WO2005073515A1 - Disk material - Google Patents

Disk material Download PDF

Info

Publication number
WO2005073515A1
WO2005073515A1 PCT/JP2004/000887 JP2004000887W WO2005073515A1 WO 2005073515 A1 WO2005073515 A1 WO 2005073515A1 JP 2004000887 W JP2004000887 W JP 2004000887W WO 2005073515 A1 WO2005073515 A1 WO 2005073515A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
heat treatment
crystal
crystal grain
temperature
Prior art date
Application number
PCT/JP2004/000887
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Takahashi
Sadao Nishikiori
Kazunori Tahara
Yusuke Ueda
Mitsuhiro Takekawa
Original Assignee
Ishikawajima-Harima Heavy Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima-Harima Heavy Industries Co., Ltd. filed Critical Ishikawajima-Harima Heavy Industries Co., Ltd.
Priority to PCT/JP2004/000887 priority Critical patent/WO2005073515A1/en
Publication of WO2005073515A1 publication Critical patent/WO2005073515A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors

Definitions

  • the present invention relates to a ring-shaped or disk-shaped disc material used for an evening bin disc or the like.
  • the disk material used for the turbine disk of a jet engine and a gas turbine engine is mainly composed of a Ni-base superalloy precipitation-strengthened by the ⁇ , (Ni 3 Al) phase.
  • these disc materials there is a dual property disc having different strength characteristics required for an outer peripheral portion and an inner peripheral portion. Specifically, the outer periphery of the disk that comes into contact with the high-temperature combustion gas must have high-temperature strength, and the inner periphery of the disk, which is the joint with the rotating shaft, must have fatigue strength.
  • one means for increasing the high-temperature strength is to increase the crystal grain size of the metal crystals constituting the disk material.
  • a reduction in the crystal grain size of the metal crystals constituting the disk material can be cited.
  • U.S. Pat. No. 5,326,409 is known as a disc material having dual properties.
  • the invention described in this specification involves immersing the outer periphery of a disc material in a salt bath (chloride bath) at about 1200 ° C. and rotating the disc material by 60 ° over the entire circumference. is there.
  • a single heat treatment in which a disk material is immersed in a salt bath is used to increase the size of metal crystal grains in the outer peripheral portion of the disk.
  • One embodiment of the present invention is a disk material composed of a 7 ′ precipitation-strengthened Ni-based alloy, in which a fine crystal part having a crystal grain size of 20 m or less and a coarse crystal part having a crystal grain size of 70 to 130 zm are provided. And. As a result, a disc material having a fine crystal part having excellent fatigue strength and a coarse crystal part having high temperature strength is obtained.
  • Another aspect of the present invention is a disk material composed of an ⁇ ′ precipitation strengthened Ni-based alloy, wherein a fine crystal part having an ⁇ ′ phase precipitated at a crystal grain boundary and having a crystal grain size of 20 m or less; no precipitation of ⁇ 5 phase in the grain boundary, grain size is one having a large crystal of 70 to 130 m.
  • a disc material having fine crystal parts having excellent fatigue strength and coarse crystal parts having high temperature strength is obtained.
  • Another embodiment of the present invention relates to a method in which a part of a disk body composed of an ⁇ ′ precipitation strengthened Ni After performing the first heat treatment of heating for a short time in the temperature range of 10 ° C higher, the entire disc body is heated 100 ° C lower than the heating temperature of the first heat treatment to the heating temperature of the first heat treatment. This is to perform a second heat treatment of heating at a temperature lower by 10 ° C. for a predetermined time. As a result, a part of the disk body is formed in a coarse crystal part having a crystal grain size of 70 to: and the remaining part of the disk body is formed in a fine crystal part having a crystal grain size of the following. Characteristics can be achieved at a high level.
  • another embodiment of the present invention relates to a fine crystal part having a crystal grain size of 20 m or less and a coarse crystal part having a crystal grain size of 70 to 130 ⁇ m, which is formed of an ⁇ 'precipitation strengthened Ni-based alloy. It is an evening bin disc manufactured using a disc material having the following. As a result, a turbine disk having a high level of high-temperature strength and fatigue strength can be obtained.
  • Still another embodiment of the present invention is a turbine engine manufactured using the above-described turbine disk. As a result, a highly reliable evening bin engine can be obtained.
  • FIG. 1 is a view for explaining a method of manufacturing a disk material according to a preferred embodiment of the present invention.
  • FIG. 2 is a perspective view of a disk material according to a preferred embodiment of the present invention.
  • FIG. 3 is a diagram showing a thermal analysis result of an as-forged material composed of N18.
  • 4 (a) to 4 (d) show the relationship between the heat treatment temperature, the grain growth behavior, and the solid solution behavior of the as-forged material composed of N18.
  • Fig. 4 (a) shows the as-forged material
  • Fig. 4 (b) shows the heat-treated material at 1160 ° C x 4h
  • Fig. 4 (c) shows the heat-treated material at 1180 ° C x 4h
  • Fig. 4 (d) shows the temperature at 1200 ° C x 4h. It is a structure observation figure of a heat-treated material. '
  • Fig. 5 is a diagram showing the relationship between the heat treatment time and the crystal grain size when the as-forged material shown in Fig. 4 (a) was heat-treated at 1160 ° C, 1180 ° C, and 1200 ° C, respectively. .
  • Figs. 6 (a) to 6 (c) are microstructure observations of the as-forged material shown in Fig. 4 (a) when heat-treated at 1220 ° C.
  • Fig. 6 (a) shows the structure of the heat-treated material at 1220 ° C x 0.5h
  • Fig. 6 (b) shows the structure of the heat-treated material at 1220 ° C x 1.0h
  • Fig. 6 (c) shows the structure of the heat-treated material at 1220 ° C x 2.0h. is there.
  • FIGS. 7 (a), 7 (b), and 7 (c) are enlarged views of FIGS. 6 (a), 6 (b), and 6 (c), respectively.
  • FIG. 8 is a diagram for explaining a method of manufacturing a disk material according to a preferred embodiment of the present invention.
  • the as-forged material shown in FIG. 4 (a) is subjected to first heating at 1200 ° C. for 0.5 h.
  • FIG. 9 is a view showing the relationship between the heat treatment time of the second heat treatment and the crystal grain size of the outer peripheral portion of the disk when performing the second heat treatment at 1180 ° C. after the heat treatment.
  • FIG. 9 (a) to Fig. 9 (c) show that the as-forged material shown in Fig. 4 (a) was subjected to the first heat treatment at 1200 ° C x 0.5h, and then to the second heat treatment at 1180 ° C.
  • FIG. 8 is a view showing a relationship between a heat treatment time of a second heat treatment and a crystal grain size of a disk outer peripheral portion when performing a treatment.
  • Fig. 9 (a) shows the second heat treatment material at 1180 ° C xlh
  • Fig. 9 (b) shows the second heat treatment material at 1180 ° C x 2h
  • Fig. 9 (c) shows the second heat treatment at 1180 ° C x 4h. It is a processing material.
  • the disk material 20 has a ring shape and a disk shape made of an ⁇ ′ precipitation strengthened Ni-based alloy, and has a crystal grain size. It has a fine crystal part of 20 ⁇ m or less and a coarse crystal part having a crystal grain size of 70 to 130 ⁇ m, preferably 80 to 120 zm, more preferably 90 to UO m. Specifically, the fine crystal part is the inner peripheral part 21 of the disk, the coarse crystal part is the outer peripheral part 22 of the disk, and the crystal grain boundaries of the metal crystals in the inner peripheral part 21 of the disk are a, (Ni 3 Al ) A phase has precipitated. A hole 23 is formed at the center of the disk material 20.
  • a as the precipitation-strengthened Ni-based alloy, all of those conventionally used in jet engines and evening bin discs of gas evening bin engines can be applied, and are not particularly limited. Absent. For example, various INC0NEL (registered trademark), various INCOLOY (registered trademark), various NIMONIC (registered trademark), various UDIMET alloy (registered trademark), Waspalloy (registered trademark), Hastelloy (registered trademark), etc. are applicable. And preferably N18 (registered trademark).
  • the average particle size of the ⁇ ′ on the crystal grain boundary (the ⁇ ′ on the crystal grain boundary in the disk body 10 described later) is 1 to 10 m, preferably 2 to 5 ⁇ m.
  • the ratio of the ⁇ ⁇ ′ on the crystal grain boundary to the metal crystal in the inner peripheral portion 21 of the disk is represented by the area ratio (the area occupied by the '′ on the crystal grain boundary / the entire metal crystal in the inner peripheral portion 21 of the disk). (Area) 0.05 to 0.25, preferably 0.10 to 0.20.
  • ⁇ 3 precipitation strengthened N i based alloys specifically raised forging Mom material gradually composed of N 18, shows the thermal analysis results of the Atsushi Nobori process in FIG.
  • the horizontal axis in FIG. 3 indicates temperature (° C), and the vertical axis indicates temperature difference ⁇ .
  • temperature difference ⁇ here means that two heat-resistant containers are prepared, the material is forged in one container, the other container is emptied, and each container is gradually heated and the temperature of each container is increased. Is measured using a temperature measuring device (for example, a thermocouple), and the temperature difference of each container is shown as "temperature difference ⁇ ".
  • the temperature difference curve 30 when comparing the actual temperature difference curve 30 with the mass carp 31 for the as-forged material composed of N18, the temperature difference curve 30 is higher than the master force 31. Dissolution occurs at the location where it is located.
  • the shaded region 32 is a region where y in the crystal grain forms a solid solution, and its solid solution temperature is about 1030 to 1070 ° C.
  • the hatched region 33 is a region where the solid solution on the crystal grain boundary is dissolved, and its solid solution temperature is about U70 to 1190 ° C.
  • Fig. 5 shows the relationship between the heat treatment time and the crystal grain size when the as-forged material shown in Fig. 4 (a) was heat-treated at 1160 ° C, 1180 ° C, and 1200 ° C, respectively.
  • the horizontal axis in Fig. 5 shows the heat treatment time (h), and the vertical axis shows the crystal grain size ( ⁇ m).
  • the crystal grain size increases as the heat treatment time increases. This is because, by increasing the heat treatment time, the ⁇ ′ precipitated on the crystal grain boundaries gradually becomes solid solution, and the pinning effect gradually weakens.
  • the line 53 in FIG. 5 when the heat treatment was performed at 1200 ° C., the crystal grain size was coarse, approximately 60 ⁇ m. Was this precipitated on the grain boundaries? Is completely (or almost completely) dissolved and secondary recrystallization occurs.
  • heat treatment is performed at 1200 ° C for more than 2 hours, the crystal grain size starts to vary. The variation is due to the fact that some crystal grains are coarsened by the heat treatment, and the coarsened crystal grains prevent the adjacent crystal grains from being coarsened.
  • the heat treatment in order to coarsen the crystal grains of the as-forged material shown in FIG. 4A, it is preferable to perform the heat treatment at a temperature of 1170 ° C. or more, preferably 1180 ° C. or more.
  • the heat treatment time is set to 2.011 or less, preferably 1. Oh or less.
  • Figures 6 (a) to 6 (c) show the microstructure observations of the as-forged material shown in Fig. 4 (a) when heat-treated at 1220 ° C.
  • a disk material 20 having a disk inner peripheral portion 21 of a fine crystal portion and a disk outer peripheral portion 22 of a coarse crystal portion can be obtained by a single heat treatment. Instead, it was found that two-stage heat treatment was required to obtain the disc material 20. Further, the present inventors have found the temperature and time of each heat treatment in the two-step heat treatment.
  • a method of manufacturing a disk material includes a disk body 10 made of an ⁇ ′ precipitation-strengthened Ni-based alloy precipitation-strengthened by an ⁇ ′ phase.
  • the disk body 1 0 is subjected to a second heat treatment for heating for a predetermined time in a range of 100 ° C. lower than the heat temperature of the first heat treatment to 10 ° C. lower than the heat temperature of the first heat treatment. .
  • the disk body 10 becomes a high-frequency induction heating device 15 Is set to
  • the high-frequency induction heating device 15 has a cylindrical sleeve portion 16, flange portions 17 a and 17 b projecting radially inward from both ends in the height direction of the sleeve portion 16, and a high-frequency current (not shown). And a lead member.
  • the height of the sleeve portion 16 is formed larger than the thickness of the disk body 10.
  • the shape of the high-frequency induction heating device 15 is a shape obtained by bisecting a ring.
  • the shape is not particularly limited as long as the shape is such that only the disk outer peripheral portion 12 can be induction-heated.
  • the disk outer peripheral portion 12 is, for example, a portion having a width of 10 cm from the outer edge of the disk body 10.
  • the heating temperature of the high-frequency induction heating device 15 is reduced. After adjusting the high-frequency current value so as to be 1170 to 1200 ° C., by rotating the rotating shaft 14, the disk body 10 is rotated. Thus, the outer peripheral portion 12 of the disk body 10 is subjected to high-frequency induction heating over the entire circumference, and the first heat treatment is performed. Heating time by high-frequency induction heating is 0.1 to 2.01, preferably 0.1 to: Since LO h is short, heat generated by high-frequency induction heating is applied to the inner peripheral portion 11 of the disk 10. Has little effect. In addition, by circulating a cooling medium 19 inside the rotating shaft 14 and cooling the inner peripheral portion 11 of the disk, the inner peripheral portion 1 of the disk by high-frequency induction heating is cooled.
  • the precipitate ( ⁇ ′ phase) that has precipitated on the crystal grain boundaries in the outer peripheral portion 12 of the disk is dissolved. Further, in the stage of the first heat treatment, the crystal grain size of the metal crystal in the outer peripheral portion 12 of the disk is not controlled.
  • the disk body 10 is placed in a resistance furnace and heated to perform a second heat treatment on the entire disk body 10.
  • the heating temperature in the resistance furnace is 1070 ⁇ ; 1190 ° C, preferably 1100 ⁇ : U90 ° C, and the heating time is 0.5 ⁇ 10h, preferably 0.5 ⁇ 4.0h.
  • the crystal grain size in the outer peripheral portion 12 of the disk body is controlled. More specifically, the ⁇ ′ phase suppresses the coarsening of the crystal grains due to the pinning effect, but the ⁇ ′ phase on the crystal grain boundaries in the outer peripheral portion 12 of the disk is reduced by the first heat treatment. It has already dissolved. As a result, after the second heat treatment,
  • the crystal grains of the metal crystal in 11 remain fine, the crystal grains of the metal crystal in the outer peripheral portion 12 of the disk are coarsened.
  • a solution treatment is performed on the entire disc body 10, so that the distortion of the inner peripheral portion 11 of the disc is alleviated and eliminated, and the fatigue strength is improved.
  • the inner peripheral part of the disk 11 is a fine crystal part with a crystal grain size of 20 zm or less.
  • the disk outer periphery 12 is formed on the (disk inner periphery 21) in a large crystal part (disk outer periphery 22) having a crystal grain size of 70 to 130 m, and the disk material 20 shown in FIG. Is obtained.
  • FIG. 8 shows the relationship between the heat treatment time of the second heat treatment and the crystal grain size of the outer peripheral portion of the disk when the second heat treatment is performed at n80 ° C.
  • the second heat treatment at 1180 ° C.
  • the crystal grain size of the treated heat-treated material at the outer peripheral portion 22 of the disk was slightly more than 301 11 when the second heat treatment time was 0.5 h. Thereafter, as the heat treatment time becomes longer, the crystal grain size in the outer peripheral portion 22 of the disk becomes coarse, and when the processing time of the second heat treatment is 4 h, the crystal grain size in the outer peripheral portion 22 of the disk becomes larger. It was about 85 m.
  • Figs. 9 (a) to 9 (c) as shown in Figs. 9 (a) to 9 (c), as the processing time of the second heat treatment increases to lh, 2h, and 4h, It can be seen that the crystal grains of the metal crystals are getting coarser.
  • the crystal grain size at the disk outer peripheral portion 22 of the heat-treated material obtained by performing a single heat treatment at 1160 ° C. on the as-forged material shown in FIG. Even if the heat treatment time was prolonged, there was almost no change, only 10 m or more.
  • the heat-treated material indicated by the line 81 using the method of manufacturing the disc material 20 according to the present embodiment is subjected to the first heat treatment at 1200 ° C. for 0.5 h, and then to the heat treatment of the first heat treatment.
  • the second heat treatment is performed at a temperature 20 ° C. lower than the temperature, even if the processing time of the second heat treatment is as short as 4 hours, the crystal grains of the metal crystals in the outer peripheral portion 22 of the disk are reduced by about 85%. m could be coarsened.
  • the first heat treatment which is the first step, is performed by solidifying the a ′ phase on the crystal grain boundaries in the disk outer peripheral portion 12 of the disk body 10.
  • the crystal grains of the metal crystal in the outer peripheral portion 12 of the disk are not made coarse. Therefore, a heat treatment temperature range that does not cause partial melting at the disk outer peripheral portion 12 can be selected and set, and as a result, partial melting does not occur at the disk outer peripheral portion 12.
  • the first heat treatment for partially heating the disk outer peripheral portion 12 of the disk body 10 is intended only for solid solution of the a ′ phase. There is no need to perform heat treatment for a long time.
  • the first heat treatment is a short-time heat treatment, there is no possibility that the temperature will rise due to the thermal effect on the inner peripheral portion 11 of the disk, and the effective thermal effect will be effective only on the outer peripheral portion 12 of the disk. Can be given.
  • the heating temperature of the first heat treatment is reduced by 100 ° C.
  • the second heat treatment in a temperature range from a low temperature to a temperature lower by 10 ° C. than the heating temperature of the first heat treatment, even if the processing time of the second heat treatment is short, the outer peripheral portion 22 of the disk can be used.
  • the crystal grains of the metal crystal can be made coarse.
  • the first heat treatment using the high-frequency induction heating device 15.
  • the heat treatment can be performed in a shorter time, and the outer peripheral portion 12 Only the effective thermal effects can be exerted.
  • the high-frequency induction heating device 15 is used instead of the salt bath, the operation at the time of the heat treatment becomes simpler and safer.
  • a salt bath may be used for the first heat treatment.
  • the bath temperature of the salt bath is adjusted to a temperature 10 ° C higher than the solid solution temperature of the solid phase to the solid solution temperature, specifically 1170 to 1200 ° C, and the disk body 10 is rotated.
  • the first heat treatment is performed by immersing the disk outer peripheral portion 12 in a salt bath for a short time.
  • the disk material 20 according to the present embodiment has a disk inner peripheral portion 21 of a fine crystal portion and a disk outer peripheral portion 22 of a coarse crystal portion. Therefore, the inner peripheral portion has excellent fatigue strength, and the outer peripheral portion. Is a dual property disc material with excellent high temperature strength.
  • the present invention is not particularly limited to this.
  • the inner peripheral part 21 of the disk is a coarse crystal part
  • the disk outer peripheral portion 22 may be a fine crystal portion.
  • the turbine disk according to the present embodiment is manufactured using the disk material 20.
  • the evening bin engine according to the present embodiment is manufactured using the turbine disk according to the present embodiment.
  • this turbine engine has higher heat resistance and durability against high temperature loads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)

Abstract

Disk material (20) for use in, for example, turbine disks of a jet engine and a gas turbine engine, which disk material (20) is comprised of a Ϝ’ precipitation strengthened Ni-based alloy having fine crystal regions of 20 μm or less crystal grain diameter and coarse crystal regions of 70 to 130 μm crystal grain diameter.

Description

明 細 書  Specification
ディスク材 技術分野  Disc material Technical field
この発明は、 夕一ビンディスクなどに使用される円環、 円盤状のディスク 材に関するものである。 背景技術  The present invention relates to a ring-shaped or disk-shaped disc material used for an evening bin disc or the like. Background art
ジエツトエンジンやガス夕一ビンエンジンのタービンディスクなどに使用 されるディスク材は、 主にァ, (Ni3Al) 相により析出強化された N i基超合金で 構成されている。 このディスク材の内、 外周部と内周部とで要求される強度特性 が異なるデュアルプロパティディスクがある。 具体的には、 高温の燃焼ガスと接 触するディスク外周部は高温強度が、 回転軸との接合部であるディスク内周部は 疲労強度が要求される。 The disk material used for the turbine disk of a jet engine and a gas turbine engine is mainly composed of a Ni-base superalloy precipitation-strengthened by the α, (Ni 3 Al) phase. Among these disc materials, there is a dual property disc having different strength characteristics required for an outer peripheral portion and an inner peripheral portion. Specifically, the outer periphery of the disk that comes into contact with the high-temperature combustion gas must have high-temperature strength, and the inner periphery of the disk, which is the joint with the rotating shaft, must have fatigue strength.
ここで、 高温強度を高めるための 1つの手段として、 ディスク材を構成す る金属結晶の結晶粒径を大きくすることが挙げられる。 また、 疲労強度を高める ための 1つの手段として、 ディスク材を構成する金属結晶の結晶粒径を小さくす ることが挙げられる。 これらのことからわかるように、 高温強度と疲労強度とは 相反する特性であり、 両者を高いレベルで達成させることは困難である。  Here, one means for increasing the high-temperature strength is to increase the crystal grain size of the metal crystals constituting the disk material. Further, as one means for increasing the fatigue strength, a reduction in the crystal grain size of the metal crystals constituting the disk material can be cited. As can be seen from these facts, high-temperature strength and fatigue strength are contradictory properties, and it is difficult to achieve both at a high level.
デュアルプロパティを有するディスク材として、 米国特許第 5, 326, 409号明 細書が知られている。 この明細書に記載された発明は、 ディスク材外周部を約 12 00°Cのソルトバス (塩化物浴) 中に浸潰して 6 0 ° 回転させるという作業を全周 にわたつて行うというものである。 そして、 この明細書に記載された発明は、 デ イスク材をソルトバスに浸漬させるという単一の熱処理により、 ディスク外周部 における金属結晶の結晶粒の粗大化を図っている。  U.S. Pat. No. 5,326,409 is known as a disc material having dual properties. The invention described in this specification involves immersing the outer periphery of a disc material in a salt bath (chloride bath) at about 1200 ° C. and rotating the disc material by 60 ° over the entire circumference. is there. In the invention described in this specification, a single heat treatment in which a disk material is immersed in a salt bath is used to increase the size of metal crystal grains in the outer peripheral portion of the disk.
ところで、 米国特許第 5, 326, 409号明細書に記載された発明の熱処理方法は、 By the way, the heat treatment method of the invention described in U.S. Patent No. 5,326,409,
( 1 ) 結晶粒界のピン止めとして作用する結晶粒界上の析出物を固溶させる (1) Solid solution of precipitates on grain boundaries that act as pinning of grain boundaries
(2) 析出物を固溶させた後、 高温に保持することにより、 金属結晶の結晶粒を粗 大化させる (2) After the precipitates are dissolved, the temperature Amplify
というこれら 2つのプロセスを、 単一の熱処理により行っていた。 These two processes were performed by a single heat treatment.
このため、 以下のような問題が生じるおそれがあった。  For this reason, the following problems may occur.
(a) 結晶粒界上の析出物の固溶温度と、 合金の溶融開始温度との温度差が 小さい場合、 熱処理中、 結晶粒界において部分溶融する箇所が生じる。  (a) If the temperature difference between the solid solution temperature of the precipitates on the crystal grain boundaries and the melting start temperature of the alloy is small, a part of the crystal grain boundaries undergoes partial melting during heat treatment.
(b) 長時間の熱処理を行った場合、 ディスク内周部の温度上昇が予測され る。 その結果、 ディスク外周部だけではなく、 ディスク内周部における金属結晶 の結晶粒が粗大化するおそれがある。  (b) When the heat treatment is performed for a long time, the temperature rise of the inner circumference of the disk is predicted. As a result, there is a possibility that the crystal grains of the metal crystal not only at the outer peripheral portion of the disk but also at the inner peripheral portion of the disk become coarse.
( c ) 熱処理に高温 (約 1200°C ) のソルトバスを使用することから、 熱処理 作業の際に、 ソルトバスの取り扱いが非常に難しい。 発明の開示  (c) Since a high-temperature (about 1200 ° C) salt bath is used for heat treatment, it is very difficult to handle the salt bath during heat treatment. Disclosure of the invention
本発明の一態様は、 7 '析出強化型 N i基合金で構成されるディスク材であ り、 結晶粒径が 20 m以下の微細結晶部と結晶粒径が 70〜130 z mの粗大結晶部と を有するものである。 これによつて、 疲労強度に優れた微細結晶部と、 高温強度 に優れた粗大結晶部とを有するディスク材となる。  One embodiment of the present invention is a disk material composed of a 7 ′ precipitation-strengthened Ni-based alloy, in which a fine crystal part having a crystal grain size of 20 m or less and a coarse crystal part having a crystal grain size of 70 to 130 zm are provided. And. As a result, a disc material having a fine crystal part having excellent fatigue strength and a coarse crystal part having high temperature strength is obtained.
本発明の別の態様は、 ァ'析出強化型 N i基合金で構成されるディスク材で あり、 結晶粒界にァ'相が析出した結晶粒径が 20 m以下の微細結晶部と、 結晶粒 界にァ5相の析出がなく、 結晶粒径が 70〜130 mの粗大結晶部とを有するもので ある。 これによつて、 疲労強度に優れた微細結晶部と、 高温強度に優れた粗大結 晶部とを有するディスク材となる。 Another aspect of the present invention is a disk material composed of an α ′ precipitation strengthened Ni-based alloy, wherein a fine crystal part having an α ′ phase precipitated at a crystal grain boundary and having a crystal grain size of 20 m or less; no precipitation of § 5 phase in the grain boundary, grain size is one having a large crystal of 70 to 130 m. As a result, a disc material having fine crystal parts having excellent fatigue strength and coarse crystal parts having high temperature strength is obtained.
本発明の他の態様は、 ァ'相により析出強化されたァ'析出強化型 N i基合 金で構成されるディスク体の一部に、 ァ'相の固溶温度〜固溶温度よりも 10°C高い 温度の範囲で短時間加熱する第 1加熱処理を施した後、 ディスク体全体に、 第 1 加熱処理の加熱温度よりも 100°C低い温度〜第 1加熱処理の加熱温度よりも 10°C低 い温度の範囲で所定時間加熱する第 2加熱処理を施すものである。 これによつて、 ディスク体の一部が結晶粒径が 70〜: の粗大結晶部に、 ディスク体の残部が 結晶粒径が 以下の微細結晶部に形成され、 高温強度と疲労強度という相反 する特性を高いレベルで達成させることができる。 Another embodiment of the present invention relates to a method in which a part of a disk body composed of an α ′ precipitation strengthened Ni After performing the first heat treatment of heating for a short time in the temperature range of 10 ° C higher, the entire disc body is heated 100 ° C lower than the heating temperature of the first heat treatment to the heating temperature of the first heat treatment. This is to perform a second heat treatment of heating at a temperature lower by 10 ° C. for a predetermined time. As a result, a part of the disk body is formed in a coarse crystal part having a crystal grain size of 70 to: and the remaining part of the disk body is formed in a fine crystal part having a crystal grain size of the following. Characteristics can be achieved at a high level.
また、 本発明の他の態様は、 ァ'析出強化型 N i基合金で構成され、 結晶粒 径が 20 m以下の微細結晶部と結晶粒径が 70〜; 130〃 mの粗大結晶部とを有するデ イスク材を用いて製造した夕一ビンディスクである。 これによつて、 高温強度及 び疲労強度を高いレベルで達成したタービンディスクが得られる。  Further, another embodiment of the present invention relates to a fine crystal part having a crystal grain size of 20 m or less and a coarse crystal part having a crystal grain size of 70 to 130 μm, which is formed of an α 'precipitation strengthened Ni-based alloy. It is an evening bin disc manufactured using a disc material having the following. As a result, a turbine disk having a high level of high-temperature strength and fatigue strength can be obtained.
さらに、 本発明の他の態様は、 前述したタービンディスクを用いて製造し たタービンエンジンである。 これによつて、 信頼性に優れた夕一ビンエンジンが 得られる。 図面の簡単な説明  Still another embodiment of the present invention is a turbine engine manufactured using the above-described turbine disk. As a result, a highly reliable evening bin engine can be obtained. Brief Description of Drawings
図 1は、 本発明の好適一実施の形態に係るディスク材の製造方法を説明す るための図である。  FIG. 1 is a view for explaining a method of manufacturing a disk material according to a preferred embodiment of the present invention.
図 2は、 本発明の好適一実施の形態に係るディスク材の斜視図である。 図 3は、 N 1 8で構成される鍛造まま材の熱分析結果を示す図である。 図 4 (a) 〜図 4 (d) は、 N 1 8で構成される鍛造まま材の、 熱処理温 度と結晶粒成長挙動及びァ,固溶挙動との関係を示す図である。 図 4 (a) は鍛造 まま材、 図 4 (b) は 1160°Cx4hの熱処理材、 図 4 ( c) は 1180°C x 4hの熱処 理材、 図 4 (d) は 1200°Cx4hの熱処理材の組織観察図である。 '  FIG. 2 is a perspective view of a disk material according to a preferred embodiment of the present invention. FIG. 3 is a diagram showing a thermal analysis result of an as-forged material composed of N18. 4 (a) to 4 (d) show the relationship between the heat treatment temperature, the grain growth behavior, and the solid solution behavior of the as-forged material composed of N18. Fig. 4 (a) shows the as-forged material, Fig. 4 (b) shows the heat-treated material at 1160 ° C x 4h, Fig. 4 (c) shows the heat-treated material at 1180 ° C x 4h, and Fig. 4 (d) shows the temperature at 1200 ° C x 4h. It is a structure observation figure of a heat-treated material. '
図 5は、 図 4 (a) に示した鍛造まま材を、 1160°C、 1180°C、 1200°Cでそ れそれ熱処理した時における熱処理時間と結晶粒径との関係を示す図である。  Fig. 5 is a diagram showing the relationship between the heat treatment time and the crystal grain size when the as-forged material shown in Fig. 4 (a) was heat-treated at 1160 ° C, 1180 ° C, and 1200 ° C, respectively. .
図 6 (a) 〜図 6 ( c) は、 図 4 (a) に示した鍛造まま材を 1220°Cで熱 処理した際の組織観察図である。 図 6 (a) は 1220°Cx0.5hの熱処理材、 図 6 ( b) は 1220°Cxl.0hの熱処理材、 図 6 ( c) は 1220°C x2.0hの熱処理材の組織 観察図である。  Figs. 6 (a) to 6 (c) are microstructure observations of the as-forged material shown in Fig. 4 (a) when heat-treated at 1220 ° C. Fig. 6 (a) shows the structure of the heat-treated material at 1220 ° C x 0.5h, Fig. 6 (b) shows the structure of the heat-treated material at 1220 ° C x 1.0h, and Fig. 6 (c) shows the structure of the heat-treated material at 1220 ° C x 2.0h. is there.
図 7 (a) 、 図 7 (b) 、 及び図 7 ( c) は、 それぞれ図 6 (a) 、 図 6 (b) 、 及び図 6 (c) の拡大図である。  FIGS. 7 (a), 7 (b), and 7 (c) are enlarged views of FIGS. 6 (a), 6 (b), and 6 (c), respectively.
図 8は、 本発明の好適一実施の形態に係るディスク材の製造方法を説明す るための図であり、 図 4 (a) に示した鍛造まま材に 1200°Cx0.5hで第 1加熱処 理を施した後、 1180°Cで第 2加熱処理を施す際の、 第 2加熱処理の熱処理時間と ディスク外周部の結晶粒径との関係を示す図である。 FIG. 8 is a diagram for explaining a method of manufacturing a disk material according to a preferred embodiment of the present invention. The as-forged material shown in FIG. 4 (a) is subjected to first heating at 1200 ° C. for 0.5 h. place FIG. 9 is a view showing the relationship between the heat treatment time of the second heat treatment and the crystal grain size of the outer peripheral portion of the disk when performing the second heat treatment at 1180 ° C. after the heat treatment.
図 9 ( a ) 〜図 9 ( c ) は、 図 4 ( a ) に示した鍛造まま材に 1200°C x 0. 5 hで第 1加熱処理を施した後、 1180°Cで第 2加熱処理を施す際の、 第 2加熱処理 の熱処理時間とディスク外周部の結晶粒径との関係を示す図である。 図 9 ( a ) は 1180°C x l hの第 2加熱処理材、 図 9 ( b ) は 1180°C x 2hの第 2加熱処理材、 図 9 ( c ) は 1180°C x 4hの第 2加熱処理材である。 発明を実施するための形態  Fig. 9 (a) to Fig. 9 (c) show that the as-forged material shown in Fig. 4 (a) was subjected to the first heat treatment at 1200 ° C x 0.5h, and then to the second heat treatment at 1180 ° C. FIG. 8 is a view showing a relationship between a heat treatment time of a second heat treatment and a crystal grain size of a disk outer peripheral portion when performing a treatment. Fig. 9 (a) shows the second heat treatment material at 1180 ° C xlh, Fig. 9 (b) shows the second heat treatment material at 1180 ° C x 2h, and Fig. 9 (c) shows the second heat treatment at 1180 ° C x 4h. It is a processing material. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 図 2に示すように、 本発明の好適一実施の形態に係るデイスク材 2 0は、 ァ'析出強化型 N i基合金で構成される円環、 円盤状のものであり、 結晶粒径が 2 0〃m以下の微細結晶部と結晶粒径が 70〜130〃m、 好ましくは 80〜; 120 z m、 より 好ましくは 90〜; UO mの粗大結晶部とを有する。 具体的には、 微細結晶部はディ スク内周部 2 1、 粗大結晶部はディスク外周部 2 2であり、 ディスク内周部 2 1 における金属結晶の結晶粒界にはァ, (Ni3Al) 相が析出している。 また、 デイス ク材 2 0の中心には穴 2 3が形成される。 The present invention will be described in more detail with reference to the accompanying drawings. As shown in FIG. 2, the disk material 20 according to a preferred embodiment of the present invention has a ring shape and a disk shape made of an α ′ precipitation strengthened Ni-based alloy, and has a crystal grain size. It has a fine crystal part of 20 μm or less and a coarse crystal part having a crystal grain size of 70 to 130 μm, preferably 80 to 120 zm, more preferably 90 to UO m. Specifically, the fine crystal part is the inner peripheral part 21 of the disk, the coarse crystal part is the outer peripheral part 22 of the disk, and the crystal grain boundaries of the metal crystals in the inner peripheral part 21 of the disk are a, (Ni 3 Al ) A phase has precipitated. A hole 23 is formed at the center of the disk material 20.
ここで、 ァ,析出強化型 N i基合金としては、 ジェットエンジンやガス夕一 ビンエンジンの夕一ビンディスクなどに慣用的に使用されているものが全て適用 可能であり、 特に限定するものではない。 例えば、 各種 INC0NEL (登録商標) 、 各 種 INCOLOY (登録商標) 、 各種 NIMONIC (登録商標) 、 各種 UDIMET alloy (登録商 標) 、 Waspalloy (登録商標) 、 Hastelloy (登録商標) などが適用可能であり、 好ましくは N 1 8 (登録商標) が挙げられる。  Here, a, as the precipitation-strengthened Ni-based alloy, all of those conventionally used in jet engines and evening bin discs of gas evening bin engines can be applied, and are not particularly limited. Absent. For example, various INC0NEL (registered trademark), various INCOLOY (registered trademark), various NIMONIC (registered trademark), various UDIMET alloy (registered trademark), Waspalloy (registered trademark), Hastelloy (registered trademark), etc. are applicable. And preferably N18 (registered trademark).
結晶粒界上のァ' (後述するディスク体 1 0における結晶粒界上のァ') の 平均粒径は 1〜10 m、 好ましくは 2~5〃mである。 また、 結晶粒界上のァ 'がデ イスク内周部 2 1における金属結晶に占める割合は、 面積比 (結晶粒界上のァ'が 占める面積/ディスク内周部 2 1における金属結晶全体の面積) で 0.05〜0.25、 好ましくは 0. 10〜0.20である。 次に、 本発明の好適一実施の形態に係るディスク材の製造方法を、 数値範 囲の限定理由を示しながら、 順に説明する。 The average particle size of the ァ ′ on the crystal grain boundary (the ァ ′ on the crystal grain boundary in the disk body 10 described later) is 1 to 10 m, preferably 2 to 5 μm. The ratio of the 上 の ′ on the crystal grain boundary to the metal crystal in the inner peripheral portion 21 of the disk is represented by the area ratio (the area occupied by the '′ on the crystal grain boundary / the entire metal crystal in the inner peripheral portion 21 of the disk). (Area) 0.05 to 0.25, preferably 0.10 to 0.20. Next, a method for manufacturing a disk material according to a preferred embodiment of the present invention will be described in order, showing the reasons for limiting the numerical range.
3析出強化型 N i基合金、 具体的には N 18で構成される鍛造まま材を徐 々に昇温させ、 その昇温過程における熱分析結果を図 3に示す。 図 3中の横軸は 温度 (°C) 、 縦軸は温度差 ΔΤを示している。 ここで言う "温度差 ΔΤ" とは、 耐熱容器を 2つ用意し、 一方の容器に鍛造まま材を入れ、 他方の容器は空とし、 各容器を徐々に昇温させると共に、 各容器の温度を温度計測装置 (例えば、 熱電 対) を用いて計測し、 各容器の温度差を "温度差 ΔΤ" として示したものである。 § 3 precipitation strengthened N i based alloys, specifically raised forging Mom material gradually composed of N 18, shows the thermal analysis results of the Atsushi Nobori process in FIG. The horizontal axis in FIG. 3 indicates temperature (° C), and the vertical axis indicates temperature difference ΔΤ. The term “temperature difference ΔΤ” here means that two heat-resistant containers are prepared, the material is forged in one container, the other container is emptied, and each container is gradually heated and the temperature of each container is increased. Is measured using a temperature measuring device (for example, a thermocouple), and the temperature difference of each container is shown as "temperature difference ΔΤ".
図 3に示すように、 N 18で構成される鍛造まま材について、 実際の温度 差曲線 30とマス夕一カープ 3 1とを比較すると、 温度差曲線 30がマスター力 ープ 31よりも上方に位置する部分では、 溶解が生じている。 これらの部分の内、 斜線領域 32は結晶粒内の y,が固溶する領域であり、 その固溶温度は約 1030〜1 070°Cである。 また、 斜線領域 33は結晶粒界上のァ'が固溶する領域であり、 そ の固溶温度は約 U70〜1190°Cである。  As shown in Fig. 3, when comparing the actual temperature difference curve 30 with the mass carp 31 for the as-forged material composed of N18, the temperature difference curve 30 is higher than the master force 31. Dissolution occurs at the location where it is located. Among these portions, the shaded region 32 is a region where y in the crystal grain forms a solid solution, and its solid solution temperature is about 1030 to 1070 ° C. The hatched region 33 is a region where the solid solution on the crystal grain boundary is dissolved, and its solid solution temperature is about U70 to 1190 ° C.
このため、 図 4 (a) に示した N 18の鍛造まま材に 1160°Cx4hの熱処理 を施してなる図 4 (b) の熱処理材においては、 結晶粒界上に析出していたァ'が あまり固溶せず、 結晶粒界上にァ,がたくさん残存していた。 この y,によって結 晶粒界がピン止めされることから、 図 4 (b) の熱処理材の結晶粒は、 図 4 (a ) の鍛造まま材とあまり変わらない小さなものであった。  Therefore, in the heat-treated material shown in Fig. 4 (b) where the as-forged N18 material shown in Fig. 4 (a) was heat-treated at 1160 ° C for 4h, the a 'that had precipitated on the grain boundaries was There was not much solid solution, and many a remained on the crystal grain boundaries. Since the crystal grain boundaries are pinned by this y, the crystal grains of the heat-treated material in Fig. 4 (b) were small, not much different from the as-forged material in Fig. 4 (a).
ところが、 鍛造まま材に 1180°Cx4hの熱処理を施してなる図 4 (c) の熱 処理材においては、 熱処理によつて結晶粒界上に析出していたァ'がかなり固溶し、 図 4 (b) の熱処理材と比較して結晶粒界上のァ'の量が少なくなつていた。 その 結果、 結晶粒界のピン止め効果が弱まり、 図 4 (c) の熱処理材の結晶粒は、 図 4 (b) の熱処理材のそれと比較して大きかった。  However, in the heat-treated material shown in Fig. 4 (c) where the as-forged material was subjected to a heat treatment at 1180 ° C x 4h, the a 'that had precipitated on the crystal grain boundaries due to the heat treatment was considerably dissolved. The amount of α 'on the grain boundaries was smaller than that of the heat-treated material of (b). As a result, the pinning effect at the grain boundaries was weakened, and the crystal grain of the heat-treated material in Fig. 4 (c) was larger than that of the heat-treated material in Fig. 4 (b).
また、 鍛造まま材に 1200°Cx4hの熱処理を施してなる図 4 (d) の熱処理 材においては、 熱処理によって結晶粒界上に析出していたァ'が完全に (又はほぼ 完全に) 固溶し、 結晶粒界上にァ'は全く (又はほとんど) 析出していなかった。 その結果、 結晶粒界のピン止め効果が更に弱まって、 図 4 (d) の熱処理材の結 晶粒は粗大となった。 しかし、 一部の結晶粒は依然として微小なままであり、 結 晶粒の大きさにバラツキがあった。 In addition, in the heat-treated material shown in Fig. 4 (d) where the as-forged material is subjected to a heat treatment at 1200 ° C for 4h, the α 'that has precipitated on the crystal grain boundaries due to the heat treatment is completely (or almost completely) dissolved. However, no (or almost no) α ′ was precipitated on the crystal grain boundaries. As a result, the pinning effect of the grain boundaries further weakened, and the heat-treated material shown in Fig. The crystal grains became coarse. However, some of the grains were still small, and the size of the grains varied.
次に、 図 4 (a) に示した鍛造まま材を 1160°C、 1180°C、 1200°Cの各温度 でそれぞれ熱処理した時の、 熱処理時間と結晶粒径との関係を図 5に示す。 図 5 中の横軸は熱処理時間 (h).、 縦軸は結晶粒径 (〃m) を示している。  Next, Fig. 5 shows the relationship between the heat treatment time and the crystal grain size when the as-forged material shown in Fig. 4 (a) was heat-treated at 1160 ° C, 1180 ° C, and 1200 ° C, respectively. . The horizontal axis in Fig. 5 shows the heat treatment time (h), and the vertical axis shows the crystal grain size (〃m).
図 5に線 5 1で示すように、 1160°Cで熱処理した場合、 熱処理時間を長く しても結晶粒径は約 10〃 m強のままほとんど変化しない。  As shown by the line 51 in FIG. 5, when the heat treatment is performed at 1160 ° C., even if the heat treatment time is prolonged, the crystal grain size remains almost 10 μm and hardly changes.
これに対して、 図 5に線 5 2で示すように、 1180°Cで熱処理した場合、 熱 処理時間を長くするのに伴い、 結晶粒径も大きくなる。 これは、 熱処理時間を長 くすることで、 結晶粒界上に析出していたァ'が徐々に固溶し、 ピン止め効果が徐 々に弱まることに起因している。 また、 図 5に線 53で示すように、 1200°Cで熱 処理した場合、 結晶粒径は約 60〃mと粗大であった。 これは、 結晶粒界上に析出 していた?" 'が完全に (又はほぼ完全に) 固溶し、 2次再結晶が生じたためである。 しかし、 1200°Cで 2h超の熱処理を行うと、 結晶粒径にバラヅキが生じ始める。 こ のバラヅキは、 熱処理によって一部の結晶粒の粗大化が進行し、 その粗大化した 一部の結晶粒が隣接する結晶粒の粗大化を阻むことに起因している。  On the other hand, as shown by the line 52 in FIG. 5, when the heat treatment is performed at 1180 ° C., the crystal grain size increases as the heat treatment time increases. This is because, by increasing the heat treatment time, the α ′ precipitated on the crystal grain boundaries gradually becomes solid solution, and the pinning effect gradually weakens. Further, as shown by the line 53 in FIG. 5, when the heat treatment was performed at 1200 ° C., the crystal grain size was coarse, approximately 60 μm. Was this precipitated on the grain boundaries? Is completely (or almost completely) dissolved and secondary recrystallization occurs. However, when heat treatment is performed at 1200 ° C for more than 2 hours, the crystal grain size starts to vary. The variation is due to the fact that some crystal grains are coarsened by the heat treatment, and the coarsened crystal grains prevent the adjacent crystal grains from being coarsened.
以上より、 図 4 (a) に示した鍛造まま材の結晶粒を粗大化させるには、 1170°C以上、 好ましくは 1180°C以上の温度で熱処理を行うことが好ましい。 また、 1200°Cで熱処理を行う場合、 熱処理時間は 2.011以下、 好ましくは 1. Oh以下の短 時間とされる。  As described above, in order to coarsen the crystal grains of the as-forged material shown in FIG. 4A, it is preferable to perform the heat treatment at a temperature of 1170 ° C. or more, preferably 1180 ° C. or more. When the heat treatment is performed at 1200 ° C., the heat treatment time is set to 2.011 or less, preferably 1. Oh or less.
次に、 図 4 (a) に示した鍛造まま材の熱処理温度を 1200°C超とした場合 について、 評価を行った。 図 4 (a) に示した鍛造まま材を 1220°Cで熱処理した 際の組織観察図を図 6 (a) 〜図 6 ( c ) に示す。  Next, evaluation was performed for the case where the heat treatment temperature of the as-forged material shown in Fig. 4 (a) was higher than 1200 ° C. Figures 6 (a) to 6 (c) show the microstructure observations of the as-forged material shown in Fig. 4 (a) when heat-treated at 1220 ° C.
図 6 (a) に示す 1220°Cx0.5hの熱処理材、 図 6 (b) に示す 1220°Cxl • Ohの熱処理材、 及び図 6 ( c ) に示す; l220°Cx2.0hの熱処理材のいずれにおい ても、 結晶粒界上に析出していたァ'は全て (又はほぼ全て) 固溶してしまってい た。 しかし、 図 6 (a) 〜図 6 ( c ) のそれそれの拡大図を図 7 (a) 〜図 7 ( c ) に示すように、 いずれの熱処理材においても、 結晶粒界の一部において部分 溶融が見受けられた (図 7 ( a ) 〜図 7 ( c ) 中央部の黒い部分) 。 このことか ら、 図 4 ( a ) に示した鍛造まま材に対して 1220°Cで熱処理を行うことは、 短時 間の熱処理であっても結晶粒界の一部で部分溶融が生じてしまうため、 好ましく ない。 The heat-treated material at 1220 ° C x 0.5h shown in Fig. 6 (a), the heat-treated material at 1220 ° CxlOh shown in Fig. 6 (b), and the heat-treated material shown in Fig. 6 (c); l220 ° C x 2.0h In each case, all (or almost all) of α ′ precipitated on the crystal grain boundaries was dissolved. However, as shown in Figs. 7 (a) to 7 (c), the enlarged views of Figs. 6 (a) to 6 (c) show that a part of the grain boundary part Melting was observed (Fig. 7 (a) to Fig. 7 (c), black part in the center). From this, heat treatment of the as-forged material at 1220 ° C as shown in Fig. 4 (a) requires partial melting at a part of the crystal grain boundary even for a short time heat treatment. This is not desirable.
以上を踏まえ、 本発明者らは、 微細結晶部のディスク内周部 2 1と、 粗大 結晶部のディスク外周部 2 2とを有するディスク材 2 0は、 単一の熱処理では得 ることができず、 ディスク材 2 0を得るには二段熱処理を施す必要があるという 知見に達した。 また、 本発明者らは、 二段熱処理の各熱処理の温度及び時間を見 出した。  Based on the above, the present inventors have found that a disk material 20 having a disk inner peripheral portion 21 of a fine crystal portion and a disk outer peripheral portion 22 of a coarse crystal portion can be obtained by a single heat treatment. Instead, it was found that two-stage heat treatment was required to obtain the disc material 20. Further, the present inventors have found the temperature and time of each heat treatment in the two-step heat treatment.
本発明の好適一実施の形態に係るディスク材の製造方法は、 図 1に示すよ うに、 ァ'相により析出強化されたァ'析出強化型 N i基合金で構成されるデイス ク体 1 0のディスク外周部 (一部) 1 2に、 ァ'相の固溶温度〜固溶温度よりも 1 0°C高い温度の範囲で短時間加熱する第 1加熱処理を施した後、 ディスク体 1 0の 全体に、 第 1加熱処理の加熱温度よりも 100°C低い温度〜第 1加熱処理の加熱温度 よりも 10°C低い温度の範囲で所定時間加熱する第 2加熱処理を施すものである。  As shown in FIG. 1, a method of manufacturing a disk material according to a preferred embodiment of the present invention includes a disk body 10 made of an α ′ precipitation-strengthened Ni-based alloy precipitation-strengthened by an α ′ phase. After performing a first heat treatment in which the outer periphery of the disk (partially) 12 is heated for a short time in a temperature range from the solid solution temperature of the α ′ phase to 10 ° C. higher than the solid solution temperature, the disk body 1 0 is subjected to a second heat treatment for heating for a predetermined time in a range of 100 ° C. lower than the heat temperature of the first heat treatment to 10 ° C. lower than the heat temperature of the first heat treatment. .
より具体的には、 例えば、 中央部に穴 1 3を有する 0400mmのディスク体 1 0の、 穴 1 3に回転軸 1 4を嵌入させた後、 そのディスク体 1 0が高周波誘導 加熱装置 1 5にセットされる。 高周波誘導加熱装置 1 5は、 円筒状のスリーブ部 1 6と、 スリーブ部 1 6の高さ方向両端部から径方向内方に突出したフランジ部 1 7 a , 1 7 bと、 図示しない高周波電流の発生装置及びリード部材とで構成さ れる。 スリーブ部 1 6の高さは、 ディスク体 1 0の厚さよりも大きく形成される。 スリーブ部 1 6とフランジ部 1 7 a , 1 7 bとで囲まれた空間が高周波誘導加熱 部を形成しており、 この空間にディスク体 1 0のディスク外周部 1 2を位置させ て、 セッ トがなされる。 図 1中においては、 高周波誘導加熱装置 1 5の形状を、 円環を二等分した形状としているが、 ディスク外周部 1 2のみを誘導加熱できる 形状であれば、 特に限定するものではない。 ディスク外周部 1 2は、 例えば、 デ イスク体 1 0の外縁から 10 c m幅の部分とされる。  More specifically, for example, after a rotating shaft 14 is fitted into a hole 13 of a 0400 mm disk body 10 having a hole 13 in the center, the disk body 10 becomes a high-frequency induction heating device 15 Is set to The high-frequency induction heating device 15 has a cylindrical sleeve portion 16, flange portions 17 a and 17 b projecting radially inward from both ends in the height direction of the sleeve portion 16, and a high-frequency current (not shown). And a lead member. The height of the sleeve portion 16 is formed larger than the thickness of the disk body 10. The space surrounded by the sleeve section 16 and the flange sections 17a and 17b forms a high-frequency induction heating section, and the disk outer peripheral section 12 of the disk body 10 is located in this space and set. Is made. In FIG. 1, the shape of the high-frequency induction heating device 15 is a shape obtained by bisecting a ring. However, the shape is not particularly limited as long as the shape is such that only the disk outer peripheral portion 12 can be induction-heated. The disk outer peripheral portion 12 is, for example, a portion having a width of 10 cm from the outer edge of the disk body 10.
先ず、 第 1のステップとして、 高周波誘導加熱装置 1 5による加熱温度が 1170〜1200°Cとなるように高周波電流値を調整した後、 回転軸 1 4を回転させる ことでディスク体 1 0が回転される。 これによつて、 ディスク体 1 0のディスク 外周部 1 2が、 全周にわたって高周波誘導加熱され、 第 1加熱処理がなされる。 高周波誘導加熱にょる加熱時間は0.1〜2.01 、 好ましくは 0. 1〜: L O hと短時間で あることから、 ディスク体 1 0のディスク内周部 1 1には、 高周波誘導加熱によ る熱的影響は殆ど及ばない。 また、 回転軸 1 4の内部に冷却媒体 1 9を循環させ、 ディスク内周部 1 1を冷却することで、 高周波誘導加熱によるディスク内周部 1First, as a first step, the heating temperature of the high-frequency induction heating device 15 is reduced. After adjusting the high-frequency current value so as to be 1170 to 1200 ° C., by rotating the rotating shaft 14, the disk body 10 is rotated. Thus, the outer peripheral portion 12 of the disk body 10 is subjected to high-frequency induction heating over the entire circumference, and the first heat treatment is performed. Heating time by high-frequency induction heating is 0.1 to 2.01, preferably 0.1 to: Since LO h is short, heat generated by high-frequency induction heating is applied to the inner peripheral portion 11 of the disk 10. Has little effect. In addition, by circulating a cooling medium 19 inside the rotating shaft 14 and cooling the inner peripheral portion 11 of the disk, the inner peripheral portion 1 of the disk by high-frequency induction heating is cooled.
1に対する熱的影響を更に低減させることができる。 この高周波誘導加熱によつ て、 ディスク外周部 1 2における結晶粒界上に析出していた析出物 (ァ'相) が固 溶する。 また、 この第 1加熱処理の段階では、 ディスク外周部 1 2における金属 結晶の結晶粒径の制御はなされない。 1 can be further reduced. By this high-frequency induction heating, the precipitate (α ′ phase) that has precipitated on the crystal grain boundaries in the outer peripheral portion 12 of the disk is dissolved. Further, in the stage of the first heat treatment, the crystal grain size of the metal crystal in the outer peripheral portion 12 of the disk is not controlled.
次に、 第 2のステップとして、 ディスク体 1 0を抵抗炉内に入れて加熱す ることで、 ディスク体 1 0の全体に第 2加熱処理がなされる。 抵抗炉内での加熱 温度は 1070〜; 1190°C、 好ましくは 1100〜: U90°C、 加熱時間は 0.5〜10h、 好ましく は 0.5〜4.0 hとされる。 この第 2加熱処理の加熱温度及び加熱時間を制御するこ とにより、 ディスク体外周部 1 2における結晶粒径の制御がなされる。 より詳細 に説明すると、 ァ'相は、 ピン止め効果により結晶粒の粗大化を抑制するものであ るが、 ディスク外周部 1 2における結晶粒界上のァ'相は、 第 1加熱処理によって 既に固溶してしまっている。 その結果、 第 2加熱処理を施すと、 ディスク内周部 Next, as a second step, the disk body 10 is placed in a resistance furnace and heated to perform a second heat treatment on the entire disk body 10. The heating temperature in the resistance furnace is 1070 ~; 1190 ° C, preferably 1100 ~: U90 ° C, and the heating time is 0.5 ~ 10h, preferably 0.5 ~ 4.0h. By controlling the heating temperature and the heating time of the second heat treatment, the crystal grain size in the outer peripheral portion 12 of the disk body is controlled. More specifically, the α ′ phase suppresses the coarsening of the crystal grains due to the pinning effect, but the α ′ phase on the crystal grain boundaries in the outer peripheral portion 12 of the disk is reduced by the first heat treatment. It has already dissolved. As a result, after the second heat treatment,
1 1における金属結晶の結晶粒は微細なままであるのに対し、 ディスク外周部 1 2における金属結晶の結晶粒は粗大化される。 また、 この第 2加熱処理により、 ディスク体 1 0の全体に対して溶体化処理がなされ、 ディスク内周部 1 1の歪み などが緩和、 解消され、 疲労強度が向上する。 While the crystal grains of the metal crystal in 11 remain fine, the crystal grains of the metal crystal in the outer peripheral portion 12 of the disk are coarsened. In addition, by the second heat treatment, a solution treatment is performed on the entire disc body 10, so that the distortion of the inner peripheral portion 11 of the disc is alleviated and eliminated, and the fatigue strength is improved.
これによつて、 ディスク内周部 1 1が結晶粒径が 20 z m以下の微細結晶部 As a result, the inner peripheral part of the disk 11 is a fine crystal part with a crystal grain size of 20 zm or less.
(ディスク内周部 2 1 ) に、 ディスク外周部 1 2が結晶粒径が 70〜; 130 mの龃大 結晶部 (ディスク外周部 2 2 ) に形成され、 図 1に示したディスク材 2 0が得ら れる。 The disk outer periphery 12 is formed on the (disk inner periphery 21) in a large crystal part (disk outer periphery 22) having a crystal grain size of 70 to 130 m, and the disk material 20 shown in FIG. Is obtained.
図 4 ( a ) に示した鍛造まま材に 1200°C x 0.5 hで第 1加熱処理を施した後、 n80°Cで第 2加熱処理を施す際の、 第 2加熱処理の熱処理時間とディスク外周部 の結晶粒径との関係を図 8に示す。 After subjecting the as-forged material shown in Fig. 4 (a) to the first heat treatment at 1200 ° C x 0.5 h, FIG. 8 shows the relationship between the heat treatment time of the second heat treatment and the crystal grain size of the outer peripheral portion of the disk when the second heat treatment is performed at n80 ° C.
例えば、 図 8に線 8 1で示すように、 図 4 (a) に示した鍛造まま材に 12 0{TCx().5hの第 1加熱処理を施した後、 1180°Cの第 2加熱処理を施した熱処理材 の、 ディスク外周部 2 2における結晶粒径は、 第 2加熱処理の処理時間が 0.5hの 時、 30 1!1強であった。 その後、 熱処理時間が長くなるのに伴って、 ディスク外 周部 2 2における結晶粒径は粗大になり、 第 2加熱処理の処理時間が 4hの時、 デ イスク外周部 2 2における結晶粒径は約 85 mとなった。 組織観察図により確認 すると、 図 9 (a) 〜図 9 ( c) に示すように、 第 2加熱処理の処理時間が lh、 2h、 4hと長くなるのに伴って、 ディスク外周部 2 2における金属結晶の結晶粒 が粗大になっていく様子が伺える。  For example, as shown by the line 81 in FIG. 8, after subjecting the as-forged material shown in FIG. 4 (a) to the first heat treatment of 120 ° TCx (). 5h, the second heat treatment at 1180 ° C. The crystal grain size of the treated heat-treated material at the outer peripheral portion 22 of the disk was slightly more than 301 11 when the second heat treatment time was 0.5 h. Thereafter, as the heat treatment time becomes longer, the crystal grain size in the outer peripheral portion 22 of the disk becomes coarse, and when the processing time of the second heat treatment is 4 h, the crystal grain size in the outer peripheral portion 22 of the disk becomes larger. It was about 85 m. As shown in Figs. 9 (a) to 9 (c), as shown in Figs. 9 (a) to 9 (c), as the processing time of the second heat treatment increases to lh, 2h, and 4h, It can be seen that the crystal grains of the metal crystals are getting coarser.
これに対して、 図 8に線 82で示すように、 図 4 (a) に示した鍛造まま 材に 1180°Cの単一熱処理を施した熱処理材の、 ディスク外周部 22における結晶 粒径は、 8hの加熱処理を施しても 20 zm強しかなかった。 また、 図 8に線 83で 示すように、 図 4 (a) に示した鍛造まま材に 1160°Cの単一熱処理を施した熱処 理材の、 ディスク外周部 22における結晶粒径は、 熱処理時間を長くしてもほと んど変化せず、 10 m強しかなかった。  On the other hand, as shown by the line 82 in FIG. 8, the crystal grain size at the disk outer peripheral portion 22 of the heat-treated material obtained by performing a single heat treatment at 1180 ° C. on the as-forged material shown in FIG. However, even after the heat treatment for 8 hours, it was only over 20 zm. As shown by the line 83 in FIG. 8, the crystal grain size at the disk outer peripheral portion 22 of the heat-treated material obtained by performing a single heat treatment at 1160 ° C. on the as-forged material shown in FIG. Even if the heat treatment time was prolonged, there was almost no change, only 10 m or more.
以上、 本実施の形態に係るディスク材 2 0の製造方法を用いた線 8 1で示 した熱処理材は、 1200°Cx0.5hの第 1加熱処理を施した後に、 第 1加熱処理の加 熱温度よりも 20°C低い温度で第 2加熱処理を施すことで、 第 2加熱処理の処理時 間が 4hという短時間であっても、 ディスク外周部 2 2における金属結晶の結晶粒 を約 85 mに粗大化させることができた。  As described above, the heat-treated material indicated by the line 81 using the method of manufacturing the disc material 20 according to the present embodiment is subjected to the first heat treatment at 1200 ° C. for 0.5 h, and then to the heat treatment of the first heat treatment. By performing the second heat treatment at a temperature 20 ° C. lower than the temperature, even if the processing time of the second heat treatment is as short as 4 hours, the crystal grains of the metal crystals in the outer peripheral portion 22 of the disk are reduced by about 85%. m could be coarsened.
本実施の形態に係るディスク材 2 0の製造方法によれば、 第 1のステップ である第 1加熱処理は、 ディスク体 1 0のディスク外周部 1 2における結晶粒界 上のァ'相の固溶を目的とし、 ディスク外周部 1 2における金属結晶の結晶粒の粗 大化は図っていない。 このため、 ディスク外周部 1 2において部分的な溶融が生 じない程度の熱処理温度範囲を選択、 設定することができ、 その結果、 ディスク 外周部 1 2において部分溶融が生じることはない。 また、 本実施の形態に係るディスク材 2 0の製造方法によれば、 ディスク 体 1 0のディスク外周部 1 2を部分加熱する第 1加熱処理は、 ァ'相の固溶のみを 目的としており、 長時間にわたって熱処理を行う必要がない。 すなわち、 第 1カロ 熱処理は短時間の熱処理であることから、 ディスク内周部 1 1に熱的影響が及ん で温度上昇が生じるおそれはなく、 ディスク外周部 1 2のみに有効な熱的影響を 与えることができる。 According to the method of manufacturing the disk material 20 according to the present embodiment, the first heat treatment, which is the first step, is performed by solidifying the a ′ phase on the crystal grain boundaries in the disk outer peripheral portion 12 of the disk body 10. For the purpose of melting, the crystal grains of the metal crystal in the outer peripheral portion 12 of the disk are not made coarse. Therefore, a heat treatment temperature range that does not cause partial melting at the disk outer peripheral portion 12 can be selected and set, and as a result, partial melting does not occur at the disk outer peripheral portion 12. Further, according to the method for manufacturing the disk material 20 according to the present embodiment, the first heat treatment for partially heating the disk outer peripheral portion 12 of the disk body 10 is intended only for solid solution of the a ′ phase. There is no need to perform heat treatment for a long time. In other words, since the first heat treatment is a short-time heat treatment, there is no possibility that the temperature will rise due to the thermal effect on the inner peripheral portion 11 of the disk, and the effective thermal effect will be effective only on the outer peripheral portion 12 of the disk. Can be given.
さらに、 本実施の形態に係るディスク材 2 0の製造方法によれば、 1170〜 1200°C x短時間の第 1加熱処理を施した後に、 第 1加熱処理の加熱温度よりも 10 0°C低い温度〜第 1加熱処理の加熱温度よりも 10°C低い温度の範囲で第 2加熱処理 を施すことで、 第 2加熱処理の処理時間が短時間であっても、 ディスク外周部 2 2における金属結晶の結晶粒の粗大化を図ることができる。  Furthermore, according to the method of manufacturing the disc material 20 according to the present embodiment, after performing the first heat treatment for 1170 to 1200 ° C. x a short time, the heating temperature of the first heat treatment is reduced by 100 ° C. By performing the second heat treatment in a temperature range from a low temperature to a temperature lower by 10 ° C. than the heating temperature of the first heat treatment, even if the processing time of the second heat treatment is short, the outer peripheral portion 22 of the disk can be used. The crystal grains of the metal crystal can be made coarse.
また、 本実施の形態に係るディスク材 2 0の製造方法は、 高周波誘導加熱 装置 1 5を用いて第 1加熱処理を行うことが好ましい。 この場合、 ソルトバスを 用いる米国特許第 5, 326 , 409号明細書に記載された発明と比較して、 短時間で熱処 理を行うことができ、 ディスク体 1 0のディスク外周部 1 2のみに有効な熱的影 響を与えることができる。 また、 ソルトバスではなく、 高周波誘導加熱装置 1 5 を用いることから、 加熱処理時の作業が、 より簡易、 安全となる。  Further, in the method of manufacturing the disk material 20 according to the present embodiment, it is preferable to perform the first heat treatment using the high-frequency induction heating device 15. In this case, compared with the invention described in US Pat. No. 5,326,409 using a salt bath, the heat treatment can be performed in a shorter time, and the outer peripheral portion 12 Only the effective thermal effects can be exerted. In addition, since the high-frequency induction heating device 15 is used instead of the salt bath, the operation at the time of the heat treatment becomes simpler and safer.
さらに、 本実施の形態に係るディスク材 2 0の製造方法は、 第 1加熱処理 にソルトバスを用いてもよい。 この場合、 ソルトバスの浴温をァ'相の固溶温度〜 固溶温度よりも 10°C高い温度、 具体的には 1170~ 1200°Cに調整し、 回転させたデ イスク体 1 0のディスク外周部 1 2を、 短時間、 ソルトバスに浸漬することで、 第 1加熱処理がなされる。  Further, in the method of manufacturing disk 20 according to the present embodiment, a salt bath may be used for the first heat treatment. In this case, the bath temperature of the salt bath is adjusted to a temperature 10 ° C higher than the solid solution temperature of the solid phase to the solid solution temperature, specifically 1170 to 1200 ° C, and the disk body 10 is rotated. The first heat treatment is performed by immersing the disk outer peripheral portion 12 in a salt bath for a short time.
本実施の形態に係るディスク材 2 0は、 ディスク内周部 2 1が微細結晶部、. ディスク外周部 2 2が粗大結晶部であることから、 内周部は疲労強度に優れ、 外 周部は高温強度に優れたデュアルプロパティのディスク材となる。  The disk material 20 according to the present embodiment has a disk inner peripheral portion 21 of a fine crystal portion and a disk outer peripheral portion 22 of a coarse crystal portion. Therefore, the inner peripheral portion has excellent fatigue strength, and the outer peripheral portion. Is a dual property disc material with excellent high temperature strength.
また、 本実施の形態に係るディスク材 2 0においては、 ディスク内周部 2 1が微細結晶部、 ディスク外周部 2 2が粗大結晶部である場合について説明を行 つたが、 特にこれに限定されない。 例えば、 ディスク内周部 2 1が粗大結晶部、 ディスク外周部 2 2が微細結晶部であってもよい。 Further, in the disk material 20 according to the present embodiment, the case where the inner peripheral portion 21 of the disk is a fine crystal portion and the outer peripheral portion 22 of the disk is a coarse crystal portion has been described, but the present invention is not particularly limited to this. . For example, the inner peripheral part 21 of the disk is a coarse crystal part, The disk outer peripheral portion 22 may be a fine crystal portion.
一方、 本実施の形態に係るタービンディスクは、 ディスク材 2 0を用いて 製造されるものである。 これによつて、 外周部が高温強度を、 内周部が疲労強度 をそれそれ高いレベルで達成した夕一ビンディスクが得られる。 また、 本実施の 形態に係る夕一ビンエンジンは、 本実施の形態に係るタービンディスクを用いて 製造されるものである。 これによつて、 高温運転時の信頼性に優れた夕一ビンェ ンジンが得られる。 その結果、 このタービンエンジンは、 高温負荷に対する耐熱 性、 耐久性がより高まる。  On the other hand, the turbine disk according to the present embodiment is manufactured using the disk material 20. As a result, it is possible to obtain an evening bin disc in which the outer peripheral portion achieves high-temperature strength and the inner peripheral portion achieves high fatigue strength. The evening bin engine according to the present embodiment is manufactured using the turbine disk according to the present embodiment. As a result, it is possible to obtain Yuichi Binjinjin with excellent reliability during high-temperature operation. As a result, this turbine engine has higher heat resistance and durability against high temperature loads.

Claims

請 求 の 範 囲 The scope of the claims
1 . 析出強化型 N i基合金で構成されるディスク材であり、 結晶粒径が 20 z m以下の微細結晶部と結晶粒径が 70〜130〃mの粗大結晶部とを有することを特徴 とするディスク材。 1. A disc material composed of a precipitation-strengthened Ni-based alloy, characterized by having a fine crystal part with a crystal grain size of 20 zm or less and a coarse crystal part with a crystal grain size of 70 to 130〃m. Disc material to do.
2 . ァ'析出強化型 N i基合金で構成されるディスク材であり、 結晶粒界にァ' 相が析出した結晶粒径が 20 m以下の微細結晶部と、 結晶粒界にァ'相の析出がな く、 結晶粒径が 70〜130〃mの粗大結晶部とを有することを特徴とするディスク材。 2. A disk material composed of an α-precipitation strengthened Ni-based alloy, where the α-phase precipitates at the crystal grain boundaries and the crystal grain size is 20 m or less. A disk material characterized by having coarse crystal parts having a crystal grain size of 70 to 130 µm without precipitation.
3 . 上記微細結晶部がディスク内周部、 上記粗大結晶部がディスク外周部であ る請求項 1又は 2記載のディスク材。 3. The disk material according to claim 1, wherein the fine crystal portion is an inner peripheral portion of the disk, and the coarse crystal portion is an outer peripheral portion of the disk.
4 . ァ'相により析出強化されたァ5析出強化型 N i基合金で構成されるデイス ク体の一部に、 ァ'相の固溶温度〜固溶温度よりも 10°C高い温度の範囲で短時間加 熱する第 1加熱処理を施した後、 ディスク体全体に、 第 1加熱処理の加熱温度よ りも 100°C低い温度〜第 1加熱処理の加熱温度よりも 10°C低い温度の範囲で所定時 間加熱する第 2加熱処理を施し、 上記ディスク体の一部を結晶粒径が 70〜; 130 m の粗大結晶部に、 ディスク体の残部を結晶粒径が 20 z m以下の微細結晶部に形成 することを特徴とするディスク材の製造方法。 4. 'Part of the constructed Dace click body § 5 precipitation strengthened N i based alloys reinforced precipitated by phase, §' § than dissolution temperature-dissolution temperature of phase 10 ° C higher temperature After the first heat treatment of heating for a short time in the range, the entire disc body is 100 ° C lower than the heating temperature of the first heat treatment to 10 ° C lower than the heating temperature of the first heat treatment. A second heat treatment of heating for a predetermined time in a temperature range is performed, and a part of the disk body is formed into a coarse crystal part having a crystal grain size of 70 to 130 m, and the remaining part of the disk body is formed with a crystal grain size of 20 zm or less. A method for producing a disk material, wherein the method comprises forming a disk material on a fine crystal part.
5 . 上記ディスク体の一部がディスク外周部、 ディスク体の残部がディスク内 周部である請求項 4記載のディスク材の製造方法。  5. The method of manufacturing a disk material according to claim 4, wherein a part of the disk body is an outer peripheral portion of the disk, and a remaining portion of the disk body is an inner peripheral portion of the disk.
6 . 上記第 1加熱処理の加熱温度が 1170〜1200°C、 加熱時間が 0.1〜2.0 hであ る請求項 4又は 5記載のディスク材の製造方法。  6. The method for producing a disk material according to claim 4, wherein a heating temperature of the first heat treatment is 1170 to 1200 ° C and a heating time is 0.1 to 2.0 hours.
7 . 上記第 2加熱処理の加熱温度が 1070〜: U90°C、 加熱時間が 0.5〜; I0 hである 請求項 4から 6いずれかに記載のディスク材の製造方法。  7. The method for producing a disk material according to any one of claims 4 to 6, wherein the heating temperature of the second heat treatment is 1070 or more: U90 ° C, and the heating time is 0.5 to I0h.
8 . 上記第 1加熱処理を高周波誘導加熱により行う請求項 4から 7いずれかに 記載のディスク材の製造方法。  8. The method according to claim 4, wherein the first heat treatment is performed by high-frequency induction heating.
9 . 上記第 1加熱処理をソルトバス浸漬により行う請求項 4から 7いずれかに 記載のディスク材の製造方法。 9. The method for producing a disk material according to claim 4, wherein the first heat treatment is performed by salt bath immersion.
1 0 . 請求項 1から 3いずれかに記載のディスク材を用いて製造したタービン ディスク。 10. A turbine disk manufactured using the disk material according to claim 1.
1 1 . 請求項 1 0記載のタービンディスクを用いて製造したタービンエンジン  11. A turbine engine manufactured using the turbine disk according to claim 10.
PCT/JP2004/000887 2004-01-30 2004-01-30 Disk material WO2005073515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/000887 WO2005073515A1 (en) 2004-01-30 2004-01-30 Disk material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/000887 WO2005073515A1 (en) 2004-01-30 2004-01-30 Disk material

Publications (1)

Publication Number Publication Date
WO2005073515A1 true WO2005073515A1 (en) 2005-08-11

Family

ID=34816546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000887 WO2005073515A1 (en) 2004-01-30 2004-01-30 Disk material

Country Status (1)

Country Link
WO (1) WO2005073515A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017106970A1 (en) * 2015-12-22 2017-06-29 École De Technologie Supérieure A method for heat treating by induction an alloy component for generating microstructure gradients and an alloy component heat treated according to the method
JP2019500492A (en) * 2015-11-06 2019-01-10 サフラン Apparatus for generating microstructures with structural gradients in axisymmetric parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190343A (en) * 1983-02-01 1984-10-29 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Anticorrosive and acid-resistant structural member and manufacture
JPS6314802A (en) * 1986-07-03 1988-01-22 Agency Of Ind Science & Technol Production of turbine disk or the like made of powder ni superalloy
EP0284876A1 (en) * 1987-04-01 1988-10-05 General Electric Company High strength superalloy components with graded properties
JPH01165741A (en) * 1987-12-21 1989-06-29 Kobe Steel Ltd Turbine disk consisting of homogeneous alloys having different crystal grain size
JPH03170632A (en) * 1989-10-04 1991-07-24 General Electric Co <Ge> Nickel based super alloy
JPH08218801A (en) * 1995-02-09 1996-08-27 Ishikawajima Harima Heavy Ind Co Ltd Titanium (ti) alloy disc excellent in heat resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190343A (en) * 1983-02-01 1984-10-29 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Anticorrosive and acid-resistant structural member and manufacture
JPS6314802A (en) * 1986-07-03 1988-01-22 Agency Of Ind Science & Technol Production of turbine disk or the like made of powder ni superalloy
EP0284876A1 (en) * 1987-04-01 1988-10-05 General Electric Company High strength superalloy components with graded properties
JPH01165741A (en) * 1987-12-21 1989-06-29 Kobe Steel Ltd Turbine disk consisting of homogeneous alloys having different crystal grain size
JPH03170632A (en) * 1989-10-04 1991-07-24 General Electric Co <Ge> Nickel based super alloy
JPH08218801A (en) * 1995-02-09 1996-08-27 Ishikawajima Harima Heavy Ind Co Ltd Titanium (ti) alloy disc excellent in heat resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500492A (en) * 2015-11-06 2019-01-10 サフラン Apparatus for generating microstructures with structural gradients in axisymmetric parts
JP7166918B2 (en) 2015-11-06 2022-11-08 サフラン Apparatus for generating microstructures with structural gradients in axisymmetric parts
WO2017106970A1 (en) * 2015-12-22 2017-06-29 École De Technologie Supérieure A method for heat treating by induction an alloy component for generating microstructure gradients and an alloy component heat treated according to the method
EP3394295A4 (en) * 2015-12-22 2019-11-13 Ecole de Technologie Supérieure A method for heat treating by induction an alloy component for generating microstructure gradients and an alloy component heat treated according to the method
US11136634B2 (en) 2015-12-22 2021-10-05 École De Technologie Supérieure Method for heat treating by induction an alloy component for generating microstructure gradients and an alloy component heat treated according to the method

Similar Documents

Publication Publication Date Title
US11047016B2 (en) Techniques for controlling precipitate phase domain size in an alloy
JP5305597B2 (en) Local heat treatment to improve fatigue resistance of turbine components
JP4498282B2 (en) Superalloy composition, article and manufacturing method
RU2361009C2 (en) Alloys on basis of nickel and methods of thermal treatment of alloys on basis of nickel
JP6165417B2 (en) Method for manufacturing a component having components and regions having different particle structures
JP2782189B2 (en) Manufacturing method of nickel-based superalloy forgings
US4907947A (en) Heat treatment for dual alloy turbine wheels
Groh et al. Development of a new cast and wrought alloy (René 65) for high temperature disk applications
JPH01205059A (en) Heat-treatment improving fatique characteristic and improved hard alloy
JPH03140447A (en) Forging of microcrystalline titanium powder and method of its manufacture
JPS63310947A (en) High strength superalloy parts with gradual change characteristics
JP2008163937A (en) Rotary assembly component and method of fabricating such component
JPH0457417B2 (en)
JP2728905B2 (en) Heat treatment method for high tensile titanium Ti-6246 alloy
EP2530181B1 (en) Components and processes of producing components with regions having different grain structures
JP2011167762A (en) Welding method and component manufactured by the method
JP5263580B2 (en) Ring disc for gas turbine
EP1201777B1 (en) Superalloy optimized for high-temperature performance in high-pressure turbine disks
US4531981A (en) Component possessing high resistance to corrosion and oxidation, composed of a dispersion-hardened superalloy, and process for its manufacture
JPH09508670A (en) Superalloy forging method and related composition
CN113614260A (en) Superalloy with optimized performance and finite density
JP2008063661A (en) Heat-treatment method of nickel-based superalloy
JP2009531546A (en) Heat treatment method and manufacturing method for thermomechanical components made of titanium alloy, and thermomechanical components obtained from these methods
WO2005073515A1 (en) Disk material
JP4106113B2 (en) Heat treatment method for heat-resistant iron-nickel superalloy material body and heat-treated material body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase