTTGATCGTATTTTGGTATCCCAATCGATTAATCATTCTCTTATTTTAGTCAGTCGTGATCAAGC TCTGGATGATTATCCGATTCAACGCCTGTGGTTGTAG
>gi|l6329170:c2516782-2516531
ATCGATACAAAGTCAAAATTAAGGAGCAATCCCATGACAGACACCGCCCTACTAGAAAAGATCAATGCTC TCCCCGATGCCATGAAAATTGAAGTAGAACACTTTGTCGAATTTCTGCTGACTAAGCAACCACCAGTCAG TCCAGTAACCAATGATGGACAAAAAAAATATCGTCAAGCAGGTGTTCTAAAGGGGAAAATTTGGATGGCA GATGACTTTGATGCTCCTTTGGAAGAAATGCAGGAGTATATGTAA
>gi 116329170 :c2516527-2516150
ATGCTACTGGACACCCACACGCTTTTGTGGTTTTTAGATAATGATATAAAACTACCATCACATCTCAAGA GTTTGATTGAAGCCAAGCCAAAAGTTTATGTCAGCATTGTATCTCTCTGGGAGATTGCCATTAAACTCAA CATCAACAAACTAAGGCTTAATTACGCTTTTACTGATCTAGAGAATTTACTTGCTGATCTCAATATTTCG GTTTTGAACATCACATGGCAACATTTGGAAGCTTGTCGCAATTTGCCCTTGCATCATCGAGATCCTTTTG ACCGTATGATTATTGCCCAGGCTCAGCAACATAATTTTTCCGTCATTAGCAAAGACGAAAATTTCAAAAA ATACAACGTTAATTTAATCTGGGAATGA
>gi 116329170 :c3044670-3044422
ATTGAACAGAATAGGATGAAACAAATTACGCCAACGGAGCTGAGGGGTAATCTTTACAACCTGCTAGATG AGGTGCTGGCAACCGGCATACCGCTGGAAATTAATCGGGGGGGTAAACGCCTACGAATACTGCCAGTGGA GGAGCCGGATAAGTTCAAGAACTTAGTACATCGTCCAGGGGTTATCATTGGCGACCCGGAAGAGTTGGTC ACCATTGATTGGGAGGGAGAGATTGAGCTCGATTTACCTTGA
>gi | 16329170 :c3044670-3044422
ATTGAACAGAATAGGATGAAACAAATTACGCCAACGGAGCTGAGGGGTAATCTTTACAACCTGCTAGATG AGGTGCTGGCAACCGGCATACCGCTGGAAATTAATCGGGGGGGTAAACGCCTACGAATACTGCCAGTGGA GGAGCCGGATAAGTTCAAGAACTTAGTACATCGTCCAGGGGTTATCATTGGCGACCCGGAAGAGTTGGTC ACCATTGATTGGGAGGGAGAGATTGAGCTCGATTTACCTTGA
>gi | 16329170 : C3262749-3262471
ATGATCGGAGTTAGCGTTAATCCAGAGAAACTAGGATCCACTATGGAGACCGTCAATGTTGACCAAATAG AAATCAATCTTCCTGAGCTTTTGTACAGTATCAAACCAGGGGAAGAAGTCATCGTTGCTGACCAGGGTAT TCCCATTGCTAAGTTGGTTCCTCTGCAAAGGCAAAAATCCGTGGATCGATGCTCCAGCTTAGGGGTAGAT CGAGGATTATTTGTAGTGCCAGATGACTTTAACGATCCTTTACCAAATGATATTTGGCCATTATCTTGA
>gi 116329170 :c3262459-3262064 GTGAAACTTTTGTTGGATACCCAGTGCTGGTTATGGTGGTTTACTGAGCCGGAAAAATTGAACGAAGATG CAATTTCCCAGATCATAGATGAGACAAACGAAATATGGCTTTCTGTTGCCAGTATTTGGGAAATGTCAAT TAAGACTTCCATCGGTAAACTGCCCTTGCCAGAAAATATTGACGACTACATTCTCAGTCGCATGGTGAAA TTGGGTGCTGAGTTCCTGGACATTAAAACCCGCCATGCCCTGCAAGTTGCGACATTGCCCCTACATCACC GTGATCCGTTTGACAGAATTATCATTGCCCAGGCACAAACAGAAAATATGCTGCTAATTAGTGCAGATTC AATGTTTAAAAATTATGGAGTCTCTTTGTTATGGGCGGGAGTATAG
>gi I 20806542: 1062385-1062636
ATGATGCAGGTTAGTTCCACAGAATTTAAAAACAATGTAGGAAAGTTTCTAAAACTCTCAGAAAAGGAGG ACATTTTAATTTTAAAAAACGGAAAGCCTGTAGCAAAGCTTACAGCTGTATCAAAAAATGAGAAAGAAAT TGCTTATGATAGGCTTTTAGAAATGATAAAAAAGAGTAAACCAGTTACCGAAGAAATTGATTTGAAAGCA GCAAGAGAGGAGAGACTGAACAAATATGATAGTGCTACTTGA
>gi I 20806542: 1062620-1063033
ATGATAGTGCTACTTGATACAAACATTTCTCTCGATTTTTTACTCAAAAGAGAACCATTTTTTGAACCAG CTAGTAGAATATTAGAAATGGTTAAAGACGATAAAATAAAAGCTTGTATAACTGCTTCGTCAGTTACAGA TATTTACTATATTATGAGAAGATACAAAAGTCAAGAAGAAAGAGTGCTTATGTTGTCAGAATATCTTAAA CTTGTAGAAATAATAAGTACTACTAAAACAGATATTATAAAAGCTTTAAAGATGAAGAACACAGATTTTG AAGATGCTGCTATGTTTCAAAGTGGGAAACGAAGAAAAGTTGATTATATTGTAACTAGAGACAAGATAGA ATTTACTGACAAGATAGTTAAGATTGTTACCCCGGAGGAATTTTTGAGAATTGTTAGAAAATAA
>gi| 16081186:38670-38828
GTGACCCATGTGCATTTTGCCGGATACCGTCGGTGGTGGGGTATCTATGGCAAAGACCTTATCGCGATCT GCTGGTTCGAACCTGTAAACATCCTTCTCGTCCCAGTACCTGATCCACTTTTCTTCCATCTGATTTACGT CTATATCCATTCTGATTTGTAA
>gi 116081186: 38857-39441
TTGCCTTGGGTCGGTTCTCAATTTCATAAAGGCGATGCCCAGACAATAATGGCATTGTCAAATGTTTTAT ATCAAGTATTGATAGCTTTAGGAATGATATACGTCATAGACACCTCCGCCATAATCTCCAGGAATCTGAA CCTTCTGGAGGGCGATCTGATGTTTCCGTCATCGGTGATAGGCGAGATAAAGAAGGGAAAGCTACGATAC ATGATAGACGTGCTGCTGCCGATGATAAGGGTGGCCAGCCCGGATCATGAATACCTGAAGATCGTGGAGG AGACAGCGGCGAAGACGGGGGATCTCATGAACCTGAGCCAGACGGACAAGGATGTTCTGGCGCTGGCGCT GCAGTATGACGCCACCATCGTAACAGATGACTATTCCATCCAAAACGTTGCATCGTACCTTAACCTTGGC TTCCTGAACGCAAATATAAAGCGCATAGACAAGCAGATAGCCTGGATATACCGCTGCACTGGCTGCAAGA AGGTTTTTCCAGGGCCGGTGAAGGTGTGCGACATATGCGGGCATGAGGTGAAGAGGCATTACGACAAGAG AAAATCCATGATCAGAAAGGTCTAA
>gi 116081186: 804192-804743
ATATCCGGATACATAGCGAGGAACACTGACATCGACATCGTGCTGTCCTCGGACTATCTGCGTGAATTTC
TGAGACCCTTTGCACCTCAGGAATCCCACCTGGAGACAAGCGTCTACGATGCCTGGAAGTTCTACGGAGA TATGAGCGATGATAACATCATAAGGGGATATCTGGACCAGGCCAGGCCGATAATGGGCGGAATAAACCGC GTAATAGCACGTGCACTGGCCAATGGTGAGGACCTGATAATAGAAAGCCTGTACTTCGTGCCTGACATGA TGGATGAAATGGTGCTCAAAAATGCGTTTCTGGCCTATGTATACATCGACGATCCGGACCTGCACAGATC CAGGCTTGAAGACCGCATTAATTATACTCACAGGAATTCTCCCGGATCACGGCTTGCAGCGCATCTGAAA GAATACCGGACTATCATGGACTACAGCATGGATATGGCCAGGGGCCGCGGGATAGGCCTTTACAGCACAG ACGACTATGCGCTGGCGAGGCAGAGGCTGCTTGACGATTTCAGGAAATTTGTGGACAGGAGATGA
>gi 116081186 : 804743-805105
ATGAAGTCGAACTTTGCCATAGTGGACACAAACGTCATAATATACGCAATGAAGAGCAGGGTCAGGCTGG
ACGAACTTGTGCTGAGTCTGAGCGGCATAGCCCGGATAGCCATACCGGAATGCGTCATATACGAGCTAAG AAAGCTTTCTGCCGCTGATATCAATGCAAGGATTGGGCTTCAATACGCCATGCAGCATCAGGTGCTGAAG AGCGAGGGACATGGCGATGAATGCATACTTAAGGCAGCGATTAAATATGGCTGTCCGGTCATAACGAACG ACAGGGAATTCATAGAGGTTTTGAAGAGAAACCATGTGGTTGTAGCGACTTTATCAGGAAGAAAACTGGT CAGGATGAACTGA
>gi 113540831 :c886266-885913
ATCGATCGTATACTCATTAGGGCCATAGAAAACGGTGAAAATCTAATACTGGAAACACTGTATTTTCTCC CAGAGATGCTATCGGAAAAGGCAAGAAATAACGTACATATGTTTTATTTATACATAGGTGATGAGAAACT CCATAGAGATCGATTAGTGGATAGAATAAATTATACGCATAAGAACTCACCCGGTACAAGGCTGGCAGAA CACCTCTACGAGTATAGGAATATTATGGAGTATAGTATGATGAGATCATCGGAATACAATGTAAAGATTA TCGATACTTCCAACTATGAAGAGGCCAGGCGAACAATTTTAGAAATGATCGTTAAGGGTGAAAGCAGATA CGCCTAA
>gi | 13540831 :c885929-885564 GTGAAAGCAGATACGCCTAACTTCATATTGCTCGATACAAATGCAATAATTTACGCTATAGAAAAGAAGA TTAGGCTCGAGGATGCTGTTATCGAGATACCTGGAGTCTCGCGGCCTGCCGTTCCTTACTGCGTAATCCG TGAGCTCTACGGACTCGCTAAAAAAAACGTAACGGCACGAATTGCCTATCAATACGCAAAGAAGCTTGAG ATAATTGAAACCGATAAATACGGAGATGATGGCGTAATAGAAGCCGCAATGAAGACTGGTGCGATGGTTC TTACCAACGATGAGCGCCTTTCACGGAGATTGAGAGAAACCGGAATAAAGGTTGCAATGATATCAGGCAG AAAAATATTGTTTTAG
>gi | 21240774:2188117-2188365
ATGGAAGCCACCGTTGCCGAACGCGGACAGATCACGCTGCCAAAGGCCGTGCGCGATGCCCTGGGCCTGA CCAAGGGCACCACGTTGAAGATCGAGCTCGACGGCGGGCGCATCATCCTGCGCAAGGACGTCAGTGAGGC GCTGCGCAAGGTGCGCGGCAAGTTCAAGCTGGTCGACGGCCTGACCAGCACAGATGCGGCGATGCGCGTG ATCCGTGGCCGCGCCCCCGGAGACCCGTTCGACCCATGA
>gi I 21240774: 2188362-2188772
ATGATCGCCCTGGATTCCTCGGTCCTGCTGGACATCCTGATCGGCGACCCGGTCTATGGCGAAGTGTCGG AGATCTGCATCGGCGACGCCCTCGCGCGCGACGAAGTGGTGGTCTGCGACGCGGTGGTGGCCGAGGTGCT GGCCATGCTCGACACCCAGGTCGACCTGATGGAAACCCTGGCCTCGATCGGCGTGCGCTACGAAGCCACC CAGGAAGCGGCGGCAGTGCGCGCCGGCCATATGAACAAGCGCTTTCGCGCGCGCGGCGGCAAGCGCGAGC GGGTGGTGGCCGACTTTCTGATCGGCGCCCACGCGATGCTCCAGTGCGACGGGTTGATCACCCGCGACGA GGGCTTCTTCCGCGATTACTTCAAGGGTTTGAAGATCGTCGTTCCCAAACCCGCCCCCTGA
>gi I 21229478: 2168680-2168937
ATGGAAGCCACTGTTGCCGAACGCGGTCAGATCACGCTGCCCAAGGCGGTGCGCGATGCGCTGGGGCTGA CCAAGGGCACCACGCTCAAGGTCGAGCTGGAAGGCGGCCGCATCATTCTGCGCAAGAGTGTTGACGATGC CATTTCACGTGCACGCGGCCGCTTCAAGCTGGACGGCTTTGCCAGCACCGACGATGCGATGCGTGCCATC CGTGGGCGTGCGCCGGGCGATCCGCTCGATCCCGAAGCCGGCGCATGA
>gi I 21229478: 2168934-2169341
ATGATCGCCATTGATTCATCGGTGCTGGTCGACCTGCTGGCCGACAGTGCCCAAGCAGACGCTGCCGAAG CCTGCCTGCGCCAATGCCTGAGCACCGGCCCGGTGGTGGTCTGCGACGTGGTGCTGGCCGAGGTCTGCAG CGCGCTGCGCGATGGCGCCGAAGCGCTGTCGGTGCTGGAAGACATGAGCATCCGCTTCAACGCGCTGGAG GCCAAGTCGGCCTTGCGCGCCGGCGAGATGCAGCGCCGCTTCCGTGCGCGCGGCGGCAAGCGCGAACGGG TGGTGGCGGACTTCCTGATCGGTGCGCACGCGATGCTGCAATGCGACGGCCTGATCACCCGCGACGACAG TTTTTTCCGCGACTACTTCAAGGGCTTGAAGATCATCGTGCCCAAGCCCGCTGCCTGA >gi 115836605:304978-305193
ATGGATGCGACTGTTGCCGAACGTGGGCAAATTACGCTGCCTAAGAGAGTGCGCGATGCACTGGGTTTGA CCAAGGGCACCGTGTTGAAGGTCGAATTGGAGGGGGGACGTATCATCCTACGTAAGAGTGTGGATGATGC AATCGCGCGTGCCCGCGGCAGATTTATCCTGGACGATTTCGGTTGCAGTGCCATCGCGACGAAGACGGAC AAGCAATGA
>gi 115836605: 305165-305599
GTGCCATCGCGACGAAGACGGACAAGCAATGAGACGGTGATTGCAGTCGATTTCCCCGTTCTGGTTGAAT TGCTCACTGATCGGCCACAGGCCGATGCAGTTGAGGCTGCGTTGCGCCAATGTCTAGTCAGTGGCCGGGT TGTGGTGTGTGATGTGGTGTTGGCCGAGATGAGTGCTGTATTACGCGGCGGCGCTGAGGTGCTGGGAGTG CTTGAGGAGATGGGGGTACACTTCGATCCATTAGAAGCTAAATCGGCGTTGCGTGCTGGCGAGATGTACC GCCGCTATCGTCAACGTAATGCCACCGAAAGTGACATGAAATATTTTCTAGTTGGCGCTCATGCGTTATT GCAGTGCGACGGCCTGATGACCTGGAACGATGCGTTTTATCGTGATTATTTTAAAGGTATGAAACTCATC GTGCCGGGCGCATGA >gi|28197945:303404-303628
ATGGATGCGACTGTTGCCGAACGTGGGCAAATTACGCTGCCTAAGAGAGTGCGCGATGCACTGGGTTTGA CCAAGGGCACCGTGTTGAAGGTCGAATTGGAGGGGGGACGTATCATCCTGCGTAAGAGTGTGGATGATGC AATCGCGCGTGCCCGCGGCAGATTTATCCTGGACGATCTGGACGATTTCGGTTGCAGCGCCACCGCGACG AAGACGGACAAGCAATGA
>gi I 28197945: 303636-304034
GTGATTGCAGTCGATTTCCCCGTTCTGGTTGAATTGCTCACTGATCGGCCACAGGCTGATGCAGTTGAGG CTGCGTTGCGCCAATGTCTAGTCAGTGGCCGGGTTGTGGTGTGTGATGTGGTGTTGGCCGAGATGAGTGC TGTGTTACGCGGCGGCGCTGAGGTGCTGGGAGTGCTTGAGGAGATGGGGGTACACTTCGATCCATTAGAA GCTAAATCGGCGTTGCGTGCTGGCGAGATGTACCGCCGCTATCGTCAACGTAATGCCACCGAAAGTGACA TGAAATATTTTCTAGTTGGCGCTCATGCGTTGTTGCAGTGCGACGGCCTGATGACCTGGAACGATGCGTT TTATCGTGACTATTTTAAAGGTATGAAACTCATCGTGCCAGGCGCATGA Nucleotide seguences coding for homologs of RelE toxin-antitoxin pairs
14600379:984865-985164,14602207
>14602207_984480-985880_Aeropγrum_pemix.fπa_2 [385 - 684] CTGTTAATTAGTGTATTTTTGATGCGGAGAGTCAGTGAGTGTGTTAGGTGGAAACTGTTA TTTAATCTCCATGTAACGTATTATATATTAGCAGACGGTGGTTTGATAGTGTCTTCGAAA AAGTCTAAGGTTAAGGTTGAAGTTGAGGTTGAAGTTCCCGAAGGCGATGATGAAGGCGTT TACAGGGAGGAATTTCGGAGAGAGCTAGCTAAGAGGATATTAAACGTAATGCTTGACAAG GACGTGGAGCCAGCTAAGCGGGCTGTTGCCAAGACTTTGCGCGAGAAGGGCGGGGAGGGA >gi|l4600379:985214-985498
TTGACAGAGGTCTATATAGAGAGTTCTGCAAAACGTGATTTAAAGAGGCTGCCAAAGCATATTGTCCAGT GGGTGTTAAACACTGTTGAGGAACTCGAGGAGAACCCGTTTATCGGCGAGAGGCTACATCTTCCAGCAAG CCTACATGGCTTGTACTGCTTTAAGCTAAGGCGAGGAGACTACCGGCTAGTCTACTGCTACGTTCCAAAT CGAGACACAGTATATATCATCGCCGTTGGACACCGAGGCGAGATATACGAGAAGTTTCGAAGACGAATAA AATAA
15668172:840765-840947,15669099
>15669099_840210-841610_Methanococcus_jannaschii.fna_2 [555 - 737] ATGAGCATCGTTCAATCTTATATTACTGATGAAAAAGGAAATATCAAAGGAGTTATTTTA GATTATAAGACATTTAAGAAAATTGAAGAGTTGTTATTGGATTATGGGCTTTTAAAGGCT ATGGAGGAAGTTGAGAATGAGGAAGAAATTGATTTAGAAACTGCTAAAAAGTTGTTAGAG CAG
>gi 115668172: 840947-841222 GTGAAACAATGGAAGTATCTTTTAAAAAAATCTTTTATTAAAGATTTAAAGGAGTTACCTAAAAATATTC AAGAAAAGATTAAAAAATTAGTTTTTGAAGAGATTCCAAATAAAAATAATCCACCTGAAATTCCCAATGT AAAAAAGCTAAAAGGTGCAGATAGTTATTATCGAATTAGAGTTGGAGATTATAGAATTGGTTTTAAATAT GAAAATGGAAAAATTGTGTTTTATAGAGTTCTACATAGAAAACAAATTTATAAAAGATTTCCATAA 15668172 :cl043988-1044146, 15669291
>15669291_1043000-1044400_Methanococcus_jannaschii.fna_ll [1146 - 988] (REVERSE
SENSE)
ATGAGGCTCAAAAAGAGATTTAAAAAATTTTTCATCAGCAGAAAAGAATATGAAAAGATT
GAGGAAATTTTAGATATTGGCTTGGCTAAAGCTATGGAGGAAACAAAAGATGATGAATTA TTGACTTATGATGAAATAAAGGAATTATTGGGAGATAAA
>gi 115668172 :cl043988-1043722
ATGAAAGTGTTATTTGCTAAAACATTTGTTAAGGATTTAAAGCATGTTCCAGGGCATATAAGAAAAAGAA TAAAGCTAATAATTGAAGAATGTCAAAATTCTAACTCATTAAATGATTTAAAGTTAGATATTAAGAAAAT AAAGGGCTATCACAATTATTATAGGATTAGAGTAGGAAATTATAGAATAGGTATTGAGGTTAATGGAGAT ACGATTATTTTTAGAAGAGTATTGCATAGAAAAAGCATATATGATTATTTCCCATAA
20088899:1172771-1172992,20089858
>20089858_1172220-1173620_Methanosarcina_acetivorans.fna_3 [551 - 772] ATAAATGCTATAATTGCTATAGTAACTATTATGTCAGAAACTACAACTATACAGATATCT AAAGACACCCGTGATGAGTTAAAAGCCATTGGGAAAATGGGGGATGACTACAATACAGTT ATACGAAAATTGATCCATGAACACAACTGCAATAAACTTATAGAAGAAGGCGATAGGCTC ATAAGAGAACATCGTGATGAGTTCGTGAGCATCGATGAGCTT >gi|20088899:1172985-1173254
ATGAGCTTTAAAGTTCTGATCCACCCTAAGGTCTTCGAAAAGGTTCCTGTAGATCGTAGGGATCAAATAA AAGATGCCCTTCAAGAACTAAAAGACCCCTTGCCAGGGGGAAACAAAAAAGAAGTAAAAGGAAGTCACAA AACTGTCTATCGGCTTCGTATAGGCGATTTTCGTATTTTATACGAAATTGATTTTGAACGAAGCGAGGTT CTTGTTTTTAATATAATAACGGCTGAACAGGCGCATAAGAAGTACAACCGTTTTAAATAA
20088899 :c5035578-5035697, 20092909
>20092909_5034470-5035940_Methanosarcina_acetivorans.fna_17 [1227 - 1108] (REVERSE SENSE)
ATGCAGCCCACGAACTTAAGCTTGAGCTGCTCGAAAAGATTCCGGAACTTGCAAAATACT GAGAATGAAGATCCTTCGGAAAGGGACCTGAATATTCGGATCCCCTTTCATATATATTAT
>gi I 20088899 :c5035546-5035178
GTGATTGCCATGTCTAATATGGATGACGAACTCGAAGAAATCCGAAAGAGACGACTTGCAGAAATCCAGA GACAGCAGGCACAGCAACAGCCTTCCGACGTACAGGCAGCTTATCAGCAGGAGCAGGCAAGGGCTGAAAT GGAAGCTCAGAAACAAGCTATCCTGAGGCAGATCCTGACTCCTGAAGCAAGGGAACGCCTGACAACTCTT AAGATGTCAAGGCCGGCCCTTGGGGAACAGCTTGAGATGCAGCTTATTTCGCTTGCCCAGAGTGGAAGGC TCAAGGCTCAGATCGATGATGAGCAGCTGAAAACGCTCCTTATGCGGATGCAGCCTAAGAAACGCAAGAC GTCCATAACCCGGGTTTAA 18976372 :c841447-841569, 18977239
>18977239_840420-841890_Pγrococcus_furiosus.fna_6 [1149 - 1027] (REVERSE SENSE) ATGTGGTTAATTTTTGCTCAAAATTATTGTCATAATAACAAATCTTTACGAAAAAGATAT ATTGTGGTAAATTTAACTTTCCTCCATGTCAAAAGTCATGGAGCTCTACAAGAAATATCT TGT
>gi 118976372 : C841484-841173
ATGTCAAAAGTCATGGAGCTCTACAAGAAATATCTTGTTGAAAGAGACCCACAACAAAAATTAAAATTTG CAAAGGAAATTCTAGATAACTTGTTAACCCTACAGCTAAATCCCCCTATTTGGGAAACAATAAGGAAGTC AACTGGACTAAAGGAGCACGAAATGAAAGAAATTCTTAATTATTTGGAGGAAAAGGGAGAAATTGAAATA AAGCGGGCAAAAGATGGAAAAAAGCTATATGCATCAACAATAAGAAGCATGAAAAGAAAATCCAAGGAAA TACCCCTAGATATGTGGATCAGTAGGCACTAG 23464628 :cl638570-1638836, C1638230-1638535
>Bifidobacterium_longum_1637860-1639190_ll [1028 - 780] (REVERSE SENSE) CTGCCCCGAATGCAGACGCGAAGTGATGGCCGCGAAGGGCGAGGCGCTGCGCCTGTGCAG GTGCGGCAATCCCATCAACGTGCAGGAGCTGCGCGAGCAGAGCCGCGACAAGGCCGAGGC AATACACCTGACCAAGACACCGGCAGGCATGAGCCAATGGCTCAAGGGAAACTACGGGTA CGAGGTCAGCCGCAAGCGGATCAGCAACTGGCTCAACCGGGGCAAACTCCCCAGCTCGAG ACCCGTCGA
>Bifidobacterium_longum_1637860-1639190_13 [675 - 370] (REVERSE SENSE) ATGGAAATCAAGCAATCCGCCGAATACCGCAAGTGGTTCAAGAAACTCAGGGACCACAAA GCGAAGGCCGCCATCCAAGCCCGGCTCGATGCCTGCAAGCTCGCAGGCAGGCCATTCGGC GACATCAAACCCGTGGGAGGCCCGGTCAGCGAGATGCGGTTCCACACCGGGGCCGGATAC CGCGTCTACTTCGCCATGCAGGGCAACGTGCTCATGCTGCTGCTCGCAGGCGGCGACAAA AGCACCCAGCAGACCGACATCAGACAAGCCCACGACATCCTCAACGACTACAAGGAACAA CGACAA
16124256:3371212-3371388,16127361
>16127361_3370570-3372040_Ca lobacter_crescentus.fna_3 [642 - 818] ATGGCCGAGCCTGACCCCGACATCTTCGACGAGGACGATGAAGCGATCCTGGCGGCTGAC GCCGAGGCTGACGCCGACTTCGAAGCCGGTAGAACTGTTCCGCACGAGCGTGTGGGCGAG TGGCTCAAGACGTTGGGCACGCCGCACCAGACACCGCCACCATATTCGTGGCGCAAG
>gi 116124256: 3371331-3371654
GTGGCTCAAGACGTTGGGCACGCCGCACCAGACACCGCCACCATATTCGTGGCGCAAGTAGTCTGGACCC AACGAGCGATGGCCGATGTTTACGCCATCGTCGGCCATATCTCCGAGCAGTCGCGTCCTCTCGCGGCCCA GCGCCTGGCCAAGAGGTTGTTCGACACCGGCGCTAGCCTGGCGACCTATCCCGAACGCGGGCGCGTGAGC ACTCAAGGACGGCGTGAGATCGTCGCGATTTCGCCCTACGTTCTGCGCTACCGCATTGTCGGCGACCGTG TCGTCATTGGCAGCGTACGCCATGGGGCGCGTCGACCTATCTAG
17934719, 17933925 :c809573-809884 >gi|17933925:c810155-809874
ATGGCCAATGTGGAGAAGATCAGCGTTTCGATGACGCCGCAGCACGCCGAAATATTGCGGGATGCCGTGG AAAGCGGCGCTTACGCCAGCAGCAGCGAAGTCATCCGCGAAGCAATGCGGGACTGGTCGGCAAAATGGGT TCAGCGACGCAACGACATCACCAAGCTGCGCGCATTATGGAGTGAGGGCAAAGCCAGTGGCAATTCAACC GAAG
>17933925:c809573-809884 [1037 - 726] (REVERSE SENSE) ATCGTGACCACTAAGCTTGTCTGGACGCCCCGCGCACGCAGCGACGTGAAGAAAATCTAT GTCGATATCGGCAAGTCACAGCCTTTGGCTGCGGAGCGGTATTTTGCCCGTTTCCGCGCC AAAGCGGAGAGCCTGATCGACCATCCCCATCTTGGCGAACGCCATCCGGAAATTTTTCCG TCTGCCCGCATGCTCGTCGAAGCACCTTACGTCATTCTCTACGAAACCGTGCCGGATACG GATGACGACGAAATACGTTGCGTGGAAATCGTTCGTGTGAACGACGGTCGCCGGGACCTG CGGACACTGTTC
15963753 :cl588987-1588739, 15965227 >15965227_1587740-1589140_Sinorhizobium_meliloti_1021_chromosome.fna_15 [1247 - 999]
(REVERSE SENSE)
CTGCGTCACCCACGAAATGGGCTTCGCCCGCCAGGTCGCCAACCGCGTGATCTTCATGGA
CCAGGGCCAGATCGTCGAACAGAACTCGCCGGCCGAGTTCTTCGACAATCCTCAGCACGA
GCGGACCAAGCTGTTCCTCAGCCAGATCCTGCACTGATCCGGAACAACTCGAAACGACGG CGGCCCGCCTTCATGGCGGGCCGTTTCGTTTTGTATTCCAAGCCAAAACCTCGCAGAAAC
TCTCCATTC
>gi 115963753 : C1588729-1588451
TTGAGATTCGGGTACCGCCGCGGCCTCGAATTCCTGCCGTCTGCTCGAAAGGAATGGGACAAGCTGGGCG CGACGATCCGGCAGCAGCTTGTAAAGAAGCTGCGTGAGCGTTTGGAGCGCCCCCGCATTCCGAGCGCCGC ACTACACGGGATGCCCGACCACTACAAAATCAAACTGAGACAGCTTGGCTATCGTCTCGTCTACCGGGTC GATGACGGCTCTGTCACTGTGCTGGTCGTGGCAGTTGGAAAGCGAGAGCGGGTGACGTCTACAACTTGA
30248031 :cl478798-1479043, 30249331 >30249331_1477770-1479170_Nitrosomonas_europaea.fna_15 [1273 - 1028] (REVERSE SENSE) ATTTATATGGCAATACTAAACGCAACAGAAGCAAGAGCGAGGTTGTACGCCTTAATTGAT GAGGCCGCAGAAACACACCAGCCTATTGTGATTAAGGGAAAAAGGTCAAGTGCGGTGCTT TTATCGGAGGAAGACTGGAACGCTATCAACGAGACGCTTTACTTGGTTTCTATCCCGGGA ATGCGCGAATCCATTATGGAGGGTATGAAAACTGATGTGGATGAGTGCAGTAGGGAATTG GATTGG
>gi I 30248031 :cl478795-1478535
ATGTGGGAGCTGCGATATACCCATCAAGCGCAAAAGGATGCAAAAAAGCTGGCATCGTCTGGGCTTAAAG ATAAGGCAGAGGAGTTGTTAGCGGTTGTGAGGAATAATCCGTACCAAACCCCACCCCCCTATGAAAAGCT GGTTGGTGATTTGGCTGGAGCCTGTTCACGCCGTATCAACATCCAGCACAGGCTCGTGTATCAGGTGTTG GAGCGGGAGAGGATAGTAAAGGTTTTGCGTATGTGGACTCATTATGTGTAG
16129958,16127994:2087233-2087487 >gi]l6127994:c2087762-2087484
ATGAACTGTACAAAAGAGGAGATTGACATGCGTACAATTAGCTACAGCGAAGCGCGTCAGAATTTGTCGG CAACAATGATGAAAGCCGTTGAAGATCATGCCCCGATCCTTATTACTCGTCAGAATGGAGAGGCTTGTGT TCTGATGTCACTCGAAGAATACAACTCGCTGGAAGAGACGGCTTATCTACTGCGCTCCCCCGCTAACGCC CGGAGATTGATGGACTCAATCGATAGCCTGAAATCAGGCAAAGGAACGGAAAAGGACATCATTGAGTGA
>16127994:c2087233-2087487 [997 - 746] (REVERSE SENSE) GTGAAACTAATCTGGTCTGAGGAATCATGGGACGATTATCTGTACTGGCAGGAAACAGAT AAGCGAATTGTTAAAAAGATCAATGAACTTATCAAAGATACCCGCAGAACGCCATTTGAA GGTAAGGGGAAGCCAGAACCCCTGAAACATAATTTGTCAGGTTTCTGGTCCCGACGCATT ACAGAGGAGCACCGTCTGGTATACGCGGTTACCGACGATTCACTGCTCATTGCAGCATGT CGTTATCATTAT
15799931, 16445223 :c283932-284192 >gi 116445223 : C284468-284208 ATGGCTGCTAACGCATTTGTTCGCGCCCGAATCGATGAAGATCTGAAGAATCAGGCGGCGGACGTACTGG CCGGGATGGGGCTGACCATCTCTGACCTGGTTCGCATAACCCTCACAAAGGTCGCGCGTGAAAAGGCATT GCCGTTTGATTTACGCGAGCCTAATCAATTAACCATTCAATCAATCAAAAACAGCGAAGCTGGCGTTGAT GTTCATAAGGCCAAAGACGCCGATGATTTATTTGATAAATTAGGAGTTTAA >16445223:c283932-284192 [972 - 712] (REVERSE SENSE)
ATATTGAACTCGGGACAATTTTCAAAGGATGTAAAACTTGCACAAAAGCGTCATAAGGAT
ATGAATAAATTGAAATATCTTATGACGCTTCTTATCAATAATACTTTACCGCTTCCAGCT
GTTTATAAAGACCACCCGCTGCAAGGTTCATGGAAAGGTTATCGCGATGCTCATGTCGAA
CCGGACTGGATCCTGATTTACAAACTTACCGATAAACTTTTACGATTTGAGAGAACTGGA ACTCACGCGGCGCTCTTTGGG
30063468, 30061571 :c2077698-2077949 >gi 130061571 :c2078973-2078701
ATGCGTACAATTAGCTACAGCGAAGCGCGTCAGAATTTGTCGGCAACAATGATGAAAGCCGTTGAAGATC ATGCCCCGATCCTCATTACTCGTCAGAATGGAGAGGCTTGTGTTCTGATGTCACTCGAAGAATACAATTC GCTGGAAGAGACGGCTTATCTACTGCGTTCCCCCGCTAACGCCCGGAGATTGATGGACTCAATCGATAGC CTGAAATCAGGCAAAGGAACGGAAAAGGACATTATTGAGTGGGTAATGCTGCCAACTTACTGA
>30061571:c2077698-2077949 [979 - 728] (REVERSE SENSE) GTGAAACTAATCTGGTCTGAGGAATCATGGGATGATTATCTGTACTGGCAGGAAACAGAT AAGCGAATTGTTAAAAAGATCAATGAACTTATCAAAGATACCCGCAGAACACCATTTGAA GGTAAGGGGAAACCAGAACCCCTGAAACATAATTTGTCAGGTTTCTGGTCCCGACGCATT ACAGAGGAGCACCGTCTGGTATACGCGGTTACTGATGATTCACTGCTCATTGCAGCATGT CGTTATCATTAT
>gi I 24473558: 268650-268943
ATGACAGATAAAAAGCCGTTTGCTTTAAGTGAGGTTGCCCAAAGGGTTTTGATAGTCCTCGGAAGGGAAA ATAGGGGTCTAACTGTTAGAGAGTTAGTTGAAAAAACAGATACTAACAGTGGTAGTATCAAGAGAGCGTT GGAAGAACTTGCCAAACTTAACCTAATAAAGGAGGAAAAAGAAAACGTGTTTCCATATAGGAGGTTAATC AGTCTAACGGAGGTCGGAAGGGAAGTGGCTAAAAGAGTTATAGAAATAGAGGAATTAGTTAAGAAAGTGC AGTCAAATGGCTGA
>gi I 24473558: 268936-269223
ATGGCTGAAGAGTGGAAATTAGTATTCCATATCAAAATTAAGAGACTACCCAGGGAGTTCCAGAGTGATG AATTAGAGAGGATAGAAGAGGCTTTAGACAAGCTAAGTAAAATGGAATTAAATGAGCTTGATATAAAGAA ACTGGAGGGTTGGAATGATAATGAAAACAGAGATATATTTAGGATAAGAGTAGGAAGGGATATAAGAATT CTTGTCTCTTTCGATAACGAGAAAAAGCAAATTCATATATGGAGGATTGCTAGGAGGGAGTCTGTTTACG ATGAATAA >gi|H497621:c977698-977510
ATGGAAGTCATTCAAATCTCAAAGGATGAGCTTGAAGAAATCATAGAGAGAAAATTCAAGGAAGTCCTGA TTAAGGCTTTGATGGAAATTACTCCTTACGTTTCCGATGAAGAGCAAGAAGAAATCGATAAGATAGCTGG AAAGCCTGATGAATACGAAGGTGAATTTGAAGAATGGCATGGAAAGTGA >gi 111497621 :c977525-977247
ATGGCATGGAAAGTGAGATACCACAAAAAAGCAATAAAGTTTCTTGAAAAGCTCGATGAAGGAAAGAGGA GCATTCTATTGAGCAAAATTCAAGAACTCGTGAACTCCTTGGAGAGTGGAGTTTTACCAATCCAGAGAAT GGACATAAAAAGGTTGAAAGGAGTCTGGGATGGTTTCTTAAGACTGAGGGTTGGAGAGGTAAGAATAATT TTCAAGATAAACGTTGAGGACGAGACCATTTTCATCTACAGCATTCATTTCAGAGAAAAAGTTTATTGA
>gi 111497621 :c978881-978708
ATGGACATTCAGGTAATAAAACAGGCAGTCCGAGAGGTTCTGAGGGAGGAACTGCCGAGCATCCTGAAAG AGGTCATTCTTAGCACAATTCCACCGGATGAACCGGAAGCTGATGAAAAGCAGTTTGTGGATGAGGAGAT TAACGAGGACGATTACGTGAAATTCGATGAATGA
>gi | 11497621 :c978715-978455
ATGAATGAAGTTCTTATCCACAAAAAATTTCTTGACGGCTTAGACAGCGGGAGGAGAAGTAAGGTTTTGG ATGCAATCAGAATGTTGAAAGACTTCCCTATCATACGGGCAGATATCAAAAAGATAGGCCCCAAAACTTA CAGGCTCAGGAAGGGAGAGATAAGAATAATTTTCGATTTCGATATCGGGACAAACAGAGTTTTTGTTAAG TTTGCCGCTTCAGAGGGCGTGTTTACAAAAACTGAGGAAAAATTTTTCTAA
>gi | 11497621 :c982790-982572
GTGAAGGTGTTGCTGGATATAATTGAGGATATTGAAAACTTTATCAGACAGCTTGAAAAAAGAAGGGGAG AGCTGGAAGAACTTAAAGATGAGATTCTGATTTTTTCTGACGCTGAATTTATAGATAGCATACAGAGAGG ACTTTCAGATCTTGAGCAGGGTAGAAGTAAAGTTTGCAGCAATTTGGAGGAAGTCAAAAAACTCTTTGAG GATATATGA
>gi 111497621 :c982575-982318 ATGAACTACAAAGCACAGTTTTCTGAAGAATTCCTGAAAATAGCCAAAAAGTTAAAGGAAAAAGACCCAG AGCTTCTAAAAAGGCTTCAATCAAAAGTTGAAGAGATTATCAAACAACCTGAACACTATAAACCTTTAAG GGGGCAGATGAAAGGATTGAGAAGGGCACACGTTGGGAAATTCGTAATTATCTTCAAAGTGGAAGAGGAT ACGGTTAAATTCGTGACCTTCAAACACCACAACCACGCTTACAAATGA >gi|H497621:c2093519-2093322
ATGAACGAAGCACTCCTGCGGGAGATTTACAGCGAGGTTAAGAAGATAAGGGAAAAAATTGAGCAGCTTG AGGAACTTATAATACCGGCAGAAAAAGTTTCTGAGGAGGAGCTTCTGGAAATCAGAAAGCTGAAAGAAGA GTCGTTAAAAGGAGAACACGTTGACTGGGATGAGCTGAAGAGGGAGCTTGGTGTTTAG >gi|H497621:c2093329-2093066
GTGTTTAGGGTTGTAGTTCACAGGAAAGCAACTCAAGAGCTGAAACGTCTTAAAAAAGCTCATTTAAAGA AATTTGGTGTACTTCTGGAAACGCTCAAAACAGATCCAATTCCTTGGAAAAGATTCGATGTTAAAAAGAT TGAAGGCGAGGAGAACACTTACCGTATCAGAATTGGAGATTTCAGAGTGATTTACTTTCTCGATAAGCCA ACCAAAACGGTTCACATCTTAAAAGTTGAAAGAAGAGGAAAGGTTTACGATTAA
>gi 115789340 : 66054-66251
ATGTCCAACGCATCAAAACGAATTCCAGTTACAGAAGATCGATGGGAAGAACTCAACGACCTCAAAGGCG CAGGCCAAACCTATGACGAACTCCTGAAGGAACTCATCCAGGAGCGCAACCGTAGTCAGCTCGCCGAACG CGTGCGTTCGGTGCGAGAAGCTGACGAAGACGAGCTGACTGCCCTCGATGACCTATAA
>gi 115789340 : 66241-66534
ATGACCTATAACGTCCTTCTCTCCGAAGAGGCCCAAGAGTACTACCAACAACTCGACGACAAAAGCCAGC GCATCGTCAAAGACAACCTCACAAAACTCAAAGACGAGCCGCATCCGAAACCCGGATCCGGCGCCGGCGA CCGCGAGAAAATCCCTGTCGACGGCGAGACGGTCTACCGCCTCCACATCGGCCGAACGCACACCGCACTA TACGACATCCTCGAGGCCGAAGAGCAAGTACGCGTAATCGAACTGCTCCCCATCGACGAAGCCCACGACC GCTACGGCTTCTGA
>gi 115668172: 66966-67214
ATGCTCAATATAAACAAAGAGATAGCACAAATAGAAACTGAATTGAATGAATTGAAAAAATTGAGAGATG AAATCTCTGAAAGGATTGAAAAATTAGAAATAAAGTTATTAAAATTGAAAGCATTAGCTATTCCAGAGGA GGAATTTGAAGAGGATTATGAAGAAATTATAGAAGATGTTAAAAAATCTCTGGATAAAAAAGAGACTGTG CCAGCAGAAGAGGCTTTGAAAGAATTGGGATTATTATGA
>gi 115668172 : 67211-67483 ATGAAGTTTAACGTTGAGATACATAAAAGAGTCTTAAAAGATTTAAAGGATTTGCCTCCCTCAAACTTAA AGAAGTTTAAAGAACTAATAGAAACATTAAAAACCAATCCCATTCCAAAAGAAAAATTTGATATTAAAAG ATTAAAAGGCAGTGATGAGGTTTATAGAGTTAGAATTGGAAAATTTAGAGTTCAATATGTTGTTTTATGG GATGATAGAATAATAATAATTAGAAAGATAAGTAGAAGAGAAGGAGCTTATAAAAATCCCTAA >gi 115668172: 1111527-1111781
GTGATTTTAATGGTTAAAGCAATAGTTGATATTACTGATGAAAATAACAGAATAATAAATATAGTCAAAG CAAAATACAATTTAAGAGATAAAAGCCAGGCTATAAACAAAATAATAGAAGAATATGCAGAATTTCTGTT AGAGGACGAACTAAAACCAGAATATATTGAAAAAATTAGAAACATTATGAAAAATGAAAAACCTATATAC ATTGGCTCTATTGAAAATCTAAAAAAGAGATATTTAGGTGAATAA
>gi 115668172: 1111782-1112066
ATGTATGAAATCGAAATAATGCCTTCATTGGATAAAATACTTCAAAAACTTTCAAAGAGAGACAAAAAGA AATTAAAAGCAATATTAAAGAAAATGGAAGAGATTACTCAAAATCCACACCATTATAAAAACCTAAGACA TCCTTTAAATGATTTTAAAAGAGTTCATATCGATAAAAGCTTTGTTCTTGTTTTCACCGTTGATGAGAAT AATAAAACAGTTATTTTCGTTGATTTTGACCATCATGACAACATTTATAAAAAGAAAAAGCTATTTAAAG ATTAA
>gi | 20088899: 59191-59415 ATGGCTGAAACGACGACCATCCAGATTAAACAGAGCACGAAAGAAGCCCTAGAGCGCATGAAAATATACA AGCGGGAAACCTACAATGACGTTCTGGAAAGGTTGATAGAAGATGTTCAGGAACTGAACGAAGAGACAGA AAAAGAAATTGAGCTTGCCCGAAAAGCTGTTGAAAAGGACAGGTACATCACACATGAAAAGTTGAAGGAA GAACTGGGATTCTGA >gi|20088899:59484-59735
ATGCGTTTTCAAATAGTCTGGTCCAAACCTGCGGCAGAGCAACTCCGAAAATTGGACCGCCCACTTGCGA AAAGAATTTTCCGTAAGGTTTCGGAACTGCAGGAGGATCCTTTCCGTTATGTGACAAAACTGGTTGGGTC TCCGAATTACCGGCTGAGAATTGGGGACTACGGGGTGATTCTGGAGATTCAGGGCAGCCTTCTGGTGATA CTCGTACTTAAGGTAGGGCATCGAAGGGACATTTACAAATGA
>gi | 20088899: 442147-442428
ATGGCAGCCACAACTACAATTTGTCTTGAACCTGAAGTAAAAGAGTTACTTAATGGATTGAAGATCCATC CGCAGGAATCTTATAACTCTGTCGTGAAACGATTGGCTACCAATGCTTATGACTGGGAGCCGCTGAGTGA AGAGTCAATCAAACAAATCGAAGAAGGACTGCGTGATTATAGAGAAGGCAAGTTTTTTACTCATGAAGAA GTCTGGGGAGAAATCGAAAAAGAAAGAAGAGGAAGGACCGGGAAAACAAAGGTTGAAGAATGTACCGAAT AA
>gi I 20088899: 442416-442679 ATGTACCGAATAATTTATTCTCCTGCAGCTAAAAGAGACTTGAAGAGGTTGCCTGCAGATGTTCAGGATC GCGTGCACGATGCTCTTGAAGAGATAGCAGATGATCCTTATGCGCATGTCAAGAAGTTAAAAACTCCTTA TAATTCTCCTATTTTTGCTTATAGAGTCGGCAAGTACCGGGTAATTATGTCGATCCATGATTTTGAACTG ATAATCCTGGTTCTCGAAGTCGGAGACCGGAAAAATATCTATAGAAAATTCTGA >gi]20088899:2033512-2033721
ATGAAAAGCGTTCATGTTCTCCGTAAGTTTAGCGGTAAAAAATATGGTACCAAAAAAACTCATCTTGGTA CTAAAAAAGCTTATCCTCCGGAAGAATGCCTGAACCCTGAATTCATTAAAGAGGTTGAATGCAGTAGGCA GAAAGTCCTTAACGGGAAAGGTATCAAGTTCAACACAGTAGATGACTTTTTTAGCAACCTTGAAAAATGA >gi|20088899:2033718-2033981
ATGACATATCAGGTAGTTTTATCACCCGATTTTGAAAAAGAAACAAAGATCTTCTTCAAAAAGGATCCTG TTCTTTATGGCCGTTTTAAGAAAACTGTCAACAGTATTCTAGAAAATCCGGAGTGTGGAAAACCTTTGCG GAATGTACTTAAAGGACTTCGCAGAGTTCACATTGGCCACTTCGTTTTAATCTATGAAATAGATAATACT AATGAAACCATCACTTTTTTGAAGTTCAGTCCTCATGACAAAGCATATAAGTGA
>gi I 20088899: 2668859-2669128
ATGATATTGTTCTTTTATTATATGGTAAATATGGCTCAAGCGATAATAAATATTGATGATCATACTAAAA AAATTTTGGATATTATTAAAACCAGGTATGATTTAAAGGATGAGAGCGCAGCTATTGAGCTAATGGCTAC TCAGTACGAAGAAGAGATATTGGAACCTGAGCTAAGACCTGAATTCGTGGAGAAAATGCAGAATATAATG AAGGAAGAGCCCATAGATATCGGGACTATTGAAGATCTAAGAGCCAGATATGGGCACTGA
>gi I 20088899: 2669135-2669329
ATGTATCGAATAAAAATCTCACCGAAGCTTGACGAAATAATTCAAAAATTGGATAAGAAAAATAAGAAAC AAGTGGATATTATTTTAAAGAAAGCAGGTGAGATCGCAGAAAATCCACATAGATATAAGAACCTTCGAGC ACCACTCAACAATTTAAAAAGGGTGCATATCGATAAACATTTCGGGTATTGTTAA
>gi 120088899: 4336973-4337215
TTGACCCTGAATAGGGTCTTGGGAGCCCTTTATAAACGGATTGAGTTGATGGGTATGACATTTACAGAAA TTTTTTATCATTTAAAGGAACTCGAAAAAAGATTCAATGAAATCAAATACCCTCCTGAAGCTACTTTTCA GCCATCCTTTTCCTCTAAAATCCGAAAAGCAGAAAGGTACTGTTCAAAGTATAATTTGCCTGAGTTTGAA ATCGAAGAATTTTTTGAAAAGGTAGAACAATGA
>gi 120088899: 4337212-4337493 ATGACATACAGAGTAGCAGTTCACTCCTCGGTCCGCAAAAACCTGAAAAAACTGTACAAGCTCGACAGGC CGGCATATGATTATGTTAAGGCACGCCTCCGCCTTCTGGCTTACAAACCTGAAATGGGTTATCCCCTTGA AGCTGAGTTCGGGGGGAAATGGAGAATTCATATAGGGCCATTCGTGCTGATTTACACCTTTGATAAGGTG AACAGTACCCTCACTCTTCTAGTCTTTGAACACTATACACGGGCATATGATATGGATACAGCTTACGCCT GA
>gi 120088899 :c5202391-5202101
ATGATGGCAACGATCACATTACCTGTTCCGGATGAACTTTACATGAGGATGGAGCATTTTTCCTGGGTGA AATGGTCTGAGGTCGCAAGAAACTCCATCCGGAAAAGGGAGATCTTTGAGAAGTATTTACGATCCGGGGA ACTTTCTGATGAAGATGCGGAATTCTGCGATAAAACGGACTGGCACCCTGCGGACGAATTACCTTTGAGG GAAGATTATGTTCAAAGGTTGGAGGATTTGAAAAAGGAAACTCCCCTGAAAGTCAGGGACGTTTCTGACA TTTTCGAATGA
>gi I 20088899 :c5202091-5201813 GTGGTTCGGATGCCATATGATCTTTTTATACTTCCATCATGTAAAAAAGAGATCGATAAGGCGTGTAAGA ATAATACACTCTTAAAAGAGTCTTTGAGCAAAAAAATTCAAGAGATATGTGAAAGCCCTTTTCATTATAA ACCTTTGAGAAATGAACTTCATGGAATGCGCAGGGTGCATATCCTGAAAAGTTTCGTCCTGATCTTTAAT GTAGATGAAAACAAAAAGTCCGTGACCCTTGTAAGTTTTTCACACTATGATACTGCTTACTCTCGCTAA
>gi | 21226102 : C2219149-2218883
ATGCATATGATACAGGCGAGAGTAAAAATGTCAGACAGAACGAACCAAGTTCTGAATATTGTTAAAGCCA AATACAACCTGAAAGATAAGAGTGCTGCTCTCGACTTAGTTGTAGCTCAATATGAAGAGAAAATACTTGA GCCTCAATACAGTCCTGAGTTCATAAAGGAAATGCTTGATTCGGAGAGTGATGAAGTAATTGGACCATTC AAAAATGCCGATGAACTAAAAGCATACATCAAAAGCTTGCCTGATGAGGATGAGTAA
>gi | 21226102 : C2218868-2218665
TTGATCAAGGGGAAGCTTTTAAAAGAACTGCGAAAGTTAAACAAGAAGAATCATGTACTTTTCGAGGCAG TCTTCAAAAAAGCTGATGAAATGTGTATCAATCCTCAACATTACAAAAATCTCAATTATCCCTTAAATAA ATATAAACGAGTACATATTGATTCTAACTTTGTACTATGTTTTTCTGTTGACGAAAAAGAGTAA
>gi | 21226102 :c3035493-3035254
ATGGTTCAAGCGATAATAAACATTGATGAGCGCACTAATCGAATTTTGAATATTATCAAGGCCAAATACG GTTTAAAAGATAAAAGTGCCGCTATTAATAAAATGGCTGAAGAGTATGAAGAAGAGATTTTAGAGCCAGA GTTAAAACCTGAGTACATTGAAAAATTAAAGAAAATAGAAAAACAGGAAGCTATAGAAGTAGGCACTGTT GAAAATTTAAGGAAACGATATGGCCTTTGA
>gi| 21226102 :c3035249-3034989
ATGTATTTCTTAAAAATCAGATCGGAACTTGATAGTAAATTTGAAAAACTAGCAAAAAAGAATAAAAAAC AACTTGAAATTATTTTAGCTAAAGCAGATGAGATCCTGGAAAATCCACATCGATACAAAAATCTAAAAGC T
>gi I 21226102: 3096421-3096615
GTGTATATGACATTTGCAGAGATTTTTAATCAGCTAAAGGAACTCGAAACCAAATTCAATGAGGTCAGTT ACCCGCCTGAAAATGCCTTTTTACCTTCTTTTTCTTTTAAAATCCGAAAGGCTGAAAAGGATTGCCTGCA GCACGATTTGCCTGCAATTGATGTTGATGACTTCCTCGAAAAGGTAGAACAATGA
>gi I 21226102:3096612-3096893
ATGACATATAAAGTGGCAGTTCACCCGTCGGTCAGAAGAAACCTGAAAAAGCTGTACACCCTTGACCGCC CTGTGTACGATTATGTTAAAAGGCGTCTGACCCTCCTGGTTTATAAGCCTGAAATAGGCTCTCCTCTGGG AGAGGAGTTTCAGGGAAAATGGAGAATCCATATAGGACCGTTTGTGCTGGTTTATACCTTTGACAGCGCC AGCAATATTCTTACTCTCCTGGTTTTTGAACACTATACCAGGGCGTATGATATGAATACGGCTTATACCT GA >gi|21226102:3102338-3102529
ATGAGTGAAGCTACTACAATTCCAGTGACAAAAGATATAAGAGACAGATTAAAAAAATATGGTATGAAAG GAGAAACCTATAACGATATTCTCAAGCGCCTGATGGATGAGGTTGATTATGAGACATTTATGGAACGCCA GTACAAAAAGCTTGAAGAGAAAGATAAATTTGTGAGCCTGGATGAACTTTAA >gi | 21226102 : 3102529-3102807
ATGAGTTTCGATGTAAAACTTCACCCTGATGCAGTGAAATTTCTGGTAAGCTTAAATCCAGAGACAAAAG AAAGACTAAAATCAGGAATTAAAAATCTGGAAATGGACCCTTTTAAAAGCAGACCCCATGCTGACATCAA AAAATTGAAAGGAACGAAAAAAAGAAATGACCTGTACCGTTTAAGAATTGGCGATTATAGAATGATCTAT TCAGTGGAAGAAAATACAATTTTCATTCTTGAAATTATTCCACGAGAAAGAGGATATGATTGGCTTTGA
>gi I 21226102 :c3205646-3205365
GTGATTTACATGGTTCAAGTTGATATAAGCGATGATACAAACCAGATTCTGGGTATTGTAAAAACTAAAT TTAACCTGAAGGATGAAAGCGCAGCTATTGATTTTATAGTTGCTCAATGCGAAATAGATATGCTAGAACC CGAATTAAAACCTGAATTTATAGAGGAAATGCAAAATATAATTGCAGGAAAACATATAGGGCCCTTTAAA ACTGTTGATGATTTAAAAGCATACATAGAAAGTTTGCCTGATGAGGAAGAGGATGAATTGTGTATGAAAT AA
>gi I 21226102 :c3205377-3205117
GTGTATGAAATAATAATCAGTGAAAAACTTTCAAAAAAACTAATAAAATTAAGGAAAAAGAATATTTTAC AATTTAATGCTATTTTTAAAAAAGCAGAAGAAATCCAGATTGACCCACAGAGGTATAAAAACCTAAGATA TCCATTAAACAATCTTAAGCGTGTACATATTGATTCTCATTTCGTGCTACTTTACTCTGTTGATGAAGAA ACAAAAACAATAATATTAGAAGATTTCATCCATCACGACTTCGCTTACTAA
>gi 114589963 :c370907-370704 ATGAGGATGGAAAAAGTGGGGGATGTTTTGAAGGAGTTAGAGAGGCTTAAGGTTGAGATTCAGCGCTTAG AGGCCATGCTCATGCCGGAGGAGAGGGATGAAGACATTACTGAGGAGGAGATTGCAGAATTACTTGAGTT GGCTAGGGATGAGGACCCTGAGAACTGGATTGATGCTGAGGAACTCCCCGAACCCGAAGATTGA
>gi|l4589963:c370694-370422 ATGACATACCGAGTTAAAATCCACAAGCAAGTGGTGAAGGCTCTCCAAAGTTTGCCTAAGGCCCACTATC GAAGATTCTTAGAGTTTAGAGACATCCTGGAGTATGAGCCTGTTCCAAGGGAGAAGTTTGATGTGATTAA ATTGGAAGGGACTGGGGACTTAGACCTTTACCGTGCCCGTTTGGGTGATTATAGGGTGATTTATTCAGTA AATTGGAAGGATAAAGTCATAAAAATCCTAAAACTTAAGCCCAGGGGAAGAGCTTACAAGTAG >gi | 15607142 :cl389242-1388973
ATGGCTGTTGTCCCACTGGGCGAAGTCCGCAATCGCCTCTCTGAGTACGTCGCCGAAGTTGAGCTGACAC ACGAGCGCATCACGATAACCCGGCACGGTCATCCGGCGGCGGTATTGATCTCGGCCGATGACCTGGCGTC CATCGAGGAAACGCTGGAGGTGCTACGCACCCCTGGCGCCAGCGAGGCCATTCGTGAAGGCCTCGCCGAT GTTGCCGCAGGGCGCTTCGTGAGCAACGACGAGATCCGCAACCGTTACACCGCGCGGTGA
>gi 115607142 :cl388976-1388683
GTGAGCGACGACCATCCCTACCACGTGGCGATCACCGCGACAGCGGCACGCGACCTGCAACGCTTACCCG AAAAGATCGCCGCCGCATGTGTCGAGTTTGTTTTCGGACCGCTGCTTAACAACCCGCATAGGTTGGGCAA GCCGCTGCGCAATGACCTTGAAGGCCTCCACTCAGCCCGCCGCGGTGATTACCGCGTCGTCTACGCCATC GACGACGGCCACCACCGAGTCGAGATCATCCACATCGCTCGTCGCAGTGCCAGCTACCGAATGAACCCGT GCCGGCCACGTTAA
>gi|l5607142:3177534-3177815
ATGCGGATACTGCCGATTTCGACGATCAAGGGCAAGCTCAATGAGTTCGTCGACGCGGTCTCGTCGACAC AGGACCAGATCACCATCACCAAGAACGGTGCACCCGCAGCCGTTCTGGTCGGCGCCGACGAGTGGGAATC GTTGCAGGAGACGCTGTACTGGCTGGCGCAACCCGGAATCAGGGAGTCGATCGCTGAAGCCGACGCCGAC ATTGCCTCCGGCCGCACCTACGGCGAAGACGAGATCCGCGCCGAATTCGGCGTCCCGCGACGCCCCCACT GA
>gi | 15607142 :3177819-3178082
GTGCCTTACACCGTGCGGTTCACCACAACCGCGCGTCGAGACCTCCACAAGCTGCCACCGCGCATCCTCG CGGCAGTGGTCGAATTCGCGTTCGGCGATCTGTCGCGCGAGCCCCTGCGGGTGGGCAAGCCCCTTCGGCG CGAGTTGGCCGGCACGTTCAGCGCGCGTCGCGGAACGTACCGCCTGCTGTACCGGATTGACGACGAGCAC ACAACGGTAGTGATCCTGCGCGTCGATCACCGCGCGGACATCTACCGCCGATAG
>gi 115607142:3770769-3771044
ATGAGCATCAGTGCGAGCGAGGCGAGGCAGCGCCTGTTTCCACTCATCGAACAGGTCAATACCGATCACC AGCCGGTGCGGATCACCTCCCGGGCCGGCGATGCGGTGCTGATGTCCGCCGACGACTACGACGCGTGGCA GGAAACGGTCTATCTGCTGCGCTCACCGGAGAACGCCAGGCGGTTGATGGAAGCGGTTGCCCGGGATAAG GCTGGGCACTCGGCTTTCACCAAGTCTGTAGATGAGCTGCGGGAGATGGCCGGCGGCGAGGAGTGA
>gi 115607142 :3771041-3771298 GTGAGAAGCGTCAACTTCGATCCCGATGCCTGGGAGGACTTCTTGTTCTGGCTGGCCGCTGATCGCAAAA CGGCCCGTCGGATCACCCGGTTGATCGGAGAAATTCAGCGTGATCCGTTCAGCGGGATCGGCAAACCCGA GCCGCTCCAAGGTGAGTTGTCGGGATACTGGTCGCGCCGGATCGACGACGAACACCGGCTGGTGTATCGA GCGGGCGACGACGAAGTCACGATGCTGAAGGCCCGATACCACTACTGA >gi|l5839372:3762996-3763271
ATGAGCATCAGTGCGAGCGAGGCGAGGCAGCGCCTGTTTCCACTCATCGAACAGGTCAATACCGATCACC AGCCGGTGCGGATCACCTCCCGGGCCGGCGATGCGGTGCTGATGTCCGCCGACGACTACGACGCGTGGCA GGAAACGGTCTATCTGCTGCGCTCACCGGAGAACGCCAGGCGGTTGATGGAAGCGGTTGCCCGGGATAAG GCTGGGCACTCGGCTTTCACCAAGTCTGTAGATGAGCTGCGGGAGATGGCCGGCGGCGAGGAGTGA
>gi 115839372 :3763268-3763525
GTGAGAAGCGTCAACTTCGATCCCGATGCCTGGGAGGACTTCTTGTTCTGGCTGGCCGCTGATCGCAAAA CGGCCCGTCGGATCACCCGGTTGATCGGAGAAATTCAGCGTGATCCGTTCAGCGGGATCGGCAAACCCGA GCCGCTCCAAGGTGAGTTGTCGGGATACTGGTCGCGCCGGATCGACGACGAACACCGGCTGGTGTATCGA GCGGGCGACGACGAAGTCACGATGCTGAAGGCCCGATACCACTACTGA
>gi I 29826540 :c3998373-3998092
ATGTCGATAACTGCGAGCGAAGCCCGCAAGGCTCTCTTTCCGCTGATCAAGAAGGTCAACGACGATCACG AGGCCATCGAGATCGTCTCCAAGCATGGCAACGCCGTGCTCGTCTCGGCCGAGGACTACGCGGCACTGCG CGAGGGCTCGTACCTGCTGCGCTCCCCTGTGAACGCACGGCGACTGCTCAAGGCGTACGAGAACGCCCTG GGCAACATCAACGTCTCGGAGCGCGAGCTGATCGATCCGGATGCGACGGATCCTGCTGAGGGCGCTGCGT GA
>gi I 29826540 :c3998095-3997841 GTGAGGCTTGTCTTCGAGGATCAGGGCTGGGAGGACTACACGTCCTGGCTCAAGAACGACCGCAAGATGC TCGCTCGGATCAACAGGCTCATCGAGGACGTCAAACGCGATCCCTTCACGGGGATCGGCAAGCCCGAGCC GCTCAAGTACCACTTGCCTGGGGTGTGGTCGAGGCGGATCGATGACGAGCACCGTCTCGTCTACCTAGTC ACCGACAAAGAGGTCGTCATCCTTGCCGCTCGCTACCACTACTGA >SCBAC17D6.02, -gi | 32141095 : 2405942-2406205
ATGTCCATCACCGCCAGCGAAGCCCGTCAGAACCTGTTCCCGCTGATAGAGCAGGTCAACGAGGACCACG CCCCGGTGCACATCACCTCCCGCAAGGGGAACGCCGTGCTCATGTCCGAGGAGGACTTCACGGCGTGGAC GGAGACGGTGCATCTCCTGCGCTCGCCGAGGAACGCCCGCCGTCTGCTCGACTCCATCGCGGAGGCCGAG GCGGGCGACGCGACTGAGCACGACCTGATCGACCCGGACGCGGAGCGGGCGTGA
>SCBAC17D6.03 , gi | 32141095 : 2406202-2406456
GTGAGGATCACTTTCACGTCCCACGGCTGGGAGGACTACGTCCACTGGGCCGAGAGCGACCGGAAGGTGA CCAAGCGGATCAACAGACTGATCGCCGACATCGCCCGTGACCCGTTCAAGGGCGTCGGCAAGCCGGAGCC GCTCAAGGGCGACCTGTCCGGCTACTGGTCACGGCGCATCGACGACACGCACCGTCTTGTGTACAAGCCC ACCGATGACCAGCTGGTCATCGTCCAGGCGCGCTACCACTACTGA
>gi | 17227497 :cl81989-181582
ATGTACTGGATTAAATTTGAAAGTACACAAAGGGAGCTTTTAATACTTATGCTTTCTAACACTTACACTT ACACACAAGCACGAGATCGTTTGTCTGAATTATGCGACAAGGTTACTTCAGAACGTGATTTTGTAGTTAT TACACGTCGGAATGCTGAAAATGTCGCTTTAATACCTGTTGACGAGCTTTCGAGTCTTTTAGAAACTGCT CATCTTTTACGTTCCCCACGTAACGCTGAACGTTTGCTAAGGGCTTTAGATAGAGCTAAATCAGGTGTTG TGGAATCTCAAAGTTTGGATGATATTCGTAAGGAGTTAGGATTTGACCAAAAAGAAGAGTCACAAAAACC AATCAAACGAAGAAGTTCCAGTAACTCCAAAGCAAAGAAAAACAGTGTTTCAACCTGA
>gi | 17227497 :cl81595-181350
GTGTTTCAACCTGAATTTTTAGAAGACTTAGAATTTTGGGTAGAAACTAATCAACGAGTTGCCTTAAAGG CTTTGGATCTTGTCAAAGAGACTTGCCGAGATCCTTTTAAGGGAAAAGGCAAGCCTGAACCTTTAAAATA TTTAGATCCTGATACTTGGTCTCGTCGATTAACGCAAGAACATAGAATTGTATACCTTGTTAAAGACGAT GAAATAAATTTTTTACAAGCCCGCTATCATTATTAA
>gi | 17227497 : C2519996-2519742
ATGATAGATCCTGTTAGCGCTACCGAAGCCCGTGCCAAATTCCAAGAAATTATCAATCGGGTAGAGTACG GAAAAGAGCGCATCTTGATAGAACGCCACGGTAAGCCAGTTGTAGCGGTAATTGGACTGGATGACTTAAA ACGCCTAGAAACTCTAGAAGATGCCATAGACTCGGCTCAGTTGAGAGAAGCTATTGCACAAAACGCAGGT TTCACAACTTTAGAAGCCGTGATTGCTCAACATACTCATGAGTGA
>gi 117227497 : C2519749-2519474
ATGAGTGACCGTTATACATTAAGAATTGCCAGAACCGCCGAAAAAGACCTGTTGGACTTACAACCCAAAC AGTTCAAACAAGTTGTTTCTAAAATTCTCTCTCTCCAAGGAACACCCAGGCCACAAGACTGTAAAGCCCT CAAAGGTTATGAGGGTGGATACCGTGTTGACCAGGGTGAGTATAGAATTCTCTACACCATTGATGACGAA ACCCAATTAGTAGATGTGTTTCGTGTCGGTAAACGCAACGATGATGAAGTGTATCAAAATTTATGA
>gi 117227497 :c5284359-5284045 GTGCGTGGCTTGTATTTGGGCGTGTTAGGATCTCCTACAAAATCTGGTAGAGCCAAGATGAAAGCGATCG AAGTAACTGGCAAAATAGATGCTCAAGGAAATTTAATTTTAGATCAGCCGATTCAGGGAACAACTTACCC TGATCAAGTACGGGTGATTGTGTTAATTCCAGAACAGGAAGAAACAGAAGAGTTTGACCCAGACGATACA CCAGTTGAGGAAATTAAAGCCAGCTTGAGGAGAGCCTTACAGCAAGCAAAGATGGGTCAAACAAGACCAA TTAGTGAGCTATGGGACAGAATTGATGCAGAGTGA
>gi 117227497 :c5284076-5283693
GTGAGCTATGGGACAGAATTGATGCAGAGTGACAACACAGTATCAATTCGTTTCTCCGATGAGTTTGAGG CAGAACTTTACAGACTCTCAAAAAGATTCCGCAAGATTCGCTCTGATGTCCAACCGATTATCGAGCAGTT ACAACAAGGGGATTTTGTAGGCGATAGAATTAGCGGATTTGGGGAAGAATATTTTGTTTACAAGGTGAGA GTTCGCAACAGTAATATCCAAAAAGGTAAAAGTGCTGGATACCGACTGATTTATCAAGTTGATTCACCCA CGAATATTGTGTTGCTAACAATCTATTCTAAATCTGATCGAGAAGATATTGGTGCTAATGAAATTCGAGA TATTCTGGCTGATTTTTATGGTGATTCAGGCTAA
>gi 117227497: 5355913-5356143 ATGATGACTTTACAAGAAATTATTAATTCTATTGAAAGTTTGCCCACAGAAGATCAAGAGTATTTATTTG AGTTTCTTCGCCAGCAAAGAATTGAGAATCGACGAGTTGAAATTTTGGCTAATAGTCAGGAAGTAATGCA GGCTTTGAAAGATGGGACAGCAAAGAGAGGAAGCGTTGATGATTTGATCGCTGATTTACTAGGAGACGAT GATGGAAGTTGTCTGGAGTAG >gi|17227497:5356121-5356405
ATGATGGAAGTTGTCTGGAGTAGTGGATTTAAGCGCTCTTTCAAGAAAATTATCAAGAAAAAACCACAAT TAAAGGATCAGATAGTTAAGGTATTAAGGCTTTTAGCAGACGACCCATTTACAACTTCTTTAAAGTCTCA TAAGTTAACAGGAGATTTAGCTGGTTTGTGGTCTTGTTCTGTTACTTATGATTGTAGAATTATATTTACT TTCTCTGAGGATGAAAATTTGTTAGAAATGGTTATTTTATTGGTTGATATTGGTAGCCACGATGAAGTTT ATTAA
>gi 117227497 :c5457152-5456940
ATGAGGTATATAATGCAACCTACAGAAACTAGACAAGCGTTACTCAAAGCTATTTATGAAGAATTAGAAC AAGCTTATGACGACACTTTAGAAGATGTTTTAGAGTTACTAAAAATTCGTAAAAGTGAAGATGAAGAAGA TATTCAGGATATTTATGCTGCAAAAAATGACACTACTATCTCTTGGGAGCAATATAAGCAAGAGAGTGCA TGA
>gi 11722749 :c5456943-5456680
ATGATTTATCAAATAGAAATTACAACTAGGGCAGCTAAACAATTAAAAAAGCTATCTGAAGATATTAAAC TTAAAATTGAGGAAAAAATTCAAGAGTTATCAAACAATCCTCGCTCTAATGATGTAGTTAAGTTAGAGGG TGAAGAAGATACTTATCGTATTCGTGTAGGTAATTATCGTATCTTATACGAGATTAAAGATGATTTACTA ATAGTTAAAGTTGTTAAAATTAGTCATCGTAGAGATGTTTATCGCCGTAAATAG
>gi 116329170:3347941-3348201 ATGATGAGAGCTTTTGAGGTAATGGCCACAGTTAAAGATTCCAAACAATTGCTCTTGGATAGTGATTTGC ATTGGAATACCAGCCGAGTCAAGGTGATTATTTTGGAATCAGATGAATTGGCATCAAAAGGAAGTGAGTT TGATCCTGATGACACGCCTGTCGAAGAAATTAAGGTGAGTTTGAGGAAGGCATTAGAGGAATATAAACAA GGAAAAAGAATTCCAGTAGAAAATATGTGGGAGGGAATTGATGTCGAATAA >gi | 16329170: 3348191-3348553
ATGTCGAATAATCTCCATTTAGTCAATATCGACTTCACCCCCGAATATAGGAGAAGTTTAAAATATTTAG CCAAGAAATATCGAAATATTCGTTCTGATGTTCAGCCCATTATTGAGGCTTTGCAAAAAGGCGTCATTAG TGGTGATCGCCTGGCAGGGTTTGGCTCTGATATTTACGTCTATAAGCTTAGAATTAAGAATAGTAATATT CAGAAAGGGAAAAGTTCTGGCTACCGATTAATTTATTTACTCGAATCAGAAAACAGTATTTTGTTGTTAA CCATTTACAGTAAAGCTGAACAAGAAGATATTGCCGCTAGTGACATTAATTCAATTTTAGGGGAGTACTC CATAGAAGACTAA
>gi I 29374661: 474678-474944 GTGGCTACTACAAAAAAGAAACCTATACATGTAAATGTTGATGAAAATTTAAAAGAAGAAGCAGAACAAT TATTTGATGATTTAGGGTTAAATATGACAAGTGCAATTACGATTTTCTTAAAACAGTCTATTAATGAGCA AGCAATTCCTTTTATGATTAATAAGGGAAACAAAGAGACTCTACAAGCATTAAAAGACATTAAAGAAGGA AATGTTCATGGTGGATTTTCTTCCGTGGAGGATTTAATGGAGGATTTAAATGCTTGA >gi|29374661:474937-475212
ATGCTTGAAATATTTTACACGAACCAATTCAAAAAAGACTTTAAGAAAGCAAAGAAACAAGGAAAGAATT TAGAGAAGTTAAAAGAAGTATTAGTACTTTTACAAGAACAGCAAACATTGCCGCCAAAGTATAAAGACCA CGCACTAACAGGAAATTATATAGGTACAAGAGAGTGCCATATTGAACCAGATTGGTTACTGATTTATAAA ATTGACGGTGATAAATTGATCCTAACTTTAGCTCGAATAGGCTCACATAGTGAATTATTTCGATGA
>gi | 20806542: 867818-868186
TTGATAAAAGTGGGTGATGCAGTTATGAGCAAAAGAAAGTTTTTTAATCTTAAAGATTTGGCTTCGTATA TGATTTCCGTGAGTGATTTAGGGAGAGGAAAAGCATCAAAAATTATAGAGAAGGTTGCTAAAAAAAAGGA ACATTATATAGTTGTTAAAAATAACAAACCTCAAGCAGTAATTATACCTATCGAAGAATATGATGAACTT ATAGAAGCACAGGAAGACCTTGAACTTTTACAGCTTGCAATCGAAAGGACAAAAAATTTAAAAGAAGGAG AAACTTTGCCTTTTGAGGAGATTCTTAAAGAAGATGGATTGACAAAAGAAGAATTAAAAAAGTACATCGA TATTGTGGAGATTGAATAA
>gi I 20806542: 868188-868451 ATGCCTCTCCCTCAAAGTGAAGGTGGTTATGGAAAACCTTTGGGTAATAAACAAGGAAACAATTTGACAG GCTTTTTTAAGATCAAGTACAAGAATATAGGAATAAGAGTAGTGTATACACTCGTTAGAGATAAAAAACT CATGAATATAGTAGCGGTTTCTCCAAGAGATGATGATTATTGTTACTCAGTAGCAGAGAAGAGAAGAAGA AAATACGGGAATGATTTATTTACCAAAGGATTCGAAAAGTTAGAAAGTGAATAA >gi|20806542:cl974957-1974718
ATGGTGGTGAGAATCATGGATAACTTACTCAAAAATAAAGTAAAAGAAATTATTGAGAACCTTCAAGAAG AAGAACTTGCAGAGGTTATTGATTTTATAGAATATTTAAGGTTTAAAGAAGAAAAAGAAGAAAATGAAAT CCTTAATGATGTAGAATTAATAGAATCGATAAAAAGAGGTCTTAAAGACATAGAAAATGGCGATGTATAC GACTTTGAGGACGTGTTCAAAAATGTATAA
>gi I 20806542 : C1974743-1974465
TTGAGGACGTGTTCAAAAATGTATAAGGTTAAACTTGCAAAAGAAGCTGTTAAGTTTACAGAAAAGTGTA ACAGCAATACAAAAGAGAAAATTAAAGAGGCAATTGAAAAAATTGCCCAATCTCCTTATGTTGGTAAAAA TATCAAAAAACTTAAAGATAAGTTTCCACCTCTGTATAGATATAGGGTTGGAAATATAAGGATTATCTAT CAAATTCAAAAAGGAGAAAAGATCATTTTTATTGTTACTATCGGATATCGTGGAGATGTATATAAATAG
>gi I 20806542 :c2498988-2498713
ATGAGCAATAGCTACATGGTAAAAAAACTTAATGAGGTAATTAAGTCATTAAATGAGCGTGAATTATCTG AGGTAATTGATTTTGCTGAATATCTTAAAGAAAAGAAGAAAAAGGAACTTTTAAAAAGATTCGATGAATG GGAAAAAACACTTGATTTAGAAGAAATTGATATAGATGAAGAAAAAATGTTAGAGCAATTGCATGAGGAT GAGAAAGATTATGTAACACTTGAGGAAACGAAGAGAATACTGGGGATAGAAGACAATGAAGTTTGA
>gi I 20806542 :c2498723-2498463
ATGAAGTTTGAGTACAGAATTATCGTAAATAAGAAAGTATTAAAAGAATTAGAAAAACATGATAGAAAAA CTGTCGAGAGAGTTATTAAAGCTATAGAAAAATTACCGTTTGAAGGTGATGTTAAAAAATTAAAAACTTC TAAAAAAGAAAAATTATACAGACTAAGGGTAGGAGATTATAGGATAATTTTCGAAGTTGATAATGAAAAT TTTGTAATTAAAGTAAAAGATTTCGATTCAAGAGGGGATGTGTACAAATAA
>gi I 21281729 :c2479673-2479407 ATGGCTAGGTTAAATATTACGTTTTCGCCTCAAGCCTTTGAAGATTATAAGTATTTTCAGCAGAACGATA AAAAAATGGTGAAGAAAATTAATGAGTTACTTAAAAGTATTGACAGAAATGGTGCATTGGAAGGTATAGG TAAGCCTGAAAAGTTAAAATCGAATCTGACTGGGTATTATAGTAGACGTATCAATCACGAACATAGATTG GTTTATACAGTAGATGACAATCATATAAAAATAGCATCATGTAAATACCATTATTAA >gi|21281729:c2479673-2479407
ATGGCTAGGTTAAATATTACGTTTTCGCCTCAAGCCTTTGAAGATTATAAGTATTTTCAGCAGAACGATA AAAAAATGGTGAAGAAAATTAATGAGTTACTTAAAAGTATTGACAGAAATGGTGCATTGGAAGGTATAGG TAAGCCTGAAAAGTTAAAATCGAATCTGACTGGGTATTATAGTAGACGTATCAATCACGAACATAGATTG GTTTATACAGTAGATGACAATCATATAAAAATAGCATCATGTAAATACCATTATTAA
>gi I 21281729 : C2536222-2535956
ATGAGCAATTACACGGTTAAGATTAAAAATTCAGCGAAATCAGATTTAAAGAAAATAAAACATTCTTATT TAAAGAAGTCATTTTTAGAAATTGTTGAGACTTTAAAAAATGATCCGTATAAAATAACACAATCTTTTGA AAAATTAGAGCCTAAATATTTAGAGCGATATTCAAGAAGAATTAACCATCAGCACAGGGTCGTCTATACC GTAGATGATCGAAATAAAGAAGTATTAATACTATCGGCATGGTCACATTATGATTAA
>gi | 21281729 : C2536479-2536222
ATGATTATCACTAGCCCTACAGAAGCGAGAAAAGATTTTTATCAATTACTAAAAAATGTTAATAATAATC ACGAACCAATTTATATTAGTGGCAATAATGCCGAAAATAATGCTGTGATTATAGGTTTAGAAGATTGGAA AAGTATACAAGAGACAATATATCTTGAATCTACTGGTACAATGGACAAAGTAAGAGAAAGAGAAAAAGAT AATAGTGGTACAACAAATATAGATGATATTGATTGGGATAATCTTTAA
>gi I 29165615 :c2466267-2466001 ATGGCTAGGTTAAATATTACGTTTTCGCCTCAAGCCTTTGAAGATTATAAGTATTTTCAGCAGAACAATA AAAAAATGGTGAAGAAGATTAATGAGTTACTTAAAAGTATTGACAGAAATGGTGCATTGGAAGGTATAGG TAAGCCTGAAAAGTTAAAATCGAATCTGACTGGGTATTATAGTAGACGTATCAATCACGAACATAGATTG GTTTATACAGTAGATGACAATCATATAAAAATAGCATCATGTAAATACCATTATTAA >gi|29165615:c2466518-2466267
ATGATTATTAAAAATTATTCATACGCTCGACAGAATTTAAAGGCACTTATGACAAAAGTAAATGATGATA GTGATATGGTAACTGTAACATCTACTGATGATAAAAACGTAGTAATCATGTCAGAATCAGATTATAACTC CATGATGGAAACACTTTACCTCCAACAGAACCCAAATAATGCTGAACACTTAGCTCAATCAATTGCAGAT CTAGAACGTGGGAAAACTATAACGAAAGATATAGATGTATAA
>gi I 29165615 : C2522760-2522494
ATGAGCAATTACACGGTTAAGATTAAAAATTCAGCGAAATCAGATTTAAGGAAAATAAAACATTCTTATT TAAAGAAGTCATTTTTAGAAATTGTTGAGACTTTAAAAAATGATCCGTATAAAATAACACAATCTTTTGA AAAATTAGAGCCTAAATATTTAGAGCGATATTCAAGAAGAATTAACCATCAGCACAGGGTCGTCTATACC GTAGATGATCGAAATAAAGAAGTATTAATACTATCGGCATGGTCACATTATGATTAA
>gi I 29165615 :c2523017-2522760
ATGATTATCACTAGCCCTACAGAAGCGAGAAAAGATTTTTATCAATTACTAAAAAATGTTAATAATAATC ACGAACCAATTTATATTAGTGGCAATAATGCCGAAAATAATGCTGTGATTATAGGTTTAGAAGATTGGAA AAGTATACAAGAGACAATATATCTTGAATCTACTGGTACAATGGACAAAGTAAGAGAAAGAGAAAAAGAT AATAGTGGTACAACAAATATAGATGATATTGATTGGGATAATCTTTAA
>gi 115922990 :c2536794-2536528
ATGGCTAGGTTAAATATTACGTTTTCGCCTCAAGCCTTTGAAGATTATAAGTATTTTCAGCAGAACAATA AAAAAATGGTGAAGAAGATTAATGAGTTACTTAAAAGTATTGACAGAAATGGTGCATTGGAAGGTATAGG TAAGCCTGAAAAGTTAAAATCGAATCTGACTGGGTATTATAGTAGACGTATCAATCACGAACATAGATTG GTTTATACAGTAGATGACAATCATATAAAAATAGCATCATGTAAATACCATTATTAA
>gi 115922990 :c2537045-2536794 ATGATTATTAAAAATTATTCATACGCTCGACAGAATTTAAAGGCACTTATGACAAAAGTAAATGATGATA GTGATATGGTAACTGTAACATCTACTGATGATAAAAACGTAGTAATCATGTCAGAATCAGATTATAACTC CATGATGGAAACACTTTACCTCCAACAGAACCCAAATAATGCTGAACACTTAGCTCAATCAATTGCAGAT CTAGAACGTGGGAAAACTATAACGAAAGATATAGATGTATAA >gi|l5922990:c2593463-2593197
ATGAGCAATTACACGGTTAAGATTAAAAATTCAGCGAAATCAGATTTAAGGAAAATAAAACATTCTTATT TAAAGAAGTCATTTTTAGAAATTGTTGAGACTTTAAAAAATGATCCGTATAAAATAACACAATCTTTTGA AAAATTAGAGCCTAAATATTTAGAGCGATATTCAAGAAGAATTAACCATCAGCACAGGGTCGTCTATACC GTAGATGATCGAAATAAAGAAGTATTAATACTATCGGCATGGTCACATTATGATTAA
>gi 115922990 : C2593720-2593463
ATGATTATCACTAGTCCTACAGAAGCGAGAAAAGATTTTTATCAATTACTAAAAAATGTTAATAATAATC ACGAACCAATTTATATTAGTGGCAATAATGCCGAAAATAATGCTGTGATTATAGGTTTAGAAGATTGGAA AAGTATACAAGAGACAATATATCTTGAATCTACTGGTACAATGGACAAAGTAAGAGAAAGAGAAAAAGAT AATAGTGGTACAACAAATATAGATGATATTGATTGGGATAATCTTTAA
>gi I 22536185 :cl986523-1986257
ATGGAGGCTATTGTTTATTCACATTTTAGAAATAATTTAAAAGATTATATGAAGAAGGTCAATGATGAAT TTGAGCCTTTGATTGTAGTTAATAAAAATCCTGATGAAAATATAGTGGTTTTATCTCAAGATAGCTGGGA AAGTTTACAAGAAACGATTCGTTTGATGGAAAATGATTATCTATCACATAAGGTTATTAATGGTATATCA CAAGTTAAAGAGAAGCAAGTCACTAAACATGGTTTAATTGAGGTAGAAGATGTTTAA
>gi I 22536185 :cl986264-1986010 ATGTTTAATTTTACTGAAGAAGCATGGAAAGATTATGTTTCTTGGCAACAGGAAGATAAAAAAATCTTGA AACGAATTAATCGTTTGATAGAAGATATTAAAAGAGACCCATTTGAAGGCATTGGAAAACCAGAACCTTT AAAATACCATTATTCAGGGGCTTGGTCTCGAAGAATTACAGAAGAACATAGGTTGATTTATATGATAGAA GATGGAGAAATCTATTTTTTATCTTTTAGAGATCATTATAAGTAG >gi|22536185:452388-452681
ATGTCAACAGTAGCAGTAAGAGTTGATGATCAATTAAAAGATGATGCTACAGAACTTTTTCAATCCTTAG GGTTGGATATGAGCACAGCAGTAAAAATGTTTTTGATTCAATCTGTTAAAACTCAAAGTATTCCTTTTGA AATAAAAAATAAATCATCTGTTTCTGATGAAGAATTTCAAAATTTGGTAGAAACAAAATTAAAGGGAATA CGAGTTAAGGCTAGTGATCCAGAAAGTGTAAATGCGTTTTTTGGAGATGAAGATTTTTCAGAATATGAGG AATATTTTAAATGA
>gi | 22536185 : 452678-452866
ATGAGTGATATTGAGGTATATTCTGTATTAGTTTCTCGTATTGAATATTCTGATGGTACAGGTTCAAAGG TTCGTCCTGCTGTAGTAGTCAAATTTAATGATGAAGTAATAAAAACTTTAAGATTTACTACTAAATATGA AAATAAGTCTGACAATATAAGAAGTCAGTATTTAGAAGTTATTGATTAG
>gi I 25010075: 501058-501351
ATGTCAACAGTAGCAGTAAGAGTTGATGATCAATTAAAAGATGATGCTACAGAACTTTTTCAATCCTTAG GGTTGGATATGAGTACAGCAGTAAAAATGTTTTTGATTCAATCTGTTAAAACTCAAAGTATTCCTTTTGA AATAAAAAATAAATCATCTGTTTCTGATGAAGAATTTCAAAATTTGGTAGAAACAAAATTAAAAGGAATA CGAGTTAAGGCTAGTGATTCAGAAAGTGTAAATGCGTTTTTTGGAGATGAAGATTTTTCAGAATATGAGG AATATTTTAAATGA >gi|25010075:501348-501686
ATGATTGATATTGAGGTATATTCTGTATTAGTTTCACGTATTGAATATTCTGATGGTACAGGTTCAAAGG TTCGTCCTGCTGTAGTAGTCAAATTTAATGATGAAGTAATAAAAACTTTAAGATTAACTACTAAATATGA AAATAAGTCTGACAATATAAAAAGTCAGTATTTAGAAGTTATTGATTGGGCAAAAGCAAATTTAAAAAGG CGTTCATGGATTGATACAATTCAGTACTATGATTTAGAGGACAAGGGATTCAATATTAAAATTATTGGTA GGTTAAGTGATAGAGATATTGAAAGATTAAAAGATTTTCTCAGAGCAAAGGAAGTTTAG
>gi | 24378532: 849954-850226
ATGGTTGTAAAAAATAAAGCAAATATCAATATCAAAATTGATTTGGAAGATAAAGCAGCAGCGGATGCTA TTTTTGCTCACATGGGTCTAACAACAAGTGCTGCTGTTAATATGTTTATTAAACGTGTCATTGATGATCA AGCTCTGCCATTTACTCCAAGAGTAAAAAATACTTTGGACATTGCTTTAGAGCAGGCTAAAAATGATGAT GTTGAAACTTTTGATAGTTTTGATGATTGGAAATCAGAGATGAGTGCCTATGCTAAAGATTAA
>gi | 24378532: 850213-850491
ATGCTAAAGATTAAGCAAACCAGACAATTTAAGAAATCCTTAAAAAAGGTAGTAAAACAAGGAAAAGATA TTAACAAGCTTTTTGCTATCGTAGAATTATTATGCCAAAAATCAGAACTTCCCTTAGCATTGAGAAATCA TGAGTTGAAGGGAAGGTGGAGAGGCATTAGAGAACTTCATATTGAATCAGACTGGCTGTTAGCCTATCAA GTTTTGGATGACGAACTTGTCTTACTCTTGATTGATACAGGTAGTCACGCACAGATGTTAGGAATGTAA
>gi 115899949 : 255110-255373 ATGTCAAAGATGAGTATAAGCATCCGTCTGGATAGTGAGGTTAAGGAGCAGGCCCAACAGGTGTTTAGTA ATCTGGGAATGGATATGACAACAGCTATTAATATTTTCCTTCGTCAGGCAATTCAATATCAGGGATTACC TTTTGATGTTAGACTAGACGAAAATCGGAAGTTGCTCCAAGCGTTAACGGATTTAGACCAAAATCGTAAT ATGAGCCAGTCTTTTGAATCAGTCTCAGATTTGATGGAGGACTTACGTGCTTAA >gi|l5899949:255366-255644
GTGCTTAAGATTCGTTATCATAAACAGTTTAAAAAAGATTTTAAGTTGGCTATGAAGCGTGGTTTGAAGG CAGAATTATTAGAAGAAGTTTTGAATTTTCTGGTTCAAGAAAAAGAACATCCTGCCAGAAATCGTGATCA TTCATTGACGGCATCCAAGCATTTTCAAGGAGTTCGTGAATGCCATACCCAGCCAGATTGGCTTTTGGTT TATAAAGTAGACAAGTCGGAATTGATTTTAAATTTGCTGAGGACAGGCAGTCACAGTGATTTATTTTAA
>gi 115899949 :cll57268-1156966
TTGACTGAACACCTAAAAAGTAATACAATGGTGTTACCATTAAAAAAGGGAGCACAAAAGATGACTACTA TTACATTAAAAGTTTCTGAAGCTGATAAAACATTTATGAAAGCAATGGCTAAGTTTGAAGGAGTTTCCCT TTCGGAACTTATTCGCACCAAAACTCTTGAAGCCCTAGAAGATGAATACGATGCTCGTGTGGCAGATTTA GCCTATCAAGAGTATTTAGAAGACTTGGAAAAAGGAGTTGAACCCATTACTTGGGAAGAAATGATGCATG ATTTAGGCTTGAAGGATGAATAA
>gi 115899949 :cll56964-1156710
TTGTATAAATTAGTTCCAACAAGACGTTTTATCAAGCAATTGAAAAAATTGGACCGTTATACGCAGAAGC TAATTACAAACTATTTACAAACCAATGTTTTGGAAGACCCAAGACGACACGGAAAGGCTTTGGTTGGTAA TCGCGTTGGTCAATGGCGCTATAGAATTGGTAATTATCGAGTTATCGTACAAATTGTAGATGATGAATTA GTCGTTGCTACTCTAGAAGTTGGTCATCGGAGAGATATTTATTGA
>gi 115899949 :cl645552-1645298 ATGGAAGCAGTCCTTTACTCAACATTCCGAAATCATTTAAAGGACTACATGAAGAAGGTAAATGATGAAT TTGAGCCTTTGACGGTGGTCAATAAAAATCCAGATGAGGACATTGTAGTCCTTTCAAAGAGTGAGTGGGA TAGTATCCAAGAAACCCTGAGAATTGCTCAAAATAAGGAACTTTCTGATAAGGTTTTGCGAGGAATGGCT CAAGTTCGTGCTGGAAGTACTCAGGTCCATGTTATTGAGGAGTAA >gi 115899949 :cl645294-1645040
ATGCTGCTCAAGTTTACAGAAGATGCCTGGGCAGATTATTGCTACTGGCAAAATCAGGATAAGAAAACGT TAAAAAGAATCAATAAACTAATCAAGGATATTCAACGTGATCCCTTTACAGGAATAGGTAAACCAGAACC ACTCAAATATGATTACCAAGGAGCCTGGTCACGGCGTATTGATGCAGAAAATCGCTTGATTTATATGATG GATGGAGATAGCGTGGCTTTCTTGTCCTTTAAAGATCATTACTAA
>gi 115902044: 255567-255830
ATGTCAAAGATGAGTATGAGCATCCGTCTGGATAGTGAGGTTAAGGAGCAGGCCCAACAGGTGTTTAGTA ATCTGGGAATGGATATGACAACAGCTATTAATATTTTCCTTCGTCAGGCAATTCAATATCAGGGATTACC TTTTGATGTTAGACTAGACGAAAATCGGAAGTTGCTCCAAGTGTTAACGGATTTAGACCAAAATCGTAAT ATGAGCCAGTCTTTTGAATCAGTCTCAGATTTGATGGAGGACTTACGTGCTTAA
>gi | 15902044: 255823-256101
GTGCTTAAGATTCGTTATCATAAACAGTTTAAAAAAGATTTTAAGTTGGCTATGAAGCGTGGTTTGAAGG CAGAATTATTAGAAGAAGTTTTGAATTTTCTGGTTCAAGAAAAAGAACATCCTGCCAGATATCGTGATCA TTCATTGACGGCATCCAAGCATTTTCAAGGAGTTCGTGAATGCCATACCCAGCCAGATTGGCTTTTGGTT TATAAAGTAGACAAGTCGGAATTGATTTTAAATTTGCTGAGGACAGGCAGTCACAGTGATTTATTTTAA
>gi 115902044 : cll05420-1105118 TTGACTGAACACCTAAAAAGTAATACAATGGTGTTACCATTAAAAAAGGGAGCACAAAAGATGACTACTA TTACATTAAAAGTTTCTGAAGCTGATAAAACATTTATGAAAGCAATGGCTAAGTTTGAAGGAGTTTCCCT TTCGGAACTTATTCGCACCAAAACTCTTGAAGCCCTAGAAGATGAATACGATGCTCGTGTGGCAGATTTA GCCTATCAAGAGTATTTAGAAGACTTGGAAAAAGGAGTTGAACCCATTACTTGGGAAGAAATGATGCATG ATTTAGGCTTGAAGGATGAATAA
>gi 115902044 :cll05125-1104862
ATGAATAATTTGTATAAATTAGTTCCAACAAGACGTTTCATCAAGCAATTGAAAAAATTGGACCGTTATA CGCAGAAGCTAATTACAAACTATTTACAAACCAATGTTTTGGAAGACCCAAGACGACACGGAAAGGCTTT GGTTGGTAATCGCGTTGGTCAATGGCGCTATAGAATTGGTAATTATCGAGTTATCGTACAAATTGTAGAT GATGAATTAGTCGTTGCTACTCTAGAAGTTGGTCATCGGAGAGATATTTATTGA
>gi 115902044 :cl567001-1566708
GTGTATAATAGTGGAAAAGAGCTAAAACGAGGTATGGTTATGGAAGCAGTCCTTTACTCAACATTCCGAA ATCATTTAAAGGACTACATGAAGAAGGTAAATGATGAATTTGAGCCTTTGACGGTGGTCAATAAAAATCC AGATGAGGACATTGTAGTTCTTTCAAAGAGCGAATGGGACAGTATTCAGGAAACCCTGAGAATCGCCCAA AATAAGGAGTTATCAGACAAGGTTTTACGAGGAATGGCTCAAGTCCGTGCTGGAAGCACTCAGGTCCATG TGATTGAGGAGTGA
>gi 115902044 :cl566704-1566450 ATGCTACTCAAGTTTACAGAAGATGCCTGGGCAGATTATTGCTACTGGCAAAACCAAGATAAAAAAACAC TAAAAAGAATCAATAAATTAATCAAGGATATTCAACGCGATCCATTTACAGGAATAGGAAAACCAGAGCC ACTCAAATATGATTACCAAGGAGCCTGGTCACGGCGTATTGATGCAGAAAATCGCTTGATTTATATGATG GATGGAGATAGCGTGGCTTTCTTGTCCTTTAAAGATCATTACTAA >gi 119703352: 837138-837356
ATGGGAACAACAGCAACATTAAGATTAGATGAAACAGAAAAAGCAATTATACAAGATTATGCAAGTAGTA AAGGAATGACTATGTCTGAATTTGTGAAAAGAGTAGTTCTTGATTATATTGAAGATGAATATGATTTAAA AATTTATAAAGAATATTTAAAAGAAAAAGAAAATGGAACTTTAAAGACTTATTCACATAAAGAAGTTTGG GGAGAATAA
>gi 119703352: 837364-837630
ATGAAATATGATGTGGAATATTCTAAAACTGCTATGAATACCATAAAGAAAATGGATAGTTCAACTTCAA AGTTAATAAGAACTTGGATAGAAAAAAATTTAATAAATACAGAAAATCCTAGAATAAAAGGAAAAGCATT AACTGGTGATTTAAAAGGATTATGGCGTTATAGAATAGGAGATTATAGAATATTAGCTGAAATTCAAGAT GATAAAATAGTTATCTTAATCTTAGATATAGGACATAGAAGTAAAATATATTTATAA
>gi 119703352 : 1141050-1141271
ATGTCAGCATTATCAATAAGATTAAATGATGATGAAAAAAAAATAATAAATGCCTATGCAAAATTTTATA ATAAGACTATAACTCAGGTAGTAAAAGAAGCAATTTTAGAAAAAATAGAAAATGAATTTGACTTAAATGA ACTAAATAAAGCCATTGAAGAATATGAAAAAAATCCTGTATCATATTCAAGTGATGAAGTTTGGAAAATG TTAGGAATTTAA
>gi 119703352 : 1141273-1141545
ATGAAAAAATATGAAGTTAAATTTTCAGAAGCTGCCATAAAAGAATTAAAAAAATTGGATAAACCAACTG CTACAATGATAAAATTATGGGTAATTCAAAATCTTGAAAACACCATTAATCCAAGACAACATGGAAAATC TTTAACAGCTAATTATAGTGGTAAATGGAGATATAGGGTTGGAAATTATAGATTACTAGCTGAAATTTAT GATGATGAGATACTTATTTTAATTTTTAAAGTTGCACATAGGAGTATTGTGTATAAAAAATAA
>gi 119703352: 1744105-1744332 ATGTCAGTTGTTTCAATTAGATTTAATGATGATGAGGAAGAAATACTTAAAAATTATGTAAAAAGTAAAG GGTTAAATCTATCTCAATATATTAAAAATATTATATTTGAAAAGATAGAGGAAGAATATGATTTAAAAAG TGTTCAAGAATACTTGAAAGCAAAATCTGAGGGGACATTAAACTTAATTCCATTTGAGGAGGCAATAAAA GAATGGGATATAGAGTAA >gi 119703352:1744317-1744583
ATGGGATATAGAGTAATGATTCCAGATAAAGTTAATAAAAAGATTTTGAAATTTGATAGAAATACACGAA AATTATTGTATGACTATATAAATAAGAATTTAAAGGATACTGATGATCCAAGACTTCATGGAAAAGCTTT AACTGGAAATTTAAAAGGCTTATGGAGATATAGAATAATGGATTATCGCCTAATTGTCGATATTCAAGAT GAACAATTAATAATTGTTGCAGTAGACTTTAATCATAGAAGAAAAATTTATTTGTAG
>gi I 32470666: 2080812-2081081
ATGAGGCGCGAAAGCGATCGGCGACCAGATTGCTCAGACGATGGTGCCAGCTTCCATCGCCGAACAAGCT TTCCAAAAAAAGTTCTCCCAGTGCCCAAGGCTTTCCTGATCGGGAAAACCCTTGCAAAACACGCAAATAG TGCGCAAAACGGCGTTTCCTTCAAATTGCCTCTTGCGACAATTGCAATTCTTTTACGGGAATTCCCTTAT TGGGGCATACACAAATGGAGCGAAACCGCTAACATGGGGGGACAAAGGAGACTCCAATGA
>gi | 32470666: 2081109-2081573
TTGCGGCTCGCGACACCATTGACAGTCTGCCCGATGGCGCAAGCTGGGATGAGGTCCTCTACCGCTTGTA CATTCGCCAAAAGATCGAATCCGGTCTGGCCACCGCAGAATCATCTCGGTTGGTCGGCACTGACACCGTA CGCGAACAATGGAACCAGGCTCGCAATGCAAGTTAGTTGGACCGAATACGCCGTATCGGATCTGTTGGCG ATTCGAGACTACATCGGACGAGACAGCGACAAGTTCGCGGATTTGATCTTCGAACGTATCGTTGAGCAAA CCGAACGTCTTCTCGAATACCCTGACGCCGGCTCGATCGTTCCCGAGTTTGGCCGGGAAGATGTGTCCGA GATTCAGGTCAATTCATACCGTGTCGTTCATCAAATCTTTGATGACGAAGTGCGGGTGTTGACGGTCTCA CATGCGACGGCCCCTTCCGCAGTCCTGGTCGGCGACGGTCCCTGA
>gi | 16124256 :c891231-890968
ATGGCCGATGGCTTCGACATTCATATCGATCAAGAGCAGGCCGCCCGGCTGAAGGTCGTTGCCGACCGCC TGGGTATGTCCGTGTCCGAGTACGCCGTTGCGCTGATCGACGCAGGGCTGACAGGCGCGGCGCCTAAAGC GATCGATCCGGACCCCGCCATCGACGAGGCCATCGCCGACGCCATCGAGCGGGGCGACGAGCCGGCGATT TCACGCGATGAGTTCCGCGCTCATATACGTCGCGTGACTGCGGGCCTGGGTTGA
>gi | 16124256 :c890971-890690
TTGACCTTCACGGTTTTGGTATCCGTTCGGGCCAAGAGAGACTTCAACCGTCTCATCGTCTGGCTTGTGG AGCGCGACCCCCGAGCAGCGGCTAGACTGGGCCCACTTCTGGAGGCCGCCCTCGACAGTTTGACCGAGGC GCCATCGCGAGGTCGCTCGGTTGGTCCCACCACCCGCGAGATCAGCATTCCTTTTGGTCAGAGCGCCTAT GTGATCCGCTACCGGCTCCTCGGCTCCAGCGTACATGTCACCCGGATCTGGCACGGCCTTGAGCAAAGGT AG >gi 116124256 :c2719444-2719244
ATGGCGATATGCTATGCTCGCTTCATGGTCCCCGAGCCGTCCATCTTCGAGATTGACGCGGAAGCCGAAG AGGCCGCCGATGCGGAAGGCATGGCCGACATCGCAGCCGGCCGCGTTGTACCCCACGAAGAGGTCTCCGC CTGGCTCGACACTTGGGGGACGCCCGAAGAAAAGCCCGCGCCCGAGACGTGGCGCAAGTAG >gi|l6124256:c2719256-2718990
GTGGCGCAAGTAGTCTGGACTTGGCGTGCGCTGGCCGATCTGACGGCTATCCGCGACTATATTGGCCAAT TCAGCCCGCTCGCGGCCCAGCGCATGGCTTTACGGCTCAAGACCGCTGCTGACAGCCTAGCGGAGTATCC CGAGCGCGGCCGCCTAGCAACAGCGACGCTCCGGGAGTTGGTCGTCGTTCCACCCTATGTGATCCGCTAT TATGTGGCTGACGGTCTGGTGCATATCGTCCGCATCCGGCACGCCGCCCGGTTGTGA
>gi 116124256: 3102768-3103121
ATGAGCGGGGTCATAGCGCCTGACCGCGTTGACGACAAACGACGGATGGAACATAGTCAGAACATGGCTC TGACGATCACAATCCCCGCCGAGCTTGCGTCGCGCTTGAGGGCCTCCGCAGAGGCCGAAGGCAAGGATGT CGACGCTTACGCGATCGACGCCCTCCACGTGATGTCCGACGAGGATTGGGGCTATACCGACGACGACGCC TATTGGCGTGAACTGCGCGCCCATTCCGACGAGGTCCGCCGAGATGGCGGTATCCCGCTTGAAGACGTCA AGCGTTGGGTCGCCTCTTGGGACACCGAAAACGAGCTGCCGCCGCCCGAGCCGAGGATCAAGGCCAGGGG ATGA
>gi 116124256 : 3103118-3103396 ATGAAATCCGTCGAGCTCGGCCCACGCGCCAGACGTGACTTGACCAAGTTGCGGCGCTGGCTGCTGAACC GAGCGCCCTCGGCGGCCGACCGGGCCATCGACCTTATCCTGAGCAGAGCCGAGCAGCTTGCCCAGCATTC CGACCTCGGCCGTCGAAAATCTCAGAACATGCGAGAACTTTACGTCTCCTTCGGCGCCCACGGTTATGTC CTGCAGTATCGCGTTTACCCCGACGCGGTCGTGATCGCCCGTATCCGACACAGCCTTGAACGTCGCTGA >gi|l5887359:c670536-670309
ATGAGCAAACAGACGGCCATTCGCCTGCCGGACGAGACCTATGAGCGGCTGAAGGCGCTGTCTGAGCGGA CCGGCCGCACATCCGCCTATTATATCCGCGAGGCGATCGAGAAGCATATCGAGGATATGGAAGACCTCTA TCTTGCCGAAGAGGCGACGCGGCGCATTCAGCGCGGAGAATCGAAGATTATAAGCGCCGAGGAGTTCTGG CGTGATCTGGACAATTGA
>gi 115887359 : C670325-670056
GTGATCTGGACAATTGAATATCACACGCTTGTGCAGAAAGAGATGCGCAAAATAAATCCGGAAGTGCGCC GGCGCATCCGCAGTTTTCTCCATGAAAGGCTGGCCGCACTGGACGACCCGCGCCAGATCGGCGCTACACT GCAAGGTTCCGAACTCGGAAATTTCTGGCGTTACCGGGTGGGCGATTACCGCATCATCTGCGATATACAG GACCAAAAGCTGGTCGTTCTGGTGGTCGAAATCGGCCATCGCCGTGAAATTTACCGTTAG
>gi 115887359 :c809955-809674
ATGGCCAATGTGGAGAAGATCAGCGTTTCGATGACGCCGCAGCACGCCGAAATATTGCGGGATGCCGTGG AAAGCGGCGCTTACGCCAGCAGCAGCGAAGTCATCCGCGAAGCAATGCGGGACTGGTCGGCAAAATGGGT TCAGCGACGCAACGACATCACCAAGCTGCGCGCATTATGGAGTGAGGGCAAAGCCAGTGGCAATTCAACC GAAGTGGATTTTGACGAAACGCTCAATGAAGCGCGGGCGGAACTTGCTTCGTTGAAGAATCGTGACCACT AA
>gi 115887359 :c809684-809373 GTGACCACTAAGCTTGTCTGGACGCCCCGCGCACGCAGCGACGTGAAGAAAATCTATGTCGATATCGGCA AGTCACAGCCTTTGGCTGCGGAGCGGTATTTTGCCCGTTTCCGCGCCAAAGCGGAGAGCCTGATCGACCA TCCCCATCTTGGCGAACGCCATCCGGAAATTTTTCCGTCTGCCCGCATGCTCGTCGAAGCACCTTACGTC ATTCTCTACGAAACCGTGCCGGATACGGATGACGACGAAATACGTTGCGTGGAAATCGTTCGTGTGAACG ACGGTCGCCGGGACCTGCGGACACTGTTCTGA >gi | 15887359 :c831117-830710
GTGATTTGGTGTTCGGCAGACGTTAAGCCCGTTTATCTGCCTCAAGGCCCGCGATTGCAAGGTTTTGCAT TTGACTTATCACTGCCGATGACCGATCTTATGCATCGCAATTGCAACGCAGGAAGACGATCCATGAAAAC GGCAACAATTCCTTCGCTGCGGGTGACAGCGGATTTTCGCGAGGCAGCCGAAAGCGTGCTGAAGGACGGC GAGACGCTTTCGGCATTTATGGAAGAAGCCGTGCGCAAGCAGGTGGAAATCCGCAAATCTCAGGCGGAGT TCATCAAGCAGGGGCTTGCAGCGCGCGAAGAATCCAAGCGAACGGGCGTCTATCACAAAGCCGAGGACGT TCTTGCAGAGCTGAAAGCTATGCTTGACGAAAAGCTTGCTGAAGACAACGACAAGTGA >gi|15887359:c830713-830414
GTGACATTTCAGGTTTTTCTTGCCGACAGAGCGCGCGACAATATAACACGCCTCTATGCACATCTCCTTC GCCAGGACAAATATGCGGCGAAGCGAGCCTACAGGGCCATCGAAAAAGGAATTGCCGCACTTGCGGATTT TCCGCTGAGCTGCCGGAAAGTAGATGCAGAAAATCCCTTTCTGAGGGAGTTTCTTATTCCATTTGGCTCG TCAGGCTATGTCGTTCTTTTTGAGATAGAAAGTGCCGAGAAAGTAACAATCCTCGCGATCCGCCACCAGC GCGAGGATGATTACCATTGA
>gi 115887359 -.C924545-924270
ATGACCGCAAATGCTTATGTAAGAGCGCGCATCGATCAGACACTCAAGGACGACGCGACGGCCGTGCTGG ACCGCCTGGGACTGACTGTTTCAGATGTCATGCGAATGATGCTGACGCGCATTGCCCGAGAAAAAGCTCT GCCGATAGAACTGACACAACCAAACGCTGAAACCCTTGCCGCGATTGAAGAAGCGCGCGCCATCGCGGCG GCCGGGCGCAATCGTTTCGGCACGTCTGAAGCCTTGTTTGAGGCGCTGGACGCTGGCAAACGGTGA
>gi 115887359 : C924273-923938
GTGACGAATAAGAAAGATCACGGAAAAGACGCGGCATTGAAGCGAGCCACCCTGCCGCGCAGGTCGGATT TCACCAAGCAATTTATCAAAGACTGGCAACGGCTGAACAATTCCGGGCGTTACGACATGGTGAGACTGAA GGAGATCATGCTCCTTCTTATCGCCAACGGCGCGCCGTTACCGACGCAGTTTCGTGACCATGAACTGACC GGAGACTGGCGCGATCACCGGGAATGCCATGTCGGCGGGGATTTTCTGTTGATCTACACAGTCGATGAGA AGCAGAACCTTCTCATCTTCACCCGCGCGGGAACGCACGCCGAGCTTTTCAGGTAA
>gi ] 15887359 :cl769363-1768995
TTGAAAGGCCTTAGCAAGGCACTAGATTCTTTCTTACATTCCCACGTCAGGATGAAATGCCACAAGCTTG ACGAACCAATATGGTTCACAAATAATCATAGTGAACCAGGAAAGGTTGCGATCATGACTGCATTTACGGT GCGCTTGCCTGATGAGGTCGCCGAAAAGCTGGATCAGTTGGCGGAAAAGCTTGATCGCTCGCGGTCTTAT ATGGCGGTGCAAGCGATTGAGGACTTTGTTGCCCGCGAGGAGTGGCAGCTTGCCGAAATCGAGGCCGGTT TGGCTGAAGCGGATCGCGGCGAGTTCGGAACGCCGGAAGATCTCGCAAACATTGTCGGAAGATATGTAAA AACCGCCCGGCCATTATGA
>gi 115887359 :cl768998-1768708 ATGAGTGACCGGAGAATTCGGTGGACCTTGCGGGCGCTACGCCGGCTCGATGAAATTGGTGCGCATATCG AACAGGATAACCCGGCTGCTGCGGCCAGAGTGATTTCCCGCATTGTTTCGGCAGCCGATATGTTGGTGGA GCAGCCAGCCATCGGACGAGTCGGGCGTATCAAGGGAACACGGGAAGCCGTGCTTTCCGACATTTCCTAT ATCATCGCCTATCGCGTCGGCCGGGATATCGAAATCCTGACGATCATCCATACCTCGCGGCGTTGGCCTT CGGCGCTCTGA
>gi] 15887359 :cl979782-1979396
TTGCTTGGTGGAAGACATGGAGGCCGGGGCGAAAGCTCCGGCCTTTCTTGTTATCGGTCGCACCGATGTA TCTTGACTTTCGGCGTTTGGAGCGTACATAAATCTGTACATATTTGCGGAAGGGCAATTCTCATGGCGAA TGTGCGATTTACCGAGTTCAGGCAGAACTTCGCGACCCATTTCGACCGGGTTCTGGAAACCCGCGCGCCA TTGCTCGTCACGCGGCAAGGCAAAGAGGCGGTCGTGGTGCTTGCCGAAGGAGAATATGAGAGCATGCAGG AAACGCTGCATCTCCTGTCCAACCCGGCAAATGCCTCAAGGCTTCGCGCGTCCATGGGCGAACTTGAGCG CGGTGACACCATCGAGCGGGATCCGACCGAAGAATGA
>gi 115887359 :cl979399-1979130 ATGAAGCTCGTCTGGACGCTGAGTTCATGGGACGACTATGAGTTCTGGCAAAGAACCGATGCTCGCATGG TCGAGAAAATAAACGATCTTATCCGAAATGCCAAACGCACGCCCTTTGCAGGGCTTGGGAAACCGGAGCC TCTGAAGGGCGATATGGCAGGATATTGGTCTCGGCGGATTACCGCCGAGCATCGGTTTGTCTACCGTGTA TCCGGGTCCGGAAGCGAGCAACGGCTGGAAGTCATTCAGTGCCGCTTCCATTACCAATAA >gi|l5890089:c469830-469594
ATGAAAAGCACGATTGAACTTTCCGACGATATTAAACGCCGGCTGGATATCTTGGCTGAGCGCTCGAATT CGACACCAAGCCGCATCATAGAAGATGCGCTTTCACATGGACGTTCTCTGGCCTGGCAAGAGAAATGGAC GAGCGGCGTGAGGGCGGGCTTGGCAGAGGCCGATGCAGGGGAGTTTGTCACTGAAGAAGAGATTAACGAC GTTTTGAATAAATATGCCAAGGCCTGA
>gi ) 15890089 :c469588-469301
GTGCGGTTGATTTGGACGCGCCGTTATCTCCGGGAGCTTGACGCCATAGGCGTCTATATTGCCGAACGCA ATCCGCGCGCGGCGGCAAAAGTCGTTAGAGCAATTCACCAGACCACGGCACGTCTTTTATCCGATAATCC TCATCTAGGGCGCAGCGGAGAAATCGAAGGGACCAGAGAGTTGGTTGTTCCCGGGCTTCCATACATCGTC GCGTACCGCGTTACGGAAGAACAGGTCGACATTGTGTTCGTGCAACACGCCGCCCGCGAATGGCCTGACG ACGCTTAA
>gl 117933925 : C670735-670508 ATGAGCAAACAGACGGCCATTCGCCTGCCGGACGAGACCTATGAGCGGCTGAAGGCGCTGTCTGAGCGGA CCGGCCGCACATCCGCCTATTATATCCGCGAGGCGATCGAGAAGCATATCGAGGATATGGAAGACCTCTA TCTTGCCGAAGAGGCGACGCGGCGCATTCAGCGCGGAGAATCGAAGATTATAAGCGCCGAGGAGTTCTGG CGTGATCTGGACAATTGA
>gi 117933925 :c670524-670255
GTGATCTGGACAATTGAATATCACACGCTTGTGCAGAAAGAGATGCGCAAAATAAATCCGGAAGTGCGCC GGCGCATCCGCAGTTTTCTCCATGAAAGGCTGGCCGCACTGGACGACCCGCGCCAGATCGGCGCTACACT GCAAGGTTCCGAACTCGGAAATTTCTGGCGTTACCGGGTGGGCGATTACCGCATCATCTGCGATATACAG GACCAAAAGCTGGTCGTTCTGGTGGTCGAAATCGGCCATCGCCGTGAAATTTACCGTTAG
>gi | 17933925 : C924654-924379
ATGACCGCAAATGCTTATGTAAGAGCGCGCATCGATCAGACACTCAAGGACGACGCGACGGCCGTGCTGG ACCGCCTGGGACTGACTGTTTCAGATGTCATGCGAATGATGCTGACGCGCATTGCCCGAGAAAAAGCTCT GCCGATAGAACTGACACAACCAAACGCTGAAACCCTTGCCGCGATTGAAGAAGCGCGCGCCATCGCGGCG GCCGGGCGCAATCGTTTCGGCACGTCTGAAGCCTTGTTTGAGGCGCTGGACGCTGGCAAACGGTGA
>gi | 17933925 :c924346-924047
TTGAAGCGAGCCACCCTGCCGCGCAGGTCGGATTTCACCAAGCAATTTATCAAAGACTGGCAACGGCTGA ACAATTCCGGGCGTTACGACATGGTGAGACTGAAGGAGATCATGCTCCTTCTTATCGCCAACGGCGCGCC GTTACCGACGCAGTTTCGTGACCATGAACTGACCGGAGACTGGCGCGATCACCGGGAATGCCATGTCGGC GGGGATTTTCTGTTGATCTACACAGTCGATGAGAAGCAGAACCTTCTCATCTTCACCCGCGCGGGAACGC ACGCCGAGCTTTTCAGGTAA >gi|l7933925:cl071194-1070925
ATGCCCGAAATCCATTTGAGCGAGCAGGACGAGAAGTTCATCGAGGAGCAGGTTGCGGCAGGCATCTATA GCGATGCAGATGCCGTTATTCATGCGAGCTTGCAATTGCTGAGCAGTGACGAAGGCAAAAGAGCCGCGCT GAAGTTGCTGATACAGGAAGGCATTGACGACGCTGAGGCTGGACGGGTTCACCGCTATGCCTCACAAAAC GACTTTCTGAGCGATATCAAACGCGTTTCCGCCCAGCAAAAAACGGGGACCGATCATTAA
>gi 117933925 :cl070929-1070618
ATTAAAATTCGGACCCCTATCTGGACCACGAGGGCAAGGCGCGATCTTGCCGAAGACCATGCTTACATTG AGACCGAAAATCCCGTTGCTGCGGATCGCCTCGTTCTCGATATCTACAACAAAATCGAATCGATAGCGGC AATTGGTTTGACCGGCGTCTCAAGACATGGATACGGCACGGGGCTTCGCAGCATTGCGTATCGAGATCGT GTGATTTTCTTTCGTGTCAACAATGGCGAACTAACCGTAATGCGCGTGCTGCACGGCCATCAAGACATTT CCGCCGACGATTTTAAACAAGAAGAAAACTGA
>gi 117933925 :cl769354-1769109
ATGACTGCATTTACGGTGCGCTTGCCTGATGAGGTCGCCGAAAAGCTGGATCAGTTGGCGGAAAAGCTTG ATCGCTCGCGGTCTTATATGGCGGTGCAAGCGATTGAGGACTTTGTTGCCCGCGAGGAGTGGCAGCTTGC CGAAATCGAGGCCGGTTTGGCTGAAGCGGATCGCGGCGAGTTCGGAACGCCGGAAGATCTCGCAAACATT GTCGGAAGATATGTAAAAACCGCCCGGCCATTATGA
>gi I 17933925 :cl769112-1768822 ATGAGTGACCGGAGAATTCGGTGGACCTTGCGGGCGCTACGCCGGCTCGATGAAATTGGTGCGCATATCG AACAGGATAACCCGGCTGCTGCGGCCAGAGTGATTTCCCGCATTGTTTCGGCAGCCGATATGTTGGTGGA GCAGCCAGCCATCGGACGAGTCGGGCGTATCAAGGGAACACGGGAAGCCGTGCTTTCCGACATTTCCTAT ATCATCGCCTATCGCGTCGGCCGGGATATCGAAATCCTGACGATCATCCATACCTCGCGGCGTTGGCCTT CGGCGCTCTGA
>gi 117933925 :cl979763-1979509
ATGGCGAATGTGCGATTTACCGAGTTCAGGCAGAACTTCGCGACCCATTTCGACCGGGTTCTGGAAACCC GCGCGCCATTGCTCGTCACGCGGCAAGGCAAAGAGGCGGTCGTGGTGCTTGCCGAAGGAGAATATGAGAG CATGCAGGAAACGCTGCATCTCCTGTCCAACCCGGCAAATGCCTCAAGGCTTCGCGCGTCCATGGGCGAA CTTGAGCGCGGTGACACCATCGAGCGGGATCCGACCGAAGAATGA
>gi 117933925 :cl979512-1979243
ATGAAGCTCGTCTGGACGCTGAGTTCATGGGACGACTATGAGTTCTGGCAAAGAACCGATGCTCGCATGG TCGAGAAAATAAACGATCTTATCCGAAATGCCAAACGCACGCCCTTTGCAGGGCTTGGGAAACCGGAGCC TCTGAAGGGCGATATGGCAGGATATTGGTCTCGGCGGATTACCGCCGAGCATCGGTTTGTCTACCGTGTA TCCGGGTCCGGAAGCGAGCAACGGCTGGAAGTCATTCAGTGCCGCTTCCATTACCAATAA
>gi 117936711: 1604939-1605163
ATTGAACTTTCCGACGATATTAAACGCCGGCTGGATATCTTGGCTGAGCGCTCGAATTCGACACCAAGCC GCATCATAGAAGATGCGCTTTCACATGGACGTTCTCTGGCCTGGCAAGAGAAATGGACGAGCGGCGTGAG GGCGGGCTTGGCAGAGGCCGATGCAGGGGAGTTTGTCACTGAAGAAGAGATTAACGACGTTTTGAATAAA TATGCCAAGGCCTGA
>gi 117936711: 1605169-1605456 GTGCGGTTGATTTGGACGCGCCGTTATCTCCGGGAGCTTGACGCCATAGGCGTCTATATTGCCGAACGCA ATCCGCGCGCGGCGGCAAAAGTCGTTAGAGCAATTCACCAGACCACGGCACGTCTTTTATCCGATAATCC TCATCTAGGGCGCAGCGGAGAAATCGAAGGGACCAGAGAGTTGGTTGTTCCCGGGCTTCCATACATCGTC GCGTACCGCGTTACGGAAGAACAGGTCGACATTGTGTTCGTGCAACACGCCGCCCGCGAATGGCCTGACG ACGCTTAA >gi | 17986284: 1568957-1569217
TTGAAAAATCAACATCTATCGGACCCGATCACTATGCGCATCCCACGCGATCTACTGGCAGAGATCGAGG AGATTGCCAGCCTAACGGAGCGAAGCAGAAGCTGGGTCATCGTTCGGGCGATGAAAGCCTATCTCGCTGC CGAAGGCAGGGAGATCAGGGATATAGCCAAGGCCCGCTGCGCCATCGAAAACGGCGAGGGTATTGATCTT GATACGGTCATTGAGGAAGCCGAGGCAATTATCAAGGGTGCGGCTGCGTGA
>gi 117986284 -.1569214-1569531
GTGAAGGTTATCGTTTCTCCGGCAGCGCGAGACTATATCAAATCCGAAATCGCCTATCTGAAGCTGCGTA GTCCAAGCGCCGCTGTGCAATTGAGCGAAGATTTGAAACGGCTCAAACGTGATCTTGGCCGTTTCTCGCA GATGGGGCATTTCACGGAGGAACTGCCTGTTCCCGGCATCCGTCGTTTTGTGATGGGGGCCTATCTCATC GATTACGAAATTCGCGCCGACGCCATCCTTATTTTTGCCATCCGCCACGGACGCGAGCGCCCGCCAATCT TACCACCGGATGAAGATTTCGATTTCGAACAGTTATAA >gi|23500916:c413939-413679
TTGAAAAATCAACATCTATCGGACCCGATCACTATGCGCATCCCACGCGATCTACTGGCAGAGATCGAGG AGATTGCCAGCCTAACGGAGCGAAGCAGAAGCTGGGTCATCGTTCGGGCGATGAAAGCCTATCTCGCTGC CGAAGGCAGGGAGATCAGGGATATAGCCAAGGCCCGCTGCGCCATCGAAAACGGCGAGGGTATTGATCTT GATACGGTCATTGAGGAAGCCGAGGCAATTATCAAGGGTGCGGCTGCGTGA
>gi | 23500916 :c413682-413365
GTGAAGGTTATCGTTTCTCCGGCAGCGCGAGACTATATCAAATCCGAAATCGCCTATCTGAAGCTGCGTA GTCCAAGCGCCGCTGTGCAATTGAGCGAAGATTTGAAACGGCTCAAACGTGATCTTGGCCGTTTCTCGCA GATGGGGCATTTCACGGAGGAACTGCCTGTTCCCGGCATCCGTCGTTTTGTGATGGGGGCCTATCTCATC GATTACGAAATTCGCGCCGACGCCATCCTTATTTTTGCCATCCGCCACGGACGCGAGCGCCCGCCAATCT TACCACCGGATGAAGATTTCGATTTCGAACAGTCATAA
>gi) 15963753 :c2885915-2885640
ATGCAAACGGAAAAGCTCAGTATCAGTCTGCCGGTCGACATGGCGCGCATGGTGCGCCGCCGGGTCGAGG ACGGGGCTTACGCCTCAAACAGCGAAGTCATCCGTGAGGCATTGCGACTGTGGCAGCAGCGCGAACAGGA ACGCGGGCATCGCCTTGATGCCATCCGCGCTAGCCTCGATGCCGCTGCCAACGATCCGGCACGCCATGGC AGCGCCGAGGTTTCGGCTCATTTTGACCGTCTTCTGACCGAGGCAGAGAAGACTGCCAAGTCGTGA
>gi ] 15963753 :c2885643-2885341 GTGAGCCGCGAACTCGTCTTTACGCCGGCGGCGCTCGCCGATCTAGAGGAGACATTTTGGTTTGTCGCCG CCGATAATCCTCGTCGCGCCCGCAGCTACGTCGCAGAGATCGAACAAGCCTGCCGCAACCTCTGCGAGAC GCCGTTGATGGGCCGTGGAAGACCGGATTTGCGGCCGAACCTGTTTATCTTCCCGCTTTGGCGACGTGTT CTGATCGCCTACGAACTGCCGGACAATCGCGTAGATATTCTGCGCGTGTTTTCAGGCGGGCAGGATTACG AAGCAATCATGTCTGGCGAGTAG
>gi 115891923 -.294566-294874
TTGACAAAACGTACTGTTTATAGTACGTTATTAATATTAAGTCTCACTAACTATAAGGAAAAAATAATGG AAATATATAATACAAGCGAAGCAAGAAGTAAGCTTTATAAACTTATAGATTATGTTTCTGATGTACACAA ACCTGTTTATATTAAAGGTAAAAGAAATAATGTAGTTATAATTTCAGAAGAAGATTATCGTAATATGGAA GAAACTTTATATTTATTATCTATTCCAAATATGCGTAAGTCTATAATTGAAGGACGAGCAGAGCCTATAG CGAAGTGTAGCGATAAATTAAATTGGTAA
>gi 115891923 :294885-295145
ATGTATATAATTCGTTATACTATACAAGTACAAAAAGATGCTAAGAAAATAGTGCAAGCCGGTTTAAAGA ATAAAGTAGAAGTTTTATTAAACATAGTTAGTACTGATCCTTGGAAAATTTACCCTCCATATGAAAAGCT CGTTGGTGACTTTAGCGGTTGCTATTCAAGAAGAATTAATATTCAACATAGGTTGGTTTATGAAGTTTAT AAACAAGAAAAAGTTGTAAAAATTCTTAGAATGTATACGTATTATGAATAA
>gi 117544719 :c3486521-3486222 ATGCGTCTGGCCATTACCCCGCTTGCCGAGCAAGACCTTGAGTCCATCGCTGACTACATCGCACAAGACA ACCCGGCACGTGCCGTCACATTCGTCCGTGATCTGCGGGAGCAATGCCAGCGCCTCGTGATGAACCCGCC CGGCTATCGCTTGCGGCCGGAACTCGGGGACGACATCCGTTCATGCGCCTACGGTCGTTACGTGATTTTC TTTGTCGCCGCCCCGGATGAGGTGATCGTCATTCGCATCCTGCATGGCGCACGTGATCTGCCCGCCGTTT TCCATGCCGATGAGCCATAA
>gi 117544719 :c3486787-3486521
ATGCCTACCAGCGTCGCCCTCGGCAATCATTTCGAGACATTCATCCGCGACCAGGTGCAAAGCGGCCGGT TCAACAATGTGAGCGAGGTCGTGCGTGCCGGACTTCGCTTGCTCGAAGAGAGTGAGCAGCGTCGTCAGCT TGAACTGCAGGCGTTGCGTGCCGAGATCGCTGCGGGCAAAGCGAGCGGTCCGGCCAAGCCGGCCGATGAA GTGTTTTCCCGTCTTGAGGCCAAGTACAGCGCACAAGCTAGGCGCAAGCAGAACTGA
>gi 117544719 :c3529271-3528939
ATGAACGCACCTACCGGCACTAACGTGCAGCTGATCCACGGCCCCGACGGCGCGCCGGCCTTCGTCGTGA TTCCGTATGCGGAATACATCGCCGGCCGCATGCAAGACCGCAGCCTGATCCCCCACGCCGTCATCGAGCG TACGGTGGAGGGCGCCACACCCGTGCGCGCCTGGCGCGAACACCTGGGGCTGACGCAGGCCGAGGTCGCC GGGCGCCTCGGCATCTCGCAGCCGGCCTACGCGCAGCAGGAAAGCAGCGACCGGCTGCGCAAGGCCTCGC GCGACAGGATCGCCGCCGCGCTGGGGATCCTGCCCGCGCAGCTCGACTTCTGA
>gi 117544719 :c3529509-3529249 ATGAACGCGATCCACTGGACGGCCTGGGCAGCCAGGCAGCTGCGCAAGCTCGACCGGCAGCATCAGCGCG TGCTGGTGGAGGCGGTCGGGCAGTTGGAAGCCATGCCGCATTGCCGGCAGGTCAGGGCGCTCCGGGAGCA CCGGTATGGCTACCGGCTGCGGGTGGGCGACTACCGTGTCCTCTCCGATTGGGACGACGGGATTCGTATC GTAGACATCCAGGAAGTGAGCAAGCGCGATGAACGCACCTACCGGCACTAA
>gi I 30248031:516404-516625
ATGGCTCAAATTACTGCTCGTTTGCCCGATGACCTCGTTTCTTCCCTTGATGCGGCTGCAGCTCGTTTAC GGCGTTCTCGGGCAGAAGTGGTTCGTCAGGCGGTGGAATATTATTTGGAGGATTTTGAGGATATCTCGCA GGCGATCGATATATTGCGAGATCCGGCAGATCCGATACTGGATTGGGAAGAGGTAAAGCGTGATCTACTC CATCTCGATTAG
>gi | 30248031: 516603-516857
GTGATCTACTCCATCTCGATTAGGCAGAGCGCGGTAAAGTCACTTGAAAAAATTCCCGGACCAGACCGAC TACGTATCATAAAAGCAATCGATTTGCTGAAAGAACACCCCGGTGCCGGATCTATCCTGAAGGGCGAGTT TTCCGGGTTGCGCCGGATACGGGTTGGTATGTATCGAGTCGTATATGAAATCCAGGATAACCTCTTAACG ATTCTGGTTGTTCGTATCAATCATCGTCGTGATATTTATCGCTGA
>gil30248031:c763176-762841
ATGGCGATCCGCCAATATGAAGTACTGTTTACTCGGGGTGCTGAGCAGGATCTCGAACTGATCTACGATT ATATTGTTGAATCTGATTGCAAAGCTAATGCTGACAGTGTTTTAGATCGTCTGCTGGAAGTGGTGGAAAA TCTGGCTACTTTTCCCAGTCGGGGAACCTGGCCCAAGGAGCTTGTTGCGGTTGGCATCCGAGAATATCGA CAGGCGATTTTTAAACCATACCGTGTAATTTACCGGGTAATTGAGCAGAAGGTGTATATCTACTTAATTG CTGATGGCCGGCGTGATATGCAATCTCTTTTAATGCACCGATTACTGGGGAAATGA >gi|30248031:c763451-763176
ATGCGCTATTCAACACAGATCAGACCTATTAGTTATCTAAAAGCAAATGCCGCTGAGGTTTTAGCTTATT TAACCGAAAACAGGGAACCATTGATCATTACTCAGAATGGAGAAGCTAAAGCTGTTATCCAGGATATCGC CTCTTTTGAAGAGACACAGGAAACGTTAGCATTGCTAAAAATTCTTGCACTCGGCAATGCTGAGATCGAA GCGGGTGAAGTGCAGCCGGTACATGAGGTCATCGCAGGATTGCGTACCAGGCAGACAATAAAATAA
>gi | 30248031: 770522-770818
TTGGCAGAATGTAATGTACAAATAAATGTACAATTGGAGAACCTTATGGACGCTATCACTTACAGCACTG CCAGAGCCAAACTTGCCGACACCATGAACCGCGTTTGCGATAACCATGAACCTATCATAATCACACGCAA CGGAGAACAATCCGTTGTAATGATGTCGCTCGACGACTTCAAGGCGCTGGAGGAAACCTCTTACCTGCTC CGTAGCCCAAAGAATGCGAAGCGGCTGCTGGAAAGCATCGCAGCTCTTGAATCAGGCAGAGGCGAAACGA GAAGCCTGGCAGAGTGA
>gi I 30248031: 770815-771069
GTGAAGCTGGTTTTCTCTGAGCAGGCCTGGGAAGACTATTTGTACTGGCAAAAGACAGACCGAAAAACCG TACAGCGAATCGATACGCTGGTGAAAGAGATTACAAGAACACCACACGAGGGTACCGGCAAACCCGAGCC ACTGAAACATGCGCTGTCAGGTTATTGGTCACGCCGTATCAATAACGAGCACCGGATCGTCTATAAAATT GCGGATGACTCGTTGTTTATTGCTCAACTGAGATACCACTACTGA
>gi 130248031 -.C1474708-1474400 GTGTATCTTTTTTATACTTGTACAATTTATTGTGCAAATGAGGTTGCCATGAAGGTTGTTACTTATTCGC ATGCGCGTAATGCGTTAAAGTCTATTTTGGATGATGTCATTCAGGATGCTGATGTAATTGTTATTAGTCG TCGCGATGCAGAAGGTGATGCTGTGGTGATGTCGCTGGATAGCTATAACAGCATCATGGAAACATTGCAC TTAACCAGTAATCCAGCAAATGCCGCAGCCTTAGCCAAGGCAATTGCTCAGGATAAGGCAGGACAAGCAC AAGACCACCCATTGCTTTCTGCCGATTAA
>gi 130248031 :cl474397-1474137
GTGCGTGCCATTCGTTTTGTTCCTGATGCGTGGGAGGCTTACCTTTACTGGCAAGACCAGGATAAAAAAA CGCTCAGGCGATTGAATTCTCTGATTACTGCCGCTTCTCGTGATCCATTTGTTGGTATTGGCAAACCAGA ACCACTGCGGGGTGAATTGTCGGGTTATTGGTCAAGACGTATCGATGAAACTAATCGTTTGGTTTATCGT GTTACTGATGTTGAGTTAGTGATTATTGCTTGCCGATTTCACTATGAATAA
>gi I 30248031: 1695137-1695388
ATGCACCAAATACTGGCTTCATTTAGCGCAAGCATCTCTGAATTAAAGAAAAATCCAACAGCTTTGTTAA GAAAAGCCGAAGGGGAAACTATCGCTATTCTCAACCATAACCTGCCAACCGCTTACCTTGTTCCAGCCGA GGTATACGAGTTGTTGATGGAGAAATTGGAAGATTATGAATTAGGCGAAATTGTTAAGGCCAGGCAAGCG GAAAAACATTTGGCAATTGAAGTATCGCTTGATGACTTATAA
>gi 130248031: 1695378-1695668
ATGACTTATAAATTAAAATTTTTGCCAAGTGCAAAAAAAGAGTGGGATAAACTGGACAGCAGCATCAAAA CCCAATTTAAAAACAAATTAAAAAAATGCCTGGAAAATCCTCATATTCAGCCTAATAAACTACGTGGTTT TGATAACGCTTATAAAATCAAACTCCGCTCTGCAGGTTATCGGCTTGTTTATGAAATCAATAATCAGGAA GTCGTTGTTTTCGTTATCGCTGTAGGCAAAAGGGAAAATAATAAGATTTACGATAAAGCAATCAACAGAA CCAAAACTTAA >gi|30248031:cl711641-1711360
TTGGAGGCAGTCATGACAATCAAATTCTCTGAAGATGTAATTCCCCTTGCAGATTTAAAAGTCAATCCTG GTCGCGTTGTAAGCCGAGTTAAAGAAACTCGCAGACCTGTTCTTTTAACCAGTCGTGGCCGAGGTGTGGC TGTAGTGCAAGACCTCGATGAATATGAAAAGAGCCAGGAAGAGCTGGCTTTTGTCAAAGCGGTTGCCCAA GGTCTTATGGACATCAAAGAGGGCAATACCATGTCATTGTCTGAGGCGAAAAAGCGTTTAGGCATCGAAT GA
>gi 130248031 :cl711363-1711067
ATGAAAGTCAGCATTTCCAATTCTGCTTTTAATGACCTGGAAACCATGATCAGTTATTACACTGCAGAAG GTGTTCCTGATGTTGGTTTCAAATTTGCCCAAGAAATAATCGAGCATATTCAGATTTTGGCCGACCATCC GGATATGGGCAGAATAGTGCCTGAATTCCAACTCCCCCATATCCGGGAAATTATCTTTGCTCCTTTCAGG GTGGTTTATCTGAGGGAAAAAGGCGCGATAAAAGTAATTCGTGTTTGGCGCAGTGAGCGACCGCTTGTTT TACCAACTGAAACATAA >gi|30248031:1714058-1714306
ATGCCAAATAAAATACTTACTGAAATTGCAGCCAGCATATCCGAGCTCAAAGCCAACCCGATGAAGGTAG TAGCCAGCGGTAAAGGCATGCCAATCGCCGTGCTAAACCACAACGAACCCGCCTTTTATTGCGTACCCGC CGCCGCCTATGAAGCAATGATGGAATTGCTCGATGATATCGAGCTGCTAAAAATCGTGAAAGAACGAATG GACGAACCCAGCGTCAAGGTCTCGCTCGATGACCTATAA
>gi|30248031:1714296-1714592
ATGACCTATAAACTGGAATTCAAAAAATCTGCACTCAAAGAATGGGAAAAACTCGGCCATACCATCAAAG AGCAATTCAAGAAAAAACTCAAAGAACGACTGGAAAATCCTCATGTACATTCAGCAGCTTTGCCTGGGGC CAAAAACATATACAAAATCAAATTGCGCCAACCTGGATACCGCCTCGTATACTCCGTTGAAGATCAAACT ATTACGGTAACTGTCATCGCTATCGGCAAACGCGACCGCAATGAAATTTACGATATAGCTTTATCACGAT TGCATGACAAATCCTAA
>gi 130248031 -.1724620-1724877
ATGAATACTATTAATGCAAACGACCTCAAGACCAGAGGAATTGCGGCGATTGAAGCGCAACTGGAGGAAC AACCGGAAGCGATTATTGCTGTGCGAGGCAAGGATCGCTATGTCGTCATGCAGCTGGAACATTACTATTA TTTACGAGAGTGTGAACTGACTGCCGCACTGGCAGAAACACGGGCAGATCTTGCTGCCGGACGTTGTGAG CAGGAATCGCCGGAAGCGCATCTTGCACGGCTGGATACGCTGAAGTAA
>gi I 30248031 -.1724881-1725156 ATGGGCTATTCGCTGATCTTTACGGATGCTTATAACCAGCGGGCGGCACGCTGGTTGAGGCGTCACCCTG ATTTGCGTACACAATATCTGAGAACGCTGCAAATTCTCCAAACTAATCCCTATCATCCTTCCCTGCGATT ACATGTATTAAGCGGCAAACTTCAGGGGATATATGCAATTTCAATTAATCTTTCTTATCGGATTACGCTG GAATTCCTGATCGAGGATAAGCAAATTATCCCGATCAATATTGGAAGCCACGATGTTGTTTATTAA >gi|l5644634:c946264-945977
ATGCCAAACACCACCAACAAAGACTACACAAAATACAGCCAAAGACAGCTTTTTAGTTTTTTAAATTCTA TCAAGACCAAGCAAAAAAGAGCGTTAGAAAAATTGAAAGAAATCCAAGCTCAAAAACAAAGGATTAAAAA AGCACTCCAATTTAAAGCGCTAAACTTAACCGAAAATGGATACACCATAGAAGAAGAGCGAGAAATCTTA GCAAGGGCTAAGGACACTAAGAACCGCCTTTGTTTTAAAAGCATAGAGGATTTTAAGAAGCATTGTGAAA ACTTATAA
>gi 115644634 :c945963-945691
ATGCTGACGATTGAAACCAGTAAAAAATTTGATAAGGATCTTAAAATTCTTGTTAAAAACGGGTTTGATT TAAAGCTTTTGTATAAAGTGGTTGGAAATTTAGCCACAGAGCAACCCCTAGCTCCCAAATACAAAGACCA CCCACTCAAAGGCGGTTTAAAAGATTTTAGGGAATGCCACTTAAAACCGGATTTATTGCTTGTCTATCAA ATTAAAAAACAAGAAAACACCCTCTTTTTAGTAAGGTTAGGCAGTCATAGCGAGCTGTTTTGA
>gi 115644634 : C946969-946592
ATGCCTAACACCACCGCCAAAAAAGACTACACAAAATACAGCAAAAAACAGCTTTTTAATTTAATCCATC AATTAGAGCGAAAAATCAAAAAGATGCAAAATGATAGAATTTCTTTTAAAGAAAAAATGGCTAAAGAATT GGAAAAAAGGGATCAAAACTTTAAGGATAAAATAGACGCGTTAAATGAACTCTTGCAAAAAATCAGTCAA GCTTTTGATGATAAAAGAGATTGTTGTTTGGGGCATGAGATCCCAAACATTGAAACGCAACAAGCCATGA GAGATGTAGGTAACAAAGAGACAGATTTGATTGTTGAGGATTTTTCTAGTTACAGCAATGAAAGAAAAAG GGCTTTAGGTGTTGAAGCTCAATCTTAA
>gi I 15644634 :c946611-946345
GTGTTGAAGCTCAATCTTAAAAAATCTTTTCAAAAAGATTTTGATAAATTGCTTTTGAATGGGTTTGATG ATAGCGTTTTGAATGAAGTCATTCTAACCTTAAGAAAAAAAGAACCGCTAGATCCACAATTTCAAGATCA TGCCTTAAAGGGAAAGTGGAAACCTTTTAGGGAATGCCACATTAAGCCTGATGTTTTGCTTGTGTATTTA GTGAAAGATGATGAACTGATTTTGTTAAGGTTAGGCAGTCATAGCGAGCTGTTTTAA
>gi 115611071 :c912294-912007
ATGCCTAACACCACCAACAAAGACTACACAAAATACAGCCAAAAACAGCTTTTTAATTTTTTAAATTCTA TCAAGGCAAAGCAAAAAAGAGCGTTAGAAAAATTGAAAGAAATCCAAACTCAAAAGCAAAGGATTAAAAA AGCACTCCAATTTAAAGCGCTCCATTTAACCGAAAATGGATACACCATAGAAGAAGAGCGAGAAATCTTA GCAAGGGCTAAGGACACTAAGAACCGCCTTTGTTTTAAAAGCATAGAGGATTTTAAGAAGCATTGTGAAA ACTTATAA
>gi 115611071 :c911993-911721 ATGCTGACGATTGAAACCAGTAAAAAATTTGATAAGGATCTTAAAATTCTTGTTAAAAATGGGTTTGATT TAAAGCTTTTGTATAAAGTGGTTGGAAATTTAGCCACAGAGCAACCCCTAGAACCCAAATACAAAGACCA CCCACTCAAAGGCGCTTTAAAAGACTTTAGGGAATGCCACCTAAAACCGGATTTATTGCTTGTCTATCAA ATTAAAAAACAAGAAAACACTCTTTTTTTAGTAAGGCTAGGCAGTCATAGCGAGCTGTTTTGA >gl 126245917 :c2377797-2377519 ATGAACTGTACAAAAGAGGAGATTTACATGCGTACAATTAGCTACAGCGAAGCGCGTCAGAATTTGTCGG CAACAATGATGAAAGCCGTTGAAGATCATGCCCCGATCCTCATTACTCGTCAGAATGGAGAGGCTTGTGT TCTGATGTCACTCGAAGAATACAACTCGCTGGAAGAGACGGCTTATCTACTGCGTTCCCCCGCTAACGCC CGGAGATTGATGGACTCAATCGATAGCCTGAAATCAGGCAAAGGAACGGAAAAGGACATTATTGAGTGA >gi 126245917 :c2377522-2377268 GTGAAACTAATCTGGTCTGAGGAATCATGGGATGATTATCTGTACTGGCAGGAAACAGATAAGCGAATTG TTAAAAAGATCAATGAAATTATCAAAGATACACGCAGAACACCATTTGAAGGTAAGGGGAAGCCAGAACC CCTGAAACATAATTTGTCAGGCTTCTGGTCCCGACGCATTACAGAGGAGCACCGTCTGGTATACGCGGTT ACCGACGATTCACTGCTCATTGCAGCATGTCGTTATCATTATTGA
>gi] 16127994 :cl643657-1643370 ATGGCGTATTTTCTGGATTTTGACGAGCGGGCACTAAAGGAATGGCGAAAGCTGGGCTCGACGGTACGTG AACAGTTGAAAAAGAAGCTGGTTGAAGTACTTGAGTCACCCCGGATTGAAGCAAACAAGCTCCGTGGTAT GCCTGATTGTTACAAGATTAAGCTCCGGTCTTCAGGCTATCGCCTTGTATACCAGGTTATAGACGAGAAA GTTGTCGTTTTCGTGATTTCTGTTGGGAAAAGAGAACGCTCGGAAGTATATAGCGAGGCGGTCAAACGCA ' TTCTCTGA >gi | 16127994 :cl643896-1643657 ATGGGTAGCATTAACCTGCGTATTGACGATGAACTTAAAGCGCGTTCTTACGCCGCGCTTGAAAAAATGG GTGTAACTCCTTCTGAAGCGCTTCGTCTCATGCTCGAGTATATCGCTGACAATGAACGCTTGCCGTTCAA ACAGACACTCCTGAGTGATGAAGATGCTGAACTTGTGGAGATAGTGAAAGAACGGCTTCGTAATCCTAAG CCAGTACGTGTGACGCTGGATGAACTCTGA >gi 116127994 :c246502-246242 ATGGCTGCTAACGCGTTTGTTCGCGCCCGAATCGATGAAGATCTGAAGAATCAGGCAGCGGACGTACTGG CCGGGATGGGGCTGACCATCTCTGACCTGGTTCGCATAACCCTCACAAAGGTCGCGCGTGAAAAGGCATT GCCGTTTGATTTACGCGAGCCTAATCAATTAACCATTCAATCAATCAAAAACAGCGAAGCTGGCATTGAT GTTCATAAGGCCAAAGACGCCGATGATTTATTTGATAAATTAGGAATTTAA >gi 116127994 :c246239-245961 ATGATTCAAAGGGATATTGAATACTCGGGACAATATTCAAAGGATGTAAAACTTGCACAAAAGCGTCATA AGGATATGAATAAATTGAAATATCTTATGACGCTTCTTATCAATAATACTTTACCGCTTCCAGCTGTTTA TAAAGACCACCCGCTGCAAGGTTCATGGAAAGGTTATCGCGATGCTCATGTCGAACCGGACTGGATCCTG ATTTACAAACTTACCGATAAACTTTTACGATTTGAGAGAACTGGAACTCACGCGGCGCTCTTTGGGTAA >gi 115829254 :c284467-284207 ATGGCTGCTAACGCATTTGTTCGCGCCCGAATCGATGAAGATCTGAAGAATCAGGCGGCGGACGTACTGG CCGGGATGGGGCTGACCATCTCTGACCTGGTTCGCATAACCCTCACAAAGGTCGCGCGTGAAAAGGCATT GCCGTTTGATTTACGCGAGCCTAATCAATTAACCATTCAATCAATCAAAAACAGCGAAGCTGGCGTTGAT GTTCATAAGGCCAAAGACGCCGATGATTTATTTGATAAATTAGGAGTTTAA >gi|l5829254:c284188-283928 TTGAACTCGGGACAATTTTCAAAGGATGTAAAACTTGCACAAAAGCGTCATAAGGATATGAATAAATTGA AATATCTTATGACGCTTCTTATCAATAATACTTTACCGCTTCCAGCTGTTTATAAAGACCACCCGCTGCA AGGTTCATGGAAAGGTTATCGCGATGCTCATGTCGAACCGGACTGGATCCTGATTTACAAACTTACCGAT AAACTTTTACGATTTGAGAGAACTGGAACTCACGCGGCGCTCTTTGGGTAA >gi 124111450 :cl581986-1581699 ATGGCGTATTTTCTGGATTTTGACGAGCGGGCACTAAAGGAATGGCGAAAGCTGGGCTCGACGGTACGTG AACAGTTGAAAAAGAAGCTGGTTGAAGTACTTGAGTCACCCCGGATTGAAGCAAACAAGCTCCGTGGTAT GCCTGATTGTTACAAGATTAAGCTCCGGTCTTCAGGCTATCGCCTTGTATACCAGGTTATAGACGAGAAA GTTGTCGTTTTCGTGATTTCTGTTGGGAAAAGAGAACGCTCGGAAGTATATAGCGAGGCGGTCAAACGCA TTCTCTGA >gi I 24111450 :cl582225-1581986 ATGGGTAGCATTAACCTGCGTATTGACGATGAACTTAAAGCGCGTTCTTACGCCGCGCTTGAAAAAATGG GTGTAACTCCTTCTGAAGCGCTTCGTCTCATGCTCGAGTATATCGCTGACAATGAACGCTTGCCGTTCAA ACAGACACTCCTGAGTGATGAAGATGCTGAACTTGTGGAGATAGTGAAAGAACGGCTTCGTAATCCTAAG CCAGTACGTGTGACGCTGGATGAACTCTGA >gi I 24111450 :c2096060-2095788 ATGCGTACAATTAGCTACAGCGAAGCGCGTCAGAATTTGTCGGCAACAATGATGAAAGCCGTTGAAGATC ATGCCCCGATCCTCATTACTCGTCAGAATGGAGAGGCTTGTGTTCTGATGTCACTCGAAGAATACAATTC GCTGGAAGAGACGGCTTATCTACTGCGTTCCCCCGCTAACGCCCGGAGATTGATGGACTCAATCGATAGC CTGAAATCAGGCAAAGGAACGGAAAAGGACATTATTGAGTGGGTAATGCTGCCAACTTACTGA >gi|24111450:c2095035-2094781 GTGAAACTAATCTGGTCTGAGGAATCATGGGATGATTATCTGTACTGGCAGGAAACAGATAAGCGAATTG TTAAAAAGATCAATGAACTTATCAAAGATACCCGCAGAACACCATTTGAAGGTAAGGGGAAACCAGAACC CCTGAAACATAATTTGTCAGGTTTCTGGTCCCGACGCATTACAGAGGAGCACCGTCTGGTATACGCGGTT ACTGATGATTCACTGCTCATTGCAGCATGTCGTTATCATTATTGA >gi[ 30061571 :cl620383-1620096
ATGGCGTATTTTCTGGATTTTGACGAGCGGGCACTAAAGGAATGGCGAAAGCTGGGCTCGACGGTACGTG AACAGTTGAAAAAGAAGCTGGTTGAAGTACTTGAGTCACCCCGGATTGAAGCAAACAAGCTCCGTGGTAT GCCTGATTGTTACAAGATTAAGCTCCGGTCTTCAGGCTATCGCCTTGTATACCAGGTTATAGACGAGAAA GTTGTCGTTTTCGTGATTTCTGTTGGGAAAAGAGAACGCTCGGAAGTATATAGCGAGGCGGTCAAACGCA TTCTCTGA
>gi|30061571:cl620622-1620383 ATGGGTAGCATTAACCTGCGTATTGACGATGAACTTAAAGCGCGTTCTTACGCCGCGCTTGAAAAAATGG GTGTAACTCCTTCTGAAGCGCTTCGTCTCATGCTCGAGTATATCGCTGACAATGAACGCTTGCCGTTCAA ACAGACACTCCTGAGTGATGAAGATGCTGAACTTGTGGAGATAGTGAAAGAACGGCTTCGTAATCCTAAG CCAGTACGTGTGACGCTGGATGAACTCTGA >gi|29732244:254719-254892
TTGATTGTTTATTCGTTTTTTAAGGAAATTCGTGTGGGCAAAAAAGAGCCGGAAAAGTCCCGCTGGGAGA TTAAATATTGGTGTAATGATAAGGACGACGGCACCGTTGAAAAATGGTTAGATTCGCTCACTCAGGAGCA GCTTAAGTCAGTTGCTAGTGAATGGCATTATTAG >gi|29732244:254880-255107
ATGGCATTATTAGAATTATGCGGCAACAGGCTTCGATTGCCGCATAGCAGTTCACTTAAAAAGGGGTTAT TTGAGCTCAGGGAAAGAAAATTTGGCTATAGAATTTACTATGCGTTTTTGCCAAATAAAACAGTGATTCT TCTCCATGCGGGGGATAAGAAATCACAAAAGAGAGATATAAAAACAGCCCGCCAGCGTCTTCCTGAGTTT ACCGATGCAGAGGAATAA
>gi | 29732244: 1900061-1900315
ATGAACGTAGTTACTTTTAGCGAACTCAGGGCGCAACTTAAAAAAATCTTGGATCTTTCCGCCGATCAAC
ACGAACCTGTCGTCGTTAAACGGCCAAATAAAGAAACCATGGTCATTTTATCTTTACGCGACTTTGAGGC
TCTAAAAGAAACAGCTTATCTCTTAAGTAACGAAGCTAATGCGGCCCGTCTTCGTCAGTCTATCCGCAGC
TTAAAACAAGGCAAGGCACAAAAAAAGAAATTAATGGAAGATTAA
>gi I 29732244: 1900315-1900590
ATGCAAATTTCCTTCACGCCCGAAGCCTGGGAAGATTATTTATATTGGCAAAAATTCGACAAAAAAATGC TTCGACGCATTAATGAACTCATTAAGGATGCTATGCACGAGCCTTTTTCCGGAAAGGGAAAGCCAGAACC TTTAAAATTTGAATTACAAGGATATTGGTCAAGACGATTAGATCAAGAACATCGATTGGTCTACAAAGTT TTAGACGATTCGTTAATGATTATCGCCGCAAGATTTCACTATAATCGCCTTAATTCTAAAAACTGA
>gi I 24371600 :c4838365-4838108
ATGAAAGTGGAACTCGTGACGTCACTAAAACGTCAAGCAACTAAGATCCTTGCCGATCTGCATGAGACCA
AAGAACCAGTATTGATCACTGAGCATGGTAAACCGTCAGCTTATCTTATTGATGTAGAAGATTATGAGTT
TATGCAAAATCGTTTGGCGATTCTTGAAGGTATTGCACGTGGTGAGCGAGCTTTAGCGGATGGAAAAGTC
GTCAGCCATCAAGATGCTAAGGACAGAATGTCAAAATGGCTGAAATAA >gi|24371600:c4838120-4837815
ATGGCTGAAATAATTTGGACGGAACCTGCTTTAGCTGATCTGAATGATATTGCTGAATATATCGCGCTTG AAAATATCGTTGCTGCCAAGCAACTGGTTCAAATGGTTTTTGCAAAGGTTGAGCGTTTAGTCGATTTTCC CGATTCAGGGCGTATTCCACCAGAACTAGAGCGGCTCAATTATCGTGAAGTGGTGGTAAATCCATGTCGT GTTTTCTACAAGTATGGCGATGAAAAGGTTCGAATTCTTTTTGTTATGCGTGCGGAAAGAGATTTGCGTC GTTTTATGCTGACTAGGGCGTGTTGA
>gi 115600771 :c328558-328280
ATGAGAACAGAAATGCTGAGCACGCGCATTGACCACGACACGAAAATTGCGTTCACAAACGTCTGCGATG
AGATGGGTCTAAGTACATCACAGGCCATAAAGTTATTTGCAAAAGCGGTTATTAATCATGGTGGAATCCC
TTTTGAGCTGCGAGTTCCACAGCCTAATGAGGTTACTGCATCTGCAATTCAAGAGCTCGTTGAAGGAAAA
GGACATAAAGCTGAATCCGTTGAAGCTATGCTGAATGAGCTTACTGAAGGCAAAGTTAAGCATGTATAA
>gi 115600771 :c328314-328018
ATGAGCTTACTGAAGGCAAAGTTAAGCATGTATAAACTCGAATACTCCACACAGTTTAAGAAAGATTTCA AAAAGATAACTAAGATGCCGATTTCAGACATCATTGAAGTCGGCAATGTTATTTCTAAGCTGCAACGCGG CGAAAAGCTTGAACCCAAGAATGTTGACCATCCGTTAACTGGAAATTGGGTTGGATTTCGAGACTGCCAC ATTAAACCCGACCTAGTGTTAATCTATCGAGTTTTTAACGATCAACTACAACTAGCGCGCATTGGTTCAC ATAGTGATTTATTCTAA >gi|l5600771:c343886-343518
TTGACAGTCCCTCTTGAGGCGTTTGTTAGTTGCCCTACCCCAACACCAGTGCTAACATTCGTACACACAA CAAAGGAGCTCACCATGGATACTAGAATTCAATTTCGTGTAGACGAAGAAACAAAACGTTTAGCTCAACA AATGGCTGAAAGCCAAGGTCGAACTCTTAGCGATGCTTGCCGTGAACTCACTGAACAATTAGCTGAGCAG CAACGCAAGGCATTATCTCACGATGCATGGCTAACTGAACAAGTGAATCAAGCATTTGAGAAGTTCGACT CAGGAAAAGCAGTATTCATTGAACATGACATCGCCAAAGCACGAATGGCTGAACGTAAAGCTAAAATCCG AAATCGAGGCCACGCATGA
>gi|l5600771:c343521-343243 ATGATTTTCTGGGAAGAAGCATCTCTCAATGATCGTGAGAAAATTTTCGAATTTCTCTACGACTTTAACC CAGCAGCGGCTAAAAAAACGGATGAGCTCATAGAAGCCAAAGTCGAAAATTTGCTTGAGCAACCACTAAT CGGTGTTCAGCGTGATGGCATTAGAGGCAGATTGCTTATTATCCCTGAGATATCAATGATTGTTTCGTAT TGGGTTGATGGTTCTAAAATTCGAATAATGCGTGTACTACATCAGAAACAAAAATTTCCAAACGACTGA >gi]l5600771:387652-387945
ATGGAGTTCGTTATGAGCCGTATTCACCTTGATCAAGATATTCAGCCTTTGTCTGAGTTCCGTGCTGGCG TTGCATCATTTATCAAACAGATCAATGAGACTCGTCGACCATTGGTTATTACACAACGAGGTAAAGGTGT AGCCGTTGTTCTTGACGTTGCGGAGTATGAAGCAATGCAAGAGAAAATCGAATTACTCGAAGAAATGCGT ACTGCAGAAGCTCAATTGGCTGCAGGTTTAGGTATATCAAACGAAGATGCTCGTTCACAAGTTCTGGGGC GCATCATCAAATGA
>gi | 15600771:387942-388301
ATGAAAGTAGTTTGGTCACCTCTAGCGTTACAAAAACTGGGTGATGCCGCAGAGTTTATTGCTTTGGATA ACCCATCAGCTGCAGAAAAGTGGGTGAATGAAGTATTCGACAAAACGGAATTGCTCGGCTCAATGCCAGA AATGGGCCGCATGGTTCCTGAAATGCCTCATACGAACTACCGTGAAATAATTTTTGGTCATTACCGCATT ATTTATAGTTTGAGCCACGAAATCCGCGTTCTAACATTACGTCAAGAGCAGACGGTGAATCCGCCTCATA ACAAACGCCTCAAGAGGGACTGTCAACGCGTGGCGTTTCCAGTCCCATTGAGCCGCGGTGGTTGCAGTTG TTGTGTTTGA >gi|l5600771:c399824-399576
ATGACCACTAGAATCCTAGCTGATGTTGCAGCAAGCATTACCGAATTTAAAGCAAACCCAATGAAAGTTG CAACTAGTGCCTTCGGTGCTCCTGTTGCTGTACTCAACCGAAATGAGCCGGCTTTCTACTGCGTCCCTGC AAGCACCTACGAGATCATGATGGATAAGCTTGAAGATCTTGAGCTACTGGCTATTGCCAAAGAACGCTTA AGTGAAGACAGCGTATCGGTAAATATCGATGACCTATAA
>gi 115600771-.C399586-399296
ATGACCTATAAGCTTGAGTTCAAAAAGAGTGCTTTGAAGGAATGGAAAAAGTTAGCCGTTCCACTCCAAC AGCAGTTCAAGAAGAAACTAATAGAACGCCTTGAAAATCCACATGTTCCATCAGCCAAACTGTCTGGCGC TGAGAACATTTATAAAATAAAACTTCGGCAGTCTGGTTATCGCTTAGTCTATCAAGTTGAAAATGACATC ATCGTAGTTACTGTTTTAGCTGTCGGTAAACGAGAACGCAGCGAAGTTTACACTAAAGCGCTGCAACGGC TAGACGACTGA
>gi 115600771: 19979-420251
TTGATGCTTATATGGTGTTTTATGAGACAAGTTTTAGCGAATTGCTCTGCAAGTATTTCAGAGTTAAAGA AGAACCCAACAGCTTTGTTGAATGAGGCTGATGGGTCTGCAATTGCAATTTTAAACCACAACAAGCCAGC GGCTTACCTTGTGCCAGCGGAAACGTATGAGTATCTCATCGATATGCTCGATGATTATGAGCTTTCCCAA ATTGTCGATAGTCGCCGAGCTGACTTAGCACAAGCTGTGGAAGTAAATATTGATGACCTATAA
>gi I 15600771: 420238-420528 TTGATGACCTATAAGTTAAAGTTTCTGCCGGCTGCGCAAAAGGAATGGAGTAAGTTAGCTCCGACAATTC AGAGTCAGTTCAAGAAGAAGTTAAAGGAACGATTAGAAAATCCGCACGTCCCTTCGGCTAAGCTTCGAGG ATACGACGCTGTTTACAAGATTAAACTTCGTACGGCGGGTTATCGTTTAGCTTATGAGGTTATTGACGAT GAGATAGTTGTCTATGTCCTTGCTGTCGGTAAACGTGACAAAGATGCTGTCTATAAAAAACTGGCTTCAC GCTTCGGTTAG
>gi 115600771: 425627-425884
ATGAAAGTAGAACTTGTGACGTCACTAAAACGTCAGGCCACTAAGATCCTTGCCGATCTTCATGATACGA AAGAGCCAGTATTGATAACTGAGCACGGAAAACCGTCAGCTTACCTTATTGATGTAGACGACTATGAATT TATGCAAAATCGTTTAGCGATCCTGGAAGGTATTGCTCGCGGAGAGCGAGCTTTAGCGGATGGTAAAGTG GTCAGCCATCAAGATGCTAAGGACAGAATGTCAAAATGGTTGAAATAA
>gi ] 15600771 : 425872-426174
ATGGTTGAAATAATTTGGACGGAGCTGGCTCTATCCGACTTGAATGATATTGCTGAATACATCGCGCTTG AAAATGTCGTGGCTGCTAAACAACTGGTGCAAACCGTTTTTACAAAAGTTGAACGTTTGGCCGATTTTCC AGAGTCTGGGCGCGTCCCTCCAGAACTAGAACACCTCAATTATCGTGAAGTCGTTGTAAGTCCGTGTCGT GTTTTCTACAAGTATGATGATGCAAAGGTTCGTATTCTTTTTGTTATGCGTGCGGAGCGAGATTTGCGTC GGTTAATGCTTACGAAACAGTAG
>gi I 15600771:c433678-433310 TTGACAGTCCCTCTTGAGGCGTTTGTTAGTTGCCCTACCCCAACACCAGTGCTAACATTCGTACACACAA CAAAGGAGCTCACCATGGATACTAGAATTCAATTTCGTGTAGACGAAGAAACAAAACGTTTAGCTCAACA AATGGCTGAAAGCCAAGGTCGAACTCTTAGCGATGCTTGCCGTGAACTCACTGAACAATTAGCTGAGCAG CAACGCAAGGCATTATCTCACGATGCATGGCTAACTGAACAAGTGAATCAAGCATTTGAGAAGTTCGACT CAGGAAAAGCAGTATTCATTGAACATGACATCGCCAAAGCACGAATGGCTGAACGTAAAGCTAAAATCCG AAATCGAGGCCACGCATGA
>gi 115600771 :c433313-433035
ATGATTTTCTGGGAAGAAGCATCTCTCAATGATCGTGAGAAAATTTTCGAATTTCTCTACGACTTTAACC CAGCAGCGGCTAAAAAAACGGATGAGCTCATAGAAGCCAAAGTCGAAAATTTGCTTGAGCAACCACTAAT CGGTGTTCAGCGTGATGGCATTAGAGGCAGATTGCTTATTATCCCTGAGATATCAATGATTGTTTCGTAT TGGGTTGATGGTTCTAAAATTCGAATAATGCGTGTACTACATCAGAAACAAAAATTTCCAAACGACTGA
>gi I 28896774 :cl923536-1923237 GTGAAGACTATACTTGTTCCATTAAATGTACATGTGGAGGTTCTTATGAGAATCGTATCTTTTACTGAAG CTAGAAATGGTCTCAAAGCTGTTTTAGACGGTGTAGTTAATGATGCTGATACAACAGTTATTACACGCCG TGATTCTGAGGATGCAGTGGTTATGTCTTTAGACTACTACAATAGCCTTATGGAGACTGTTCATTTACTA CGCTCTCCTCAAAACGTTGAACACCTAAACCGTTCGATAGCACAGTACCGCGCTGGTAAAACAACAGCAC GAGAGTTAATTGATGAGTAG
>gi 128896774 :cl923247-1922975
TTGATGAGTAGTAGTCAACGTTTATTATCGTGGACTGATGATGCTTGGGATGACTACCTGTATTGGCAAA CTCAAGACAAGAAAACACTCAAGCGCATCAATAAACTCATCAATGATGTTAAGCGCTCTCCATTTGAGGG CATTGGTAAACCAGAGCCGTTAAAAGAGAACTTATCTGGTTTTTGGTCTCGTCGTATTGATGATACTAAT AGGCTTGTTTACGCAGTCGATGATCAAGCGATAACGATAATTTCATGTCGTTACCACTACTAA
>gi | 28896774: 1928666-1928950
ATGGACACTAGAATTCAATTTCGTGTTGATGAAGAAACAAAACGCCTAGCTCAACAAATGGCTGAGAGCC AAGGTCGCACACTAAGTGATGCTTGCCGTGAACTTACTGAGCAACTCGCTGAACAACAAAGAAAATCATT ATCTCACGATGCGTGGTTAACTGAACAAGTAAACCTAGCATTTGAGAAGTTTGACTCAGGAAAATCCGTT TTCGTTGAGCACCAAACTGCTAAATCTCAAATGGAAGAACGCAAAGCCAGAATCCGTAATCGAGGTAAGC AATGA
>gi | 28896774: 1928947-1929225 ATGATTTTATGGGAAGAAGAGTCACTTAATGATCGTGAAAAGATCTTTGAGTTTCTCTATGACTTTAACC CTGATGCGGCAGAAAAAACTGACAACCTCATTGAAGCAAACGTAGAAAACTTGCTAGAGCAGCTTCTTAT GGGTGTACAGCGAGACGGTGTTCGTGGGCGATTACTTATAATTCCTGAGATTTCGATGATCGTCTCCTAT TGGATCGAAGGCGACATTATCCGAATCATGCGCGTACTCCACCAGAAACAAAAATTTCCTATGGATTGA >gi|28896774:1935447-1935800
TTGTTTGTTAGTTGCCCATCTCAAAGCCTAGTGCTAACATTTGTACACACACCAACAAAGGAATACATCA TGGACACTAGAATTCAATTTCGTGTTGATGAAGAAACAAAACGCCTAGCTCAACAAATGGCTGAGAGCCA AGGTCGCACTCTGAGTGACGCATGTCGTGAACTTACTGAGCAACTCGCTGAACAACAAAGAAAAACATTA TCTCACGATGCATGGCTAACTGAACAAGTAAACCTAGCATTTGAGAAGTTTGACTCAGGAAAATCTGTTT TCCTTGAGCACCAAACGGCTAAGTCTCGAATGGAAGAGCGCAAAGCCAGAATCCGTAATCGAGGTAAGCA ATGA
>gi I 28896774: 1935797-1936075
ATGATTTTATGGGAAGAAGAGTCACTTAATGATCGTGAAGAGATCTTTGAGTTTCTCTATGACTTCAACC CTGATGCTGCAGAAAAAACTGACAACCTCATTGAAGCAAAAGTAGAAAACTTGCTTAAACAACCTTTAAT GGGTGTGCAACGAGATGGCATCCGCGGACGATTACTCATCATTCCTGAGATTTCGATGATTGTATCTTAC TGGGTTGAGGGCGATATCATCCGAGTTATGCGTGTACAACACCAGAAACAAAAATTCCCTACGGATTGA
>gi 127363490: 2450675-2450932 ATGAAAGTAGAACTAGTTACATCACTCAAACGCCAAGCAACAAAGATCCTTGCCGATCTCCACGACACTA AAGAACCAGTGTTAATTACCGAACATGGTAAGCCATCGGCATATCTGGTTGATGTTGATGATTACGAGTT TATGCAAAATCGTTTAGCGATTCTTGAGGGGATTGCACGAGGTGAACGTGCATTAGCTGACGGTAAAGTG GTGAGTCACGATGAAGCCAAGGACAAAATGTCAAAATGGCTGAAATAA >gi|27363490:2450920-2451222
ATGGCTGAAATAATCTGGACTGAGCCAGCGCTATCCGACCTCAATGATATCGCTGAATACATCGCACTTG AAAATATCGTAGCTGCAAAACAATTGGTTCAAGCGATCTTTTCTAAAGTCGAGCGCTTAGAGGCTTTCCC TGAATCGGGTCGCATTCCGCCTGAACTAGAACATCTAAGTTATCGTGAAGTTGTAGTTAATCCGTGCCGT ATTTTCTATAAACAAGACGGCGACAAAGTATTTATTTTGTTTGTTATGCGTGCTGAGAGAGACTTGCGTA AGTTCCTATTGAGCAAGCAATAA
>gi I 27363490: 2475061-2475318
ATGAAAGTAGAACTAGTTACATCACTCAAACGCCAAGCAACAAAGATCCTTGCCGATCTCCACGACACTA AAGAACCAGTGTTAATTACCGAACATGGTAAGCCATCGGCATATCTGGTTGATGTTGATGATTACGAGTT TATGCAAAATCGTTTAGCGATTCTTGAGGGGATTGCACGAGGTGAACGTGCATTAGCTGACGGTAAAGTG GTGAGTCACGATGAAGCCAAGGACAAAATGTCAAAATGGCTGAAATAA
>gi 127363490: 2475306-2475608
ATGGCTGAAATAATCTGGACTGAGCCAGCGCTATCCGACCTCAATGATATCGCTGAATACATCGCACTTG AAAATATCGTAGCTGCAAAACAATTGGTTCAAGCGATCTTTTCTAAAGTCGAGCGCTTAGAGGCTTTCCC TGAATCGGGTCGCATTCCGCCTGAACTAGAACATCTAAGTTATCGTGAAGTTGTAGTTAATCCGTGCCGT ATTTTCTATAAACAAGACGGCGACAAAGTATTTATTTTGTTTGTTATGCGTGCTGAGAGAGACTTGCGTA AGTTCCTATTGAGCAAGCAATAA >gi|27363490:2586585-2586866
ATGAGCCGTATCCACTTTGACCAAGATATTCAGCCTTTGTCTGAATTTCGTGCTGGCGTAACGTCATTTA TTAAACAGATTAACGAAACTCGTAGACCATTAGTAATCACACAACGTGGTAAGGGTGTTGCGGTTGTCCT TGATGTTGCGGAATATGAAGCAATGCAGGAGAAGATCGAGTTACTGGAAGAAATGCGTACTGCTGAAGCA CAATTAGCTTCAGGTTTAGGTGTTTCCAATGAAGACGCTCGCGCTCAAGTGTTGGGGCGTATTAAGAAAT GA
>gi I 27363490: 2586863-2587150
ATGAAAGTAGTCTGGTCACCACTAGCATTACAAAAGTTAGGTGATGCAGCCGAGTTTATTTCACTGGATA
ACCCAGTGGCAGCAGAAAGCTGGGTTAATGAGGTTTTCGATAAAACCGAACTTCTCTCAAATATGCCTGA AATGGGGCGAATGGTTCCTGAGTTACCTCATACTAATTATCGTGAAATCCTTTTTGGCCACTACCGAATC ATATATAGCCTCAGTCATGAAATTCGTGTCCTGACAGTAAGAAATTGTCGTCAAATGCTAACGGAAAGTG ATGTGTAG >gi|27366463:1626223-1626507
ATGGACACTAGAATTCAATTTCGTGTTGATGAAGAAACAAAACGCCTAGCTCAACAAATGGCTGAGAGCC AAGGTCGCACTCTTAGTGACGCATGCCGTGAACTTACTGAGCAACTCGCTGAACAACAAAGAAAAACATT GTCTCACGATGCATGGCTAACTGAACAAGTAAATCTAGCATTTGAGAAGTTTGACTCAGGAAAATCCGTT TTCATTGAGCACCAAACTGCTAAATCTCGAATGGAAGAGCGCAAAGCCAGAATCCGTAATCGAGGTAAGC AATGA
>gi | 27366463 : 1626504-1626782
ATGATTTTATGGGAAGAAGAGTCACTTAATGATCGTGAAAAGATCTTCGAGTTTCTCTATGACTTCAACC CTGATGTGCCAGAAAAAACTGACAACCTCATTGAAGCAAAAGTAGAAAACTTGCTTGAACAACCTTTAAT GGGTGTACAACGAGATAGCATCCTCGGTCGATTACTCATTATTCCTGAGATTTCGATGGTTATCTCTTAC TGGGTCGAGGGCGATATCATCCGAGTTATGCGTGTCCTCCACCAGAAACAAAAATTCCCTACGGATTGA
>gi | 21229478 :c74344-73967
GTGCAGTTGCAGACCCATAACCAGACCCGTGTGCTGGCAACCAAGGCGAACGCGCCGCGCCGGTTTGGCA GCTTCGAAAGTGCGTTGAAGGTCTTGCGCGAGATGGGCATGCCATTGGACGTGCTTCATGTGGACGCTGC GCGGTGGGACGCCGAGGGCGGCAAGACGAAGCGCCGGCCTGAACGCTCCGAGGCGATGAATGTCAAGGAG TTGGACGCACGCTATGCGGTGTCGCTACGCACCCAGACTGAGCATGCCCTGGCCGACCCCCGCCCCGCAC TCTCCAGCGCACAGGCGAAGCAGCAGATGGAGACGCTCAAGACGCAACAACGTGCGGCGCTTGAGGCAGC ACTGGCTGCAAAGGGCACGCGTGCGTGA
>gi I 21229478 : C73970-73653
GTGAGCGTGGCCTGGAAGCAGAGCGCGCTGGATGCGCGCACCGCATTGCTCACCTCAGCACTGGCGCGCG CGATCGAAATCCCCGACCCGCAGATGTATTCCGCCGCATGTGAACAGGACGACCGGATCGAAACCGAGGG CGACGCGCTGGATGGTGCCGCCATCTATCACTCTGGGCCGCTGCCGGGAACGCGTTTGACCACCTGCCAG GACGGCAGATATCTCTTGATCTACACACGCGACGGCGACGATGTGCTGATCCTTGTGCTTGTACCTGCGC GCTCTGATGGGAAGCCGACGTCGTCAGGCGATCAATAG
>gi I 21229478 : 1226846-1227109
ATGAAATCCGCATCACTTCCATCGCTCCGGGTAGACCCGGCGCTGCGCGAAGCGGCCGAAGCCGTGTTGC AGGAGGGTGAGACGCTTTCCAGCTTTGTCGAGCACTCCGTGCGTGCCCAGGTGCAGCAGCGCCAGCAGCA GGAAGCCTTCATTGCCCGTGGGCTGGCTTCGCGTGACAGCGCCAAGGCATCCAACCGGTACATCGAGGCG AAGGATGTGCTGGCCGGGCTGCAGTCCCAACTGGACAAGGCGCGCAAGGGCTGA
>gi I 21229478: 1227116-1227424 GTGGGATATTCCGTCCGCTTCACTCAGTACGCGCGCAACGATCTCGCGCGTCTTTACGACTGGCTGCTAC AGCGTGCCGAAAGCGGCTTCACCGTGGTCGAGCGCGCGCTGCAGGCCATCCGCGACGGCGTCACCGTGCT GGCACTTGCCCCGTTGAGCTGCCGCAAGGCGGTGCCGGCAGACCCGTTCTTGCGGGAGTTGGTGATCGGC TTCGGTGCCAGCGGCTATGTGCTGCTGTTTGAGGTTGAAAGCAATCAGGTCGTCACCGTTTTGGCAGTCA GGCATCAGCGTGAAGACGACTATCATTGA
>gi I 21229478: 1183923-1184216
ATGCCGCTGCCGGGAGGCACACTTTGGCAATCTTTGCCATCGGGTCGCTGCATGGCCACCATGAACATCT CGCTCCCGGACGAGCTCAAGGAATTTGTCGACCAGCAGGTCCTGGAACATGCTTACGGCTCGAGCAGCGA ATATCTGCGCGAGCTGATCCGTATGCAGCGTGATGCGCAAAGCCTGCGCGCGCTGTTGCTGGACGGCGCA GAGTCCGGGCCTGCTGTTGCGATGGAGGCCGACTTCTTTGACAGCATGCGCGCGCGTGCGCGTCAGCGCG CTGCCGGAAAATGA
>gi I 21229478: 1184213 -1184530
ATGAAGCCGGCGCGCTGGCGCCCCTTGGCGCTGCGCGATGTCGACGAGGCAGCCGCCTGGTACGGCGCCG AGGGCGGGCTTGCGCTGGAATTGGCCTTTACCAAAGCACTGGAGTCGGCGGTGACCACGCTCATGCGCAA TCCGGCGGCCGGTTCTAGCCGCCACGCGGTGGTGCTGAAGCTGCCGCAGATTCGTGTCTGGCCGCTCAAG CGGTTTCCCTATCTGCTGTTCTACAACGAGCGCGCAACCGACATCGTCATCTGGCGTGTCCTGCACATGC AACGCGATATTCCTGCGTGGATGAGCGCACATCCGTAA >gi|21240774:1291803-1292063
TTGCCATCCGGAGGCGGTATGGCCACCATGAACATTTCTTTGCCTGACGAGCTCAAGCAGTTCGTCGATC AGCAGGTGGCGGAGCATGCTTACGGTTCCAGCAGCGAGTACTTACGTGAGTTGATTCGCAAGCAACGCGA TATCGAACAGCTGCGTGGTGTGTTGCTTGGTGGAGCGAACTCCGGACCGGCAGTGGCGGCCGAGGCTGGC TTCTTCAACGCGATGCAAGCGCGTGCCAACGCGCGTGCCGGCGAGCAGTGA
>gi ]21240774: 1292060-1292236
GTGAAGCCTGCGCACTGGCGTCCGTTGGCGCTGCGCGATGTCGAGGCCGCAGCCGCGTGGTACGGCGAAC AGGCGGGGCTGGAGGTCGAACTGGCGTTTGTCGACGCACTGGTATCGGCGGTCGACATGCTCGTGCAGCA TCCTAGCGCTGGTGCAAGTCGCTATGCGGTGATGTGA
>gi 115836605 : C1967251-1966979
ATGAAGGAGCAACCGCACCAGTCCGAGGGCATCCCGTCGGCCTTTACCGGCGAGAGTCGGCGCGTTGCCG ATTTCCTGCTGGCATGGTGGAACGTCGACAGTTGCGGAAGCTTCGACCTTACCGCGCTATGGGGACTGGG CGATGCAATCACGGTCGACATGACTACCGTGTTTACCTGCATCGCCCGTGTCAGCAAGTACCCCGACAGC CTGGGTTATGAAGCAGACTTCAAGGCCATTTTGCGCCAATGGCGGCCCGAGTCAGCCTACTGA
>gill5836605:cl966975-1966667
ATGGCGAAGGCAAAGACGCCCTACCGTATCAAGTGGCGGCCCAAAGCCAGTGAAGATTTGCGCGACATCG TTCGATACATCGGCAAAAACAACCCGACAAGGGCGCGTAGTTTCGGCCAGGAACTACGTGATAAGACCTT GCCGCTTGCGCAGCACCCGGAGATAGGCCGCACTGGGCGGCCCGGCCTGCCGGACTATGTGCGTGAGCTG GTCACTCATCGGAATTACATCGTGTTCTATCGCGTGCTGGACGAAACTCGCACCGTGGAAATTTTGCGAG TGAAACACGTGGCGCAGCAAATGCCGTGA >gi 115836605.-C1970750-1970472
ATGGGCATGGCAACCTCCATCAAGCTTGATGATGAGCTGAAAGGACGTGTGCAGCATCTGGCCGATGTTC GCCGCCGCACTTCGCACTGGATCATGCGCGAGGCGATCGCGCAGTACGTTGAGCGTGAGGAAAAGCGTGA GACGTTTCGGCAGGACACGCTGAAGGCATGGGAAGAGTTTCAGGCGACCGGCCTGCACGTGACGACCGAA GAAGTCGAGAAGTGGCTTTCGAGTTGGGGCACTGAAAATGAATTGTCAGCGCCCGTATGCCACGGGTGA
>gi|15836605.-cl970484-1970188
ATGCCACGGGTGATCTTCGCTCCCGAAGCCATCCTGAACATTCAACGATTGCGGAATTTCCTGCATCCGA AGAACACCGATGCCGCAAGGCGGGCCGGTGAAGCCATCATGCGGGGTGCGCGGATGCTTGGAGCGCAGCC ACATATCGGTCGTCCGGTTGATGATATGCCCGATGAGTACAGGGAATGGCTGATTGACTTCGGAGATAGC GGTTATGTGGCCCGCTACCACATTGATGGCGATACCGTCACGATCTTGGCTGTTCGACACCATAAGGAAG TGGGATACACCAGCTGA
>gi | 15836605 :cl973520-1973260
ATGGCTGCGAATCAGCTTGTGCAAGCGCGCATCGATGGTGCGATCAAGGCAGAGGCAACCGTGGTACTGG CGGCGATGGGGTTGACCATTTCCGATGCGGTTCGGCTGTTGCTCACGAAGGTGGCTCAGGACAAGGCGTT GCCTTTTGAGCCGCTAATCCCTAATGCCACCACCATCAAGGCCATGCGGGAGGCTCGTGCAGGTAAGGGC GAGACCGTCACGCTGGGTGAACTTCGAGCGACTATCCGTGCGGGAAATTAA
>gi) 15836605 :cl973273-1972992 GTGCGGGAAATTAAACAACTCGGGCAGTTCAAACGTGACTTGAAGCGCGAAGCCAAGGGGCAGCATCGCG CCACGCTGGAAGACGACCTGCTGCCCGTGATCGATGCCCTTGCTAAAGACATGCCCCTTGAGCCTCGGCA CAGAGATCACGCACTGCTTGGCAACTGGAAAGACCTTCGTGATTGTCACATCAAGCTCGACCTAGTCCTG ATCTACACGCGGGTGGATAGCAAAACGCTGACGCTCGTCCGTCTCGGCTCCCATGCGGAACTCGGGCTGT AG
>gi I 28197945: 1383077-1383373
TTGGAGATGCCCATTGGGCGATCTCATCTGCGATACAATGAATACATGCATCTAAGTGGGGGTTTTGACA TGGCGACTTCGATTCGCCTCTCTCCTGAAATGGAGCAAAGGCTGAACTCTCTTGCCTCCCATACGGGACG CACAAAGGCTTACTACCTACGTGAAATCATTGAGCATGGCATTGAGGAAATGGAGGATTACTACCTTGCT GCCGATGTGTTGGAACGTGTCCGTCATGGACAAGAACAGGTGCATTCTGCTGCCGATGTGAGGAAAACGC TTGGCCTGGACGATTGA
>gi ]28197945: 1383357-1383623
TTGGCCTGGACGATTGATTACACCGACACGGCCAAGCAGCAGTTACGCAAGCTCGACAAGCACATGGCGC GGCGCATTGTCGATTTCATGGATGAGCGCATCGCCGGACTAGAAAACCCACGCAGCAGTGGTAAAGCATT AACCGGACCACTTGGCGGCTTTTGGCGTTATCGTGTTGGTGATTTCCGGGTCGTCTGCGCCATTCAAGAT AGCGTTTTGCGCGTCCTTGTAGTGCGTGTTGGTCACCGGGGTGAGATTTACCGATAG
>gi 116271976: 757421-757717 ATGGCACTTACTAATTCCTCTATCAGTTTTAGAACAGTTGAGAAAACAAAATTAGAAGCTTATCAAGTTA TTGAACAATATGGACTTACCCCATCACAAGTATTCAATATGTTTTTGGCTCAAATTGCCAAGACTCGCTC TATCCCTGTTGATTTGAATTATCTTCGCCCAAATAAAGAAACCCTAGCAGCTATTGATGAATTAGATAGT GGTAACGCAGAGAGCTTCTTTATTGAAGCTAGTGAAAATTATTCTGCCGAAGAATTTACAAAACGCATTC TTAATGGTGGTCAATAA
>gi 116271976 -.757717-758025
ATGTCAGAAGAGAAGCCATTAAAAGTGAGCTATTCAAAACAATTTGTAAGAGATTTAACTGATTTAGCTA AACGTTCCCCCAATGTGTTAATTGGCTCAAAATACATTACTGCAATACACTGTTTATTAAATCGTTTACC TTTACCCGAAAACTACCAAGATCACGCATTAGTAGGAGAGTGGAAAGGTTATCGAGATTGCCATATTCAA GGTGATTTGGTACTGATTTACCAATACGTTATACAGGATGAATTTGATGAATTGAAATTTTCTCGTTTAA ATATACACTCACAAACCGCTTTAAAATAG
>gi 115595198 :cl44072-143845
ATGAGCACCGTAGTCTCGTTCCGCGCCGATGACGCCCTGGTCGCGGCCCTCGACGAACTGGCCCGCGCCA CCCACCGCGACCGACCCTACCACCTGCGGCAGGCGCTCGCGCAGTACCTGGAAAGGCAGCAGTGGCAGGT CGCTGCCATCGATGAAGGCTTGGCCGATGCCAATGCCGGTCGCCTGCTGGAACACATCGAGATCGAGAAG CGCTGGGGGCTGCAATGA
>gi 115595198 :cl43848-143567 ATGAGCCTGAAGTGGACCCGCAAGGCGGCCGCCGACCTGGACGCCATCTACGACCATTACGTCGTGCTGA TCGGCCCGGAAAAAGCTCTGAAAGCCGTTCAGGACATCGTCGAGCAGGTGAAACCGCTGCAGCAGGTAGC CAACCAGGGGGCAGGGCGGCCCAGCGAGGTGCCAGGCGTACGCACCCTGACCCTGGAGCGCTGGCCGTTC AGCGCCCCGTTTCGGGTTAAAGGCAAGGAAATCCAGATTTTGCGCATCGACAGAGTCGAAATTACCCCCT GA >gi I 26986745: 2846687-2846959
ATGGCCACTTCCATCAAAATTGACGACGATCTGAAAGGTCGCATTCAGCATTTGGCTTGTTTGCGCCAGC GCTCATCTCACTGGATCATGCGTGAGGCGATCACCCAGTACGTCGAGCGTGAGGAGGCCCGTGAGAGCTT CAAACAAGAAGCGCTGGCATCTTGGGCTGCATACCAGGAAACCGGCCAGCACTTGACCGGCCAGGAGGCT CGCACCTGGCTTGGTAGTTGGGGTACAGATGCTGAGGCAGAGTTACCCAAGTGCCACGACTGA
>gi I 26986745: 2846947-2847240 GTGCCACGACTGATCGTCACTGAAGGCGCGGCGAAGGGCCTGGAGCGTTGCCGGCGATTTCTCTCCGATA AAGATCCGCAGGTCGCACGCCGTGCTGCACAGGCAATCGAGCGCCAATTCGCTCGATTGGAGGAAAGTCC GGAAGTAGGGCGTCCTTTTCCAGATCTGCCAGAGCTGCGTGAGCTCATCATCGAGTTTGGTGACTCAGGT TACGTCGCGCTGTACCGCTATGAGCGCGCAGATGACACCGCCTATGTCTTGGCCTTTCGCCATCAAAAAG AAGCTGGCTACTGA
>gi | 26986745 :c3343003-3342719
ATGCACGTACTGACTTTTAGCCAGGCTCGCGCCGAACTGAAGCAGACAATGGATGATGTTTGCCGGGACC ATGAGCCCGCCGTAATCACGCGACAGCGTGGCGAACCCGTAGTGATGATGTCTCTGGAGGACTACAACGG GATGAACGAGACCATTCACCTGTTGGGATCGTCCAAAAACGCTTCGCGCTTGCGCTCATCCATCGCTCAG CTCCGGGACGGCCAGGCCTTGACGAAGGAACTGGACCTCAATGAGCAAGAACCAGAAGCAGCGGAACAAG AATGA
>gi | 26986745 : C3342699-3342445 GTGAAGTTCACCAAGGAGGGCTGGGAGGATTACTGTCACTGGCAGAATGCCGACCTCACCATCCTCGGCA ACATCAACCGCCTAATTGACGTGTGCCTACGCACCCCCTTCACGGGTATTGGCAAGCCTGAGCCGCTGAA AGGCGATTTATCTGGCTTGTGGTCCCGCCGCATCACCCGTGAGCACCGCCTGGTCTACTTCTTCGAGGCC GGTATGCTCACCGTTCTGCAATGCCGCTACCACTACGACGACTAA
>gil28867243:c367374-367096
ATGCAGGTTTTATCATTCAGCCAGGCTCGCGCCGGTTTAAAGCAAGCGATGGATGATGTGTGCCGGGACC ATGAGCCAGCACTCATCACACGCCTGCGCGGTGATCATGTAGTCATGCTTTCCCTTGATGACTACAACTC GATGTCAGAAACCATGTACCTGCTAGGCACAGAGGCCAATGCGAAGCACCTGCGGCAATCCATTGCGCAG CACAAAGCCGGAAAAGCCTTCGTAAAGGAAATTTCACTGGATGTCACAGGGTCAGAAACAGAAGAATAA
>gi I 28867243 :c367070-366822
GTGCATTTCACCCTATCGGGATGGGATGATTACACTCACTGGAAGGATGCCGATCAGGCAATTTCCCTGT CAATAGACAGCCTCATTAGCCAGTGCCTGCGTACGCCGTTCAAAGGCACCGGTAAGCCGAGACCACTGAC CGGCGATTTAACCGGGTACTGGTCCCGCCGCATCACCAAAGAGCATCGTCTTGTCTACTTCTATGAGGGC GGTGTACTGACAGTCATCGCGTGTCGCCATCATTACTAG
>gi | 28867243 : 4143187-4143426 ATGTCCGTTATGTCTCTACGCCTGCCGGACGAGATGGCAGATACCCTTGCACACCTCGCCAAAGCGACCG GCCGCAGCAAGTCGTTTTTGGCCTTGAACGCATTACGTGAATACTTGACTCGCGAAGCCTGGCAGATTGC CGAAATTCAGCGTGCAATTGAAGAAGCAGACGCGGGCGAGTTCGCAAGTGAAGAAGATGTAAAGGCAGTG ATGAATAAATGGGCGAACAATGCAGGTTGA >gi|28867243:4143416-4143700
ATGCAGGTTGAATGGCTAAAAACAGCATTAAAAAACCTGGATGATGAAGCCGCCTACATCTCGCTAGAAA ATCCGGCTGCTGCGGTTGCTTTCGTAGAAGCACTACAAATAAGCGTAAAGCAGCTCGCAAGCTTTCCGGC CCTAGGCCGAGAGGGACGAATTGCTGGCACCAGAGAATGGCCTTTGCCAGACTGGCCTTACCTGATTCCA TACCGCATCCGTAACGGCCGATTACAGGTTCTGCGGATTTTCCACACGAGAAGGCAGCCGCCGTTGGTGT GGTAA
>gi I 28867243 :c6119549-6119310
ATGGCGTCTATTAATGTTCGTATCGACGACGATCTCAAAGCTCGTGCTTATCTCGAGCTTGAAAAGCTTG GCGTCACTCCTTCGGAATTGCTGCGTCAAACCCTGCAGTACGTGGCAGAGCGCGGCCAGCTACCGTTCAA GACCGTACTGATGACCGAGGAAGACGAAGCGTTGCTTGCAACAGTGCGCGAGCGCCTTGCGGCTCCGCAA CGGGTCAAGGTTTCACTGGATGACTTATAG
>gi I 28867243 :c6119320-6119030
ATGACTTATAGCCTCGAGTTTGATGCGCGAGCTCTGAAGGAGTGGCGCAAATTAGGGGATACCGTGCGTC AGCAGCTCAAGAAAAAGCTGGCTACGATTCTGGTTGCACCGCGCGTTGAAGCAAATCGTCTGCATGCGTT GCCCGACTGCTACAAAATCAAACTGCGCAGCAGCGGCTATCGGCTGGTTTATCAGGTTATTGACCAAGAG GTTGTGGTCTTCGTGGTTGCTGTGGACAAGCGTGAGCGAGATGAGGTTTACCGTAAGGCGGCTGATCGGT TGAGTGGGTAA >STM1551, gi|l6763390:cl627087-1626839
ATGGCATTTCAAATTTTAACGACTACTGCAGCAAGCATTACAGAACTGAAACGTGATCCAATGGGAACTT TCAATGCCGGAGATGGCGCTCCAGTTGCCATTCTTAACCGCAATGAACCGGCTTTCTACTGTGTGCCTCC GGCACTTTATGCTCATCTTATGGATATTCTTGAGGATGAAGAACTCGGTCGTATTATCGATGAGCGTGCG AATGAACGCGTCATTGAGGTCAACATTGATGACTTATAA >STM1550, gi 116763390 :cl626849-1626565
ATGACTTATAAGCTGGCATTTAACGAATCAGCACTAAAAGAGTGGAAAAAACTGGGTCATACCATACAGG AACAGTTTAAAAAAAAGCTAAGGGAACGGCTTGAAAACCCTCGGGTTCCGGCTTCTCAATTACATGGAAG AAAGGATCAGTACAAAATTAAGCTGCGTGGTGCAGGATACAGGCTGGTGTACAGCGTCGAAGATGAAATT ATCACGGTAACTGTCATTGGTGTTGGAAAGCGTGAAAATGATGCCGTCTACAAAATGACACGACACAGAA GCTAA
>STM3517, gi 116763390 :c3680231-3679971 ATGGCTGCAAATGCGCTTGTTCGTGCCCGTATCGACGAAACGCTGAAGGACCAGGCGGCAGATGTCCTGG CTGAAATGGGGTTAACCATTTCTGATTTGATACGGATTACACTGACTAAAGTTGCGCGTGAAAAGGCATT GCCTTTTGATTTGCGCATACCCAATGAGTTAACGTCCCGAACGATAGAAAATAGCGAAGCTGGCGTTGAT ATTCATAAAGCCAAAGATGCTGATGATTTGTTTGACCAGTTAGGGATCTGA >STM3516, gi|l6763390:c3679968-3679693
ATGGGGCAAAGGGAAATTGAATATTCGGGACAGTTCCAGAAAGATGTAAAACGGGCACAAAAGCGTCATA AGGATGTCGGCAAACTTAAAACACTTATGACGCTTCTGATTCACCACCCTTTTCCCCTTCCTGCCATTTA TAAAGATCACCCGTTACAAGGTTCATATAGCGGATACCGGGATGCCCATATTGAGCCTGACTGGATTCTT ATTTATAAGATAACGGATGAATGCCTGCGATTTGAACGAACAGGAACGCATGCCGATTTATTTTAA
>STM4449, gi | 16763390 : 4691448-4691690
ATGGCCACGCTGAACGTCCGTCTGGATGACAAACTCAAAAATGAGGCTTATGCCGTGCTGGAAAAACTGA ACATTACTCCAACGGAAGCCGTGCGATTACTGTTCCAGTACGTCGCGGAAACGGGGCGCATGCCAGTGAA AACCGTCACTCTTAGCGACAGTGAAGATGCATTGATTCAGACAGTTCGGGAGAGGCTGTCTAGTCCGCAA AAGGGAATCAAGGTTAGTCTGGATGACTTATGA
>STM4450, gi 116763390: 691680-4691964
ATGACTTATGAACTGGAATTCGACCCGAGGGCCTTAAAAGAGTGGCATAAGCTGGGCGATACGGTGAAGG CTCAGCTTAAGAAAAAGTTGGCTGATGTGCTATTGAACCCCAGAATCGACTCTGCCCGTTTAAACGGTCT TCCTGACTGCTATAAAATTAAGCTTAAATCGTCCGGTTATCGTCTGGTGTACCAGGTTCGGGATGACGTT GTGATTGTGTTTGTTGTTGCGGTCGGCAAGCGAGAACATTCAGCCGTCTATCACGATGCAAACAAACGGC TTTAG
>gi 116758993: 4647525-4647767 ATGGCCACGCTGAACGTCCGTCTGGATGACAAACTCAAAAATGAGGCTTATGCCGTGCTGGAAAAACTGA ACATTACTCCAACGGAAGCCGTGCGATTACTGTTCCAGTACGTCGCGGAAACGGGGCGCATGCCAGTGAA AACCGTCACTCTTAGCGACAGTGAAGATGCACTGATTCAGACAGTTCGGGAGAGGCTGTCTAGTCCGCAA AAGGGAATCAAGGTTAGTCTGGATGACTTATGA >gi| 16758993:4647757-4648041
ATGACTTATGAACTGGAATTCGACCCGAGGGCCTTAAAAGAGTGGCATAAGCTGGGCGATACGGTGAAGG CTCAGCTTAAGAAAAAGTTGGCTGATGTGCTATTGAACCCCAGAATCGACTCTGCCCGTTTAAACGGTCT TCCTGACTGCTATAAAATTAAGCTTAAATCGTCCGGTTATCGTCTGGTGTACCAGGTTCGGGATGACGTT GTGATTGTGTTTGTTGTTGCGGTCGGCAAGCGAGAACATTCAGCCGTCTATCACGATGCAAACAAACGGC TTAG
>gi I 29140543: 4630414-4630656
ATGGCCACGCTGAACGTCCGTCTGGATGACAAACTCAAAAATGAGGCTTATGCCGTGCTGGAAAAACTGA ACATTACTCCAACGGAAGCCGTGCGATTACTGTTCCAGTACGTCGCGGAAACGGGGCGCATGCCAGTGAA AACCGTCACTCTTAGCGACAGTGAAGATGCACTGATTCAGACAGTTCGGGAGAGGCTGTCTAGTCCGCAA AAGGGAATCAAGGTTAGTCTGGATGACTTATGA
>gi 1 9140543: 4630646-4630930
ATGACTTATGAACTGGAATTCGACCCGAGGGCCTTAAAAGAGTGGCATAAGCTGGGCGATACGGTGAAGG CTCAGCTTAAGAAAAAGTTGGCTGATGTGCTATTGAACCCCAGAATCGACTCTGCCCGTTTAAACGGTCT TCCTGACTGCTATAAAATTAAGCTTAAATCGTCCGGTTATCGTCTGGTGTACCAGGTTCGGGATGACGTT GTGATTGTGTTTGTTGTTGCGGTCGGCAAGCGAGAACATTCAGCCGTCTATCACGATGCAAACAAACGGC TTTAG
The following sequences were found in a later supplementary search:
>gi I 23464628: 1284380-1284766
ATGCGAATCAGGCAGGCGATCTGGTCGTTGCGGGAACGGCCGGCCCTGAGCTTGCCGCCGAGTTCATCGC CGGCAATGTCAATCAGACCGCGTTCGAGGGCGGTGGCCTCGTCCTCATCGTCTTCGATGGGGGCGAAGGA GCCATCGTCAACGTGGCGCTGGAGCGTGTCGAGCGCATCCTCCATGCGCTGCAGCTCGTCGGCGGTCAGA AGTCCCGCACGGCCGAGAGCACGGGCGTGGGCGCGGGAACCGGCGATGTCGTCGTCGGCCAAGCGCCAGT CGAACTGCGTGGACTTGGACAGTCGGGCCAATTCCGGCGACGGACCAGACGTGAAGCGACCACCCCACAG GGCCAGATGTTCGTTGTTCTCAGTCATGAAGGCTCCTTGA
>gi 123464628: 1284380-1284766 ATGCGAATCAGGCAGGCGATCTGGTCGTTGCGGGAACGGCCGGCCCTGAGCTTGCCGCCGAGTTCATCGC CGGCAATGTCAATCAGACCGCGTTCGAGGGCGGTGGCCTCGTCCTCATCGTCTTCGATGGGGGCGAAGGA GCCATCGTCAACGTGGCGCTGGAGCGTGTCGAGCGCATCCTCCATGCGCTGCAGCTCGTCGGCGGTCAGA AGTCCCGCACGGCCGAGAGCACGGGCGTGGGCGCGGGAACCGGCGATGTCGTCGTCGGCCAAGCGCCAGT CGAACTGCGTGGACTTGGACAGTCGGGCCAATTCCGGCGACGGACCAGACGTGAAGCGACCACCCCACAG GGCCAGATGTTCGTTGTTCTCAGTCATGAAGGCTCCTTGA
>gi 115644634:1067156-1067470
ATGTCAAATATTATTACAGATTACTCGCAATACAATGAAAAGCAACTGCACAATTTCTTAAACTCCATTG AAAAACAATTGCTTAAGGCAGAAAGGGATAAAAATAAGGCGATAAAAAAAATCCAAGAGTGTGAATTGCA AGAACGAATGATCAGACAAGTTTTAGCCCAAAAACATTCTCAAGAAAAAGAACCCACACCAAGTTTGTTA AATACGATCGCCTCAAAAGATGACCCAGAATACGATGTTTCGTTTGGAGACTTCAATGATTTTTTACAAA TAGCAAAACAAGAAAGAGAAAGGCATAATGCTTAA
>gi | 15644634 : 1067530-1067742
ATTACAGAGAGCGATGTTACAAGCATTGTTGATTGCCTAAAAAAACAAAAACCACTCCAACAAAAATATT GCGACCATGCCTTGAGTGGTAATCTTAAAGGGCTGAGAGAGTGTCATGTCAAGCCAAACTTGTTATTGAT TTATGAAATCAAAAAACAAGAAAATGAACTTGTTTTATTGCGTCTAGACACTCATAGCGAGCTATTTAAA AAGTGA
>gi | 13470324: 250975-251220 ATGGCCATGACCGCCTTCACCGTGAGACTGAGCGACGACACCACCGACAGACTGGACCAG CTGGCCGAGAAGCTGGACAGAAGCAGAAGCTACGTGGCCGCCCAGGCCATCGAGGACTTC GTGACCAGACAGGAGTGGCAGCTGGCCGAGATCGAGGCCGGCCTGGCCGAGGCCGAGAGA GGCGAGTTCGCCAACGAGCAGGAGCTGGCCGCCGTGATCGCCAAGTACATCAAGCCCGCC GGC
>gi 113470324 : 251223-251513
ATGAGCCACAAGACCATCAGATGGACCAAGAGAGCCCTGAGAAGACTGGACGAGATCGGC GCCCACATCGAGAAGGACAGCCCCGAGGCCGCCAGCAGAGTGATCGCCAGAATCCTGAGC GCCGCCGAGCTGCTGACCCAGCAGCCCGCCATGGGCAGAGTGGGCAGAATCAAGGCCACC AGAGAGCTGGTGCTGGTGGACATCCCCTACATCGTGCCCTACAGAGTGAGCGGCAACACC GTGGAGATCCTGACCGTGATCCACGCCGCCCAGCAGTGGCCCAGAACCCTGA
>gi I 20088899:3293160-3293339
ATGACCGAAACGGAGTTGCTAAAGAAAATATCGGACGACCTAGATTTCCTGAAAACAAAAATTCTCGAAA TCGAGGAAAGCCTTGAGCTGATTGACAGCGAGCTGCACCCTATAAGAGAAGAATACAAGAGACTGGACGA GATCAAAAAGCAAAGAGGGAACTATTTCAGGAAGCGAATTTGA
>gi I 20088899: 3293160-3293339
ATGACCGAAACGGAGTTGCTAAAGAAAATATCGGACGACCTAGATTTCCTGAAAACAAAAATTCTCGAAA TCGAGGAAAGCCTTGAGCTGATTGACAGCGAGCTGCACCCTATAAGAGAAGAATACAAGAGACTGGACGA GATCAAAAAGCAAAGAGGGAACTATTTCAGGAAGCGAATTTGA
>gi 115839372 :cl388731-1388510
ATGGCTGTTGTCCCACTGGGCGAAGTCCGCAATCGCCTCTCTGAGTACGTCGCCGAAGTTGAGCTGACAC ACGAGCGCATCACGATAACCCGGCACGGTCATCCGGCGGCGGTATTGATCTCGGCCGATGACCTGGCGTC CATCGAGGAAACGCTGGAGGTGCTACGCACCCCTGGCGCCAGCGAGGCCATTCGTGAAGGCCTCGCCGAT GTTGCCGCAGGCGCT
>gi 115839372 :cl388604-1388173 ATGACCTGGCGTCCATCGAGGAAACGCTGGAGGTGCTACGCACCCCTGGCGCCAGCGAGGCCATTCGTGA AGGCCTCGCCGATGTTGCCGCAGGCGCTTCGTGAGCAACGACGAGATCCGCAACCGTTACACCGCGCGGT GAGCGACGACCATCCCTACCACGTGGCGATCACCGCGACAGCGGCACGCGACCTGCAACGCTTACCCGAA AAGATCGCCGCCGCATGTGTCGAGTTTGTTTTCGGACCGCTGCTTAACAACCCGCATAGGTTGGGCAAGC CGCTGCGCAATGACCTTGAAGGCCTCCACTCAGCCCGCCGCGGTGATTACCGCGTCGTCTACGCCATCGA CGACGGCCACCACCGAGTCGAGATCATCCACATCGCTCGTCGCAGTGCCAGCTACCGAATGAACCCGTGC CGGCCACGTTAA
>gi 115839372 :3171692-3171970
ATGCGGATACTGCCGATTTCGACGATCAAGGGCAAGCTCAATGAGTTCGTCGACGCGGTCTCGTCGACAC AGGACCAGATCACCATCACCAAGAACGGTGCACCCGCAGCCGTTCTGGTCGGCGCCGACGAGTGGGAATC GTTGCAGGAGACGCTGTACTGGCTGGCGCAACCCGGAATCAGGGAGTCGATCGCTGAAGCCGACGCCGAC ATTGCCTCCGGCCGCACCTACGGCGAAGACGAGATCCGCGCCGAATTCGGCGTCCCGCGACGCCCCCACT GA >gi 115839372:3171692-3171970
ATGCGGATACTGCCGATTTCGACGATCAAGGGCAAGCTCAATGAGTTCGTCGACGCGGTCTCGTCGACAC AGGACCAGATCACCATCACCAAGAACGGTGCACCCGCAGCCGTTCTGGTCGGCGCCGACGAGTGGGAATC GTTGCAGGAGACGCTGTACTGGCTGGCGCAACCCGGAATCAGGGAGTCGATCGCTGAAGCCGACGCCGAC ATTGCCTCCGGCCGCACCTACGGCGAAGACGAGATCCGCGCCGAATTCGGCGTCCCGCGACGCCCCCACT GA
>gi I 24473558: 2237205-2237408
ATGTTAATTATGCATTGGACGCTCTCAGATATGTTTACTGAAGCTGGGGTTTATGTGAAGAAAAATGGAA
AATGGAGGATGTTTGCATTAGCCCACTATAAGTATGATAACCCCTGTAAATGGTTTAGCAATCTTTGCTG GTTTCATACTCCTATTAATTGTATATTATATTATTCACCAATATTATTTCTGATGAAATATTAA
>gi I 24473558: 2237456-2237773
GTGGTTTGTGAGAAGTGGGAATTAAAGTTCATGTTTAGGAAGAGGATAAATGACCTTGAAGAGTTATCAG AGTTTTTAGCTAGTGAATTTCCTCATGAAGAGGTAGTAATGTTGATCTTTGATAAGCTGTATTTGCTTAG GGAGGACCCTAAGAAATACGCTAGGGAGAAATTAAAGAATCAAACCGATAAGGACGGGAGGCCTTTATTC TCGATAGAAGTAACCGGAGATATAAGGATAATTTATAGTTTTGACTCAAAAGGTTGTACAGTTTTTATTT GGAGGATTGGGAAGCATAAGAAGGCTTACCGTTTCTAG >gi|l6329170:1620276-1620539
ATGGAAACCATTAATTATCAACAATTCTCTGAAAAACTGCCCACTTTGGTAGAAAAAATAGGTAATGAGC AAGAACCTCTCTGTCTAGAGCTTCCGAATTATTTACGAGCTGTTATTATATCTGAGCAAGATTACCGTAG TTTGATGGAAACTGTTTATCTGTTGAGTAACCCTGTTAATGCTGAAAAGTTATTAACTACCGCTAGTCGA TCAATTGATCAAGCTACATCGTGGACAAAAGTAAAAAATGACTTAGGACTATGA
>gi | 16329170: 1620276-1620539
ATGGAAACCATTAATTATCAACAATTCTCTGAAAAACTGCCCACTTTGGTAGAAAAAATAGGTAATGAGC AAGAACCTCTCTGTCTAGAGCTTCCGAATTATTTACGAGCTGTTATTATATCTGAGCAAGATTACCGTAG TTTGATGGAAACTGTTTATCTGTTGAGTAACCCTGTTAATGCTGAAAAGTTATTAACTACCGCTAGTCGA TCAATTGATCAAGCTACATCGTGGACAAAAGTAAAAAATGACTTAGGACTATGA
>gi 116329170 : 2074694-2074957
ATGAAAGCAATTACAACCACCCAAGCCAAAGATCATTTGGATGAATTAATTAATGCTGTCATTTCTGATC TAGAACCAACCATCGTTAGCAACAATCAAGGTCAGCAGGCGGTATTAATATCATTGGATGAATTTAATTC TTGGCAAGAAACCCTTTACTTACTCTCTAATCCAACCAACGCAGAACATTTAATGGCATCGATTAAGCAA GCTGAAACTGGACAGATCATTAAGCAAAAATTACCAGATTTATTGGAACTGTGA
>gi 116329170 : 2074694-2074957
ATGAAAGCAATTACAACCACCCAAGCCAAAGATCATTTGGATGAATTAATTAATGCTGTCATTTCTGATC TAGAACCAACCATCGTTAGCAACAATCAAGGTCAGCAGGCGGTATTAATATCATTGGATGAATTTAATTC TTGGCAAGAAACCCTTTACTTACTCTCTAATCCAACCAACGCAGAACATTTAATGGCATCGATTAAGCAA GCTGAAACTGGACAGATCATTAAGCAAAAATTACCAGATTTATTGGAACTGTGA
>gi|15836605:cl621371-1621075 TTGGAGATGCCCATTGGGCGATCTCATCTGCGCTACTATGAATACATGCATCTAAGTGAGGGTTTTGACA TGGCGACTTCGATTCGCCTCTCTCCTGAAATGGAGCAAAGGCTGAACTATCTTGCCTCCCATACGGGACG CACAAAGGCTTACTACCTGCGTGAAATCATTGAGCATGGCATTGAGGAAATGGAGGATTACTACCTTGCT GCCGATGTATTGGAGCGTGTCCGTCATGGACAAGAACAGGTGCATTCTGCTGCCGACGTGAGGAAAACGC TTGGCCTGGACGATTGA
>gi 115836605 :cl621371-1621075
TTGGAGATGCCCATTGGGCGATCTCATCTGCGCTACTATGAATACATGCATCTAAGTGAGGGTTTTGACA TGGCGACTTCGATTCGCCTCTCTCCTGAAATGGAGCAAAGGCTGAACTATCTTGCCTCCCATACGGGACG CACAAAGGCTTACTACCTGCGTGAAATCATTGAGCATGGCATTGAGGAAATGGAGGATTACTACCTTGCT GCCGATGTATTGGAGCGTGTCCGTCATGGACAAGAACAGGTGCATTCTGCTGCCGACGTGAGGAAAACGC TTGGCCTGGACGATTGA
>gi I 28197945 : 1298015-1298314
CTGTACCGATTGGCGCAGGTGGTCGATGCCATCAAGCGGCTTTCCGGTGTGCATGTTCATTCCGCGCATG CTCAGCAGCTTGGGGGGACTCACTGGGCGGTGTCCTGTGGCGGGTTTTCCGAAGGCTCAATGCACTTGGC AATGACGCAGAGTGAGTGCCTTGGAATTATTGAGCTACAATGTAGCTCATTCCTCACTGGGTATCGAAGG ATCGCACTATGTCTGCAAACGCAGTTGTCCGTGCCCGCGTTGACGCGCACATCAAAGAAGAAGCATCAAC CGTGCTGGCGACGATGGGCCTAA >gi|28197945:1298015-1298314
CTGTACCGATTGGCGCAGGTGGTCGATGCCATCAAGCGGCTTTCCGGTGTGCATGTTCATTCCGCGCATG CTCAGCAGCTTGGGGGGACTCACTGGGCGGTGTCCTGTGGCGGGTTTTCCGAAGGCTCAATGCACTTGGC AATGACGCAGAGTGAGTGCCTTGGAATTATTGAGCTACAATGTAGCTCATTCCTCACTGGGTATCGAAGG ATCGCACTATGTCTGCAAACGCAGTTGTCCGTGCCCGCGTTGACGCGCACATCAAAGAAGAAGCATCAAC CGTGCTGGCGACGATGGGCCTAA
>gi I 22123922 :c3400077-3399757
ATATTGATGAAAACGATCAAACACTATCTGACTCCCGAGGGACGGGATTTATACATGGAGTATTTGAAGA GTCTCCGTGATTCGATCGCTAAGGCAAAAATATCATCAAGAGTTAACCGGATCGCTTCGGGGAACTTTGG GGATCATAAGCCTTGCCGTGAAGGTGTCTGGGAACTTCGTATAGACCAGGGGCCAGGTTACAGGGTTTAT TACAGCCTTGTTGACGGTGAAGTCGTGTTGTTGCTTTTGGGCGGTGATAAGCGCTCGCAGAATGCCGACA TCGATCAGGCTATTGTGTGTCTTAAAGATTATTTAACGAGGTAA
>gi I 22123922 :c3399754-3399434 ATGATTATGGCCAAAGCCCGTTTACATGATGACGCTATGGTTCAGCTTCTTATGGAAGACCCTGAATTTG CGCAAGTATATCTGCATCAGGCTCTTCTAGATATTGATGAGGAAGGAGGGCAAGAAGCCTTTCTGATGGC CCTACGTCATGTAGTTGAGGCCCGAGGAGGGATGGCAAGTGTGGCTAAAAAAGCGGGTGTATCGAGAGAA ACACTGTACCGGACGTTATCACCTTCAGGTAATCCAACACTAAAAACACTGCTTAGTGTGGTATCTGCAA CGGGATTTCAGTTTTCACATCTTGCATCGATTACCGCATGA Nucleotide seguences coding for homologs of Phd-doc toxin-antitoxin pairs
24473558:1143830-1143531,15921403
>15921403_1142330-1143870_Ξulfolobus_tokodaii.fπa_10 [1500 - 1201] (REVERSE SENSE)
ATTAATTCGATATTCTTTGCTCTCTTAATAAAAATATATTTAATTATATTCGATATTATA
AAATATATATGGTTTTATTTGAATGGTACTGGTTTTGCTCAATTTTGGCTAATGTTATTA
GTCTCAGAAAAAAGAGATTCCCATACTGACTTAAACAAACTATTAGAAATCATTCATCAT
AATTTTAGGAAACATTTACAAGAAATAGACTTAGCTAAGTGTTATAAACGAATAAAGAAC
TTTATAACTAGTAGTCTTAAGTATAAGAACAAGCTATGTAGTTTAATAGTAGTTAACACT
>gi I 24473558 : C1143514-1143056
ATGGAGAACAAGTTAATGCAAATCTTGGAAGGATTATTAAACGAATTCGAAAAATGGAGAAGTAGAGAAA GCGATAGAGTACCAACTATAATACAAATCCACGATAGTATAACCAGAAATGATCCTAATACAGAACGTGG TATAGTCAACTTAGATACTATAGGTATTACAATATATTCTGCAATTGAGAACCTTAGTCTTTATCATGAT ATTAGTAGGAGTTTAGCAGTGTTAACATATCGTTTAATAACTTCCCATCCGTTCGTTGATGCGAATAAGA GAACGGCCTTCGTATTATTGTTAGACATCTTATATGAATTATTTGACAAGGAAATTCCTCAAGATTTAGA AGAAGAATTGATAAAGACCTTAGCTGAAGTAGCCGATAATCCGCCGGAAGAAGACGAGTATGCAATAAAC AAAATAAGAGAAACTATACGGCAGATTATTGAAGGTTAA
28209834 :c2057481-2057179, 28211562 >28211562_2056040-2057580_Clostridium_tetani_E88.fna_10 [1441 - 1139] (REVERSE SENSE)
ATAATTTTAGGTTTAATTTATCCTAAAATTGTGTATAATATAACTATAGAGGAGGTGCTT
TTTATGCAAGTAAATATTAATAATTTAGTATCCATATCAGAGGCTAATCAAAATTTTTCT
AGAGTTGCAAGAATGGTAGATGAAAATGGTGCAGCTATTATATTAAAGAATAATGCACCA
AGATATGTCTTAATAGACTATAGTAAATTTCAGCAAGATACTATTGCAGATGATGCTACA GTAGAAGAAGCTGCAAATAATATTTTAAATAAACATCTAAAAGCATTTGAGGAGTTGGCT
AAA
>gi I 28209834 :c2057179-2056796
ATGAAACACCTAAGTAAGGAACAAATGATGTATCTACATTCTATGGCAGTTAAAAAGACCGGCGGATTAG ATGGGATAAGAGATGAAGGATTGTTAGATTCAGCTTTAAATTCTCCATTTCAGTCATTTGCAGGTGAAGA ACTATATCCATCTATACAAGCTAAAGCAGCAAGATTAGGATTTAGTATTATTAAGAACCATCCCTTCTTA GATGGAAACAAAAGAATAGGAATGCTAGCAATGATGGTGTTTTTAGAAATTAACGGAATTCAATTGGAAT GTAGTGATGAAGATATTGTAGATATTGGATTGGGCATAGCATCAGGTAAGTATGAAGATGACTATATTAT AGATTGGATTATTAGTTGTAGTAATAATAGTTAA
16124256 :c3613552-3613915, 16127593 >16127593_3612420-3613960_Caulobacter_crescentus.fna_14 [1494 - 1132] (REVERSE SENSE)
ATAGCCTTCGAGGAAGGCTTCGAGTTCCTGGTCGGTGATGTCGGTATAGACGGCCATGAC
GCGGGGATGCGGGAGCGGGCGCTGGCGGTCAAGGGGGCGGTGAGGTATAACGTTTGTTCT
AACGTTTGGAGCGCCGCCATGATCGCCCTGAAACTGTCCCAGATCGGCAACTCCGTCGGT
GTGGTTTTGCCGAAGGAAGCGCTCGTCAAGCTCGGGGTCGAAAAGGGTGACACGCTCTAT CTGACCGATGCGCCGGGTGGCGGCATGCAGATCGCGCCCTACGACCCGGACGTGGCGCGA
CAGATCGCGTTGGGCGAGGAGATCATGGACGAGTATCGCGACACGTTCAGAGCGCTGGCC
AAA
>gi 116124256 :c3613552-3613160 ATGAGCGGTGTCGGCGAGCCCGTCTGGGTTCGTATCGAGGCGCTCAAGGTGCTTCATGAGCGCAGCTTGG CGCTTCATGGAGGGCCGTCCGGTGTGCGCGATGAAGGCCTTCTGGAGTCCGCCCTGGAGCGGCCCAAGAA TCGTTTCCACTACGAGGGCGTCGACGATGTCGTCGAACTCGCGGCGACCTACGCCGTCGCGGTTTCGAGC AATCACCCCTTCGTCGACGGCAACAAGCGCGCGGCCTTTCACGCGATGACGCTGTTTCTTCGTCTGAATG GCCTACGGCTCGTTGCGGATCAGGCAGACGCTGCGCGGACGATCTTCAAGCTCGCCGCCGGGGAACTCGA CATTCCAGCTTTGACCGATTGGTTGAGAACCCGTGTCGCTTGA
15675948 :c929475-929630,15676812 >15676812_928340-929880_Neisseria_meningitidis_MC58.fna_18 [1290 - 1135] (REVERSE SENSE)
ATGCCCGCAAACAGACAAGGAGCAGCGATGCAAAACCAAAATACACGCCCCGTCAAAATC GAGCTTAAAGGCGAAGCAGGCAAACGCGTACTGCTTGCCGCCGCCCGCCGCATTGCCAAA ACCCATCAAAAAGCCGTCAAGGCACTTGCCGACAAA
>gi 115675948 :c929475-929107 ATGATAGACGGCGAACTGGTCGCGCTTATCCATCAAACCGTATTGGCGGATGAAGCGGGTTTGAAAGGGC GGGCGGATATGGCGCGCTTGGACGGCGCATTGTCGCGGATTGCCAACTGGCGGCAGTATGAAAACCTTGA GGACATCTACGAAATCGCCGCCCTCTATGCACAAGCCATAGCCAAAGCCCACGCCTTTCCCGACGGCAAC AAGCGCACCGCGCTTTTAACAATGTTGACCTATCTGGATTTGCAGGGCATCAGCATTGCCGCCGACCAAG GGCTTGACGACTTGATTGTCAGTTTGGCGGCGGGAGAAACCGACTTCAAACAGCTCGCCGAAACCCTGCG CCGGCTGGATAAGGAATAG
30248031 :cl386501-1386749, 30249247
>30249247_1385370-1386910_Nitrosomonas_europaea.fna_12 [1379 - 1131] (REVERSE SENSE) TTGGTTATAACATTAGGATATGAGATGATTGAGTTGAAAGTCAGAAAGTTTGGCAATTCT CTTGGCATTGTTTTGCCAAAAGAAGTAGTTAACCATTTACGCACTGGGGATGGGCAACGG TTGTTTTTAACCGAAGCATCTGATGGAAGGTATCTTATTACACCATACGATCCTTCATTC GGCGAAAAAATGGCAAAGGTAGAAGATATATGTAATCGGTACCGTAACACGCTCCATGTA CTGACCAAG
>gi | 30248031 :cl386501-1386112 GTGACAACGCCTGTCTGGATAAACGAACAAGATGTCCTTGCCATTCATGAGCGTTTAATTTTTCTGCATG GCGGTGCATCAGGTATTCGTGACAGGAATCTTCTGAAATCAGCACTTGCAAGACCGCTCAATTTTTCTGT CTACGATCAGCAGTCTGATATTTTCCTTTTGGCTGCTACTTACACAAGCGGAATTCTGCAAAACCACCCT TTTGTGGATGGGAACAAACGGACAGGATTTGTAATTGGCGTACTATTTCTTGAACTCAATGGCTACAAGT TTATCGCTAACGAAGAAGATTCAGCACAAGCCATAATTTCGCTTGCTGAAGGCTCTCTTGACGAGCTTGG ATTCAGATTGTTCATTGAACATAACTCAATTGCAACGTAA
30248031:2674530-2674754,30250372
>30250372_2674000-2675540_Nitrosomonas_europaea.fπa_6 [530 - 754] ATGGTTGAGCTGAAAGTCAGAAAATTAGGTAATTCCCTGGGAGTTGTGCTGCCCAAAGAG GTCATTAACCATTTACGTACCGGAGATGGACAGCGGCTGTTTTTGACCGAGGCGTCCGAT GGCGGGTATTTGATTACCCCATACGATCCTGCTTTCGAAGAAAAAATGGTCAAGGTTGAG AATATTTGTGACCGTTACCGCAATACGCTTCGTATACTGGCTAAA
>gi I 30248031: 2674754-2675143
ATGATCGAGCCGATCTGGATAGATGAGCAGGTCGCGCTTGCTATTCATGAACGCCTGATTTCTCTACATA GCGGTGCATCAGGGGTTCGCGACAAAGAGCTTCTGAAATCGGCCCTTGCCAGACCTCTCAATCTTCTGGC CTATGATCAGCAAGCAGATGTTATCCATCTAGCTGCTGCATATACCGCCGGGATTTTGCAAAATCATCCT TTTGTGGATAGAAACAAACGAACGGGTTTTGTCGTCGGAGTACTGTTTCTTGAGCTTAATGGTTACAGAT TTACTGCCGCTGAGGAAGACTCTGCGCAGGCAGTAATTGCGCTCGCTGCAGGTTCTCTTGATGAAGCCAG GTTCAAATTATTTCTTGCGGATAATTCGATACCTGTCTGA
22123922 :c2738578-2738880, 22126357
>22126357_2737350-2738960_Yersinia_pestis_KIM_chromoso e.fna_12 [1530 - 1228] (REVERSE SENSE) ATGCAGTTGATTAGATATAGCTTGAGCTATACACTATGTATCAACAAGAATGGTTACAAC CCATTCACAACTGCTGAAAATTCAATGTGTCAGCGGTTTTCTATCTATAATTCAGAGGAT AACGTAATGAGCCATGCACTGAAAAATGCAGATCGCTTATACATTCCACCTCGTGACAAG GGCACGAAGGCCTATCCACGTGCATCTATGGATACAAGTAGCACTCATGCAGATCAGGTC AAAAATGCATTTGCGTTTGGCTTTTCTCGCTATGAAAAAGCAATGGAAGAACTTTCTAAG GTG
>gi I 22123922 :c2738564-2738088
ATGGCAGATATTGTTGAAGGGATACATTATCTTTCTGTTGAAGATTTCATCTACATAAACAGAACGTTAA TTGAGGCTCAAACCCCTAGCGAGCCAATTGATGTCATTAATCACAACAATCTCTGTTCCTCACAAGCAAG ACCCAGCGTAGTAAAATACTATCAGCAGACAGACGATATGTTCGAACTGTCTGCTGCTCTCATCGAGAGC TTAATCCAGAATCACGCCTTTGCAAATGCTAACAAACGAACAGCTATGATGGCTGGATATATGTTTTTGT TGCTTAACGGATATGAACTCACTGCACCTGGCGACGAGATTGTGGTAATGGCAGAGGGGATGGCCAGAAA GGTTTATAACTGCGAAGACCTAGAGAATTGGCTCTGCTACTGGTCTAGGCCGTATGACTCACGAAACTTA TGTGATTGTGAGATATCTTCTCTAGTAGTGACTGCAACACAGGTAAAGATAGAATAA
15595198:69056-69187,15595251 >15595251_68530-69930_Pseudomonas_aeruginosa.fna_7 [526 - 657] ATGTCGCAAGACCAGCAAGGGATACGCTATCTCTCCGTTGCAGATCTCGTTCGCCTCAAT GAGTTGCTCATCCTGGCCCAGACTCCGGACGAGCCGATAGGCGTCCTCAAACCGAACGAG TTGGAGTCCGCA >gi 115595198 : 69272-69526
ATGAACCACTGCTTTGCCAATGGCAACAAACGCACGGCGGCGGCGGCCGCTACGGTTTTCCTCCTGCTCA ATGGCATAGAGCTGACGGGGCCCGCTCAGGACTTCGTCGACATCATGGTCGCCCTCGTGACTCGTGAAGC GAGCGTTCAGGACCTGGAAGACTGGATGTTCTACTGGCACAGACCATTCGACGCTTACAACCTGCCGGAC AGCGACGCTTTCGAGCGAATGGTCGCCCGCTTGGGCATTGGTTAG
>gi I 21226102 :c677563-677312
ATGTCTACTATAGCTATAGATCCGGATGTAAAGGAATCACTTAAAGAGTTAAAGTTAGCTCCCGAAGAGT CTTATAATTCAGTAGTTAAGAGACTTATTGGGGAAGTTAAAAAGAAAGAAGATTACAGTCCTATGTTTCC AAAAGAAGAAAAACAAGGACATAAGGAATCTCATATAAATGATTTTGATGCCTGGTTAGAAAAGAAGCTG GTAGAAGATAAAAACATTTTAGATGCACTTGGAAGAAAGTGA
>gi | 21226102 :c677325-676921 TTGGAAGAAAGTGATGTTTTGATCAGCTTAATTGAGATTTTGAAAATTCATCAAAAGGTTATAGATTACG ATAAATTTAAAGATCCGGAGGATTATACACCCGCAATACGTTCTTTAGCTACGTTAGAATTAATGTTTGA ATATTTAATAAAAGAATCCAATACTATTTTCGAAAATGCCGCTGTAATAGTCTACACTATTGTTGCAAAA CATCCATTTTTCAATGGAAATAAAAGAACTGGTTATGAAGCCATGAATTTTATTATTGAAGATGGAGGAT ACGGGTTTACTTCTACAGATGAAGAGATGATAGAATTCATAATTAGAGTGGCTACAACAGAAAATGAGAT GTCAATTGAAGAAATAAAAGAATGGATAATTCGACATACGGAAAAAATACTATAA
>SC10A5.13 , gi I 32141095 : 6474517-6474711 ATGGCGATGACACTCCGGCTTCCCGACGACCTGGACACGAAGCTTACGGAGCGGGCTCGTGGGGAGGGTT GCAGCAAGCAGGAACTTGCCATCGGGGCCATTCGTGATGCCCGGGACCGGGCCGAGCTGAAGGTCGATGA CGTTCTGGCCGGTCTGATGGACAGCGATGCGGAGATTCTGGACTACCTGAAGTGA
>SC10A5.14, gi I 32141095: 6474708-6474914 GTGAGCGGCGTGCGCTACCTCCAGATCGACGAGATCCTGGCCATCGTGCGCACGGTCAACGGTGCCGAGC ACAGCGTGCGTGACATGGGCCTCCTTGTGTCGGCGATCGAACGGCCCCGGACGAACGTCTTCGGAGCCGA GCTGTATCCCACCCTGCACGAGAAGCCGCGGCACTACTGCACTCCGTCGCCCGCAATCACGCGCTGA
>SCF51.10, gi|32141095:431327-431551
GTGACCTTCACCGAGGAAGAGATGGAAGGCGTCCGCGCTGCCGCCGCAGCCGAGGGCAAGAGCCTGAAGC AGTACATGCACGACCTCGGCGTCCGCGAGATGCAGCGCAAGCGGTTCGTCGCCGGGGCCGTCTCGTGGGC GGACCGGCTGCGCGCCGAGTTCGACGAGGCCTTCCCGGACGAGATCCCCCCGTCCCAGCGCGGCGAGGGA GTCACCGCCGCCTGA
>SCF51.11, gi I 32141095 : 431551-431934
ATGAGCGAGCCCCTGTACATCGATGTCCCGTGGCTCCTGGACGTGCAGGACGCCGCTCTGGACAACGAGG ACGTGTCGGTCACGGACTACTCCGCCCTGGTCGCGGCGGTGGCCCGCCACAAGACCCGGATGCCCACCCT GGCCGCGTCCAACCCCGACAGCGCCTGGCGCGCGGCCGCGCTCCTGCACACGGTGGTGCGGCTCGAACCG CTCCCCCACCGCAACAGCCTCTTCGCGGCCTTCGTCACCGGTCAGTACATGGACCAGTCCGGGGAGGGAA TCGACCCGCCCTACGGGGCGCTGTCCGACCTGATCAGAAAGGTCCGCGAGACCCGGCTGAGCATCTACGA CATCGCCGACGTGCTCCGTTCCTGGCGCATTTGA
>CT0332, gi I 21672841: 348233-348460
ATGGTAAAGCAACTGACGAAACACGGAAACAGCATGGCGATGGTTATCGACAAACCGATTCTTGAATTGA TCGGTGCCGATGCCGATACTCCGTTTGAAATCACGACGGATGGTCAGGCGCTCATTCTCACGCCGTTGAA AAATCCCAAAGGGGGCGAGGCGTTCGGTGTGGCGCTTGAAAAGGTGAATACCCGTTATGCCAGGGCGTTG AAAAAACTTGCAGAATAG
>CT0333 , gi | 21672841 :348464-348847
ATGAGATTTCTGGACCTTCACGAGGTTCTGCACATCCATCGCGATCAGATCACCCGTTATGGCGGAACGC TCGGCGTCCGGGATATGGGCCTGCTCACCTCGGCGATTGCCATGCCGACGGCGATGTTCAAAGGCGATTT TCTGCATACCGACATTTATGAAATGGCTGCGGCATACCTTTTCCACTTGGTGAGGAATCACCCGTTTCTT GACGGAAACAAACGGGTTGGCGCGGTGTCAGCCATCGTTTTCCTCGCGTTGAACGGATACGATTTCGAAG CGCCGGAAAATGATCTCGTCGAAATGGTTTACGGCGTGGCGAGAAGTGAGTTTGAAAAATCTGATGTTGC GCTGTTTATGAGGAGATGGAGCGTGAAATGGTGA
>gi 117227497 : 597966-598376
ATGATAGTATCTTCCTCTCAACTTTACGAGCGATTTATTGAACAGGTAATTGGTTTAAGTCAAAAAAAAG ACTTTTCATTAACTGCTTTAATTAGTAACTATGTGAGGATGAATTATCAACTGAAATTAGAGCAAATAGA CAAGTTAAAGGCTTGGTTAGATGGGTTTAGACCTTTTGATCAAACAATGCTCGCTGAACTGAAAAAGCTC TATGATGTCCGCTTTACTTATAATTCTAATGCTATTGAAGGGAATACTTTAACTCAAAGTGAAACTGAAT TAGTGTTAACTAAAGGGATTACCATTGGCGGTAAAACTCTCAATGAACATTTAGAGGTGATTGGACATAA GGAAGCGATAGACTATATTGAGAGTTTATCACAAAAAGATACGGAAATTAATGAATGGTAA
>gi 117227497 : 598449-598904 GTGATGGCAGCAGGAACAAATTATATTTATCCTCCCCATTATTTACTGTCTCAATTAATGGCAGATTTTG TTATCTGGCTCAATTCAAATGCTGCTTTAACACTCCATCCGGTAGAATATGCGACAATGGCACATTATCG TTTTGTTTCTATCCATCCTTTTCGAGATGGGAATGGGAGAACCGCTAGATTAATTATGAATTTATTGTTA ATTCGTGCGGGGTATCCCATTGTGGTGATTAATAATCAAGTCCGCAATGATTATATTAATGCTTTGGCTT ATGGACAACAAAACCAAGATGATTTAAGTGGGCTTTTTGATTTGGTTTGTGATGCGGTTATCAGTTCCTT GGTGGAAACTTTAAGGTTATTGGTAACTGCTAGTAGTAGTAGGGAAAAGGGGCAGGTTTTTTATCAGGAA ATTATTGATTTTATTGATAAAAATGTGGGTAAATAG
>gi I 29374661 :c348902-348663
GTGGAAATCAAAGAAAGAAAACTTAGAAAAGTTGGGAATTCTGTTGTTATGACATTGTCAAAAGAGTTTC TAGAAAGCATTGGTGCGACTGCGACAGACACCGTTTATGTAGACGAAGAAAAATTAAAAGATATTATTGT TAAAAAAAATATGTCAGAACATCAAAAAAAATTACAACAAATGATGGAGAACTCAAAACAAAAACATAAT GAGCTGTACAAAGAATTGGTTACTAAATGA
>gi | 29374661 :c348666-348247
ATGAAAAGTATTTATTATTTATCAGCGGATGATCTATTTCAAATGAATACTTTCTTGATCCAAACGTATT CTCCCGCAGAACAAATTGGCATCAAAGATCGTAATGCATTAGAAATGGCTAGCAACCAACCAGCACAATT CGTCTTTGACGTTGACCTGTACCCAACAATTGAAGAAAAAGCAGCTATTTTAATGATTAACATTGCAACA AAGCATTGTTTTTACAATGCAAATAAACGGACAGCTGTAATGGCAACCGACTTATTTTTACAATTAAACG GTTATGATTTCCAATTAGATACGCAAGAAGGCGTTGATTTATTGGTTTTTATTGCTACTTATAGATCAGA TTTTGATCAGTTGAAAAACGATGTATCAAAAGTAATCAGAGCTAAATTAAATCATACTTCTTCTCACTAA
>gi 115899949: 837760-837996
ATGGTAGTAAAAACAAGAAAACAAGGAAATTCAATCACCATTACGATTCCAAGTGAATTTAATATTCCAA GTGGTGTTAAATACGAAGCGAAATTGTTACCAAGTGGTGAGATTATCTTTACTCCTGAAGAATTGGGGCA GCAGGTTTCTTATGTATCTGATGATGCCTTTGACTTAAATTTAGATAAAATATTTGACGAATACGACGAT GTTTTCAAAGCTTTGGTGGAAAAATGA
>gi 115899949: 837993-838406 ATGACAATCTATTTGACAGAAAAGCAAATTGAAAAAATAAATGCTTTAGCAATTCAACGGTATTCTCCAA ATGAGAAAATTCAAACAGTTAGTCCTTCTGCCTTAAATATGATTGTGAACTTACCAGAACAATTTGTCTT TGGGAAGCCTCTTTATCCAACAATTTTTGATAAAGCAACGATACTATTTGTCCAATTGATAAAGAAGCAT GTTTTTGCTAATGCTAATAAAAGAACTGCTTTCTTCGTTTTGGTCAAATTTTTACAATTAAACGGCTATC GTTTTTCTGTAACGGTAGAAGAAGCAGTAAAAATGTGTGTAACCATCGCAGTAGAAGCTTTAACTGATGA AAAAATGACAAGCTACTCCAAATGGATTTCTGAACATTCTGTTAGAGAAAAGGTCAAAAAGTAA
>gi 117986284 : 1429641-1429871
ATGAACATAACCCTGCGCAAGATCGGTGATTCCTATGGGGTAATCATCCCGAAGGAAGTGCTGGAACGGC TGAACCTGCAGACCGGCGACACTCTCACACTTACAACCGATGAAAACGGTTTGCGGTTGGCCCGCAGCAC TGAGGATGCCGAAGTTCTTGAAAAGAAGATGCAAATCGCGCGTGAGCGGATGAAGAAATACGAGACCGCT TATCGCGTACTCGCTCAATGA
>gi 117986284 = 1429868-1430257 ATGATCGACTTTCATTCGCGGGTTTTCATAGAAGCTCTGCATCAGGAACAACTGCGCTTGCACGGTGGCG CGACAGGCATTCGTGATTCCAGTTTGCTGGACTCCGCACTGGCGCGCGCCCAGCATAAGGAAGCCTATGG CAATCCCGATATTTTCGATCTCGCGGCGGCTTATCTATTCGGAATCCTGAAAAACCATCCTTTCATAGAT GGTAATAAGAGGACTGGACTGGCTGCCGCCGACTTGTTTCTTTATTTCAATGGCTACAGTCTTGAAGCTG AGCAGGAAGATGTGATCCAGCTCGTCCTGATGGTTACAACCAGCGAAATAGATGAAACCGGCGCTGCGGC ATTCTTCCGCGATCATGCCGTTGTTATAAACGAAGACTAA
>gi I 23500916 :c553483-553253 ATGAACATAACCCTGCGCAAGATCGGTAATTCCTATGGGGTAATCATCCCGAAGGAAGTGCTGGAACGGC TGAACCTGCAGACCGGCGACACTCTCACACTTACAACCGATGAAAACGGTTTGCGGTTGGCCCGCAGCAC TGAGGATGCCGAAGTTCTTGAAAAGAAGATGCAAATCGCGCGTGAGCGGATGAAGAAATACGAGACCGCT TATCGCGTACTCGCTCAATGA >gi|23500916:c553256-552867
ATGATCGACTTTCATTCGCGGGTTTTCATAGAAGCTCTGCATCAGGAACAACTGCGCTTGCACGGTGGCG CGACAGGCATTCGTGATTCCAGTTTGCTGGACTCCGCACTGGCGCGCGCCCAGCATAAGGAAGCCTATGG CAATCCCGATATTTTCGATCTCGCGGCGGCTTATCTATTCGGAATCCTGAAAAACCATCCTTTCATAGAT GGTAATAAGAGGACTGGACTGGCTGCCGCCGACTTGTTTCTTTATTTCAATGGCTACAGTCTTGAAGCTG AGCAGGAAGATGTGATCCAGCTCGTCCTGATGGTTACAACCAGCGAAATAGATGAAACCGGCGCTGCGGC ATTCTTCCGCGATCATGCCGTTGTTATAAACGACGACTAA
>gi I 16120353 :2077947-2078252 ATGCAGTTGATTAGATATAGCTTGAGCTATACACTATGTATCAACAAGAATGGTTACAACCCATTCACAA CTGCTGAAAATTCAATGTGTCAGCGGTTTTCTATCTATAATTCAGAGGATAACGTAATGAGCCATGCACT GAAAAATGCAGATCGCTTATACATTCCACCTCGTGACAAGGGCACGAAGGCCTATCCACGTGCATCTATG GATACAAGTAGCACTCATGCAGATCAGGTCAAAAATGCATTTGCGTTTGGCTTTTCTCGCTATGAAAAAG CAATGGAAGAACTTTCTAAGGTGTAA
>gi | 16120353: 2078263-2078739
ATGGCAGATATTGTTGAAGGGATACATTATCTTTCTGTTGAAGATTTCATCTACATAAACAGAACGTTAA
TTGAGGCTCAAACCCCTAGCGAGCCAATTGATGTCATTAATCACAACAATCTCTGTTCCTCACAAGCAAG
ACCCAGCGTAGTAAAATACTATCAGCAGACAGACGATATGTTCGAACTGTCTGCTGCTCTCATCGAGAGC
TTAATCCAGAATCACGCCTTTGCAAATGCTAACAAACGAACAGCTATGATGGCTGGATATATGTTTTTGT
TGCTTAACGGATATGAACTCACTGCACCTGGCGACGAGATTGTGGTAATGGCAGAGGGGATGGCCAGAAA
GGTTTATAACTGCGAAGACCTAGAGAATTGGCTCTGCTACTGGTCTAGGCCGTATGACTCACGAAACTTA
TGTGATTGTGAGATATCTTCTCTAGTAGTGACTGCAACACAGGTAAAGATAGAATAA
>gi 115600771: 418092-418784 ATGAACTTAGAAGAGTTTCAAGAATCGGATTTTGACCTGCTTATAAAATGGATTGACTCAGATGAGTTGA ACTATTTATGGGGTTGCCCTGCGTATGTTTTCCCGCTGACTTATGAACAGATCCATTCCCACTGTAGCAA AGCGGAAGTATTTCCCTATCTGCTAAAAGTGAAAGGTAGACATGCCGGGTTTGTTGAGTTGTACAAAGTC ACCGATGAGCAATATCGGATTTGCCGTGTCTTTATTTCAAATGCTTATCGTGGGCAAGGGCTATCAAAAT CGATGTTGATGTTATTAATCGATAAAGCCCGATTAGATTTTTCTGCAACCAAGCTTAGCTTAGGCGTTTT TGAACAGAACACAGTTGCTAGAAAATGCTATGAGTCATTAGGTTTTGAAGTGGTTATGGTTGTTGTGATT GAGTTTGGCGGTATGCGTTGTCAGCCCCTTAGGCGGGCGTTATGTTTTTTATCACGTTTTGGGGCTATAA
>gi 115600771:418784-419185 ATGGATATCATCTGTTTTCCTTTTGAACGAGTGATCGAGATTAATGCTTTCATCCTAAAAACAGAACCAG GAATGAAAGGAGCCGTTGATATTCCCAAGCTTCAGGGGGCATTAGGTCGAATCGATAATGCCATCGTTTA TGAAGGACTGGATGATGTTTTTGAAATCGCTGCTAAATACACTGCTTGTATAGCGGTTTCACATGCGCTA CCTGATGCGAACAAACGCACAGGTTTGGCTGTGGCACTTGAATATTTATCACTTAACGATTTTGAGCTTA CGCAGGAAAACGATTTACTTGCGGATGCAGTTCGAGATCTTGTTATCGGCATTATCAACGAAACAGATTT TGCCGACATTCTCTACGCACAATACGCAAAAGAACAAAATTCAGCTCTCTAA
>gi I 21240774 :cl362178-1361957
ATGAAACTCAAGATCACTGCCATCGGCAATTCCGCTGGCGTCATCCTGCCCAAGGAACTGCTGGCCCGCC TGCGGCTTGGAAAGGGCGACGAACTCTATGCACTGGAAACACCCGACGGCATCAAGCTGACCGCATTCGA CCCGACGTTGGCGGCGCAGATGGATGTTGCCGAACAGGTGATGCGTGAGGATCGCCAGGTGCTGAACAAG CTGGCCAAGTGA
>gi ] 21240774 : C1361960-1361523 GTGAACACGCGCATGCTGGTCTGGGTTACGCATGCGCTTGCATTGGCCATCCACGAACGCCAATTGAGCG AGCACGGGGGCGCAAGCGGAGTGCGCGACGAAGCGCTACTGGATTCGGCACTTGCACGCCCGCAACAGCT GTTTTCGTATGGCGACCCTCCACCCGATCTGGTTGGGCTGACGGCCAGCCTGGCTTATGGGCTCGCGCGC AATCACCCATTCGTGGATGGCAACAAACGAACTGCCCACGTGTGCTACCGAGTCTTCTTGCTGCTCAACG GTGCCGAGCTCATCGCCTCGCAGGAAGAAAAATACGTTGCCATGATGAGGCTGGCCGATGGCGCGTGGAG CGAAGCGACATTCGCCCAGTGGCTACGGCCGCGCGTGCGATTGCGTGCAGACACGCATGTGCACGAACCG CAAGGTCATTACGGCTGA '
>ΞTM3559, gi 116763390 :c3728528-3728301
ATGTTTATGCGTACGGTTAACTATAGCGAAGCGCGGCAAAATCTGGCCGAAGTCCTGGAAAGTGCGGTGA CGGGGGGGCCTGTTACCATCACGCGTCGTGGGCATAAGTCCGCAGTGATCATCAGCGCCGAGGAGTTTGA GCGTTATCAGACGGCGCGAATGGATGATGAGTTTGCTGCCATTATGGCGGTTCATGGCAATGAGCTCAGG GAGCTGGCGGATAAATGA
>STM3558, gi 116763390 :c3728304-3727936
ATGACCCTACAACTTATCTCAGCGGAAGAGATAATTCAGTTTCACGACAGGCTTCTCCGCGTTACGCCTG
GTGTAACAGGCATGCCTGATCCTGGCCGCGCGGAAGCGCTAATGTACCGGGTACTCAAGCAAATCGAATA
TGAAGGGGTGACCGACGTGTGGCTGCTGGCGGCAATGCATTTGCTCGCTATATCCCGTGGGCATATCTTC
AATGATGGTAACAAACGTACCGCCTTATTTATTACGCTGCTGTTTTTAAAGCGTAACGGGATCTCACTCG
CTGCGAATCCGGATTTTGTCGATATGACAGTCGATGCGGCGGCAGGGCGGCTTACGCTGGAGCAAATTGC
CGTTCGCTTACGTGCCTGA
>gi 116758993 : 1020578-1020865
ATGGTATTAAATTGTCCTCAACCACTTAAAGTGATCATAAATTCTTTGGATGTGTTTACATCCTACAATT TGAGAAAGCACTGCCAAACGTGCATGAGGGTGATAATCATGGGTCACGCATTAAAAAAGGCAGATCGCTT GTACATTCCGCCTCGTGACAAATCCATGGTGGCGAAACCTCGTGCAGCGATCAGCAAAGCATGTTCACAT ACTGGTCAAGTTAAAAACGCCTTTGAGTTTGGGTTTGCTCGTTACGAGAAGGCGATGGAAGAACTTTCAA AGGTCTGA
>gi 116758993 : 1020876-1021373 ATGGCGATAGAGTATGTTGAAGGAGTCAATTATCTTTCCATTGAAGATATCGTTTACATCAACAGGTCTC TGATCGAGATTCAGACGCCAAATGAACCGATAGGCGTACTGAATCCGAACAACCTCAGTTCTTCCCAGTC CCGGCCAAGCACCATTCGATATTATGAGCAGACAGACGATATGTTTCGTCTGTCTGCTGTTCTAATTGAA AGCCTAATCCAGAATCATCCATTCGCAAACGCAAACAAACGCACCGCTATGATGGCAGGTTACGTATTCC TGTTGCTGAACGGATATGAGCTTACAGCACCTAGTGATGAAGTTGTAACCATCGCAGAGGGTTTGGCTCG TAAAGATTACGCAGTGGATGACCTGGAAAATTGGTTATGCCACTGGTCACGCGAGTATGATTCCAGAACG TTATGCGAAACTGGCGGTAATATGATTCAGGCTCTCGTGGCGACCTCACGTTACATCCGAATCAAATCGA
The following sequences were found in a later supplementary search:
>gi | 29140543 :cl960499-1960212 ATGGTATTAAATTGTCCTCAACCACTTAAAGTGATCATAAATTCTTTGGATGTGTTTACATCCTACAATT TGAGAAAGCACTGCCAAACGTGCATGAGGGTGATAATCATGGGTCACGCATTAAAAAAGGCAGATCGCTT GTACATTCCGCCTCGTGACAAATCCATGGTGGCGAAACCTCGTGCAGCGATCAGCAAAGCATGTTCACAT ACTGGTCAAGTTAAAAACGCCTTTGAGTTTGGGTTTGCTCGTTACGAGAAGGCGATGGAAGAACTTTCAA AGGTCTGA
>gi | 29140543 :cl960201-1959704
ATGGCGATAGAGTATGTTGAAGGAGTCAATTATCTTTCCATTGAAGATATCGTTTACATCAACAGGTCTC TGATCGAGATTCAGACGCCAAATGAACCGATAGGCGTACTGAATCCGAACAACCTCAGTTCTTCCCAGTC CCGGCCAAGCACCATTCGATATTATGAGCAGACAGACGATATGTTTCGTCTGTCTGCTGTTCTAATTGAA AGCCTAATCCAGAATCATCCATTCGCAAACGCAAACAAACGCACCGCTATGATGGCAGGTTACGTATTCC TGTTGCTGAACGGATATGAGCTTACAGCACCTAGTGATGAAGTTGTAACCATCGCAGAGGGTTTGGCTCG TAAAGATTACGCAGTGGATGACCTGGAAAATTGGTTATGCCACTGGTCACGCGAGTATGATTCCAGAACG TTATGCGAAACTGGCGGTAATATGATTCAGGCTCTCGTGGCGACCTCACGTTACATCCGAATCAAATCGA ATGAATAA
>gi I 29826540: 8449521-8449760
ATGGCGAAGACTCAGCTGAACGTGAGGGTCGACGAGGGCACCGCCCGCGCCGCCCGCGAGCGAGCCCTGG AGCGCGGCATGAGCGTGAACCGTTACATCGAAGAACTGGTCCGACAGGACACCGGGGAAGCGGGCCACAC CTTCGTGGAGGCCGCCGCAGACTTCATGAAGCAGTACGAGACCGTCTTCGCCGAGGAGTTCGGCGCGGAC CGCGAGGGCACGCGCGAAAGTCGTCGTTGA
>gi I 29826540: 8449765-8450139
TTGGAGAATCTCAGAATCGACCTCGCCTGGCTCCTCATGATCGCCGAGCAGAAGACGCCCGGAGATCCCC AGGTCACCGACTGGGGAGCCCTCGTCGCCGCCGTCAGCCGGCACGAGGCGGAGATATTCGGCATCCCCGT CTACGACACGCCGCACGCCCGCGCCGCCGCCCTGCTCCAGCTGCTGTTGCACGTGCCGGCCCTCGAACGC TCCAACGCCCTGTTCGCGTCCGCCGTCGCCTACGCCTATCTCGTCGCGGGCGGCGCCAAGGTCGTCACCT CGCCCGAGCAGGTGCGCGAGCTCGCCCGGCTGGTGAAGAGCGGGGAGGCCGGCGTCGACGACATCGCGCG CGAACTGCGGCAATGGAGCCTGTGA >gi|29826540:c983747-983523
GTGTCCTTCACCGACGAAGAGCTCGAGGGTGTGCGCGCGGCTGCCGCGGCCGAGGGCAAGAGCCTCAAGC AGTACCTGCACGACCTCGGCGTCCGCGAGATGCAGCGCAAGCAGTTCGTCGCTGGGGCTACCGCGTGGGC CGACCGGTTGCGGCGTGAGTTCGACGACGCGTTCGCCGACGAGGTGCCGCCGTCCGAGCGCCGGGACGGG GCCGCGGCCGCCTGA
>gi I 29826540 : C983523-983146
ATGCACTTCTATGTCGACGTCTCCTGGCTGCTCGACGTCCAGGAGGCCGCCCTCGGCCGTGAGGACATGT CGGTCTCGGACTACTCCGCGCTTGTGGCGGCGATCGCCCGCCACAAGACCAAGCTGCCGACGCTCGCCGC AGCTGACCCGGACGCCGCGTGGCGGGCGGCCGCGCTGATGCACACCATCGTGCGCCTGGAGCCTCTCCCG CACCGCAACAGCCTGTTCGCCGCGTTCATCGCCGCCCAGTACATGGACCAGTCCGGTGAGGGCATCGACC CGCCCTACGGCGCCCTGTCCGACCTCGTCAGCAAGATCCGCGACACCCGCCTCGGCATCCTCGCCGTCGC CGACCAACTGCGCACCTGGAAGGTCTGA
>gi I 24473558 :cl329497-1329222 ATGGAGTACTTAACTGAAATGCAACAGAGGGTGATATTAGCCCTATATTATTCTGGAAATGAAAAGGTAA CCTTTAGGAAGCTAATAGAACTTACTAAGAGTTCAACAAGTCCAGTAAAAAATGCCATTGACAGCCTTGA AGAGAAGGGACTTGTTGAAGAGATTGAAGAGACTGAGAGCTTCCCTAAGAGGAGGTATATCAAATTGACA GAAAAAGGTAAAAAGGTAGCCGAGAAACTTAAAGAGTTATATACGTTGATAGAGTCTACTTCATAA >gi|24473558:cl329497-1329222
ATGGAGTACTTAACTGAAATGCAACAGAGGGTGATATTAGCCCTATATTATTCTGGAAATGAAAAGGTAA CCTTTAGGAAGCTAATAGAACTTACTAAGAGTTCAACAAGTCCAGTAAAAAATGCCATTGACAGCCTTGA AGAGAAGGGACTTGTTGAAGAGATTGAAGAGACTGAGAGCTTCCCTAAGAGGAGGTATATCAAATTGACA GAAAAAGGTAAAAAGGTAGCCGAGAAACTTAAAGAGTTATATACGTTGATAGAGTCTACTTCATAA
Nucleotide sequences coding for homologs of HigBA toxin-antitoxin pairs
23308765:1085714-1086001,1085499-1085777
>Corynebacteriuπ glutarr cuπι ATCC_13032. fna\_1085000-1086400_4 [714 - 1001]
GTGGCGGATCTGCTTCCGTTGGAACGACTCGGGCCCCGAAAACGTCGAGATCGTGGATTA TCACTGAGGAGGAGACGATGGCTCAGAAGCTCTACCCGCCGATTCACCCTGGTGAGATTC TCATGGAGGACTTCATCAAGGGCTTCGGCCTCACACAGAACAAGGTCGCCGTATCGATCG GGGTGCCTCCGCGACGCATCAACGAGATCGTGCACGGCAAGCGATCCATCACGGCCGATA CGGCTCTGCGTCTCGGGCGGTACTTCGGTATCGACCCGCAGTTCTGGC
>Corγnebacterium_glutamicu ATCC_13032.fna\_1085000-1086400_3 [499 - 777] GTGATCAGATCGTTCGCCGACCGCGACACCGAGTTGGTCTGGTTGCGTGAAGGTGCGAAA CGCGTCGATCCGCGAATACACAAAGTGGCGAATCGGAAGCTGCATCTGCTGGACGCGGCG ACGACCCTCGATGCTCTGCGTGTGACTCCGGGGAATCGCCTGGAAACGCTCGAGGGTGAT CGAGTCGGTCAGTACAGCATTCGAGTCAACGACCAGTGGCGGATCTGCTTCCGTTGGAAC GACTCGGGCCCCGAAAACGTCGAGATCGTGGATTATCAC
15836605 :cl629883-1630197, 15838310
>15838310_1628830-1630230_Xylella_fastidiosa_chromosome.fπa_15 [1367 - 1053] (REVERSE SENSE)
CTGATTCGGTGTAGTGGTACATGTTCAGTACGAAAAACCTTTTTTAGCGGTCAAATTAAG GTGCCGGTAGAGGCGCTGCTCCAGCGCCTCGCGGGTGGAGCGGCCTCAATGGCCCCGCGT CCGGCAAGGATTAAGATGCCGCATGAAGCGGAACGGTGGTATCAGAAAATGCCGCAACGC GATGTAAGGGTTTTGGTAGGCACTGATACCCGCACGACTTCCTATTTTGATCATCAATCT CTCAATCTTGGAAGGGATAGGTGTCGCTTGAAATCAAATATCATCACTATTACCCTTAGT GTAATAGTGGTATAT
>gi 115836605 :cl629865-1629575
ATGGAAGTCAAGTTTGAAGATCCATCGTTGGAGCGACTGGAAGCAAACCAGAAATACACTGCTGGCTTGG TCAAGGTGTTCCACCGGCGCATACAGTTCATCAGGGCATCGCCTGACGAACGTGCGTTCTATGCCATGAA ATCACTGCACTACGAAAAACTCAAAGATGATCCGGACAACCTGTACTCCATGCACCTAAACGACCAATGG CACCTGATCATGTACCTAAAAGCAAAAGAAGATGACACAAGAAATCTAGTCGTCATTGTTTCAATTGTCG ATTACCACTGA
15599869, 15595198 :c5242573-5242848
>Pseudomonas_aeruginosa.fna\_5241810-5243210_18 [1038 - 763] (REVERSE SENSE) ATGATTCTGACCTTTCGCTGCGACGAGACTCGTCAGCTTTTTGAGACGGGTCTTTCGAGG CGGTGGGGAGCGATCCTCACAGTCGCTACGCGTAAGCTCGCAATGCTTCATGCGGCTACG GAGCTTCGAGACCTGCGCTCTCCACCTGGAAACCGGTTGGAGCCGTTGCAGGGAAAGCGG GCGGGCCAACATAGCATCAGGATCAATGACCAGTGGCGTGTCTGTTTCGTCTGGACGGAT GCGGGTCCCGAAGAAGTCGAAATAGTTGATTACCAC
>gi 115595198 :c5242558-5242253
ATGGCTACCAATGGTATGCGCCCCATCCATCCTGGGGAAATATTGCGCGATGAGTTTCTGATGGAGTTTG ATATCTCTCCAGCTGCTCTAGCACGCGCTTTGAAAGTCTCCGCTCCGACAGTGAACGATATCGTTCGTGA GCAGCGTGGTATCTCCGCAGATATGGCGATTCGTCTGGGGCGTTACTTTGATACGTCCGCTCAGTTCTGG ATGAATCTCCAGAGTGAGTATTCGTTAGCAACTGCTTATGCGGCGAATGGCAAGCAGATCGAACATGAGA TTGAGCCGCTGCTTGCTCACGGATAG
>gi I 21226102: 674599-674877 ATGGCAGAGGCATTAAATTCTGATAAGATAAAACGTTCTCCAACTCTTAACACTATTATTATGGTAGAAG ATGCTATACAAAACAGCCCAAATAGTGTTATAACTATTCCGGAACTAAAAAAAGCGCTTCCTCGACAGGT AAACCACAATACTTTAATGACTATTTTGGAATACCTGGAAAAAAGTAATAAAATAGCTGTTGGGTTAAGA GGGATAACCTGGATTCACAACACAAATCATAATTTAAGGAATGTTGCGATTTACGGGCGCGAGCTATAA >gi|21226102:674890-675240
ATGAAGCGTGTAAGTGTAAGATTAACTCCCGAAGCTGATGAGGCATACGAATATCTGATAAGTAAGGCTT CGGACTCAAAGCAGGAAGAGACAATTCTTAATGCTTTTCATCAGAAAATAGAGTTAATAAAAAACGATGT TCATTATGGAAATCCAGTTGCTAAAAGATTAATTCCTTCAGAATATAAAACCAAATATGGAGTAAATAAC CTGTTTAGAGTGGAACTCCCAGGCTTCTGGAGAATGCTTTACACACTTACAGCTGGTAATTCGGGCGTTG AAACTCTCGTAATAGTGATTGATATAATCGATCATAAAAAATACGATAAAGCATTTGGTTACAAGAAGTA A
>gi 117227497 :c3563263 -3562970
ATGGCACGCCCACCAATCCACCCCGGAGAAATTCTTGCTGACGAAATTACTGAACTCGCTATGACTGCGA GTGATTTAGCGCGTGTTCTCCATGTTCCCAAAAACAGAATTACTGAAATCATTAATGGCAGACGAGGGAT
AACAGCCGATACAGCTTTGCGATTAGGACAATATTTTGGAACTGGTGGAGAATTCTGGTTAAATCTTCAA AAGAATTATGAGCTAAGGTTAGCTGAACAAACATCAGGGAAAGAAATACAAGAAACTATTTGTCCTCGTA TCTTAGTATCTTGA
>gi | 17227497 :c3563574-3563275
ATGTCTCCATCAGATGAATACCCTAAATATAAAGATAAAAGGACGGAGAAATTTGCTTTAGGAGAAAGGG
TTAAAGAGTTTCAATCTTTTGAGAGACAAGCACAAAAACGATTAGATATTATAGATGCAGCCCCTAATAA
GGAAGTGCTAATGCAACTACCAAGTAATCGTTTTGAGTCATTAGGAGGCGATAGAAAAGGTCAGTACAGT
ATCCGAATTAATGAGCAGTGGAGAATTTGTTTTAACTGGCCTGATGATTTTCTTAAGCCCTTCAACATAG
AGATTACAGATTATCACTGA
>gi] 28376974 =383455-383748
ATGAATGAAATCCCAACACCTAAAATTAGTGAAATTCTTGAAGAAGAGTTTATGGCTCCCTTGCATATCT CTGCATATTTTTTGGCTCAACAGATTGGGGTACCCACGTCACGGATTCAAGACTTACTACATGATCGTCG ACAGGTGACGGTTGATACATCGCTGCGGCTAGGACGATTCTTTGGAGTGTCGGATCGTTATTTCTTGGAA CTTCAAAATGATATTGAAATTCGTAATTTGAAACAGATACATGGTGCTGAATATGCACAGATAAAAAAGT ATCAAGTCAGTTAA
>gi | 28376974:383216-383443
TTGCCACCAACCATTCAGCAATTAGCATTGCGAAAATTACTAATGATTGATCATGCGGAAACAATTAATG ATTTGAGCCTACCGCCTGCCAATCACTTGGAAAAATTAAGTCATGATCGCCAAGGGCAATATAGCATCAG GATTAATAATCAGTATCGGATATGTTTTGCAATTCGAAATGGTAATGAGTTTTATGATGTTGAAATAGTC GATTATCATCATGGTTAG
>gi I 27375111 :c3325622-3325314 ATGGCCAAAAAACTCAAGCCCATGCACCCCGGTGAGGTTCTACGGGAGGAGTTTCTAGTCCCACTGAACA TGTCCGCTGGCGCGCTCGCCAAGACGTGCGGCTTGCCGCGCACGCGCATCGAGCGGATCGCGAATGAGCA GACCGGAATCACCGCCGACACCGCGCTTCGACTGGCCAAGGCGCTCGGCACAACGGCCGAACTCTGGCTC AATCTTCAGAATGATTATGACATCCAGATCGCGAAGCGCGATCTCGGCAAGGCACTTGACCGCATCGAGA CCGTGAACAGGCCGCAAGCGGCTGAATGA
>gi| 27375111 :c3325915-3325634
GTGATCAGAACGTTTCGGGACAAAACGACTGAGGCAGTCTTCGACGGAGAAAGTCCCAAAGGCTTTCCAG CCGATCTCGTGAAGGTTGCACGCCGGAAACTGCGTTATCTGCACGCTGCCGGCGAGCTCGGCGATCTAAG GGCGCCGCCCGGCAACCGTCTGGAGGCCCTGAGCGGCAATCGCAAGGGACAGCACTCGATCAGGATCAAT GATCAGTTCCGAGTGTGCTTCATCTGGACACCGCAAGGGCCCGTCGAGGTCGAGATTGTGGACTATCACT AG
>gi 11347032 -.1315930-1316238
ATGTTGATGACCGCACGCAAGCCAACAACGGTTGGCGAGATTCTCACCGAAGAGTTCATGCAGCCGCTCG GCTTGACGCAGGCGGCTTTGGCCGAGGCGATGGGCGTTCAGCGCAAGCATGTGAACGAATTGTGCAACGA CCGCCGCAACGTGACGGCGGCAACCGCGCTCATTCTGGCCCGGGTGTTTGGCAACAGCCCGGACTTCTGG CTGAACGTCCAACGCCGCAGCGATCTTTGGGCGGTTATGAATTCGCCCGACGAGCGGGCACGTGTTGACC GCGCCAAGCCTTTGGCGACAGCCGCATAG >gi 113470324: 1315625-1315921
ATGATCGTCGGTTTTAGAGACGGATGGCTGCGGGCTTTCTTTGTAGACGACACCCGCTCCCGCAACATTC CGTCCGATCTCGAAAGCCGCTTGTTCCGCAAGCTCCAGATGATTGACGACGCCACGGTCGATCAGGATTT GCGCGTACCGCCCAGCAACCATTTCGAGAAGTTGCGCGGCAATCTCGAAGGCTTCCATTCGATCCGCGTC AACCAGCAGTGGCGACTGATCTTCCGCTGGGACGGCGGTCGCGGTGAAGCGTCGGACATCTATCTCGACG ACCACAGTTATAAGTGA
>gi 115963753 :cll47618-1147310
ATGCTGACCACCAAGCGCAAGCCGGCGACTGTCGGCGAGATACTGACTGAAGAGTTCATGCGGCCGATGG GATTGACGCAGGGCGCGCTCGCCGAGGCGATGGGCGTCCAGCGCAAGCACGTCAACGAATTATGCGGCAA CCGCAGGAACGTGACGGCGGCGACGGCGCTGATCCTCGCCCGCGTGTTCGGCAACAGCCCGGACTTCTGG CTCAATGTGCAGAGGCGCAACGATCTTTGGCTGGTGATGAATACGCCAAAGGAACGTGAGCGGATCGAGC GCGCGCGTCCGTTGGAGAATGCAGCCTGA >gi 115963753 :cll47928-1147632
GTGATCGTAGGCTTTCGGGACGACTGGCTTCGGACCTTCTTTGTGGATGATGTCCGTTCCCGTAACATCC CGTACGATCTTGAAGCTCGGTTGTTCCGCAAGCTCCAGATGATTGACGATGCCGCAACCGACCAAGACTT GCGCGTGCCGCCCAGCAATCACTTCGAGAAGCTGCGCGGCAATCTGGCGGGGCTGCATTCGATCCGCGTC AACCAGCAATGGCGGCTGATCTTCCGCTGGGATGGGACGCGCGGAGAGGCCGACGGGATTTATCTGGACG ATCACAGCTACCGATGA
>gi 115963753 :c3321105-3320839
ATGCCCGGCGAAATCCTCGCCAGCGAGTTTCTCGAGCCGATGAATATCAGCGCCCGCAAGCTGGCGGGTC ATATCGGCGTTCCGGCGAACCGGATCACCGAGATCATCAAGGGACGCCGGAGCATTACCGGCGATACGGC TCTGCGGCTTTCCAAGGCCTTTGGTACGACGCCGGAATTCTGGATCAATCTCCAAAGCCATTATGAACTG GAACGCGCGCGTGATGCCGCAGGTGATCTGAGCATTTCTCCGCTTCACGCCGCATGA
>gi 115963753 :c3321391-3321113 ATGATTCAAAGCTTCGGGAACAAGGAGACTGAAGCAGTGTTCAAGCGGCAGCGAACGCGCCGCTTTGGCG CGTTTCAGAAACCCGCTCTCGTGAAGCTTCTCATGCTTCACGCGGCTACGCGCATCGAGGATTTGCGTGT TCCGCCCGGCAATCGGCTGGAAGCGCTGAAAGGTGATCGGGCGGGGCAGTATTCGATCCGCATTAACCAG CAATGGCGGATTTGCTTCCGCTTCGAGAACGGAGACGCCTACGATGTCGAAATCAGCGACTATCATTGA >gi|30248031:c521118-520813
ATGACTAGACCTGTAAACCGCATGCGTGCCGTCCATCCCGGGGAAGTGCTGCGTGAAGATTTTCTGATTC CAGCCGGGATAAGTGTCAACGCTCTGGCAATTGCCTTGAGTGTGCCAGCCACCCGCATTCATGAAATCGT CAAGGAGCGGCGCGCCGTTACCGCTGATACTGCTGAGCGGCTGGCGCATTATTTCGGGGGTGATGCCGCT TCCTGGCTTGCTCTGCAGGCCAGTTACGATCTGAAAACACTGCCCACGCGCGATGAAATTGAACGCCGCG TGCAAAGGCGTGAAGAACACGTGTGA
>gi | 30248031 :c521415-521128
ATGGGCTGCATGATCCAGTCTTTTCGATGTAAGAGTACTCAAGCAATGTTTGAGGGTGAATGTCCTCAGC GTTTTAGTGCCATCCAAGCTGTGGCTGAACGTAAGCTGGCACAATTGGAAGCGGCACAAACACTTGATTT TTTGCGCTCTCCACCAGGAAATCGGCTGGAAAAACTGGCTGGCGACCGGGAAGGTCAATGGAGCATTCGT ATCAACGCACAATGGCGTATATGCTTTACTTGGTCTGATCTCGATCCTGCCGATGTAGAGATTGTTGATT ATCATTGA
>gi | 30248031 :c532285-531968 ATGAATAATAAATTAACGCCGGTTTCCCCCGGCGAGATGCTGGCAGAGGAATTCTTAATTCCGCTGGGTA TGAGCAATTACCGTCTGGCAAAGGAAATTGGCGTATCAGCGCAGCGCATCGGTGAAATCGTAACGGGGAA GCGCGCCATTACCGTAGATACAGATTTGCGCCTATGCCGATTTTTTGGTCTGTCAGACGGATGGTGGTTG CGCCTACAAGTGGACTACGATATCGAGATGGCGCGCGGTGCGCTGGAAGAAACATTGGCGAAGATCAGAC CGTGGGCAAATACCCAAGAGCATGGGACACCGGCCTGA
>gi I 30248031 :c532621-532298
ATGTCGTTTGACGCTAATATCGCAACGCAATACTATATACTCATGACGATCAAGACATTTCGATGCGCGG ATCCTGAAACCTTATTCAAGTTAGGGCGAGTTGCACGATTTGTCAACATTGAGCGTCCAGCGTTACGCAA GCTCAAGCAACTTGATTTAGCACGGTGCATTGAGGATATACGTGTGCCGCCCGCGAATCGGCCGGAGATA TTGAAAGGCGACCGTGCCGGGCAGCACAGTATCCGCATCAACGACCAGTGGCGTGTGTGCTTCCGCTGGA CGGGCACGGATGCAGAAGATGTTGAGATTGTGGATTACCACTGA
>gi I 30248031: 1200543-1200899
ATGACTATCCATATCGAAGAGTTGGAAAACATGGATTTCAGTGATGTGGCTGAAGGTGGAAAATTGCACC CCATTCACCCTGGCGAGATTCTGCGCGAAGAATTTCTGATGCCGTTAAAAATCACTCCTCATGCACTTTC TTTGGCATTGCAAATTCCGGCCACCCGTATCAACGATATCGTACGGGAGCGTCGTGCAATTACTACCGAC ACCGCCCTCAGACTGGCGCGGTATTTTGGTAATACCGCTGAATTCTGGATGGGTCTTCAAATCGATTACG ATATGACTATTACCCGCGATTCCTTACGTGGGGCATTGAATAGAATTCAACGATTTGAACCTACCCATAT CAGTTAA
>gi 130248031: 1200249-1200530
ATGATCAAAACTTTCGCCACGAAAGAAACAGCTGCTTTATTTGCTAATGAAAAGATCAGGCGACTGCCAC CAGAAATTCTCCGGGTTGCTCGTCGAAAAATGGCGCAGTTACATCGTGTTTCATCAATTGAGGAACTGCG TATCCCACCTGGAAACAGGCTTGAAAAATTGTCTGGTAACCGGAATGAACAATGGAGCATTCGCATCAAC GATCAATGGCGAATTTGTTTCCGATTCGAAGCAGGCGATGTATTTGATGTCGAGATTACCGATTATCATT GA
>gi I 30248031 :cl426358-1426056
ATGGCCAGAATGCACAACCCCCCTTATCCCGGTGAAACCCTGCGCGAGGATGTACTACCTGCGCTTGGGT TAACCGTAACCCAAGCGGCAAAAGAGCTGGGAATCAACCGTGTTACCCTCTCGCGCGTGTTGAACGGCAA GGCCGGTATCAGCGTCGATCTCGCTCTGCGTCTGGAAGCATGGCTTGATGGGCCGAGCGCGGAAAGCTGG CTGAAAGGTCAGCTTGCGTATGATTTATGGCAGGCTGAGCAGCGCGGCTGTGCAAAAGTGGTGGTTCGCC ATATAAATCGCGAACAAATCTGA >gi|30248031:cl426649-1426371
ATGATCCGCCATTTCAAGCATAAAGGGTTGCAATTATTCTTTGAAACAGGAGATAAATCAGGTATCCGGC CGGATCATGCCTCACGTCTTGCACGTCAGCTGCGGCAGCTGAATGATGCAGTCAATCCGCGTGAAATGAA TATACCCGGCTGGAAGTTGCACCCACTTTCTGGCGATCTGTCAGGATATTGGTCGGTAATGGTCAATGGT AACTGGCGGATGATTTTTGTATTTGATGGAGAAGATGTCATCTTGGTTGATTACCGGGATGACCACTGA
>gi I 26245917 :cl745328-1745044
ATGAAAATGGCCAATCATCCCCGCCCGGGGGACATTATTCAGGAATCACTGGACGAACTTAATGTCAGCC TGCGCGAGTTTGCCAGAGCAATGGAAATTGCGCCCTCTACGGCAAGTCGATTGCTGACCGGAAAAGCAGC TTTGACGCCAGAAATGGCAATAAAACTGTCTGTGGTGATCGGCAGTTCGCCGCAAATGTGGCTGAATCTG CAAAATGCCTGGAGTCTGGCAGAGGCAGAAAAAACAGTGGATGTGTCGCGACTGCGCCGTCTGGTTACGC AATAA
>gi I 26245917 :cl745600-1745328
ATGAATTTCAGACACAAGGGATTGCGTGACTTGTTTCTTCTCGGCAAAACCTCCGGCGTTATACCGACGC AAGTCAAACGATTACGCCACCGACTCGCTGTGATTGATGCAGCATGCTGTCTTGCTGATATCGATATGCC CGGTTACCGACTACATCCGTTAAGCGGCGATCGCGATGGAATTTGGGCGATATCTGTCTCGGGTAACTGG CGAATCACATTTGAATTCGTCAATGGCGATGCATACATACTGGATTACGAGGACTATCACTGA
>gi I 29732244 : C1443658-1443353 ATGGCAGCTAATAGAATGCGACCCATACATCCAGGTGAGATCCTTGCTGAAGAGTTGGGGTTTTTAGATA AGATGTCAGCTAATCAGTTAGCTAAACATTTAGCAATTCCGACCAACCGAGTGACCGCCATTCTCAATGG CGCGCGATCCATTACGGCGGATACCGCGCTACGATTGGCTAAGTTTTTTGGGACGACGCCGGAATTTTGG CTAAATCTCCAAGACGCCTATGACATAAAAATGGCATTGAAAAAGTCCGGCAAAAAAATCGAAAAAGAAG TAACCCCTTACGACCAAGCCGCCTAG
>gi I 29732244 : C1443987-1443670
ATGCTTGATGTAACGCGTAAAACTGTTATCCTTGAAGTGATAATAAAAAGTTTCAAGGACAAATACACTA AATATTTATATAAAGGTGTATCCGTTTCAAAATGGCAAGCCATACGAAAGCAGGCGGAAAGACGGCTTCA GATTTTGGATTCAGTGACATCGTTAGATGATTTGAGAAGTTTGCCAAGCAATCGTTTTGAATCGTTGCGG GGGAATAGAAAAGGACAATTTAGTATAAGGATTAATAAGCAATGGCGCATTTGTTTTAAGTGGATTAACA ATGAGCCAACTGAAGTTGAAATTGTGGATTATCATTAG
>gi | 15600771: 415268-415582 ATGAGCAATCGTGATTTATTTGCAGAGTTAAGCTCAGCTCTTGTTGAGGCTAAGCAGCATTCAGAAGGTA AGCTTACTCTGAAAACACATCATGTGAATGATGTGGGTGAGTTGAACATCTCACCGGATGAAATCGTGAG TATTCGCGAGCAGTTCAATATGTCCCGCGGAGTCTTCGCGCGGTTACTTCATACGTCTTCGCGCACATTA GAAAACTGGGAACAAGGTCGTAGTGTGCCAAATGGTCAAGCGGTCACTCTTTTAAAGTTAGTACAGCGTC ATCCAGAAACGTTGTCACACATAGCCGAGCTATAA
>gi | 15600771: 414949-415281
ATGAAAAGTGTATTTGTCGAATCAACAATTTTTGAAAAGTACCGAGATGAATATCTCAGTGATGAGGAGT ATAGGCTCTTTCAAGCAGAGCTAATGCTAAACCCCAAGCTGGGTGATGTGATTCAAGGTACTGGCGGTTT GCGAAAAATTCGAGTTGCGAGTAAAGGCAAGGGAAAGCGTGGTGGTTCACGGATTATCTATTACTTTCTC GATGAAAAGAGGCGTTTCTATTTGCTAACCATTTACGGCAAAAATGAAATGTCTGACTTGAATGCAAATC AAAGGAAACAACTAATGGCTTTTATGGAGGCGTGGCGCAATGAGCAATCGTGA
>gi] 15600771:369724-370041
ATGCGTAAGACAAAACGTCGTCCAGTTAGCGTTGGGGAAATGTTAAAAGTTGAATTTCTTGAACCAATGG GCATCACATCAAAAGCGCTCGCTGAAGCGATGGGCGTACACAGAAATACGGTCAGTAATTTAATTAATGG TGGTGTGTTAACAGCTCCGGTAGCAATCAAGTTAGCCGCGGCATTAGGTAACACACCAGAATTTTGGCTT AACATTCAACATGCAGTTGATCTTTGGGATACGAGAAATCGTTATCAAGAAGAAGCAAAGTTTGTAAAGC CGTTGTTTGTTTCGCTGGAACAAAGCGCACGTACATAA >gi 115600771:369360-369713
TTGTGCACAGTGTCATTATGCGTTAGTCTTTGCCTATGGATGCACAATGAGACAGTGCAAGTTGCAATGG CATTAGAATTTAAAGATAAGTGGTTAGAGCAGTTTTACGAGGATGATAAACGACATCGTTTAATTCCAAG TAGCATAGAGAATGCTCTATTTCGGAAGCTGGAAATCTTAGATGCAGCTCAAGCTGAATCAGACTTAAGA ATTCCACCGGGTAATCGTTTTGAACATCTTGAAGGAAATCTTAAAGGTTGGTGTTCAATTCGAGTGAACA AACAGTATCGTTTGATTTTTCAGTGGGTTGATGGTGTTGCACTAAATACTTACTTAGACCCACATAAGTA TTGA
>gi|15836605:c680340-680065
ATGAAACGTATGCACAATCCCGCACATCCAGGTGAAGTGTTGCGTGAGTATCTTGGTGATCTCACTGTGA
CCAATGCGGCTGCAAAGCTTGGCGTCAGCCGTGTCGCTTTGTCGCGTATTCTCAATGGTGCCAACGGCAT
CTCTGCCGATATGGCCCTACGCCTGGAAGATGCGCTTGGCACCAGTGCAGAGATGTGGGTAGCCATGCAG
TTCAAGTATGACCTGTGGGTTGCCAGTCAGCAGCCACGCCCGAAGATCACACGCCTTCATGTGTAA
>gi|l5836605:c680668-680351 ATGTATACCGATCATTTACGGTATACAATCGGCTTTGTGATCAAAAGTTTCCGCCACAAAGGCATTCAAC AATTCTTCCTCGAGGGATCAACCGCTGGTATCCAAACCAAACACGCCGCCAAACTGCGTATCCAGCTCAC CGCGTTGGAGAGTGCTAAGCACCCCAAAGATATGAATGCTCCAGGCTGGAAACTGCACTCACTAAAAGGC GCTGACTTAAAAGGTCATTGGTCCATCTGGGTAAATGGCAACTATCGCCTCACGTTTGCTTTTGAAGGCG AAGACGCAATCTTGGTCGACTATCAGGATTACCACTAG
>gi I 28197945: 457886-458161
ATGAAACGTATGCACAATCCCGCACATCCAGGTGAAGTGTTGCGTGAGTATCTTGGTGAGCTCACTGTGA CCAATGCGGCTGCAAAGCTAGGCGTCAGCCGTGTGGCTTTGTCGCGTATTCTCAATGGTACCAATGGCAT CTCTGCCGATATGGCCCTTCGCCTGGAAGATGCGCTTGGCACCAGTGCAGAGATGTGGGCAGCCATGCAG TTCAAGTATGACCTGTGGGTTGCTAGTCAGCAGCCACGCCCGAAGATCACGCGCCTTCATGTTTAG
>vapA, gi I 28197945: 457594-457875
ATGATCAAAAGTTTCCGCCACAAAGGCATTCAACAATTCTTCCTCAAGGGATCAACCGCTGGTATCCAAA CCAAACACGCCGCCAAACTGCGTATCCAGCTCACCGCGTTGGAGAGTGCCAAGCGCCCCGAAGATATGAA TGCTCCAGGCTGGAAACTGCACCCACTAAAAGGCGCTGACTTAAAAGGTCATTGGTCCATCTGGGTGAAT GGCAACTATCGCCTCACGTTTGCTTTTGAAGGCGAAGACGCAATCTTGGTCGACTATCAGGATTATCACT AG
>gi I 28197945 : 1567163-1567462 ATGCGCACTGTTCCATATCCCACTCCAGGAGACATCCTGCTCCATGAATTCCTTGAACCCATGGGCATTA CCCAATACCGCCTTGCTAAGTCCATTGGCGTGCCACAACGGCGTATTGGCCAGATTGTCAGCGGTGATCG CGCTGTCACTGCCGATACGGCATTGCGTCTGTCAAAGTTCTTAGGCACATCCGATGGTTTCTGGCTCGGA TTGCAAATGGACTACGACGCTGCCGCCACAAAAGACAAGCTCGCCGAAACACTCAGCAAAATCACTCCTT GGCATACTCAAGCCGCTTAA >gi I 28197945: 1566872-1567153
ATGGCAATTCAATCCTTAGCATGTCAGCACACAGAATCGCTCTTCAATGGCAAGCGCATTCCTCGGTTCG TCAATATCGAAACTGTTGCTATGCGTAAACTTGCGATGCTACATCGTGCTGCTCATGTCGATGATCTACG CATTCCTCCCGCTAATCGGTTGGAAATGCTGAAAGGTCACCGCAAAGGGCAATACAGCATCCGTATCAAC GATCAATTTCGTATCTGCTTCACCTGGACCGTTGCAGGCCCTAAAAACGTCGAAATCGTGGACTATCACT AA
>gi 116271976: 1327375-1327698 ATGATGACGAGAAAACCCACCTCTGTTGGTGAAATTCTACAAGAAGAGTTTTTAGAACCTTTAAGTCTTA AAATTAGTGATTTAGCTCAAATTTTAGATGTACATCGTAATACGGCAAGCAATATTGTTAATAATAGTTC ACGAATTACGCTAGAAATGGCAGTTAAACTTGCTAA&GTATTTGATACTACGCCTGAGTTTTGGCTTAAT CTGCAAACACGTATTGATTTATGGGACCTTGAACACAATAAACGTTTTCAACAAAGTCTTGCAAATGTTA AGCCCGCTCTACATCGGCATGATACTTCTACATTTGCAATGTAA
>gi | 16271976 : 1327059-1327364
ATGTTTAATTTAAAGCGTGAGCATTTTAGAGATGATTATCTTTATAGGTTTTATCAATATGGTGATACTC ATAGTAAGATTCCTTCTAATTTGTATAAAGTATTGGCAAGAAAATTAGATATGATAAGTGCCTCAGAAAA TATCAACGATTTACGTTCTCCACCAGCTAACCATTTGGAGTTGCTTGAGCCAAAAGAAAATAAAATTTAT TCCATTCGAGTGAATAAACAATATTGTTTAATTTTTAAATATGAAAATAACGAAGTAAATAATTTATATT TAGATCCACATTCTTATAATTTGTAA
>gi I 26986745 :cl777853-1777554
ATGCTCAAGAACGGTATGCGTCCAATCCATCCGGGTGAAATCCTGCGGGAGGAGTTCCAGAAGGAAATGG GCTTCAGCGCCGCGGCTCTGGCCAGGGCGTTGGGTGTAGCAACGCCAACCGTCAACAACATCCTGCGCGA ACGGGGCGGTGTTTCCGCCGACATGGCACTGCGCCTGTCCATCTGCCTGGACACCACCCCTGAGTTCTGG CTCAACCTGCAGACGGCCTTCGATCTGCGCACAGCCGAACAGCAACACGGCGATGAGATCATCGGGTCGG TCCAGCGTCTGGTCGCTTGA >gi|26986745:cl778140-1777862
ATGATTCGAAGCTTTAGCTGTGCCGACACGGAAGCGCTCTTCACAACGGGAAAGACACGGCGCGGGTCAG ATATCAAGTCAGTCGCGGAGCGCAAGCTGGCCATGCTCGATGCCGCAACAGAGTTGCGAGACCTTAGGTC GCCACCTGGCAATCGCCTCGAGTCACTGAGCGGCAACCGCGCCGACCAGCACAGTATCCGTGTAAATGAC CAATGGCGGTTGTGCTTCACCTGGACAGAGCACGGGCCAGTTAACGTTGAAATTGTCGATTACCACTGA
>gi I 26986745 :cl373625-1373329
GTGGAAATAATGGAAAAGCATCTCTTCGATCGTCTTGTGGAAAGCATGACTCAGATGGATGAGATCGATC GCGGTGAGCGTCAGCCCTCGCGTGAGTTCCACGTAGACGCACTTCAAGTCAAAAAGATTCGTCAAGCCAC TGGCCTTTCCCAGGCTGCGTTTGCCAAACGTATCGATGTCGCAGTAGGAACTCTACGGAATTGGGAACAG GGCCGTCGCGAACCTGAAGGACCAGCTCGTGCCTTGCTTCGAGCGATTCATAACGATCCCGAACATGTAC TTGCGGCCTTGAGCTAA
>gi I 26986745 :cl373951-1373616
TTGACGCATAGCAGGGACTGCATGATCTTCATCGAGACCCCAGTATTCACCTCCGATCTCAAGGAGCACC TGGATGATGAAGAATACCGGGCTTTGCAGGCCTATCTGGCCGAGCATCCCGAAGCCGGTTCTCTCCTGGA GGAAACCGGCGGCCTCAGAAAGATCCGCTGGGCAGCCAAGGGCAAGGGCAAGAGTGGGGGTGTACGAGTG ATCTACTACCACGTCACTGCAGCCCACCAGATCCGTATGATTCTGATCTATCGCAAGGGCATCGTGGATA CCTTGACAAGCAGTCAGAAAGCGCAGCTTCGCGCACTAAACAAAGGGTGGAAATAA >gi|28867243:239314-239619
ATGAACAAAAACGGAATGCGCCCCGTCCATCCAGGCGAGGTTCTGAAAGAGGAATATCTTGAGCCGATGG GGCTGACCGCCGCAGCGTTGGCCAGGGCCCTTAAGGTTTCTACGCCGACGGTGAACGACATCGTGCTCCA GCGCAGAGGTGTGAGCGCTGATGTAGCGCTGCGTCTGGCTGTATGCCTGGAGACGAGTCCTGAGTTCTGG CTTAACCTGCAGCTTGCCTACGATCTGCGCAAGGCAGAGACAGAGAAGGGCGCGCAGATTCGTGAGCAGG TCAAATGTCTGGCCCACTGCGCTTGA
>gi I 28867243: 239026-239304
ATGATTGTGAGTTTTAAGTGCGTGCACACGAGATATCTCTTTTTACAAGGCAAGACGCGGCTGTGGCCAT CGATTAAATCTGTTGCCGAGCGCAAGCTCGCAATGCTTGATGCTGCTACCTCGATTTTGGATCTGCGCTC TCCTCCCGGCAATCGACTAGAGGCGCTTGATGGAAGTCGTTCTGGCCAATACAGCGTACGTATAAACGCT CCATTCAGGATTTGCTTCGTTTGGAGCATCAACGGTCCCGAGGACGTAGAAATTGTCGATTATCACTGA
>gi I 28867243 :c468183-467890
ATGGAAATGTTCAATCCTCCCCATCCGGGGGAAATCCTCCTTGAAGAGGTCATTCCCGGCTTGCAGACCA CCATCACTGAATTCGCCAGTCACCTGGGTTTTGCAAGAGAAACGCTGTCAAGAATTCTGCATGGGCATGC ACCTGTAAGCCCTGATCTGGCGGTAAGGCTCGAGCGAGCGGGTATCAGCAGCGCGCGCCTGTGGCTGGGT ATACAGGCGGACTATGATTTGTGGCAAGCGGAGCATCGCGAGCAGCCGCCGATCGAGCCTTATGTCATAG CAAACCCGGGGTAG >gi|28867243:c468474-468196
TTGATCGTCAGCTGGAGACACAAAGGGCTCAAAGCTTTTTTCGAAACCGGCTCTAGCAGCGGCATCAGGG CGGATCACTCAAAACGCCTCGCGCACGTCCTGGCAGTACTGAATCGAGCGAGAACCCCTGCTAACGTCAA CATGCCCGGCTGGCGGCTTCATCCCCTGAAAGGTGAACTGGAGGGTTTCTGGTCAATAACTATCAATGCG AACTGGCGGATTATTTTTCGTTTTTTCGATACAGATGTCGAACTGGTCGACTACCTGGATTACCACTGA The following sequences were found in a later supplementary search:
>gi I 29345410: 5572524-5572718 ATGAATATTATGCAAGTAAACCCTGACGTTGGAAGTATGGATGCTGTATTAGACAAATTGTACGGCAAGG TAGGTACCAACAAGTCCTATATATCTAGAATTGAGAAAGGAGCGCTTGAGCCGGGAGTCGGACTTTTCTT TCGTATCATTGATGCATTGGGCTTAAAAGTGGAGATTGTTAAGCCGATGATATGA
>gi I 29345410: 5572334-5572546 CTGCTGGCAGGCGGTTGTGGCGGATGGCTGAAAGGGCTGAAACGCTTGAAAATAAAAAAACATTCCATGA ATATTTATGGGGCTTTTTTTATTTTTGATGAAGGCAATATCGTGATGTTGTTTAATGGCTTTCAGAAAAA GACACAAAAAACGCCCGAAAGTGAGATTGAAAAGGCAGTAAAACTTAAAAATGAATATTATGCAAGTAAA CCCTGA
>gi | 29345410: 6209784-6210089
ATGGAAGCAAAAACAAATGAGGAATTCTTTAATGTCAGTGCATTAATAGATGAGCGTTTTGGTAAGGAAG GAACAGCTTCTCGTGCAGAGGCAGAAGAAAAGGCCTACGCCTTTTATACAGGACAGATTATCGAGGACGC AAGAAAAAAGGCTAAAATCACTCAGGCTGAATTAGCCCGGCGTATCGGCTCTGACCGTTCTTATATTTCA AGAGTAGAAAGTGGTCAGACAGAGCCTAAAGTATCTACTTTCTATCGTATAATGAATGCGTTAGGCTGTA AAATCGAATTTTCAATGATTTTGTAA
>gi I 29345410: 6209471-6209803
ATGAAAAGAGAAATAATAGCATATAAAGGATACTTCAAAGAATTCTTTGAAAATTTAGATGCTGGCACCC AAGATAAGATATTGTATGTGCTAATGTTATTGCAGACACAAGACAGAATACCTTTGAAATTTATGCGGTT GATAGAAGAAGGACTTTATGAACTTCGTATCGAGTACCAAAGCAATATATATAGAATATTCTTTTGTTTC GACGAAGGGCGTATTGTGATTCTGTTTAACGGTTTTCAAAAGAAAACCGAAAAAACACCAAAGAAAGAAA TTGATAAAGCAAAGATATTAAGAAAGGAGTATTATGGAAGCAAAAACAAATGA
>gi I 27375111 = 1797159-1797353
ATCCTAACCGCTGCCCGTCTCATCCGGGCGCCGTCCTTGATGAAATTCTACAGTACATCAGGAAGTCTAA GACCGAGATTGCAGAAGCGCTGGGATTCCAGGCAGCATCTGCACGACATCCTCGCGGAGAAGAAGCCGGT CAGTCCGAACGTGGCCGCCCGGATTGGAAAGCCGGTCGGCAACGGCCCGGCCATCTAG
>gi I 27375111 : 1797159-1797353
ATCCTAACCGCTGCCCGTCTCATCCGGGCGCCGTCCTTGATGAAATTCTACAGTACATCAGGAAGTCTAA GACCGAGATTGCAGAAGCGCTGGGATTCCAGGCAGCATCTGCACGACATCCTCGCGGAGAAGAAGCCGGT CAGTCCGAACGTGGCCGCCCGGATTGGAAAGCCGGTCGGCAACGGCCCGGCCATCTAG
>gi I 27375111: 2291364-2291684 ATGAGTAAGGCAATTAAAGCAACCGCAGGCAGCGATAATATTTTCGCTGACCTTGGCTTTGCCAATCCTG AGGAAGAACTCCTCAAAGCCAAACTTATTCGTGAGCTTCGTGCGATCATCAAACGTCGCAAGTTGACTCA GACAAAGGCTGCCGAACTGCTAGGCCTTAAACAGCCTGATGTATCTGCCCTAGTGACCGGCCGCGTAGGG AAGTTCTCGATCGACAGGATTGTTCGATGCCTAGATCGGCTTAATTATCGTGTGGACGTCGTTATCCGTC ATAAGCCCGTTCGTCGCGCATCCTCGCGAGCTGCGGCCTAA
>gi I 27375111 : 2291364-2291684
ATGAGTAAGGCAATTAAAGCAACCGCAGGCAGCGATAATATTTTCGCTGACCTTGGCTTTGCCAATCCTG AGGAAGAACTCCTCAAAGCCAAACTTATTCGTGAGCTTCGTGCGATCATCAAACGTCGCAAGTTGACTCA GACAAAGGCTGCCGAACTGCTAGGCCTTAAACAGCCTGATGTATCTGCCCTAGTGACCGGCCGCGTAGGG AAGTTCTCGATCGACAGGATTGTTCGATGCCTAGATCGGCTTAATTATCGTGTGGACGTCGTTATCCGTC ATAAGCCCGTTCGTCGCGCATCCTCGCGAGCTGCGGCCTAA
>gi I 27375111:5539812-5540207 ATGCGAGCTTCTGATCCGCCAGATACGCCTCTGAGCTTTTTTTGTGCCTATACGTGGCGATGCAGTCCCC AAAACGCGATCAGCAGGAGAGCTGCGGCCCCAATTCCCAGCAATAGGAGAATGGCTTCCAGCATGACGAA TCAAGCTCCGCCCGCCCCTTTGGAAGGATACACCTTGCCGGGTTTAGTCACCAAGGCCCGCCAGCGTGAA CCGGCGGGCCTCCTGTTGAATTCGGCGACCTCCGAGATCATCGGGAACATGATGCGCAGCGCGCGGTCAT TGCGCGACGATGGAGAGGCCGGCGTTCCTGGGGCAGCGCCTTGTCGCCGCCGAGGATCAGAACGACAAGC TTTGCCGCAGCGGGTACGGCTTGCAGTTATCGTCCCGGCAGAGCCGTGA
>gi I 27375111: 5539523-5539825
GTGCGTTGGGAGGCTCGAGTGACGAAGACCTACCGACCAGTCACACCTTCGCAGCTCGCCGATGAGCTGA ACCAAGCATTCGCCTCGGCCGAACCTCACACAATCTCCAGGGCGATCGGACAGGCCCTCAAAGATTTCAA CATTTCAGAAATCTCGAAAAAGGCCGAGCTGCAGCGTACGAGCATTTATCGTGCTTTCGGCAACGAACAG CTTCCGAATTTTTCTACCGTCCTGGGGGTACTCACGGCTATGGGCTTGCAGCTGAAGGTAGCCCCCAAAC GCGGCGGGCATGCGAGCTTCTGA >gi | 16124256 :c3255249-3254923
ATGGTGACGTTGAGCCGCTTCGATCCGGTTGAGATGATCGACAACGCCGAGGCGGTCGCCGTGTTTCTGG
CCGACGCCTTCGACACGGGTGACGCCGACTATATCCAGCACATGCTGGGTCTGATCGCTCGCTCCAAGGG
GATGGCCGAGGTCGCTGAGAAGGCCGGCTTAGGGCGCGAGAGCCTCTATAAGGCGCTGAAGGACGGCGCT
TCGCCGCGTTTCGACACGATCCTGCGTGTGGTCCACGCCTTGAATCTGAAGTTGGCCCTGGTCAGCGCGA
CCGAGGCCAATAGCGCCGAAGACGCGGACGACGAAGCCGCCGCCTGA
>gi 116124256 :c3255440-3255243
GTGCGCGGCCTGCCGGGCGATCTGCGTCCGGTGGGTGGGGGTGTGAGCGAATTGCGGGTCCATGTCGGTC CTGGCTACAGGATCTACGTGGCGCGCCGCGCGGATGTGGTGATCGTCCTGCTCTGCGGTGGCGACAAGAG CTCTCAGGCGCGCGACATCGAGAAGGCCAGGGTGATCGCAAGGAGTCTGGAATGGTGA
>gi I 25026556 : 2931451-2931759 ATGAACACCAACACCGAGACCTTCGCCCCCTTCGATACAGCGAACCATCTGAATACCGTCGAAGATGTCG CTGCCTACCTGGAGGCAGTCATTGAAGACAGCGATAGTGACGATGACTCGACGGTCATCGCCCAAGCACT GGGAGCTATCGCCCGGTCACGTAACTTCAGTCAAATCGCGCGACAAGCTGGAATGAGCCGCGAAGGTCTT TACAAGGCACTGTCCGCCGACGGTAACCCCAGTTTGGCCACCGTTATTAAGGTATCCCACGCCCTGGGAC TTCGACTGCGCTTCGAGGCCACCGCCTGA
>gi I 25026556: 2931140-2931454
ATGGTTGAAATTGTCGCATCAGCGACATTCGACCGGTGGCTACGAAAGCTCAAGAATCGTCGCGCGGCTG CCCGCGCGCTCGTTCGAATCGACCGGTTAGCGGCTAATAACCCGGGAGACGTCAAACCAGTGGGCGGAGG CATCTCCGAGCTGCGGATCGACTACGGCCCCGGGTGCCGCGTGTACTTCTTGCGCGAACGGGACCGCCTG GTCTTGTTGCTGACCGGAGGAGACAAGTCAACCCAGGAAACCGACATCAAAGCCGCCCACGCCATCGCAG ACATCTGGCGTCGCACCCAAGGAGTGCATGAATGA
>gi I 29732244 :cl624960-1624790
TTGATAATATCGTTAGATGGACAGGAAGGGATTGCTCGTTTTTTTTATTGTACTCAGGTAAAGAAAGAAA TTGTAATACTGCATGCTTTTATAAAGAAAACACAAGAAACACCTATCAAAGAGCTGGAGATAGCAAAAAA ACGTATGAAAGAGGTAAAAAACAATGACTAG
>gi I 29732244 :cl624797-1624471
ATGACTAGACGATCAACCACTTGGCATAAAACCTTTAAGCAGACAGGGCTTTCTGATCCGGAAGCAAAAG CCGAATATGAAGCATTTAAATTACAACTAGAATTGGCAGACCAGTTAAAAAAAGAAAGACAAAAAGCACA TCTCACTCAAGAAACGGTTGCAGAACGTATGGAAACACAAAAACCGGTCGTGGCTCGAATAGAGGCAGCG GGCGGAAAAGGGAGGCACTCTCCCTCCTTAAAAACGTTAGTAAAATATGCCAATGCCATCGGTTGCCACC TCCAAATCAAATTGGTTTCCAGTAAAAAAAGAAAAGGTGCCCGTTAA
>gi I 26245917: 4602054-4602344
ATGGATAAGGCACTTTTTGAGCGGTTGACTCACAGCATGGCCCAGATGAATGAAATTATTGAAGGAACGC GACAGCCTTCACGGACTTTTGAAGTTGATGCTATGAAAATCAAAGAAATACGCCGCGCTTCAGGGTTGTC ACAATCTAAATTTGCCGATCTTATTTCCGTAAGCGTAGACACGTTGCGTAACTGGGAGCAGGGGCGACGT TCACCGACCGGGCCTGCAAAGGCTTTGCTGCGAGCGATTGCCAATGATCCGCAACATGTGCTGCAAGCAC TTAACCGTTAG
>gi I 26245917: 4601742-4602053
ATGCTCTTCATCGAAACGGAAATTTTTACTGAAGATGTTCAAAAACTGCTGAACGACGATGAATTCAGTC GTTTTCAGTTTTTCCTGGCCTTGAATCCTGACTATGGTGAGGTAATACCTGAAACTGGTGGGTTAAGAAA GGTTCGATGGGTCTCAGGAGGAAAGGGGAAACGTGCTGGTGTCAGGGTTATTTACTTTCATCAGGTTAAA CATTATGAGATCAGATTACTGCTTATTTATCGTAAGGGTATTAAAGATGATCTGTCTCCCCAGGAAAAAG CAATGCTCCGGTTGTTAAATACGAGGTGGTAA
>gi I 26245917 : 5218354-5218638
ATGAGTTTTTTTGATGAGTTGAAAACCTCTCTGGAAGAGGCTGTCGAGATTAAACAAGGTTTAAAAGAAC CTGCACGGGTGACCCGCTACGAAATTGCGGATGTTAAAGCTATTCGTGAGCAACTCAACGTTTCTCAAAG TGAGATGGCAAAAGCTCTGGGAACCAGTGTGGATACCATTAAAAGCTGGGAATCGAAGCGAAGAAATCCT ACGGGATTGGCTGCAAAAGTACTTGCCACAATTAAAGAAAATCCTGCCTTTTTCCGGGAACTTGCTTCCC ATTAA
>gi I 26245917 : 5217942-5218352 ATGTTGAGTGGGATTACTGATTTAAAAGTGTACTTAGTACTCCATTTAGGTGTACAATGTACCTGCCAGG GAGGGGGAATGGGTAAGGCGATAATATTTATAGAGACGCCAATGTTTACGCGTCAGATCAAGCAGATTGC AACCGATGATGAATTAAAGGAATTACAAAAAGAACTCATCGGAACTCCCGATAAAGGTGATCTCATTCAG CAGACTGGTGGATTGCGTAAAGTCCGAATGGCTGCGGGTTCACAGGGAAAAAGTGGCAGTGTCAGAATAA TTTACTTTCTGGCGACGGAAGAGATTATTTATTTGATTATGGCCTATCCGATAAATGCCAAAGATAGTCT GACAGATACGGAAAAAGCTCAACTAAAGAAGTTGACGAAACTGCTCAAAGGCGAGATATAA
>gi 116445223: 2885478-2885768
ATGAAAATTGAAACCTTTGATAGTGTGTGGGATGCGGTGAGTGACACCCCTGAACAAGCGGAAAATATGC GGATCCGTGCCGAGCTTGTAACGATCATTAATAACTGGATTGAACAACAAGGGTTTAGCCAGGCTCAGGC AGCTTCTGCTTTAGGGGTCACTCAACCTCGCATCTCTGAACTTGCCAGAGGTAAAATCCAGATCTTTAGT ATCGATAAATTGATCACCATGATGGCTCATGCAGGACTACATATTCAACGTATTGAAGTTCAATATCCAC ATGCTGCTTAG
>gi | 16445223: 2885150-2885488
ATGAGAAAAAAGCTGGCTTTTCTTGATACCAGTCTTGACGATTTACGCGCATTTCCAGAATCGTCTCGAC AGGAAATTGGCTATCAACTCGACAGGATCCAACAAGGGTTAAACCCATACGACTGGAAACCTTTTTCAAC TATCGGCCCTGGTGTGCGAGAGATTCGTACTCGCGATGCTGATGGGATCTATCGCGTCATGTATGTCGCA AAATTTGAAGAAGCGGTTTACGTATTGCATTGTTTTCAAAAGAAAACACAGACTACCAGTCAATCGGATA TTGATTTAGCCAAACGACGCTATAAAGAACTTGTTCAGGAGCGGAAAAATGAAAATTGA
>gi 115829254: 2815263-2815553
ATGAAAATTGAAACCTTTGATAGTGTGTGGGATGCGGTGAGTGACACCCCTGAACAAGCGGAAAATATGC GGATCCGTGCCGAGCTTGTAACGATCATTAATAACTGGATTGAACAACAAGGGTTTAGCCAGGCTCAGGC AGCTTCTGCTTTAGGGGTCACTCAACCTCGCATCTCTGAACTTGCCAGAGGTAAAATCCAGATCTTTAGT ATCGATAAATTGATCACCATGATGGCTCATGCAGGACTACATATTCAACGTATTGAAGTTCAATATCCAC ATGCTGCTTAG >gi 115829254:2814935-2815273
ATGAGAAAAAAGCTGGCTTTTCTTGATACCAGTCTTGACGATTTACGCGCATTTCCAGAATCGTCTCGAC AGGAAATTGGCTATCAACTCGACAGGATCCAACAAGGGTTAAACCCATACGACTGGAAACCTTTTTCAAC TATCGGCCCTGGTGTGCGAGAGATTCGTACTCGCGATGCTGATGGGATCTATCGCGTCATGTATGTCGCA AAATTTGAAGAAGCGGTTTACGTATTGCATTGTTTTCAAAAGAAAACACAGACTACCAGTCAATCGGATA TTGATTTAGCCAAACGACGCTATAAAGAACTTGTTCAGGAGCGGAAAAATGAAAATTGA
>gi|l6271976:c703026-702730
ATGAATAAAATCAGCCCATTAGGTTCAAATTGGAATGAGTTTGAACAGCAAATTTTCAATGAAGAAGAAA TCCGAGAAAGTAATTTGCGTGTAGCCTTAATTAAAGAATTGATTACTTCTCGCCAGCAACTTGGGATTTC CCAAAAACAACTTGAAACCTTAAGCGGTGTGAAGCAACCTATGATTGCACGCATTGAAAAAGGACAAACG AATCCTCAGCTTGAAACGTTGTTAAAATTGCTCGCTCCTTTAGGGAAAACCCTGTCGATTGTTCCTCTAA GGGTAAAAAATGCCTAA
>gi 116271976 :c703378-703019
ATGTACGAGATTCTCTTTTACAGAGACCAAAATGACATTGAGCCAGTGAAAGAGTATCTGCTATCTCTGG CTCAAAATGAAAGCAAAGATAGTCGAATTAAACTGAATAAAATTCGAGATTATGTAAAGTTATTAAGCGA ACTCGGGACGTCTGTTGGCAAACCCTATGTGAAACATTTAGACGGTGAAATTTGGGAACTTCGTCCAATT AGGGATCGCATCTTGTTTGCAAGATTAATGGATGGTCGCTTTGTCTTACTACATCAATTTATGAAGAAAA CACAAAAAACGCCAAAACGAGAAATCCAAACAGCCCAACAACGCTTAAGTGAATTAAAAGAGAGATTGAA AAATGAATAA
>gi 116271976: 1510258-1510551
ATGACTGAACAATTAAAAGACTTTGATGTGGCAGAACACCTCACTTCTGAAGAAGAAATTCAACTTTACC TTAATGAAATTCTACAAGAAGATAATATTGAGCTTATTTTATCCGCCCTTGGCGACATAGCCCGTGCGCG TAACATGAGCCAAATCGCACGTGATGCAGGAATAAGCCGAGAAGGTCTTTATAAAGCCTTATCTGGCACG GGCAATCCTACTTTTGCTACTGTAATGAAAGTAATGAAAGCCTTAAATTTACAATTCCAAGTGCAACAAT CTCGATTCGCCTAA
>gi 116271976:1509962-1510261
ATGACAATCCAAATCAAAACCACTCTGACATTTGATTCTTGGTTAAGCAAACTAAAAAACTTGCGTGCCA AAGCGAAAATAAACGCACGAATTAAACGCTTACAGTTCGGCAACTTTGGTGATATCAAAAGCGTGAATGA TGGGATTTTTGAATTACGGATTGATGAAGGTCAAGGTTATCGAGTTTATCTTAAAAACCAGAATGGCGTA TTAGTGATTTTACTTTGTGGCGGAGATAAATCCACACAAGATAAAGATATTAAACAAGCAAAACTTCTCG CACAGGAGCTAGGATTATGA >gi 113470324: 800860-4801012 ATCACCGGCGAAATGACCAGCGGCAACGTGTTTGCGGATTTGGGCTTTGATAATTCCGAAGAGGAATTGT CGAAAGCCAAGCTCGCCGTGAGATCCGCGCCATCATTGTGCGTGGGCGCCTCACTCAAGCGAAATCGGCT CAATTGCTTGCTATGA
>gi 113470324: 800860-4801012 ATCACCGGCGAAATGACCAGCGGCAACGTGTTTGCGGATTTGGGCTTTGATAATTCCGAAGAGGAATTGT CGAAAGCCAAGCTCGCCGTGAGATCCGCGCCATCATTGTGCGTGGGCGCCTCACTCAAGCGAAATCGGCT CAATTGCTTGCTATGA
>gi | 15839372 : 2199469-2199918
ATGAGCATTGACTTCCCTTTGGGTGACGACCTCGCCGGCTATATTGCCGAGGCGATTGCGGCTGATCCCA GCTTCAAAGGCACTCTCGAAGACGCCGAGGAGGCACGCAGGCTGGTCGATGCGCTGATTGCGCTGCGCAA GCACTGCCAGCTGAGCCAGGTTGAGGTTGCTAAGCGTATGGGGGTGCGCCAGCCCACCGTGAGCGGTTTC GAGAAGGAACCCAGCGACCCCAAACTGTCTACGCTGCAACGTTATGCCCGTGCATTGGACGCCCGGCTGC GGCTGGTGCTCGAAGTTCCCACGCTTCGCGAAGTGCCTACGTGGCATCGGCTCTCCTCTTATCGGGGCTC CGCACGGGACCACCAGGTCCGGGTGGGTGCAGACAAGGAAATCCTGATGCAGACGAACTGGGCCCGCCAC ATTTCGGTTCGGCAGGTTGAGGTGGCATGA
>gi 115839372 : 2199469-2199918
ATGAGCATTGACTTCCCTTTGGGTGACGACCTCGCCGGCTATATTGCCGAGGCGATTGCGGCTGATCCCA GCTTCAAAGGCACTCTCGAAGACGCCGAGGAGGCACGCAGGCTGGTCGATGCGCTGATTGCGCTGCGCAA GCACTGCCAGCTGAGCCAGGTTGAGGTTGCTAAGCGTATGGGGGTGCGCCAGCCCACCGTGAGCGGTTTC GAGAAGGAACCCAGCGACCCCAAACTGTCTACGCTGCAACGTTATGCCCGTGCATTGGACGCCCGGCTGC GGCTGGTGCTCGAAGTTCCCACGCTTCGCGAAGTGCCTACGTGGCATCGGCTCTCCTCTTATCGGGGCTC CGCACGGGACCACCAGGTCCGGGTGGGTGCAGACAAGGAAATCCTGATGCAGACGAACTGGGCCCGCCAC ATTTCGGTTCGGCAGGTTGAGGTGGCATGA
>gi 115607142: 2202136-2202585 ATGAGCATTGACTTCCCTTTGGGTGACGACCTCGCCGGCTATATTGCCGAGGCGATTGCGGCTGATCCCA GCTTCAAAGGCACTCTCGAAGACGCCGAGGAGGCACGCAGGCTGGTCGATGCGCTGATTGCGCTGCGCAA GCACTGCCAGCTGAGCCAGGTTGAGGTTGCTAAGCGTATGGGGGTGCGCCAGCCCACCGTGAGCGGTTTC GAGAAGGAACCCAGCGACCCCAAACTGTCTACGCTGCAACGTTATGCCCGTGCATTGGACGCCCGGCTGC GGCTGGTGCTCGAAGTTCCCACGCTTCGCGAAGTGCCTACGTGGCATCGGCTCTCCTCTTATCGGGGCTC CGCACGGGACCACCAGGTCCGGGTGGGTGCAGACAAGGAAATCCTGATGCAGACGAACTGGGCCCGCCAC ATTTCGGTTCGGCAGGTTGAGGTGGCATGA
>gi 115607142: 2202136-2202585
ATGAGCATTGACTTCCCTTTGGGTGACGACCTCGCCGGCTATATTGCCGAGGCGATTGCGGCTGATCCCA GCTTCAAAGGCACTCTCGAAGACGCCGAGGAGGCACGCAGGCTGGTCGATGCGCTGATTGCGCTGCGCAA GCACTGCCAGCTGAGCCAGGTTGAGGTTGCTAAGCGTATGGGGGTGCGCCAGCCCACCGTGAGCGGTTTC GAGAAGGAACCCAGCGACCCCAAACTGTCTACGCTGCAACGTTATGCCCGTGCATTGGACGCCCGGCTGC GGCTGGTGCTCGAAGTTCCCACGCTTCGCGAAGTGCCTACGTGGCATCGGCTCTCCTCTTATCGGGGCTC CGCACGGGACCACCAGGTCCGGGTGGGTGCAGACAAGGAAATCCTGATGCAGACGAACTGGGCCCGCCAC ATTTCGGTTCGGCAGGTTGAGGTGGCATGA
>gi I 30248031 :cll56630-1156304 ATGAGACCACTTACTAACTATCAAACTATCAATGATGTAGATGGACGGCCTGCCTTTGTCGTTATTCCCT ACGCTGATTTTGTGCATTCCCAAGTATACGTGCCTAAAGATGGTGCGCCACACGCTGTCGTCAGTAAAGC TATCAATGGAATGAGTATGCTGCAAGCCTGGCGTGAATACCTGATGCTGACCCAGGAAGAAATGGCTAAA CGCATGGAGATCACGCAAGCAGGCTATGCACAGATTGAGGCTGCCAAGCGTCCGCGCAAGGCAACGCTTG AGAAAGCCGCGGCGGCGATGGGTATCACCCTGGAACAATTAGCGTACTAA
>gi I 30248031 :cll56630-1156304
ATGAGACCACTTACTAACTATCAAACTATCAATGATGTAGATGGACGGCCTGCCTTTGTCGTTATTCCCT ACGCTGATTTTGTGCATTCCCAAGTATACGTGCCTAAAGATGGTGCGCCACACGCTGTCGTCAGTAAAGC TATCAATGGAATGAGTATGCTGCAAGCCTGGCGTGAATACCTGATGCTGACCCAGGAAGAAATGGCTAAA CGCATGGAGATCACGCAAGCAGGCTATGCACAGATTGAGGCTGCCAAGCGTCCGCGCAAGGCAACGCTTG AGAAAGCCGCGGCGGCGATGGGTATCACCCTGGAACAATTAGCGTACTAA
>gi I 30248031 :cl481234-1480914 ATGAGTAAAAAAACACCTTTAAATGAAATTGCTGAATTTGATGTGTCGGATTACTTACGTGATGACGAGG ATATTGCCGAATATTTAACCCAAGTGCTGGCTGAAGGTGATAGCAATGAATTACTACGCGCTATTGGTTA CATTGCAAAAGCACGTGGCATAACTCAGTTGGCTAAGGATACGGGTCTTGGTCGGGAAAGTCTTTATAAA GCCTTTCGTGCAGGCTCAAAACCTCAATTTGAAACAGTATTTAAAGTGCTGCACGCGCTAAATATTAATT TAAAAGCAATTCCTAAAGAAGTAGTTAGCACACGAGTTTGA
>gi I 30248031 :cl481562-1481227
ATGGTGTATTCATTAGGATACAAAACCATGTATATTGTCAAAAGATTAGATGAGTTTGATAAGTGGTTGG ACGGTTTGAAGGACCGCCCCACAAGAATCCGCCTAATTCGTCGCTTAGATAAAGCCAGGCAAGGCTTGCT AGGCGATGTTAAGTCTGTGGGTGAGGGCGTGTTTGAGATGCGTGAGTTTTTTGGTTCTGGTTGGCGCATG TATTACATCCAGCAAGGCGGCACCATTATTTTGATGCTTGGAGGTGGTGACAAATCAACACAGAGCAAAG ATATTCAGAAAGCCATTCAATTGGCTAATGATTTAGGAGAAAACAGCTATGAGTAA
>gi|30248031:1496453-1496731
ATGGAAAAAATAACTGACTCCAGCGGAAATATATTTACTGACCTGGGATTCAACCCGGAGCAATCAGCTA TCTATACCCTGCGAGCAGAATTGATGAGCAATTTGCGCAAAACGATCCGGGAACGTAAATGGACTCAGGA AGAAGCTGCCAAAGTGCTTAACATTGGACAATCCCGCGTATCCGATCTGATGCGTGGCAAATGGGAAAAA TTCAGCCTGGATATGCTCATCACTCTGGCGATCCGGGTCGGCAAACGGATTGGGATTACTGTTGTATAG
>gi | 30248031 : 1496257-1496469
ATGCCATCTGATTTCAAACCAATGCTTGCCGTTGGGCCGGGGGCTTACGAGATCAGGATTCACATAATGG GTGAGTGGCGCGTAATTTACGTGGCAAAAATGCAGGACACAATATATGTCCTGCATACATTTCAGAAGAA AACACAGAAAACCAGCAAGCACGATCGTTATAGGCAAATCATAAAGGAGATAACCAATGGAAAAAATAAC TGA
>gi|l7227497:cl205341-1205015
ATGACACAGGAACCAGTTTTTGAAGAAAGTAGTGGTAACGTATTCGCTGACCTCGGTTTGTCGAATGCTT CGGAACTTTTTACGCGGGGCAAAATAGGGATTCAGGTACTTCACCTCTTGAAACAACGCAATCTGAAACA GCGTGAAATTAGTGAACTTCTTGGCATTCCCCAGTCAGAAGTATCTCATCTAATGAAAGGAGAGTTTCAA CGGTTCAGCGAGGGCAAACTTCTCATTTTCCTCAAGCGACTCGATACGGAAATCACATTACATCTTCGCC CTCGTCATGCACCAGACCAAGCGGCTGAAATCGTGATATCCCTATGA
>gi 117227497 :cl205709-1205338
ATGGATGATGAGGATATTACGGAAATTCCTTTACGACCTCTCGTTTGGATGGGAGACTCTCTCAAAAATA TCCGATCATTTCCTGAAGAGGTGCGTGCATCAGTAGGTTATGCTCTGCAATTGGTGCAAGCAGGAGAAAC ACCAATGGATGCCAAGCCTTTTAAAGGGGTTGGAAGTGGCGTGTATGAAATCGTCAAACGATACGATACA GATACTTACAGAGCAGTCTATGCAGTAAAGATTGGGGAGAAAATTTATGTCCTGCACGCTTTTCAAAAGA AATCAAAGCAGGGGATTAAAACTCCACTAGCTGATGTTGATCTGATCAAACAACGCTATAAAGACGCAGT GGCAAGAGAGAAGCAAGAATGA
>gi 117227497 :c2883893-2883597
ATGATGCCTAGAAGTACCAGCTATCATGAAAAACTGATACAAGACCTTCAAAATCCCCTAGAAGCAGCAG CTTATATCGAAGTTATTTTAGAAGAAGGCGACCCAAAAATGTTAAGTAAAGCACTCCAAAATGTCATAGA AGCACATGGTGGAGTGGATCAGCTTTCTACACCAGTCAAGGAACTCTACAATAAACTTGACCAAATGTTA TCAGATAAAGGGGAAATTGAGTTTTATAGTCTAAATTCTTTGTTAGATGCTTTAGGTTTACATTTGGCAG TAACAGTAAAGCCATAA
>gi 117227497 :c2884221-2883883
ATGGAAGTTCAACCAAAAGAAATCAGAAACTATTTAAGACTTGATGGTATTGATATTTTTTCTGATTGGT TTGATTCTCTGCGGGATAGAAAAGCAAAAGCTAAAATCAGAGCAAGACTAGACCGAGTAGAAAATGGTAA TTTAGGTGATTGCAAATCAGTTGGTGATGGTGTTTTTGAACTCAGAATAGATTATGGTTCTGGCTACCGC ATATACTTTGGGCAGGAAGGATTAACAATTATTATTCTTTTGTGTGGTGGGGATAAAAGCACTCAAGATA AAGATATTGCTAAAGCTAAAGAATATTGGGAAGACTACAGGAGTAGAGATGATGCCTAG
>gi I 26986745: 334364-334672
CTGCCAGGCGTTTGGGTGATCACGATCTGGATCGGTGAACCGGCATCGTTCGAGGGCAGGGTCAGGGTTG TGCGAAAGCCGAGCTTGTCCAGCATGTCCATCATGGCGTCCAAGGTGAATTTCTCGATCTTGCCATTTGC AAGCTCGGATATGCGGGATTGGGTTACGTTCAGCTTGGCTGCGGCATCATGCTGTTTGAGGCCCATTTTT TTGATGCAGTCAGTGATGAAAATGGACAAGTCCATTTTCAAGGCCATTTTGCTGGCGGTATCTGCGTCGT GGGTGGCGTGGAAAGGGCTTTCGTGGAATTGA >gi|26986745:334364-334672
CTGCCAGGCGTTTGGGTGATCACGATCTGGATCGGTGAACCGGCATCGTTCGAGGGCAGGGTCAGGGTTG TGCGAAAGCCGAGCTTGTCCAGCATGTCCATCATGGCGTCCAAGGTGAATTTCTCGATCTTGCCATTTGC AAGCTCGGATATGCGGGATTGGGTTACGTTCAGCTTGGCTGCGGCATCATGCTGTTTGAGGCCCATTTTT TTGATGCAGTCAGTGATGAAAATGGACAAGTCCATTTTCAAGGCCATTTTGCTGGCGGTATCTGCGTCGT GGGTGGCGTGGAAAGGGCTTTCGTGGAATTGA
>gi I 26986745.-C1418494-1418120 ATCTTTGCCTTCCATAACGAAAAAGCCCCCGAAAGCTTTCGCTTCCAGGGGCTTGATCTTGTATGGCGGA GAGATAGGGATTTGAACCCTAGGTACTGTTGCCAGTACAACGGATTTCGAATCCGTCCCGTTCGACCACT CCGGCATCTCTCCAATGCCGCGCATCATACCAGCGTTCTTTTAAAACGCAAATCTTTTTTTCAAAAAAAT CGCGTGGTATCAGGCGCTTGCGTGAACGTGCCGCTTACAGCGGCACGCCCAGGCGCTTGGCAACTTCTTC GTAGGCTTCGATCACGTCGCCCAGGCCCTGGCGGAAGCGGTCCTTGTCCATCTTCTTGCGGGTTTCCTTG TCCCACAGGCGGCAGCCGTCCGGGCTGA
>gi | 26986745 :cl418880-1418530
ATGATCAGCAAAAAAATTTCGCCGCAAGACATGCCAATCCTTGATCTGGATTTGAGCAAAACAAAACGCT TCGAGGCCTCCCGGTTTCTCGACAGCCCGGAAACCATCGCGGCATTTCTGGCAGAAGCAATGAAGGCTAA TGACGCTCAGACCCTGATGCATGCATTGGGTGAAGTGGCAAAAGCCAAGGGCGTGAATCAGTTTGCGCAA GACGCAGGGGTCAATCGAGAGTCTCTTTATAAAACGCTGAAGGGCGAAGAAAAGACCCGTTTCACCACTA TTCAAAAACTGATGGTTGCGTTAGGTGTAGAGCTCACAGTCAGGCCGCTCGAGAAGCTTCCGGGCTCTTG A
>gi | 28867243: 6107952-6108296
ATGACCACTCATACGCGATCCCATGACGAAAGCGTTCTCGACATGCTTCGTGAAGACGAAGCATTTGCCA TCGAATATCTGTCTGTTGCGCTGGAGGAAATCGACGAGGACGGTGGCGAAGACGCTTTTCTTATCGCCAT CCGTCGCTTGATCGAGGCGAGAGGCGGTATGGGAAACCTCTCAAAGAACACAGGCCTGGCCCGACCCAAC CTTTACAGATCTATTGCAGCTGGTGGCGACCCCAAGCTCTCCACCATCCTGAAGGTGCTCCAGGCACTGG GCGTGGGAATGTCAAAGGTCGTTTCGCACAGGCCGGACGTGGGCGGCCAACGCACCGACCCGTGA >gi I 28867243: 6107632-6107955
ATGTACGAAGTGGAACACGTACTGTCTGCCAATGGGGTAGATATCTATCAGGGTTGGCTCGACACCGTTC GAGACACCCGATCCAAGGCACGAATCACCACCAGAGTCGACCGAGCGGCGCTTGGCCACTTCGGTATAAC CGAACCGGTAGGTGATGGGGTCTTTGAGATGAAGCTGGATTTTGGTCCCGGCTTTCGTGTGTATTACGCG'' ATAGAAGGTCAAAAGGTGCTTTTTCTCTTGGGCGGCGGCTCAAAGGACAAGCAACAAAACGACATCGACC AAGCCAAGGCGCTATGGAAATGCCACAAGGTGAAAAAGAAATGA
>gi|15891923:1127345-1127773
ATGCCGGTATTTTTAATAACCGGTTTTATAAAAAGTAAGATGGAAAATATTAATCATAATAGTTGTAATG AATTAAAAAAACTAACTGAAGAATTGGAAAATTATATGTCGGACGAGGCAAAAATAAATAATAAAAATAC TAATCAAACCGACAAAAGTATATTAATTGGAATGCAAGAGGCTGTTTTATATACTAAAGGAAAATTAAAA GCAAATAAACATGATATAAAATTATCTAATATAGACGTGCATGAAGCAAGAGATAAGTTAAAATTAACAC AACAACAATTTGCTACAACATTTGGAGTGAGTGTTGCAACTTTAAGAAACTGGGAACAAGGCAGAAGATT ACCTACCGGAGCTGCAAAATTACTTCTTAAGATTATTGAGAAAGAACCTAATGTTGTAAAACGAGTTTTA CGAGGATAA
>gi]15891923:1127050-1127286 ATGATACTAAACAAAAATTATTTATTGATTCTCCTACGCCAATGGCGTATAATTATTATGAGTAAAAAAC TGATTTCAGTTGTTGAGCTTCCAGAGTTTCAAAAATTCGCTCAGAATAATTTAAATAAAAAAGAATGCTT TGAAATAATACATTACATTGCTGCTAATCCTGACCAAGGTGATATAATAAAAGGCACTGGAGGTATAAGA AGAAAGTTACGATTTACTTATAAGTAG
>gi ] 16758993 : C3507604-3507263
GTGATTGCCAAAACTGATAGTGATTTTCGCCATGTGACGCCATCTGGCGGTAATGTTTTTGCTGATTTGG GGTTTCATAAGCAGGACGCAGAAAAGTTTTACGCTGATTCCCTGAATGAAATCGAAAACACGTTAGCCAT TAAACAACAGCTAATGGAAGAAATTACCCTCTGGATTACGCAAAACCAGATGAAGCAAGCCGAGGTTGCT ACAGTTTTGCATATATCCCGACCGCGCGTTTCGGATGTCGTCAACAAGAAATGCAGCAAATTCACCATTG ATGCTCTGGTGAATATGCTTAGCCGTATTGGGAAGCCTGTTCGGGTAATGGTAGGGCCGTAA >gi|l6758993:c3507963-3507601
ATGTTACTCACCCGAGCTCTCTCCAATGAAAAAGAAATTCGATGGGTGGGATCTTCTCTGGAGGATCTCC TGGCTTTTCCCATAACGGTACGTAAAGCAGTCGGTTATCAGCTTCACAAAATTCAGTATGGAATTGAACC CGATGACTGGAAACCGTTTTCAGAAATTGGGGCTGGGGTAAATGAAATTCGTATTCGTAACAACAATGGT ATCTATCGCGTTATGTATGTCGCTAATTTTGCAGAAGCACTCTACGTTTTGCATAGTTTCCAAAAACAGA CGCAACAAACCAGTCAGCATGATAAAAACATCGCCAGAACGCGTTATAACCGGGTGGTGCAACAACGGAG AAACAGCTTGTGA >gi | 16763390: 4115982-4116323
GTGATTGCCAAAACTGATAGTGATATTCGCCATGTGACGCCATCTGGCGGTAATGTTTTTGCTGATTTGG GGTTTCATAAGCAGGACGCAGAAAAGTTTTACGCTGATTCCCTGAATGAAATCGAAAACACGTTAGCCAT TAAACAACAGCTAATGGAAGAAATTACCCTCTGGATTACGCAAAACCAGATGAAGCAAGCCGAGGTTGCT ACAGTTTTGCATATATCCCGACCGCGCGTTTCGGATGTCGTCAACAAGAAATGCAGCAAATTCACCATTG ATGCTCTGGTGAATATGCTTAGCCGTATTGGGAAGCCTGTTCGGGTAATGGTAGGGCCGTAA
>gi 116763390: 4115668-4115985 GTGGGATCTTCTCTGGAGGATCTCCTGGCTTTTCCCATAACGGTACGTAAAGCAGTCGGTTATCAGCTTC ACAAAATTCAGTATGGAATTGAACCCGATGACTGGAAACCGTTTTCAGAAATTGGGGCTGGGGTAAATGA AATTCGTATTCGTGACAACAATGGTATCTATCGCGTTATGTATGTCGCTAAGTTTGAAGAAGCACTCTAC GTTTTGCATAGTTTCCAAAAACAGACGCAACAAACCAGTCAGCATGATAAAAACATCGCCAGAACGCGTT ATAACCGGGTGGTGCAACAACGGAGAAACAGCTTGTGA
>gi | 16763390 : 4241948-4242235
ATGGATAAAGTGTTATTTGAGCGATTAACTCAAAGTATGTCTCAAATGAATGAAATCATTGAAGGGACCC GTGAACCTTCTCGTACCTTTCATATTGATGCAATGAAGATTAAAGAAATACGGCAGGCATCTGGGTTGTC GCAATCTAAGTTTGCAGAGCTGATTTCGGTCAACGTGGATACGCTGCGCAACTGGGAGCAAGGAAGACGT TCACCGACAGGGCCAGCCAAAGCGTTACTTCGCGCCATTGCCAACGACCCGAGAAACGTTATACAAGCAT TGCGTTATTGA
>gi 116763390: 4241948-4242235 ATGGATAAAGTGTTATTTGAGCGATTAACTCAAAGTATGTCTCAAATGAATGAAATCATTGAAGGGACCC GTGAACCTTCTCGTACCTTTCATATTGATGCAATGAAGATTAAAGAAATACGGCAGGCATCTGGGTTGTC GCAATCTAAGTTTGCAGAGCTGATTTCGGTCAACGTGGATACGCTGCGCAACTGGGAGCAAGGAAGACGT TCACCGACAGGGCCAGCCAAAGCGTTACTTCGCGCCATTGCCAACGACCCGAGAAACGTTATACAAGCAT TGCGTTATTGA
>gi I 29140543 :c3493262-3492921 GTGATTGCCAAAACTGATAGTGATTTTCGCCATGTGACGCCATCTGGCGGTAATGTTTTTGCTGATTTGG GGTTTCATAAGCAGGACGCAGAAAAGTTTTACGCTGATTCCCTGAATGAAATCGAAAACACGTTAGCCAT TAAACAACAGCTAATGGAAGAAATTACCCTCTGGATTACGCAAAACCAGATGAAGCAAGCCGAGGTTGCT ACAGTTTTGCATATATCCCGACCGCGCGTTTCGGATGTCGTCAACAAGAAATGCAGCAAATTCACCATTG ATGCTCTGGTGAATATGCTTAGCCGTATTGGGAAGCCTGTTCGGGTAATGGTAGGGCCGTAA
>gi I 29140543 :c3493621-3493259
ATGTTACTCACCCGAGCTCTCTCCAATGAAAAAGAAATTCGATGGGTGGGATCTTCTCTGGAGGATCTCC TGGCTTTTCCCATAACGGTACGTAAAGCAGTCGGTTATCAGCTTCACAAAATTCAGTATGGAATTGAACC CGATGACTGGAAACCGTTTTCAGAAATTGGGGCTGGGGTAAATGAAATTCGTATTCGTAACAACAATGGT ATCTATCGCGTTATGTATGTCGCTAATTTTGCAGAAGCACTCTACGTTTTGCATAGTTTCCAAAAACAGA CGCAACAAACCAGTCAGCATGATAAAAACATCGCCAGAACGCGTTATAACCGGGTGGTGCAACAACGGAG AAACAGCTTGTGA
>gi ] 15963753 :cl986266-1985652
ATGGGTTTTCCGGGTCTGGTAGGTTTTCGTGGCGCGGCGGCGTCCCGGTCTGCGGTGGTCCTTGCATTGG
CGGCGATACTGGCAGGGTGCGGCTCGCGCCAGGCGGCGAACGACACGTTCAGCCTGGCGTCCGTTCCTGC CGTGGAGCGTCCGGGGGCTACAAACCGCCAGCTTCTCGTTCCGGAACCGACGGCGCTGAAGACCCTGGGC AGCGACCAGATCGTGGTTCGCCTTTCGAGATCGGAACTGCAATATCTCGCCAGAGCCCAATGGGGAGACA GTCTGCCGCGCATGGTGCAGGACAGGCTCGTCCAGACCTTCGACAACACAGGCAGGATTCGCGTCGGCAA ACCCGGCCAAGGGCTCGCCATCGATTATCAATTGATAACCGAGCTCAGAGCCTTCGAAATATCTACCGAT GGAGCGGCAACGGCGGTCGTCGAGATATTCGCCAAGATACTGGATGACCGGAACGGCACCGTCCGCAAAC AGCAGGCCTTCCGCGCCGTCGTGCCCGTGCGAGGCGCCGGCAATCCCGCTTTCGTCGCCGCGCTCGATGC CGCGTTCGCCCGGGTCGCGGCCGACATCGTGGGCTGGACGCTCAGCTCCATCTGA
>gi 115963753 :cl985583-1984993 ATGATTAGAATGCTGCAGTCGGCCACGTTCAGGAAGTGGCATTCGAAACTTCGGGATGAACGGGCCAAAG CGGCGATAGCGAGGCGCTTGCTGCGTCTGGCGCAAGTAAATCCCGGCGACGTCTCGCCGGTGGGAGAAGG TATCAGTGAACTGCGCATTCATCACGGCCCTGGGTATCGGGTTTATTTCCAGAAGCGCGGGGAACTGATC ATGCTGCTCTTGTGTGCTGGGGACAGGGCACACAGGATAGAGACATCGGAACGGCGAAAGAGATCGCCGC CCAATGGAGTGATATCGATGTCTGAAAAGTTTACTGAGTTTGACGTGTCAGATCTGCTCACCAGCGAACG CGCCATTGAGGCTTTTCTGACCGAGGCAATGGAAACGGGGGATGCGCAACATATCGCTTCCGCCCTCGGT GCGGTTGCTCGCGTCAAAGGGATGACCAAGATCGCCCGCGAGACTGGCCTTGCTCGTGAACACCTGTATC GCTCGCTTAGCGAGAACGGGAATCCGACGCTCGAGACAACGCTTGCCGTGCTCAAAACCTTCGGTTTTCA CCTGATGCCGAAACACGATGCGGCCGTCTGA >gi 115899949 : 1071637-1071930
ATGAAAAATAATGCTATTGGTAGTAACTGGAAAGATGTAAGAGCTGAATTATTCAGCAAAGAGGAAATTT TGGAAAGTGATATGCGCGTGGCTATCATGAGTGAGCTTATCGAGGCTAGAAATGAAAAGGGTATTAGTCA GAAGAAACTAGAGGAGATGAGCGGTGTTAGTCAGCCAGTTATCGCTAGAATGGAAACAGGAAAGACAAGC CCACAACTTGATACAGTATTAAAAGTGTTGGCAAGTCTTGGTAAGACCTTAGCTGTTGTACCATTAGAGC ATGAGCAGGTTTAG >gi | 15899949: 1071282-1071647
GTGCATAATATCTATTTTTACAAGGATAAAAACGGCAATGAGCCTGTTTTTGATTATATGCGAGAGCTTA CCAGTAAAAAAGGGAAAGATAGCAGAATTAAGCTTAATAAAATTAATGATTATATTGAGTTGTTAAGCCA ACATGGAACACGCGCAGGCGAACCATATATTAAGCATTTAGATGCTGAAATTTGGGAGCTGAGACCACTT AGAGATAGAATTTTATTTGTTGCTTGGATGGATGGTAGTTTTGTTTTACTGCATCATTTTATGAAAAGGA CACAGAAAACACCCAAAAGAGAGATTGAGCAAGCTAAACGTGAACTTGCAGATTTAAAAGAAAGAGGTTT AGACAATGAAAAATAA
>gi | 16329170 :c474432-474208
ATGAACACAGCTCAAATTAGCACCGATGGCACCCATCAAATCGTTATTTTACCAGAAAACTTTACGATAG CCGGAAGCGAAGTTTACATTAAAAAAATTGGAAGTACAATTATTTTGATTGCTAAAAATAACCCTTGGCA ATCCTTAATTGAAAGCTTAGATCAATTTTCAGATGATTTTATGAAAACTAGGGAACAGCCTCCCTTAGAT ATACGAGAAGAGTTCTAA
>gi 116329170 :c474432-474208
ATGAACACAGCTCAAATTAGCACCGATGGCACCCATCAAATCGTTATTTTACCAGAAAACTTTACGATAG CCGGAAGCGAAGTTTACATTAAAAAAATTGGAAGTACAATTATTTTGATTGCTAAAAATAACCCTTGGCA ATCCTTAATTGAAAGCTTAGATCAATTTTCAGATGATTTTATGAAAACTAGGGAACAGCCTCCCTTAGAT ATACGAGAAGAGTTCTAA
>gi 115836605: 543926-544291
ATGTTGAATCGGCGCGAGTGCGGTGCGGCAGTTGAAGTTGCTGCGCGTCGGCATCTGGAACGGGCTGGTT TGCGTTGGTTGGCGAGCAATGTGTGTTTCCGTGGCGGGGAGTTGGATTTGGTGATGTATGACGTGATGAG CGTTGTGTTCGTCGAGGTGCGTTACCGTCAGCAAGAGAATCATGGGAGTGCTGCGCAGAGTGTGGATCGG CGTAAACGCCGTAAGCTGGTCATGGCGGCGCAATTGTTTTTACAGCGTCATCCGTTTTTAGCGCAGGTGC CGTGCCGCTTCGATGTGGTTGAGGGGGCAGGTAGGCCGTTACAGTTGCATTGGATCCGTGATGCGTTCCG TCTGGATGATTGTTGA
>gi ] 15836605 : 543926-544291 ATGTTGAATCGGCGCGAGTGCGGTGCGGCAGTTGAAGTTGCTGCGCGTCGGCATCTGGAACGGGCTGGTT TGCGTTGGTTGGCGAGCAATGTGTGTTTCCGTGGCGGGGAGTTGGATTTGGTGATGTATGACGTGATGAG CGTTGTGTTCGTCGAGGTGCGTTACCGTCAGCAAGAGAATCATGGGAGTGCTGCGCAGAGTGTGGATCGG CGTAAACGCCGTAAGCTGGTCATGGCGGCGCAATTGTTTTTACAGCGTCATCCGTTTTTAGCGCAGGTGC CGTGCCGCTTCGATGTGGTTGAGGGGGCAGGTAGGCCGTTACAGTTGCATTGGATCCGTGATGCGTTCCG TCTGGATGATTGTTGA
>gi 115836605 :cl525120-1524839
ATGAGCAACGAGCGATTCACAAGTGTGTGGGATGCCATTGAGGACACTCCCGAAGCCGCCGAAAACATGA AGTTACGTTCCGCACTCATGATGGCCCTGAAACAACACATCGAAACGGCTGCGCTGAGTCAGTCTCAAGC CGCTACGCTGTTCGGTGTCACGCAGCCTCGCGTGTCAGATTTAATGCGCGGCAAAATCAACCTGTTCGGC TTGGATGCACTGGTCARCATGGCTGCGGCGGCTGGCATGCATGTGGAAATGCGCGTGCTGAAAGCGGCGT GA >gi|l5836605:cl525455-1525117
ATGGTAGGACCCAAACCGATTGAATTCAGAGGCAGCGCTCTTGACGACTTACGCGCTTTCCCAGTGAGCG TAAGACGTGAGGCCGGGTACCAGCTTCACCAAGTGCAAAACGGACGCGACCCTGACGACTGGAAGCCCAT GCCCACGGTAGGGCGTGGAGTCCGCGAGATTCGTATCCGTGACGCAGACGGCGCTTTCCGCGTTATCTAC GTTGCCAAGTTGTCCGAGGCTGTCTATGTGTTGCATTGCTTCCAAAAGAAAACTGAGAAAACCACCAAAG GCGATCTTGATGTAGCGGCTAAACGCTACCGTGATCTGTTTAATGAGGTAGGACAATGA
>gi 115836605 : C1540497-1540198
ATGACCATGACCGAGAAACTGACGAGCTACGATCCGGCCGAGGACTTGACCACTGACCAGGCCATCGCCG ATTTCATGGCAGCCGCGTTCGGGACGAACGATCCTGCCTACGTTGCCCACGCGCTAGGCGTCGTTGCCCG CGCCAAGGGCATGACGCAGATCGCCAGCCAGACAGGGCTATCGCGCGAACAGCTCTACCGCTCGTTCAGT GCCGAGGGCAACCCGACGCTGCGCACGACATTAGCCGTGATGAAGGCGCTAGGGATCGAGCTCTCTGCGA AACCGTCTGGTGTTCACTGA >gi 115836605 :cl540790-1540494
ATGATTGAATTGAAGCAGACTGACACCTTCCGCAAGTGGCGGGAGAAACTCAAGGATGCGCGCGCCCGCT CGGCCATCGCCTCACGCCTCGACCGCTTGGCGTTCGGCCATGTCGGCGACGCCGAGCCAGTAGGGAAAGG TGTCAGCGAGCTTCGCATCAACTACGGCCCCGGTTACCGGGTGTATTTCCAGCAGCGTGGCGACACGATC TACTTGCTACTTTGCGGCGGTGACAAAGGATTACAAGCGCGTGACATCAAGACTGCGCTGCACCTCTCTG AACAATGGAGCGAATGA
>gi|15836605:cl609486-1609205 ATGAGCAACGAGCGATTCACAAGTGTGTGGGATGCCATTGAGGACACTCCCGAAGCCGCCGAAAACATGA AGTTACGTTCCGCACTCATGATGGCCCTGAAACAACACATCGAAACGGCTGCGCTGAGTCAGTCTCAAGC CGCTACGCTGTTCGGTGTCACGCAGCCTCGCGTGTCAGATTTAATGCGCGGCAAAATCAACCTGTTCGGC TTGGATGCACTGGTCAACATGGCTGCGGCGGCTGGCATGCATGTGGAAATGCGCGTGCTGAAAGCGGCGT GA
>gi | 15836605 :cl609821-1609483
ATGGTAGGACCCAAACCGATTGAATTCAGAGGCAGCGCTCTTGACGACTTACGCGCTTTCCCAGTGAGCG TAAGACGTGAGGCCGGGTACCAGCTTCACCAAGTGCAAAACGGACGCGACCCTGACGACTGGAAGCCCAT GCCCACGGTAGGGCGTGGAGTCCGCGAGATTCGTATCCGTGACGCAGACGGCGCTTTCCGCGTTATCTAC GTTGCCAAGTTGTCCGAGGCTGTCTATGTGTTGCATTGCTTCCAAAAGAAAACTGAGAAAACCACCAAAG GCGATCTTGATGTAGCGGCTAAACGCTACCGTGATCTGTTTAATGAGGTAGGACAATGA
>g 115836605 :cl624631-1624326
ATGAATAATGAGACGTTTAGTCGATACGACACCGCTGACTATCTCAAAACCGAAGAAGATATTGCGGCTT • ATATGGAAGCCGTCATGGAAGAAGGTGGTAGGGATAATCCTGCTTTTATTGCACGGGCACTTGGTGCTGT CGCTCGTGCTCGTAATTTAAGTCAGCTTGCTCGTGACGTTGGCATGTCCAGGCAAGGACTAGACAAAGCA CTCTCTAATGACGGCAACCCAAGCTTCTCAACCATCTTAAAAGTGGCTAAGGCGCTTGGTTTACGGATGT CATTCACTCCTTCCTCTATGAGTTAA >gi|15836605:cl624936-1624628
TTGCACATGGTCGAACTCATCAAAACCAGCACTTTTGATGCTTGGATAAACAGCTTACGTGACCGCAAAG CAGCCGCCAGAATTCAAGCGCGTCTTGATCGGCTCGCACTTGGCAATCCCGGCGACGTGAAGCCTGTGGG TGCTGGCATCTCAGAAATGAGGATCGACCATGGGCCCGGATATCGGATCTATTTTATGAAGCATGGTGCA GTACTGATTCTCTTGCTTTGCGGTGGCGATAAATCGTCACAAATGCGAGATATCGAGCAGGCCAAGGCAC TGGCTGCACTGTGGAAGGATGAGCCATGA
>gi| 15836605 :c2655392-2655084
GTGACCATCACCAAGAAAATCAATGTCTCCGAACTGCCAGAGTTCGATGCCGCCGAATACCTGAGCAGCG AGGAGGAGGTAGCCGCGTATCTCACGGCTGTTCTTGAAGAAAACGATCCAGCACTGTTAGCGGCTGCGCT GGGTGACATTGCCCGTTCACGTGGCATGTCTCAGATTGCGAAGGATTCCGGCATCACGCGGGAAGGTCTA TACAAGGCCCTTCGGCCTGGCAGTGAACCACGCTTCGATACGATAAGCCGCGTCTGTACCGCCCTCGGTA TACGTCTAGTAGCGCAACCAATGCGTTGA
>gi 115836605 :c2655737-2655396 TTGACTTTACTGCAAAGTAATCGTTTGATTACAGTACAGTGCATGATCTACACGGTGAAACGACTCGAAG AGTTCTCTGACTGGCTAAAGGGCCTGAAGGATGGGCTGGCAAGGCAGCGCCTCATCAAGCGCTTACGCAA GGTGCAGCTCGGCAACTTTGGAGACGTGCAGCCGGTGGGTGAAGGCGTGTTTGAGATGCGCGAACACTTC GGACCTGGCTGGCGTATGTACTACGTGCAGCGAGGCAGCTTTCTCATCGTGATGCTCGGTGGCGGCGACA AGTCAACGCAACAATCAGACATTCGTCGGGCCATTGAGCTAGCAAAATCTTTGGAGGATTGA
>gi I 28197945 : 1168139-1168420
ATGACTAAGATAGAAACTTTTAACAGCGTATGGGATGCCTTAGCAGATACACCAGAACAGGCTGCAAATC TTCGTGCCAGGGCTGAACTCATGCGGCAAATCGCGGCAGTCATTGAAGCAAACGACTGGAATCAATCACA AGCTGCAACACACTGCGGTGTGACCCAACCACGTATCAACGACTTATTACGTGGTCGTATCTCGCGGTTC TCATTAGATGCTTTAGTCAACATCGCCACTGCCATCGGACGGCGCGTTCATGTGAAATTAGAAGCGGCAT AA
>gi I 28197945: 1168139-1168420
ATGACTAAGATAGAAACTTTTAACAGCGTATGGGATGCCTTAGCAGATACACCAGAACAGGCTGCAAATC TTCGTGCCAGGGCTGAACTCATGCGGCAAATCGCGGCAGTCATTGAAGCAAACGACTGGAATCAATCACA AGCTGCAACACACTGCGGTGTGACCCAACCACGTATCAACGACTTATTACGTGGTCGTATCTCGCGGTTC TCATTAGATGCTTTAGTCAACATCGCCACTGCCATCGGACGGCGCGTTCATGTGAAATTAGAAGCGGCAT AA >gi I 28197945: 1379817-1380122
ATGAATAATGAGACTTTTAGTCGATACGACACCGCTGACTATCTCAAAACCGAAGAAGATATTGCGGCTT ATATGGAAGCCGTCATGGAAGAAGGTGGTAGGGATAATCCTGCTTTTATTGCACGGGCACTTGGTGCTGT CGCTCGTGCTCGTAATTTAAGTCAGCTTGCTCGTGACGTTGGCATGTCCAGGCAAGGACTAGACAAGGCA CTCTCTAACGACGGCAACCCAAGCTTCTCAACCATCTTAAAAGTGGCTAAAGCGCTTGGTTTACGGATGT CATTCACACCTTCCTCTATGAGTTAA
>gi I 28197945 : 1379511-1379813
TTGCACATGGTCGAACTCATCAAAACCAGCACTTTTGATGCTTGGATAAACAGCTTACGTGACCGCAAAG
CAGCCGCCAGAATTCAAGCGCGTCTTGATCGGCTCGCACTTGGCAATCCCGGCGACGTGAAGCCTGTGGG TGCTGGCATCTCAGAAATGAGGATCGACCATGGGCCCGGATATCGGATCTATTTTATGAAGCATGGTGCA GTACTGATTCTCTTACTTTGCGGTGGCGATAAATCGTCACAAGTACGAGATATAGAGCAGGCTAAGGCAC TGGCTGCACTGTGGAAGGATTAG >gi|l6120353:c964379-964230
TTGGATAATAAACGCCAACCACCAAGCCTGTCCCATGAACAAGTGGTCGCCCGAATGCTAAAGAAACCGG CAGTGAGGGCAGAATATGAGCGGCTGGAGCGCCAGGATTTCGCCATCATTGATGAAACGTTAAAGGGAAT ACATTCCGAATAA >gi | 16120353 :c964698-964372
ATGAACTACACCATTGAATATTACGATGATGATGTCATCACCCAGCTTCTTGCCCAACCCATCAGCTTGC AGGCCAATTTTATTAGCCTGGCTAAACGTATGAAGCGCTACGGTATTAAGATGGTTGATGCTGTCCCGAT GCATTACCACGAAGATGTGTTTGAGCTGTGTTTTTATGAGCCGAAAGGCTGGAACCGCGTCATTTTTATG GCACAAATAGACTGGCAGATTGTTATTTTGCATATTGTGGTGCAAAAAACGGCTTATATGCCGTGGAAAG AGAAAGGCAAAGCCGCTAAACGAATGAAGGAGTTGCGATTTGGATAA
>gi | 16120353 : 1235071-1235391
ATGATTATGGCCAAAGCCCGTTTACATGATGACGCTATGGTTCAGCTTCTTATGGAAGACCCTGAATTTG CGCAAGTATATCTGCATCAGGCTCTTCTAGATATTGATGAGGAAGGAGGGCAAGAAGCCTTTCTGATGGC CCTACGTCATGTAGTTGAGGCCCGAGGAGGGATGGCAAGTGTGGCTAAAAAAGCGGGTGTATCGAGAGAA ACACTGTACCGGACGTTATCACCTTCAGGTAATCCAACACTAAAAACACTGCTTAGTGTGGTATCTGCAA CGGGATTTCAGTTTTCACATCTTGCATCGATTACCGCATGA
>gi 116120353 : 1234752-1235063 TTGATGAAAACGATCAAACACTATCTGACTCCCGAGGGACGGGATTTATACATGGAGTATTTGAAGAGTC TCCGTGATTCGATCGCTAAGGCAAAAATATCATCAAGAGTTAACCGGATCGCTTCGGGGAACTTTGGGGA TCATAAGCCTTGCCGTGAAGGTGTCTGGGAACTTCGTATAGACCAGGGGCCAGGTTACAGGGTTTATTAC AGCCTTGTTGCGGTGAAGTCGTGTTGTTGCTTTTGGGCGGTGATAAGCGCTCGCAGAATGCCGACATCGA TCAGGCTATTGTGTGTCTTAAAGATTATTTAA
>gi|l6120353:c2608050-2607727
ATGAAAAAAACAGACGATTTTGACATCATTCCTTTTGCGGTGGTTAAAGCAGCAGCGTTGAGTCATCCGC AGGTGAATGACGCCTATACGGATTTACAAATTCGGCAAGCGATGATGACTGAACTGAAAGCGGCCCGCCA ACAATGCAATTTGACTCAAGAAGAGGTCGCACTGCGGGCGGGGCTGAAAAAACAAAATATCAGTCGTATG GAGAAAGGCATCATTTCACCTAACCTCACCACCTTGAGCCGTTATGCCGCAGCACTAGGAGGGACTTTCG TTTTTCAATTCAACCCAAACTCATCTTATGCGACTAAGGAGTAA
>gi 116120353 -.C2608361-2608047
TTGTTACGGTTGGCACAGAGGGAGTTAGTAAGATTACCCGTAGGCATACAGGCGGTACTGATTAAGGCGA TGGATGAGCTTGAAGCTTGTGGTCATGAACTGAGAGAGCCTTATGTACGGGATATGGGGCAGGGGTTAAA AGAATTACGCGTAAGCGCTAAAGAAGGTATCGGGCGTGGTTTTTTCTTTTGCCACCTCCATCGGCAGGTT TATATCATTCACCTCCTACAGAAAAAAACACAGAAAACCCCAAGACGGACACTGATATTGGCTTATCGGC GCATGAAAGAACTCAAACGGAGATTGCAGTCATGA >gi|l6120353:c3894662-3894351
ATGAAAAGTGATCTGACACTGCACGCTTGGGATGAGGTTCGGGCAGAACTCTTACAAGATGAAGAAACCG CAAGGGCCTATGCTATCGTCATGCTACGTAAGGCACTACTCAATAGTCTGGTTGCGGTCAGAAAATCCAA ACAGTTGACGCAGGTTGATATCGCTAAACGCATCGGTGTGAGTCGGCAGGCGATCAGCAAATTCGAGAAA GGTGAGTCAGCCCCGACTCTTGATACTCTGATTGGTTATACGGCGGCCATGGATATTGATTTTGCTGCCA ATATGAAGAAAATATTTACTCAAACATTTTGA
>gi 116120353 :c3895054-3894686
ATGGGCAGGGATGACCAAAATCATAAACGTCGAAAAAATTTTCCTATCAGGCTACTGGGCTCGGCAAGAA AGGAACTTAGCGATTTAGATGCAATCAATAGAGCCGAATTTTTGGTTGCTATTGATGTCTTTGAACTCCA TGGGCCTGGTTCTGGTGTGCCTAACGTGGAGAAGATCGGGGGCGATATGTATGAGCTTAAAACACACAGT AGAAGTCATTGGCTCCGAGGTTTTTACTTTCACTACGTTGATGGCCTTTATATTGTTACGCATATTTTTG CCAAGAAAACCAATAAGGCACCTGATTCCAGCAAAGCACTCGGATTACGTAGGTATAAAGATTTCCTCCG TTCTCAGGGTGAGGAATAA >gi I 22123922: 784104-784415
ATGAAAAGTGATCTGACACTGCACGCTTGGGATGAGGTTCGGGCAGAACTCTTACAAGATGAAGAAACCG CAAGGGCCTATGCTATCGTCATGCTACGTAAGGCACTACTCAATAGTCTGGTTGCGGTCAGAAAATCCAA ACAGTTGACGCAGGTTGATATCGCTAAACGCATCGGTGTGAGTCGGCAGGCGATCAGCAAATTCGAGAAA GGTGAGTCAGCCCCGACTCTTGATACTCTGATTGGTTATACGGCGGCCATGGATATTGATTTTGCTGCCA ATATGAAGAAAATATTTACTCAAACATTTTGA
>gi] 22123922: 783712-784080
ATGGGCAGGGATGACCAAAATCATAAACGTCGAAAAAATTTTCCTATCAGGCTACTGGGCTCGGCAAGAA AGGAACTTAGCGATTTAGATGCAATCAATAGAGCCGAATTTTTGGTTGCTATTGATGTCTTTGAACTCCA TGGGCCTGGTTCTGGTGTGCCTAACGTGGAGAAGATCGGGGGCGATATGTATGAGCTTAAAACACACAGT AGAAGTCATTGGCTCCGAGGTTTTTACTTTCACTACGTTGATGGCCTTTATATTGTTACGCATATTTTTG CCAAGAAAACCAATAAGGCACCTGATTCCAGCAAAGCACTCGGATTACGTAGGTATAAAGATTTCCTCCG TTCTCAGGGTGAGGAATAA >gi I 22123922: 2218967-2219290
ATGAAAAAAACAGACGATTTTGACATCATTCCTTTTGCGGTGGTTAAAGCAGCAGCGTTGAGTCATCCGC AGGTGAATGACGCCTATACGGATTTACAAATTCGGCAAGCGATGATGACTGAACTGAAAGCGGCCCGCCA ACAATGCAATTTGACTCAAGAAGAGGTCGCACTGCGGGCGGGGCTGAAAAAACAAAATATCAGTCGTATG GAGAAAGGCATCATTTCACCTAACCTCACCACCTTGAGCCGTTATGCCGCAGCACTAGGAGGGACTTTCG TTTTTCAATTCAACCCAAACTCATCTTATGCGACTAAGGAGTAA
>gi I 22123922: 2218967-2219290
ATGAAAAAAACAGACGATTTTGACATCATTCCTTTTGCGGTGGTTAAAGCAGCAGCGTTGAGTCATCCGC AGGTGAATGACGCCTATACGGATTTACAAATTCGGCAAGCGATGATGACTGAACTGAAAGCGGCCCGCCA ACAATGCAATTTGACTCAAGAAGAGGTCGCACTGCGGGCGGGGCTGAAAAAACAAAATATCAGTCGTATG GAGAAAGGCATCATTTCACCTAACCTCACCACCTTGAGCCGTTATGCCGCAGCACTAGGAGGGACTTTCG TTTTTCAATTCAACCCAAACTCATCTTATGCGACTAAGGAGTAA >gi|22123922:c3594411-3594262
TTGGATAATAAACGCCAACCACCAAGCCTGTCCCATGAACAAGTGGTCGCCCGAATGCTAAAGAAACCGG CAGTGAGGGCAGAATATGAGCGGCTGGAGCGCCAGGATTTCGCCATCATTGATGAAACGTTAAAGGGAAT ACATTCCGAATAA >gi | 22123922 :c3594411-3594262
TTGGATAATAAACGCCAACCACCAAGCCTGTCCCATGAACAAGTGGTCGCCCGAATGCTAAAGAAACCGG CAGTGAGGGCAGAATATGAGCGGCTGGAGCGCCAGGATTTCGCCATCATTGATGAAACGTTAAAGGGAAT ACATTCCGAATAA
Nucleotide sequences coding for homologs of ParE toxin-antitoxin pairs
16124256 =c2971288-2971506, 16126988
>16126988_2970240-2971640_Caulobacter_crescentus.fna_13 [1266 - 1048] (REVERSE SENSE) ATCATGAACAAGCCTGCCAAGCCTGCGGCGGATGACGTCGACGACCTCTTTGGCCGCCCG CTGACGCCGGCCGAAGAGGACACATGGTTCGAACATAATCGCGAAGCCATCGGTCAACTC GTCGATGAGGCTTGGGCTGAGTTCGAGCGTGGCGAATATGACGAACGCAGCTTCGCTGAG ATCATCGCGCAGGGCGTTGCAGAGCATAACGCCAAACGC
>gi 116124256 :c2971272-2970970 GTGGGGCGCGTCATTAGGACCCGGCCGGTCAGTGGCGACCTTGACCGTGTTTTCAGGGATGTTTGTGAGA ACAATGGCGTCAAAGTCGCGAGCGCTCAGTTGAACCGTATAGAGAGCGTGTTTCACCGCTTGAGCGCATT TCCCAGACTGGGTCGCGATCGGTCGGATTTGAGGCCAGGATTGCGGACCTTTTCCGTAAAGCCCTGGCAG GTGCTCTATCGACTGAATGGTGAGGATGTCGTCATTCTCCGCATCCTCGATGGCCGCATGAACCTCGCCG CCCAATTGGGCAAGAAGACCTAA
15595198:796960-797238,15595926
>15595926_796530-798000_Pseudomonas_aeruginosa.fna_6 [430 - 708] GTGTTCCCACAGCAATGGAGGTACCGGCTCATGCGAGTCGAGACAATTAGTTATTTGAAA CGTCATGCGGCTGACCTGGATTTATCCGAGCCAATGGTCGTCACGCAGAACGGTGTTCCT GCCTATGTGGTTGAGTCATATGCTGAGCGGAAGCAGCGCGATGAAGCAATTGCGCTGGTG AAGTTGCTTGCGATTGGCTCCCGCCAGTACGCAGAAGGCAAGCATCGCTCTGTTGATGAT TTGAAAGCTCGCCTTTCCAGGAGGTTCGCTCAGCCAGAA >gi|l5595198:797251-797598
ATGTCCCCGGTCGTCATTCGTTTTACTGATACCGCAGAGCAAAGCATCGAAGACCAAGTCCACCACTTGG CTCCATTCCAAGGTGAACAGGCTGCACTCCAGTCAGTACTGAGCCTTTTGGATGAGATTGAAGAGAAGAT TTCACTTGCACCTAAAGGTTACCCAGTCAGCCAGCAGGCGAGTCTTCTGGGGGTGCTGAGCTATCGCGAG CTTAATACCGGCCCCTATCGTGTTTTTTACGAATTCCACGAAGAGCAAGGCGAGGTGGCAGTGATCTTGG TTTTGCGACAGAAGCAGAGCGTTGAGCAGCAATTGATCCGCTACTGCTTGGTGGGGCCAATCGAGTGA
>gi 115607142 :c2204223-2203972 GTGGGTAAGAACACGTCCTTCGTCCTCGACGAGCACTACAGCGCCTTCATCGACGGCGAGATCGCCGCGG GCCGCTACCGGTCGGCCAGTGAAGTCATCCGCTCCGCGTTGCGACTGCTCGAGGACCGTGAAACCCAGCT GCGCGCGCTTCGTGAGGCTCTCGAGGCCGGCGAACGCAGCGGCAGCTCGACACCGTTCGACTTCGACGGA TTCCTCGGTCGTAAGCGGGCTGACGCCTCGCGTGGCCGGTGA >gi 115607142 :c2203975-2203679
GTGAGTAGCCGATACCTTCTCTCGCCTGCCGCGCAGGCACATCTGGAAGAGATCTGGGACTGCACCTATG ACCGTTGGGGTGTCGATCAGGCCGAGCAGTACCTGCGCGAACTTCAACACGCTATCGACCGTGCTGCGGC AAACCCGCGGATCGGACGAGCGTGCGACGAGATTCGCCCCGGCTATCGCAAGCTCTCGGCCGGGTCACAC ACGTTGTTCTATCGGGTGACTGGCGAAGGCACCATCGACGTCGTGCGAGTCCTGCACCAACGGATGGACG TCGACCGGAACCTCTGA >gi 115839372.-C2201556-2201305
GTGGGTAAGAACACGTCCTTCGTCCTCGACGAGCACTACAGCGCCTTCATCGACGGCGAGATCGCCGCGG GCCGCTACCGGTCGGCCAGTGAAGTCATCCGCTCCGCGTTGCGACTGCTCGAGGACCGTGAAACCCAGCT GCGCGCGCTTCGTGAGGCTCTCGAGGCCGGCGAACGCAGCGGCAGCTCGACACCGTTCGACTTCGACGGA TTCCTCGGTCGTAAGCGGGCTGACGCCTCGCGTGGCCGGTGA
>gi 115839372 :c2201308-2201012 GTGAGTAGCCGATACCTTCTCTCGCCTGCCGCGCAGGCACATCTGGAAGAGATCTGGGACTGCACCTATG ACCGTTGGGGTGTCGATCAGGCCGAGCAGTACCTGCGCGAACTTCAACACGCTATCGACCGTGCTGCGGC AAACCCGCGGATCGGACGAGCGTGCGACGAGATTCGCCCCGGCTATCGCAAGCTCTCGGCCGGGTCACAC ACGTTGTTCTATCGGGTGACTGGCGAAGGCACCATCGACGTCGTGCGAGTCCTGCACCAACGGATGGACG TCGACCGGAACCTCTGA
>gi | 15839372 :c2401413-2401198
GTGGTGGTCAACCGGGCATTGCTGGCGAGCGTCGACGCACTGTCGCGTGATGAGCAGATTGAGCTCGTCG AGCACATCAACGGAAACCTAGCCGAGGGCATGCATATCAGCGAGGCCAACCAGGCGCTCATCGAAGCGCG GGCCAATGACACCGACGATGCTCATTGGTCCACCATTGATGACTTCGACAAGCGGATCCGCGCCCGGCTC GGATGA
>gi 115839372 : C2401201-2400884 ATGACGCGCAGGCTGCGCGTCCATAACGGGGTTGAAGACGACCTATTCGAGGCGTTTTCCTACTACGCGG ACGCGGCGCCAGATCAGATCGATCGGCTTTACAACTTGTTTGTCGATGCCGTGACGAAGCGGATTCCGCA GGCTCCGAACGCGTTTGCGCCGTTATTCAAGCACTATCGACACATCTACCTCCGGCCCTTCAGGTACTAC GTTGCCTATCGGACGACCGACGAGGCTATCGACATACTGGCTGTTCGGCACGGAATGGAGAACCCGAACG CGGTCGAGGCTGAGATCTCTGGCCGCACCTTCGAGTGA
>gi I 22536185 : C240363-240076
ATGGTTACAGCAGAAAAAAATAGAGCTGTCACATTCCAAGCTAACAAAGAATTGGTAAGCGAAGCAATGA CAGTATTAAACAAGAAAAATTTAACCTTATCATCTGCTTTAAGATTATTCCTTCAAAATGTCGTTGTCAC AAATGAGGTTGACTTATTGACGGAAGAGGAGCTAGAGAAAGAAAAACTTTTCAAGCAATTTCAAGCTGAA ATCAACAAAAATATTGAAGATGTTCGTCAAGGGAAATTTTATACCTCTGAAGAAGTGAGGTCTGAACTTG GACTATAA
>gi I 22536185 :c240086-239751 TTGGACTATAAGAAATATCAGATTATCTATGCTCCTGATGTTTTAGAGAAGTTAAAGGAAATTCGTGATT ATATTTCTCAAAACTATTCCTCGACATCAGGTCAGCACAAAATGGAGCAAATCATTAGTGACATAGAAAA ACTCGAGGTTTTCCCTGAAGTTGGTTTTGATGCCGATGAAAAATATGGTTCAAAAATCAGTAAGTACCAC AGCACTAGAGGTTATACCTTAAGTAAAGATTATATTGTCCTATACCATATCGAGGAGGAAGAGAATAGGG TCGTTATTGATTACTTGCTTCCTACTCGAAGCGACTATATGAAATTGTTTAAATAG
>gi I 25010075 -.C241281-240994
ATGGTTACAGTAGAAAAAAATAGAGCTGTCACATTCCAAGCTAACAAAGAATTGGTAAGCGAAGCAATGA CAGTATTAAACAAAAAAAATTTAACCTTATCATCTGCTTTAAGATTATTCCTACAAAATGTCGTTGTCAC AAACGAGGTTGACTTATTGACGGAAGAGGAGTTAGAGAAAGAAAAACTTTTCAAGCAATTTCAAGCCGAA ATCAGCAAAAATATTGAGGATGTTCGTCAAGGGAAGTTTTATACCTCTGAAGAAGTGAGGGCTGAACTTG GACTATAA
>gi I 25010075 :c241004-240669 TTGGACTATAAGAAATATCAGATTATCTATGCTCCTGATGTTTTAGAGAAGCTAAAAGAAATTCGTGATT ATATTTCCCAAAACTATTCCTCAACATCAGGTCAGCGTAAAATGGAGCAAATCATTAATGACATAGAAAA ACTTGAAGTTTTCCCAGAAGTTGGTTTTGATGCCGATGAAAAATATGGTTCAGAAATCAGCAATTATCAC AGTACTAGAGGTTACACCTTAAGTAAAGATTATATTGTCCTATACCATATCGAAGAGGAAGAGAATAGGG TTGTCATTGATTACTTGCTTCCTACTCGAAGCGACTATATGAAATTGTTTAAATAG
>gi 115674250 : 448362-448676
ATGTCGTTACAAAAAAGGAGGATAACCATGGCTAAAACGGGAACTTTGAATTTACGAGTTGATGATTCAG TAAAAAGTGCGGCAGATGATATTTTGAAACGCTTAGGTATTCCTATGTCAACTGCGATTGATATGTTTTT GAATCAGATTATTTTGACTGGGGGTATCCCATTTGATGTTTCTCTACCTGAAGCGCCTCAACGAGTTAAT GTTGATTACATGAGTCAGGAGAAGTTTTATGATAAGCTTATCACCAGCTTTGAAGATGCGAAAACTTGCA ACCCTCAGGATGTCGGGAAATTCTATTTCCAATGA >gi|l5674250:448673-448996
ATGAAGGGAAATTGCTTATTGAAAGAATATCAGGTCACCATGTCGGATGATGCTAAAGCAGATTTGCTGA GCATCTATCACTATGTTCGTGATGAACTCTGTGCACCACAGGCAGCGGATGATCTTCTTGAGAGGTTATC CCAAGGAATGTTATCACTATCCATTTTTCCTGAACGTTGTGCCATCATTGAGGATCTGATTGGAAAAGGC TATACCTTCAGACAACTGATTGTCAAAAAATATCGCATTGTATATCATGTTCTGGAAGATGAAGTTATAA TTGTTGCGGTCGTCTATGGATCACGTCATATGAATAATTGGTAA
>gi 115674250: 1607352-1607639
ATGACTACAGTAAAAAAAAACAGAGCGGTTACCTTTCAAGCTAATAAAGAATTGGTAAGCGAAGCAATGA
CAGTATTAAACAAAAAAAATTTAACCTTATCATCTGCTTTAAGATTATTCCTACAAAATGTCGTTGTCAC
AAACGAGGTTGACTTATTGACGGAAGAGGAGTTAGAGAAAGAAAAACTTTTCAAGCAATTTCAAGCTGAA
ATCAACAAAAATATTGAGGATGTTCGTCAAGGGAAGTTTTATACCTCTGAGGAAGTGAGGGCTGAACTTG
GACTATAA
>gi 115674250: 1607629-1607964
TTGGACTATAAGAAATATCAGATTATCTATGCTCCTGATGTTTTAGAGAAGCTAAAAGAAATTCGTGATT ATATTTCTCAAAACTATTCCTCAACATCAGGTCAGCGTAAAATGGAGCAAATCATTAGCGACATAGAAAA ACTCGAGGTTTTCCCAGAAGTTGGTTTTGATGCCGATGAAAAATATGGTTCAAAAATCATCCATTATCAC AGCACTAAAGGTTATACCTTAAGTAAAGATTATATTGTCCTATACCATATCGAGGGGGAAGAAAATAGGA TCGTTATTGATTACTTGCTTCCTACTCAAAGCGACTATATAAAGTTATTCAAATAA
>gi | 21909536: 435442-435744 ATGGCTAAAACGGGAACTTTGAATTTACGAGTTGATGATTCAGTAAAAAGTGCGGCAGATGATATTTTGA AACGCTTAGGTATTCCTATGTCAACTGCGATTGATATGTTTTTGAATCAGATTATTTTGACTGGGGGTAT CCCATTTGATGTTTCTCTACCTGAAGCGCCTCAACGAGTTAATGTTGATTACATGAGTCAGGAGAAGTTT TATGATAAGCTTATCTCCAGCTTTGAAGATGCGAAAACTGGCAACCGCCAGGATGTCAGAGAATTTCTAT CTCAATTGAAGGAAAATGCTTAA
>gi I 21909536 = 435744-436049
ATGAAAGAATATCAGGTCACCATGTCGGATGATGCTAAAGCAGATTTGCTGAGCATCTATTACTATGTTT GTGATGAACTCTGTGCACCACAGGCAGCGGATAATCTTCTTGAGAGGTTATCCCAAGCAATGTTATCACT ATCCATTTTTCCTGAACGTTGTGCCATCATTGAGGATCTGATTGGAAAAGGCTATACCTTCAGACAACTG ATTGTCAAAAAATATCGCATTGTATATCATGTTCTGGAAGATGAAGTTATAATTGTTGCGGTCGTCTATG GATCACGTCATATGAATAATTGGTAA
>gi ] 21909536: 1673752-1674039 ATGACTACAGTAAAAAAAAACAGAACGGTTACCTTTCAAGCTAATAAAGAACTGGTAAGCGAAGCAATGA CAGTATTAAACAAAAAAAATTTAACCTTATCATCTGCTTTAAGATTATTCCTACAAAATGTCGTTGTCAC AAACGAGGTTGACTTATTGACGGAAGAGGAGTTAGAGAAAGAAAAACTTTTCAAGCAATTTCAAGCTGAA ATCAACAAAAATATTGAGGACGTTCGTCAAGGGAAGTTTTATACCTCTGAAGAAGTGAGGGCTGAACTTG GACTATAA
>gi I 21909536 : 1674029-1674364
TTGGACTATAAGAAATATCAGATTATCTATGCTCCTGATGTTTTAGAGAAGCTAAAAGAAATTCGTGATT ATATTTCTCAAAACTATTCCTCAACATCAGGTCAGCGTAAAATGGAGCAAATCATTAGCGACATAGAAAA ACTCGAGGTTTTCCCAGAAGTTGGTTTTGATGCCGATGAAAAATATGGTTCAAAAATCAGCCATTATCAC AGCACTAAAGGTTACACCTTAAGTAAAGATTATATTGTCCTATACCATATCGAGGGGGAAGAAAATAGGG TCGTTATTGATTACTTGCTTCCTACTCAAAGCGACTATATAAAGTTATTCAAATAA
>gi 119745201: 496933-497235 ATGGCTAAAACGGGAACTTTGAATTTACGAGTTGATGATTCAGTAAAAAGTGCGGCAGATGATATTTTGA AACGCTTAGGTATTCCTATGTCAACTGCGATTGATATGTTTTTGAATCAGATTATTTTGACTGGGGGCAT CCCATTTGATGTTTCTCTACCTGAAGCGCCTCAACGAGTTAATGTTGATTACATGAGTCAGGAGAAGTTT TATGATAAGCTTATCACCAGCTTTGAAGATGCGAAAACTGGCAACCGTCAGGATGTCAGAGAATTTCTAT CTCAATTGAAGGAAAATGCTTAA
>gi 119745201: 497235-497540
ATGAAAGAATATCAGGTCATCATGTCGGATGATGCTAAAGCAGATTTGCTGAGCATCTATCACTATGTTC GTGATGAACTCTGTGCACCACAGGCAGCGGATAATCTTCTTGAGAGGTTATCCCAAGCAATGTTATCACT ATCCATTTTTCCTGAACGTTGTGCCATCATTGAGGATCTGATTGGAAAAGGCTATACCTTCAGACAACTG ATTGTCAAAAAATATCGCATTGTATATCATGTTCTGGAAGATGAAGTTATAATTGTTGCGGTCGTCTATG GATCACGTCATATGAATAATTGGTAA
>gi 119745201 = 1663175-1663462 ATGACTACAGTAAAAAAAAACAGATCGGTTACCTTTCAAGCTAATAAAGAATTGGTAAGCGAAGCAATGA CAGTATTAAACAAAAAAAATTTAACCTTATCATCTGCTTTAAGATTATTCCTACAAAATGTCGTTGTCAC AAACGAGGTTGACTTATTGACGGAAGAGGAGTTAGAGAAAGAAAAACTTTTCAAGCAATTTCAAGCTGAA ATCAACAAAAATATTGAGGATGTTCGTCAAGGGAAGTTTTATACCTCTGAAGAAGTGAGGGCTGAACTTG GACTATAA
>gi 119745201 : 1663452-1663787
TTGGACTATAAGAAATATCAGATTATCTATGCTCCTGATGTTTTAGAGAAGCTAAAAGAAATTCGTGATT ATATTTCTCAAAACTATTCCTCAACATCAGGTCAGCGTAAAATGGAGCAAATCATTAGCGACATAGAAAA ACTCGAGGTTTTCCCAGAAGTTGGTTTTGATGCCGATGAAAAATATGGTTCAAAAATCATCCATTATCAC AGCACTAAAGGTTATACCTTAAGTAAAGATTATATTGTCCTATACCATATCGAGGGGGAAGAAAATAGGG TCGTTATTGATTACTTGCTTCCTACTCAAAGCGACTATATAAAGTTATTCAAATAA
>gi|28894912:cl460998-1460693
ATGAAAGAATATCAGGTCACCATGTCGGATGATGCTAAAGCAGATTTGCTGAGCATCTATTACTATGTTT GTGATGAACTCTGTGCACCACAGGCAGCGGATAATCTTCTTGAGAGGTTATCCCAAGCAATGTTATCACT ATCCATTTTTCCTGAACGTTGTGCCATCATTGAGGATCTGATTGGAAAAGGCTATACCTTCAGACAACTG ATTGTCAAAAAATATCGCATTGTATATCATGTTCTGGAAGATGAAGTTATAATTGTTGCGGTCGTCTATG GATCACGTCATATGAATAATTGGTAA
>gi | 28894912 : C1461300-1460998
ATGGCTAAAACGGGAACTTTGAATTTACGAGTTGATGATTCAGTAAAAAGTGCGGCAGATGATATTTTGA AACGCTTAGGTATTCCTATGTCAACTGCGATTGATATGTTTTTGAATCAGATTATTTTGACTGGGGGTAT CCCATTTGATGTTTCTCTACCTGAAGCGCCTCAACGAGTTAATGTTGATTACATGAGTCAGGAGAAGTTT TATGATAAGCTTATCTCCAGCTTTGAAGATGCGAAAACTGGCAACCGCCAGGATGTCAGAGAATTTCTAT CTCAATTGAAGGAAAATGCTTAA
>gi|28894912:1667538-1667825
ATGACTACAGTAAAAAAAAACAGAACGGTTACCTTTCAAGCTAATAAAGAACTGGTAAGCGAAGCAATGA CAGTATTAAACAAAAAAAATTTAACCTTATCATCTGCTTTAAGATTATTCCTACAAAATGTCGTTGTCAC AAACGAGGTTGACTTATTGACGGAAGAGGAGTTAGAGAAAGAAAAACTTTTCAAGCAATTTCAAGCTGAA ATCAACAAAAATATTGAGGACGTTCGTCAAGGGAAGTTTTATACCTCTGAAGAAGTGAGGGCTGAACTTG GACTATAA
>gi | 28894912: 1667809-1668150
CTGAACTTGGACTATAAGAAATATCAGATTATCTATGCTCCTGATGTTTTAGAGAAGCTAAAAGAAATTC GTGATTATATTTCTCAAAACTATTCCTCAACATCAGGTCAGCGTAAAATGGAGCAAATCATTAGCGACAT AGAAAAACTCGAGGTTTTCCCAGAAGTTGGTTTTGATGCCGATGAAAAATATGGTTCAAAAATCAGCCAT TATCACAGCACTAAAGGTTACACCTTAAGTAAAGATTATATTGTCCTATACCATATCGAGGGGGAAGAAA ATAGGGTCGTTATTGATTACTTGCTTCCTACTCAAAGCGACTATATAAAGTTATTCAAATAA
>gi I 32470666 :c5507891-5507610
TTGTTCACGTCTAACTCGGAGCACCCCAAAATGAGCCAACATCTTTCCCCTGAGAACCAAGCCTACATCG ACGATCAAGTCGCAGGCGGTGTCTACACCTCACGTGAAGAGGCGATTGATGCGGGTATTGCGTTGCTTCG TAAACGCAACGAATTGGTGGTCCAATTGAAAGAGAGCCGTCGCCAGCTCGACGAAGGCGAGTTGGTTGAA TACGACGACCAAACGCTGGCCGCACGATTTGATGAGCTGAAAGCGAAAGCAGCCTCTCGGTCGCAAATGT GA
>gi I 32470666 :c5507613-5507302
GTGAGTCGCTATCTACTTTCGCACTCAGCGAATGCGAATCTCGATGAAATCGCGGGCGATGCGAGCAACG CAGTTGCGATTTTAGAAGCGTTGCACAATACGTTTCAGGTACTGGCCAACCATCCTGGTGTCGGAACTCT TCGAGAAGACCTGTTGCCCGGTATCCGTGTGTTCTCGCCTCCTCGTCCCGCGAACAACTACGTGATTTTC TTCTATCCAATATCCGGAGGCATCGAAGTCGCCGCTGTGATACACGGATCTCGAGATTGGATCAGCATGT TCACCGACGGGTTCAGGCCGAAAAAATCATGA
>gi I 32470666: 2377301-2377558
ATGGTAGAATATGAACATGGAGAGCCAAATATGACCGTTGAACAAGCGATTAGCGAGATTTCTGCCCTGC CACCGAATGATCAGCTTCGTATCGTGCAAGCGATTTGGGATCGGTTACCGGACGGCGTTGGTACCGATTT GACCGAGTCCCAACGTGCTGAACTAGACCGACGCTGGGCGGAATACAAGGCGGACCCTACGACCGCACTC AGTGAAGAAGAGTTTCGAGAGCGTATCAGGATTGCTCGCAGCCGATGA
>gi 132470666: 2377555-2377845
ATGAAGGCACGACTCACCGCGCACACCGAATCTGATCTATTGCGCGCGATTGATTGGTTCGATCGTCTCT CGTTGGGCCTGGGCGACAAGTTCGAGGCTGAATTCTACCTGGCCCTCGAAAGGGTCAAGGTGAATCCAGA ATCATTCGCACCGGATCACACGGGATACCGTCCTTGTCGACTGAAACGCTTTACCGCGGTTCTATACTTC CGGATTGACGCGTCTGATGTGGTGGTGGTTGGACTCTTCACCAGCGGTGAGAATGAACGTGGCCTGCAAA ACCGCAGATGA
>gi 116124256 :c969231-968965
ATGGCGAGCAAGAACACCTCCGTCGTCCTGGGCGATCACTTCCAGGCGTTCATCGACAGCCAGGTCGCTG ACGGGCGCTACGGCTCGGCCAGCGAAGTCATCCGCGCGGGGCTGAGGCTCCTCGAAGAGAACGAAGCGAA GCTCGCGGCCCTCCGCGCCGCCCTGATCGAAGGCGAGGAGAGCGGCTTTATCGAGGACTTCGACTTCGAC GCCTTTATCGAGGAAAGGTCTAGGGCATCCGCTCCGCAGGGGTTCCATGAGGAATGA
>gi 116124256 :c968968-968678 ATGAAGCCCTATCGGCTATCCCGTCGCGCCAAGGCCGACCTCGATGACATCTGGACCTATTCAGAGCAGC GATGGGGCGTTGAACAAGCCGCCGACTACGCCCGTGAACTGCAGGCCACCATCGAGATGATCGCTGAACA TCCGGGTATGGGACAGCCGGATGAAAACCTCCGCGCGGGCTACAGGCGATGCGCCAGCGGCTCGCACGTG GTCTTTTACCGCGTCGGCGTGCGGGTCGAGATTATCCGCGTGCTACACCAAAGCATGAACGCCAGGGCTC ACCTTGGCTGA
>gi|l6124256:c3202882-3202592
TTGCCATCTAATGGCATCGTGAGGTCCTGGAGGCGCGCCATGGCGACGATGAATGTTTCCCTGCCCGATG CGATGCGCGAGTGGGTCGAGGGCCAGACCCAGTCGGGCCGCTATCACAACGCCAGCGAATACGTCCGTGA CCTCATCCGTCGCGACCAGGAACGCGCCGACAAGATCGCCCACCTGCAACGCCTGATCGACGAAGGCCTA GACAGCGGCGTTGGCGAGCGCTCGCTGCATGAGATTCGCGCTGAGGCGCGGCGGCGGGCTGGTGTGGATC ATGAGCTATAG
>gi | 16124256 :c3202611-3202309 GTGTGGATCATGAGCTATAGGCTCAGCCGGAAGGCCGAGCAGGACCTGATCGACATCTATGTCGCCGGCG TCGGCCTGTTCGGCGTCGCCCAGGCCGAGCGGTATCAGGACACGCTGGAAGCGGCCTTCGGCGCCATCGC CGCCTTCCCGCACATTGGCCGCGAGCGCCCCGAACTCCGGCCGCCGGTGCGTGTGCACCCGTGCAAGTCT CACATCATCCTGTACGTGCTGGACGAGCGCGGAGCGCTGATCGTGCGCGTGCGGCACGCAGGGGAGGATT GGGTCGGAGAGGCCGGCGGGTAG
>gi | 15887359: 1304500-1304808
GTGGAGGCCCCGATGCCAACGCGTAACGTCGTCCTGACACAGCATCACGAAGAGATCATAGACGATCTCG TCAAATCCGGCCGCTATCAAAACGCCAGTGAAGTGCTGCGTGAAGGCTTACGGTTAATTGAGAGGCGAGA GCGTCTTGAGGCAACCAGACTGGAAACCCTGAAGGTCGCGGCGCAACAGGGCTTCTGCGACCTTGACCAG GGACGTTATATCGATGTTTCGGATGATGCCCTTGACGATTTCATTTCCGCTTTCGGGCGCGAGGCTGAAG TGCGCCTGACCAAGTCCGATGACAAATGA >gi|l5887359:1304805-1305179
ATGACGACGTATCGTCTGTCCGATGCCGCACAATCGGACATCATTGAAATTCTTGGATGGACACACGCGA CGTTTGGAGCTGCAGCGAGAAAACGCTACGAAAAGTTGCTTGCAACTGCGTTGCGTGATGTTGCTGTTGA TCCGCTACGCGCCGGCACGAATATTCGCGCTGAACTTGGTGAAGACGTGCGTAGCTACCACCTGCGTTAT AGTCGCGAGCGGGCAAAAAGCGAAACGGGCCTCGTTAAAAATCCGAGGCATCTGTTACTCTATCGTGCAC TACGACCCGGTTTGGTGGGTGTCGGCCGCGTTCTTCACGATTCGATGGAAATCGAGCGCCATCTTCCGGA CGATTATGGTGATATTACTTTCTGA
>gi 115887359 :cl501268-1501002 ATGGCGAACATGACCTTTTCCTTGCCAGACCCGATGAAAGACTGGATCGAAAGCCGTATCCAGAAGGGCG AATACGCCAGCGCCAGTGACTATGTGCGGGATCTCGTACGACGTGACTGGGCCCGGCGAGGGCAGGATTT CAGCATTGACGAGCTTCGCCAAATCGTTGCGGAGTCCCGCGCCAGTGGTGTCGGGTCCCGCAGCATGGAT GATTTGTTCGCGGAAGCTGAACGTGTAGCGACAGCCCACGGTGTCATGCGTGAATAA >gi 115887359 :ql501018-1500719
GTGTCATGCGTGAATAATTATCGGTTGAGCACGCAAGCCGAAAACGAAATTCTCGACATCTTCCTCTATG GTATTGAACGGTTCGGATTGAATCAGGCACGTCTGTACAAAGACGGCATGGAAAGCTGTTTCCAGTTGCT TGGCAATAATCCACGTATGGGACGTTCAGCCACGATTGTTGGAGAAGGCATACGTAGACACGAACATGGA AGCCATGTCATTTTTTATGAAACTGACGGTTCCGGCGTGCTCATTCTCACCATTGTCCATGGTCGGAGCA TCCGCCGCTTAAAGCTTTGA
>gi 117933925 :cl501382-1501116
ATGGCGAACATGACCTTTTCCTTGCCAGACCCGATGAAAGACTGGATCGAAAGCCGTATCCAGAAGGGCG AATACGCCAGCGCCAGTGACTATGTGCGGGATCTCGTACGACGTGACTGGGCCCGGCGAGGGCAGGATTT CAGCATTGACGAGCTTCGCCAAATCGTTGCGGAGTCCCGCGCCAGTGGTGTCGGGTCCCGCAGCATGGAT GATTTGTTCGCGGAAGCTGAACGTGTAGCGACAGCCCACGGTGTCATGCGTGAATAA
>gi 117933925 :cl501108-1500833 TTGAGCACGCAAGCCGAAAACGAAATTCTCGACATCTTCCTCTATGGTATTGAACGGTTCGGATTGAATC AGGCACGTCTGTACAAAGACGGCATGGAAAGCTGTTTCCAGTTGCTTGGCAATAATCCACGTATGGGACG TTCAGCCACGATTGTTGGAGAAGGCATACGTAGACACGAACATGGAAGCCATGTCATTTTTTATGAAACT GACGGTTCCGGCGTGCTCATTCTCACCATTGTCCATGGTCGGAGCATCCGCCGCTTAAAGCTTTGA
>gi 113470324 : 1095643-1095888
ATGAACGTATCATTGCCTGATCCGATGAAGGATTGGGTTGAGGCGCAAACCGAAACGGGTCGCTACGCCA ACGCGAGCGACTATGTGCGCGATTTGATCCGTCGGGATCAGGAGCGCAACGACAACATTGCCGCCATGCA GCGCTTTGTCGATGACGGATTGAAGAGTGGTATCGGCAATCGATCCAGGGACGCGCTTTTTACTGAGGCG GTCAAACGCGCTGGAAAGTCACCCGGCAACGGGTAA
>gi 113470324 : 1095888-1096184
ATGGGATTTCGCCTTTCTTTAGCCGCGGAAGAGGACATCATCGGTATTGCCGAGCAAGGGGTGCGCCTGT
TCGGTGCTGTGCAGGCCAGACAGTATCATGACGAGTTGTTCGCGATCTTTGACCTGATCGCTGCCGGTCC CCGAATGGCACGGGAGCGGCTTGAATTGTCGCCACCAATGCGTATCCATCCCTTCAAGGCCCATCTTGTC GTCTACCGGATCGAAGCCGACGGCGACGTGTTCATTGTCCGGGTACGCCACGGGCACGAAGATTGGGCGA ATGAAGGCACTCGATAG
>gi 113470324 :c2752667-2752401
ATGCCCAACTACGCTCTGAACGAGCACTATGAGAGATTCATTAGGAAGCAGCTCGAATCAGGTCGTTACA ACAATGCCAGTGAGGTTGTTCGCGCCGGCCTGCGCATGCTCGAGGATTTCGAGGCGGAGCGGGAGAGATG GCTGCGCGAGGAAATCCCGGGGCGCCTGACTGAGCTCCAGCAGGATCCGGCAAAGGGGATTCCCGCCGAT ACGATGTTTTCCCGGCTGGAGGCGCGCCATCGCGCGAAGCAGGCGAAAGCCAAGTAG
>gi | 13470324 :c2752370-2752086
ATGACGGAGGCCGAGCTCGAACAACTCTATGACGACATAGCCGAGCGCGCGTCGCCGGCGATCGCCTGGA ATTTTGTTGTCGGCATCCGCGACCATTGCCTGGGTCTATCGACTTTTCCACAGCGCGGCACGGTGCGGGT CGAGATCATGCCCGGGGTGCGGATTGTTGGTTATCGCCGCGCCGTCAGCATCGCTTTCGCGGTCGAGGGC GAACGGGTGTTGATCCTGGCCATCTTTTGCGCCGGGCGGAACATCACGCCGGAATTGCTGGAAGACCGGC TCTGA
>gi|30248031=c296921-296679
ATGCCGATACAAAAAAATACCAGTGTCACGCTGGGCGAGCATTTTGAGAAGTTTCTTGCACATCAGATTG AAGCCGGGCGCTACGGCTCGGCAAGTGAAGCGATCCGCGCGGGGCTGCGTCTGCTGGAAGAACGCGAGGC CAAGCTGGAAGCATTACGCCGTGCCCTGATCGAGGGCGAGCAAAGCGGCCCGGCTGATTATTCCCTGCAA AATGTTCTGGATGAGCTGGAAAGTGCAGACTAG
>gi | 30248031 :c296678-296385
ATGGGATCGTTTATCCTCAGGCAGAAAGCAATGGATGATTTACTGTCCATTGGCCGCTACACCCGAAAAG AATGGGGAAAAACCCAACAAATCCGCTATCTGACACAGCTTGACCGTGCATTTCATGAACTGGCGGACAA GCCCGGTCTGGGCCGGGCGTGTGATGATATCCGGGAAGGCTATTTCAAGTATGGGGTTGGTAAACATGTC ATTTTTTACCGTCATACTGGAAAAGACCAAATTGAGATTATCCGTATCTTGCATGGCCGTATGGATATCG AACAGCATTTGTAA
>gi|30248031-.597544-597831
ATGTCAGAATCCACCTTTACTTTCCGGGTTGATGAAGACCTGAAAACCGAGTTCTCAGCGGCTGCCAAAG ACTGCGACCGTAGCGGTGCGCAACTGTTGCGCGACTACATGCGGGAGTTTGTAAAGACGCGGCGTGAAGT GGCCGAGCATGACGCATGGTTCCGTAAACAGGTGCAAATTGGCCTGGACTCGGCTAATACTGGCAATCTG GTTCCGGGAGATGAGGTAGAGGCCGAGTTTGCGGCCAGGCGGGCAGCCACACGTCGCAGGCTTAAAGCTT CAGAATGA
>gi I 30248031 = 597828-598118
ATGATGAAATTGTTCTGGACACCAGAAGCGTTACAAGATCGCGATGCAATCTATGACTACATCGAAGTCG ACAACCCGCGCGCCGCTCTGGCGCTTGACGAGCTTTTTTCAGAGAAGGCGCAGCGTTTGCCTGATCATCC CGCCCTGGGTCATCCGGGCCGTGTGGCTGGTACCCGTGAGCTAATTGCCCATCAGAATTACATCATCATT TATGATGTGACGGGCGAACTGGTGCGGGTGTTGCGTGTGCTTCACGCGGCACGGCAATGGCCTCCTTCAG AAAACGATTGA
>gi 130248031 = 1655769-1656143
ATGTATAAACTCCGCTTTTTCGCCGATTTTTGCCTTGAACTGACTGCCTCGCTAACGTTTTTCAGAGGTT CCTTAGCATCGATTTCATGTTTTACAGCAGATTATCGCTATGGAGATATGACCATGGCGACCGTGCGTAA GACCATCTCACTAACCAACCAGCAAGATGCCTGGATTACCGCACAGGTCGAAGCTGGACGATTCACAAAC GATAGCGAGTTAATTCGTGACCTCATCCGGCGCGAGCAGGAACGAATGGCCGAAATTGATAATATCCGGG CCGCACTCATCGATGGCGAGCAAAGTGGGGAACCGCAGCCGTTCGATTTTGATCAGTTCAAAAGACACAA GCTGGCGCAGCACAAACCAGGTTAA
>gi I 30248031 -.1656147-1656368 ATGGCTGAATACCGTCTCAGCCCGGCAGCGCAGCGTGATCTTGATGGAATTTTTAACTACACCTTTCAAC AATGGGGCGCAGCTCAGGCCGTACGCTATATCGATATATTGGAAGCCGCCTGTACCGAGTTAGTCGAGAC ATCATCCCAGGGACAGGACTGCAGCTATATTCGACCAGGCTATCGCCGTCGCCACGTTGAACGCCATATT ACTACCGAATAG
>gi) 30248031 :c2298231-2297986
ATGAAAGCCATTACCGCTAAGGATGCAAAAAATAAATTTGGGGAAATGCTGGATACTGCGCAGCGGGAAC CGCTTACCATCGAAAAACATGGACGGGCGGTTGCCGTGATCATGTCAGTGCAGGAATATCAGCAAATGAA ACTCGAAAGATTACGTGCAAAACTGGCAGCAGGTGAGGAGCAACTGGACAGGGGAGAAGGCGTGGAAGGC GAAACATTCTTTGCCGAACTGTTAAATGAGAAATGA
>gi] 30248031 :c2297989-2297645 ATGAAACACTACCTCCTCTCACCGGAAGCAAAAACGGATATCACCAACATACGTCAATACACAACCCAGC AATGGGGAAAAACGCAGGCAGACAAATACATATTGCGGCTTCGAGAACGAATGCGATGGCTGGCAGACAA TCCAATGCTTGGGCGAGCAAGAGATGAAATAAAGGAAGGCTACCGCAGTTTCAGTGAGGGTGACCACGTA ATATTTTATCGCATGGCTGGAAGCGCAATCGAGGTTATCGGTATTCCGCATCAGAACATGGATATTGAAC AAAATTTAAGCAGTGGAAATCTTCTCCTTCCAGATATTGCGGATTATGAACCTGAAGATGGCTGA
>gi|30248031:cl719712-1719470
ATGAAAGTATTACAGTCGGATAAAGCAATCATGATGAATAGAAAGCTCACCGAATTGCCAATTGACGAGC GCATACAGCTTGTTGAGGATTTATGGGATAGCATCGCGTCTGATCAAAAGATGCTGCGACTTACCACTGA ACAAAAGGCTGAACTCGATAGACGTCTAAACGCCTATGAAGTCGATAAAAACCCAGGCCGATCAGCGTTG GAGGCTATCGCAGAAATTCGGCGTAATTTGTGA
>gi|30248031:cl719473-1719177 GTGACCTGTGAAGTTCGACTCCGGCCGGAAGCAGAGCAGGATCTGGCAGATGCGGCGGCTTGGTATGAAG AGCAGCGGCAAGGACTGGGTCACAAATTTCTCGATGAAGTGACGACAACGTTATCGAATATTGCAGAAAC CCCGCTGGCATACCCGAATGTTCATCGCGGTACAAGACGCGCAGTTATCAGACGGTTTCCTTTTGGTATC TATTTTCAAGTAAAGAAAGCAACAATCATCGTGGTTGCGGTAATGCATGGCAGCCGAAATCCGCATCAGT GGAAAAGTCGAACATAA
>gi ] 15829254 =494256-494498
ATGCGCAAAATTACCTCAGTAAGCGTTGGCGAACAATTAGATAGTTTTATTACCCGGATGGTCCAGTCTG GTCGTTATGGCTCGGCCAGTGAAGTAATGCGTTCGGCACTTCGTCTATTGGAACAACAAGAATCCAGGGA TGAAGCTGTCAGAAATGCTGTTATTGAAGGTCTTGAGAGCGGTGAAAGTTCGATGACGCTTCGTGATATC GCAGCAGAAAGGAAGCAAAAACATCGTGTATAA
>gi 115829254 = 494491-494772 GTGTATAAGCTTAGCGGAAAAGCTGTTGAAGATTTCAGAGGGATCTATGACTACACGCTGGGAAAGTTTG GTGATGAGCAGGCGGATCGCTATACCGACTCTCTCGGCACTTTTCTGGATACACTCTCTCAAATGCCCGA GATAGGGCAAGACTATGATGCGATTCCAGAGGTAAAGAAGATCGCATTTAGGTTTCACACTGTTTATTAC GTTATAAGAGTCGATGACATTCTCATTGCGCGCATTCTTCATCAGTTGATGGAACCTCGCCGTCACTGGT AA
>gi 115829254 :cll67742-1167455
ATGTTACCCATTTTATGGCTACCGTCTGCTCGCGATGATTTGCGCCAGATCATAACTTACATCGCCAAGG AGAACCCACCGGCAGCACGTAGACTAAAAATACGCATTGAAACATCGGTATTACCTCTATCTGAGCATCC GTACTTATATCCACCAAGCGAACGGGTTTCTGGATTGAGAGAGATCGTGACCCACCCTAACTACATAATC CTGTACAGAGTAGCTGCTTCAAGCATTGAGATTGTAAGCGTGACACATTCTCGGCGACAATTTCCCTTCT CTATCTGA
>gi 115829254 = cll67933-1167742 ATGGGTACAGCCCTTTCTCCGATAGTTTCAGAATTCGAAACTACCGAACAAGAAAACAGTTACAACGAAT GGTTGCGCACTAAAGTAACGTCAAGCCTTGCAGACACTCGCCCCGCAATTCCACATGACGAGGTAATGGC TGAAATGGAAAATCTTATTGCTCAAATTGCTGTAACTAACAAGAGCGAGTAA
>gi|l5829254:2248879-2249106
ATGCCGCCGCGCCTGAGTTATAAAACCGGAGGAAACATGAATAGAGCCCTTTCACCAATGGTTTCTGAAT TTGAAACCATTGAACAAGAAAACAGTTACAACGAATGGCTGCGTGCGAAAGTAGCAACGAGCCTTGCAGA TCCGCGCCCAGCAATTCCCCATGACGAAGTTGAGCGCAGAATGGCAGAACGCTTTGCTAAGATGCGCAAG GAACGGAGCAAGCAGTAA
>gi 115829254 = 2249108-2249386
ATGTTACCCGTGTTATGGCTTGAAAGCGCAGATACCGACCTAGATGATATAACTAGTTATATTGCTCGTT TCGACATAGATGCGGCTGAACGCTTATGGCAGCGATTAAGGGGTTGTGTGCTGCCGTTATCCGAACATCC GTATTTATACCCACCAAGCGACAGAGTACCTGGCTTGCGTGAGATTGTAGCCCACCCTAACTATATAATT CTATACCGCGTAACAACATCAAGCGTTGAAGTAGTAAACGTGATCCACGCAAGACGCCAGTTTCCCTAA
>gi 116445223 = 494258-494500
ATGCGCAAAATTACCTCAGTAAGCGTTGGCGAACAATTAGATAGTTTTATTACCCGGATGGTCCAGTCTG GTCGTTATGGCTCGGCCAGTGAAGTAATGCGTTCGGCACTTCGTCTATTGGAACAACAAGAATCCAGGGA TGAAGCTGTCAGAAATGCTGTTATTGAAGGTCTTGAGAGCGGTGAAAGTTCGATGACGCTTCGTGATATC GCAGCAGAAAGGAAGCAAAAACATCGTGTATAA
>gi 116445223 : 494493-494774 GTGTATAAGCTTAGCGGAAAAGCTGTTGAAGATTTCAGAGGGATCTATGACTACACGCTGGGAAAGTTTG GTGATGAGCAGGCGGATCGCTATACCGACTCTCTCGGCACTTTTCTGGATACACTCTCTCAAATGCCCGA GATAGGGCAAGACTATGATGCGATTCCAGAGGTAAAGAAGATCGCATTTAGGTTTCACACTGTTTATTAC GTTATAAGAGTCGATGACATTCTCATTGCGCGCATTCTTCATCAGTTGATGGAACCTCGCCGTCACTGGT AA >gi I 29732244 :c593918-593655
ATGAAAATTTCCTGCCGCGTAAAACCAATTTCTTATCTCAAAAGCAATACCGCTGAAATCGTCCGCGATA TTTCTGAAACTCGAGAACCGATGCTGATTACTCAAAACGGTGAAGCGAAACTCGTTGTTTTAGACGTAAA ATCCTATGAAGAATATGAAGAAACTTTGTCTCTTCTTAAGATCCTATCCTTAGGACAGAAAGAAATTGAA AAGGGTCAATTTCGTTCTGCCGACGATGTATTTGCCGATTTGGATAAAGATTAA
>gi I 29732244 : c593649-593311 ATGAACTATAAAGTTGTCTTTCTCCAACAAGCGCAGCTCGATCTTAAAGAACTCAAAAATTATATGATTA ATAATTTTTCGAAACGAACCTGGTGCACCCGTTATGAAAAAATTAAAAAAATTATTCATACGCCAAAACT ATTCCCGGATGCTGGTAGCATTCCGCCGGAGTTAGAAACTTTAAATTTAAATCAATATCGTCAAGCTATT TCTGGCAAAAACCGAATTATTTATGAATTAAAAGAAAGCATTGTCTATATTCATATTATTTGCGACGTTA GAAAGGATATGAAGAGCCTTCTTCTGCGGCGACTTTTCAGAAGCGAATCTCTCCCATAA
>gi | 24371600 :cl508110-1507802
ATGAGCACAATCAAACCCGTGTCGGTTAAATTAGATGCCGATATTAAAGCCAGAGTCGAGCATTTAGCGG AAACCCGTAAACGTTCATCACACTGGATGATGCGTGAAGCGATCCGTGAATATGTTGAGAGAGAAGAGAA ACGCGAAGCTTTGCAGCAAGAAGCGTTACGCGCATGGGAAGAACACCAGACATCAGGCTTGCATGTCACC GGTGACGAAGTGGTGAGTTGGCTGGAGTCCTGGGGAAGTGAAAATGAACAGGCAGCCCTACATGCCACAA ATAGTCTTCACTGCCACTGCATTACGTGA >gi|24371600:cl507839-1507546
ATGCCACAAATAGTCTTCACTGCCACTGCATTACGTGATTTAGAACGCTTACGTGAGTTTCTTCGCAGTA AAAATCCCCCTGCCGCACAACGGGCTGCCAGCGCCATAATCAATACCATTAGAAAACTGGAAAGCTATCC AGACATTGGTCGGCCTATCGATGACAATGACTTTAGCTTTAGGGAACTGCTCATCGACTTTGGTGACACG GGCTATCTGGCAATGTACCAGTATGATGGCGGCGAACGATTGACCGTGTTGTGTATCCGCCACCAAAAAG AAGCCGGATATTGA
>gi 115600771 :c323264-323022
ATGCACACACTAACAGCAAATGATGCTAAACGAAATTTTGGTGAACTTCTTCTAAGCGCACAACGCGAAC CTGTCATCATCAGCAAAAACAGTAAGAATACTGTCGTTGTCATGTCCATTAAGGACTTTGAAGAACTTGA AGCAATGAAACTCGATTATCTCAAACACTGCTTTGAGTCTGCTCAGAAAGACTTAGATAGTGGCAAAACC GTTGATGGTGCCACTTTTCTAAACACCCTTTGA
>gi 115600771 :c323021-322686 TTGAGCGTTTACCTCAATATGCAAAATAAACAATATAAGCTCAGCCAATTAGCCCAAGAGCACTTACTCA AGATTAAACACTACACCATTGAAAATTTCGCTGAAGCGCAGTGGCAAAAATATAAGTCGACCTTGCTTTC AGGTTTCCAAACTCTTGCGGATAACCCAGGACTAGGAAAAAGCTGTGAAGATATTTACCAAAATGGTTTT TACTTTCCAGTGGGGAAACACATGGCTTATTACACCAAAGAAGCAAACTTCATTCTCATTGTTGCGGTAT TAGGGCAATCACAACTGCCCCAAAAGCATCTCAAACAGTCACGCTTTGTTTCTTAG
>gi 115600771 :c350376-349915
ATGTTTGAAATGGCACATAACGCCCGCCTAAGGGGCTGGCAACGCATAACACTAAACTCAATCACAACAA CCGAAACCACCGCGGCTCAATGGGACTGGAAACGCCACGCGTTGACAGTCCCGCTTGAGGCGTTTGTTAT GCGCGCCTTGCCCAAAATGCCATTTGATACCATAATTAGGTACTTTTTGGTATTTATGGAGATGAGCTCA TGGCTAAAAATACAAGTATCACTCTTGGTGAACACTTCGATGGCTTTATTACAAGCCAAATACAAAGTGG GCGTTACGGCTCAGCAAGTGAAGTCATTCGCTCTGCGCTACGTCTACTCGAAAACCAAGAAACCAAACTA CAGTCACTCCGTCAACTACTTATTGAAGGAGAGCAAAGTGGTGACGCTGATTATGACCTTGATAGCTTCA TCAATGAACTCGATAGTGAAAACATTCGATGAAACCATTTAA
>gi 115600771 :c349928-349629
ATGAAACCATTTAATCTTACCGTCGCCGCCAAAGCCGATTTACGTGATATTGCTTTATTCACTCAACGAC GCTGGGGAAAAGAGCAGCGAAATGTTTATTTAAAGCAATTCGATGATTCCTTTTGGCTTTTAGCGGAAAA TCCCGACATTGGTAAATCATGCGATGAAATCCGAGAGGGATACAGAAAATTTCCCCAAGGGAGTCACGTC ATCTTTTATCAGCAAACCGGCAGCCAACAAATCAGGGTGATCCGAATTCTTCATAAGAGCATGGATGTGA ACCCAATATTCGGCGCATAA
>gi 115600771 :c365929-365687
ATGCACACACTAACAGCAAATGATGCTAAACGAAATTTTGGTGAACTTCTTCTAAGCGCACAACGCGAAC CTGTCATCATCAGCAAAAACAGTAAGAATACTGTCGTTGTCATGTCCATTAAGGACTTTGAAGAACTTGA AGCAATGAAACTCGATTATCTCAAACACTGCTTTGAGTCTGCTCAGAAAGACTTAGATAGTGGCAAAACC GTTGATGGTGCCACTTTTCTAAACACCCTTTGA
>gi 115600771 :c365686-365351
TTGAGCGTTTACCTCAATATGCAAAATAAACAATATAAGCTCAGCCAATTAGCCCAAGAGCACTTACTCA
AGATTAAACACTACACCATTGAAAATTTCGCTGAAGCGCAGTGGCAAAAATATAAGTCGACCTTGCTTTC AGGTTTCCAAACTCTTGCGGATAACCCAGGACTAGGAAAAAGCTGTGAAGATATTTACCAAAATGGTTTT TACTTTCCAGTGGGGAAACACATGGCTTATTACACCAAAGAAGCAAACTTCATTCTCATTGTTGCGGTAT TAGGGCAATCACAACTGCCCCAAAAGCATCTCAAACAGTCACGCTTTGTTTCTTAG
>gi | 28896774 :cl968916-1968788
ATGACCGAAATTATTTATACGGACACATTTGGTAATACGGCTGATGAACGTATTGATTACCTATCACAGT
GGACTCCAACTCCACAAGTCGTAGAAAAAGTTGAAACTTTAATTGAAACGTTCGAATAG
>gi | 28896774 :cl968766-1968581
ATGTATCCGGCTTGTTATGAGCTAATCTCGTTGGGCGTTTATCACTTTCGTCAATTCTCTTTTGATGGAT TTAAAATCATCTATCAATACGATGAAGAGGCCAATAAGATTTACGCGCTAGTGCAGATTAGTGACAGACA AGGTTTGCAGAAAACCCTAGTGGATTACTGCATCCGGTTCTTATAG
>gi I 27363490 :c2570855-2570613
ATGGCTAAGAACACTAGTATTACTTTGGGTGACCATTTTGACGGTTTTATTGCTAATCAAATCCAAAGCG GTCGCTATGGCTCTGCAAGTGAAGTCATTCGTTCTGCTTTACGTTTACTTGAAACCCAAGAAACTAAAAT GAACACTTTACGCCAGTTGCTTGTTGAGGGCGAAGAAAGTGGAGTTGCGGATTATGACCTTGATTCGTTT ATCAATGAGTTAGATAGCGAAGAGAGAAAATGA
>gi I 27363490 :c2570616-2570317
ATGAGACCATTTCAGTTAACTAACAAGGCGAAATCTGATTTAAGAGATATAGCCTTGTTTACCTCTCGAC GTTGGGGTCGCGAACAGCGAAATATTTATCTAAAACAGTTTGATGACTCATTTTGGCTGTTAGCCGAAAA TCCTGACATTGGTAAAGCCTGTGACGAAATTCGCGATGGCTACAGAAAGTTTCCACAAGGAAGCCACGTA ATATTTTATCGTCAGATCGGCAGTCAAAATATTGAAATTATCCGTATCCTCCACAAAAGCATGGATGTGA ATCCAATTTTTGGCGCATAA
>gi I 21240774: 99461-99718
ATGCGCACCGAACTTGTCACCACGCTCAAGCGTCAGGCGACCGAACTCCTTGCAGCTGCAGAGCGCGACA AGGAGCCAATCCTGATCACACAGCACGGTTTACCCAGTGCCTATCTGGTGGATGTTGCCAGCTATGAGCG CATGCAGCAGCGCATTGCGCTCCTCGAAGGAATCGCCCGTGGAGAAATGGCAGTCGCGGAAGGCCGTACG CTGAGCCATGAACAGGCACGGCACCGCATGGCGCGATGGCTGAAATAA
>gi I 21240774 = 99706-100005
ATGGCTGAAATAATCTGGTCGGTGCCGGCATTGGCTGATCTGGACGCAATTGCCGACTACATCGCAATCG ATAACGCACCCGCTGCAGCGGCGCTGGTGAAACGGGTGTTCGGGCACGTTGAGCAATTGATCGAACACCC GGACAGCGGAAGCCGACCACAGGAACTCAAGCGCTCGCGCTATCGCCAGATTGTCGAACCACCTTGCCGC GTGTTCTACCGCGTGGATGGGCAGCGCATCGTGGTGGTGCACGTCATGCGGTCGGAGCGCGCGCTTCGCG GGAACCGTCTTTCACGCTAA
>gi) 21240774 :c2828876-2828598
ATGGTTACGGCAACTTCCATCAAGCTTGATGATGAATTGAAAGGGCGGGTTCAGCACTTGGCCGAGGCGC GCCGGCGTACCCCGCATTGGATCATGCGCGAAGCCATTGAGCAGTACGTCGAGCGCGAGGAAAAGCGTGA GGCGTTGAACCGGGACACGCTCAAGGCATGGGATGAATTTCAGGCGACGGGCCTGCACGTGACCGCTGAG GAAGTGGACAAGTGGCTCGCGAGCTGGGGAACAGACGACGAACTGCCTCCGCCAGAATGCCACAAGTAA
>gi I 21240774 :c2828610-2828320
ATGCCACAAGTAATCTTTGCGCCGGCGGCGATCGGGGACATGCAACGGCTGCGCGAATTCCTGAAGCCGA AGAGTCCCGATGCCGCGAGGCGGGCCGGTGAAGCGATTAGGCGCGGCGTCCAGGCTCTCGGTGCCCACCC TCGAATGGGGCGGCTCATAGAAGATCTGCCTGAACAGTATCGGGAGTGGCTTATCGATTTTGGGGATAGT GGCTATGTGGCTCGGTACCGCCACGCTGGCGATACCGTCACGATTTTGGCCGTGCGACACCAGAAGGAAG CGGGGTACTGA
>gi|l5836605:1936530-1936781
ATGAGCCGCTTAACCATCGACATGACAGACCAGCAGCATCAAAGCCTGAAAGCACTGGCTGCCTTGCAGG GCAAGACCATCAAGCAATACGCGCTGGAAAGGCTATTTACCGGCGATGCTGATGCCAATCAGGCATGGAC GGAGCTGAAAACCCTGCTCAACACCCGCATCCACGAAGGACTTGCTGGTCATGTGTCTACCAAGAACATC AACGAAATTCTTGACGAAGAACTGACCGAGGACGGGGCTTGA
>gi 115836605: 1936778-1937086
TTGACGGGTTACGTTCTCACTGAGGCAGCAGAATCTGACCTGCGCGGAATCGTCCGCTACACCCGTAAGC AATGGGGCAACGCGCAGGTGCGCCACTACATCGCCACGTTGGAACGGGGTATCGCCAGCCTCGCCGAGGG CCGGGGTGCGTTCAACGACATGAGTTCGCTTTTTCCGGCTTTACGGATGGGGCGTTACGAACATCATTAC GTCTTCTGTCTGCCGCGTGAGGAAGCGCCTGCTCTGATCGTGGCTATTTTTCATGAGCGCATGGATCTGA TGACACGACTGGCTGACCGGCTCAAATGA
>gi 115836605 :cl969531-1969289 ATGAGTCGAAACACATCAGTTGCCCTCGGGCCGCACTTCACCAGCTTTATTGATGCCCAAGTCCAGGGCG GTCGCTACGGTACCGCCAGCGATGTTGTCAGGGCCGGTCTGCGGCTGCTGGAGGAACACGAAACAAAGGT GAAGGCGCTGCAAGATGCGCTGAATGTTCGCCACCAATCCGGCGAGCCGCGCCCGTTCGACAGCGAGGTG TTTTTGAGCCGGATGCACACGCAGCATGGCTAA
>gi 115836605 :cl969296-1969111
ATGGCTAAGTCCTATCGACTGACGCCGCTGGCCGAGGCCGATCTTGAAGAAATCTGGTTCTACACATTCA GGCACTGGTCGATAGGGCAAGCCGACAGCTACCACCGCAGCCTAGTTGCGGTTTTCGAGGGGCTGGCAGC AGGTACAAAGCTAAGGCCGCCCTTCTGTTCTGCCGGACTTCAATAA
>gi | 28867243 :261079-261330
ATGCGAGTTGAAACAATAAGCTATTTGAAACGCAATGCAGCCGATCTGCCTCTCGATGAGCCACTGATTG TCACGCAAAACGGTGTCCCGGCCTACGTGGTGGAGTCTTACGCAGATCGTAAGCGTCGCGATGAGTCCAT TGCCTTGGTGAAGCTCTTGGCAATCAGTTCCCGCGAGTACTCCCAAGGCAAGCACTGTTCTGCTGACGAA CTTAAAGCCCGATTGAGCAGGAGGTTTGCCCACAAAGAATAA
>gi | 28867243 : 61343-261693 ATGAATATGTTTGCACTGCGCTTTACCGATGTTGCCCAGCAAAGCCTCGAAGATCAGGTTGAACACCTGG CGGTCTATCAGGGATTCTCTCCCGCTGCTCAGCGCATAGACACCCTGATTGATGCCATTCAGGACAAGCT CCTGTCCACCCCGTTGGGCTACCCGGTCAGTCCTCAATTGAGTGAGCTGGGCGTACTGCACTATCGTGAG TTGAACGCTGACGGATACCGGATCTTTTACGAGGTGAGGGAGACAGATGATATTAATGTCATCGTCATAG TGCTCGTATTAGGTGGTAAACAAAGTGTTGAACAGGCACTAATCCGCTATTGTCTGCTTCAGCCTATTTA G
The following sequences were found in a later supplementary search:
>gi 115887359 :cl071084-1070815 ATGCCCGAAATCCATTTGAGCGAGCAGGACGAGAAGTTCATCGAGGAGCAGGTTGCGGCAGGCATCTATA GCGATGCAGATGCCGTTATTCATGCGAGCTTGCAATTGCTGAGCAGTGACGAAGGCAAAAGAGCCGCGCT GAAGTTGCTGATACAGGAAGGCATTGACGACGCTGAGGCTGGACGGGTTCACCGCTATGCCTCACAAAAC GACTTTCTGAGCGATATCAAACGCGTTTCCGCCCAGCAAAAAACGGGGACCGATCATTAA >gi | l5887359 : cl070861-1070511
ATATCAAACGCGTTTCCGCCCAGCAAAAAACGGGGACCGATCATTAAAATTCGGACCCCTATCTGGACCA CGAGGGCAAGGCGCGATCTTGCCGAAGACCATGCTTACATTGAGACCGAAAATCCCGTTGCTGCGGATCG CCTCGTTCTCGATATCTACAACAAAATCGAATCGATAGCGGCAATTGGTTTGACCGGCGTCTCAAGACAT GGATACGGCACGGGGCTTCGCAGCATTGCGTATCGAGATCGTGTGATTTTCTTTCGTGTCAACAATGGCG AACTAACCGTAATGCGCGTGCTGCACGGCCATCAAGACATTTCCGCCGACGATTTTAAACAAGAAGAAAA
CTGA
>gi 117933925 -.C831318-830914
GTGATTTGGTGTTCGGCAGACGTTAAGCCCGTTTATCTGCCTCAAGGCCCGCGATTGCAAGGTTTTGCAT TTGACTTATCACTGCCGATGACCGATCTTATGCATCGCAATTGCAACGCAGGAAGACGATCCATGAAAAC GGCAACAATTCCTTCGCTGCGGGTGACAGCGGATTTTCGCGAGGCAGCCGAAAGCGTGCTGAAGGACGGC GAGACGCTTTCGGCATTTATGGAAGAAGCCGTGCGCAAGCAGGTGGAAATCCGCAAATCTCAGGCGGAGT TCATCAAGCAGGGGCTTGCAGCGCGCGAAGAATCCAAGCGAACGGGCGTCTATCACAAAGCCGAGGACGT TCTTGCAGAGCTGAAAGCTATGCTTGACGAAAAGCTTGCTGAAGACAACGACAAGTGA
>gi 117933925: 830618-830914
ATGGTAATCATCCTCGCGCTGGTGGCGGATCGCGAGGATTGTTACTTTCTCGGCACTTTCTATCTCAAAA AGAACGACATAGCCTGACGAGCCAAATGGAATAAGAAACTCCCTCAGAAAGGGATTTTCTGCATCTACTT TCCGGCAGCTCAGCGGAAAATCCGCAAGTGCGGCAATTCCTTTTTCGATGGCCCTGTAGGCTCGCTTCGC CGCATATTTGTCCTGGCGAAGGAGATGTGCATAGAGGCGTGTTATATTGTCGCGCGCTCTGTCGGCAAGA AAAACCTGAAATGTCACTTG
>gi 117933925 : 1304610-1304918'
CTGGTGGAGGCCCCGATGCCAACGCGTAACGTCGTCCTGACACAGCATCACGAAGAGATCATAGACGATC TCGTCAAATCCGGCCGCTATCAAAACGCCAGTGAAGTGCTGCGTGAAGGCTTACGGTTAATTGAGAGGCG AGAGCGTCTTGAGGCAACCAGACTGGAAACCCTGAAGGTCGCGGCGCAACAGGGCTTCTGCGACCTTGAC CAGGGACGTTATATCGATGTTTCGGATGATGCCCTTGACGATTTCATTTCCGCTTTCGGGCGCGAGGCTG AAGTGCGCCTGACCAAGTCCGATGACAAATGA >gi|17933925:1304918-1305289
ATGACGACGTATCGTCTGTCCGATGCCGCACAATCGGACATCATTGAAATTCTTGGATGGACACACGCGA CGTTTGGAGCTGCAGCGAGAAAACGCTACGAAAAGTTGCTTGCAACTGCGTTGCGTGATGTTGCTGTTGA TCCGCTACGCGCCGGCACGAATATTCGCGCTGAACTTGGTGAAGACGTGCGTAGCTACCACCTGCGTTAT AGTCGCGAGCGGGCAAAAAGCGAAACGGGCCTCGTTAAAAATCCGAGGCATCTGTTACTCTATCGTGCAC TACGACCCGGTTTGGTGGGTGTCGGCCGCGTTCTTCACGATTCGATGGAAATCGAGCGCCATCTTCCGGA CGATTATGGTGATATTACTTTCTGA
>gi 116124256 : 1186104-1186391 TTGTTCTGGATTTTCGTCATGGCGAAGCCCGCTTCTTTGAGCATCGAGCTAGACAGCGACCTAGACCGGC GACTCTCAGAGATCGCCGAGGGGATGGACCAGCCCAAGACGGCGATCATTGAGCGGGCTTTGCGCGACTT CGTCGAATTGCGTGACTGGCAGGATGCGGCGATCGATGAAGGACTGCGCGCTGCAGAAGAAGGCCGTGTC TTTGATCATGACAAGGTCGGCGAATGGATAGACTCGTGGGGGACGCCCAACGAGCGCCCGATGCCGAGTC GTGACTGA
>gi 116124256: 1186395-1186610
GTGCGCGTCACCTGGACCGATAGCGCATCGCGCGATCTGAGGTTCGCGTACGCCTGGATTGCGCAGGATC GGCCTACGGCGGCGCTTAAGCAGGTTCGCAGAATTTGGGAGTTCGCGGCAAAGCTGTCCGACTTTCCCAA TCTTGGAAGGCCAGGACGTCGCCCTGGTACGCGTAACTGGTCGTGCCGGGCGGCCCCTTCATTGTCGCTT ACAGAGTGA
>gi | 16445223 : C1257158-1256967
ATGGGTACAGCCCTTTCTCCGATAGTTTCAGAATTCGAAACTACCGAACAAGAAAACAGTTACAACGAAT GGTTGCGCACTAAAGTAACGTCAAGCCTTGCAGACACTCGCCCCGCAATTCCACATGACGAGGTAATGGC TGAAATGGAAAATCTTATTGCTCAAATTGCTGTAACTAACAAGAGCGAGTAA
>gi | 16445223 : C1257158-1256967
ATGGGTACAGCCCTTTCTCCGATAGTTTCAGAATTCGAAACTACCGAACAAGAAAACAGTTACAACGAAT GGTTGCGCACTAAAGTAACGTCAAGCCTTGCAGACACTCGCCCCGCAATTCCACATGACGAGGTAATGGC TGAAATGGAAAATCTTATTGCTCAAATTGCTGTAACTAACAAGAGCGAGTAA
>gi 116445223 : 2324200-2324391
ATGAATAGAGCCCTTTCACCAATGGTTTCTGAATTTGAAACCATTGAACAAGAAAACAGTTACAACGAAT GGCTGCGTGCGAAAGTAGCAACGAGCCTTGCAGATCCGCGCCCAGCAATTCCCCATGACGAAGTTGAGCG CAGAATGGCAGAACGCTTTGCTAAGATGCGCA&GGAACGGAGCAAGCAGTAA
>gi 116445223 : 2324393-2324668
ATGTTACCCGTGTTATGGCTTGAAAGCGCAGATACCGACCTAGATGATATAACTAGTTATATTGCTCGTT TCGACATAGATGCGGCTGAACGCTTATGGCAGCGATTAAGGGGTTGTGTGCTGCCGTTATCCGAACATCC GTATTTATACCCACCAAGCGACAGAGTACCTGGCTTGCGTGAGATTGTAGCCCACCCTAACTATATAATT CTATACCGCGTAACAACATCAAGCGTTGAAGTAGTAAACGTGATCCACGCAAGACGCCAGTTTCCCTAA
>gi 113470324: 1972578-1972823 ATCATGGCCATGACCGCTTTTACCGTACGCCTTTCCGACGACACGACAGATAGGCTCGACCAGCTTGCCG AAAAGCTCGATCGCTCGCGCTCCTATGTGGCCGCCCAAGCCATTGAGGACTTTGTAACCCGCCAGGAATG GCAGCTCGCGGAGATAGAGGCGGGATTGGCCGAGGCCGAGCGCGGCGAATTCGCCAATGAGCAAGAGTTG GCCGCCGTGATTGCCAAATATATCAAGCCCGCCGGCTGA >gi] 13470324: 1972805-1973119
ATATATCAAGCCCGCCGGCTGATTGTGAGCCACAAGACAATCCGCTGGACCAAGCGGGCATTGCGCCGGC TTGACGAAATCGGCGCGCATATCGAGAAAGACAGTCCTGAAGCGGCCAGCCGTGTCATTGCGCGCATCTT GTCCGCTGCCGAACTGCTCACACAGCAGCCGGCCATGGGTCGCGTTGGACGTATCAAAGCGACGCGAGAG CTCGTCTTGGTCGATATCCCCTATATCGTCCCCTATCGCGTCAGCGGGAATACCGTCGAAATACTCACCG TCATACACGCCGCCCAACAGTGGCCGCGGACCTTGTGA
>gi 115607142 :c2402720-2402508
GTGGTGGTCAACCGGGCATTGCTGGCGAGCGTCGACGCACTGTCGCGTGATGAGCAGATTGAGCTCGTCG AGCACATCAACGGAAACCTAGCCGAGGGCATGCATATCAGCGAGGCCAACCAGGCGCTCATCGAAGCGCG GGCCAATGACACCGACGATGCTCATTGGTCCACCATTGATGACTTCGACAAGCGGATCCGCGCCCGGCTC GGATGA
>gi 115607142 -.C2402508-2402191
ATGACGCGCAGGCTGCGCGTCCATAACGGGGTTGAAGACGACCTATTCGAGGCGTTTTCCTACTACGCGG ACGCGGCGCCAGATCAGATCGATCGGCTTTACAACTTGTTTGTCGATGCCGTGACGAAGCGGATTCCGCA GGCTCCGAACGCGTTTGCGCCGTTATTCAAGCACTATCGACACATCTACCTCCGGCCCTTCAGGTACTAC GTTGCCTATCGGACGACCGACGAGGCTATCGACATACTGGCTGTTCGGCACGGAATGGAGAACCCGAACG CGGTCGAGGCTGAGATCTCTGGCCGCACCTTCGAGTGA >gi|30248031:1479335-1479618
AACTCATACTTGGTAACGCTATGAAATCATCAACCATTCCGTCACTACGAGTCACACCGGAGTTCCGCCG TGACGCAGAAAGCGTGTTGCGTGAGGGAGAATCTCTAAGTGCTTTTGTTGAAGAGTCTCTGCGGCAACAT ATCGAACGTCGGCGAACCCAACAAGAATTCATAGCGCGTGGCCTGACAGCGCGGGAGGCGGCCAAATCCT CCGGGCAGTATGCATCCAAAGCAGAGGTAATGAGTTCTTTGCACTCCATACTGGATGAACAGAGAAGCAA AGAGTGA
>gi I 30248031 = 1479618-1479917
GTGAGCTTTCATGTCCGTTTCACCCTGGAGGCAAAGGCGGATATCGAGCGGTTGTACAGATTTCTTGCTG AACACGACTTTGATGTCGCCGAAAGAACGCTAGAGACCATTGACAGCGCTTGGTCACTACTTGAACAGTT CCCGTTTTCCTGTCGAAAAATTGACGATGCGAACCCGTTTCTTCGTGAGTTTATTATTTCATTTGGAAAT TCTGGCTACGTGGTCTTATTCGAAATCGAAGATAGCAACACAGTTACTGTGCTGGCAGTGCGTCACCAAT TAGAGGATGACTATTATTGA
>gi I 16763390 :c3102715-3102440 ATGACCGTTGATCTTGGCGATGAACTGCGCGAGTTTATTGAATCGCTCATAGAATCAGGTGATTACAGAA CACAAAGTGAAGTGATCAGAGAGTCTCTTCGTCTGCTGAGGGAAAAACAGGCCGAGTCACGACTTCAGGC GTTACGTGAACTTCTGGCTGAAGGTCTGAACAGCGGAGAGCCGCAGGCCTGGGAAAAGGATGCCTTTTTA CGGAAGGTCAAAACAGGGATGATCAAACCCGATGAGAATGGTAAAATTAACGCCAAAGGCCAGTGAAGA
>gi 116763390 :c3102468-3102178
ATGGTAAAATTAACGCCAAAGGCCAGTGAAGATCTGGAAAATATCTGGCATTACGGCTGGCAGCATTTTG GCGAAATACAGGCCGATCGATATATTAATCATCTATCAGAAATATTCAGCATTATGAGTGCCAATAACAT TGGCACGCCTCGACCTGAACTGGGTGAATACATTTATGCCTTACCGTTTAAAAGGCATATTATCTATTTT ATACAATCAGTTACGGAAGTTATCGTGATACGTATTCTGAGCCAGAATCAGGATGCTGGTAAGCATGTAA ATTGGTTATAG
>gi 116758993.-C2958334-2958059
ATGTTTTTGACGTACATTTCATTTCAGGTGTACTCTTATGTAAGATTTATACTTACAGTGGAGGCTGTTA TGGCCAGAACAATGACCGTTGATCTTGGCGATGAATTGCGCGAGTTTATTGAATCGCTCATAGAATCAGG
TGATTACAGAACGCAAAGTGAAGTGATCAGAGAGTCTCTTCGTCTGCTGAGGGAAAAACAGGCCGAGTCA
CGACTTCAGGCGTTACGTGAACTTCTGGCTGAAGGTCTGAACAGCGGAGAGCCGCAGGCCTGGGAAAAG
>gi|16758993:c2958012-2957794
ATGAGAACGGTAAAATTAACGCCAAAGGCCAGTGAAGATCTGGAAAATATCTGGCATTACGGCTGGCAGC ATTTTGGTGAAATACAGGCCGATCGATATATTCATCATCTATCAGAAATATTCAGCATTATGAGTGCCAA
TAACATTGGCACGCCTCGACCTGAACTGGGTGAATACATTTATGCCTTACCGTTTGAAAGGCATATTATC
TATTTTATATAA
>gi|29140543:c2944229-2943954 ATGTTTTTGACGTACATTTCATTTCAGGTGTACTCTTATGTAAGATTTATACTTACAGTGGAGGCTGTTA TGGCCAGAACAATGACCGTTGATCTTGGCGATGAATTGCGCGAGTTTATTGAATCGCTCATAGAATCAGG TGATTACAGAACGCAAAGTGAAGTGATCAGAGAGTCTCTTCGTCTGCTGAGGGAAAAACAGGCCGAGTCA CGACTTCAGGCGTTACGTGAACTTCTGGCTGAAGGTCTGAACAGCGGAGAGCCGCAGGCCTGGGAAAAG >gi | 29140543 :c2943907-2943689 ATGAGAACGGTAAAATTAACGCCAAAGGCCAGTGAAGATCTGGAAAATATCTGGCATTACGGCTGGCAGC ATTTTGGTGAAATACAGGCCGATCGATATATTCATCATCTATCAGAAATATTCAGCATTATGAGTGCCAA TAACATTGGCACGCCTCGACCTGAACTGGGTGAATACATTTATGCCTTACCGTTTGAAAGGCATATTATC TATTTTATATAA >gi I 21229478 -.C3665371-3665126
GTGTCGCCAGGGCGGCGAAAGATGCCGGAACTACGGCGCACGGCTTTATCGTCGACGCCATTGCGGAAAA AATCGAGGCGCACGAGCGCCGCACTGCATTCCATGCCGAAGCGCAGCAACGCTGGGCTGCTATCGAAGGC GGCGACAACACGCTGTCCTGGGCGGACGTACGCCAGTACATGCAGCAGCTTGCTGACGGAGAGAACCCCG CGCCACCGGTCGCCAGCGCCGTCGAGCGCTGACAGGTGA >gi]21229478:c3665126-3664824
GTGACCAGGATCGCGCTTGCCGCGCGCGTCGCCGACGATGCGCGCCGTTTAGTCGCTTATCTGCTGGAAC ACGATGCAGCCAGTGTGCAGCGAAAGCTCGCTGGCATCTTCCAGGCGATCGACGCATTGGCGGACAATCC ACTGATGGGGCGCGCAGTGCATGGCGGATTTCGCGAACTGGTCATAGGCCGCGATGCCAGCGGCTATCTG GCGCTCTATCGTTACGCACCGTTGGACGACACCGTGTATGTGCTGGCGATCCGTTCGCAGCGCGAAGCGG GTTACCTTGAAAGCCTGTTTTGA
>gi I 28197945 -.C1164718-1164479
ATGAGTTGTCTGACCATTGACATCACGGACCAGCAGCACCAAAGCTTGAAGGCACTCGCCGCCTTACAGG
GAAAGACAGTCGAGCAGTATGCGTTGGAACGCCTATTCCCAAGCGATACTGATGCCGATCAGGCATGGCA GGATCTGAAAACCCTGGTTGGAACGCGCATCAGTGAAGGGCTGGCGGGGAAAGTGTCCACCAAAAGCATC
AATGAAATTCTCAATGAAGAACTAACCTAG
>gi] 28197945 :cll64470-1164162
TTGACCGGCTACATTCTCACTGCTGCGGCAGAAACTGATCTGCGCAGTATCATCCGCTACACGCGCAAAC
AATGGGGCGATGCGCAGATGCGCCGCTATATCGCCACGCTGGAACAGGACATGGCCAGTCTCGCTGCTGG CCGCGGTGTTTTCAGGAACATGAGCGTACTGTTTCCGGCACTACGGATGGGCCGGTGCGAACATCATTAC
GTTTTCTGTTTACCCCGCGAGGGAGCGCCTGCGCTGATTGTGGCTATTTTTCATGAGCGCATGGATCTCA
TGACACGACTGGCTGACCGACTCAAATAA
Nucleotide seguences coding for homologs of Chp toxin-antitoxin pairs
15607142:3110734-3110507,15609938
>15609938_3109400-3110940_Mγcobacterium_tuberculosis_H37Rv.fna_14 [1334 - 1107] (REVERSE SENSE)
GTGAAGTTGAGCGTGAGCCTGTCCGATGACGACGTCGCGATCCTGGACGCATATGTGAAA CGAGCGGGATTACCATCCCGCTCCGCCGGCCTGCAGCATGCGATCCGCGTGCTTCGCTAC CCCACGCTCGAAGATGACTATGCCAACGCATGGCAAGAATGGTCGGCAGCCGGCGACACG GACGCGTGGGAGCAGACCGTCGGCGACGGAGTCGGTGATGCGCCGCGG
>gi 115607142 :c3110520-3110164
GTGATGCGCCGCGGTGAGATTTGGCAGGTCGATCTCGACCCCGCTCGAGGTAGCGAAGCGAACAACCAGC GCCCCGCCGTCGTCGTCAGCAACGACCGGGCCAACGCGACCGCCACGCGTCTTGGGCGCGGCGTCATCAC CGTCGTGCCGGTGACGAGCAACATCGCCAAGGTCTATCCGTTTCAGGTGTTGTTGTCGGCCACCACTACT GGTCTCCAGGTCGACTGCAAGGCGCAGGCCGAGCAAATCAGATCGATTGCTACCGAGCGGTTGCTCCGGC CAATCGGCCGAGTTTCAGCCGCCGAACTTGCCCAGCTCGATGAGGCTTTGAAACTGCATCTCGACTTATG GTCGTAG
15607142 :c2234644-2234919, 15609128
>15609128_2233560-2235030_Mγcobacterium_tuberculosis_H37Rv.fna_18 [1359 - 1084] (REVERSE SENSE) CTGGAAGTTATACCCGGTTATACTATCTGTATGAAGACAGCTATTTCTCTGCCGGATGAG ACGTTCGATCGGGTATCGCGGCGTGCGAGTGAGCTCGGCATGAGTCGGTCCGAGTTCTTC ACGAAGGCTGCGCAGCGCTACCTGCACGAGCTGGACGCCCAATTGCTCACGGGCCAGATC GACAGGGCTCTAGAGAGCATCCATGGCACCGACGAAGCGGAGGCCCTCGCCGTGGCCAAC GCATACCGCGTGCTAGAAACCATGGACGATGAGTGG
>gi 115607142 :c2234647-2234303
GTGGTGATTAGTCGTGCCGAGATCTACTGGGCTGACCTCGGGCCGCCATCAGGCAGTCAGCCGGCGAAGC GCCGCCCGGTGCTCGTAATCCAGTCAGATCCGTACAACGCAAGTCGCCTTGCCACTGTGATCGCAGCGGT GATCACGTCCAATACGGCGCTGGCGGCAATGCCCGGCAACGTGTTCTTGCCCGCGACCACAACGCGACTG CCACGTGACTCGGTCGTCAACGTCACGGCGATTGTCACGCTCAACAAGACTGACCTCACCGACCGAGTTG GGGAGGTGCCAGCGAGCTTGATGCACGAGGTTGACCGAGGACTTCGTCGCGTACTGGACCTTTGA
15607142:2547085-2546840,15609411 >15609411_2545760-2547160_Mycobacterium_tuberculosis_H37Rv.fna_14 [1325 - 1080] (REVERSE SENSE)
ATGGCCGAACCAGAAACCCTTCCTGGGCGGTGGCTTCCGGAATGCGCCTGCCTAGCTGAA ACCGTGAGTTGGGAGCAGAGTCGTCTCTGGTCCCGCCTGTTATGCCGTCCGCATTTTCGT CATGCGCTGCCGGGGCTGACCGGGGGCTCTGCAAGTCGTCCGTCGGCGAGATCAGCACGC CTGGTTCGGCAGCCACGTATGACATTGTTTTCCTTGGACCATAGGGACGGGGTCGACGCT CGGTGT
>gi 115607142 :c2546803-2546486
ATGTCTATCGCCCGATCGGCCCAGCCTATTGGGTGGATCTCGTGTCCACCAAAAGGGGGATCCAGCTGCT GCCGCTGTGGCGGCGGGTACACTCACATATTTTGCGTATCAGCCTGGACCGGTCTTGTGGTTGACTTGCA GGCTGAGCAGGTCAGATCCGTTGTGACCGAACGGCTGCGCCGGCGGATCGGCCGAGGCGCTCCTATCCTC GCAGGCACGCTGGCTCCCGGCGTTGGTCTAGCCGCACAAAATCGTGAATTCCGGCAATTTACAGGAAGGT CCGCGCCGCCATCGGCCACGATCGCATTTGGCGAGTAG
15839372:3105455-3105228,15842339
>15842339_3104150-3105620_Mγcobacteriuιn_tuberculosis_CDC1551.fna_14 [1305 - 1078] (REVERSE SENSE)
GTGAAGTTGAGCGTGAGCCTGTCCGATGACGACGTCGCGATCCTGGACGCATATGTGAAA CGAGCGGGATTACCATCCCGCTCCGCCGGCCTGCAGCATGCGATCCGCGTGCTTCGCTAC CCCACGCTCGAAGATGACTATGCCAACGCATGGCAAGAATGGTCGGCAGCCGGCGACACG GACGCGTGGGAGCAGACCGTCGGCGACGGAGTCGGTGATGCGCCGCGG
>gi 115839372 :c3105238-3104885 ATGCGCCGCGGTGAGATTTGGCAGGTCGATCTCGACCCCGCTCGAGGTAGCGAAGCGAACAACCAGCGCC CCGCCGTCGTCGTCAGCAACGACCGGGCCAACGCGACCGCCACGCGTCTTGGGCGCGGCGTCATCACCGT CGTGCCGGTGACGAGCAACATCGCCAAGGTCTATCCGTTTCAGGTGTTGTTGTCGGCCACCACTACTGGT CTCCAGGTCGACTGCAAGGCGCAGGCCGAGCAAATCAGATCGATTGCTACCGAGCGGTTGCTCCGGCCAA TCGGCCGAGTTTCAGCCGCCGAACTTGCCCAGCTCGATGAGGCTTTGAAACTGCATCTCGACTTATGGTC GTAG
21672841:947841-948164,21673827 >21673827_947380-948850_Chlorobium_tepidιraι_TLS.fna_2 [461 - 784] CTGCTCTTGGAAGGCAGTATCGGTCTGTTGCCGGATGCTTTGTTGAATAATGAAGAACCA GAACAGAATACGGGTTACAACAGTTCAGCTCGATGTATTGTCAATCGTGAGGATCAGGCA GGAATCACGAGAAAAGAGACTATCGGTGCTTCGGTATGGTTTGGGCTGGTATGTGTCACA GATGAATCTGTCGCTTATAGGTATGATGGTTTGGCGGCACGATCGCTGAGGTTATGGACT ACGCCTTCCTTGAAGAAGCAGCAGATCGCGAAGGCTGGAACGCATGAAAAGGGGATCGGT GGTCACGATTGCCTTGCAGGGCAA
>CT0999, gi I 21672841: 948124-948447 ATGAAAAGGGGATCGGTGGTCACGATTGCCTTGCAGGGCAATGACGGGAAGCTACGGCCAGCAGTGGTTG TTCTATCCGATTATTTTCCGGAACATCCCTCCGTAACGGTGTTGCCGATAATCAGTGACTTGCGTTCGAC GCCCTTTTTCCGGATCGATGTCGAGCCAGAGGCACAGAATGGCTTGCTGAAGCCGTCCCGGATCATGATT GACAAAGCTCAGGCGGTGCCGTCGGAAAAGATCGGCAAGGTTATCGGTCTTCTCGACGATACCAAAATGA TGGCGGTCAACAGGGCGCTAGCGCTCTGGTTCGGTTTTGCTTGA
17988344:197880-198089,17988530
>17988530_197330-198730_Brucella_melitensis_c romosome_II.fna_6 [550 - 759] ATCGAAGCCGAAACTATCCCGCGTGAAGGTCGGAGAACATCGCGCTCGTTTGCGCGCCTA AGGTTTGCGCTCGATCCAGATTTGGGTGCCGGACGTGCTTTCTCCTCATTTCGTGATGAG GCGCACCGTCAGTCGCTTACCGTCGCGTCAAGGAGTCATGCCGCTGATGATTTGGCTTTC ATTAATTCTGTTTCGGACTGGTCTGACGAA >gi|l7988344:198089-198373
ATGAAGCGTGGCGAAATATGGACGGTCGGGGGCGGCAAGGACCGTGCAGGTAAACCGCGTCCAGCTGTGA TTGTGCAGGACGATCGATTTGATGCTACGGGCTCGATAACCATTTGCGCATTCACGACAAATGAGACCAA TGTGCCTTTATTTCGCCTTGCGGTCGAGCCGAATGAGCGGAATGGCTTGCGGTCGGTGTGCCGCCTTATG GTGGACAAGATCACGACCGCTCCTAAATCCATGATGGCGGTGCAGGTAGGGCGAAATCCTCCAGGTCATA GCTGA
23499767 :cll01320-1101529, 23500829 >23500829_1100330-1101730_Brucella_suis_chromosome_II.fna_12 [1199 - 990] (REVERSE
SENSE)
ATCGAAGCCGAAACTATCCCGCGTGAAGGTCGGAGAACATCGCGCTCGTTTGCGCGCCTA
AGGTTTGCGCTCGATCCAGATTTGGGTGCCGGACGTGCTTTCTCCTCATTTCGTGATGAG
GCGCACCGTCAGTCGCTTACCGTCGCGTCAAGGAGTCATGCCGCTGATGATTTGGCTTTC ATTAATTCTGTTTCGGACTGGTCTGACGAA
>gi I 23499767 :cll01320-1101036
ATGAAGCGTGGCGAAATATGGACGGTCGGGGGCGGCAAGGACCGTGCAGGTAAACCGCGTCCAGCTGTGA TTGTGCAGGACGATCGATTTGATGCTACGGGCTCGATAACCATTTGCGCATTCACGACAAATGAGACCAA TGTGCCTTTATTTCGCCTTGCGGTCGAGCCGAATGAGCGGAATGGCTTGCGGTCGGTGTGCCGCCTTATG GTGGACAAGATCACGACCGCTCCTAAATCCATGATGGCGGTGCAGGTAGGGCGAAATCCTCCAGGTCATA GCTGA
30248031 :cl002703-1002936, 30248925
>30248925_1001630-1003100_Nitrosomonas_europaea.fna_ll [1306 - 1073] (REVERSE SENSE) ATCAAGATGACTATTATTGCAAAAGTAACCTCAAAGGGACAGACCACGATACCGGCTGAT ATTCGTGCAGCGTTGCGTATAAAACCGGGCGATTTGATTATCTGGGAAATGTCGGATGAT GGTAGTGCACGCATTCGACGTGTACAACCGCTCGATATCGAATACTTGAAAGCAGTGGAG GGAACGCTTTCCGAGTGGGCAGGCGCAGCCGATGAGGAAGCTTATCGTGAGTTA
>gi 130248031 :cl002710-1002360
GTGAGTTATGAACGTTTCACGGTATTGAAAGTGCCTTTTCCGTTTACCGACCGTACGGCTGCCAAAAACC GTCCGGCACTCGTACTCTCGGATGCAGCCACATTCAACGATCCAATCGGCCATTCGGTGCTGGCCATGAT TACCTCAGCCGCCAATCCAGCCTGGCCGCTCGATTGCCTGATCGATGATCTGGTCAGTGCCGGTCTCCCG GCTCCTTCTGTCGTACGCTTCAAGCTGTTCACGCTCGATCACCGGCTGATACGTGGTGAACTTGGACGAC TTGCCGTCAGTGATAGTATTCAGGTCACACGATCTCTGTATCAGCTTTTCGGAATGGCTGCAGTGCGATA A
>gi 115607142 :c755223-754978
ATGCTCAGCTTCCGCGCCGACGACCACGACGTCGACCTGGCCGACGCGTGGGCGCGTCGCCTACACATCG GCCGCTCCGAGCTGCTGCGCGATGCGCTGCGACGTCACTTGGCCGCGCTGGCCGCGGACCAGGATGTCCA GGCCTACACCGAGCGACCGTTGACGGACGACGAGAACGCACTGGCTGAGATCGCCGACTGGGGGCCGGCG GAGGACTGGGCCGACTGGGCCGATGCGGCGCGGTGA
>gi 115607142 :c754991-754683 ATGCGGCGCGGTGAATTGTGGTTTGCCGCCACACCTGGTGGTGACAGACCAGTACTTGTCCTTACCAGAG ATCCGGTGGCAGACCGCATCGGCGCGGTCGTTGTGGTGGCCCTAACCCGCACCCGCCGAGGCCTGGTGTC GGAATTGGAGCTCACGGCCGTCGAAAACCGTGTTCCGAGCGACTGCGTCGTCAACTTCGACAACATTCAT ACGTTGCCACGCACCGCATTCCGACGCCGCATCACCCGGCTGTCCCCGGCCCGCCTGCACGAAGCCTGTC AAACACTCCGGGCGAGCACGGGGTGTTGA
>gi 115607142 :c2195345-2194968
GTGAAGACGGCCCGGTTGCAGGTGACGTTGCGCTGCGCGGTAGACCTCATCAATTCGTCCAGCGACCAAT GTTTCGCCCGTATCGAGCACGTTGCGTCCGATCAGGCGGATCCACGCCCCGGAGTGTGGCATAGTAGTGG CATGAATCGCATACGGCTGAGCACTACTGTCGACGCCGCACTCTTGACAAGTGCGCGCGACATGCGGGCA GGAATCACTGACGCAGCCCTCATCGATGAGGCCCTTGCGGCATTACTGGCTCGTCATCGATCGGCCGAGG TGGATGCCAGCTATGCGGCCTACGACAAGCACCCGGTCGATGAGCCCGACGAGTGGGGCGATCTAGCGTC GTGGCGGCGGGCGGCTGGAGACTCGTGA >gi|l5607142:c2194971-2194642
GTGACCGCACTTCCGGCGCGCGGAGAGGTGTGGTGGTGTGAGATGGCTGAGATCGGTCGGCGACCAGTCG TCGTGCTGTCGCGCGATGCCGCGATCCCTCGGCTGCGACGCGCACTTGTCGCGCCCTGCACCACGACCAT CCGAGGGCTAGCCAGTGAGGTTGTTCTTGAACCCGGTTCCGACCCGATCCCGCGCCGTTCCGCGGTGAAT TTGGACTCAGTCGAAAGTGTCTCGGTCGCGGTATTGGTGAATCGGCTTGGCCGCCTCGCCGACATCCGGA TGCGCGCCATCTGCACGGCCCTCGAGGTCGCCGTCGATTGCTCTCGATGA
>gi | 15607142 :cl230969-1230658 ATGCGACCTATCCACATCGCACAGCTTGACAAGGCTAGACCCGTCCTGATCCTTACCCGCGAGGTCGTAC GTCCGCACCTCACGAACGTCACCGTCGCCCCGATCACGACAACCGTGCGTGGGCTAGCCACCGAAGTCCC GGTAGACGCGGTGAACGGGCTGAATCAACCGTCAGTCGTCAGCTGCGACAACACCCAAACGATCCCGGTG TGTGACCTTGGTCGTCAAATCGGCTACCTGCTCGCGTCGCAGGAGCCGGCTCTAGCCGAGGCCATCGGCA ACGCGTTCGACCTCGATTGGGTGGTGGCATAG
>gi 115607142 :cl231289-1230969
ATGTACCTACCCTGGGGGGTCGTCCTCGCCGGCGGCGCGAACGGTTTTGGGGCGGGTGCATACCAAACTG GTACCATCTGTGAAGTGAGTACACAGATTGCGGTTCGCTTGCCCGATGAGATTGTCGCGTTCATCGACGA CGAAGTCCGGGGACAGCATGCCCGTAGCCGTGCGGCTGTCGTGCTGCGGGCGCTGGAACGGGAACGCCGC CGTCGTCTCGCCGAACGCGACGCGGAGATCCTCGCCACCAACACGTCAGCCACGGGTGATCTGGATACGC TGGCCGGCCACTGCGCTCGTACCGCCCTCGACATCGACTGA
>gi 115607142: 1686269-1686571 GTGCCGTTTCTGGTTGCATTATCCGGTATCATCTCGGGCGTGCGTGATCATTCGATGACCGTGCGGCTCG ACCAGCAAACTCGCCAGCGCCTGCAAGACATTGTGAAAGGCGGATACCGGAGCGCTAATGCGGCGATCGT CGACGCCATCAACAAGCGCTGGGAGGCGCTACACGATGAGCAACTCGACGCCGCCTACGCGGCCGCGATC CATGACAATCCGGCGTACCCGTACGAGTCTGAGGCCGAACGGAGCGCCGCGCGGGCCCGGCGCAACGCCA GGCAGCAGCGCTCGGCACAGTGA
>gi 115607142 : 1686568-1686885
GTGAACGCGCCGTTGCGTGGTCAGGTCTATCGATGCGACCTCGGATACGGGGCCAAACCGTGGCTCATCG TCTCCAACAACGCCCGCAACCGTCACACCGCCGACGTGGTGGCTGTGCGCCTGACAACAACGCGGAGAAC CATACCGACCTGGGTCGCCATGGGCCCCAGCGATCCATTGACCGGATACGTCAACGCGGACAACATCGAG ACCCTCGGCAAAGACGAGCTCGGTGACTACCTCGGTGAGGTCACGCCGGCGACGATGAACAAAATCAACA CGGCGCTCGCGACCGCGCTGGGGCTACCGTGGCCATGA
>gi 115839372 :c2232223-2231975 ATGAAGACAGCTATTTCTCTGCCGGATGAGACGTTCGATCGGGTATCGCGGCGTGCGAGTGAGCTCGGCA TGAGTCGGTCCGAGTTCTTCACGAAGGCTGCGCAGCGCTACCTGCACGAGCTGGACGCCCAATTGCTCAC GGGCCAGATCGACAGGGCTCTAGAGAGCATCCATGGCACCGACGAAGCGGAGGCCCTCGCCGTGGCCAAC GCATACCGCGTGCTAGAAACCATGGACGATGAGTGGTGA >gi 115839372 :c2231981-2231637
GTGGTGATTAGTCGTGCCGAGATCTACTGGGCTGACCTCGGGCCGCCATCAGGCAGTCAGCCGGCGAAGC GCCGCCCGGTGCTCGTAATCCAGTCAGATCCGTACAACGCAAGTCGCCTTGCCACTGTGATCGCAGCGGT GATCACGTCCAATACGGCGCTGGCGGCAATGCCCGGCAACGTGTTCTTGCCCGCGACCACAACGCGACTG CCACGTGACTCGGTCGTCAACGTCACGGCGATTGTCACGCTCAACAAGACTGACCTCACCGACCGAGTTG GGGAGGTGCCAGCGAGCTTGATGCACGAGGTTGACCGAGGACTTCGTCGCGTACTGGACCTTTGA
>gi 115839372 : C757204-756953 ATGACGATGCTCAGCTTCCGCGCCGACGACCACGACGTCGACCTGGCCGACGCGTGGGCGCGTCGCCTAC ACATCGGCCGCTCCGAGCTGCTGCGCGATGCGCTGCGACGTCACTTGGCCGCGCTGGCCGCGGACCAGGA TGTCCAGGCCTACACCGAGCGACCGTTGACGGACGACGAGAACGCACTGGCTGAGATCGCCGACTGGGGG CCGGCGGAGGACTGGGCCGACTGGGCCGATGCGGCGCGGTGA >gi 115839372 :c756966-756658
ATGCGGCGCGGTGAATTGTGGTTTGCCGCCACACCTGGTGGTGACAGACCAGTACTTGTCCTTACCAGAG
ATCCGGTGGCAGACCGCATCGGCGCGGTCGTTGTGGTGGCCCTAACCCGCACCCGCCGAGGCCTGGTGTC
GGAATTGGAGCTCACGGCCGTCGAAAACCGTGTTCCGAGCGACTGCGTCGTCAACTTCGACAACATTCAT
ACGTTGCCACGCACCGCATTCCGACGCCGCATCACCCGGCTGTCCCCGGCCCGCCTGCACGAAGCCTGTC
AAACACTCCGGGCGAGCACGGGGTGTTGA
>gi|l5839372:c2192678-2192301
GTGAAGACGGCCCGGTTGCAGGTGACGTTGCGCTGCGCGGTAGACCTCATCAATTCGTCCAGCGACCAAT GTTTCGCCCGTATCGAGCACGTTGCGTCCGATCAGGCGGATCCACGCCCCGGAGTGTGGCATAGTAGTGG CATGAATCGCATACGGCTGAGCACTACTGTCGACGCCGCACTCTTGACAAGTGCGCGCGACATGCGGGCA GGAATCACTGACGCAGCCCTCATCGATGAGGCCCTTGCGGCATTACTGGCTCGTCATCGATCGGCCGAGG TGGATGCCAGCTATGCGGCCTACGACAAGCACCCGGTCGATGAGCCCGACGAGTGGGGCGATCTAGCGTC GTGGCGGCGGGCGGCTGGAGACTCGTGA
>gi | 15839372 :c2192328-2191975
GTGGCGGCGGGCGGCTGGAGACTCGTGACCGCACTTCCGGCGCGCGGAGAGGTGTGGTGGTGTGAGATGG CTGAGATCGGTCGGCGACCAGTCGTCGTGCTGTCGCGCGATGCCGCGATCCCTCGGCTGCGACGCGCACT TGTCGCGCCCTGCACCACGACCATCCGAGGGCTAGCCAGTGAGGTTGTTCTTGAACCCGGTTCCGACCCG ATCCCGCGCCGTTCCGCGGTGAATTTGGACTCAGTCGAAAGTGTCTCGGTCGCGGTATTGGTGAATCGGC TTGGCCGCCTCGCCGACATCCGGATGCGCGCCATCTGCACGGCCCTCGAGGTCGCCGTCGATTGCTCTCG ATGA
>gi 115839372 :cl230518-1230207
ATGCGACCTATCCACATCGCACAGCTTGACAAGGCTAGACCCGTCCTGATCCTTACCCGCGAGGTCGTAC GTCCGCACCTCACGAACGTCACCGTCGCCCCGATCACGACAACCGTGCGTGGGCTAGCCACCGAAGTCCC GGTAGACGCGGTGAACGGGCTGAATCAACCGTCAGTCGTCAGCTGCGACAACACCCAAACGATCCCGGTG TGTGACCTTGGTCGTCAAATCGGCTACCTGCTCGCGTCGCAGGAGCCGGCTCTAGCCGAGGCCATCGGCA ACGCGTTCGACCTCGATTGGGTGGTGGCATAG
>gi 115839372 :cl230754-1230518 GTGAGTACACAGATTGCGGTTCGCTTGCCCGATGAGATTGTCGCGTTCATCGACGACGAAGTCCGGGGAC AGCATGCCCGTAGCCGTGCGGCTGTCGTGCTGCGGGCGCTGGAACGGGAACGCCGCCGTCGTCTCGCCGA ACGCGACGCGGAGATCCTCGCCACCAACACGTCAGCCACGGGTGATCTGGATACGCTGGCCGGCCACTGC GCTCGTACCGCCCTCGACATCGACTGA
>gi 115839372: 1686427-1686729
GTGCCGTTTCTGGTTGCATTATCCGGTATCATCTCGGGCGTGCATGATCATTCGATGACCGTGCGGCTCG ACCAGCAAACTCGCCAGCGCCTGCAAGACATTGTGAAAGGCGGATACCGGAGCGCTAATGCGGCGATCGT CGACGCCATCAACAAGCGCTGGGAGGCGCTACACGATGAGCAACTCGACGCCGCCTACGCGGCCGCGATC CATGACAATCCGGCGTACCCGTACGAGTCTGAGGCCGAACGGAGCGCCGCGCGGGCCCGGCGCAACGCCA GGCAGCAGCGCTCGGCACAGTGA
>gi 115839372: 1686726-1687043
GTGAACGCGCCGTTGCGTGGTCAGGTCTATCGATGCGACCTCGGATACGGGGCCAAACCGTGGCTCATCG TCTCCAACAACGCCCGCAACCGTCACACCGCCGACGTGGTGGCTGTGCGCCTGACAACAACGCGGAGAAC CATACCGACCTGGGTCGCCATGGGCCCCAGCGATCCATTGACCGGATACGTCAACGCGGACAACATCGAG ACCCTCGGCAAAGACGAGCTCGGTGACTACCTCGGTGAGGTCACGCCGGCGACGATGAACAAAATCAACA CGGCGCTCGCGACCGCGCTGGGGCTACCGTGGCCATGA
>gi 117227497 :c3880755-3880315
GTGAAGCCGCCTTACTTTCCCAATAGAGGAGACATTGTTAAATTAGAGTTTGGCTCTGCACAACAGTTCA CGGCTGAATCAATTCAGCGTGTATTTACCCTTCGTAATTCTGGAATGTCATTTGATGATATTGCCATAAC ACTAAATAACGAGCTACAACAACAAGGGCGTGAGCAAACTGGCTATCGCCCTGTTCTTGTTATATCTCCA ATTAAGTACAATCAAATGGCTTCTTTAGTTTTAGCTTGTCCTATAACTACTAACGCAAAGGGGCTTAGGT TTGAAGTTCCCCTTATTGAAGGAATGAAAACAAAAGGGGTTGTGTTAGCAGATCAAATTAAAACACTAGA TTGGAAAGCTAGAAAAGTAAAATTTGTTGAAAGTGTAACAGAAGATTTAATAGAAGAAGTACAAGCAAAA CTCGAAACATTAATTTTATAG >gi|l7227497:c3880997-3880755
ATGACAACAGTTGTAGCTAAATGGGGAAACAGTTTAGCGGTTAGGATTCCTAGATCGATAGCTGAACAAG CACACGTAACTGAAGGAACAGATATCAATTTTAGTGTTGAAGGTAATAGCATAGTAATTACACCAAAGAG ACGAAAAAAATATACGCTTGATGAGTTACTTGAAGGGATGACCCCTGATAATTTTCATCCAGAATTTGAA ACAGGTGACGCTGTGGGGAATGAAGCTTGGTAG
>gi 117227497: 5868158-5868400
ATGCTATCACCACATTTACAAGCTATAGAGCGTGATATACGTACGCTGTCATTAGCAGAACTAGAATGGC
TGTTAGAACGCATTACCAAGCAAGTGCAAACAAGGAAACAAACATCAGATAAATTTACTGATATGCAATA TATGAATGAACAACTAGCAGCAATGGCTAATGATTTGGAAGTGCAGACAGAAATTAGTTTGATTAATCAC GAATTTAATTCTACAGAAATGGATGGTTTATAA
>gi | 17227497:5868406-5868753 GTGAGCATCGAAAGAGGACAAATTTATTTTGTCAATCTTAATCCAGTACATGGTAGAGAACAGGCGGGAG CAAGACCTGTTTTAGTTTTATCTACAGATGCTATCAATCAATTACCTTTAGTTATTACTGTAGTTGTAGG GACAAAAGGCACAAATATTAAGCGCGATTATCCAACTAATATTCGGGTTTCACCAAGTGACAGTGGGTTA GTTATAGAAACAGTATTCCTATGTTTTCAAATTCGTTCTTTAGACCCCAACCGCTTTCCCACTGACCCAT CAGGTAAGCTTTCAGCATCCAAAATGCTGGAGGTTGAAACTGCTGTTCGCTACTGTTTGGGGTTATGA
>gi 117227497 :c388727-388542
ATGGATGCCCTCATTCAAGAACTAGATACCAAGATGCGCCAATGGCAGCCAGAGATTGTTAAACAGGTGC GGCAGAGCCTTGCAGAAATTATTGAACTAGCAGACCAAGATGCGTTAGATATTCTTCGTTCTAGGATAGT CGAGCAGGAAGTTTTGGATCTGATTGATGAACCCGAAACCCGGTGA
>gi | 17227497 :c388561-388196
ATGAACCCGAAACCCGGTGAAGTATGGCTAGTTGATTTAGGACTTGCAGCTAAAGCACGCCCTGTCGTTA TTGTGTCTCGCTATGATTTGACTCCGCCACGCGCTTTGGTTATCTATATACCTATAACGACACAAAATAG AGGTAGTGCATACGAGGTTGAACTTCCTGTTCTATCGTTTTTACGGCAAGGTTCTGTTGCCAATGTGCAA GGACTAGGTTCCATCCCATCTGTAAGGCTGGAGCGCAAATTGGGTGAACTTTCAAAGGAAACAATGCTCG AAATTAAACAAGCTTTGATGTTTACTTTGGATTTAGTGGTTGACACGCAGGATGATGGAGCATTCAATAC AGACGAAATAGGTTAG
>gi 117227497: 876673-876882
ATGCAGACTGATAACATACCACAACAAAGATTAATCGGTAAAATCCGTCAGCTAGTTCCGGAACAAGTGG TATTAGTTGAAAGATTCATTGATTCTTTATCCCAGAAAAATGAGGAATACAATTTGACTTTAGCTGCAAC AAAGCTTTCTGAACCAGTTCTGCAAAGAATTTGGGACAACCCCGACGACGCAGAATATGACAAATTATAA
>gi 117227497 : 876869-877210
ATGACAAATTATAAATTCGGGGATGTTATCTTAGTACCCTTTCCCTTCACCGACCAAACAACTACTAAAA AACGTCCATCTGTTGTTGTCAGTTCTACCGATTATCAACGTCAGCGTTCTGATTTAATATTAATAGCTGT CACAAGTACTACTAATCCCGTAACTTCTTTTGCTGAAATGACAATTACTGAGTGGAAAGCAGCAGGTTTG TTAAAACCTTCTATTATCAAACCAGTTTTAACTACCATTGATAAGATGCTGGTAATTAAGAAGTTAGGAG AACTCCAGGAAGTTGACACTCAAGCGTTACATAATCTTTTACAGATTATTTTGGGCGGCTAG
>gi 116329170 :cl049016-1048750 ATGTCTATCAATGCTTACAAACTAGCTACGACATTGACAGAAGATGGCACGCTCCTGCTCCAGGATTTAC CGTGTCCAGCTGGTACTTCCGTAGAAGTTATTGTGTTAGTTGCCCCCCAGGGAATGGTCCTTCCCCAAGC TGAGAGGGCCCAAGGTCCTGCCCCCGGCAAAGTTGGGGAAGCTGGGGCCGACTATATGGCTGCCACCGCC GACACTATGACCGAATGGAATTCTGAAGCTGATAATTCTGCATACCGACACCTATGA >gi|l6329170:cl048753-1048406
ATGAATACAATTTACGAACAATTTGACGTCGTCATTGTCCCAGTTCCCTTCACGGATAGGCAATCTGATA TTCGTCGCCCCGCTTTAATTTTGTCCGACGCCCCCGCTTTTAATAACCGCATTGGTCACAGTGTTATGGC TATGATCACTTCGGCAAAAAATGCCCCCTGGCCCCTCGATACCCCCATTGAAGACACCCGTTCAGCGGGA TTGTTTACGCCTTCGGTGGTGAGGATGAAACTGTTCACCCTAGAACACAAGTATATCCTCGACTGTGTTG GCTCTCTGTCAAAGCAAGACCGATTGATGGTGAAGAGTGCTTTTCCCCATGTTTTTAAACTCGGTTAG
>gi I 30260195 : 241188-241475
GTGTCCGAATCAAGTGTAACTACTGAAATCGTGGTTCGGTTGCCAAAGCAAATGGTAACGGAATTGGACG GAATTGGAAAACAAGAGAATAAGAATCGCCATGAACTAATTTGCCAGGCAACACAACTGTTATTGCGTCA ACATAAGACGAAGAAACGCTACCAACATGAATCAATGCGACGTGGGTACATTGAAATGGGAAAAATTAAT CTTGGTATTGCATCTGAAGCTTTCTTAGCAGAGTATGAAGCAGCTCATACAGTAGAACGCTTAGTTAGCG GGGGGTAA >gi|30260195:241480-241830
TTGATTGTAAAACGCGGCGACGTGTATTTTGCAGACCTTTCCCCAGTTGTTGGTTCTGAGCAAGGAGGTG TTCGTCCGGTTCTTGTCATTCAAAATGACATCGGAAATCGTTTTAGTCCAACGGTGATTGTAGCGGCTAT TACTGCACAGATTCAAAAAGCGAAATTACCCACTCATGTGGAAATTGATGCGAAAAAGTACGGTTTTGAG AGAGATTCTGTTATTTTACTTGAGCAGATTCGAACAATCGATAAGCAGCGCTTAACGGACAAAATCACTC ACTTAGATGAAGTGATGATGATTCGTGTAGATGAAGCGCTACAAATTAGTTTAGGACTAATAGATTTTTA A
>gi I 30018278: 240105-240392 GTGTCCGAATCAAGTGTAACTACTGAAATCGTGGTTCGGTTGCCAAAGCAAATGGTAACGGAATTGGACG GAATTGGAAAACAAGAGAATAAGAATCGCCATGAACTAATTTGCCAGGCAACACAATTGTTATTGCGTCA ACATAAGACGAAGAAACGCTACCAACATGAATCAATGCGACGTGGGTACATTGAAATGGGAAAAATTAAT CTTGGTATTGCATCTGAAGCTTTCTTAGCAGAGTATGAAGCAGCTCATACAGTAGAACGCTTAGTTAGCG GGGGGTAA >gi I 30018278:240397-240747
TTGATTGTAAAACGCGGCGACGTGTATTTTGCAGACCTTTCCCCAGTTGTTGGTTCTGAGCAAGGAGGCG
TTCGTCCGGTTCTTGTCATTCAAAATGACATCGGAAATCGTTTTAGTCCAACGGTGATTGTAGCGGCTAT
TACTGCACAGATTCAAAAAGCGAAATTACCCACTCATGTGGAAATTGATGCGAAAAAGTACGGTTTTGAG
AGAGATTCTGTTATTTTACTTGAGCAGATTCGAACAATCGATAAGCAGCGCTTAACGGACAAAATCACTC
ACTTAGATGAAGTGATGATGATTCGTGTAGATGAAGCGCTACAAATTAGTTTAGGACTAATAGATTTTTA
A
>gi | 15612563 : 3845195-3845440
GTGACACTCATGACTACTATACAAAAGTGGGGAAATAGTTTAGCTGTTCGTATTCCGAACCATTATGCTA AACATATTAACGTTACGCAAGGATCTGAAATTGAACTAAGCTTAGGGAGTGATCAAACGATTATTTTAAA GCCTAAAAAAAGAAAGCCAACATTAGAGGAATTAGTGGCAAAAATCACTCCTGAAAACAGACATAACGAA ATTGATTTCGGGAGAACAGGAAAGGAATTGTTGTAA
>gi | 15612563 =3845441-3845770
ATGCCAGTACCGGATAGAGGGAATCTTGTTTATGTAGACTTTAACCCACAATCGGGTCATGACCAAGCCG GGACACGACCGGCTATTGTTTTGTCCCCTAAATTATTTAATAAAAACACAGGTTTTGCGGTGGTTTGTCC AATTACCAGACAACAAAAAGGTTATCCTTTTGAAATAGAAATACCACCGGGGTTACCTATTGAAGGGGTT ATTCTTACTGACCAAGTAAAAAGTCTGGATTGGAGAGCAAGAAACTTTCACATTAAAGGACAAGCACCAG AGGAAACTGTTACTGATTGTTTACAACTTATTCATACATTTTTATCTTAA
>gi 115612563 =549113-549400
GTGTCCTTTGTGTCAGAATCAAGCACAAAACGAATTGTCGTGAATTTACCACAACATTTGCTAAATGAAG TGGACGGCGTTATTAAACAAGAGAAGGTTAATCGGAGTGAGTTTTTCTCTCAAGCCACAAAAATGTATTT ACGTGAACGAAAAAAACGTCAAATTCGTGAAAAAATGCAGCAAGGCTACTTAGAGATGGCGAAAATTAAT CTTAATATTGCGTCTGAAGCTTTTTTGGCTGAGGAGGAAGCTGAGCACACCCTAGATCGCTTAGTAAGTG GGGTGTAG
>gi 115612563 : 549404-549754
TTGATTGTAAAGCGAGGCGACGTGTACTTTGCCGACTTGTCTCCTGTCGTTGGTTCTGAACAAGGCGGAG TTCGGCCGGTTCTCGTCATACAAAATGATATTGGAAATCGGTTCAGTCCCACTGTCATTGTGGCTGCAAT CACCGCACAAATCCAAAAGGCGAAGTTGCCGACTCATGTAGAAATTAATGCGAAGCGCTATGGTTTCGAT CGCGATTCCGTTATTTTGCTTGAGCAAATTCGAACAATTGATAAACAGAGGCTGACGGACAAGATTACCC ATCTTGACGATGATATGATGTCGAAGGTAAATGATGCCCTGCTTATTAGTTTAGGTCTAATCGACTTCTA A
>gi 116077068 -.518214-518495
TTGTCTGAATCCAGCGCAAGAACCGAAATGAAAATCAGCTTGCCCGAAAACCTAGTAGCTGAATTGGATG GTGTAGCGATGCGGGAGAAACGAAGCAGAAACGAACTGATATCACAAGCAGTGAGAGCGTATGTCAGCGA ACGAACAACTCGTCACAACCGTGATTTGATGAGACGCGGCTATATGGAAATGGCGAAAATCAACCTGAAT ATTTCTTCTGAGGCTCACTTTGCGGAGTGCGAGGCTGAAACGACAGTTGAGCGCTTAGTCAGCGGAGGAT AA
>gi 116077068: 518500-518850
TTGATTGTGAAACGCGGCGATGTTTATTTTGCTGATTTATCTCCTGTTGTTGGCTCAGAGCAAGGCGGGG TGCGCCCGGTTTTAGTGATCCAAAATGACATCGGAAATCGCTTCAGCCCAACTGCTATTGTTGCAGCCAT AACAGCACAAATACAGAAAGCGAAATTACCAACCCACGTCGAAATCGATGCAAAACGCTACGGTTTTGAA AGAGATTCCGTTATTTTGCTGGAGCAAATTCGGACGATTGACAAGCAAAGGTTAACGGATAAGATTACTC ATCTGGATGATGAAATGATGGATAAGGTTGATGAAGCCTTACAAATCAGTTTGGCACTCATTGATTTTTA G
>gi 115893298: 567127-567447
ATGTCAAGTTCAAAGAGATTAGTAGTTAACCTCTCAGAAACACTTTATGACGAGTTTAACAAAGCACTTA AGGAAGATTGTAAAAAAAGAAGTGAATTTATTAGGGAAGCTATAATATTATATATAGAGGAGAGAAAAAA ACTTCAACAGATAGAACTCGTAAAAAAAGGATATAGTGAAATGGCTAAATTAAATATAGAAATTTGTGAA TGTGGTTTTTCCTCTGATTTAGAAGATTTGAATCAATATGAAGTTATGCTATCGGAGAGTGATTTGCTTG ATGACAATAGTGGTAAAACGAGGAGATATATTCTATGCTGA >gi 115893298: 567407-567775
ATGACAATAGTGGTAAAACGAGGAGATATATTCTATGCTGATTTGAGTCCAGTAGTAGGCTCTGAACAAG GAGGAATACGACCTGTCATAATTATTCAAAATGACATGGGTAATAAGTACAGTCCTACGGTGATTGTTGC GGCAATAACATCGCAGATAAATAAAGCAAAGCTTCCAACGCATGTGGAAATTTCTTCAGAAGATTATGGT TTAAACAAAGATTCTGTTGTTTTGCTTGAACAGATAAGAACTTTAGATAAAAGAAGGCTTAAAGAAAAAA TAGGTCATATGACAGATATGGATATGAAAAAAGTGGATGAGGCGCTTTTAATTAGTATAGGTCTTCAAAA TATGTTTGAGAGTGTATAG
>gi I 18308982:375931-376173 ATGTCAGTATCAAAGATTAATAAACAAGATTCAAAAAAAGAAAAGAAAATCGAAAATTTTAGTCAATTAA AAGGAAGAAATATAATAACATATAGTGAGGACAAAAAAGAAGACGACTTTTACGAAGCAATGAAGGAAGG ATATAAGGCTATGGCTTTAATAAATTCACAATATGCTGAAGAAGGAACTTCTGTAGAATACTTTGATCAA ATAGAATATGAGACATGGCTTTGCGGAGTGTGA
>gi 118308982:376179-376532
ATGGCTAGTTTGAATGTAAAAAGAGGGGATATATTTTATGCTGACCTTAGTCCAGTTGTTGGATCAGAGC AAGGGGGAATAAGACCAGTCATAATAATACAAAATGATATAGGAAATAGGTATAGTCCAACTGTAATCGT TGCGGCTATAACTTCACAAATAAATAAGGCAAAATTGCCTACACATGTAGAAATTTCTTCTGAGGAATAT GGGTTAAATAGAGATTCTGTTGTTCTTTTAGAACAAATAAGAACTTTAGATAAGAAGAGATTAAAAGAGA AAATTGGACATATGACAGAGGATGATATGAAAAAAGTAAATAAATCTCTGTTAATAAGTTTGAATTTACA ATAA
>gi|29374661:786740-787369
ATGAAAGATAGTCAGCCAATTATCATTGGTGTTACTGGCGGATCAGGAAGCGGAAAAACCAGTGTTAGCC GTGCGATTTTTAATAATTTTCCCGATCATTCAATTATGATGTTAGAACAGGATTCTTATTATAAAGATCA GAGCCATTTGAGTTTTGAAGAACGTTTAAATACCAATTATGATCATCCTTTTGCGTTTGATACAGATTTA TTGATTCAACATGTTGAACAACTGTTAAATTATCAAGCCATTGAAAAGCCAGTTTATGACTACGTTGCGC ATACAAGAAGTACAGAAACGGTGATACAAGAACCGAAAGAAGTAATTATTCTTGAAGGGATTTTAATTTT AGAAGATCGCCGCTTAAGGGATTTAATGGATATTAAAGTGTATGTGGATACAGATGATGACATCCGTATT ATTCGTCGAATCAAGCGTGATATGGAAGAACGTGGCCGTACGTTGGATTCTGTGATTGAACAATATTTGA
>gi]29374661:787538-787879
ATGATAAAAAGAGGTGAGGTTTTTTATGCGAATCTCTCACCAGTTGTTGGTTCTGAACAAGGTGGGATTC GACCTGTCCTGATTATTCAAAATAACAAAGGTAACTTATTTAGTCCAACGTTGATTGTTGCACCGATTAC CCGTAACGTAAGCAAGCGGCTGCAACCAACGCAAGTCCTTATCGAAATTCCCCATAACGAGTGCAGGACG CCATCACTTATTTTGTTAGAACAAATTCGAACATTGGATAAAGAACGAATGCTACACAAGGTTTGTCAAC TTTCTCGTGAAGAGATGGAACAGGTCAATCAAGCTTTAAAAGTTAGCGTTGGTATCCGTTAA
>gi | 29374661: 3139616-3139846
ATGACATCAACAAAAACAAGAAAACAAGGAAACTCATTAGTTATAACAATTCCTGCTACTTTAGGAGTTA AAGAAGGGGAAGAATTTGTTATTCTTCGCAAAAATAATGGCTCCATCGCATTGATTCCAAAAGTAGAAGA TTTTTTTGAAAATACTGCTGAAGGAGAGTTTTATCTTCCTGAATTAGCGATTGATTATTCACCTAGCGGA GGAGAAGTTGATGGGCTATAA
>gi I 29374661: 3139836-3140201 ATGGGCTATAAACCAACTCAAAGAGATATTGTTATTATCGACTTTGCGCCTTCTAAAGGTTATGAAATCA GAAAACGACGACCTGCTCTCGTAATGAGCAAAGACAGTTACAATATTTCAACAAATTTAGTTATTGTCTG TCCAATAACCTCGTTGGATAAGGAACGTCCTTTTCTTGTCCCTATTTATAGCGAAAAACTTCATACCTCC GATAATGCAGTAAGTAAAGTGAATACGCTCCAAGTCTATTCACTCGACTATACAGAACAGGCACAACGCA GAATAAAATATGTAGATACGTTAGACGAAGAAACATTTTACGAAATTGCTCAAAAGTTTTTACAAAACTT TTCTTTTGCTGTTTAA
>gi I 28376974 :c2564435-2564088
ATGACTTATTTACCTAAACAAAAAGACATCATCTGGATTGATTTTGACCCACAACGTGGCCGCGAAATAA AGAAACGTCGGCCAGCTGTAGTTCTTAGTAGTAATCTCTACACTCAGAACACCGGGTTTGTAATTGTTTC ACCAATTACGTCTACAATGCGTGATTTGCCCGGCTACTTTAGTCTTAATGGTTACAATACCCACGGACAA ATTGCTGCTGCCCAAATTTATTCGTTTGATGCGACCCCCAGAGCAGGACGGAGTATCACATACATCGAAA CCATGCGCAGTGCCGATTTTTATCACGTCGCGCAAACGGTGTATTACAACTTCGACTTTCCATTCTAA >gi|28376974:c2564683-2564435
GTGTGTTTATTAATACGAGGAGGCCTTGATATGATTGAGGTAAAGACAGTTAGTCGTGGTAATTCATTGG CATTAAGTCTACCTAAAGACGGTCGTTTTAAGAAAGGACAACGATGGTTACTCATCCCATCAAGTGATGG TGAGTCATATACACTCGTACCACGTATCGAGAATCCTTATGCCGGCTCCAAGCCGAAACGGCCAATGACT GAAGCATGGTCCGATGTCGACTGGAATGAGGTCGAGTAA
>gi 116799079 = 920292-920570
GTGTTAGAGAAAGAAAAACGGATGATAATATCCGTAGAACTGACACAGGAAATGGTACAAGAACTCGACG TAGTTGTAGAAAAAGAAAAAATGGGGCGGAGTGAAGTTATAATGGAAGCAACGCAACAATTTTTACAGGA GAAAAGAGCTCGTGAATTAAGAGACGAGATGGAACGCGGCTATGCAGAAATGGCGACGATTAATTTCGCT ATCGCGTGCGAGTGTACTCATGTCGAAGCAGAGGCAGAAGACAGGAATATTAGTATTTTAGGAGGTTAA
>gi 116799079: 920574-920921
CTGATGGTGAAGCGTGGTGACGTTTACTACGCGGACCTTTCCCCCGTGGTCGGAAGCGAGCAAGGGGGAA TAAGGCCTGTTCTCATCATTCAAAATGATATTGGTAATAGATTCAGTCCAACTGTGATCGTGGCAGCAAT AACTGCAAAAATTCAAAAAGCGAAGTTGCCAACACATGTGGAAGCTACTCGTAAAGACGGCTTTGAAAGA GATTCTGTCATTCTATTAGAACAAATTAGAACGATAGATAAACAACGCCTGACAGATAAGATTACACATT TGGACGAGGAACTAATGGCCAAGGTAAATCAGGCACTTGAAGTCAGTCTAGGAGTAGTAGAATTCTAA >gi 116802048: 926229-926507
GTGTTAGAGAAAGAAAATCGGATGATAATATCCGTAGAACTGACACAGGAAATGATACAAGAACTCGACG TAGTTGTAGAAAAAGAAAAAATGGGGCGGAGTGAAGTTATAATGGAAGCAACGCAACAGTTTTTACAAGA GAAAAGGGCTCGCGAATTAAGAGACGAGATGGAACGCGGCTATGCAGAGATGGCGACAATTAATTTTGCT ATCGCATGCGAGTGTACCCATGTCGAAGCAGAAGCAGAAGACAGGAATATTAGTATTTTAGGAGGTTAA
>gi 116802048 : 926511-926858
CTGATGGTGAAGCGTGGTGACGTATACTACGCGGACCTTTCCCCCGTGGTCGGAAGCGAGCAAGGGGGAA TACGGCCTGTTCTCATCATTCAAAATGATATTGGTAATAGATTCAGTCCAACTGTGATCGTGGCAGCAAT AACTGCAAAAATTCAAAAAGCAAAATTGCCAACGCACGTGGAAGCTACTCGTAAAGATGGCTTTGAGAAA GATTCTGTCATTCTTTTAGAACAGATTAGAACGATTGATAAACAGCGCCTGACAGATAAAATTACGCATT TGGACGAAGATTTAATGGCCAAGGTAAACAAGGCACTTGAAGTCAGTCTAGGAGTAGTAGAATTTTAA
>gi | 23097455: 651366-651650
TTGTCAGAAAGTTTACAAGAAATCATGGTGAAGATGCCAAAGAACCTACTAAGTGAGGTGGATGGGTTAA TGAAATATGAAAATAGCGATCTAAGCGATTTTATTTGTGAAGCAACGCAAATTTATTTAAACCATAAAAA AGAAGAGCATATTCAGCGCTTCCACGAAACTATGCAGCGTGGTTATGAAGAAATGGGACGCATTAATTTG ACGATTGCTTCTGAGGCCTTTCAAGCTGAAGAGGAGGCTGAAAACACCCTAGAGCGCTCTGTGATCGGGG TGTAA
>gi I 23097455 : 651655-652014 TTGATCGTTCAAAGAGGCGAGGTATATTTCGCTGACTTATCCCCTGTTGTTGGATCGGAGCAAGGTGGGG TAAGGCCTGTCCTAATTCTCCAAAACGACATCGGTAACCGTTTCAGCCCTACTGTTATTGTCGCTGCGAT AACAGCACAAATTCAAAAGGCAAAATTACCAACCCATGTGGAGATTGATGCAAAGCGATATGGATTTGAT CGGAATTCCGTAATTCTTTTGGAACAAATCAGGACGTTGGATAAACAGCGTTTAACGGATAAAATTACGA AATTAGATAAGGAAATGATGATTAAAATTAATCAGGCATTAGAAATAAGCCTCGGCTTAAAAGATGTATA TGGTGGATAA
>gi I 20806542 :c2087778-2087503 GTGGGCGAAACAAAGCGGATTCTCGTCAGTTTGCCTCAAAGCCTGCTGGAAGAAGTTGATGTTCTTGCCG CTATGGAAAACAGAAATCGCAGTGAGTTTATAAGGGAAGCGATGAAATTGTATATACGTGAGAGGAAAAA AGCGCAGATACGAGAAAGCATGAAAAAGGGTTATATGGAGATGGCAGCTATAAATTCTGAACTTGCGGAA ATGGGCCTAACCGCAGAAAATGAATGTTTTGCAGGTTATGAAATGAAACTGAAAAAGTGTGATTGA >gi|20806542:c2087506-2087150
TTGATTATGGTAGTGAAAAGAGGAGACTTGTTTTATGCCGATTTAAGCCCTGTGATAGGCTCTGAACAGG GTGGAATTCGGCCTGTACTTATAATTCAAAATGATATAGGGAATAAGTATAGTCCCACTGTGATCGTAGC GGCAATAACATCACAGATCAATAAAGCAAAGCTGCCCACCCATGTAGAGATAAATGGGGCTGAATACGGC CTTCAGAAAGATTCTGTGATTCTTTTGGAACAGATAAGGACTATTGATAAAAAGCGTTTGAGGGAGAAAA TAGGACATCTTGATCAGGAAATGATGGAAAAGGTCAATGAGGCTTTACAAATAAGCTTGGGATTGATTGA TTTTTAG
>gi I 21281729 :c2149911-2149741 ATGTTATCTTTTAGTCAAAATAGAAGTCATAGCTTAGAACAATCTTTAAAAGAAGGATATTCACAAATGG CTGATTTAAATCTCTCCCTAGCGAACGAAGCTTTTCCGATAGAGTGTGAAGCATGCGATTGCAACGAAAC ATATTTATCTTCTAATTCAACGAATGAATGA
>gi I 21281729 :c2149744-2149382 ATGATTAGACGAGGAGATGTTTATTTAGCAGATTTATCACCAGTACAGGGATCTGAACAAGGGGGAGTCA GACCTGTAGTCATAATTCAAAATGATACTGGTAATAAATATAGTCCTACAGTTATTGTTGCGGCAATAAC TGGTAGGATTAATAAAGCGAAAATACCGACACATGTAGAGATTGAAAAGAAAAAGTATAAGTTGGATAAA GACTCAGTTATATTATTAGAACAAATTCGTACACTTGATAAAAAACGATTGAAAGAAAAACTGACGTACT TATCCGATGATAAAATGAAAGAAGTAGATAATGCACTAATGATTAGTTTAGGGCTGAATGCAGTAGCTCA CCAGAAAAATTAG
>gi I 29165615 :c2121701-2121531
ATGTTATCTTTTAGTCAAAATAGAAGTCATAGCTTAGAACAATCTTTAAAAGAAGGATATTCACAAATGG CTGATTTAAATCTCTCCCTAGCGAACGAAGCTTTTCCGATAGAGTGTGAAGCATGCGATTGCAACGAAAC ATATTTATCTTCTAATTCAACGAATGAATGA
>gi I 29165615 :c2121534-2121172
ATGATTAGACGAGGAGATGTTTATTTAGCAGATTTATCACCAGTACAGGGATCTGAACAAGGGGGAGTCA GACCTGTAGTCATAATTCAAAATGATACTGGTAATAAATATAGTCCTACAGTTATTGTTGCGGCAATAAC TGGTAGGATTAATAAAGCGAAAATACCGACACATGTAGAGATTGAAAAGAAAAAGTATAAATTGGATAAA GACTCAGTTATATTATTAGAACAAATTCGTACACTTGATAAAAAACGATTGAAAGAAAAACTGACGTACT TATCCGATGATAAAATGAAAGAAGTAGATAATGCACTAATGATTAGTTTAGGGCTGAATGCAGTAGCTCA CCAGAAAAATTAG >gi 115922990 :c2198202-2198032
ATGTTATCTTTTAGTCAAAATAGAAGTCATAGCTTAGAACAATCTTTAAAAGAAGGATATTCACAAATGG CTGATTTAAATCTCTCCCTAGCGAACGAAGCTTTTCCGATAGAGTGTGAAGCATGCGATTGCAACGAAAC ATATTTATCTTCTAATTCAACGAATGAATGA
>gi 115922990 :c2198035-2197673
ATGATTAGACGAGGAGATGTTTATTTAGCAGATTTATCACCAGTACAGGGATCTGAACAAGGGGGAGTCA GACCTGTAGTCATAATTCAAAATGATACTGGTAATAAATATAGTCCTACAGTTATTGTTGCGGCAATAAC TGGTAGGATTAATAAAGCGAAAATACCGACACATGTAGAGATTGAAAAGAAAAAGTATAAATTGGATAAA GACTCAGTTATATTATTAGAACAAATTCGTACACTTGATAAAAAACGATTGAAAGAAAAACTGACGTACT TATCCGATGATAAAATGAAAGAAGTAGATAATGCACTAATGATTAGTTTAGGGCTGAATGCAGTAGCTCA CCAGAAAAATTAG
>gi I 27466918 :cl731308-1731138
ATGTTATCTTTTAATCAAAATAGAAACCACAGTCTTGAACAATCTTTAAAAGAAGGTTATGCACAAATGG CCGATTTAAACCTCTCCCTAGCAACAGAAGCTTTCCCGATAGAGTGTGAAGCTTGTGATTGCAATGAATC ACATTTAATATCTAATTCAAAGAATGAATGA
>gi ] 27466918 :cl731141-1730779
ATGATTAGAAGAGGAGATGTTTATTTAGCGGATTTATCACCAGTTCAAGGGTCTGAACAAGGGGGAGTAA GACCTGTAGTTATCATTCAAAATGATACTGGTAATAAATATAGTCCAACTGTAATTGTAGCTGCGATTAC TGGTAGGATTAATAAAGCGAAAATACCAACCCACGTAGAAATTGAAAAGAAAAAGTATAAATTAGACAAA GATTCAGTTATTCTTCTTGAACAAATTAGAACACTAGATAAAAAGCGTTTAAAAGAAAAATTAACATTTT TATCAGAGAGTAAAATGATAGAGGTTGATAATGCCTTAGATATTAGTTTGGGATTAAATAACTTTGATCA TCATAAATCTTAA
>gi I 24378532: 170983-171228
ATGCAACTAGTCATCAATAAATGGGGAAATAGCTCCGCTATTCGTTTGCCAAAACAATTGGTACAAGAAT TACAATTACAAACAAATGATGTCTTAGACTATAAGGTATCAGGGAATAAAATTATCCTAGAAAAAGTGAA TAATATCCCTGAATTAACTGTAGAAGATCTGTTTAAAGATTATCAAGGTGAACCTGTCAATGTTACCCCA GCTCTATTTGAAAGTGTGGGAAATGAACAATGGTAA
>gi I 24378532 : 171222-171554
ATGGTAACCATCAAGCAAGGGTCAATTATCAAAATTAACTTGGATCCCAAACAAGGACATGAACAAAAAG GGTATCGTCCGTACATTTGTCTAAACCATAGTATCGTAACCAAGTATTCTAATATTGGTATTTTTGCGCC AATTAGCAATACCAAGCGTGATTATCCTTTTTATGTTTCCCTAGAAGGAACAGAATCCACAGGGAAAGTA TTATTAGACCAACTGGTTACAATCGATTTTAATGCTAGAGATTATCGTTATGTGGAGGATATTCAGGAAG ACTTATTAGATGAACTTTTAGCTAGGGTCAAGGTGCTATTTGAAAAAGGATAA
>gi 115887359: 928719-929030
GTGAAAATGTGCTACATATGTTGCACAATGCAGGAGCGCAGACGGATGACCGTGACCACGAAAATAAGAC GCCAGGGCGGCGCGGCGGTGATGACGATCCCGCCCGCTCTTTTGAAGATGCTGGGGCTGGAAATCGGTGA GCAACTGACGCTCGAGGTCGATAATGGCGCTCTGGTGGCAAGCCCGGTTCGACTGGAAAAGAAACGCTTC ACGCTGGCCGAATTACTGGATGGTGCAGAGGAAGTGGCAGCTCTAAACGCCAGGGAGCGGGCGTGGGACA CAGCGCCTCCTGTCGGCAAAGAAGCGTTGTGA
>gi 115887359: 929027-929389
GTGATGGTCCGCAACCAGATCCCCAAGCGCGGCGACGTTTATCTGGTTGATCTAAACCCTGTCGTAGGCA GCGAAATCAAGGACGAACATCGCTGTGTCGTCATCACGCCCAGAGAAATTAACGCGGTCGGACTCTGTCT CGTCGTCCCGGTGACCACCGGCGGCATGTTTACGCGCAAGGCAGGGCTTGCCGTAAATATATCCGGCCAC AAGACAACGGGCGTCGCTTTGTGCAATCAGGTGAGAAGCATGGATATCGTCGCCCGGGTTGCCCAGAAGA AAGCGAAATATATCGAAACCCTCGATGATGCGACGATCGATGAAATCGCCGGGCGCGTCATCAGCATGAT CGATCCAGCTTGA
>gi 117933925 : 928873-929139
ATGACCGTGACCACGAAAATAAGACGCCAGGGCGGCGCGGCGGTGATGACGATCCCGCCCGCTCTTTTGA AGATGCTGGGGCTGGAAATCGGTGAGCAACTGACGCTCGAGGTCGATAATGGCGCTCTGGTGGCAAGCCC GGTTCGACTGGAAAAGAAACGCTTCACGCTGGCCGAATTACTGGATGGTGCAGAGGAAGTGGCAGCTCTA AACGCCAGGGAGCGGGCGTGGGACACAGCGCCTCCTGTCGGCAAAGAAGCGTTGTGA
>gi 117933925 : 929139-929498
ATGGTCCGCAACCAGATCCCCAAGCGCGGCGACGTTTATCTGGTTGATCTAAACCCTGTCGTAGGCAGCG AAATCAAGGACGAACATCGCTGTGTCGTCATCACGCCCAGAGAAATTAACGCGGTCGGACTCTGTCTCGT CGTCCCGGTGACCACCGGCGGCATGTTTACGCGCAAGGCAGGGCTTGCCGTAAATATATCCGGCCACAAG ACAACGGGCGTCGCTTTGTGCAATCAGGTGAGAAGCATGGATATCGTCGCCCGGGTTGCCCAGAAGAAAG CGAAATATATCGAAACCCTCGATGATGCGACGATCGATGAAATCGCCGGGCGCGTCATCAGCATGATCGA TCCAGCTTGA >gi 115891923 :c6580-6299
GTGTTACAATTAAATATTATAAGGAGGATAAAAATGACAAAAAGTATTACGACTAGTATACGCTTAGAAA TAAATTTAAGTAAAAAACTTGAAAAAGCAACTTATGATTTACACCGTGAAAAAAGCTGGATAATTAGTGA AGCATATCTTAAACAACTAGAAAATTCAGACCTAGCCAAAGAAGCTAAACGTCAATCCTTATTAGCTAGT AAAGAAAACAATCCTGATGCCAACTTATGGTTAAAACACAATGAAGAAAGTTGGTTAGATGAATGGAAAT AA
>gi 115891923 : C6277-6035 TTGTTGCTTGGTGTAATATCTGGAGATTATGGTAAACCTCGCCCCGCTGTTGTTGTTCAATCTAATTTAT ATAAAAATCATCCCAGTATAACAGTTTGCCTTCACAATGGATTTAATAGATGCCCCACAACTTTTCACCT GTTATTAACTCCTACAGAGCTAAATGGTTTTAATTTAGAATCTCATATTATGGTTGATGAAATTAGTGCT ATAAGAAGTGATAAAATTCAAAAAAATTGGTGA
>gi | 15675948 :c927819-927583
ATGTTGCGTGTCCAAAAATGGGGGAACTCGGCGGCCGTCCGACTGCCTGCCGACATGCTGAAACAATTGG ATTTTAAAATCGGCGACGCTTTGGTAGCGGAAGTACATAACGGCGAACTCCGTGTGCGTGCTGCCCGACG TTTCCGCTTGGCAGACTTGCTTGCCGAAATGGAAGAAACCCCGCCGCGCGTAGAAGGCTGGGAAATCTTG GATGATGCCGGCAACGAGGTCGTCTGA
>gi 115675948 : C927581-927234
ATGTATATTCCCGACAAAGGCGATATTTTCCATTTGAATTTCGACCCTTCCAGCGGCAAGGAAATCAAGG GCGGGCGGTTTGCGCTGGCTCTGTCTCCAAAAGCATTCAACCGCGCAACGGGATTGGTTTTTGCCTGCCC CATTTCACAGGGGAATGCAGCAGCTGCACGAAGCAGCGGCATGATTTCAACCTTACTCGGTGCAGGAACG GAAACGCAGGGCAATGTCCACTGCCACCAGCTCAAATCTCTAGACTGGCAAATCCGCAAGGCTTCTTTTA AAGAAACTGTACCCGATTATGTATTGGACGATGTGCTGGCGCGCATCGGCGCCGTCTTATTCGATTAA
>gi 115675948 = 2155448-2155687 ATGATTCTCAACATACGCAAAATGGGAAACTCGCAAGGCGTGATTCTGCCCAAATCATTATTGGGTCAAA TAGGGGCAGTAGACAGCTTGGCTGTTACAGTTGAAAAGGGCAATATTATTTTAAGCTGTCCTACCGTTCG CAGGGGATGGGCAGAAGCTGCCGCAATGCTTGTCGAAACCGAGCAGGAGCATTTTTTTTCCGAAATTGAA AACGAAGCGGATAAAGAATGGATATGGTAG >gi|l5675948:2155675-2155998
ATGGATATGGTAGTACGCGGCGGAATCTATCTGGTCTCCTTAGACCCGACCGTAGGAAGCGAAATCAAAA AGACACGTCCTTGTGTCGTAGTCTCTCCTCCTGAAATACACAACTATCTCAAGACTGTGCTGATCGTTCC CATGACGAGCGGAAGCCGTCCTGCCCCGTTCCGCGTCAATGTCCGCTTTCAGGATAAAGACGGTTTGCTT TTGCCCGAACAGATTAGGGCTGTGGATAAAGCCGGATTGGTCAAACATCTTGGCAATTTAGACAACAGTA CGGCTGAAAAACTGTTTGCAGTATTGCAGGAGATGTTTGCCTGA
>gi 115793034 : C372238-371999
ATGATTCTCAACATACGCAAAATGGGAAACTCGCAAGGCGTGATTCTGCCCAAATCATTATTGGGTCAAA TAGGGGCAGTGGACAGCTTGGCTGTTACAGTTGAAAAGGGCAATATTATTTTAAGCTGTCCTACCGTTCG CAGGGGATGGGCAGAAGCTGCCGCAATGCTTGTCGAAACCGAGCAGGAGCATTTTTTTTCCGAAATTGAA AACGAAGCGGATAAAGAATGGATATGGTAG
>gi 115793034 :c372005-371688
ATGGTAGTACGCGGCGGAATCTATCTAGTCTCCTTAGACCCGACCGTAGGAAGCGAAATCAAAAAGACAC GTCCTTGTGTCGTAGTATCTCCTCCTGAAATACACAACTATCTCAAGACTGTGCTGATCGTTCCCATGAC GAGCGGAAGCCGTCCTGCCCCGTTCCGCGTCAATGTCCGCTTTCAGGATAAAGACGGTTTGCTTTTGCCC GAACAGATTAGGGCTGTGGATAAAGCCGGATTGGTCAAACATCTTGGAAATTTAGACAACAGTACGGCTG AAAAACTGTTTGCAGTATTGCAGGAGATGTTTGCCTGA
>gi 130248031 :cl058239-1057892
ATGACATACCTGCCGAACCGTGGCGACATCGTACATCTTGATTTTGATCCATCCTCCGGCCGGGAGATAA AAGGCCCTCACTTTGGCCTTATTTTAAGCGGTAAGCTTTTTAACCAGCGAGGACTGGCAATGATCTGCCC GATTTCTCAGGGTGCTGCCGCTGCTGCCCGTACCTACGGGACTGTGGTCACCTTGATGGGAGCAGGAACT GACACTCAAGGTGCGGTACATTGCCACCAGTTGAAGTCTTTGGATTGGCAAGTGCGGAATGTGCGTTTCA AGGAAAGTGTACCGCAGCATATTCTTGATGAAGTCCTGGCCAGGGTAGAGGCTATTCTGTTTGAATAG
>gi 130248031 :cl058484-1058239
ATGCTTCAAACTTTACGCAAGGCCGGTGGTTCACTTGTCATGACAGTGCCCAAGTCTTTTATCGAACAGA ACGGGCTGAGTGAAGGTTCTCAGGTTGAGCTTCATCTTCACGGGAAGAAGATGATCGTCGAAGCACCGGC TCGACCGCGTTACAAGCTGGCTGACCTGATGGCGGAAATGCCGAAGGGATTGCCGCGTGTTGAAGGCTGG GATGAAATGTCTCCCGTCGGACTGGAAGACAGCTGA
>gi I 30248031 :cl279949-1279707 ATGAGGAATACCATGACTCATAGAGTGACTATTACGCTCGACGCAGAAACATTTGCTTTTCTGAACGATG TTGCAAGTAGTAATCGTAGCGCCTATGTTAATCAGCTCTTAAAACAGGATCGCAAAAATTTCCTGCAGGC AGCGCTACGCAAAGCGAATCAGGAAGAGGCAGAAGATACAAACTACCAGGAAAAATTACAGGCATGGGAA AGTACGCTGTCAGATGGATTAGCCAATGACTGA >gi I 30248031 : C1279714-1279373
ATGACTGATTTCAAGCAGCGGGATATTTACTGGATCGATCTTGAACCGACAAAGGGTGCGGAAACAAGAA AATTAAGGCCATGTGTAATTATTCAAAGTGACCTGGTTAACGTTCAATCCAGAACAGTGATAGTTGCCCC TTTGCTCCTTCAGCATAAACCCTGGCCATTTGCAGTGAATCTGGAGCCCACAGAAAAAAATGGTCTGGAT AAGGATCGTCATATCAACCTCAAGCAATTACGCGCGGTTGATATTTCACGCATTGGAAAAAAACAAGGCA GGCTTGAAAATAGATACAAGGATCCTATCAAAGCAGCTTTAATGATCATCTTTGATTTGTAA
>gi|30248031:cl712578-1712336 ATGAGTCAGACCAAAGTAGCTATCACAATCGAAGAAGAGGTGCTTGCCAGAGTGGATGCGCTGGTGAGGC AGCGTGTATTTGCTAACCGCAGCCGTGCGATCCAGGAGGCTGTGCAGGAAAAGCTGGAGCGCATGGATCG TAGCCGTCTGGCCGAGGAATGCGCAAAACTTGATCCTGCCTTTGAAAAGGCAATGGCAGACGAAGGTTTG TCTGAGGAGCTGGTTGCGTGGCCAAAATATTGA >gi|30248031:cl712351-1712013
GTGGCCAAAATATTGAGGGGCGAGATCCGGTGGGCTAATCTCAATCCAACTGTTGGTCGAGAGCAATCAG GTGAGCGGCCGATTCTTGTCCTGAGTCAGGATATATTCAATGAGCGGTCCGGAACAGTCATTGCTATGGC GCTCACCAGTCAGGAACAGCGCGCCGGATTTCCGTTGACATACGAAATTCTGAAATCCAGCTTGCCTAAA CGCTCCTGGGTAAAGATAAGTCAAATCCGTACACTTTCCACTGAACGCATTGGTAAGAAGATCGGGGCGA TTGCTCCTGAAGAGCTTGCGCAGATTGTTGAAGGTTTAAATGAAATTATCGGCAGCTAG
>gi] 30248031 :cl427432-1427100
TTGAACTCGCACCGGGGGCAGATGATGAGCAAGGATGCAACAGCTTTGTTGCATGTAACATGTGTATTTA GGCATAATGTTGCATGTAACGCATCAGGAGGACTCCACATGGGAACCACGCATGTTAATGCTCGTGTTAA AAAGCACCGTGACACACTACGCATGGCCGGATTACGTCCGGTACAAATCTGGGTACCGGACACCCGCCGT CCGGATTTTGCAGAAGAATGCCGCCGCCAGTGCCTTCTCATAGCTCAGGCGGACAAAGCGGATACATCCA TGCAACAGTTCATGGATGAAGCTTTGGCCGATAGTGATGGCTGGACGGAATGA >gi|30248031:cl427103-1426777
ATGATACGCGGCGATCTCGTGACCATCGCTGTACCGGGCGATTTTGGTAAACCCGGATTCGCTCTGGTGA TTCAGGCTAACCTGTTCAGTGAACATACCAGCGTAACGGTATTACCTGTCACCAGCATGCTGGTTGCTGC GCCATTGCTACGTATCACTGTACAGCCTGGTGCCGAGAACGGTTTGCAAAAACCTTCGCAGGTAATGGTG GACAAGATCATAACGGTGAAACGCGACAAAGTAGGGCCGGTTCTCGGATGTATCGACCCGGATACTATGG TAGAGATTGAGCGTTGCCTGGCTGTGTTCCTTGGAATAGCGAAATGA
>gi 116127994 :c2909113-2908778
ATGGTAAGCCGATACGTACCCGATATGGGCGATCTGATTTGGGTTGATTTTGACCCGACAAAAGGTAGCG AGCAAGCTGGACATCGTCCAGCTGTTGTCCTGAGTCCTTTCATGTACAACAACAAAACAGGTATGTGTCT GTGTGTTCCTTGTACAACGCAATCAAAAGGATATCCGTTCGAAGTTGTTTTATCCGGTCAGGAACGTGAT GGCGTAGCGTTAGCTGATCAGGTAAAAAGTATCGCCTGGCGGGCAAGAGGAGCAACGAAGAAAGGAACAG TTGCCCCAGAGGAATTACAACTCATTAAAGCCAAAATTAACGTACTGATTGGGTAG >gi 116127994 :c2909361-2909113
ATGATCCACAGTAGCGTAAAGCGTTGGGGAAATTCACCGGCGGTGCGGATCCCGGCTACGTTAATGCAGG CGCTCAATCTGAATATTGATGATGAAGTGAAGATTGACCTGGTGGATGGCAAATTAATTATTGAGCCAGT GCGTAAAGAGCCCGTATTTACGCTTGCTGAACTGGTCAACGACATCACGCCGGAAAACCTCCACGAGAAT ATCGACTGGGGAGAGCCGAAAGATAAGGAAGTCTGGTAA
>gi 116127994: 4446018-4446275
GTGCAGATGCGTATTACCATAAAAAGATGGGGGAACAGTGCAGGTATGGTCATTCCCAATATCGTAATGA AAGAACTTAACTTACAGCCGGGGCAGAGCGTGGAGGCGCAAGTGAGCAACAATCAACTGATTCTGACACC CATCTCCAGGCGCTACTCGCTTGATGAACTGCTGGCACAGTGTGACATGAACGCCGCGGAACTTAGCGAG CAGGATGTCTGGGGTAAATCCACCCCTGCGGGTGACGAAATATGGTAA
>gi 116127994:4446269-4446619
ATGGTAAAGAAAAGTGAATTTGAACGGGGAGACATTGTGCTGGTTGGCTTTGATCCAGCAAGCGGCCATG AACAGCAAGGTGCTGGTCGACCTGCGCTTGTGCTCTCCGTTCAAGCCTTTAATCAACTGGGAATGACGCT GGTGGCCCCCATTACGCAGGGCGGAAATTTTGCCCGTTATGCCGGATTTAGCGTTCCTTTACATTGCGAA GAAGGCGATGTGCACGGCGTGGTGCTGGTGAATCAGGTGCGGATGATGGATCTACACGCCCGGCTGGCAA AGCGTATTGGTCTGGCTGCGGATGAGGTGGTGGAAGAGGCGTTATTACGCTTGCAGGCGGTGGTGGAATA A >gi|l5829254:c3633490-3633155
ATGGTAAGCCGATACGTACCCGATATGGGCGATCTGATTTGGGTTGATTTTGACCCGACAAAAGGTAGCG AGCAAGCCGGACATCGTCCGGCTGTTGTCCTGAGTCCGTTCATGTACAACAACAAAACAGGTATGTGTCT GTGTGTTCCTTGTACAACGCAATCAAAAGGATATCCGTTCGAAGTTGTTTTATCCGGTCAGGAACGTGAT GGCGTAGCGTTAGCTGATCAGGTAAAAAGTATCGCCTGGCGGGCAAGAGGAGCAACGAAGAAAGGAACGG TTGCCCCAGAGGAATTACAACTCATTAAAGCCAAAATTAACGTACTGATTGGGTAG
>gi 115829254 :c3633738-3633490
ATGATCCACAGTAGCGTAAAGCGTTGGGGAAATTCACCGGCGGTGCGGATCCCGGCTACGTTAATGCAGG
CGCTCAATCTGAATATTGATGATGAAGTGAAGATTGACCTGGTGGATGGCAAATTAATTATTGAGCCAGT GCGTAAAGAGCCCGTATTTACGCTTGCTGAACTGGTCAACGACATCACGCCGGAAAACCTCCACGAGAAT ATCGACTGGGGAGAGCCGAAAGATAAGGAAGTCTGGTAA
>gi I 15829254:5303921-5304178 GTGCAGATGCGTATTACCATAAAAAGATGGGGGAACAGTGCAGGTATGGTCATTCCCAATATCGTAATGA AAGAACTTAACTTACAGCCGGGGCAGAGCGTGGAAGTGCAGGTGAGCAACAACCAACTGATTCTGACACC CATCTCCAGGCGCTACTCGCTTGATGAACTGCTGGCACAGTGTGACATGAACGCCGCGGAACTTAGCGAG CAGGATGTCTGGGGTAAATCCACCCCTGCGGGTGACGAAATATGGTAA
>gi 115829254: 5304172-5304522
ATGGTAAAGAAAAGTGAATTTGAACGGGGAGACATTGTGCTGGTTGGCTTTGATCCAGCAAGCGGCCATG AACAGCAAGGTGCTGGTCGACCTGCGCTTGTGCTCTCCGTTCAAGCCTTTAATCAACTGGGAATGACGCT GGTGGCCCCCATTACGCAGGGTGGAAATTTTGCCCGTTATGCCGGATTTAGCGTTCCTTTACATTGCGAA GAAGGCGATGTGCACGGCGTGGTGCTGGTTAATCAGGTGCGGATGATGGATCTACGCGCCCGGCTGGCAA AGCGTATTGGTCTGGCTGCGGATGAGGTGGTGGAAGAGGCGTTATTACGCTTGCAGGCGGTGGTGGAATA A
>gi | 16445223 :c3700788-3700453 ATGGTAAGCCGATACGTACCCGATATGGGCGATCTGATTTGGGTTGATTTTGACCCGACAAAAGGTAGCG AGCAAGCCGGACATCGTCCGGCTGTTGTCCTGAGTCCGTTCATGTACAACAACAAAACAGGTATGTGTCT GTGTGTTCCTTGTACAACGCAATCAAAAGGATATCCGTTCGAAGTTGTTTTATCCGGTCAGGAACGTGAT GGCGTAGCGTTAGCTGATCAGGTAAAAAGTATCGCCTGGCGGGCAAGAGGAGCAACGAAGAAAGGAACGG TTGCCCCAGAGGAATTACAACTCATTAAAGCCAAAATTAACGTACTGATTGGGTAG
>gi 116445223 -.C3701036-3700788
ATGATCCACAGTAGCGTAAAGCGTTGGGGAAATTCACCGGCGGTGCGGATCCCGGCTACGTTAATGCAGG CGCTCAATCTGAATATTGATGATGAAGTGAAGATTGACCTGGTGGATGGCAAATTAATTATTGAGCCAGT GCGTAAAGAGCCCGTATTTACGCTTGCTGAACTGGTCAACGACATCACGCCGGAAAACCTCCACGAGAAT ATCGACTGGGGAGAGCCGAAAGATAAGGAAGTCTGGTAA
>gi 116445223 :5333907-5334164
GTGCAGATGCGTATTACCATAAAAAGATGGGGGAACAGTGCAGGTATGGTCATTCCCAATATCGTAATGA AAGAACTTAACTTACAGCCGGGGCAGAGCGTGGAAGTGCAGGTGAGCAACAACCAACTGATTCTGACACC CATCTCCAGGCGCTACTCGCTTGATGAACTGCTGGCACAGTGTGACATGAACGCCGCGGAACTTAGCGAG CAGGATGTCTGGGGTAAATCCACCCCTGCGGGTGACGAAATATGGTAA
>gi 116445223: 5334158-5334508 ATGGTAAAGAAAAGTGAATTTGAACGGGGAGACATTGTGCTGGTTGGCTTTGATCCAGCAAGCGGCCATG AACAGCAAGGTGCTGGTCGACCTGCGCTTGTGCTCTCCGTTCAAGCCTTTAATCAACTGGGAATGACGCT
GGTGGCCCCCATTACGCAGGGTGGAAATTTTGCCCGTTATGCCGGATTTAGCGTTCCTTTACATTGCGAA GAAGGCGATGTGCACGGCGTGGTGCTGGTTAATCAGGTGCGGATGATGGATCTACGCGCCCGGCTGGCAA AGCGTATTGGTCTGGCTGCGGATGAGGTGGTGGAAGAGGCGTTATTACGCTTGCAGGCGGTGGTGGAATA A
>gi I 24111450:3514722-3514991 ATGCAGACAGTGAAATTACGGCAACAAGGAGGAGCCATGATCGTTACTATCCCACGAGATCTTGCCATCG ATCTTGGCTGGTCACCGGGCACAGAGCTTACCGTGGAGAAAAAAGGCGATAGCGTTAATTTGCGCGCCAC AGAGCACAAACCGCGTGGGCGTCTTACCGTCGCGCAGTTGTTGAGCCAAATCGATGAAAGCGAAATTACG GAGCTAAATCAGTCCACAGAAGGATGGGCTGAAGGGAAAAAAGGTAATGAAGCATGGTAA >gi|24111450:3514985-3515350
ATGGTAAAGGCACGGACGCCACATCGTGGTGAGATCTGGTATTTTAACCCTGATCCGGTTGCCGGGCATG AACTTCAGGGGCCACATTATTGCATTGTGGTAACGGACAAAAAACTCAACAATGTTTTAAAAGTTGCTAT GTGCTGCCCGATTTCAACAGGGGCAAATGCAGCACGTTCCACAGGGGTGACGGTGAACGTCCTCCCCCGT GATACGCAAACCGGTAACCTGCATGGCGTTGTACTTTGTCACCAGCTAAAAGCCGTCGATCTTATTGCCC GTGGCGCTAAATTTCATACCGTTGCCGATGAAAAATTGATTAGTGAAGTTATCAGTAAACTGGTGAATTT AATCGACCCACAATAA
>gi ] 15836605 : C1779298-1779077 ATGACATCAACTCACAGACCAGACAGCAAGATAGTTCACCACAGGGAACAAATGCGCGCAGCTGGATTGC GTCCTGTGCAGCTCTGGGTACCGGATACGCGCACACCGGAATTCGCTGCTGAAATTCAAAGCCAGTGCCG CGCCCTGAAAGGCGACCAGGCAGAAGCCGACGCTTTACGCTTCACAGAAAAAGCCATGACCCATATTGAA GATTGGAAATGA >gi|l5836605:cl779086-1778757
TTGGAAATGATTCAACGTGGCGACCTTGTAACAGTTTCCCTACAAGGCGACTACGGCAAGCCTAGACCAG CGTTGATCGTTCAATCAGACCTTCTAACGGAGTTAGATAGTGTCGCACTGTGTCCGGTCACGAGCGACCT GCGGAATGCGATATTTCGTGTCACCGTTGAACCAACTGCGGCCAATGGTTTACGGACACTGTCGCAGGTC ATGGTAGATAAAATTTCAACACTACCACGTAACAAAATCAGCGAACCTTTTGGACGTCTCAATGACGAGA GAATGAAAGCAATAGAAAGAGCATTGTTACTAATTATTGGTATCATTTAA
>gi I 26986745 : 889455-889709 ATGCAGATCAAGATTCAACAGTGGGGCAACAGCGCCGCGATCCGCTTGCCCGCCGCAGTACTCAAGCAGA TGCGCCTCGGTGTCGGCTCCACCCTGAGCCTTGACACAACGGGTGAGACGATGGTGCTCAAACCCGTCAG GTCGAAACCCAAGTACACCCTTGAGGAACTGATGGCCCAGTGTGACCTGAGTGCACCGGAGCCAGAGGAC ATGGCCGACTGGAATGCCATGCGCCCAGTGGGGCGTGAAGTGTGA >gi|26986745:889706-890053
GTGAAACGGTTGAAATTCGCCAGGGGTGATATTGTTCGCGTCAACCTGGACCCAACAGTCGGGCGGGAAC AGCAGGGCTCCGGCCGACCTGCACTGGTACTTACTCCGGCTGCGTTCAATGCTTCAGGCCTGGCTGTAAT CATCCCGATCACTCAAGGTGGGGATTTCGCGAGGCATGCGGGTTTCGCTGTCACGCTCAGCGGTGCGGGC ACGCAGACTCAGGGGGTGATGCTTTGCAACCAGGTGCGCACAGTCGACCTTGAAGCACGATTTGCCAAGC GCATAGAGTCGGTGCCTGAAGCTGTCATCCTGGATGCACTGGCGCGTGTGCAAACCCTATTCGATTAA
>gi | 24212700 : 1774993-1775229
ATGGAATCAATTATTCAAAAATGGGGTAATAGCTTAGGAATTAGAATTCCAAAAGCAATGGCAACGGAAT TAGAGTTAAATGATGGAAGCCATGTTGAATTACAATATGAAGGAGATAAGATTGTAATATATCCAATGAA AAAAGCTTCATTGGAAGATAAACTTTCTAAAATTACGAAACAAAATCTTCACTCTGAAATATCTACTGGT AATTCTATAGGCAATGAAGCTTGGTAA
>gi I 24212700: 1775223-1775564 TTGGTAAAGAATAGAAACTATACTCCTGAAAAAGGAGATATAGTGTGGTTGAACTTTACTCCTCAAGCAG GTCATGAACAGAAAGGTCGTAGACCTGCACTTGTTTTATCGCCTAAGGAATATAATTCAAAGACAGGGTT AGCAATATTTTGTCCAATTACCAGTAAAATTAAAGGTTATCCATTCGAAGTGTTGATTAAATCAAAAAAA ATCGATGGTGTAATTCTTTCTGATCAAGTAAAAAACTTAGATTGGACTATCCGTGAAGCAGAATTTATTG AATCAATAAATAAAGTTTCTTTAAAAGAAGTTTTAGATAATATTAAATTATTAATATTCTAA
>gi I 24212700:02824970-2824722
ATGAAGACGGCGATTTCAATTCCTGATGAGTTATTTAGGGCTGCCGAGAAAATAGCTAAAAAACTTGGGA TTCCTCGAAGCCAGTTATTTGCAAAAGCATTAGAAGAATTTATCCAATCTCATAGTAAAGAATCTGTAAC TGAGAAATTAAATAAAATCTACAGTAATAAATCCAAAGAAACTAGAAATAATATTACTGACTTATCCGTA GAATCGCTTCGTAAGAGTTTAAAAAATGATTCGTGGTGA
>gi I 24212700 :c2824735-2824394
ATGATTCGTGGTGAAATTTGGTGGGTAGACTTGGGAATTCCATTTGGAAGTGAGCCTGGATTTAAACGTC CAGTTCTTATAATTCAAGATGACTCTTTTAATCAAAGTAATATTAATACAATAGTTTCGATTGCAATTAC ATCGAATTTAAATCTATCTGAAGCACCAGGTAATGTTTTCATTAGTAAAAAAGATTCGAGTTTATCAAAG GACTCGGTCATAAATGTTTCTCAAATTGTGACTTTAGATAAAGAAAGATTTCTTAACAAAGCGGGTAAAC TTAAATCAAATAAATTAGGTGAAGTTGAAATTGGGCTTAAGTTGGTTACAGGCTTAGATTGA
>gi 115805042: 417705-417947
ATGACGAGTCAAATTCAGAAATGGGGCAACAGCCTCGCGCTCCGCATTCCCAAAGCTCTGGCGCAGCAGG
TGGGACTGACGCAGAGTTCAGAAGTGGAGCTGCTTCTTCAGGACGGTCAGATTGTCATCCGGCCAGTTCC
TGCTCGGCAGTACGATCTCGCCGCGCTGCTGGCCGAAATGACACCTGAAAATCTGCATGGGGAAACAGAC TGGGGCGCACTGGAAGGACGCGAGGAATGGTAA ,
>gi 115805042 : 17941-418294
ATGGTAAGCGATTATGTCCCGGACGCTGGGCATCTGGTGTGGCTCAACTTCACACCTCAGGCAGGGCATG AACAGGGGGGACGGCGACCGGCGCTGGTGCTTTCGCCTGCCGCTTATAACGGCGTCACTGGACTGATGCA GGCGTGTCCGGTGACCAGCCGCGCCAAGGGGTATCCGTTTGAAGTGACGCTCCCTGCTCACCTTGGAGTC AGCGGCGTGGTGCTGGCCGACCATTGCCGCAGCCTCGACTGGCGCAGTCGCCGGGCCGAACAACTTGCGG AGGCGCCGGCGGACGTCCTGGCCGAAGTCCGTGGCAAGTTGGGCAGCTTGCTGGGCATGTCCGAGAAGGC ATGA
>gi 115805042 : 672543-672797
ATGACTTACCAGAACGCCGAACGCATGACCATCAGCCTGCCGCCCGATATCGCCCGTTACATCAAGGACT ACCAGCAAACGCACGGACTGGAAAGCCGCAGCGAAGCCTTCGTGAAAGCCGTTCAAGCCCTCAGAGAACA GGAACTGGCCGAGCAATACACCGCACTCGCCCGTGAGAACGACCCCGAACGCGCCCTCTTTCTGGAAGGC AACACCGACGGACTGGAACCCAGCGACGGTAGCGAATGGCTGTAG
>gi 115805042 : 672788-673135
ATGGCTGTAGGACTCATCCGGCGCGGCGACATTTTTCTGACCCATTTCGGCCCCGCCCGCGCAGGCGAAC CGGACTTCAAACGCCCCGCTGTGGTCATCACCAACAATGTCGCCAACGCCAAAGCGGATGCCGTGACCGT CATTCCGCTCACCAGCAACCTGGAAACCCTCTACGATTTTCAACTGCTGCTCCCCACCGAGCGAACCGGG CTGAACTTGGACAGCAAAGCGCAGACGGAATTGATCTCGTGTATTGCCATCAGCCGCATCGGGAAGCACC TGGGGCAAGTGCCAGCCGACCTCATGGCTGAACTGGACGCCAGAATCCGCCTTCACCTTGCCCTGTAA The following sequences were identified in a later supplementary search:
>gi 128209834 :c2670397-2670080
ATGGCAGGTTCAAAAAGGGTTGGTGTAAGCCTCTCAGAAACACTAAATAATGAATTTAATAAAGCACTTA AAGAAGATTCTAAAAAAAGAAGTGAATTTATTCGCGAACTTATAATACTATATATAGAGGACAAAAAAAA GTTAAGAGAAATAGAACAAATGAAAAAAGGTTACCTAGAAATGGGTAAATTAAATTTAGAAATTGCAGAG GTAGGCTTTGCAAGTGATATTAATAGTTTAAAAGAATATGAAGCGAAGCTTTCGGAGAGTGATTGGTCCG ATGACAACGATAGTGAAAAGAGGAGATATATATTATGCTAG
>gi I 28209834 :c2670397-2670080 ATGGCAGGTTCAAAAAGGGTTGGTGTAAGCCTCTCAGAAACACTAAATAATGAATTTAATAAAGCACTTA AAGAAGATTCTAAAAAAAGAAGTGAATTTATTCGCGAACTTATAATACTATATATAGAGGACAAAAAAAA GTTAAGAGAAATAGAACAAATGAAAAAAGGTTACCTAGAAATGGGTAAATTAAATTTAGAAATTGCAGAG GTAGGCTTTGCAAGTGATATTAATAGTTTAAAAGAATATGAAGCGAAGCTTTCGGAGAGTGATTGGTCCG ATGACAACGATAGTGAAAAGAGGAGATATATATTATGCTAG
>gi | 15839372 :c2544290-2544045
ATGGCCGAACCAGAAACCCTTCCTGGGCGGTGGCTTCCGGAATGCGCCTGCCTAGCTGAAACCGTGAGTT GGGAGCAGAGTCGTCTCTGGTCCCGCCTGTTATGCCGTCCGCATTTTCGTCATGCGCTGCCGGGGCTGAC CGGGGGCTCTGCAAGTCGTCCGTCGGCGAGATCAGCACGCCTGGTTCGGCAGCCACGTATGACATTGTTT TCCTTGGACCATAGGGACGGGGTCGACGCTCGGTGTTGA
>gi 115839372 :c2544290-2544045
ATGGCCGAACCAGAAACCCTTCCTGGGCGGTGGCTTCCGGAATGCGCCTGCCTAGCTGAAACCGTGAGTT GGGAGCAGAGTCGTCTCTGGTCCCGCCTGTTATGCCGTCCGCATTTTCGTCATGCGCTGCCGGGGCTGAC CGGGGGCTCTGCAAGTCGTCCGTCGGCGAGATCAGCACGCCTGGTTCGGCAGCCACGTATGACATTGTTT TCCTTGGACCATAGGGACGGGGTCGACGCTCGGTGTTGA
>gi 115607142 :c547515-547345
ATTACTACCTATTACTACGTATTACTATCTGTTACTACATGGGTAGGACTGCGGCATGAAGCCAAGCGTG AGCTTGTCTACCGAGGACGTCGCAGCATTGGACGCATGCCAAGAGAGTGGGCCTGCCGTCGCAGTCGGCG GTTTGCAGCGAACGGCGTAGATGCTGCGCGGTGA
>gl 115607142 :c547515-547345
ATTACTACCTATTACTACGTATTACTATCTGTTACTACATGGGTAGGACTGCGGCATGAAGCCAAGCGTG AGCTTGTCTACCGAGGACGTCGCAGCATTGGACGCATGCCAAGAGAGTGGGCCTGCCGTCGCAGTCGGCG GTTTGCAGCGAACGGCGTAGATGCTGCGCGGTGA
>gi 115607142 : 2320829-2321059
ATGTCTACATCCACGACGATTAGGGTTTCAACCCAGACTCGGGATCGTCTGGCCGCCCAAGCCCGCGAAC GGGGAATCTCGATGTCGGCTCTGCTCACCGAACTGGCCGCCCAGGCCGAGCGCCAGGCAATCTTCCGCGC CGAACGCGAGGCCTCGCACGCCGAGACGACCACCCAGGCAGTCCGCGACGAGGACCGCGAGTGGGAGGGC ACGGTAGGCGACGGCCTTGGCTGA
>gi 115607142 = 2320829-2321059 ATGTCTACATCCACGACGATTAGGGTTTCAACCCAGACTCGGGATCGTCTGGCCGCCCAAGCCCGCGAAC GGGGAATCTCGATGTCGGCTCTGCTCACCGAACTGGCCGCCCAGGCCGAGCGCCAGGCAATCTTCCGCGC CGAACGCGAGGCCTCGCACGCCGAGACGACCACCCAGGCAGTCCGCGACGAGGACCGCGAGTGGGAGGGC ACGGTAGGCGACGGCCTTGGCTGA Nucleotide sequences coding for homologs of CcdB toxin-antitoxin pairs
>gi) 30248031 :cll63428-1163165
ATGCCAACGATACAGTCTGTCCGTCGTACCCAATCTGGCCGACCTGGCAAACGTGCAATCAATCTGAGCT TGAGTGCTGATGTACTGGACGCTGCCAGGCAACTGGATATCAATATTTCTCAGGTCTGCGATACTTACCT GCGTGAAGTGGTGCGTCATGAGCAAGAGCGCCGCTGGCGTGAGGAACATGCGGATTTTATTACTGCCTAC AATGCCACTATCGAAGCTGAGAATCTGCCACTGGACGAGTGGAGAAGTTTCTAA
>gi I 30248031 :cll63021-1162704
GTGGCACGTTTCGATGTTTATGTTAACCCGGGTAGTCACGCCGCTACGACACCTTATCTGCTGGATGTCC AGAGCGATCTGCTTGATGTGCTGGATAGCTGCATGGTCATTCCATTGCGCAGCCTTGAGCACTTCCCCAA AGTTAAATTACCCGGCAGGCTGACTCCGGTTGTAACGATCAAAGGCCAGGATTTTCTGCTGGAAACTCCA AAAATGGGGGCTATCCCCCGGCGACTACTTACAATGCCCGTGCTGTCGTTACGAGATATGCAACCCGAGA TTACCAGTGCACTCGATTTTTTATTTCACGGATATTAA
>gi 126245917 = 53019-53252 ATGACTGCAAAACGTACCACACAAAGTGTGACCGTCACCGTCGACCGTGAGTTAGTCAATCGCGCTCGTG ATGCAGGCTTAAATATGAGCGCCACCCTTACGGTTGCGCTCAATGCTGAACTTAAAAAACATGCAGCAAC ACGTTGGCGTGAAGAGAACGCAGAAGCTATCGCTGCGTTAAATCAATTGGCTGATGAAACCGGATGTTTC TCTGATGAGTACCGGAGCTTCTAG >gi|26245917:53255-53569
ATGCAATTTACGGTATACCGCAGTCGCGGCAGGAACGCCGCGTTTCCCTTTGTTATTGATGTTACCAGCG ACATTATTGGTGAGATTAATCGCCGTATCGTTATTCCATTAACACCTATTGAACGATTTAGCCGTATTCG CCCACCAGAACGGCTTAACCCAATCCTTTTACTGGTAGACGGCAAAGAATATGTGCTCATGACGCATGAG ACTGCAACTGTTCCAGTTAACGCGCTGGGAACGAAATTTTGCGATGCCAGCGCGCACCGAACGTTGATTA AAGGAGCATTAGATTTTATGCTCGACGGGATTTAA
>gi | 15829254 =54802-55035
ATGACTGCAAAACGTACCACACAAAGTGTGACCGTCACCGTCGACCGTGAGTTAGTCAATCGCGCTCGTG ATGCAGGCTTAAATATGAGCGCCACCCTTACGGTTGCGCTCAATGCTGAACTTAAAAAACATGCAGCAAC ACGTTGGCGTGAAGAGAACGCTGAAGCTATCGCTGCGTTAAATCAATTGGCTGATGAAACCGGATGTTTC TCTGATGAGTACCGGAGCTTCTAG
>gi | 15829254 =55038-55352
ATGCAATTTACGGTATACCGCAGTCGCAGCAGGAACGCCGCGTTTCCCTTTGTTATCGATGTTACCAGCG ACATTATTGGTGTGATTAATCGCCGTATTGTTATTCCATTAACACCTATTGAACGATTTAGCCGTATTCG CCCACCAGAACGGCTTAACCCAATCCTTTTACTGGTAGACGGCAAAGAATATGTGCTCATGACGCATGAG ACTGCAACTGTTCCAGTTAACGCGCTGGGAACGAAATTTTGCGATGCCAGCGCGCACCGAACGTTGATTA AAGGAGCATTAGATTTTATGCTCGACGGGATTTAA
>gi 116445223 =54803-55036 ATGACTGCAAAACGTACCACACAAAGTGTGACCGTCACCGTCGACCGTGAGTTAGTCAATCGCGCTCGTG ATGCAGGCTTAAATATGAGCGCCACCCTTACGGTTGCGCTCAATGCTGAACTTAAAAAACATGCAGCAAC ACGTTGGCGTGAAGAGAACGCTGAAGCTATCGCTGCGTTAAATCAATTGGCTGATGAAACCGGATGTTTC TCTGATGAGTACCGGAGCTTCTAG >gi|l6445223:55039-55353
ATGCAATTTACGGTATACCGCAGTCGCAGCAGGAACGCCGCGTTTCCCTTTGTTATCGATGTTACCAGCG ACATTATTGGTGTGATTAATCGCCGTATTGTTATTCCATTAACACCTATTGAACGATTTAGCCGTATTCG CCCACCAGAACGGCTTAACCCAATCCTTTTACTGGTAGACGGCAAAGAATATGTGCTCATGACGCATGAG ACTGCAACTGTTCCAGTTAACGCGCTGGGAACGAAATTTTGCGATGCCAGCGCGCACCGAACGTTGATTA AAGGAGCATTAGATTTTATGCTCGACGGGATTTAA
>gi I 21229478 :c859213-858908
TTGACAATGCGCATTCATGCGCATAGCGTGCGCATGAATGACGGGATGCCAATCATGAGCCGTTACTACG ACACTTCCGCGCAAAAAAAGCCGCTGAACCTGACCATCAACTCGGACTTGGCCGCGCAGGCACGGGCGAT GACCGGCAACCTGTCGGCAAAGGTCGAAGAACTGCTGGCCGACTACGTGACAAAAGAGCGCGACAGCCAC AGCGCCAGAGCGATGGAGCTGCAACGCGCCGCAAGCGAATGGAAGACCTTCACCGACGCGCACGGCTCCT TCGCCGACGAGTTCTCCACGCTATGA
>gi I 21229478 :c858911-858594 ATGACCGACCAGTTCGATGTCTACGCGAACGTCGGCCAGAACAAGAACATCCCGTACGTGGTGGTCGTCC AGTCAAAGATCTTCGACGCCTCACCTCGCCGCGTCGTCGTGCCCCTGGTCCGAAAGTCCACCCACTCCCC GACCCCATCCCGCTTCACCCCGGAACTCACGGTGTCCGGCCACAGCGTCATCCTGCAGCCCCTGGAAATG ACCTCGGTGCCGCTGGCGGCGCTCAGCAAACCTGCCGGCTCCCTGAAAGACCAAGGCCAAACCATCATCG ACGCCCTGGACGAACTGTTCACCCGCTCATTCGGCTAA
Polypeptide sequences
Homologues of vapBC toxin-antitoxin system polypeptides
>gi 115898475 I re |NP_343080.11 [Sulfolobus solfataricus]
MEEVKVTRNYQITIPYEIRQ GIKIGDKLIVTVDGDKIVIEKKKGNISSLNLT GKKITDEEINETINEAGREIADSS >gi 115898476 I ref |NP_343081.11 [Sulfolobus solfataricus]
MR EEKLQTWDTNFIIAIIFRDHEKHEEA EWEIIEKAY PLIS SE SYF IKNGVNLEWNEVISDPKIEIVPNTI EDVRFALANKEKIKGYDDFNDFLILSTAKRLDLP LTFDKKLKMKS
>gi|l5899784|ref |NP_344389.1| [Sulfolobus solfataricus]
MERVKVTRNYQITIPASARS INIKEGDILEVYLNGDEIVLRKVKTERPRIR GSKLSLGDIEEAIERGEGNS >gi 115899783 I ref |NP_344388.11 [Sulfolobus solfataricus] MEKAIVDTNVIIYDYVEDSEYHKRAEE LDSLDR VIPVIVVHEIMWFL GMKLEDKVDDVLAYIRSEKAEVVCDCTDNV TDAIGVLNKEKLP VSYKDMVILSHAIREKLPLATFDRKLSKIAKKYSVSLLQS
>gi 115898765 I ref |NP_343370.11 [Sulfolobus solfataricus] S TLRVEVGKKGYIIIP ΞVRD VGIKEGDILILTWGDKIILEPERKVNIREWKK EEHERKISYAKRAS GE ENI S EEE KIDFS
>gi|l5898764|ref |NP_343369.1| [Sulfolobus solfataricus]
MIFLDANFL.IYLNSGVSEVKEYYIKL TYES FSDPLVIDEVIYVSKKKYGVKYCDTIEF DEIVLKY TVLPITIKEYE RAKEIMRKYSVKPSDAFHIAVMLNNSINVIIJSEDKELDKVAEIKRIWI >gl 115921382] ref |NP_377051.1] 84aa long [Sulfolobus tokodaii] MYIAYM TIMIRDDVYKKLLEIKGDKSFSEIIEELIIEESLSVRRKKIEKYFGI NEEEARGLAKEIEEMRKRTDEDIARK
LSNY >gi 1159213811 ref ]NP_377050.1] 125aa long [Sulfolobus tokodaii]
MKIIJLESSAIIEY KGNKKAKEILDKAEDFYVSS SAYEILLGKINENKI DF SAFKI SITLKDSΪ-IASRIY RLRDK
GMLIGSFDI IASQAINRD TLVTKDTDF RIKEEYKNKLFM S
>gi 115922259 I ref |NP_377928.11 73aa long [Sulfolobus tokodaii] MAKTITISEEAYR LLSEKREGESFSDVIIRLVKSSRKNIMDYAGI GDMNDEEVNK FEDLKKMWERWNVNA
>gi ] 15922260 I re ]NP_377929.11 133aa long virulence-associated protein [Sulfolobus tokodaii]
MGKMECKC DSDILIDF RG EKAVKYIESVRGSSRIVTTVINVFELYYGALKYNKDVEKLDEFLQSVEILPFTVSEAK AEIEVDLENRGEVIGLKDVLISSIANNNCTIVTGNVKHFERIQGVKVENW
>gi 115921073 I ref |NP_376742.l| 73aa long [Sulfolobus tokodaii]
MERV VTRNYQITIPASIRNKINLKEGDI EVYLNGDEIVLRKVKSERPRIR GKKLYPEEIEEAIERGEGNN
>gi 115921074 |re |NP_376743.11 133aa long [Sulfolobus tokodaii]
MEKAIIDTNVIIYDYVEDSEYHKKAEELLDSLNK IIPAIVIHEVWF KDMKLEDKINDVFAYVRNEKAEVICDSVNNI VDSLEILIREKLPLADY DMII SHAIREKLPLVTFDKKLSKIAKKYGVSWS
>gi|15921992|re ]NP_377661.1| 102aa long protein [Sulfolobus tokodaii]
MFLQYSIKTFYFGI SIHMAYTTIKVTDEVKRKLIK AGEIQAKKGEEIS NDVIELLIDFYENKRKIKKGLKMNDFDGL IIEMDTDSSE VDEWYGKSTS >gi 115921991 |re |NP_377660.11 144aa long [Sulfolobus tokodaii]
MEKVL DTSYFIAYLNNDKYHSEALS SKKIAEFESVITDYILDEL TF IYRINKNYAINIAKTILNKIDNEE TLYM IGIETLNGALNYLARYDKKLSFTDCTTLSSMD LRTQFIVSFNSDFDDIT IEFKKPVINIRYL
>gi 1159202101 re |NP_375879.1] 84aa long [Sulfolobus tokodaii] MGIQNYLMGYIVTVDERGRVIIPKQIREKLN EGSKVEVDLEKDG IVIKVKRISVDDIYGIAGKEKVEIEEIEEALGF
EDND
>gi 115920209 I re |NP_375878.l| 128aa long [Sulfolobus tokodaii]
MIDSNVFIYVLFSDPSYGERAKELLKTAEVEDAYSSTLIISQV SHIJERRKKAEVIPMFVNY QQSGINIVDTRWEDIVN
GIKILQELKLSYK WDDAVI SQMRLGIDIIYSNDTDFD LNANRKF
>gi 115921142 I re |NP_376811.11 95aa long [Sulfolobus tokodaii] MFYNF LY VIHVNYA DALTRNYQITIPSTIRNR NIRVGDRL VYVENNRIIIEKKSGNIAS GLR GRKFTDEDINK
IIAEAGEEIGRDSSS
>gi 1159211411 re |NP_376810.11 115aa long [Sulfolobus tokodaii] MIAVIFEDHIFHKLAIKD EKLRKAYLPIIAISELAYFLIKNGFSLNDVIDNV SDPKIEWENTLEDIYFAIRNSP SY DDFNDYMIISLARRLKLKILTYDHKMKKKGSRLNG
>gi|l5920970|ref |NP_376639.1| 79aa long [Sulfolobus tokodaii]
MRVVTRNFQITIPAEVREKNIREGEYVDVTINEKEGIIIVRPYRKK TTVTLGKRITQEEIDKAIEEWDDFTKSFT
>gi 115920969 I ref |NP_376638.11 124aa long [Sulfolobus tokodaii] lyOfSTFEDSERHKEAMKILTENEVVIPQIVVYEYIWVLARLTNNVD VKQKLEE KDFEIAKED EDMIKGIEMLKKDNKP
IRMLNDYIILAIAKRLNIG ATYDIELVKAGVRNSVNIYSQHSS
>gi 118313617 I e |NP_560284. l| [Pyrobaculum aerophilum]
BϋEVKVTRNYQVTIPAEYRRKLGIKIGDWTVLLEGDRIVIIPAKKRRITFKAGRPVSVEELESAVE ALDESTS >gi] 18313618 |ref ]NP_560285.1 | [Pyrobaculum aerophilum]
MKVIiVDTNVLIYETFEDFERHAEATDIVYTNEVYIPTIVLHEYIW Ij RHFSISYAQAAAK EQLLSEKNIHVICENLSD LAAGIRMAAEDGAKPSNINDYIILASA NRG ALATYDRE RRAGARRAVTVLPATL
>gi|18313510|ref |NP_560177.l| conserved within P. aerophilum [Pyrobaculum aerophilum] MLSQSDGKAPSYQHR IRAPAA QD YCTKVLLY SEKEVIKVEVPK LAERlRKYAAERYGLRRGA SKAIVEILEREL GGPQPSAGGLDRLVGLGLSΞPRRWNGED AEALRDN
>gi ] 18313509] ref |NP_560176.1 I [Pyrobaculum aerophilum] MTPEL YKRQK VEPYRF EKVKSGNIRGYV QFAVHGISAILARPD VEAFLSEIATWRG EIVKSNMEEEIEAARAAA KVGLDFDDGLHYYYAKK GVPIVSFDKDFD TDLKRLEPGEWGG
>gi 118311665 I re |NP_558332.1| protein [Pyrobaculum aerophilum]
MEKTTIAVSKK QEIiLSEKERLAAKTMEEAISKILQEYRELKRRIAI EIIEKTGRRA QQ RSC >gi 118311666 I ref |NP_558333.11 [Pyrobaculum aerophilum]
MGASQRALLDTSVLIEILDKGRLSLLPKDPY SVISIYEYIRYKRDRHFYKERLEEAFSV GLTNKVIERAAEIFASLKA RGVWSDNDVFIAATAVAYGLP ITKDRYF KIKTAAGLDWFID >gi | 11499579 | ref |NP_070821.1 | [Archaeoglobus fulgidus DSM 4304]
MTKTISISDDVYEM VKIKGKRSFSEVIRELVKKEGNFDLLMVAFGTRSEEEVEK KREMKEVEEWMQSLCNH
>gi 111499578 I ref |NP_070820.11 virulence associated protein C (vapC-1) [Archaeoglobus fulgidus DSM 4304]
MNGCNPCVIID FKGDKG EKLNGDTVYGISVIT FELQCGSLKEREEIFLEKIPKLNFEESSAKLAGKIFRELKKGA
EFQR
>gi] 11499593 | ref |NP_070835.1 ] [Archaeoglobus fulgidus DSM 4304]
MVRTRTVGKKGQVTIPKEIRE FG EGEKWFEIRGDEII RPEKSGRDYVEE TSIIE K EAPEPAELKR YYGQIE
KRVSG
>gi 111499594 I ref |NP_070836.11 [Archaeoglobus fulgidus DSM 4304]
MDR KSAYLDSNVFIYATLYSGKTAEKSKEYLLRASDGEFNAFTSTLT DEVVYVVR VAGIEEGIKAGEIL KMPFIEF
LDVDFAVCEEAQK AEKYNL PRDAIHAVLALKYCDGVIISNDADFDWDGLKRMFD
>gi 111497928 I ref |NP_069150.11 [Archaeoglobus fulgidus DSM 4304] MPKIIEAIYENGVFKPLQ VDLKEGEKAKIV ESISD TFGI ASETEIKKVLEEIDDFWGVC >gi 111497929 I ref |NP_069151.11 [Archaeoglobus fulgidus DSM 4304] MTSGVFVDTNILVRH AGDQKAKKLIDQIEIGEIRGYINQIWSEWFVYMRLLTK DAKTLKRNHEIICKID EPVYEI SIFVE QSSNLITVESRKIMSRYGLLPNDALIAATCKHYGIRKIATFDEDFRRVDFLQWEL
>gi|H498682|ref |NP_069910.l| protein [Archaeoglobus fulgidus DSM 4304] MRIKIEDRKTKRLNFLNSWKP RLEGR AAEDIEK R KYENLP
>gi 1114986811 ref |NP_069909.11 [Archaeoglobus fulgidus DSM 4304]
MRIFLDTNFIVNLIFETEFTETA AI VKYADSDLITSISVIEET FVLKR TRKTNREIAELVANLLDGVEIEV EKLP LSVFLEVFREYDLLPNDALIAATCKHYDIKKIATFDEDF RVDFLEWKL
>gi 111498692 I ref |NP_069921.11 [Archaeoglobus fulgidus DSM 4304] MPKIIEAIYENGVFKPLQKVD KEGERVRVWSEWAKTRG LKGCEMEEIIEEIESEGFL >gi 1114986911 ref |NP_069920.11 [Archaeoglobus fulgidus DSM 4304]
MRVFFDSNVFLHHLADTKDEATE LERVEDGTFEGIVNDIWSEVIYGYLRATSG KPYE RKKILTIDMDLKPVEELFG FE PCNFGVGLTKFIKKYKLLPNDA IAATCKHYGINKIATFDEDFRRVEFLEWEL
>gi 111499073] ref |NP_070307.11 protein [Archaeoglobus fulgidus DSM 4304] MPTKTITITLEAYERLKREKREGESFSDVIIRLTEKRRDL EFAGK KDSGEEIEKIILEGRKEFDKHVLS >gi|H499074|ref |NP_070308.l| [Archaeoglobus fulgidus DSM 4304]
MFC ETTF IDLLRGRDEALKFYAKIRDSKLYTTSISA E LRGPK IGKD EFEVAVEL ESLDVLPFSFNSAKIAVEI EKDLREKGMEVNLIDVLIASVAMEHSLKLVTRDEHFSRIKGLEVERYRPE
>gi 1114997711 ref |NP_071014.11 protein [Archaeoglobus fulgidus DSM 4304] MSIEV K DRHGRIVIPKEWRERHGDEVVVVVYEDKVEI PRKGNVMRFADSIEVEELKDWEEMRRELYEVR >gi 111499772 I ref |NP_071015.11 [Archaeoglobus fulgidus DSM 4304] >
MRFVDSNV IYALLKPKKEPDDRIAEMKGKSVEI RRIQEGEKVATTWH SEVANVIASRSNEK SAEFVKEFLTLRNV KVFEVSAEDYLKASLLAVEKGVDVNDALAYVKMREHKIEEIYTFDKHFVKMGWW
>gi 111499279 I ref |NP_070517.11 [Archaeoglobus fulgidus DSM 4304] MKNIMVRDEVYEK QKMKKGRESFSDVI RLIEGRKKRGIEILERYAGSLSDSELEKIVMEERRKFRVRSFDS >gi 111499280 I ref |NP_070518.11 virulence associated protein C (vapC-2) [Archaeoglobus fulgidus DSM 4304]
MILDTSVIIRIFRDRNFFEVLKERIDDDVKITSVTAYE QRGAVYIM KHGRDYEFKLIRDFLEEVEILSFTPKDSEISA MI AKLREKGYELNDADIMISAVSIRENEK VT DRDFEYISRVSE DVDILEEEL
>gi 111497686 I ref |NP_068907.11 protein [Archaeoglobus fulgidus DSM 4304] MIPKVIRDKLGIKPDDV LVDEEGGKIVIEKQDIDDFIEWVKKTRKKVAGEVYRIALEDEFE >gi|H497685|ref |NP_068906.l| [Archaeoglobus fulgidus DSM 4304] MKIF DANY IY KYSESDEIFDYCVNLIjRKIEKYDLVTNMIiAIDEVI I NRKYKIE DEVFEYIDRLLSFLRWPIEA EDYDLMKEFMLGYN KPSDSLHLSSMRRHGVSVIVSEDSDFDRVD VKRV IGRGDV
>gi 1114979301 re |NP_069152.1) [Archaeoglobus fulgidus DSM 4304]
MCKPPMRI1 TQTGLPRΞSERQIRILEIVTGNRKGKHQPKPIS PQPNISMPKIIEAIYENGVFKPI.QKVNFRPGSKVRIV IQEDKKEILRKYKGVFGKAEVEE REYEGEVML
>gi 111497931] ref |NP_069153.11 [Archaeoglobus fulgidus DSM 4304]
MIVLDTNIFYNFLFETN TEKSERI ETYEP FSTFTVWNETIYVVSRKLAEIKFGIKSYVKFRKVAEEGYSFCAKEIE AFESVIRD NITVLRDYQNPREISEIMSKFKLLPNDA IAATCRHYGIRKIATFDEDFRRVDFLEWEP
>gi | 11499936] ref |NP_071181.1 | protein [Archaeoglobus fulgidus DSM 4304] MKV VTRNFQITIPAEVRR MG GDVLEVEYNEEKGEAIIRKLGGERRKLKAGRKIiTPDEIEA IAEGMGDN >gi | 11499937 | ref |NP_071182.1 | [Archaeoglobus fulgidus DSM 4304]
MKAVIDTNVIVYDTFEDSVFHQEAMQLLDRIDVVWIPTIVIHEYVWV KSLKVDV EIKYKVEEYLNHYKTKMVSENKQI VLSA ERIVGGGLSLSRYNDELI AVAGREKIS ATFDERLRRQARARGVEVIP
>gi 115669165 I ref |NP_247970.11 M. jannaschii predicted coding region MJ0975 [Methanococcus jannaschii]
MVIVMEIWDAIYEKGVLK KKSINLPEGCEVEIKIIPKKISEKTFGILKLSDKEIKEILEEIENGGE >gi 115669164 I ref |NP_247969.11 [Methanococcus jannaschii]
MRRL MEENKIFFDSNILIYHLCGKVEAKK IEKVENKEICGFINPIVISEV FFYIRATTNKRHYDI KHPEILKSLDL DIVFELFSIFQI DIiNSEIVKISREIIKKYCLLPNDALICSTCKFYKINKICSFDDDFKRVDFLEIIEI
>gi 115669309 I ref ]NP_248114.11 [Methanococcus jannaschii]
MINMATITIDDDVYKE LKL GRKSVSEFIKEL EERKRKNLDVFMIAFGSRSEEDVE KKE KEAEKWMQSLIQV >gi| 15669308 ]re |NP_248113.1) virulence associated protein C (vapC) [Methanococcus jannaschii] MDAVIDTSVIIEIFRGNKDT YQICDYNCKITSITVFELYCGN KENEMIMIDSLP NFDDKSS IAGNIF K KKEGK IPSVKDL IASIFY
>gi]20090373|ref |NP_616448.l| [Methanosarcina acetivorans str. C2A]
MPTRTISIΞEEAYEKLKS KSSE DSFSDVI RYYPKR SEVAEIGPNPE ADAIEKVSGEMRAEKMREIDPES >gi|20090374|ref |NP_616449.1| [Methanosarcina acetivorans str. C2A] MIEMPVLDTSFIVALLRGEPEAHQK AEMEAEEVPLSTTEINVLELYRGAY FRK YQNLEEIKK LECFQVLELEEPVY EIFASLSARLLSEGKPIGAFDELIAAIT LQEEQIVTRDEHF RVPGLEVITY
>gi 114520620 I ref ]NP_126095.11 protein [Pyrococcus abyssi]
MISLSKTITIADDVYYELVKMKGNKSFSEL RELIGKKKKGNLDILMIAFGTMSEEEV EF KKIKEVEEWINSWTPVS >gi 114520619 I re |NP_126094.11 protein [Pyrococcus abyssi]
MDKLLDTSVLIEVFRGNAKI TQ PPEEEYAIPSIVLFE LCGG PKQRLALEKMPWNFDKTSAEVAGEIF DLIS G RPPTKDLLIAATAIAHNIP YTCDRGFERFKEYGLKLVILER
>gi 114520978 |re |NP_126453.l| protein [Pyrococcus abyssi]
MPITKVTRNYQVTLPAEVRKVLGIREGDFLEVEVRGDEIVMRK RKNRRTIiKLGRNLTPEDIERIIEEGMRECMQ >gi ] 145209791 re |NP_126454.l] protein [Pyrococcus abyssi]
MHAVIDTDILIYDTFED EFHEEARAL DS SK YVPTIVLQEYIWFFKRNNFS LDAKSM MEYVRDPRF G GESHEV IIHALKILEENE S SHFNDAII YQAFSRKYP ATFDEKLRKLATKHGIRVLPEI
>gi 114520335] ref ]NP_125810.11 protein [Pyrococcus abyssi] MGITKVTRNYQITIPSDVRKKLGI VGDVIillEIEDGKAVI KSDl.ELPIiliPGGRG VEDIEDAIRRGQREEG >gi 114520334 I ref |NP_125809.11 protein [Pyrococcus abyssi]
MTVIDTNVFIYAILRDSEFNSRARNLIJASLERWIVPSIV YE Y FFREEGYGRDEITNVISSILNSPRTRVIGDNGRYT KRALELTKNPRRFNDMIILATAEQFKRLATYDKR KKEAERLGIETMP
>gi 114521382 I ref |NP_126858.l| protein [Pyrococcus abyssi] MENAYELFQK PDDLKREVIDYIEF LEKKAKKIOIGQIJKLTWKGALKE RDKYSSVELQHKA EWWE >gi 114521383 |ref |NP_126859.l| protein [Pyrococcus abyssi] MY VDTNVFLEIFLNQEKANEAEEFLTKTPTEYSHISDFS YSIGIILSRQKKYAVFΞDFVEDVL EGGVTLLRLSPFDL GSVINAAERFN DFDDAYQYT ARKYNLKIVSFDSDFDKTDIGRL PAQA RR
>gi 118977594 |ref|NP_578951.11 protein [Pyrococcus furiosus DSM 3638]
MF SVHPNSITLKYDACIQCIMVSIMV TITISDDVYNELLRIKGNKSFSEVLRE KERKGNKEVLKRIFGILSEEEYQ EVKKRLKE EGEFEKWEQSLTQM
>gi 118977595 I ref |NP_578952.11 protein [Pyrococcus furiosus DSM 3638] MGAVLDTNVIIEIARGNRRILEKV STDSTFYITSITKFEIFLGFPKKEE I NS EE PFDGKSAEIAAYLYKKLREK GIMLGIRD FIGSIALVNDLPLITLDKDFLHL EFG EVEILR
>gi 118976945 |ref |NP_578302.11 protein [Pyrococcus furiosus DSM 3638]
MPITKVTRNYQITIPAEIRKAGIKEGE LEVR ENGKIIIERL KER TLKLG K T EEIEKAIEEGM QCMQ >gi| 18976946 ]ref |NP_578303.1 | protein [Pyrococcus furiosus DSM 3638] MHAVIDTNVLIYDTFSDSEFHKESRSLLNSLDRVWIPSIV QEYVWFFRSQGFSSREAKIMLSEYISDPRFRGLVEDHNV ILRAIDILERENLSLSRFNDMII VHAIE GT ATFDQKI.RKLARKLSVEILP
>gi 118977185 I ref |NP_578542. l| protein [Pyrococcus furiosus DSM 3638] MGMEVKRIDSQGRIVLPKEWRJRWGNEVI IEFEDRIEILPKRKPKLSEFFDIIEVEEVEEDVE ELLKE AGEYE >gi 118977184 |ref |NP_578541.11 protein [Pyrococcus furiosus DSM 3638]
MRFIDS-WFLYAMIKPKGNTSKEIL KKEKAKKI LRVENGEDVVTTIJIH SEIANI EAKVNLTTAVRF EN LLAENV KILPVSVEEYLKAVLISKEKGISVNDALAYLKMKELNIKEIYTFDRHFQN DVEVIQD
>gi 118977579 I ref |NP_578936.11 protein [Pyrococcus furiosus DSM 3638] MKTIAVDEETWEAIKK KARLDAKSYDEVLKKLIQA HT ELET AESISLEDDEAELV SVIRDRSKIiVEEGSRK >gi ] 18977578 I ref |NP_578935.11 protein [Pyrococcus furiosus DSM 3638] MNPMPRKISFDPPΞFIQLTRKQNKELLEFVLAEFEIYLPITTVHAYLLA AFKGKNPKEEVQKLRDIV IVDLTDE LGE IAEIDASLIKDGYFFTLEDLITAVSAITS SLLWNGNAEKYSP RKYGLDCVNYEKFLEEVEVLAREEAKREKII
>gi 118977210 I ef |NP_578567.11 protein [Pyrococcus furiosus DSM 3638]
MKLTHKFKSFLNQI FGENMQEIEKVLSKLPPELKKEVFDYAEFL KKYREKKRKGFTFSWEGKVKΞE SSVE QHKALE RT
>gi|l897721l|re |NP_578568.l| protein [Pyrococcus furiosus DSM 3638]
MF VDTNVF EIIiLGQKKKEEAKKFLSENIDRLYMTDFS HSIGVILFKLRKPEVFEEFIEDVLPNVEILSLPVEGYPEL
IRIHKTLN DFDDAYQCAVANVFDLTWTMDTDFT ALNYV ILFL >gi 118976948 |ref |NP_578305.11 protein [Pyrococcus furiosus DSM 3638] MQIVEAIYEDGVLK LKN KLKEHSKVIIKVIDEEEIEKILDSRDY
>gi 118976947 I ef |NP_578304.11 protein [Pyrococcus furiosus DSM 3638] MNPSEVFLDSSILVGLNLGDENAKALVKSLIERGFTLVINPWFΞETAYKVMFT ALRDE KGFITSKSIWIDMLGFMER SKESIEQ QI RNSEIATFDEDFKKVDFHRSY
>gi 115607441 ] re |NP_21481 .11 protein Rv0300 [Mycobacterium tuberculosis H37Rv] MSDVLIRDIPDDVLASLDAIAARLG SRTEYIRRRLAQDAQTARVTVTAAD RRLRGAVAG GDPELMRQAWR >gi 115607442 I re |NP_214815.11 protein Rv0301 [Mycobacterium tuberculosis H37Rv] MTDQRWLIDKSA VRLTDSPDMEI SNRIERGLVHITGVTRLEVGFSAECGEIARREFREPPLSAMPVEYLTPRIEDRAL EVQTL ADRGHHRGPSIPDL IAATAELSGLTVLHVDKDFDAIAALTGQKTERLTHRPPSA
>gi|l5607736|ref |NP_215110.1| protein Rv0596c [Mycobacterium tuberculosis H37Rv] MSATIPARD RNHTAEVLRRVAAGEEIEVLKDNRPVARIVPLKRRRQ LPAAEVIGELVR GPDTTNLGEE RET TQTT DDVR >gi 115607735 I ref |NP_215109.1] protein RV0595C [Mycobacterium tuberculosis H37Rv] MNVRRALADTSVFIGIEATRFDPDRFAGYEWGVSWTLGE RLGVLQASGPEAAARR STYQLAQRFEP GIDEAVSEA ALLVSKLRAAK RVPINDSWIAATAVAHGIAILTQDNDYAAMPDVEVITI
>gi 115607766 I re ]NP_215140.1 ] protein Rv0626 [Mycobacterium tuberculosis H37Rv] MSEVASRE RNDTAGVLRRVRAGEDVTITVSGRPVAVLTPVRPRRRR SKTEF SRLRGAQADPGLRND AVAGDTTE DLGPIR
>gi|l5607767]re ]NP_215141.1] protein Rv0627 [Mycobacterium tuberculosis H37Rv] MSTTPAAGVIJDTSVFIATESGRQLDEA IPDRVATTWTIIAE RVGVI.AAATTDIRAQRLAT ESVADMETLPVDDDAAR MAR RIHLAESGRRVRIND IAAVAASRALPVITQDDDFAALDGAASVEIIRV
>gi|l5607802 |ref |NP_215176.1| protein Rv0662c [Mycobacterium tuberculosis H37Rv]
MF PNTRAYRRYNRSV AVRGSTRPQWQPPPKFQHAKCMSMRLAHRLQIDLDDECHRRITAVARERGVPVATWREAIDR
G VSPAGRRKSAGRRL DAADMSVPEPREbKQE EALRARRG
>gi 115607801 |re |NP_215175.11 protein Rv0661c [Mycobacterium tuberculosis H37Rv] MIVLDTTVIjVYAKGAEHPLRDPCRDLVAAIADERIAATTTAEVIQEFVHVRARRRDRSDAAALGRVTMPNCSRRYSPSIE ATSKRGLTLFETTPGLEACDAVLAAVAASAGATALVSADPAFADLSDWHVIPDAAGMVSLLGDR
>gi | 15607804 | ref |NP_215178.1] protein Rv0664 [Mycobacterium tuberculosis H37Rv]
MEKSRCHAVAHGGGCAGΞAKSHKSGGRCGQGRGAGDSHGTRGAGRRYRAASAPHPLAVGAHLRDELAKRSADPRLTDELN
DLAGHTLDDL
>gi 115607805 I ref |NP_215179.11 protein Rv0665 [Mycobacterium tuberculosis H37Rv]
MTEGEVGVG LDTSVFIARESGGAIADLPERVA SVMTIGELQLGLLNAGDSATRSRRADT AARTADQIPVSEAVMIS
LARLVADCRAAGVRRSVKLTDA IAATAEIKV
>gi 115608536 I ref |NP_215914.1] protein Rvl398c [Mycobacterium tuberculosis H37Rv] MKRTNIYLDEEQTASLDK AAQEGVSRAELIR LLNRALTTAGDD ASD QAINDSFGT RHLDPPVRRSGGREQHLAQV WRATS
>gi]l5608535|ref |NP_215913.l| protein Rvl397c [Mycobacterium tuberculosis H37Rv] MI VDSDVlIAH RGVVAARDW VSARKDGP AISVVSTAE IGGMRTAERREVWR ASFRVQPATEVIARRAGDMMRR YRRSHNRIGLGDY IAATADVQDLQLATLNVWHFPMFEQ KPPFAVPGHRPRA
>gi | 15608976 | ref |NP_216355.1 | protein Rvl839c [Mycobacterium tuberculosis H37Rv] MS RLQVLLDPDEWEE REIARRHRTTVSEWVRRTLREAREREPRGD DMKLRSVRAAARHEFPTADVEQMLEEIERGRG AEREGSR
>gi|l5608975|ref |NP_216354.1| protein Rvl838c [Mycobacterium tuberculosis H37Rv]
MIIJVDΞNIPMYLVGASHPHK DAQR ESALSGGER VTDAEVLQEICHRYVAIKRREAIQPAFDAIIGWDEVLPIERT
DVEHARDALLRYQTLSARDALHIAVMAHHDITRLMSFDRGFDSYPGIKR A >gi|l5609089|ref |NP_216468.1| protein Rvl952 [Mycobacterium tuberculosis H37Rv] MIRN PEGTKAA RVRAARHHHSVEAEARAILTAGLLGEEVPMPV LAADSGHDIDFEPER GLIARTPQ >gi]l5609090|ref |NP_216469.l| protein Rvl953 [Mycobacterium tuberculosis H37Rv] MTYV DTNWSALRVPGRHPAVAA ADΞVQVAEQFWAIT AEIERGVIAKERTDPTQSEHLRR FDDICV RIFVFARRG TNLIMQPLAGHIGYSLYSGIS F
>gi|15609663 |ref |NP_217042.1| protein Rv2526 [Mycobacterium tuberculosis H37Rv] MTVKRTTIELDEDLVRAAQAVTGETLRATVERALQQLVAAAAEQAAARRRRIVDHLAHAGTHVDADV LSEQA R >gi 115609664 I ref |NP_217043.11 protein Rv2527 [Mycobacterium tuberculosis H37Rv] MTTWILDKSAHVRLVAGATPPAGIDLTD AICDIGE E IiYSARSATDYDSQQTSLRAYQILRAPSDIFDRVRHLQRDLA HHRGMWHRTPLPD FIAETALHHRAGV HHDRDYKRIAWRPGFQACE SRGR
>gi 115609684 I re |NP_217063.11 protein Rv2547 [Mycobacterium tuberculosis H37Rv] MRTQVTLGKEE EL DRAAKASGASRSELIRRAIHRAYGTGSKQERLAALDHSRGS RGRDFTGTEYVDAIRGD NERLA RLGLA >gi 115609685 I ref |NP_217064.11 protein Rv2548 [Mycobacterium tuberculosis H37Rv] MK IDTTIAVDHLRGEPAAAVLLAELINNGEEIAASELVRFELIJAGVRESE AA EAFFSAW T VTEDIARIGGRLAR RYRSSHRGIDDVDYLIAATAIWDADLLTTNVRHFPMFPDLQPPY
>gi 115609895 I ref |NP_217274.11 protein Rv2758c [Mycobacterium tuberculosis H37Rv] MHRGYA VVCSPGVTRTMIDIDDD LARAAKELGTTTKKDTVHAALRAA RASAARSLMNRMAENATGTQDEALVNAMWR DGHPENTA
>gi [ 15609894 I ref |NP_217273.11 protein Rv2757c [Mycobacterium tuberculosis H37Rv] MTTRYLLDKSAAYRAHLPAVRHRLEP MERGLLARCGITDLEFGVSARSREDHRTLGTYRRDALEYVNTPDTVWVRAWEI QEALTDKGFHRSVKIPDLIIAAVAEHHGIPVMHYDQDFERIAAITRQPVEWWAPGTA
>gi 115609146 I ref |NP_216525.11 protein Rv2009 [Mycobacterium tuberculosis H37Rv] MYSGWSRTNIEIDDELVAAAQRMYRLDSKRSAVDLALRRLVGEPLGRDEALALQGΞGFDFSNDEIESFSDTDRK ADES >gi] 15609147 I ref |NP_216526.11 protein Rv2010 [Mycobacterium tuberculosis H37Rv] MIVDTSV IAYLSTSESLASRWLADRIAADSTVIVPEWMMELLIGKTDEDTAALRRRLLQRFAIEP APVRDAEDAAAI HRRCRRGGDTVRSLIDCQVAAMALRIGVAVAHRDRDYEAIRTHCG RTEP F
>gi|l5608698|ref ]NP_216076.1| protein Rvl560 [Mycobacterium tuberculosis H37Rv] MYR CMSRTNIDIDDELAAEVMRRFGLTTKRAAVDLA RR VGSPLSREFLLGLEGVGWEGDLDDLRSDRPD >gi 115608699 I ref |NP_216077.11 protein Rvl561 [Mycobacterium tuberculosis H37Rv] MILIDTSA VEYFRATGSIAAVEVRR LSEEAARIAMCEPIAMEILSGALDDNTHTTLERLVNG PSLNVDDAIDFRAAA GIYRAARRAGETVRSINDC IAALAIRHGARIVHRDADFDVIARITNLQAASFR
>gi| 15840067 I ref |NP_335104.11 protein [Mycobacterium tuberculosis CDC1551] MEVGVRDLRNRTSQVVDAVKAGVPVTLTVHGEPVADIVPHRRRIR LSGRICAMSSPSARPTRASPMNSTTWPVIPSTTC DRGRGRGRPARYVGLHCARERRCNRGPA
>gi 115840068 I ref |NP_335105.11 protein [Mycobacterium tuberculosis CDC1551]
MTEGEVGVGL DTSVFIARESGGAIAD PERVALSVMTIGELQLGLLNAGDSATRSRRADTLALARTADQIPVSEAVMIS
LARLVADCRAAGVRRSVKLTDA IAATAEIKV >gi|15839999|ref |NP_335036.1| protein [Mycobacterium tuberculosis CDC1551]
MSATIPARDLRNHTAEVLRRVAAGEEIEV KDNRPVARIVPLKRRRQ LPAAEVIGELVRLGPDTTNLGEELRETLTQTT
DDVR
>gi 115839998 I ref ]NP_335035.11 [Mycobacterium tuberculosis CDC1551]
MVNVRRALADTSVFIGIEATRFDPDRFAGYE GVSVVTLGELRLGVLQASGPEAAARRLSTYQ AQRFEPLGIDEAVSEA ALLVS LRAAKLRVPINDSWIAATAVAHGIAILTQDNDYAAMPDVEVITI
>gi ] 15840065 | re |NP_335102.1 | DNA-binding protein, CopG family [Mycobacterium tuberculosis CDC1551]
MAAALFLPNTRAYRRYNRSV AVRGSTRPQWQPPPKFQHAKCMSMRLAHRLQI LDDECHRRITAVARERGVPVATVVRE AIDRG VSPAGRRKSAGRRLLDAADMSVPEPRELKQELEALRARRG
>gi|l5840064|re |NP_335101.l| protein [Mycobacterium tuberculosis CDC1551] MIVLDTTVLVYAKGAEHPLRDPCRDLVAAIADERIAATTTAEVIQEFVHVRARRRDRSDAAALGRVTMPNCSRRYSPSIE ATSKRGLTLFETTPGIiEACDAVLAAVAASAGATALVSADPAFADLSDWHVIPDAAGMVSLLGDR
>gi| 15840856 ] ref |NP_335893.l| transcriptional regulator, CopG family [Mycobacterium tuberculosis CDC1551]
MIWCMKRTNIYLDEEQTASLDKLAAQEGVSRAELIRL LNRALTTAGDDLASD QAINDSFGTLRHLDPPVRRSGGREQH AQV RATS >gi|l5840855|ref ]NP_335892.l| [Mycobacterium tuberculosis CDC1551]
MI VDSDVLIAH RGWAARDW VSARKDGP AISWSTAE IGGMRTAERREV RL ASFRVQPATEVIARRAGDMMRR YRRSHNRIGLGDY IAATADVQD QLATLNV HFPMFEQ KPPFAVPGHRPRA
>gi|l5841307|re |NP_336344.1| DNA-binding protein, CopG family [Mycobacterium tuberculosis CDC1551]
MSKR QVL DPDEWEE REIARRHRTTVSEWVRRT REAREREPRGDLDMKLRSVRAAARHEFPTADVEQMLEEIERGRG AEREGSR >gi 115841306 | re |NP_336343.11 [Mycobacterium tuberculosis CDC1551]
MILVDSNIPMYLVGASHPHKLDAQR LESA SGGER VTDAEV QEICHRYVAIKRREAIQPAFDAIIGWDEV PIERT DVEHARDALLRYQTLSARDALHIAVMAHHDITRLMSFDRGFDSYPGIKR A
>gi|l5841423 | ref |NP_336460.1 | protein [Mycobacterium tuberculosis CDC1551] MEQIVIRNLPEGTKAALRVRAARHHHΞVEAEARAILTAGL GEEVPMPV LAADSGHDIDFEPER G IARTPQL >gi 115841424] re |NP_336461.11 [Mycobacterium tuberculosis CDC1551] MTYVLDTNWSALRVPGRHPAVAA ADSVQVAEQFWAIT AEIERGVIAKERTDPTQSEHLRR FDDKV RIFVFARRG TNLIMQPLAGHIGYSLYSGISWF
>gi 115842060 |ref |NP_337097.11 protein [Mycobacterium tuberculosis CDC1551] MTVKRTTIELDED VRAAQAVTGETLRATVERALQQLVAAAAEQAAARRRRIVDHLAHAGTHVDADV LSEQA R >gi 1158420611 ref |NP_337098.11 protein [Mycobacterium tuberculosis CDC1551] MTTWILDKSAHVRLVAGATPPAGIDLTD AICDIGELEWLYSARSATDYDSQQTSLRAYQI RAPSDIFDRVRH QRDLA HHRGMWHRTP PDLFIAETALHHRAGVLHHDRDYKRIAWRPGFQACELSRGR
>gi 115842083 I ref |NP_337120.11 DNA-binding protein, CopG family [Mycobacterium tuberculosis CDC1551]
MYGDVMRTQVT GKEE ELLDRAAKASGASRSE IRRAIHRAYGTGSKQERLAALDHSRGS RGRDFTGTEYVDAIRGDL NERLARLGLA
>gi 115842084 I ref |NP_337121.11 protein [Mycobacterium tuberculosis CDC1551]
MKLIDTTIAVDHLRGEPAAAVLLAELINNGEEIAASELVRFE AGVRESELAALEAFFSAWWTLVTEDIARIGGRLAR
RYRSSHRGIDDVDYLIAATAIWDADLLTTNVRHFPMFPD QPPY
>gi 115842296 I re |NP_337333.l| protein [Mycobacterium tuberculosis CDC1551] MHRGYALVVCSPGVTRTMIDIDDD ARAAKELGTTTKKDTVHAARAA RASAARS MNRMAENATGTQDEALVNAM R DGHPENTA >gi 115842295 I re |NP_337332.11 protein [Mycobacterium tuberculosis CDC1551]
MTTRYLLDKSAAYRAHLPAVRHR EPLMERG ARCGITDLEFGVSARSREDHRTLGTYRRDALEYVNTPDTV VRA EI QEALTD GFHRSVKIPDLIIAAVAEHHGIPVMHYDQDFERIAAITRQPVEWWAPGTA
>gi 115842405 ] ref |NP_337442.11 protein [Mycobacterium tuberculosis CDC1551] MSLSNW RQAGLRQLEAQRQRPLRTAQELREFFASRPDETGAEPDWQAHLQVMAESRRRGLPAP >gi 115842406 I ef |NP_337443.11 protein [Mycobacterium tuberculosis CDC1551] MIFVDTNVFMYAVGRDHPLRMPAREFLEHΞ EHQDRVTSAEAMQE LNAYVPVGRNSTLDSALT VRALTEI PVEAAD VAHARTLHHRHPGLGARD H ACCQRRGVTRIKTFDHTLASAFRS
>gi 1158414911 ref |NP_336528.11 protein [Mycobacterium tuberculosis CDC1551] MYSGWSRTNIEIDDELVAAAQRMYR DS RSAVDLALRRLVGEPLGRDEALALQGSGFDFSNDEIESFSDTDRKIiADES >gi 115841492 | ref |NP_336529.11 protein [Mycobacterium tuberculosis CDC1551] MIVDTSV IAY STSESLASR ADRIAADSTVIVPEVVMMEL IG TDEDTAA RRR LQRFAIEP APVRDAEDAAAI HRRCRRGGDTVRSLIDCQVAAMALRIGVAVAHRDRDYEAIRTHCG RTEP F
>gi 115841027 I ref |NP_336064.11 protein [Mycobacterium tuberculosis CDC1551] MYR CMSRTNIDIDDE AAEVMRRFGLTTKRAAVDLALRRLVGSP SREFLLG EGVG EGD DD RSDRPD >gi|l5841028|ref |NP_336065.l| protein [Mycobacterium tuberculosis CDC1551]
MILIDTSA VEYFRATGSIAAVEVRRLLSEEAARIAMCEPIAMEILSGALDDNTHTTLER VNGLPS NVDDAIDFRAAA GIYRAARRAGETVRΞINDCLIAALAIRHGARIVHRDADFDVIARITN QAASFR
>gi|29832236|ref |NP_826870.l| protein [Streptomyces avermitilis MA-4680] MSVTQIDLDDEA AEAMR MGVTTKKETVNAALRDYVARIKRLDAAEKLAARGARGEFEQAAAAYYAGKRARREAFE >gi | 29832237 | ref |NP_826871.1 | protein [Streptomyces avermitilis MA-4680] MITYLLDTSAL HLFRTPGA AP EGHIAAGVFHLCEPTRAEFLYSATSPTHRDE AEE DALC SPVPKNA RWVDTA QYK TQQGQHRAAGAIDLLVCATAVHHGHTVLHVDNDFATVAGVLKE QQRDVRA
>gi 117227999 I ref |NP_484547.11 unknown protein [Nostoc sp. PCC 7120] MNTRIQFTAKVEQGKIIIPDEYISMVGDN IEVIIKPKPSRLMDRLAENPLTAVGWRD SRDDIHE >gi 117228000 |ref |NP_484548.11 unknown protein [Nostoc sp. PCC 7120] MIFMNNFIDKKFIDSNIW YRF HDPKVDPQVQQLKRSMAINLTQAVDRSIWΞTQVITETCAVLKRKTGISEQNI ELV EEFEEQCEIVNLTTSEIKEACRLRDKYSFSYWDSLVIATA KSQAKVLYSEDMQNG IENQ TIINPFVGSGNR
>gi 117231113 I ref |NP_487661.11 unknown protein [Nostoc sp. PCC 7120] MQMEWEFQGIVKDGVIQIPEIYKGE DGESVKVIVMKKVRKTAAVDIIAE IEHPVEFEWPPLNREEIYDRNS >gi 117231114 ] ref |NP_487662.11 unknown protein [Nostoc sp. PCC 7120] MTAIHENGYFLDSNI IYALANNQDIN E?NIACRLIDAEGVIISTQVINEVC NLlKKSSFTEQQITQIιIEAFYKGSHII SFNRDI VNSSNLRSRYKLSF DSLIVACALAAGASILYSEDMQDGLWDSQ QIVNPFK
>gi|l7229689|ref |NP_486237.l| unknown protein [Nostoc sp. PCC 7120]
M TSHSHSMQII N DESLLNEASQLTNLASQEE VNFALQELVRSRRKKNLLDLAGQIQFAPDFDHKALRETRHAAD >gi 117229688 I ref |NP_486236.11 protein [Nostoc sp. PCC 7120]
MLLIDTSV IGVFRDRSDQVRQQLETLIAEREVLLTRFTQLELLQGS NEQE TLLSTYLETQNYVELTVQS QAAARIY FD RRQGLIVRSPIDCCIAQVALENNL IHNDRDFETIAQVRALQH RFQP
>gi 117228989 I re |NP_485537.11 unknown protein [Nostoc sp. PCC 7120] MTSREQLIQE AEVPDELV VM DFLHR QTTRSHHPLAKFAGILSDNEAADLQEAIQADCRQVDLNE >gi 117228988] ref |NP_485536.11 virulence associated protein C [Nostoc sp. PCC 7120] MSGEIA DTSVAIRFLNGDPDWSRV ALPEIFIJSVVWGE FGAENSTRPLKN PRY EFMEVCTWPVEKRTAVIYA QTRSALKRKGRPIPMNDV IAAHCLEHG VLVTDNSDFDYVDGLVIEHW
>gi|l7230970|ref |NP_487518.1| unknown protein [Nostoc sp. PCC 7120] MTSIKAKLIEAIETVPDSILEQT DY EY KTKEQKPQTLSQEIPQKEGEPI RGSKAKDL KFAKT QGDDFEECLQLV YDTRSQAEF
>gi 1172309711 ref |NP_487519.11 similar to nitrogen regulation protein NtrR [Nostoc sp. PCC 7120]
MYLLDTNHCSRIIFGDSNLIQQLQLNSEAGIATSVWCGE LYMAAKSDRSVANLQQVRVFLDTIDIYPVNFSISEVYGN LKGKLVNAFGPKEKAQRRNFN QALGFGDND WIAATAIHYNIiTVVSTDNDFRRIQQVETL ES LAS
>gi|l6329605 |ref |NP_440333.l| virulence associated protein B [Synechocystis sp. PCC 6803]
MNTAQISTDGTHQIVILPENFTIAGSEVYIKKIGSTIILIAKNNP QSLIESLDQFSDDFMKTREQPPLDIREEF
>gi 116329604 |ref |NP_440332.11 virulence associated protein C [Synechocystis sp. PCC
6803]
MKYLLDTNICIYLIKK PFKVLAKFQTLEISDIGISSITVAELEYGVSKSQQQS NRDALMQFLMPLEIVEFNSGSGDRL QH
>gi 116331533 I ref |NP_442261.11 PEMI-like protein homologue [Synechocystis sp. PCC
6803]
MKRSVTMSSTYW DSRGKSQS T PEDLR NATEVEIYCQDGRLIIEPLPQPS LAKLVLLDDIEESFPENFTDNLPL DNIN
>gi| 16331532 |ref |NP_442260.1| virulence associated protein C [Synechocystis sp. PCC 6803]
MQYPYLLDRNI SNLIRHPNGTIFFKI EVGEANISTSIIVACELAFGAEKKQSKR QERVNLI DLVPIAPMLAGMEKV YG IRAILEHQGTPIGGNALLIASQAIYAN I VTDNTGEF RMPGLSVENWL
>gi I 20808932 | re |NP_624103.l| protein [Thermoanaerobacter tengcongensis] MKKSKRKMEIQNITLSLPKDLLQKIKHIAIDRQTSVΞGLLTETLEEITOKEDLYERAKLRHISILEKGFDLGTEGKITWS RDD YERQ >gi|20808933 | ref |NP_624104.1 ] [Thermoanaerobacter tengcongensis]
MIYMKGNKDLQFVDTNVVYAYDVSAGE HEIAKE KELWYERNGCLSTQVLQEFYVTIT KVKKPLSPVEAAEIISD RSWKLSVIDIKDILEAIRVSQRYMISFWDSLIIVSAVNLDCEIIWΞEDLNSGQYFGKVRVQNPFNK
>gi 116124288 ] ref |NP_418852.11 vapB family protein [Caulobacter crescentus CB15] MARATGKTFRSGNSEAVRLPRDLAFGADVELTLIRSGDVLTIYPSKGSIADLVATLNQMPRPDSVEIRDEDLFPERPGL >gi | 16124287] ref |NP_418851.1 | vapC protein [Caulobacter crescentus CB15] MAYVLDTNVAIHLRDGDPEVTTRVTALNGAIL SIISRVELEGGVYREAAQAG RRSRLDVMLKVLPVLDFDGAAADEYR RIVESAGYSRRKWDRMIAAQALAHRATFVTFNADDFRDIPGLSLLAW >gi 117934913 I ref |NP_531703.11 [Agrobacterium tumefaciens str. C58 (U. Washington)] MRTNIE DDA IAEAMEITGLPTKKATVEKA RDLVENLGRRKALQE RGIGWKGDLEEVRGSWSADSIKSQDAAE >gi 117934912 I ref |NP_531702.11 [Agrobacterium tumefaciens str. C58 (U. Washington)] MIWDTSVWIDWFQNKQTPQVATLSDINDLSDVIIGDII LEILQGERNERRAAAIESRLKVFELVSMLTPEFAVAAAAN YRKLRGLGKTVRKTADLIIGTYCIEHGHKLLQNDRDFQPMADHLGLQFV
>gi I 27377546 I ref |NP_769075.11 bsl2435 [Bradyrhizobium japonicum]
MADHNTAPDTLPADDTWT ANAKARLSQVIDRAQTGPQIITRHGKPNAVIVSAEEWARKTARKGTLAEFL ASP RGADL ALERMHDAPRDEMP
>gi I 27377545 I ref |NP_769074.11 plasmid stability protein [Bradyrhizobium japonicum] MNLLLDTNVLSEVQRPAPSPKVLAWLDTIDEDRAFISVASIAE RRGIALLEDGRRRSALAAW AHDLPARFADRVLPID HAVAEHWGDLMAQSRRSGVTLSVMDGFFAATALAHSLSLVTRNVKDFAAFGVPLLNPWDDP
>gi|l3474236|ref |NP_105804.1| unknown protein [Mesorhizobium loti]
MMAGTHRSMSLGREFDMAEPQLSVRSAKARDLAHRIΛRRENRSIADWERALESYEIREAGREPASTFYAS TASSGVDI DLEKVIREGRELHSGIEH
>gi 113474235 I ref |NP_105803.11 plasmid stabilization protein [Mesorhizobium loti] MIFVDTNVISESLKKTPDPAVLAWLVRNDAELALPTVTIAEIAFGIQKIRPDERADRLEQGLSRWRHRFADRIFGLTEEA ALAYGAIMGAATRQGPGMSAPDGMIAAIARVNGGRLATRNLNDFGTTΞLD ISPWNF >gi 113474916 I ref |NP_106486.11 unknown protein [Mesorhizobium loti]
MSSSQKRAIQNYRSRLSERGLARFEVLGRDADRDLIRSLARRLAEDGPDASSLRAAVΞQTIAGEPPKLVGILAALRRSPL
VGADLD SSPHEEGRKIDL
>gi 113474917 |ref |NP_106487.11 plasmid stabilization protein [Mesorhizobium loti]
MTRYLLDTNIISDVVKSQPSESLLAWMSRQRDEDLFIASLTVAEILRRVLEKPRGKKRDALDNWFSGPEGPQALFAGRIL SFDDKAGLIWARLMAGGKLAGKPRSGLEGKMAETQIEWSAPNPAGRAPR
>gi 1134716411 ref ]NP_103207.1 ] NtrP protein [Mesorhizobium loti]
MPQHRHTTTPPPKEAKLFRNNRΞQAVRIPVEFELPGDKVLISREGDRLVIEPLRKPGLAALLAQWAKEAPLGPEDNFPEI NDAPVEAEDIF
>gi 113471640 |ref ]NP_103206.11 NtrR protein [Mesorhizobium loti]
MRFMLDTNIISDMIRNPAGKAAGAMVREGDAAVCTSIWASELRYGCARKGSTKLLKKVEDLLAEIPVLPLDVPVDAEYG
ALRAE EAVGQPIGYNDLFIAAHACVLGTT VTANIGEFTRIRK KVENW E >gi 115965038 |ref |NP_385391.11 [Sinorhizobium meliloti]
MRALIDMNDTQVEALDTLAKRVRRSRAALIREATDDYLNRHHREQIEDGFGLWGKRKVDGLAYQEKVRGEW >gi 115965037 I re |NP_385390.11 [Sinorhizobium meliloti]
MVGALFDTNI IDHLNAVPQAHKELDRFENRAISIITWMEVMVGADAE VEPTRRFLDGFETIALNDEIANRAVTLRRAH RIKLPDAVIWATAQTAGRLLVTRNTKDFPADDPGIREPYAV
>gi 115965370 I re |NP_385723.11 [Sinorhizobium meliloti]
MPTSTITSKGQITIPAKVRIDMG SAGDRVDFIRMEDGHYAWPASHSIRSLKGIVPRPDRPVS EDMQKAIIAGAAGE >gi|l5965369|ref |NP_385722.1| [Sinorhizobium meliloti]
MIGVDTNLLVRYLAQDDTTQSP ASQIIDGFTPEAPGYISQWLVETVRV TRΞYRMSREAVASVIETL RAREIWDRA DAGY ALATYRATKADFSDALIAHGG LAGCTETLTFDKLAADHAGMR VSP
>gi 115966170 I re |NP_386523.11 NITROGEN REGULATORY PROTEIN [Sinorhizobium meliloti] MPVPLPSSRP EVKLFRNNRSQAVRIPAEFELPGDRVLIRREGTRLIIEPIARPADIVEIiLAEWKKEAPLGPEDRFPDVE DIPARPEKIF >gi 1159661711 ref |NP_386524.11 NITROGEN REGULATORY PROTEIN [Sinorhizobium meliloti] MNGYLLDTNIISDVIHNPFGPAAQRIERIGPKEIYTSIWASELRYGCAKKGSAKLLAKVESLLEIVPVLPLDIPADTRY GSIRAELESLGQTIGSNDLLIAAHAYALDLTLVTDNIREFSRVRGLSLENWLER
>gi 115966710 I ref |NP_387063.11 /UNKNOWN PROTEIN [Sinorhizobium meliloti] MEEAVSAADANRKFSLILRSVREGHSYWTSHGRPVARIVPAAKSDNAVSGARTALLSRLERQPAVIAGRWTRDELYEDE R
>gi 115966709 I ref |NP_387062.11 [Sinorhizobium meliloti]
MRVALDTNVLAYAEGVNGIEKRDIVLELVRNLPQEAAVIPVQVLGELFNVLVRKAGRSRADAREAILGWRDAFSIVGTSP EIMVAAADLATDHHFGIWDAVILSAASQAGCRLLLSEDLQDGFTSGGVTWNPFASPRHTLLESLLGGGEASE
>gi 115967067] ref |NP_387420.11 VIRULENCE-ASSOCIATED PROTEIN HOMOLOGUE [Sinorhizobium meliloti] MPHLARVFQSGNSQAVRLPKEFRFNVDRVEITQEGDALILRPHVEQGEQWSSLKAALARGMSEDFMMCGREQPEQQDRSE
LDAVFR
>gi | 15967066 | ref ]NP_387419.1 | VIRULENCE ASSOCIATED PROTEIN HOMOLOGUE [Sinorhizobium meliloti]
MISHILDTNAVIALIGRKSDALVTRVLHΞPQGIIGLPSWAYELYFGAQKSAKAQHNLETLRLLMADFPILDFDRNDAFV AGEIRAALAAKGTPIGPYDVLIAGQAKARGLTLVTNNVGEFNRVENLRVEDWSL
>gi|l5966439|ref |NP_386792.l| [Sinorhizobium meliloti] MASSTVFISNRSQAVRLPKAVAFPEGVHQVDILKIGRSRVIVPQGKRWDDLFLSGPRVSEDFMSERDQPVAETRESF >gi | 15966438 | ref |NP_386791.1 | [Sinorhizobium meliloti]
MLTYMLDTNICIYVMKTYPPAVREKFNGLAEQLCISSITLGELHYGAEKSAWRVENLTAIEHFVARLEVLPFADKAAAHY GQVRAELERTGTPCGPHDMQIGAHARSEGLIWTNNIREFVRMPGVRVENWL
>gi 1 15892524 I ref | NP_360238 . 1 1 unknown [Rickettsia conorii ]
MSKSARWISSKQWIPKYIRNKLGLHSGSELIINYKKNETLELLPINKDIYΞFFGKGKHKAKNGPVDVDEAISIAVIEN DRN >gi 1 15892523 | ref | NP_360237 . 1 1 unknown [Rickettsia conorii ]
MKLLVLRLSKMIGIDTNILTRTFLEDDKIQGKAAQNFLKNNITSKIFIASYALLEFVWVLKVNKFTRQEIYETVINLIDN SGFIIGHQDIIISATEQYIKGKADFADYIIIAEGEVNSANKFITFDKDLVREVKNASYP
>gi|l5892303|ref |NP_360017.l| unknown [Rickettsia conorii]
MRINMAQIIRATEFVRSFSDIMNRVYYKGESFDVQKGNHIVARITPAEIKPSVAVRDLEEAFKNGPHLDPEDADQFMKNR EEIRYNTKQDIKKLVERWD
>gi|l5892302|ref |NP_360016.l| unknown [Rickettsia conorii] MGLIIDTAIIIALEREKVSTKQWSHYGQTYISPIVLTELLIGVYRVKNENKRIKCLAFIEYVKSLFTILPFGIEEVYTYA RITHDLYTQRITIGTHDMLIAATAITKGFLILTLNVKDFKRIQGLEVLTVSSKD
>gi 115893242 I ref ]NP_360956.11 unknown [Rickettsia conorii]
MNKWQLHEAKNKLSNIIDIAMHGTPQCITKRGEEAWIISIKDYKQLTKQKPDFKEYLLSIPKTDNLDIQRAKGYARDFE
L
>gi 1 15893241 | ref | NP_360955 . 1 1 similarity to plasmid stability protein [Rickettsia conorii ] MKYLLDTNWSEIQKKKSNSQVAAWFSIIHSSQLYLSCITIGEIRKGISKLAKKDKIASLKLEKWLERIIIDYNERILNI
DKEICEEWGELMSIDSTNAIDALIAAQAKQSNMILVTRNIKHYNMFNIKIFDPFN
>gi 1 17547775 I ref | NP_521177 . 1 1 PROTEIN [Ralstonia solanacearum]
MQVSKWGNSLAIRLPAAWEALQLHEGDDVEWIAGERSFGVRRKRAARELFDRIHQYRGKLPADFIFERDQANARD >gi 1 17547774 I ref | NP_521176 . 1 1 TRANSMEMBRANE PROTEIN [Ralstonia solanacearum] MPATEAFFDSNVVLYLLSADTAKADAAETLLMTGGVVTVQVLNETTHVMRRKLAMPWHAIETVQEAVRAQCRVEPLTLET HDLGRRIAERYGLSVYDALIVAAALLAGCNVLYSEDMQHGLVIEQHLRIVNPFPARA
>gi 1 17545591 1 ref | NP_518993 . 1 1 PROTEIN [Ralstonia solanacearum]
MQSWQMQAAKARFSDWKRAADDGPQEITVHGRPVAWISRALFDRLSGSGESLVSFMRQSPLADQDDWFERERSLPRE VEF
>gi 1 17545590 | ref | NP_518992 . 1 1 PLASMID STABILITY-LIKE PROTEIN [Ralstonia solanacearum]
MSYLIDTNVLSELRRKAPDARVAAWMQDRPRQSLYLSVLTLGEIRKGIERLEDAVRRQNLIDWLEVELPNYFLGRLLDID AHTADRWGRLMSSAGRPLPAIDGLLAATALQHDLTLVTRNTKDFAGLDIQLINPWEA
>gi I 30249350 I ref | NP_841420 . 1 ] [Nitroso onas europaea ATCC 19718 ] MQVSKWGNSLAVRLPASWEILDLKEGDSIEIHVAGARDIEIMKTPEAREILERLRKYRGRLPKDFKFDRLEAHERS >gi | 30249349 | re |NP_841419.1 | [Nitrosomonas europaea ATCC 19718]
MKDHSAFLDTNILLYLLSEDETKSVRAENTIAAGGFISVQVLNEFASVARRKLNMSFAEIQEFLSHIRMICSWPVTVEV
HDQGLRIAEHYGFSIYDALIIAAALΞADCTILYSEDMQNSQIIDDRLLIQNPFA
>gi ] 30250109 I ref |NP_842179.11 protein [Nitrosomonas europaea ATCC 19718] MERGMTMSTIERLYKLSSTLPPAALAELLDFAEFLHQKNMLPQPDEPFRLIDMAGGLEHSACFAGEPLAVQEALRREWD >gi 130250108 I re |NP_842178.1 | protein [Nitrosomonas europaea ATCC 19718] MNGIDWLLDTNFILGLLKSNPETLSMISNQQIDTRRCGYSAITRMELLGFPGLTAEEEILISGKLACLQYLPLTKEIEDM VIGLRRSHRVKLPDAIIAASALTCNAQTDP
>gi | 30248512 | re |NP_840582.1 | NtrP protein [Nitrosomonas europaea ATCC 19718]
MFRNRSNTMLSERYVRLFRNGKNQAVRIPREFELNAQEVIMRREGNRLIIEPVPPKGLLWLAELAPLEENFSDIDTRLA
PLDDIDL
>gi I 30248513 |re |NP_840583.11 PIN (PilT N terminus) domain [Nitrosomonas europaea
ATCC 19718]
MISPRYLLDTNILSDLVRYPQGVIARRIEEVGEAAVCTSIIVAAELRFGAARRNSLRLTRQVEAILAAIEVLPLDTPVDR
A AYYAAnQτL,RRiWπVrLr,κEnQsSGGnQ'V7-TIRGPPNT\DnMMTL,TITAAθQAAMAΛ.SqnQrC\VπL,τIτTAΛwNτL,nD'KK'FFSSTR!^V;GGFETL,oQvVEENNWWTLΛVrRR
>gi I 302490611 ref |NP_841131.11 plasmid stability protein [Nitrosomonas europaea ATCC
19718]
MATMTIRNIDEQLKARLRVRAAMHGRSMEDEVQDILRTALSAEPVQTVSLVEVIRSRIEPLGGIELNLPEREAIRDPLEP
>gi I 30249060 I ref |NP_841130.11 PIN (PilT N terminus) domain [Nitrosomonas europaea ATCC 19718]
MIVLDTNVLΞEILRPVPDTQVLVWLAAQPRSVLFTTTVTRAELFYGVRLLPDGQRQTALLDAIQSIFDQDLAGHVLNFDS TAADTYAKIAASRKAVGKPISQFDAMIAAMAKSKGASLATRNLKDFVDCGIDLVNPWSTSYLK
>gi | 30249551 | ref | NP_841621.1 ] plasmid stability protein [Nitrosomonas europaea ATCC 19718]
MATLTIRNVDDVTKRLLRIRAAQHGVSMEEEVRRILRQELSRAGSSQFPFGQHLLSRFAESTSKEFALPARQVPRTPPSW DEPI >gi I 30249550 I ref | NP_841620 . 1 1 PIN (PilT N terminus) domain [Nitrosomonas europaea
ATCC 19718]
MILLDTNVLSEFMRLQPATQVWWLDRQAPNEIWTNAVSRAEIELGLALMPESKRQKSLSQAARTMFDEDFAGRCLPFDE IAASYYGRIVSTRTRMGRPISVEDAQIAAIALAYRMFLSTRNTVDFEDIAGLNVINPWETEA
>gi|30248493 | ref |NP_840563.1 | [Nitrosomonas europaea ATCC 19718] MYTGTVFENNRTQAVRLPVDVRFADDVKKVWVRKLGKERILTPVDHTWDSFFLAEQGVSEDFLSERASQEQQEREVF >gi I 30248494 I ref |NP_840564.11 PIN (PilT N terminus) domain [Nitrosomonas europaea ATCC 19718]
MLKYMLDTNIAIYVIKRRPIEVLVTFNRYADMMCVSAVTEAELLHGAEKSRQREHNLRQVADFLSRLEVLSYTSKAAGHY GDIRADLERKEKPIGVNDLHIAAHARSEGFILVSNNLREFERVDGLRLENWIT
>gi | 3025005l | ref | NP_842121. l | protein [Nitrosomonas europaea ATCC 19718 ] MHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAARPSLKQLLLSDSARTEMLVPERGKARRRQ VEPLR
>gi | 30250052 | ref |NP_842122 . 1 | PIN (PilT N terminus ) domain [Nitrosomonas europaea ATCC 19718 ]
MYLLDTNWSELRKPRPHGAVLAWINSVDDASLHLATVTLGEIQAGIELTREQDPAKAAEIESWLDLVSDSYNVLVMDGP AFRCWAKLTHKKSNTLIEDAMIASIAKIHGLTWTRNVSDFSSFGVRIFNPFEFNANA
>gi I 30249329 I ref |NP_841399.11 [Nitrosomonas europaea ATCC 19718]
MTAATLTSKGQITIPAAVRAGLGIDVGDRVEFIEIEPGRYEVIAATQSVKALKGIIRKPNHPISIEQMNAAIAREAVKSV R
>gi|30249328|ref |NP_841398.1| [Nitrosomonas europaea ATCC 19718] MIGLDTNVLLRYLAQDDAIQSPKSTLLIESLSVEEPGFVPLIVIVESVWVLSSAYGSTREEITEVLHNLLRTRELRIEQA ETVAAALHLYQRGKADFADCLIERTAMRAGCKAVMTFDKTAVKSCGMQLID >gi|29654595|ref|NP_820287.l| protein [Coxiella burnetii RSA 493]
MLRILAGSIGIGIFSSIMYNYIYTYLEANMKASILDLRYNMKSVLKALERNEEIEILYHGKVKGTILPYRKPSSKKKITE
HPFFGMLANEEKSVTEQMDTLRGGRYNDL
>gi I 29654594 I ref |NP_820286.11 PIN domain protein [Coxiella burnetii RSA 493]
MIFDTDILIWVQRGNVKAAGLIEKAEERMISIYSYMEMFQCATAKSQHKIMHAFLREYDFKIQPLSEKIGHRAAIYIEEY
ALPSGLRAGDAIIAATAVENNWVLATSNNKHFKCIKDLQFNLFKP
>gi | 29654541 |ref |NP_820233.1 | transcriptional regulator, CopG family [Coxiella burnetii RSA 493]
MIRTQIYLTKQERKYLNLLSQKIGKSQSALIREAIDQFIKAHLKARDDHQAAMEAAKGLWADRKDLΞNLTKIRKELDNRL KDTE >gi I 29654540 I ref |NP_820232.11 PIN domain protein [Coxiella burnetii RSA 493] MLLLLDTDIIIDFLRGQESAVKFIEKTAAKWCHISTLTIAELYVGARDGEEYGVLERFLQIFTAIEVSPQIAQLGGLFR RDYGKSHGTGLADAIIAATTQCISAKLVTLNKKHYPMLKNIHVPYLKS
>gi | 21245026 | ref |NP_644608.1 | plasmid stability protein [Xanthomonas axonopodis pv. citri str. 306]
MPSFTVRNIPDDVHRAIRARAALHGRSTEAEIRAILELAAKPADRVKLGSLLVSIGRDAGLTAKEANAFDKLRGKAAIKP
IGLK
>gi I 21245027 | ref |NP_644609 .1 1 plasmid stability protein [Xanthomonas axonopodis pv. citri str . 306]
MILLDTNVISELWRPQPNPQWAWIDAQAVETLFLSWTVAELRFGIAVMPKGRKRSTLHARLEGEVLPLFDGRLLAFDL
DASHAFAALASKARTAGLTLGRADAYIAATAAAQGLTVATRDTAPFEAMALDVINPWS
>gi ] 21242923 I ref |NP_642505.11 cell growth regulatory protein [Xanthomonas axonopodis pv. citri str. 306]
MAMQVAKWGNSLAVRLPSSLVEALELREGDDIEIWDDPRLFAVRKKPGPEAMLERLRAFRGKLPADFKFNRDEANGRG >gi|21242922|ref |NP_642504.1| [Xanthomonas axonopodis pv. citri str. 306] MFLDSNWLYLLSEDAVKADGAEALLQRRPVISVQVLNEVTHVCVRKLKMGWDEVGQFLALVRSFCKIVPLTVDVHDRAR QLAERHQLSFYDACIVAAAAIEGCQTLYSEDMHHGLIIEESLSIRNPFNV
>gi 1212310841 ref |NP_637001.11 [Xanthomonas campestris pv. campestris str. ATCC
33913]
MHYNAKHQPWIARQTIMTTLTVTARGQVTFRKDVLQHLGIRPGDKIELNLLPDGRGVLKAARPAGTIASFVGLLAGRTQK
VATIEEINEAAAQGWAGKQ
>gi ] 21231085 I ref | NP_637002 .1 1 [Xanthomonas campestris pv. campestris str . ATCC 33913 ]
MKVAADTNVLVRAWRDDPAQADVAAAVDTDAELIAVALPCLCEFVWVLLRVYGFQQADAASAIRALLAAANVEVNRPAV
EAGLLVLDAGGDFADGVIAYEGNWLGGETFVSFDKKAWLLTAQGQSTRLL
>gi ] l583819l | re ] NP_298879 . 1 | plasmid stabilization protein [Xylella fastidiosa 9a5c] M MAMLTVRNLPDEVHRALRVRAATHGRSTEAEVREILTNMVKPDERVRIGDALATLGREIGLNNEDFTTFDKVRDKTQA EPMRFE
>gi 1 15838190 I ref |NP_298878 .1 1 plasmid stabilization protein [Xylella fastidiosa 9a5c] MIVLDTNWSEAMKPEPDAAVRTWLNEQMSVTLYLSSVTLSELLFGIAVLPTSKRKDMLARTLDGLLDLFNERVLPFNTD
AARHYAELAVKARNSGRGFPTPDGYIAAIAAΞRGYIVASRDTSAYESSGVQVINPWQYSKQT
>gi 116272274 I ref |NP_438486 .1 1 virulence-associated protein B [Haemophilus influenzae
Rd]
MLTKVFQSGNSQAVRIPMDFRFDVDTVEIFRKENGDWLRPVSKKTDDFLALFEGFDETFIQALEARDDLPPQERENL
>gi 116272275 I ref |NP_438487.11 virulence-associated protein C [Haemophilus influenzae
Rd] MIYMLDTNIIIYLMKNRPKIIAERVSQLLPNDRLVMSFITYAELIKGAFGSQNYEQSIRAIELLTERVNVLYPNEQICLH
YGKWANTLKKQGRPIGNNDLWFACHALSLNAVLITHNVKEFQRITDLQWQDWTK
>gi 116272886 (ref |NP_439109.11 protein [Haemophilus influenzae Rd]
MIEASVFMTNRSQAVRLPAEVRFSEEIKKLSVRVSGSDRILSPLNQSWDSFFLNDQAVSDDFMNEREIAFQPEREAL
>gi |16272885 |ref |NP_439108.l| virulence-associated protein C [Haemophilus influenzae
Rd]
MLKYMLDTNIVIYVIKRRPLEILSRFNQNAGKMCVSSITVAELYYGAEKSEYPERNIAVIEDFLSRLTILDYQPKHAAHF GNIKAELSKQGKLIGENDIHIAAHARSEGLILVSNNLREFERVIALRTENWV
>gi|28868263 |re |NP_790882.1| virulence-associated protein, [Pseudomonas syringae pv. tomato str. DC3000]
MEQSTVFKSNRSQAVRLPKAVALPDDVKRVDWAVGRTRIISPAGEMWNSWFDGESVSDDFMAEREQPVEQLRESL
>gi |2886826 |ref |NP_790881.1 | virulence-associated protein, [Pseudomonas syringae pv. tomato str. DC3000]
MLKYMLDTNICIFTIKNKPVΞVREAFNLHHGQLCISAITLMELVYGAEKSSSPERNLAVVEGFAARLELLPYDSDAAAHT
GMIRAELARAGTPIGPYDQMIAGHARSLGLWITNNQREFQRVEGLRVEDWVSQ
>gi | 28869204 j ref |NP_791823.1 | prevent-host-death family protein [Pseudomonas syringae pv. tomato str. DC3000]
MTTTLSSREFNQDTSGAKKAANEGPVFITDRGRPAHVLLSIEAYLQLTGSAASIADLLIMPTHLDIEFEPQRAVITPRPV DLS >gi | 28869203 |ref |NP_79182 .1 | PIN domain protein [Pseudomonas syringae pv. tomato str. DC3000]
MFLLDTNVVSELRKRNADANVLRWSRTQMASSLFISSITILELETGILRVERRDPTQGAALRMWLDHHVLKAFAGRILPI DTQVAKRCAQLHVPDPRSECDALIAATALVHGMTWTRNTADFKSSGAALLNPWISQLNEETAYYSSASR >gi|l6766336|re JNP_461951.1| cytoplasmic protein [Salmonella typhimurium LT2] MHTTLFFSNRTQAVRLPKSISFPEDVKHVEIIAVGRSRIITPVGESWDSWFDGEGASTDFMSTREQPAVQEREGF >gi |16766335 |re |NP_461950.l| nucleic acid-binding protein, contains PIN domain [Salmonella typhimurium LT2] MLKFMLDTNTCIFTIKNKPEHIRERFNLNTSRMCISSITLMELIYGAEKSLAPERNLAWEGFISRLEVLDYDTQAAIHT GQIRAELARKGTPVGPYDQMIAGHAGSRGLVWTNNLREFERIPGIRIEDWC
>gi 1167618111 ref |NP_457428.11 protein (assiciated with virulence) [Salmonella enterica subsp. enterica serovar Typhi]
MHTTLFFSNRTQAVRLPKSISFPEDVKHVEIIAVGRSRIITPVGESWDSWFDGEGASTDFMSTREQPAVQEREGF >gi 116761810 I ref |NP_457427.11 protein (assiciated with virulence) [Salmonella enterica subsp. enterica serovar Typhi]
MLKFMLDTNTCIFTI NKPEHIRERFNLNTSRMCISSITLMELIYGAEKSLAPERNFAWEGFISRLEVLDYDTQAAIHT GQIRTELARKGTPVGSYDQMIAGHARSRGLVWTNNLREFERIPGIRIEDWC >gi 1167624011 re |NP_458018.11 CopG-family DNA-binding protein [Salmonella enterica subsp. enterica serovar Typhi]
MSMMAGMDMGRILLDLSDDVIKRLDDLKVQRNLPRAELLREAVEQYLERQDRAETTISKALGLWQGCEEDGVEYQRKLRE
EW
>gi |16762400 |ref |NP_458017.l| protein [Salmonella enterica subsp. enterica serovar Typhi]
MVKGSALFDTNILIDLFSGRIEAKHALEAYPPQNAISLITWMEVMVGAKKYHQENRTRIALSAFNIIGVTQEIAERSVIV
RQEYGMKLPDAIILATAQVHRCELVTRNTKDFADIPGVITPYHL
>gi|29143295 | ref |NP_806637.1 | protein [Salmonella enterica subsp. enterica serovar Typhi Ty2]
MHTTLFFSNRTQAVRLPKSISFPEDVKHVEIIAVGRSRIITPVGESWDSWFDGEGASTDFMSTREQPAVQEREGF >gi 1291432941 ref |NP_806636.11 protein [Salmonella enterica subsp. enterica serovar Typhi Ty2]
MLKFMLDTNTCIFTIKNKPEHIRERFNLNTSRMCISSITLMELIYGAEKSLAPERNFAWEGFISRLEVLDYDTQAAIHT GQIRTELARKGTPVGSYDQMIAGHARSRGLVWTNNLREFERIPGIRIEDWC
>gi I 29143889 I re |NP_807231.l| CopG-family DNA-binding protein [Salmonella enterica subsp. enterica serovar Typhi Ty2]
MSMMAGMDMGRILLDLSDDVIKRLDDLKVQRNLPRAELLREAVEQYLERQDRAETTISKALGLWQGCEEDGVEYQRKLRE EW >gi |29143888 |ref |NP_807230.1 I protein [Salmonella enterica subsp. enterica serovar Typhi Ty2]
MVKGSALFDTNILIDLFSGRIEAKHALEAYPPQNAISLITWMEVMVGAKYHQENRTRIALΞAFNIIGVTQEIAERSVIV RQEYGMKLPDAIILATAQVHRCELVTRNTKDFADIPGVITPYHL
>gi 124215974 ] ref |NP_713455.11 protein [Leptospira interrogans serovar lai str. 56601]
MKNITFFADDQLLEKARLRAASERKSLTDVFNEFLKNYSNSVKDVSDYENLLQKLAYVKVGRKFTREEMNER >gi|24215973 |re |NP_713454.1| [Leptospira interrogans serovar lai str. 56601] MKDKVFLDTNLFIYNFDTENKTKHEKSKEIVLTALAENNYVISYQVIQEFSNVALKKFQIPLKPKDLAIYLKRVMFPLCN VYYTNENILNAIEIRNRYKLSFYDSVLIGSAIEANCKTLLSEDLQDGLQIKGLQITNPFNSTIKKKK
>gi|24213702|ref |NP_711183.l| virulence associated protein B [Leptospira interrogans serovar lai str. 56601] MQTAKLFINGRSQAVRLPKEFQFTGDDVLIQKVGEAVILVPKNKAWNVFLEGLNGFSDDFFKEEREQPKSDKREKL >gi I 242137011 ref |NP_711182.11 virulence associated protein C [Leptospira interrogans serovar lai str. 56601]
MYLLDTNICIFLIKKKNATLLENLKKKLNKDLFVSSLTVAELEFGIQKSEFKEKNKVALIEFLTIFNILSFSDKDAESYG IIRADLERKGNVIGSIDMLLAAQAIANNYIFVTNNTKEFKRIKALKIENWTQ
>gi|l5807097|ref |NP_295826.l| protein [Deinococcus radiodurans] MTAPKELHERIDRLPPEAIKAIQELVERQEYAAQQIAALKAFAADWTPEEQAAWDEGTKRRPWRTFPPEEV >gi|l5807096 | ref |NP_295825.1 | plasmid stability protein, [Deinococcus radiodurans] MLALDTNILIALQKLEPAAFGHDRQALMTVPWIPSWRYEARRSLLAPQYARRLAQLDQLLSGHATLDFDQQAADIAAD IYHQLCTTGQLIDEADLMIAALSIQHGAALVTRNTSHFQRIPGLTLLDWL
The following sequences were found in a later supplementary search:
>vapB | 14600379 :cl99314-199072, length 81, Aeropyrum_pernix, VapB
MLLLWSTVSKVIRVKYEKGVLKPLEPLDLQEGEEVQVIIQPGEPIAEKYYGIARKHRPN
LDKKEFLEVLEEIEDEDIRGH >gi 114600586 I ref |NP_147103.11 hypothetical protein APE0273 [Aeropyrum pernix Kl] MRIFVDTSIILAFLAGQDDRAKDLMRKVERHEITGYINPLVIDEVIHGYLRLATGLSARRIRKLLARRDERLIKMIKGEV WPVLKLFTTLPLMAEPGEIIEFIEEYGLMPADALIALTCKQHELDTIATLDEDFKRIPWLKWP
>gi|l4600594|ref |NP_147111.l| hypothetical protein APESOIO [Aeropyrum pernix Kl] MELRRVEIGMSKVIRVRYEKGVLKPLEPVNLEDGEEVDIIIRENLAELARRIRRRLSQEREEPSEILSRERSRLA
>gi 114600593 | re ]NP_147110.11 hypothetical protein APE0279 [Aeropyrum pernix Kl] MVECIERHSISVYAPRLFLVEVAGVLVRYLAPSIVERVLDAFSSKVILVGDEAYFRIAVEIALATGSRGADSYYLGLAKT LNLPVATSDKVQAQNARKAGIKSFYILSNNELEELMKYMGCK
>vapB] 14600379 :c697607-697245, length 121, Aeropyrum_pernix, VapB MAMNIDGDGVWSTTAGSTAYSLSGGGPIIDPRLDVIVLTPLNPVQLFLRSIWPSGSRV TVEASVYSNPLWNIDGQYVYELEPGGIVDIERCGSGVRIARFRWWEDYYERLYTRLLAY W
>gi 114601184 I ref |NP_147716.11 hypothetical protein APE1098 [Aeropyrum pernix Kl] MRGSTQGCSPTGREAIVLDTGAFIAGKAAALPGRLATPPRVLEEVRDRGSRSLLELLQSTGRLEVLAPSTRALERAREEA RRAGVLGRLSGADLEVLALALDLAWQGCRVAVATDDYTLQRLAARLGLGWRLRYRGAV
>vapB|l4600379:c760494-760258, length 79, Aeropyrum_pernix, VapB MGWGCAMΞKVIRVKYEGGVLKPLEPLVLSEGEEVEWIRRRVFGEEDYRELVDFLSELPK GKAELLDLVEELYLEEALR
>gi|l4602203 |ref |NP_147786.1 I predicted nucleic acid-binding protein, contains PIN domain [Aeropyrum pernix Kl]
MRRLFVDANIFIRIIFNREHSLLEYLIGTEPYTSTHLLEEAAYKLIALSIIESEGPVSVYKIGKLFEKGAAEDTIRARLA ALDKIAEKLNIIPPTYSDFRESMKISLEYKLLPSDALTVAIMKREEIKEILTLDNDFKQIP
>vapB 114600379 :cl008442-1008167, length 92, Aeropyrum_pernix, VapB MVPPGHDPNDFARGSIKTCQWRGRNINTNIKNTTMGEAVATKKITIEVEVPEDFDEERGV ERLIELLRKGAPLGVKQKDLRRQRIYASRTRY
>gi|l4601503 |ref |NP_148042.l| hypothetical protein APE1588 [Aeropyrum pernix Kl] MPAGLDTNILIYAMDNKAGEKHEKAVEVIEQALKHPTEYIVΞSQVLAETIYAVKRKYPAATPLAQTLAYTLTRTLRWHY THLEVLQASQSPPRYFWDRLLAYTYLNNGADRIITEDEKPYRGILKTIDPFR
>vapB|l4600379:cl508755-1508399, length 119, Aeropyrum_pernix, VapB
MAIGTQLDPSVTKADNLVGNWGKPGELPEPLTTLRIEHHLLEKWGMKEEARVEPIRRG
EMLMLSVGTAITLGWTRAGKDEIEVQLRRPWTWPKARVALSRRIMGRWRLIGWGLIK
>gi|l4602022|ref |NP_148567.l| hypothetical protein APE2366 [Aeropyrum pernix Kl] MAQGEGGPEQEDNGEVEAHRLGAHKWVLLDSNTLILMASGRIAPSMILEAINSSFKPATTSTWAELRGLAEIHRTRLL GRRAQTALRLLQQMGVEVIETESRDADDSLEEAAEKLKVEGAKVYVATSDRSLRRRLRRRGVPTIYYRSSEARLEADWWD DL
>vapB| 14600379 :cl666639-1666448, length 64, Aeropyrum_pernix, VapB MSKVIRVRYEKGVLKPIGEWLREGEELEWWRKSFRGFKDEAGKYMFKADRDTVKEFV EERR
>gi 114602179 I ref |NP_148728.11 hypothetical protein APE2616 [Aeropyrum pernix Kl] MIDTSVFADYYLLYPGDPERHERSRTVLDKLSLRDVIVYEPFLFEIELRAVLVRRIPPEQALRIVDTTLKHVNWREEEL HDKAAEIALITGCRAVDAYFIATAKHVDGILITNDKVMKDNAQKIGVKAYYLLDNQDYTKL
>vapB|l5282445:203338-203605, length 91, Aquifex_aeolicus, VapB MICMVGKDEIWKVLPKGQITLPKRIREKLGIREGDILIVEEKEGKLEIRKPKSLRDFYG FLKGKKSINRENIERVIEEWKERELEKDSR
>vapC|l5282445:203579-203860, length 94, Aquifex_aeolicus, VapC MNLKKIWDTSVFIRLFTRNDEKKFEKAEKLIDDASKGKIQLFVPFIWAEIVWVLEKVY KVNRENIRDWEALINTRPRSNYΞIGKLYSFFYV
>vapB 115282445.-1338522-1338839, length 166, Aquifex_aeolicus, VapB MNKRFEQVDKRFEQVDKRFEQINNELNRLIQIMVGIFAGQIALVAAVIGFAWWDRRTIIR KSKEETFEEMEKELRPEKFKKLLNALREKAKTDKELEAILKKYGLL
>gi 115606926 I re |NP_214307.11 hypothetical protein aqq_06 [Aquifex aeolicus VF5] MKLLDTTVLLDFLSGEEEKVETIEQFFEELSQKGEKLFVPEEVIIELVYFLEHGYKWEREDIYEWETILNDELFNVELK PFIREAIKLYSKRQGTFLDCLKSVKAKKMGIKEWSFGRRFKKLGFKTVNPYEES
>vapB|H497621:c271532-271335, length 66, Archaeoglobus_fulgidus , VapB MPRVIEVIYENGMFKPLEKVDLPEGSRFKILIEDFSEIDRIHEHVKKIAGEASKEKILEL LDEVWI
>gi 111497909 I ref |NP_069131.11 hypothetical protein AF0293 [Archaeoglobus fulgidus DSM 4304] MDLVYLDSSVIVELLLGSEERRRTIKSLIAGKRRFTSAIΞYGEVLYWLAIΞAEKYYGSRGRNAVRKFVKEKHDHYITLH ESVCRTYSSLNIDTLAHPKVETLSVLIRKYNLLPRDLIHITTAIEGNCNAFLTLDEDFKQVKENINWIIE
>vapB|H497621:287426-287674, length 83, Archaeoglobus_fulgidus , VapB MSNQKRLQPKPISΞFMQTNNMPKVIEAIYENGVFKPLQKVELREGEKVKVIVDRGLTQLF GMFRHRRKTDLDEDMDLMITERA
>gi ] 114979271 ref |NP_069149.11 hypothetical protein AF0313 [Archaeoglobus fulgidus DSM 4304] MKVFFDTSFFVEYFRGNENARRIYEELKNYEYFTSLNWEETTYILMKFTASDFVKLEKHYEVIKKLKEDSNVYEKSLKN AKLFYSSILHDGFQILPLPSWDLVLEIMERYRLLPNDALIAATCKHYGIKKIATFDEDFRRVDFLQWEL
>vapB)H497621:289639-289923, length 95, Archaeoglobus_fulgidus, VapB MFLRLLSLRGNLFLFSDPQSICQKSSKLYMRTELFKPLQKVDLKEGEKIRLRLDERGYID HSLIRELEVLLKNAPKTKIDLRELERLHDVGKMLY
>gi 111497932 I ref |NP_069154.1 | hypothetical protein AF0318 [Archaeoglobus fulgidus DSM 4304] MSEKCFIDTTVILEVILRKEFKILEKLSEYVLHTSVNVLEEASFKIIFVSWDELSVΞRVNIFKVKDSFEKGIGSSLTET RLHALNVLKDALKIIEIDEHIFDMAKKIILEYKLLPNDALIAATCKHYGIKKIATFDEDFRRLDFLEVLGL
>vapB|H497621:290594-290764, length 57, Archaeoglobus_ ulgidus, VapB MSMEKIFIDTNVIIDLLRGKKSWSFFRDVEDGEIHGLTNKNGVSGNCLRLPDPYNG
>gi 111497934 I ref |NP_069156.11 hypothetical protein AF0320 [Archaeoglobus fulgidus DSM 4304] MFLETVYVYLILTTDKGPLTLRKRPELIENVNLEPVLRVFEIIDMLPTDRIAKEYIVELIGKFGLLPNDALIAATCKHYE DFRQVDFLEWEP
>vapB| 11497621:350180-350689, length 170, Archaeoglobus_fulgidus , VapB MVNVTFENDDVGHVAAAIAVNGTYFILDQHLPPFDPQGYFIKWLRDGKRIEKAEIIDNNT TIPLNLSIGYVASDRDAKSLESRIRQYFKGTGIREDPRLNGEKLPLGYREGYTLKLSLEM AEYYHPEFERQYAEHIYKLLEESIEGRFKAFNLHLSIKGDVMEIVLYLAR >gi 111497997 I ef |NP_069221.11 hypothetical protein AF0386 [Archaeoglobus fulgidus DSM 4304]
MKCVEVHVIDSSAIFQRKAVYRNMVTVPEVVAEILDEASALyFSVKNFRVEEASPESVEEVKEAARKTGDIHKLSDTDIK VLAKALDEIKKGNEWLVTDDYAIQNVAMSLGIRFDGILHRQIΞKEFKWVKVCRGCGRRIESEICPVCGSEAIIRRVKND KNRNSG
>vapB|ll497621:c534011-533655, length 119, Archaeoglobus_fulgidus, VapB MGIATKLDPTLTKSDALVGNWGHPGNLPDVLTSFTMEVNLLERWGLDEEMEVEKIKMN EPLMLAVGTAITLGWTSARDDIVEVKLRRPVCADKGSRVAISRRVGSRWRLIGAGIIR
>gi | 11498199 | ref |NP_069425.1 | hypothetical protein AF0592 [Archaeoglobus fulgidus DSM 4304]
MEADRGRNNKVRCAVVDTNVLMYVYLNKADVVGQLREFGFSRFLITASVKRELEKLEMSLRGKEKVAARFALKLLEHFEV VETESEGDPSLIEAAEKYGCILITNDKELKRKAKQRGIPVGYLKEDKRVFVELLD
>vapB | 11497621 :c556664-556485, length 81, Archaeoglobus_fulgidus, VapB MGKVIQIEVPDRVNEKLINKLKEMLADKILDEIGKDYADIDLYNLYLTLKFPKTEDVTFD TDKELEYLRKMKEKEKKRVWS
>gi 111498226 I ref |NP_069452.11 hypothetical protein AF0618 [Archaeoglobus fulgidus DSM 4304]
MEKNLYDTNKLIELYKNKESMSGYTTILNVIEFPKALEFNLTVLYLSKSDYRLAIKISTELLKIGEPVPAVYTLISAIAN KQRFKGCNAGQTFYAS
>vapB 111497621 :c981711-981451, length 87, Archaeoglobus_fulgidus, VapB MANLIHTKPFSSFSANHQHAKNHRSCLRKRSLQAFAEGGFEGGGENKASHRGGNRRRYKG IQQKSRPRRFGGIPKGEKMIVIDTSVFIDALFRFNEKRSNMANEIFEIAQHRQIAWEPE IFRMEIIGQLVRRTPKSEAITLYEGIV
>gi 111498689 I re |NP_069918.11 hypothetical protein AF1089 [Archaeoglobus fulgidus DSM 4304] MMRYTVDTSIFADFIFEFDENRTSAAEKVLSEIKGRILNPKVFKVEMTCILSRRFHSEIVEKIISEILEDVALIENPDEI AFEVALKTGSRAIDAYFIATAKLTNSILITNDRIMAENAKKAGIEAYYLLEEFEEVKRRLQ
>vapB|H497621=cl236899-1236693, length 69, Archaeoglobus_fulgidus, VapB MRDALGIKPGTVMNVHLEGKKIILEPSPEPPDIFVDLGERSEQILKESRKIDEERMRKLL RDLGVEGGD
>gi 1114989811 ref |NP_070214.11 hypothetical protein AF1385 [Archaeoglobus fulgidus DSM 4304] MSKAVIDTGVFVDYIDRKSPLHDVARNVINSIGQLEVLLPYVTIAEICYVTARVLREAGIEEWLEKSVEFVEWLQRHPAV EWCSTELDVEAAKVKLRYGLALADCYVLALSKLKNCKAVFRKREKEMPDKVEKDFDVIFLEDYVGGDR
>gi ] 11499302 I ref |NP_070540.11 hypothetical protein AF1711 [Archaeoglobus fulgidus DSM 4304]
MGEIIEAVYQKGVLKPLRKVSLREGEIVKVEIRETKKVTGRFYAKLRELEKRIERVEGAHRELEEIRDDRY
>gi 1114993011 re |NP_070539.11 hypothetical protein AF1711 [Archaeoglobus fulgidus DSM 4304] MIVIDTSIFVDYLFDRDENRNEKARKFLNSIEGLTVFVPKIFVIELISVAKRLGIEISRKDIEELTYDFEILSEDFVFDE ALNVAEKVHPRAADSYFIATARLTNSILISSDRLMVRNGKKYGIEAYCLLDELEKALEAIGKLKGEG
>vapB|H497621:1978461-1978667, length 69, Archaeoglobus_fulgidus, VapB MGHGCLRRYFVCDILLIKTDKTEKAIELFNRLNPIASVTVYEESFYTGLRIIAQKRLNIK NMLMLSGIL
>gi 111499795 I ref |NP_071038.11 conserved hypothetical protein, C-terminus [Archaeoglobus fulgidus DSM 4304] MDFVKALHNFYDEIYWQDSRDLELIKSVAEKYKSLPNDALIAATCKHYGIKKIATFDEDFRRVDFLEWGL
>vapB|H497621=c980157-979951, length 70, Archaeoglobus_fulgidus, VapB MSGGLSFWRLLNSNFQRNPFLLPRKITDMPKIIEAVYENGVFKPLQKVDLREGEKVKIIA GNLVERLRKYRVKVDSDIVAEFISERR
>gi )11500021 I ref |NP_071267.1 I hypothetical protein AF1086m [Archaeoglobus fulgidus DSM 4304] MIVIDTSVFIDALFRFNEKRSNMANEIFEIAQHRQIAWEPEIFRMEIIGQLVRRTPKSEAITLYEGIVXKVKLIDFAVL NEVAFSVCLETGCRAIDAYFIATAKLANSTLITNDRIMAENARKAGIEAYYLLEEFEKVKKRLQ
>vapB 111497621 = c550521-550279, length 60, Archaeoglobus_fulgidus , VapB MLNSQRNMCMPNITLSLPEDLYRKMKKYGEIRWSEWRKAIAEYLEKLEEIETEVGSKEL
>gi 111546068 I re |NP_069444.2 | hypothetical protein AFO610m [Archaeoglobus fulgidus DSM 4304]
MVVADTNLVIERV1KNESIEENITEVTIVEFPPVINYKKFHGKVLIIERGDVLLSIELQRRLRIVRKPRKPFSDLLIASI CINRDEELITKDRDFLDIAEVSNLRVKLIEP
>gi ] 15888348] ef |NP_354029.1 | AGR_C_1846p [Agrobacterium tumefaciens str. C58] MVYDFENRYTKDFSMRTNIELDDALIAEAMEITGLPTKKATVEKALRDLVENLGRRKALQELRGIGWKGDLEEVRGSWSA DSIKSQDAAE
>vapC | 15887359 :cl001393-1001007, length 129, corrected start, A._tumefaciens_Cereon_C58_circ_chr, VapC MIWDTSVWIDWFQNKQTPQVATLSDINDLSDVIIGDIILLEILQGERNERRAAAIESRL KVFELVSMLTPEFAVAAAANYRKLRGLGKTVRKTADLIIGTYCIEHGHKLLQNDRDFQPM ADHLGLQFV
>gi 115889422 I ref |NP_355103.1 | AGR_C_3882p [Agrobacterium tumefaciens str. C58]
MAMTGDQIDKSWFSQQLKRKGKSQADLARFLNLDRSAVTRMLNGDRNMSVEEQDRIAEYLEIPVGDVALHRRGGVAGFSE NNQTAYSEPAPSGRSGPEAGNVSTTESRHPIFGCMKGTITVMPDVDLTKPVDFEWGEKLYNE
>gij 158894211 ef | P__355102.l| AGR_C_3881p [Agrobacterium tumefaciens str. C58] MILNGEKSSTMSDGFLLDTCAVIWMSQGEPVSDEAVSALNQSYRAGDPVCVSAVTAWEMGMLVAKGRISETKSPQRWYDD FKREAEVIEQPVTADIFIASCFLPQLVHKDPIDRILITTAREHDLTIITRDRVILAYGEAGHVKTLAC
>gi 115891912] re |NP_35758 .l| AGR_L_3576p [Agrobacterium tumefaciens str. C58]
MVTTVLRKFDMTTTVTAKGQVTIPKAVRELLGISPGΞSVDFVRAPDGRIVLVRADKKQPLTRFAKLRGHAGEGLGTDAIM ALTRGDE
>gi|15891913 | ref |NP_357585.1 | AGR_L_3577p [Agrobacterium tumefaciens str. C58] MTLVDTNVLLDLVTDDPVWADWSIEQLELASVSGΞLYINDWYAELSVRYERIEELDAFVDQAGLKFTPFPRAALFLAGK AFTKYHRGGGTRTGVLPDFFIGAHAAIQNLPLLTRDVARYRSYFPTVTLISPEV
>gi 117936025 I re |NP_532815.11 Hypothetical protein Atu2141 [Agrobacterium tumefaciens str. C58]
MTGDQIDKΞWFSQQLKRKGKSQADLARFLNLDRSAVTRMLNGDRNMSVEEQDRIAEYLEIPVGDVALHRRGGVAGFSENN QTAYSEPAPSGRSGPEAGNVSTTESRHPIFGCMKGTITVMPDVDLTKPVDFEWGEKLYNE
>vapC] 17933925 :c2105391-2105804, length 138, A. tumefaciens str_C58_U_Wash_circ_chr, vapC
MSDGFLLDTCAVIWMSQGEPVSDEAVSALNQSYRAGDPVCVSAVTAWEMGMLVAKGRISE TKSPQRWYDDFKREAEVIEQPVTADIFIASCFLPQLVHKDPIDRILITTAREHDLTIITR DRVILAYGEAGHVKTLAC
>gi 117936725 I ref |NP_533514.l| Hypothetical protein Atu3013 [Agrobacterium tumefaciens str. C58]
MVTTVLRKFDMTTTVTAKGQVTIPKAVRELLGISPGΞSVDFVRAPDGRIVLVRADKKQPLTRFAKLRGHAGEGLGTDAIM ALTRGDE
>gi] 17936724 I ref |NP_533513.1| Hypothetical protein Atu3013 [Agrobacterium tumefaciens str. C58]
MTLVDTNVLLDLVTDDPVWADWSIEQLELASVSGSLYINDWYAELSVRYERIEELDAFVDQAGLKFTPFPRAALFLAGK AFTKYHRGGGTRTGVLPDFFIGAHAAIQNLPLLTRDVARYRSYFPTVTLISPEV
>vapB]23464628:391589-391864, length 92, Bi idobacterium_longum, VapB MIRRLREDPVQAQKADAHDAYPPFFMRAYLITRTAΞKTTAPHASIMTATRRCIMATLTIR KIPDEQIQQLKEVAEKNNRSMESQVRSILEEWLAGTVAHEITRKTNFYDEIREFMKNMDF EGLDKGELPLSERNSADSRPPVSFE
>gi|23464899|ref |NP_695502.1| plasmid stability protein StbB [Bifidobacterium longum
NCC2705]
MIILDTNVISEIIKKQPDEHVANWLRNQDTSNLATTAITVAELLAGICRMPEGKRRKYTDTTVKLALMTLEDRTFAFDTQ AAADYAHILVEREHRGTPTSIQDAMIAAIACSWDAAIATRNIKDFEGTDVELINPWEFA
>vapB| 23464628 :cl248957-1249274, length 106, Bifidobacterium_longum, vapB, a relB/dinJ homolog
MTMAMVTARVNAERKRDAEKVLKRNGRTYSDLIRDLTDYLADTGELPEFERLTLSLIQER ERRKKQELIQRFADRNLPEAEGDLSDEEILAQARMERFGGRDETAV
>vapC|23464628:cl248539-1248970, length 144, Bifidobacterium_longum, vapC MKLLFDTNILLDLCNDKRAPFHKQCVDLLMEAVAQPNIEIMAPVSSLNDVYCVLRKHYGE ERAARDDIGGLMELFDIRPLMERHACMΞYRSDEPDFEDGLIRAVAEDNDADVIVTRDVEA FHHSSVRSMDAEQCRALLLADSKA
>gi | 23465958 | ref |NP_696561.1 | hypothetical protein with possible helix turn helix motif [Bifidobacterium longum NCC2705]
MTMVQMNVRIDAKLKNEVEEVLKGKGVSVSDVIRSLWLYIADRKEVPALETTAEEQAREEEKQRKLKLIREGAGYVHKEL VKAGLISEDTDLMEGLTYKQFRDKMYDEQLDTYYNMKRAD >gi|23465959|ref |NP_696562.1| hypothetical protein BL1399 [Bifidobacterium longum NCC2705]
MTDVSMQRILLDTNVLLDYLLHRDDHAKMAEAVMELGAKNNITLLCASLSLKDIAYLSSΞAIRREFKPNESEVENFTRGF LSSRVPWRCIEQVKEMCDIVAVDESTCDKAFSLQKRHRDFEDDLIIVAAQQSGANCWTSDAELISHFPEYCKTPAEIVA ALE
>gi 115805445 I ref |NP_294141.1 ] hypothetical protein DR0419 [Deinococcus radiodurans RI]
MSDAEGGYTFPMTTLEARIENGKWLTPEQAAELGLREGEVLPVTIAPHEAETEGNPFTRWIGTLPPLPDGEESARFYRR LRDGE
>gi] 15805446 I ref |NP_294142.11 hypothetical protein DR0420 [Deinococcus radiodurans RI]
MTESTVLDANILSALLRSEANPLSIARQLSALAREGSLWYAELLAGPEVTPDFLKGFLQEVDVQILPPSGLAVWESAGL AYGSYAQRRQRΞGGGSPRQILSDFVIGAHALYHGAALFTADPQHYRLSFPALTVLTP
>gi 1158065411 ref |NP_295254.11 hypothetical protein DR1530 [Deinococcus radiodurans RI] MTRLLVNVELDEQGQPVFQLTPAQLAKLGLSGSAVHVARWEVAAQEAAQPAQSPFRRYVGIAPPLEGGSVEYHRQQLGYE E
>gi 115806540 I ref |NP_295253.11 hypothetical protein DR1530 [Deinococcus radiodurans RI] MTLALDTNILSAIFRAEETAEAVLGVLEAQPPGTLWSGAAFSEFLASPNIAEASAFAFLRDTGVRADWQMDEDLWLCAA RAFRGYSVRRRQSGGGQPRRILADFMIGAHALLRADALVTLDPQHYRLNFPELRVINPAEG
>vapB 115789340 :c67955-67662, length 98, Halobacterium_sp__NRC_l , VapB MSKAVKVDEDAKSRLEELQAEIRLETGESVTQQELLSRLIDDAYQDREAVIDSFRSSTVP LSDAEKARMVEGRVSSGVEIREEDIDDILYGGPEDV
>gi 115789405 I ref |NP_279229.11 Vng0072h [Halobacterium sp. NRC-1]
MTVLVDTGVLYADHDTDAARHEAAAGALDAVYDGEFGQPYVSDYLYDEAVTLALARSSSFDVAQRLGRRLRGADPYPETY RMLDVTTAVFDDAVGVFERLDDQQLSFTDATTVALMRRHDVDGVLSFDDDFDGLVDRLDPAAW
>vapB 115789340 :cl474604-1474407, length 66, Halobacterium_sp_NRC_l , VapB MMGSDGTELGMLYNITMDLKSGTLEHLLVEQTEESVAADFPIGDDGRYRVPVΞRVQAVKD YIWRR
>gi 115790862 I ref |NP_280686.11 Vngl994c [Halobacterium sp. NRC-1]
MRVHVPAQDAREAVRQAAATTGDADVLSETDRRLLATAHELDGTLVSDDYAMQNVAAELAVTVESISQDGITERRDWRLQ
CQGCGREFDDTDHDRCPVCGSPLERKNPS
>vapB|l5789340:cl510923-1510639, length 105, Halobacterium_sp_NRC_l , VapB
MPPTWESFEMDVDLLERLVGAADGEQIDDISTGEPLMLTVGTATTVGSVTSARDGECEVA
LKRPVCAPAGAKIAINRRVGARWRLIGVGTLTESE
>gi|15790906|ref |NP_280730.1| Vng2054h [Halobacterium sp. NRC-1]
MQAVAIDTNALLLPATQPLRLFEELDRLLGDYDAWPQAVHDELVALAAGAGETASAASVGVDLATDRCGTLRTDVSYAD
DALHALAVSEDVDAWTNDGPLKERVLDAGTPVIHLRGRTQLTITRP >gi | 24213637 | ref |NP_711118.1 ] Hypothetical protein LA0937 [Leptospira interrogans serovar Lai str. 56601] MKSYPVGELKSHFSEVLESVKNGESVGILYGKGKKPIAMIIPMKSKKEGKRKIGLLYGKVKISFSKGFKISEEEFLS
>gi 124213636 I ref |NP_711117.11 Hypothetical protein LA0936 [Leptospira interrogans serovar Lai str. 56601]
MKYLLDTHVILWIIGSSNLLSKKAKATIENSENKIYVSSVSLWEISLKFRLGKLSLSGMKPSQIPEILSKSNIETINLES ADASTYGQLKVMHHRDPFDRMLIWQCILR FTLISKDSKMKKYRSHGLKTLW
>gi 113473341 |ref |NP_104908.11 hypothetical protein mll3899 [Mesorhizobium loti MAFF303099]
MRVTTKGQVTIPKPIRDHLGIGPGSEVEFVATDGGVRLVPVNENLΞHEEKLRRFHDVLDRMEGTLDLGGMTTDQYMEWLR GPREDLDID
>gi | 13473340 | ref |NP_104907.1 | hypothetical protein mll3899 [Mesorhizobium loti MAFF303099]
MKISTLIDTNVLIDVWGPTGPMKEWSASAIASCRRDGALWNSIIWSELAPLIATEAALRKAVDMLEMDRELIPWDAAFL AGVTHΞRYRRAGGVRERTLPDFFIGAHASVAGHRLLTRDATRYRSYFPDLEIISPDMHP
>vapB|l5678031:202303-202899, length 199, M. thermoautotrophicum, VapB MYVARSFDINKPGADPEHLAGGVIGGSLVQGRLRVGDEIEIRPGIQVKKDGKQTWMSLHS TITGLVAGGEEMEEVGPGGLVGVGTLLDPALTKADSLSGSVAGEPGTLPPVRHSFTMETH LLERWGTKEETKVEPIKTGEPLMINVGTTTTVGWKSARADDADWLKLPACAEEGQRI ALΞRRVGARWRLIGYGIIK
>gi 115678290 I ref |NP_275405.1j hypothetical protein MTH262 [Methanothermobacter ther- mautotrophicus str. Delta H]
MIPYQFRVDIVSELRRLFPKNDLLVPSFVIGELEGIKRHSGGDARIAASVGLALAKKPPFRIFEEKLLEGETVDDALLRI SDVLCTSDRELRRRARSKGIPWYLRQKRYLGVDGHILE
>vapB|l5678031:1698784-1698945, length 54, M. thermoautotrophicum, VapB MRFCGNTFSCQPGYHSAALKTLRMETDIHIFAGIFPGAVQLIAFFLFIISGYIY
>gi 115679850 I ref |NP_276968.11 hypothetical protein MTH1862 [Methanothermobacter ther- mautotrophicus str. Delta H] MHIDNWFMKKVLDASAFINGYVPEGRENYTVRSVTEEIRDFRSMMILEDALREGRLKITEPDPEΞMKWEDAISESGDI MRLSPTDMEVIGLAVSLRGKDDVTVITDDYTIQNTLKILGIGFRSVLTSGIRDTYSWRRVCTGCRRVYPLDYEFEECEIC GSRIVRKRHRN
>vapB|l5668172:c846334-846143, length 64, Methanococcus_jannaschii, VapB MIΞAKSKTKRITITFEIPEDIDAKKFKDDVKRYVRYKLLANKLYELLEGENIEEIEEEIR KRRE
>gi 1156691041 re |NP_247909.11 hypothetical protein MJ0913 [Methanocaldococcus jan- naschii DSM 2661]
MKILKKLKKKLEKEESKILVDTSVLIDYFKKRRLEELGGEAISIITAVEFIRGISEHKQEQVLNIFKELFEIVYIDEEII IPFSKIYRQLKKRGMLIDDADLYIACTAIIKNYPLWTKNKKHFERLKEFGLKIYDK
>vapB]l5668172:cl268398-1268213, length 62, Methanococcus_jannaschii, VapB MNESIMQLLYDLTKMNYSALYGEGRYLRIPAPIHYADKFVKALGKNWKIDEELLKHGFLY FI
>gi 115669510 I e |NP_248320.l| hypothetical protein MJ1320 [Methanocaldococcus jan- naschii DSM 2661]
MYKIVPDTNFLIYVFKHKINFDYEIERALNTKFEIVILSPIKEELERLLKSRDLKGKEKLAVNLALAKIKNYKLVDYTAN YADEAILNYAKENENVIVATNDKELKEKLMENNIPVMWRQKKYFEIFGMV
>vapB I 15668172: 1445372-1445695, length 108, Methanococcus_jannaschii, VapB MVQGPVIIPLISTLGLSFLAILLAYKISFSVIGFINSTLPTTLFPSKPYMLFVKISTISP LTCPSLIILTPALTWSLTALSMAYLYSΞYKPNTFFTLSKNVSSFLTTG
>gi 115669666 |ref |NP_248479.11 ribosomal protein S15A isolog [Methanocaldococcus jan- naschii DSM 2661]
MLSLPPPEFYKLWIINKSPYQLFNIYRSGIMKVKVLDASAIIHGYNPIIEEGEHYTTPEVLEEIESKKIIVEQALDFGKL KIMSPNREYIKKVEEWKKTGDNLSQQDIGVLALALNLNAILYTDDYGIQNVAKKLNIEVRGIAFEPTNKDFIWRKICEG CKKLYPVDYEEDICEICGSPLKRKMVKSRLKKKRKKK >vapB I 20093440: 1478697-1479293, length 199, Methanopyrus_kandleri_AV19, VapB MYIARSFDVNKPGTRPSDLKGGVIGGAIVQGEVEIGDEIEIRPGIRVERYGRTEWEPVYT EWSLHANVTPVERARPGGLVGIGTKLDPTMTKADRLSGQVAGEPDTLPPVRHELLLEVE LLERWGTEEERKVEPIRTNEVLMLTVGTATTVGWTSARDDEIEIKLKQPVCAEEGDRV AISRRIQRWRLIGHGVIKG
>gi 120094884 I ref |NP_614731.11 Predicted RNA-binding protein containing PIN domain [Methanopyrus kandleri AV19] MTIRWLDANFLMIPHQEGVDVFSELDRLLGSYRPIVPRQVLEELERVKRAATGRDKIAARVALSLVDAKGIEWDVKGR DGDEAILNLARRWDRVYVGTRDKELKKRLWKLGVPVITLRQRTHLVIERG
>vapB|20088899:1173673-1173882, length 70, Methanosarcina_acetivorans, VapB MIFMGSTAEIEKRLIELDKEIHSILNMVRKKEGKSSKEIVESACGAWGYDVESEEFVDQL RKSSRLDWVE
>gi | 20089859 | ef |NP_615934.1 | Pin protein [Methanosarcina acetivorans C2A] MGRMKFFVDTSIFVDCLRKEVIPSSKSFLERIGDEYSGYTSSITVAELSVGAHLΞRSQDALEKTLELLNIVEVIDLDSRI AIDAGKIYADLIRSGKRIELNDCLIAATALSLGINRE
>vapB|20088899:4548892-4549509, length 206, Methanosarcina_acetivorans , VapB MDKPASMLIARSFDINKPGASIDEIRGGVIGGTLTEGVLHPGDELEIRPGIKVTTEGSTK WIPIVTTISSIYAGPTKVEEATPGGLLAVGTYLDPTLTKGDSLTGQIAGVPGTLPETRHQ FVMELHLLDRWGVTREEKINEIKTSEPLMLNIGTATTVGIVTSARKNEAQVALKRPISA AVGAMVAISRRIDSRWRLIGVGVIKS
>gi|2009249l|ref |NP_618566.1| Hypothetical protein MA3690 [Methanosarcina acetivorans C2A]
MKIIIDTNGFMIPVQFGVDIFEELKRLGFNEFYVPEAWFEIEKLIKREKGSNRTAAKVARΞMMDRCERIAGTGPADDVI LRLAGEMEAAVLTNDIGLKRRLAENGIQTVSLRQKNRLDIV
>vapB|21226102:726480-727034, length 185, Methanosarcina_mazei, VapB MEEIRGGVIGGTLTEGVLHPGDELEIRPGIKVTTEGSTRWIPILTTVSSIYAGATKVDEA TPGGLLAVGTYLDPTLTKGDSLTGQMAGVPGTLPETRHQFVMELHLLDRWGVTREEKIN EIKTSEPLMLNIGTATTVGWTSARKNEAQVALKRPISAAIGAMVAISRRVDSRWRLIGV GVIKS
>gi|21226697|ref |NP_632619.l| Hypothetical protein MM0594 [Methanosarcina mazei Gol]
MKIIIDTNGFMIPVQFGVDIFEELKRLGFNEFYVPEAWFEIEKLIKREKGSNRTAAKVARSMMERCMRIAGKGPADDVI
LRLAKEMGAAVLTNDIGLKRRLAESGIQTISLRQKNKLDFV
>vapB| 15839372: 71570-71806, length 79, M._tuberculosis_CDC1551, VapB
MATIQVRDLPEDVAETYRRRATAAGQSLQTYMRTKLIEGVRGRDKAEAIEILEQALASTA
SPGISRETIEASRRELRGG >gi 115839444 I ref |NP_334481.l| hypothetical protein MT0071 [Mycobacterium tuberculosis CDC1551]
MDECWDAAAWDALAGKGASAIVLRGLLKESISNAPHLLDAEVGHALRRAVLSDEISEEQARAALDALPYLIDNRYPHS PRLIEYTWQLRHNVTFYDALYVALATALDVPLLTGDSRLAAAPGLPCEIKLVR
>vapB|l5839372:363648-364106, length 141, M._tuberculosis_CDC1551, VapB MPIHSGPGPRGSLGDGGGGRATQRHAAAGTRAVASCCRARCATRQRGRGRPTRGCLGRDS SALLALSPAKIPDIARYHRKMSDVLIRDIPDDVLASLDAIAARLGLSRTEYIRRRLAQDA QTARVTVTAADLRRLRGAVAGLGDPELMRQAWR
>gi 115839686 I ref |NP_334723.11 hypothetical protein MT0314 [Mycobacterium tuberculosis CDC1551]
MTDQRWLIDKSALVRLTDSPDMEIWSNRIERGLVHITGVTRLEVGFSAECGEIARREFREPPLSAMPVEYLTPRIEDRAL EVQTLLADRGHHRGPSIPDLLIAATAELSGLTVLHVDKDFDAIAALTGQKTERLTHRPPΞA
>gi 115839947 I ref |NP_334984.11 hypothetical protein MT0574 [Mycobacterium tuberculosis CDC1551]
MLSRRTKTIWCTLVCMARLNVYVPDELAERARARGLNVSALTQAAISAELENSATDAWLEGLEPRSTGARHDDVLGAID AARDEFEA
>gi 115839946 ] ref |NP_334983.11 hypothetical protein MT0574 [Mycobacterium tuberculosis
CDC1551]
MRASPTSPPEQVWDASAMVDLLARTSDRCSAVRARLARTAMHAPAHFDAEVLSALGRMQRAGALTVAYVDAALEELRQV PVTRHGLSSLLAGAWSRRDTLRLTDALYVELAETAGLVLLTTDERLARAWPSAHAIG
>vapB | 15839372: 719471-719728, length 86, M._tuberculosis_CDC1551, VapB MVGMSEVASRELRNDTAGVLRRVRAGEDVTITVSGRPVAVLTPVRPRRRRWLSKTEFLSR LRGAQADPGLRNDLAVLAGDTTEDLGPIR
>vapB 115839372: 719471-719728, length 86, M._tuberculosis_CDC1551, VapB MVGMSEVASRELRNDTAGVLRRVRAGEDVTITVSGRPVAVLTPVRPRRRRWLSKTEFLSR LRGAQADPGLRNDLAVLAGDTTEDLGPIR
>gi 115840060 | ref |NP_335097.11 hypothetical protein MT0686 [Mycobacterium tuberculosis CDC1551] MSVTQIDLDDEALADVMRIAAVHTKKEAVNLAMRDYVERFRRIEALARSRE
>gi | 15840059 | ref |NP_335096.1 | hypothetical protein MT0685 [Mycobacterium tuberculosis CDC1551]
MAAATTTGTHRGLELRAAQRAVGSCEPQRAEFCRSARNADEFDQMSRMFGDVYPDVPVPKSVWRWIDSAQHRLARAGAVG ALSWDLLICDTAAARGLWLHDDADYELAERHLPDIRVRRWSADD
>gi|l5840384|ref |NP_335421.l| hypothetical protein MT0988 [Mycobacterium tuberculosis CDC1551] MKTLYLRNVPDDWERLERLAELAKTSVSAVAVRELTEASRRADNPALLGDLPDIGIDTTELIGGIDAERAGR
>gi|l5840385|ref |NP_335422.1| hypothetical protein MT0988 [Mycobacterium tuberculosis CDC1551]
MIWDASAALAALLNDGQARQLIAAERLHVPHLVDSEIASGLRRLAQRDRLGAADGRRALQTWRRLAVTRYPWGLFERI WEIRANLSAYDASYVALAEALNCALVTADLRLSDTGQAQCPITWPR
>gi|l5841183 |ref |NP_336220.1| hypothetical protein MT1761 [Mycobacterium tuberculosis CDC1551] MSAMVQIRNVPDELLHELKARAAAQRMSLSDFLLARLAEIAEEPALDDVLDRLAALPRRDLGASAAELVDEARSE
>gi 115841182 |ref |NP_336219.11 hypothetical protein MT1761 [Mycobacterium tuberculosis CDC1551]
MIVLDASAAVELMLTTPAGAAVARRLRGETVHAPAHFDVEVIGAIRQAWRQLISDHEGLVWVNFLSLPVRRWPLKPFT QRAYQLRSTHTVADGAYVALAEGLGVPLITCDGRLAQSHGHNAEIELVA
>vapB 115839372 :c2503593-2503357, length 79, M._tuberculosis_CDC1551, VapB MGACEAGRRSRGEDTPVRAAAARLRRAEVEIARRGEPVAKLVPLHPHETRRLGIDHGVYR VPDDLDAPLSDDVLERFHR
>gi] 15841724 I ref |NP_336761.11 hypothetical protein MT2291 [Mycobacterium tuberculosis CDC1551]
MACTACPTIWTLRCQTTCSNAFTGEALPHRHPRLAADAVNETRAIVQDVRNSILLSAASAWEIAINYRLGKLPPPEPSAS YVPDRMRRCGTSPLSVDHAHTAHRRASGΞPSTSIRPCAHRPGTAAWPDDHHRRRPVSCL
>gi 1158420811 ref |NP_337118.1 ] hypothetical protein MT2620 [Mycobacterium tuberculosis CDC1551] MSTTIVAGVIQGHLPVILPTRRRARDLGHTTALFRAQTLQCIYLΞIEYLYVCSMSRRTTIDIDDILLARAQAALGTTGLK DRVDAALRAAVR
>gi 115842082 I ref |NP_337119.l| hypothetical protein MT2622 [Mycobacterium tuberculosis CDC1551] MMVFCVDTSAWHHAARPEVARRWLAALSADQIGICDHVRLEILYSANSATDYDALADELDGLARIPVGAETFTRACQVQR ELAHVAGLHHRSVKIADLVIAAAAELSGTIVWHYDENYDRVAAITGQPTEWIVPRGTL
>vapB| 15839372 =c2866266-2866541, length 92, M._tuberculosis_CDC1551, VapB MRFSATDVYSIMLVAYICHVKRLQIYIDEDVDRALAVEARRRRTSKAALIREYVAEHLRQ PGPDPVDAFVGSFVGEADLSASVDDWYGKHE
>vapB| 15839372 =c2866266-2866541, length 92, M._tuberculosis_CDC1551, VapB MRFSATDVYSIMLVAYICHVKRLQIYIDEDVDRALAVEARRRRTSKAALIREYVAEHLRQ PGPDPVDAFVGSFVGEADLSASVDDWYGKHE
>vapB| 15839372 :c3131225-3131449, length 79, M._tuberculosis_CDC1551, VapB MTRKMTATEVKAKILSLLDEVAQGEEIEITKHGRTVARLVAATGPHALKGRFSGVAMAAV DDDELFTTGVSWNVS
>vapB| 15839372 :c3131225-3131449, length 79, M._tuberculosis_CDC1551, VapB MTRKMTATEVKAKILSLLDEVAQGEEIEITKHGRTVARLVAATGPHALKGRFΞGVAMAAV DDDELFTTGVSWNVS
>vapB 115607142 : 71575-71823 , length 83, M._tuberculosis_H37Rv, VapB MNSAMATIQVRDLPEDVAETYRRRATAAGQSLQTYMRTKLIEGVRGRDKAEAIEILEQAL ASTASPGIΞRETIEASRRELRGG
>gi 115607207 | ref |NP_214579.11 hypothetical protein Rv0065 [Mycobacterium tuberculosis H37Rv]
MDECWDAAAWDALAGKGASAIVLRGLLKESISNAPHLLDAEVGHALRRAVLSDEISEEQARAALDALPYLIDNRYPHS PRLIEYTWQLRHNVTFYDALYVALATALDVPLLTGDSRLAAAPGLPCEIKLVR
>gi | 15607690 | ref |NP_215064.1 | hypothetical protein Rv0550c [Mycobacterium tuberculosis H37Rv] MLSRRTKTIWCTLVCMARLNVYVPDELAERARARGLNVSALTQAAISAELENSATDAWLEGLEPRSTGARHDDVLGAID AARDEFEA
>gi 115607689 I ef |NP_215063.11 hypothetical protein Rv0549c [Mycobacterium tuberculosis H37Rv] MRASPTSPPEQVWDASAMVDLLARTSDRCSAVRARLARTAMHAPAHFDAEVLSALGRMQRAGALTVAYVDAALEELRQV PVTRHGLSSLLAGAWSRRDTLRLTDALYVELAETAGLVLLTTDERLARAWPSAHAIG
>gi 115607797 I ef |NP_215171.11 hypothetical protein Rv0657c [Mycobacterium tuberculo- sis H37Rv]
MSVTQIDLDDEALADVMRIAAVHTKKEAVNLAMRDYVERFRRIEALARSRE
>gi 115607796 I ref |NP_215170.11 hypothetical protein Rv0656c [Mycobacterium tuberculosis H37Rv] MAAATTTGTHRGLELRAAQRAVGSCEPQRAEFCRSARNADEFDQMSRMFGDVYPDVPVPKSVWRWIDSAQHRLARAGAVG ALSWDLLICDTAAARGLWLHDDADYELAERHLPDIRVRRWSADD
>vapB 115607142: 1073325-1073543, length 73, M._tuberculosis_H37Rv, VapB MKTLYLRNVPDDWERLERLAELAKTSVSAVAVRELTEASRRADNPALLGDLPDIGIDTT ELIGGIDAERAGR
>gi|l5608100|ref |NP_215475.1] hypothetical protein Rv0960 [Mycobacterium tuberculosis H37Rv] MIWDASAALAALLNDGQARQLIAAERLHVPHLVDSEIASGLRRLAQRDRLGAADGRRALQTWRRLAVTRYPWGLFERI WEIRANLSAYDASYVALAEALNCALVTADLRLSDTGQAQCPITWPR
>gi|l5608859|ref ]NP_216237.1| hypothetical protein Rvl721c [Mycobacterium tuberculo- sis H37Rv]
MVQIRNVPDELLHELKARAAAQRMSLSDFLLARLAEIAEEPALDDVLDRLAALPRRDLGASAAELVDEARSE
>gi 115608858 I ef |NP_216236.11 hypothetical protein Rvl720c [Mycobacterium tuberculosis H37Rv] MIVLDASAAVELMLTTPAGAAVARRLRGETVHAPAHFDVEVIGAIRQAVVRQLISDHEGLVVVVNFLSLPVRRWPLKPFT QRAYQLRSTHTVADGAYVALAEGLGVPLITCDGRLAQSHGHNAEIELVA
>vapB 115607142 :c2506381-2506208, length 59, M._tuberculosis_H37Rv, VapB MALWYQAMIAKFGEQWDAKVWAPAKRVGVHEAKTRLSELLRLVYGGQRLRLPAAASR
>vapC|l5607142:c2506381-2506208, length 139, M._tuberculosis_H37Rv, VapC MT MACTACPTIWTLRCQTTCSNAFTGEALPHRHPRLAADAVNETRAIVQDVRNSILLSAA SAWEIAINYRLGKLPPPEPSASYVPDRMRRCGTSPLSVDHAHTAHRRASGSPSTSIRPCA HRPGTAAWPDDHHRRRPVSCL
>gi 115609682 |ref |NP_217061.l| hypothetical protein Rv2545 [Mycobacterium tuberculosis H37Rv] MSTTIVAGVIQGHLPVILPTRRRARDLGHTTALFRAQTLQCIYLSIEYLYVCSMSRRTTIDIDDILLARAQAALGTTGLK DRVDAALRAAVR
>gi|15609683 |ref |NP_217062.1| hypothetical protein Rv2546 [Mycobacterium tuberculosis H37Rv] MVFCVDTSAWHHAARPEVARRWLAALSADQIGICDHVRLEILYSANSATDYDALADELDGLARIPVGAETFTRACQVQRE LAHVAGLHHRSVKIADLVIAAAAELSGTIVWHYDENYDRVAAITGQPTEWIVPRGTL
>gi 115609687 I re |NP_217066.11 hypothetical protein Rv2550c [Mycobacterium tuberculosis H37Rv]
MLVAYICHVKRLQIYIDEDVDRALAVEARRRRTSKAALIREYVAEHLRQPGPDPVDAFVGSFVGEADLSASVDDWYGKH E >gi | 15609686 | re |NP_217065.1 | hypothetical protein Rv2549c [Mycobacterium tuberculosis H37Rv]
MIFVDTSFWAALGNAGDARHGTAKRLWASKPPWMTSNHVLGETWTLLNRRCGHRAAVAAAAIRLSTVVRVEHVTADLEE QAWEWLVRHDEREYSFVDATSFAVMRKKGIQNAYAFDGDFSAAGFVEVRPE
>gi | 15609967] ref |NP_217346.1 | hypothetical protein Rv2830c [Mycobacterium tuberculosis H37Rv] MTATEVKAKILSLLDEVAQGEEIEITKHGRTVARLVAATGPHALKGRFSGVAMAAADDDELFTTGVSWNVS >gi 115609966 I ref |NP_217345.11 hypothetical protein Rv2829c [Mycobacterium tuberculosis H37Rv]
MTTVLLDSHVAYWWSAEPQRLSMAASQAIEHADELAVAAISWFELAWLAEQERIQLAIPVLSWLQQLAEHVRTVGITPSV AATAVALPSSFPGDPADRLIYATAIEHGWRLVTKDRRLRSHRHPRPVTVW
>vapB ]15607142: 3174744-3174989, length 82, M._tuberculosis_H37Rv, VapB
MLSDEEREAFRQQAAAQQMSLSNWLRQAGLRQLEAQRQRPLRTAQELREFFASRPDETGA
EPDWQAHLQVMAEΞRRRGLPAP >gi|l5610000 | ref |NP_217379.1 | hypothetical protein Rv2863 [Mycobacterium tuberculosis H37Rv]
MIFVDTNVFMYAVGRDHPLRMPAREFLEHSLEHQDRLVTSAEAMQELLNAYVPVGRNSTLDSALTLVRALTEIWPVEAAD VAHARTLHHRHPGLGARDLLHLACCQRRGVTRIKTFDHTLASAFRS
>gi 115677515 I ref |NP_274671.11 hypothetical protein NMB1665 [Neisseria meningitidis MC58]
MFQANIHQAKTNLΞQLIQRAEAGEIVIIAKAGKPCVQLIGIEKPARNAGRLKKFSHMENTDISRILEDDNETAALFFEES AL
>gi] 15677514 I ref |NP_274670.11 hypothetical protein NMB1665 [Neisseria meningitidis MC58]
MRKILLDTHALLWWLLDDKKLGISARKLIENPRNAIFVSAASIWEISIKQNKGLLKLPEEFFDVLQEEDFEMLPIGLFHA KQAGΞLPEIHKDPFDRMLIAQTQAEGFELMTVDEYIPQYGIRWNASS
>vapB|30248031:c316448-316260, length 63, Nitrosomonas_europaea, VapB
MASTFRLSSLCCIARRTAAWRALPCNICPIIPPVSVANHTIHHHNAGPNNYLLIRRAWN
SER
>gi 130248306 I ref |NP_840376.11 PIN (PilT N terminus) domain [Nitrosomonas europaea ATCC 19718]
MLILDSNTISYYFRGDPQWLRLQAQRPQDVAVPAIVEYELRYGLLRLPPEMA&PRLAALTTLLLPMQKLPFDSECADHA ARIRTTLEAAENPIGPHDTLIAATALRHGATLITRNVREFSRVPGLQWINWHEG
>vapB I 30248031: 1155550-1155774, length 75, Nitrosomonas_europaea, VapB
MGHRRCGSGVPPLARTGTACGLHLMLLLDTNVISELLKVRAGKADPHVTTWGRTVPGASL
YVSVITVQELEIGTL
>gi|30249063 | ref |NP_841133.1| putative plasmid stability-like protein [Nitrosomonas europaea ATCC 19718]
MLRTWLEEHVLSSFADRILPVDTWARRSAALHVPNPRPYRDSLIAATALVYGMTLITRNVADFEPMGVTLLNPWTPCWP RISGLVP
>gi I 30249207 I ref |NP_841277.11 Hypothetical protein NE1225 [Nitrosomonas europaea ATCC 19718]
MQVTDKGQVTIPKRLRDAAGFLPGSQVTFSLEGGKIIISKTGMGTDDRRKSLRAAAAKVRKSLDEPFKQMNSDDIMAFLR PDGDDCA
>gi ] 30249208 I ref |NP_841278.1 | Hypothetical protein NE1225 [Nitrosomonas europaea ATCC
19718]
MATIVHDLSKYDGSAGFLVDTNIWIDCMDTDSRWHDWSVDQLQICSEQAPLHINLMIYTELLIPGPDIDALDTMLDIYDT LRSPLPWSCAGLAAKAYLNYRRRGGTRLVPLPDFYIGTHAAVANLSVLSRDVKPYHNYFRRLRCVGPDETAEQHTDG
>gi|30249559|ref |NP_841629.1| Hypothetical protein NE1589 [Nitrosomonas europaea ATCC 19718]
MTIQWNHYGSISIGKLRNAMPTTLTLKNIPDDVYERLKVAAEMHRRSLNSEIIVCLETVLMPTRISPGERLERARQLRAG LNSEKFQACDIDVMKRQGRP
>gi I 30249558 ] ref |NP_841628.11 Hypothetical protein NE1589 [Nitrosomonas europaea ATCC 19718]
MIWDSNVLAYFYLPGEYTAAAEALFEHDPDWVAPVLWRSEFRNILAGYLRRGSLTFLQAYNLQCEAEDLLAGAEYEVNS FSILELVRDSECSAHDCEFVALAIKLGAKLVTMDGKLLRMFPDIAFALSASQRSS
>vapB | 30248031: 2296994-2297218, length 75, Nitrosomonas_europaea, VapB MKNIPDDVYERLKAAAEIHRRSLNSEIIVCLETVLMPTRISPSERLERARQLRAGLNPKK FQACDIAIMKRQGRP
>gi I 30250053 I ref |NP_842123.11 Hypothetical protein NE2113 [Nitrosomonas europaea ATCC 19718]
MIWDSNVLAYFYLPGEYTATAEALFEHDPDWVAPVLWWSEFRNILAGYLKRGNLTFLQAYNLQCEAEDLLASAEYEVNS PSILELVRDSECSAHDCEFVALAMKLGAKLVTMDGKLLRAFPGIAFALSMS
>gi 11722764 |ref ]NP_484192.11 unknown protein [Nostoc sp. PCC 7120]
MTSQWDTTSDLIAKLETLPPEKLQQVLDFVEFLAQKYTQTPESEQTPQKRVLGLNQGEIWMSDDFNEPLPDEFWLGEGE I
>gi 117227645 |ref |NP_484193.11 hypothetical protein [Nostoc sp. PCC 7120] MKLLLDTHVLIWSTGNPEKLSERVKNLLLDNNNSWIVSVASVWELQIKYQIGKLNLSSSLPNLIETQQRVNNLQILPIEL SHIYALDSLPNHHRDPFDRIVIAQAISEKIPLLSTDTVFDAYPVEKIW
>gi 117228249 I ref |NP_484797.11 unknown protein [Nostoc sp. PCC 7120] MKCIDAIAFGFWRVRSRYVSSDRLEΞSAKINNTVIRGKAMSNQELEQQLLSLDLAERIRIFQILAQSLTVQSSPPSPTPD AIDLKSDSEALLLSADRSPQHPLRKIPLTIPPDFDEPMPELWDALGQ
>gi 117228248 ] ref |NP_484796.11 hypothetical protein [Nostoc sp. PCC 7120] MILLDTHIWLWWLHSPEQLSESGRTLLTIGENQNALIVSAISVWEIAIKHSNGKLPLPLPINEWFALAKTRPGITIEPLD PLDAITSTQLPGDFHKDPADRIIVAIAYRRNIELMTCDQKVLNYPHIKTIC
>gi 117230178 I ref |NP_486726.11 unknown protein [Nostoc sp. PCC 7120] MEHIATSELPETLQQIFAEIQRTKTPVTVTHDGEPLVIIYPATPQPQRPAFGAMKGSGEILGDVIAPVIPAATWEALQ
>gi] 17230177 I ref |NP_486725.11 hypothetical protein [Nostoc sp. PCC 7120]
MKLLLDTHIWLWYLLGNERLSPGLQTTIAATTTELWLSPISIWETLLLAEKGRISLQPNPVAWVDLALNTLEIREAPLNR
HIAILSRQIQLPHQDPGDRFIAATAVHHQLTLATVDTNLTGTSWLQTLS
>vapB| 17227497 :c3788612-3788415, length 66, Nostoc_sp_PCC_7120, VapB
MRDRFNLPQILIIKPYVKLVMLLIDTSVWISVFRNRSGQVRQQLETLVANRQNSLGSPSL
NCCKW >gi 117230620 |ref ]NP_487168.11 hypothetical protein [Nostoc sp. PCC 7120]
MLQGSLNEQEWTLLSTYLEAQDYVELTPSSWREAARIYYDLRRQGLTVRSPIDCCIAQVTLENNLLLIHDDRDFETITQV RYLQHLRFQP
>gi|l7230960|ref |NP_487508.1| hypothetical protein [Nostoc sp. PCC 7120]
MYSLEIPEGQAEFAELLRRVRDGEEVIISQAGTPIARIVPIAEQKLPRIPGLDRGQVTISPDFDAPLPDEVLNAFINPTD AEA
>gi|l723096l|ref |NP_487509.1| hypothetical protein [Nostoc sp. PCC 7120] MRALLDTHTFIWWVIDDNRLSSTARNIIADPGNNLFFSAASAWEIVIKVRLGKLNLPEPPETYIPNRLTINRFESLPIQM NHALQWNLPALHQDPFDRIIIAQSQVEKMPIITVDNKITQYPVDVIW
>gi 117231465 I ref |NP_488013.11 unknown protein [Nostoc sp. PCC 7120] MLKSYEAIYENGQIKWISEQPQVNTARVIVTFIEETLPSKKRRTAPESIAGKGKTLGDIVSPIVDEEDWECLK
>gi 117231464 I ref |NP_488012.11 hypothetical protein [Nostoc sp. PCC 7120]
MSEVIVLDTHIWFWLINQEFQRFPTQWREAIETAEQVGISVISCYEIALAQQRGRLQLPCAANQWFQEALQPADITLFPL
TPEIVCRAVDLΞPIHKDPFDRLIVATTLEYQAKLASVDSLFSQYPELDTHLMK >gi | 17231628 | ref |NP_488176.1 | unknown protein [Nostoc sp. PCC 7120] MHQINLKEAETRLAELIEEVASGQEVIITRSDGASFKIVPIGEVKAYPKFGSAKGLVKISDDFDEPLADFEEYAP
>gi 117231627 I ref |NP_488175.11 hypothetical protein [Nostoc sp. PCC 7120]
MRLMLDTHTFLWFIEGSLNLSDTAKSLIEDQQNQRFLSIASLWEISIKVSIGKLELDMTFTELVKQQVYGNAIELLEIQP.
AHLDELAKLPFYHKDPFDRLMISQSLVESIPIVTKDSVFEGYPVQILW
>gi 117232092 I ref |NP_488640.11 unknown protein [Nostoc sp. PCC 7120]
MIFKEMNMTQVILKQLNPIVLEKLKRLAQSHQRTLEEEITSILEDVAEKEEEPKSSEGFWDMTLQFRERMQQENITFDDA
DFADIRDRSVGRDVEF >gi|l7232092|ref |NP_488640.1| unknown protein [Nostoc sp. PCC 7120]
MIFKEMNMTQVILKQLNPIVLEKLKRLAQSHQRTLEEEITSILEDVAEKEEEPKSSEGFWDMTLQFRERMQQENITFDDA DFADIRDRSVGRDVEF
>gi 117232625] ref |NP_489173.11 unknown protein [Nostoc sp. PCC 7120]
MRWRSYNKWYHYLVAINSMEREALTIRFPSELLTKARKLKGSNESFNDLVVEALESEVKRRRGWAAHQRILARSETIKAK TGIQPSSTEMIRSLREGEGRRD
>gi 117232624 I ref |NP_489172.11 hypothetical protein [Nostoc sp. PCC 7120] MREDVTRVLCLDTSVWIPYLVPEVYQSQAVTLVTEALSLNIRLVAPAFAWAEVGSVLRKKTRMGVITAEEALGFFEDFCE LPIDYIEEEAIRLRSWEIAEQYGLLTLYDAAFLACAEMTSAEFWTADAALVKQVIPRPSYLREIGEI
>gi 1183117111 ref |NP_558378.11 Hypothetical protein PAEOIOI [Pyrobaculum aerophilum str. IM2]
MEIVEVDGFGRIYLPAEIRKRIGARRFRVKIVDNGILLEPVDDVDKYYGΞYGPPRYKSLEDIEEAIRDVSQVDLR
>gi 118311712 I ref |NP_558379.1 ] Hypothetical protein PAEOIOI [Pyrobaculum aerophilum str. IM2] MYRKWIYVDVNVLYYFFTAHPEYGEGSRELIKKYAGRLATSALTAWLLYVLTRNEGIVEATRDLTTLLPLDVEVLNKAKR LNKPRDFEDRIHLATMQIYGIDTILSNDGDFDEAGVQRIAPRRKGE
>gi 118311748 I ref |NP_558415.11 Hypothetical protein PAE0151 [Pyrobaculum aerophilum str. IM2]
MSEVISIRVRRGLKKELEELGINYAEAVRKFLEELVARERRRRALERARALREELRKKGAFPPSAELIREDRDEASR
>gi 118311747 I ref |NP_558414.11 Hypothetical protein PAE0151 [Pyrobaculum aerophilum str. IM2] MKLWDASAIAALYVPEERSEQAERAVSQAQELHTLDLAAYEVANDLWKHARRGLLREDEASNMLEELWEFFKALKVHSY AEVLKDAFALALKHGVTVYDAAYVALAEKIGGKLLTLDRQLAEKFPALVTP
>gi 118311873 I ref |NP_558540.1 | Hypothetical protein PAE0337 [Pyrobaculum aerophilum str. IM2]
MKKLTLSVREETLRRVRAVLSRAGLKTSISELFDDYIALMDGEGLAAELCSELKLDCGGQFYTPDEVKAKRPAALGPPAS ELVKELRRARESRL
>gi|l8311874|ref |NP_558541.1| Hypothetical protein PAE0337 [Pyrobaculum aerophilum str. IM2]
MIYLDTSALIKRYVKEADSDWDGLFEAAYRGEVAVΞTSVFNIGEAATAADKKARRGELSGDVRTAVSLMLREIAVLSSL GSLVIVPIGLSVMKASIHIALTHKLYIADALQIASCLRVKCHELYTADKALADAAEKEGIKTRVLR
>vapB| 18311643 =335372-335986 , length 204, Pyrobaculum_aerophilum, VapB MLGGDGTLLEAIRRHPCVLESWIHLGLGKVNFYKSAEITLPIDEAVSRVLKGEYKVLEL STLESDGCIALNEAAVYRRDPGRLLSFKITTDEGQIAGRADGIIVSTPHGASGYWSTFG PWDYRADVIWSFVAPYTLYLRPMVLTSKRWIETREDAVLVCDGREARMGRVFEVAKG QRRLKLAIFGDFQFIQRVAERLRSL
>gi|l8312054|ref |NP_558721.1| Hypothetical protein PAE0624 [Pyrobaculum aerophilum str. IM2]
MKCYALDASAFFHGRDARLFSGQLYTTKNVVEELKDPRAQALLEVWRVEIVEVDEKKVRELLKKYGGLSPADASVLILAL ERGCVLITDDGRLASIAKKLGVEVLGIFYKR
>gi|l8313566|ref |NP_560233.1| Hypothetical protein PAE2754 [Pyrobaculum aerophilum str. IM2] MSVIISVRVRRELKEKAKRLGIDIRRWERALEEEIKRREEEELAKSLEELRRALSGISEREWVEAVREARNAR >gi 118313565 I ref |NP_560232.11 Hypothetical protein PAE2754 [Pyrobaculum aerophilum str. IM2]
MPVEYLVDASALYALAAHYDKWIKHREKLAILHLTIYEAGNALWKEARLGRVDWAAASRHLKKVLSSFKVLEDPPLDEVL RVAVERGLTFYDASYAYVAESSGLVLVTQDRELLAKTKGAIDVETLLVRLAAQ
>vapB 118311643 :2133278-2133844, length 189, Pyrobaculum_aerophilum, VapB MREAERALLELRVGLKDKFYLISGRRLAAWKYTYETHVDLMPLTSVGAEGQFTPHHLSRI LTMSSYEAVRDALYNYLEIADIEDVRVGLVKTGRIALYVKKGGLWTNGYNAGNYTKAVLP VLLQMLLANEGSSVFIDDVDLAVPSGRAEVLLSALFEIARKRNLQLVASAKEPGFAEIAE KLGFTIAKL
>gi | 18314154 | ref |NP_560821.1 | Hypothetical protein PAE3561 [Pyrobaculum aerophilum str. IM2]
MLDTSALLYIVEHRLDIWELSEHEIYIPSAVLEELNALSRRSRKARVALQLLSLLKYKWERGGPADKAVLETAVEEGAV LITGDTALAEEARRRGVPVAKFHKGQLAIY
>vapB] 14518450 :c447806-448138, length 111, Pyrococcus_abyssi, VapB MNLALWSAWSDKNVLVPQHGSWSDGLHSWKWKTNPDGNVELSGMTFRWNAEWNYSGGPE NIDLSGKGRFSPKIPIPLYIEGRFYSKDPETGEEVEVYGEYELEDMKLEEI
>gi I 33356691 ] ref |NP_126156.2 | hypothetical protein PAB2041 [Pyrococcus abyssi GE5] MRTFLFPPSLSFIMKGKVWLWPDTNFLFIPGQFGVDIISEFERILDVKYQVAIPNWLEEIKTIIREGKVKGKDLMAAK IALKIAERFPKIYVGEFLSKPTDELLYEYAIANDNVIICTNDRKLRKRLREAGVPVIFLRQKKKLELEGILE
>vapB 114518450 = 761684-761887, length 68, Pyrococcus_abyssi, VapB MWLEALFLYGENMEVIKVEIPRELEEDVKRYIKLLKKRREVLKKTFGILKTEKTAKELKV EIYDELYD
>gi|l4521013 | ref |NP_126488.1 | hypothetical protein PAB0550 [Pyrococcus abyssi GE5] MTSFMIDSTLIIEHLKGNPIARKILEVLIDSDVNVYINDWASEVIFIYLKLTTGKSYLTLKKNPVIVRSVDKTSVYELL GMFKFLETNEFVFSIAKRLIDKYGLLPNDALILATAIFYRCDYLIALDSDYKEPCEAEKIRLIΞTKEELEKALHNH
>vapB 114518450 : 834293-834433, length 43, Pyrococcus_abyssi, VapB MVIYLDANVIVGYLIYTDKTEEIKELLEKDEIFVTTINTLFWDEINL
>gi 1145210811 ref |NP_126556.11 hypothetical protein PAB7218 [Pyrococcus abyssi GE5]
MRLIFEEHYGEYKLKKLKKSLSQKFEIYRAYLRNLNRLIWIPAPSDVSKLTYIMEKYSLLPNDALIVLTCKVYGINKIA
TFDSDFENVDFLEKLP
>vapB|l4518450:c898293-898093, length 67, Pyrococcus_abyssi, VapB
MKTIAVDEETWEAIKRLKAKLDAKSYTEVLKKLIEVWHSVELEMKAEKVTIEDDKAEMII
SLLENSE >gi 1145211411 ref |NP_126616.11 hypothetical protein PAB1741 [Pyrococcus abyssi GE5] MRMLPERISFGPISFLKITRKQNKEILEFILAEFQVFLPLPAVNSYLMTKGLLGRDIDEEIKILREVFTIVEVSDQLIRK MAELGGALVKEGIVPNFSDLITAASAIITESLLWNDKKVKDYEIFSKYGLDVISYTKFLEEIESLAEEEAKRVAK
>vapB 114518450 :cl009921-1009637, length 95, Pyrococcus_abyssi, VapB MYQYVHYMQIYGDINMNVEVKRIDSQGRIVLPKEWRKKWGSEVILIELDDRIEILPRKKP KLSEFFDIIEVEDIGEDIEKDLLKELGEDINEVHR
>gi 114521256 I ref |NP_126731.11 hypothetical protein PAB1672 [Pyrococcus abyssi GE5] MGRILMRFIDSNIFLYAMIKPKGNISKMILERKERSKRILLRVENGEDWTTWHLSEVANILEAKVSLTTAIKFLESLF LAENVKILPVSAEDYLKAILLSKEKRISVNDALAYLKMKELGIKEIYTFDRHFYNLDVKWQE
>vapB 114518450 :cll20616-1120338, length 93, Pyrococcus_abyssi, VapB MVIRMVTTKKVKIVQTEVDLGTYHTLRAIAVHRGVPLKEVIREILRNYAETYKRELIKEI HEDPIWKGIGLLNTGDPRASEKDDWGWKWSSE
>gi 1145213711 ref |NP_126847.11 hypothetical protein PAB1599 [Pyrococcus abyssi GE5] MVKRMKSKLVYIDTGALIAFFDKRDKNHKIAVSYFESAILNGVRFVVGRPVLMEFINGASKVNGKRVAIQLKNLIYSSRY ILIENETERDWEKAWEIFEKFDDQDGMDLVDCLSFAIMERLGIKKAFTFDSDFETYGFIWPRSQSNY
>vapB|l4518450:1136739-1136951, length 71, Pyrococcus_abyssi, VapB MRKVKNVGKVVITLNVPDGMEDVVKSLLEREARVIMRRLSRADFKSTFGILKGKRKSVDE. IEADIYDEWEV
>gi 1 14521385 I ef | NP_126861. l | hypothetical protein PAB0789 [Pyrococcus abyssi GE5 ] MKLRLIFMTSGKFRFFIDSNVILNYFYGDDNAREIIEIAENAGEVFINGIVLTEVSIRYLKDETGEKSYTLKRKPELVKN VDKSPPYAVLGKFLYLSDNVLIGEDAVILMDIYGLLPNDAIILATCKFYGIKYLMSFDSDFREACKGEGIILIESKEKLD
EIIKFGDSK
>vapB 1 14518450 : cll53817-1153542 , length 92 , Pyrococcus_abyssi , VapB MASLINFRNLKSHWMIVTFGGHMSKVITIEVPEWVDEERLKTILNKVLMELSPKVMPVDK
LREMLGWELEEEITDHTYVREKEKERIKWLY
>gi.| 14521399 | ref |NP_126875 . 1 1 hypothetical protein PAB1585 [Pyrococcus abyssi GE5 ] MWLDTSIVIDRVKRKDEIKENITGITFVEYPAIIRYKKFHGNVLFPTFEDFLLAHKIQERLLKIGKPKAFADLLIASIC ISNNEELITKDKDFLDIARVSNLRVKVIDV
>vapB | l4518450 : 1260427-1260705 , length 93 , Pyrococcus_abyssi , VapB MVTSWSIRLKVGPKGQIVIPKVFREAYGIKEGGEVIIEPTDKGLVIKAPLDVKTLMEKL KERRKNMKGVGIQAKLGDLKDVDLEDEFNEDIP
>gi | 14521500 | ref |NP_126976 . 1 ] hypothetical protein PAB0859 [Pyrococcus abyssi GE5]
MKIFLDASFIIYLNVDVPDSLAEKIDALYEQLITSSKLYTDVLVIDEVIHVSRKKYKVPYSKTIEMLDDIVIPYVEVLPI
GLMEYLKAKENILKYNLKPSDAIHLAVIENNGIQAIVTEDEDFDRVPIKRIWL
>vapB 114518450: 1291316-1291903, length 196, Pyrococcus_abyssi , VapB MHANEILDGKDLPLLYVGISPCFRKEAGTAGKDTKGIFRVHQFHKVEQFVYΞRPEESWEW HERIIRNAEELFQKLEIPYRWNICTGDLGYVAAKKYDIEAWMPGQGRFREWSASNCTD WQARRLNIRFRDRTDEKPRYVHTLNSTAIATSRAIVAILENHQEEDGTVKIPKVLWKYTG FKEIVPVEKKERCCSS
>gi 114521536 I re |NP_127012.11 hypothetical protein PAB0881 [Pyrococcus abyssi GE5] MLLKLKLVLDSSVFIQGLDIEGYTTPKWDEVKDRESRILLESLISSGKVKWEPSKEALRAVKNAALKTGEIEELSEAD LEVLALAYELKAEVFSDDYNVQNVARILGLKFRTLKRGIKKVIKWQYVCIGCGRKFKEMPPGGICPDCGSPVKLIPRRQR S
>vapB 114518450: 1501612-1501827, length 72, Pyrococcus_abyssi , VapB MKTIAVDESTWKKIKMLKDKLEAKSYDEVLQKLIETWHLVELDKKVDKVWKEEEAETLL SVLNKIKKKGES
>gi 114521742 I re |NP_127218.11 hypothetical protein PAB1341 [Pyrococcus abyssi GE5] MPLPPDITFDSVTLLKMHSEKNKRLLEITLAKFTVYLSMLTVQRYLTARAYLKRNVELEFEVLKDIYNIVPVSEEIILRA SKIEANLIRKGVFLDLEDIITAVTAIETGSLLITDEPKKYEPIRRFGLDTMPLDKFLREVELMVEKEII
>vapB|l4518450:cl699062-1698781, length 94, Pyrococcus_abyssi, VapB MILLVSIRLKVGPKGQIVIPKVFREAYGIKEGGEWLEPTDKGLIIRAPIRVDDLIKKIR EERKKMNPKRRPKPGELRGISLEDEYEEEWRSEE
>gi 1145219211 re |NP_127398.11 hypothetical protein PAB1216 [Pyrococcus abyssi GE5]
MKLFLDTNILVYLALGSVDPSYETSIDEFYRDLMKGHELYTDVLVLDEFIYILKRKYGVPYEKAITFIEETVIPWKILP
ITFLDYLTAKDVMLKYKLKPSDAFHVAVIQNNGLQAIVSEDEDFDRLPLKRLWLRD
>gi I 33359474 I re |NP_877887.11 Hypothetical protein PF0356 [Pyrococcus furiosus DSM
3638]
MKTIAVDETTWKKIKMLKDKMEARSYDEVLQRLIETWHLVELDKKVDRIILNDEEAETLISMLKKKKGS
>gi|33359473|re |NP_578084.2| Hypothetical protein PF0354 [Pyrococcus furiosus DSM 3638]
MKMPLPPDITFDSLALIKMHSQSMKKILEITLAKFTVNLSIVTVYRYLTVRAYLKKNIELELDVLKDIYNIVPLNEEIAI KAAQIEADLMRKGMMPDIEDVLTAATAIYTKSLLITDDSKRYEPMRRFGLDTMPLDKFVKEVELMVEKELI
>gi 118977146 [ref |NP_578503.11 Hypothetical protein PF0774 [Pyrococcus furiosus DSM 3638]
MFGEIVPRPTMLKYDARIQCIGEVMVKTITVSDDVYNELLRIKGKKSFSELLRELLREKKGNSVALKHIYGILNGEEYRE TRKRLKELEKEFEKWKQFLTQV
>gi 118977145 I re |NP_578502.11 Hypothetical protein PF0774 [Pyrococcus furiosus DSM
3638]
MEAVLDTSVIIEIARGNREILEKALGLDNTL >vapB | 18976372: 768291-768446, length 52, Pyrococcus_f riosus , VapB MKGDEVWIEEEGKVEILPRDVDLSKYVDSVEVDVDNFGDYHELRKELREKK >gi 118977153 |ref |NP_578510.11 Hypothetical protein PF0781 [Pyrococcus furiosus DSM 3638] MRFIDANVFIYAILKPKRELNEKELKIKRVSKEIFNRINGGEEWTTWHLSEVANVLEDAANLSFAISFLKDVLIKGNV IVEEVSDRDYMESVLLAEEKGVSINDALAYILMKRKGIEEIYTFDRHFENLDVRIVNS
>gi 118977147 I ref |NP_578504.11 Hypothetical protein PF0775 [Pyrococcus furiosus DSM 3638] MIYLFLQNSVALNVGIGYIKIVLQIYLQVNYVGDGISIRVPPEIKHEMEKLKGEVNWSEEIREFIKRKIKEYKMRKALQE VIAYIQALPEAPRGTAQKLVGKDRDNH >gi | 18977147 | ref |NP_578504.1 | Hypothetical protein PF0775 [Pyrococcus furiosus DSM 3638] MIYLFLQNSVALNVGIGYIKIVLQIYLQVNYVGDGISIRVPPEIKHEMEKLKGEVNWSEEIREFIKRKIKEYKMRKALQE VIAYIQALPEAPRGTAQKLVGKDRDNH
>vapB|l8976372:1146253-1146840, length 196, Pyrococcus_furiosus , VapB MHANEILDGKDLPLLYVAFSPCFRKEAGTAGKDTKGIFRVHQFHKVEQFVYSRPEESWEW HERLVRNAEELFQELEIPYRWNICTGDLGYVAAKKYDIEAWMPGQGRFREWSASNCTD WQARRLNIRFRDRTDEKPRYVHTLNSTAIATSRAIVAILENHQQEDGTVKIPRALWKYTG FKEIVPVEKKEGCCKA >gi 118977577 | ref |NP_578934.11 Hypothetical protein PF1204 [Pyrococcus furiosus DSM 3638] MKLVLDSSVFIQGVEVEGYTTPSWEEIKDRESKLFLESLISAGKVRVIEPSKEAIEKIIQAARETGELEELSKADIEVL ALAYELKATIFTDDYNVQNIASLLGLKFRTLKKGITRVMKWRYVCIGCGRKFSTLPPGGICPDCGSRVKLIPRRR >gi 118977725 I ref |NP_579082.11 Hypothetical protein PF1352 [Pyrococcus furiosus DSM 3638] MEWSFRIPRELKKEMKKIDINWSEEVRKFIEEKVKEYKRKKALEEIDAMLANLPKAEKGTARKYVREDRDSN >gi 118977724 I ref |NP_579081.11 Hypothetical protein PF1352 [Pyrococcus furiosus DSM 3638] MIVIDAΞSIAKYILREENWEKVRKYLLDKPYSLTLALAEVSNAIWKHYVLYKAISIEEAKLMYEALKRLEEDVITFEPLE NYLWDAMNIAISWGIPIYDALYLAQAKKYGKLLTSDKEQWKIAKKLGIKVEYVE >vapB|18976372:cl596552-1596223, length 110, Pyrococcus_furiosus , VapB , MTKGDLMAGNWGKPGKLPPVWTDLRLEVHLLERWGTEQELNVEPIKRKEVLLLNVGTA RTMGLVTALGKDEIELKLQIPVCAEPGERVAISRQIGSRWRLIGYGIIKE >gi|l8978088|ref |NP_579445.l| Hypothetical protein PF1716 [Pyrococcus furiosus DSM 3638] MKRVWLVIPDTNFLFIPGQFGVDIISELERILDVNYKIVIPNIVLEELKTILREGKLRGKDLIAARMALKLAERFPTIYV . GDFMSKTTDELIYEFAISNDNVIVCTNDKQLRKRLREAGVPWFLRQKKKLELEGMLG >vapB|l8976372:cl897570-1897358, length 71, Pyrococcus_furiosus , VapB MIRSLRRLTMNHFELFVDSSVLVGLNLGDEKAKALVKSLIERGLTLVQSFSLKRLIRLCL PGPSRWIEGCL >gi 118978429 I ref |NP_579786.11 Hypothetical protein PF2057 [Pyrococcus furiosus DSM 3638] MKGVYDLKKHLNRYSWVYGKVKESIEQLMKNELLRIVEVNWEILKLSAEIGKNTLF
>gi 133359257 I ref |NP_877735.11 hypothetical protein PH0098 [Pyrococcus horikoshii OT3] MGKIKTSIYIDADLWWELKKEAAEENRDISRLLEEIISENLLLDLEKNIEEMLKKFEKKIEFEPLPSRGSVSELVRRIRD EREGNILR >gi|33359258|ref |NP_142113.2| hypothetical protein PH0098 [Pyrococcus horikoshii OT3] MSEKVIYLDSSAIIKRYIREENSDRMVELYTQAYQGDIKLAFSLWNIGEVLGAFDRAKRIKRIDVETYELARLRFLSEIL RMKRLGILKIIPLYSSILIGSWELLEKYHIYQADAIQIESARRVNASEFYTADKRLHQVALSEDLNSFLI
>vapB| 14589963 :c351629-351390, length 20, Pyrococcus_horikoshii, VapB MVIKWCMEVISFRIPSELKKEMKKIDINWSEEIRKFIEAKVREYKRKKALEEIDAMLEN LPRTEKGTARKYVREDRDΞN
>gi 1 14590297 I ref | NP_142363 .1 1 hypothetical protein PH0389 [Pyrococcus horikoshii 0T3 ] MIVIDASSIAKYILREENWEEVRKYLLDDPHSLTLALAEVSNAIWKHYVLYKWSAEEVGIMLKALKRLEEDVINFEPFE HYLKDAMΞIAINWSIPVYDALYLAQAKRYGKLLTSDKEQWRIAKKLKIKAEYVE
>vapB | 14589963 : c372554-372781 , length 76 , Pyrococcus_horikoshii, vapB MFGVGCLSKWTIRVPEWVDEEKLREIINMALAEISPRIMSINKLREILGVEEVEEEISD DVYVREKEKERVKWLY
>gi|33359290|ref |NP_877761.1| hypothetical protein PHS014.5n [Pyrococcus horikoshii OT3]
MTFVKYPAIVRYKKFYGNVLFPTVEDFLLAHKIQEELLKMGKPKTFADLLIASICINNGEELITKDKDFSDIAEVSNLKV KIVEE
>vapB | 14589963 :c452910-452704, length 69, Pyrococcus_horikoshii, VapB MKTIAVDETTWKKIKMLKDKMEARSYDEVLQKLIETWHLVELDKKVDKVMVNDEEMKILM SILKKKKGS
>gi 114590406 I ref |NP_142472.11 hypothetical protein PH0499 [Pyrococcus horikoshii OT3]
MPLPPDITFDSLALIKMHSQNMKRILEVTLAKFTVNLSIVTVYRYLTARAYLKKNIEAEFEILKDIYNIVPLLDDIAIKA
AQIEANLIKKEITLDMEDIITATTAIYTNSLLVTDDPKRYEPIRRFGLDTMPLDKFIKEVELMVEKELI
>vapB| 14589963: 631040-631294, length 85, Pyrococcus_horikoshii , VapB
MKTIAVDEETWEAIKKLKARLDAKSYDEVLKKLIQAWHTLELETKAESISLDDEEAELVL
SVIKERGRFVQEGNKNDΞNASKNLL
>gi 114590586 I ref |NP_142654.1 ] hypothetical protein PH0709 [Pyrococcus horikoshii OT3]
MTPMLRKICFDPSSFIQLTRKQNKELLEFVLAEFEIYLPITTVHAYLLAKSFKGKDPKKEVQKLRGIVRIVDLTDDLLGE
IAEIDASLIKDGYFLSLEDLITAVSAIASKSLLWSGNAEKYSPLRKYGLDCVNYDKFLEEVEVLAREEAKREKLI
>vapB|l4589963:c632499-632206, length 98, Pyrococcus_horikoshii, VapB
MEAWMPGQGKFREWSASNCTDWQARRLNIRFRDRTDEKPRYVHTLNSTAIATSRAIVAI
LENHQEEDGTVRIPKVLWKYTGFKEIVPVEKKERCCAT
>gi|l4590587[ref |NP_142655.1| hypothetical protein PH0710 [Pyrococcus horikoshii OT3]
MLRNLKKTLVLDSSVFIQGIDIEGYTTPSWEEIKDRESKIFLESLISAGKVKIAEPSKESIDRIIQVAKETGEVNELSK
ADIEVLALAYELKGEIFSDDYNVQNIASLLGLRFRTLKRGIKKVIKWRYVCIGCGRKFSTLPPGGVCPDCGΞKVKLIPRK
R
>gi 114590763 I ref |NP_142833.11 hypothetical protein PHS027.1n [Pyrococcus horikoshii
OT3]
MPITKVTRNYRITIPAEIRKALGIKEGELLEVKLEDGKIIIERLKKERKTLKLGKKLTPEEIEKAIVEGMKECI
>gi]3335934l|ref |NP_877801.1| hypothetical protein PHS027.1n [Pyrococcus horikoshii
OT3]
MHIVLIYDTFIDSEFHKKARSLLDSLDRWYIPPTVLQEYVWFFRSQGFSSRDAKIMLSEYIRSKLTFSKGKTSLCHSLMI
>vapB| 14589963 :c821653-821345, length 103, Pyrococcus_horikoshii, VapB
MAGLGVAVALKMSSMEGFQIIVMMLMLPMMFLSGAFYPVRTMPNWMQWLAKINPLTYAVD
GARYYLAGVTPTFGIMQDWIVLILLALVFAGFAGLEFRKAYLS >gi 114590765 I ref |NP_142835.11 hypothetical protein PH0911 [Pyrococcus horikoshii OT3] MIFVYFSLRDEKAKALVKSLIERSFTLVINPWFSETAYKVMFTLALRDGLKGVYDLRKHLDRYAWVYGKVKKSIELLIK NELLRIVEVNAEIGEKYALLTNDAIIVATCKYYEIQKIATFDEDFKKVDFIEIIDSSL
>vapB 114589963 :cll68172-1168014, length 53, Pyrococcus_horikoshii , VapB MRVQKTLAPGLIWNIHPLINKPTHITPDFSGLSLPRKPILHHSTPLYNKRRGK
>gi 114591108 I ref |NP_143183.11 hypothetical protein PH1298 [Pyrococcus horikoshii OT3] MSKYRGFLQRKKDLEKSLRELRLEWEGFLINTNILIYYLADAIPEDEIPRIEKILKEDFNISIITKIEFLGRKGHTSEGF EKSREFISFARVIPLTDDIAELAIELRRRKSIKLPML
>vapB| 14589963: 1501435-1501986, length 184, Pyrococcus_horikoshii , VapB MYPWDIGWSGIFSPMGGEERFVGVEFEYRGKKFTVINPTPYKKGLFPYINGNSEWMKELN DDLNNLYMGWAAMVNLALWSAWSDKNVLVPQQGTWSDGTHSWEWETRPDGEITFSGVTFR VINAEWKYSGEPEGIKLSGNGKFAPEIFIPLSVEGWFSSKDPKTGENIEIYGAYELQDIK LEEI >gi | 14591473 | re |NP_143553.1 | hypothetical protein PH1710 [Pyrococcus horikoshii OT3] MRKVWLVIPDTNFLFIPGQFGVDIISELSRILDVKYQIAIPNWIDEINTIIREGKVKGRDLLAARIALKIAERFPKIYI GEFLSKSTDELLYEYAITHDNVIICTNDRTLRKRLREAGVPVIFLRQKKKLEIEGMLD
>vapB| 14589963:965798-965962, length 55, Pyrococcus_horikoshii , VapB MYFVHTCTYEVTSMSKTITIADDVYYELVKMKGKRSFSEVLRELIGKKKEGISTY
>gi 1145917611 ref |NP_142973.l| Predicted nucleic acid-binding protein, contains PIN domain [Pyrococcus horikoshii OT3] MDTSIVIEIFKGNRKILDQLSPTEEYSLPSIVLFELLCGNLKPRQRLALEKLPIVDFDRVSAEVASEIFKDLASKGQRPP TRDLLIAATAIAYNMHLLTCDKDFERFKDYV
>gi|15964819|ref |NP_385172.l| HYPOTHETICAL PROTEIN SMc02658 [Sinorhizobium meliloti 1021]
MATTVTIKGQVAIPKAVRELLGIKPGSKVDFRRTGSGIVEIRRADSKPVRSRFQNLRGHAGEGLSTDDIMALTRGDA
>gi 115964820] ref |NP_385173.11 HYPOTHETICAL PROTEIN SMc02657 [Sinorhizobium meliloti 1021] MTLVDTNVLLDLVTDDASWAGWSIDQLKAASLQGPLLINDVIYAELGVRYERIETLDSFIAEAGLELLALPRAALFLAGK VFVPFRARIQAHCL
>vapB|l5896971:360012-360608, length 199, Sulfolobus_solfataricus, VapB MIRSFDVNKPGTQFNELKGGVIGGSIIQGLFKVDQEIKVLPGLRVEKQGKVSYEPIFTKI SSIRFGDEEFKEAKPGGLVAIGTYLDPSLTKADNLLGΞIITLADAEVPVLWNIRIKYNLL ERWGAKEMLKVDPIRAKETLMLSVGSSTTLGIVTSVKKDEIEVELRRPVAVWSNNIRTV ISRQIAGRWRMIGWGLVEI >gi|l5897346|ref |NP_341951.l| hypothetical protein SSO0412 [Sulfolobus solfataricus P2]
MENDRMGFSRDLKVLVDTNILLYVYDGLDPFNKVLEFLDYKPSFFIHSTVLRELDILFEKNKKGFIISSRIKIARKYLEV YKNLWNLINDYDDLPTDEALIRTALKHNMFIFTNDKELKNDAIKKGIGVLFLQNRSKIIKSLYPI
>vapB|l5896971:c683385-683083, length 101, Sulfolobus_solfataricus, VapB
MKEVKTHYFVTLNPPRSITALQPITVSVGALSAIGILAYLLSRLDKGEDNIREWEKALD
EAIKEKEKERLRETALKIKELMKDVNEEEWATVIRENRNER >gi 1158977011 ef |NP_342306.1 ] hypothetical protein SSO0799 [Sulfolobus solfataricus P2]
MKGNGFLFDASALYPLLDYIDKIDVKKIYILTLTFYEVGNAIWKEYYIHKKVKDPITLSMLFNDLLRRFNWEDPPLDKV MKVAIDKGLTYYDASYVYVAESLGLTLVSNNRELIRKANAITLEELIKGV
>vapB 115896971 :c725687-725481, length 69, Sulfolobus_solfataricus, VapB
MSERIKEKIYDTNALIKIHKNKSLLSTTNYVTTSILNVIEYPPIIDLKEKLIIIYPTRSD
YELAIKDNG >gi] 15897743 I ref |NP_342348.11 hypothetical protein SS06663 [Sulfolobus solfataricus P2] MVKLRKIGEPVNAVDIILSSIALNRDMIIVTNDNDFESIKKVEERLKIEKMR
>vapB|15896971:1073660-1073923, length 88, Sulfolobus_solfataricus, VapB MYENFIYVYLVYIYMSDVISVRVKKELKKKAEELGINVREWEKALEEAIREKEKEELKD MTMKIKELMRDVSEYDWVSTVRESRDER
>gi 115898090 I ref |NP_342695.11 hypothetical protein SS01243 [Sulfolobus solfataricus P2]
MKDKEFLLDASALYSLLDYVDKVDVKKIHVLTLTFYEVGNVIWKEYYIHKKVKDPITLΞRLFYKLMRKFNVIEDΞPLEGV MRIAIERGLTYYNASYAYVAESLGLILVSNDKELIRKANAISLKDLIKSM
>vapB|l5896971:1340360-1340617, length 86, Sulfolobus_solfataricus, VapB
MYYLHLKFTMERMISKVTRNFQVTIPYEIRKVLGIKEGDYIEFAIENGKVMIKPVRKVWS
TIRLGREVTVEEIEEIASKAFKDDSS >gi | 15898313 | ref |NP_342918.1 | hypothetical protein SS01483 [Sulfolobus solfataricus P2]
MEEKLQWRRLRKSQVRPLKMIWDTNVLIYATLEDSEFHTQSLEIIEGSDIIVPQIWFEYIKVLSEIVQNLDFIKTKIS ELNNFWVCEDLNTIALALRLLAELKLSLKDINDMIILTAAIKTNSSIATFDQKLRKIADKKGVKVLP
>gi 115898324 I ref |NP_342929.11 hypothetical protein SS01494 [Sulfolobus solfataricus P2]
MVIKNATILIYVPEIETFIFPVYVYYNMKTvYSLRLDKELREEMEKYNVKWNEEIESFIRKRIEELKKEEILKKINEILQ TMPETKSNSADLVREDRDNN
>gi | 15898323 | ref |NP_342928.1 | hypothetical protein SS01493 [Sulfolobus solfataricus P2]
MKDAETLDFALVEVSNVVWKKAVLTGELTGKDVIKAITIVKEYLPQLLTVNKSIDLIERAIEISVNEKITVYDSLYIALA ECKGSKLVTGDKKQYDVAKKYVISELI
>vapB|l5896971:cl503996-1503685, length 104, Sulfolobus_solfataricus, VapB MNFRSDPQSSIQSKLYIHTHLFTFVSKIIRVSEDVKEKLVKIΞAELELSEGKRVSLNDTI KYLITLYEEKKSNKNSELLLSLLGSAKGIREEFERSRIEDESSD
>gi 115898469 I ref |NP_343074.11 hypothetical protein SS01651 [Sulfolobus solfataricus P2]
MKWTDTGVLVEVLEGSKLGEKFIQLVDSGKIEPIITNLTLIELSYIICRKYGIDKARELVKKLLDSNYFEWNAFDFAE NIVEIKCNNSLSIIDASVIATAKALGISALFKMEKELKDKKFNNLIFIENL
>vapB 115896971 :cl577585-1577400, length 62, Sulfolobus_solfataricus, VapB
MKEGDILILRVEDGKIVLEPERKVSFDDLKKKMEEHSAKISYANKAKLGDLINVSLEEEF
DN
>gi 1158985411 ref |NP_343146.11 hypothetical protein SS08813 [Sulfolobus solfataricus P2]
MRLFTLSKKKYNVKFEDTIDFLDKIILPYTIILPINSHDYEKAKGIMISKTLKPSDAFHVAVMINNSIKKIVSEDSDFDK INGIERIWVK
>vapB|l5896971:1582391-1582642, length 84, Sulfolobus_solfataricus, VapB MGIQNQLMGYIVTVDERGRIVIPKDIRERLNLKEGSKVEISVDEKGRIIIIVRRISVDNI YGIAGRERVSIEEIEEALGFEDND
>gi 115898547 I ref |NP_343152.11 hypothetical protein SS01746 [Sulfolobus solfataricus P2]
MKIMIDSNVFIYVLFSDPSYGERAKELLNKAENEDAYSSTLIISQVLAHLERRRKSEIIPVFINYIQQSGIKILETRWED VIEAIKLLRNMNLSYNLWDDAIISAQIKREKIDIIFSNDKDFDILQVKREF
>vapB| 15896971:1620321-1620638, length 106, Sulfolobus_solfataricus, VapB MIHLLRIRKFYNIRMSYFLHMPIISIRIDEKLKKKMDELSYINWSEIIRRKIEEVIEEEE EKRKGKRKDYKKIAEASVRSYEFFLNYGGKSSEEIIREWRDKNWQL
>gi 115898585 I ref |NP_343190.11 hypothetical protein SS01786 [Sulfolobus solfataricus P2]
MERQELAWDASWIKWFVNENYSKEALILKEAYVKGLEDLLAPCILPFEVLNGLKYTYSLGEKELEEVGKILSDFQITL YGFENILDEMVSLSLRYGITIYDAAYIALGKVLNEKVYTADERLIRKVKELPFVIHIKDYKQK
>gi 115898659 I ref |NP_343264.11 hypothetical protein SS01867 [Sulfolobus solfataricus P2] MIKLKRVYDPIERDDGIRILVDRLWPRGIGKDKVDLWLKDIAPSDELRKWFSHDTSKWDEFKKKYFEELDANPKISVLLQ LIKKGENITLLYASKSPYNNAVALKEYLEKKILKQ
>gi|15898660|ref |NP_343265.l| hypothetical protein SS01868 [Sulfolobus solfataricus P2] MLKSPFEATILIEEHPCEVMKIISSTGLKGWDNVKLGDNTTDHIVLFEKEVQKDDLIKLKSHSTKVLRLNDNKIWVRTY GCAVCKILYTSNVWEKIKWRERTLLYTLLIPNTMALKEFLASLISQDIEFTVLSTSEISSNELTDRQMEILKLAYKMG YFDDDRRVTLTELAKQLGIΞTPTLEEILRRALRKWKFYLDKVR
>vapB|l5896971:cl734033-1733776, length 86, Sulfolobus_solfataricus, VapB MFTIKENTMTSTVISIRVDERLKKELEELGIDYPELVRRYLEEWRKEKMRRELREANGI REELLKSHGYYSPSAELVREDRDGYH >gi 115898712 I ref |NP_343317.11 hypothetical protein SS01914 [Sulfolobus solfataricus P2]
MAIIDTSALFAIYFPEKMTDFIRREIERVEECYFLDLIFYEFPNVIRKRIVRNELSREKADEILLRALSYIDLCKIVSGK ELTWTAYEISLKYSLTTYDASLIALAKKVGDVILTADEKLLRGIRNFPEISKYFIFP
>vapB 115896971:1742082-1742303, length 74, Sulfolobus_solfataricus, VapB
MSTVISVRIKKEIKEELEKHGVDIDQEVRKFLEELYLKVKAKEYINKWIEDLKDVKPSEE
GFSSNSVREDRESH
>gi] 15898722 |ref |NP__343327.11 hypothetical protein SS01922 [Sulfolobus solfataricus P2]
MRVIDSSSLVKFFSKEKGWEKWEIISEGVMTLDLSIKEVANΞLWKKILLGEMKEDWIKILSDLLKREALLIVSQDEYL lEAFKIANRNKITVYDSLFIALAKSNNLELVTSDKKQYEVAIKEGVNTRLI
>vapB| 15896971:1783470-1783712, length 81, Sulfolobus_solfataricus, VapB MYLMEVKVHKKGIIVIPAEVRRRLNIKEGSVIELEVEGDKIILKRKLTLLDAYGIDKEMG DSAVKELEKLRKEEVEKENSV
>gi 115898766 I ref |NP_343371.11 hypothetical protein SS01969 [Sulfolobus solfataricus P2]
MRRKILFDTGFFHVYFSGLNEEAKKAVEEVYTGKSVGYTLDLNLAEFLYTYGKLNGVEEANVRLSLILNSPIKIVSTNKE LALRAGELKVKYQNLSIVDCFLVAFAEKENTVIYTTDSEIKRVYKNTIILHS
>vapB| 15896971:1784438-1784701, length 88, Sulfolobus_solfataricus, VapB MYESFIYVYFVYIYMΞDVISVRVKKELKKRAEELGINIREWEKALEEAIREKEKEELKD IVMRIKELMRDVSEDDWVRAVRESRDER
>gi|l5898767|ref |NP_343372.l| hypothetical protein SSO1970 [Sulfolobus solfataricus P2]
MKDKEFLFDASALYSLLDYVDKIDLKKIHILTLTFYEVGNVIWKEYYIHKKVKDPITLSMLFHKLMRKLNIVEDPPLEGV MRIAVERGLTYYDASYAYVAESLGLILVSNDKELIRKANAISLKDLIKSM
>vapB|l5896971:cl788331-1788080, length 84, Sulfolobus_solfataricus, VapB MYTSYMKTIMIRDDVYKKLVEIKGDKSFSEIIEELIEESLTLRRRKLEKYFGILNEEEAE EIMKEIKEVRKITDESINRKLSNY
>gi 1158987711 re |NP_343376.11 hypothetical protein SS01975 [Sulfolobus solfataricus P2]
MKVLIESSAIIEYLKGNAKVKEIISNSEDFYVSTLTIFEVLLGKVEENKILDFLSAFNVIGLNKKDSIIASRIYKRLRDK GKLIGYFDILISAQAINRDLTLVTKDTDFLKVADEFNELKVALIT
>vapB|l5896971:1914151-1914375, length 75, Sulfolobus_solfataricus, VapB MKΞTITVSKKVKEVLERKKKEMEIKLNKPLSWDEFFQNIFREEEERIPKLTEEEAEILKD LTKEDRKNWRIREFV
>gi|15898880|ref |NP_343485.l| hypothetical protein SSO2096 [Sulfolobus solfataricus P2]
MENKRICLDTDVLIDAFRNDIKKFIGYYTTCINLYEFLRGLAFIGKNIDEFKSWIELNLNWCIDNNSLKTASRIYAELR KMGEIIEDPDLLIASICIANDFSLMTHNKKHFKRLEKYGLKLI
>vapB|l5896971:c2041164-2040874, length 97, Sulfolobus_solfataricus, VapB MSATNSLLYKDLNAIEIIFVNPIFYYLRSWIPPKSLILRLEDKGYPQTARVWDGEWT LIKTNQEITVRVSQHKAKILRFFKLDLIGEVLHAYHI
>gi 115898992 I ref |NP_343597.11 hypothetical protein SS02219 [Sulfolobus solfataricus P2]
MHIIFDTSGFLSGLQLSLDRVYTTQEVINEIKDKYSRFNLEIAISSGKVIIMKPSTRSVEKVTKVLNLTKERKLSNTDIS VIALALDLQPSIVFTDDLSVQNILKQLGIQFSSVKINKKVEKΞFKFKYVCVNCKREFNIDHGECPYCGGKWKRRIME
>gi 115899834 |ref |NP_344439.11 hypothetical protein SS03128 [Sulfolobus solfataricus P2] MERRRVKVYKKGIIVIPKEIREKLGIKEGDIIELIVNGDRISIEKPLTLLDLFGIDGDEALEIAKEIIKERRKEVEKEIR S
>gi|l5899833 | ref |NP_344438.1 | hypothetical protein SS03128 [Sulfolobus solfataricus P2] MRKKYVLDAGPLSLLFAGRKEIKKYFEEIYTGDAIIYMSEVNLAELLYIYILKKGKDVAIARHRYIRNSPIKVISPNERI TENAALLKSKYSYLSLADAFLIATAKEVKGKVITTDEDIEKTKEVETIKIPLD
>vapB|24473558:c2516-2271, length 82, Sulfolobus_tokodaii, VapB
MFSVYVYYNMKTVYSLRIDKELREEMEKYNIKWNEEIENFIRRRIEELKKEEILKKINEI
LQTMPETNΞSSAELVREDRDNN
>gi|l5920165|ref |NP_375834.1| 96aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
MEVSNWWKKWLTRELTEQDAIKAVTIIKEYLPQLLTLNKSVNLIERAMEISVKEKIPIYDSLYIALAERKGSKLVTGD KKQHEIAKKYVISELI
>gi | 15920187 | ref |NP_375856.1 | 77aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7] METITKVNKKGIIVIPKGIRDEIGLKEGDAVKITVEGNKIVIEKIDLWDKVWNCCKGSAEEAEKELDEEEGEFWKRK
>gi 115920188 I ref |NP_375857.11 129aa long hypothetical protein [Sulfolobus tokodaii str. 7]
MAFGELTERGKEIMLRIKDRKIEGIITSTVAYEFTVHWFRGRIPALKSLDEVKSFLNSYFKIVELSVDDFLESARIKSEG DKIVSLKGRKLSIVDSTLIQTAKKLGLKILSGDKDLTLVATKMGIEVIW
>vapB 124473558 :c397414-397157, length 86, Sulfolobus_tokodaii, VapB MENYQLLERWGAKELVKVENIKKGEVLMLTLGSATTLGVAKNIKNDELEVELKRPLWW DKDLRWIΞRQVSGRWRLVGWGIIKI
>gi|l5920583 | re |NP_376252.1 | 143aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
METSRLGNNKNLGVLVDTNILLYIYHGFDPFEKIIQFLDYKPVFYIPNIVLKELNKFLNSKSIIMNKKANLALQYLNTYK NYWKSIEGYENMRVDDALIQICKDYDLFLFTNDTRLRHKAKLKGVRVIYLRQKSKNIKVDIII
>vapB|24473558:c673537-673358, length 60, Sulfolobus_tokodaii, VapB MLERKKKEMEIKLDKPLTWDEFFQEVFKEENIPKLTEEEAETLKKLVLEDRKNWKVREFA
>vapB|24473558:c673537-673358, length 60, Sulfolobus_tokodaii, VapB MLERKKKEMEIKLDKPLTWDEFFQEVFKEENIPKLTEEEAETLKKLVLEDRKNWKVREFA
>vapB|24473558:761620-761892, length 91, Sulfolobus_tokodaii, VapB MLLQSDNVMSETIRVSKEVKRELLKIMGELQIERGEKVDFNDVIEYLLSLYRRKNPEILR RMVGLVPNISYEDLRKERKKELEYEKEKYGI
>gi 115921016 I ref |NP_376685.11 131aa long hypothetical protein [Sulfolobus tokodaii str. 7]
MVFDΞGWIDILLGSNEGKKIEKFIEENLDEIVINELNLEEIKYIICRKNNVEKAEEVEIFLKSSGYFNVFPFTNVRGEI YRLKCKYPISLADASSIATAKILGIPAMFKREKEIEPFKNELNVIFTDELI
>gi 115921133 I ref |NP_376802.11 68aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7] MRLPKELKEKMEKYEVDWDQLIKDFIEKKVEELERENHAKKAKELLSSIDLSTNGFAIKEVRRHREGN
>gi 115921134 I ref |NP_376803.11 125aa long conserved hypothetical protein [Sulfolobus tokodaii str . 7 ]
MKGENWDRIIEYIPNGITLDISYYEVLNVISSAKKKKIVDKEKΞKVLYDAVNELMKSMKVYSAYNYLKEGFEISNEYNIS LYDGLFLALALSHNAELLTFSRNQIKVATKLGITYNKDLLMNHEY
>gi 115921355 I ref |NP_377024.11 78aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7] MKVKVHKKGIIVIPADVRRRLNISEGSYMELEVEGDKIILKRKMTLLDAYGIDKGMGDLALKELEKLRKEEVEKENNI
>gi 115921356 I ref |NP_377025.11 107aa long hypothetical protein [Sulfolobus tokodaii str. 7]
MEEVYMGKSQGYTIDLNLAEFLYTYGKLKGLEEARVRLSLILNSPIKIVSTNRELALRAGELKVKYQNLSIVDCFIVALA EKENAWYTTDSGIERVYKNTKVILHS
>vapB|24473558:cl303456-1303313, length 48, Sulfolobus_tokodaii, VapB MENVSTGSEIIERLKKLGVEEKDLIVEPPQGEEEFQKELKRKSMIQMF >vapB|24473558:cl303456-1303313, length 48, Sulfolobus_tokodaii, VapB MENVSTGSEIIERLKKLGVEEKDLIVEPPQGEEEFQKELKRKSMIQMF
>gi | 15921894 | ref |NP_377563.1 | 125aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
MFLDKKEMRDMLKIKRIYDPVEKDDGIRILVDRLWPRGVRKDKVDVWLKDIAPSDELRTWFNHDPNKWEEFKKKYFEELS KNPKLDILLQLIKKGENVTLLYTSKSPYNNAVALKEFLDKIFKAS >gi ] 15921893 | ref |NP_377562.1 | 204aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
MPKΞPFEVTLLIEDHPCEVMKLISTMGLKASVENVKLGDNVTDHIVLFDNKVKNEDVLKLKSGNSKVLRLSDNRIWVRTN GCSVCKVLYTSDVWEKIKWKERTLLYTLLIPNTSSLKEFLSKLTSQGVKVTVISTNEITGNELTERQMEILKLAYRLG YFDDDRGITLTELANRLNVSAPTLEEILRRALRKWKYYLDKVG
>gi | 15921930 |ref |NP_377599.1 | 88aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
MFTKEENIMTTTVISIRVDEKLKKELEELGIDYPSLVRSYLEEWRKEKMRRELKEADRIREELLKSHGYYSSSAELVRE DRDNNDYY
>gi 1159219311 ref |NP_377600.1] 155aa long hypothetical protein [Sulfolobus tokodaii str. 7]
MDIILLLQNSLEKIGIIMTIIDTSALFALYIPEKMSAFIRKEIENVDECYVLDLIFYEFPNVIRKRIVRNELSKEKGDEI LARGLSYIDLCKWSGKELAKTAYEISLKYSLTTYDASLIALAEKVNDIILTADEKLIRGIRNVQEISKYFIFPD
>gi|l5921943 |ref ]NP_377612.1| lOOaa long hypothetical protein [Sulfolobus tokodaii str. 7] MGVNLIIYEFDSLHMPVISIRIDEKLKKKMDELSYINWSEIIRRKIEEVIEEEEKKKKGKRKDYKRIAEASVKSYEFFLN ' YGGKSSEEIIREWRDKNWQL
>gi 115921942 I ref |NP_377611.11 109aa long hypothetical protein [Sulfolobus tokodaii str. 7] MKGLEDLSAPCILPFEVLNGLKYTYSLGEKELEEVGKILSDFQITLYGFEDMLDEMVSLSLRYGITIYDAAYIALGKVLN DKVYTADENLIRKVKELPFWHIKDYKQQ
>gi 115921944 I ref |NP_377613.11 llOaa long hypothetical protein [Sulfolobus tokodaii str. 7]
MMSLTSDEKTLCKIVYKVNFIYISSDFFHVTEVIRVSKDVKDKLVKIAAELQLSKGKKVSLNEAIGYLITFYEENKRSKK DSQLLISLLGSAKGIREEFERSRIEDESSS
>gi 115921945 I ref |NP_377614.11 134aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
MRVWDTGVLVEVLEGSELGEKFIQLVSRGKLEPIITNLTLIELTYVICRRYGTDKARELIMKLLDSGYFKLVNALDFAD EIVKVKCNNSLSIIDASVIATAKGLGITALFKMEKELKDKKIDNLIFIENLINI
>vapC I 24473558 = 1818807-1819082, length 92, Sulfolobus_tokodaii, VapB MLFYVYENFIYTKIVYLIMSTVISVRVRKELKEKAEELGINIREWEKALEEAIREKEKE EIKETARKIKELMKDISEDEWITSIREDRYER
>gi 115922115 I ref |NP_377784.11 130aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
MRDEFLLDASALYPILNYIDKIDVAKIYIIPLAFYEVGNTIWKEYYLHKKIKDPIILSALFQKFMSKLKLLNSPPAEEVM KFAIEKELTFYDAAYVYSAASHGLILVSEDKELIKKANALSLKDFISKLS
>gi|l5922247|ref |NP_377916.1| 127aa long hypothetical protein [Sulfolobus tokodaii str. 7]
MVDYIARYVLRDREIIVKYTAENDDESIKLANSVCEKLGERDIEEVIIGKIVGTITGAIMWHSISEDNSITTAIFSAITN ALIGHIVDNLIVKEIYSKKYPCIRPRQLSDLHKYIDIRKLEDAVNAR >gi 115922248 I ref |NP_377917.11 185aa long hypothetical protein [Sulfolobus tokodaii str. 7]
MHVDEVLQKCDQTYVIFDTSIILDYIRLSSRDKNHRLEVLSYIINNCRNKVITLLNLEEILVGNIGNKEEIENFIFYSFK ILNITEKEAEVTAELEVKVREEGLGFKGENWRIDLFIASFAYTRSYYILTKDSDFKKILDCKLHLLHIIHYLELHAQGIQ RPTTPNYSKLTNMFCIWKSDYQTDG
>gi 115922315 |ref |NP_377984.11 75aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7] MERIIRIGKRNAIYIPKEIADSLNLKEGDRLVLWKDDKIELIPVRKPSKYWAEISPDEVEEVGEEINKSLGVNS >gi | 15922315 | ref |NP_377984.1 | 75aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7] MERIIRIGKRNAIYIPKEIADSLNLKEGDRLVLWKDDKIELIPVRKPSKYWAEISPDEVEEVGEEINKSLGVNS
>gi 115922329 I ref ]NP_377998.11 70aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7] MSTVYSIRIPKKLRELMNLVNVDWQKEISKYIEDRVREELIRKYIEEGRKNLAKMKNISNADLIREDREA
>gi 115922330 I ref |NP_377999.11 117aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
MIKIIEGSDEDFLTLDLAFAEVSNVAWKRIVIFNDDYNITLEQLKNALDFIEKLCKIVYVKDITMEAINLAVQEKLPFYD SAFLYLAIKEGTKLLTTDLKLFNKLNDKLKNYVIVPE
>vapB|24473558:2138189-2138767, length 193, Sulfolobus_tokodaii, VapB MPILGVKFGRRSALLDIRPENIKEALELLQKNKYTIEEYPMLEAKSKNINTIAFNEIAIL FNNPETVYGSVNIKERKILFEGDGVLIATPQGSWAWSYSATRVLLHKDINGIEITFINPI IPNIKALIIPQTETILVKLEDKGRTQNVRVISDGEIVGNLISKEDEELTITLSKRKAKIL RFFNLIEFDGLFT
>gi 115922464 I ref |NP_378133.11 162aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7] MDYSHKIVFDTGAFLAGLQNYYEKIYTNSLVINEIKDKKSRELLDLAIMAGKIIIMEPEENTLKKTKKIAEKISAYNLSK TDLSIAALAYELRPSIVFTDDLTLQNLLLNLGIEFKSVKLNIRIRNRKKYKFTCKACGKTFSRSYSSCPYCGNTIIWSY NE
>gi 115922519 |ref|NP_378188.11 81aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
MEKYRVKVYKKGIIVIPKEIREKIGIKEGDILELTVNGNKIDIEKPMTLLDLFGVDGEVAVEVAKEVIKERRKEVEREIR S >gi 115922520 I ref |NP_378189.11 105aa long hypothetical protein [Sulfolobus tokodaii str. 7]
MYTGSIEIYMSEVNLAEFLYLYILKMGKEIAIARHRYIRNSPIKILAPNENITQSAAILKSKYHYLSLADVFLIATAKEI
GGKVITTDEDIEKTKEVEVIMIPLD
>gi|16330048|ref |NP_440776.1| unknown protein [Synechocystis sp. PCC 6803]
MLRELRTNRASWKIFTGKKLRKQYLLSLISTQRSSLDNTKEGQAILKKVHSFYKMMLQELEAVFDGTALQLEVPLNLAAG
TRVRIWESVLPNEVKAPKTFLQTAQSLKLQGEPDWSEKIDQYLYGETLSDND >gi 116330047 |ref |NP_440775.11 unknown protein [Synechocystis sp. PCC 6803]
MNLIGQRKLINICMGKLFLTMTEVFLDTSFAIALSSITDQNHVRAIQLANQIEANKIRLVTTQGILLEIGNALSKQRYRK AAIQLLESLETDPSVEWLLTNΞLYKSAFNLFKQREDKEWGLVDCISFIVMQDRGITDVLTADIHFQQAGFRALLRD
>gi 116330685 |ref |NP_441413.11 unknown protein [Synechocystis sp. PCC 6803]
MNTQLVESLVQIIQSLSPEEQKLLETHLAEKNSNWQEVLGKIETNRQEIYASRQGKPFDLSIDEIIEEMREERTQDVLQA CFGK
>gi 116330684 I ref |NP_441412.11 unknown protein [Synechocystis sp. PCC 6803] MTNQTΞFTICIDSNFIVRLLVGYYEETIYLEMWNKWCNANTKIVAPDLINYEVTNVLWRLNKTNQINYTQAQIALTESFN LGIELYSNSELHQDALAIAEKFQLSAAYDVHYLALAEKMQIDFYTCDKKLFNSVQQNFPRIKLVIANSS
>gi|l6330930|ref |NP_441658.l| unknown protein [Synechocystis sp. PCC 6803] MTTEAALLNIAENLPDDLKIELLHYAEYLMNKSLNAPQKPLAGΞMKGTFILPLPEDFDAPLEEFEEYM
>gi 116330929 I ref |NP_441657.11 unknown protein [Synechocystis sp. PCC 6803]
MNSVLIDTHVFIWLAEDDSNLPVTTKDTLENMDNVFVSIASFWEISIKLKIGKLSLCGDFNSIEASFQRTRFKLLPITLK
DTIKLYNLPLHHKDPFDRILVSQSINHSLILVSRDQALDDYPIQRLWL
>vapB 116329170 :c2516782-2516531, length 74, Ξynechocystis_PCC6803, VapB
MDTKSKLRSNPMTDTALLEKINALPDAMKIEVEHFVEFLLTKQPPVSPVTNDGQKKYRQA
GVLKGKIWMADDFDAPLEEMQEYM
>gi 116331422 I ref |NP_442150.11 unknown protein [Synechocystis sp. PCC 6803]
MLLDTHTLLWFLDNDIKLPSHLKSLIEAKPKVYVSIVSLWEIAIKLNINKLRLNYAFTDLENLLADLNISVLNITWQHLE
ACRNLPLHHRDPFDRMIIAQAQQHNFSVISKDENFKKYNVNLIWE >vapB|l6329170:c3044422-3044670, length 83, Synechocystis_PCC6803, vapB
MEQNRMKQITPTELRGNLYNLLDEVLATGIPLEINRGGKRLRILPVEEPDKFKNLVHRPG
VIIGDPEELVTIDWEGEIELDLP
>vapB|l6329170:c3044422-3044670, length 83, Synechocystis_PCC6803, vapB
MEQNRMKQITPTELRGNLYNLLDEVLATGIPLEINRGGKRLRILPVEEPDKFKNLVHRPG
VIIGDPEELVTIDWEGEIELDLP
>gi|l6332080|ref |NP_442808.l| hypothetical protein [Synechocystis sp. PCC 6803]
MIGVSVNPEKLGSTMETVNVDQIEINLPELLYSIKPGEEVIVADQGIPIAKLVPLQRQKSVDRCSSLGVDRGLFWPDDF
NDPLPNDIWPLS >gi 116332079 |ref |NP__442807.11 unknown protein [Synechocystis sp. PCC 6803]
MKLLLDTQCWLWWFTEPEKLNEDAISQIIDETNEIWLSVASIWEMSIKTSIGKLPLPENIDDYILSRMVKLGAEFLDIKT RHALQVATLPLHHRDPFDRIIIAQAQTENMLLISADSMFKNYGVSLLWAGV
>gi|20807534|ref |NP_622705.l| Hypothetical protein TTE1060 [Thermoanaerobacter tengcongensis]
MMQVSSTEFKNNVGKFLKLSEKEDILILKNGKPVAKLTAVSKNEKEIAYDRLLEMIKKSKPVTEEIDLKAAREERLNKYD SAT >gi I 20807535 I ref |NP_622706.11 Hypothetical protein TTE1060 [Thermoanaerobacter tengcongensis]
MIVLLDTNISLDFLLKREPFFEPASRILEMVKDDKIKACITAΞSVTDIYYIMRRYKSQEERVLMLSEYLKLVEIISTTKT DIIKALKMKNTDFEDAAMFQSGKRRKVDYIVTRDKIEFTDKIVKIVTPEEFLRIVRK
>vapB|l6081186:38670-38828, length 54, Thermoplasma_acidophilum, VapB MTHVHFAGYRRWWGIYGKDLIAICWFEPVNILLVPVPDPLFFHLIYVYIHSDL
>gi|l608122l|ref |NP_393520.1| hypothetical protein Ta0042 [Thermoplasma acidophilum DSM 1728]
MPWVGSQFHKGDAQTIMALSNVLYQVLIALGMIYVIDTSAIISRNLNLLEGDLMFPSSVIGEIKKGKLRYMIDVLLPMIR VASPDHEYLKIVEETAAKTGDLMNLSQTDKDVLALALQYDATIVTDDYSIQNVASYLNLGFLNANIKRIDKQIAWIYRCT GCKKVFPGPVKVCDICGHEVKRHYDKRKSMIRKV
>vapB 116081186 = 804192-804743, .length 184, Thermoplasma_acidophilum, VapB
MSGYIARNTDIDIVLSSDYLREFLRPFAPQEΞHLETSVYDAWKFYGDMSDDNIIRGYLDQ
ARPIMGGINRVIARALANGEDLIIESLYFVPDMMDEMVLKNAFLAYVYIDDPDLHRSRLE
DRINYTHRNSPGSRLAAHLKEYRTIMDYSMDMARGRGIGLYSTDDYALARQRLLDDFRKF
VDRR
>gi 116081834 |ref ]NP_394227.11 hypothetical protein Ta0762 [Thermoplasma acidophilum DSM 1728]
MKSNFAIVDTNVIIYAMKSRVRLDELVLSLSGIARIAIPECVIYELRKLSAADINARIGLQYAMQHQVLKSEGHGDECIL KAAIKYGCPVITNDREFIEVLKRNHVWATLSGRKLVRMN
>vapB|l3540831:c886266-885913, length 118, Thermoplasma_volcanium, VapB MDRILIRAIENGENLILETLYFLPEMLSEKARNNVHMFYLYIGDEKLHRDRLVDRINYTH KNSPGTRLAEHLYEYRNIMEYSMMRSSEYNVKIIDTSNYEEARRTILEMIVKGESRYA
>gi|l3541682 |ref |NP_111370.l| Predicted nucleic acid-binding protein, contains PIN domain [Thermoplasma volcanium GSS1]
MKADTPNFILLDTNAIIYAIEKKIRLEDAVIEIPGVSRPAVPYCVIRELYGLAKKNVTARIAYQYAKKLEIIETDKYGDD GVIEAAMKTGAMVLTNDERLSRRLRETGIKVAMISGRKILF
>gi I 21242627 I ref |NP_642209.l| Hypothetical protein XAC1884 [Xanthomonas axonopodis pv. citri str. 306] MEATVAERGQITLPKAVRDALGLTKGTTLKIELDGGRIILRKDVSEALRKVRGKFKLVDGLTSTDAAMRVIRGRAPGDPF DP
>gi I 21242628 I ref |NP_642210.11 Hypothetical protein XAC1884 [Xanthomonas axonopodis pv. citri str. 306] MIALDSSVLLDILIGDP YGEVSEICIGDALARDEVWCDAWAEVLAMLDTQVDLMETLASIGVRYEATQEAAAVRAGH MNKRFRARGGKRERWADFLIGAHAMLQCDGLITRDEGFFRDYFKGLKIWPKPAP >gi|21231309|ref |NP_637226.l| Hypothetical protein XCC1862 [Xanthomonas campestris pv. campestris str. ATCC 33913]
MEATVAERGQITLPKAVRDALGLTKGTTLKVELEGGRIILRKSVDDAISRARGRFKLDGFASTDDAMRAIRGRAPGDPLD PEAGA
>gi I 21231310 I ref |NP_637227.11 Hypothetical protein XCC1862 [Xanthomonas campestris pv. campestris str. ATCC 33913]
MIAIDSSVLVDLLADSAQADAAEACLRQCLSTGPVWCDWLAEVCSALRDGAEALSVLEDMSIRFNALEAKSALRAGEM QRRFRARGGKRERWADFLIGAHAMLQCDGLITRDDSFFRDYFKGLKIIVPKPAA
>vapB|l5836605:304978-305193, length 72, Xylella_fastidiosa_chr, VapB
MDATVAERGQITLPKRVRDALGLTKGTVLKVELEGGRIILRKSVDDAIARARGRFILDDF
GCSAIATKTDKQ
>gi 115836896 I ref |NP_297584.11 hypothetical protein XF0292 [Xylella fastidiosa 9a5c]
MPSRRRRTSNETVIAVDFPVLVELLTDRPQADAVEAALRQCLVSGRVWCDWLAEMSAVLRGGAEVLGVLEEMGVHFDP
LEAKSALRAGEMYRRYRQRNATESDMKYFLVGAHALLQCDGLMTWNDAFYRDYFKGMKLIVPGA
>vapB|28197945:303404-303628, length 75, Xylella_fastidiosa_Temeculal, vapB
MDATVAERGQITLPKRVRDALGLTKGTVLKVELEGGRIILRKSVDDAIARARGRFILDDL
DDFGCSATATKTDKQ >gi I 28198163 I ref |NP_778477.11 Hypothetical protein PD0235 [Xylella fastidiosa Temecu- lal]
MIAVDFPVLVELLTDRPQADAVEAALRQCLVSGRVWCDWLAEMSAVLRGGAEVLGVLEEMGVHFDPLEAKSALRAGEM YRRYRQRNATESDMKYFLVGAHALLQCDGLMTWNDAFYRDYFKGMKLIVPGA
Homologues of relBE toxin-antitoxin system polypeptides
>gi|l4600379:984865-985164, length 100, RelB
MLISVFLMRRVSECVRWKLLFNLHVTYYILADGGLIVSSKKSKVKVEVEVEVPEGDDEGV
YREEFRRELAKRILNVMLDKDVEPAKRAVAKTLREKGGEG >gi 114602207 | ref |NP_148022.11 uncharacterized conserved protein [Aeropyrum pernix] MTEVYIESSAKRDLKRLPKHIVQWVLNTVEELEENPFIGERLHLPASLHGLYCFKLRRGDYRLVYCYVPNRDTVYIIAVG HRGEIYEKFRRRIK
>gi 115668172 = 840765-840947, length 61, RelB
MSIVQSYITDEKGNIKGVILDYKTFKKIEELLLDYGLLKAMEEVENEEEIDLETAKKLLEQ
>gi 115669099 |ref]NP_247904.11 conserved [Methanococcus jannaschii] MKQWKYLLKKSFIKDLKELPKNIQEKIKKLVFEEIPNKNNPPEIPNVKKLKGADSYYRIRVGDYRIGFKYENGKIVFYRV LHRKQIYKRFP
>gi 115668172 :cl043988-1044146, length 53, RelB MRLKKRFKKFFISRKEYEKIEEILDIGLAKAMEETKDDELLTYDEIKELLGDK
>gi|l566929l|ref |NP_248096.l| conserved [Methanococcus jannaschii]
MKVLFAKTFVKDLKHVPGHIRKRIKLIIEECQNSNSLNDLKLDIKKIKGYHNYYRIRVGNYRIGIEVNGDTIIFRRVLHR
KSIYDYFP
>gi|20088899:1172771-1172992, length 74, RelB
MNAIIAIVTIMSETTTIQISKDTRDELKAIGKMGDDYNTVIRKLIHEHNCNKLIEEGDRL
IREHRDEFVSIDEL >gi|20089858|ref |NP_615933.1| conserved [Methanosarcina acetivorans str. C2A]
MSFKVLIHPKVFEKVPVDRRDQIKDALQELKDPLPGGNKKEVKGSHKTVYRLRIGDFRILYEIDFERSEVLVFNIITAEQ AHKKYNRFK
>gi|20088899:5035578-5035697, length 40, strand negative, RelB MQPTNLSLSCSKRFRNLQNTENEDPSERDLNIRIPFHIYY
>gi|20092909|ref |NP_618984.1| conserved [Methanosarcina acetivorans str. C2A] MIAMSNMDDELEEIRKRRLAEIQRQQAQQQPSDVQAAYQQEQARAEMEAQKQAILRQILTPEARERLTTLKMSRPALGEQ LEMQLISLAQSGRLKAQIDDEQLKTLLMRMQPKKRKTSITRV >gi|l8976372:841569-841447, length 41, RelB MWLIFAQNYCHNNKSLRKRYIWNLTFLHVKSHGALQEISC >gi 118977239 I ref |NP_578596.11 [Pyrococcus furiosus DSM 3638]
MSKVMELYKKYLVERDPQQKLKFAKEILDNLLTLQLNPPIWETIRKSTGLKEHEMKEILNYLEEKGEIEIKRAKDGKKLY ASTIRSMKRKSKEIPLDMWISRH
>gi]23464628:1638836-1638570, minus strand 83, RelB
MPRMQTRSDGREGRGAAPVQVRQSHQRAGAARAEPRQGRGNTPDQDTGRHEPMAQGKLRV RGQPQADQQLAQPGQTPQLETRR
>gi|23464628:1638535-1638230, length 102, minus strand, RelE MEIKQSAEYRKWFKKLRDHKAKAAIQARLDACKLAGRPFGDIKPVGGPVSEMRFHTGAGY RVYFAMQGNVLMLLLAGGDKSTQQTDIRQAHDILNDYKEQRQ
>gi|l6124256:3371212-3371388, length 59, RelB MAEPDPDIFDEDDEAILAADAEADADFEAGRTVPHERVGEWLKTLGTPHQTPPPYSWRK
>gi|l612736l|ref |NP_421925.1| conserved [Caulobacter crescentus CB15]
MAQDVGHAAPDTATIFVAQWWTQRAMADVYAIVGHISEQSRPLAAQRLAKRLFDTGASLATYPERGRVSTQGRREIVAI
SPYVLRYRIVGDRWIGSVRHGARRPI
>gi 117934719 | ref |NP_531509.1 | [Agrobacterium tumefaciens str. C58 (U. Washington)]
MANVEKISVSMTPQHAEILRDAVESGAYASSSEVIREAMRDWSAKWVQRRNDITKLRALWSEGKASGNSTEVDFDETLNE
ARAELASLKNRDH
>gi]l7933925:c809884-809573, length 104, RelE (starts at ATG or GTG codon) M VTTKLVWTPRARSDVKKIYVDIGKSQPLAAERYFARFRAKAESLIDHPHLGERHPEIFP SARMLVEAPYVILYETVPDTDDDEIRCVEIVRVNDGRRDLRTLF
>gi|l5963753:1588987-1588739, length 83, RelB
MRHPRNGLRPPGRQPRDLHGPGPDRRTELAGRVLRQSSARADQAVPQPDPALIRNNSKRR
RPAFMAGRFVLYSKPKPRRNSPF >gi 115965227 I ref |NP_385580.11 CONSERVED [Sinorhizobium meliloti]
MRFGYRRGLEFLPSARKEWDKLGATIRQQLVKKLRERLERPRIPSAALHGMPDHYKIKLRQLGYRLVYRVDDGSVTVLW AVGKRERVTSTT
>gi 130248031: 1479043-1478798, length 82, RelB
MYMAILNATEARARLYALIDEAAETHQPIVIKGKRSSAVLLSEEDWNAINETLYLVSIPG MRESIMEGMKTDVDECSRELDW
>gi I 302493311 ref |NP_841401.11 conserved [Nitrosomonas europaea ATCC 19718] MWELRYTHQAQKDAKKLASSGLKDKAEELLAWRNNPYQTPPPYEKLVGDLAGACSRRINIQHRLVYQVLERERIVKVLR MWTHYV
>gi 116129958 I ref |NP_416521.11 orf, [Escherichia coli K12] MNCTKEEIDMRTISYSEARQNLSATMMKAVEDHAPILITRQNGEACVLMSLEEYNSLEETAYLLRSPANARRLMDSIDSL KSGKGTEKDIIE
>gi 116127994: 2087233-2087487, length 84, RelE/YoeB minus strand MKLIWSEESWDDYLYWQETDKRIVKKINELIKDTRRTPFEGKGKPEPLKHNLSGFWSRRI TEEHRLVYAVTDDSLLIAACRYHY
>gi|l579993l|ref |NP_285943.1| damage-inducible protein J [Escherichia coli 0157:H7 EDL933] MAANAFVRARIDEDLKNQAADVLAGMGLTISDLVRITLTKVAREKALPFDLREPNQLTIQSIKNSEAGVDVHKAKDADDL FDKLGV
>gi 116445223 :c283932-284192, length 88, RelE/YafQ, minus strand MLNSGQFSKDVKLAQKRHKDMNKLKYLMTLLINNTLPLPAVYKDHPLQGSWKGYRDAHVE PDWILIYKLTDKLLRFERTGTHAALFG
>gi I 30063468 I re |NP_837639.11 [Shigella flexneri 2a str. 2457T]
MRTISYSEARQNLSAT MMKAVEDHAPILITRQNGEACVLMSLEEYNSLEETAYLLRSPANARRLMDSIDSLKSGKGTEKD IIEWVMLPTY
>gi | 30061571 :c2077698-2077949, length 84, RelE/YoeB, minus strand MKLIWSEESWDDYLYWQETDKRIVKKINELIKDTRRTPFEGKGKPEPLKHNLSGFWSRRITEEHRLVYAV TDDSLLIAACRYHY
>gi 115920437 I ref |NP_376106.11 97aa long [Sulfolobus tokodaii]
MTDKKPFALSEVAQRVLIVLGRENRGLTVRELVEKTDTNSGSIKRALEELAKLNLIKEEKENVFPYRRLISLTEVGREVA KRVIEIEELVKKVQSNG
>gi 115920438 I ref |NP_376107.11 95aa long [Sulfolobus tokodaii]
MAEEWKLVFHIKIKRLPREFQSDELERIEEALDKLSKMELNELDIKKLEGWNDNENRDIFRIRVGRDIRILVSFDNEKKQ
IHIWRIARRESVYDE >gi|H498680|ref |NP_069908.1| protein [Archaeoglobus fulgidus DSM 4304] MEVIQISKDELEEIIERKFKEVLIKALMEITPYVSDEEQEEIDKIAGKPDEYEGEFEEWHGK >gi | 11498679 | ref |NP_069907.1 | [Archaeoglobus fulgidus DSM 4304]
MAWKVRYHKKAIKFLEKLDEGKRSILLΞKIQELVNSLEΞGVLPIQRMDIKRLKGVWDGFLRLRVGEVRIIFKINVEDETI FIYSIHFREKVY
>gi|ll498685|ref |NP_069913.1| protein [Archaeoglobus fulgidus DSM 4304] MDIQVIKQAVREVLREELPSILKEVILSTIPPDEPEADEKQFVDEEINEDDYVKFDE >gi|H498684|ref |NP_069912.1| protein [Archaeoglobus fulgidus DSM 4304] MNEVLIHKKFLDGLDSGRRSKVLDAIRMLKDFPIIRADIKKIGPKTYRLRKGEIRIIFDFDIGTNRVFVKFAASEGVFTK TEEKFF
>gi 111498694 I ref |NP_069923.11 protein [Archaeoglobus fulgidus DSM 4304] MKVLLDIIEDIENFIRQLEKRRGELEELKDEILIFSDAEFIDSIQRGLSDLEQGRSKVCSNLEEVKKLFEDI >gi]H498693 |ref |NP_069922.1| [Archaeoglobus fulgidus DSM 4304]
MNYKAQFSEEFLKIAKKLKEKDPELLKRLQSKVEEIIKQPEHYKPLRGQMKGLRRAHVGKFVIIFKVEEDTVKFVTFKHH NHAYK
>gi 111499924 I ref |NP_071168.11 protein [Archaeoglobus fulgidus DSM 4304] MNEALLREIYSEVKKIREKIEQLEELIIPAEKVSEEELLEIRKLKEESLKGEHVDWDELKRELGV >gi|H499923 |ref |NP_071167.1| [Archaeoglobus fulgidus DSM 4304]
MFRVWHRKATQELKRLKKAHLKKFGVLLETLKTDPIPWKRFDVKKIEGEENTYRIRIGDFRVIYFLDKPTKTVHILKVE RRGKVYD
>gi|l5789403 |ref |NP_279227.1| Vng0069h [Halobacterium sp. NRC-1] MSNASKRIPVTEDRWEELNDLKGAGQTYDELLKELIQERNRSQLAERVRSVREADEDELTALDDL >gi 115789404 |ref |NP_279228.11 Vng0070h [Halobacterium sp. NRC-1]
MTYNVLLSEEAQEYYQQLDDKSQRIVKDNLTKLKDEPHPKPGΞGAGDREKIPVDGETVYRLHIGRTHTALYDILEAEEQV RVIELLPIDEAHDRYGF
>gi ] 156682411 ref |NP_247034.11 M. jannaschii predicted coding region MJ0070 [Methano- coccus jannaschii]
MLNINKEIAQIETELNELKKLRDEISERIEKLEIKLLKLKALAIPEEEFEEDYEEIIEDVKKSLDKKETVPAEEALKELG
LL
>gi 115668242 I ref |NP_247035.11 [Methanococcus jannaschii]
MKFNVEIHKRVLKDLKDLPPSNLKKFKELIETLKTNPIPKEKFDIKRLKGSDEVYRVRIGKFRVQYWLWDDRIIIIRKI SRREGAYKNP
>gi|15669361|ref |NP_248166.1| M. jannaschii predicted coding region MJ1172 [Methano- coccus jannaschii]
MILMVKAIVDITDENNRIINIVKAKYNLRDKSQAINKIIEEYAEFLLEDELKPEYIEKIRNIMKNEKPIYIGSIENLKKR
YLGE
>gi 115669362 I ref |NP_248167.11 [Methanococcus jannaschii]
MYEIEIMPSLDKILQKLSKRDKKKLKAILKKMEEITQNPHHYKNLRHPLNDFKRVHIDKSFVLVFTVDENNKTVIFVDFD HHDNIYKKKKLFKD
>gi|20088947 |ref |NP_615022.1| predicted protein [Methanosarcina acetivorans str. C2A] MAETTTIQIKQSTKEALERMKIYKRETYNDVLERLIEDVQELNEETEKEIELARKAVEKDRYITHEKLKEELGF >gi|20088948|re |NP_615023.1| [Methanosarcina acetivorans str. C2A] MRFQIVWSKPAAEQLRKLDRPLAKRIFRKVSELQEDPFRYVTKLVGSPNYRLRIGDYGVILEIQGSLLVILVLKVGHRRD IYK
>gi I 20089272 I ref |NP_615347.11 predicted protein [Methanosarcina acetivorans str. C2A] MAATTTICLEPEVKELLNGLKIHPQESYNSWKRLATNAYDWEPLSEESIKQIEEGLRDYREGKFFTHEEVWGEIEKERR GRTGKTKVEECTE
>gi | 20089273 |ref |NP_615348.1 | [Methanosarcina acetivorans str. C2A]
MYRIIYSPAAKRDLKRLPADVQDRVHDALEEIADDPYAHVKKLKTPYNSPIFAYRVGKYRVIMSIHDFELIILVLEVGDR
KNIYRKF
>gi | 20090545 | ref | NP_616620 . 1 | predicted protein [Methanosarcina acetivorans str . C2A] MKSVHVLRKFSGKKYGTKKTHLGTKKAYPPEECLNPEFIKEVECSRQKVLNGKGIKFNTVDDFFSNLEK >gi I 20090546 I ref | NP_616621 . 1 1 [Methanosarcina acetivorans str . C2A] MTYQWLSPDFEKETKIFFKKDPVLYGRFKKTVNSILENPECGKPLRNVLKGLRRVHIGHFVLIYEIDNTNETITFLKFS
PHDKAYK
>gi 1 20091001 1 ref | NP_617076 . 1 1 [Methanosarcina acetivorans str . C2A]
MILFFYYMVNMAQAIINIDDHTKKILDIIKTRYDLKDESAAIELMATQYEEEILEPELRPEFVEKMQNIMKEEPIDIGTI
EDLRARYGH
>gi I 20091002 I re |NP_617077.11 [Methanosarcina acetivorans str. C2A]
MYRIKISPKLDEIIQKLDKKNKKQVDIILKKAGEIAENPHRYKNLRAPLNNLKRVHIDKHFGYC
>gi I 20092309 I ref |NP_618384.11 predicted protein [Methanosarcina acetivorans str. C2A] MTLNRVLGALYKRIELMGMTFTEIFYHLKELEKRFNEIKYPPEATFQPSFSSKIRKAERYCSKYNLPEFEIEEFFEKVEQ >gi|20092310|ref |NP_618385.l| predicted protein [Methanosarcina acetivorans str. C2A] MTYRVAVHSSVRKNLKKLYKLDRPAYDYVKARLRLLAYKPEMGYPLEAEFGGKWRIHIGPFVLIYTFDKVNSTLTLLVFE HYTRAYDMDTAYA
>gi|20093070 |ref |NP_619145.1| predicted protein [Methanosarcina acetivorans str. C2A] MMATITLPVPDELYMRMEHFSWVKWSEVARNSIRKREIFEKYLRSGELSDEDAEFCDKTDWHPADELPLREDYVQRLEDL KKETPLKVRDVSDIFE
>gi I 20093069 I ref |NP_619144.l| [Methanosarcina acetivorans str. C2A] MVRMPYDLFILPSCKKEIDKACKNNTLLKESLSKKIQEICESPFHYKPLRNELHGMRRVHILKSFVLIFNVDENKKSVTL VSFSHYDTAYSR
>gi I 21227970 I ref |NP_633892.11 conserved protein [Methanosarcina mazei Goel]
MHMIQARVKMSDRTNQVLNIVKAKYNLKDKSAALDLVVAQYEEKILEPQYSPEFIKEMLDSESDEVIGPFKNADELKAYI
KSLPDEDE
>gi I 21227969 |ref |NP_633891.l| conserved protein [Methanosarcina mazei Goel]
MIKGKLLKELRKLNKKNHVLFEAVFKKADEMCINPQHYKNLNYPLNKYKRVHIDSNFVLCFSVDEKE
>gi I 21228652 I ref |NP_634574.11 protein [Methanosarcina mazei Goel] MVQAIINIDERTNRILNIIKAKYGLKDKSAAINKMAEEYEEEILEPELKPEYIEKLKKIEKQEAIEVGTVENLRKRYGL >gi 1212286511 ref |NP_634573.11 [Methanosarcina mazei Goel]
MYFLKIRSELDSKFEKLAKKNKKQLEIILAKADEILENPHRYKNLKAPMNHLKRVHIDKHFVLVFSIDEESRΞVTLEDYD HHDKIY
>gi|2122870l|ref |NP_634623.1| protein [Methanosarcina mazei Goel] MYMTFAEIFNQLKELETKFNEVSYPPENAFLPSFSFKIRKAEKDCLQHDLPAIDVDDFLEKVEQ >gi|21228702 | ref |NP_634624.1 | conserved protein [Methanosarcina mazei Goel] MTYKVAVHPSVRRNLKKLYTLDRPVYDYVKRRLTLLVYKPEIGSPLGEEFQGKWRIHIGPFVLVYTFDSASNILTLLVFE HYTRAYDMNTAYT
>gi I 21228706 I ref |NP_634628.11 conserved protein [Methanosarcina mazei Goel] MSEATTIPVTKDIRDRLKKYGMKGETYNDILKRLMDEVDYETFMERQYKKLEEKDKFVΞLDEL
>gi | 21228707 | ref |NP_634629.1 | conserved protein [Methanosarcina mazei Goel]
MSFDVKLHPDAVKFLVSLNPETKERLKSGIKNLEMDPFKSRPHADIKKLKGTKKRNDLYRLRIGDYRMIYSVEENTIFIL
EIIPRERGYDWL
>gi|21228783 |ref |NP_634705.l| protein [Methanosarcina mazei Goel]
MIYMVQVDISDDTNQILGIVKTKFNLKDESAAIDFIVAQCEIDMLEPELKPEFIEEMQNIIAGKHIGPFKTVDDLKAYIE SLPDEEEDELCMK
>gi|21228782 |ref |NP_634704.l| conserved protein [Methanosarcina mazei Goel]
MYEIIISEKLSKKLIKLRKKNILQFNAIFKKAEEIQIDPQRYKNLRYPLNNLKRVHIDSHFVLLYSVDEETKTIILEDFI
HHDFAY
>gi | 14590323 |ref |NP_142389.1 | protein [Pyrococcus horikoshii] MRMEKVGDVLKELERLKVEIQRLEAMLMPEERDEDITEEEIAELLELARDEDPENWIDAEELPEPED >gi 114590322 I ref |NP_142388.11 protein [Pyrococcus horikoshii] MTYRVKIHKQWKALQSLPKAHYRRFLEFRDILEYEPVPREKFDVIKLEGTGDLDLYRARLGDYRVIYSVNWKDKVIKIL KLKPRGRAYK
>gi|l5608387|ref |NP_215763.1| protein RV1247C [Mycobacterium tuberculosis H37RV] MAWPLGEVRNRLSEYVAEVELTHERITITRHGHPAAVLISADDLASIEETLEVLRTPGASEAIREGLADVAAGRFVΞND EIRNRYTAR
>gi 115608386 I ref |NP_215762.11 protein Rvl246c [Mycobacterium tuberculosis H37Rv] MSDDHPYHVAITATAARDLQRLPEKIAAACVEFVFGPLLNNPHRLGKPLRNDLEGLHSARRGDYRWYAIDDGHHRVEII HIARRSASYRMNPCRPR
>gi 115610002 I ref |NP_217381.11 protein Rv2865 [Mycobacterium tuberculosis H37Rv] MRILPISTIKGKLNEFVDAVSSTQDQITITKNGAPAAVLVGADEWESLQETLYWLAQPGIRESIAEADADIASGRTYGED EIRAEFGVPRRPH
>gi 115610003 I ref |NP_217382.l] protein Rv2866 [Mycobacterium tuberculosis H37Rv] MPYTVRFTTTARRDLHKLPPRILAAWEFAFGDLSREPLRVGKPLRRELAGTFSARRGTYRLLYRIDDEHTTWILRVDH RADIYRR
>gi|l5610493 |ref |NP_217874.l| protein Rv3357 [Mycobacterium tuberculosis H37Rv]
MSISASEARQRLFPLIEQVNTDHQPVRITSRAGDAVLMSADDYDAWQETVYLLRSPENARRLMEAVARDKAGHSAFTKSV
DELREMAGGEE
>gi 115610494 I ref |NP_217875.11 protein Rv3358 [Mycobacterium tuberculosis H37Rv]
MRSVNFDPDAWEDFLFWLAADRKTARRITRLIGEIQRDPFSGIGKPEPLQGELSGYWSRRIDDEHRLVYRAGDDEVTMLK
ARYHY
>gi|l5842953|ref |NP_337990.1| [Mycobacterium tuberculosis CDC1551] MSISASEARQRLFPLIEQVNTDHQPVRITΞRAGDAVLMSADDYDAWQETVYLLRSPENARRLMEAVARDKAGHSAFTKSV DELREMAGGEE >gi 115842954 I ref |NP_337991.11 [Mycobacterium tuberculosis CDC1551]
MRSVNFDPDAWEDFLFWLAADRKTARRITRLIGEIQRDPFSGIGKPEPLQGELSGYWSRRIDDEHRLVYRAGDDEVTMLK ARYHY
>gi 129829748 I ref |NP_824382.11 protein [Streptomyces avermitilis MA-4680] MSITASEARKALFPLIKKVNDDHEAIEIVSKHGNAVLVSAEDYAALREGSYLLRSPVNARRLLKAYENALGNINVSEREL IDPDATDPAEGAA
>gi 129829747 I ref ]NP_824381.11 protein [Streptomyces avermitilis MA-4680] MRLVFEDQGWEDYTSWLKNDRKMLARINRLIEDVKRDPFTGIGKPEPLKYHLPGVWSRRIDDEHRLVYLVTDKEWILAA RYHY
>gi I 21220706 I ref |NP_626485.11 [Streptomyces coelicolor A3 (2) ]
MSITASEARQNLFPLIEQVNEDHAPVHITSRKGNAVLMSEEDFTAWTETVHLLRSPRNARRLLDSIAEAEAGDATEHDLI
DPDAERA
>gi | 21220707 | re | NP_626486.1 | [Streptomyces coelicolor A3 ( 2 ) ]
MRITFTSHGWEDYVHWAESDRKVTKRINRLIADIARDPFKGVGKPEPLKGDLSGYWSRRIDDTHRLVYKPTDDQLVIVQA RYHY
>gi | 17227668 | ref |NP_484216 .1 | protein [Nostoc sp . PCC 7120]
MYWIKFESTQRELLILMLSNTYTYTQARDRLSELCDKVTSERDFWITRRNAENVALIPVDELSSLLETAHLLRSPRNAE
RLLRALDRAKSGWESQSLDDIRKELGFDQKEESQKPIKRRSSSNSKAKKNSVST
>gi 1 17227667 I ref | NP_484215 .1 1 protein [Nostoc sp . PCC 7120 ]
MFQPEFLEDLEFWVETNQRVALKALDLVKETCRDPFKGKGKPEPLKYLDPDTWSRRLTQEHRIVYLVKDDEINFLQARYH
Y
>gi|l7229593 |ref |NP_486141.1| protein [Nostoc sp. PCC 7120] MIDPVSATEARAKFQEIINRVEYGKERILIERHGKPWAVIGLDDLKRLETLEDAIDSAQLREAIAQNAGFTTLEAVIAQ HTHE
>gi | 17229592 | ref |NP_486140.1 | protein [Nostoc sp. PCC 7120]
MSDRYTLRIARTAEKDLLDLQPKQFKQWSKILSLQGTPRPQDCKALKGYEGGYRVDQGEYRILYTIDDETQLVDVFRVG KRNDDEVYQNL
>gi 117231900 |ref |NP_488448.11 protein [Nostoc sp. PCC 7120]
MRGLYLGVLGSPTKSGRAKMKAIEVTGKIDAQGNLILDQPIQGTTYPDQVRVIVLIPEQEETEEFDPDDTPVEEIKASLR RALQQAKMGQTRPISELWDRIDAE
>gi 117231899 I ref |NP_488447.11 protein [Nostoc sp. PCC 7120]
MSYGTELMQSDNTVSIRFSDEFEAELYRLSKRFRKIRSDVQPIIEQLQQGDFVGDRISGFGEEYFVYKVRVRNSNIQKGK
SAGYRLIYQVDSPTNIVLLTIYSKSDREDIGANEIRDILADFYGDSG
>gi 117231962 I ef |NP_488510.11 protein [Nostoc sp. PCC 7120]
MMTLQEIINSIESLPTEDQEYLFEFLRQQRIENRRVEILANSQEVMQALKDGTAKRGSVDDLIADLLGDDDGSCLE >gi ] 17231963 I ef |NP_488511.11 protein [Nostoc sp. PCC 7120] MMEVVWSSGFKRSFKKIIKKKPQLKDQIVKVLRLLADDPFTTSLKSHKLTGDLAGLWΞCSVTYDCRIIFTFSEDENLLEM VILLVDIGSHDEVY
>gi 117232054 I ref |NP_488602.11 unknown protein [Nostoc sp. PCC 7120]
MRYIMQPTETRQALLKAIYEELEQAYDDTLEDVLELLKIRKSEDEEDIQDIYAAKNDTTISWEQYKQESA >gi 117232053 I ref |NP_488601.11 protein [Nostoc sp. PCC 7120]
MIYQIEITTRAAKQLKKLSEDIKLKIEEKIQELSNNPRSNDWKLEGEEDTYRIRVGNYRILYEIKDDLLIVKWKISHR RDVYRRK
>gi 116332147 I ref |NP_442875.11 unknown protein [Synechocystis sp. PCC 6803] MMRAFEVMATVKDSKQLLLDSDLHWNTSRVKVIILESDELASKGSEFDPDDTPVEEIKVSLRKALEEYKQGKRIPVENMW EGIDVE
>gi 116332148 I ref |NP_442876.11 unknown protein [Synechocystis sp. PCC 6803]
MSNNLHLVNIDFTPEYRRSLKYLAKKYRNIRSDVQPIIEALQKGVISGDRLAGFGSDIYVYKLRIKNSNIQKGKSSGYRL
IYLLESENSILLLTIYSKAEQEDIAASDINSILGEYSIED
>gi|29375140|ref |NP_814293.1| DNA-damage-inducible protein J, [Enterococcus faecalis V583]
MATTKKKPIHVNVDENLKEEAEQLFDDLGLNMTSAITIFLKQSINEQAIPFMINKGNKETLQALKDIKEGNVHGGFSSVE DLMEDLNA
>gi I 293751411 ref |NP_814294.11 TIGR00053 [Enterococcus faecalis V583]
MLEIFYTNQFKKDFKKAKKQGKNLEKLKEVLVLLQEQQTLPPKYKDHALTGNYIGTRECHIEPDWLLIYKIDGDKLILTL
ARIGSHSELFR
>gi I 20807339 I ref |NP_622510 .1 1 protein [Thermoanaerobacter tengcongensis] MIKVGDAVMSKPJ FFNLKDLASYMISVSDLGRGKASKIIEKVAKKKEHYIVVKNNKPQAVIIPIEEYDELIEAQEDLELL QLAIERTKNLKEGETLPFEEILKEDGLTKEELKKYIDIVEIE >gi 1 20807340 I ref | NP_622511. 1 1 protein [Thermoanaerobacter tengcongensis]
MPLPQSEGGYGKPLGNKQGNNLTGFFKIKYKNIGIRWYTLVRDKKLMNIVAVSPRDDDYCYSVAEKRRRKYGNDLFTKG FEKLESE >gi 1 0808432 I re |NP_623603.11 protein [Thermoanaerobacter tengcongensis] MVVRIMDNLLKNKVKEIIENLQEEELAEVIDFIEYLRFKEEKEENEILNDVELIESIKRGLKDIENGDVYDFEDVFKNV >gi|2080843l|ref |NP_623602.1| [Thermoanaerobacter tengcongensis]
MRTCSKMYKVKLAKEAVKFTEKCNSNTKEKIKEAIEKIAQSPYVGKNIKKLKDKFPPLYRYRVGNIRIIYQIQKGEKIIF IVTIGYRGDVYK
>gi|20808957|ref |NP_624128.1| protein [Thermoanaerobacter tengcongensis]
MSNSYMVKKLNEVIKSLNERELSEVIDFAEYLKEKKKKELLKRFDEWEKTLDLEEIDIDEEKMLEQLHEDEKDYVTLEET
KRILGIEDNEV
>gi | 20808956 ) re )NP_624127.1 | [Thermoanaerobacter tengcongensis]
MKFEYRIIVNKKVLKELEKHDRKTVERVIKAIEKLPFEGDV KLKTSKKEKLYRLRVGDYRIIFEVDNENFVIKVKDFDS RGDVYK
>gi | 21284059] ref lNP_647147.1 | [Staphylococcus aureus subsp. aureus MW2] MIIKNYSYARQNLKALMTKVNDDSDMVTVTSTDDKNVVIMSESDYNSMMETLYLQQNPNNAEHLAQSIADLERGKTITKD IDV
>gi I 21284058] ref |NP_647146.11 [Staphylococcus aureus subsp. aureus MW2] MARLNITFSPQAFEDYKYFQQNDKKMVKKINELLKSIDRNGALEGIGKPEKLKSNLTGYYSRRINHEHRLVYTVDDNHIK IASCKYHY
>gi ] 21284110] ref I NP_647198.1 I protein [Staphylococcus aureus subsp. aureus MW2] MIITSPTEARKDFYQLLKNVNNNHEPIYISGNNAENNAVIIGLEDWKSIQETIYLESTGTMDKVREREKDNSGTTNIDDI DWDNL
>gi I 21284109] ref |NP_647197.11 [Staphylococcus aureus subsp. aureus MW2]
MSNYTVKIKNSAKSDLKKIKHSYLKKSFLEIVETLKNDPYKITQSFEKLEPKYLERYSRRINHQHRWYTVDDRNKEVLI
LSAWSHYD
>gi I 15927986] ref |NP_375519.1 | [Staphylococcus aureus subsp. aureus N315] MIIKNYSYARQNLKALMTKVNDDSDMVTVTSTDDKNVVIMSESDYNSMMETLYLQQNPNNAEHLAQSIADLERGKTITKD IDV >gi ] 15927985] re |NP_375518.l] [Staphylococcus aureus subsp. aureus N315]
MARLNITFSPQAFEDYKYFQQNNKKMVKKINELLKSIDRNGALEGIGKPEKLKSNLTGYYSRRINHEHRLVYTVDDNHIK IASCKYHY
>gi ] 15928036] ref |NP_375569.1 I protein [Staphylococcus aureus subsp. aureus N315] MIITSPTEARKDFYQLLKNVNNNHEPIYISGNNAENNAVIIGLEDWKSIQETIYLESTGTMDKVREREKDNSGTTNIDDI DWDNL
>gi 115928035] re |NP_375568.11 [Staphylococcus aureus subsp. aureus N315] MSNYTVKIKNSAKSDLRKIKHSYLKKSFLEIVETLKNDPYKITQSFEKLEPKYLERYSRRINHQHRWYTVDDRNKEVLI LSAWSHYD
>gi 115925398] ref ]NP_372932.l] [Staphylococcus aureus subsp. aureus Mu50]
MIIKNYSYARQNLKALMTKVNDDSDMVTVTSTDDKNWIMSESDYNSMMETLYLQQNPNNAEHLAQSIADLERGKTITKD
IDV
>gi ] 15925397] ref |NP_372931.1 I [Staphylococcus aureus subsp. aureus Mu50]
MARLNITFSPQAFEDYKYFQQNNKKMVKKINELLKSIDRNGALEGIGKPEKLKSNLTGYYSRRINHEHRLVYTVDDNHIK IASCKYHY
>gi 115925447 I ref ]NP_372981.11 protein [Staphylococcus aureus subsp. aureus Mu50] MIITSPTEARKDFYQLLKNVNNNHEPIYISGNNAENNAVIIGLEDWKSIQETIYLESTGTMDKVREREKDNSGTTNIDDI DWDNL
>gi 115925446 I ref ]NP_372980. l| [Staphylococcus aureus subsp. aureus Mu50] MSNYTVKIKNSAKSDLRKIKHSYLKKSFLEIVETLKNDPYKITQSFEKLEPKYLERYΞRRINHQHRWYTVDDRNKEVLI LSAWSHYD
>gi I 22538144] re |NP_688995.11 [Streptococcus agalactiae 2603V/R] MEAIVYSHFRNNLKDYMKKVNDEFEPLIVVNKNPDENIVVLSQDSWESLQETIRLMENDYLSHKVINGISQVKEKQVTKH GLIEVEDV
>gi I 22538143 I ref | NP_688994 . 1 1 [ Streptococcus agalactiae 2603V/R]
MFNFTEEAWKDYVSWQQEDKKILKRINRLIEDIKRDPFEGIGKPEPLKYHYSGAWSRRITEEHRLIYMIEDGEIYFLSFR
DHYK
>gi 122536617 I ref ]NP_687468.11 DNA-damage-inducible protein J, [Streptococcus agalactiae 2603V/R] MSTVAVRVDDQLKDDATELFQSLGLDMSTAVKMFLIQSVKTQSIPFEIKNKSSVSDEEFQNLVETKLKGIRVKASDPEΞV NAFFGDEDFSEYEEYFK
>gi | 22536618 | ref |NP_687469.1 | protein [Streptococcus agalactiae 2603V/R] MSDIEVYSVLVSRIEYSDGTGSKVRPAVWKFNDEVIKTLRFTTKYENKSDNIRSQYLEVID
>gi | 25010542 | ref |NP_734937.1 | Unknown [Streptococcus agalactiae NEM316] MSTVAVRVDDQLKDDATELFQSLGLDMSTAVKMFLIQSVKTQSIPFEIKNKSSVΞDEEFQNLVETKLKGIRVKASDSESV NAFFGDEDFSEYEEYFK >gi|25010543|re |NP_734938.1| Unknown [Streptococcus agalactiae NEM316]
MIDIEVYSVLVSRIEYSDGTGSKVRPAVVVKFNDEVIKTLRLTTKYENKSDNIKSQYLEVIDWAKANLKRRSWIDTIQYY DLEDKGFNIKIIGRLSDRDIERLKDFLRAKEV
>gi I 24379347 I ref | NP_721302 . 1 1 possible DNA-damage-inducible protein [Streptococcus mutans UA159 ]
MVVKNKANINIKIDLEDKAAADAIFAHMGLTTSAAVMXIFIKRVIDDQALPFTPRVKNTLDIALEQAKNDDVETFDSFDDW KSEMSAYAKD >gi I 24379348 | ref ] NP_721303 . 1 1 [ Streptococcus mutans UA159 ]
MLKIKQTRQFKKSLKKWKQGKDINKLFAIVELLCQKSELPLALRNHELKGRWRGIRELHIESDWLLAYQVLDDELVLLL IDTGSHAQMLGM
>gi 1 15900209 I ref | NP_344813 . 1 ] [ Streptococcus pneumoniae TIGR4 ]
MSKMSISIRLDSEVKEQAQQVFSNLGMDMTTAINIFLRQAIQYQGLPFDVRLDENRKLLQALTDLDQNRNMSQSFESVSD
LMEDLRA
>gi ] 15900210 I ref |NP_344814.l| [Streptococcus pneumoniae TIGR4]
MLKIRYHKQFKKDFKLAMKRGLKAELLEEVLNFLVQEKEHPARNRDHSLTAΞKHFQGVRECHTQPDWLLVYKVDKSELIL
NLLRTGSHSDLF
>gi 115901086 |ref|NP_345690.11 conserved domain protein [Streptococcus pneumoniae
TIGR4 ]
MTEHLKSNTMVLPLKKGAQKMTTITLKVΞEADKTFMKAMAKFEGVSLSELIRTKTLEALEDEYDARVADLAYQEYLEDLE
KGVEPITWEEMMHDLGLKDE
>gi 115901085 I ref |NP_345689.11 [Streptococcus pneumoniae TIGR4] MYKLVPTRRFIKQLKKLDRYTQKLITNYLQTNVLEDPRRHGKALVGNRVGQWRYRIGNYRVIVQIVDDELWATLEVGHR
RDIY
>gi|l5901573|ref |NP_346177.1| [Streptococcus pneumoniae TIGR4]
MEAVLYSTFRNHLKDYMKKVNDEFEPLTVVNKNPDEDIVVLSKSEWDSIQETLRIAQNKELSDKVLRGMAQVRAGSTQVH
VIEE
>gi 115901572 I ref ]NP_346176.11 [Streptococcus pneumoniae TIGR4]
MLLKFTEDAWADYCYWQNQDKKTLKRINKLIKDIQRDPFTGIGKPEPLKYDYQGAWSRRIDAENRLIYMMDGDSVAFLSF
KDHY
>gi 115902296 I ref |NP_357846.l| protein [Streptococcus pneumoniae R6] MSKMSMSIRLDSEVKEQAQQVFSNLGMDMTTAINIFLRQAIQYQGLPFDVRLDENRKLLQVLTDLDQNRNMSQSFESVSD LMEDLRA
>gi 115902297 |ref |NP_357847.11 [Streptococcus pneumoniae R6]
MLKIRYHKQFKKDFKLAMKRGLKAELLEEVLNFLVQEKEHPARYRDHSLTASKHFQGVRECHTQPDWLLVYKVDKSELIL NLLRTGSHSDLF
>gi 1 15903147 I ref | NP_358697 . 1 1 protein [ Streptococcus pneumoniae R6 ] MTEHLKSNTMVLPLKKGAQKMTTITLKVSEADKTFMKAMAKFEGVSLSELIRTKTLEALEDEYDARVADLAYQEYLEDLE KGVEPITWEEMMHDLGLKDE
>gi 115903146 I ref |NP_358696.11 protein [Streptococcus pneumoniae R6]
MNNLYKLVPTRRFIKQLKKLDRYTQKLITNYLQTNVLEDPRRHGKALVGNRVGQWRYRIGNYRVIVQIVDDELWATLEV
GHRRDIY
>gi 115903628 I ref |NP_359178.11 [Streptococcus pneumoniae R6]
MYNSGKELKRGMVMEAVLYSTFRNHLKDYMKKVNDEFEPLTVVNKNPDEDIVVLSKSEWDSIQETLRIAQNKELSDKVLR GMAQVRAGSTQVHVIEE
>gi|l5903627|re |NP_359177.1| [Streptococcus pneumoniae R6]
MLLKFTEDAWADYCYWQNQDKKTLKRINKLIKDIQRDPFTGIGKPEPLKYDYQGAWSRRIDAENRLIYMMDGDSVAFLSF
KDHY
>gi 119703555 |ref |NP_603117.11 Transcriptional regulator, COPG family [Fusobacterium nucleatum subsp. nucleatum ATCC 25586]
MGTTATLRLDETEKAIIQDYASSKGMTMSEFVKRWLDYIEDEYDLKIYKEYLKEKENGTLKTYSHKEVWGE >gi 119703556 |ref|NP_603118.11 Plasmid addiction system poison protein [Fusobacterium nucleatum subsp. nucleatum ATCC 25586]
MKYDVEYSKTAMNTIKKMDSSTSKLIRTWIEKNLINTENPRIKGKALTGDLKGLWRYRIGDYRILAEIQDDKIVILILDI GHRSKIYL
>gi |19703831 |ref |NP_603393.l| unknown [Fusobacterium nucleatum subsp. nucleatum ATCC 25586]
MSALSIRLNDDEKKIINAYAKFYNKTITQWKEAILEKIENEFDLNELNKAIEEYEKNPVSYSSDEVWKMLGI >gi| 19703832 ]ref]NP_603394.1 I Plasmid addiction system poison protein [Fusobacterium nucleatum subsp. nucleatum ATCC 25586]
MKKYEVKFSEAAIKELKKLDKPTATMIKLWVIQNLENTINPRQHGKSLTANYSGKWRYRVGNYRLLAEIYDDEILILIFK VAHRSIVYKK
>gi 1 19704434 | ref | NP_603996 .1 1 unknown [Fusobacterium nucleatum subsp . nucleatum ATCC 25586 ]
MSWSIRFNDDEEEILKNYVKSKGLNLΞQYIKNIIFEKIEEEYDLKSVQEYLKAKSEGTLNLIPFEEAIKEWDIE >gi 1 19704435 | ref |NP_603997.1 1 Plasmid addiction system poison protein [Fusobacterium nucleatum subsp . nucleatum ATCC 25586]
MGYRVMIPDKVNKKILKFDRNTRKLLYDYINKNLKDTDDPRLHGKALTGNLKGLWRYRIMDYRLIVDIQDEQLIIVAVDF NHRRKIYL
>gi|32472872|ref |NP_865866.1| protein [Pirellula sp. ]
MRRESDRRPDCSDDGASFHRRTSFPKKVLPVPKAFLIGKTLAKHANSAQNGVSFKLPLATIAILLREFPYWGIHKWSETA NMGGQRRLQ >gi I 32472873 I ref |NP_865867.l| [Pirellula sp. ]
MRLATPLTVCPMAQAGMRSSTACTFAKRSNPVWPPQNHLGWSALTPYANNGTRLAMQVSWTEYAVSDLLAIRDYIGRDSD KFADLIFERIVEQTERLLEYPDAGSIVPEFGREDVSEIQVNSYRWHQIFDDEVRVLTVSHATAPSAVLVGDGP
>gi 116125056 I ref |NP_419620.11 protein [Caulobacter crescentus CB15] MADGFDIHIDQEQAARLKWADRLGMSVSEYAVALIDAGLTGAAPKAIDPDPAIDEAIADAIERGDEPAIΞRDEFRAHIR RVTAGLG
>gi 116125055 I ref |NP_419619.11 [Caulobacter crescentus CB15] MTFTVLVSVRAKRDFNRLIVWLVERDPRAAARLGPLLEAALDSLTEAPSRGRSVGPTTREISIPFGQΞAYVIRYRLLGSS VHVTRIWHGLEQR
>gi 116126753 I ref |NP_421317.11 protein [Caulobacter crescentus CB15] MAICYARFMVPEPSIFEIDAEAEEAADAEGMADIAAGRWPHEEVSAWLDTWGTPEEKPAPETWRK >gi 116126752 I ref |NP_421316.l| [Caulobacter crescentus CB15]
MAQWWTWRALADLTAIRDYIGQFSPLAAQRMALRLKTAADΞLAEYPERGRLATATLRELVWPPYVIRYYVADGLVHIV RIRHAARL
>gi 116127111 ] ref |NP_421675.11 protein [Caulobacter crescentus CB15] MSGVIAPDRVDDKRRMEHSQNMALTITIPAELASRLRASAEAEGKDVDAYAIDALHVMSDEDWGYTDDDAYWRELRAHSD EVRRDGGIPLEDVKRWVAΞWDTENELPPPEPRIKARG
>gi 116127112 I ref |NP_421676.11 protein [Caulobacter crescentus CB15]
MKSVELGPRARRDLTKLRRWLLNRAPSAADRAIDLILSRAEQLAQHSDLGRRKSQNMRELYVSFGAHGYVLQYRVYPDAV
VIARIRHSLERR
>gi 115888018 I ref |NP_353699.11 AGR_C_1208p [Agrobacterium tumefaciens] MSKQTAIRLPDETYERLKALSERTGRTSAYYIREAIEKHIEDMEDLYLAEEATRRIQRGESKIISAEEFWRDLDN >gi | 15888017 | ef |NP_353698.1 | AGR_C_1206p [Agrobacterium tumefaciens]
MIWTIEYHTLVQKEMRKINPEVRRRIRSFLHERLAALDDPRQIGATLQGSELGNFWRYRVGDYRIICDIQDQKLWLWE IGHRREIYR
>gi | 15888153 | ref |NP_353834.1 | AGR_C_1484p [Agrobacterium tumefaciens] MANVEKISVSMTPQHAEILRDAVESGAYASSSEVIREAMRDWSAKWVQRRNDITKLRALWSEGKASGNSTEVDFDETLNE ARAELASLKNRDH
>gi 115888152 I ref |NP_353833.11 AGR_C_1483p [Agrobacterium tumefaciens] MTTKLVWTPRARSDVKKIYVDIGKSQPLAAERYFARFRAKAESLIDHPHLGERHPEIFPSARMLVEAPYVILYETVPDTD DDEIRCVEIVRVNDGRRDLRTLF
>gi|l5888172|ref |NP_353853.l| AGR_C_1520p [Agrobacterium tumefaciens]
MIWCSADVKPVYLPQGPRLQGFAFDLSLPMTDLMHRNCNAGRRSMKTATIPSLRVTADFREAAESVLKDGETLSAFMEEA
VRKQVEIRKSQAEFIKQGLAAREESKRTGVYHKAEDVLAELKAMLDEKLAEDNDK
>gi 1158881711 ref |NP__353852.11 AGR_C_1518p [Agrobacterium tumefaciens]
MTFQVFLADRARDNITRLYAHLLRQDKYAAKRAYRAIEKGIAALADFPLSCRKVDAENPFLREFLIPFGSSGYWLFEIE SAEKVTILAIRHQREDDYH
>gi|l5888274|ref |NP_353955.l| AGR_C_1704p [Agrobacterium tumefaciens] MTANAYVRARIDQTLKDDATAvLDRLGLTVSDVMRMMLTRIAREKALPIELTQPNAETLAAIEEARAIAAAGRNRFGTSE ALFEALDAGKR
>gi|l5888273|ref |NP_353954.l| AGR_C_1701p [Agrobacterium tumefaciens] MTNKKDHGKDAALKRATLPRRSDFTKQFIKDWQRLNNSGRYDMVRLKEIMLLLIANGAPLPTQFRDHELTGDWRDHRECH VGGDFLLIYTVDEKQNLLIFTRAGTHAELFR
>gi 115889087 I ref |NP_354768.11 AGR_C_3279p [Agrobacterium tumefaciens] MKGLSKALDSFLHSHVRMKCHKLDEPIWFTNNHSEPGKVAIMTAFTVRLPDEVAEKLDQLAEKLDRSRSYMAVQAIEDFV AREEWQLAEIEAGLAEADRGEFGTPEDLANIVGRYVKTARPL
>gi 115889086 |ref |NP_354767.11 AGR_C_3278p [Agrobacterium tumefaciens]
MSDRRIRWTLRALRRLDEIGAHIEQDNPAAAARVISRIVSAADMLVEQPAIGRVGRIKGTREAVLSDISYIIAYRVGRDI
EILTIIHTSRRWPSAL
>gi|l5889306|ref ]NP_354987.1| AGR_C_3659p [Agrobacterium tumefaciens] MLGGRHGGRGESSGLSCYRSHRCILTFGVWSVHKSVHICGRAILMANVRFTEFRQNFATHFDRVLETRAPLLVTRQGKEA VWLAEGEYESMQETLHLLSNPANASRLRASMGELERGDTIERDPTEE >gi ] 15889305 I ref |NP_354986.11 AGR_C_3658p [Agrobacterium tumefaciens]
MKLVWTLSSWDDYEFWQRTDARMVEKINDLIRNAKRTPFAGLGKPEPLKGDMAGYWSRRITAEHRFVYRVSGSGSEQRLE VIQCRFHYQ
>gi 115890524 I re |NP_356196.11 AGR_L_816p [Agrobacterium tumefaciens] MKSTIELSDDIKRRLDILAERSNSTPSRIIEDALSHGRSLAWQEKWTSGVRAGLAEADAGEFVTEEEINDVLNKYAKA >gi 115890523 I ref ]NP_356195.1 | AGR„L_815p [Agrobacterium tumefaciens] MRLIWTRRYLRELDAIGVYIAERNPRAAAKWRAIHQTTARLLSDNPHLGRSGEIEGTRELWPGLPYIVAYRVTEEQVD IVFVQHAAREWPDDA
>gi 117934585 I ref |NP_531375.11 [Agrobacterium tumefaciens str. C58 (U. Washington)] MSKQTAIRLPDETYERLKALSERTGRTSAYYIREAIEKHIEDMEDLYLAEEATRRIQRGESKIISAEEFWRDLDN
>gi|l7934584|ref |NP_531374.1| [Agrobacterium tumefaciens str. C58 (U. Washington)]
MIWTIEYHTLVQKEMRKINPEVRRRIRSFLHERLAALDDPRQIGATLQGSELGNFWRYRVGDYRIICDIQDQKLWLWE
IGHRREIYR >gι I [rer |NP__)jlb33.11 lAgrotiacterium cumeraciens str. usa (U. Washington).
MTANAYVRARIDQTLKDDATAVLDRLGLTVSDVMRMMLTRIAREKALPIELTQPNAETLAAIEEARAIAAAGRNRFGTSE
ALFEALDAGKR
>gi 117934842 I ref |NP_531632.11 [Agrobacterium tumefaciens str. C58 (U. Washington)!
MKRATLPRRSDFTKQFIKDWQRLNNSGRYDMVRLKEIMLLLIANGAPLPTQFRDHELTGDWRDHRECHVGGDFLLIYTVD
R EKΌQNNTLL.TIFFTTRRAAGGTTHHAAEELLFFRR
>gi|l7934986]ref |NP_531776.l| protein [Agrobacterium tumefaciens str. C58 (U. Washington) ]
MPEIHLSEQDEKFIEEQVAAGIYSDADAVIHASLQLLSSDEGKRAALKLLIQEGIDDAEAGRVHRYASQNDFLSDIKRVS AQQKTGTDH
>gi|l7934985|ref |NP_531775.l| protein [Agrobacterium tumefaciens str. C58 (U. Washington) ]
MKIRTPIWTTRARRDLAEDHAYIETENPVAADRLVLDIYNKIESIAAIGLTGVSRHGYGTGLRSIAYRDRVIFFRVNNGE LTVMRVLHGHQDISADDFKQEEN
>gi | 17935676 | ref |NP_532466.1 | [Agrobacterium tumefaciens str. C58 (U. Washington)] MTAFTVRLPDEVAEKLDQLAEKLDRSRSYMAVQAIEDFVAREEWQLAEIEAGLAEADRGEFGTPEDLANIVGRYVKTARP L
>gi 117935675 I ef | NP_532465.1 1 [Agrobacterium tumefaciens str . C58 (ϋ. Washington) ]
MSDRRIRWTLRALRRLDEIGAHIEQDNPAAAARVISRIVSAADMLVEQPAIGRVGRIKGTREAVLSDISYIIAYRVGRDI
EILTIIHTSRRWPSAL
>gi ] 17935904 I ref |NP_532694.11 [Agrobacterium tumefaciens str. C58 (U. Washington)] MANVRFTEFRQNFATHFDRVLETRAPLLVTRQGKEAVWLAEGEYESMQETLHLLSNPANASRLRASMGELERGDTIERD PTEE >gi 117935903 I ref |NP_532693.11 [Agrobacterium tumefaciens str. C58 (U. Washington)] MKLVWTLSSWDDYEFWQRTDARMVEKINDLIRNAKRTPFAGLGKPEPLKGDMAGYWSRRITAEHRFVYRVΞGSGSEQRLE VIQCRFHYQ
>gi 117938149 I ref |NP_534938.11 [Agrobacterium tumefaciens str. C58 (U. Washington)] MELSDDIKRRLDILAERSNSTPSRIIEDALSHGRSLAWQEKWTSGVRAGLAEADAGEFVTEEEINDVLNKYAKA >gi|l793815θ|ref |NP_534939.1| [Agrobacterium tumefaciens str. C58 (U. Washington)] MRLIWTRRYLRELDAIGVYIAERNPRAAAKWRAIHQTTARLLSDNPHLGRSGEIEGTRELWPGLPYIVAYRVTEEQVD IVFVQHAAREWPDDA
>gi 117987808 I ref |NP_540442.11 Helix-turn-helix protein, copG family [Brucella melit- ensis]
MKNQHLSDPITMRIPRDLLAEIEEIASLTERSRSWVIVRAMKAYLAAEGREIRDIAKARCAIENGEGIDLDTVIEEAEAI
IKGAAA
>gi 117987809 |ref |NP_540443.11 Cytosolic Protein [Brucella melitensis]
MKVIVSPAARDYIKSEIAYLKLRSPSAAVQLSEDLKRLKRDLGRFSQMGHFTEELPVPGIRRFVMGAYLIDYEIRADAIL IFAIRHGRERPPILPPDEDFDFEQL
>gi|23501312|re |NP_697439.l| [Brucella suis 1330] MKNQHLSDPITMRIPRDLLAEIEEIASLTERSRSWVIVRAMKAYLAAEGREIRDIAKARCAIENGEGIDLDTVIEEAEAI IKGAAA
>gi|2350131l|ref |NP_697438.l| [Brucella suis 1330]
MKVIVSPAARDYIKSEIAYLKLRSPSAAVQLSEDLKRLKRDLGRFSQMGHFTEELPVPGIRRFVMGAYLIDYEIRADAIL IFAIRHGRERPPILPPDEDFDFEQS
>gi|l5966432|ref |NP_386785.1| [Sinorhizobium meliloti]
MQTEKLSISLPVDMARMVRRRVEDGAYASNSEVIREALRLWQQREQERGHRLDAIRASLDAAANDPARHGSAEVSAHFDR LLTEAEKTAKS
>gi 1159664311 ref |NP_386784.11 [Sinorhizobium meliloti]
MSRELVFTPAALADLEETFWFVAADNPRRARSYVAEIEQACRNLCETPLMGRGRPDLRPNLFIFPLWRRVLIAYELPDNR
VDILRVFΞGGQDYEAIMSGE >gi 115892213 I ref |NP_359927.1| unknown [Rickettsia conorii]
MTKRTVYSTLLILΞLTNYKEKIMEIYNTSEARSKLYKLIDYVSDVHKPVYIKGKRNNVVIISEEDYRNMEETLYLLSIPN
MRKSIIEGRAEPIAKCSDKLNW
>gi 115892214 I ref |NP_359928.11 unknown [Rickettsia conorii]
MYIIRYTIQVQKDAKKIVQAGLKNKVEVLLNIVSTDPWKIYPPYEKLVGDFSGCYSRRINIQHRLVYEVYKQEKWKILR
MYTYYE
>gi 117547944 I ref |NP_521346.1 1 [Ralstonia solanacearum]
MPTSVALGNHFETFIRDQVQSGRFNNVSEWRAGLRLLEESEQRRQLELQALRAEIAAGKASGPAKPADEVFSRLEAKYS AQARRKQN >gi | l7547943 | ref |NP_521345.1 | [Ralstonia solanacearum]
MRLAITPLAEQDLESIADYIAQDNPARAVTFVRDLREQCQRLVMNPPGYRLRPELGDDIRSCAYGRYVIFFVAAPDEVIV IRILHGARDLPAVFHADEP
>gi | 17547995 | ref |NP_521397.1 | [Ralstonia solanacearum]
MNAPTGTNVQLIHGPDGAPAFWIPYAEYIAGRMQDRSLIPHAVIERTVEGATPVRAWREHLGLTQAEVAGRLGISQPAY AQQESSDRLRKAΞRDRIAAALGILPAQLDF
>gi 117547996 I ref |NP_521398.11 [Ralstonia solanacearum] MNAIHWTAWAARQLRKLDRQHQRVLVEAVGQLEAMPHCRQVRALREHRYGYRLRVGDYRVLSDWDDGIRIVDIQEVSKRD ERTYRH
>gi|30248490|ref |NP_840560.l| Helix-turn-helix protein, CopG family [Nitrosomonas europaea ATCC 19718]
MAQITARLPDDLVSSLDAAAARLRRSRAEWRQAVEYYLEDFEDISQAIDILRDPADPILDWEEVKRDLLHLD >gi|3024849l|ref |NP_840561.1| Protein of unknown function DUF79 [Nitrosomonas europaea ATCC 19718] MIYSISIRQSAVKSLEKIPGPDRLRIIKAIDLLKEHPGAGSILKGEFSGLRRIRVGMYRVvYEIQDNLLTILWRINHRR DIYR
>gi|30248712|ref |NP_840782.1| [Nitrosomonas europaea ATCC 19718]
MRYSTQIRPISYLKANAAEVLAYLTENREPLIITQNGEAKAVIQDIASFEETQETLALLKILALGNAEIEAGEVQPVHEV
IAGLRTRQTIK
>gi|3024871l|ref |NP_840781.1| [Nitrosomonas europaea ATCC 19718]
MAIRQYEVLFTRGAEQDLELIYDYIVESDCKANADSVLDRLLEWENLATFPSRGTWPKELVAVGIREYRQAIFKPYRVI YRVIEQKVYIYLIADGRRDMQSLLMHRLLGK
>gi|30248721|ref ]NP_840791.l| DUF172 [Nitrosomonas europaea ATCC 19718] MAECNVQINVQLFJS&MDAITYSTARAKLADTMNRVCDNHEPIIITRNGEQSVVMMSLDDFKALEETSYLLRSPKNAKRLL ESIAALEΞGRGETRSLAE
>gi|30248722|ref |NP_840792.l| [Nitrosomonas europaea ATCC 19718]
MKLVFSEQAWEDYLYWQKTDRKTVQRIDTLVKEITRTPHEGTGKPEPLKHALSGYWSRRINNEHRIVYKIADDSLFIAQL RYHY
>gi|30249325|ref |NP_841395.l| DUF172 [Nitrosomonas europaea ATCC 19718] MYLFYTCTIYCANEVAMKVVTYSHARNALKSILDDVIQDADVIVISRRDAEGDAVVMSLDSYNSIMETLHLTSNPANAAA LAKAIAQDKAGQAQDHPLLSAD
>gi 1302493241 ref |NP_841394.11 [Nitrosomonas europaea ATCC 19718]
MRAIRFVPDAWEAYLYWQDQDKKTLRRLNSLITAASRDPFVGIGKPEPLRGELSGYWSRRIDETNRLVYRVTDVELVIIA
CRFHYE
>gi I 302495311 ref |NP_841601.11 [Nitrosomonas europaea ATCC 19718]
MHQILASFSASISELKKNPTALLRKAEGETIAILNHNLPTAYLVPAEVYELLMEKLEDYELGEIVKARQAEKHLAIEVSL DDL >gi 130249532 I ref |NP_841602.11 Protein of unknown function DUF79 [Nitrosomonas europaea ATCC 19718]
MTYKLKFLPSAKKEWDKLDSSIKTQFKNKLKKCLENPHIQPNKLRGFDNAYKIKLRSAGYRLVYEINNQEVWFVIAVGK RENNKIYDKAINRTKT >gi I 30249547 I ref ] NP_841617.11 [Nitrosomonas europaea ATCC 19718]
MEAVMTIKFΞEDVIPLADLKVNPGRWSRVKETRRPVLLTSRGRGVAWQDLDEYEKSQEELAFVKAVAQGLMDIKEGNT
MSLSEAKKRLGIE
>gi 130249546 I ref |NP_841616.11 [Nitrosomonas europaea ATCC 19718]
MKVSISNSAFNDLETMISYYTAEGVPDVGFKFAQEIIEHIQILADHPDMGRIVPEFQLPHIREIIFAPFRWYLREKGAI
KVIRVWRSERPLVLPTET
>gi I 30249552 I re |NP_841622.11 [Nitrosomonas europaea ATCC 19718]
MPNKILTEIAASISELKANPMKVVASGKGMPIAVLNHNEPAFYCVPAAAYEAMMELLDDIELLKIVKERMDEPΞVKVSLD DL >gi | 30249553 | ref |NP_841623.1 | protein [Nitrosomonas europaea ATCC 19718]
MTYKLEFKKSALKEWEKLGHTIKEQFKKKLKERLENPHVHSAALPGAKNIYKIKLRQPGYRLVYSVEDQTITVTVIAIGK RDRNEIYDIALSRLHDKS
>gi I 30249567 I ref |NP_841637.11 protein [Nitrosomonas europaea ATCC 19718] MNTINANDLKTRGIAAIEAQLEEQPEAIIAVRGKDRYWMQLEHYYYLRECELTAALAETRADLAAGRCEQESPEAHLAR LDTLK
>gi|30249568|ref |NP_841638.1| [Nitrosomonas europaea ATCC 19718] MGYSLIFTDAYNQRAARWLRRHPDLRTQYLRTLQILQTNPYHPSLRLHVLSGKLQGIYAISINLSYRITLEFLIEDKQII PINIGSHDWY
>gi 1156455111 ref |NP_207686.11 protein [Helicobacter pylori 26695]
MPNTTNKDYTKYSQRQLFSFLNSIKTKQKRALEKLKEIQAQKQRIKKALQFKALNLTENGYTIEEEREILARAKDTKNRL
CFKSIEDFKKHCENL
>gi 115645510 I ref |NP_207685.l| [Helicobacter pylori 26695]
MLTIETΞKKFDKDLKILVKNGFDLKLLYKWGNLATEQPLAPKYKDHPLKGGLKDFRECHLKPDLLLVYQIKKQENTLFL VRLGSHSELF
>gi 115645513 I ref |NP_207688.11 protein [Helicobacter pylori 26695] MPNTTAKKDYTKYSKKQLFNLIHQLERKIKKMQNDRISFKEKMAKELEKRDQNFKDKIDALNELLQKISQAFDDKRDCCL GHEIPNIETQQAMRDVGNKETDLIVEDFSSYSNERKRALGVEAQS >gi 115645512 I ref |NP_207687.l| [Helicobacter pylori 26695]
MLKLNLKKSFQKDFDKLLLNGFDDSVLNEVILTLRKKEPLDPQFQDHALKGKWKPFRECHIKPDVLLVYLVKDDELILLR LGSHSELF
>gi 1 15611899 I ref |NP_223550.11 [Helicobacter pylori J99 ]
MPNTTNKDYTKYSQKQLFNFLNSIKAKQKRALEKLKEIQTQKQRIKKALQFKALHLTENGYTIEEEREILARAKDTKNRL CFKSIEDFKKHCENL
>gi 1 15611898 | ref | NP_223549.11 [Helicobacter pylori J99 ]
MLTIETSKKFDKDLKILVKNGFDLKLLYKWGNLATEQPLEPKYKDHPLKGALKDFRECHLKPDLLLVYQIKKQENTLFL
VRLGSHSELF
>gi I 26248392 I ref |NP_754432.11 protein yefM [Escherichia coli CFT073] MNCTKEEIYMRTISYSEARQNLSATMMKAVEDHAPILITRQNGEACVLMSLEEYNSLEETAYLLRSPANARRLMDSIDSL KSGKGTEKDIIE >gi I 262483911 ref |NP_754431.11 protein [Escherichia coli CFT073]
MKLIWSEESWDDYLYWQETDKRIVKKINEIIKDTRRTPFEGKGKPEPLKHNLSGFWSRRITEEHRLVYAVTDDΞLLIAAC RYHY
>gi] 16129523 I ref |NP_416082.11 negative regulator of translation [Escherichia coli K12]
MGSINLRIDDELKARSYAALEKMGVTPSEALRLMLEYIADNERLPFKQTLLSDEDAELVEIVKERLRNPKPVRVTLDEL >gi 116129522 I ref |NP_416081.l| orf, protein [Escherichia coli K12] MAYFLDFDERALKEWRKLGSTVREQLKKKLVEVLESPRIEANKLRGMPDCYKIKLRSΞGYRLVYQVIDEKWVFVISVGK RERSEVYSEAVKRIL >gi 116128212 I ref |NP_414761.11 damage-inducible protein J [Escherichia coli K12]
MAANAFVRARIDEDLKNQAADVLAGMGLTISDLVRITLTKVAREKALPFDLREPNQLTIQSIKNSEAGIDVHKAKDADDL
FDKLGI
>gi 1161282111 re |NP_414760.11 orf, protein [Escherichia coli K12]
MIQRDIEYSGQYSKDVKLAQKRHKDMNKLKYLMTLLINNTLPLPAVYKDHPLQGSWKGYRDAHVEPDWILIYKLTDKLLR
FERTGTHAALFG
>gi | 15829507 | ref |NP_308280.1 | damage-inducible protein DinJ [Escherichia coli
0157 :H7]
MAANAFVRARIDEDLKNQAADVLAGMGLTISDLVRITLTKVAREKALPFDLREPNQLTIQSIKNSEAGVDVHKAKDADDL
FDKLGV
>gi|l5829506|ref |NP_308279.1| protein [Escherichia coli 0157:H7] MNSGQFSKDVKLAQKRHKDMNKLKYLMTLLINNTLPLPAVYKDHPLQGSWKGYRDAHVEPDWILIYKLTDKLLRFERTGT
HAALFG
>gi | 24112921 | ref |NP_707431.1 | negative regulator of translation [Shigella flexneri 2a str. 301]
MGΞINLRIDDELKARSYAALEKMGVTPSEALRLMLEYIADNERLPFKQTLLSDEDAELVEIVKERLRNPKPVRVTLDEL >gi I 24112920 I ref |NP_707430.11 orf, [Shigella flexneri 2a str. 301] MAYFLDFDERALKEWRKLGSTVREQLKKKLVEVLESPRIEANKLRGMPDCYKIKLRSSGYRLVYQVIDEKVVVFVISVGK RERSEVYSEAVKRIL
>gi I 24113402 I ref |NP_707912.l| orf, [Shigella flexneri 2a str. 301] MRTISYSEARQNLSATMMKAVEDHAPILITRQNGEACVLMSLEEYNSLEETAYLLRSPANARRLMDSIDSLKSGKGTEKD IIEWVMLPTY
>gi I 24113399] ref |NP_707909.11 orf, [Shigella flexneri 2a str. 301] MKLIWSEESWDDYLYWQETDKRIVKKINELIKDTRRTPFEGKGKPEPLKHNLSGFWSRRITEEHRLVYAVTDDSLLIAAC RYHY
>gi|3006305l|ref |NP_837222.1| negative regulator of translation [Shigella flexneri 2a str. 2457T] MGSINLRIDDELKARSYAALEKMGVTPSEALRLMLEYIADNERLPFKQTLLSDEDAELVEIVKERLRNPKPVRVTLDEL >gi|30063050|ref |NP_837221.1] protein [Shigella flexneri 2a str. 2457T] MAYFLDFDERALKEWRKLGSTVREQLKKKLVEVLESPRIEANKLRGMPDCYKIKLRSSGYRLVYQVIDEKVVVFVISVGK RERSEVYSEAVKRIL
>gi] 29653635 I ref |NP_819327.11 protein [Coxiella burnetii RSA 493] MIVYSFFKEIRVGKKEPEKSRWEIKYWCNDKDDGTVEKWLDSLTQEQLKSVASEWHY
>gi 129653636 I ref |NP_819328.11 conserved domain protein [Coxiella burnetii RSA 493] MALLELCGNRLRLPHSΞSLKKGLFELRERKFGYRIYYAFLPNKTVILLHAGDKKSQKRDIKTARQRLPEFTDAEE
>gi I 29655274 I ref |NP_820966.11 [Coxiella burnetii RSA 493] MNVVTFSELRAQLKKILDLSADQHEPVWKRPNKETMVILSLRDFEALKETAYLLSNEANAARLRQSIRSLKQGKAQKKK LMED
>gi I 29655275 I ref |NP_820967.11 [Coxiella burnetii RSA 493]
MQISFTPEAWEDYLYWQKFDKKMLRRINELIKDAMHEPFSGKGKPEPLKFELQGYWSRRLDQEHRLVYKVLDDSLMIIAA RFHYNRLNSKN
>gi 124376115 I ref |NP_720158.11 [Shewanella oneidensis MR-1]
MKVELVTSLKRQATKILADLHETKEPVLITEHGKPSAYLIDVEDYEFMQNRLAILEGIARGERALADGKWSHQDAKDRM
SKWLK
>gi I 24376114 I ref |NP_720157.11 [Shewanella oneidensis MR-1]
MAEIIWTEPALADLNDIAEYIALENIVAAKQLVQMVFAKVERLVDFPDSGRIPPELERLNYREVWNPCRVFYKYGDEKV
RILFVMRAERDLRRFMLTRAC
>gi 115601089 I ref |NP_232720.11 DNA-damage-inducible protein J [Vibrio cholerae]
MRTEMLSTRIDHDTKIAFTNVCDEMGLSTSQAIKLFAKAVINHGGIPFELRVPQPNEVTASAIQELVEGKGHKAESVEAM
LNELTEGKVKHV >gi | 15601088 |re |NP_232719.l| [Vibrio cholerae]
MSLLKAKLSMYKLEYSTQFKKDFKKITKMPISDIIEVGNVISKLQRGEKLEPKNVDHPLTGNWVGFRDCHIKPDLVLIYR
VFNDQLQLARIGSHSDLF
>gi 115601114 I ref |NP_232745.l| relB protein [Vibrio cholerae]
MTVPLEAFVSCPTPTPVLTFVHTTKELTMDTRIQFRVDEETKRLAQQMAESQGRTLSDACRELTEQLAEQQRKALSHDAW LTEQVNQAFEKFDSGKAVFIEHDIAKARMAERKAKIRNRGHA >gi | 15601113 |ref|NP_232744.1 | [Vibrio cholerae]
MIFWEEASLNDREKIFEFLYDFNPAAAKKTDELIEAKVENLLEQPLIGVQRDGIRGRLLIIPEISMIVSYWVDGSKIRIM RVLHQKQKFPND
>gi | 15601185 | ref | NP_232816 . 1 | [Vibrio cholerae]
MEFVMSRIHLDQDIQPLSEFRAGVASFIKQINETRRPLVITQRGKGVAWLDVAEYEAMQEKIELLEEMRTAEAQLAAGL GISNEDARSQVLGRIIK
>gi 1 15601186 I ref | NP_232817 . 1 1 [Vibrio cholerae] MKWWSPLALQKLGDAAEFIALDNPSAAEKWVNEVFDKTELLGSMPEMGRMVPEMPHTNYREIIFGHYRIIYSLSHEIRV
LTLRQEQTVNPPHNKRLKRDCQRVAFPVPLSRGGCSCCV
>gi | 15601208 I ref | NP_232839 . 1 1 [Vibrio cholerae]
MTTRILADVAASITEFKANPMKVATΞAFGAPVAVLNRNEPAFYCVPASTYEIMMDKLEDLELLAIAKERLSEDSVSVNID
DL
>gi 115601207 I ref |NP_232838.11 relE protein [Vibrio cholerae]
MTYKLEFKKSALKEWKKLAVPLQQQFKKKLIERLENPHVPSAKLSGAENIYKIKLRQSGYRLVYQVENDIIWTVLAVGK RERSEVYTKALQRLDD
>gi 115601238 |ref]NP_232869.11 [Vibrio cholerae] MMLIWCFMRQVLANCSASISELKKNPTALLNEADGSAIAILNHNKPAAYLVPAETYEYLIDMLDDYELΞQIVDSRRADLA QAVEVNIDDL
>gi 115601239 I ref |NP_232870.11 [Vibrio cholerae]
MMTYKLKFLPAAQKEWSKLAPTIQSQFKKKLKERLENPHVPSAKLRGYDAVYKIKLRTAGYRLAYEVIDDEIWYVLAVG KRDKDAVYKKLASRFG
>gi 1 15601249 I ref | NP_232880 . 1 1 [Vibrio cholerae]
MKVELVTSLKRQATKILADLHDTKEPVLITEHGKPSAYLIDVDDYEFMQNRLAILEGIARGERALADGKWSHQDAKDRM SKWLK
>gi 1 15601250 | ref | NP_232881 . 1 1 [Vibrio cholerae]
MVEIIWTELALSDLNDIAEYIALENWAAKQLVQTVFTKVERLADFPESGRVPPELEHLNYREVWSPCRVFYKYDDAKV
RILFVMRAERDLRRLMLTKQ
>gi 115601264 I ref |NP_232895.11 relB protein [Vibrio cholerae]
MTVPLEAFVSCPTPTPVLTFVHTTKELTMDTRIQFRVDEETKRLAQQMAESQGRTLSDACRELTEQLAEQQRKALSHDAW LTEQVNQAFEKFDSGKAVFIEHDIAKARMAERKAKIRNRGHA >gi 115601263 I ref |NP_232894.11 [Vibrio cholerae]
MIFWEEASLNDREKIFEFLYDFNPAAAKKTDELIEAKVENLLEQPLIGVQRDGIRGRLLIIPEISMIVSYWVDGSKIRIM RVLHQKQKFPND
>gi|28898595|ref |NP_798200.1| YefM protein [Vibrio parahaemolyticus RIMD 2210633] MKTILVPLNVHVEVLMRIVSFTEARNGLKAVLDGWNDADTTVITRRDSEDAWMSLDYYNSLMETVHLLRSPQNVEHLN RSIAQYRAGKTTARELIDE
>gi I 28898594 I ref |NP_798199.11 protein [Vibrio parahaemolyticus RIMD 2210633] MMSSSQRLLSWTDDAWDDYLYWQTQDKKTLKRINKLINDVKRSPFEGIGKPEPLKENLSGFWSRRIDDTNRLVYAVDDQA ITIISCRYHY
>gi|28898603 |ref |NP_798208.1| RelB protein/Vco27A protein [Vibrio parahaemolyticus RIMD 2210633]
MDTRIQFRVDEETKRLAQQMAESQGRTLSDACRELTEQLAEQQRKSLSHDAWLTEQVNLAFEKFDSGKSVFVEHQTAKSQ MEERKARIRNRGKQ >gi 128898604 I ref |NP_798209.11 [Vibrio parahaemolyticus RIMD 2210633] MILWEEESLNDREKIFEFLYDFNPDAAEKTDNLIEANVENLLEQLLMGVQRDGVRGRLLIIPEISMIVSYWIEGDIIRIM RVLHQKQKFPMD
>gi I 28898616 I ref |NP_798221.11 RelB protein [Vibrio parahaemolyticus RIMD 2210633] MFVSCPSQSLVLTFVHTPTKEYIMDTRIQFRVDEETKRLAQQMAESQGRTLSDACRELTEQLAEQQRKTLSHDAWLTEQV NLAFEKFDSGKSVFLEHQTAKSRMEERKARIRNRGKQ
>gi|28898617|ref |NP_798222.1| [Vibrio parahaemolyticus RIMD 2210633] MILWEEESLNDREEIFEFLYDFNPDAAEKTDNLIEAKVENLLKQPLMGVQRDGIRGRLLIIPEISMIVSYWVEGDIIRVM RVQHQKQKFPTD
>gi|27365728|ref |NP_761256.1| Antitoxin of toxin-antitoxin stability system [Vibrio vulnificus CMCP6]
MKVELVTSLKRQATKILADLHDTKEPVLITEHGKPSAYLVDVDDYEFMQNRLAILEGIARGERALADGKWSHDEAKDKM
SKWLK
>gi | 27365729 | ref |NP_761257.1 | Plasmid stabilization system protein [Vibrio vulnificus CMCP6]
MAEIIWTEPALSDLNDIAEYIALENIVAAKQLVQAIFSKVERLEAFPESGRIPPELEHLSYREVWNPCRIFYKQDGDKV
FILFVMRAERDLRKFLLSKQ
>gi]27365748|ref |NP_761276.l| Antitoxin of toxin-antitoxin stability system [Vibrio vulnificus CMCP6]
MKVELVTSLKRQATKILADLHDTKEPVLITEHGKPSAYLVDVDDYEFMQNRLAILEGIARGERALADGKWSHDEAKDKM SKWLK >gi | 27365749 | ref |NP_761277.l| Plasmid stabilization system protein [Vibrio vulnificus CMCP6]
MAEIIWTEPALSDLNDIAEYIALENIVAAKQLVQAIFSKVERLEAFPESGRIPPELEHLSYREVWNPCRIFYKQDGDKV FILFVMRAERDLRKFLLSKQ
>gi I 27365845 |ref|NP_761373.11 Antitoxin of toxin-antitoxin stability system [Vibrio vulnificus CMCP6]
MSRIHFDQDIQPLΞEFRAGVTSFIKQINETRRPLVITQRGKGVAWLDVAEYEAMQEKIELLEEMRTAEAQLASGLGVSN EDARAQVLGRIKK
>gi |27365846 |ref |NP_761374.1 I Plasmid stabilization system protein [Vibrio vulnificus CMCP6]
MKVVWSPLALQKLGDAAEFISLDNPVAAESWVNEVFDKTELLSNMPEMGRMVPELPHTNYREILFGHYRIIYSLSHEIRV LTVRNCRQMLTESDV
>gi|27367843 |ref |NP_763370.1| DNA-damage-inducible protein J [Vibrio vulnificus
CMCP6 ] MDTRIQFRVDEETKRLAQQMAESQGRTLSDACRELTEQLAEQQRKTLSHDAWLTEQVNLAFEKFDSGKSVFIEHQTAKSR
MEERKARIRNRGKQ
>gi [27367844 I ref |NP_763371.11 Plasmid stabilization system protein [Vibrio vulnificus
CMCP6 ]
MILWEEESLNDREKIFEFLYDFNPDVPEKTDNLIEAKVENLLEQPLMGVQRDSILGRLLIIPEISMVISYWVEGDIIRVM RVLHQKQKFPTD
>gi I 21229536 I ref |NP_635453.11 [Xanthomonas campestris pv. campestris str. ATCC 33913]
MQLQTHNQTRVLATKANAPRRFGSFESALKVLREMGMPLDVLHVDAARWDAEGGKTKRRPERSEAMNVKELDARYAVSLR
TQTEHALADPRPALSSAQAKQQMETLKTQQRAALEAALAAKGTRA
>gi I 21229535 | ref |NP_635452.11 protein [Xanthomonas campestris pv. campestris str.
ATCC 33913] MSVAWKQSALDARTALLTSALARAIEIPDPQMYSAACEQDDRIETEGDALDGAAIYHSGPLPGTRLTTCQDGRYLLIYTR
DGDDVLILVLVPARSDGKPTSSGDQ
>gi|21230523 | ref |NP_636440.1 | [Xanthomonas campestris pv. campestris str. ATCC 33913]
MKSASLPSLRVDPALREAAEAVLQEGETLSSFVEHSVRAQVQQRQQQEAFIARGLASRDSAKASNRYIEAKDVLAGLQSQ LDKARKG >gi 121230524 I re |NP_636441.11 [Xanthomonas campestris pv. campestris str. ATCC 33913]
MGYSVRFTQYARNDLARLYDWLLQRAESGFTWERALQAIRDGVTVLALAPLSCRKAVPADPFLRELVIGFGASGYVLLF EVESNQWTVLAVRHQREDDYH
>gi|21230492|ref |NP_636409.l| [Xanthomonas campestris pv. campestris str. ATCC
33913] MPLPGGTLWQSLPSGRCMATMNISLPDELKEFVDQQVLEHAYGSSSEYLRELIRMQRDAQSLRALLLDGAESGPAVAMEA
DFFDSMRARARQRAAGK
>gi|21230493 |ref |NP_636410.l| [Xanthomonas campestris pv. campestris str. ATCC
33913]
MKPARWRPLALRDVDEAAAWYGAEGGLALELAFTKALESAVTTLMRNPAAGSSRHAWLKLPQIRVWPLKRFPYLLFYNE RATDIVIWRVLHMQRDIPAWMSAHP
>gi | 21241894 | ref |NP_641476.1 | [Xanthomonas axonopodis pv. citri str. 306] MPSGGGMATMNISLPDELKQFVDQQVAEHAYGSSSEYLRELIRKQRDIEQLRGVLLGGANSGPAVAAEAGFFNAMQARAN ARAGEQ
>gi|21241895|ref |NP_641477.l| [Xanthomonas axonopodis pv. citri str. 306] MKPAHWRPLALRDVEAAAAWYGEQAGLEVELAFVDALVSAVDMLVQHPSAGASRYAVM
>gi 115838658 I ref |NP_299346.11 protein [Xylella fastidiosa 9a5c]
MKEQPHQSEGIPSAFTGESRRVADFLLAWWNVDSCGSFDLTALWGLGDAITVDMTTVFTCIARVSKYPDSLGYEADFKAI LRQWRPESAY >gi|l5838657|ref |NP_299345.l| conserved plasmid protein [Xylella fastidiosa 9a5c] MAKAKTPYRIKWRPKASEDLRDIVRYIGKNNPTRARSFGQELRDKTLPLAQHPEIGRTGRPGLPDYVRELVTHRNYIVFY RVLDETRTVEILRVKHVAQQMP
>gi 115838666 I ref |NP_299354.11 protein [Xylella fastidiosa 9a5c]
MGMATSIKLDDELKGRVQHLADVRRRTSHWIMREAIAQYVEREEKRETFRQDTLKAWEEFQATGLHVTTEEVEKWLSSWG TENELSAPVCHG
>gi 115838665 |ref |NP_299353.11 protein [Xylella fastidiosa 9a5c] MPRVIFAPEAILNIQRLRNFLHPKNTDAARRAGEAIMRGARMLGAQPHIGRPVDDMPDEYREWLIDFGDSGYVARYHIDG DTVTILAVRHHKEVGYTS
>gi 115838672 I ref |NP_299360.11 DNA-damage-inducible protein [Xylella fastidiosa 9a5c]
MAANQLVQARIDGAIKAEATVVLAAMGLTISDAVRLLLTKVAQDKALPFEPLIPNATTIKAMREARAGKGETVTLGELRA
TIRAGN
>gi|l583867l|re |NP_299359.l| [Xylella fastidiosa 9a5c]
MREIKQLGQFKRDLKREAKGQHRATLEDDLLPVIDALAKDMPLEPRHRDHALLGNWKDLRDCHIKLDLVLIYTRVDSKTL TLVRLGSHAELGL
>gi|28199073|ref [NP_779387.1| anti-toxin protein [Xylella fastidiosa Temeculal] MEMPIGRSHLRYNEYMHLΞGGFDMATSIRLSPEMEQRLNSLASHTGRTKAYYLREIIEHGIEEMEDYYLAADVLERVRHG QEQVHSAADVRKTLGLDD
>gi|28199074|ref |NP_779388.l| toxin-like protein [Xylella fastidiosa Temeculal] MAWTIDYTDTAKQQLRKLDKHMARRIVDFMDERIAGLENPRSSGKALTGPLGGFWRYRVGDFRWCAIQDSVLRVLWRV GHRGEIYR
>gi 116272650 [ref |NP_438868.l| protein [Haemophilus influenzae Rd]
MALTNSSISFRTVEKTKLEAYQVIEQYGLTPSQVFNMFLAQIAKTRSIPVDLNYLRPNKETLAAIDELDSGNAESFFIEA SENYSAEEFTKRILNGGQ
>gi 1162726511 ref |NP_438869.11 protein [Haemophilus influenzae Rd]
MSEEKPLKVSYSKQFVRDLTDLAKRSPNVLIGSKYITAIHCLLNRLPLPENYQDHALVGEWKGYRDCHIQGDLVLIYQYV
IQDEFDELKFSRLNIHSQTALK
>gi 115595323 |ref |NP_248815.11 protein [Pseudomonas aeruginosa PA01] MSTWSFRADDALVAALDELARATHRDRPYHLRQALAQYLERQQWQVAAIDEGLADANAGRLLEHIEIEKRWGLQ >gi 115595322 I ref |NP_248814.11 protein [Pseudomonas aeruginosa PA01] MSLKWTRKAAADLDAIYDHYWLIGPEKALKAVQDIVEQVKPLQQVANQGAGRPSEVPGVRTLTLERWPFSAPFRVKGKE IQILRIDRVEITP
>gi|26989222|ref |NP_744647.l| [Pseudomonas putida KT2440]
MATSIKIDDDLKGRIQHLACLRQRSΞHWIMREAITQYVEREEARESFKQEALASWAAYQETGQHLTGQEARTWLGSWGTD AEAELPKCHD
>gi|26989223|ref |NP_744648.l| [Pseudomonas putida KT2440] MPRLIVTEGAAKGLERCRRFLSDKDPQVARRAAQAIERQFARLEESPEVGRPFPDLPELRELIIEFGDSGYVALYRYERA DDTAYVLAFRHQKEAGY
>gi|26989659|ref |NP_745084.l| [Pseudomonas putida KT2440]
MHVLTFSQARAELKQTMDDVCRDHEPAVITRQRGEPWMMSLEDYNGMNETIHLLGSSKNASRLRSSIAQLRDGQALTKE
LDLNEQEPEAAEQE
>gi|26989658|ref |NP_745083.l| [Pseudomonas putida KT2440]
MKFTKEGWEDYCHWQNADLTILGNINRLIDVCLRTPFTGIGKPEPLKGDLSGLWSRRITREHRLVYFFEAGMLTVLQCRY HYDD,
>gi|28867568 |ref |NP_790187.l| prevent-host-death family protein [Pseudomonas syringae pv. tomato str. DC3000]
MQvLSFΞQARAGLKQAMDDVCRDHEPALITRLRGDHWMLSLDDYNSMSETMYLLGTEANAKHLRQSIAQHKAGKAFVKE
ISLDVTGSETEE
>gi] 28867567 | ref ]NP_790186.1 | [Pseudomonas syringae pv. tomato str. DC3000]
MHFTLSGWDDYTHWKDADQAISLSIDSLISQCLRTPFKGTGKPRPLTGDLTGYWSRRITKEHRLVYFYEGGVLTVIACRH HY
>gi|2887083l|ref |NP_793450.l| [Pseudomonas syringae pv. tomato str. DC3000] MΞVMSLRLPDEMADTLAHLAKATGRSKSFLALNALREYLTREAWQIAEIQRAIEEADAGEFASEEDVKAVMNKWANNAG >gi|28870832|ref |NP_793451.l| [Pseudomonas syringae pv. tomato str. DC3000] MQVEWLKTALKNLDDEAAYISLENPAAAVAFVEALQISVKQLASFPALGREGRIAGTREWPLPDWPYLIPYRIRNGRLQV LRIFHTRRQPPLVW
>gi 128872496 |ref |NP_795115.11 stability cassette protein, [Pseudomonas syringae pv. tomato str. DC3000]
MASINVRIDDDLKARAYLELEKLGVTPSELLRQTLQYVAERGQLPFKTVLMTEEDEALLATVRERLAAPQRVKVSLDDL >gi]28872495|ref |NP_795114.l| stability cassette protein, [Pseudomonas syringae pv. tomato str. DC3000]
MTYSLEFDARALKEWRKLGDTVRQQLKKKLATILVAPRVEANRLHALPDCYKIKLRSSGYRLVYQVIDQEVWFWAVDK RERDEVYRKAADRLSG
>gi 116764896 I ref |NP_460511.11 cytoplasmic protein [Salmonella typhimurium LT2] MAFQILTTTAASITELKRDPMGTFNAGDGAPVAILNRNEPAFYCVPPALYAHLMDILEDEELGRIIDERANERVIEVNID DL >gi|l6764895|ref |NP_460510.l| cytoplasmic protein [Salmonella typhimurium LT2] MTYKLAFNESALKEWKKLGHTIQEQFKKKLRERLENPRVPASQLHGRKDQYKIKLRGAGYRLVYSVEDEIITVTVIGVGK RENDAVYKMTRHRS
>gi 116766805 I ref |NP_462420.l| DNA-damage-inducibile protein, resembles dinJ [Salmonella typhimurium LT2]
MAANALVRARIDETLKDQAADVLAEMGLTISDLIRITLTKVAREKALPFDLRIPNELTSRTIENSEAGVDIHKAKDADDL FDQLGI >gi|l6766804|ref |NP_462419.l| cytoplasmic protein [Salmonella typhimurium LT2] MGQREIEYΞGQFQKDVKRAQKRHKDVGKLKTLMTLLIHHPFPLPAIYKDHPLQGSYSGYRDAHIEPDWILIYKITDECLR FERTGTHADLF
>gi 116767695 |ref |NP_463310.11 helix-turn-helix protein, copG family [Salmonella typhimurium LT2]
MATLNVRLDDKLKNEAYAVLEKLNITPTEAVRLLFQYVAETGRMPVKTVTLSDSEDALIQTVRERLSSPQKGIKVSLDDL >gi| 16767696 |ref |NP_463311.1 | inner membrane protein [Salmonella typhimurium LT2] MTYELEFDPRALKEWHKLGDTVKAQLKKKLADVLLNPRIDSARLNGLPDCYKIKLKSSGYRLVYQVRDDVVIVFVVAVGK REHSAVYHDANKRL
>gi|l6763249 |ref |NP_458866.l| RelB protein [Salmonella enterica subsp. enterica serovar Typhi]
MATLNVRLDDKLKNEAYAVLEKLNITPTEAVRLLFQYVAETGRMPVKTVTLSDSEDALIQTVRERLSSPQKGIKVSLDDL >gi|l6763250 |ref |NP_458867.1 I [Salmonella enterica subsp. enterica serovar Typhi] MTYELEFDPRALKEWHKLGDTVKAQLKKKLADVLLNPRIDSARLNGLPDCYKIKLKSSGYRLVYQVRDDWIVFWAVGK REHSAVYHDANKRL
>gi | 29144728 | ref |NP_808070.1 | RelB protein [Salmonella enterica subsp. enterica serovar Typhi Ty2]
MATLNVRLDDKLKNEAYAVLEKLNITPTEAVRLLFQYVAETGRMPVKTVTLSDSEDALIQTVRERLΞSPQKGIKVSLDDL >gi I 29144729 |ref |NP_808071.11 [Salmonella enterica subsp. enterica serovar Typhi Ty2] MTYELEFDPRALKEWHKLGDTVKAQLKKKLADVLLNPRIDSARLNGLPDCYKIKLKSSGYRLVYQVRDDWIVFWAVGK REHSAVYHDANKRL
The following sequences were found later in a supplementary search: >relB|23464628:1284380-1284766, length 129, Bifidobacterium_longum, relB MRIRQAIWSLRERPALSLPPSSSPAMSIRPRΞRAVASSSSSΞMGAKEPSSTWRWSVSSAS SMRCSSSAVRSPARPRARAWAREPAMΞSSAKRQSNCVDLDSRANSGDGPDVKRPPHRARC SLFSVMKAP >relE|23464628:1284736-1284981, length 82, Bifidobacterium_longum, relE MFWLSHEGΞLKPWIANKSDCLSDYQRWATYRWIQWRIPWRQCQGYWSRRIDEKNRIVY RITGNDVQNLEIAVCRTHYGEH
>gi 115645620 I ref |NP_207796.11 hypothetical protein HP1005 [Helicobacter pylori 26695] MSNIITDYSQYNEKQLHNFLNSIEKQLLKAERDKNKAIKKIQECELQERMIRQVLAQKHSQEKEPTPSLLNTIASKDDPE YDVSFGDFNDFLQIAKQERERHNA
>relE|l5644634:1067530-1067742, length 71, Helicobacter_pylori_26695, relE MTESDVTSIVDCLKKQKPLQQKYCDHALSGNLKGLRECHVKPNLLLIYEIKKQENELVLL RLDTHSELFKK
>relB|l3470324:250975-251220, length 81, Mesorhizobium_loti, RelB MAMTAFTVRLSDDTTDRLDQLAEKLDRSRSYVAAQAIEDFVTRQEWQLAEIEAGLAEAER GEFANEQELAAVIAKYIKPAG
>relE|l3470324:251223-251513, length 97, Mesorhizobium_loti, RelE MSHKTIRWTKRALRRLDEIGAHIEKDSPEAASRVIARILSAAELLTQQPAMGRVGRIKAT RELVLVDIPYIVPYRVSGNTVEILTVIHAAQQWPRTL
>relB|20088899:3293160-3293339, lenth 60, Methanosarcina_acetivorans, relB MTETELLKKISDDLDFLKTKILEIEESLELIDSELHPIREEYKRLDEIKKQRGNYFRKRI
>relE| 20088899:3293349-3293555, length 69, Methanosarcina_acetivorans, relE
MRGKALRYSYEISRHLERDLEKIQKKDRERFEILLDKMSEILDNPHRFKPLMHDMEGLMV
NLYLIGIIY
>relB|l5839372:cl388510-1388731, length 86, M._tuberculosis_CDC1551, RelB
MPTTWRSPRQRHATCNAYPKRSPPHVΞΞLFSDRCLTTRIGWASRCAMTLKASTQPAAVIT
ASSTPSTTATTESRSSTSLVAVPATE >gi 1158406911 ref |NP_335728.11 hypothetical protein MT1284 [Mycobacterium tuberculosis CDC1551]
MTWRPSRKRWRCYAPLAPARPFVKASPMLPQALREQRRDPQPLHRAVSDDHPYHVAITATAARDLQRLPEKIAAACVEFV FGPLLNNPHRLGKPLRNDLEGLHSARRGDYRWYAIDDGHHRVEIIHIARRSASYRMNPCRPR
>relB|l5839372:3171692-3171970, length 93, M._tuberculosis_CDC1551, RelB
MRILPISTIKGKLNEFVDAVSSTQDQITITKNGAPAAVLVGADEWESLQETLYWLAQPGI
RESIAEADADIASGRTYGEDEIRAEFGVPRRPH >relE|l5839372:3171947-3172237, length 87, M._tuberculosis_CDC1551, RelE
MRRPATPPLSGALHRAVHHNRASRPPQAATANPRGSGRIRVRRSVARAPAGGQAPSARVG
RHVQRASRNVPPAVPD
>gi | 15922557 | ref |NP_378226.1 | 67aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7] MLIMHWTLSDMFTEAGVYVKKNGKWRMFALAHYKYDNPCKWFSNLCWFHTPINCILYYSPILFLMKY
>gi|l5922558|ref |NP_378227.l| 105aa long hypothetical protein [Sulfolobus tokodaii str. 7]
MVCEKWELKFMFRKRINDLEELSEFLASEFPHEEWMLIFDKLYLLREDPKKYAREKLKNQTDKDGRPLFSIEVTGDIRI IYSFDSKGCTVFIWRIGKHKKAYRF
>gi|16330633 |ref |NP_441361.1| hypothetical protein [Synechocystis sp. PCC 6803]
METINYQQFSEKLPTLVEKIGNEQEPLCLELPNYLRAVIISEQDYRSLMETVYLLSNPVNAEKLLTTASRSIDQATSWTK
VKNDLGL
>relE 1 16329170 : 1620536-1620793 , length 86 , Synechocystis_PCC6803 , relE/yoeB
MKEWLDSQAIEDIKWWIQQDKKLALKIMELIETLPKSPFAGKGKPEKLRFNLSGFWPRR
ITQEHRLVYEVTDDFIRWSCRYHYR
>gi 1 16331058 I ref | NP_441786 .1 ] hypothetical protein [Synechocystis sp . PCC 6803 ]
MKAITTTQAKDHLDELINAVISDLEPTIVSNNQGQQAVLISLDEFNSWQETLYLLSNPTNAEHLMASIKQAETGQIIKQK
LPDLLEL >relE|l6329170:1620536-1620793, length 86, Synechocystis_PCC6803 , relE/yoeB MKEWLDSQAIEDIKWWIQQDKKLALKIMELIETLPKSPFAGKGKPEKLRFNLSGFWPRR ITQEHRLVYEVTDDFIRWSCRYHYR
>gi 115838297 I ref |NP_298985.11 hypothetical protein XF1696 [Xylella fastidiosa 9a5c] MEMPIGRSHLRYYEYMHLSEGFDMATSIRLSPEMEQRLNYLASHTGRTKAYYLREIIEHGIEEMEDYYLAADVLERVRHG QEQVHΞAADVRKTLGLDD
>relE|l5836605:cl620819-1621091, length 91, Xylella_fastidiosa_chr, relE MAWTIDYTDTAKQQLRKLDKHMARRIVDFMDERIAGLENPRSSGKALTGPLGGFWRYRVG DFRWCAIQDSVLRVLWGVGHRGEMYRREC
>relB|28197945:1298015-1298314, length 100, Xylella_fastidiosa_Temeculal, relB MYRLAQWDAIKRLSGVHVHSAHAQQLGGTHWAVSCGGFSEGSMHLAMTQSECLGIIELQ CSSFLTGYRRIALCLQTQLSVPALTRTSKKKHQPCWRRWA
>relE|28197945:1298354-1298761, length 136, Xylella_fastidiosa_Temeculal, relE MPARRRCRSSRWCRTKLPSQPCVKPVLVTΞRALIVLRRSWRTCMRRISQTGQFKRDYKRE AKGQHRATLDEELIHVLEALTCDHPLEPRHHDHALTGDWKDHRDCHIKPDLVLIYRKPDN ETLQLVRIGSHSELGL
>gi|22126965]ref |NP_670388.l| Hypothetical protein y3089 [Yersinia pestis KIM] MIMAKARLHDDAMVQLLMEDPEFAQVYLHQALLDIDEEGGQEAFLMALRHWEARGGMASVAKKAGVSRETLYRTLSPSG NPTLKTLLSWSATGFQFSHLASITA
>relB|22123922:c3399757-3400077, length 107, Yersinia_pestis_KIM_chr, RelB MLMKTIKHYLTPEGRDLYMEYLKSLRDSIAKAKISSRVNRIASGNFGDHKPCREGVWELR IDQGPGYRVYYSLVDGEWLLLLGGDKRSQNADIDQAIVCLKDYLTR
Homologues of phd/doc toxin-antitoxin system polypeptides
>gi|24473558:1143830-1143531, length 97, Phd
MTDKKPFALSEVAQRVLIVLGRENRGLTVRELVEKTDTNSGΞIKRALEELAKLNLIKEEK ENVFPYRRLISLTEVGREVAKRVIEIEELVKKVQSNG
>gi 115921403 I ref |NP_377072.11 152aa long [Sulfolobus tokodaii]
MENKLMQILEGLLNEFEKWRSRESDRVPTIIQIHDΞITRNDPNTERGIVNLDTIGITIYSAIENLSLYHDISRSLAVLTY
RLITSHPFVDANKRTAFVLLLDILYELFDKEIPQDLEEELIKTLAEVADNPPEEDEYAINKIRETIRQIIEG
>gi|28209834:2057179-2057481, length 101, Phd MILGLIYPKIVYNITIEEVLFMQVNINNLVSISEANQNFSRVARMVDENGAAIILKNNAP RYVLIDYSKFQQDTIADDATVEEAANNILNKHLKAFEELAK
>gi I 28211562 I ref | P_782506.11 death on curing protein [Clostridium tetani E88] MKHLSKEQMMYLHSMAVKKTGGLDGIRDEGLLDSALNSPFQΞFAGEELYPSIQAKAARLGFSIIKNHPFLDGNKRIGMLA MMVFLEINGIQLECSDEDIVDIGLGIASGKYEDDYIIDWIISCSNNS
>gi| 16124256:3613915-3613552, length 121, Phd MAFEEGFEFLVGDVGIDGHDAGMRERALAVKGAVRYNVCSNV SAAMIALKLSQIGNSVG VVLPKEALVKLGVEKGDTLYLTDAPGGGMQIAPYDPDVARQIALGEEIMDEYRDTFRALAK
>gi| 16127593 | re |NP_422157.1| death on curing protein [Caulobacter crescentus CB15] MSGVGEPVWVRIEALKVLHERSLALHGGPSGVRDEGLLESALERPKNRFHYEGVDDVVELAATYAVAVSSNHPFVDGNKR AAFHAMTLFLRLNGLRLVADQADAARTIFKLAAGELDIPALTDWLRTRVA
>gi 115675948 = 929630-929475, length 52, Phd MPANRQGAAMQNQNTRPVKIELKGEAGKRVLLAAARRIAKTHQKAVKALADK
>gi 115676812 I ref | P_273957.11 death-on-curing protein [Neisseria meningitidis MC58]
MIDGELVALIHQTVLADEAGLKGRADMARLDGALSRIANWRQYENLEDIYEIAALYAQAIAKAHAFPDGNKRTALLTMLT
YLDLQGIΞIAADQGLDDLIVΞLAAGETDFKQLAETLRRLDKE
>gi|30248031:1386749-1386501, length 83, Phd
MVITLGYEMIELKVRKFGNSLGIVLPKEVVNHLRTGDGQRLFLTEASDGRYLITPYDPSF
GEKMAKVEDICNRYRNTLHVLTK >gi| 30249247 I ref |NP_841317.11 putative death on curing protein [Nitrosomonas europaea ATCC 19718]
MTTPVWINEQDVLAIHERLIFLHGGASGIRDRNLLKSALARPLNFSVYDQQSDIFLLAATYTSGILQNHPFVDGNKRTGF VIGVLFLELNGYKFIANEEDΞAQAIISLAEGSLDELGFRLFIEHNSIAT >gi|30248031:2674530-2674754, length 75, Phd
MVELKVRKLGNSLGVVLPKEVINHLRTGDGQRLFLTEASDGGYLITPYDPAFEEKMVKVE NICDRYRNTLRILAK
>gi| 30250372 I ref |NP_842442.11 putative death on curing protein [Nitrosomonas europaea ATCC 19718]
MIEPIWIDEQVALAIHERLISLHSGASGVRDKELLKSALARPLNLLAYDQQADVIHLAAAYTAGILQNHPFVDRNKRTGF VVGVLFLELNGYRFTAAEEDSAQAVIALAAGSLDEARFKLFLADNSIPV
>gi|22123922:2738880-2738578, length 101, Phd
MQLIRYSLSYTLCINKNGYNPFTTAENSMCQRFSIYNSEDNVMSHALKNADRLYIPPRDK GTKAYPRASMDTSSTHADQVKNAFAFGFSRYEKAMEELSKV
>gi I 22126357 I ref |NP_669780.11 [Yersinia pestis KIM] MADIVEGIHYLSVEDFIYINRTLIEAQTPSEPIDVINHNNLCSSQARPSVVKYYQQTDDMFELSAALIESLIQNHAFANA NKRTAMMAGYMFLLLNGYELTAPGDEIVVMAEGMARKVYNCEDLENWLCYWSRPYDSRNLCDCEISSLVVTATQVKIE
gi] 15595198:69056-69187, length 44, Phd
MSQDQQGIRYLSVADLVRLNELLILAQTPDEPIGVLKPNELESA
>gi 1155952511 ref |NP_248743.11 [Pseudomonas aeruginosa PA01]
MNHCFANGNKRTAAAAATVFLLLNGIELTGPAQDFVDIMVALVTREASVQDLEDWMFYWHRPFDAYNLPDSDAFERMVAR LGIG
>gi I 21226652 I ef |NP_632574.1 ] protein [Methanosarcina mazei Goel] MΞTIAIDPDVKESLKELKLAPEESYNSVVKRLIGEVKKKEDYSPMFPKEEKQGHKESHINDFDAWLEKKLVEDKNILDAL GRK
>gi I 212266511 ref |NP_632573.11 conserved protein [Methanosarcina mazei Goel] MEESDVLISLIEILKIHQKVIDYDKFKDPEDYTPAIRSLATLELMFEYLIKESNTIFENAAVIVYTIVAKHPFFNGNKRT GYEAMNFIIEDGGYGFTSTDEEMIEFIIRVATTENEMSIEEIKEWIIRHTEKIL
>gi 1 21224247 I ref | NP_630026. 1 1 protein [Streptomyces coelicolor A3 (2 ) ] MAMTLRLPDDLDTKLTERARGEGCSKQELAIGAIRDARDRAELKVDDVLAGLMDSDAEILDYLK >gi|21224248|ref |NP_630027.1| protein [Streptomyces coelicolor A3 (2) ] MSGVRYLQIDEILAIVRTVNGAEHSVRDMGLLVSAIERPRTNVFGAELYPTLHEKPRHYCTPSPAITR
>gi I 21218953 |ref|NP_624732.11 protein SCF51.10 [Streptomyces coelicolor A3 (2) ] MTFTEEEMEGVRAAAAAEGKSLKQYMHDLGVREMQRKRFVAGAVSWADRLRAEFDEAFPDEIPPSQRGEGVTAA >gi I 21218954 I ref |NP_624733.11 protein ΞCF51.11 [Streptomyces coelicolor A3 (2) ] MSEPLYIDVPWLLDVQDAALDNEDVSVTDYSALVAAVARHKTRMPTLAASNPDSAWRAAALLHTWRLEPLPHRNΞLFAA FVTGQYMDQSGEGIDPPYGALSDLIRKVRETRLSIYDIADVLRSWRI
>gi | 21673171 | ref |NP_661236.1 | protein [Chlorobium tepidum TLS] MVKQLTKHGNSMAMVIDKPILELIGADADTPFEITTDGQALILTPLKNPKGGEAFGVALEKVNTRYARALKKLAE >gi | 21673172 | ref |NP_661237.1 | Doc protein [Chlorobium tepidum TLS]
MRFLDLHEVLHIHRDQITRYGGTLGVRDMGLLTSAIAMPTAMFKGDFLHTDIYEMAAAYLFHLVRNHPFLDGNKRVGAVS AIVFLALNGYDFEAPENDLVEMVYGVARSEFEKSDVALFMRRWSVKW
>gi 117227997 I ref |NP_484545.1] protein [Nostoc sp. PCC 7120]
MIVSSSQLYERFIEQVIGLSQKKDFSLTALISNYVRMNYQLKLEQIDKLKAWLDGFRPFDQTMLAELKKLYDVRFTYNSN AIEGNTLTQSETELVLTKGITIGGKTLNEHLEVIGHKEAIDYIESLSQKDTEINEW >gi|l7227998|ref |NP_484546.l| protein [Nostoc sp. PCC 7120]
MMAAGTNYIYPPHYLLSQLMADFVIWLNSNAALTLHPVEYATMAHYRFVSIHPFRDGNGRTARLIMNLLLIRAGYPIWI NNQVRNDYINALAYGQQNQDDLSGLFDLVCDAVISSLVETLRLLVTASSSREKGQVFYQEIIDFIDKNVGK
>gi I 29375017 I ref |NP_814170.11 [Enterococcus faecalis V583]
MEIKERKLRKVGNSVVMTLSKEFLESIGATATDTVYVDEEKLKDIIVKKNMSEHQKKLQQMMENSKQKHNELYKELVTK >gi |29375016 |ref |NP_814169.l| death-on-curing family protein [Enterococcus faecalis V583] MKSIYYLSADDLFQMNTFLIQTYSPAEQIGIKDRNALEMASNQPAQFVFDVDLYPTIEEKAAILMINIATKHCFYNANKR TAVMATDLFLQLNGYDFQLDTQEGVDLLVFIATYRSDFDQLKNDVSKVIRAKLNHTSSH
>gi 115900771 |ref |NP_345375.11 protein [Streptococcus pneumoniae TIGR4]
MWKTRKQGNSITITIPSEFNIPSGVKYEAKLLPSGEIIFTPEELGQQVSYVSDDAFDLNLDKIFDEYDDVFKALVEK >gi 115900772 I ref |NP_345376.11 protein [Streptococcus pneumoniae TIGR4] MTiyLTEKQIEKINALAIQRYSPNEKIQTVΞPSALNMIVNLPEQFVFGKPLYPTIFDKATILFVQLIKKHVFANANKRTA FFVLVKFLQLNGYRFSVTVEEAVKMCVTIAVEALTDEKMTSYSKWISEHSVREKVKK
>gi|l7987658|ref |NP_540292.1| Protein [Brucella melitensis]
MNITLRKIGDSYGVIIPKEVLERLNLQTGDTLTLTTDENGLRLARSTEDAEVLEKKMQIARERMKKYETAYRVLAQ >gi 117987659 |ref |NP_540293.11 DEATH ON CURING PROTEIN [Brucella melitensis]
MIDFHSRVFIEALHQEQLRLHGGATGIRDSSLLDSALARAQHKEAYGNPDIFDLAAAYLFGILKNHPFIDGNKRTGLAAA DLFLYFNGYSLEAEQEDVIQLVLMVTTSEIDETGAAAFFRDHAWINED
>gi] 23501447 I ref |NP_697574.11 transcriptional regulator, AbrB family [Brucella suis 1330]
MNITLRKIGNSYGVIIPKEVLERLNLQTGDTLTLTTDENGLRLARSTEDAEVLEKKMQIARERMKKYETAYRVLAQ >gi I 23501446 I ref |NP_697573.11 death-on-curing family protein [Brucella suis 1330] MIDFHSRVFIEALHQEQLRLHGGATGIRDSSLLDSALARAQHKEAYGNPDIFDLAAAYLFGILKNHPFIDGNKRTGLAAA DLFLYFNGYSLEAEQEDVIQLVLMVTTSEIDETGAAAFFRDHAWINDD
>gi|l6122085|ref |NP_405398.1| protein [Yersinia pestis]
MQLIRYSLSYTLCINKNGYNPFTTAENSMCQRFSIYNΞEDNVMSHALKNADRLYIPPRDKGTKAYPRASMDTSSTHADQV
KNAFAFGFSRYEKAMEELSKV
>gi 116122086 I ref |NP_405399.11 [Yersinia pestis]
MADIVEGIHYLSVEDFIYINRTLIEAQTPSEPIDVINHNNLCSSQARPSWKYYQQTDDMFELSAALIESLIQNHAFANA NKRTAMMAGYMFLLLNGYELTAPGDEIWMAEGMARKVYNCEDLENWLCYWSRPYDSRNLCDCEIΞSLWTATQVKIE
>gi|15601235|ref ]NP_232866.1| acetyltransferase, [Vibrio cholerae] MNLEEFQESDFDLLIKWIDSDELNYLWGCPAYVFPLTYEQIHSHCSKAEVFPYLLKVKGRHAGFVELYKVTDEQYRICRV
FISNAYRGQGLSKSMLMLLIDKARLDFSATKLSLGVFEQNTVARKCYEΞLGFEWMVWIEFGGMRCQPLRRALCFLSRF
GAIIGLTFIDSRCDMNRKVEAYGVDAVERPKIKASKKLDLTGDAGRQIVKSETKLALRTHQKTFTKLADM
>gi 115601236 I ref |NP_232867.11 doc protein [Vibrio cholerae]
MDIICFPFERVIEINAFILKTEPGMKGAVDIPKLQGALGRIDNAIVYEGLDDVFEIAAKYTACIAVSHALPDAN RTGLA
VALEYLΞLNDFELTQENDLLADAVRDLVIGIINETDFADILYAQYAKEQNSAL
>gi 121241949 | ref |NP_641531.11 protein [Xanthomonas axonopodis pv. citri str. 306] MKLKITAIGNΞAGVILPKELLARLRLGKGDELYALETPDGIKLTAFDPTLAAQMDVAEQVMREDRQVLNKLAK >gi| 21241948 I ref |NP_641530.11 death-on-curing protein [Xanthomonas axonopodis pv. citri str. 306] MNTRMLVWVTHALALAIHERQLSEHGGASGVRDEALLDΞALARPQQLFSYGDPPPDLVGLTASLAYGLARNHPFVDGNKR TAHVCYRVFLLLNGAELIASQEEKYVAMMRLADGAWSEATFAQWLRPRVRLRADTHVHEPQGHYG
>gi | 16766845 | ref |NP_462460.l] cytoplasmic protein [Salmonella typhimurium LT2] MFMRTVNYSEARQNLAEVLESAVTGGPVTITRRGHKSAVIISAEEFERYQTARMDDEFAAIMAVHGNELRELADK
>gi 116766844 I ref |NP_462459.11 homology to death -on-curing protein of phage PI [Salmonella typhimurium LT2]
MTLQLISAEEIIQFHDRLLRVTPGVTGMPDPGRAEALMYRVLKQIEYEGVTDVWLLAAMHLLAISRGHIFNDGNKRTALF ITLLFLKRNGISLAANPDFVDMTVDAAAGRLTLEQIAVRLRA
>gi 116759892 I ref |NP_455509.11 bacteriophage protein [Salmonella enterica subsp. enterica serovar Typhi] MVLNCPQPLKVIINSLDVFTSYNLRKHCQTCMRVIIMGHALKKADRLYIPPRDKSMVAKPRAAISKACSHTGQVKNAFEF GFARYEKAMEELSKV
>gi 116759893 I ref |NP_455510.11 bacteriophage protein [Salmonella enterica subsp. enterica serovar Typhi] MAIEYVEGVNYLSIEDIVYINRSLIEIQTPNEPIGVLNPNNLSSSQSRPSTIRYYEQTDDMFRLSAVLIESLIQNHPFAN ANKRTAMMAGYVFLLLNGYELTAPSDEWTIAEGLARKDYAVDDLENWLCHWSREYDSRTLCETGGNMIQALVATSRYIR IKSNE
The following sequences were found later, in a supplementary search:
>gi I 29142336 |ref |NP_805678.11 putative bacteriophage protein [Salmonella enterica subsp. enterica serovar Typhi Ty2]
MVLNCPQPLKVIINSLDVFTSYNLRKHCQTCMRVIIMGHALKKADRLYIPPRDKSMVAKPRAAISKACSHTGQVKNAFEF GFARYEKAMEELSKV
>gi I 29142335 |ref |NP_805677.11 putative bacteriophage protein [Salmonella enterica subsp . enterica serovar Typhi Ty2 ]
MAIEYVEGVNYLSIEDIVYINRSLIEIQTPNEPIGVLNPNNLSSSQSRPSTIRYYEQTDDMFRLSAVLIESLIQNHPFAN ANKRTAMMAGYVFLLLNGYELTAPSDEWTIAEGLARKDYAVDDLENWLCHWSREYDSRTLCETGGNMIQALVATSRYIR IKSNE >gi I 29833628 I ref |NP_828262.l| hypothetical protein SAV7086 [Streptomyces avermitilis MA-4680] MAKTQLNVRVDEGTARAARERALERGMSVNRYIEELVRQDTGEAGHTFVEAAADFMKQYETVFAEEFGADREGTRESRR
>gi 129833629 I ref |NP_828263.11 hypothetical protein SAV7087 [Streptomyces avermitilis MA-4680]
MENLRIDLAWLLMIAEQKTPGDPQVTDWGALVAAVSRHEAEIFGIPVYDTPHARAAALLQLLLHVPALERSNALFASAVA YAYLVAGGAKWTSPEQVRELARLVKSGEAGVDDIARELRQWSL
>gi I 298273711 ref |NP_822005.11 hypothetical protein SAV829 [Streptomyces avermitilis MA-4680] MSFTDEELEGVRAAAAAEGKSLKQYLHDLGVREMQRKQFVAGATAWADRLRREFDDAFADEVPPSERRDGAAAA
>gi|29827370|ref |NP_822004.1| hypothetical protein SAV829 [Streptomyces avermitilis MA-4680]
MHFYVDVΞWLLDVQEAALGREDMSVSDYSALVAAIARHKTKLPTLAAADPDAAWRAAALMHTIVRLEPLPHRNSLFAAFI AAQYMDQSGEGIDPPYGALSDLVSKIRDTRLGILAVADQLRTWKV
>gi 115921597 I ref |NP_377266.11 91aa long conserved hypothetical protein [Sulfolobus tokodaii str. 7]
MEYLTEMQQRVILALYYSGNEKVTFRKLIELTKSSTSPVKNAIDSLEEKGLVEEIEETESFPKRRYIKLTEKGKKVAEKL KELYTLIESTS >doc 1 24473558 : cl328737-1329249 , length 171 , Sulfolobus_tokodaii , doc MYVDRVYFIRLNILLEEKLLKILNALLKEFEAWIRGESEEKPLIIEIHDKLIANDTYΞEG GVINLDDIGIAIYSSIEDLMRNHDVSRSLAVLTYHLWSHPFVDGNKRTTLGFLLNILHT LFEDEIEIPQDWDTLMQTLVEIADNPPEEDEMAINRVRSIIRGLIPVNQD
Homologues of higBA toxin-antitoxin system polypeptides
>gi I 23308765 = 1085714-1086001, length 96, downstream antitoxin HigA MADLLPLERLGPRKRRDRGLSLRRRRWLRSSTRRFTLVRFSWRTSSRASASHRTRSPYRS GCLRDASTRSCTASDPSRPIRLCVSGGTSVSTRSSG
>gi | 23308765 : 1085499-1085777, length 93, upstream HigB toxin MIRΞFADRDTELVWLREGAKRVDPRIHKVANRKLHLLDAATTLDALRVTPGNRLETLEGD RVGQYSIRVNDQWRICFRWNDSGPENVEIVDYH
>gi | 15836605: 1630197-1629883, length 105, HigA antitoxin
MIRCSGTCSVRKTFFSGQIKVPVEALLQRLAGGAASMAPRPARIKMPHEAERWYQKMPQR
DVRVLVGTDTRTTSYFDHQSLNLGRDRCRLKSNIITITLSVIWY
>gi|15838310|ref |NP_298998.l| [Xylella fastidiosa 9a5c]
MEVKFEDPSLERLEANQKYTAGLVKVFHRRIQFIRASPDERAFYAMKSLHYEKLKDDPDNLYSMHLNDQWHLIMYLKAKE
DDTRNLWIVSIVDYH
>gi 115599869 I ref |NP_253363.11 conserved [Pseudomonas aeruginosa PA01]
MATNGMRPIHPGEILRDEFLMEFDISPAALARALKVSAPTVNDIVREQRGISADMAIRLGRYFDTSAQFWMNLQSEYSLA
TAYAANGKQIEHEIEPLLAHG >gi|l5595198:c5242573-5242848
MILTFRCDETRQLFETGLSRRWGAILTVATRKLAMLHAATELRDLRSPPGNRLEPLQGKR AGQHSIRINDQWRVCFVWTDAGPEEVEIVDYH
>gi I 21226647 I ref |NP_632569.11 protein [Methanosarcina mazei Goel]
MAEALNSDKIKRSPTLNTIIMVEDAIQNSPNSVITIPELKKALPRQVNHNTLMTILEYLEKSNKIAVGLRGITWIHNTNH
NLRNVAIYGREL
>gi |21226648 |ref |NP_632570.l| conserved protein [Methanosarcina mazei Goel]
MKRVSVRLTPEADEAYEYLISKASDSKQEETILNAFHQKIELIKNDVHYGNPVAKRLIPSEYKTKYGVNNLFRVELPGFW RMLYTLTAGNSGVETLVIVIDIIDHKKYDKAFGYKK
>gi|l7230415|ref |NP_486963.l| virulence-associated protein [Nostoc sp. PCC 7120] MARPPIHPGEILADEITELAMTASDLARVLHVPKNRITEIINGRRGITADTALRLGQYFGTGGEFWLNLQKNYELRLAEQ TSGKEIQETICPRILVS
>gi 117230416 I ref |NP_486964.l| protein [Nostoc sp. PCC 7120]
MSPSDEYPKYKDKRTEKFALGERVKEFQSFERQAQKRLDIIDAAPNKEVLMQLPSNRFESLGGDRKGQYSIRINEQWRIC FNWPDDFLKPFNIEITDYH
>gi I 28377334] ref |NP_784226.11 plantaricin biosynthesis protein PlnY () [Lactobacillus plantarum WCFS1] MNEIPTPKISEILEEEFMAPLHISAYFLAQQIGVPTSRIQDLLHDRRQVTVDTSLRLGRFFGVSDRYFLELQNDIEIRNL KQIHGAEYAQIKKYQVS
>gi|28377333 |ref |NP_784225.l| plantaricin biosynthesis protein PlnX () [Lactobacillus plantarum WCFS1] MPPTIQQLALRKLLMIDHAETINDLSLPPANHLEKLSHDRQGQYSIRINNQYRICFAIRNGNEFYDVEIVDYHHG
>gi|27378122 | ref |NP_769651.1 | virulence-associated protein I [Bradyrhizobium japonicum] MAKKLKPMHPGEVLREEFLVPLNMSAGALAKTCGLPRTRIERIANEQTGITADTALRLAKALGTTAELWLNLQNDYDIQI AKRDLGKALDRIETVNRPQAAE
>gi|27378123 | ref |NP_769652.1 | bsl3012 [Bradyrhizobium japonicum]
MIRTFRDKTTEAVFDGESPKGFPADLVKVARRKLRYLHAAGELGDLRAPPGNRLEALSGNRKGQHSIRINDQFRVCFIWT PQGPVEVEIVDYH
>gi 113471567 I ref |NP_103133.11 protein [Mesorhizobium loti] MLMTARKPTTVGEILTEEFMQPLGLTQAALAEAMGVQRKHVNELCNDRRNVTAATALILARVFGNΞPDFWLNVQRRSDLW
AVMNSPDERARVDRAKPLATAA
>gi | 13471566 | ref |NP_103132.1 | protein [Mesorhizobium loti]
MIVGFRDGWLRAFFVDDTRSRNIPSDLESRLFRKLQMIDDATVDQDLRVPPSNHFEKLRGNLEGFHSIRVNQQWRLIFRW
DGGRGEASDIYLDDHSYK
>gi|l5964803|ref |NP_385156.l| [Sinorhizobium meliloti] MLTTKRKPATVGEILTEEFMRPMGLTQGALAEAMGVQRKHVNELCGNRRNVTAATALILARVFGNSPDFWLNVQRRNDLW LVMNTPKERERIERARPLENAA
>gi|l5964804|ref |NP_385157.l| [Sinorhizobium meliloti]
MIVGFRDDWLRTFFVDDVRSRNIPYDLEARLFRKLQMIDDAATDQDLRVPPSNHFEKLRGNLAGLHSIRVNQQWRLIFRW DGTRGEADGIYLDDHSYR
>gi 1159668111 ref |NP_387164.11 [Sinorhizobium meliloti]
MPGEILASEFLEPMNISARKLAGHIGVPANRITEIIKGRRSITGDTALRLSKAFGTTPEFWINLQSHYELERARDAAGDL SISPLHAA
>gi 115966812 I ref |NP_387165.11 [Sinorhizobium meliloti]
MIQSFGNKETEAVFKRQRTRRFGAFQKPALVKLLMLHAATRIEDLRVPPGNRLEALKGDRAGQYSIRINQQWRICFRFEN
GDAYDVEISDYH
>gi|30248496|ref |NP_840566.1| Helix-turn-helix motif [Nitrosomonas europaea ATCC 19718]
MTRPVNRMRAVHPGEVLREDFLIPAGISVNALAIALSVPATRIHEIVKERRAVTADTAERLAHYFGGDAASWLALQASYD LKTLPTRDEIERRVQRREEHV
>gi] 30248497 I ref |NP_84056 .11 [Nitrosomonas europaea ATCC 19718]
MGCMIQSFRCKSTQAMFEGECPQRFSAIQAVAERKLAQLEAAQTLDFLRSPPGNRLEKLAGDREGQWSIRINAQWRICFT
WSDLDPADVEIVDYH
>gi|30248505 |ref |NP_840575.1 I Helix-turn-helix motif [Nitrosomonas europaea ATCC 19718]
MNNKLTPVSPGEMLAEEFLIPLGMSNYRLAKEIGVSAQRIGEIVTGKRAITVDTDLRLCRFFGLSDGWWLRLQVDYDIEM ARGALEETLAKIRPWANTQEHGTPA
>gi I 30248506 I ref |NP_840576.11 [Nitrosomonas europaea ATCC 19718]
MSFDANIATQYYILMTIKTFRCADPETLFKLGRVARFVNIERPALRKLKQLDLARCIEDIRVPPANRPEILKGDRAGQHS
IRINDQWRVCFRWTGTDAEDVEIVDYH
>gi|30249099|ref |NP_841169.1| Helix-turn-helix motif [Nitrosomonas europaea ATCC 19718]
MTIHIEELENMDFSDVAEGGKLHPIHPGEILREEFLMPLKITPHALSLALQIPATRINDIVRERRAITTDTALRLARYFG NTAEFWMGLQIDYDMTITRDSLRGALNRIQRFEPTHIS
>gi 130249098 I ref |NP_841168.11 [Nitrosomonas europaea ATCC 19718]
MIKTFATKETAALFANEKIRRLPPEILRVARRKMAQLHRVSSIEELRIPPGNRLEKLSGNRNEQWSIRINDQWRICFRFE
AGDVFDVEITDYH
>gi|30249283|ref |NP_841353.l| Bacterial regulatory protein, Lad family: Helix-turn- helix motif [Nitrosomonas europaea ATCC 19718]
MARMHNPPYPGETLREDVLPALGLTVTQAAKELGINRVTLSRVLNGKAGISVDLALRLEAWLDGPSAESWLKGQLAYDLW QAEQRGCAKVWRHINREQI
>gi|30249284 |ref |NP_841354.1 I proteic killer suppression protein [Nitrosomonas europaea ATCC 19718]
MIRHFKHKGLQLFFETGDKSGIRPDHASRLARQLRQLNDAVNPREMNIPGWKLHPLSGDLSGYWSVMVNGNWRMIFVFDG EDVILVDYRDDH
>gi|26247766|ref |NP_753806.1] protein yddM [Escherichia coli CFT073] MKMANHPRPGDIIQESLDELNVΞLREFARAMEIAPSTASRLLTGKAALTPEMAIKLSWIGSSPQMWLNLQNAWSLAEAE KTVDVSRLRRLVTQ
>gi|26247767|re |NP_753807.1| protein [Escherichia coli CFT073]
MNFRHKGLRDLFLLGKTSGVIPTQVKRLRHRLAVIDAACCLADIDMPGYRLHPLSGDRDGIWAISVSGNWRITFEFVNGD
AYILDYEDYH >gi 1296547811 ref |NP_820473.11 proteic killer antidote protein, [Coxiella burnetii
RSA 493]
MAANRMRPIHPGEILAEELGFLDKMSANQLAKHLAIPTNRVTAILNGARSITADTALRLAKFFGTTPEFWLNLQDAYDIK
MALKKSGKKIEKEVTPYDQAA
>gi I 29654782 I ref |NP_820474.11 proteic killer protein, [Coxiella burnetii RSA 493]
MLDVTRKTVILEVIIKSFKDKYTKYLYKGVSVSKWQAIRKQAERRLQILDSVTΞLDDLRSLPSNRFESLRGNRKGQFSIR
INKQWRICFKWINNEPTEVEIVDYH
>gi 115601230 I ref |NP_232861.11 [Vibrio cholerae]
MSNRDLFAELSSALVEAKQHSEGKLTLKTHHVNDVGELNISPDEIVSIREQFNMSRGVFARLLHTSSRTLENWEQGRSVP NGQAVTLLKLVQRHPETLSHIAEL
>gi 115601229 | ref |NP_232860.11 protein [Vibrio cholerae]
MKSVFVESTIFEKYRDEYLΞDEEYRLFQAELMLNPKLGDVIQGTGGLRKIRVASKGKGKRGGSRIIYYFLDEKRRFYLLT
IYGKNEMSDLNANQRKQLMAFMEAWRNEQS
>gi 115601155 I ref |NP_232786.11 antidote protein, [Vibrio cholerae]
MRKTKRRPVSVGEMLKVEFLEPMGITSKALAEAMGVHRNTVSNLINGGVLTAPVAIKLAAALGNTPEFWLNIQHAVDLWD TRNRYQEEAKFVKPLFVSLEQSART >gi 115601154 I ref |NP_232785.11 killer protein, [Vibrio cholerae]
MCTVSLCVSLCLWMHNETVQVAMALEFKDKWLEQFYEDDKRHRLIPSSIENALFRKLEILDAAQAESDLRIPPGNRFEHL EGNLKGWCSIRVNKQYRLIFQWVDGVALNTYLDPHKY
>gi 115837322 I ref |NP_298010.11 proteic killer active protein [Xylella fastidiosa 9a5c] MKRMHNPAHPGEVLREYLGDLTVTNAAAKLGVSRVALSRILNGANGISADMALRLEDALGTSAEMWVAMQFKYDLWVASQ QPRPKITRLHV
>gi 115837323 I ref |NP_298011.11 proteic killer suppression protein [Xylella fastidiosa 9a5c]
MYTDHLRYTIGFVIKSFRHKGIQQFFLEGSTAGIQTKHAAKLRIQLTALESAKHPKDMNAPGWKLHSLKGADLKGHWSIW VNGNYRLTFAFEGEDAILVDYQDYH
>gi I 28198286 I ref |NP_778600.11 proteic killer active protein [Xylella fastidiosa Temeculal]
MKRMHNPAHPGEVLREYLGELTVTNAAAKLGVSRVALSRILNGTNGISADMALRLEDALGTSAEMWAAMQFKYDLWVASQ QPRPKITRLHV >gi I 28198285 I ref |NP_778599.11 proteic killer suppression protein [Xylella fastidiosa Temeculal]
MIKSFRHKGIQQFFLKGSTAGIQTKHAAKLRIQLTALESAKRPEDMNAPGWKLHPLKGADLKGHWSIWVNGNYRLTFAFE GEDAILVDYQDYH
>gi| 28199225 |ref |NP_779539.11 virulence-associated protein [Xylella fastidiosa Temeculal]
MRTVPYPTPGDILLHEFLEPMGITQYRLAKSIGVPQRRIGQIVSGDRAVTADTALRLSKFLGTSDGFWLGLQMDYDAAAT KDKLAETLSKITPWHTQAA
>gi I 28199224 |ref |NP_779538.11 proteic killer suppression protein [Xylella fastidiosa Temeculal]
MAIQSLACQHTESLFNGKRIPRFVNIETVAMRKLAMLHRAAHVDDLRIPPANRLEMLKGHRKGQYSIRINDQFRICFTWT VAGPKNVEIVDYH
>gi 116273170 I ref |NP_439407.11 virulence-associated protein A [Haemophilus influenzae Rd] MMTRKPTSVGEILQEEFLEPLSLKISDLAQILDVHRNTASNIVNNSSRITLEMAVKLAKVFDTTPEFWLNLQTRIDLWDL EHNKRFQQSLANVKPALHRHDTSTFAM
>gi 116273169 ] ref |NP_439406.1 ] protein [Haemophilus influenzae Rd]
MFNLKREHFRDDYLYRFYQYGDTHSKIPSNLYKVLARKLDMISASENINDLRSPPANHLELLEPKENKIYSIRVNKQYCL IFKYENNEVNNLYLDPHSYNL
>gi 126988317 I ref |NP_743742.11 antidote protein, [Pseudomonas putida KT2440] MLKNGMRPIHPGEILREEFQKEMGFSAAALARALGVATPTVNNILRERGGVSADMALRLSICLDTTPEFWLNLQTAFDLR TAEQQHGDEIIGSVQRLVA
>gi I 26988318 I ref |NP_743743.11 killer protein, [Pseudomonas putida KT2440]
MIRSFSCADTEALFTTGKTRRGSDIKSVAERKLAMLDAATELRDLRSPPGNRLESLSGNRADQHSIRVNDQWRLCFTWTE
HGPVNVEIVDYH
>gi I 26987933 I ref |NP_743358.11 transcriptional regulator, Cro/CI family [Pseudomonas putida KT2440] MEIMEKHLFDRLVESMTQMDEIDRGERQPSREFHVDALQVKKIRQATGLSQAAFAKRIDVAVGTLRNWEQGRREPEGPAR ALLRAIHNDPEHVLAALS
>gi | 26987934 | ref |NP_743359.1 | [Pseudomonas putida KT2440]
MTHSRDCMIFIETPVFTSDLKEHLDDEEYRALQAYLAEHPEAGSLLEETGGLRKIRWAAKGKGKSGGVRVIYYHVTAAHQ IRMILIYRKGIVDTLTSSQKAQLRALNKGWK
>gi| 28867446 [ref |NP_790065.1 I virulence-associated protein, [Pseudomonas syringae pv. tomato str. DC3000]
MNKNGMRPVΉPGEVLKEEYLEPMGLTAAALARALKVSTPTVNDIVLQRRGVSADVALRLAVCLETSPEFWLNLQLAYDLR KAETEKGAQIREQVKCLAHCA >gi | 28867445 | ref |NP_790064.1 | proteic killer protein, [Pseudomonas syringae pv. tomato str. DC3000]
MIVSFKCVHTRYLFLQGKTRLWPSIKSVAERKLAMLDAATSILDLRSPPGNRLEALDGSRSGQYSVRINAPFRICFVWSI NGPEDVEIVDYH >gi| 28867652 |ref|NP_790271.l| virulence-associated protein, [Pseudomonas syringae pv. tomato str. DC3000]
MEMFNPPHPGEILLEEVIPGLQTTITEFASHLGFARETLSRILHGHAPVSPDLAVRLERAGISSARLWLGIQADYDLWQA
EHREQPPIEPYVIANPG
>gi| 28867653 ] ref |NP_790272.1 | proteic killer protein, [Pseudomonas syringae pv. to- mato str. DC3000]
MIVSWRHKGLKAFFETGSΞSGIRADHSKRLAHVLAVLNRARTPANVNMPGWRLHPLKGELEGFWSITINANWRIIFRFFD
TDVELVDYLDYH
The following sequences were found later, in a supplementary search: >gi I 29349640 I ref |NP_813143.11 Hypothetical protein BT4232 [Bacteroides thetaiotaomi- cron VPI-5482] MNIMQVNPDVGSMDAVLDKLYGKVGTNKSYISRIEKGALEPGVGLFFRIIDALGLKVEIVKPMI
>higB I 29345410: 5572334-5572546, length 71, Bacteroides_thetaiotaomicron_VPI_5482, higB
MLAGGCGGWLKGLKRLKIKKHSMNIYGAFFIFDEGNIVMLFNGFQKKTQKTPESEIEKAV KLKNEYYAΞKP
>gi I 293501411 ref |NP_813644.11 Hypothetical protein BT4732 [Bacteroides thetaiotaomi- cron VPI-5482]
MEAKTNEEFFNVSALIDERFGKEGTASRAEAEEKAYAFYTGQIIEDARKKAKITQAELARRIGSDRSYISRVESGQTEPK VSTFYRIMNALGCKIEFSMIL >gi|29350140|ref |NP_813643.1| Hypothetical protein BT4732 [Bacteroides thetaiotaomi- cron VPI-5482]
MKREIIAYKGYFKEFFENLDAGTQDKILYVLMLLQTQDRIPLKFMRLIEEGLYELRIEYQSNIYRIFFCFDEGRIVILFN GFQKKTEKTPKKEIDKAKILRKEYYGSKNK
>higA| 27375111: 5539812-5540207, length 132, Bradyrhizobium_japonicum, HigA
MTTQKPWWIGSSKDDLRAFPDEVRRVMGFAINDAQNGDEHPRAKALKGFGGRSVLEVID
DEDGDTFRAVYTVRFAGVIYVLHAFQKKSKKGIETPKHDILVIQARLKAAEAHYQENYGK
GGKK
>gi I 27380106 I ref |NP_771635.11 blr4995 [Bradyrhizobium japonicum USDA 110]
MRWEARVTKTYRPVTPSQLADELNQAFASAEPHTISRAIGQALKDFNISEISKKAELQRTSIYRAFGNEQLPNFSTVLGV
LTAMGLQLKVAPKRGGHASF
>higB 127375111: 1797159-1797353, length 65, Bradyrhizobium_japonicum, HigB
MLTAARLIRAPSLM FYSTSGSLRPRLQKRWDSRQHLHDILAEKKPVSPNVAARIGKPVG
NGPAI >higA|27375111:1796750-1797079, length 110, Bradyrhizobium_japonicum, HigA MTTTRIGRSQRLAISCDLRQYGRATSGEPAASTRECTSASRSHPDCRAIGVRLDTLNEAV NSSELKLTGNDFHKLAGKSVRYTIHINGPWCITFEFEGGDAFKVDFEQYH >gi I 27377225 |ref |NP_768754.11 blr2114 [Bradyrhizobium japonicum USDA 110] MSKAIKATAGSDNIFADLGFANPEEELLKAKLIRELRAIIKRRKLTQTKAAELLGLKQPDVSALVTGRVGKFSIDRIVRC LDRLNYRVDWIRHKPVRRASSRAAA
>higB|27375111:2290771-2291367, length 124, Bradyrhizobium_japonicum, corrected start HigB
MDRIGEWDGQWRKFAIYRPVRKPLQNYSSSAIREGR MTTQKPWWIGSSKDDLRAFPDEVRRVMGFAINDAQNGDEHPR AKALKGFGGRSVLEVIDDEDGDTFRAVYTVRFAGVIYVLHAFQKKSKKGIETPKHDILVIQARLKAAEAHYQENYGKGGK K
>gi|l6127267|ref |NP_421831.l| hypothetical protein CC3037 [Caulobacter crescentus CB15]
MVTLSRFDPVEMIDNAEAVAVFLADAFDTGDADYIQHMLGLIARSKGMAEVAEKAGLGRESLYKALKDGASPRFDTILRV VHALNLKLALVSATEANSAEDADDEAAA >gi | 16127268] ref |NP_421832.1 | hypothetical protein CC3037 [Caulobacter crescentus CB15] MRGLPGDLRPVGGGVSELRVHVGPGYRIYVARRADWIVLLCGGDKSSQARDIEKARVIARSLEW
>gi]25029304|ref |NP_739358.1| hypothetical protein CE2747 [Corynebacterium efficiens YS-314]
MNTNTETFAPFDTANHLNTVEDVAAYLEAVIEDSDSDDDSTVIAQALGAIARSRNFSQIARQAGMSREGLYKALSADGNP SLATVIKVSHALGLRLRFEATA >gi|25029303 |ref |NP_739357.l| hypothetical protein CE2747 [Corynebacterium efficiens YS-314]
MVEIVASATFDRWLRKLKNRRAAARALVRIDRLAANNPGDVKPVGGGISELRIDYGPGCRVYFLRERDRLVLLLTGGDKS TQETDIKAAHAIADIWRRTQGVHE
>gi I 296549811 ref |NP_820673.11 Hypothetical protein CBU1691 [Coxiella burnetii RSA
493]
MIISLDGQEGIARFFYCTQVKKEIVILHAFIKKTQETPIKELEIAKKRMKEVKNND >gi]29654980|ref |NP_820672.1| DNA-binding protein, putative [Coxiella burnetii RSA 493]
MTRRSTTWHKTFKQTGLΞDPEAKAEYEAFKLQLELADQLKKERQKAHLTQETVAERMETQKPWARIEAAGGKGRHSPSL KTLVKYANAIGCHLQIKLVSΞKKRKGAR
>gi I 26250653 I ref |NP_756693.11 Hypothetical protein c4838 [Escherichia coli CFT073]
MDKALFERLTHSMAQMNEIIEGTRQPSRTFEVDAMKIKEIRRASGLSQSKFADLISVSVDTLRNWEQGRRSPTGPAKALL
RAIANDPQHVLQALNR >gi I 26250652 I ref |NP_756692.11 Hypothetical protein c4837 [Escherichia coli CFT073] MLFIETEIFTEDVQKLLNDDEFSRFQFFLALNPDYGEVIPETGGLRKVRWVSGGKGKRAGVRVIYFHQVKHYEIRLLLIY RKGIKDDLSPQEKAMLRLLNTRW
>gi|26251283|ref |NP_757323.1| Hypothetical protein c5477 [Escherichia coli CFT073] MSFFDELKTSLEEAVEIKQGLKEPARVTRYEIADVKAIREQLNVSQSEMAKALGTSVDTIKSWESKRRNPTGLAAKVLAT IKENPAFFRELASH
>gi I 26251282 |ref |NP_757322.l| Hypothetical protein c5476 [Escherichia coli CFT073] MLSGITDLKVYLVLHLGVQCTCQGGGMGKAIIFIETPMFTRQIKQIATDDELKELQKELIGTPDKGDLIQQTGGLRKVRM AAGSQGKSGSVRIIYFLATEEIIYLIMAYPINAKDSLTDTEKAQLKKLTKLLKGEI
>gi 115802545 |ref |NP_288571.11 Z3231 gene product [Escherichia coli 0157:H7 EDL933] MKIETFDSVWDAVSDTPEQAENMRIRAELVTIINNWIEQQGFSQAQAASALGVTQPRISELARGKIQIFSIDKLITMMAH AGLHIQRIEVQYPHAA
>gi|l5802544|ref |NP_288570.1| Z3230 gene product [Escherichia coli 0157:H7 EDL933] MRKKLAFLDTSLDDLRAFPESSRQEIGYQLDRIQQGLNPYDWKPFSTIGPGVREIRTRDADGIYRVMYVAKFEEAVYVLH CFQKKTQTTSQSDIDLAKRRYKELVQERKNEN
>gi 115832124 I ref |NP_310897.11 hypothetical protein ECs2869 [Escherichia coli 0157 :H7] MKIETFDSVW)AVSDTPEQAENMRIRAELVTIINNWIEQQGFΞQAQAASALGVTQPRISELARGKIQIFSIDKLITMMAH AGLHIQRIEVQYPHAA
>gi 115832123 |ref |NP_310896.11 hypothetical protein ECs2869 [Escherichia coli 0157:H7] MRKKLAFLDTSLDDLRAFPESSRQEIGYQLDRIQQGLNPYDWKPFSTIGPGVREIRTRDADGIYRVMYVAKFEEAVYVLH CFQKKTQTTSQSDIDLAKRRYKELVQERKNEN
>gi|l6272602|ref |NP_438819.1| Hypothetical protein HI0660 [Haemophilus influenzae Rd KW20] MNKISPLGSNWNEFEQQIFNEEEIRESNLRVALIKELITSRQQLGISQKQLETLSGVKQPMIARIEKGQTNPQLETLLKL LAPLGKTLSIVPLRVKNA
>gi | 16272603 | ref |NP_438820.1 | Hypothetical protein HI0660 [Haemophilus influenzae Rd KW20] MYEILFYRDQNDIEPVKEYLLSLAQNESKDSRIKLNKIRDYVKLLSELGTSVGKPYVKHLDGEIWELRPIRDRILFARLM DGRFVLLHQFMKKTQKTPKREIQTAQQRLSELKERLKNE
>gi | 16273326 | ref ]NP_439570.1 | Hypothetical protein HI1419 [Haemophilus influenzae Rd KW20]
MTEQLKDFDVAEHLTSEEEIQLYLNEILQEDNIELILSALGDIARARNMSQIARDAGISREGLYKALSGTGNPTFATVMK VMKALNLQFQVQQSRFA
>gi 116273325 I ref |NP_439569.11 Hypothetical protein HI1419 [Haemophilus influenzae Rd KW20]
MTIQIKTTLTFDSWLSKLKNLRAKAKINARIKRLQFGNFGDIKSvNDGIFELRIDEGQGYRVYLKNQNGVLVILLCGGDK ΞTQDKDIKQAKLLAQELGL
>higB|l3470324:4800860-4801012, length 55, Mesorhizobium_loti, higB MTGEMTSGNVFADLGFDNΞEEELSKAKLAVRΞAPSLCVGASLKRNRLNCLL
>higA|l3470324:4800572-4800853, length 94, Mesorhizobium_loti, higA MSASSWVLQSTMPKMASSILGVKALKRFGGRILAWDDLDRILIARPCRRFAGVICIFAS RRRAGTRPSAKSISLQRLKVAGTHDRENYGKGHD
>gi 115841426 I ref |NP_336463.11 DNA-binding protein, putative [Mycobacterium tuberculosis CDC1551] MSIDFPLGDDLAGYIAEAIAADPSFKGTLEDAEEARRLVDALIALRKHCQLSQVEVAKRMGVRQPTVSGFEKEPSDPKLS TLQRYARALDARLRLVLEVPTLREVPTWHRLSΞYRGSARDHQVRVGADKEILMQTNWARHISVRQVEVA
>higB| 15839372:2199074-2199424, length 117, corrected start, M._tuberculosis_CDC1551, HigB MGTWKFFRASVDGRPVFKKEFDKLPDQARAALIVLMQRYLVGDLAAGSIKPIRGDILELR WHEANNHFRVLFFRWGQHPVALTAFYKNQQKTPKTKIETALDRQKIWKRAFGDTPPI
>gi 115609093 I ref |NP_216472.11 hypothetical protein Rvl956 [Mycobacterium tuberculosis H37Rv]
MΞIDFPLGDDLAGYIAEAIAADPSFKGTLEDAEEARRLVDALIALRKHCQLSQVEVAKRMGVRQPTVSGFEKEPSDPKLS TLQRYARALDARLRLVLEVPTLREVPTWHRLSSYRGSARDHQVRVGADKEILMQTNWARHISVRQVEVA
>higB|l5607142:2201741-2202091, corrected start, length 117, M._tuberculosis_H37Rv, HigB
MGTWKFFRASVDGRPVFKKEFDKLPDQARAALIVLMQRYLVGDLAAGSIKPIRGDILELR WHEANNHFRVLFFRWGQHPVALTAFYKNQQKTPKTKIETALDRQKIWKRAFGDTPPI
>gi|30249348|ref |NP_841418.1| Helix-turn-helix motif [Nitrosomonas europaea ATCC 19718]
MEKITDSSGNIFTDLGFNPEQSAIYTLRAELMSNLRKTIRERKWTQEEAAKVLNIGQSRVSDLMRGKWEKFSLDMLITLA IRVGKRIGITW >gi|30249347|ref |NP_841417.1| phage-related protein [Nitrosomonas europaea ATCC 19718] MPSDFKPMLAVGPGAYEIRIHIMGEWRVIYVAKMQDTIYVLHTFQKKTQKTSKHDRYRQIIKEITNGKNN
>gi 130249334 I ref |NP_841404.1 ] Cro repressor helix-turn-helix motif : Helix-turn-helix motif [Nitrosomonas europaea ATCC 19718]
MΞKKTPLNEIAEFDVSDYLRDDEDIAEYLTQVLAEGDSNELLRAIGYIAKARGITQLAKDTGLGRESLYKAFRAGSKPQF ETVFKVLHALNINLKAIPKEWSTRV >gi|30249335|ref |NP_841405.l| Hypothetical protein NE1356 [Nitrosomonas europaea ATCC 19718]
MVYSLGYKTMYIVKRLDEFDKWLDGLKDRPTRIRLIRRLDKARQGLLGDVKSVGEGVFEMREFFGΞGWRMYYIQQGGTII LMLGGGDKSTQSKDIQKAIQLANDLGENSYE
>higA|30248031:cll56304-1156630, length 109, Nitrosomonas_europaea, higA
MRPLTNYQTINDVDGRPAFWIPYADFVHSQVYVPKDGAPHAWSKAINGMSMLQAWREY
LMLTQEEMAKRMEITQAGYAQIEAAKRPRKATLEKAAAAMGITLEQLAY
>higB|30248031:cll56617-1156871, length 85, Nitrosomonas_europaea, higB, also hits into relE
MNRIIWKTKAIKQVLKLPRQTAQVIRDTVEEKLSVFPDCNSIKKLTNHRYPYRLRAGDYR VFFDFDGEIHIINIQEVKKRDETTY
>gi|l7228528|ref |NP_485076.l| unknown protein [Nostoc sp. PCC 7120]
MTQEPVFEEΞSGNVFADLGLSNASELFTRGKIGIQVLHLLKQRNLKQREISELLGIPQSEVSHLMKGEFQRFSEGKLLIF
LKRLDTEITLHLRPRHAPDQAAEIVISL
>gi ]17228529 I ref |NP_485077.1 I hypothetical protein [Nostoc sp. PCC 7120]
MDDEDITEIPLRPLVWMGDSLKNIRSFPEEVRASVGYALQLVQAGETPMDAKPFKGVGSGVYEIVKRYDTDTYRAVYAVK
IGEKIYVLHAFQKKSKQGIKTPLADVDLIKQRYKDAVAREKQE
>gi|l7229893 |ref |NP_486441.l| hypothetical protein [Nostoc sp. PCC 7120]
MMPRSTSYHEKLIQDLQNPLEAAAYIEVILEEGDPKMLSKALQNVIEAHGGVDQLSTPVKELYNKLDQMLSDKGEIEFYS
LNSLLDALGLHLAVTVKP >gi 117229894 I ref |NP_486442.11 hypothetical protein [Nostoc sp. PCC 7120]
MEVQPKEIRNYLRLDGIDIFSDWFDSLRDRKAKAKIRARLDRVENGNLGDCKSVGDGVFELRIDYGSGYRIYFGQEGLTI IILLCGGDKSTQDKDIAKAKEYWEDYRSRDDA
>higA|26986745:cl418120-1418494, length 125, Pseudomonas_putida_KT2440, HigA MFAFHNEKAPESFRFQGLDLVWRRDRDLNPRYCCQYNGFRIRPVRPLRHLSNAAHHTSVL LKRKSFFQKNRWSGACVNVPLTAARPGAWQLLRRLRSRRPGPGGSGPCPΞSCGFPCPTG GSRPG >gi|26987976|ref |NP_743401.1| hypothetical protein PP1241 [Pseudomonas putida KT2440] MISKKISPQDMPILDLDLSKTKRFEASRFLDSPETIAAFLAEAMKANDAQTLMHALGEVAKAKGVNQFAQDAGVNRESLY KTLKGEEKTRFTTIQKLMVALGVELTVRPLEKLPGS
>higA|26986745:334364-334672, length 103, Pseudomonas_putida_KT2440, HigA MRSSWHPCRPQYCISPWLRRIQYGQDPERPIKSLTESVGAGAIELIINGSPAFRCVYVAK FADMVWLHSFVKTTNRSERHAMQVAEQRMKELKQELRKMGYRV
>higB|26986745:334049-334360, length 104, Pseudomonas_putida_KT2440, HigB MPGVWVITIWIGEPASFEGRVRWRKPSLSSMSIMASKVNFSILPFASSDMRDWVTFSLA AASCCLRPIFLMQSVMKMDKSIFKAILLAVSASWVAWKGLSWN
>gi I 28872483 I ref |NP_795102.11 hypothetical protein PSPT05375 [Pseudomonas syringae pv. tomato str. DC3000]
MTTHTRSHDESVLDMLREDEAFAIEYLSVALEEIDEDGGEDAFLIAIRRLIEARGGMGNLSKNTGLARPNLYRSIAAGGD PKLSTILKVLQALGVGMSKWSHRPDVGGQRTDP
>gi I 28872482 I ref |NP_795101.11 hypothetical protein PSPT05375 [Pseudomonas syringae pv. tomato str. DC3000]
MYEVEHVLSANGVDIYQGWLDTVRDTRSKARITTRVDRAALGHFGITEPVGDGVFEMKLDFGPGFRVYYAIEGQKVLFLL GGGSKDKQQNDIDQAKALWKCHKVKKK
>gi 115893146 I ref |NP_360860.11 hypothetical protein RC1223 [Rickettsia conorii str. Malish 7]
MPVFLITGFIKSKMENINHNSCNELKKLTEELENYMSDEAKINNKNTNQTDKSILIGMQEAVLYTKGKLKANKHDIKLSN IDVHEARDKLKLTQQQFATTFGVSVATLRNWEQGRRLPTGAAKLLLKIIEKEPNWKRVLRG >gi 115893145 I ref |NP_360859.11 hypothetical protein RC1222 [Rickettsia conorii str. Malish 7] MILNKNYLLILLRQWRIIIMSKKLISWELPEFQKFAQNNLNKKECFEIIHYIAANPDQGDIIKGTGGIRRKLRFTYK >gi | 16762224 | ref |NP_457841.l| hypothetical protein STY3651 [Salmonella enterica subsp. enterica serovar Typhi str. CT18]
MIAKTDSDFRHVTPSGGNVFADLGFHKQDAEKFYADSLNEIENTLAIKQQLMEEITLWITQNQMKQAEVATVLHISRPRV SDWNKKCSKFTIDALVNMLSRIGKPVRVMVGP
>gi 116762225 I ef |NP_457842.11 hypothetical protein ΞTY3651 [Salmonella enterica subsp. enterica serovar Typhi str. CT18]
MLLTRALSNEKEIRWVGSSLEDLLAFPITVRKAVGYQLHKIQYGIEPDDWKPFSEIGAGVNEIRIRNNNGIYRVMYVANF AEALYVLHSFQKQTQQTSQHDKNIARTRYNRWQQRRNSL
>gi| 16767183 |ref|NP_462798.1 I putative cytoplasmic protein [Salmonella typhimurium LT2]
MIAKTDSDIRHVTPSGGNVFADLGFHKQDAEKFYADΞLNEIENTLAIKQQLMEEITLWITQNQMKQAEVATVLHISRPRV SDWNKKCSKFTIDALVNMLSRIGKPVRVMVGP
>gi 116767182 | ref |NP_462797.11 putative cytoplasmic protein [Salmonella typhimurium LT2]
MGSSLEDLLAFPITVRKAVGYQLHKIQYGIEPDDWKPFSEIGAGVNEIRIRDNNGIYRVMYVAKFEEALYVLHSFQKQTQ QTSQHDKNIARTRYNRWQQRRNSL
>higA|l6763390:4241636-4241944, length 96, Salmonella_typhimurium_LT2, HigA MDKVLFERLTQSMΞQMNEIIEGTREPSRTFHIDAMKIKEIRQASGLSQSKFAELISVNVD TLRNWEQGRRSPTGPAKALLRAIANDPRNVIQALRY
>higB|l6763390:4241948-4242235, length 103, Salmonella_typhimurium_LT2 , HigB
MQFIETELFTEDVKKLLDDDEYHKLQVFMAQHPDCGDVIQETGGLRKMRWGARGKGKRSG
VRIIYFHRSQRYEIRLLLIYQKGIKDDLTPQEKAVLRMLNERW
>gi|29143713 | ref |NP_807055.1 | Hypothetical protein t3392 [Salmonella enterica subsp. enterica serovar Typhi Ty2]
MIAKTDSDFRHVTPΞGGNVFADLGFHKQDAEKFYADSLNEIENTLAIKQQLMEEITLWITQNQMKQAEVATVLHISRPRV SDWNKKCSKFTIDALVNMLSRIGKPVRVMVGP
>gi I 29143714 I ref |NP_807056.11 Hypothetical protein t3392 [Salmonella enterica subsp. enterica serovar Typhi Ty2]
MLLTRALSNEKEIRWVGSSLEDLLAFPITVRKAVGYQLHKIQYGIEPDDWKPFSEIGAGVNEIRIRNNNGIYRVMYVANF AEALYVLHSFQKQTQQTSQHDKNIARTRYNRWQQRRNSL
>gi 115965583 I ref |NP_385936.11 HYPOTHETICAL PROTEIN SMcO0177 [Sinorhizobium meliloti 1021] MGFPGLVGFRGAAASRSAWLALAAILAGCGSRQAANDTFΞLASVPAVERPGATNRQLLVPEPTALKTLGSDQIWRLSR SELQYLARAQWGDSLPRMVQDRLVQTFDNTGRIRVGKPGQGLAIDYQLITELRAFEISTDGAATAWEIFAKILDDRNGT VRKQQAFRAWPVRGAGNPAFVAALDAAFARVAADIVGWTLSSI
>gi 115965582 I ref |NP_385935.11 HYPOTHETICAL PROTEIN SMc00178 [Sinorhizobium meliloti 1021]
MIRMLQSATFRKWHSKLRDERAKAAIARRLLRLAQVNPGDVSPVGEGISELRIHHGPGYRVYFQKRGELIMLLLCAGDRA HRIETSERRKRSPPNGVISMSEKFTEFDVSDLLTSERAIEAFLTEAMETGDAQHIASALGAVARVKGMTKIARETGLARE HLYRSLSENGNPTLETTLAVLKTFGFHLMPKHDAAV
>gi 115901010 I ref |NP_345614.11 hypothetical protein SP1143 [Streptococcus pneumoniae TIGR4 ]
MKNNAIGSNWKDVRAELFΞKEEILESDMRVAIMSELIEARNEKGISQKKLEEMSGVΞQPVIARMETGKTSPQLDTVLKVL ASLGKTLAWPLEHEQV
>gi 115901009 I ref |NP_345613.11 hypothetical protein SP1143 [Streptococcus pneumoniae TIGR4 ]
MHNIYFYKDKNGNEPVFDYMRELTSKKGKDSRIKLNKINDYIELLSQHGTRAGEPYIKHLDAEIWELRPLRDRILFVAWM DGSFVLLHHFMKRTQKTPKREIEQAKRELADLKERGLDNEK
>higA| 16329170 :c474208-474432, length 75, Synechocystis_PCC6803, HigA
MNTAQISTDGTHQIVILPENFTIAGSEVYIKKIGSTIILIAKNNPWQSLIESLDQFSDDF
MKTREQPPLDIREEF
>higB 116329170 :c474514-474792, length 92, Synechocystis_PCC6803, HigB
MKIAWSPKSLRSFKRLIPKNPNLRPMIEQILHQLATDPFHPSLRTHKLKGELANVWSCSID
YNYRLLFEFVNNPEDKEEAILLLNLGSHDEVY >gi | 15837156 | ref |NP_297844.1 | hypothetical protein XF0554 [Xylella fastidiosa 9a5c]
MLNRRECGAAVEVAARRHLERAGLRWLASNVCFRGGELDLVMYDVMSWFVEVRYRQQENHGSAAQSVDRRKRRKLVMAA
QLFLQRHPFLAQVPCRFDWEGAGRPLQLHWIRDAFRLDDC
>higB|l5836605:c527947-528210, length 88, Xylella_fastidiosa_chr, higB
MKVLRFLGDSLMCLRQFPEDACSDAGYQLDKIQRGEQPKDFKPMPSIGKGVEELRIWDDS
GTYRWYTARLADAVYVLHAFQKKTQATSKRDVELAKRRYTELTKGAK
>gi 115838173 I ref |NP_298861.11 hypothetical protein XF1573 [Xylella fastidiosa 9a5c]
MSNERFTSVWDAIEDTPEAAENMKLRSALMMALKQHIETAALSQSQAATLFGVTQPRVSDLMRGKINLFGLDALVNMAAA
AGMHVEMRVLKAA >gi|l5838174|ref |NP_298862.1| phage-related protein [Xylella fastidiosa 9a5c]
MVGPKPIEFRGSALDDLRAFPVSVRREAGYQLHQVQNGRDPDDWKPMPTVGRGVREIRIRDADGAFRVIYVAKLSEAVYV LHCFQKKTEKTTKGDLDVAAKRYRDLFNEVGQ
>gi 115838197 | ref |NP_298885.l| hypothetical protein XF1596 [Xylella fastidiosa 9a5c] MTMTEKLTSYDPAEDLTTDQAIADFMAAAFGTNDPAYVAHALGWARAKGMTQIASQTGLSREQLYRSFSAEGNPTLRTT LAVMKALGIELSAKPSGVH
>gi] 15838198 |ref |NP_298886.1 | hypothetical protein XF1596 [Xylella fastidiosa 9a5c] MIELKQTDTFRKWREKLKDARARSAIAΞRLDRLAFGHVGDAEPVGKGVSELRINYGPGYRVYFQQRGDTIYLLLCGGDKG LQARDIKTALHLSEQWSE
>gi|l5838278|re |NP_298966.1| hypothetical protein XF1678 [Xylella fastidiosa 9a5c] MSNERFTSV DAIEDTPEAAENMKLRSALMMALKQHIETAALSQSQAATLFGVTQPRVSDLMRGKINLFGLDALVNMAAA AGMHVEMRVLKAA
>gi|15838279|ref |NP_298967.1| phage-related protein [Xylella fastidiosa 9a5c] MVGPKPIEFRGSALDDLRAFPVSVRREAGYQLHQVQNGRDPDDWKPMPTVGRGVREIRIRDADGAFRVIYVAKLSEAVYV LHCFQKKTEKTTKGDLDVAAKRYRDLFNEVGQ
>gi|l5838303|ref |NP_298991.1| hypothetical protein XF1703 [Xylella fastidiosa 9a5c] MNNETFSRYDTADYLKTEEDIAAYMEAVMEEGGRDNPAFIARALGAVARARNLSQLARDVGMSRQGLDKALSNDGNPSFS TILKVAKALGLRMSFTPSSMS
>gi]l5838304|ref |NP_298992.1| hypothetical protein XF1703 [Xylella fastidiosa 9a5c]
MHMVELIKTSTFDAWINSLRDRKAAARIQARLDRLALGNPGDVKPVGAGISEMRIDHGPGYRIYFMKHGAVLILLLCGGD
KSSQMRDIEQAKALAALWKDEP
>gi 115839352 I ref |NP_300040.1] hypothetical protein XF2763 [Xylella fastidiosa 9a5c]
MTITKKINVSELPEFDAAEYLSSEEEVAAYLTAVLEENDPALLAAALGDIARSRGMSQIAKDSGITREGLYKALRPGSEP
RFDTISRVCTALGIRLVAQPMR
>gi|l5839353 |ref |NP_300041.1| hypothetical protein XF2764 [Xylella fastidiosa 9a5c]
MTLLQSNRLITVQCMIYTVKRLEEFSDWLKGLKDGLARQRLIKRLRKVQLGNFGDVQPVGEGVFEMREHFGPGWRMYYVQ
RGSFLIVMLGGGDKSTQQSDIRRAIELAKSLED
>higA|28197945:1167816-1168139, length 108, Xylella_fastidiosa_Temeculal, higA
MKVLRFLGDSLMCLRQFPEDACSDAGYQLDKIQRGEQPKDFKPMPSIGKGVEELRIWDDS
GTYRWYTARLADAVYVLHAFQKKTQATSKRDVELAKRRYTELTKGAK >gi|28198867|ref |NP_779181.1| Hypothetical protein PD0967 [Xylella fastidiosa Temeculal]
MTKIETFNSVWDALADTPEQAANLRARAELMRQIAAVIEANDWNQSQAATHCGVTQPRINDLLRGRISRFSLDALVNIAT AIGRRVHVKLEAA
>gi|28199067|ref |NP_779381.1| Hypothetical protein PD1177 [Xylella fastidiosa Temeculal]
MNNETFSRYDTADYLKTEEDIAAYMEAVMEEGGRDNPAFIARALGAVARARNLSQLARDVGMSRQGLDKALSNDGNPSFS TILKVAKALGLRMSFTPSSMS
>gi|28199066|ref |NP_779380.1| phage-related protein [Xylella fastidiosa Temeculal]
MHMVELIKTSTFDAWINSLRDRKAAARIQARLDRLALGNPGDVKPVGAGISEMRIDHGPGYRIYFMKHGAVLILLLCGGD
KSSQVRDIEQAKALAALWKD >higA|l6120353:c964230-964379, length 50, Yersinia_pestis_C092_chr. , HigA MDNKRQPPSLSHEQWARMLKKPAVRAEYERLERQDFAIIDETLKGIHSE >gi 116121186 I ref |NP_404499.11 hypothetical protein YPO0879 [Yersinia pestis C092] MNYTIEYYDDDVITQLLAQPISLQANFISLAKRMKRYGIKMVDAVPMHYHEDVFELCFYEPKGWNRVIFMAQIDWQIVIL HIWQKTAYMPWKEKGKAAKRMKELRFG
>gi ] 16121389 | ref |NP_404702.1 | putative DNA-binding prophage protein [Yersinia pestis] MIMAKARLHDDAMVQLLMEDPEFAQVYLHQALLDIDEEGGQEAFLMALRHWEARGGMASVAKKAGVSRETLYRTLSPSG NPTLKTLLSWSATGFQFSHLASITA
>gi 116121388 I ref |NP_404701.11 putative prophage protein [Yersinia pestis] MMKTIKHYLTPEGRDLYMEYLKSLRDΞIAKAKISSRVNRIASGNFGDHKPCREGVWELRIDQGPGYRVYYSLVAVKSCCC FWAVISARRMPTSIRLLCVLKII
>gi | 16122544 | ref |NP_405857.1 | putative DNA-binding phage-related protein [Yersinia pestis]
MKKTDDFDIIPFAWKAAALSHPQVNDAYTDLQIRQAMMTELKAARQQCNLTQEEVALRAGLKKQNISRMEKGIISPNLT TLSRYAAALGGTFVFQFNPNSSYATKE
>gi 116122545 |ref ]NP_405858.11 putative phage protein [Yersinia pestis] MLRLAQRELVRLPVGIQAVLIKAMDELEACGHELREPYVRDMGQGLKELRVSAKEGIGRGFFFCHLHRQVYIIHLLQKKT QKTPRRTLILAYRRMKELKRRLQS
>gi| 16123631 |ref|NP_406944.1 I putative transcriptional regulatory protein [Yersinia pestis]
MKSDLTLHAWDEVRAELLQDEETARAYAIVMLRKALLNΞLVAVRKSKQLTQVDIAKRIGVSRQAISKFEKGESAPTLDTL IGYTAAMDIDFAANMKKIFTQTF
>gi 116123632 I ref |NP_406945.11 hypothetical protein YP03486 [Yersinia pestis C092] MGRDDQNHKRRKNFPIRLLGSARKELSDLDAINRAEFLVAIDVFELHGPGSGVPNVEKIGGDMYELKTHSRSHWLRGFYF HYVDGLYIVTHIFAKKTNKAPDSSKALGLRRYKDFLRSQGEE
>gi I 22124613 |ref |NP_668036.11 Hypothetical protein y0699 [Yersinia pestis KIM] MKSDLTLHAWDEVRAELLQDEETARAYAIVMLRKALLNSLVAVRKSKQLTQVDIAKRIGVSRQAISKFEKGESAPTLDTL IGYTAAMDIDFAANMKKIFTQTF
>gi I 22124612 |ref |NP_668035.11 Hypothetical protein y0698 [Yersinia pestis KIM] MGRDDQNHKRRKNFPIRLLGSARKELSDLDAINRAEFLVAIDVFELHGPGSGVPNVEKIGGDMYELKTHSRSHWLRGFYF HYVDGLYIVTHIFAKKTNKAPDSSKALGLRRYKDFLRSQGEE
>gi|22125904|ref |NP_669327.l| Hypothetical protein y2012 [Yersinia pestis KIM] MKKTDDFDIIPFAWKAAALSHPQVNDAYTDLQIRQAMMTELKAARQQCNLTQEEVALRAGLKKQNISRMEKGIISPNLT TLSRYAAALGGTFVFQFNPNSSYATKE
>higA| 22123922 =2218599-2218967, length 123, Yersinia_pestis_KIM_chr, HigA MVSLIPFFTEQGRLMYKISLLRLAQRELVRLPVGIQAVLIKAMDELEACGHELREPYVRD MGQGLKELRVSAKEGIGRGFFFCHLHRQVYIIHLLQKKTQKTPRRTLILAYRRMKELKRR LQS
>higA|22123922=c3594262-3594411, length 50, Yersinia_pestis_KIM_chr, HigA MDNKRQPPSLSHEQWARMLKKPAVRAEYERLERQDFAIIDETLKGIHSE
>higB|22123922:c3599007-3599264, length 108, Yersinia_pestis_KIM_chr, HigB
MNYTIEYYDDDVITQLLAQPISLQANFISLAKRMKRYGIKMVDAVPMHYHEDVFELCFYE
PKGWNRVIFMAQIDWQIVILHIWQKTAYMPWKEKGKAAKRMKELRFG Homologues of parDE toxin-antitoxin system polypeptides
>gi 116124256 = 2971506-2971288, length 73, ParD
MMNKPAKPAADDVDDLFGRPLTPAEEDTWFEHNREAIGQLVDEAWAEFERGEYDERSFAE
IIAQGVAEHNAKR
>gi|l6126988|ref |NP_421552.1| conserved [Caulobacter crescentus CB15]
MGRVIRTRPVSGDLDRVFRDVCENNGVKVAΞAQLNRIESVFHRLSAFPRLGRDRSDLRPGLRTFSVKPWQVLYRLNGEDV
VILRILDGRMNLAAQLGKKT >gi 115595198 = 796960-797238, length 93, ParD MFPQQWRYRLMRVETISYLKRHAADLDLSEPMWTQNGVPAYWESYAERKQRDEAIALV KLLAIGSRQYAEGKHRSVDDLKARLSRRFAQPE
>gi 115595926 I ref |NP_249420.11 [Pseudomonas aeruginosa PA01]
MSPWIRFTDTAEQSIEDQVHHLAPFQGEQAALQSVLSLLDEIEEKISLAPKGYPVSQQASLLGVLSYRELNTGPYRVFY EFHEEQGEVAVILVLRQKQSVEQQLIRYCLVGPIE
>gi | 15609097 | ref |NP_216476.l| protein Rvl960c [Mycobacterium tuberculosis H37Rv]
MGKNTSFVLDEHYSAFIDGEIAAGRYRSASEVIRSALRLLEDRETQLRALREALEAGERSGSSTPFDFDGFLGRKRADAS
RGR
>gi 115609096 I ref |NP_216475.11 protein Rvl959c [Mycobacterium tuberculosis H37Rv]
MSSRYLLSPAAQAHLEEIWDCTYDRWGVDQAEQYLRELQHAIDRAAANPRIGRACDEIRPGYRKLSAGSHTLFYRVTGEG
TIDWRVLHQRMDVDRNL
>gi 115841430 I ref |NP_336467.11 [Mycobacterium tuberculosis CDC1551] MGKNTSFVLDEHYSAFIDGEIA&GRYRSASEVIRSALRLLEDRETQLRALREALEAGERSGSSTPFDFDGFLGRKRADAS RGR >gi 115841429 I ref ]NP_336466.11 plasmid stabilization protein ParE [Mycobacterium tuberculosis CDC1551]
MΞSRYLLSPAAQAHLEEIWDCTYDRWGVDQAEQYLRELQHAIDRAAANPRIGRACDEIRPGYRKLSAGSHTLFYRVTGEG TIDWRVLHQRMDVDRNL
>gi 115841634 I ref |NP_336671.11 protein [Mycobacterium tuberculosis CDC1551] MWNRALLASVDALSRDEQIELVEHINGNLAEGMHISEANQALIEARANDTDDAHWSTIDDFDKRIRARLG >gi 115841633 |ref |NP_336670.11 protein [Mycobacterium tuberculosis CDC1551] MTRRLRVHNGVEDDLFEAFSYYADAAPDQIDRLYNLFVDAVTKRIPQAPNAFAPLFKHYRHIYLRPFRYYVAYRTTDEAI DILAVRHGMENPNAVEAEISGRTFE
>gi I 22536413 I ref |NP_687264.11 [Streptococcus agalactiae 2603V/R]
MVTAEKNRAVTFQANKELVSEAMTVLNKKNLTLSΞALRLFLQNVVVTNEVDLLTEEELEKEKLFKQFQAEINKNIEDVRQ
GKFYTSEEVRSELGL
>gi I 22536412 I ref |NP_687263.11 [Streptococcus agalactiae 2603V/R]
MDYKKYQIIYAPDVLEKLKEIRDYISQNYSSTSGQHKMEQIISDIEKLEVFPEVGFDADEKYGSKISKYHSTRGYTLSKD YIVLYHIEEEENRWIDYLLPTRSDYMKLFK
>gi|25010297|ref |NP_734692.1| Unknown [Streptococcus agalactiae NEM316] MVTVEKNRAVTFQANKELVSEAMTVLNKKNLTLSSALRLFLQNVVVTNEVDLLTEEELEKEKLFKQFQAEISKNIEDVRQ GKFYTSEEVRAELGL
>gi I 25010296 I ref |NP_734691.11 Unknown [Streptococcus agalactiae NEM316] MDYKKYQIIYAPDVLEKLKEIRDYISQNYSSTSGQRKMEQIINDIEKLEVFPEVGFDADEKYGΞEISNYHSTRGYTLSKD YIVLYHIEEEENRWIDYLLPTRSDYMKLFK
>gi 115674648 I ref |NP_268822.11 protein [Streptococcus pyogenes]
MSLQKRRITMAKTGTLNLRVDDSVKSAADDILKRLGIPMSTAIDMFLNQIILTGGIPFDVSLPEAPQRVNVDYMSQEKFY DKLITSFEDAKTCNPQDVGKFYFQ
>gi 115674649 |ref|NP_268823.11 protein [Streptococcus pyogenes]
MKGNCLLKEYQVTMSDDAKADLLSIYHYVRDELCAPQAADDLLERLSQGMLSLSIFPERCAIIEDLIGKGYTFRQLIVKK YRIVYHVLEDEVIIVAWYGSRHMNNW
>gi 115675733 I ref |NP_269907.11 protein [Streptococcus pyogenes]
MTTVKKNRAVTFQANKELVSFAMTVLNKKNLTLSSALRLFLQNVVVTNEVDLLTEEELEKEKLFKQFQAEINKNIEDVRQ GKFYTSEEVRAELGL >gi 115675734 I ref |NP_269908.ll protein [Streptococcus pyogenes]
MDYKKYQIIYAPDVLEKLKEIRDYISQNYSSTSGQRKMEQIISDIEKLEVFPEVGFDADEKYGSKIIHYHSTKGYTLSKD YIVLYHIEGEENRIVIDYLLPTQSDYIKLFK >gi | 21909929 | re |NP_664197.1 | protein [Streptococcus pyogenes MGAS315] MAKTGTLNLRVDDSVKSAADDILKRLGIPMSTAIDMFLNQIILTGGIPFDVSLPEAPQRVNVDYMSQEKFYDKLISSFED AKTGNRQDVREFLSQLKENA >gi I 21909930 |ref |NP_664198.11 protein [Streptococcus pyogenes MGAS315]
MKEYQVTMSDDAKADLLSIYYYVCDELCAPQAADNLLERLSQAMLSLSIFPERCAIIEDLIGKGYTFRQLIVKKYRIVYH VLEDEVIIVAWYGSRHMNNW
>gi 121911197 I ref |NP_665465.11 protein [Streptococcus pyogenes MGAS315] MTTVKKNRTVTFQANKELVSEAMTVLNKKNLTLSSALRLFLQNVVVTNEVDLLTEEELEKEKLFKQFQAEINKNIEDVRQ GKFYTSEEVRAELGL
>gi I 21911198 I ref |NP_665466.11 protein [Streptococcus pyogenes MGAS315] MDYKKYQIIYAPDVLEKLKEIRDYISQNYSSTSGQRKMEQIISDIEKLEVFPEVGFDADEKYGSKISHYHSTKGYTLSKD YIVLYHIEGEENRWIDYLLPTQSDYIKLFK
>gi | 19745671 | ref |NP_606807.1 | protein [Streptococcus pyogenes MGAS8232]
MAKTGTLNLRVDDSVKSAADDILKRLGIPMSTAIDMFLNQIILTGGIPFDVSLPEAPQRVNVDYMSQEKFYDKLITSFED
AKTGNRQDVREFLSQLKENA
>gi 119745672 I ref |NP_606808.11 protein [Streptococcus pyogenes MGAS8232]
MKEYQVIMSDDAKADLLSIYHYVRDELCAPQAADNLLERLSQAMLSLSIFPERCAIIEDLIGKGYTFRQLIVKKYRIVYH VLEDEVIIVAWYGSRHMNNW
>gi 119746843 I ref |NP_607979.l] protein [Streptococcus pyogenes MGAS8232] MTTV KNRSVTFQANKELVSEAMTVLNKKNLTLSSALRLFLQNVVVTNEVDLLTEEELEKEKLFKQFQAEINKNIEDVRQ GKFYTSEEVRAELGL
>gi 119746844 I ref |NP_607980.11 protein [Streptococcus pyogenes MGAS8232] MDYKKYQIIYAPDVLEKLKEIRDYISQNYSSTSGQRKMEQIISDIEKLEVFPEVGFDADEKYGSKIIHYHSTKGYTLSKD YIVLYHIEGEENRWIDYLLPTQSDYIKLFK
>gi I 28896373 I ref |NP_802723.l| protein [Streptococcus pyogenes SSI-1] MAKTGTLNLRVDDSVKSAADDILKRLGIPMSTAIDMFLNQIILTGGIPFDVSLPEAPQRVNVDYMSQEKFYDKLISΞFED AKTGNRQDVREFLSQLKENA
>gi I 28896372 |ref |NP_802722.11 protein [Streptococcus pyogenes SSI-1] MKEYQVTMSDDAKADLLSIYYYVCDELCAPQAADNLLERLSQAMLSLSIFPERCAIIEDLIGKGYTFRQLIVKKYRIVYH VLEDEVIIVAWYGSRHMNNW
>gi I 288965711 ref |NP_802921.11 protein [Streptococcus pyogenes SSI-1] MTTVKKNRTVTFQANKELVSEAMTVLNKKNLTLSSALRLFLQNVVVTNEVDLLTEEELEKEKLFKQFQAEINKNIEDVRQ GKFYTSEEVRAELGL >gi I 28896572 I ref ]NP_802922.11 protein [Streptococcus pyogenes SSI-1]
MNLDYKKYQIIYAPDVLEKLKEIRDYISQNYSSTSGQRKMEQIISDIEKLEVFPEVGFDADEKYGSKISHYHSTKGYTLS KDYIVLYHIEGEENRWIDYLLPTQSDYIKLFK
>gi I 32476300 I ref |NP_869294.11 protein [Pirellula sp. ]
MFTSNSEHPKMSQHLSPENQAYIDDQVAGGVYTSREEAIDAGIALLRKRNELWQLKESRRQLDEGELVEYDDQTLAARF
DELKAKAASRSQM
> >ggii I| 3322447766229999 I| rreeff ||NNPP__8866992293.l| protein-transmembrane prediction [Pirellula sp.]
MMSSRRYYLLLLSSHHΞΞAANNAANNLLDDEEIIAAGGDDAASSraNAVAILEALHNTFQVLANHPGVGTLREDLLPGIRVFSPPRPANNYVIFFYPISGGIEV
AAAAVVIIHHGGSSRRDDWWIISSMMFFTTDDGGFFRRPPKKKKSS
>gi I 32473225 I ref |NP_866219.11 protein [Pirellula sp.]
MVEYEHGEPNMTVEQAISEISALPPNDQLRIVQAIWDRLPDGVGTDLTESQRAELDRRWAEYKADPTTALSEEEFRERIR
IARSR
>gi 132473226 I ref |NP_866220.11 protein [Pirellula sp. ]
MKARLTAHTESDLLRAIDWFDRLSLGLGDKFEAEFYLALERVKVNPESFAPDHTGYRPCRLKRFTAVLYFRIDASDWW GLFTSGENERGLQNRR
>gi 116125127 I ref |NP_419691.11 [Caulobacter crescentus CB15] MASKNTSWLGDHFQAFIDSQVADGRYGSASEVIRAGLRLLEENEAKLAALRAALIEGEESGFIEDFDFDAFIEERΞRAS
APQGFHEE
>gi 116125126 I ref |NP_419690.11 [Caulobacter crescentus CB15]
MKPyRLSRRAKADLDDIWTYSEQRWGVEQAADYARELQATIEMIAEHPGMGQPDENLRAGYRRCASGSHWFYRVGVRVE
IIRVLHQSMNARAHLG
>gi 116127215 I ref |NP_421779.11 [Caulobacter crescentus CB15] MPSNGIVRSWRRAMATMNVSLPDAMREWVEGQTQSGRYHNASEYVRDLIRRDQERADKIAHLQRLIDEGLDSGVGERSLH EIRAEARRRAGVDHEL
>gi | 1612721 |ref |NP_421778.1 | [Caulobacter crescentus CB15]
MWIMSYRLSRKAEQDLIDIYVAGVGLFGVAQAERYQDTLEAAFGAIAAFPHIGRERPELRPPVRVHPCKSHIILYVLDER GALIVRVRHAGEDWVGEAGG
>gi|l5888637|ref |NP_354318.l| AGR_C_2413p [Agrobacterium tumefaciens]
MEAPMPTRNWLTQHHEEIIDDLVKSGRYQNASEVLREGLRLIERRERLEATRLETLKVAAQQGFCDLDQGRYIDVSDDA
LDDFISAFGREAEVRLTKSDDK
>gi | 15888638 |ref |NP_354319.1 | AGR_C_2415p [Agrobacterium tumefaciens]
MTTYRLSDAAQSDIIEILGWTHATFGAAARKRYEKLLATALRDVAVDPLRAGTNIRAELGEDVRSYHLRYSRERAKSETG
LVKNPRHLLLYRALRPGLVGVGRVLHDSMEIERHLPDDYGDITF
>gi|l5888836|ref |NP_354517.l| AGR_C_2786p [Agrobacterium tumefaciens] MANMTFSLPDPMKDWIESRIQKGEYASASDYVRDLVRRDWARRGQDFSIDELRQIVAESRASGVGSRSMDDLFAEAERVA TAHGVMRE >gi 115888835 I ref |NP_354516.11 AGR_C_2785p [Agrobacterium tumefaciens]
MSCVNNYRLSTQAENEILDIFLYGIERFGLNQARLYKDGMESCFQLLGNNPRMGRSATIVGEGIRRHEHGSHVIFYETDG SGVLILTIVHGRSIRRLKL
>gi I 17935410] ref |NP_532200.1 | [Agrobacterium tumefaciens str. C58 (U. Washington)] MANMTFSLPDPMKDWIESRIQKGEYASASDYVRDLVRRDWARRGQDFSIDELRQIVAESRASGVGSRSMDDLFAEAERVA TAHGVMRE
>gi 117935409 I ref |NP_532199.11 [Agrobacterium tumefaciens str. C58 (U. Washington)] MΞTQAENEILDIFLYGIERFGLNQARLYKDGMESCFQLLGNNPRMGRSATIVGEGIRRHEHGSHVIFYETDGSGVLILTI VHGRSIRRLKL
>gi 113471354] ref |NP_102920.11 protein [Mesorhizobium loti]
MNVSLPDPMKDWVEAQTETGRYANASDYVRDLIRRDQERNDNIAAMQRFVDDGLKSGIGNRSRDALFTEAVKRAGKSPGN
G
>gi 113471355 I ref |NP_102921.11 unknown protein [Mesorhizobium loti]
MGFRLSLAAEEDIIGIAEQGVRLFGAVQARQYHDELFAIFDLIAAGPRMARERLELSPPMRIHPFKAHLWYRIEADGDV FIVRVRHGHEDWANEGTR
>gi 113472960 I ref |NP_104527.11 protein [Mesorhizobium loti] MPNYALNEHYERFIRKQLESGRYNNASEWRAGLRMLEDFEAERERWLREEIPGRLTELQQDPAKGIPADTMFΞRLEARH RAKQAKAK
>gi 113472959 I ref |NP_104526.11 unknown protein [Mesorhizobium loti]
MTEAELEQLYDDIAERASPAIAWNFWGIRDHCLGLSTFPQRGTVRVEIMPGVRIVGYRRAVSIAFAVEGERVLILAIFC AGRNITPELLEDRL
>gi|30248282|ref |NP_840352.l| [Nitrosomonas europaea ATCC 19718]
MPIQKNTSVTLGEHFEKFLAHQIEAGRYGSASEAIRAGLRLLEEREAKLEALRRALIEGEQSGPADYSLQNVLDELESAD >gi 1302482811 ref |NP_840351.11 plasmid stabilization element ParE [Nitrosomonas europaea ATCC 19718]
MGSFILRQKAMDDLLSIGRYTRKEWGKTQQIRYLTQLDRAFHELADKPGLGRACDDIREGYFKYGVGKHVIFYRHTGKDQ IEIIRILHGRMDIEQHL
>gi|30248566|ref |NP_840636.l| yacA [Plasmid ColIb-P9] [Nitrosomonas europaea ATCC
19718]
MSESTFTFRVDEDLKTEFSAAAKDCDRSGAQLLRDYMREFVKTRREVAEHDAWFRKQVQIGLDSANTGNLVPGDEVEAEF AARRAATRRRLKASE
>gi 130248567 I re |NP_840637.l| [Nitrosomonas europaea ATCC 19718]
MMKLFWTPEALQDRDAIYDYIEVDNPRAALALDELFSEKAQRLPDHPALGHPGRVAGTRELIAHQNYIIIYDVTGELVRV
LRVLHAARQWPPSEND
>gi 1302494941 ref |NP_841564.11 [Nitrosomonas europaea ATCC 19718]
MYKLRFFADFCLELTASLTFFRGSLASISCFTADYRYGDMTMA.TVRKTISLTNQQDAWITAQVEAGRFTNDSELIRDLIR REQERMAEIDNIRAALIDGEQSGEPQPFDFDQFKRHKLAQHKPG
>gi ] 30249495 | re |NP_841565.l] plasmid stabilization protein ParE [Nitrosomonas europaea ATCC 19718] MAEYRLSPAAQRDLDGIFNYTFQQWGAAQAVRYIDILEAACTELVETSSQGQDCSYIRPGYRRRHVERHITTE
>gi | 30250055 | ref |NP_842125.l| [Nitrosomonas europaea ATCC 19718]
MKAITAKDAKNKFGEMLDTAQREPLTIEKHGRAVAVIMSVQEYQQMKLERLRAKLAAGEEQLDRGEGVEGETFFAELLNE K >gi I 30250054 I ef ]NP_84212 .11 plasmid stabilization protein ParE [Nitrosomonas europaea ATCC 19718]
MKHYLLSPEAKTDITNIRQYTTQQWGKTQADKYILRLRERMRWLADNPMLGRARDEIKEGYRSFSEGDHVIFYRMAGSAI EVIGIPHQNMDIEQNLΞSGNLLLPDIADYEPEDG
>gi|3024956l|ref |NP_841631.1| protein [Nitrosomonas europaea ATCC 19718] MKVLQSDKAIMMNRKLTELPIDERIQLVEDLWDSIASDQKMLRLTTEQKAELDRRLNAYEVDKNPGRSALEAIAEIRRNL >gi I 30249560 I re |NP_841630.11 [Nitrosomonas europaea ATCC 19718] MTCEVRLRPEAEQDLADAAAWYEEQRQGLGHKFLDEVTTTLSNIAETPLAYPNVHRGTRRAVIRRFPFGIYFQVKKATII WAVMHGSRNPHQWKSRT
>gi 115829715 |ref |NP_308488.1 ] protein [Escherichia coli 0157 :H7]
MRKITSVΞVGEQLDSFITRMVQSGRYGSASEVMRSALRLLEQQESRDEAVRNAVIEGLESGESSMTLRDIAAERKQKHRV >gi|15829716)re |NP_308489.1| protein [Escherichia coli 0157:H7]
MYKLSGKAVEDFRGIYDYTLGKFGDEQADRYTDSLGTFLDTLSQMPEIGQDYDAIPEVKKIAFRFHTVYYVIRVDDILIA RILHQLMEPRRHW
>gi)l5830322]ref |NP_309095.1| protein [Escherichia coli 0157:H7] MGTALSPIVSEFETTEQENSYNEWLRTKVTSSLADTRPAIPHDEVMAEMENLIAQIAVTNKSE >gi 1158303211 ref |NP_309094.11 protein [Escherichia coli 0157 :H7]
MLPILWLPSARDDLRQIITYIAKENPPAARRLKIRIETSVLPLSEHPYLYPPSERVSGLREIVTHPNYIILYRVAASSIE IVSVTHSRRQFPFSI
>gi 115831534 I re |NP_310307.11 protein [Escherichia coli 0157:H7] MPPRLSYKTGGNMNRALSPMVSEFETIEQENSYNEWLRAKVATSLADPRPAIPHDEVERRMAERFAKMRKERSKQ >gi 115831535 I e |NP_310308.11 protein [Escherichia coli 0157:H7]
MLPVLWLESADTDLDDITSYIARFDIDAAERLWQRLRGCVLPLSEHPYLYPPSDRVPGLREIVAHPNYIILYRVTTSSVE WNVIHARRQFP
>gl | 15800137 | re |NP_286149.1| unknown [Escherichia coli 0157:H7 EDL933] MRKITSVSVGEQLDSFITRMVQSGRYGSASEVMRΞALRLLEQQESRDEAVRNAVIEGLESGESSMTLRDIAAERKQKHRV >gi 115800138] re ]NP_286150.11 unknown [Escherichia coli 0157:H7 EDL933] MYKLSGKAVEDFRGIYDYTLGKFGDEQADRYTDSLGTFLDTLSQMPEIGQDYDAIPEVKKIAFRFHTVYYVIRVDDILIA RILHQLMEPRRHW
>gi I 29653983 I ref ]NP_819675.1) [Coxiella burnetii RSA 493]
MKISCRVKPISYLKSNTAEIVRDISETREPMLITQNGEAKLWLDVKSYEEYEETLΞLLKILSLGQKEIEKGQFRSADDV FADLDKD >gi 1296539821 re |NP_819674.11 conserved domain protein [Coxiella burnetii RSA 493] MNYKWFLQQAQLDLKELKNYMINNFSKRTWCTRYEKIKKIIHTPKLFPDAGSIPPELETLNLNQYRQAISGKNRIIYEL KESIVYIHIICDVRKDMKΞLLLRRLFRSESLP >gi 124373020 I ref |NP_717062.11 transcriptional regulator, CopG family [Shewanella oneidensis MR-1]
MSTIKPVSVKLDADIKARVEHLAETRKRSSHΉMMREAIREYVEREEKREALQQEALRAWEEHQTSGLHVTGDEVVSWLES
WGSENEQAALHATNSLHCHCIT
>gi 124373019 I ref |NP_717061.11 [Shewanella oneidensis MR-1]
MPQIVFTATALRDLERLREFLRSKNPPAAQRAASAIINTIRKLESYPDIGRPIDDNDFSFRELLIDFGDTGYLAMYQYDG
GERLTVLCIRHQKEAGY
>gi 115601077 I ref |NP_232708.11 protein [Vibrio cholerae]
MHTLTANDAKRNFGELLLSAQREPVIISKNSKNTVVVMSIKDFEELEAMKLDYLKHCFESAQKDLDSGKTVDGATFLNTL >gi 115601076 I ref |NP_232707.11 protein [Vibrio cholerae] MSVYLNMQNKQYKLSQLAQEHLLKIKHYTIENFAEAQWQKYKSTLLSGFQTLADNPGLGKSCEDIYQNGFYFPVGKHMAY YTKEANFILIVAVLGQSQLPQKHLKQSRFVS
>gi | 15601124 ] ref |NP_232755.1 | protein [Vibrio cholerae]
MFEMAHNARLRGWQRITLNSITTTETTAAQWDWKRHALTVPLEAFVMRALPKMPFDTIIRYFLVFMEMSSWLKIQVSLLV
NTSMALLQAKYKVGVTAQQVKSFALRYVYSKTKKPNYSHSVNYLLKESKWTLIMTLIASSMNSIVKTFDETI
>gi 115601123 |ref |NP_232754.11 plasmid stabilization element ParE, [Vibrio cholerae]
MKPFNLTVAAKADLRDIALFTQRRWGKEQRNVYLKQFDDSFWLLAENPDIGKSCDEIREGYRKFPQGSHVIFYQQTGSQQ IRVIRILHKSMDVNPIFGA
>gi 115601149 I ref |NP_232780.11 protein [Vibrio cholerae] MHTLTANDAKRNFGELLLSAQREPVIISKNSKNTWVMSIKDFEELEAMKLDYLKHCFESAQKDLDSGKTVDGATFLNTL >gi 115601148 I ref |NP_232779.11 [Vibrio cholerae]
MSVYLNMQNKQYKLSQLAQEHLLKIKHYTIENFAEAQWQKYKSTLLSGFQTLADNPGLGKSCEDIYQNGFYFPVGKHMAY YTKEANFILIVAVLGQSQLPQKHLKQSRFVS
>gi I 28898659 I ref |NP_798264.11 protein [Vibrio parahaemolyticus RIMD 2210633] MTEIIYTDTFGNTADERIDYLSQWTPTPQWEKVETLIETFE
>gi I 28898658 I ref |NP_798263.11 protein [Vibrio parahaemolyticus RIMD 2210633] MYPACYELISLGVYHFRQFSFDGFKIIYQYDEEANKIYALVQISDRQGLQKTLVDYCIRFL
>gi I 27365829 |ref ]NP_761357.11 Predicted transcriptional regulator [Vibrio vulnificus CMCP6]
MAKNTSITLGDHFDGFIANQIQSGRYGSASEVIRSALRLLETQETKMNTLRQLLVEGEESGVADYDLDSFINELDSEERK
>gi I 27365828 |ref |NP_761356.11 Plasmid stabilization element ParE [Vibrio vulnificus
CMCP6]
MRPFQLTNKAKSDLRDIALFTSRRWGREQRNIYLKQFDDSFWLLAENPDIGKACDEIRDGYRKFPQGSHVIFYRQIGSQN IEIIRILHKSMDVNPIFGA
>gi I 21240854 I ref |NP_640436.11 [Xanthomonas axonopodis pv. citri str. 306] MRTELVTTLKRQATELLAAAERDKEPILITQHGLPSAYLVDVASYERMQQRIALLEGIARGEMAVAEGRTLSHEQARHRM ARWLK
>gi I 21240855 I ref |NP_640437.11 [Xanthomonas axonopodis pv. citri str. 306] MAEIIWSVPALADLDAIADYIAIDNAPAAAALVKRVFGHVEQLIEHPDSGSRPQELKRSRYRQIVEPPCRVFYRVDGQRI VWHVMRSERALRGNRLSR
>gi 121243162] ref |NP_642744.11 [Xanthomonas axonopodis pv. citri str. 306] MVTATSIKLDDELKGRVQHLAEARRRTPHWIMREAIEQYVEREEKREALNRDTLKAWDEFQATGLHVTAEEVDKWLASWG TDDELPPPECHK
>gi 1212431611 ref |NP_642743.11 [Xanthomonas axonopodis pv. citri str. 306]
MPQVIFAPAAIGDMQRLREFLKPKSPDAARRAGEAIRRGVQALGAHPRMGRLIEDLPEQYREWLIDFGDSGYVARYRHAG
DTVTILAVRHQKEAGY
>gi 115838625 I ref |NP_299313.11 plasmid stabilization protein [Xylella fastidiosa 9a5c]
MSRLTIDMTDQQHQSLKALAALQGKTIKQYALERLFTGDADANQAWTELKTLLNTRIHEGLAGHVSTKNINEILDEELTE
DGA >gi 115838626 I ref |NP_299314.11 plasmid stabilization protein [Xylella fastidiosa 9a5c]
MTGYVLTEAAESDLRGIVRYTRKQWGNAQVRHYIATLERGIASLAEGRGAFNDMSSLFPALRMGRYEHHYVFCLPREEAP
ALIVAIFHERMDLMTRLADRLK >gi 115838662 I ref |NP_299350.11 [Xylella fastidiosa 9a5c]
MSRNTSVALGPHFTSFIDAQVQGGRYGTASDWRAGLRLLEEHETKVKALQDALNVRHQSGEPRPFDSEVFLSRMHTQHG ">gi 1158386611 ref |NP_299349.11 protein [Xylella fastidiosa 9a5c] MAKSYRLTPLAEADLEEIWFYTFRHWSIGQADSYHRSLVAVFEGLAAGTKLRPPFCSAGLQ >gi|28867472 |ref |NP_790091.1| prevent-host-death family protein [Pseudomonas syringae pv. tomato str. DC3000]
MRVETISYLKRNAADLPLDEPLIVTQNGVPAYWEΞYADR RRDESIALVKLLAISSREYSQGKHCSADELKARLSRRFA
HKE
>gi|28867473 | ref |NP_790092.1 | [Pseudomonas syringae pv. tomato str. DC3000] MNMFALRFTDVAQQSLEDQVEHLAVYQGFSPAAQRIDTLIDAIQDKLLSTPLGYPVSPQLSELGVLHYRELNADGYRIFY
EVRETDDINVIVIVLVLGGKQSVEQALIRYCLLQPI
The following sequences were found in a later, supplementary search:
>gi | 15888422 ] ref |NP_354103.1 | AGR_C_1994p [Agrobacterium tumefaciens str. C58] MPEIHLSEQDEKFIEEQVAAGIYSDADAVIHASLQLLSSDEGKRAALKLLIQEGIDDAEAGRVHRYASQNDFLSDIKRVS AQQKTGTDH
>parE|l5887359:cl070511-1070861, length 117, A. tumefaciens_str_C58_Cereon_circ_chr, parE MSNAFPPSKKRGPIIKIRTPIWTTRARRDLAEDHAYIETENPVAADRLVLDIYNKIESIA AIGLTGVSRHGYGTGLRSIAYRDRVIFFRVNNGELTVMRVLHGHQDISADDFKQEEN
>parD|l7933925:c830914-831318, length 135, A. tumefaciens str_C58_U_Wash_circ_chr, parD
MIWCSADVKPVYLPQGPRLQGFAFDLSLPMTDLMHRNCNAGRRSMKTATIPSLRVTADFR EAAESVLKDGETLSAFMEEAVRKQVEIRKSQAEFIKQGLAAREESKRTGVYHKAEDVLAE LKAMLDEKLAEDNDK >parD|l7933925:c830914-831318, length 135, A. tumefaciens str_C58_U_Wash_circ_chr, parD
MIWCΞADVKPVYLPQGPRLQGFAFDLΞLPMTDLMHRNCNAGRRSMKTATIPSLRVTADFR - EAAESVLKDGETLSAFMEEAVRKQVEIRKSQAEFIKQGLAAREESKRTGVYHKAEDVLAE LKAMLDEKLAEDNDK
>parD|17933925:1304610-1304918, length 103, A. tumefaciens str_C58_U_Wash_circ_chr, parD
MVEAPMPTRNWLTQHHEEIIDDLVKSGRYQNASEVLREGLRLIERRERLEATRLETLKV AAQQGFCDLDQGRYIDVSDDALDDFISAFGREAEVRLTKSDDK
>parE | l7933925 : 1304918-1305289 , length 124 , A. tumefaciens str_C58_U_Wash_circ_chr, parE
MTTYRLSDAAQSDIIEILGWTHATFGAAARKRYEKLLATALRDVAVDPLRAGTNIRAELG EDVRSYHLRYΞRERAKSETGLVKNPRHLLLYRALRPGLVGVGRVLHDSMEIERHLPDDYG DITF
>gi ] 16125306 I ref |NP_419870.11 hypothetical protein CC1054 [Caulobacter crescentus CB15]
MFWIFVMAKPASLSIELDSDLDRRLSEIAEGMDQPKTAIIERALRDFVELRDWQDAAIDEGLRAAEEGRVFDHDKVGEWI DSWGTPNERPMPSRD
>parE|l6124256:1186395-1186610, length 72, Caulobacter_crescentus , parE MRVTWTDSASRDLRFAYAWIAQDRPTAALKQVRRIWEFAAKLSDFPNLGRPGRRPGTRNW SCRAAPSLSLTE
>gi 115800838 I ref |NP_286854.11 unknown protein encoded by cryptic prophage CP-933M [Escherichia coli 0157 :H7 EDL933]
MGTALSPIVSEFETTEQENSYNEWLRTKVTSSLADTRPAIPHDEVMAEMENLIAQIAVTNKSE
>parE|l6445223:cl256683-1256967, length 95, E._coli_0157_H7_EDL933 , parE MLPILWLPSARDDLRQIITYIAKENPPAARRLKIRIETSVLPLSEHPYLYPPSERVSGLR EIVTHPNYIILYRVAAΞSIEIVSVTHSRRQFPFSI >gi 115801987 I ref |NP_288008.11 unknown protein encoded by cryptic prophage CP-933P [Escherichia coli 0157 :H7 EDL933] MNRALSPMVSEFETIEQENSYNEWLRAKVATSLADPRPAIPHDEVERRMAERFAKMRKERSKQ >parE|l6445223:cl256683-1256967, length 95, E._coli_0157_H7_EDL933, parE MLPILWLPSARDDLRQIITYIAKENPPAARRLKIRIETSVLPLSEHPYLYPPSERVSGLR EIVTHPNYIILYRVAASSIEIVSVTHSRRQFPFSI
>parD | 13470324: 1972578-1972823, length 82, Mesorhizobium_loti, parD MMAMTAFTVRLSDDTTDRLDQLAEKLDRSRSYVAAQAIEDFVTRQEWQLAEIEAGLAEAE RGEFANEQELAAVIAKYIKPAG
>parE|l3470324:1972805-1973119, length 113, Mesorhizobium_loti, parE MYQARRLIVSHKTIRWTKRALRRLDEIGAHIEKDSPEAASRVIARILSAAELLTQQPAMG RVGRIKATRELVLVDIPYIVPYRVSGNTVEILTVIHAAQQWPRTL
>parD|l5607142:c2402508-2402720, length 71, M._tuberculosis_H37Rv, ParD MWNRALLASVDALSRDEQIELVEHINGNLAEGMHISEANQALIEARANDTDDAHWSTID DFDKRIRARLG
>gi 115609279 I ref |NP_216658.11 hypothetical protein Rv2142c [Mycobacterium tuberculosis H37Rv] MTRRLRVHNGVEDDLFEAFSYYADAAPDQIDRLYNLFVDAVTKRIPQAPNAFAPLFKHYRHIYLRPFRYYVAYRTTDEAI DILAVRHGMENPNAVEAEISGRTFE
>parD 130248031: 1479335-1479618, length 88, Nitrosomonas_europaea, parD MKSSTIPSLRVTPEFRRDAESVLREGESLSAFVEESLRQHIERRRTQQEFIARGLTAREA AKΞSGQYASKAEVMSSLHSILDEQRSKE
>gi I 30249332 I ref |NP_841402.11 Hypothetical protein NE1353 [Nitrosomonas europaea ATCC 19718] MSFHVRFTLEAKADIERLYRFLAEHDFDVAERTLETIDSAWSLLEQFPFSCRKIDDANPFLREFIISFGNSGYWLFEIE DSNTVTVLAVRHQLEDDYY
>parD|l6763390:c3102440-3102715, length 91, Salmonella_typhimurium_LT2, ParD MTVDLGDELREFIESLIESGDYRTQSEVIRESLRLLREKQAESRLQALRELLAEGLNSGE PQAWEKDAFLRKVKTGMIKPDENGKINAKGQ
>parE|l6763390:c3102178-3102468, length 96, Salmonella_typhimurium_LT2, ParE MRMVKLTPKASEDLENIWHYGWQHFGEIQADRYINHLΞEIFSIMSANNIGTPRPELGEYI YALPFKRHIIYFIQSVTEVIVIRILSQNQDAGKHVNWL
>parD| 16758993 :c2958334-2958059, length 91, corrected start, Salmonella_typhi , ParD MTVDLGDELREFIESLIESGDYRTQSEVIRESLRLLREKQAESRLQALRELLAEGLNSGE PQAWEKDAFLRKVKTGMIKPDENGKINAKGQ
>parE 116758993 :c2957794-2958012, length 73, Salmonella_typhi, ParE MRTVKLTPKASEDLENIWHYGWQHFGEIQADRYIHHLSEIFSIMSANNIGTPRPELGEYI YALPFERHIIYFI
>parD|29140543:c2944229-2943954, length 91, corrected start, Salmonella_typhi_Ty2 , ParD MTVDLGDELREFIEΞLIESGDYRTQSEVIRESLRLLREKQAESRLQALRELLAEGLNSGEPQAWEKDAFL RKVKTGMIKPDENGKINAKGQ
>parE|29140543:c2943689-2943907, length 73 , Salmonella_typhi_Ty2, ParE MRTVKLTPKASEDLENIWHYGWQHFGEIQADRYIHHLSEIFSIMSANNIGTPRPELGEYI YALPFERHIIYFI
>parD|21240774:c3665126-3665371, length 82, X_axonopodis_pv_citri_str_306, parD MSPGRRKMPELRRTALSSTPLRKKSRRTSAALHSMPKRSNAGLLSKAATTRCPGRTYAST CSSLLTERTPRHRSPAPSSADR
>gi|21232522|ref |NP_638439.1| Hypothetical protein XCC3091 [Xanthomonas campestris pv. campestris str. ATCC 33913] MTRIALAARVADDARRLVAYLLEHDAASVQRKLAGIFQAIDALADNPLMGRAVHGGFRELVIGRDASGYLALYRYAPLDD TVYVLAIRSQREAGYLESLF
>gi I 28198860 I ref |NP_779174.11 plasmid stabilization protein [Xylella fastidiosa Teme- culal]
MSCLTIDITDQQHQSLKALAALQGKTVEQYALERLFPSDTDADQAWQDLKTLVGTRISEGLAGKVSTKSINEILNEELT
>gi I 28198859 I ref |NP_779173.11 plasmid stabilization protein [Xylella fastidiosa Temeculal] MTGYILTAAAETDLRSIIRYTRKQWGDAQMRRYIATLEQDMASLAAGRGVFRNMSVLFPALRMGRCEHHYVFCLPREGAP ALIVAIFHERMDLMTRLADRLK
Homologues of mazEF (Chp) toxin-antitoxin system polypeptides >gi | l5607142 : 3110734-3110507 , length 76 , MazE
MKLSVSLSDDDVAILDAYVKRAGLPSRSAGLQHAIRVLRYPTLEDDYANAWQEWSAAGDT DAWEQTVGDGVGDAPR
>gi|15609938|ref |NP_217317.l| RV2801C [Mycobacterium tuberculosis H37Rv] MMRRGEIWQVDLDPARGSEANNQRPAVVVSNDRANATATRLGRGVITVVPVTSNIAKVYPFQVLLSATTTGLQVDCKAQA EQIRSIATERLLRPIGRVSAAELAQLDEALKLHLDLWS
>gi | 15607142: 2234919-2234644, length 92, MazE MEVIPGYTICMKTAISLPDETFDRVSRRASELGMSRSEFFTKAAQRYLHELDAQLLTGQI DRALESIHGTDEAEALAVANAYRVLETMDDEW
>gi 115609128 I ref |NP_216507.11 Rvl991c [Mycobacterium tuberculosis H37Rv] MVISRAEIYWADLGPPSGSQPAKRRPVLVIQSDPYNASRLATVIAAVITSNTALAAMPGNVFLPATTTRLPRDSWNVTA IVTLNKTDLTDRVGEVPASLMHEVDRGLRRVLDL
>gi 115607142: 2547085-2546840, length 82, MazE
MAEPETLPGRWLPECACLAETVSWEQSRLWSRLLCRPHFRHALPGLTGGSASRPSARSAR LVRQPRMTLFSLDHRDGVDARC
>gi 1156094111 ref |NP_216790.11 Rv2274c [Mycobacterium tuberculosis H37Rv]
MSIARSAQPIGWISCPPKGGSSCCRCGGGYTHIFCVSAWTGLWDLQAEQVRSWTERLRRRIGRGAPILAGTLAPGVGL
AAQNREFRQFTGRSAPPSATIAFGE
>gi|15839372:3105455-3105228, length 76, MazE
MKLSVSLSDDDVAILDAYVKRAGLPSRSAGLQHAIRVLRYPTLEDDYANAWQEWSAAGDT
DAWEQTVGDGVGDAPR
>gi|15842339 | ref |NP_337376.1 | pemK protein [Mycobacterium tuberculosis CDC1551]
MRRGEIWQVDLDPARGSEANNQRPAVVVSNDRANATATRLGRGVITVVPVTSNIAKVYPFQVLLSATTTGLQVDCKAQAE
QIRSIATERLLRPIGRVSAAELAQLDEALKLHLDLWS
>gi|21672841:947841-948164, length 108, MazE
MLLEGSIGLLPDALLNNEEPEQNTGYNSSARCIVNREDQAGITRKETIGASVWFGLVCVT
DESVAYRYDGLAARSLRLWTTPSLKKQQIAKAGTHEKGIGGHDCLAGQ >gi I 21673827 I ref |NP_661892.11 conserved [Chlorobium tepidum TLS]
MKRGSWTIALQGNDGKLRPAWVLSDYFPEHPSVTVLPIISDLRSTPFFRIDVEPEAQNGLLKPSRIMIDKAQAVPSEK IGKVIGLLDDTKMMAVNRALALWFGFA
>gi|l7988344:197880-198089, length 70, MazE
MEAETIPREGRRTSRSFARLRFALDPDLGAGRAFSSFRDEAHRQSLTVASRSHAADDLAF INSVSDWSDE
>gi 117988530 I ref |NP_541163.11 PEMK-LIKE PROTEIN 1 [Brucella melitensis] MKRGEIWTVGGGKDRAGKPRPAVIVQDDRFDATGSITICAFTTNETNVPLFRLAVEPNERNGLRSVCRLMVDKITTAPKS MMAVQVGRNPPGHS
>gi I 23499767: 1101529-1101320, length 70, MazE MEAETIPREGRRTSRSFARLRFALDPDLGAGRAFSSFRDEAHRQSLTVASRSHAADDLAF INSVSDWSDE
>gi 123500829 I ref |NP_700269.11 pemK family protein [Brucella suis 1330] MKRGEIWTVGGGKDRAGKPRPAVIVQDDRFDATGSITICAFTTNETNVPLFRLAVEPNERNGLRSVCRLMVDKITTAPKS MMAVQVGRNPPGHS
>gi I 30248031: 1002936-1002703, length 78, MazE
MKMTIIAKVTSKGQTTIPADIRAALRIKPGDLIIWEMSDDGSARIRRVQPLDIEYLKAVE GTLSEWAGAADEEAYREL
>gi ] 30248925 I ref |NP_840995.11 conserved [Nitrosomonas europaea ATCC 19718] MSYERFTVLKVPFPFTDRTAAKNRPALVLSDAATFNDPIGHSVLAMITSAANPAWPLDCLIDDLVSAGLPAPSWRFKLF TLDHRLIRGELGRLAVSDSIQVTRSLYQLFGMAAVR
>gi | 15607800 | ref |NP_215174.1 | protein Rv0660c [Mycobacterium tuberculosis H37Rv] MLSFRADDHDVDLADAWARRLHIGRSELLRDALRRHLAALAADQDVQAYTERPLTDDENALAEIADWGPAEDWADWADAA R
>gi | 15607799 | ref |NP_215173.1 | protein Rv0659c [Mycobacterium tuberculosis H37Rv] MRRGELWFAATPGGDRPVLVLTRDPVADRIGAWWALTRTRRGLVSELELTAVENRVPSDCWNFDNIHTLPRTAFRRR ITRLSPARLHEACQTLRASTGC
>gi 115609080 I ref |NP_216459.11 protein Rvl943c [Mycobacterium tuberculosis H37Rv] MKTARLQVTLRCAVDLINSSSDQCFARIEHVASDQADPRPGVWHSSGMNRIRLSTTVDAALLTΞARDMRAGITDAALIDE ALAALLARHRSAEVDASYAAYDKHPVDEPDEWGDLASWRRAAGDS
>gi 115609079 I ref |NP_216458.11 protein Rvl942c [Mycobacterium tuberculosis H37Rv] MTALPARGEVWWCEMAEIGRRPWVLSRDAAIPRLRRALVAPCTTTIRGLASEWLEPGSDPIPRRSAVNLDSVESVΞVA VLVNRLGRLADIRMRAICTALEVAVDCSR
>gi 115608243 I ref |NP_215619.11 protein Rvll03c [Mycobacterium tuberculosis H37Rv] MYLPWGWLAGGANGFGAGAYQTGTICEVSTQIAVRLPDEIVAFIDDEvRGQHARΞRAAWLRALERERRRRLAERDAEI LATNTSATGDLDTLAGHCARTALDID >gi ] 15608242 I ref |NP_215618.11 protein Rvll02c [Mycobacterium tuberculosis H37Rv] MRPIHIAQLDKARPVLILTREWRPHLTNVTVAPITTTVRGLATEVPVDAVNGLNQPSWSCDNTQTIPVCDLGRQIGYL LASQEPALAEAIGNAFDLDWWA
>gi] 15608632 I ref |NP_216010.11 protein Rvl494 [Mycobacterium tuberculosis H37Rv] MPFLVALSGIISGVRDHSMTVRLDQQTRQRLQDIVKGGYRSANAAIVDAINKRWEALHDEQLDAAYAAAIHDNPAYPYES EAERSAARARRNARQQRSAQ
>gi 115608633 ] ref |NP_216011.11 protein Rvl495 [Mycobacterium tuberculosis H37Rv] MNAPLRGQVYRCDLGYGAKPWLIVSNNARNRHTADWAVRLTTTRRTIPTWVAMGPSDPLTGYVNADNIETLGKDELGDY LGEVTPATMNKINTALATALGLPWP
>gi]l5841473 |ref ]NP_336510.1| DNA-binding protein, CopG family [Mycobacterium tuberculosis CDC1551]
MKTAISLPDETFDRVSRRASELGMSRSEFFTKAAQRYLHELDAQLLTGQIDRALESIHGTDEAEALAVANAYRVLETMDD EW >gi 115841472 I ref |NP_336509.11 [Mycobacterium tuberculosis CDC1551] MVISRAEIYWADLGPPSGSQPAKRRPVLVIQSDPYNAΞRLATVIAAVITSNTALAAMPGNVFLPATTTRLPRDSWNVTA IVTLNKTDLTDRVGEVPASLMHEVDRGLRRVLDL
>gi|l5840063|ref |NP_335100.1| protein [Mycobacterium tuberculosis CDC1551]
MTMLSFRADDHDVDLADAWARRLHIGRΞELLRDALRRHLAALAADQDVQAYTERPLTDDENALAEIADWGPAEDWADWAD
AAR
>gi 115840062 I ref |NP_335099.11 protein [Mycobacterium tuberculosis CDC1551]
MRRGELWFAATPGGDRPVLVLTRDPVADRIGAVWVALTRTRRGLVSELELTAVENRVPSDCWNFDNIHTLPRTAFRRR ITRLSPARLHEACQTLRASTGC
>gi 115841414 I ref |NP_336451.11 protein [Mycobacterium tuberculosis CDC1551] MKTARLQVTLRCAVDLINSSSDQCFARIEHVASDQADPRPGVWHSSGMNRIRLSTTVDAALLTSARDMRAGITDAALIDE ALAALLARHRSAEVDASYAAYDKHPVDEPDEWGDLASWRRAAGDS
>gi [ 15841413 I ref |NP_336450.11 protein [Mycobacterium tuberculosis CDC1551] MAAGGWRLVTALPARGEVWWCEMAEIGRRPVVVLSRDAAIPRLRRALVAPCTTTIRGLASEVVLEPGSDPIPRRSAVNLD SVESVSVAVLVNRLGRLADIRMRAICTALEVAVDCSR >gi|15840542 |ref |NP_335579.l| protein [Mycobacterium tuberculosis CDC1551] MSTQIAVRLPDEIVAFIDDEVRGQHARSRAAWLRALERERRRRLAERDAEILATNTSATGDLDTLAGHCARTALDID >gi 1158405411 ref |NP_335578.11 protein [Mycobacterium tuberculosis CDC1551] MRPIHIAQLDKARPVLILTREWRPHLTNVTVAPITTTVRGLATEVPVDAVNGLNQPSWSCDNTQTIPVCDLGRQIGYL LASQEPALAEAIGNAFDLDWWA
>gi 115840957 |ref |NP_335994.11 protein [Mycobacterium tuberculosis CDC1551] MPFLVALSGIISGVHDHSMTVRLDQQTRQRLQDIVKGGYRSANAAIVDAINKRWEALHDEQLDAAYAAAIHDNPAYPYES EAERSAARARRNARQQRSAQ >gi|l5840958|ref |NP_335995.l| protein [Mycobacterium tuberculosis CDC1551]
MNAPLRGQVYRCDLGYGAKPWLIVSNNARNRHTADWAVRLTTTRRTIPTWVAMGPSDPLTGYVNADNIETLGKDELGDY LGEVTPATMNKINTALATALGLPWP
>gi | 17230704 |ref |NP_487252.1 | cell growth regulatory protein [Nostoc sp. PCC 7120] MTTWAKWGNSLAVRIPRSIAEQAHVTEGTDINFSVEGNSIVITPKRRKKYTLDELLEGMTPDNFHPEFETGDAVGNEAW >gi ] 17230703 I re ]NP_487251.11 cell growth regulatory protein [Nostoc sp. PCC 7120] MKPPYFPNRGDIVKLEFGSAQQFTAESIQRVFTLRNSGMSFDDIAITLNNELQQQGREQTGYRPVLVISPIKYNQMASLV LACPITTNAKGLRFEVPLIEGMKTKGWLADQIKTLDWKARKVKFVESVTEDLIEEVQAKLETLIL
>gi 117232412 I re |NP_488960.11 unknown protein [Nostoc sp. PCC 7120] MLSPHLQAIERDIRTLSLAELEWLLERITKQVQTRKQTSDKFTDMQYMNEQLAAMANDLEVQTEISLINHEFNΞTEMDGL >gi 117232413 I ref |NP_488961.11 protein [Nostoc sp. PCC 7120]
MSIERGQIYFVNLNPVHGREQAGARPVLVLSTDAINQLPLVITVWGTKGTNIKRDYPTNIRVSPSDSGLVIETVFLCFQ IRSLDPNRFPTDPSGKLSASKMLEVETAVRYCLGL
>gi|l7227834|ref |NP_484382.1| unknown protein [Nostoc sp. PCC 7120] MDALIQELDTKMRQWQPEIVKQVRQSLAEIIELADQDALDILRSRIVEQEVLDLIDEPETR >gi|l7227833 | ref |NP_484381.1 | protein [Nostoc sp. PCC 7120] MNPKPGEVWLVDLGLAAKARPWIVSRYDLTPPRALVIYIPITTQNRGSAYEVELPVLSFLRQGSVANVQGLGSIPSVRL ERKLGELSKETMLEIKQALMFTLDLWDTQDDGAFNTDEIG
>gi 117228252 I ref |NP_484800.11 unknown protein [Nostoc sp. PCC 7120]
MQTDNIPQQRLIGKIRQLVPEQWLVERFIDSLSQKNEEYNLTLAATKLSEPVLQRIWDNPDDAEYDKL >gi 117228253 I re |NP_484801.l| protein [Nostoc sp. PCC 7120]
MTNYKFGDVILVPFPFTDQTTTKKRPSVWΞSTDYQRQRSDLILIAVTSTTNPVTSFAEMTITEWKAAGLLKPSIIKPVL TTIDKMLVIKKLGELQEVDTQALHNLLQIILGG
>gi | l633012l | re |NP_440849 . 1 | unknown protein [Synechocystis sp . PCC 6803 ] MSINAYKLATTLTEDGTLLLQDLPCPAGTSVEVIVLVAPQGMVLPQAERAQGPAPGKVGEAGADYMAATADTMTEWNSEA DNSAYRHL
>gi 116330120 I re |NP_440848 .1 1 unknown protein [Synechocystis sp . PCC 6803 ]
MNTIYEQFDWIVPVPFTDRQSDIRRPALILSDAPAFNNRIGHSVMAMITSAKNAPWPLDTPIEDTRSAGLFTPSWRMK
LFTLEHKYILDCVGSLSKQDRLMVKSAFPHVFKLG
>gi|30260429|re |NP_842806.1| [Bacillus anthracis str. Ames]
MSESSVTTEIWRLPKQMVTELDGIGKQENKNRHELICQATQLLLRQHKTKKRYQHESMRRGYIEMGKINLGIASEAFLA EYEAAHTVERLVSGG >gi 130260430 I re |NP_842807.11 transcriptional regulator, PemK family [Bacillus anthracis str. Ames]
MIVKRGDVYFADLSPWGSEQGGVRPVLVIQNDIGNRFSPTVIVAAITAQIQKAKLPTHVEIDAKKYGFERDSVILLEQI RTIDKQRLTDKITHLDEVMMIRVDEALQISLGLIDF
>gi|30018502|ref |NP_830133.1| Cytosolic Protein [Bacillus cereus ATCC 14579]
MSESSVTTEIWRLPKQMVTELDGIGKQENKNRHELICQATQLLLRQHKTKKRYQHESMRRGYIEMGKINLGIASEAFLA
EYEAAHTVERLVSGG >gi|30018503|ref |NP_830134.1| PEMK-like protein [Bacillus cereus ATCC 14579]
MIVKRGDVYFADLSPWGSEQGGVRPVLVIQNDIGNRFSPTVIVAAITAQIQKAKLPTHVEIDAKKYGFERDSVILLEQI
RTIDKQRLTDKITHLDEVMMIRVDEALQISLGLIDF
>gi| 15616282 |ref |NP_244587.1 I suppressor of ppGpp-regulated growth inhibitor (ChpA/MazF) [Bacillus halodurans]
MTLMTTIQKWGNSLAVRIPNHYAKHINVTQGSEIELSLGSDQTIILKPKKRKPTLEELVAKITPENRHNEIDFGRTGKEL L
>gi|l5616283|ref |NP_244588.1| ppGpp-regulated growth inhibitor (ChpA/MazF) [Bacillus halodurans]
MPVPDRGNLVYVDFNPQSGHDQAGTRPAIVLSPKLFNKNTGFAWCPITRQQKGYPFEIEIPPGLPIEGVILTDQVKSLD WRARNFHIKGQAPEETVTDCLQLIHTFLS
>gi 115613084 |ref |NP_241387.11 BH0521~unknown conserved protein in B. subtilis [Bacillus halodurans] MSFVSESSTKRIVVNLPQHLLNEVDGVIKQEKVNRSEFFSQATKMYLRERKKRQIREKMQQGYLEMAKINLNIASEAFLA EEEAEHTLDRLVSGV
>gi|l5613085|ref |NP_241388.1| BH0522~unknown conserved protein [Bacillus halodurans] MIVKRGDVYFADLSPWGSEQGGVRPVLVIQNDIGNRFSPTVIVAAITAQIQKAKLPTHVEINAKRYGFDRDΞVILLEQI RTIDKQRLTDKITHLDDDMMSKVNDALLISLGLIDF
>gi ] 16077532 I ref |NP_388346 .1 ] ydcD [Bacillus subtilis]
MSESSARTEMKISLPENLVAELDGVAMREKRSRNELISQAVRAYVSERTTRHNRDLMRRGYMEMAKINLNISSEAHFAEC EAETTVERLVSGG
>gi | l6077533 | ref |NP_388347 . l | similar to proteins [Bacillus subtilis]
MIVKRGDVYFADLSPWGSEQGGVRPVLVIQNDIGNRFSPTAIVAAITAQIQKAKLPTHVEIDAKRYGFERDSVILLEQI
RTIDKQRLTDKITHLDDEMMDKVDEALQISLALIDF
>gi | 15893784 | ref |NP_347133 . 1 1 Uncharcterized small conserved protein, YhhG family [Clostridium acetobutylicum]
MSSSKRLWNLΞETLYDEFNKALKEDCKKRSEFIREAIILYIEERKKLQQIELVKKGYSEMAKLNIEICECGFSSDLEDL NQYEVMLSESDLLDDNSGKTRRYILC
>gi 1 15893785 I ref |NP_347134 .1 1 PemK family of DNA-binding proteins [Clostridium acetobutylicum] t MTIWKRGDIFYADLSPWGSEQGGIRPVIIIQNDMGNKYSPTVIVAAITSQINKAKLPTHVEISSEDYGLNKDSWLLE QIRTLDKRRLKEKIGHMTDMDMKKVDEALLISIGLQNMFESV
>gi | l8309276 | ref | NP_561210 . l | protein [Clostridium perfringens]
MSVSKINKQDSKKEKKIENFSQLKGRNIITYSEDKKEDDFYEAMKEGYKAMALINSQYAEEGTSVEYFDQIEYETWLCGV >gi 1 18309277 | ref |NP_561211.1 1 [Clostridium perfringens]
MASLNVKRGDIFYADLSPWGSEQGGIRPVIIIQNDIGNRYSPTVIVAAITSQINKAKLPTHVEISSEEYGLNRDSWLL EQIRTLDKKRLKEKIGHMTEDDMKKVNKSLLISLNLQ
>gi|29375413|ref |NP_814567.1| uridine kinase [Enterococcus faecalis V583] MKDSQPIIIGVTGGSGSGKTSVSRAIFNNFPDHSIMMLEQDSYYKDQSHLΞFEERLNTNYDHPFAFDTDLLIQHVEQLLN YQAIEKPVYDYVAHTRSTETVIQEPKEVIILEGILILEDRRLRDLMDIKVYVDTDDDIRIIRRIKRDMEERGRTLDSVIE QYLTWKPMYHQFIEPTKRYADIIVPEGGENHVAIDLINTKVDSILTKM >gi 129375414 I ref |NP_814568.l| transcriptional regulator, PemK family [Enterococcus faecalis V583]
MIKRGEVFYANLSPWGSEQGGIRPVLIIQNNKGNLFSPTLIVAPITRNVSKRLQPTQVLIEIPHNECRTPSLILLEQIR TLDKERMLHKVCQLSREEMEQVNQALKVSVGIR
>gi|29377704|ref |NP_816858.1| transcriptional regulator, AbrB family [Enterococcus faecalis V583]
MTSTKTRKQGNSLVITIPATLGVKEGEEFVILRKNNGSIALIPKVEDFFENTAEGEFYLPELAIDYSPSGGEVDGL >gi|29377705|re |NP_816859.1| transcriptional regulator, PemK family [Enterococcus faecalis V583]
MGYKPTQRDIVIIDFAPSKGYEIRKRRPALVMSKDSYNISTNLVIVCPITSLDKERPFLVPIYSEKLHTSDNAVSKVNTL QVYSLDYTEQAQRRIKYVDTLDEETFYEIAQKFLQNFSFAV >gi | 28379347 | ref |NP_786239.1 | unknown [Lactobacillus plantarum WCFS1]
MCLLIRGGLDMIEVKTVSRGNSLALSLPKDGRFKKGQRWLLIPSSDGESYTLVPRIENPYAGSKPKRPMTEAWSDVDWNE
VE
>gi I 28379346 I ref |NP_786238.11 cell growth regulatory protein [Lactobacillus plantarum
WCFS1]
MTYLPKQKDIIWIDFDPQRGREIKKRRPAWLSΞNLYTQNTGFVIVSPITSTMRDLPGYFSLNGYNTHGQIAAAQIYSFD
ATPRAGRSITYIETMRΞADFYHVAQTVYYNFDFPF
>gi 116799959 I ref |NP_470227.11 similar to B. subtilis YdcD protein [Listeria innocua]
MLEKEKRMIIΞVELTQEMVQELDVWEKEKMGRSEVIMEATQQFLQEKRARELRDEMERGYAEMATINFAIACECTHVEA
EAEDRNISILGG
>gi|l679996θ|ref |NP_470228.1| similar to B. subtilis YdcE protein [Listeria innocua]
MMVKRGDVYYADLSPWGSEQGGIRPVLIIQNDIGNRFSPTVIVAAITAKIQKAKLPTHVEATRKDGFERDSVILLEQIR
TIDKQRLTDKITHLDEELMAKVNQALEVSLGWEF
>gi 116802928 |ref |NP_464413.11 similar to B. subtilis YdcD protein [Listeria monocytogenes EGD-e]
MLEKENRMIISVELTQEMIQELDVWEKEKMGRSEVIMEATQQFLQEKRARELRDEMERGYAEMATINFAIACECTHVEA EAEDRNISILGG
>gi 116802929 |ref |NP_464414.11 similar to B. subtilis YdcE protein [Listeria monocytogenes EGD-e]
MMVKRGDVYYADLSPWGSEQGGIRPVLIIQNDIGNRFSPTVIVAAITAKIQKAKLPTHVEATRKDGFEKDSVILLEQIR TIDKQRLTDKITHLDEDLMAKVNKALEVSLGWEF
>gi I 23098077 I ref |NP_691543.11 protein [Oceanobacillus iheyensis HTE831]
MSESLQEIMVKMPKNLLSEVDGLMKYENSDLSDFICEATQIYLNHKKEEHIQRFHETMQRGYEEMGRINLTIASEAFQAE
EEAENTLERSVIGV
>gi|23098078|ref |NP_691544.l| protein [Oceanobacillus iheyensis HTE831]
MIVQRGEVYFADLSPWGSEQGGVRPVLILQNDIGNRFSPTVIVAAITAQIQKAKLPTHVEIDAKRYGFDRNSVILLEQI
RTLDKQRLTDKITKLDKEMMIKINQALEISLGLKDVYGG
>gi I 208085511 re |NP_623722.11 predicted Transcriptional regulator containing the CopG/Arc/MetJ DNA-binding domain and a metal-binding domain [Thermoanaerobacter tengcongensis] MGETKRILVSLPQSLLEEVDVLAAMENRNRSEFIREAMKLYIRERKKAQIRESMKKGYMEMAAINSELAEMGLTAENECF AGYEMKLKKCD
>gi|20808550|ref |NP_623721.1| Growth inhibitor [Thermoanaerobacter tengcongensis] MIMWKRGDLFYADLSPVIGΞEQGGIRPVLIIQNDIGNKYSPTVIVAAITSQINKAKLPTHVEINGAEYGLQKDSVILLE QIRTIDKKRLREKIGHLDQEMMEKVNEALQISLGLIDF
>gi|21283722 |ref |NP_646810.1 I protein [Staphylococcus aureus subsp. aureus MW2] MLSFSQNRSHSLEQSLKEGYΞQMADLNLSLANEAFPIECEACDCNETYLSSNSTNE >gi|2128372l|ref |NP_646809.l| [Staphylococcus aureus subsp. aureus MW2]
MIRRGDVYLADLSPVQGSEQGGVRPWIIQNDTGNKYSPTVIVAAITGRINKAKIPTHVEIEKKKYKLDKDSVILLEQIR TLDKKRLKEKLTYLSDDKMKEVDNALMISLGLNAVAHQKN
>gi 115927644 I ref |NP_375177.11 protein [Staphylococcus aureus subsp. aureus N315] MLSFSQNRSHSLEQSLKEGYSQMADLNLSLANEAFPIECEACDCNETYLSSNSTNE
>gi 115927643 I ref |NP_375176.11 [Staphylococcus aureus subsp. aureus N315] MIRRGDVYLADLSPVQGSEQGGVRPWIIQNDTGNKYSPTVIVAAITGRINKAKIPTHVEIEKKKYKLDKDSVILLEQIR TLDKKRLKEKLTYLSDDKMKEVDNALMISLGLNAVAHQKN
>gi| 15925059 | ref |NP_372593.l| protein [Staphylococcus aureus subsp. aureus Mu50] MLSFSQNRSHSLEQSLKEGYSQMADLNLSLANEAFPIECEACDCNETYLSSNSTNE
>gi|l5925058|ref |NP_372592.1| [Staphylococcus aureus subsp. aureus Mu50]
MIRRGDVYLADLSPVQGSEQGGVRPWIIQNDTGNKYSPTVIVAAITGRINKAKIPTHVEIEKKKYKLDKDSVILLEQIR
TLDKKRLKEKLTYLSDDKMKEVDNALMISLGLNAVAHQKN >gi | 27468591 | ref |NP_765228.1 | [Staphylococcus epidermidis ATCC 12228]
MLSFNQNRNHΞLEQSLKEGYAQMADLNLSLATEAFPIECEACDCNESHLISNSKNE
>gi I 27468590 I ref |NP_765227.11 [Staphylococcus epidermidis ATCC 12228]
MIRRGDVYLADLSPVQGSEQGGVRPWIIQNDTGNKYSPTVIVAAITGRINKAKIPTHVEIEKKKYKLDKDSVILLEQIR
TLDKKRLKEKLTFLSESKMIEVDNALDISLGLNNFDHHKS
>gi 124378686 I ref ]NP_720641.11 ,- cell growth regulatory protein [Streptococcus mutans UA159]
MQLVINKWGNSSAIRLPKQLVQELQLQTNDVLDYKVSGNKIILEKVNNIPELTVEDLFKDYQGEPVNVTPALFESVGNEQ W >gi|24378687|ref |NP_720642.l| ppGpp-regulated growth inhibitor [Streptococcus mutans UA159]
MVTIKQGSIIKINLDPKQGHEQKGYRPYICLNHSIVTKYSNIGIFAPISNTKRDYPFYVSLEGTESTGKVLLDQLVTIDF NARDYRYVEDIQEDLLDELLARVKVLFEKG
>gi ] 15888279 | ref |NP_353960.1 | AGR_C_1711p [Agrobacterium tumefaciens] MKMCYICCTMQERRRMTVTTKIRRQGGAAVMTIPPALLKMLGLEIGEQLTLEVDNGALVASPVRLEKKRFTLAELLDGAE EVAALNARERAWDTAPPVGKEAL >gi 115888280 I ref |NP_353961.11 AGR_C_1712p [Agrobacterium tumefaciens]
MMVRNQIPKRGDVYLVDLNPWGSEIKDEHRCWITPREINAVGLCLWPVTTGGMFTRKAGLAVNISGHKTTGVALCNQ VRSMDIVARVAQKKAKYIETLDDATIDEIAGRVISMIDPA
>gi 117934847 I ref |NP_531637.11 Peml protein [Agrobacterium tumefaciens str. C58 (U. Washington) ]
MTVTTKIRRQGGAAVMTIPPALLKMLGLEIGEQLTLEVDNGALVASPVRLEKKRFTLAELLDGAEEVAALNARERAWDTA PPVGKEAL >gi|l7934848 | ref |NP_531638.1 | PemK protein [Agrobacterium tumefaciens str. C58 (U. Washington) ]
MVRNQIPKRGDVYLVDLNPWGΞEIKDEHRCWITPREINAVGLCLWPVTTGGMFTRKAGLAVNISGHKTTGVALCNQV RSMDIVARVAQKKAKYIETLDDATIDEIAGRVISMIDPA
>gi 115891930 I ref |NP_359644.11 unknown [Rickettsia conorii]
MLQLNIIRRIKMTKSITTSIRLEINLSKKLEKATYDLHREKSWIISEAYLKQLENSDLAKEAKRQSLLASKENNPDANLW LKHNEESWLDEWK >gi 115891929 I ref |NP_359643.11 unknown [Rickettsia conorii]
MLLGVISGDYGKPRPAVWQΞNLYKNHPSITVCLHNGFNRCPTTFHLLLTPTELNGFNLESHIMVDEISAIRSDKIQKNW
>gi|l5676809|ref |NP_273954.1| peml protein [Neisseria meningitidis MC58]
MLRVQKWGNSAAVRLPADMLKQLDFKIGDALVAEVHNGELRVRAARRFRLADLLAEMEETPPRVEGWEILDDAGNEW >gi 115676808 I ref |NP_273953.11 pemK protein [Neisseria meningitidis MC58] MYIPDKGDIFHLNFDPSSGKEIKGGRFALALSPKAFNRATGLVFACPISQGNAAAARSSGMIΞTLLGAGTETQGNVHCHQ LKSLDWQIRKASFKETVPDYVLDDVLARIGAVLFD
>gi 115677860 I ref |NP_275028.11 protein [Neisseria meningitidis MC58] MILNIRKMGNSQGVILPKSLLGQIGAVDSLAVTVEKGNIILSCPTVRRGWAEAAAMLVETEQEHFFSEIENEADKEWIW >gi 1156778611 ref |NP_275029.11 PemK-related protein [Neisseria meningitidis MC58] MDMWRGGIYLVSLDPTVGSEIKKTRPCWVSPPEIHNYLKTVLIVPMTSGSRPAPFRVNVRFQDKDGLLLPEQIRAVDK AGLVKHLGNLDNSTAEKLFAVLQEMFA
>gi | l5793408 | ref |NP_283230 .1 | protein NMA0401 [Neisseria meningitidis Z2491] MILNIRKMGNSQGVILPKSLLGQIGAVDSLAVTVEKGNIILSCPTVRRGWAEAAAMLVETEQEHFFSEIENEADKEWIW >gi 1 15793407 I ref |NP_283229 .1 1 PEMK-like protein [Neisseria meningitidis Z2491] MWRGGIYLVSLDPTVGSEIKKTRPCWVSPPEIHNYLKTVLIVPMTSGSRPAPFRVNVRFQDKDGLLLPEQIRAVDKAG LVKHLGNLDNSTAEKLFAVLQEMFA
>gi 1 30248978 I ref | NP_841048 . 1 1 protein [Nitrosomonas europaea ATCC 19718] MLQTLRKAGGSLVMTVPKSFIEQNGLSEGSQVELHLHGKKMIVEAPARPRYKLADLMAEMPKGLPRVEGWDEMSPVGLED
S
>gi 130248977 I ref |NP_841047.11 PemK-like protein [Nitrosomonas europaea ATCC 19718]
MTYLPNRGDIVHLDFDPSSGREIKGPHFGLILSGKLFNQRGLAMICPISQGAAAAARTYGTWTLMGAGTDTQGAVHCHQ
LKSLDWQVRNVRFKESVPQHILDEVLARVEAILFE
>gi|30249168|ref |NP_841238.l] Helix-turn-helix protein, CopG family [Nitrosomonas europaea ATCC 19718]
MRNTMTHRVTITLDAETFAFLNDVASSNRSAYVNQLLKQDRKNFLQAALRKANQEEAEDTNYQEKLQAWESTLSDGLAND >gi I 30249167 I ref |NP_841237.11 PemK-like protein [Nitrosomonas europaea ATCC 19718] MTDFKQRDIYWIDLEPTKGAETRKLRPCVIIQSDLVNVQSRTVIVAPLLLQHKPWPFAVNLEPTEKNGLDKDRHINLKQL RAVDISRIGKKQGRLENRYKDPIKAALMIIFDL
>gi I 30249549 I ref |NP_841619.11 Helix-turn-helix protein, CopG family [Nitrosomonas europaea ATCC 19718] MSQTKVAITIEEEVLARVDALVRQRVFANRSRAIQEAVQEKLERMDRSRLAEECAKLDPAFEKAMADEGLSEELVAWPKY
>gi I 30249548 I ref |NP_841618.11 PemK-like protein [Nitrosomonas europaea ATCC 19718]
MAKILRGEIRWANLNPTVGREQSGERPILVLSQDIFNERSGTVIAMALTSQEQRAGFPLTYEILKSSLPKRSWVKISQIR
TLSTERIGKKIGAIAPEELAQIVEGLNEIIGS
>gi I 30249286 I ref |NP_841356.11 [Nitrosomonas europaea ATCC 19718]
MNSHRGQMMSKDATALLHVTCVFRHNVACNASGGLHMGTTHVNARVKKHRDTLRMAGLRPVQIWVPDTRRPDFAEECRRQ CLLIAQADKADTSMQQFMDEALADSDGWTE >gi I 30249285 I ref |NP_841355.11 [Nitrosomonas europaea ATCC 19718]
MIRGDLVTIAVPGDFGKPGFALVIQANLFSEHTSVTVLPVTSMLVAAPLLRITVQPGAENGLQKPSQVMVDKIITVKRDK VGPVLGCIDPDTMVEIERCLAVFLGIAK
>gi 116130690 I ref |NP_417263.11 suppressor of inhibitory function of ChpA, Peml-like, autoregulated [Escherichia coli K12]
MIHSSVKRWGNSPAVRIPATLMQALNLNIDDEVKIDLVDGKLIIEPVRKEPVFTLAELVNDITPENLHENIDWGEPKDKE V >gi|16130689|ref |NP_417262.1| probable growth inhibitor, PemK-like, autoregulated [Escherichia coli K12]
MVΞRYVPDMGDLIWVDFDPTKGSEQAGHRPAWLSPFMYNNKTGMCLCVPCTTQSKGYPFEWLSGQERDGVALADQVKS lAWRARGATKKGTVAPEELQLIKAKINVLIG
>gi| 16132046 |ref |NP_418645.11 suppressor of inhibitory function of ChpB, Peml-like, autoregulated [Escherichia coli K12]
MQMRITIKRWGNSAGMVIPNIVMKELNLQPGQSVEAQVSNNQLILTPISRRYSLDELLAQCDMNAAELSEQDVWGKSTPA GDEIW
>gi|l6132047|ref |NP_418646.1| probable growth inhibitor, PemK-like, autoregulated [Escherichia coli K12]
MVKKSEFERGDIVLVGFDPASGHEQQGAGRPALVLSVQAFNQLGMTLVAPITQGGNFARYAGFSVPLHCEEGDVHGWLV NQVRMMDLHARLAKRIGLAADEWEEALLRLQAWE
>gi|l5832897|ref |NP_311670.1| suppressor of ChpA inhibitory function [Escherichia coli 0157 :H7] MIHSSVKRWGNSPAVRIPATLMQALNLNIDDEVKIDLVDGKLIIEPVRKEPVFTLAELVNDITPENLHENIDWGEPKDKE VW
>gi 115832896 I ref |NP_311669.11 PemK-like cell growth regulatory protein ChpA [Escherichia coli 0157 :H7] MVSRYVPDMGDLIWVDFDPTKGSEQAGHRPAWLSPFMYNNKTGMCLCVPCTTQSKGYPFEWLSGQERDGVALADQVKS IAWRARGATKKGTVAPEELQLIKAKINVLIG
>gi 115834456 I ref |NP_313229.11 suppressor of inhibitory function of ChpB [Escherichia coli 0157 :H7]
MQMRITIKRWGNSAGMVIPNIVMKELNLQPGQSVEVQVSNNQLILTPISRRYSLDELLAQCDMNAAELSEQDVWGKSTPA
GDEIW
>gi 115834457 I ref |NP_313230.1] probable growth inhibitor [Escherichia coli 0157:H7]
MVKKSEFERGDIVLVGFDPASGHEQQGAGRPALVLSVQAFNQLGMTLVAPITQGGNFARYAGFSVPLHCEEGDVHGWLV NQVRMMDLRARLAKRIGLAADEWEEALLRLQAWE
>gi 115803304 I ref |NP_289337.11 suppressor of inhibitory function of ChpA, Peml-like, autoregulated [Escherichia coli 0157 :H7 EDL933]
MIHSSVKRWGNSPAVRIPATLMQALNLNIDDEVKIDLVDGKLIIEPVRKEPVFTLAELVNDITPENLHENIDWGEPKDKE VW
>gi|l5803303 |ref |NP_289336.1| probable growth inhibitor, PemK-like, autoregulated [Escherichia coli 0157 :H7 EDL933]
MVSRYVPDMGDLIWVDFDPTKGSEQAGHRPAWLSPFMYNNKTGMCLCVPCTTQSKGYPFEWLSGQERDGVALADQVKS IAWRARGATKKGTVAPEELQLIKAKINVLIG
>gi | 15804815 | ref |NP_290856.1 | suppressor of inhibitory function of ChpB, Peml-like, autoregulated [Escherichia coli 0157 :H7 EDL933]
MQMRITIKRWGNSAGMVIPNIVMKELNLQPGQSVEVQVSNNQLILTPISRRYSLDELLAQCDMNAAELSEQDVWGKSTPA GDEIW >gi 115804816 I ref |NP_290857.11 probable growth inhibitor, PemK-like, autoregulated [Escherichia coli 0157 :H7 EDL933]
MVKKSEFERGDIVLVGFDPASGHEQQGAGRPALVLSVQAFNQLGMTLVAPITQGGNFARYAGFSVPLHCEEGDVHGWLV NQVRMMDLRARLAKRIGLAADEWEEALLRLQAWE
>gi ] 24114677 I ref |NP_709187.11 AGR_C_1711p [Agrobacterium tumefaciens] [Shigella flexneri 2a str. 301]
MQTVKLRQQGGAMIVTIPRDLAIDLGWSPGTELTVEKKGDSVNLRATEHKPRGRLTVAQLLSQIDESEITELNQSTEGWA EGKKGNEAW
>gi I 24114678 |ref |NP_709188.11 PemK protein [Shigella flexneri 2a str. 301] MVKARTPHRGEIWYFNPDPVAGHELQGPHYCIVVTDKKLNNVLKVAMCCPISTGANAARSTGVTVNVLPRDTQTGNLHGV VLCHQLKAVDLIARGAKFHTVADEKLISEVISKLVNLIDPQ
>gi|l583846l|ref |NP_299149.l| protein [Xylella fastidiosa 9a5c] MTSTHRPDSKIVHHREQMRAAGLRPVQLWVPDTRTPEFAAEIQSQCRALKGDQAEADALRFTEKAMTHIEDWK >gi 115838460 I re |NP_299148.11 [Xylella fastidiosa 9a5c] MEMIQRGDLVTVSLQGDYGKPRPALIVQSDLLTELDSVALCPVTSDLRNAIFRVTVEPTAANGLRTLSQVMVDKISTLPR NKISEPFGRLNDERMKAIERALLLIIGII
>gi|26987506|ref |NP_742931.l| Peml-like protein [Pseudomonas putida KT2440]
MQIKIQQWGNSAAIRLPAAVLKQMRLGVGSTLSLDTTGETMVLKPVRSKPKYTLEELMAQCDLSAPEPEDMADWNAMRPV
GREV
>gi I 26987507 I ref |NP_742932.11 transcriptional regulator, PemK family [Pseudomonas putida KT2440] MKRLKFARGDIVRVNLDPTVGREQQGSGRPALVLTPAAFNASGLAVIIPITQGGDFARHAGFAVTLSGAGTQTQGVMLCN
QVRTVDLEARFAKRIESVPEAVILDALARVQTLFD
>gi I 24214480 |ref |NP_711961.11 probable ppGpp-regulated growth inhibitor suppressor ChpR/ MazE [Leptospira interrogans serovar lai str. 56601]
MESIIQKWGNSLGIRIPKAMATELELNDGSHVELQYEGDKIVIYPMKKASLEDKLSKITKQNLHSEISTGNSIGNEAW >gi I 242144811 ref |NP_711962.11 probable ppGpp-regulated growth inhibitor ChpA/MazF [Leptospira interrogans serovar lai str. 56601] MVKNRNYTPEKGDIVWLNFTPQAGHEQKGRRPALVLSPKEYNSKTGLAIFCPITSKIKGYPFEVLIKSKKIDGVILSDQV KNLDWTIREAEFIESINKVSLKEVLDNIKLLIF
>gi|24215544 |ref |NP_713025.l| Chpl protein [Leptospira interrogans serovar lai str.
56601]
MKTAISIPDELFRAAEKIAKKLGIPRSQLFAKALEEFIQSHSKESVTEKLNKIYSNKΞKETRNNITDLSVESLRKSLKND
SW
>gi 124215543 I ref |NP_713024.1| chpK [Leptospira interrogans serovar lai str. 56601] MIRGEIWWVDLGIPFGSEPGFKRPVLIIQDDSFNQSNINTIVSIAITSNLNLSEAPGNVFISKKDSSLSKDSVINVSQIV
TLDKERFLNKAGKLKSNKLGEVEIGLKLVTGLD >gi 115805443 |ref |NP_294139.11 ppGpp-regulated growth inhibitor suppressor ChpR/MazE, [Deinococcus radiodurans]
MTSQIQKWGNSLALRIPKALAQQVGLTQSSEVELLLQDGQIVIRPVPARQYDLAALLAEMTPENLHGETDWGALEGREEW >gi 115805444 I ref |NP_294140.11 ppGpp-regulated growth inhibitor ChpA/MazF, [Deinococcus radiodurans]
MVSDYVPDAGHLVWLNFTPQAGHEQGGRRPALVLSPAAYNGVTGLMQACPVTSRAKGYPFEVTLPAHLGVSGWLADHCR SLDWRSRRAEQLAEAPADVLAEVRGKLGSLLGMSEKA
>gi 115805688 I ref |NP_294384.11 protein [Deinococcus radiodurans] MTYQNAERMTISLPPDIARYIKDYQQTHGLESRSEAFVKAVQALREQELAEQYTALARENDPERALFLEGNTDGLEPΞDG SEWL
>gi|l5805689|ref |NP_294385.1| [Deinococcus radiodurans] MAVGLIRRGDIFLTHFGPARAGEPDFKRPAWITNNVANAKADAVTVIPLTSNLETLYDFQLLLPTERTGLNLDSKAQTE LISCIAISRIGKHLGQVPADLMAELDARIRLHLAL
The following sequences were found in a later supplementary search:
>mazE|28209834:c2670080-2670397, length 116, Clostridium_tetani_E88, MazE MAGSKRVGVSLSETLNNEFNKALKEDSKKRSEFIRELIILYIEDKKKLREIEQMKKGYLE MGKLNLEIAEVGFASDINSLKEYEAKLSESDWSDDNDSEKRRYILC
>mazF|28209834:c2669764-2670117, length 118, Clostridium_tetani_E88, MazF MTTIVKRGDI YYASLSPWG SEQGGIRPVI IIQNDVGNRY SPTVIVAAITSQ INKAKLPTHV EISSEEYGLN KDSWLLEQI RTLDKRRLKE KIGRMTNGDM RKVDDALLVSIG LKEK
>mazE| 15607142 :c547345-547515, length 57, Mycobacterium_tuberculosis_H37Rv, mazE MTTYYYVLLSVTTWVGLRHEAKRELVYRGRRSIGRMPREWACRRSRRFAANGVDAAR >mazF 115607142 :c547077-547355, length 93, Mycobacterium_tuberculosis_H37Rv, mazF MLRGEIWQVDLDPARGSAANMRRPAVIVSNDRANAAAIRLDRGWPWPVTSNTEKVPIP GWAGΞERWPGRRFEGAGPAGWIRRCATSPLPS
>mazF|l5607142:2320829-2321059, length 77, Mycobacterium_tuberculosis_H37Rv, mazE MSTSTTIRVSTQTRDRLAAQARERGISMSALLTELAAQAERQAIFRAEREASHAETTTQA VRDEDREWEGTVGDGLG
>mazF| 15607142:2321055-2321462, length 136, Mycobacterium_tuberculosis_H37Rv, mazF MAEPRRGDLWLVSLGAARAGEPGKHRPAVWSVDELLTGIDDELWWPVSSSRSRTPLR PPVAPSEGVAADSVAVCRGVRAVARARLVERLGALKPATMRAIENALTLILGLPTGPERG EAATHSPVRWTGGRDP
Homologues of ccdAB toxin-antitoxin system polypeptides >gi | 30249070 | ref |NP_841140 . 1 | [Nitrosomonas europaea ATCC 19718 ]
MPTIQSVRRTQSGRPGKRAINLSLSADVLDAARQLDINISQVCDTYLREWRHEQERRWREEHADFITAYNATIEAENLP
LDEWRSF
>gi|30249069|ref |NP_841139.1| CcdB-like protein [Nitrosomonas europaea ATCC 19718]
MARFDVYVNPGSHAATTPYLLDVQSDLLDVLDSCMVIPLRSLEHFPKVKLPGRLTPWTIKGQDFLLETPKMGAIPRRLL TMPVLSLRDMQPEITSALDFLFHGY
>gi|26245972 |ref |NP_752011.l| antitoxin of gyrase inhibiting toxin-antitoxin system [Escherichia coli CFT073]
MTAKRTTQSVTVTVDRELVNRARDAGLNMSATLTVALNAELKKHAATRWREENAEAIAALNQLADETGCFSDEYRSF >gi I 26245973 | ref |NP_752012.11 toxin of gyrase inhibiting toxin-antitoxin system [Escherichia coli CFT073]
MQFTVYRSRGRNAAFPFVIDVTSDIIGEINRRIVIPLTPIERFSRIRPPERLNPILLLVDGKEYVLMTHETATVPVNALG TKFCDASAHRTLIKGALDFMLDGI >gi 115829306 I ref |NP_308079.11 CcdA-like protein [Escherichia coli 0157 :H7]
MTAKRTTQSVTVTVDRELVNRARDAGLNMSATLTVALNAELKKHAATRWREENAEAIAALNQLADETGCFSDEYRSF >gi 115829307 I ref |NP_308080.11 CcdB-like protein [Escherichia coli 0157:H7] MQFTVYRSRSRNAAFPFVIDVTSDIIGVINRRIVIPLTPIERFSRIRPPERLNPILLLVDGKEYVLMTHETATVPVNALG TKFCDASAHRTLIKGALDFMLDGI
>gi 115799732 |ref |NP_285744.11 antitoxin of gyrase inhibiting toxin-antitoxin system [Escherichia coli 0157 :H7 EDL933]
MTAKRTTQSVTVTVDRELVNRARDAGLNMSATLTVALNAELKKHAATRWREENAEAIAALNQLADETGCFSDEYRSF >gi 115799733 |ref |NP_285745.11 toxin of gyrase inhibiting toxin-antitoxin system [Es- cherichia coli 0157 :H7 EDL933] MQFTVYRSRSRNAAFPFVIDVTSDIIGVINRRIVIPLTPIERFSRIRPPERLNPILLLVDGKEYVLMTHETATVPVNALG TKFCDASAHRTLIKGALDFMLDGI
>gi 1 1230189 I re |NP_636106.11 [Xanthomonas campestris pv. campestris str . ATCC 33913 ]
MTMRIHAHSVRMISroGMPIMSRYYDTSAQKKPLNLTINSDLAAQARAMTGNLSAKVEELLADYVTKERDΞHSARAMELQRA ASEWKTFTDAHGSFADEFSTL
>gi 121230188 I ref |NP__636105 . l | [Xanthomonas campestris pv. campestris str . ATCC 33913 ] MTDQFDVYANVGQNKNIPYWWQSKIFDASPRRVWPLVRKSTHSPTPSRFTPELTVSGHSVILQPLEMTSVPLAALSK
PAGΞLKDQGQTIIDALDELFTRSFG
Key to Sequence data
SEQ ID NO: 1-2: RelBE polypeptide sequences published in Gotfredsen M, Gerdes
K. The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol Microbiol. 1998 Aug;29(4): 1065-76.
SEQ ID NO: 3-4: RelBE polypeptide sequences published in Gronlund H, Gerdes K. Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. J Mol Biol. 1999 Jan 29;285(4):1401-15.
SEQ ID NO: 5-16: RelBE polypeptide sequences published in Christensen SK, Gerdes K. RelE toxins from bacteria and Archaea cleave mRNAs on translating ri- bosomes, which are rescued by tmRNA. Mol Microbiol. 2003 Jun;48(5): 1389-400. SEQ ID NO: 17-97: RelE toxin polypeptide core sequences, characterised in that said sequences produce an E value of 10"10 or less when compared to one or more of SEQ ID: 2, 4, 6, 8, 10, 12, 14 and/or 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
SEQ ID NO: 98-103: VapBC sequences published in Radnedge L, Davis MA, Youn- gren B, Austin SJ. "Plasmid maintenance functions of the large virulence plasmid of Shigella flexneri". J Bacteriol. 1997 Jun; 179(11):3670-5.
SEQ ID NO: 104-105: VapBC sequences published in Pullinger GD, Lax AJ. "A Salmonella dublin virulence plasmid locus that affects bacterial growth under nutrient-limited conditions" Mol Microbiol. 1992 Jun;6(12):1631-43 SEQ ID NO: 106-154: VapC toxin polypeptide core sequences, characterised in that said sequences produce an E value of 10"10 or less when compared to one or more of SEQ ID: 99, 101 , 103 and/or 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
SEQ ID NO: 155-156: MazEF sequences published in Bravo et al., 1987 "Kis/Peml antitoxin of R1/R100" SEQ ID NO: 157-160: MazEF sequences published in Masuda et al., 1993.
SEQ ID NO: 161-205: MazF toxin polypeptide core sequences, characterised in that said sequences produce an E value of 10"10 or less when compared to one or more of SEQ ID: 155 and/or 160, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
SEQ ID NO: 206-207: parDE sequences published in Roberts RC, Helinski DR. "Definition of a minimal plasmid stabilization system from the broad-host-range plasmid RK2" J Bacteriol. 1992 Dec; 174(24):8119-32.
SEQ ID NO: 208-219: ParE toxin polypeptide core sequences, characterised in that said sequences produce an E value of 10~10 or less when compared to SEQ ID: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein. SEQ ID NO: 220-221 : higBA sequences published in Tian QB, Ohnishi M, Tabuchi
A, Terawaki Y. A new plasmid-encoded proteic killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem Biophys Res Commun. 1996 Mar 18;220(2):280-4. SEQ ID NO: 222-240: HigB toxin polypeptide core sequences, characterised in that said sequences produce an E value of 10"10 or less when compared to SEQ ID: 221 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
SEQ ID NO: 241-242: Phd/Doc sequences published in Lehnherr H, Maguin E, Jafri S, Yarmolinsky MB. Plasmid addiction genes of bacteriophage P1 : doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J Mol Biol. 1993 Oct 5;233(3):414-28. SEQ ID NO: 243-257: Doc toxin polypeptide core sequences, characterised in that said sequences produce an E value of 10~10 or less when compared SEQ ID: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
SEQ ID NO: 258-259: CcdAB sequences published in Miki T, Yoshioka K, Horiuchi T. Control of cell division by sex factor F in Escherichia coli. I. The 42.84-43.6 F segment couples cell division of the host bacteria with replication of plasmid DNA. J Mol Biol. 1984 Apr 25;174(4):605-25. SEQ ID NO: 260-263: CcdB toxin polypeptide core sequences, characterised in that said sequences produce an E value of 10"10 or less when compared to SEQ ID: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein. SEQ ID NO: 1
RelB of E. coli K-12 has experimentally verified antitoxin activity: >gi 116129523 I ref |NP_416082.11 negative regulator of translation [Escherichia coli K12]
MGSINLRIDDELKARSYAALEKMGVTPSEALRLMLEYIADNERLPFKQTLLSDEDAELVEIVKERLRNPKPVRVTLDEL
SEQ ID NO: 2
RelE of E. coli K-12 has experimentally verified toxin activity: >gi | 16129522 | ref |NP_416081.1 | orf, hypothetical protein [Escherichia coli K12]
MAYFLDFDERALKEWRKLGSTVREQLKKKLVEVLESPRIEANKLRGMPDCYKIKLRSSGYRLVYQVIDEKWVFVISVGK RERSEVYSEAVKRIL
SEQ ID NO: 3 RelB of E. coli plasmid P307 (ORF7) has experimentally verified antitoxin toxin activity: >gi | 516610 mpniilsdts asvselkknp matvsagdgf pvailnrnqp afycvpaely ekmldalddg elvklvaers ngplhdvdld kyl
SEQ ID NO: 4
RelE of E. coli plasmid P307 (ORF6) has experimentally verified toxin activity: >gi I 516611 mryqykfred alkewgkldk aiqqgfakkl kkccdnphip saklrgikdc ykiklrasgf rlvyqvideg liiawavgk rersdvynla sermr
SEQ ID NO: 5
RelB#2 of M. jannaschii predicted from DNA sequence, Length 53. MRLKKRFKKF FISRKEYEKI EEILDIGLAK AMEETKDDEL LTYDEIKELL GDK Length: 88
Figure imgf000369_0001
SEQ ID NO: 7
RelB#3 of M. jannnaschii predicted from DNA sequence, Length: 61 MΞIVQSYITD EKGNIKGVIL DYKTFKKIEE LLLDYGLLKA MEEVENEEEI DLETAKKLLE Q Length: 91
Figure imgf000369_0002
sequence. Length: 84 eyaefllede lkpeyiekir
Figure imgf000369_0003
Length: 94
Figure imgf000369_0004
dfkrvhidks fvlvftvden nktvifvdfd hhdniykkkk lfkd Length 100
Figure imgf000369_0005
deydarvadl ayqeyledle kgvepitwee mmhdlglkde
SEQ ID NO: 12
RelE#2 of Streptococcus pneumoniae R6, exp. verified toxin activity, Length: 87 >gi|l5903146 MNNLYKLVPT RRFIKQLKKL DRYTQKLITN YLQTNVLEDP RRHGKALVGN RVGQWRYRIG NYRVIVQIVD DELWATLEV GHRRDIY From Grady R, Hayes F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol Microbiol. 2003 Mar;47 (5) :1419-32.
SEQ ID NO: 13
RelB/Axe of plasmid pRUM of Enterococcus faecium, antitoxin, Length 89
>gi|32470465 meavaysnfr qnlrsymkqv nedaetlivt skdvedtwv Iskrdydsmq etlrtlsnny vmekirrgde qfskgafkt dlievesdd
SEQ ID NO: 14
RelE/Txe of plasmid pRUM of Enterococcus faecium, toxin, Length 85 >gi|32470464 mikawsddaw ddylywheqg nksnikkink likdidrspf aglgkpeplk hdlsgkwsrr itdehrliyr venetifiys akdhy
SEQ ID NO: 15
RelBIII/YefM of E. coli K-12, antitoxin, Length 83 (or 92)
Figure imgf000370_0001
nlsatmmkav edhapilitr qngeacvl s leeynsleet ayllrspana rrlmdsidsl ksgkgtekdi ie
SEQ ID NO: 16
RelEIII/YoeB of E. coli K-12, toxin, Length 84 >gi|l6127994:c2087233-2087487
MKLIWSEESWDDYLYWQETDKRIVKKINELIKDTRRTPFEGKGKPEPLKHNLSGFWSRRI TEEHRLVYAVTDDSLLIAACRYHY
RelE core sequences;
SEQ ID NO: 17
>gi 111498679 I ref |NP_069907.11 conserved hypothetical protein [Archaeoglobus fulgidus
DSM 4304]
MAWKVRYHKKAIKFLEKLDEGKRSILLSKIQELVNSLESGVLPIQRMDIKRLKGVWDGFLRLRVGEVRIIFKINVEDETI
FIYSIHFREKVY
SEQ ID NO: 18
>gi 111498684 I ref |NP_069912.1 ] hypothetical protein [Archaeoglobus fulgidus DSM 4304]
MNEvLIHKKFLDGLDSGRRSKVLDAIRMLKDFPIIRADIKKIGPKTYRLRKGEIRIIFDFDIGTNRVFVKFAASEGVFTK
TEEKFF
SEQ ID NO: 19
>gi 111498693 I ref |NP_069922.11 conserved hypothetical protein [Archaeoglobus fulgidus DSM 4304] MNYKAQFSEEFLKIAKKLKEKDPELLKRLQSKVEEIIKQPEHYKPLRGQMKGLRRAHVGKFVIIFKVEEDTVKFVTFKHH NHAYK
SEQ ID NO : 20
>gi | ll499923 | ref | NP_071167 .1 | conserved hypothetical protein [Archaeoglobus fulgidus DSM 4304]
MFRVWHRKATQELKRLKKAHLKKFGVLLETLKTDPIPWKRFDVKKIEGEENTYRIRIGDFRVIYFLDKPTKTVHILKVE RRGKVYD
SEQ ID NO : 21 >gi 1 14590322 I re | NP_142388 .1 1 hypothetical protein [Pyrococcus horikoshii]
MTYRVKIHKQWKALQSLPKAHYRRFLEFRDILEYEPVPREKFDVIKLEGTGDLDLYRARLGDYRVIYSVNWKDKVIKIL KLKPRGRAYK
SEQ ID NO : 22 >gi 1 14590326 I ref |NP_142392 .1 1 hypothetical protein [Pyrococcus horikoshii]
MKFEVIILPKVSKKSKKYLSKSQLEKLSKFFKTLEFDPLPVERYDVKPVKGKRSEIGKGKLYRFRIGDYRVFYTILWDEK AWIVDIKSREKAYKK
SEQ ID NO : 23 >gi 1 15601088 I re | NP_232719 . l | conserved hypothetical protein [Vibrio cholerae]
MSLLKAKLSMYKLEYSTQFKKDFKKITKMPISDIIEVGNVISKLQRGEKLEPKNVDHPLTGNWVGFRDCHIKPDLVLIYR VFNDQLQLARIGSHSDLF
SEQ ID NO : 24 >gi 1 15601207 I ref |NP_232838.1 1 relE protein [Vibrio cholerae]
MTYKLEFKKSALKEWKKLAVPLQQQFKKKLIERLENPHVPSAKLSGAENIYKIKLRQSGYRLVYQVENDIIWTVLAVGK RERSEVYTKALQRLDD
SEQ ID NO : 25 >gi|l5601239 |ref |NP_232870.1| conserved hypothetical protein [Vibrio cholerae]
MMTYKLKFLPAAQKEWSKLAPTIQSQFKKKLKERLENPHVPSAKLRGYDAVYKIKLRTAGYRLAYEVIDDEIWYVLAVG
KRDKDAVYKKLASRFG
SEQ ID NO: 26
>gi|l5608386|ref |NP_215762.l| hypothetical protein Rvl246c [Mycobacterium tuberculosis H37Rv]
MΞDDHPYHVAITATAARDLQRLPEKIAAACVEFVFGPLLNNPHRLGKPLRNDLEGLHSARRGDYRWYAIDDGHHRVEII HIARRSASYRMNPCRPR
SEQ ID NO: 27
>gi | 15610003 |ref |NP_217382.1 | hypothetical protein Rv2866 [Mycobacterium tuberculosis
H37RV]
MPYTVRFTTTARRDLHKLPPRILAAWEFAFGDLSREPLRVGKPLRRELAGTFSARRGTYRLLYRIDDEHTTWILRVDH
RADIYRR
SEQ ID NO: 28
>gi 115610494 I ref |NP_217875.1 1 hypothetical protein Rv3358 [Mycobacterium tuberculosis H37Rv] MRSVNFDPDAWEDFLFWLAADRKTARRITRLIGEIQRDPFSGIGKPEPLQGELSGYWSRRIDDEHRLVYRAGDDEVTMLK
ARYHY
SEQ ID NO: 29
>gi 115611892 I ref |NP_223543.11 putative [Helicobacter pylori J99] MLEIELKKKFTKDLKKHILNQKIELEVFDLWENLRNQIPLDKRFKDHALSGTYKGCRERHIKPDVLLVYRVKGNVLTLV RLGSHSELFCKPPTPLITLK
SEQ ID NO: 30
>gi 115611898 I ref |NP_223549.11 putative [Helicobacter pylori J99] MLTIETSKKFDKDLKILVKNGFDLKLLYKWGNLATEQPLEPKYKDHPLKGALKDFRECHLKPDLLLVYQIKKQENTLFL VRLGSHSELF
SEQ ID NO: 31
>gi| 15645510 |ref ]NP_207685.1 I conserved hypothetical protein [Helicobacter pylori 26695]
MLTIETSKKFDKDLKILVKNGFDLKLLYKWGNLATEQPLAPKYKDHPLKGGLKDFRECHLKPDLLLVYQIKKQENTLFL VRLGSHSELF
SEQ ID NO: 32 >gi ] 15645512 I ref |NP_207687.11 conserved hypothetical protein [Helicobacter pylori 26695]
MLKLNLKKSFQKDFDKLLLNGFDDSVLNEVILTLRKKEPLDPQFQDHALKGKWKPFRECHIKPDVLLVYLVKDDELILLR LGSHSELF SEQ ID NO: 33
>gi 115668242 |ref|NP_247035.11 conserved hypothetical protein [Methanococcus jannaschii]
MKFNVEIHKRVLKDLKDLPPSNLKKFKELIETLKTNPIPKEKFDIKRLKGSDEVYRVRIGKFRVQYWLWDDRIIIIRKI SRREGAYKNP
SEQ ID NO: 34
>gi|15799930|ref |NP_285942.1| Z0284 gene product [Escherichia coli 0157:H7 EDL933]
MNKLKYLMTLLINNTLPLPAVYKDHPLQGSWKGYRDAHVEPDWILIYKLTDKLLRFERTGTHAALFG SEQ ID NO: 35
>gi 115829506 |ref |NP_308279.11 hypothetical protein [Escherichia coli 0157:H7] MNSGQFSKDVKLAQKRHKDMNKLKYLMTLLINNTLPLPAVYKDHPLQGSWKGYRDAHVEPDWILIYKLTDKLLRFERTGT HAALFG
SEQ ID NO: 36 >gi 1158303211 ref |NP_309094.11 hypothetical protein [Escherichia coli 0157:H7]
MLPILWLPSARDDLRQIITYIAKENPPAARRLKIRIETSVLPLSEHPYLYPPSERVSGLREIVTHPNYIILYRVAASSIE IVSVTHSRRQFPFSI
SEQ ID NO: 37 >gi 115831535 I ref |NP_310308.11 hypothetical protein [Escherichia coli 0157:H7]
MLPVLWLESADTDLDDITSYIARFDIDAAERLWQRLRGCVLPLSEHPYLYPPSDRVPGLREIVAHPNYIILYRVTTSSVE WNVIHARRQFP
SEQ ID NO: 38 >gi 115838657 I ref |NP_299345.11 conserved plasmid protein [Xylella fastidiosa 9a5c] MAKAKTPYRIKWRPKASEDLRDIVRYIGKNNPTRARSFGQELRDKTLPLAQHPEIGRTGRPGLPDYVRELVTHRNYIVFY RVLDETRTVEILRVKHVAQQMP
SEQ ID NO: 39 >gi | 15838671 | ref |NP_299359.1 | conserved hypothetical protein [Xylella fastidiosa 9a5c]
MREIKQLGQFKRDLKREAKGQHRATLEDDLLPVIDALAKDMPLEPRHRDHALLGNWKDLRDCHIKLDLVLIYTRVDSKTL TLVRLGSHAELGL
SEQ ID NO: 40
>gi|l584069l|ref |NP_335728.l| hypothetical protein [Mycobacterium tuberculosis CDC1551]
MTWRPSRKRWRCYAPLAPARPFVKASPMLPQALREQRRDPQPLHRAVSDDHPYHVAITATAARDLQRLPEKIAAACVEFV FGPLLNNPHRLGKPLRNDLEGLHSARRGDYRWYAIDDGHHRVEIIHIARRSASYRMNPCRPR
SEQ ID NO: 41
>gi 115842954 |ref |NP_337991.11 conserved hypothetical protein [Mycobacterium tuberculosis CDC1551] MRSVNFDPDAWEDFLFWLAADRKTARRITRLIGEIQRDPFSGIGKPEPLQGELSGYWSRRIDDEHRLVYRAGDDEVTMLK ARYHY
SEQ ID NO: 42
>gi | 15888017 | ref |NP_353698.1 | AGR_C_1206p [Agrobacterium tumefaciens] MIWTIEYHTLVQKEMRKINPEVRRRIRΞFLHERLAALDDPRQIGATLQGSELGNFWRYRVGDYRIICDIQDQKLWLWE IGHRREIYR
SEQ ID NO: 43
>gi 115888273 I ref |NP_353954.11 AGR__C_1701p [Agrobacterium tumefaciens] MTNKKDHGKDAALKRATLPRRSDFTKQFIKDWQRLNNSGRYDMVRLKEIMLLLIANGAPLPTQFRDHELTGDWRDHRECH VGGDFLLIYTVDEKQNLLIFTRAGTHAELFR
SEQ ID NO: 44
>gi 115889305 I ref |NP_354986.11 AGR_C_3658p [Agrobacterium tumefaciens] MKLVWTLSSWDDYEFWQRTDARMVEKINDLIRNAKRTPFAGLGKPEPLKGDMAGYWSRRITAEHRFVYRVSGSGΞEQRLE VIQCRFHYQ
SEQ ID NO: 45
>gi| 15900210 |ref |NP_344814.l| conserved hypothetical protein [Streptococcus pneumo- niae TIGR4]
MLKIRYHKQFKKDFKLAMKRGLKAELLEEVLNFLVQEKEHPARNRDHSLTASKHFQGVRECHTQPDWLLVYKVDKSELIL NLLRTGSHSDLF
SEQ ID NO: 46 >gi| 15901085 I ref |NP_345689.11 conserved hypothetical protein [Streptococcus pneumoniae TIGR4]
MYKLVPTRRFIKQLKKLDRYTQKLITNYLQTNVLEDPRRHGKALVGNRVGQWRYRIGNYRVIVQIVDDELWATLEVGHR RDIY SEQ ID NO: 47
>gi 115901572 |ref |NP_346176.l| conserved hypothetical protein [Streptococcus pneumoniae TIGR4]
MLLKFTEDAWADYCYWQNQDKKTLKRINKLIKDIQRDPFTGIGKPEPLKYDYQGAWΞRRIDAENRLIYMMDGDSVAFLSF KDHY
SEQ ID NO: 48
>gi 115902297 I ref |NP_357847.11 Conserved hypothetical protein [Streptococcus pneumoniae R6]
MLKIRYHKQFKKDFKLAMKRGLKAELLEEVLNFLVQEKEHPARYRDHSLTASKHFQGVRECHTQPDWLLVYKVDKSELIL NLLRTGSHSDLF
SEQ ID NO: 49
>gi|l5903146 |ref |NP_358696.l| Hypothetical protein [Streptococcus pneumoniae R6] MNNLYKLVPTRRFIKQLKKLDRYTQKLITNYLQTNVLEDPRRHGKALVGNRVGQWRYRIGNYRVIVQIVDDELWATLEV GHRRDIY
SEQ ID NO: 50
>gi 115903627 ] ref |NP_359177.11 Conserved hypothetical protein [Streptococcus pneumoniae R6] MLLKFTEDAWADYCYWQNQDKKTLKRINKLIKDIQRDPFTGIGKPEPLKYDYQGAWSRRIDAENRLIYMMDGDSVAFLSF KDHY
SEQ ID NO: 51
>gi| 15925397 |ref |NP_372931.l| conserved hypothetical protein [Staphylococcus aureus subsp. aureus Mu50]
MARLNITFSPQAFEDYKYFQQNNKKMVKKINELLKSIDRNGALEGIGKPEKLKSNLTGYYSRRINHEHRLVYTVDDNHIK IASCKYHY
SEQ ID NO: 52 >gi | 15927985 | ref ]NP_375518.1 | conserved hypothetical protein [Staphylococcus aureus subsp. aureus N315]
MARLNITFSPQAFEDYKYFQQNNKKMVKKINELLKSIDRNGALEGIGKPEKLKSNLTGYYSRRINHEHRLVYTVDDNHIK IASCKYHY
SEQ ID NO: 53
>gi|l5965227|ref |NP_385580.l| CONSERVED HYPOTHETICAL PROTEIN [Sinorhizobium meliloti]
MRFGYRRGLEFLPSARKEWDKLGATIRQQLVKKLRERLERPRIPSAALHGMPDHYKIKLRQLGYRLVYRVDDGSVTVLW
AVGKRERVTSTT
SEQ ID NO: 54
>gi 1161211911 ref ]NP_404504.11 hypothetical protein [Yersinia pestis]
MV VDWSRKAVKQLLSIDARYRKPISEKΛ∞KLTNFPAVDLDIKKLQMGDSQFRMRVGNYRVIFQIVEGTPVICTIQEVKR
RTTATY
SEQ ID NO: 55
>gi ] 161282111 ref |NP_414760.11 orf, hypothetical protein [Escherichia coli K12]
MIQRDIEYSGQYSKDVKLAQKRHKDMNKLKYLMTLLINNTLPLPAVYKDHPLQGSWKGYRDAHVEPDWILIYKLTDKLLR
FERTGTHAALFG
SEQ ID NO: 56
>gi | 16129522 | ref |NP_416081.l| orf, hypothetical protein [Escherichia coli K12]
MAYFLDFDERALKEWRKLGSTVREQLKKKLVEVLESPRIEANKLRGMPDCYKIKLRSSGYRLVYQVIDEKVVVFVISVGK
RERSEVYSEAVKRIL
SEQ ID NO: 57
>gi 1162726511 ref |NP_438869.11 hypothetical protein [Haemophilus influenzae Rd]
MSEEKPLKVSYΞKQFVRDLTDLAKRSPNVLIGSKYITAIHCLLNRLPLPENYQDHALVGEWKGYRDCHIQGDLVLIYQYV
IQDEFDELKFSRLNIHSQTALK
SEQ ID NO: 58
>gi 116332148 I ref |NP_442876.11 unknown protein [Synechocystis sp. PCC 6803]
MSNNLHLVNIDFTPEYRRΞLKYLAKKYRNIRSDVQPIIEALQKGVISGDRLAGFGΞDIYVYKLRIKNSNIQKGKSSGYRL
IYLLESENSILLLTIYSKAEQEDIAASDINSILGEYSIED
SEQ ID NO: 59
>gi 116763250 I ref |NP_458867.11 conserved hypothetical protein [Salmonella enterica subsp. enterica serovar Typhi]
MTYELEFDPRALKEWHKLGDTVKAQLKKKLADVLLNPRIDSARLNGLPDCYKIKLKSSGYRLVYQVRDDWIVFWAVGK REHSAVYHDANKRL
SEQ ID NO: 60
>gi 116764895 |ref |NP_460510.11 putative cytoplasmic protein [Salmonella typhimurium LT2] MTYKLAFNESALKEWKKLGHTIQEQFKKKLRERLENPRVPASQLHGRKDQYKIKLRGAGYRLVYSVEDEIITVTVIGVGK RENDAVYKMTRHRS
SEQ ID NO: 61
>gi 116766804 | ref |NP_462419.11 putative cytoplasmic protein [Salmonella typhimurium LT2]
MGQREIEYSGQFQKDVKRAQKRHKDVGKLKTLMTLLIHHPFPLPAIYKDHPLQGSYSGYRDAHIEPDWILIYKITDECLR FERTGTHADLF
SEQ ID NO: 62 >gi 116767696 | ref |NP_463311.11 putative inner membrane protein [Salmonella typhimurium LT2]
MTYELEFDPRALKEWHKLGDTVKAQLKKKLADVLLNPRIDSARLNGLPDCYKIKLKSSGYRLVYQVRDDWIVFWAVGK REHSAVYHDANKRL SEQ ID NO: 63
>gi 117227667 |ref |NP_484215.11 hypothetical protein [Nostoc sp. PCC 7120]
MFQPEFLEDLEFWVETNQRVALKALDLVKETCRDPFKGKGKPEPLKYLDPDTWSRRLTQEHRIVYLVKDDEINFLQARYH
Y SEQ ID NO: 64
>gi 117228895 I ref |NP_485443.11 hypothetical protein [Nostoc sp. PCC 7120] MPGDQIPGIGYTVFKLRVRNSDTQKGKSGGYRLIYYVKTATGIILLTVYTKSEQVDIAADDIQSIIADYEQRTLTEQDNS
SEQ ID NO: 65 >gi|l7231899|ref |NP_488447.1| hypothetical protein [Nostoc sp. PCC 7120]
MSYGTELMQΞDNTVSIRFSDEFEAELYRLSKRFRKIRSDVQPIIEQLQQGDFVGDRISGFGEEYFVYKVRVRNSNIQKGK SAGYRLIYQVDSPTNIVLLTIYSKSDREDIGANEIRDILADFYGDSG
SEQ ID NO: 66 >gi | 17547996 | ref |NP_521398.1 | CONSERVED HYPOTHETICAL PROTEIN [Ralstonia solanacearum]
MNAIHWTAWAARQLRKLDRQHQRVLVEAVGQLEAMPHCRQVRALREHRYGYRLRVGDYRVLSDWDDGIRIVDIQEVSKRD
ERTYRH
SEQ ID NO: 67
>gi 117934584 I ref |NP_531374.11 conserved hypothetical protein [Agrobacterium tumefaciens str. C58 (U. Washington)]
MIWTIEYHTLVQKEMRKINPEVRRRIRSFLHERLAALDDPRQIGATLQGSELGNFWRYRVGDYRIICDIQDQKLWLWE IGHRREIYR
SEQ ID NO: 68
>gi 117934842 |ref |NP_531632.l| conserved hypothetical protein [Agrobacterium tumefaciens str. C58 (U. Washington)]
MKRATLPRRSDFTKQFIKDWQRLNNSGRYDMVRLKEIMLLLIANGAPLPTQFRDHELTGDWRDHRECHVGGDFLLIYTVD EKQNLLIFTRAGTHAELFR
SEQ ID NO: 69
>gi | 17935903 |ref |NP_532693.1 | conserved hypothetical protein [Agrobacterium tumefaciens str. C58 (U. Washington)] MKLVWTLSSWDDYEFWQRTDARMVEKINDLIRNAKRTPFAGLGKPEPLKGDMAGYWSRRITAEHRFVYRVSGSGSEQRLE VIQCRFHYQ
SEQ ID NO: 70
>gi 119703556 |ref |NP_603118.11 Plasmid addiction system poison protein [Fusobacterium nucleatum subsp. nucleatum ATCC 25586]
MKYDVEYSKTAMNTIKKMDSSTSKLIRTWIEKNLINTENPRIKGKALTGDLKGLWRYRIGDYRILAEIQDDKIVILILDI GHRSKIYL
SEQ ID NO: 71 >gi| 19703832 |ref |NP_603394.1| Plasmid addiction system poison protein [Fusobacterium nucleatum subsp. nucleatum ATCC 25586]
MKKYEVKFSEAAIKELKKLDKPTATMIKLWVIQNLENTINPRQHGKSLTANYSGKWRYRVGNYRLLAEIYDDEILILIFK VAHRSIVYKK SEQ ID NO: 72
>gi 119704435 |ref |NP_603997.11 Plasmid addiction system poison protein [Fusobacterium nucleatum subsp. nucleatum ATCC 25586]
MGYRVMIPDKVNKKILKFDRNTRKLLYDYINKNLKDTDDPRLHGKALTGNLKGLWRYRIMDYRLIVDIQDEQLIIVAVDF NHRRKIYL
SEQ ID NO: 73
>gi | 20090546 | ref | NP_616621. 1 | conserved hypothetical protein [Methanosarcina acetivorans str . C2A]
MTYQWLΞPDFEKETKIFFKKDPVLYGRFKKTVNSILENPECGKPLRNVLKGLRRVHIGHFVLIYEIDNTNETITFLKFS PHDKAYK
SEQ ID NO: 74
>gi|20808431|ref |NP_623602.11 conserved hypothetical protein [Thermoanaerobacter tengcongensis] MRTCSKMYKVKLAKEAVKFTEKCNSNTKEKIKEAIEKIAQSPYVGKNIKKLKDKFPPLYRYRVGNIRIIYQIQKGEKIIF IVTIGYRGDVYK
SEQ ID NO: 75
>gi|20808956 | ref |NP_624127.1 | conserved hypothetical protein [Thermoanaerobacter tengcongensis]
MKFEYRIIVNKKVLKELEKHDRKTVERVIKAIEKLPFEGDVKKLKTSKKEKLYRLRVGDYRIIFEVDNENFVIKVKDFDS RGDVYK
SEQ ID NO: 76 >gi|21220707 |ref |NP_626486.1| conserved hypothetical protein [Streptomyces coelicolor A3 (2)]
MRITFTSHGWEDYVHWAESDRKVTKRINRLIADIARDPFKGVGKPEPLKGDLSGYWSRRIDDTHRLVYKPTDDQLVIVQA RYHY SEQ ID NO: 77
>gi|21284058 |ref ]NP_647146.1| conserved hypothetical protein [Staphylococcus aureus subsp. aureus MW2]
MARLNITFSPQAFEDYKYFQQNDKKMVKKINELLKSIDRNGALEGIGKPEKLKSNLTGYYSRRINHEHRLVYTVDDNHIK IASCKYHY
SEQ ID NO: 78
>gi|22538143 |ref |NP_688994.l| conserved hypothetical protein [Streptococcus agalactiae 2603V/R] MFNFTEEAWKDYVSWQQEDKKILKRINRLIEDIKRDPFEGIGKPEPLKYHYSGAWSRRITEEHRLIYMIEDGEIYFLSFR DHYK
SEQ ID NO: 79
>gi 124112920 I ref |NP_707430.11 orf, conserved hypothetical protein [Shigella flexneri 2a str. 301]
MAYFLDFDERALKEWRKLGΞTVREQLKKKLVEVLESPRIEANKLRGMPDCYKIKLRSSGYRLVYQVIDEKVVVFVISVGK RERSEVYSEAVKRIL
SEQ ID NO: 80 >gi 124113399 | ref |NP_707909.11 orf, conserved hypothetical protein [shigella flexneri 2a str. 301]
MKLIWSEESWDDYLYWQETDKRIVKKINELIKDTRRTPFEGKGKPEPLKHNLSGFWSRRITEEHRLVYAVTDDSLLIAAC RYHY SEQ ID NO: 81
>gi|24379348 |ref |NP_721303.1| conserved hypothetical protein [Streptococcus mutans UA159]
MLKIKQTRQFKKSLKKWKQGKDINKLFAIVELLCQKSELPLALRNHELKGRWRGIRELHIESDWLLAYQVLDDELVLLL IDTGSHAQMLGM
SEQ ID NO: 82
>gi|2624839l|ref |NP_754431.1| Hypothetical protein [Escherichia coli CFT073]
MKLIWSEESWDDYLYWQETDKRIVKKINEIIKDTRRTPFEGKGKPEPLKHNLSGFWSRRITEEHRLVYAVTDDSLLIAAC
RYHY
SEQ ID NO: 83
>gi I 26989658 |ref |NP_745083.1] conserved hypothetical protein [Pseudomonas putida KT2440]
MKFTKEGWEDYCHWQNADLTILGNINRLIDVCLRTPFTGIGKPEPLKGDLSGLWSRRITREHRLVYFFEAGMLTVLQCRY HYDD
SEQ ID NO: 84
>gi I 28867567 |ref|NP_790186.11 conserved hypothetical protein [Pseudomonas syringae pv. tomato str. DC3000] MHFTLSGWDDYTHWKDADQAISLSIDSLISQCLRTPFKGTGKPRPLTGDLTGYWSRRITKEHRLVYFYEGGVLTVIACRH HY
SEQ ID NO: 85
>gi I 28872495 I ref |NP_795114.11 stability cassette protein, putative [Pseudomonas sy- ringae pv. tomato str. DC3000]
MTYSLEFDARALKEWRKLGDTVRQQLKKKLATILVAPRVEANRLHALPDCYKIKLRSSGYRLVYQVIDQEVWFWAVDK RERDEVYRKAADRLSG
SEQ ID NO: 86 >gi I 28898594 I ref |NP_798199.1 ] hypothetical protein [Vibrio parahaemolyticus RIMD 2210633]
MMSSSQRLLΞWTDDAWDDYLYWQTQDKKTLKRINKLINDVKRSPFEGIGKPEPLKENLSGFWSRRIDDTNRLVYAVDDQA ITIIΞCRYHY SEQ ID NO: 87
>gi I 29144729 I ref |NP_808071.11 conserved hypothetical protein [Salmonella enterica subsp. enterica serovar Typhi Ty2]
MTYELEFDPRALKEWHKLGDTVKAQLKKKLADVLLNPRIDSARLNGLPDCYKIKLKSSGYRLVYQVRDDWIVFWAVGK REHSAVYHDANKRL
SEQ ID NO: 88
>gi I 293751411 ref |NP_814294.11 conserved hypothetical protein TIGR00053 [Enterococcus faecalis V583]
MLEIFYTNQFKKDFKKAKKQGKNLEKLKEVLVLLQEQQTLPPKYKDHALTGNYIGTRECHIEPDWLLIYKIDGDKLILTL
ARIGSHSELFR
SEQ ID NO: 89
>gi|29655275 |ref |NP_820967.l| conserved hypothetical protein [Coxiella burnetii RSA 493] MQISFTPEAWEDYLYWQKFDKKMLRRINELIKDAMHEPFSGKGKPEPLKFELQGYWSRRLDQEHRLVYKVLDDSLMIIAA RFHYNRLNSKN
SEQ ID NO: 90
>gi|29829747|ref |NP_824381.1| hypothetical protein [Streptomyces avermitilis MA-4680] MRLVFEDQGWEDYTSWLKNDRKMLARINRLIEDVKRDPFTGIGKPEPLKYHLPGVWSRRIDDEHRLVYLVTDKEWILAA RYHY
SEQ ID NO: 91
>gi|30063050|ref |NP_837221.1| hypothetical protein [Shigella flexneri 2a str. 2457T] MAYFLDFDERALKEWRKLGSTVREQLKKKLVEvLESPRIEANKLRGMPDCYKIKLRSSGYRLVYQVIDEKVVVFVISVGK RERSEVYSEAVKRIL
SEQ ID NO: 92 >gi 1302485671 ref |NP_840637.l] conserved hypothetical protein [Nitrosomonas europaea ATCC 19718]
MMKLFWTPEALQDRDAIYDYIEVDNPRAALALDELFSEKAQRLPDHPALGHPGRVAGTRELIAHQNYIIIYDVTGELVRV LRVLHAARQWPPSEND SEQ ID NO: 93
>gi]30248722|ref |NP_840792.1 | conserved hypothetical protein [Nitrosomonas europaea ATCC 19718]
MKLVFSEQAWEDYLYWQKTDRKTVQRIDTLVKEITRTPHEGTGKPEPLKHALSGYWSRRINNEHRIVYKIADDSLFIAQL RVTTV
SEQ ID NO: 94
>gi | 30249083 | ef |NP_841153.1 | conserved plasmid protein [Nitrosomonas europaea ATCC
19718]
MAEADLDNIIDYIAQDNPTRTEEFGQELRDKILPLTQNPKMGRTGRPGSSAFVRELVAHRNYIVFYRVLDEACTVEILRV K TTHHAAAQnQnS.ςS.ς
SEQ ID NO: 95
>gi|30249324 | ref |NP_841394.1 | conserved hypothetical protein [Nitrosomonas europaea
ATCC 19718]
MRAIRFVPDAWEAYLYWQDQDKKTLRRLNSLITAASRDPFVGIGKPEPLRGELSGYWΞRRIDETNRLVYRVTDVELVIIA
ΓHUHVK
SEQ ID NO: 96
>gi I 30249532 I ref |NP_841602.11 Protein of unknown function DUF79 [Nitrosomonas eu- ropaea ATCC 19718]
MTYKLKFLPSAKKEWDKLDSSIKTQFKNKLKKCLENPHIQPNKLRGFDNAYKIKLRSAGYRLVYEINNQEVWFVIAVGK RENNKIYDKAINRTKT
SEQ ID NO: 97 >gi|30249553 |ref ]NP_841623.l| hypothetical protein [Nitrosomonas europaea ATCC 19718] MTYKLEFKKSALKEWEKLGHTIKEQFKKKLKERLENPHVHSAALPGAKNIYKIKLRQPGYRLVYSVEDQTITVTVIAIGK RDRNEIYDIALSRLHDKS
SEQ ID NO: 98
STBORF1 of Shigella flexneri plasmid pMYSH6000, antitoxin. Length 75 >gi I 2109264 mettvflsnr sqavrlpkav alpenvkrve viavgrtrii tpagetwdew fdghsvstdf mdnreqpgmq eresf
SEQ ID NO: 99
ΞTBORF2 of Shigella flexneri plasmid pMYSH6000, toxin, Length 132 >gi I 2109263 mlkfmldtni ciftiknkpa svrerfnlnq gkmcissvtl meliygaeks qmpernlavi egfvsridvl dydaaaatht gqiraelarq grpvgpfdqm iagharsrgl iivtnntref ervgglrted ws
SEQ ID NO: 100 Hi0321 of H. influenzae, antitoxin, Length 78
Figure imgf000376_0001
rfdvdtveif rkengdwlr pvskktddfl alfegfdetf iqalearddl ppqerenl SEQ ID NO: 101
Hi0322 of H. influenzae, toxin, Length 134 '
Figure imgf000376_0002
iaervsqllp ndrlvmsfit yaelikgafg sqnyeqsira ielltervnv lypneqiclh ygkwantlkk qgrpignndl wfachalsln avlithnvke fqritdlqwq dwtk
SEQ ID NO: 102
Hi0948 of H. influenzae, antitoxin, Length 77
Figure imgf000376_0003
vrfseeikkl svrvsgsdri lsplnqswds fflndqavsd dfmnereiaf gpereal
SEQ ID NO: 103
Hi0947 of H. influenzae, toxin, Length 132 eilsrfnqna gkmcvssitv aelyygaeks eyperniavi gnikaelskq gkligendih iaaharsegl ilvsnnlref
Figure imgf000377_0001
SEQ ID NO: 104
Salmonella dublin virulence plasmid, antitoxin VagC >gi|49102, Length 100 mhtpgamnii pdmhhistlt rerimrtvsi fkngnnrair lprdldfegv seleivregd siilrpvrpt wgsfaqleka dpdfmaered wsdegrfel
SEQ ID NO: 105
Salmonella dublin virulence plasmid, toxin VagD >gi] 49103, Length 85 mkqprtktym ldtcicsfim reqseavlkr leqavlrghr ivisaityse mrfgatgpka sprlvqlvda fcarldailp wdraa
SEQ ID NO: 106 >gi 116272885 I ref |NP_439108.11 virulence-associated protein C [Haemophilus influenzae Rd]
MLKYMLDTNIVIYVIKRRPLEILSRFNQNAGKMCVSSITVAELYYGAEKSEYPERNIAVIEDFLSRLTILDYQPKHAAHF GNIKAELSKQGKLIGENDIHIAAHARSEGLILVSNNLREFERVIALRTENWV SEQ ID NO: 107
>gi I 32034473 | ref | ZP_00134645.11 hypothetical protein [Actinobacillus pleuropneumoniae serovar 1 str. 4074]
MIKRRPIEVLDKFNLNΞTRLCISSITAAELYYGAEKSQFPERNMAVIEDFLSRLTILDYTHKAATHFGNIKAHLSKQGKI IGENDIHIAAHARSEGLVLVTNNLREFERVEGLRLDNWV
SEQ ID NO: 108
>gi|30248494|ref |NP_840564.l| PIN (PilT N terminus) domain [Nitrosomonas europaea ATCC 19718]
MLKYMLDTNIAIYVIKRRPIEVLVTFNRYADMMCVSAVTEAELLHGAEKSRQREHNLRQVADFLSRLEVLSYTSKAAGHY GDIRADLERKEKPIGVNDLHIAAHARSEGFILVSNNLREFERVDGLRLENWIT
SEQ ID NO: 109
>gi 113449196 | ref |NP_085412.11 plasmid maintenance protein [Shigella flexneri] MLKFMLDTNICIFTIKNKPASVRERFNLNQGKMCISSVTLMELIYGAEKSQMPERNLAVIEGFVSRIDVLDYDAAAATHT GQIRAELARQGRPVGPFDQMIAGHARSRGLIIVTNNTREFERVGGLRTEDWS
SEQ ID NO: 110
>gi|l7233504|ref |NP_490590.1| MvpA-like protein [Salmonella typhimurium LT2] MLKFMLDTNICIFTIKNKPASVRERFNLNQGRMCISSVTLMELIYGAEKSQMPERNLAVIEGFVSRLDVLDYDTPAATHT GQIRAELARQGRPVGPFDQMIAGHARSRGLIWTNNTREFERVGGLRTEDWS
SEQ ID NO: 111
>gi I 32470009 |ref |NP_862949.11 hypothetical protein [Escherichia coli] MLKFMLDTNICIFTIKNKPASVRERFNLNQGRMCISSVTLMEVIYGAEKSQMPERNLAVIEGFVSRIDVLDYDAAAATHT GQIRAELALQGRPVGPFDQMIAGHARSRGLIIVTNNTREFERVGGLRIEDWS
SEQ ID NO: 112
>gi 116761810 I ref |NP_457427.11 hypothetical protein (assiciated with virulence) [Salmonella enterica subsp. enterica serovar Typhi] MLKFMLDTNTCIFTIKNKPEHIRERFNLNTSRMCISSITLMELIYGAEKSLAPERNFAWEGFISRLEVLDYDTQAAIHT GQIRTELARKGTPVGSYDQMIAGHARSRGLWVTNNLREFERIPGIRIEDWC
SEQ ID NO: 113
>gi 116766335 |ref |NP_461950.l| putative nucleic acid-binding protein, contains PIN domain [Salmonella typhimurium LT2]
MLKFMLDTNTCIFTIKNKPEHIRERFNLNTSRMCISSITLMELIYGAEKSLAPERNLAWEGFISRLEVLDYDTQAAIHT GQIRAELARKGTPVGPYDQMIAGHAGSRGLVWTNNLREFERIPGIRIEDWC
SEQ ID NO: 114 >gi]28868262 |ref |NP_790881.l| virulence-associated protein, putative [Pseudomonas syringae pv. tomato str. DC3000]
MLKYMLDTNICIFTIKNKPVSVREAFNLHHGQLCISAITLMELVYGAEKSSSPERNLAWEGFAARLELLPYDSDAAAHT GMIRAELARAGTPIGPYDQMIAGHARSLGLWITNNQREFQRVEGLRVEDWVSQ SEQ ID NO: 115
>gi 122959838 I ref | ZP_00007484.11 hypothetical protein [Rhodobacter sphaeroides]
MLRYMLDTNILIYTIRNRPGEVRAKFEAHHGTMCIΞAATAMELIYGAQKSQAVERNVAAVEGLLARLDILDLDLAAAQHA
GEIRAQLAQAGTPIGPFDVMIAGHARSKGLVLVSNNTREFERVDGLRLENWVQSS SEQ ID NO: 116
>gi 115966438 I ref |NP_386791.11 CONSERVED HYPOTHETICAL PROTEIN [Sinorhizobium meliloti]
MLTYMLDTNICIYVMKTYPPAVREKFNGLAEQLCISSITLGELHYGAEKSAWRVENLTAIEHFVARLEVLPFADKAAAHY
GQVRAELERTGTPCGPHDMQIGAHARSEGLIVVTNNIREFVRMPGVRVENWL
SEQ ID NO: 117
>gi 123467534 I ref |ZP_00123115.1] hypothetical protein [Haemophilus somnus 129PT]
MLKYMLDTNIAIFTIKNKPVHMLPLFNENQSMLCMSSIALMELVYGAEKSTKVAHNLAVIESFCSRLTLLNYDDRAAYHS
GQIRAELAKQGQPIGPYDAMIAGHARSLGLTIVTNNVKEFSKVEGLKWDWSK
SEQ ID NO: 118
>gi I 2421370l|ref |NP_711182.l| virulence associated protein C [Leptospira interrogans serovar lai str. 56601]
MYLLDTNICIFLIKKKNATLLENLKKKLNKDLFVSSLTVAELEFGIQKSEFKEKNKVALIEFLTIFNILSFSDKDAESYG IIRADLERKGNVIGSIDMLLAAQAIANNYIFVTNNTKEFKRIKALKIENWTQ
SEQ ID NO: 119
>gi I 23008383 | ref | ZP_00049852.11 hypothetical protein [Magnetospirillum magnetotacticum] MSTLYLLDTNVLVALLRGHGAAARPRLREAEGRVAVSTASEMELEYGVERSQDPARNRQAVDELLSLVDVLPFDSLAAMH AGRVRAVLAARGTPVGPYDALLAGHARSLGLVLVTNNVREFSRVPGLEVEDWLADATHGP
SEQ ID NO: 120
>gi 1477904 ]pir | |B49205 virulence-associated protein vapC - Dichelobacter nodosus MSIKLMLDTNICIYIINRKPPYIAEKFSRYEIGDIGISNITACELAFGVEKSGSAKNKTALTKFLAPLSILPFDKQAIWH YARIRQSLQNRGTPIGALDMLIASHALALDITLVTNNTKEFERVDGLMLDNWVID
SEQ ID NO: 121
>gi 116272275 I ref |NP_438487.11 virulence-associated protein C [Haemophilus influenzae Rd]
MIYMLDTNIIIYLMKNRPKIIAERVSQLLPNDRLVMSFITYAELIKGAFGSQNYEQSIRAIELLTERVNVLYPNEQICLH YGKWANTLKKQGRPIGNNDLWFACHALSLNAVLITHNVKEFQRITDLQWQDWTK
SEQ ID NO: 122 >gi| 11277576 |pir I |T44272 virulence associated protein C [imported] - Synechococcus sp. (strain PCC7942)
MFLLDTNACIQLLNRRHPQLLQHFRQQSPADIALCSIVKSELLYGARRΞQNVEANLQLLDRFFAPLQSLPFTDRCAEEAG LIRADLAAQGKPIGPNDLLIAATARAFDTTLVTYNTREFVRITGLRWDWELANPLLS SEQ ID NO: 123
>gi 116262982 I ref |NP_435775.11 probable NtrR2 transcription regulator [Sinorhizobium meliloti]
MSRLYMLDTNIVSELARNPQGAVTKRIAEVGPEAVCVSIITAAELRYGCAKKGΞPKLLAQIEAILGSMQVLALDVPADAE YGNIRAELETAGKPIGPNDLFIAAHACVLGAVLVTVNSSEFTRVRDLKVENWLDFTSSG
SEQ ID NO: 124
>gi 117227400 I ref |NP_478451.11 virulence-associated protein [Nostoc sp. PCC 7120]
MRYLLDTNVCARYLNGKSPAIRQRLRSTNVKDIAVCSWKAELFYGAMKSNNPERTLARQQQFLNLFVSLPFDDVTALTY
GRIRAALAISGTPIGPNDLQIAAIALVNNLILVTHNTSEFNRVNGLQIEDWEAVA
SEQ ID NO: 125
>gi 115967066 I ref |NP_387419.11 PUTATIVE VIRULENCE ASSOCIATED PROTEIN HOMOLOGUE [Sinorhizobium meliloti]
MISHILDTNAVIALIGRKSDALVTRVLHSPQGIIGLPSWAYELYFGAQKSAKAQHNLETLRLLMADFPILDFDRNDAFV AGEIRAALAAKGTPIGPYDVLIAGQAKARGLTLVTNNVGEFNRVENLRVEDWSL
SEQ ID NO: 126
>gi|32470033|ref |NP_862975.1| putative protein [Escherichia coli]
MKKTWMLDTNICSFIMREQPAAVLKRLEQAVLRGDRIWSAVTYAEMRFGATGPKASPRHIQLVDAFCARLDAVLPWDRA AVDATTDIRVALRLAGTPIGPNDTAIAGHAIAAGAILVTNNVREFARVPGLVLEDWVK
SEQ ID NO: 127
>gi | 32470170 | ref |NP_863394.l| 94 pet identical to pir :S22686 [VagD of Salmonella dublin virulence plasmid] [Salmonella typhimurium] MNKTYMLDTCICSFIMREQPEAVLKRLEQAVLRGHRIWSAITYSEMRFGATGPKASPRHVQLVDEFCARLDAILPWDRA AVDATTKIKVALRLAGTPIGPNDTAIAGHAIAAGAILVTNNTREFERVPDLVLEDWVK
SEQ ID NO: 128
>gi | 21264287 | ref |NP_644787.l| virulence associated protein [Xanthomonas axonopodis pv. citri str. 306]
MKRYMLDTNTVΞHLVKSHPAVSRRVIEVPMTALCMΞAITGGELMFGLAKVPDAKRLQQAVMELLRRVDVLPWDGAVMERY GSVRADLEKQGKALGSLDMLIAAHALETDSVLVTNDAAFSRWGLTVEDWTRS
SEQ ID NO: 129 >gi I 23467536 I ref | ZP_00123117.11 hypothetical protein [Haemophilus somnus 129PT]
MIYMLDTNTVSDVIRKDPNVIRQLKSLSPESICLSGITAAEIIYGLEKRQSTKLNQVMYPFLEAVTIHDWHYGVAQCYGK
LRAKMEKQGFVMGSLDLMIAAHAISENCTLVTΞDNAFKMVPDLAIQNWREKHNI SEQ ID NO: 130
>gi|31075369|gb|AAP42488.l| Unknown [Escherichia coli]
MLDTCICSFIMREQPEAVLKRLEQAVLRGHRIWSAITYSEMRFGATGPKASPRHVQLVDEFCARLDAILPWDRAAVDAT
TKIKVALRLAGTPIGPNDTAIAGHAIAAGAILVTNNTKEFERVPDLVLEDWVK SEQ ID NO : 131
>gi 1 23103164 I re | ZP_00089651 .1 | hypothetical protein [Azotobacter vinelandii]
MPRYMLDTNMCIYLMKNQPEEWRRFAQCYVGDWIΞAITYAELDYGVATSANPERERINLASLIEDIPVAPFDAAAGMA
YGPIRLATRDSKKDHLDKLIAAHAVALNVILVTNNVRDFKKYPGVSIENWLEAQAE SEQ ID NO: 132
>gi|l596617l|ref |NP_386524.1| NITROGEN REGULATORY PROTEIN [Sinorhizobium meliloti]
MNGYLLDTNIISDVIHNPFGPAAQRIERIGPKEIYTSIWASELRYGCAKKGSAKLLAKVESLLEIVPVLPLDIPADTRY
GSIRAELESLGQTIGSNDLLIAAHAYALDLTLVTDNIREFSRVRGLSLENWLER SEQ ID NO: 133
>gi 113471640 I ref |NP_103206.11 NtrR protein [Mesorhizobium loti]
MRFMLDTNIISDMIRNPAGKAAGAMVREGDAAVCTSIWASELRYGCARKGSTKLLKKVEDLLAEIPVLPLDVPVDAEYG
ALRAELEAVGQPIGYNDLFIAAHACVLGTTLVTANIGEFTRIRKLKVENWLE SEQ ID NO: 134
>gi I 230140911 ref | ZP_00053928.1 | hypothetical protein [Magnetospirillum magnetotacticum]
MRYLLDTNILSDMLRHPQGPAAHRLAEVGEDHVCTSIICAGELRFGAIRKGSARLAALVAALLDTIEVLPLEDPTΞSVYG EIRTALEQEGRPIGGNDLWIAAHALALGVTLVTANEGEFRRVDGLRVENWGR
SEQ ID NO: 135
>gi I 22982012 I ref | ZP_00027339.11 hypothetical protein [Burkholderia fungorum]
MIRNPFGQVAARIEQIDPRAICTSVWAAELRYGCAKKGSAKLLARVESLLATIPVLPLDVPADTEYGGIRAELEAAGQP
IGANDLLIGAHAYALGLTLVTDNTKEFSRIRGLTIENWLDR
SEQ ID NO: 136
>gi I 23006606 I ref | ZP_00048848.11 hypothetical protein [Magnetospirillum magnetotacticum]
MRYLLDTNILSALVRSPRGPVAERIGRVGEARLYTNVIVAAELRYGATRKGSERLSRQIEAVLGAIPIEAWREPFDRAYA ELRΞGLERAGTPIGANDLLIGAQALADGSVLVTDNTREFERITGLTIENWLRP
SEQ ID NO: 137
>gi I 22997450 I ref | ZP_00041681.11 hypothetical protein [Xylella fastidiosa Ann-1] MAAELRYGCTKNGSVKLLSRVQDILKTLPILPLDIPVDTTYGSIRAELEAAGQLIGANDLLIAAHAYVLGLTLVTDNTRE FSRIRGLDVQNWLER
SEQ ID NO: 138
>gi|30248513|ref |NP_840583.11 PIN (PilT N terminus) domain [Nitrosomonas europaea ATCC 19718] MISPRYLLDTNILSDLVRYPQGVIARRIEEVGEAAVCTSIIVAAELRFGAARRNSLRLTRQVEAILAAIEVLPLDTPVDR AYAQLRWVLEQSGQVIGPNDMLITAQAMASQCVLITANLDKFSRVGELQVENWLVR
SEQ ID NO: 139
>gi 116329604 I ref |NP_440332.11 virulence associated protein C [Synechocystis sp. PCC 6803]
MKYLLDTNICIYLIKKKPFKVLAKFQTLEISDIGISSITVAELEYGVSKSQQQSKNRDALMQFLMPLEIVEFNSGSGDRL WQH
SEQ ID NO: 140 >gi 117228988 I ref |NP_485536.11 virulence associated protein C [Nostoc sp. PCC 7120] MSGEIALDTSVAIRFLNGDPDWSRVLALPEIFLSWWGELLFGAENSTRPLKNLPRYLEFMEVCTWPVEKRTAVIYA QTRSALKRKGRPIPMNDVWIAAHCLEHGWVLVTDNSDFDYVDGLVIEHW
SEQ ID NO: 141 >gi|l5922260|ref |NP_377929.1| 133aa long hypothetical virulence-associated protein [Sulfolobus tokodaii]
MGKMECKCLDSDILIDFLRGKEKAVKYIESVRGSSRIVTTVINVFELYYGALKYNKDVEKLDEFLQSVEILPFTVSEAKK AAEIEVDLENRGEVIGLKDVLISSIALNNNCTIVTGNVKHFERIQGVKVENWK SEQ ID NO: 142
>gi|l6331532 |ref |NP_442260.1| virulence associated protein C [Synechocystis sp. PCC 6803]
MQYPYLLDRNILSNLIRHPNGTIFFKIKEVGEANISTSIIVACELAFGAEKKQSKRLQERVNLILDLVPIAPMLAGMEKV YGKIRAILEHQGTPIGGNALLIAΞQAIYANLILVTDNTGEFKRMPGLSVENWL SEQ ID NO : 143
>gi | 30248306 | ref |NP_840376. l | PIN (PilT N terminus ) domain [Nitrosomonas europaea ATCC 19718 ] MLILDSNTISYYFRGDPQWLRLQAQRPQDVAVPAIVEYELRYGLLRLPPEMAAPRLAALTTLLLPMQKLPFDSECADHA
ARIRTTLEAAENPIGPHDTLIAATALRHGATLITRNVREFSRVPGLQWINWHEG
SEQ ID NO: 144
>gi 132527189 | gb| AAP85939.11 putative plasmid maintenance protein [Ralstonia eutropha] MVSAVSWLLDTNIVSEAMRPRPEVAVTDNLARYEGELAIPAPVWHELRYGWLRMPDGQRKDAVGRFVQDWGTLPvLPYD AAAARIHAELRQSRERAGFTLPFVDGQIASVAIAHGLTLVTRNTKDFSELTGLRLANWFVP
SEQ ID NO: 145
>gi 1 17232093 I ref | NP_488641.1 1 hypothetical protein [Nostoc sp . PCC 7120 ] MVKKLTQHQLETATGSWMHELLFGCLRLVESQKRRLLLEYINQIPLKMTILNYDLKAAQWHAQERARLSKMGKTPAFID
GQIASIAYSNNLILVTNNVSDFESFNDLAVENWFVNSGEG
SEQ ID NO: 146
>gi|l5807096 |ref |NP_295825.11 plasmid stability protein, putative [Deinococcus radiodurans]
MLALDTNILIALQKLEPAAFGHDRQALMTVPWIPSWRYEARRSLLAPQYARRLAQLDQLLSGHATLDFDQQAADIAAD IYHQLCTTGQLIDEADLMIAALSIQHGAALVTRNTSHFQRIPGLTLLDWL
SEQ ID NO: 147 >gi|23464899|ref |NP_695502.l| plasmid stability protein StbB [Bifidobacterium longum NCC2705]
MIILDTNVISEIIKKQPDEHVANWLRNQDTSNLATTAITVAELLAGICRMPEGKRRKYTDTTVKLALMTLEDRTFAFDTQ AAADYAHILVEREHRGTPTSIQDAMIAAIACSWDAAIATRNIKDFEGTDVELINPWEFA SEQ ID NO: 148
>gi I 20089859 I ref |NP_615934.11 Pin protein [Methanosarcina acetivorans str. C2A]
MGRMKFFVDTSIFVDCLRKEVIPSSKSFLERIGDEYSGYTSSITVAELSVGAHLSRSQDALEKTLELLNIVEVIDLDSRI
AIDAGKIYADLIRSGKRIELNDCLIAATALSLGINRE SEQ ID NO: 149
>gi|l5892302 |ref |NP_360016.1| unknown [Rickettsia conorii]
MGLIIDTAIIIALEREKVSTKQWSHYGQTYISPIVLTELLIGVYRVKNENKRIKCLAFIEYVKSLFTILPFGIEEVYTYA
RITHDLYTQRITIGTHDMLIAATAITKGFLILTLNVKDFKRIQGLEVLTVSΞKD SEQ ID NO: 150
>gi|30249060 |ref |NP_841130.1| PIN (PilT N terminus) domain [Nitrosomonas europaea ATCC 19718]
MIVLDTNVLSEILRPVPDTQVLVWLAAQPRSVLFTTTVTRAELFYGVRLLPDGQRQTALLDAIQΞIFDQDLAGHVLNFDS TAADTYAKIAASRKAVGKPISQFDAMIAAMAKSKGASLATRNLKDFVDCGIDLVNPWSTSYLK
SEQ ID NO: 151
>gi 115669104 I ref |NP_247909.11 conserved hypothetical protein [Methanococcus jannaschii]
MKILKKLKKKLEKEESKILVDTSVLIDYFKKRRLEELGGEAISIITAVEFIRGISEHKQEQVLNIFKELFEIVYIDEEII IPFSKIYRQLKKRGMLIDDADLYIACTAIIKNYPLWTKNKKHFERLKEFGLKIYDK
SEQ ID NO: 152
>gi 113474235 I ref |NP_105803.11 plasmid stabilization protein [Mesorhizobium loti] MIFVDTNVISESLKKTPDPAVLAWLVRNDAELALPTVTIAEIAFGIQKIRPDERADRLEQGLSRWRHRFADRIFGLTEEA ALAYGAIMGAATRQGPGMSAPDGMIAAIARVNGGRLATRNLNDFGTTΞLDLISPWNF
SEQ ID NO: 153
>gi 1172309711 ref |NP_487519.11 similar to nitrogen regulation protein NtrR [Nostoc sp. PCC 7120] MYLLDTNHCSRIIFGDSNLIQQLQLNSEAGIATSVWCGELLYMAAKSDRSVANLQQVRVFLDTIDIYPVNFSISEVYGN LKGKLVNAFGPKEKAQRRNFNLQALGFGDNDLWIAATAIHYNLTWSTDNDFRRIQQVETLLLESWLAS
SEQ ID NO: 154
>gi 116119246 I ref |NP_395952.11 AGR_pAT_21p [Agrobacterium tumefaciens] MIFLDTNVMSETFKKAPDSAVIAWLVRHDAELALPTVAVAEIAFGIQKIRPDQRADRLEEGLVSWRRRFSDKMFAFTEEA ALAYGDIMGDAARQGRGMSAPDGMIAAITRINGGRLATRNLKDFETTGLELISPWQF
SEQ ID NO: 155 >gi | 5103261, Length 85 mhttrlkrvg gsvmltvppa llnalslgtd nevgmvidng rlivepyrrp qyslaellaq cdpnaeisae erewlda- pat gqeei
Kid/PemK toxin of R1/R100: SEQ ID NO: 156
>gi I 5103262, Length 133 mlkyqlknen gwmhrrlvrr ksdmergeiw Ivsldptagh eqqgtrpvli vtpaafnrvt rlpvwpvts ggnfart- agf avsldgvgir ttgwrcdqp rtidmkargg krlervpeti mnevlgrlst ilt
SEQ ID NO: 157
MazE/ChpAI/ChpR of E. coli K-12 >gi 116130690, Length 82 mihssvkrwg nspavripat lmqalnlnid devkidlvdg kliiepvrke pvftlaelvn ditpenlhen idwgepkdke vw
SEQ ID NO: 158
MazE/ChpAK/ChpK of E. coli K-K12 >gi | 16130689, Length 115 mvsryvpdmg dliwvdfdpt kgseqaghrp awlspfmyn nktgmftclc vpcttqskgy pfewlsgqe rdgvaladqv ksiawrarga tkkgtvapee lqlikaftki nvlig
SEQ ID NO: 159
ChpBI/ChpS antitoxin of E. coli K-12 >gi 116132046, Length 85 mqmritikrw gnsagmvipn ivmkelnlqp gqsveaqvsn nqliltpisr rysldellaq cdmnaaelse qdvwgkstpa gdeiw
SEQ ID NO: 160 ChpBK/ChpB toxin of E. coli K-12 >gi 116132047, Length 113 mvkkseferg divlvgfdpa sgheqqgagrp alvlsvqafn qlgmtlvapi tqggnfaryag fsvplhceeg dvhgwlvnq vrmmdlharla kriglaadev veeallrlqa we SEQ ID NO: 161
>gi | 15609128] ref |NP_216507.1 | hypothetical protein Rvl991c [Mycobacterium tuberculosis H37Rv]
MVISRAEIYWADLGPPSGSQPAKRRPVLVIQSDPYNASRLATVIAAVITSNTALAAMPGNVFLPATTTRLPRDSWNVTA IVTLNKTDLTDRVGEVPASLMHEVDRGLRRVLDL
SEQ ID NO: 162
>gi | 15609938 |ref |NP_217317.1 | hypothetical protein Rv2801c [Mycobacterium tuberculosis H37Rv]
MMRRGEIWQVDLDPARGSEANNQRPAVWSNDRANATATRLGRGVITWPVTSNIAKVYPFQVLLSATTTGLQVDCKAQA EQIRSIATERLLRPIGRVSAAELAQLDEALKLHLDLWS
SEQ ID NO: 163
>gi | 15613085 |ref |NP_241388.1 | BHO522-unknown conserved protein [Bacillus halodurans] MIVKRGDVYFADLSPWGSEQGGVRPVLVIQNDIGNRFSPTVIVAAITAQIQKAKLPTHVEINAKRYGFDRDSVILLEQI RTIDKQRLTDKITHLDDDMMSKVNDALLISLGLIDF
SEQ ID NO: 164
>gi|l5616283 |ref |NP_244588.1| ppGpp-regulated growth inhibitor (ChpA/MazF) [Bacillus halodurans] MPVPDRGNLVYVDFNPQSGHDQAGTRPAIVLSPKLFNKNTGFAWCPITRQQKGYPFEIEIPPGLPIEGVILTDQVKSLD WRARNFHIKGQAPEETVTDCLQLIHTFLS
SEQ ID NO: 165
>gi | 15676808 | ref |NP_273953.1 | pemK protein [Neisseria meningitidis MC58] MYIPDKGDIFHLNFDPSSGKEIKGGRFALALSPKAFNRATGLVFACPISQGNAAAARSSGMISTLLGAGTETQGNVHCHQ LKSLDWQIRKASFKETVPDYVLDDVLARIGAVLFD
SEQ ID NO: 166
>gi|l5803303|ref |NP_289336.1| probable growth inhibitor, PemK-like, autoregulated [Escherichia coli 0157 :H7 EDL933]
MVSRYVPDMGDLIWVDFDPTKGSEQAGHRPAWLSPFMYNNKTGMCLCVPCTTQSKGYPFEWLSGQERDGVALADQVKS IAWRARGATKKGTVAPEELQLIKAKINVLIG
SEQ ID NO: 167 >gi | 15804816 | ref |NP_290857.1 | probable growth inhibitor, PemK-like, autoregulated [Escherichia coli 0157 :H7 EDL933]
MVKKSEFERGDIVLVGFDPASGHEQQGAGRPALVLSVQAFNQLGMTLVAPITQGGNFARYAGFSVPLHCEEGDVHGWLV NQVRMMDLRARLAKRIGLAADEWEEALLRLQAWE SEQ ID NO: 168
>gi | 15805444 | ref |NP_294140.1 | ppGpp-regulated growth inhibitor ChpA/MazF, putative [Deinococcus radiodurans] MVSDYVPDAGHLVWLNFTPQAGHEQGGRRPALVLSPAAYNGVTGLMQACPVTSRAKGYPFEVTLPAHLGVSGWLADHCR SLDWRSRRAEQLAEAPADVLAEVRGKLGSLLGMSEKA
SEQ ID NO: 169
>gi|l5805689|ref |NP_294385.l| conserved hypothetical protein [Deinococcus radi- odurans]
MAVGLIRRGDIFLTHFGPARAGEPDFKRPAWITNNVANAKADAVTVIPLTSNLETLYDFQLLLPTERTGLNLDSKAQTE LISCIAISRIGKHLGQVPADLMAELDARIRLHLAL
SEQ ID NO: 170 >gi 115832896 I ref |NP_311669.11 PemK-like cell growth regulatory protein ChpA [Escherichia coli 0157 :H7]
MVSRYVPDMGDLIWVDFDPTKGSEQAGHRPAWLΞPFMYNNKTGMCLCVPCTTQSKGYPFEWLSGQERDGVALADQVKS IAWRARGATKKGTVAPEELQLIKAKINVLIG SEQ ID NO: 171
>gi | 15834457 | ref |NP_313230.1 | probable growth inhibitor [Escherichia coli 0157:H7]
MVKKSEFERGDIVLVGFDPASGHEQQGAGRPALVLSVQAFNQLGMTLVAPITQGGNFARYAGFSVPLHCEEGDVHGWLV
NQVRMMDLRARLAKRIGLAADEWEEALLRLQAWE SEQ ID NO: 172
>gi | 15841472 | ref |NP_336509.1 | conserved hypothetical protein [Mycobacterium tuberculosis CDC1551]
MVISRAEIYWADLGPPSGSQPAKRRPVLVIQSDPYNASRLATVIAAVITΞNTALAAMPGNVFLPATTTRLPRDSWNVTA IVTLNKTDLTDRVGEVPASLMHEVDRGLRRVLDL
SEQ ID NO: 173
>gi|l5842339 | ref |NP_337376.1 | pemK protein [Mycobacterium tuberculosis CDC1551]
MRRGEIWQVDLDPARGSEANNQRPAVWSNDRANATATRLGRGVITWPVTSNIAKVYPFQVLLSATTTGLQVDCKAQAE
QIRSIATERLLRPIGRVSAAELAQLDEALKLHLDLWS
SEQ ID NO: 174
>gi|l5888280|ref ]NP_353961.l| AGR_C_1712p [Agrobacterium tumefaciens]
MMVRNQIPKRGDVYLVDLNPWGSEIKDEHRCWITPREINAVGLCLWPVTTGGMFTRKAGLAVNISGHKTTGVALCNQ
VRSMDIVARVAQKKAKYIETLDDATIDEIAGRVISMIDPA
SEQ ID NO: 175
>gi | 15893379 | ref |NP_346728.1 | PemK family of DNA-binding proteins [Clostridium aceto- butylicum]
MKNTRIKDMRDDELQAYIKETKKEIEQQLKLYVKLNNDKLSNNGQIQNLKKKAYNLKEVYEYIKWANDKIAINNNVESSY GTIPKRGEIWTCQLGENIGSEENKIRPAIIIQNDTGNEKGPTTIIVPISNRPKKISTHIELRPGDYKLVHGEVNKITGTI LCEQIKWSKARLGRHVATLNSDFVNKILNSKLKISIKV
SEQ ID NO: 176
>gi | 15893785 | ref | NP_347134 .1 | PemK family of DNA-binding proteins [Clostridium aceto- butylicum]
MTIWKRGDIFYADLSPWGSEQGGIRPVIIIQNDMGNKYSPTVIVAAITSQINKAKLPTHVEISSEDYGLNKDSWLLE QIRTLDKRRLKEKIGHMTDMDMKKVDEALLISIGLQNMFESV
SEQ ID NO: 177 >gi | 15925058 | ref |NP_372592.1 | conserved hypothetical protein [Staphylococcus aureus subsp. aureus Mu50]
MIRRGDVYLADLSPVQGSEQGGVRPWIIQNDTGNKYSPTVIVAAITGRINKAKIPTHVEIEKKKYKLDKDSVILLEQIR TLDKKRLKEKLTYLSDDKMKEVDNALMISLGLNAVAHQKN SEQ ID NO: 178
>gi | 15927643 |ref |NP_375176.l| conserved hypothetical protein [Staphylococcus aureus subsp. aureus N315]
MIRRGDVYLADLSPVQGSEQGGVRPWIIQNDTGNKYSPTVIVAAITGRINKAKIPTHVEIEKKKYKLDKDSVILLEQIR TLDKKRLKEKLTYLSDDKMKEVDNALMISLGLNAVAHQKN
SEQ ID NO: 179
>gi | 16077533 | ref |NP_388347.1 | similar to hypothetical proteins [Bacillus subtilis]
MIVKRGDVYFADLSPWGSEQGGVRPVLVIQNDIGNRFSPTAIVAAITAQIQKAKLPTHVEIDAKRYGFERDSVILLEQI
RTIDKQRLTDKITHLDDEMMDKVDEALQISLALIDF
SEQ ID NO: 180
>gi|16130689|ref |NP_417262.l| probable growth inhibitor, PemK-like, autoregulated [Escherichia coli K12]
MVSRYVPDMGDLIWVDFDPTKGSEQAGHRPAWLSPFMYNNKTGMCLCVPCTTQSKGYPFEWLSGQERDGVALADQVKS IAWRARGATKKGTVAPEELQLIKAKINVLIG
SEQ ID NO: 181 >gi 116132047 I ref |NP_418646.l] probable growth inhibitor, PemK-like, autoregulated [Escherichia coli K12]
MVKKSEFERGDIVLVGFDPASGHEQQGAGRPALVLSVQAFNQLGMTLVAPITQGGNFARYAGFSVPLHCEEGDVHGWLV NQVRMMDLHARLAKRIGLAADEWEEALLRLQAVVE
SEQ ID NO: 182
>gi|l6799960|ref |NP_470228.1| similar to B. subtilis YdcE protein [Listeria innocua]
MMVKRGDVYYADLSPWGSEQGGIRPVLIIQNDIGNRFSPTVIVAAITAKIQKAKLPTHVEATRKDGFERDSVILLEQIR
TIDKQRLTDKITHLDEELMAKVNQALEVSLGWEF
SEQ ID NO: 183
>gi | 16802929 | ref |NP_464414.1 | similar to B. subtilis YdcE protein [Listeria monocytogenes EGD-e]
MMVKRGDVYYADLSPWGSEQGGIRPVLIIQNDIGNRFSPTVIVAAITAKIQKAKLPTHVEATRKDGFEKDΞVILLEQIR TIDKQRLTDKITHLDEDLMAKVNKALEVSLGWEF
SEQ ID NO: 184
>gi | 17230703 | ref |NP_487251. 1 | cell growth regulatory protein [Nostoc sp . PCC 7120] MKPPYFPNRGDIVKLEFGSAQQFTAESIQRVFTLRNSGMSFDDIAITLNNELQQQGREQTGYRPVLVISPIKYNQMASLV LACPITTNAKGLRFEVPLIEGMKTKGWLADQIKTLDWKARKVKFVESVTEDLIEEVQAKLETLIL
SEQ ID NO: 185
>gi | 17232413 | ref |NP_488961.1 | hypothetical protein [Nostoc sp. PCC 7120] MSIERGQIYFVNLNPVHGREQAGARPVLVLSTDAINQLPLVIT WGTKGTNIKRDYPTNIRVSPSDSGLVIETVFLCFQ IRSLDPNRFPTDPSGKLSASKMLEVETAVRYCLGL
SEQ ID NO: 186
>gi | 17934848 | ref |NP_531638.1 | PemK protein [Agrobacterium tumefaciens str. C58 (U. Washington) ] MVRNQIPKRGDVYLVDLNPWGSEIKDEHRCWITPREINAVGLCLWPVTTGGMFTRKAGLAVNISGHKTTGVALCNQV RSMDIVARVAQKKAKYIETLDDATIDEIAGRVISMIDPA
SEQ ID NO: 187
>gi | 18309277 | ref |NP_561211.1 | conserved hypothetical protein [Clostridium perfrin- gens]
MASLNVKRGDIFYADLSPWGSEQGGIRPVIIIQNDIGNRYSPTVIVAAITΞQINKAKLPTHVEISSEEYGLNRDSWLL EQIRTLDKKRLKEKIGHMTEDDMKKVNKSLLISLNLQ
SEQ ID NO: 188 >gi | 20808550 | ref |NP_623721. 1 | Growth inhibitor [Thermoanaerobacter tengcongensis]
MIMWKRGDLFYADLSPVIGSEQGGIRPVLIIQNDIGNKYSPTVIVAAITSQINKAKLPTHVEINGAEYGLQKDSVILLE QIRTIDKKRLREKIGHLDQEMMEKVNEALQISLGLIDF
SEQ ID NO: 189 >gi | 21283721 |ref |NP_646809.1 | conserved hypothetical protein [Staphylococcus aureus subsp. aureus MW2]
MIRRGDVYLADLSPVQGSEQGGVRPWIIQNDTGNKYSPTVIVAAITGRINKAKIPTHVEIEKKKYKLDKDSVILLEQIR TLDKKRLKEKLTYLSDDKMKEVDNALMISLGLNAVAHQKN SEQ ID NO: 190
>gi | 23098078 | ref |NP_691544 . 1 | hypothetical protein [Oceanobacillus iheyensis HTE831]
MIVQRGEVYFADLSPWGSEQGGVRPVLILQNDIGNRFSPTVIVAAITAQIQKAKLPTHVEIDAKRYGFDRNSVILLEQI
RTLDKQRLTDKITKLDKEMMIKINQALEISLGLKDVYGG SEQ ID NO: 191
>gi | 24114678 | ref |NP_709188.1 | PemK protein [Shigella flexneri 2a str. 301]
MVKARTPHRGEIWYFNPDPVAGHELQGPHYCIVVTDKKLNNVLKVAMCCPISTGANAARSTGVTVNVLPRDTQTGNLHGV
VLCHQLKAVDLIARGAKFHTVADEKLISEVISKLVNLIDPQ SEQ ID NO: 192
>gi | 24214481 | ref |NP_711962.1 | probable ppGpp-regulated growth inhibitor ChpA/MazF [Leptospira interrogans serovar lai str. 56601]
MVKNRNYTPEKGDIVWLNFTPQAGHEQKGRRPALVLSPKEYNSKTGLAIFCPITSKIKGYPFEVLIKSKKIDGVILSDQV KNLDWTIREAEFIESINKVSLKEVLDNIKLLIF
SEQ ID NO: 193
>gi|24215543 |ref |NP_713024.1| chpK [Leptospira interrogans serovar lai str. 56601]
MIRGEIWWVDLGIPFGSEPGFKRPVLIIQDDΞFNQSNINTIVSIAITSNLNLSEAPGNVFISKKDSSLSKDSVINVSQIV
TLDKERFLNKAGKLKSNKLGEVEIGLKLVTGLD
SEQ ID NO: 194
>gi | 24378687 | ref |NP_720642.1 | putative ppGpp-regulated growth inhibitor [Streptococcus mutans UA159] MVTIKQGSIIKINLDPKQGHEQKGYRPYICLNHSIVTKYSNIGIFAPISNTKRDYPFYVSLEGTESTGKVLLDQLVTIDF NARDYRYVEDIQEDLLDELLARVKVLFEKG
SEQ ID NO: 195 >gi | 26987507 | ref |NP_742932.1 | transcriptional regulator, PemK family [Pseudomonas putida KT2440]
MKRLKFARGDIVRVNLDPTVGREQQGSGRPALVLTPAAFNASGLAVIIPITQGGDFARHAGFAVTLSGAGTQTQGVMLCN QVRTVDLEARFAKRIESVPEAVILDALARVQTLFD SEQ ID NO: 196
>gi|27468590|ref |NP_765227.l| conserved hypothetical protein [Staphylococcus epidermidis ATCC 12228]
MIRRGDVYLADLSPVQGSEQGGVRPWIIQNDTGNKYSPTVIVAAITGRINKAKIPTHVEIEKKKYKLDKDSVILLEQIR TLDKKRLKEKLTFLSESKMIEVDNALDISLGLNNFDHHKS
SEQ ID NO: 197
>gi|28377410|ref |NP_784302.l| unknown [Lactobacillus plantarum WCFS1]
MAAADIKRGDIFYADLSPVVGΞEQGGMRPVLIVQNNVGNHYSPTVIVAAITAKVQKAKMPTHVNINAAHTGIEKNSVVLL
EQIRTIDKQRLKDRVTHLDDQTMRRVDNALQISIGLADRTRRRPQRTFQS
SEQ ID NO: 198
>gi | 28379346 | ref |NP_786238.1 | cell growth regulatory protein [Lactobacillus plantarum WCFS1]
MTYLPKQKDIIWIDFDPQRGREIKKRRPAWLSSNLYTQNTGFVIVSPITSTMRDLPGYFSLNGYNTHGQIAAAQIYSFD ATPRAGRSITYIETMRSADFYHVAQTVYYNFDFPF
SEQ ID NO: 199
>gi | 29375414 |ref |NP_814568.1 | transcriptional regulator, PemK family [Enterococcus faecalis V583] MIKRGEVFYANLSPWGSEQGGIRPVLIIQNNKGNLFSPTLIVAPITRNVSKRLQPTQVLIEIPHNECRTPSLILLEQIR TLDKERMLHKVCQLSREEMEQVNQALKVSVGIR
SEQ ID NO: 200
>gi I 29375438 | ref |NP_814592.11 transcriptional regulator, PemK family [Enterococcus faecalis V583 ]
MVKRGDIYFADLSPWGSEQGGVRPVLWQNNLGNHFSPTIIVAAITAKMAKPKLPTHIGINSDETGIEKDSVILLEQIR TIDKGRLKEKVCHLRLDIMEEVDRALGISVGLSSDSAPAKANSAT
SEQ ID NO: 201 >gi]30018503|ref |NP_830134.l| PEMK-like protein [Bacillus cereus ATCC 14579]
MIVKRGDVYFADLSPWGSEQGGVRPVLVIQNDIGNRFSPTVIVAAITAQIQKAKLPTHVEIDAKKYGFERDSVILLEQI RTIDKQRLTDKITHLDEVMMIRVDEALQISLGLIDF
SEQ ID NO: 202 >gi I 30248977 I ref |NP_841047.11 PemK-like protein [Nitrosomonas europaea ATCC 19718] MTYLPNRGDIVHLDFDPSSGREIKGPHFGLILSGKLFNQRGLAMICPISQGAAAAARTYGTWTLMGAGTDTQGAVHCHQ LKSLDWQVRNVRFKESVPQHILDEVLARVEAILFE
SEQ ID NO: 203 >gi|30249167|ref |NP_841237.l| PemK-like protein [Nitrosomonas europaea ATCC 19718] MTDFKQRDIYWIDLEPTKGAETRKLRPCVIIQSDLVNVQSRTVIVAPLLLQHKPWPFAVNLEPTEKNGLDKDRHINLKQL RAVDISRIGKKQGRLENRYKDPIKAALMIIFDL
SEQ ID NO: 204 >gi|30249548|ref |NP_841618.1| PemK-like protein [Nitrosomonas europaea ATCC 19718] MAKILRGEIRWANLNPTVGREQSGERPILVLSQDIFNERSGTVIAMALTSQEQRAGFPLTYEILKSSLPKRSWVKISQIR TLSTERIGKKIGAIAPEELAQIVEGLNEIIGS
SEQ ID NO: 205 >gi|30260430|ref |NP_842807.l| transcriptional regulator, PemK family [Bacillus anthracis str. Ames]
MIVKRGDVYFADLSPWGSEQGGVRPVLVIQNDIGNRFΞPTVIVAAITAQIQKAKLPTHVEIDAKKYGFERDSVILLEQI RTIDKQRLTDKITHLDEVMMIRVDEALQISLGLIDF
SEQ ID NO: 206
ParD of plasmid RK2, antitoxin >gi I 420754, Length 83 msrltidmtd qqhqslkala alqgktikqy alerlfpgda dadqawqelk tmlgnrindg lagkvstksv geildeelsg dra
SEQ ID NO: 207
ParE of plasmid RK2 , toxin >gi 1420755, Length 103
Itayiltaea eadlrgiiry trrewgaaq rryiakleqg iarlaagegp fkdmselfpa lrmarcehhy vfclpragep al ailher mdlmtrladr 1kg
ParE core seguences;
SEQ ID NO: 208
>gi 115601076 I ref |NP_232707.l| hypothetical protein [Vibrio cholerae] MSVYLNMQNKQYKLSQLAQEHLLKIKHYTIENFAEAQWQKYKSTLLSGFQTLADNPGLGKSCEDIYQNGFYFPVGKHMAY YTKEANFILIVAVLGQSQLPQKHLKQSRFVS
SEQ ID NO: 209
>gi ] 15601123 | ref |NP_232754.1 | plasmid stabilization element ParE, putative [Vibrio cholerae]
MKPFNLTVAAKADLRDIALFTQRRWGKEQRNVYLKQFDDSFWLLAENPDIGKSCDEIREGYRKFPQGSHVIFYQQTGSQQ IRVIRILHKSMDVNPIFGA
SEQ ID NO: 210 >gi|l5601148|ref |NP_232779.1| conserved hypothetical protein [Vibrio cholerae]
MSVYLNMQNKQYKLSQLAQEHLLKIKHYTIENFAEAQWQKYKSTLLSGFQTLADNPGLGKSCEDIYQNGFYFPVGKHMAY YTKEANFILIVAVLGQSQLPQKHLKQSRFVS
SEQ ID NO: 211 >gi 1 15609096 | ref ] NP_216475.11 hypothetical protein Rvl959c [Mycobacterium tuberculosis H37Rv]
MSSRYLLΞPAAQAHLEEIWDCTYDRWGVDQAEQYLRELQHAIDRAAANPRIGRACDEIRPGYRKLSAGSHTLFYRVTGEG TIDWRVLHQRMDVDRNL SEQ ID NO: 212
>gi 115838626 | ef |NP_299314.11 plasmid stabilization protein [Xylella fastidiosa 9a5c]
MTGYVLTEAAESDLRGIVRYTRKQWGNAQVRHYIATLERGIASLAEGRGAFNDMSSLFPALRMGRYEHHYVFCLPREEAP
ALIVAIFHERMDLMTRLADRLK SEQ ID NO: 213
>gi|l5841429 |ref |NP_336466.l| plasmid stabilization protein ParE [Mycobacterium tuberculosis CDC1551]
MSSRYLLSPAAQAHLEEIWDCTYDRWGVDQAEQYLRELQHAIDRAAANPRIGRACDEIRPGYRKLSAGSHTLFYRVTGEG TIDWRVLHQRMDVDRNL
SEQ ID NO: 214
>gi 115888835 | ref |NP_354516.11 AGR_C_2785p [Agrobacterium tumefaciens]
MSCVNNYRLSTQAENEILDIFLYGIERFGLNQARLYKDGMEΞCFQLLGNNPRMGRSATIVGEGIRRHEHGSHVIFYETDG
SGVLILTIVHGRSIRRLKL
SEQ ID NO: 215
>gi 116125126 |ref |NP_419690.l| conserved hypothetical protein [Caulobacter crescentus CB15]
MKPYRLSRRAKADLDDIWTYSEQRWGVEQAADYARELQATIEMIAEHPGMGQPDENLRAGYRRCASGSHWFYRVGVRVE IIRVLHQSMNARAHLG
SEQ ID NO: 216
>gi | 27365828 | ref |NP_761356.11 Plasmid stabilization element ParE [Vibrio vulnificus CMCP6] MRPFQLTNKAKSDLRDIALFTSRRWGREQRNIYLKQFDDSFWLLAENPDIGKACDEIRDGYRKFPQGSHVIFYRQIGSQN IEIIRILHKSMDVNPIFGA
SEQ ID NO: 217
>gi 1302482811 ref |NP_840351.11 putative plasmid stabilization element ParE [Nitrosomo- nas europaea ATCC 19718]
MGSFILRQKAMDDLLSIGRYTRKEWGKTQQIRYLTQLDRAFHELADKPGLGRACDDIREGYFKYGVGKHVIFYRHTGKDQ IEIIRILHGRMDIEQHL
SEQ ID NO: 218 >gi 130249495 | ref |NP_841565.11 putative plasmid stabilization protein ParE [Nitrosomonas europaea ATCC 19718] MAEYRLSPAAQRDLDGIFNYTFQQWGAAQAVRYIDILEAACTELVETSSQGQDCSYIRPGYRRRHVERHITTE
SEQ ID NO: 219 >gi | 30250054 | ref |NP_842124.1 | putative plasmid stabilization protein ParE [Nitrosomonas europaea ATCC 19718]
MKHYLLSPEAKTDITNIRQYTTQQWGKTQADKYILRLRERMRWLADNPMLGRARDEIKEGYRSFSEGDHVIFYRMAGSAI EVIGIPHQNMDIEQNLSSGNLLLPDIADYEPEDG SEQ ID NO: 220
HigA from plasmid Rtsl, antitoxin >gi ] 1262205, Length 104 mrqfkvshpg emiardledm gvsgrrfahn igvtpatvsr llagktaltp slsiriaaal gstpefwlrl qsnydlrqle nqidtsgivl ygesneqqqn aqeh
SEQ ID NO: 221 HigB from plasmid Rtsl, toxin >gi | 1262204, Length 92 miksfkhkgl kllfekgvts gvpaqdvdri ndrlqaidta teigelnrqi yklhplkgdr egywsitvra nwritfqfin gdayilnyed yh SEQ ID NO: 222
>gi | 13471566 | ref |NP_103132.1 | hypothetical protein [Mesorhizobium loti]
MIVGFRDGWLRAFFVDDTRSRNIPSDLESRLFRKLQMIDDATVDQDLRVPPSNHFEKLRGNLEGFHSIRVNQQWRLIFRW
DGGRGEASDIYLDDHSYK SEQ ID NO: 223
>gi 115601154 I ref |NP_232785.11 killer protein, putative [Vibrio cholerae]
MCTVSLCVSLCLWMHNETVQVAMALEFKDKWLEQFYEDDKRHRLIPSSIENALFRKLEILDAAQAESDLRIPPGNRFEHL
EGNLKGWCSIRVNKQYRLIFQWVDGVALNTYLDPHKY SEQ ID NO: 224
>gi 115837323 |ref |NP_298011.11 proteic killer suppression protein [Xylella fastidiosa 9a5c]
MYTDHLRYTIGFVIKΞFRHKGIQQFFLEGSTAGIQTKHAAKLRIQLTALESAKHPKDMNAPGWKLHSLKGADLKGHWSIW VNGNYRLTFAFEGEDAILVDYQDYH
SEQ ID NO : 225
>gi 115838310 I ref |NP_298998.11 hypothetical protein [Xylella fastidiosa 9a5c]
MEVKFEDPSLERLEANQKYTAGLVKVFHRRIQFIRASPDERAFYAMKSLHYEKLKDDPDNLYSMHLNDQWHLIMYLKAKE
DDTRNLWIVSIVDYH
SEQ ID NO: 226
>gi 115964804 I ef |NP_385157.11 CONSERVED HYPOTHETICAL PROTEIN [Sinorhizobium meliloti]
MIVGFRDDWLRTFFVDDVRSRNIPYDLEARLFRKLQMIDDAATDQDLRVPPSNHFEKLRGNLAGLHSIRVNQQWRLIFRW
DGTRGEADGIYLDDHSYR
SEQ ID NO: 227
>gi|l5966812|ref |NP_387165.l| CONSERVED HYPOTHETICAL PROTEIN [Sinorhizobium meliloti]
MIQSFGNKETEAVFKRQRTRRFGAFQKPALVKLLMLHAATRIEDLRVPPGNRLEALKGDRAGQYSIRINQQWRICFRFEN
GDAYDVEISDYH
SEQ ID NO: 228
>gi|l6273169|ref |NP_439406.l| hypothetical protein [Haemophilus influenzae Rd]
MFNLKREHFRDDYLYRFYQYGDTHSKIPSNLYKVLARKLDMISASENINDLRSPPANHLELLEPKENKIYSIRVNKQYCL
IFKYENNEVNNLYLDPHSYNL
SEQ ID NO: 229
>gi 117230416 |ref |NP_486964.11 hypothetical protein [Nostoc sp. PCC 7120]
MSPSDEYPKYKDKRTEKFALGERVKEFQSFERQAQKRLDIIDAAPNKEVLMQLPSNRFESLGGDRKGQYSIRINEQWRIC
FNWPDDFLKPFNIEITDYH
SEQ ID NO: 230
>gi 126247767 I ref |NP_753807.11 Hypothetical protein [Escherichia coli CFT073]
MNFRHKGLRDLFLLGKTSGVIPTQVKRLRHRLAVIDAACCLADIDMPGYRLHPLSGDRDGIWAISVSGNWRITFEFVNGD
AYILDYEDYH
SEQ ID NO: 231
>gi|26988318|ref |NP_743743.l| killer protein, putative [Pseudomonas putida KT2440]
MIRSFSCADTEALFTTGKTRRGSDIKSVAERKLAMLDAATELRDLRSPPGNRLESLΞGNRADQHSIRVNDQWRLCFTWTE
HGPVNVEIVDYH
SEQ ID NO: 232
>gi I 27378123 I ref |NP_769652.11 bsl3012 [Bradyrhizobium japonicum]
MIRTFRDKTTEAVFDGESPKGFPADLVKVARRKLRYLHAAGELGDLRAPPGNRLEALSGNRKGQHSIRINDQFRVCFIWT
PQGPVEVEIVDYH
SEQ ID NO: 233
>gi|28377333|ref |NP_784225.1| plantaricin biosynthesis protein PlnX (putative) [Lactobacillus plantarum WCFS1] MPPTIQQLALRKLLMIDHAETINDLSLPPANHLEKLSHDRQGQYSIRINNQYRICFAIRNGNEFYDVEIVDYHHG SEQ ID NO: 234
>gi 128867445 I ref |NP_790064.11 proteic killer protein, putative [Pseudomonas syringae pv. tomato str. DC3000] MIVSFKCVHTRYLFLQGKTRLWPSIKSVAERKLAMLDAATSILDLRSPPGNRLEALDGSRSGQYSVRINAPFRICFVWSI NGPEDVEIVDYH
SEQ ID NO: 235
>gi 128867653 |ref |NP_790272.11 proteic killer protein, putative [Pseudomonas syringae pv. tomato str. DC3000]
MIVSWRHKGLKAFFETGSSSGIRADHSKRLAHVLAVLNRARTPANVNMPGWRLHPLKGELEGFWSITINANWRIIFRFFD TDVELVDYLDYH
SEQ ID NO: 236 >gi | 29654782 | ref |NP_82047 .1 | proteic killer protein, putative [Coxiella burnetii RSA 493]
MLDVTRKTVILEVIIKSFKDKYTKYLYKGVSVSKWQAIRKQAERRLQILDSVTSLDDLRSLPSNRFESLRGNRKGQFSIR INKQWRICFKWINNEPTEVEIVDYH SEQ ID NO: 237
>gi I 30248497 |ref |NP_840567.11 conserved hypothetical protein [Nitrosomonas europaea ATCC 19718]
MGCMIQSFRCKSTQAMFEGECPQRFSAIQAVAERKLAQLEAAQTLDFLRSPPGNRLEKLAGDREGQWSIRINAQWRICFT WSDLDPADVEIVDYH
SEQ ID NO: 238
>gi|30248506 |ref |NP_840576.l| conserved hypothetical protein [Nitrosomonas europaea ATCC 19718]
MSFDANIATQYYILMTIKTFRCADPETLFKLGRVARFVNIERPALRKLKQLDLARCIEDIRVPPANRPEILKGDRAGQHS IRINDQWRVCFRWTGTDAEDVEIVDYH
SEQ ID NO: 239
>gi|30249098 |ref |NP_841168.l| conserved hypothetical protein [Nitrosomonas europaea ATCC 19718] MIKTFATKETAALFANEKIRRLPPEILRVARRKMAQLHRVSSIEELRIPPGNRLEKLSGNRNEQWSIRINDQWRICFRFE AGDVFDVEITDYH
SEQ ID NO: 240
>gi |30249284 |ref |NP_841354.l| proteic killer suppression protein [Nitrosomonas eu- ropaea ATCC 19718]
MIRHFKHKGLQLFFETGDKSGIRPDHASRLARQLRQLNDAVNPREMNIPGWKLHPLSGDLSGYWSVMVNGNWRMIFVFDG EDVILVDYRDDH
SEQ ID NO: 241 Phd from plasmid PI, antitoxin >gi 11083979, Length 73 mqsinfrtar gnlsevlnnv eageeveitr rgrepavivs katfeaykka aldaefaslf dtldstnkel vnr
SEQ ID NO: 242 Doc from plasmid PI, toxin >gi 11083978, Length 126 mrhispeeli alhdanisry gglpgmsdpg raeaiigrvq arvayeeitd lfevsatylv atarghifnd ankrtalnsa llflrrngvq vfdspeladl tvgaatgeis vssvadtlrr lygsae
Doc core sequences;
SEQ ID NO: 243
>gi| 15601236 |ref |NP_232867.l| doc protein [Vibrio cholerae]
MDIICFPFERVIEINAFILKTEPGMKGAVDIPKLQGALGRIDNAIVYEGLDDVFEIAAKYTACIAVSHALPDANKRTGLA VALEYLSLNDFELTQENDLLADAVRDLVIGIINETDFADILYAQYAKEQNSAL
SEQ ID NO: 244
>gi 115676812 | ef |NP_273957.l| death-on-curing protein [Neisseria meningitidis MC5E MIDGELVALIHQTVLADEAGLKGRADMARLDGALSRIANWRQYENLEDIYEIAALYAQAIAKAHAFPDGNKRTALLTMLT YLDLQGISIAADQGLDDLIVSLAAGETDFKQLAETLRRLDKE
SEQ ID NO: 245
>gi 116122086 | ref |NP_405399.1] conserved hypothetical protein [Yersinia pestis]
MADIVEGIHYLSVEDFIYINRTLIEAQTPSEPIDVINHNNLCSΞQARPSWKYYQQTDDMFELSAALIESLIQNHAFANA NKRTAMMAGYMFLLLNGYELTAPGDEIVVMAEGMARKVYNCEDLENWLCYWSRPYDSRNLCDCEIΞSLVVTATQVKIE
SEQ ID NO: 246
>gi 116127593 |ref |NP_422157.11 death on curing protein [Caulobacter crescentus CB15] MΞGVGEPVWVRIEALKVLHERSLALHGGPSGVRDEGLLESALERPKNRFHYEGVDDWELAATYAVAVSSNHPFVDGNKR AAFHAMTLFLRLNGLRLVADQADAARTIFKLAAGELDIPALTDWLRTRVA
SEQ ID NO : 247
>gi 1 16759893 I ref | NP_455510 .1 1 putative bacteriophage protein [Salmonella enterica subsp . enterica serovar Typhi]
MAIEYVEGVNYLSIEDIVYINRSLIEIQTPNEPIGVLNPNNLSSSQSRPSTIRYYEQTDDMFRLSAVLIESLIQNHPFAN ANKRTAMMAGYVFLLLNGYELTAPSDEWTIAEGLARKDYAVDDLENWLCHWSREYDSRTLCETGGNMIQALVATSRYIR IKSNE SEQ ID NO: 248
>gi | 16766844 | ref |NP_462459.1 | homology to death -on-curing protein of phage PI [Salmonella typhimurium LT2]
MTLQLIΞAEEIIQFHDRLLRVTPGVTGMPDPGRAEALMYRVLKQIEYEGVTDVWLLAAMHLLAISRGHIFNDGNKRTALF ITLLFLKRNGISLAANPDFVDMTVDAAAGRLTLEQIAVRLRA
SEQ ID NO: 249
>gi 117987659 I ref |NP_540293.11 DEATH ON CURING PROTEIN [Brucella melitensis]
MIDFHSRVFIEALHQEQLRLHGGATGIRDSSLLDSALARAQHKEAYGNPDIFDLAAAYLFGILKNHPFIDGNKRTGLAAA
DLFLYFNGYSLEAEQEDVIQLVLMVTTSEIDETGAAAFFRDHAWINED
SEQ ID NO: 250
>gi I 21241948 |ref |NP_641530.11 death-on-curing protein [Xanthomonas axonopodis pv. citri str. 306]
MNTRMLVWVTHALALAIHERQLSEHGGASGVRDEALLDΞALARPQQLFSYGDPPPDLVGLTASLAYGLARNHPFVDGNKR TAHVCYRVFLLLNGAELIASQEEKYVAMMRLADGAWSEATFAQWLRPRVRLRADTHVHEPQGHYG
SEQ ID NO: 251
>gi I 21673172 I ref |NP_661237.11 Doc protein [Chlorobium tepidum TLS]
MRFLDLHEVLHIHRDQITRYGGTLGVRDMGLLTSAIAMPTAMFKGDFLHTDIYEMAAAYLFHLVRNHPFLDGNKRVGAVS AIVFLALNGYDFEAPENDLVEMVYGVARSEFEKΞDVALFMRRWSVKW
SEQ ID NO : 252
>gi I 22126357 I ref | NP_669780. 1 1 hypothetical [Yersinia pestis KIM]
MADIVEGIHYLSVEDFIYINRTLIEAQTPSEPIDVINHNNLCSSQARPSVVKYYQQTDDMFELSAALIESLIQNHAFANA NKRTAMMAGYMFLLLNGYELTAPGDEIWMAEGMARKVYNCEDLENWLCYWSRPYDSRNLCDCEISSLVVTATQVKIE
SEQ ID NO: 253
>gi|23501446|ref |NP_697573.l| death-on-curing family protein [Brucella suis 1330] MIDFHSRVFIEALHQEQLRLHGGATGIRDSSLLDSALARAQHKEAYGNPDIFDLAAAYLFGILKNHPFIDGNKRTGLAAA DLFLYFNGYSLEAEQEDVIQLVLMVTTSEIDETGAAAFFRDHAWINDD
SEQ ID NO: 254
>gi I 28211562 I ref |NP_782506.11 death on curing protein [Clostridium tetani E88] MKHLΞKEQMMYLHSMAVKKTGGLDGIRDEGLLDSALNSPFQSFAGEELYPSIQAKAARLGFSIIKNHPFLDGNKRIGMLA MMVFLEINGIQLECSDEDIVDIGLGIASGKYEDDYIIDWIISCSNNS
SEQ ID NO: 255
>gi|29142335 | ref |NP_805677.1 | putative bacteriophage protein [Salmonella enterica subsp. enterica serovar Typhi Ty2] MAIEYVEGVNYLSIEDIVYINRSLIEIQTPNEPIGVLNPNNLSSSQSRPSTIRYYEQTDDMFRLSAVLIESLIQNHPFAN ANKRTAMMAGYVFLLLNGYELTAPSDEWTIAEGLARKDYAVDDLENWLCHWSREYDSRTLCETGGNMIQALVATSRYIR IKSNE
SEQ ID NO: 256 >gi|30249247 |ref |NP_841317.l| putative death on curing protein [Nitrosomonas europaea ATCC 19718]
MTTPVWINEQDVLAIHERLIFLHGGASGIRDRNLLKSALARPLNFSVYDQQSDIFLLAATYTSGILQNHPFVDGNKRTGF VIGVLFLELNGYKFIANEEDSAQAIISLAEGSLDELGFRLFIEHNSIAT SEQ ID NO : 257
>gi | 30250372 | ref | NP_842442 . l | putative death on curing protein [Nitrosomonas europaea ATCC 19718 ]
MIEPIWIDEQVALAIHERLISLHSGASGVRDKELLKSALARPLNLLAYDQQADVIHLAAAYTAGILQNHPFVDRNKRTGF WGVLFLELNGYRFTAAEEDSAQAVIALAAGSLDEARFKLFLADNSIPV
SEQ ID NO: 258
CcdA of plasmid F, antitoxin
>gi 1141247, Length 72 mkqritvtvd sdsyqllkay dvnisglvst tmqnearrlr aerwkaenqe gmaevarfie mngsfadenr dw
SEQ ID NO: 259 CcdB of plasmid F, toxin >gi 1141246, Length 101 mqfkvytykr esryrlfvdv qsdiidtpgr rmviplasar llsdkvsrel ypwhigdes wrmmttdmas vpvsvigeev adlshrendi knainlmfwg i SEQ ID NO: 260
>gi|l5799733 |ref |NP_285745.1| putative toxin of gyrase inhibiting toxin-antitoxin system [Escherichia coli 0157 :H7 EDL933]
MQFTVYRΞRSRNAAFPFVIDVTSDIIGVINRRIVIPLTPIERFSRIRPPERLNPILLLVDGKEYVLMTHETATVPVNALG TKFCDASAHRTLIKGALDFMLDGI
SEQ ID NO: 261
>gi 115829307 I ref |NP_308080.11 CcdB-like protein [Escherichia coli 0157:H7]
MQFTVYRSRSRNAAFPFVIDVTSDIIGVINRRIVIPLTPIERFΞRIRPPERLNPILLLVDGKEYVLMTHETATVPVNALG
TKFCDASAHRTLIKGALDFMLDGI
SEQ ID NO: 262
>gi|26245973 |ref |NP_752012.l| Putative toxin of gyrase inhibiting toxin-antitoxin system [Escherichia coli CFT073]
MQFTVYRSRGRNAAFPFVIDVTSDIIGEINRRIVIPLTPIERFSRIRPPERLNPILLLVDGKEYVLMTHETATVPVNALG
TKFCDASAHRTLIKGALDFMLDGI
SEQ ID NO: 263
>gi 130249069 |ref |NP_841139.11 putative CcdB-like protein [Nitrosomonas europaea ATCC 19718] MARFDVYVNPGSHAATTPYLLDVQSDLLDVLDSCMVIPLRSLEHFPKVKLPGRLTPWTIKGQDFLLETPKMGAIPRRLL TMPVLSLRDMQPEITSALDFLFHGY

Claims

Claims
1. Method for treating an individual suffering from, or at risk of developing, a disease caused by a microbial cell, said cell comprising at least one complex of a polypeptide toxin and an anti-toxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide, said method comprising the steps of
i) contacting said microbial cell with a bioactive species capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of activated polypeptide toxin, and/or capable of increasing the total amount of activated polypeptide toxin and ii) obtaining in said microbial cell an activated polypeptide toxin in an amount sufficient for achieving at least an impaired growth or elimination of said microbial cell in said individual.
2. Method of claim 1 comprising the further step of providing a pharmaceutical composition comprising at least one bioactive species capable of contacting and activating in a microbial cell at least one polypeptide toxin selected from the group of polypeptide toxins consisting of RelE and variants thereof; ParE and variants thereof; VapC and variants thereof, Chp and variants thereof; Hig and variants thereof; Doc and variants thereof; and CcdB and variants thereof, wherein the polypeptide toxin prior to activation optionally forms a complex with an anti-toxin polypeptide capable of reducing or inhibiting the toxic activity of the polypeptide toxin.
3. The method according to any of claims 1 and 2 wherein the step of contacting the microbial cell with the bioactive species is selected from a) contacting the cell surface of the microbial cell with the bioactive species, and/or b) uptake of the bioactive species in the microbial cell and contacting an in- tracellular component of the microbial cell with the bioactive species.
4. The method according to any of claims 1 to 3, wherein the step of activation of the at least one polypeptide toxin results from
a) de novo synthesis of activated polypeptide toxin, wherein the de novo synthe- sised and activated polypeptide toxin does not form a complex with an anti-toxin polypeptide, and/or
b) dissociation of polypeptide toxin and anti-toxin polypeptide present in the same complex, wherein said dissociation results in the release from the complex of polypeptide toxin in an active form, or a form capable of being activated following dissociation from the anti-toxin polypeptide, and optionally
c) degradation of the anti-toxin
5. Method of any of the previous claims, wherein said individual is a mammal.
6. Method of any of the previous claims, wherein said individual is a human.
7. Method of any of the previous claims, wherein said bioactive species is administered to said individual in an amount from 0.1 mg - 150 mg.
8. Method of any of the previous claims, wherein said contacting is performed 1-4 times daily.
9. Method of any of the previous claims, whereby said method is used in combination with another medical treatment.
10. Method according to any of claims 1-9, wherein said polypeptide toxin is from the RelE toxin family.
11. Method of claim 10, wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16. 12. Method of claim 10, wherein said polypeptide toxin comprises or consists of a sequence that is substantially identical to SEQ ID NO:2, 4, 6, 8, 10,
12, 14, and 16.
13. Method of claim 10, wherein said polypeptide toxin comprises or consists of a sequence with at least 90 % sequence identity to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence iden- tity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
14. Method of claim 10, wherein said polypeptide toxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, and 16 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
15. Method of claim 10, wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO: 17-97
16. Method according to any of claims 1-9, wherein said polypeptide toxin is from the VapC toxin family.
17. Method of claim 16, wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO:99, 101 , 103 and 105
18. Method of claim 16, wherein said polypeptide toxin comprises or consists of a sequence that is substantially identical to SEQ ID NO:99, 101 , 103 and 105.
19. Method of claim 16, wherein said polypeptide toxin comprises or consists of a sequence with at least 90 % sequence identity to one or more of SEQ ID NO:99, 101 , 103 and 105, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
20. Method of claim 16, wherein said polypeptide toxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO:99, 101 , 103 and 105 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
21. Method of claim 16 wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO: 106-154.
22. Method according to any of claims 1-9, wherein said polypeptide toxin is from the MazF toxin family.
23. Method of claim 22, wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO: 155 and 160.
24. Method of claim 22, wherein said polypeptide toxin comprises or consists of a sequence that is substantially identical to SEQ ID NO: 155 and 160.
25. Method of claim 22, wherein said polypeptide toxin comprises or consists of a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 155 and 160, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
26. Method of claim 22, wherein said polypeptide toxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 155 and 160 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
27. Method of claim 22, wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO: 161 -205.
28. Method according to any of claims 1-9, wherein said polypeptide toxin is from the ParE toxin family.
29. Method of claim 28, wherein said polypeptide toxin comprises or consists of a sequence with SEQ ID NO:207.
30. Method of claim 28, wherein said polypeptide toxin comprises or consists of a sequence that is substantially identical to SEQ ID NO:207.
31. Method of claim 28, wherein said polypeptide toxin comprises or consists of a sequence with at least 90 % sequence identity to SEQ ID NO:207, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
32. Method of claim 28, wherein said polypeptide toxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 207 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
33. Method of claim 28 wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO:208-219.
34. Method according to any of claims 1-9 wherein said polypeptide toxin is from the HigB toxin family.
35. Method of claim 34, wherein said polypeptide toxin comprises or consists of a sequence with SEQ ID NO: 221.
36. Method of claim 34, wherein said polypeptide toxin comprises or consists of a sequence that is substantially identical to SEQ ID NO: 221.
37. Method of claim 34, wherein said polypeptide toxin comprises or consists of a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 221 , such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
38. Method of claim 34, wherein said polypeptide toxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 221 using the BLAST algo- rithm version (2.04) set to the default parameters defined herein.
39. Method of claim 34 wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO:222-240.
40. Method according to any of claims 1-19, wherein said polypeptide toxin is from the Doc toxin family.
41. Method of claim 40, wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO: 242
42. Method of claim 40, wherein said polypeptide toxin comprises or consists of a sequence that is substantially identical to SEQ ID NO: 242.
43. Method of claim 40, wherein said polypeptide toxin comprises or consists of a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 242, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
44. Method of claim 40, wherein said polypeptide toxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 242 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
45. Method of claim 40 wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO:243-257.
46. Method according to any of claims 1-9, wherein said polypeptide toxin is from the CcdB toxin family.
47. Method of claim 46, wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO: 259.
48. Method of claim 46, wherein said polypeptide toxin comprises or consists of a sequence that is substantially identical to SEQ ID NO: 259.
49. Method of claim 46, wherein said polypeptide toxin comprises or consists of a sequence with at least 90 % sequence identity to one or more of SEQ ID NO: 259, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
50. Method of claim 46, wherein said polypeptide toxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 259 using the BLAST algorithm version (2.04) set to the default parameters defined herein.
51. Method of claim 46, wherein said polypeptide toxin comprises or consists of a sequence selected from SEQ ID NO:260-263.
52. Method according to any of claims 1-9, wherein said polypeptide antitoxin is from the RelB family.
53. Method of claim 52 wherein said polypeptide antitoxin comprises or consists of a sequence selected from SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15.
54. Method of claim 52, wherein said polypeptide antitoxin comprises or consists of a sequence that is substantially identical to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15
55. Method of claim 52, wherein said polypeptide antitoxin comprises or consists of a sequence with at least 90 % sequence identity to one or more of SEQ ID: 1 ,3,5,7,9, 11 ,13 and 15, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
56. Method of claim 52, wherein said polypeptide antitoxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 1 ,3,5,7,9, 11 ,13 and 15, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
57. Method according to any of claims 1-9 wherein said polypeptide antitoxin is from the VapB family
58. Method of claim 57, wherein said polypeptide antitoxin comprises or consists of a sequence selected from SEQ ID NO: 98, 100, 102 and 104.
59. Method of claim 57, wherein said polypeptide antitoxin comprises or consists of a sequence that is substantially identical to one or more of SEQ ID NO: 98, 100, 102 and 104.
60. Method of claim 57, wherein said polypeptide antitoxin comprises or consists of a sequence with at least 90 % sequence identity to one or more of SEQ ID: 98, 100, 102 and 104, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
61. Method of claim 57, wherein said polypeptide antitoxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 98, 100, 102 and 104, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
62. Method according to any of claims 1-9, wherein said polypeptide antitoxin is from the MazE family.
63. Method of claim 62, wherein said polypeptide antitoxin comprises or consists of a sequence selected from SEQ ID NO: 156, 157, 158 and 159.
64. Method of claim 62, wherein said polypeptide antitoxin comprises or consists of a sequence that is substantially identical to one or more of SEQ ID NO: 156, 157, 158 and 159.
65. Method of claim 62, wherein said polypeptide antitoxin comprises or consists of a sequence with at least 90 % sequence identity to one or more of SEQ ID: 156, 157, 158 and 159, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
66. Method of claim 62, wherein said polypeptide antitoxin comprises a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to one or more of SEQ ID NO: 156, 157, 158 and 159, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
67. Method of any claims 1-9 wherein said polypeptide antitoxin is from the ParD family
68. Method of claim 67, wherein said polypeptide antitoxin comprises or consists of a sequence with SEQ ID NO: 206.
69. Method of claim 67, wherein said polypeptide antitoxin comprises or consists of a sequence that is substantially identical to SEQ ID NO: 206.
70. Method of claim 67, wherein said polypeptide antitoxin comprises or consists of a sequence with at least 90 % sequence identity to SEQ ID: 206, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % se- quence identity, such as at least 99 % sequence identity.
71. Method of claim 67, wherein said polypeptide antitoxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 206, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
72. Method according to any of claims 1-9, wherein said polypeptide antitoxin is from the HigA family
73. Method of claim 72 wherein said polypeptide antitoxin comprises or consists of a sequence with SEQ ID NO: 220.
74. Method of claim 72, wherein said polypeptide antitoxin comprises or consists of a sequence that is substantially identical to SEQ ID NO: 220.
75. Method of claim 72, wherein said polypeptide antitoxin comprises or consists of a sequence with at least 90 % sequence identity to SEQ ID: 220, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence iden- tity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
76. Method of claim 72, wherein said polypeptide antitoxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 220, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
77. Method according to any of claims 1-9, wherein said polypeptide antitoxin is from the Phd family.
78. Method of claim 77, wherein said polypeptide antitoxin comprises or consists of a sequence selected from SEQ ID NO: 241.
79. Method of claim 77, wherein said polypeptide antitoxin comprises or consists of a sequence that is substantially identical to SEQ ID NO: 241.
80. Method of claim 77, wherein said polypeptide antitoxin comprises or consists of a sequence with at least 90 % sequence identity to SEQ ID: 241 , such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
81. Method of claim 77, wherein said polypeptide antitoxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 241, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
82. Method according to any of claims 1-9, wherein said polypeptide antitoxin is from the CcdA family
83. Method of claim 82, wherein said polypeptide antitoxin comprises or consists of a sequence selected from SEQ ID NO: 258.
84. Method of claim 82, wherein said polypeptide comprises or consists of a sequence that is substantially identical to SEQ ID NO: 258.
85. Method of claim 82, wherein said polypeptide antitoxin comprises or consists of a sequence with at least 90 % sequence identity to SEQ ID: 258, such as at least 92 % sequence identity, for example at least 94 % sequence identity, such as at at least 95 % sequence identity, for example at least 96 % sequence identity, such as at least 97 % sequence identity, for example at least 98 % sequence identity, such as at least 99 % sequence identity.
86. Method of claim 82, wherein said polypeptide antitoxin comprises or consists of a sequence, characterised in that said sequence produces an E value of 10"4 or less when compared to SEQ ID NO: 258, using the BLAST algorithm version (2.04) set to the default parameters defined herein.
87. Method according to any of claims 1-9, wherein said anti-toxin polypeptide is the cognate anti-toxin to any of the toxin polypeptides described in claims 14-51
88. Method according to any of claims 1-9, wherein said polynucleotide encoding a polypeptide toxin encodes a polypeptide toxin described in any of claims 14-51.
89. Method of claim 88, wherein said polynucleotide encoding a polypeptide antitoxin encodes a polypeptide antitoxin described in any of claims 52-86.
90. Method for the evaluation of the ability of a compound to interfere with a bacterial toxin-antitoxin complex, comprising: a) providing a compound to be evaluated for the ability to interfere with a bacterial toxin-antitoxin complex, and b) providing a first polypeptide comprising a bacterial toxin or a fragment thereof capable of binding an antitoxin, and c) providing a second polypeptide comprising said antitoxin or a fragment thereof capable of binding said toxin, and d) incubating said compound, said first polypeptide and said second polypeptide under conditions allowing binding of said first polypeptide to said second polypeptide, and e) detecting a signal from said incubation mixture indicative of the degree of binding of said first polypeptide to said second polypeptide, and f) evaluating whether or not the presence of said compound has affected the bind- ing of said first polypeptide to said second polypeptide by comparison of the signal detected in step e), with a reference value indicative of the binding of said first polypeptide to said second polypeptide in the absence of said compound.
91. Method of claim 90, wherein step f) is done by comparison with a parallel control experiment, wherein said first polypeptide and said second polypeptide are in- cubated under conditions allowing binding of said first polypeptide to said second polypeptide, in the absence of said compound.
92. Method according to any of claims 90-91 , with the further step of repeating said method at least once, with a different bacterial toxin-antitoxin complex.
93. Bioactive species capable of activating a bacterial polypeptide toxin and/or ca- pable of initiating de novo synthesis of an activated bacterial polypeptide toxin, said species comprising one or more of the following groups: α-peptides, β- peptides, γ-peptides, ω-peptides, mono-, di- and tri-substituted α-peptides, β- peptides, γ-peptides, ω-peptides, peptides wherein the amino acid residues are in the L-form or in the D-form, vinylogous polypeptides, glycopoly-peptides, polyamides, vinylogous sulfonamide peptides, polysulfonamides, conjugated peptides comprising e.g. prosthetic groups; polyesters, polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonat.es, polyurethanes, azatides, oligo N-substituted glycines, polyethers, ethoxyformacetal oligomers, poly-thioethers, polyethylene glycols (PEG), polyethylenes, polydisul- fides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyr- rolinones, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g. aliphatic or aromatic cycles, including polyheterocyclic compounds; proteoglycans, and polysiloxanes,
94. Bioactive species capable of activating a bacterial polypeptide toxin and/or capable of initiating de novo synthesis of an activated bacterial polypeptide toxin, wherein said bioactive species comprises a scaffold structure, said scaffold structure comprising a plurality of covalently linked functional entities selected from one or more of the following groups: α-peptides, β-peptides, γ-peptides, ω- peptides, mono-, di- and tri-substituted α-peptides, β-peptides, γ-peptides, ω- peptides, peptides wherein the amino acid residues are in the L-form or in the D- form, vinylogous polypeptides, glycopoly-peptides, polyamides, vinylogous sulfonamide peptides, polysulfonamides, conjugated peptides comprising e.g. prosthetic groups, polyesters, polysaccharides, polycarbamates, polycarbonates, polyureas, polypeptidylphosphonates, polyurethanes, azatides, oligo N- substituted glycines, polyethers, ethoxyformacetal oligomers, poly-thioethers, polyethylene glycols (PEG), polyethylenes, polydisulfides, polyarylene sulfides, polynucleotides, PNAs, LNAs, morpholinos, oligo pyrrolinones, polyoximes, polyimines, polyethyleneimines, polyimides, polyacetals, polyacetates, polystyrenes, polyvinyl, lipids, phospholipids, glycolipids, polycyclic compounds comprising e.g. aliphatic or aromatic cycles, including polyheterocyclic compounds, proteoglycans, and polysiloxanes.
95. Bioactive species according to any of claims 93-94, wherein said bioactive species is a "small molecule".
96. Bioactive species according to claim 93, wherein said bioactive species comprises functional entities linked according to any of SEQ ID NO: 722-768.
97. Bioactive species of claims 93-96, comprising functional entities linked by one or more type of chemical bond, selected from peptide bonds, sulfonamide bonds, ester bonds, saccharide bonds, carbamate bonds, carbonate bonds, urea bonds, phosphonate bonds, urethane bonds, azatide bonds, peptoid bonds, ether bonds, ethoxy bonds, thioether bonds, single carbon bonds, double carbon bonds, triple carbon bonds, disulfide bonds, sulfide bonds, phosphodiester bonds, oxime bonds, imine bonds and imide bonds.
98. Bioactive species according to any of claims 93-97, wherein said bioactive spe- cies comprises a backbone structure comprising or essentially consisting of one or more molecular group(s) selected from -NHN(R)CO- ; -NHB(R)CO- ; - NHC(RR')CO- ; -NHC(=CHR)CO- ; -NHC6 H4 CO-; -NHCH2 CHRCO-; - NHCHRCH2 CO- ; -COCH2- ; -COS- ; -CONR- ; -COO- ; -CSNH- ; -CH2 NH- ; - CH2CH2- ; -CH2 S- ; -CH2 SO- ; -CH2S02- ; -CH(CH3)S- ; -CH=CH- ; -NHCO- ; - NHCONH- ; -CONHO- ; -C( =CH2)CH2- ; -P02 "NH- ; -P02 'CH2- ; -P02 "CH2N+- ; - S02NH"- ; and lactams.
99. Bioactive species according to any of claims 93-98, wherein said bioactive species is defined by one or more of the following structural limits: 3 ≤ HDO ≤ 5 and/or 2 < HAC < 9 and/or 2 < RTB < 8 and/or 1 < RNG < 4 and/or -0.4 < log P < 5.6 and/or 40 ≤MR ≤130
100. Bioactive species of claim 99 wherein said bioactive species is defined by 2 of said structural limits.
101. Bioactive species of claim 99, wherein said bioactive species is defined by 3 of said structural limits.
102. Bioactive species of claim 99, wherein said bioactive species is de- fined by 4 of said structural limits.
103. Bioactive species of claim 99, wherein said bioactive species is defined by 5 of said structural limits.
104. Bioactive species of claim 99, wherein said bioactive species is defined by 6 of said structural limits.
105. Bioactive species according to any of claims 99-104, wherein said bioactive species is further defined within the limits 0 ≤ HDO ≤ 2
106. Bioactive species according to any of claims 99-105, wherein said bioactive species is further defined within the limits 2 ≤ log P ≤ 3.
107. Bioactive species according to any of claims 99-106, wherein said bio- active species is either lipophilic and/or encapsulated in a lipophilic carrier.
108. Bioactive species according to any of claims 99-107, wherein said bioactive species is identifiable using the methods according to any of claims 90- 92.
109. Hygienic composition capable of reducing or eliminating microbial cells, comprising one or more of the bioactive species of claims 93-108.
110. Hygienic composition of claim 109, further comprising a hygienically- acceptable carrier.
111. Non-therapeutic method for eliminating or reducing microbial cells, comprising contacting a surface with the hygienic composition of claims 109 or 110.
112. Method of claim 111 , wherein said surface is on an item of hospital equipment.
113. Method of treating a plant diagnosed with, or at risk of developing, a disease caused by a microbial cell, said microbial cell comprising at least one complex of a polypeptide toxin and an anti-toxin polypeptide and/or at least one polynucleotide encoding a polypeptide toxin and an anti-toxin polypeptide, said method comprising the steps of b) contacting said microbial cell with a bioactive species capable of activating said polypeptide toxin and/or capable of initiating de novo synthesis of activated polypeptide toxin, and/or capable of increasing the total amount of activated polypeptide toxin and b) obtaining in said microbial cell an activated polypeptide toxin in an amount sufficient for achieving at least an impaired growth or elimination of said microbial cell in said plant.
114. Method of claim 113, wherein said bioactive species is selected from the bioactive species of claims 93-108.
115. A pharmaceutical formulation comprising a bioactive species according to any of claims 93-108, or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent therefor.
116. The pharmaceutical formulation of claim 115 comprising at least two of the bioactive species according to any of claims 93-108, or a phamaceutically acceptable salt thereof.
1 17. Use of a bioactive species described in any of claims 93-108, capable of activating a polypeptide toxin of a bacterial toxin;antitoxin complex and/or ca- pable of initiating de novo synthesis of an activated polypeptide toxin and/or capable of increasing the amount of activated polypeptide toxin; for the manufacture of a medicament for the treatment of an individual in need thereof.
118. Use of claim 117, wherein said bioactive species is selected from any of the bioactive species described in claims 93-108.
. Use of claims 117-118, wherein said medicament is for the treatment or prevention of disease in said individual caused by a bacterium harbouring one or more toxin:anti-toxin complexes.
PCT/DK2005/000082 2004-02-10 2005-02-04 Bioactive species capable of interfering with a microbial toxin-antitoxin complex and methods for evaluation and use of said bioactive species WO2005074986A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US54284004P 2004-02-10 2004-02-10
US60/542,840 2004-02-10
DKPA200400203 2004-02-10
DKPA200400203 2004-02-10

Publications (2)

Publication Number Publication Date
WO2005074986A2 true WO2005074986A2 (en) 2005-08-18
WO2005074986A3 WO2005074986A3 (en) 2006-12-14

Family

ID=34839644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2005/000082 WO2005074986A2 (en) 2004-02-10 2005-02-04 Bioactive species capable of interfering with a microbial toxin-antitoxin complex and methods for evaluation and use of said bioactive species

Country Status (1)

Country Link
WO (1) WO2005074986A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123537A1 (en) * 2005-05-16 2006-11-23 Takara Bio Inc. Novel endoribonuclease
WO2007010740A1 (en) * 2005-07-21 2007-01-25 Takara Bio Inc. Novel endoribonuclease
WO2007013264A1 (en) * 2005-07-26 2007-02-01 Takara Bio Inc. Novel endoribonuclease
WO2007013265A1 (en) * 2005-07-26 2007-02-01 Takara Bio Inc. Novel endoribonuclease
WO2008121867A1 (en) * 2007-03-28 2008-10-09 University Of Medicine And Dentistry Of New Jersey Mrna interferase from myxococcus xanthus
EP1999280A2 (en) * 2006-03-22 2008-12-10 University Of Medicine And Dentistry Of New Jersey Targeting bacterial suicide pathways for the development of novel antibiotics
WO2009027313A2 (en) * 2007-08-31 2009-03-05 Basf Plant Science Gmbh Pathogen control genes and methods of use in plants
EP2491944A2 (en) * 2009-10-23 2012-08-29 Supadelixir Inc. Polypeptide or fused protein thereof inhibiting the extravasation of white blood cells or the growth and/or metastasis of cancer cells
KR20130079420A (en) * 2010-05-10 2013-07-10 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Endoribonuclease compositions and methods of use thereof
JP2019170225A (en) * 2018-03-28 2019-10-10 国立研究開発法人産業技術総合研究所 Endoribonuclease and inhibitors thereof
CN117185499A (en) * 2023-11-08 2023-12-08 北京大学 Synechocystis PCC 6803 capable of tolerating sulfonamide antibiotics and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005421A1 (en) * 1999-07-16 2001-01-25 Cancer Research Ventures Limited Methods employing bacterial toxin-antitoxin systems for killing eukaryotic cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002306849A1 (en) * 2001-03-21 2002-10-08 Elitra Pharmaceuticals, Inc. Identification of essential genes in microorganisms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005421A1 (en) * 1999-07-16 2001-01-25 Cancer Research Ventures Limited Methods employing bacterial toxin-antitoxin systems for killing eukaryotic cells

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
AIZENMAN EINAT ET AL: "An Escherichia coli chromosomal "addiction module" regulated by 3',5'-bispyrophosphate: A model for programmed bacterial cell death" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 93, no. 12, 1996, pages 6059-6063, XP002389062 ISSN: 0027-8424 *
AMITAI SHAHAR ET AL: "MazF-mediated cell death in Escherichia coli: a point of no return" JOURNAL OF BACTERIOLOGY, vol. 186, no. 24, December 2004 (2004-12), pages 8295-8300, XP002389069 ISSN: 0021-9193 *
BUTS ET AL: "Toxin-antitoxin modules as bacterial metabolic stress managers" TRENDS IN BIOCHEMICAL SCIENCES, ELSEVIER, HAYWARDS, GB, vol. 30, no. 12, December 2005 (2005-12), pages 672-679, XP005179936 ISSN: 0968-0004 *
CHRISTENSEN SUSANNE K ET AL: "RelE toxins from Bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA." MOLECULAR MICROBIOLOGY, vol. 48, no. 5, June 2003 (2003-06), pages 1389-1400, XP002389067 ISSN: 0950-382X *
CHRISTENSEN SUSANNE K ET AL: "Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA." JOURNAL OF MOLECULAR BIOLOGY, vol. 332, no. 4, 26 September 2003 (2003-09-26), pages 809-819, XP002389065 ISSN: 0022-2836 *
DATABASE GENESEQ [Online] 19 June 2003 (2003-06-19), XP002389230 Database accession no. ABU14936 & WO 02/077183 A (ELITRA PHARMACEUTICALS, INC; WANG, LIANGSU; ZAMUDIO, CARLOS; MALONE, C) 3 October 2002 (2002-10-03) *
GERDES KENN: "Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress" JOURNAL OF BACTERIOLOGY, vol. 182, no. 3, February 2000 (2000-02), pages 561-572, XP002389060 ISSN: 0021-9193 *
GRONLUND HUGO ET AL: "Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes" JOURNAL OF MOLECULAR BIOLOGY, vol. 285, no. 4, 29 January 1999 (1999-01-29), pages 1401-1415, XP002389066 ISSN: 0022-2836 *
HAYES FINBARR: "Toxins-antitoxins: Plasmid maintenance, programmed cell death, and cell cycle arrest." SCIENCE (WASHINGTON D C), vol. 301, no. 5639, 12 September 2003 (2003-09-12), pages 1496-1499, XP002389061 ISSN: 0036-8075 *
KAMADA KATSUHIKO ET AL: "Crystal structure of the MazE/MazF Complex: Molecular bases of antidote-toxin recognition." MOLECULAR CELL, vol. 11, no. 4, April 2003 (2003-04), pages 875-884, XP002389068 ISSN: 1097-2765 cited in the application *
PEDERSEN KIM ET AL: "Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins" MOLECULAR MICROBIOLOGY, vol. 45, no. 2, July 2002 (2002-07), pages 501-510, XP002389063 ISSN: 0950-382X *
SORVIG ELISABETH ET AL: "Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin-antitoxin-like plasmid maintenance system" MICROBIOLOGY (READING), vol. 151, no. Part 2, February 2005 (2005-02), pages 421-431, XP002389070 ISSN: 1350-0872 *
ZHANG YONGLONG ET AL: "MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli." MOLECULAR CELL, vol. 12, no. 4, October 2003 (2003-10), pages 913-923, XP002389064 ISSN: 1097-2765 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123537A1 (en) * 2005-05-16 2006-11-23 Takara Bio Inc. Novel endoribonuclease
WO2007010740A1 (en) * 2005-07-21 2007-01-25 Takara Bio Inc. Novel endoribonuclease
WO2007013264A1 (en) * 2005-07-26 2007-02-01 Takara Bio Inc. Novel endoribonuclease
WO2007013265A1 (en) * 2005-07-26 2007-02-01 Takara Bio Inc. Novel endoribonuclease
US7989184B2 (en) 2005-07-26 2011-08-02 Takara Bio Inc. Endoribonuclease
EP1999280A4 (en) * 2006-03-22 2009-09-23 Univ New Jersey Med Targeting bacterial suicide pathways for the development of novel antibiotics
EP1999280A2 (en) * 2006-03-22 2008-12-10 University Of Medicine And Dentistry Of New Jersey Targeting bacterial suicide pathways for the development of novel antibiotics
WO2008121867A1 (en) * 2007-03-28 2008-10-09 University Of Medicine And Dentistry Of New Jersey Mrna interferase from myxococcus xanthus
WO2009027313A3 (en) * 2007-08-31 2009-06-18 Basf Plant Science Gmbh Pathogen control genes and methods of use in plants
WO2009027313A2 (en) * 2007-08-31 2009-03-05 Basf Plant Science Gmbh Pathogen control genes and methods of use in plants
EP2491944A2 (en) * 2009-10-23 2012-08-29 Supadelixir Inc. Polypeptide or fused protein thereof inhibiting the extravasation of white blood cells or the growth and/or metastasis of cancer cells
JP2013507954A (en) * 2009-10-23 2013-03-07 スパデリクサー インコーポレイテッド Polypeptide or fusion protein thereof that suppresses leukocyte extravasation or cancer cell growth and / or metastasis
EP2491944A4 (en) * 2009-10-23 2013-09-11 Supadelixir Inc Polypeptide or fused protein thereof inhibiting the extravasation of white blood cells or the growth and/or metastasis of cancer cells
EP2692353A3 (en) * 2009-10-23 2014-03-26 Supadelixir Inc. Peptide LGD or fused protein thereof inhibiting the extravasation of white blood cells or the growth and/or metastasis
KR20130079420A (en) * 2010-05-10 2013-07-10 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Endoribonuclease compositions and methods of use thereof
KR101867359B1 (en) 2010-05-10 2018-07-23 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Endoribonuclease compositions and methods of use thereof
JP2019170225A (en) * 2018-03-28 2019-10-10 国立研究開発法人産業技術総合研究所 Endoribonuclease and inhibitors thereof
CN117185499A (en) * 2023-11-08 2023-12-08 北京大学 Synechocystis PCC 6803 capable of tolerating sulfonamide antibiotics and application thereof
CN117185499B (en) * 2023-11-08 2024-01-30 北京大学 Synechocystis PCC 6803 capable of tolerating sulfonamide antibiotics and application thereof

Also Published As

Publication number Publication date
WO2005074986A3 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
Macek et al. Protein post-translational modifications in bacteria
Yoneyama et al. Antibiotic resistance in bacteria and its future for novel antibiotic development
Ünal et al. Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets
Sharkey et al. Antibiotic resistance ABC-F proteins: bringing target protection into the limelight
Kouidmi et al. The biology of Mur ligases as an antibacterial target
Tan et al. The lasso peptide siamycin-I targets lipid II at the gram-positive cell surface
Metelev et al. Acinetodin and klebsidin, RNA polymerase targeting lasso peptides produced by human isolates of Acinetobacter gyllenbergii and Klebsiella pneumoniae
Du et al. Crystal structure and enantiomer selection by D-alanyl carrier protein ligase DltA from Bacillus cereus
CA2642754A1 (en) Compositions and methods for antibiotic potentiation and drug discovery
Amini et al. Antibiotics and the post-genome revolution
Giuliodori et al. Antibiotics targeting the 30S ribosomal subunit: a lesson from nature to find and develop new drugs
WO2005074986A2 (en) Bioactive species capable of interfering with a microbial toxin-antitoxin complex and methods for evaluation and use of said bioactive species
Bastedo et al. Diversity and evolution of type III secreted effectors: a case study of three families
Fritsch et al. Uptake mechanisms and regulatory responses to MECAM-and DOTAM-based artificial siderophores and their antibiotic conjugates in Pseudomonas aeruginosa
Schmidt et al. Identification of New Resistance Mechanisms in Escherichia coli against Apidaecin 1b Using Quantitative Gel-and LC–MS-Based Proteomics
Pokorny et al. A quantitative model of daptomycin binding to lipid bilayers
Naclerio et al. Mechanistic studies and in vivo efficacy of an oxadiazole-containing antibiotic
Grishin et al. Structural biology of the invasion arsenal of Gram‐negative bacterial pathogens
J. Ericsson et al. Wzy-dependent bacterial capsules as potential drug targets
Kim et al. Phenotypic discovery of an antivirulence agent against Vibrio vulnificus via modulation of quorum-sensing regulator SmcR
US6764823B2 (en) Antimicrobial methods and materials
Liao et al. Application of omics and bioinformatics tools in streptococcus research
Cheng et al. New approaches for anti-infective drug discovery: antibiotics, vaccines and beyond
Kotra et al. From genes to sequences to antibiotics: prospects for future developments from microbial genomics
Suvorov et al. Bacterial Cell Wall: Morphology and Biochemistry

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase